2003-12-26 Guilhem Lavaux <guilhem@kaffe.org>
[official-gcc.git] / gcc / reload1.c
blob9a0ad8947468d74457b6af5b1de5089a10f2ad73
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "recog.h"
41 #include "output.h"
42 #include "real.h"
43 #include "toplev.h"
44 #include "except.h"
45 #include "tree.h"
47 /* This file contains the reload pass of the compiler, which is
48 run after register allocation has been done. It checks that
49 each insn is valid (operands required to be in registers really
50 are in registers of the proper class) and fixes up invalid ones
51 by copying values temporarily into registers for the insns
52 that need them.
54 The results of register allocation are described by the vector
55 reg_renumber; the insns still contain pseudo regs, but reg_renumber
56 can be used to find which hard reg, if any, a pseudo reg is in.
58 The technique we always use is to free up a few hard regs that are
59 called ``reload regs'', and for each place where a pseudo reg
60 must be in a hard reg, copy it temporarily into one of the reload regs.
62 Reload regs are allocated locally for every instruction that needs
63 reloads. When there are pseudos which are allocated to a register that
64 has been chosen as a reload reg, such pseudos must be ``spilled''.
65 This means that they go to other hard regs, or to stack slots if no other
66 available hard regs can be found. Spilling can invalidate more
67 insns, requiring additional need for reloads, so we must keep checking
68 until the process stabilizes.
70 For machines with different classes of registers, we must keep track
71 of the register class needed for each reload, and make sure that
72 we allocate enough reload registers of each class.
74 The file reload.c contains the code that checks one insn for
75 validity and reports the reloads that it needs. This file
76 is in charge of scanning the entire rtl code, accumulating the
77 reload needs, spilling, assigning reload registers to use for
78 fixing up each insn, and generating the new insns to copy values
79 into the reload registers. */
81 /* During reload_as_needed, element N contains a REG rtx for the hard reg
82 into which reg N has been reloaded (perhaps for a previous insn). */
83 static rtx *reg_last_reload_reg;
85 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
86 for an output reload that stores into reg N. */
87 static char *reg_has_output_reload;
89 /* Indicates which hard regs are reload-registers for an output reload
90 in the current insn. */
91 static HARD_REG_SET reg_is_output_reload;
93 /* Element N is the constant value to which pseudo reg N is equivalent,
94 or zero if pseudo reg N is not equivalent to a constant.
95 find_reloads looks at this in order to replace pseudo reg N
96 with the constant it stands for. */
97 rtx *reg_equiv_constant;
99 /* Element N is a memory location to which pseudo reg N is equivalent,
100 prior to any register elimination (such as frame pointer to stack
101 pointer). Depending on whether or not it is a valid address, this value
102 is transferred to either reg_equiv_address or reg_equiv_mem. */
103 rtx *reg_equiv_memory_loc;
105 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
106 This is used when the address is not valid as a memory address
107 (because its displacement is too big for the machine.) */
108 rtx *reg_equiv_address;
110 /* Element N is the memory slot to which pseudo reg N is equivalent,
111 or zero if pseudo reg N is not equivalent to a memory slot. */
112 rtx *reg_equiv_mem;
114 /* Widest width in which each pseudo reg is referred to (via subreg). */
115 static unsigned int *reg_max_ref_width;
117 /* Element N is the list of insns that initialized reg N from its equivalent
118 constant or memory slot. */
119 static rtx *reg_equiv_init;
121 /* Vector to remember old contents of reg_renumber before spilling. */
122 static short *reg_old_renumber;
124 /* During reload_as_needed, element N contains the last pseudo regno reloaded
125 into hard register N. If that pseudo reg occupied more than one register,
126 reg_reloaded_contents points to that pseudo for each spill register in
127 use; all of these must remain set for an inheritance to occur. */
128 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
130 /* During reload_as_needed, element N contains the insn for which
131 hard register N was last used. Its contents are significant only
132 when reg_reloaded_valid is set for this register. */
133 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
135 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
136 static HARD_REG_SET reg_reloaded_valid;
137 /* Indicate if the register was dead at the end of the reload.
138 This is only valid if reg_reloaded_contents is set and valid. */
139 static HARD_REG_SET reg_reloaded_dead;
141 /* Indicate whether the register's current value is one that is not
142 safe to retain across a call, even for registers that are normally
143 call-saved. */
144 static HARD_REG_SET reg_reloaded_call_part_clobbered;
146 /* Number of spill-regs so far; number of valid elements of spill_regs. */
147 static int n_spills;
149 /* In parallel with spill_regs, contains REG rtx's for those regs.
150 Holds the last rtx used for any given reg, or 0 if it has never
151 been used for spilling yet. This rtx is reused, provided it has
152 the proper mode. */
153 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
155 /* In parallel with spill_regs, contains nonzero for a spill reg
156 that was stored after the last time it was used.
157 The precise value is the insn generated to do the store. */
158 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
160 /* This is the register that was stored with spill_reg_store. This is a
161 copy of reload_out / reload_out_reg when the value was stored; if
162 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
163 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
165 /* This table is the inverse mapping of spill_regs:
166 indexed by hard reg number,
167 it contains the position of that reg in spill_regs,
168 or -1 for something that is not in spill_regs.
170 ?!? This is no longer accurate. */
171 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
173 /* This reg set indicates registers that can't be used as spill registers for
174 the currently processed insn. These are the hard registers which are live
175 during the insn, but not allocated to pseudos, as well as fixed
176 registers. */
177 static HARD_REG_SET bad_spill_regs;
179 /* These are the hard registers that can't be used as spill register for any
180 insn. This includes registers used for user variables and registers that
181 we can't eliminate. A register that appears in this set also can't be used
182 to retry register allocation. */
183 static HARD_REG_SET bad_spill_regs_global;
185 /* Describes order of use of registers for reloading
186 of spilled pseudo-registers. `n_spills' is the number of
187 elements that are actually valid; new ones are added at the end.
189 Both spill_regs and spill_reg_order are used on two occasions:
190 once during find_reload_regs, where they keep track of the spill registers
191 for a single insn, but also during reload_as_needed where they show all
192 the registers ever used by reload. For the latter case, the information
193 is calculated during finish_spills. */
194 static short spill_regs[FIRST_PSEUDO_REGISTER];
196 /* This vector of reg sets indicates, for each pseudo, which hard registers
197 may not be used for retrying global allocation because the register was
198 formerly spilled from one of them. If we allowed reallocating a pseudo to
199 a register that it was already allocated to, reload might not
200 terminate. */
201 static HARD_REG_SET *pseudo_previous_regs;
203 /* This vector of reg sets indicates, for each pseudo, which hard
204 registers may not be used for retrying global allocation because they
205 are used as spill registers during one of the insns in which the
206 pseudo is live. */
207 static HARD_REG_SET *pseudo_forbidden_regs;
209 /* All hard regs that have been used as spill registers for any insn are
210 marked in this set. */
211 static HARD_REG_SET used_spill_regs;
213 /* Index of last register assigned as a spill register. We allocate in
214 a round-robin fashion. */
215 static int last_spill_reg;
217 /* Nonzero if indirect addressing is supported on the machine; this means
218 that spilling (REG n) does not require reloading it into a register in
219 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
220 value indicates the level of indirect addressing supported, e.g., two
221 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
222 a hard register. */
223 static char spill_indirect_levels;
225 /* Nonzero if indirect addressing is supported when the innermost MEM is
226 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
227 which these are valid is the same as spill_indirect_levels, above. */
228 char indirect_symref_ok;
230 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
231 char double_reg_address_ok;
233 /* Record the stack slot for each spilled hard register. */
234 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
236 /* Width allocated so far for that stack slot. */
237 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
239 /* Record which pseudos needed to be spilled. */
240 static regset_head spilled_pseudos;
242 /* Used for communication between order_regs_for_reload and count_pseudo.
243 Used to avoid counting one pseudo twice. */
244 static regset_head pseudos_counted;
246 /* First uid used by insns created by reload in this function.
247 Used in find_equiv_reg. */
248 int reload_first_uid;
250 /* Flag set by local-alloc or global-alloc if anything is live in
251 a call-clobbered reg across calls. */
252 int caller_save_needed;
254 /* Set to 1 while reload_as_needed is operating.
255 Required by some machines to handle any generated moves differently. */
256 int reload_in_progress = 0;
258 /* These arrays record the insn_code of insns that may be needed to
259 perform input and output reloads of special objects. They provide a
260 place to pass a scratch register. */
261 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
262 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
264 /* This obstack is used for allocation of rtl during register elimination.
265 The allocated storage can be freed once find_reloads has processed the
266 insn. */
267 struct obstack reload_obstack;
269 /* Points to the beginning of the reload_obstack. All insn_chain structures
270 are allocated first. */
271 char *reload_startobj;
273 /* The point after all insn_chain structures. Used to quickly deallocate
274 memory allocated in copy_reloads during calculate_needs_all_insns. */
275 char *reload_firstobj;
277 /* This points before all local rtl generated by register elimination.
278 Used to quickly free all memory after processing one insn. */
279 static char *reload_insn_firstobj;
281 /* List of insn_chain instructions, one for every insn that reload needs to
282 examine. */
283 struct insn_chain *reload_insn_chain;
285 /* List of all insns needing reloads. */
286 static struct insn_chain *insns_need_reload;
288 /* This structure is used to record information about register eliminations.
289 Each array entry describes one possible way of eliminating a register
290 in favor of another. If there is more than one way of eliminating a
291 particular register, the most preferred should be specified first. */
293 struct elim_table
295 int from; /* Register number to be eliminated. */
296 int to; /* Register number used as replacement. */
297 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
298 int can_eliminate; /* Nonzero if this elimination can be done. */
299 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
300 insns made by reload. */
301 HOST_WIDE_INT offset; /* Current offset between the two regs. */
302 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
303 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
304 rtx from_rtx; /* REG rtx for the register to be eliminated.
305 We cannot simply compare the number since
306 we might then spuriously replace a hard
307 register corresponding to a pseudo
308 assigned to the reg to be eliminated. */
309 rtx to_rtx; /* REG rtx for the replacement. */
312 static struct elim_table *reg_eliminate = 0;
314 /* This is an intermediate structure to initialize the table. It has
315 exactly the members provided by ELIMINABLE_REGS. */
316 static const struct elim_table_1
318 const int from;
319 const int to;
320 } reg_eliminate_1[] =
322 /* If a set of eliminable registers was specified, define the table from it.
323 Otherwise, default to the normal case of the frame pointer being
324 replaced by the stack pointer. */
326 #ifdef ELIMINABLE_REGS
327 ELIMINABLE_REGS;
328 #else
329 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
330 #endif
332 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
334 /* Record the number of pending eliminations that have an offset not equal
335 to their initial offset. If nonzero, we use a new copy of each
336 replacement result in any insns encountered. */
337 int num_not_at_initial_offset;
339 /* Count the number of registers that we may be able to eliminate. */
340 static int num_eliminable;
341 /* And the number of registers that are equivalent to a constant that
342 can be eliminated to frame_pointer / arg_pointer + constant. */
343 static int num_eliminable_invariants;
345 /* For each label, we record the offset of each elimination. If we reach
346 a label by more than one path and an offset differs, we cannot do the
347 elimination. This information is indexed by the difference of the
348 number of the label and the first label number. We can't offset the
349 pointer itself as this can cause problems on machines with segmented
350 memory. The first table is an array of flags that records whether we
351 have yet encountered a label and the second table is an array of arrays,
352 one entry in the latter array for each elimination. */
354 static int first_label_num;
355 static char *offsets_known_at;
356 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
358 /* Number of labels in the current function. */
360 static int num_labels;
362 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
363 static void maybe_fix_stack_asms (void);
364 static void copy_reloads (struct insn_chain *);
365 static void calculate_needs_all_insns (int);
366 static int find_reg (struct insn_chain *, int);
367 static void find_reload_regs (struct insn_chain *);
368 static void select_reload_regs (void);
369 static void delete_caller_save_insns (void);
371 static void spill_failure (rtx, enum reg_class);
372 static void count_spilled_pseudo (int, int, int);
373 static void delete_dead_insn (rtx);
374 static void alter_reg (int, int);
375 static void set_label_offsets (rtx, rtx, int);
376 static void check_eliminable_occurrences (rtx);
377 static void elimination_effects (rtx, enum machine_mode);
378 static int eliminate_regs_in_insn (rtx, int);
379 static void update_eliminable_offsets (void);
380 static void mark_not_eliminable (rtx, rtx, void *);
381 static void set_initial_elim_offsets (void);
382 static void verify_initial_elim_offsets (void);
383 static void set_initial_label_offsets (void);
384 static void set_offsets_for_label (rtx);
385 static void init_elim_table (void);
386 static void update_eliminables (HARD_REG_SET *);
387 static void spill_hard_reg (unsigned int, int);
388 static int finish_spills (int);
389 static void ior_hard_reg_set (HARD_REG_SET *, HARD_REG_SET *);
390 static void scan_paradoxical_subregs (rtx);
391 static void count_pseudo (int);
392 static void order_regs_for_reload (struct insn_chain *);
393 static void reload_as_needed (int);
394 static void forget_old_reloads_1 (rtx, rtx, void *);
395 static int reload_reg_class_lower (const void *, const void *);
396 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
397 enum machine_mode);
398 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
399 enum machine_mode);
400 static int reload_reg_free_p (unsigned int, int, enum reload_type);
401 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
402 rtx, rtx, int, int);
403 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
404 rtx, rtx, int, int);
405 static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
406 static int allocate_reload_reg (struct insn_chain *, int, int);
407 static int conflicts_with_override (rtx);
408 static void failed_reload (rtx, int);
409 static int set_reload_reg (int, int);
410 static void choose_reload_regs_init (struct insn_chain *, rtx *);
411 static void choose_reload_regs (struct insn_chain *);
412 static void merge_assigned_reloads (rtx);
413 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
414 rtx, int);
415 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
416 int);
417 static void do_input_reload (struct insn_chain *, struct reload *, int);
418 static void do_output_reload (struct insn_chain *, struct reload *, int);
419 static void emit_reload_insns (struct insn_chain *);
420 static void delete_output_reload (rtx, int, int);
421 static void delete_address_reloads (rtx, rtx);
422 static void delete_address_reloads_1 (rtx, rtx, rtx);
423 static rtx inc_for_reload (rtx, rtx, rtx, int);
424 #ifdef AUTO_INC_DEC
425 static void add_auto_inc_notes (rtx, rtx);
426 #endif
427 static void copy_eh_notes (rtx, rtx);
429 /* Initialize the reload pass once per compilation. */
431 void
432 init_reload (void)
434 int i;
436 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
437 Set spill_indirect_levels to the number of levels such addressing is
438 permitted, zero if it is not permitted at all. */
440 rtx tem
441 = gen_rtx_MEM (Pmode,
442 gen_rtx_PLUS (Pmode,
443 gen_rtx_REG (Pmode,
444 LAST_VIRTUAL_REGISTER + 1),
445 GEN_INT (4)));
446 spill_indirect_levels = 0;
448 while (memory_address_p (QImode, tem))
450 spill_indirect_levels++;
451 tem = gen_rtx_MEM (Pmode, tem);
454 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
456 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
457 indirect_symref_ok = memory_address_p (QImode, tem);
459 /* See if reg+reg is a valid (and offsettable) address. */
461 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
463 tem = gen_rtx_PLUS (Pmode,
464 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
465 gen_rtx_REG (Pmode, i));
467 /* This way, we make sure that reg+reg is an offsettable address. */
468 tem = plus_constant (tem, 4);
470 if (memory_address_p (QImode, tem))
472 double_reg_address_ok = 1;
473 break;
477 /* Initialize obstack for our rtl allocation. */
478 gcc_obstack_init (&reload_obstack);
479 reload_startobj = obstack_alloc (&reload_obstack, 0);
481 INIT_REG_SET (&spilled_pseudos);
482 INIT_REG_SET (&pseudos_counted);
485 /* List of insn chains that are currently unused. */
486 static struct insn_chain *unused_insn_chains = 0;
488 /* Allocate an empty insn_chain structure. */
489 struct insn_chain *
490 new_insn_chain (void)
492 struct insn_chain *c;
494 if (unused_insn_chains == 0)
496 c = obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
497 INIT_REG_SET (&c->live_throughout);
498 INIT_REG_SET (&c->dead_or_set);
500 else
502 c = unused_insn_chains;
503 unused_insn_chains = c->next;
505 c->is_caller_save_insn = 0;
506 c->need_operand_change = 0;
507 c->need_reload = 0;
508 c->need_elim = 0;
509 return c;
512 /* Small utility function to set all regs in hard reg set TO which are
513 allocated to pseudos in regset FROM. */
515 void
516 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
518 unsigned int regno;
520 EXECUTE_IF_SET_IN_REG_SET
521 (from, FIRST_PSEUDO_REGISTER, regno,
523 int r = reg_renumber[regno];
524 int nregs;
526 if (r < 0)
528 /* reload_combine uses the information from
529 BASIC_BLOCK->global_live_at_start, which might still
530 contain registers that have not actually been allocated
531 since they have an equivalence. */
532 if (! reload_completed)
533 abort ();
535 else
537 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno));
538 while (nregs-- > 0)
539 SET_HARD_REG_BIT (*to, r + nregs);
544 /* Replace all pseudos found in LOC with their corresponding
545 equivalences. */
547 static void
548 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
550 rtx x = *loc;
551 enum rtx_code code;
552 const char *fmt;
553 int i, j;
555 if (! x)
556 return;
558 code = GET_CODE (x);
559 if (code == REG)
561 unsigned int regno = REGNO (x);
563 if (regno < FIRST_PSEUDO_REGISTER)
564 return;
566 x = eliminate_regs (x, mem_mode, usage);
567 if (x != *loc)
569 *loc = x;
570 replace_pseudos_in (loc, mem_mode, usage);
571 return;
574 if (reg_equiv_constant[regno])
575 *loc = reg_equiv_constant[regno];
576 else if (reg_equiv_mem[regno])
577 *loc = reg_equiv_mem[regno];
578 else if (reg_equiv_address[regno])
579 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
580 else if (GET_CODE (regno_reg_rtx[regno]) != REG
581 || REGNO (regno_reg_rtx[regno]) != regno)
582 *loc = regno_reg_rtx[regno];
583 else
584 abort ();
586 return;
588 else if (code == MEM)
590 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
591 return;
594 /* Process each of our operands recursively. */
595 fmt = GET_RTX_FORMAT (code);
596 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
597 if (*fmt == 'e')
598 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
599 else if (*fmt == 'E')
600 for (j = 0; j < XVECLEN (x, i); j++)
601 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
605 /* Global variables used by reload and its subroutines. */
607 /* Set during calculate_needs if an insn needs register elimination. */
608 static int something_needs_elimination;
609 /* Set during calculate_needs if an insn needs an operand changed. */
610 int something_needs_operands_changed;
612 /* Nonzero means we couldn't get enough spill regs. */
613 static int failure;
615 /* Main entry point for the reload pass.
617 FIRST is the first insn of the function being compiled.
619 GLOBAL nonzero means we were called from global_alloc
620 and should attempt to reallocate any pseudoregs that we
621 displace from hard regs we will use for reloads.
622 If GLOBAL is zero, we do not have enough information to do that,
623 so any pseudo reg that is spilled must go to the stack.
625 Return value is nonzero if reload failed
626 and we must not do any more for this function. */
629 reload (rtx first, int global)
631 int i;
632 rtx insn;
633 struct elim_table *ep;
634 basic_block bb;
636 /* Make sure even insns with volatile mem refs are recognizable. */
637 init_recog ();
639 failure = 0;
641 reload_firstobj = obstack_alloc (&reload_obstack, 0);
643 /* Make sure that the last insn in the chain
644 is not something that needs reloading. */
645 emit_note (NOTE_INSN_DELETED);
647 /* Enable find_equiv_reg to distinguish insns made by reload. */
648 reload_first_uid = get_max_uid ();
650 #ifdef SECONDARY_MEMORY_NEEDED
651 /* Initialize the secondary memory table. */
652 clear_secondary_mem ();
653 #endif
655 /* We don't have a stack slot for any spill reg yet. */
656 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
657 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
659 /* Initialize the save area information for caller-save, in case some
660 are needed. */
661 init_save_areas ();
663 /* Compute which hard registers are now in use
664 as homes for pseudo registers.
665 This is done here rather than (eg) in global_alloc
666 because this point is reached even if not optimizing. */
667 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
668 mark_home_live (i);
670 /* A function that receives a nonlocal goto must save all call-saved
671 registers. */
672 if (current_function_has_nonlocal_label)
673 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
674 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
675 regs_ever_live[i] = 1;
677 #ifdef NON_SAVING_SETJMP
678 /* A function that calls setjmp should save and restore all the
679 call-saved registers on a system where longjmp clobbers them. */
680 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
682 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
683 if (! call_used_regs[i])
684 regs_ever_live[i] = 1;
686 #endif
688 /* Find all the pseudo registers that didn't get hard regs
689 but do have known equivalent constants or memory slots.
690 These include parameters (known equivalent to parameter slots)
691 and cse'd or loop-moved constant memory addresses.
693 Record constant equivalents in reg_equiv_constant
694 so they will be substituted by find_reloads.
695 Record memory equivalents in reg_mem_equiv so they can
696 be substituted eventually by altering the REG-rtx's. */
698 reg_equiv_constant = xcalloc (max_regno, sizeof (rtx));
699 reg_equiv_mem = xcalloc (max_regno, sizeof (rtx));
700 reg_equiv_init = xcalloc (max_regno, sizeof (rtx));
701 reg_equiv_address = xcalloc (max_regno, sizeof (rtx));
702 reg_max_ref_width = xcalloc (max_regno, sizeof (int));
703 reg_old_renumber = xcalloc (max_regno, sizeof (short));
704 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
705 pseudo_forbidden_regs = xmalloc (max_regno * sizeof (HARD_REG_SET));
706 pseudo_previous_regs = xcalloc (max_regno, sizeof (HARD_REG_SET));
708 CLEAR_HARD_REG_SET (bad_spill_regs_global);
710 /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
711 Also find all paradoxical subregs and find largest such for each pseudo.
712 On machines with small register classes, record hard registers that
713 are used for user variables. These can never be used for spills. */
715 num_eliminable_invariants = 0;
716 for (insn = first; insn; insn = NEXT_INSN (insn))
718 rtx set = single_set (insn);
720 /* We may introduce USEs that we want to remove at the end, so
721 we'll mark them with QImode. Make sure there are no
722 previously-marked insns left by say regmove. */
723 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
724 && GET_MODE (insn) != VOIDmode)
725 PUT_MODE (insn, VOIDmode);
727 if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
729 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
730 if (note
731 #ifdef LEGITIMATE_PIC_OPERAND_P
732 && (! function_invariant_p (XEXP (note, 0))
733 || ! flag_pic
734 /* A function invariant is often CONSTANT_P but may
735 include a register. We promise to only pass
736 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
737 || (CONSTANT_P (XEXP (note, 0))
738 && LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0))))
739 #endif
742 rtx x = XEXP (note, 0);
743 i = REGNO (SET_DEST (set));
744 if (i > LAST_VIRTUAL_REGISTER)
746 /* It can happen that a REG_EQUIV note contains a MEM
747 that is not a legitimate memory operand. As later
748 stages of reload assume that all addresses found
749 in the reg_equiv_* arrays were originally legitimate,
750 we ignore such REG_EQUIV notes. */
751 if (memory_operand (x, VOIDmode))
753 /* Always unshare the equivalence, so we can
754 substitute into this insn without touching the
755 equivalence. */
756 reg_equiv_memory_loc[i] = copy_rtx (x);
758 else if (function_invariant_p (x))
760 if (GET_CODE (x) == PLUS)
762 /* This is PLUS of frame pointer and a constant,
763 and might be shared. Unshare it. */
764 reg_equiv_constant[i] = copy_rtx (x);
765 num_eliminable_invariants++;
767 else if (x == frame_pointer_rtx
768 || x == arg_pointer_rtx)
770 reg_equiv_constant[i] = x;
771 num_eliminable_invariants++;
773 else if (LEGITIMATE_CONSTANT_P (x))
774 reg_equiv_constant[i] = x;
775 else
777 reg_equiv_memory_loc[i]
778 = force_const_mem (GET_MODE (SET_DEST (set)), x);
779 if (!reg_equiv_memory_loc[i])
780 continue;
783 else
784 continue;
786 /* If this register is being made equivalent to a MEM
787 and the MEM is not SET_SRC, the equivalencing insn
788 is one with the MEM as a SET_DEST and it occurs later.
789 So don't mark this insn now. */
790 if (GET_CODE (x) != MEM
791 || rtx_equal_p (SET_SRC (set), x))
792 reg_equiv_init[i]
793 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
798 /* If this insn is setting a MEM from a register equivalent to it,
799 this is the equivalencing insn. */
800 else if (set && GET_CODE (SET_DEST (set)) == MEM
801 && GET_CODE (SET_SRC (set)) == REG
802 && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
803 && rtx_equal_p (SET_DEST (set),
804 reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
805 reg_equiv_init[REGNO (SET_SRC (set))]
806 = gen_rtx_INSN_LIST (VOIDmode, insn,
807 reg_equiv_init[REGNO (SET_SRC (set))]);
809 if (INSN_P (insn))
810 scan_paradoxical_subregs (PATTERN (insn));
813 init_elim_table ();
815 first_label_num = get_first_label_num ();
816 num_labels = max_label_num () - first_label_num;
818 /* Allocate the tables used to store offset information at labels. */
819 /* We used to use alloca here, but the size of what it would try to
820 allocate would occasionally cause it to exceed the stack limit and
821 cause a core dump. */
822 offsets_known_at = xmalloc (num_labels);
823 offsets_at = xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
825 /* Alter each pseudo-reg rtx to contain its hard reg number.
826 Assign stack slots to the pseudos that lack hard regs or equivalents.
827 Do not touch virtual registers. */
829 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
830 alter_reg (i, -1);
832 /* If we have some registers we think can be eliminated, scan all insns to
833 see if there is an insn that sets one of these registers to something
834 other than itself plus a constant. If so, the register cannot be
835 eliminated. Doing this scan here eliminates an extra pass through the
836 main reload loop in the most common case where register elimination
837 cannot be done. */
838 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
839 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
840 || GET_CODE (insn) == CALL_INSN)
841 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
843 maybe_fix_stack_asms ();
845 insns_need_reload = 0;
846 something_needs_elimination = 0;
848 /* Initialize to -1, which means take the first spill register. */
849 last_spill_reg = -1;
851 /* Spill any hard regs that we know we can't eliminate. */
852 CLEAR_HARD_REG_SET (used_spill_regs);
853 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
854 if (! ep->can_eliminate)
855 spill_hard_reg (ep->from, 1);
857 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
858 if (frame_pointer_needed)
859 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
860 #endif
861 finish_spills (global);
863 /* From now on, we may need to generate moves differently. We may also
864 allow modifications of insns which cause them to not be recognized.
865 Any such modifications will be cleaned up during reload itself. */
866 reload_in_progress = 1;
868 /* This loop scans the entire function each go-round
869 and repeats until one repetition spills no additional hard regs. */
870 for (;;)
872 int something_changed;
873 int did_spill;
875 HOST_WIDE_INT starting_frame_size;
877 /* Round size of stack frame to stack_alignment_needed. This must be done
878 here because the stack size may be a part of the offset computation
879 for register elimination, and there might have been new stack slots
880 created in the last iteration of this loop. */
881 if (cfun->stack_alignment_needed)
882 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
884 starting_frame_size = get_frame_size ();
886 set_initial_elim_offsets ();
887 set_initial_label_offsets ();
889 /* For each pseudo register that has an equivalent location defined,
890 try to eliminate any eliminable registers (such as the frame pointer)
891 assuming initial offsets for the replacement register, which
892 is the normal case.
894 If the resulting location is directly addressable, substitute
895 the MEM we just got directly for the old REG.
897 If it is not addressable but is a constant or the sum of a hard reg
898 and constant, it is probably not addressable because the constant is
899 out of range, in that case record the address; we will generate
900 hairy code to compute the address in a register each time it is
901 needed. Similarly if it is a hard register, but one that is not
902 valid as an address register.
904 If the location is not addressable, but does not have one of the
905 above forms, assign a stack slot. We have to do this to avoid the
906 potential of producing lots of reloads if, e.g., a location involves
907 a pseudo that didn't get a hard register and has an equivalent memory
908 location that also involves a pseudo that didn't get a hard register.
910 Perhaps at some point we will improve reload_when_needed handling
911 so this problem goes away. But that's very hairy. */
913 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
914 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
916 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
918 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
919 XEXP (x, 0)))
920 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
921 else if (CONSTANT_P (XEXP (x, 0))
922 || (GET_CODE (XEXP (x, 0)) == REG
923 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
924 || (GET_CODE (XEXP (x, 0)) == PLUS
925 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
926 && (REGNO (XEXP (XEXP (x, 0), 0))
927 < FIRST_PSEUDO_REGISTER)
928 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
929 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
930 else
932 /* Make a new stack slot. Then indicate that something
933 changed so we go back and recompute offsets for
934 eliminable registers because the allocation of memory
935 below might change some offset. reg_equiv_{mem,address}
936 will be set up for this pseudo on the next pass around
937 the loop. */
938 reg_equiv_memory_loc[i] = 0;
939 reg_equiv_init[i] = 0;
940 alter_reg (i, -1);
944 if (caller_save_needed)
945 setup_save_areas ();
947 /* If we allocated another stack slot, redo elimination bookkeeping. */
948 if (starting_frame_size != get_frame_size ())
949 continue;
951 if (caller_save_needed)
953 save_call_clobbered_regs ();
954 /* That might have allocated new insn_chain structures. */
955 reload_firstobj = obstack_alloc (&reload_obstack, 0);
958 calculate_needs_all_insns (global);
960 CLEAR_REG_SET (&spilled_pseudos);
961 did_spill = 0;
963 something_changed = 0;
965 /* If we allocated any new memory locations, make another pass
966 since it might have changed elimination offsets. */
967 if (starting_frame_size != get_frame_size ())
968 something_changed = 1;
971 HARD_REG_SET to_spill;
972 CLEAR_HARD_REG_SET (to_spill);
973 update_eliminables (&to_spill);
974 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
975 if (TEST_HARD_REG_BIT (to_spill, i))
977 spill_hard_reg (i, 1);
978 did_spill = 1;
980 /* Regardless of the state of spills, if we previously had
981 a register that we thought we could eliminate, but now can
982 not eliminate, we must run another pass.
