2003-12-26 Guilhem Lavaux <guilhem@kaffe.org>
[official-gcc.git] / gcc / reload.c
blob13f6900ce3d500f807a95c0346b35028b057ddc8
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
57 NOTE SIDE EFFECTS:
59 find_reloads can alter the operands of the instruction it is called on.
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
69 1 happens every time find_reloads is called.
70 2 happens only when REPLACE is 1, which is only when
71 actually doing the reloads, not when just counting them.
73 Using a reload register for several reloads in one insn:
75 When an insn has reloads, it is considered as having three parts:
76 the input reloads, the insn itself after reloading, and the output reloads.
77 Reloads of values used in memory addresses are often needed for only one part.
79 When this is so, reload_when_needed records which part needs the reload.
80 Two reloads for different parts of the insn can share the same reload
81 register.
83 When a reload is used for addresses in multiple parts, or when it is
84 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
85 a register with any other reload. */
87 #define REG_OK_STRICT
89 #include "config.h"
90 #include "system.h"
91 #include "coretypes.h"
92 #include "tm.h"
93 #include "rtl.h"
94 #include "tm_p.h"
95 #include "insn-config.h"
96 #include "expr.h"
97 #include "optabs.h"
98 #include "recog.h"
99 #include "reload.h"
100 #include "regs.h"
101 #include "hard-reg-set.h"
102 #include "flags.h"
103 #include "real.h"
104 #include "output.h"
105 #include "function.h"
106 #include "toplev.h"
108 #ifndef REGNO_MODE_OK_FOR_BASE_P
109 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
110 #endif
112 #ifndef REG_MODE_OK_FOR_BASE_P
113 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
114 #endif
116 /* All reloads of the current insn are recorded here. See reload.h for
117 comments. */
118 int n_reloads;
119 struct reload rld[MAX_RELOADS];
121 /* All the "earlyclobber" operands of the current insn
122 are recorded here. */
123 int n_earlyclobbers;
124 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
126 int reload_n_operands;
128 /* Replacing reloads.
130 If `replace_reloads' is nonzero, then as each reload is recorded
131 an entry is made for it in the table `replacements'.
132 Then later `subst_reloads' can look through that table and
133 perform all the replacements needed. */
135 /* Nonzero means record the places to replace. */
136 static int replace_reloads;
138 /* Each replacement is recorded with a structure like this. */
139 struct replacement
141 rtx *where; /* Location to store in */
142 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
143 a SUBREG; 0 otherwise. */
144 int what; /* which reload this is for */
145 enum machine_mode mode; /* mode it must have */
148 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
150 /* Number of replacements currently recorded. */
151 static int n_replacements;
153 /* Used to track what is modified by an operand. */
154 struct decomposition
156 int reg_flag; /* Nonzero if referencing a register. */
157 int safe; /* Nonzero if this can't conflict with anything. */
158 rtx base; /* Base address for MEM. */
159 HOST_WIDE_INT start; /* Starting offset or register number. */
160 HOST_WIDE_INT end; /* Ending offset or register number. */
163 #ifdef SECONDARY_MEMORY_NEEDED
165 /* Save MEMs needed to copy from one class of registers to another. One MEM
166 is used per mode, but normally only one or two modes are ever used.
168 We keep two versions, before and after register elimination. The one
169 after register elimination is record separately for each operand. This
170 is done in case the address is not valid to be sure that we separately
171 reload each. */
173 static rtx secondary_memlocs[NUM_MACHINE_MODES];
174 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
175 #endif
177 /* The instruction we are doing reloads for;
178 so we can test whether a register dies in it. */
179 static rtx this_insn;
181 /* Nonzero if this instruction is a user-specified asm with operands. */
182 static int this_insn_is_asm;
184 /* If hard_regs_live_known is nonzero,
185 we can tell which hard regs are currently live,
186 at least enough to succeed in choosing dummy reloads. */
187 static int hard_regs_live_known;
189 /* Indexed by hard reg number,
190 element is nonnegative if hard reg has been spilled.
191 This vector is passed to `find_reloads' as an argument
192 and is not changed here. */
193 static short *static_reload_reg_p;
195 /* Set to 1 in subst_reg_equivs if it changes anything. */
196 static int subst_reg_equivs_changed;
198 /* On return from push_reload, holds the reload-number for the OUT
199 operand, which can be different for that from the input operand. */
200 static int