984 Consider pseudos which have an entry in reg_equiv_* which
985 reference an eliminable register. We must make another pass
986 to update reg_equiv_* so that we do not substitute in the
987 old value from when we thought the elimination could be
988 performed. */
989 something_changed = 1;
993 select_reload_regs ();
994 if (failure)
995 goto failed;
997 if (insns_need_reload != 0 || did_spill)
998 something_changed |= finish_spills (global);
1000 if (! something_changed)
1001 break;
1003 if (caller_save_needed)
1004 delete_caller_save_insns ();
1006 obstack_free (&reload_obstack, reload_firstobj);
1009 /* If global-alloc was run, notify it of any register eliminations we have
1010 done. */
1011 if (global)
1012 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1013 if (ep->can_eliminate)
1014 mark_elimination (ep->from, ep->to);
1016 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1017 If that insn didn't set the register (i.e., it copied the register to
1018 memory), just delete that insn instead of the equivalencing insn plus
1019 anything now dead. If we call delete_dead_insn on that insn, we may
1020 delete the insn that actually sets the register if the register dies
1021 there and that is incorrect. */
1023 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1025 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1027 rtx list;
1028 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1030 rtx equiv_insn = XEXP (list, 0);
1032 /* If we already deleted the insn or if it may trap, we can't
1033 delete it. The latter case shouldn't happen, but can
1034 if an insn has a variable address, gets a REG_EH_REGION
1035 note added to it, and then gets converted into an load
1036 from a constant address. */
1037 if (GET_CODE (equiv_insn) == NOTE
1038 || can_throw_internal (equiv_insn))
1040 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1041 delete_dead_insn (equiv_insn);
1042 else
1044 PUT_CODE (equiv_insn, NOTE);
1045 NOTE_SOURCE_FILE (equiv_insn) = 0;
1046 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1052 /* Use the reload registers where necessary
1053 by generating move instructions to move the must-be-register
1054 values into or out of the reload registers. */
1056 if (insns_need_reload != 0 || something_needs_elimination
1057 || something_needs_operands_changed)
1059 HOST_WIDE_INT old_frame_size = get_frame_size ();
1061 reload_as_needed (global);
1063 if (old_frame_size != get_frame_size ())
1064 abort ();
1066 if (num_eliminable)
1067 verify_initial_elim_offsets ();
1070 /* If we were able to eliminate the frame pointer, show that it is no
1071 longer live at the start of any basic block. If it ls live by
1072 virtue of being in a pseudo, that pseudo will be marked live
1073 and hence the frame pointer will be known to be live via that
1074 pseudo. */
1076 if (! frame_pointer_needed)
1077 FOR_EACH_BB (bb)
1078 CLEAR_REGNO_REG_SET (bb->global_live_at_start,
1079 HARD_FRAME_POINTER_REGNUM);
1081 /* Come here (with failure set nonzero) if we can't get enough spill regs
1082 and we decide not to abort about it. */
1083 failed:
1085 CLEAR_REG_SET (&spilled_pseudos);
1086 reload_in_progress = 0;
1088 /* Now eliminate all pseudo regs by modifying them into
1089 their equivalent memory references.
1090 The REG-rtx's for the pseudos are modified in place,
1091 so all insns that used to refer to them now refer to memory.
1093 For a reg that has a reg_equiv_address, all those insns
1094 were changed by reloading so that no insns refer to it any longer;
1095 but the DECL_RTL of a variable decl may refer to it,
1096 and if so this causes the debugging info to mention the variable. */
1098 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1100 rtx addr = 0;
1102 if (reg_equiv_mem[i])
1103 addr = XEXP (reg_equiv_mem[i], 0);
1105 if (reg_equiv_address[i])
1106 addr = reg_equiv_address[i];
1108 if (addr)
1110 if (reg_renumber[i] < 0)
1112 rtx reg = regno_reg_rtx[i];
1114 REG_USERVAR_P (reg) = 0;
1115 PUT_CODE (reg, MEM);
1116 XEXP (reg, 0) = addr;
1117 if (reg_equiv_memory_loc[i])
1118 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1119 else
1121 RTX_UNCHANGING_P (reg) = MEM_IN_STRUCT_P (reg)
1122 = MEM_SCALAR_P (reg) = 0;
1123 MEM_ATTRS (reg) = 0;
1126 else if (reg_equiv_mem[i])
1127 XEXP (reg_equiv_mem[i], 0) = addr;
1131 /* We must set reload_completed now since the cleanup_subreg_operands call
1132 below will re-recognize each insn and reload may have generated insns
1133 which are only valid during and after reload. */
1134 reload_completed = 1;
1136 /* Make a pass over all the insns and delete all USEs which we inserted
1137 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1138 notes. Delete all CLOBBER insns, except those that refer to the return
1139 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1140 from misarranging variable-array code, and simplify (subreg (reg))
1141 operands. Also remove all REG_RETVAL and REG_LIBCALL notes since they
1142 are no longer useful or accurate. Strip and regenerate REG_INC notes
1143 that may have been moved around. */
1145 for (insn = first; insn; insn = NEXT_INSN (insn))
1146 if (INSN_P (insn))
1148 rtx *pnote;
1150 if (GET_CODE (insn) == CALL_INSN)
1151 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1152 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1154 if ((GET_CODE (PATTERN (insn)) == USE
1155 /* We mark with QImode USEs introduced by reload itself. */
1156 && (GET_MODE (insn) == QImode
1157 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1158 || (GET_CODE (PATTERN (insn)) == CLOBBER
1159 && (GET_CODE (XEXP (PATTERN (insn), 0)) != MEM
1160 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1161 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1162 && XEXP (XEXP (PATTERN (insn), 0), 0)
1163 != stack_pointer_rtx))
1164 && (GET_CODE (XEXP (PATTERN (insn), 0)) != REG
1165 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1167 delete_insn (insn);
1168 continue;
1171 /* Some CLOBBERs may survive until here and still reference unassigned
1172 pseudos with const equivalent, which may in turn cause ICE in later
1173 passes if the reference remains in place. */
1174 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1175 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1176 VOIDmode, PATTERN (insn));
1178 pnote = &REG_NOTES (insn);
1179 while (*pnote != 0)
1181 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1182 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1183 || REG_NOTE_KIND (*pnote) == REG_INC
1184 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1185 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1186 *pnote = XEXP (*pnote, 1);
1187 else
1188 pnote = &XEXP (*pnote, 1);
1191 #ifdef AUTO_INC_DEC
1192 add_auto_inc_notes (insn, PATTERN (insn));
1193 #endif
1195 /* And simplify (subreg (reg)) if it appears as an operand. */
1196 cleanup_subreg_operands (insn);
1199 /* If we are doing stack checking, give a warning if this function's
1200 frame size is larger than we expect. */
1201 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1203 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1204 static int verbose_warned = 0;
1206 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1207 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1208 size += UNITS_PER_WORD;
1210 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1212 warning ("frame size too large for reliable stack checking");
1213 if (! verbose_warned)
1215 warning ("try reducing the number of local variables");
1216 verbose_warned = 1;
1221 /* Indicate that we no longer have known memory locations or constants. */
1222 if (reg_equiv_constant)
1223 free (reg_equiv_constant);
1224 reg_equiv_constant = 0;
1225 if (reg_equiv_memory_loc)
1226 free (reg_equiv_memory_loc);
1227 reg_equiv_memory_loc = 0;
1229 if (offsets_known_at)
1230 free (offsets_known_at);
1231 if (offsets_at)
1232 free (offsets_at);
1234 free (reg_equiv_mem);
1235 free (reg_equiv_init);
1236 free (reg_equiv_address);
1237 free (reg_max_ref_width);
1238 free (reg_old_renumber);
1239 free (pseudo_previous_regs);
1240 free (pseudo_forbidden_regs);
1242 CLEAR_HARD_REG_SET (used_spill_regs);
1243 for (i = 0; i < n_spills; i++)
1244 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1246 /* Free all the insn_chain structures at once. */
1247 obstack_free (&reload_obstack, reload_startobj);
1248 unused_insn_chains = 0;
1249 fixup_abnormal_edges ();
1251 /* Replacing pseudos with their memory equivalents might have
1252 created shared rtx. Subsequent passes would get confused
1253 by this, so unshare everything here. */
1254 unshare_all_rtl_again (first);
1256 #ifdef STACK_BOUNDARY
1257 /* init_emit has set the alignment of the hard frame pointer
1258 to STACK_BOUNDARY. It is very likely no longer valid if
1259 the hard frame pointer was used for register allocation. */
1260 if (!frame_pointer_needed)
1261 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1262 #endif
1264 return failure;
1267 /* Yet another special case. Unfortunately, reg-stack forces people to
1268 write incorrect clobbers in asm statements. These clobbers must not
1269 cause the register to appear in bad_spill_regs, otherwise we'll call
1270 fatal_insn later. We clear the corresponding regnos in the live
1271 register sets to avoid this.
1272 The whole thing is rather sick, I'm afraid. */
1274 static void
1275 maybe_fix_stack_asms (void)
1277 #ifdef STACK_REGS
1278 const char *constraints[MAX_RECOG_OPERANDS];
1279 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1280 struct insn_chain *chain;
1282 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1284 int i, noperands;
1285 HARD_REG_SET clobbered, allowed;
1286 rtx pat;
1288 if (! INSN_P (chain->insn)
1289 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1290 continue;
1291 pat = PATTERN (chain->insn);
1292 if (GET_CODE (pat) != PARALLEL)
1293 continue;
1295 CLEAR_HARD_REG_SET (clobbered);
1296 CLEAR_HARD_REG_SET (allowed);
1298 /* First, make a mask of all stack regs that are clobbered. */
1299 for (i = 0; i < XVECLEN (pat, 0); i++)
1301 rtx t = XVECEXP (pat, 0, i);
1302 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1303 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1306 /* Get the operand values and constraints out of the insn. */
1307 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1308 constraints, operand_mode);
1310 /* For every operand, see what registers are allowed. */
1311 for (i = 0; i < noperands; i++)
1313 const char *p = constraints[i];
1314 /* For every alternative, we compute the class of registers allowed
1315 for reloading in CLS, and merge its contents into the reg set
1316 ALLOWED. */
1317 int cls = (int) NO_REGS;
1319 for (;;)
1321 char c = *p;
1323 if (c == '\0' || c == ',' || c == '#')
1325 /* End of one alternative - mark the regs in the current
1326 class, and reset the class. */
1327 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1328 cls = NO_REGS;
1329 p++;
1330 if (c == '#')
1331 do {
1332 c = *p++;
1333 } while (c != '\0' && c != ',');
1334 if (c == '\0')
1335 break;
1336 continue;
1339 switch (c)
1341 case '=': case '+': case '*': case '%': case '?': case '!':
1342 case '0': case '1': case '2': case '3': case '4': case 'm':
1343 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1344 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1345 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1346 case 'P':
1347 break;
1349 case 'p':
1350 cls = (int) reg_class_subunion[cls]
1351 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1352 break;
1354 case 'g':
1355 case 'r':
1356 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1357 break;
1359 default:
1360 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1361 cls = (int) reg_class_subunion[cls]
1362 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1363 else
1364 cls = (int) reg_class_subunion[cls]
1365 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1367 p += CONSTRAINT_LEN (c, p);
1370 /* Those of the registers which are clobbered, but allowed by the
1371 constraints, must be usable as reload registers. So clear them
1372 out of the life information. */
1373 AND_HARD_REG_SET (allowed, clobbered);
1374 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1375 if (TEST_HARD_REG_BIT (allowed, i))
1377 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1378 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1382 #endif
1385 /* Copy the global variables n_reloads and rld into the corresponding elts
1386 of CHAIN. */
1387 static void
1388 copy_reloads (struct insn_chain *chain)
1390 chain->n_reloads = n_reloads;
1391 chain->rld = obstack_alloc (&reload_obstack,
1392 n_reloads * sizeof (struct reload));
1393 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1394 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1397 /* Walk the chain of insns, and determine for each whether it needs reloads
1398 and/or eliminations. Build the corresponding insns_need_reload list, and
1399 set something_needs_elimination as appropriate. */
1400 static void
1401 calculate_needs_all_insns (int global)
1403 struct insn_chain **pprev_reload = &insns_need_reload;
1404 struct insn_chain *chain, *next = 0;
1406 something_needs_elimination = 0;
1408 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1409 for (chain = reload_insn_chain; chain != 0; chain = next)
1411 rtx insn = chain->insn;
1413 next = chain->next;
1415 /* Clear out the shortcuts. */
1416 chain->n_reloads = 0;
1417 chain->need_elim = 0;
1418 chain->need_reload = 0;
1419 chain->need_operand_change = 0;
1421 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1422 include REG_LABEL), we need to see what effects this has on the
1423 known offsets at labels. */
1425 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
1426 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1427 set_label_offsets (insn, insn, 0);
1429 if (INSN_P (insn))
1431 rtx old_body = PATTERN (insn);
1432 int old_code = INSN_CODE (insn);
1433 rtx old_notes = REG_NOTES (insn);
1434 int did_elimination = 0;
1435 int operands_changed = 0;
1436 rtx set = single_set (insn);
1438 /* Skip insns that only set an equivalence. */
1439 if (set && GET_CODE (SET_DEST (set)) == REG
1440 && reg_renumber[REGNO (SET_DEST (set))] < 0
1441 && reg_equiv_constant[REGNO (SET_DEST (set))])
1442 continue;
1444 /* If needed, eliminate any eliminable registers. */
1445 if (num_eliminable || num_eliminable_invariants)
1446 did_elimination = eliminate_regs_in_insn (insn, 0);
1448 /* Analyze the instruction. */
1449 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1450 global, spill_reg_order);
1452 /* If a no-op set needs more than one reload, this is likely
1453 to be something that needs input address reloads. We
1454 can't get rid of this cleanly later, and it is of no use
1455 anyway, so discard it now.
1456 We only do this when expensive_optimizations is enabled,
1457 since this complements reload inheritance / output
1458 reload deletion, and it can make debugging harder. */
1459 if (flag_expensive_optimizations && n_reloads > 1)
1461 rtx set = single_set (insn);
1462 if (set
1463 && SET_SRC (set) == SET_DEST (set)
1464 && GET_CODE (SET_SRC (set)) == REG
1465 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1467 delete_insn (insn);
1468 /* Delete it from the reload chain. */
1469 if (chain->prev)
1470 chain->prev->next = next;
1471 else
1472 reload_insn_chain = next;
1473 if (next)
1474 next->prev = chain->prev;
1475 chain->next = unused_insn_chains;
1476 unused_insn_chains = chain;
1477 continue;
1480 if (num_eliminable)
1481 update_eliminable_offsets ();
1483 /* Remember for later shortcuts which insns had any reloads or
1484 register eliminations. */
1485 chain->need_elim = did_elimination;
1486 chain->need_reload = n_reloads > 0;
1487 chain->need_operand_change = operands_changed;
1489 /* Discard any register replacements done. */
1490 if (did_elimination)
1492 obstack_free (&reload_obstack, reload_insn_firstobj);
1493 PATTERN (insn) = old_body;
1494 INSN_CODE (insn) = old_code;
1495 REG_NOTES (insn) = old_notes;
1496 something_needs_elimination = 1;
1499 something_needs_operands_changed |= operands_changed;
1501 if (n_reloads != 0)
1503 copy_reloads (chain);
1504 *pprev_reload = chain;
1505 pprev_reload = &chain->next_need_reload;
1509 *pprev_reload = 0;
1512 /* Comparison function for qsort to decide which of two reloads
1513 should be handled first. *P1 and *P2 are the reload numbers. */
1515 static int
1516 reload_reg_class_lower (const void *r1p, const void *r2p)
1518 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1519 int t;
1521 /* Consider required reloads before optional ones. */
1522 t = rld[r1].optional - rld[r2].optional;
1523 if (t != 0)
1524 return t;
1526 /* Count all solitary classes before non-solitary ones. */
1527 t = ((reg_class_size[(int) rld[r2].class] == 1)
1528 - (reg_class_size[(int) rld[r1].class] == 1));
1529 if (t != 0)
1530 return t;
1532 /* Aside from solitaires, consider all multi-reg groups first. */
1533 t = rld[r2].nregs - rld[r1].nregs;
1534 if (t != 0)
1535 return t;
1537 /* Consider reloads in order of increasing reg-class number. */
1538 t = (int) rld[r1].class - (int) rld[r2].class;
1539 if (t != 0)
1540 return t;
1542 /* If reloads are equally urgent, sort by reload number,
1543 so that the results of qsort leave nothing to chance. */
1544 return r1 - r2;
1547 /* The cost of spilling each hard reg. */
1548 static int spill_cost[FIRST_PSEUDO_REGISTER];
1550 /* When spilling multiple hard registers, we use SPILL_COST for the first
1551 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1552 only the first hard reg for a multi-reg pseudo. */
1553 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1555 /* Update the spill cost arrays, considering that pseudo REG is live. */
1557 static void
1558 count_pseudo (int reg)
1560 int freq = REG_FREQ (reg);
1561 int r = reg_renumber[reg];
1562 int nregs;
1564 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1565 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1566 return;
1568 SET_REGNO_REG_SET (&pseudos_counted, reg);
1570 if (r < 0)
1571 abort ();
1573 spill_add_cost[r] += freq;
1575 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1576 while (nregs-- > 0)
1577 spill_cost[r + nregs] += freq;
1580 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1581 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1583 static void
1584 order_regs_for_reload (struct insn_chain *chain)
1586 int i;
1587 HARD_REG_SET used_by_pseudos;
1588 HARD_REG_SET used_by_pseudos2;
1590 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1592 memset (spill_cost, 0, sizeof spill_cost);
1593 memset (spill_add_cost, 0, sizeof spill_add_cost);
1595 /* Count number of uses of each hard reg by pseudo regs allocated to it
1596 and then order them by decreasing use. First exclude hard registers
1597 that are live in or across this insn. */
1599 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1600 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1601 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1602 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1604 /* Now find out which pseudos are allocated to it, and update
1605 hard_reg_n_uses. */
1606 CLEAR_REG_SET (&pseudos_counted);
1608 EXECUTE_IF_SET_IN_REG_SET
1609 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
1611 count_pseudo (i);
1613 EXECUTE_IF_SET_IN_REG_SET
1614 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
1616 count_pseudo (i);
1618 CLEAR_REG_SET (&pseudos_counted);
1621 /* Vector of reload-numbers showing the order in which the reloads should
1622 be processed. */
1623 static short reload_order[MAX_RELOADS];
1625 /* This is used to keep track of the spill regs used in one insn. */
1626 static HARD_REG_SET used_spill_regs_local;
1628 /* We decided to spill hard register SPILLED, which has a size of
1629 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1630 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1631 update SPILL_COST/SPILL_ADD_COST. */
1633 static void
1634 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1636 int r = reg_renumber[reg];
1637 int nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1639 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1640 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1641 return;
1643 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1645 spill_add_cost[r] -= REG_FREQ (reg);
1646 while (nregs-- > 0)
1647 spill_cost[r + nregs] -= REG_FREQ (reg);
1650 /* Find reload register to use for reload number ORDER. */
1652 static int
1653 find_reg (struct insn_chain *chain, int order)
1655 int rnum = reload_order[order];
1656 struct reload *rl = rld + rnum;
1657 int best_cost = INT_MAX;
1658 int best_reg = -1;
1659 unsigned int i, j;
1660 int k;
1661 HARD_REG_SET not_usable;
1662 HARD_REG_SET used_by_other_reload;
1664 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1665 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1666 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1668 CLEAR_HARD_REG_SET (used_by_other_reload);
1669 for (k = 0; k < order; k++)
1671 int other = reload_order[k];
1673 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1674 for (j = 0; j < rld[other].nregs; j++)
1675 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1678 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1680 unsigned int regno = i;
1682 if (! TEST_HARD_REG_BIT (not_usable, regno)
1683 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1684 && HARD_REGNO_MODE_OK (regno, rl->mode))
1686 int this_cost = spill_cost[regno];
1687 int ok = 1;
1688 unsigned int this_nregs = HARD_REGNO_NREGS (regno, rl->mode);
1690 for (j = 1; j < this_nregs; j++)
1692 this_cost += spill_add_cost[regno + j];
1693 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1694 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1695 ok = 0;
1697 if (! ok)
1698 continue;
1699 if (rl->in && GET_CODE (rl->in) == REG && REGNO (rl->in) == regno)
1700 this_cost--;
1701 if (rl->out && GET_CODE (rl->out) == REG && REGNO (rl->out) == regno)
1702 this_cost--;
1703 if (this_cost < best_cost
1704 /* Among registers with equal cost, prefer caller-saved ones, or
1705 use REG_ALLOC_ORDER if it is defined. */
1706 || (this_cost == best_cost
1707 #ifdef REG_ALLOC_ORDER
1708 && (inv_reg_alloc_order[regno]
1709 < inv_reg_alloc_order[best_reg])
1710 #else
1711 && call_used_regs[regno]
1712 && ! call_used_regs[best_reg]
1713 #endif
1716 best_reg = regno;
1717 best_cost = this_cost;
1721 if (best_reg == -1)
1722 return 0;
1724 if (rtl_dump_file)
1725 fprintf (rtl_dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1727 rl->nregs = HARD_REGNO_NREGS (best_reg, rl->mode);
1728 rl->regno = best_reg;
1730 EXECUTE_IF_SET_IN_REG_SET
1731 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j,
1733 count_spilled_pseudo (best_reg, rl->nregs, j);
1736 EXECUTE_IF_SET_IN_REG_SET
1737 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j,
1739 count_spilled_pseudo (best_reg, rl->nregs, j);
1742 for (i = 0; i < rl->nregs; i++)
1744 if (spill_cost[best_reg + i] != 0
1745 || spill_add_cost[best_reg + i] != 0)
1746 abort ();
1747 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1749 return 1;
1752 /* Find more reload regs to satisfy the remaining need of an insn, which
1753 is given by CHAIN.
1754 Do it by ascending class number, since otherwise a reg
1755 might be spilled for a big class and might fail to count
1756 for a smaller class even though it belongs to that class. */
1758 static void
1759 find_reload_regs (struct insn_chain *chain)
1761 int i;
1763 /* In order to be certain of getting the registers we need,
1764 we must sort the reloads into order of increasing register class.
1765 Then our grabbing of reload registers will parallel the process
1766 that provided the reload registers. */
1767 for (i = 0; i < chain->n_reloads; i++)
1769 /* Show whether this reload already has a hard reg. */
1770 if (chain->rld[i].reg_rtx)
1772 int regno = REGNO (chain->rld[i].reg_rtx);
1773 chain->rld[i].regno = regno;
1774 chain->rld[i].nregs
1775 = HARD_REGNO_NREGS (regno, GET_MODE (chain->rld[i].reg_rtx));
1777 else
1778 chain->rld[i].regno = -1;
1779 reload_order[i] = i;
1782 n_reloads = chain->n_reloads;
1783 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1785 CLEAR_HARD_REG_SET (used_spill_regs_local);
1787 if (rtl_dump_file)
1788 fprintf (rtl_dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1790 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1792 /* Compute the order of preference for hard registers to spill. */
1794 order_regs_for_reload (chain);
1796 for (i = 0; i < n_reloads; i++)
1798 int r = reload_order[i];
1800 /* Ignore reloads that got marked inoperative. */
1801 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1802 && ! rld[r].optional
1803 && rld[r].regno == -1)
1804 if (! find_reg (chain, i))
1806 spill_failure (chain->insn, rld[r].class);
1807 failure = 1;
1808 return;
1812 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1813 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1815 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1818 static void
1819 select_reload_regs (void)
1821 struct insn_chain *chain;
1823 /* Try to satisfy the needs for each insn. */
1824 for (chain = insns_need_reload; chain != 0;
1825 chain = chain->next_need_reload)
1826 find_reload_regs (chain);
1829 /* Delete all insns that were inserted by emit_caller_save_insns during
1830 this iteration. */
1831 static void
1832 delete_caller_save_insns (void)
1834 struct insn_chain *c = reload_insn_chain;
1836 while (c != 0)
1838 while (c != 0 && c->is_caller_save_insn)
1840 struct insn_chain *next = c->next;
1841 rtx insn = c->insn;
1843 if (c == reload_insn_chain)
1844 reload_insn_chain = next;
1845 delete_insn (insn);
1847 if (next)
1848 next->prev = c->prev;
1849 if (c->prev)
1850 c->prev->next = next;
1851 c->next = unused_insn_chains;
1852 unused_insn_chains = c;
1853 c = next;
1855 if (c != 0)
1856 c = c->next;
1860 /* Handle the failure to find a register to spill.
1861 INSN should be one of the insns which needed this particular spill reg. */
1863 static void
1864 spill_failure (rtx insn, enum reg_class class)
1866 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1867 if (asm_noperands (PATTERN (insn)) >= 0)
1868 error_for_asm (insn, "can't find a register in class `%s' while reloading `asm'",
1869 reg_class_names[class]);
1870 else
1872 error ("unable to find a register to spill in class `%s'",
1873 reg_class_names[class]);
1874 fatal_insn ("this is the insn:", insn);
1878 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1879 data that is dead in INSN. */
1881 static void
1882 delete_dead_insn (rtx insn)
1884 rtx prev = prev_real_insn (insn);
1885 rtx prev_dest;
1887 /* If the previous insn sets a register that dies in our insn, delete it
1888 too. */
1889 if (prev && GET_CODE (PATTERN (prev)) == SET
1890 && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
1891 && reg_mentioned_p (prev_dest, PATTERN (insn))
1892 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1893 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1894 delete_dead_insn (prev);
1896 PUT_CODE (insn, NOTE);
1897 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1898 NOTE_SOURCE_FILE (insn) = 0;
1901 /* Modify the home of pseudo-reg I.
1902 The new home is present in reg_renumber[I].
1904 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1905 or it may be -1, meaning there is none or it is not relevant.
1906 This is used so that all pseudos spilled from a given hard reg
1907 can share one stack slot. */
1909 static void
1910 alter_reg (int i, int from_reg)
1912 /* When outputting an inline function, this can happen
1913 for a reg that isn't actually used. */
1914 if (regno_reg_rtx[i] == 0)
1915 return;
1917 /* If the reg got changed to a MEM at rtl-generation time,
1918 ignore it. */
1919 if (GET_CODE (regno_reg_rtx[i]) != REG)
1920 return;
1922 /* Modify the reg-rtx to contain the new hard reg
1923 number or else to contain its pseudo reg number. */
1924 REGNO (regno_reg_rtx[i])
1925 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1927 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1928 allocate a stack slot for it. */
1930 if (reg_renumber[i] < 0
1931 && REG_N_REFS (i) > 0
1932 && reg_equiv_constant[i] == 0
1933 && reg_equiv_memory_loc[i] == 0)
1935 rtx x;
1936 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1937 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
1938 int adjust = 0;
1940 /* Each pseudo reg has an inherent size which comes from its own mode,
1941 and a total size which provides room for paradoxical subregs
1942 which refer to the pseudo reg in wider modes.
1944 We can use a slot already allocated if it provides both
1945 enough inherent space and enough total space.
1946 Otherwise, we allocate a new slot, making sure that it has no less
1947 inherent space, and no less total space, then the previous slot. */
1948 if (from_reg == -1)
1950 /* No known place to spill from => no slot to reuse. */
1951 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
1952 inherent_size == total_size ? 0 : -1);
1953 if (BYTES_BIG_ENDIAN)
1954 /* Cancel the big-endian correction done in assign_stack_local.
1955 Get the address of the beginning of the slot.
1956 This is so we can do a big-endian correction unconditionally
1957 below. */
1958 adjust = inherent_size - total_size;
1960 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
1962 /* Nothing can alias this slot except this pseudo. */
1963 set_mem_alias_set (x, new_alias_set ());
1966 /* Reuse a stack slot if possible. */
1967 else if (spill_stack_slot[from_reg] != 0
1968 && spill_stack_slot_width[from_reg] >= total_size
1969 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1970 >= inherent_size))
1971 x = spill_stack_slot[from_reg];
1973 /* Allocate a bigger slot. */
1974 else
1976 /* Compute maximum size needed, both for inherent size
1977 and for total size. */
1978 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
1979 rtx stack_slot;
1981 if (spill_stack_slot[from_reg])
1983 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1984 > inherent_size)
1985 mode = GET_MODE (spill_stack_slot[from_reg]);
1986 if (spill_stack_slot_width[from_reg] > total_size)
1987 total_size = spill_stack_slot_width[from_reg];
1990 /* Make a slot with that size. */
1991 x = assign_stack_local (mode, total_size,
1992 inherent_size == total_size ? 0 : -1);
1993 stack_slot = x;
1995 /* All pseudos mapped to this slot can alias each other. */
1996 if (spill_stack_slot[from_reg])
1997 set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
1998 else
1999 set_mem_alias_set (x, new_alias_set ());
2001 if (BYTES_BIG_ENDIAN)
2003 /* Cancel the big-endian correction done in assign_stack_local.
2004 Get the address of the beginning of the slot.
2005 This is so we can do a big-endian correction unconditionally
2006 below. */
2007 adjust = GET_MODE_SIZE (mode) - total_size;
2008 if (adjust)
2009 stack_slot
2010 = adjust_address_nv (x, mode_for_size (total_size
2011 * BITS_PER_UNIT,
2012 MODE_INT, 1),
2013 adjust);
2016 spill_stack_slot[from_reg] = stack_slot;
2017 spill_stack_slot_width[from_reg] = total_size;
2020 /* On a big endian machine, the "address" of the slot
2021 is the address of the low part that fits its inherent mode. */
2022 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2023 adjust += (total_size - inherent_size);
2025 /* If we have any adjustment to make, or if the stack slot is the
2026 wrong mode, make a new stack slot. */
2027 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2029 /* If we have a decl for the original register, set it for the
2030 memory. If this is a shared MEM, make a copy. */
2031 if (REG_EXPR (regno_reg_rtx[i])
2032 && TREE_CODE_CLASS (TREE_CODE (REG_EXPR (regno_reg_rtx[i]))) == 'd')
2034 rtx decl = DECL_RTL_IF_SET (REG_EXPR (regno_reg_rtx[i]));
2036 /* We can do this only for the DECLs home pseudo, not for
2037 any copies of it, since otherwise when the stack slot
2038 is reused, nonoverlapping_memrefs_p might think they
2039 cannot overlap. */
2040 if (decl && GET_CODE (decl) == REG && REGNO (decl) == (unsigned) i)
2042 if (from_reg != -1 && spill_stack_slot[from_reg] == x)
2043 x = copy_rtx (x);
2045 set_mem_attrs_from_reg (x, regno_reg_rtx[i]);
2049 /* Save the stack slot for later. */
2050 reg_equiv_memory_loc[i] = x;
2054 /* Mark the slots in regs_ever_live for the hard regs
2055 used by pseudo-reg number REGNO. */
2057 void
2058 mark_home_live (int regno)
2060 int i, lim;
2062 i = reg_renumber[regno];
2063 if (i < 0)
2064 return;
2065 lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
2066 while (i < lim)
2067 regs_ever_live[i++] = 1;
2070 /* This function handles the tracking of elimination offsets around branches.
2072 X is a piece of RTL being scanned.
2074 INSN is the insn that it came from, if any.
2076 INITIAL_P is nonzero if we are to set the offset to be the initial
2077 offset and zero if we are setting the offset of the label to be the
2078 current offset. */
2080 static void
2081 set_label_offsets (rtx x, rtx insn, int initial_p)
2083 enum rtx_code code = GET_CODE (x);
2084 rtx tem;
2085 unsigned int i;
2086 struct elim_table *p;
2088 switch (code)
2090 case LABEL_REF:
2091 if (LABEL_REF_NONLOCAL_P (x))
2092 return;
2094 x = XEXP (x, 0);
2096 /* ... fall through ... */
2098 case CODE_LABEL:
2099 /* If we know nothing about this label, set the desired offsets. Note
2100 that this sets the offset at a label to be the offset before a label
2101 if we don't know anything about the label. This is not correct for
2102 the label after a BARRIER, but is the best guess we can make. If
2103 we guessed wrong, we will suppress an elimination that might have
2104 been possible had we been able to guess correctly. */
2106 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2108 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2109 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2110 = (initial_p ? reg_eliminate[i].initial_offset
2111 : reg_eliminate[i].offset);
2112 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2115 /* Otherwise, if this is the definition of a label and it is
2116 preceded by a BARRIER, set our offsets to the known offset of
2117 that label. */
2119 else if (x == insn
2120 && (tem = prev_nonnote_insn (insn)) != 0
2121 && GET_CODE (tem) == BARRIER)
2122 set_offsets_for_label (insn);
2123 else
2124 /* If neither of the above cases is true, compare each offset
2125 with those previously recorded and suppress any eliminations
2126 where the offsets disagree. */
2128 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2129 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2130 != (initial_p ? reg_eliminate[i].initial_offset
2131 : reg_eliminate[i].offset))
2132 reg_eliminate[i].can_eliminate = 0;
2134 return;
2136 case JUMP_INSN:
2137 set_label_offsets (PATTERN (insn), insn, initial_p);
2139 /* ... fall through ... */
2141 case INSN:
2142 case CALL_INSN:
2143 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2144 and hence must have all eliminations at their initial offsets. */
2145 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2146 if (REG_NOTE_KIND (tem) == REG_LABEL)
2147 set_label_offsets (XEXP (tem, 0), insn, 1);
2148 return;
2150 case PARALLEL:
2151 case ADDR_VEC:
2152 case ADDR_DIFF_VEC:
2153 /* Each of the labels in the parallel or address vector must be
2154 at their initial offsets. We want the first field for PARALLEL
2155 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2157 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2158 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2159 insn, initial_p);
2160 return;
2162 case SET:
2163 /* We only care about setting PC. If the source is not RETURN,
2164 IF_THEN_ELSE, or a label, disable any eliminations not at
2165 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2166 isn't one of those possibilities. For branches to a label,
2167 call ourselves recursively.
2169 Note that this can disable elimination unnecessarily when we have
2170 a non-local goto since it will look like a non-constant jump to
2171 someplace in the current function. This isn't a significant
2172 problem since such jumps will normally be when all elimination
2173 pairs are back to their initial offsets. */
2175 if (SET_DEST (x) != pc_rtx)
2176 return;
2178 switch (GET_CODE (SET_SRC (x)))
2180 case PC:
2181 case RETURN:
2182 return;
2184 case LABEL_REF:
2185 set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
2186 return;
2188 case IF_THEN_ELSE:
2189 tem = XEXP (SET_SRC (x), 1);
2190 if (GET_CODE (tem) == LABEL_REF)
2191 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2192 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2193 break;
2195 tem = XEXP (SET_SRC (x), 2);
2196 if (GET_CODE (tem) == LABEL_REF)
2197 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2198 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2199 break;
2200 return;
2202 default:
2203 break;
2206 /* If we reach here, all eliminations must be at their initial
2207 offset because we are doing a jump to a variable address. */
2208 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2209 if (p->offset != p->initial_offset)
2210 p->can_eliminate = 0;
2211 break;
2213 default:
2214 break;
2218 /* Scan X and replace any eliminable registers (such as fp) with a
2219 replacement (such as sp), plus an offset.
2221 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2222 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2223 MEM, we are allowed to replace a sum of a register and the constant zero
2224 with the register, which we cannot do outside a MEM. In addition, we need
2225 to record the fact that a register is referenced outside a MEM.
2227 If INSN is an insn, it is the insn containing X. If we replace a REG
2228 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2229 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2230 the REG is being modified.
2232 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2233 That's used when we eliminate in expressions stored in notes.
2234 This means, do not set ref_outside_mem even if the reference
2235 is outside of MEMs.
2237 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2238 replacements done assuming all offsets are at their initial values. If
2239 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2240 encounter, return the actual location so that find_reloads will do
2241 the proper thing. */
2244 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2246 enum rtx_code code = GET_CODE (x);
2247 struct elim_table *ep;
2248 int regno;
2249 rtx new;
2250 int i, j;
2251 const char *fmt;
2252 int copied = 0;
2254 if (! current_function_decl)
2255 return x;
2257 switch (code)
2259 case CONST_INT:
2260 case CONST_DOUBLE:
2261 case CONST_VECTOR:
2262 case CONST:
2263 case SYMBOL_REF:
2264 case CODE_LABEL:
2265 case PC:
2266 case CC0:
2267 case ASM_INPUT:
2268 case ADDR_VEC:
2269 case ADDR_DIFF_VEC:
2270 case RETURN:
2271 return x;
2273 case ADDRESSOF:
2274 /* This is only for the benefit of the debugging backends, which call
2275 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2276 removed after CSE. */
2277 new = eliminate_regs (XEXP (x, 0), 0, insn);
2278 if (GET_CODE (new) == MEM)
2279 return XEXP (new, 0);
2280 return x;
2282 case REG:
2283 regno = REGNO (x);
2285 /* First handle the case where we encounter a bare register that
2286 is eliminable. Replace it with a PLUS. */
2287 if (regno < FIRST_PSEUDO_REGISTER)
2289 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2290 ep++)
2291 if (ep->from_rtx == x && ep->can_eliminate)
2292 return plus_constant (ep->to_rtx, ep->previous_offset);
2295 else if (reg_renumber && reg_renumber[regno] < 0
2296 && reg_equiv_constant && reg_equiv_constant[regno]
2297 && ! CONSTANT_P (reg_equiv_constant[regno]))
2298 return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
2299 mem_mode, insn);
2300 return x;
2302 /* You might think handling MINUS in a manner similar to PLUS is a
2303 good idea. It is not. It has been tried multiple times and every
2304 time the change has had to have been reverted.
2306 Other parts of reload know a PLUS is special (gen_reload for example)
2307 and require special code to handle code a reloaded PLUS operand.
2309 Also consider backends where the flags register is clobbered by a
2310 MINUS, but we can emit a PLUS that does not clobber flags (ia32,
2311 lea instruction comes to mind). If we try to reload a MINUS, we
2312 may kill the flags register that was holding a useful value.
2314 So, please before trying to handle MINUS, consider reload as a
2315 whole instead of this little section as well as the backend issues. */
2316 case PLUS:
2317 /* If this is the sum of an eliminable register and a constant, rework
2318 the sum. */
2319 if (GET_CODE (XEXP (x, 0)) == REG
2320 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2321 && CONSTANT_P (XEXP (x, 1)))
2323 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2324 ep++)
2325 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2327 /* The only time we want to replace a PLUS with a REG (this
2328 occurs when the constant operand of the PLUS is the negative
2329 of the offset) is when we are inside a MEM. We won't want
2330 to do so at other times because that would change the
2331 structure of the insn in a way that reload can't handle.
2332 We special-case the commonest situation in
2333 eliminate_regs_in_insn, so just replace a PLUS with a
2334 PLUS here, unless inside a MEM. */
2335 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2336 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2337 return ep->to_rtx;
2338 else
2339 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2340 plus_constant (XEXP (x, 1),
2341 ep->previous_offset));
2344 /* If the register is not eliminable, we are done since the other
2345 operand is a constant. */
2346 return x;
2349 /* If this is part of an address, we want to bring any constant to the
2350 outermost PLUS. We will do this by doing register replacement in
2351 our operands and seeing if a constant shows up in one of them.
2353 Note that there is no risk of modifying the structure of the insn,
2354 since we only get called for its operands, thus we are either
2355 modifying the address inside a MEM, or something like an address
2356 operand of a load-address insn. */
2359 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2360 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2362 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2364 /* If one side is a PLUS and the other side is a pseudo that
2365 didn't get a hard register but has a reg_equiv_constant,
2366 we must replace the constant here since it may no longer
2367 be in the position of any operand. */
2368 if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
2369 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2370 && reg_renumber[REGNO (new1)] < 0
2371 && reg_equiv_constant != 0
2372 && reg_equiv_constant[REGNO (new1)] != 0)
2373 new1 = reg_equiv_constant[REGNO (new1)];
2374 else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
2375 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2376 && reg_renumber[REGNO (new0)] < 0
2377 && reg_equiv_constant[REGNO (new0)] != 0)
2378 new0 = reg_equiv_constant[REGNO (new0)];
2380 new = form_sum (new0, new1);
2382 /* As above, if we are not inside a MEM we do not want to
2383 turn a PLUS into something else. We might try to do so here
2384 for an addition of 0 if we aren't optimizing. */
2385 if (! mem_mode && GET_CODE (new) != PLUS)
2386 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2387 else
2388 return new;
2391 return x;
2393 case MULT:
2394 /* If this is the product of an eliminable register and a
2395 constant, apply the distribute law and move the constant out
2396 so that we have (plus (mult ..) ..). This is needed in order
2397 to keep load-address insns valid. This case is pathological.
2398 We ignore the possibility of overflow here. */
2399 if (GET_CODE (XEXP (x, 0)) == REG
2400 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2401 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2402 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2403 ep++)
2404 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2406 if (! mem_mode
2407 /* Refs inside notes don't count for this purpose. */
2408 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2409 || GET_CODE (insn) == INSN_LIST)))
2410 ep->ref_outside_mem = 1;
2412 return
2413 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2414 ep->previous_offset * INTVAL (XEXP (x, 1)));
2417 /* ... fall through ... */
2419 case CALL:
2420 case COMPARE:
2421 /* See comments before PLUS about handling MINUS. */
2422 case MINUS:
2423 case DIV: case UDIV:
2424 case MOD: case UMOD:
2425 case AND: case IOR: case XOR:
2426 case ROTATERT: case ROTATE:
2427 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2428 case NE: case EQ:
2429 case GE: case GT: case GEU: case GTU:
2430 case LE: case LT: case LEU: case LTU:
2432 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2433 rtx new1
2434 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
2436 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2437 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2439 return x;
2441 case EXPR_LIST:
2442 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2443 if (XEXP (x, 0))
2445 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2446 if (new != XEXP (x, 0))
2448 /* If this is a REG_DEAD note, it is not valid anymore.
2449 Using the eliminated version could result in creating a
2450 REG_DEAD note for the stack or frame pointer. */
2451 if (GET_MODE (x) == REG_DEAD)
2452 return (XEXP (x, 1)
2453 ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
2454 : NULL_RTX);
2456 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2460 /* ... fall through ... */
2462 case INSN_LIST:
2463 /* Now do eliminations in the rest of the chain. If this was
2464 an EXPR_LIST, this might result in allocating more memory than is
2465 strictly needed, but it simplifies the code. */
2466 if (XEXP (x, 1))
2468 new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2469 if (new != XEXP (x, 1))
2470 return
2471 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2473 return x;
2475 case PRE_INC:
2476 case POST_INC:
2477 case PRE_DEC:
2478 case POST_DEC:
2479 case STRICT_LOW_PART:
2480 case NEG: case NOT:
2481 case SIGN_EXTEND: case ZERO_EXTEND:
2482 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2483 case FLOAT: case FIX:
2484 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2485 case ABS:
2486 case SQRT:
2487 case FFS:
2488 case CLZ:
2489 case CTZ:
2490 case POPCOUNT:
2491 case PARITY:
2492 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2493 if (new != XEXP (x, 0))
2494 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2495 return x;
2497 case SUBREG:
2498 /* Similar to above processing, but preserve SUBREG_BYTE.
2499 Convert (subreg (mem)) to (mem) if not paradoxical.
2500 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2501 pseudo didn't get a hard reg, we must replace this with the
2502 eliminated version of the memory location because push_reload
2503 may do the replacement in certain circumstances. */
2504 if (GET_CODE (SUBREG_REG (x)) == REG
2505 && (GET_MODE_SIZE (GET_MODE (x))
2506 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2507 && reg_equiv_memory_loc != 0
2508 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2510 new = SUBREG_REG (x);
2512 else
2513 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
2515 if (new != SUBREG_REG (x))
2517 int x_size = GET_MODE_SIZE (GET_MODE (x));
2518 int new_size = GET_MODE_SIZE (GET_MODE (new));
2520 if (GET_CODE (new) == MEM
2521 && ((x_size < new_size
2522 #ifdef WORD_REGISTER_OPERATIONS
2523 /* On these machines, combine can create rtl of the form
2524 (set (subreg:m1 (reg:m2 R) 0) ...)
2525 where m1 < m2, and expects something interesting to
2526 happen to the entire word. Moreover, it will use the
2527 (reg:m2 R) later, expecting all bits to be preserved.
2528 So if the number of words is the same, preserve the
2529 subreg so that push_reload can see it. */
2530 && ! ((x_size - 1) / UNITS_PER_WORD
2531 == (new_size -1 ) / UNITS_PER_WORD)
2532 #endif
2534 || x_size == new_size)
2536 return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
2537 else
2538 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2541 return x;
2543 case MEM:
2544 /* This is only for the benefit of the debugging backends, which call
2545 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2546 removed after CSE. */
2547 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2548 return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
2550 /* Our only special processing is to pass the mode of the MEM to our
2551 recursive call and copy the flags. While we are here, handle this
2552 case more efficiently. */
2553 return
2554 replace_equiv_address_nv (x,
2555 eliminate_regs (XEXP (x, 0),
2556 GET_MODE (x), insn));
2558 case USE:
2559 /* Handle insn_list USE that a call to a pure function may generate. */
2560 new = eliminate_regs (XEXP (x, 0), 0, insn);
2561 if (new != XEXP (x, 0))
2562 return gen_rtx_USE (GET_MODE (x), new);
2563 return x;
2565 case CLOBBER:
2566 case ASM_OPERANDS:
2567 case SET:
2568 abort ();
2570 default:
2571 break;
2574 /* Process each of our operands recursively. If any have changed, make a
2575 copy of the rtx. */
2576 fmt = GET_RTX_FORMAT (code);
2577 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2579 if (*fmt == 'e')
2581 new = eliminate_regs (XEXP (x, i), mem_mode, insn);
2582 if (new != XEXP (x, i) && ! copied)
2584 rtx new_x = rtx_alloc (code);
2585 memcpy (new_x, x, RTX_SIZE (code));
2586 x = new_x;
2587 copied = 1;
2589 XEXP (x, i) = new;
2591 else if (*fmt == 'E')
2593 int copied_vec = 0;
2594 for (j = 0; j < XVECLEN (x, i); j++)
2596 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
2597 if (new != XVECEXP (x, i, j) && ! copied_vec)
2599 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2600 XVEC (x, i)->elem);
2601 if (! copied)
2603 rtx new_x = rtx_alloc (code);
2604 memcpy (new_x, x, RTX_SIZE (code));
2605 x = new_x;
2606 copied = 1;
2608 XVEC (x, i) = new_v;
2609 copied_vec = 1;
2611 XVECEXP (x, i, j) = new;
2616 return x;
2619 /* Scan rtx X for modifications of elimination target registers. Update
2620 the table of eliminables to reflect the changed state. MEM_MODE is
2621 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2623 static void
2624 elimination_effects (rtx x, enum machine_mode mem_mode)
2626 enum rtx_code code = GET_CODE (x);
2627 struct elim_table *ep;
2628 int regno;
2629 int i, j;
2630 const char *fmt;
2632 switch (code)
2634 case CONST_INT:
2635 case CONST_DOUBLE:
2636 case CONST_VECTOR:
2637 case CONST:
2638 case SYMBOL_REF:
2639 case CODE_LABEL:
2640 case PC:
2641 case CC0:
2642 case ASM_INPUT:
2643 case ADDR_VEC:
2644 case ADDR_DIFF_VEC:
2645 case RETURN:
2646 return;
2648 case ADDRESSOF:
2649 abort ();
2651 case REG:
2652 regno = REGNO (x);
2654 /* First handle the case where we encounter a bare register that
2655 is eliminable. Replace it with a PLUS. */
2656 if (regno < FIRST_PSEUDO_REGISTER)
2658 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2659 ep++)
2660 if (ep->from_rtx == x && ep->can_eliminate)
2662 if (! mem_mode)
2663 ep->ref_outside_mem = 1;
2664 return;
2668 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2669 && reg_equiv_constant[regno]
2670 && ! function_invariant_p (reg_equiv_constant[regno]))
2671 elimination_effects (reg_equiv_constant[regno], mem_mode);
2672 return;
2674 case PRE_INC:
2675 case POST_INC:
2676 case PRE_DEC:
2677 case POST_DEC:
2678 case POST_MODIFY:
2679 case PRE_MODIFY:
2680 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2681 if (ep->to_rtx == XEXP (x, 0))
2683 int size = GET_MODE_SIZE (mem_mode);
2685 /* If more bytes than MEM_MODE are pushed, account for them. */
2686 #ifdef PUSH_ROUNDING
2687 if (ep->to_rtx == stack_pointer_rtx)
2688 size = PUSH_ROUNDING (size);
2689 #endif
2690 if (code == PRE_DEC || code == POST_DEC)
2691 ep->offset += size;
2692 else if (code == PRE_INC || code == POST_INC)
2693 ep->offset -= size;
2694 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2695 && GET_CODE (XEXP (x, 1)) == PLUS
2696 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2697 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2698 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2701 /* These two aren't unary operators. */
2702 if (code == POST_MODIFY || code == PRE_MODIFY)
2703 break;
2705 /* Fall through to generic unary operation case. */
2706 case STRICT_LOW_PART:
2707 case NEG: case NOT:
2708 case SIGN_EXTEND: case ZERO_EXTEND:
2709 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2710 case FLOAT: case FIX:
2711 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2712 case ABS:
2713 case SQRT:
2714 case FFS:
2715 case CLZ:
2716 case CTZ:
2717 case POPCOUNT:
2718 case PARITY:
2719 elimination_effects (XEXP (x, 0), mem_mode);
2720 return;
2722 case SUBREG:
2723 if (GET_CODE (SUBREG_REG (x)) == REG
2724 && (GET_MODE_SIZE (GET_MODE (x))
2725 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2726 && reg_equiv_memory_loc != 0
2727 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2728 return;
2730 elimination_effects (SUBREG_REG (x), mem_mode);
2731 return;
2733 case USE:
2734 /* If using a register that is the source of an eliminate we still
2735 think can be performed, note it cannot be performed since we don't
2736 know how this register is used. */
2737 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2738 if (ep->from_rtx == XEXP (x, 0))
2739 ep->can_eliminate = 0;
2741 elimination_effects (XEXP (x, 0), mem_mode);
2742 return;
2744 case CLOBBER:
2745 /* If clobbering a register that is the replacement register for an
2746 elimination we still think can be performed, note that it cannot
2747 be performed. Otherwise, we need not be concerned about it. */
2748 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2749 if (ep->to_rtx == XEXP (x, 0))
2750 ep->can_eliminate = 0;
2752 elimination_effects (XEXP (x, 0), mem_mode);
2753 return;
2755 case SET:
2756 /* Check for setting a register that we know about. */
2757 if (GET_CODE (SET_DEST (x)) == REG)
2759 /* See if this is setting the replacement register for an
2760 elimination.
2762 If DEST is the hard frame pointer, we do nothing because we
2763 assume that all assignments to the frame pointer are for
2764 non-local gotos and are being done at a time when they are valid
2765 and do not disturb anything else. Some machines want to
2766 eliminate a fake argument pointer (or even a fake frame pointer)
2767 with either the real frame or the stack pointer. Assignments to
2768 the hard frame pointer must not prevent this elimination. */
2770 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2771 ep++)
2772 if (ep->to_rtx == SET_DEST (x)
2773 && SET_DEST (x) != hard_frame_pointer_rtx)
2775 /* If it is being incremented, adjust the offset. Otherwise,
2776 this elimination can't be done. */
2777 rtx src = SET_SRC (x);
2779 if (GET_CODE (src) == PLUS
2780 && XEXP (src, 0) == SET_DEST (x)
2781 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2782 ep->offset -= INTVAL (XEXP (src, 1));
2783 else
2784 ep->can_eliminate = 0;
2788 elimination_effects (SET_DEST (x), 0);
2789 elimination_effects (SET_SRC (x), 0);
2790 return;
2792 case MEM:
2793 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2794 abort ();
2796 /* Our only special processing is to pass the mode of the MEM to our
2797 recursive call. */
2798 elimination_effects (XEXP (x, 0), GET_MODE (x));
2799 return;
2801 default:
2802 break;
2805 fmt = GET_RTX_FORMAT (code);
2806 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2808 if (*fmt == 'e')
2809 elimination_effects (XEXP (x, i), mem_mode);
2810 else if (*fmt == 'E')
2811 for (j = 0; j < XVECLEN (x, i); j++)
2812 elimination_effects (XVECEXP (x, i, j), mem_mode);
2816 /* Descend through rtx X and verify that no references to eliminable registers
2817 remain. If any do remain, mark the involved register as not
2818 eliminable. */
2820 static void
2821 check_eliminable_occurrences (rtx x)
2823 const char *fmt;
2824 int i;
2825 enum rtx_code code;
2827 if (x == 0)
2828 return;
2830 code = GET_CODE (x);
2832 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2834 struct elim_table *ep;
2836 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2837 if (ep->from_rtx == x && ep->can_eliminate)
2838 ep->can_eliminate = 0;
2839 return;
2842 fmt = GET_RTX_FORMAT (code);
2843 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2845 if (*fmt == 'e')
2846 check_eliminable_occurrences (XEXP (x, i));
2847 else if (*fmt == 'E')
2849 int j;
2850 for (j = 0; j < XVECLEN (x, i); j++)
2851 check_eliminable_occurrences (XVECEXP (x, i, j));
2856 /* Scan INSN and eliminate all eliminable registers in it.
2858 If REPLACE is nonzero, do the replacement destructively. Also
2859 delete the insn as dead it if it is setting an eliminable register.
2861 If REPLACE is zero, do all our allocations in reload_obstack.
2863 If no eliminations were done and this insn doesn't require any elimination
2864 processing (these are not identical conditions: it might be updating sp,
2865 but not referencing fp; this needs to be seen during reload_as_needed so
2866 that the offset between fp and sp can be taken into consideration), zero
2867 is returned. Otherwise, 1 is returned. */
2869 static int
2870 eliminate_regs_in_insn (rtx insn, int replace)
2872 int icode = recog_memoized (insn);
2873 rtx old_body = PATTERN (insn);
2874 int insn_is_asm = asm_noperands (old_body) >= 0;
2875 rtx old_set = single_set (insn);
2876 rtx new_body;
2877 int val = 0;
2878 int i;
2879 rtx substed_operand[MAX_RECOG_OPERANDS];
2880 rtx orig_operand[MAX_RECOG_OPERANDS];
2881 struct elim_table *ep;
2883 if (! insn_is_asm && icode < 0)
2885 if (GET_CODE (PATTERN (insn)) == USE
2886 || GET_CODE (PATTERN (insn)) == CLOBBER
2887 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2888 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2889 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
2890 return 0;
2891 abort ();
2894 if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
2895 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2897 /* Check for setting an eliminable register. */
2898 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2899 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2901 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2902 /* If this is setting the frame pointer register to the
2903 hardware frame pointer register and this is an elimination
2904 that will be done (tested above), this insn is really
2905 adjusting the frame pointer downward to compensate for
2906 the adjustment done before a nonlocal goto. */
2907 if (ep->from == FRAME_POINTER_REGNUM
2908 && ep->to == HARD_FRAME_POINTER_REGNUM)
2910 rtx base = SET_SRC (old_set);
2911 rtx base_insn = insn;
2912 HOST_WIDE_INT offset = 0;
2914 while (base != ep->to_rtx)
2916 rtx prev_insn, prev_set;
2918 if (GET_CODE (base) == PLUS
2919 && GET_CODE (XEXP (base, 1)) == CONST_INT)
2921 offset += INTVAL (XEXP (base, 1));
2922 base = XEXP (base, 0);
2924 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
2925 && (prev_set = single_set (prev_insn)) != 0
2926 && rtx_equal_p (SET_DEST (prev_set), base))
2928 base = SET_SRC (prev_set);
2929 base_insn = prev_insn;
2931 else
2932 break;
2935 if (base == ep->to_rtx)
2937 rtx src
2938 = plus_constant (ep->to_rtx, offset - ep->offset);
2940 new_body = old_body;
2941 if (! replace)
2943 new_body = copy_insn (old_body);
2944 if (REG_NOTES (insn))
2945 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
2947 PATTERN (insn) = new_body;
2948 old_set = single_set (insn);
2950 /* First see if this insn remains valid when we
2951 make the change. If not, keep the INSN_CODE
2952 the same and let reload fit it up. */
2953 validate_change (insn, &SET_SRC (old_set), src, 1);
2954 validate_change (insn, &SET_DEST (old_set),
2955 ep->to_rtx, 1);
2956 if (! apply_change_group ())
2958 SET_SRC (old_set) = src;
2959 SET_DEST (old_set) = ep->to_rtx;
2962 val = 1;
2963 goto done;
2966 #endif
2968 /* In this case this insn isn't serving a useful purpose. We
2969 will delete it in reload_as_needed once we know that this
2970 elimination is, in fact, being done.
2972 If REPLACE isn't set, we can't delete this insn, but needn't
2973 process it since it won't be used unless something changes. */
2974 if (replace)
2976 delete_dead_insn (insn);
2977 return 1;
2979 val = 1;
2980 goto done;
2984 /* We allow one special case which happens to work on all machines we
2985 currently support: a single set with the source being a PLUS of an
2986 eliminable register and a constant. */
2987 if (old_set
2988 && GET_CODE (SET_DEST (old_set)) == REG
2989 && GET_CODE (SET_SRC (old_set)) == PLUS
2990 && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
2991 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
2992 && REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
2994 rtx reg = XEXP (SET_SRC (old_set), 0);
2995 HOST_WIDE_INT offset = INTVAL (XEXP (SET_SRC (old_set), 1));
2997 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2998 if (ep->from_rtx == reg && ep->can_eliminate)
3000 offset += ep->offset;
3002 if (offset == 0)
3004 int num_clobbers;
3005 /* We assume here that if we need a PARALLEL with
3006 CLOBBERs for this assignment, we can do with the
3007 MATCH_SCRATCHes that add_clobbers allocates.
3008 There's not much we can do if that doesn't work. */
3009 PATTERN (insn) = gen_rtx_SET (VOIDmode,
3010 SET_DEST (old_set),
3011 ep->to_rtx);
3012 num_clobbers = 0;
3013 INSN_CODE (insn) = recog (PATTERN (insn), insn, &num_clobbers);
3014 if (num_clobbers)
3016 rtvec vec = rtvec_alloc (num_clobbers + 1);
3018 vec->elem[0] = PATTERN (insn);
3019 PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
3020 add_clobbers (PATTERN (insn), INSN_CODE (insn));
3022 if (INSN_CODE (insn) < 0)
3023 abort ();
3025 else
3027 new_body = old_body;
3028 if (! replace)
3030 new_body = copy_insn (old_body);
3031 if (REG_NOTES (insn))
3032 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3034 PATTERN (insn) = new_body;
3035 old_set = single_set (insn);
3037 XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
3038 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
3040 val = 1;
3041 /* This can't have an effect on elimination offsets, so skip right
3042 to the end. */
3043 goto done;
3047 /* Determine the effects of this insn on elimination offsets. */
3048 elimination_effects (old_body, 0);
3050 /* Eliminate all eliminable registers occurring in operands that
3051 can be handled by reload. */
3052 extract_insn (insn);
3053 for (i = 0; i < recog_data.n_operands; i++)
3055 orig_operand[i] = recog_data.operand[i];
3056 substed_operand[i] = recog_data.operand[i];
3058 /* For an asm statement, every operand is eliminable. */
3059 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3061 /* Check for setting a register that we know about. */
3062 if (recog_data.operand_type[i] != OP_IN
3063 && GET_CODE (orig_operand[i]) == REG)
3065 /* If we are assigning to a register that can be eliminated, it
3066 must be as part of a PARALLEL, since the code above handles
3067 single SETs. We must indicate that we can no longer
3068 eliminate this reg. */
3069 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3070 ep++)
3071 if (ep->from_rtx == orig_operand[i] && ep->can_eliminate)
3072 ep->can_eliminate = 0;
3075 substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
3076 replace ? insn : NULL_RTX);
3077 if (substed_operand[i] != orig_operand[i])
3078 val = 1;
3079 /* Terminate the search in check_eliminable_occurrences at
3080 this point. */
3081 *recog_data.operand_loc[i] = 0;
3083 /* If an output operand changed from a REG to a MEM and INSN is an
3084 insn, write a CLOBBER insn. */
3085 if (recog_data.operand_type[i] != OP_IN
3086 && GET_CODE (orig_operand[i]) == REG
3087 && GET_CODE (substed_operand[i]) == MEM
3088 && replace)
3089 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3090 insn);
3094 for (i = 0; i < recog_data.n_dups; i++)
3095 *recog_data.dup_loc[i]
3096 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3098 /* If any eliminable remain, they aren't eliminable anymore. */
3099 check_eliminable_occurrences (old_body);
3101 /* Substitute the operands; the new values are in the substed_operand
3102 array. */
3103 for (i = 0; i < recog_data.n_operands; i++)
3104 *recog_data.operand_loc[i] = substed_operand[i];
3105 for (i = 0; i < recog_data.n_dups; i++)
3106 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3108 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3109 re-recognize the insn. We do this in case we had a simple addition
3110 but now can do this as a load-address. This saves an insn in this
3111 common case.
3112 If re-recognition fails, the old insn code number will still be used,
3113 and some register operands may have changed into PLUS expressions.
3114 These will be handled by find_reloads by loading them into a register
3115 again. */
3117 if (val)
3119 /* If we aren't replacing things permanently and we changed something,
3120 make another copy to ensure that all the RTL is new. Otherwise
3121 things can go wrong if find_reload swaps commutative operands
3122 and one is inside RTL that has been copied while the other is not. */
3123 new_body = old_body;
3124 if (! replace)
3126 new_body = copy_insn (old_body);
3127 if (REG_NOTES (insn))
3128 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3130 PATTERN (insn) = new_body;
3132 /* If we had a move insn but now we don't, rerecognize it. This will
3133 cause spurious re-recognition if the old move had a PARALLEL since
3134 the new one still will, but we can't call single_set without
3135 having put NEW_BODY into the insn and the re-recognition won't
3136 hurt in this rare case. */
3137 /* ??? Why this huge if statement - why don't we just rerecognize the
3138 thing always? */
3139 if (! insn_is_asm
3140 && old_set != 0
3141 && ((GET_CODE (SET_SRC (old_set)) == REG
3142 && (GET_CODE (new_body) != SET
3143 || GET_CODE (SET_SRC (new_body)) != REG))
3144 /* If this was a load from or store to memory, compare
3145 the MEM in recog_data.operand to the one in the insn.
3146 If they are not equal, then rerecognize the insn. */
3147 || (old_set != 0
3148 && ((GET_CODE (SET_SRC (old_set)) == MEM
3149 && SET_SRC (old_set) != recog_data.operand[1])
3150 || (GET_CODE (SET_DEST (old_set)) == MEM
3151 && SET_DEST (old_set) != recog_data.operand[0])))
3152 /* If this was an add insn before, rerecognize. */
3153 || GET_CODE (SET_SRC (old_set)) == PLUS))
3155 int new_icode = recog (PATTERN (insn), insn, 0);
3156 if (new_icode < 0)
3157 INSN_CODE (insn) = icode;
3161 /* Restore the old body. If there were any changes to it, we made a copy
3162 of it while the changes were still in place, so we'll correctly return
3163 a modified insn below. */
3164 if (! replace)
3166 /* Restore the old body. */
3167 for (i = 0; i < recog_data.n_operands; i++)
3168 *recog_data.operand_loc[i] = orig_operand[i];
3169 for (i = 0; i < recog_data.n_dups; i++)
3170 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3173 /* Update all elimination pairs to reflect the status after the current
3174 insn. The changes we make were determined by the earlier call to
3175 elimination_effects.
3177 We also detect cases where register elimination cannot be done,
3178 namely, if a register would be both changed and referenced outside a MEM
3179 in the resulting insn since such an insn is often undefined and, even if
3180 not, we cannot know what meaning will be given to it. Note that it is
3181 valid to have a register used in an address in an insn that changes it
3182 (presumably with a pre- or post-increment or decrement).
3184 If anything changes, return nonzero. */
3186 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3188 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3189 ep->can_eliminate = 0;
3191 ep->ref_outside_mem = 0;
3193 if (ep->previous_offset != ep->offset)
3194 val = 1;
3197 done:
3198 /* If we changed something, perform elimination in REG_NOTES. This is
3199 needed even when REPLACE is zero because a REG_DEAD note might refer
3200 to a register that we eliminate and could cause a different number
3201 of spill registers to be needed in the final reload pass than in
3202 the pre-passes. */
3203 if (val && REG_NOTES (insn) != 0)
3204 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
3206 return val;
3209 /* Loop through all elimination pairs.
3210 Recalculate the number not at initial offset.
3212 Compute the maximum offset (minimum offset if the stack does not
3213 grow downward) for each elimination pair. */
3215 static void
3216 update_eliminable_offsets (void)
3218 struct elim_table *ep;
3220 num_not_at_initial_offset = 0;
3221 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3223 ep->previous_offset = ep->offset;
3224 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3225 num_not_at_initial_offset++;
3229 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3230 replacement we currently believe is valid, mark it as not eliminable if X
3231 modifies DEST in any way other than by adding a constant integer to it.
3233 If DEST is the frame pointer, we do nothing because we assume that
3234 all assignments to the hard frame pointer are nonlocal gotos and are being
3235 done at a time when they are valid and do not disturb anything else.
3236 Some machines want to eliminate a fake argument pointer with either the
3237 frame or stack pointer. Assignments to the hard frame pointer must not
3238 prevent this elimination.
3240 Called via note_stores from reload before starting its passes to scan
3241 the insns of the function. */
3243 static void
3244 mark_not_eliminable (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
3246 unsigned int i;
3248 /* A SUBREG of a hard register here is just changing its mode. We should
3249 not see a SUBREG of an eliminable hard register, but check just in
3250 case. */
3251 if (GET_CODE (dest) == SUBREG)
3252 dest = SUBREG_REG (dest);
3254 if (dest == hard_frame_pointer_rtx)
3255 return;
3257 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3258 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3259 && (GET_CODE (x) != SET
3260 || GET_CODE (SET_SRC (x)) != PLUS
3261 || XEXP (SET_SRC (x), 0) != dest
3262 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3264 reg_eliminate[i].can_eliminate_previous
3265 = reg_eliminate[i].can_eliminate = 0;
3266 num_eliminable--;
3270 /* Verify that the initial elimination offsets did not change since the
3271 last call to set_initial_elim_offsets. This is used to catch cases
3272 where something illegal happened during reload_as_needed that could
3273 cause incorrect code to be generated if we did not check for it. */
3275 static void
3276 verify_initial_elim_offsets (void)
3278 HOST_WIDE_INT t;
3280 #ifdef ELIMINABLE_REGS
3281 struct elim_table *ep;
3283 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3285 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3286 if (t != ep->initial_offset)
3287 abort ();
3289 #else
3290 INITIAL_FRAME_POINTER_OFFSET (t);
3291 if (t != reg_eliminate[0].initial_offset)
3292 abort ();
3293 #endif
3296 /* Reset all offsets on eliminable registers to their initial values. */
3298 static void
3299 set_initial_elim_offsets (void)
3301 struct elim_table *ep = reg_eliminate;
3303 #ifdef ELIMINABLE_REGS
3304 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3306 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3307 ep->previous_offset = ep->offset = ep->initial_offset;
3309 #else
3310 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3311 ep->previous_offset = ep->offset = ep->initial_offset;
3312 #endif
3314 num_not_at_initial_offset = 0;
3317 /* Initialize the known label offsets.
3318 Set a known offset for each forced label to be at the initial offset
3319 of each elimination. We do this because we assume that all
3320 computed jumps occur from a location where each elimination is
3321 at its initial offset.
3322 For all other labels, show that we don't know the offsets. */
3324 static void
3325 set_initial_label_offsets (void)
3327 rtx x;
3328 memset (offsets_known_at, 0, num_labels);
3330 for (x = forced_labels; x; x = XEXP (x, 1))
3331 if (XEXP (x, 0))
3332 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3335 /* Set all elimination offsets to the known values for the code label given
3336 by INSN. */
3338 static void
3339 set_offsets_for_label (rtx insn)
3341 unsigned int i;
3342 int label_nr = CODE_LABEL_NUMBER (insn);
3343 struct elim_table *ep;
3345 num_not_at_initial_offset = 0;
3346 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3348 ep->offset = ep->previous_offset
3349 = offsets_at[label_nr - first_label_num][i];
3350 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3351 num_not_at_initial_offset++;
3355 /* See if anything that happened changes which eliminations are valid.
3356 For example, on the SPARC, whether or not the frame pointer can
3357 be eliminated can depend on what registers have been used. We need
3358 not check some conditions again (such as flag_omit_frame_pointer)
3359 since they can't have changed. */
3361 static void
3362 update_eliminables (HARD_REG_SET *pset)
3364 int previous_frame_pointer_needed = frame_pointer_needed;
3365 struct elim_table *ep;
3367 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3368 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3369 #ifdef ELIMINABLE_REGS
3370 || ! CAN_ELIMINATE (ep->from, ep->to)
3371 #endif
3373 ep->can_eliminate = 0;
3375 /* Look for the case where we have discovered that we can't replace
3376 register A with register B and that means that we will now be
3377 trying to replace register A with register C. This means we can
3378 no longer replace register C with register B and we need to disable
3379 such an elimination, if it exists. This occurs often with A == ap,
3380 B == sp, and C == fp. */
3382 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3384 struct elim_table *op;
3385 int new_to = -1;
3387 if (! ep->can_eliminate && ep->can_eliminate_previous)
3389 /* Find the current elimination for ep->from, if there is a
3390 new one. */
3391 for (op = reg_eliminate;
3392 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3393 if (op->from == ep->from && op->can_eliminate)
3395 new_to = op->to;
3396 break;
3399 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3400 disable it. */
3401 for (op = reg_eliminate;
3402 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3403 if (op->from == new_to && op->to == ep->to)
3404 op->can_eliminate = 0;
3408 /* See if any registers that we thought we could eliminate the previous
3409 time are no longer eliminable. If so, something has changed and we
3410 must spill the register. Also, recompute the number of eliminable
3411 registers and see if the frame pointer is needed; it is if there is
3412 no elimination of the frame pointer that we can perform. */
3414 frame_pointer_needed = 1;
3415 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3417 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3418 && ep->to != HARD_FRAME_POINTER_REGNUM)
3419 frame_pointer_needed = 0;
3421 if (! ep->can_eliminate && ep->can_eliminate_previous)
3423 ep->can_eliminate_previous = 0;
3424 SET_HARD_REG_BIT (*pset, ep->from);
3425 num_eliminable--;
3429 /* If we didn't need a frame pointer last time, but we do now, spill
3430 the hard frame pointer. */
3431 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3432 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3435 /* Initialize the table of registers to eliminate. */
3437 static void
3438 init_elim_table (void)
3440 struct elim_table *ep;
3441 #ifdef ELIMINABLE_REGS
3442 const struct elim_table_1 *ep1;
3443 #endif
3445 if (!reg_eliminate)
3446 reg_eliminate = xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3448 /* Does this function require a frame pointer? */
3450 frame_pointer_needed = (! flag_omit_frame_pointer
3451 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3452 and restore sp for alloca. So we can't eliminate
3453 the frame pointer in that case. At some point,
3454 we should improve this by emitting the
3455 sp-adjusting insns for this case. */
3456 || (current_function_calls_alloca
3457 && EXIT_IGNORE_STACK)
3458 || FRAME_POINTER_REQUIRED);
3460 num_eliminable = 0;
3462 #ifdef ELIMINABLE_REGS
3463 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3464 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3466 ep->from = ep1->from;
3467 ep->to = ep1->to;
3468 ep->can_eliminate = ep->can_eliminate_previous
3469 = (CAN_ELIMINATE (ep->from, ep->to)
3470 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3472 #else
3473 reg_eliminate[0].from = reg_eliminate_1[0].from;
3474 reg_eliminate[0].to = reg_eliminate_1[0].to;
3475 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3476 = ! frame_pointer_needed;
3477 #endif
3479 /* Count the number of eliminable registers and build the FROM and TO
3480 REG rtx's. Note that code in gen_rtx will cause, e.g.,
3481 gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3482 We depend on this. */
3483 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3485 num_eliminable += ep->can_eliminate;
3486 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3487 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3491 /* Kick all pseudos out of hard register REGNO.
3493 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3494 because we found we can't eliminate some register. In the case, no pseudos
3495 are allowed to be in the register, even if they are only in a block that
3496 doesn't require spill registers, unlike the case when we are spilling this
3497 hard reg to produce another spill register.
3499 Return nonzero if any pseudos needed to be kicked out. */
3501 static void
3502 spill_hard_reg (unsigned int regno, int cant_eliminate)
3504 int i;
3506 if (cant_eliminate)
3508 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3509 regs_ever_live[regno] = 1;
3512 /* Spill every pseudo reg that was allocated to this reg
3513 or to something that overlaps this reg. */
3515 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3516 if (reg_renumber[i] >= 0
3517 && (unsigned int) reg_renumber[i] <= regno
3518 && ((unsigned int) reg_renumber[i]
3519 + HARD_REGNO_NREGS ((unsigned int) reg_renumber[i],
3520 PSEUDO_REGNO_MODE (i))
3521 > regno))
3522 SET_REGNO_REG_SET (&spilled_pseudos, i);
3525 /* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
3526 from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
3528 static void
3529 ior_hard_reg_set (HARD_REG_SET *set1, HARD_REG_SET *set2)
3531 IOR_HARD_REG_SET (*set1, *set2);
3534 /* After find_reload_regs has been run for all insn that need reloads,
3535 and/or spill_hard_regs was called, this function is used to actually
3536 spill pseudo registers and try to reallocate them. It also sets up the
3537 spill_regs array for use by choose_reload_regs. */
3539 static int
3540 finish_spills (int global)
3542 struct insn_chain *chain;
3543 int something_changed = 0;
3544 int i;
3546 /* Build the spill_regs array for the function. */
3547 /* If there are some registers still to eliminate and one of the spill regs
3548 wasn't ever used before, additional stack space may have to be
3549 allocated to store this register. Thus, we may have changed the offset
3550 between the stack and frame pointers, so mark that something has changed.
3552 One might think that we need only set VAL to 1 if this is a call-used
3553 register. However, the set of registers that must be saved by the
3554 prologue is not identical to the call-used set. For example, the
3555 register used by the call insn for the return PC is a call-used register,
3556 but must be saved by the prologue. */
3558 n_spills = 0;
3559 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3560 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3562 spill_reg_order[i] = n_spills;
3563 spill_regs[n_spills++] = i;
3564 if (num_eliminable && ! regs_ever_live[i])
3565 something_changed = 1;
3566 regs_ever_live[i] = 1;
3568 else
3569 spill_reg_order[i] = -1;
3571 EXECUTE_IF_SET_IN_REG_SET
3572 (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i,
3574 /* Record the current hard register the pseudo is allocated to in
3575 pseudo_previous_regs so we avoid reallocating it to the same
3576 hard reg in a later pass. */
3577 if (reg_renumber[i] < 0)
3578 abort ();
3580 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3581 /* Mark it as no longer having a hard register home. */
3582 reg_renumber[i] = -1;
3583 /* We will need to scan everything again. */
3584 something_changed = 1;
3587 /* Retry global register allocation if possible. */
3588 if (global)
3590 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3591 /* For every insn that needs reloads, set the registers used as spill
3592 regs in pseudo_forbidden_regs for every pseudo live across the
3593 insn. */
3594 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3596 EXECUTE_IF_SET_IN_REG_SET
3597 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
3599 ior_hard_reg_set (pseudo_forbidden_regs + i,
3600 &chain->used_spill_regs);
3602 EXECUTE_IF_SET_IN_REG_SET
3603 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
3605 ior_hard_reg_set (pseudo_forbidden_regs + i,
3606 &chain->used_spill_regs);
3610 /* Retry allocating the spilled pseudos. For each reg, merge the
3611 various reg sets that indicate which hard regs can't be used,
3612 and call retry_global_alloc.
3613 We change spill_pseudos here to only contain pseudos that did not
3614 get a new hard register. */
3615 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3616 if (reg_old_renumber[i] != reg_renumber[i])
3618 HARD_REG_SET forbidden;
3619 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3620 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3621 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3622 retry_global_alloc (i, forbidden);
3623 if (reg_renumber[i] >= 0)
3624 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3628 /* Fix up the register information in the insn chain.
3629 This involves deleting those of the spilled pseudos which did not get
3630 a new hard register home from the live_{before,after} sets. */
3631 for (chain = reload_insn_chain; chain; chain = chain->next)
3633 HARD_REG_SET used_by_pseudos;
3634 HARD_REG_SET used_by_pseudos2;
3636 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3637 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3639 /* Mark any unallocated hard regs as available for spills. That
3640 makes inheritance work somewhat better. */
3641 if (chain->need_reload)
3643 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3644 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3645 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3647 /* Save the old value for the sanity test below. */
3648 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3650 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3651 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3652 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3653 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3655 /* Make sure we only enlarge the set. */
3656 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3657 abort ();
3658 ok:;
3662 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3663 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3665 int regno = reg_renumber[i];
3666 if (reg_old_renumber[i] == regno)
3667 continue;
3669 alter_reg (i, reg_old_renumber[i]);
3670 reg_old_renumber[i] = regno;
3671 if (rtl_dump_file)
3673 if (regno == -1)
3674 fprintf (rtl_dump_file, " Register %d now on stack.\n\n", i);
3675 else
3676 fprintf (rtl_dump_file, " Register %d now in %d.\n\n",
3677 i, reg_renumber[i]);
3681 return something_changed;
3684 /* Find all paradoxical subregs within X and update reg_max_ref_width.
3685 Also mark any hard registers used to store user variables as
3686 forbidden from being used for spill registers. */
3688 static void
3689 scan_paradoxical_subregs (rtx x)
3691 int i;
3692 const char *fmt;
3693 enum rtx_code code = GET_CODE (x);
3695 switch (code)
3697 case REG:
3698 #if 0
3699 if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
3700 && REG_USERVAR_P (x))
3701 SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x));
3702 #endif
3703 return;
3705 case CONST_INT:
3706 case CONST:
3707 case SYMBOL_REF:
3708 case LABEL_REF:
3709 case CONST_DOUBLE:
3710 case CONST_VECTOR: /* shouldn't happen, but just in case. */
3711 case CC0:
3712 case PC:
3713 case USE:
3714 case CLOBBER:
3715 return;
3717 case SUBREG:
3718 if (GET_CODE (SUBREG_REG (x)) == REG
3719 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3720 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3721 = GET_MODE_SIZE (GET_MODE (x));
3722 return;
3724 default:
3725 break;
3728 fmt = GET_RTX_FORMAT (code);
3729 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3731 if (fmt[i] == 'e')
3732 scan_paradoxical_subregs (XEXP (x, i));
3733 else if (fmt[i] == 'E')
3735 int j;
3736 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3737 scan_paradoxical_subregs (XVECEXP (x, i, j));
3742 /* Reload pseudo-registers into hard regs around each insn as needed.
3743 Additional register load insns are output before the insn that needs it
3744 and perhaps store insns after insns that modify the reloaded pseudo reg.
3746 reg_last_reload_reg and reg_reloaded_contents keep track of
3747 which registers are already available in reload registers.
3748 We update these for the reloads that we perform,
3749 as the insns are scanned. */
3751 static void
3752 reload_as_needed (int live_known)
3754 struct insn_chain *chain;
3755 #if defined (AUTO_INC_DEC)
3756 int i;
3757 #endif
3758 rtx x;
3760 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
3761 memset (spill_reg_store, 0, sizeof spill_reg_store);
3762 reg_last_reload_reg = xcalloc (max_regno, sizeof (rtx));
3763 reg_has_output_reload = xmalloc (max_regno);
3764 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3765 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
3767 set_initial_elim_offsets ();
3769 for (chain = reload_insn_chain; chain; chain = chain->next)
3771 rtx prev = 0;
3772 rtx insn = chain->insn;
3773 rtx old_next = NEXT_INSN (insn);
3775 /* If we pass a label, copy the offsets from the label information
3776 into the current offsets of each elimination. */
3777 if (GET_CODE (insn) == CODE_LABEL)
3778 set_offsets_for_label (insn);
3780 else if (INSN_P (insn))
3782 rtx oldpat = copy_rtx (PATTERN (insn));
3784 /* If this is a USE and CLOBBER of a MEM, ensure that any
3785 references to eliminable registers have been removed. */
3787 if ((GET_CODE (PATTERN (insn)) == USE
3788 || GET_CODE (PATTERN (insn)) == CLOBBER)
3789 && GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
3790 XEXP (XEXP (PATTERN (insn), 0), 0)
3791 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3792 GET_MODE (XEXP (PATTERN (insn), 0)),
3793 NULL_RTX);
3795 /* If we need to do register elimination processing, do so.
3796 This might delete the insn, in which case we are done. */
3797 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3799 eliminate_regs_in_insn (insn, 1);
3800 if (GET_CODE (insn) == NOTE)
3802 update_eliminable_offsets ();
3803 continue;
3807 /* If need_elim is nonzero but need_reload is zero, one might think
3808 that we could simply set n_reloads to 0. However, find_reloads
3809 could have done some manipulation of the insn (such as swapping
3810 commutative operands), and these manipulations are lost during
3811 the first pass for every insn that needs register elimination.
3812 So the actions of find_reloads must be redone here. */
3814 if (! chain->need_elim && ! chain->need_reload
3815 && ! chain->need_operand_change)
3816 n_reloads = 0;
3817 /* First find the pseudo regs that must be reloaded for this insn.
3818 This info is returned in the tables reload_... (see reload.h).
3819 Also modify the body of INSN by substituting RELOAD
3820 rtx's for those pseudo regs. */
3821 else
3823 memset (reg_has_output_reload, 0, max_regno);
3824 CLEAR_HARD_REG_SET (reg_is_output_reload);
3826 find_reloads (insn, 1, spill_indirect_levels, live_known,
3827 spill_reg_order);
3830 if (n_reloads > 0)
3832 rtx next = NEXT_INSN (insn);
3833 rtx p;
3835 prev = PREV_INSN (insn);
3837 /* Now compute which reload regs to reload them into. Perhaps
3838 reusing reload regs from previous insns, or else output
3839 load insns to reload them. Maybe output store insns too.
3840 Record the choices of reload reg in reload_reg_rtx. */
3841 choose_reload_regs (chain);
3843 /* Merge any reloads that we didn't combine for fear of
3844 increasing the number of spill registers needed but now
3845 discover can be safely merged. */
3846 if (SMALL_REGISTER_CLASSES)
3847 merge_assigned_reloads (insn);
3849 /* Generate the insns to reload operands into or out of
3850 their reload regs. */
3851 emit_reload_insns (chain);
3853 /* Substitute the chosen reload regs from reload_reg_rtx
3854 into the insn's body (or perhaps into the bodies of other
3855 load and store insn that we just made for reloading
3856 and that we moved the structure into). */
3857 subst_reloads (insn);
3859 /* If this was an ASM, make sure that all the reload insns
3860 we have generated are valid. If not, give an error
3861 and delete them. */
3863 if (asm_noperands (PATTERN (insn)) >= 0)
3864 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
3865 if (p != insn && INSN_P (p)
3866 && GET_CODE (PATTERN (p)) != USE
3867 && (recog_memoized (p) < 0
3868 || (extract_insn (p), ! constrain_operands (1))))
3870 error_for_asm (insn,
3871 "`asm' operand requires impossible reload");
3872 delete_insn (p);
3876 if (num_eliminable && chain->need_elim)
3877 update_eliminable_offsets ();
3879 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3880 is no longer validly lying around to save a future reload.
3881 Note that this does not detect pseudos that were reloaded
3882 for this insn in order to be stored in
3883 (obeying register constraints). That is correct; such reload
3884 registers ARE still valid. */
3885 note_stores (oldpat, forget_old_reloads_1, NULL);
3887 /* There may have been CLOBBER insns placed after INSN. So scan
3888 between INSN and NEXT and use them to forget old reloads. */
3889 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
3890 if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
3891 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
3893 #ifdef AUTO_INC_DEC
3894 /* Likewise for regs altered by auto-increment in this insn.
3895 REG_INC notes have been changed by reloading:
3896 find_reloads_address_1 records substitutions for them,
3897 which have been performed by subst_reloads above. */
3898 for (i = n_reloads - 1; i >= 0; i--)
3900 rtx in_reg = rld[i].in_reg;
3901 if (in_reg)
3903 enum rtx_code code = GET_CODE (in_reg);
3904 /* PRE_INC / PRE_DEC will have the reload register ending up
3905 with the same value as the stack slot, but that doesn't
3906 hold true for POST_INC / POST_DEC. Either we have to
3907 convert the memory access to a true POST_INC / POST_DEC,
3908 or we can't use the reload register for inheritance. */
3909 if ((code == POST_INC || code == POST_DEC)
3910 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3911 REGNO (rld[i].reg_rtx))
3912 /* Make sure it is the inc/dec pseudo, and not
3913 some other (e.g. output operand) pseudo. */
3914 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3915 == REGNO (XEXP (in_reg, 0))))
3918 rtx reload_reg = rld[i].reg_rtx;
3919 enum machine_mode mode = GET_MODE (reload_reg);
3920 int n = 0;
3921 rtx p;
3923 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
3925 /* We really want to ignore REG_INC notes here, so
3926 use PATTERN (p) as argument to reg_set_p . */
3927 if (reg_set_p (reload_reg, PATTERN (p)))
3928 break;
3929 n = count_occurrences (PATTERN (p), reload_reg, 0);
3930 if (! n)
3931 continue;
3932 if (n == 1)
3934 n = validate_replace_rtx (reload_reg,
3935 gen_rtx (code, mode,
3936 reload_reg),
3939 /* We must also verify that the constraints
3940 are met after the replacement. */
3941 extract_insn (p);
3942 if (n)
3943 n = constrain_operands (1);
3944 else
3945 break;
3947 /* If the constraints were not met, then
3948 undo the replacement. */
3949 if (!n)
3951 validate_replace_rtx (gen_rtx (code, mode,
3952 reload_reg),
3953 reload_reg, p);
3954 break;
3958 break;
3960 if (n == 1)
3962 REG_NOTES (p)
3963 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
3964 REG_NOTES (p));
3965 /* Mark this as having an output reload so that the
3966 REG_INC processing code below won't invalidate
3967 the reload for inheritance. */
3968 SET_HARD_REG_BIT (reg_is_output_reload,
3969 REGNO (reload_reg));
3970 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
3972 else
3973 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
3974 NULL);
3976 else if ((code == PRE_INC || code == PRE_DEC)
3977 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3978 REGNO (rld[i].reg_rtx))
3979 /* Make sure it is the inc/dec pseudo, and not
3980 some other (e.g. output operand) pseudo. */
3981 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3982 == REGNO (XEXP (in_reg, 0))))
3984 SET_HARD_REG_BIT (reg_is_output_reload,
3985 REGNO (rld[i].reg_rtx));
3986 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
3990 /* If a pseudo that got a hard register is auto-incremented,
3991 we must purge records of copying it into pseudos without
3992 hard registers. */
3993 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
3994 if (REG_NOTE_KIND (x) == REG_INC)
3996 /* See if this pseudo reg was reloaded in this insn.
3997 If so, its last-reload info is still valid
3998 because it is based on this insn's reload. */
3999 for (i = 0; i < n_reloads; i++)
4000 if (rld[i].out == XEXP (x, 0))
4001 break;
4003 if (i == n_reloads)
4004 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4006 #endif
4008 /* A reload reg's contents are unknown after a label. */
4009 if (GET_CODE (insn) == CODE_LABEL)
4010 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4012 /* Don't assume a reload reg is still good after a call insn
4013 if it is a call-used reg, or if it contains a value that will
4014 be partially clobbered by the call. */
4015 else if (GET_CODE (insn) == CALL_INSN)
4017 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4018 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4022 /* Clean up. */
4023 free (reg_last_reload_reg);
4024 free (reg_has_output_reload);
4027 /* Discard all record of any value reloaded from X,
4028 or reloaded in X from someplace else;
4029 unless X is an output reload reg of the current insn.
4031 X may be a hard reg (the reload reg)
4032 or it may be a pseudo reg that was reloaded from. */
4034 static void
4035 forget_old_reloads_1 (rtx x, rtx ignored ATTRIBUTE_UNUSED,
4036 void *data ATTRIBUTE_UNUSED)
4038 unsigned int regno;
4039 unsigned int nr;
4041 /* note_stores does give us subregs of hard regs,
4042 subreg_regno_offset will abort if it is not a hard reg. */
4043 while (GET_CODE (x) == SUBREG)
4045 /* We ignore the subreg offset when calculating the regno,
4046 because we are using the entire underlying hard register
4047 below. */
4048 x = SUBREG_REG (x);
4051 if (GET_CODE (x) != REG)
4052 return;
4054 regno = REGNO (x);
4056 if (regno >= FIRST_PSEUDO_REGISTER)
4057 nr = 1;
4058 else
4060 unsigned int i;
4062 nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
4063 /* Storing into a spilled-reg invalidates its contents.
4064 This can happen if a block-local pseudo is allocated to that reg
4065 and it wasn't spilled because this block's total need is 0.
4066 Then some insn might have an optional reload and use this reg. */
4067 for (i = 0; i < nr; i++)
4068 /* But don't do this if the reg actually serves as an output
4069 reload reg in the current instruction. */
4070 if (n_reloads == 0
4071 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4073 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4074 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, regno + i);
4075 spill_reg_store[regno + i] = 0;
4079 /* Since value of X has changed,
4080 forget any value previously copied from it. */
4082 while (nr-- > 0)
4083 /* But don't forget a copy if this is the output reload
4084 that establishes the copy's validity. */
4085 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4086 reg_last_reload_reg[regno + nr] = 0;
4089 /* The following HARD_REG_SETs indicate when each hard register is
4090 used for a reload of various parts of the current insn. */
4092 /* If reg is unavailable for all reloads. */
4093 static HARD_REG_SET reload_reg_unavailable;
4094 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4095 static HARD_REG_SET reload_reg_used;
4096 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4097 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4098 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4099 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4100 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4101 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4102 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4103 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4104 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4105 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4106 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4107 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4108 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4109 static HARD_REG_SET reload_reg_used_in_op_addr;
4110 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4111 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4112 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4113 static HARD_REG_SET reload_reg_used_in_insn;
4114 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4115 static HARD_REG_SET reload_reg_used_in_other_addr;
4117 /* If reg is in use as a reload reg for any sort of reload. */
4118 static HARD_REG_SET reload_reg_used_at_all;
4120 /* If reg is use as an inherited reload. We just mark the first register
4121 in the group. */
4122 static HARD_REG_SET reload_reg_used_for_inherit;
4124 /* Records which hard regs are used in any way, either as explicit use or
4125 by being allocated to a pseudo during any point of the current insn. */
4126 static HARD_REG_SET reg_used_in_insn;
4128 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4129 TYPE. MODE is used to indicate how many consecutive regs are
4130 actually used. */
4132 static void
4133 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4134 enum machine_mode mode)
4136 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4137 unsigned int i;
4139 for (i = regno; i < nregs + regno; i++)
4141 switch (type)
4143 case RELOAD_OTHER:
4144 SET_HARD_REG_BIT (reload_reg_used, i);
4145 break;
4147 case RELOAD_FOR_INPUT_ADDRESS:
4148 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4149 break;
4151 case RELOAD_FOR_INPADDR_ADDRESS:
4152 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4153 break;
4155 case RELOAD_FOR_OUTPUT_ADDRESS:
4156 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4157 break;
4159 case RELOAD_FOR_OUTADDR_ADDRESS:
4160 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4161 break;
4163 case RELOAD_FOR_OPERAND_ADDRESS:
4164 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4165 break;
4167 case RELOAD_FOR_OPADDR_ADDR:
4168 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4169 break;
4171 case RELOAD_FOR_OTHER_ADDRESS:
4172 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4173 break;
4175 case RELOAD_FOR_INPUT:
4176 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4177 break;
4179 case RELOAD_FOR_OUTPUT:
4180 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4181 break;
4183 case RELOAD_FOR_INSN:
4184 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4185 break;
4188 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4192 /* Similarly, but show REGNO is no longer in use for a reload. */
4194 static void
4195 clear_reload_reg_in_use (unsigned int regno, int opnum,
4196 enum reload_type type, enum machine_mode mode)
4198 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4199 unsigned int start_regno, end_regno, r;
4200 int i;
4201 /* A complication is that for some reload types, inheritance might
4202 allow multiple reloads of the same types to share a reload register.
4203 We set check_opnum if we have to check only reloads with the same
4204 operand number, and check_any if we have to check all reloads. */
4205 int check_opnum = 0;
4206 int check_any = 0;
4207 HARD_REG_SET *used_in_set;
4209 switch (type)
4211 case RELOAD_OTHER:
4212 used_in_set = &reload_reg_used;
4213 break;
4215 case RELOAD_FOR_INPUT_ADDRESS:
4216 used_in_set = &reload_reg_used_in_input_addr[opnum];
4217 break;
4219 case RELOAD_FOR_INPADDR_ADDRESS:
4220 check_opnum = 1;
4221 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4222 break;
4224 case RELOAD_FOR_OUTPUT_ADDRESS:
4225 used_in_set = &reload_reg_used_in_output_addr[opnum];
4226 break;
4228 case RELOAD_FOR_OUTADDR_ADDRESS:
4229 check_opnum = 1;
4230 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4231 break;
4233 case RELOAD_FOR_OPERAND_ADDRESS:
4234 used_in_set = &reload_reg_used_in_op_addr;
4235 break;
4237 case RELOAD_FOR_OPADDR_ADDR:
4238 check_any = 1;
4239 used_in_set = &reload_reg_used_in_op_addr_reload;
4240 break;
4242 case RELOAD_FOR_OTHER_ADDRESS:
4243 used_in_set = &reload_reg_used_in_other_addr;
4244 check_any = 1;
4245 break;
4247 case RELOAD_FOR_INPUT:
4248 used_in_set = &reload_reg_used_in_input[opnum];
4249 break;
4251 case RELOAD_FOR_OUTPUT:
4252 used_in_set = &reload_reg_used_in_output[opnum];
4253 break;
4255 case RELOAD_FOR_INSN:
4256 used_in_set = &reload_reg_used_in_insn;
4257 break;
4258 default:
4259 abort ();
4261 /* We resolve conflicts with remaining reloads of the same type by
4262 excluding the intervals of reload registers by them from the
4263 interval of freed reload registers. Since we only keep track of
4264 one set of interval bounds, we might have to exclude somewhat
4265 more than what would be necessary if we used a HARD_REG_SET here.
4266 But this should only happen very infrequently, so there should
4267 be no reason to worry about it. */
4269 start_regno = regno;
4270 end_regno = regno + nregs;
4271 if (check_opnum || check_any)
4273 for (i = n_reloads - 1; i >= 0; i--)
4275 if (rld[i].when_needed == type
4276 && (check_any || rld[i].opnum == opnum)
4277 && rld[i].reg_rtx)
4279 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4280 unsigned int conflict_end
4281 = (conflict_start
4282 + HARD_REGNO_NREGS (conflict_start, rld[i].mode));
4284 /* If there is an overlap with the first to-be-freed register,
4285 adjust the interval start. */
4286 if (conflict_start <= start_regno && conflict_end > start_regno)
4287 start_regno = conflict_end;
4288 /* Otherwise, if there is a conflict with one of the other
4289 to-be-freed registers, adjust the interval end. */
4290 if (conflict_start > start_regno && conflict_start < end_regno)
4291 end_regno = conflict_start;
4296 for (r = start_regno; r < end_regno; r++)
4297 CLEAR_HARD_REG_BIT (*used_in_set, r);
4300 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4301 specified by OPNUM and TYPE. */
4303 static int
4304 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
4306 int i;
4308 /* In use for a RELOAD_OTHER means it's not available for anything. */
4309 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4310 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4311 return 0;
4313 switch (type)
4315 case RELOAD_OTHER:
4316 /* In use for anything means we can't use it for RELOAD_OTHER. */
4317 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4318 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4319 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4320 return 0;
4322 for (i = 0; i < reload_n_operands; i++)
4323 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4324 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4325 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4326 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4327 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4328 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4329 return 0;
4331 return 1;
4333 case RELOAD_FOR_INPUT:
4334 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4335 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4336 return 0;
4338 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4339 return 0;
4341 /* If it is used for some other input, can't use it. */
4342 for (i = 0; i < reload_n_operands; i++)
4343 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4344 return 0;
4346 /* If it is used in a later operand's address, can't use it. */
4347 for (i = opnum + 1; i < reload_n_operands; i++)
4348 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4349 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4350 return 0;
4352 return 1;
4354 case RELOAD_FOR_INPUT_ADDRESS:
4355 /* Can't use a register if it is used for an input address for this
4356 operand or used as an input in an earlier one. */
4357 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4358 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4359 return 0;
4361 for (i = 0; i < opnum; i++)
4362 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4363 return 0;
4365 return 1;
4367 case RELOAD_FOR_INPADDR_ADDRESS:
4368 /* Can't use a register if it is used for an input address
4369 for this operand or used as an input in an earlier
4370 one. */
4371 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4372 return 0;
4374 for (i = 0; i < opnum; i++)
4375 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4376 return 0;
4378 return 1;
4380 case RELOAD_FOR_OUTPUT_ADDRESS:
4381 /* Can't use a register if it is used for an output address for this
4382 operand or used as an output in this or a later operand. Note
4383 that multiple output operands are emitted in reverse order, so
4384 the conflicting ones are those with lower indices. */
4385 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4386 return 0;
4388 for (i = 0; i <= opnum; i++)
4389 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4390 return 0;
4392 return 1;
4394 case RELOAD_FOR_OUTADDR_ADDRESS:
4395 /* Can't use a register if it is used for an output address
4396 for this operand or used as an output in this or a
4397 later operand. Note that multiple output operands are
4398 emitted in reverse order, so the conflicting ones are
4399 those with lower indices. */
4400 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4401 return 0;
4403 for (i = 0; i <= opnum; i++)
4404 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4405 return 0;
4407 return 1;
4409 case RELOAD_FOR_OPERAND_ADDRESS:
4410 for (i = 0; i < reload_n_operands; i++)
4411 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4412 return 0;
4414 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4415 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4417 case RELOAD_FOR_OPADDR_ADDR:
4418 for (i = 0; i < reload_n_operands; i++)
4419 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4420 return 0;
4422 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4424 case RELOAD_FOR_OUTPUT:
4425 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4426 outputs, or an operand address for this or an earlier output.
4427 Note that multiple output operands are emitted in reverse order,
4428 so the conflicting ones are those with higher indices. */
4429 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4430 return 0;
4432 for (i = 0; i < reload_n_operands; i++)
4433 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4434 return 0;
4436 for (i = opnum; i < reload_n_operands; i++)
4437 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4438 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4439 return 0;
4441 return 1;
4443 case RELOAD_FOR_INSN:
4444 for (i = 0; i < reload_n_operands; i++)
4445 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4446 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4447 return 0;
4449 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4450 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4452 case RELOAD_FOR_OTHER_ADDRESS:
4453 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4455 abort ();
4458 /* Return 1 if the value in reload reg REGNO, as used by a reload
4459 needed for the part of the insn specified by OPNUM and TYPE,
4460 is still available in REGNO at the end of the insn.
4462 We can assume that the reload reg was already tested for availability
4463 at the time it is needed, and we should not check this again,
4464 in case the reg has already been marked in use. */
4466 static int
4467 reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
4469 int i;
4471 switch (type)
4473 case RELOAD_OTHER:
4474 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4475 its value must reach the end. */
4476 return 1;
4478 /* If this use is for part of the insn,
4479 its value reaches if no subsequent part uses the same register.
4480 Just like the above function, don't try to do this with lots
4481 of fallthroughs. */
4483 case RELOAD_FOR_OTHER_ADDRESS:
4484 /* Here we check for everything else, since these don't conflict
4485 with anything else and everything comes later. */
4487 for (i = 0; i < reload_n_operands; i++)
4488 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4489 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4490 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4491 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4492 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4493 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4494 return 0;
4496 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4497 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4498 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4500 case RELOAD_FOR_INPUT_ADDRESS:
4501 case RELOAD_FOR_INPADDR_ADDRESS:
4502 /* Similar, except that we check only for this and subsequent inputs
4503 and the address of only subsequent inputs and we do not need
4504 to check for RELOAD_OTHER objects since they are known not to
4505 conflict. */
4507 for (i = opnum; i < reload_n_operands; i++)
4508 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4509 return 0;
4511 for (i = opnum + 1; i < reload_n_operands; i++)
4512 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4513 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4514 return 0;
4516 for (i = 0; i < reload_n_operands; i++)
4517 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4518 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4519 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4520 return 0;
4522 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4523 return 0;
4525 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4526 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4527 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4529 case RELOAD_FOR_INPUT:
4530 /* Similar to input address, except we start at the next operand for
4531 both input and input address and we do not check for
4532 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4533 would conflict. */
4535 for (i = opnum + 1; i < reload_n_operands; i++)
4536 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4537 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4538 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4539 return 0;
4541 /* ... fall through ... */
4543 case RELOAD_FOR_OPERAND_ADDRESS:
4544 /* Check outputs and their addresses. */
4546 for (i = 0; i < reload_n_operands; i++)
4547 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4548 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4549 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4550 return 0;
4552 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4554 case RELOAD_FOR_OPADDR_ADDR:
4555 for (i = 0; i < reload_n_operands; i++)
4556 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4557 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4558 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4559 return 0;
4561 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4562 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4563 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4565 case RELOAD_FOR_INSN:
4566 /* These conflict with other outputs with RELOAD_OTHER. So
4567 we need only check for output addresses. */
4569 opnum = reload_n_operands;
4571 /* ... fall through ... */
4573 case RELOAD_FOR_OUTPUT:
4574 case RELOAD_FOR_OUTPUT_ADDRESS:
4575 case RELOAD_FOR_OUTADDR_ADDRESS:
4576 /* We already know these can't conflict with a later output. So the
4577 only thing to check are later output addresses.
4578 Note that multiple output operands are emitted in reverse order,
4579 so the conflicting ones are those with lower indices. */
4580 for (i = 0; i < opnum; i++)
4581 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4582 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4583 return 0;
4585 return 1;
4588 abort ();
4591 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4592 Return 0 otherwise.
4594 This function uses the same algorithm as reload_reg_free_p above. */
4597 reloads_conflict (int r1, int r2)
4599 enum reload_type r1_type = rld[r1].when_needed;
4600 enum reload_type r2_type = rld[r2].when_needed;
4601 int r1_opnum = rld[r1].opnum;
4602 int r2_opnum = rld[r2].opnum;
4604 /* RELOAD_OTHER conflicts with everything. */
4605 if (r2_type == RELOAD_OTHER)
4606 return 1;
4608 /* Otherwise, check conflicts differently for each type. */
4610 switch (r1_type)
4612 case RELOAD_FOR_INPUT:
4613 return (r2_type == RELOAD_FOR_INSN
4614 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4615 || r2_type == RELOAD_FOR_OPADDR_ADDR
4616 || r2_type == RELOAD_FOR_INPUT
4617 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4618 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4619 && r2_opnum > r1_opnum));
4621 case RELOAD_FOR_INPUT_ADDRESS:
4622 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4623 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4625 case RELOAD_FOR_INPADDR_ADDRESS:
4626 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4627 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4629 case RELOAD_FOR_OUTPUT_ADDRESS:
4630 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4631 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4633 case RELOAD_FOR_OUTADDR_ADDRESS:
4634 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4635 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4637 case RELOAD_FOR_OPERAND_ADDRESS:
4638 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4639 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4641 case RELOAD_FOR_OPADDR_ADDR:
4642 return (r2_type == RELOAD_FOR_INPUT
4643 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4645 case RELOAD_FOR_OUTPUT:
4646 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4647 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4648 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4649 && r2_opnum >= r1_opnum));
4651 case RELOAD_FOR_INSN:
4652 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4653 || r2_type == RELOAD_FOR_INSN
4654 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4656 case RELOAD_FOR_OTHER_ADDRESS:
4657 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4659 case RELOAD_OTHER:
4660 return 1;
4662 default:
4663 abort ();
4667 /* Indexed by reload number, 1 if incoming value
4668 inherited from previous insns. */
4669 char reload_inherited[MAX_RELOADS];
4671 /* For an inherited reload, this is the insn the reload was inherited from,
4672 if we know it. Otherwise, this is 0. */
4673 rtx reload_inheritance_insn[MAX_RELOADS];
4675 /* If nonzero, this is a place to get the value of the reload,
4676 rather than using reload_in. */
4677 rtx reload_override_in[MAX_RELOADS];
4679 /* For each reload, the hard register number of the register used,
4680 or -1 if we did not need a register for this reload. */
4681 int reload_spill_index[MAX_RELOADS];
4683 /* Subroutine of free_for_value_p, used to check a single register.
4684 START_REGNO is the starting regno of the full reload register
4685 (possibly comprising multiple hard registers) that we are considering. */
4687 static int
4688 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
4689 enum reload_type type, rtx value, rtx out,
4690 int reloadnum, int ignore_address_reloads)
4692 int time1;
4693 /* Set if we see an input reload that must not share its reload register
4694 with any new earlyclobber, but might otherwise share the reload
4695 register with an output or input-output reload. */
4696 int check_earlyclobber = 0;
4697 int i;
4698 int copy = 0;
4700 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4701 return 0;
4703 if (out == const0_rtx)
4705 copy = 1;
4706 out = NULL_RTX;
4709 /* We use some pseudo 'time' value to check if the lifetimes of the
4710 new register use would overlap with the one of a previous reload
4711 that is not read-only or uses a different value.
4712 The 'time' used doesn't have to be linear in any shape or form, just
4713 monotonic.
4714 Some reload types use different 'buckets' for each operand.
4715 So there are MAX_RECOG_OPERANDS different time values for each
4716 such reload type.
4717 We compute TIME1 as the time when the register for the prospective
4718 new reload ceases to be live, and TIME2 for each existing
4719 reload as the time when that the reload register of that reload
4720 becomes live.
4721 Where there is little to be gained by exact lifetime calculations,
4722 we just make conservative assumptions, i.e. a longer lifetime;
4723 this is done in the 'default:' cases. */
4724 switch (type)
4726 case RELOAD_FOR_OTHER_ADDRESS:
4727 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4728 time1 = copy ? 0 : 1;
4729 break;
4730 case RELOAD_OTHER:
4731 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4732 break;
4733 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4734 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4735 respectively, to the time values for these, we get distinct time
4736 values. To get distinct time values for each operand, we have to
4737 multiply opnum by at least three. We round that up to four because
4738 multiply by four is often cheaper. */
4739 case RELOAD_FOR_INPADDR_ADDRESS:
4740 time1 = opnum * 4 + 2;
4741 break;
4742 case RELOAD_FOR_INPUT_ADDRESS:
4743 time1 = opnum * 4 + 3;
4744 break;
4745 case RELOAD_FOR_INPUT:
4746 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4747 executes (inclusive). */
4748 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4749 break;
4750 case RELOAD_FOR_OPADDR_ADDR:
4751 /* opnum * 4 + 4
4752 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4753 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4754 break;
4755 case RELOAD_FOR_OPERAND_ADDRESS:
4756 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4757 is executed. */
4758 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4759 break;
4760 case RELOAD_FOR_OUTADDR_ADDRESS:
4761 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4762 break;
4763 case RELOAD_FOR_OUTPUT_ADDRESS:
4764 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4765 break;
4766 default:
4767 time1 = MAX_RECOG_OPERANDS * 5 + 5;
4770 for (i = 0; i < n_reloads; i++)
4772 rtx reg = rld[i].reg_rtx;
4773 if (reg && GET_CODE (reg) == REG
4774 && ((unsigned) regno - true_regnum (reg)
4775 <= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned) 1)
4776 && i != reloadnum)
4778 rtx other_input = rld[i].in;
4780 /* If the other reload loads the same input value, that
4781 will not cause a conflict only if it's loading it into
4782 the same register. */
4783 if (true_regnum (reg) != start_regno)
4784 other_input = NULL_RTX;
4785 if (! other_input || ! rtx_equal_p (other_input, value)
4786 || rld[i].out || out)
4788 int time2;
4789 switch (rld[i].when_needed)
4791 case RELOAD_FOR_OTHER_ADDRESS:
4792 time2 = 0;
4793 break;
4794 case RELOAD_FOR_INPADDR_ADDRESS:
4795 /* find_reloads makes sure that a
4796 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4797 by at most one - the first -
4798 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4799 address reload is inherited, the address address reload
4800 goes away, so we can ignore this conflict. */
4801 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4802 && ignore_address_reloads
4803 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4804 Then the address address is still needed to store
4805 back the new address. */
4806 && ! rld[reloadnum].out)
4807 continue;
4808 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4809 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4810 reloads go away. */
4811 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4812 && ignore_address_reloads
4813 /* Unless we are reloading an auto_inc expression. */
4814 && ! rld[reloadnum].out)
4815 continue;
4816 time2 = rld[i].opnum * 4 + 2;
4817 break;
4818 case RELOAD_FOR_INPUT_ADDRESS:
4819 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4820 && ignore_address_reloads
4821 && ! rld[reloadnum].out)
4822 continue;
4823 time2 = rld[i].opnum * 4 + 3;
4824 break;
4825 case RELOAD_FOR_INPUT:
4826 time2 = rld[i].opnum * 4 + 4;
4827 check_earlyclobber = 1;
4828 break;
4829 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
4830 == MAX_RECOG_OPERAND * 4 */
4831 case RELOAD_FOR_OPADDR_ADDR:
4832 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4833 && ignore_address_reloads
4834 && ! rld[reloadnum].out)
4835 continue;
4836 time2 = MAX_RECOG_OPERANDS * 4 + 1;
4837 break;
4838 case RELOAD_FOR_OPERAND_ADDRESS:
4839 time2 = MAX_RECOG_OPERANDS * 4 + 2;
4840 check_earlyclobber = 1;
4841 break;
4842 case RELOAD_FOR_INSN:
4843 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4844 break;
4845 case RELOAD_FOR_OUTPUT:
4846 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4847 instruction is executed. */
4848 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4849 break;
4850 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4851 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4852 value. */
4853 case RELOAD_FOR_OUTADDR_ADDRESS:
4854 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4855 && ignore_address_reloads
4856 && ! rld[reloadnum].out)
4857 continue;
4858 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
4859 break;
4860 case RELOAD_FOR_OUTPUT_ADDRESS:
4861 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
4862 break;
4863 case RELOAD_OTHER:
4864 /* If there is no conflict in the input part, handle this
4865 like an output reload. */
4866 if (! rld[i].in || rtx_equal_p (other_input, value))
4868 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4869 /* Earlyclobbered outputs must conflict with inputs. */
4870 if (earlyclobber_operand_p (rld[i].out))
4871 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4873 break;
4875 time2 = 1;
4876 /* RELOAD_OTHER might be live beyond instruction execution,
4877 but this is not obvious when we set time2 = 1. So check
4878 here if there might be a problem with the new reload
4879 clobbering the register used by the RELOAD_OTHER. */
4880 if (out)
4881 return 0;
4882 break;
4883 default:
4884 return 0;
4886 if ((time1 >= time2
4887 && (! rld[i].in || rld[i].out
4888 || ! rtx_equal_p (other_input, value)))
4889 || (out && rld[reloadnum].out_reg
4890 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
4891 return 0;
4896 /* Earlyclobbered outputs must conflict with inputs. */
4897 if (check_earlyclobber && out && earlyclobber_operand_p (out))
4898 return 0;
4900 return 1;
4903 /* Return 1 if the value in reload reg REGNO, as used by a reload
4904 needed for the part of the insn specified by OPNUM and TYPE,
4905 may be used to load VALUE into it.
4907 MODE is the mode in which the register is used, this is needed to
4908 determine how many hard regs to test.
4910 Other read-only reloads with the same value do not conflict
4911 unless OUT is nonzero and these other reloads have to live while
4912 output reloads live.
4913 If OUT is CONST0_RTX, this is a special case: it means that the
4914 test should not be for using register REGNO as reload register, but
4915 for copying from register REGNO into the reload register.
4917 RELOADNUM is the number of the reload we want to load this value for;
4918 a reload does not conflict with itself.
4920 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
4921 reloads that load an address for the very reload we are considering.
4923 The caller has to make sure that there is no conflict with the return
4924 register. */
4926 static int
4927 free_for_value_p (int regno, enum machine_mode mode, int opnum,
4928 enum reload_type type, rtx value, rtx out, int reloadnum,
4929 int ignore_address_reloads)
4931 int nregs = HARD_REGNO_NREGS (regno, mode);
4932 while (nregs-- > 0)
4933 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
4934 value, out, reloadnum,
4935 ignore_address_reloads))
4936 return 0;
4937 return 1;
4940 /* Determine whether the reload reg X overlaps any rtx'es used for
4941 overriding inheritance. Return nonzero if so. */
4943 static int
4944 conflicts_with_override (rtx x)
4946 int i;
4947 for (i = 0; i < n_reloads; i++)
4948 if (reload_override_in[i]
4949 && reg_overlap_mentioned_p (x, reload_override_in[i]))
4950 return 1;
4951 return 0;
4954 /* Give an error message saying we failed to find a reload for INSN,
4955 and clear out reload R. */
4956 static void
4957 failed_reload (rtx insn, int r)
4959 if (asm_noperands (PATTERN (insn)) < 0)
4960 /* It's the compiler's fault. */
4961 fatal_insn ("could not find a spill register", insn);
4963 /* It's the user's fault; the operand's mode and constraint
4964 don't match. Disable this reload so we don't crash in final. */
4965 error_for_asm (insn,
4966 "`asm' operand constraint incompatible with operand size");
4967 rld[r].in = 0;
4968 rld[r].out = 0;
4969 rld[r].reg_rtx = 0;
4970 rld[r].optional = 1;
4971 rld[r].secondary_p = 1;
4974 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
4975 for reload R. If it's valid, get an rtx for it. Return nonzero if
4976 successful. */
4977 static int
4978 set_reload_reg (int i, int r)
4980 int regno;
4981 rtx reg = spill_reg_rtx[i];
4983 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
4984 spill_reg_rtx[i] = reg
4985 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
4987 regno = true_regnum (reg);
4989 /* Detect when the reload reg can't hold the reload mode.
4990 This used to be one `if', but Sequent compiler can't handle that. */
4991 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
4993 enum machine_mode test_mode = VOIDmode;
4994 if (rld[r].in)
4995 test_mode = GET_MODE (rld[r].in);
4996 /* If rld[r].in has VOIDmode, it means we will load it
4997 in whatever mode the reload reg has: to wit, rld[r].mode.
4998 We have already tested that for validity. */
4999 /* Aside from that, we need to test that the expressions
5000 to reload from or into have modes which are valid for this
5001 reload register. Otherwise the reload insns would be invalid. */
5002 if (! (rld[r].in != 0 && test_mode != VOIDmode
5003 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5004 if (! (rld[r].out != 0
5005 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5007 /* The reg is OK. */
5008 last_spill_reg = i;
5010 /* Mark as in use for this insn the reload regs we use
5011 for this. */
5012 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5013 rld[r].when_needed, rld[r].mode);
5015 rld[r].reg_rtx = reg;
5016 reload_spill_index[r] = spill_regs[i];
5017 return 1;
5020 return 0;
5023 /* Find a spill register to use as a reload register for reload R.
5024 LAST_RELOAD is nonzero if this is the last reload for the insn being
5025 processed.
5027 Set rld[R].reg_rtx to the register allocated.
5029 We return 1 if successful, or 0 if we couldn't find a spill reg and
5030 we didn't change anything. */
5032 static int
5033 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
5034 int last_reload)
5036 int i, pass, count;
5038 /* If we put this reload ahead, thinking it is a group,
5039 then insist on finding a group. Otherwise we can grab a
5040 reg that some other reload needs.
5041 (That can happen when we have a 68000 DATA_OR_FP_REG
5042 which is a group of data regs or one fp reg.)
5043 We need not be so restrictive if there are no more reloads
5044 for this insn.
5046 ??? Really it would be nicer to have smarter handling
5047 for that kind of reg class, where a problem like this is normal.
5048 Perhaps those classes should be avoided for reloading
5049 by use of more alternatives. */
5051 int force_group = rld[r].nregs > 1 && ! last_reload;
5053 /* If we want a single register and haven't yet found one,
5054 take any reg in the right class and not in use.
5055 If we want a consecutive group, here is where we look for it.
5057 We use two passes so we can first look for reload regs to
5058 reuse, which are already in use for other reloads in this insn,
5059 and only then use additional registers.
5060 I think that maximizing reuse is needed to make sure we don't
5061 run out of reload regs. Suppose we have three reloads, and
5062 reloads A and B can share regs. These need two regs.
5063 Suppose A and B are given different regs.
5064 That leaves none for C. */
5065 for (pass = 0; pass < 2; pass++)
5067 /* I is the index in spill_regs.
5068 We advance it round-robin between insns to use all spill regs
5069 equally, so that inherited reloads have a chance
5070 of leapfrogging each other. */
5072 i = last_spill_reg;
5074 for (count = 0; count < n_spills; count++)
5076 int class = (int) rld[r].class;
5077 int regnum;
5079 i++;
5080 if (i >= n_spills)
5081 i -= n_spills;
5082 regnum = spill_regs[i];
5084 if ((reload_reg_free_p (regnum, rld[r].opnum,
5085 rld[r].when_needed)
5086 || (rld[r].in
5087 /* We check reload_reg_used to make sure we
5088 don't clobber the return register. */
5089 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5090 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5091 rld[r].when_needed, rld[r].in,
5092 rld[r].out, r, 1)))
5093 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5094 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5095 /* Look first for regs to share, then for unshared. But
5096 don't share regs used for inherited reloads; they are
5097 the ones we want to preserve. */
5098 && (pass
5099 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5100 regnum)
5101 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5102 regnum))))
5104 int nr = HARD_REGNO_NREGS (regnum, rld[r].mode);
5105 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5106 (on 68000) got us two FP regs. If NR is 1,
5107 we would reject both of them. */
5108 if (force_group)
5109 nr = rld[r].nregs;
5110 /* If we need only one reg, we have already won. */
5111 if (nr == 1)
5113 /* But reject a single reg if we demand a group. */
5114 if (force_group)
5115 continue;
5116 break;
5118 /* Otherwise check that as many consecutive regs as we need
5119 are available here. */
5120 while (nr > 1)
5122 int regno = regnum + nr - 1;
5123 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5124 && spill_reg_order[regno] >= 0
5125 && reload_reg_free_p (regno, rld[r].opnum,
5126 rld[r].when_needed)))
5127 break;
5128 nr--;
5130 if (nr == 1)
5131 break;
5135 /* If we found something on pass 1, omit pass 2. */
5136 if (count < n_spills)
5137 break;
5140 /* We should have found a spill register by now. */
5141 if (count >= n_spills)
5142 return 0;
5144 /* I is the index in SPILL_REG_RTX of the reload register we are to
5145 allocate. Get an rtx for it and find its register number. */
5147 return set_reload_reg (i, r);
5150 /* Initialize all the tables needed to allocate reload registers.
5151 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5152 is the array we use to restore the reg_rtx field for every reload. */
5154 static void
5155 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
5157 int i;
5159 for (i = 0; i < n_reloads; i++)
5160 rld[i].reg_rtx = save_reload_reg_rtx[i];
5162 memset (reload_inherited, 0, MAX_RELOADS);
5163 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5164 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5166 CLEAR_HARD_REG_SET (reload_reg_used);
5167 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5168 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5169 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5170 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5171 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5173 CLEAR_HARD_REG_SET (reg_used_in_insn);
5175 HARD_REG_SET tmp;
5176 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5177 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5178 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5179 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5180 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5181 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5184 for (i = 0; i < reload_n_operands; i++)
5186 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5187 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5188 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5189 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5190 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5191 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5194 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5196 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5198 for (i = 0; i < n_reloads; i++)
5199 /* If we have already decided to use a certain register,
5200 don't use it in another way. */
5201 if (rld[i].reg_rtx)
5202 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5203 rld[i].when_needed, rld[i].mode);
5206 /* Assign hard reg targets for the pseudo-registers we must reload
5207 into hard regs for this insn.
5208 Also output the instructions to copy them in and out of the hard regs.
5210 For machines with register classes, we are responsible for
5211 finding a reload reg in the proper class. */
5213 static void
5214 choose_reload_regs (struct insn_chain *chain)
5216 rtx insn = chain->insn;
5217 int i, j;
5218 unsigned int max_group_size = 1;
5219 enum reg_class group_class = NO_REGS;
5220 int pass, win, inheritance;
5222 rtx save_reload_reg_rtx[MAX_RELOADS];
5224 /* In order to be certain of getting the registers we need,
5225 we must sort the reloads into order of increasing register class.
5226 Then our grabbing of reload registers will parallel the process
5227 that provided the reload registers.
5229 Also note whether any of the reloads wants a consecutive group of regs.
5230 If so, record the maximum size of the group desired and what
5231 register class contains all the groups needed by this insn. */
5233 for (j = 0; j < n_reloads; j++)
5235 reload_order[j] = j;
5236 reload_spill_index[j] = -1;
5238 if (rld[j].nregs > 1)
5240 max_group_size = MAX (rld[j].nregs, max_group_size);
5241 group_class
5242 = reg_class_superunion[(int) rld[j].class][(int) group_class];
5245 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5248 if (n_reloads > 1)
5249 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5251 /* If -O, try first with inheritance, then turning it off.
5252 If not -O, don't do inheritance.
5253 Using inheritance when not optimizing leads to paradoxes
5254 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5255 because one side of the comparison might be inherited. */
5256 win = 0;
5257 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5259 choose_reload_regs_init (chain, save_reload_reg_rtx);
5261 /* Process the reloads in order of preference just found.
5262 Beyond this point, subregs can be found in reload_reg_rtx.
5264 This used to look for an existing reloaded home for all of the
5265 reloads, and only then perform any new reloads. But that could lose
5266 if the reloads were done out of reg-class order because a later
5267 reload with a looser constraint might have an old home in a register
5268 needed by an earlier reload with a tighter constraint.
5270 To solve this, we make two passes over the reloads, in the order
5271 described above. In the first pass we try to inherit a reload
5272 from a previous insn. If there is a later reload that needs a
5273 class that is a proper subset of the class being processed, we must
5274 also allocate a spill register during the first pass.
5276 Then make a second pass over the reloads to allocate any reloads
5277 that haven't been given registers yet. */
5279 for (j = 0; j < n_reloads; j++)
5281 int r = reload_order[j];
5282 rtx search_equiv = NULL_RTX;
5284 /* Ignore reloads that got marked inoperative. */
5285 if (rld[r].out == 0 && rld[r].in == 0
5286 && ! rld[r].secondary_p)
5287 continue;
5289 /* If find_reloads chose to use reload_in or reload_out as a reload
5290 register, we don't need to chose one. Otherwise, try even if it
5291 found one since we might save an insn if we find the value lying
5292 around.
5293 Try also when reload_in is a pseudo without a hard reg. */
5294 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5295 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5296 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5297 && GET_CODE (rld[r].in) != MEM
5298 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5299 continue;
5301 #if 0 /* No longer needed for correct operation.
5302 It might give better code, or might not; worth an experiment? */
5303 /* If this is an optional reload, we can't inherit from earlier insns
5304 until we are sure that any non-optional reloads have been allocated.
5305 The following code takes advantage of the fact that optional reloads
5306 are at the end of reload_order. */
5307 if (rld[r].optional != 0)
5308 for (i = 0; i < j; i++)
5309 if ((rld[reload_order[i]].out != 0
5310 || rld[reload_order[i]].in != 0
5311 || rld[reload_order[i]].secondary_p)
5312 && ! rld[reload_order[i]].optional
5313 && rld[reload_order[i]].reg_rtx == 0)
5314 allocate_reload_reg (chain, reload_order[i], 0);
5315 #endif
5317 /* First see if this pseudo is already available as reloaded
5318 for a previous insn. We cannot try to inherit for reloads
5319 that are smaller than the maximum number of registers needed
5320 for groups unless the register we would allocate cannot be used
5321 for the groups.
5323 We could check here to see if this is a secondary reload for
5324 an object that is already in a register of the desired class.
5325 This would avoid the need for the secondary reload register.
5326 But this is complex because we can't easily determine what
5327 objects might want to be loaded via this reload. So let a
5328 register be allocated here. In `emit_reload_insns' we suppress
5329 one of the loads in the case described above. */
5331 if (inheritance)
5333 int byte = 0;
5334 int regno = -1;
5335 enum machine_mode mode = VOIDmode;
5337 if (rld[r].in == 0)
5339 else if (GET_CODE (rld[r].in) == REG)
5341 regno = REGNO (rld[r].in);
5342 mode = GET_MODE (rld[r].in);
5344 else if (GET_CODE (rld[r].in_reg) == REG)
5346 regno = REGNO (rld[r].in_reg);
5347 mode = GET_MODE (rld[r].in_reg);
5349 else if (GET_CODE (rld[r].in_reg) == SUBREG
5350 && GET_CODE (SUBREG_REG (rld[r].in_reg)) == REG)
5352 byte = SUBREG_BYTE (rld[r].in_reg);
5353 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5354 if (regno < FIRST_PSEUDO_REGISTER)
5355 regno = subreg_regno (rld[r].in_reg);
5356 mode = GET_MODE (rld[r].in_reg);
5358 #ifdef AUTO_INC_DEC
5359 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5360 || GET_CODE (rld[r].in_reg) == PRE_DEC
5361 || GET_CODE (rld[r].in_reg) == POST_INC
5362 || GET_CODE (rld[r].in_reg) == POST_DEC)
5363 && GET_CODE (XEXP (rld[r].in_reg, 0)) == REG)
5365 regno = REGNO (XEXP (rld[r].in_reg, 0));
5366 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5367 rld[r].out = rld[r].in;
5369 #endif
5370 #if 0
5371 /* This won't work, since REGNO can be a pseudo reg number.
5372 Also, it takes much more hair to keep track of all the things
5373 that can invalidate an inherited reload of part of a pseudoreg. */
5374 else if (GET_CODE (rld[r].in) == SUBREG
5375 && GET_CODE (SUBREG_REG (rld[r].in)) == REG)
5376 regno = subreg_regno (rld[r].in);
5377 #endif
5379 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5381 enum reg_class class = rld[r].class, last_class;
5382 rtx last_reg = reg_last_reload_reg[regno];
5383 enum machine_mode need_mode;
5385 i = REGNO (last_reg);
5386 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5387 last_class = REGNO_REG_CLASS (i);
5389 if (byte == 0)
5390 need_mode = mode;
5391 else
5392 need_mode
5393 = smallest_mode_for_size (GET_MODE_SIZE (mode) + byte,
5394 GET_MODE_CLASS (mode));
5396 if (
5397 #ifdef CANNOT_CHANGE_MODE_CLASS
5398 (!REG_CANNOT_CHANGE_MODE_P (i, GET_MODE (last_reg),
5399 need_mode)
5401 #endif
5402 (GET_MODE_SIZE (GET_MODE (last_reg))
5403 >= GET_MODE_SIZE (need_mode))
5404 #ifdef CANNOT_CHANGE_MODE_CLASS
5406 #endif
5407 && reg_reloaded_contents[i] == regno
5408 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5409 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5410 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5411 /* Even if we can't use this register as a reload
5412 register, we might use it for reload_override_in,
5413 if copying it to the desired class is cheap
5414 enough. */
5415 || ((REGISTER_MOVE_COST (mode, last_class, class)
5416 < MEMORY_MOVE_COST (mode, class, 1))
5417 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5418 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5419 last_reg)
5420 == NO_REGS)
5421 #endif
5422 #ifdef SECONDARY_MEMORY_NEEDED
5423 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5424 mode)
5425 #endif
5428 && (rld[r].nregs == max_group_size
5429 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5431 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5432 rld[r].when_needed, rld[r].in,
5433 const0_rtx, r, 1))
5435 /* If a group is needed, verify that all the subsequent
5436 registers still have their values intact. */
5437 int nr = HARD_REGNO_NREGS (i, rld[r].mode);
5438 int k;
5440 for (k = 1; k < nr; k++)
5441 if (reg_reloaded_contents[i + k] != regno
5442 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5443 break;
5445 if (k == nr)
5447 int i1;
5448 int bad_for_class;
5450 last_reg = (GET_MODE (last_reg) == mode
5451 ? last_reg : gen_rtx_REG (mode, i));
5453 bad_for_class = 0;
5454 for (k = 0; k < nr; k++)
5455 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5456 i+k);
5458 /* We found a register that contains the
5459 value we need. If this register is the
5460 same as an `earlyclobber' operand of the
5461 current insn, just mark it as a place to
5462 reload from since we can't use it as the
5463 reload register itself. */
5465 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5466 if (reg_overlap_mentioned_for_reload_p
5467 (reg_last_reload_reg[regno],
5468 reload_earlyclobbers[i1]))
5469 break;
5471 if (i1 != n_earlyclobbers
5472 || ! (free_for_value_p (i, rld[r].mode,
5473 rld[r].opnum,
5474 rld[r].when_needed, rld[r].in,
5475 rld[r].out, r, 1))
5476 /* Don't use it if we'd clobber a pseudo reg. */
5477 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5478 && rld[r].out
5479 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5480 /* Don't clobber the frame pointer. */
5481 || (i == HARD_FRAME_POINTER_REGNUM
5482 && frame_pointer_needed
5483 && rld[r].out)
5484 /* Don't really use the inherited spill reg
5485 if we need it wider than we've got it. */
5486 || (GET_MODE_SIZE (rld[r].mode)
5487 > GET_MODE_SIZE (mode))
5488 || bad_for_class
5490 /* If find_reloads chose reload_out as reload
5491 register, stay with it - that leaves the
5492 inherited register for subsequent reloads. */
5493 || (rld[r].out && rld[r].reg_rtx
5494 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5496 if (! rld[r].optional)
5498 reload_override_in[r] = last_reg;
5499 reload_inheritance_insn[r]
5500 = reg_reloaded_insn[i];
5503 else
5505 int k;
5506 /* We can use this as a reload reg. */
5507 /* Mark the register as in use for this part of
5508 the insn. */
5509 mark_reload_reg_in_use (i,
5510 rld[r].opnum,
5511 rld[r].when_needed,
5512 rld[r].mode);
5513 rld[r].reg_rtx = last_reg;
5514 reload_inherited[r] = 1;
5515 reload_inheritance_insn[r]
5516 = reg_reloaded_insn[i];
5517 reload_spill_index[r] = i;
5518 for (k = 0; k < nr; k++)
5519 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5520 i + k);
5527 /* Here's another way to see if the value is already lying around. */
5528 if (inheritance
5529 && rld[r].in != 0
5530 && ! reload_inherited[r]
5531 && rld[r].out == 0
5532 && (CONSTANT_P (rld[r].in)
5533 || GET_CODE (rld[r].in) == PLUS
5534 || GET_CODE (rld[r].in) == REG
5535 || GET_CODE (rld[r].in) == MEM)
5536 && (rld[r].nregs == max_group_size
5537 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5538 search_equiv = rld[r].in;
5539 /* If this is an output reload from a simple move insn, look
5540 if an equivalence for the input is available. */
5541 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5543 rtx set = single_set (insn);
5545 if (set
5546 && rtx_equal_p (rld[r].out, SET_DEST (set))
5547 && CONSTANT_P (SET_SRC (set)))
5548 search_equiv = SET_SRC (set);
5551 if (search_equiv)
5553 rtx equiv
5554 = find_equiv_reg (search_equiv, insn, rld[r].class,
5555 -1, NULL, 0, rld[r].mode);
5556 int regno = 0;
5558 if (equiv != 0)
5560 if (GET_CODE (equiv) == REG)
5561 regno = REGNO (equiv);
5562 else if (GET_CODE (equiv) == SUBREG)
5564 /* This must be a SUBREG of a hard register.
5565 Make a new REG since this might be used in an
5566 address and not all machines support SUBREGs
5567 there. */
5568 regno = subreg_regno (equiv);
5569 equiv = gen_rtx_REG (rld[r].mode, regno);
5571 else
5572 abort ();
5575 /* If we found a spill reg, reject it unless it is free
5576 and of the desired class. */
5577 if (equiv != 0)
5579 int regs_used = 0;
5580 int bad_for_class = 0;
5581 int max_regno = regno + rld[r].nregs;
5583 for (i = regno; i < max_regno; i++)
5585 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
5587 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5591 if ((regs_used
5592 && ! free_for_value_p (regno, rld[r].mode,
5593 rld[r].opnum, rld[r].when_needed,
5594 rld[r].in, rld[r].out, r, 1))
5595 || bad_for_class)
5596 equiv = 0;
5599 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5600 equiv = 0;
5602 /* We found a register that contains the value we need.
5603 If this register is the same as an `earlyclobber' operand
5604 of the current insn, just mark it as a place to reload from
5605 since we can't use it as the reload register itself. */
5607 if (equiv != 0)
5608 for (i = 0; i < n_earlyclobbers; i++)
5609 if (reg_overlap_mentioned_for_reload_p (equiv,
5610 reload_earlyclobbers[i]))
5612 if (! rld[r].optional)
5613 reload_override_in[r] = equiv;
5614 equiv = 0;
5615 break;
5618 /* If the equiv register we have found is explicitly clobbered
5619 in the current insn, it depends on the reload type if we
5620 can use it, use it for reload_override_in, or not at all.
5621 In particular, we then can't use EQUIV for a
5622 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5624 if (equiv != 0)
5626 if (regno_clobbered_p (regno, insn, rld[r].mode, 0))
5627 switch (rld[r].when_needed)
5629 case RELOAD_FOR_OTHER_ADDRESS:
5630 case RELOAD_FOR_INPADDR_ADDRESS:
5631 case RELOAD_FOR_INPUT_ADDRESS:
5632 case RELOAD_FOR_OPADDR_ADDR:
5633 break;
5634 case RELOAD_OTHER:
5635 case RELOAD_FOR_INPUT:
5636 case RELOAD_FOR_OPERAND_ADDRESS:
5637 if (! rld[r].optional)
5638 reload_override_in[r] = equiv;
5639 /* Fall through. */
5640 default:
5641 equiv = 0;
5642 break;
5644 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5645 switch (rld[r].when_needed)
5647 case RELOAD_FOR_OTHER_ADDRESS:
5648 case RELOAD_FOR_INPADDR_ADDRESS:
5649 case RELOAD_FOR_INPUT_ADDRESS:
5650 case RELOAD_FOR_OPADDR_ADDR:
5651 case RELOAD_FOR_OPERAND_ADDRESS:
5652 case RELOAD_FOR_INPUT:
5653 break;
5654 case RELOAD_OTHER:
5655 if (! rld[r].optional)
5656 reload_override_in[r] = equiv;
5657 /* Fall through. */
5658 default:
5659 equiv = 0;
5660 break;
5664 /* If we found an equivalent reg, say no code need be generated
5665 to load it, and use it as our reload reg. */
5666 if (equiv != 0
5667 && (regno != HARD_FRAME_POINTER_REGNUM
5668 || !frame_pointer_needed))
5670 int nr = HARD_REGNO_NREGS (regno, rld[r].mode);
5671 int k;
5672 rld[r].reg_rtx = equiv;
5673 reload_inherited[r] = 1;
5675 /* If reg_reloaded_valid is not set for this register,
5676 there might be a stale spill_reg_store lying around.
5677 We must clear it, since otherwise emit_reload_insns
5678 might delete the store. */
5679 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5680 spill_reg_store[regno] = NULL_RTX;
5681 /* If any of the hard registers in EQUIV are spill
5682 registers, mark them as in use for this insn. */
5683 for (k = 0; k < nr; k++)
5685 i = spill_reg_order[regno + k];
5686 if (i >= 0)
5688 mark_reload_reg_in_use (regno, rld[r].opnum,
5689 rld[r].when_needed,
5690 rld[r].mode);
5691 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5692 regno + k);
5698 /* If we found a register to use already, or if this is an optional
5699 reload, we are done. */
5700 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5701 continue;
5703 #if 0
5704 /* No longer needed for correct operation. Might or might
5705 not give better code on the average. Want to experiment? */
5707 /* See if there is a later reload that has a class different from our
5708 class that intersects our class or that requires less register
5709 than our reload. If so, we must allocate a register to this
5710 reload now, since that reload might inherit a previous reload
5711 and take the only available register in our class. Don't do this
5712 for optional reloads since they will force all previous reloads
5713 to be allocated. Also don't do this for reloads that have been
5714 turned off. */
5716 for (i = j + 1; i < n_reloads; i++)
5718 int s = reload_order[i];
5720 if ((rld[s].in == 0 && rld[s].out == 0
5721 && ! rld[s].secondary_p)
5722 || rld[s].optional)
5723 continue;
5725 if ((rld[s].class != rld[r].class
5726 && reg_classes_intersect_p (rld[r].class,
5727 rld[s].class))
5728 || rld[s].nregs < rld[r].nregs)
5729 break;
5732 if (i == n_reloads)
5733 continue;
5735 allocate_reload_reg (chain, r, j == n_reloads - 1);
5736 #endif
5739 /* Now allocate reload registers for anything non-optional that
5740 didn't get one yet. */
5741 for (j = 0; j < n_reloads; j++)
5743 int r = reload_order[j];
5745 /* Ignore reloads that got marked inoperative. */
5746 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5747 continue;
5749 /* Skip reloads that already have a register allocated or are
5750 optional. */
5751 if (rld[r].reg_rtx != 0 || rld[r].optional)
5752 continue;
5754 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5755 break;
5758 /* If that loop got all the way, we have won. */
5759 if (j == n_reloads)
5761 win = 1;
5762 break;
5765 /* Loop around and try without any inheritance. */
5768 if (! win)
5770 /* First undo everything done by the failed attempt
5771 to allocate with inheritance. */
5772 choose_reload_regs_init (chain, save_reload_reg_rtx);
5774 /* Some sanity tests to verify that the reloads found in the first
5775 pass are identical to the ones we have now. */
5776 if (chain->n_reloads != n_reloads)
5777 abort ();
5779 for (i = 0; i < n_reloads; i++)
5781 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5782 continue;
5783 if (chain->rld[i].when_needed != rld[i].when_needed)
5784 abort ();
5785 for (j = 0; j < n_spills; j++)
5786 if (spill_regs[j] == chain->rld[i].regno)
5787 if (! set_reload_reg (j, i))
5788 failed_reload (chain->insn, i);
5792 /* If we thought we could inherit a reload, because it seemed that
5793 nothing else wanted the same reload register earlier in the insn,
5794 verify that assumption, now that all reloads have been assigned.
5795 Likewise for reloads where reload_override_in has been set. */
5797 /* If doing expensive optimizations, do one preliminary pass that doesn't
5798 cancel any inheritance, but removes reloads that have been needed only
5799 for reloads that we know can be inherited. */
5800 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
5802 for (j = 0; j < n_reloads; j++)
5804 int r = reload_order[j];
5805 rtx check_reg;
5806 if (reload_inherited[r] && rld[r].reg_rtx)
5807 check_reg = rld[r].reg_rtx;
5808 else if (reload_override_in[r]
5809 && (GET_CODE (reload_override_in[r]) == REG
5810 || GET_CODE (reload_override_in[r]) == SUBREG))
5811 check_reg = reload_override_in[r];
5812 else
5813 continue;
5814 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
5815 rld[r].opnum, rld[r].when_needed, rld[r].in,
5816 (reload_inherited[r]
5817 ? rld[r].out : const0_rtx),
5818 r, 1))
5820 if (pass)
5821 continue;
5822 reload_inherited[r] = 0;
5823 reload_override_in[r] = 0;
5825 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5826 reload_override_in, then we do not need its related
5827 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5828 likewise for other reload types.
5829 We handle this by removing a reload when its only replacement
5830 is mentioned in reload_in of the reload we are going to inherit.
5831 A special case are auto_inc expressions; even if the input is
5832 inherited, we still need the address for the output. We can
5833 recognize them because they have RELOAD_OUT set to RELOAD_IN.
5834 If we succeeded removing some reload and we are doing a preliminary
5835 pass just to remove such reloads, make another pass, since the
5836 removal of one reload might allow us to inherit another one. */
5837 else if (rld[r].in
5838 && rld[r].out != rld[r].in
5839 && remove_address_replacements (rld[r].in) && pass)
5840 pass = 2;
5844 /* Now that reload_override_in is known valid,
5845 actually override reload_in. */
5846 for (j = 0; j < n_reloads; j++)
5847 if (reload_override_in[j])
5848 rld[j].in = reload_override_in[j];
5850 /* If this reload won't be done because it has been canceled or is
5851 optional and not inherited, clear reload_reg_rtx so other
5852 routines (such as subst_reloads) don't get confused. */
5853 for (j = 0; j < n_reloads; j++)
5854 if (rld[j].reg_rtx != 0
5855 && ((rld[j].optional && ! reload_inherited[j])
5856 || (rld[j].in == 0 && rld[j].out == 0
5857 && ! rld[j].secondary_p)))
5859 int regno = true_regnum (rld[j].reg_rtx);
5861 if (spill_reg_order[regno] >= 0)
5862 clear_reload_reg_in_use (regno, rld[j].opnum,
5863 rld[j].when_needed, rld[j].mode);
5864 rld[j].reg_rtx = 0;
5865 reload_spill_index[j] = -1;
5868 /* Record which pseudos and which spill regs have output reloads. */
5869 for (j = 0; j < n_reloads; j++)
5871 int r = reload_order[j];
5873 i = reload_spill_index[r];
5875 /* I is nonneg if this reload uses a register.
5876 If rld[r].reg_rtx is 0, this is an optional reload
5877 that we opted to ignore. */
5878 if (rld[r].out_reg != 0 && GET_CODE (rld[r].out_reg) == REG
5879 && rld[r].reg_rtx != 0)
5881 int nregno = REGNO (rld[r].out_reg);
5882 int nr = 1;
5884 if (nregno < FIRST_PSEUDO_REGISTER)
5885 nr = HARD_REGNO_NREGS (nregno, rld[r].mode);
5887 while (--nr >= 0)
5888 reg_has_output_reload[nregno + nr] = 1;
5890 if (i >= 0)
5892 nr = HARD_REGNO_NREGS (i, rld[r].mode);
5893 while (--nr >= 0)
5894 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
5897 if (rld[r].when_needed != RELOAD_OTHER
5898 && rld[r].when_needed != RELOAD_FOR_OUTPUT
5899 && rld[r].when_needed != RELOAD_FOR_INSN)
5900 abort ();
5905 /* Deallocate the reload register for reload R. This is called from
5906 remove_address_replacements. */
5908 void
5909 deallocate_reload_reg (int r)
5911 int regno;
5913 if (! rld[r].reg_rtx)
5914 return;
5915 regno = true_regnum (rld[r].reg_rtx);
5916 rld[r].reg_rtx = 0;
5917 if (spill_reg_order[regno] >= 0)
5918 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
5919 rld[r].mode);
5920 reload_spill_index[r] = -1;
5923 /* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
5924 reloads of the same item for fear that we might not have enough reload
5925 registers. However, normally they will get the same reload register
5926 and hence actually need not be loaded twice.
5928 Here we check for the most common case of this phenomenon: when we have
5929 a number of reloads for the same object, each of which were allocated
5930 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
5931 reload, and is not modified in the insn itself. If we find such,
5932 merge all the reloads and set the resulting reload to RELOAD_OTHER.
5933 This will not increase the number of spill registers needed and will
5934 prevent redundant code. */
5936 static void
5937 merge_assigned_reloads (rtx insn)
5939 int i, j;
5941 /* Scan all the reloads looking for ones that only load values and
5942 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
5943 assigned and not modified by INSN. */
5945 for (i = 0; i < n_reloads; i++)
5947 int conflicting_input = 0;
5948 int max_input_address_opnum = -1;
5949 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
5951 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
5952 || rld[i].out != 0 || rld[i].reg_rtx == 0
5953 || reg_set_p (rld[i].reg_rtx, insn))
5954 continue;
5956 /* Look at all other reloads. Ensure that the only use of this
5957 reload_reg_rtx is in a reload that just loads the same value
5958 as we do. Note that any secondary reloads must be of the identical
5959 class since the values, modes, and result registers are the
5960 same, so we need not do anything with any secondary reloads. */
5962 for (j = 0; j < n_reloads; j++)
5964 if (i == j || rld[j].reg_rtx == 0
5965 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
5966 rld[i].reg_rtx))
5967 continue;
5969 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
5970 && rld[j].opnum > max_input_address_opnum)
5971 max_input_address_opnum = rld[j].opnum;
5973 /* If the reload regs aren't exactly the same (e.g, different modes)
5974 or if the values are different, we can't merge this reload.
5975 But if it is an input reload, we might still merge
5976 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
5978 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
5979 || rld[j].out != 0 || rld[j].in == 0
5980 || ! rtx_equal_p (rld[i].in, rld[j].in))
5982 if (rld[j].when_needed != RELOAD_FOR_INPUT
5983 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
5984 || rld[i].opnum > rld[j].opnum)
5985 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
5986 break;
5987 conflicting_input = 1;
5988 if (min_conflicting_input_opnum > rld[j].opnum)
5989 min_conflicting_input_opnum = rld[j].opnum;
5993 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
5994 we, in fact, found any matching reloads. */
5996 if (j == n_reloads
5997 && max_input_address_opnum <= min_conflicting_input_opnum)
5999 for (j = 0; j < n_reloads; j++)
6000 if (i != j && rld[j].reg_rtx != 0
6001 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6002 && (! conflicting_input
6003 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6004 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6006 rld[i].when_needed = RELOAD_OTHER;
6007 rld[j].in = 0;
6008 reload_spill_index[j] = -1;
6009 transfer_replacements (i, j);
6012 /* If this is now RELOAD_OTHER, look for any reloads that load
6013 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6014 if they were for inputs, RELOAD_OTHER for outputs. Note that
6015 this test is equivalent to looking for reloads for this operand
6016 number. */
6017 /* We must take special care when there are two or more reloads to
6018 be merged and a RELOAD_FOR_OUTPUT_ADDRESS reload that loads the
6019 same value or a part of it; we must not change its type if there
6020 is a conflicting input. */
6022 if (rld[i].when_needed == RELOAD_OTHER)
6023 for (j = 0; j < n_reloads; j++)
6024 if (rld[j].in != 0
6025 && rld[j].when_needed != RELOAD_OTHER
6026 && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
6027 && (! conflicting_input
6028 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6029 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6030 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6031 rld[i].in))
6033 int k;
6035 rld[j].when_needed
6036 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6037 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6038 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6040 /* Check to see if we accidentally converted two reloads
6041 that use the same reload register with different inputs
6042 to the same type. If so, the resulting code won't work,
6043 so abort. */
6044 if (rld[j].reg_rtx)
6045 for (k = 0; k < j; k++)
6046 if (rld[k].in != 0 && rld[k].reg_rtx != 0
6047 && rld[k].when_needed == rld[j].when_needed
6048 && rtx_equal_p (rld[k].reg_rtx, rld[j].reg_rtx)
6049 && ! rtx_equal_p (rld[k].in, rld[j].in))
6050 abort ();
6056 /* These arrays are filled by emit_reload_insns and its subroutines. */
6057 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6058 static rtx other_input_address_reload_insns = 0;
6059 static rtx other_input_reload_insns = 0;
6060 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6061 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6062 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6063 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6064 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6065 static rtx operand_reload_insns = 0;
6066 static rtx other_operand_reload_insns = 0;
6067 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6069 /* Values to be put in spill_reg_store are put here first. */
6070 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6071 static HARD_REG_SET reg_reloaded_died;
6073 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6074 has the number J. OLD contains the value to be used as input. */
6076 static void
6077 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
6078 rtx old, int j)
6080 rtx insn = chain->insn;
6081 rtx reloadreg = rl->reg_rtx;
6082 rtx oldequiv_reg = 0;
6083 rtx oldequiv = 0;
6084 int special = 0;
6085 enum machine_mode mode;
6086 rtx *where;
6088 /* Determine the mode to reload in.
6089 This is very tricky because we have three to choose from.
6090 There is the mode the insn operand wants (rl->inmode).
6091 There is the mode of the reload register RELOADREG.
6092 There is the intrinsic mode of the operand, which we could find
6093 by stripping some SUBREGs.
6094 It turns out that RELOADREG's mode is irrelevant:
6095 we can change that arbitrarily.
6097 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6098 then the reload reg may not support QImode moves, so use SImode.
6099 If foo is in memory due to spilling a pseudo reg, this is safe,
6100 because the QImode value is in the least significant part of a
6101 slot big enough for a SImode. If foo is some other sort of
6102 memory reference, then it is impossible to reload this case,
6103 so previous passes had better make sure this never happens.
6105 Then consider a one-word union which has SImode and one of its
6106 members is a float, being fetched as (SUBREG:SF union:SI).
6107 We must fetch that as SFmode because we could be loading into
6108 a float-only register. In this case OLD's mode is correct.
6110 Consider an immediate integer: it has VOIDmode. Here we need
6111 to get a mode from something else.
6113 In some cases, there is a fourth mode, the operand's
6114 containing mode. If the insn specifies a containing mode for
6115 this operand, it overrides all others.
6117 I am not sure whether the algorithm here is always right,
6118 but it does the right things in those cases. */
6120 mode = GET_MODE (old);
6121 if (mode == VOIDmode)
6122 mode = rl->inmode;
6124 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6125 /* If we need a secondary register for this operation, see if
6126 the value is already in a register in that class. Don't
6127 do this if the secondary register will be used as a scratch
6128 register. */
6130 if (rl->secondary_in_reload >= 0
6131 && rl->secondary_in_icode == CODE_FOR_nothing
6132 && optimize)
6133 oldequiv
6134 = find_equiv_reg (old, insn,
6135 rld[rl->secondary_in_reload].class,
6136 -1, NULL, 0, mode);
6137 #endif
6139 /* If reloading from memory, see if there is a register
6140 that already holds the same value. If so, reload from there.
6141 We can pass 0 as the reload_reg_p argument because
6142 any other reload has either already been emitted,
6143 in which case find_equiv_reg will see the reload-insn,
6144 or has yet to be emitted, in which case it doesn't matter
6145 because we will use this equiv reg right away. */
6147 if (oldequiv == 0 && optimize
6148 && (GET_CODE (old) == MEM
6149 || (GET_CODE (old) == REG
6150 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6151 && reg_renumber[REGNO (old)] < 0)))
6152 oldequiv = find_equiv_reg (old, insn, ALL_REGS, -1, NULL, 0, mode);
6154 if (oldequiv)
6156 unsigned int regno = true_regnum (oldequiv);
6158 /* Don't use OLDEQUIV if any other reload changes it at an
6159 earlier stage of this insn or at this stage. */
6160 if (! free_for_value_p (regno, rl->mode, rl->opnum, rl->when_needed,
6161 rl->in, const0_rtx, j, 0))
6162 oldequiv = 0;
6164 /* If it is no cheaper to copy from OLDEQUIV into the
6165 reload register than it would be to move from memory,
6166 don't use it. Likewise, if we need a secondary register
6167 or memory. */
6169 if (oldequiv != 0
6170 && (((enum reg_class) REGNO_REG_CLASS (regno) != rl->class
6171 && (REGISTER_MOVE_COST (mode, REGNO_REG_CLASS (regno),
6172 rl->class)
6173 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6174 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6175 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6176 mode, oldequiv)
6177 != NO_REGS)
6178 #endif
6179 #ifdef SECONDARY_MEMORY_NEEDED
6180 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6181 rl->class,
6182 mode)
6183 #endif
6185 oldequiv = 0;
6188 /* delete_output_reload is only invoked properly if old contains
6189 the original pseudo register. Since this is replaced with a
6190 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6191 find the pseudo in RELOAD_IN_REG. */
6192 if (oldequiv == 0
6193 && reload_override_in[j]
6194 && GET_CODE (rl->in_reg) == REG)
6196 oldequiv = old;
6197 old = rl->in_reg;
6199 if (oldequiv == 0)
6200 oldequiv = old;
6201 else if (GET_CODE (oldequiv) == REG)
6202 oldequiv_reg = oldequiv;
6203 else if (GET_CODE (oldequiv) == SUBREG)
6204 oldequiv_reg = SUBREG_REG (oldequiv);
6206 /* If we are reloading from a register that was recently stored in
6207 with an output-reload, see if we can prove there was
6208 actually no need to store the old value in it. */
6210 if (optimize && GET_CODE (oldequiv) == REG
6211 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6212 && spill_reg_store[REGNO (oldequiv)]
6213 && GET_CODE (old) == REG
6214 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6215 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6216 rl->out_reg)))
6217 delete_output_reload (insn, j, REGNO (oldequiv));
6219 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6220 then load RELOADREG from OLDEQUIV. Note that we cannot use
6221 gen_lowpart_common since it can do the wrong thing when
6222 RELOADREG has a multi-word mode. Note that RELOADREG
6223 must always be a REG here. */
6225 if (GET_MODE (reloadreg) != mode)
6226 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6227 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6228 oldequiv = SUBREG_REG (oldequiv);
6229 if (GET_MODE (oldequiv) != VOIDmode
6230 && mode != GET_MODE (oldequiv))
6231 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6233 /* Switch to the right place to emit the reload insns. */
6234 switch (rl->when_needed)
6236 case RELOAD_OTHER:
6237 where = &other_input_reload_insns;
6238 break;
6239 case RELOAD_FOR_INPUT:
6240 where = &input_reload_insns[rl->opnum];
6241 break;
6242 case RELOAD_FOR_INPUT_ADDRESS:
6243 where = &input_address_reload_insns[rl->opnum];
6244 break;
6245 case RELOAD_FOR_INPADDR_ADDRESS:
6246 where = &inpaddr_address_reload_insns[rl->opnum];
6247 break;
6248 case RELOAD_FOR_OUTPUT_ADDRESS:
6249 where = &output_address_reload_insns[rl->opnum];
6250 break;
6251 case RELOAD_FOR_OUTADDR_ADDRESS:
6252 where = &outaddr_address_reload_insns[rl->opnum];
6253 break;
6254 case RELOAD_FOR_OPERAND_ADDRESS:
6255 where = &operand_reload_insns;
6256 break;
6257 case RELOAD_FOR_OPADDR_ADDR:
6258 where = &other_operand_reload_insns;
6259 break;
6260 case RELOAD_FOR_OTHER_ADDRESS:
6261 where = &other_input_address_reload_insns;
6262 break;
6263 default:
6264 abort ();
6267 push_to_sequence (*where);
6269 /* Auto-increment addresses must be reloaded in a special way. */
6270 if (rl->out && ! rl->out_reg)
6272 /* We are not going to bother supporting the case where a
6273 incremented register can't be copied directly from
6274 OLDEQUIV since this seems highly unlikely. */
6275 if (rl->secondary_in_reload >= 0)
6276 abort ();
6278 if (reload_inherited[j])
6279 oldequiv = reloadreg;
6281 old = XEXP (rl->in_reg, 0);
6283 if (optimize && GET_CODE (oldequiv) == REG
6284 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6285 && spill_reg_store[REGNO (oldequiv)]
6286 && GET_CODE (old) == REG
6287 && (dead_or_set_p (insn,
6288 spill_reg_stored_to[REGNO (oldequiv)])
6289 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6290 old)))
6291 delete_output_reload (insn, j, REGNO (oldequiv));
6293 /* Prevent normal processing of this reload. */
6294 special = 1;
6295 /* Output a special code sequence for this case. */
6296 new_spill_reg_store[REGNO (reloadreg)]
6297 = inc_for_reload (reloadreg, oldequiv, rl->out,
6298 rl->inc);
6301 /* If we are reloading a pseudo-register that was set by the previous
6302 insn, see if we can get rid of that pseudo-register entirely
6303 by redirecting the previous insn into our reload register. */
6305 else if (optimize && GET_CODE (old) == REG
6306 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6307 && dead_or_set_p (insn, old)
6308 /* This is unsafe if some other reload
6309 uses the same reg first. */
6310 && ! conflicts_with_override (reloadreg)
6311 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6312 rl->when_needed, old, rl->out, j, 0))
6314 rtx temp = PREV_INSN (insn);
6315 while (temp && GET_CODE (temp) == NOTE)
6316 temp = PREV_INSN (temp);
6317 if (temp
6318 && GET_CODE (temp) == INSN
6319 && GET_CODE (PATTERN (temp)) == SET
6320 && SET_DEST (PATTERN (temp)) == old
6321 /* Make sure we can access insn_operand_constraint. */
6322 && asm_noperands (PATTERN (temp)) < 0
6323 /* This is unsafe if operand occurs more than once in current
6324 insn. Perhaps some occurrences aren't reloaded. */
6325 && count_occurrences (PATTERN (insn), old, 0) == 1)
6327 rtx old = SET_DEST (PATTERN (temp));
6328 /* Store into the reload register instead of the pseudo. */
6329 SET_DEST (PATTERN (temp)) = reloadreg;
6331 /* Verify that resulting insn is valid. */
6332 extract_insn (temp);
6333 if (constrain_operands (1))
6335 /* If the previous insn is an output reload, the source is
6336 a reload register, and its spill_reg_store entry will
6337 contain the previous destination. This is now
6338 invalid. */
6339 if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
6340 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6342 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6343 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6346 /* If these are the only uses of the pseudo reg,
6347 pretend for GDB it lives in the reload reg we used. */
6348 if (REG_N_DEATHS (REGNO (old)) == 1
6349 && REG_N_SETS (REGNO (old)) == 1)
6351 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6352 alter_reg (REGNO (old), -1);
6354 special = 1;
6356 else
6358 SET_DEST (PATTERN (temp)) = old;
6363 /* We can't do that, so output an insn to load RELOADREG. */
6365 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6366 /* If we have a secondary reload, pick up the secondary register
6367 and icode, if any. If OLDEQUIV and OLD are different or
6368 if this is an in-out reload, recompute whether or not we
6369 still need a secondary register and what the icode should
6370 be. If we still need a secondary register and the class or
6371 icode is different, go back to reloading from OLD if using
6372 OLDEQUIV means that we got the wrong type of register. We
6373 cannot have different class or icode due to an in-out reload
6374 because we don't make such reloads when both the input and
6375 output need secondary reload registers. */
6377 if (! special && rl->secondary_in_reload >= 0)
6379 rtx second_reload_reg = 0;
6380 int secondary_reload = rl->secondary_in_reload;
6381 rtx real_oldequiv = oldequiv;
6382 rtx real_old = old;
6383 rtx tmp;
6384 enum insn_code icode;
6386 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6387 and similarly for OLD.
6388 See comments in get_secondary_reload in reload.c. */
6389 /* If it is a pseudo that cannot be replaced with its
6390 equivalent MEM, we must fall back to reload_in, which
6391 will have all the necessary substitutions registered.
6392 Likewise for a pseudo that can't be replaced with its
6393 equivalent constant.
6395 Take extra care for subregs of such pseudos. Note that
6396 we cannot use reg_equiv_mem in this case because it is
6397 not in the right mode. */
6399 tmp = oldequiv;
6400 if (GET_CODE (tmp) == SUBREG)
6401 tmp = SUBREG_REG (tmp);
6402 if (GET_CODE (tmp) == REG
6403 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6404 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6405 || reg_equiv_constant[REGNO (tmp)] != 0))
6407 if (! reg_equiv_mem[REGNO (tmp)]
6408 || num_not_at_initial_offset
6409 || GET_CODE (oldequiv) == SUBREG)
6410 real_oldequiv = rl->in;
6411 else
6412 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6415 tmp = old;
6416 if (GET_CODE (tmp) == SUBREG)
6417 tmp = SUBREG_REG (tmp);
6418 if (GET_CODE (tmp) == REG
6419 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6420 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6421 || reg_equiv_constant[REGNO (tmp)] != 0))
6423 if (! reg_equiv_mem[REGNO (tmp)]
6424 || num_not_at_initial_offset
6425 || GET_CODE (old) == SUBREG)
6426 real_old = rl->in;
6427 else
6428 real_old = reg_equiv_mem[REGNO (tmp)];
6431 second_reload_reg = rld[secondary_reload].reg_rtx;
6432 icode = rl->secondary_in_icode;
6434 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6435 || (rl->in != 0 && rl->out != 0))
6437 enum reg_class new_class
6438 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6439 mode, real_oldequiv);
6441 if (new_class == NO_REGS)
6442 second_reload_reg = 0;
6443 else
6445 enum insn_code new_icode;
6446 enum machine_mode new_mode;
6448 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6449 REGNO (second_reload_reg)))
6450 oldequiv = old, real_oldequiv = real_old;
6451 else
6453 new_icode = reload_in_optab[(int) mode];
6454 if (new_icode != CODE_FOR_nothing
6455 && ((insn_data[(int) new_icode].operand[0].predicate
6456 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6457 (reloadreg, mode)))
6458 || (insn_data[(int) new_icode].operand[1].predicate
6459 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6460 (real_oldequiv, mode)))))
6461 new_icode = CODE_FOR_nothing;
6463 if (new_icode == CODE_FOR_nothing)
6464 new_mode = mode;
6465 else
6466 new_mode = insn_data[(int) new_icode].operand[2].mode;
6468 if (GET_MODE (second_reload_reg) != new_mode)
6470 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6471 new_mode))
6472 oldequiv = old, real_oldequiv = real_old;
6473 else
6474 second_reload_reg
6475 = reload_adjust_reg_for_mode (second_reload_reg,
6476 new_mode);
6482 /* If we still need a secondary reload register, check
6483 to see if it is being used as a scratch or intermediate
6484 register and generate code appropriately. If we need
6485 a scratch register, use REAL_OLDEQUIV since the form of
6486 the insn may depend on the actual address if it is
6487 a MEM. */
6489 if (second_reload_reg)
6491 if (icode != CODE_FOR_nothing)
6493 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6494 second_reload_reg));
6495 special = 1;
6497 else
6499 /* See if we need a scratch register to load the
6500 intermediate register (a tertiary reload). */
6501 enum insn_code tertiary_icode
6502 = rld[secondary_reload].secondary_in_icode;
6504 if (tertiary_icode != CODE_FOR_nothing)
6506 rtx third_reload_reg
6507 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
6509 emit_insn ((GEN_FCN (tertiary_icode)
6510 (second_reload_reg, real_oldequiv,
6511 third_reload_reg)));
6513 else
6514 gen_reload (second_reload_reg, real_oldequiv,
6515 rl->opnum,
6516 rl->when_needed);
6518 oldequiv = second_reload_reg;
6522 #endif
6524 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6526 rtx real_oldequiv = oldequiv;
6528 if ((GET_CODE (oldequiv) == REG
6529 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6530 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6531 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6532 || (GET_CODE (oldequiv) == SUBREG
6533 && GET_CODE (SUBREG_REG (oldequiv)) == REG
6534 && (REGNO (SUBREG_REG (oldequiv))
6535 >= FIRST_PSEUDO_REGISTER)
6536 && ((reg_equiv_memory_loc
6537 [REGNO (SUBREG_REG (oldequiv))] != 0)
6538 || (reg_equiv_constant
6539 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6540 || (CONSTANT_P (oldequiv)
6541 && (PREFERRED_RELOAD_CLASS (oldequiv,
6542 REGNO_REG_CLASS (REGNO (reloadreg)))
6543 == NO_REGS)))
6544 real_oldequiv = rl->in;
6545 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6546 rl->when_needed);
6549 if (flag_non_call_exceptions)
6550 copy_eh_notes (insn, get_insns ());
6552 /* End this sequence. */
6553 *where = get_insns ();
6554 end_sequence ();
6556 /* Update reload_override_in so that delete_address_reloads_1
6557 can see the actual register usage. */
6558 if (oldequiv_reg)
6559 reload_override_in[j] = oldequiv;
6562 /* Generate insns to for the output reload RL, which is for the insn described
6563 by CHAIN and has the number J. */
6564 static void
6565 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
6566 int j)
6568 rtx reloadreg = rl->reg_rtx;
6569 rtx insn = chain->insn;
6570 int special = 0;
6571 rtx old = rl->out;
6572 enum machine_mode mode = GET_MODE (old);
6573 rtx p;
6575 if (rl->when_needed == RELOAD_OTHER)
6576 start_sequence ();
6577 else
6578 push_to_sequence (output_reload_insns[rl->opnum]);
6580 /* Determine the mode to reload in.
6581 See comments above (for input reloading). */
6583 if (mode == VOIDmode)
6585 /* VOIDmode should never happen for an output. */
6586 if (asm_noperands (PATTERN (insn)) < 0)
6587 /* It's the compiler's fault. */
6588 fatal_insn ("VOIDmode on an output", insn);
6589 error_for_asm (insn, "output operand is constant in `asm'");
6590 /* Prevent crash--use something we know is valid. */
6591 mode = word_mode;
6592 old = gen_rtx_REG (mode, REGNO (reloadreg));
6595 if (GET_MODE (reloadreg) != mode)
6596 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6598 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
6600 /* If we need two reload regs, set RELOADREG to the intermediate
6601 one, since it will be stored into OLD. We might need a secondary
6602 register only for an input reload, so check again here. */
6604 if (rl->secondary_out_reload >= 0)
6606 rtx real_old = old;
6608 if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
6609 && reg_equiv_mem[REGNO (old)] != 0)
6610 real_old = reg_equiv_mem[REGNO (old)];
6612 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6613 mode, real_old)
6614 != NO_REGS))
6616 rtx second_reloadreg = reloadreg;
6617 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
6619 /* See if RELOADREG is to be used as a scratch register
6620 or as an intermediate register. */
6621 if (rl->secondary_out_icode != CODE_FOR_nothing)
6623 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6624 (real_old, second_reloadreg, reloadreg)));
6625 special = 1;
6627 else
6629 /* See if we need both a scratch and intermediate reload
6630 register. */
6632 int secondary_reload = rl->secondary_out_reload;
6633 enum insn_code tertiary_icode
6634 = rld[secondary_reload].secondary_out_icode;
6636 if (GET_MODE (reloadreg) != mode)
6637 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6639 if (tertiary_icode != CODE_FOR_nothing)
6641 rtx third_reloadreg
6642 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6643 rtx tem;
6645 /* Copy primary reload reg to secondary reload reg.
6646 (Note that these have been swapped above, then
6647 secondary reload reg to OLD using our insn.) */
6649 /* If REAL_OLD is a paradoxical SUBREG, remove it
6650 and try to put the opposite SUBREG on
6651 RELOADREG. */
6652 if (GET_CODE (real_old) == SUBREG
6653 && (GET_MODE_SIZE (GET_MODE (real_old))
6654 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6655 && 0 != (tem = gen_lowpart_common
6656 (GET_MODE (SUBREG_REG (real_old)),
6657 reloadreg)))
6658 real_old = SUBREG_REG (real_old), reloadreg = tem;
6660 gen_reload (reloadreg, second_reloadreg,
6661 rl->opnum, rl->when_needed);
6662 emit_insn ((GEN_FCN (tertiary_icode)
6663 (real_old, reloadreg, third_reloadreg)));
6664 special = 1;
6667 else
6668 /* Copy between the reload regs here and then to
6669 OUT later. */
6671 gen_reload (reloadreg, second_reloadreg,
6672 rl->opnum, rl->when_needed);
6676 #endif
6678 /* Output the last reload insn. */
6679 if (! special)
6681 rtx set;
6683 /* Don't output the last reload if OLD is not the dest of
6684 INSN and is in the src and is clobbered by INSN. */
6685 if (! flag_expensive_optimizations
6686 || GET_CODE (old) != REG
6687 || !(set = single_set (insn))
6688 || rtx_equal_p (old, SET_DEST (set))
6689 || !reg_mentioned_p (old, SET_SRC (set))
6690 || !regno_clobbered_p (REGNO (old), insn, rl->mode, 0))
6691 gen_reload (old, reloadreg, rl->opnum,
6692 rl->when_needed);
6695 /* Look at all insns we emitted, just to be safe. */
6696 for (p = get_insns (); p; p = NEXT_INSN (p))
6697 if (INSN_P (p))
6699 rtx pat = PATTERN (p);
6701 /* If this output reload doesn't come from a spill reg,
6702 clear any memory of reloaded copies of the pseudo reg.
6703 If this output reload comes from a spill reg,
6704 reg_has_output_reload will make this do nothing. */
6705 note_stores (pat, forget_old_reloads_1, NULL);
6707 if (reg_mentioned_p (rl->reg_rtx, pat))
6709 rtx set = single_set (insn);
6710 if (reload_spill_index[j] < 0
6711 && set
6712 && SET_SRC (set) == rl->reg_rtx)
6714 int src = REGNO (SET_SRC (set));
6716 reload_spill_index[j] = src;
6717 SET_HARD_REG_BIT (reg_is_output_reload, src);
6718 if (find_regno_note (insn, REG_DEAD, src))
6719 SET_HARD_REG_BIT (reg_reloaded_died, src);
6721 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6723 int s = rl->secondary_out_reload;
6724 set = single_set (p);
6725 /* If this reload copies only to the secondary reload
6726 register, the secondary reload does the actual
6727 store. */
6728 if (s >= 0 && set == NULL_RTX)
6729 /* We can't tell what function the secondary reload
6730 has and where the actual store to the pseudo is
6731 made; leave new_spill_reg_store alone. */
6733 else if (s >= 0
6734 && SET_SRC (set) == rl->reg_rtx
6735 && SET_DEST (set) == rld[s].reg_rtx)
6737 /* Usually the next instruction will be the
6738 secondary reload insn; if we can confirm
6739 that it is, setting new_spill_reg_store to
6740 that insn will allow an extra optimization. */
6741 rtx s_reg = rld[s].reg_rtx;
6742 rtx next = NEXT_INSN (p);
6743 rld[s].out = rl->out;
6744 rld[s].out_reg = rl->out_reg;
6745 set = single_set (next);
6746 if (set && SET_SRC (set) == s_reg
6747 && ! new_spill_reg_store[REGNO (s_reg)])
6749 SET_HARD_REG_BIT (reg_is_output_reload,
6750 REGNO (s_reg));
6751 new_spill_reg_store[REGNO (s_reg)] = next;
6754 else
6755 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6760 if (rl->when_needed == RELOAD_OTHER)
6762 emit_insn (other_output_reload_insns[rl->opnum]);
6763 other_output_reload_insns[rl->opnum] = get_insns ();
6765 else
6766 output_reload_insns[rl->opnum] = get_insns ();
6768 if (flag_non_call_exceptions)
6769 copy_eh_notes (insn, get_insns ());
6771 end_sequence ();
6774 /* Do input reloading for reload RL, which is for the insn described by CHAIN
6775 and has the number J. */
6776 static void
6777 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
6779 rtx insn = chain->insn;
6780 rtx old = (rl->in && GET_CODE (rl->in) == MEM
6781 ? rl->in_reg : rl->in);
6783 if (old != 0
6784 /* AUTO_INC reloads need to be handled even if inherited. We got an
6785 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6786 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6787 && ! rtx_equal_p (rl->reg_rtx, old)
6788 && rl->reg_rtx != 0)
6789 emit_input_reload_insns (chain, rld + j, old, j);
6791 /* When inheriting a wider reload, we have a MEM in rl->in,
6792 e.g. inheriting a SImode output reload for
6793 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6794 if (optimize && reload_inherited[j] && rl->in
6795 && GET_CODE (rl->in) == MEM
6796 && GET_CODE (rl->in_reg) == MEM
6797 && reload_spill_index[j] >= 0
6798 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6799 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
6801 /* If we are reloading a register that was recently stored in with an
6802 output-reload, see if we can prove there was
6803 actually no need to store the old value in it. */
6805 if (optimize
6806 && (reload_inherited[j] || reload_override_in[j])
6807 && rl->reg_rtx
6808 && GET_CODE (rl->reg_rtx) == REG
6809 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6810 #if 0
6811 /* There doesn't seem to be any reason to restrict this to pseudos
6812 and doing so loses in the case where we are copying from a
6813 register of the wrong class. */
6814 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6815 >= FIRST_PSEUDO_REGISTER)
6816 #endif
6817 /* The insn might have already some references to stackslots
6818 replaced by MEMs, while reload_out_reg still names the
6819 original pseudo. */
6820 && (dead_or_set_p (insn,
6821 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6822 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6823 rl->out_reg)))
6824 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6827 /* Do output reloading for reload RL, which is for the insn described by
6828 CHAIN and has the number J.
6829 ??? At some point we need to support handling output reloads of
6830 JUMP_INSNs or insns that set cc0. */
6831 static void
6832 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
6834 rtx note, old;
6835 rtx insn = chain->insn;
6836 /* If this is an output reload that stores something that is
6837 not loaded in this same reload, see if we can eliminate a previous
6838 store. */
6839 rtx pseudo = rl->out_reg;
6841 if (pseudo
6842 && optimize
6843 && GET_CODE (pseudo) == REG
6844 && ! rtx_equal_p (rl->in_reg, pseudo)
6845 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
6846 && reg_last_reload_reg[REGNO (pseudo)])
6848 int pseudo_no = REGNO (pseudo);
6849 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
6851 /* We don't need to test full validity of last_regno for
6852 inherit here; we only want to know if the store actually
6853 matches the pseudo. */
6854 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
6855 && reg_reloaded_contents[last_regno] == pseudo_no
6856 && spill_reg_store[last_regno]
6857 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
6858 delete_output_reload (insn, j, last_regno);
6861 old = rl->out_reg;
6862 if (old == 0
6863 || rl->reg_rtx == old
6864 || rl->reg_rtx == 0)
6865 return;
6867 /* An output operand that dies right away does need a reload,
6868 but need not be copied from it. Show the new location in the
6869 REG_UNUSED note. */
6870 if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
6871 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
6873 XEXP (note, 0) = rl->reg_rtx;
6874 return;
6876 /* Likewise for a SUBREG of an operand that dies. */
6877 else if (GET_CODE (old) == SUBREG
6878 && GET_CODE (SUBREG_REG (old)) == REG
6879 && 0 != (note = find_reg_note (insn, REG_UNUSED,
6880 SUBREG_REG (old))))
6882 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
6883 rl->reg_rtx);
6884 return;
6886 else if (GET_CODE (old) == SCRATCH)
6887 /* If we aren't optimizing, there won't be a REG_UNUSED note,
6888 but we don't want to make an output reload. */
6889 return;
6891 /* If is a JUMP_INSN, we can't support output reloads yet. */
6892 if (GET_CODE (insn) == JUMP_INSN)
6893 abort ();
6895 emit_output_reload_insns (chain, rld + j, j);
6898 /* Output insns to reload values in and out of the chosen reload regs. */
6900 static void
6901 emit_reload_insns (struct insn_chain *chain)
6903 rtx insn = chain->insn;
6905 int j;
6907 CLEAR_HARD_REG_SET (reg_reloaded_died);
6909 for (j = 0; j < reload_n_operands; j++)
6910 input_reload_insns[j] = input_address_reload_insns[j]
6911 = inpaddr_address_reload_insns[j]
6912 = output_reload_insns[j] = output_address_reload_insns[j]
6913 = outaddr_address_reload_insns[j]
6914 = other_output_reload_insns[j] = 0;
6915 other_input_address_reload_insns = 0;
6916 other_input_reload_insns = 0;
6917 operand_reload_insns = 0;
6918 other_operand_reload_insns = 0;
6920 /* Dump reloads into the dump file. */
6921 if (rtl_dump_file)
6923 fprintf (rtl_dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
6924 debug_reload_to_stream (rtl_dump_file);
6927 /* Now output the instructions to copy the data into and out of the
6928 reload registers. Do these in the order that the reloads were reported,
6929 since reloads of base and index registers precede reloads of operands
6930 and the operands may need the base and index registers reloaded. */
6932 for (j = 0; j < n_reloads; j++)
6934 if (rld[j].reg_rtx
6935 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
6936 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
6938 do_input_reload (chain, rld + j, j);
6939 do_output_reload (chain, rld + j, j);
6942 /* Now write all the insns we made for reloads in the order expected by
6943 the allocation functions. Prior to the insn being reloaded, we write
6944 the following reloads:
6946 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
6948 RELOAD_OTHER reloads.
6950 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
6951 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
6952 RELOAD_FOR_INPUT reload for the operand.
6954 RELOAD_FOR_OPADDR_ADDRS reloads.
6956 RELOAD_FOR_OPERAND_ADDRESS reloads.
6958 After the insn being reloaded, we write the following:
6960 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
6961 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
6962 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
6963 reloads for the operand. The RELOAD_OTHER output reloads are
6964 output in descending order by reload number. */
6966 emit_insn_before (other_input_address_reload_insns, insn);
6967 emit_insn_before (other_input_reload_insns, insn);
6969 for (j = 0; j < reload_n_operands; j++)
6971 emit_insn_before (inpaddr_address_reload_insns[j], insn);
6972 emit_insn_before (input_address_reload_insns[j], insn);
6973 emit_insn_before (input_reload_insns[j], insn);
6976 emit_insn_before (other_operand_reload_insns, insn);
6977 emit_insn_before (operand_reload_insns, insn);
6979 for (j = 0; j < reload_n_operands; j++)
6981 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
6982 x = emit_insn_after (output_address_reload_insns[j], x);
6983 x = emit_insn_after (output_reload_insns[j], x);
6984 emit_insn_after (other_output_reload_insns[j], x);
6987 /* For all the spill regs newly reloaded in this instruction,
6988 record what they were reloaded from, so subsequent instructions
6989 can inherit the reloads.
6991 Update spill_reg_store for the reloads of this insn.
6992 Copy the elements that were updated in the loop above. */
6994 for (j = 0; j < n_reloads; j++)
6996 int r = reload_order[j];
6997 int i = reload_spill_index[r];
6999 /* If this is a non-inherited input reload from a pseudo, we must
7000 clear any memory of a previous store to the same pseudo. Only do
7001 something if there will not be an output reload for the pseudo
7002 being reloaded. */
7003 if (rld[r].in_reg != 0
7004 && ! (reload_inherited[r] || reload_override_in[r]))
7006 rtx reg = rld[r].in_reg;
7008 if (GET_CODE (reg) == SUBREG)
7009 reg = SUBREG_REG (reg);
7011 if (GET_CODE (reg) == REG
7012 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7013 && ! reg_has_output_reload[REGNO (reg)])
7015 int nregno = REGNO (reg);
7017 if (reg_last_reload_reg[nregno])
7019 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7021 if (reg_reloaded_contents[last_regno] == nregno)
7022 spill_reg_store[last_regno] = 0;
7027 /* I is nonneg if this reload used a register.
7028 If rld[r].reg_rtx is 0, this is an optional reload
7029 that we opted to ignore. */
7031 if (i >= 0 && rld[r].reg_rtx != 0)
7033 int nr = HARD_REGNO_NREGS (i, GET_MODE (rld[r].reg_rtx));
7034 int k;
7035 int part_reaches_end = 0;
7036 int all_reaches_end = 1;
7038 /* For a multi register reload, we need to check if all or part
7039 of the value lives to the end. */
7040 for (k = 0; k < nr; k++)
7042 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7043 rld[r].when_needed))
7044 part_reaches_end = 1;
7045 else
7046 all_reaches_end = 0;
7049 /* Ignore reloads that don't reach the end of the insn in
7050 entirety. */
7051 if (all_reaches_end)
7053 /* First, clear out memory of what used to be in this spill reg.
7054 If consecutive registers are used, clear them all. */
7056 for (k = 0; k < nr; k++)
7058 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7059 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7062 /* Maybe the spill reg contains a copy of reload_out. */
7063 if (rld[r].out != 0
7064 && (GET_CODE (rld[r].out) == REG
7065 #ifdef AUTO_INC_DEC
7066 || ! rld[r].out_reg
7067 #endif
7068 || GET_CODE (rld[r].out_reg) == REG))
7070 rtx out = (GET_CODE (rld[r].out) == REG
7071 ? rld[r].out
7072 : rld[r].out_reg
7073 ? rld[r].out_reg
7074 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7075 int nregno = REGNO (out);
7076 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7077 : HARD_REGNO_NREGS (nregno,
7078 GET_MODE (rld[r].reg_rtx)));
7080 spill_reg_store[i] = new_spill_reg_store[i];
7081 spill_reg_stored_to[i] = out;
7082 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7084 /* If NREGNO is a hard register, it may occupy more than
7085 one register. If it does, say what is in the
7086 rest of the registers assuming that both registers
7087 agree on how many words the object takes. If not,
7088 invalidate the subsequent registers. */
7090 if (nregno < FIRST_PSEUDO_REGISTER)
7091 for (k = 1; k < nnr; k++)
7092 reg_last_reload_reg[nregno + k]
7093 = (nr == nnr
7094 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7095 : 0);
7097 /* Now do the inverse operation. */
7098 for (k = 0; k < nr; k++)
7100 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7101 reg_reloaded_contents[i + k]
7102 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7103 ? nregno
7104 : nregno + k);
7105 reg_reloaded_insn[i + k] = insn;
7106 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7107 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (out)))
7108 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7112 /* Maybe the spill reg contains a copy of reload_in. Only do
7113 something if there will not be an output reload for
7114 the register being reloaded. */
7115 else if (rld[r].out_reg == 0
7116 && rld[r].in != 0
7117 && ((GET_CODE (rld[r].in) == REG
7118 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7119 && ! reg_has_output_reload[REGNO (rld[r].in)])
7120 || (GET_CODE (rld[r].in_reg) == REG
7121 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
7122 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
7124 int nregno;
7125 int nnr;
7126 rtx in;
7128 if (GET_CODE (rld[r].in) == REG
7129 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7130 in = rld[r].in;
7131 else if (GET_CODE (rld[r].in_reg) == REG)
7132 in = rld[r].in_reg;
7133 else
7134 in = XEXP (rld[r].in_reg, 0);
7135 nregno = REGNO (in);
7137 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7138 : HARD_REGNO_NREGS (nregno,
7139 GET_MODE (rld[r].reg_rtx)));
7141 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7143 if (nregno < FIRST_PSEUDO_REGISTER)
7144 for (k = 1; k < nnr; k++)
7145 reg_last_reload_reg[nregno + k]
7146 = (nr == nnr
7147 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7148 : 0);
7150 /* Unless we inherited this reload, show we haven't
7151 recently done a store.
7152 Previous stores of inherited auto_inc expressions
7153 also have to be discarded. */
7154 if (! reload_inherited[r]
7155 || (rld[r].out && ! rld[r].out_reg))
7156 spill_reg_store[i] = 0;
7158 for (k = 0; k < nr; k++)
7160 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7161 reg_reloaded_contents[i + k]
7162 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7163 ? nregno
7164 : nregno + k);
7165 reg_reloaded_insn[i + k] = insn;
7166 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7167 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (in)))
7168 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7173 /* However, if part of the reload reaches the end, then we must
7174 invalidate the old info for the part that survives to the end. */
7175 else if (part_reaches_end)
7177 for (k = 0; k < nr; k++)
7178 if (reload_reg_reaches_end_p (i + k,
7179 rld[r].opnum,
7180 rld[r].when_needed))
7181 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7185 /* The following if-statement was #if 0'd in 1.34 (or before...).
7186 It's reenabled in 1.35 because supposedly nothing else
7187 deals with this problem. */
7189 /* If a register gets output-reloaded from a non-spill register,
7190 that invalidates any previous reloaded copy of it.
7191 But forget_old_reloads_1 won't get to see it, because
7192 it thinks only about the original insn. So invalidate it here. */
7193 if (i < 0 && rld[r].out != 0
7194 && (GET_CODE (rld[r].out) == REG
7195 || (GET_CODE (rld[r].out) == MEM
7196 && GET_CODE (rld[r].out_reg) == REG)))
7198 rtx out = (GET_CODE (rld[r].out) == REG
7199 ? rld[r].out : rld[r].out_reg);
7200 int nregno = REGNO (out);
7201 if (nregno >= FIRST_PSEUDO_REGISTER)
7203 rtx src_reg, store_insn = NULL_RTX;
7205 reg_last_reload_reg[nregno] = 0;
7207 /* If we can find a hard register that is stored, record
7208 the storing insn so that we may delete this insn with
7209 delete_output_reload. */
7210 src_reg = rld[r].reg_rtx;
7212 /* If this is an optional reload, try to find the source reg
7213 from an input reload. */
7214 if (! src_reg)
7216 rtx set = single_set (insn);
7217 if (set && SET_DEST (set) == rld[r].out)
7219 int k;
7221 src_reg = SET_SRC (set);
7222 store_insn = insn;
7223 for (k = 0; k < n_reloads; k++)
7225 if (rld[k].in == src_reg)
7227 src_reg = rld[k].reg_rtx;
7228 break;
7233 else
7234 store_insn = new_spill_reg_store[REGNO (src_reg)];
7235 if (src_reg && GET_CODE (src_reg) == REG
7236 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7238 int src_regno = REGNO (src_reg);
7239 int nr = HARD_REGNO_NREGS (src_regno, rld[r].mode);
7240 /* The place where to find a death note varies with
7241 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7242 necessarily checked exactly in the code that moves
7243 notes, so just check both locations. */
7244 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7245 if (! note && store_insn)
7246 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7247 while (nr-- > 0)
7249 spill_reg_store[src_regno + nr] = store_insn;
7250 spill_reg_stored_to[src_regno + nr] = out;
7251 reg_reloaded_contents[src_regno + nr] = nregno;
7252 reg_reloaded_insn[src_regno + nr] = store_insn;
7253 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7254 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7255 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + nr,
7256 GET_MODE (src_reg)))
7257 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7258 src_regno + nr);
7259 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7260 if (note)
7261 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7262 else
7263 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7265 reg_last_reload_reg[nregno] = src_reg;
7268 else
7270 int num_regs = HARD_REGNO_NREGS (nregno, GET_MODE (rld[r].out));
7272 while (num_regs-- > 0)
7273 reg_last_reload_reg[nregno + num_regs] = 0;
7277 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7280 /* Emit code to perform a reload from IN (which may be a reload register) to
7281 OUT (which may also be a reload register). IN or OUT is from operand
7282 OPNUM with reload type TYPE.
7284 Returns first insn emitted. */
7287 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
7289 rtx last = get_last_insn ();
7290 rtx tem;
7292 /* If IN is a paradoxical SUBREG, remove it and try to put the
7293 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7294 if (GET_CODE (in) == SUBREG
7295 && (GET_MODE_SIZE (GET_MODE (in))
7296 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7297 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7298 in = SUBREG_REG (in), out = tem;
7299 else if (GET_CODE (out) == SUBREG
7300 && (GET_MODE_SIZE (GET_MODE (out))
7301 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7302 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7303 out = SUBREG_REG (out), in = tem;
7305 /* How to do this reload can get quite tricky. Normally, we are being
7306 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7307 register that didn't get a hard register. In that case we can just
7308 call emit_move_insn.
7310 We can also be asked to reload a PLUS that adds a register or a MEM to
7311 another register, constant or MEM. This can occur during frame pointer
7312 elimination and while reloading addresses. This case is handled by
7313 trying to emit a single insn to perform the add. If it is not valid,
7314 we use a two insn sequence.
7316 Finally, we could be called to handle an 'o' constraint by putting
7317 an address into a register. In that case, we first try to do this
7318 with a named pattern of "reload_load_address". If no such pattern
7319 exists, we just emit a SET insn and hope for the best (it will normally
7320 be valid on machines that use 'o').
7322 This entire process is made complex because reload will never
7323 process the insns we generate here and so we must ensure that
7324 they will fit their constraints and also by the fact that parts of
7325 IN might be being reloaded separately and replaced with spill registers.
7326 Because of this, we are, in some sense, just guessing the right approach
7327 here. The one listed above seems to work.
7329 ??? At some point, this whole thing needs to be rethought. */
7331 if (GET_CODE (in) == PLUS
7332 && (GET_CODE (XEXP (in, 0)) == REG
7333 || GET_CODE (XEXP (in, 0)) == SUBREG
7334 || GET_CODE (XEXP (in, 0)) == MEM)
7335 && (GET_CODE (XEXP (in, 1)) == REG
7336 || GET_CODE (XEXP (in, 1)) == SUBREG
7337 || CONSTANT_P (XEXP (in, 1))
7338 || GET_CODE (XEXP (in, 1)) == MEM))
7340 /* We need to compute the sum of a register or a MEM and another
7341 register, constant, or MEM, and put it into the reload
7342 register. The best possible way of doing this is if the machine
7343 has a three-operand ADD insn that accepts the required operands.
7345 The simplest approach is to try to generate such an insn and see if it
7346 is recognized and matches its constraints. If so, it can be used.
7348 It might be better not to actually emit the insn unless it is valid,
7349 but we need to pass the insn as an operand to `recog' and
7350 `extract_insn' and it is simpler to emit and then delete the insn if
7351 not valid than to dummy things up. */
7353 rtx op0, op1, tem, insn;
7354 int code;
7356 op0 = find_replacement (&XEXP (in, 0));
7357 op1 = find_replacement (&XEXP (in, 1));
7359 /* Since constraint checking is strict, commutativity won't be
7360 checked, so we need to do that here to avoid spurious failure
7361 if the add instruction is two-address and the second operand
7362 of the add is the same as the reload reg, which is frequently
7363 the case. If the insn would be A = B + A, rearrange it so
7364 it will be A = A + B as constrain_operands expects. */
7366 if (GET_CODE (XEXP (in, 1)) == REG
7367 && REGNO (out) == REGNO (XEXP (in, 1)))
7368 tem = op0, op0 = op1, op1 = tem;
7370 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7371 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7373 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
7374 code = recog_memoized (insn);
7376 if (code >= 0)
7378 extract_insn (insn);
7379 /* We want constrain operands to treat this insn strictly in
7380 its validity determination, i.e., the way it would after reload
7381 has completed. */
7382 if (constrain_operands (1))
7383 return insn;
7386 delete_insns_since (last);
7388 /* If that failed, we must use a conservative two-insn sequence.
7390 Use a move to copy one operand into the reload register. Prefer
7391 to reload a constant, MEM or pseudo since the move patterns can
7392 handle an arbitrary operand. If OP1 is not a constant, MEM or
7393 pseudo and OP1 is not a valid operand for an add instruction, then
7394 reload OP1.
7396 After reloading one of the operands into the reload register, add
7397 the reload register to the output register.
7399 If there is another way to do this for a specific machine, a
7400 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7401 we emit below. */
7403 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7405 if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
7406 || (GET_CODE (op1) == REG
7407 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7408 || (code != CODE_FOR_nothing
7409 && ! ((*insn_data[code].operand[2].predicate)
7410 (op1, insn_data[code].operand[2].mode))))
7411 tem = op0, op0 = op1, op1 = tem;
7413 gen_reload (out, op0, opnum, type);
7415 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7416 This fixes a problem on the 32K where the stack pointer cannot
7417 be used as an operand of an add insn. */
7419 if (rtx_equal_p (op0, op1))
7420 op1 = out;
7422 insn = emit_insn (gen_add2_insn (out, op1));
7424 /* If that failed, copy the address register to the reload register.
7425 Then add the constant to the reload register. */
7427 code = recog_memoized (insn);
7429 if (code >= 0)
7431 extract_insn (insn);
7432 /* We want constrain operands to treat this insn strictly in
7433 its validity determination, i.e., the way it would after reload
7434 has completed. */
7435 if (constrain_operands (1))
7437 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7438 REG_NOTES (insn)
7439 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7440 return insn;
7444 delete_insns_since (last);
7446 gen_reload (out, op1, opnum, type);
7447 insn = emit_insn (gen_add2_insn (out, op0));
7448 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7451 #ifdef SECONDARY_MEMORY_NEEDED
7452 /* If we need a memory location to do the move, do it that way. */
7453 else if ((GET_CODE (in) == REG || GET_CODE (in) == SUBREG)
7454 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
7455 && (GET_CODE (out) == REG || GET_CODE (out) == SUBREG)
7456 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
7457 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
7458 REGNO_REG_CLASS (reg_or_subregno (out)),
7459 GET_MODE (out)))
7461 /* Get the memory to use and rewrite both registers to its mode. */
7462 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7464 if (GET_MODE (loc) != GET_MODE (out))
7465 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7467 if (GET_MODE (loc) != GET_MODE (in))
7468 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7470 gen_reload (loc, in, opnum, type);
7471 gen_reload (out, loc, opnum, type);
7473 #endif
7475 /* If IN is a simple operand, use gen_move_insn. */
7476 else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
7477 emit_insn (gen_move_insn (out, in));
7479 #ifdef HAVE_reload_load_address
7480 else if (HAVE_reload_load_address)
7481 emit_insn (gen_reload_load_address (out, in));
7482 #endif
7484 /* Otherwise, just write (set OUT IN) and hope for the best. */
7485 else
7486 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7488 /* Return the first insn emitted.
7489 We can not just return get_last_insn, because there may have
7490 been multiple instructions emitted. Also note that gen_move_insn may
7491 emit more than one insn itself, so we can not assume that there is one
7492 insn emitted per emit_insn_before call. */
7494 return last ? NEXT_INSN (last) : get_insns ();
7497 /* Delete a previously made output-reload whose result we now believe
7498 is not needed. First we double-check.
7500 INSN is the insn now being processed.
7501 LAST_RELOAD_REG is the hard register number for which we want to delete
7502 the last output reload.
7503 J is the reload-number that originally used REG. The caller has made
7504 certain that reload J doesn't use REG any longer for input. */
7506 static void
7507 delete_output_reload (rtx insn, int j, int last_reload_reg)
7509 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7510 rtx reg = spill_reg_stored_to[last_reload_reg];
7511 int k;
7512 int n_occurrences;
7513 int n_inherited = 0;
7514 rtx i1;
7515 rtx substed;
7517 /* It is possible that this reload has been only used to set another reload
7518 we eliminated earlier and thus deleted this instruction too. */
7519 if (INSN_DELETED_P (output_reload_insn))
7520 return;
7522 /* Get the raw pseudo-register referred to. */
7524 while (GET_CODE (reg) == SUBREG)
7525 reg = SUBREG_REG (reg);
7526 substed = reg_equiv_memory_loc[REGNO (reg)];
7528 /* This is unsafe if the operand occurs more often in the current
7529 insn than it is inherited. */
7530 for (k = n_reloads - 1; k >= 0; k--)
7532 rtx reg2 = rld[k].in;
7533 if (! reg2)
7534 continue;
7535 if (GET_CODE (reg2) == MEM || reload_override_in[k])
7536 reg2 = rld[k].in_reg;
7537 #ifdef AUTO_INC_DEC
7538 if (rld[k].out && ! rld[k].out_reg)
7539 reg2 = XEXP (rld[k].in_reg, 0);
7540 #endif
7541 while (GET_CODE (reg2) == SUBREG)
7542 reg2 = SUBREG_REG (reg2);
7543 if (rtx_equal_p (reg2, reg))
7545 if (reload_inherited[k] || reload_override_in[k] || k == j)
7547 n_inherited++;
7548 reg2 = rld[k].out_reg;
7549 if (! reg2)
7550 continue;
7551 while (GET_CODE (reg2) == SUBREG)
7552 reg2 = XEXP (reg2, 0);
7553 if (rtx_equal_p (reg2, reg))
7554 n_inherited++;
7556 else
7557 return;
7560 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7561 if (substed)
7562 n_occurrences += count_occurrences (PATTERN (insn),
7563 eliminate_regs (substed, 0,
7564 NULL_RTX), 0);
7565 if (n_occurrences > n_inherited)
7566 return;
7568 /* If the pseudo-reg we are reloading is no longer referenced
7569 anywhere between the store into it and here,
7570 and no jumps or labels intervene, then the value can get
7571 here through the reload reg alone.
7572 Otherwise, give up--return. */
7573 for (i1 = NEXT_INSN (output_reload_insn);
7574 i1 != insn; i1 = NEXT_INSN (i1))
7576 if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
7577 return;
7578 if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
7579 && reg_mentioned_p (reg, PATTERN (i1)))
7581 /* If this is USE in front of INSN, we only have to check that
7582 there are no more references than accounted for by inheritance. */
7583 while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE)
7585 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7586 i1 = NEXT_INSN (i1);
7588 if (n_occurrences <= n_inherited && i1 == insn)
7589 break;
7590 return;
7594 /* We will be deleting the insn. Remove the spill reg information. */
7595 for (k = HARD_REGNO_NREGS (last_reload_reg, GET_MODE (reg)); k-- > 0; )
7597 spill_reg_store[last_reload_reg + k] = 0;
7598 spill_reg_stored_to[last_reload_reg + k] = 0;
7601 /* The caller has already checked that REG dies or is set in INSN.
7602 It has also checked that we are optimizing, and thus some
7603 inaccuracies in the debugging information are acceptable.
7604 So we could just delete output_reload_insn. But in some cases
7605 we can improve the debugging information without sacrificing
7606 optimization - maybe even improving the code: See if the pseudo
7607 reg has been completely replaced with reload regs. If so, delete
7608 the store insn and forget we had a stack slot for the pseudo. */
7609 if (rld[j].out != rld[j].in
7610 && REG_N_DEATHS (REGNO (reg)) == 1
7611 && REG_N_SETS (REGNO (reg)) == 1
7612 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7613 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7615 rtx i2;
7617 /* We know that it was used only between here and the beginning of
7618 the current basic block. (We also know that the last use before
7619 INSN was the output reload we are thinking of deleting, but never
7620 mind that.) Search that range; see if any ref remains. */
7621 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7623 rtx set = single_set (i2);
7625 /* Uses which just store in the pseudo don't count,
7626 since if they are the only uses, they are dead. */
7627 if (set != 0 && SET_DEST (set) == reg)
7628 continue;
7629 if (GET_CODE (i2) == CODE_LABEL
7630 || GET_CODE (i2) == JUMP_INSN)
7631 break;
7632 if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
7633 && reg_mentioned_p (reg, PATTERN (i2)))
7635 /* Some other ref remains; just delete the output reload we
7636 know to be dead. */
7637 delete_address_reloads (output_reload_insn, insn);
7638 delete_insn (output_reload_insn);
7639 return;
7643 /* Delete the now-dead stores into this pseudo. Note that this
7644 loop also takes care of deleting output_reload_insn. */
7645 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7647 rtx set = single_set (i2);
7649 if (set != 0 && SET_DEST (set) == reg)
7651 delete_address_reloads (i2, insn);
7652 delete_insn (i2);
7654 if (GET_CODE (i2) == CODE_LABEL
7655 || GET_CODE (i2) == JUMP_INSN)
7656 break;
7659 /* For the debugging info, say the pseudo lives in this reload reg. */
7660 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
7661 alter_reg (REGNO (reg), -1);
7663 else
7665 delete_address_reloads (output_reload_insn, insn);
7666 delete_insn (output_reload_insn);
7670 /* We are going to delete DEAD_INSN. Recursively delete loads of
7671 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7672 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7673 static void
7674 delete_address_reloads (rtx dead_insn, rtx current_insn)
7676 rtx set = single_set (dead_insn);
7677 rtx set2, dst, prev, next;
7678 if (set)
7680 rtx dst = SET_DEST (set);
7681 if (GET_CODE (dst) == MEM)
7682 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7684 /* If we deleted the store from a reloaded post_{in,de}c expression,
7685 we can delete the matching adds. */
7686 prev = PREV_INSN (dead_insn);
7687 next = NEXT_INSN (dead_insn);
7688 if (! prev || ! next)
7689 return;
7690 set = single_set (next);
7691 set2 = single_set (prev);
7692 if (! set || ! set2
7693 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7694 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7695 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7696 return;
7697 dst = SET_DEST (set);
7698 if (! rtx_equal_p (dst, SET_DEST (set2))
7699 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7700 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7701 || (INTVAL (XEXP (SET_SRC (set), 1))
7702 != -INTVAL (XEXP (SET_SRC (set2), 1))))
7703 return;
7704 delete_related_insns (prev);
7705 delete_related_insns (next);
7708 /* Subfunction of delete_address_reloads: process registers found in X. */
7709 static void
7710 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
7712 rtx prev, set, dst, i2;
7713 int i, j;
7714 enum rtx_code code = GET_CODE (x);
7716 if (code != REG)
7718 const char *fmt = GET_RTX_FORMAT (code);
7719 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7721 if (fmt[i] == 'e')
7722 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7723 else if (fmt[i] == 'E')
7725 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7726 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7727 current_insn);
7730 return;
7733 if (spill_reg_order[REGNO (x)] < 0)
7734 return;
7736 /* Scan backwards for the insn that sets x. This might be a way back due
7737 to inheritance. */
7738 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7740 code = GET_CODE (prev);
7741 if (code == CODE_LABEL || code == JUMP_INSN)
7742 return;
7743 if (GET_RTX_CLASS (code) != 'i')
7744 continue;
7745 if (reg_set_p (x, PATTERN (prev)))
7746 break;
7747 if (reg_referenced_p (x, PATTERN (prev)))
7748 return;
7750 if (! prev || INSN_UID (prev) < reload_first_uid)
7751 return;
7752 /* Check that PREV only sets the reload register. */
7753 set = single_set (prev);
7754 if (! set)
7755 return;
7756 dst = SET_DEST (set);
7757 if (GET_CODE (dst) != REG
7758 || ! rtx_equal_p (dst, x))
7759 return;
7760 if (! reg_set_p (dst, PATTERN (dead_insn)))
7762 /* Check if DST was used in a later insn -
7763 it might have been inherited. */
7764 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
7766 if (GET_CODE (i2) == CODE_LABEL)
7767 break;
7768 if (! INSN_P (i2))
7769 continue;
7770 if (reg_referenced_p (dst, PATTERN (i2)))
7772 /* If there is a reference to the register in the current insn,
7773 it might be loaded in a non-inherited reload. If no other
7774 reload uses it, that means the register is set before
7775 referenced. */
7776 if (i2 == current_insn)
7778 for (j = n_reloads - 1; j >= 0; j--)
7779 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7780 || reload_override_in[j] == dst)
7781 return;
7782 for (j = n_reloads - 1; j >= 0; j--)
7783 if (rld[j].in && rld[j].reg_rtx == dst)
7784 break;
7785 if (j >= 0)
7786 break;
7788 return;
7790 if (GET_CODE (i2) == JUMP_INSN)
7791 break;
7792 /* If DST is still live at CURRENT_INSN, check if it is used for
7793 any reload. Note that even if CURRENT_INSN sets DST, we still
7794 have to check the reloads. */
7795 if (i2 == current_insn)
7797 for (j = n_reloads - 1; j >= 0; j--)
7798 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7799 || reload_override_in[j] == dst)
7800 return;
7801 /* ??? We can't finish the loop here, because dst might be
7802 allocated to a pseudo in this block if no reload in this
7803 block needs any of the classes containing DST - see
7804 spill_hard_reg. There is no easy way to tell this, so we
7805 have to scan till the end of the basic block. */
7807 if (reg_set_p (dst, PATTERN (i2)))
7808 break;
7811 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
7812 reg_reloaded_contents[REGNO (dst)] = -1;
7813 delete_insn (prev);
7816 /* Output reload-insns to reload VALUE into RELOADREG.
7817 VALUE is an autoincrement or autodecrement RTX whose operand
7818 is a register or memory location;
7819 so reloading involves incrementing that location.
7820 IN is either identical to VALUE, or some cheaper place to reload from.
7822 INC_AMOUNT is the number to increment or decrement by (always positive).
7823 This cannot be deduced from VALUE.
7825 Return the instruction that stores into RELOADREG. */
7827 static rtx
7828 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
7830 /* REG or MEM to be copied and incremented. */
7831 rtx incloc = XEXP (value, 0);
7832 /* Nonzero if increment after copying. */
7833 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
7834 rtx last;
7835 rtx inc;
7836 rtx add_insn;
7837 int code;
7838 rtx store;
7839 rtx real_in = in == value ? XEXP (in, 0) : in;
7841 /* No hard register is equivalent to this register after
7842 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
7843 we could inc/dec that register as well (maybe even using it for
7844 the source), but I'm not sure it's worth worrying about. */
7845 if (GET_CODE (incloc) == REG)
7846 reg_last_reload_reg[REGNO (incloc)] = 0;
7848 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
7849 inc_amount = -inc_amount;
7851 inc = GEN_INT (inc_amount);
7853 /* If this is post-increment, first copy the location to the reload reg. */
7854 if (post && real_in != reloadreg)
7855 emit_insn (gen_move_insn (reloadreg, real_in));
7857 if (in == value)
7859 /* See if we can directly increment INCLOC. Use a method similar to
7860 that in gen_reload. */
7862 last = get_last_insn ();
7863 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
7864 gen_rtx_PLUS (GET_MODE (incloc),
7865 incloc, inc)));
7867 code = recog_memoized (add_insn);
7868 if (code >= 0)
7870 extract_insn (add_insn);
7871 if (constrain_operands (1))
7873 /* If this is a pre-increment and we have incremented the value
7874 where it lives, copy the incremented value to RELOADREG to
7875 be used as an address. */
7877 if (! post)
7878 emit_insn (gen_move_insn (reloadreg, incloc));
7880 return add_insn;
7883 delete_insns_since (last);
7886 /* If couldn't do the increment directly, must increment in RELOADREG.
7887 The way we do this depends on whether this is pre- or post-increment.
7888 For pre-increment, copy INCLOC to the reload register, increment it
7889 there, then save back. */
7891 if (! post)
7893 if (in != reloadreg)
7894 emit_insn (gen_move_insn (reloadreg, real_in));
7895 emit_insn (gen_add2_insn (reloadreg, inc));
7896 store = emit_insn (gen_move_insn (incloc, reloadreg));
7898 else
7900 /* Postincrement.
7901 Because this might be a jump insn or a compare, and because RELOADREG
7902 may not be available after the insn in an input reload, we must do
7903 the incrementation before the insn being reloaded for.
7905 We have already copied IN to RELOADREG. Increment the copy in
7906 RELOADREG, save that back, then decrement RELOADREG so it has
7907 the original value. */
7909 emit_insn (gen_add2_insn (reloadreg, inc));
7910 store = emit_insn (gen_move_insn (incloc, reloadreg));
7911 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
7914 return store;
7917 #ifdef AUTO_INC_DEC
7918 static void
7919 add_auto_inc_notes (rtx insn, rtx x)
7921 enum rtx_code code = GET_CODE (x);
7922 const char *fmt;
7923 int i, j;
7925 if (code == MEM && auto_inc_p (XEXP (x, 0)))
7927 REG_NOTES (insn)
7928 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
7929 return;
7932 /* Scan all the operand sub-expressions. */
7933 fmt = GET_RTX_FORMAT (code);
7934 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7936 if (fmt[i] == 'e')
7937 add_auto_inc_notes (insn, XEXP (x, i));
7938 else if (fmt[i] == 'E')
7939 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7940 add_auto_inc_notes (insn, XVECEXP (x, i, j));
7943 #endif
7945 /* Copy EH notes from an insn to its reloads. */
7946 static void
7947 copy_eh_notes (rtx insn, rtx x)
7949 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
7950 if (eh_note)
7952 for (; x != 0; x = NEXT_INSN (x))
7954 if (may_trap_p (PATTERN (x)))
7955 REG_NOTES (x)
7956 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
7957 REG_NOTES (x));
7962 /* This is used by reload pass, that does emit some instructions after
7963 abnormal calls moving basic block end, but in fact it wants to emit
7964 them on the edge. Looks for abnormal call edges, find backward the
7965 proper call and fix the damage.
7967 Similar handle instructions throwing exceptions internally. */
7968 void
7969 fixup_abnormal_edges (void)
7971 bool inserted = false;
7972 basic_block bb;
7974 FOR_EACH_BB (bb)
7976 edge e;
7978 /* Look for cases we are interested in - calls or instructions causing
7979 exceptions. */
7980 for (e = bb->succ; e; e = e->succ_next)
7982 if (e->flags & EDGE_ABNORMAL_CALL)
7983 break;
7984 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
7985 == (EDGE_ABNORMAL | EDGE_EH))
7986 break;
7988 if (e && GET_CODE (BB_END (bb)) != CALL_INSN
7989 && !can_throw_internal (BB_END (bb)))
7991 rtx insn = BB_END (bb), stop = NEXT_INSN (BB_END (bb));
7992 rtx next;
7993 for (e = bb->succ; e; e = e->succ_next)
7994 if (e->flags & EDGE_FALLTHRU)
7995 break;
7996 /* Get past the new insns generated. Allow notes, as the insns may
7997 be already deleted. */
7998 while ((GET_CODE (insn) == INSN || GET_CODE (insn) == NOTE)
7999 && !can_throw_internal (insn)
8000 && insn != BB_HEAD (bb))
8001 insn = PREV_INSN (insn);
8002 if (GET_CODE (insn) != CALL_INSN && !can_throw_internal (insn))
8003 abort ();
8004 BB_END (bb) = insn;
8005 inserted = true;
8006 insn = NEXT_INSN (insn);
8007 while (insn && insn != stop)
8009 next = NEXT_INSN (insn);
8010 if (INSN_P (insn))
8012 delete_insn (insn);
8014 /* Sometimes there's still the return value USE.
8015 If it's placed after a trapping call (i.e. that
8016 call is the last insn anyway), we have no fallthru
8017 edge. Simply delete this use and don't try to insert
8018 on the non-existent edge. */
8019 if (GET_CODE (PATTERN (insn)) != USE)
8021 /* We're not deleting it, we're moving it. */
8022 INSN_DELETED_P (insn) = 0;
8023 PREV_INSN (insn) = NULL_RTX;
8024 NEXT_INSN (insn) = NULL_RTX;
8026 insert_insn_on_edge (insn, e);
8029 insn = next;
8033 /* We've possibly turned single trapping insn into multiple ones. */
8034 if (flag_non_call_exceptions)
8036 sbitmap blocks;
8037 blocks = sbitmap_alloc (last_basic_block);
8038 sbitmap_ones (blocks);
8039 find_many_sub_basic_blocks (blocks);
8041 if (inserted)
8042 commit_edge_insertions ();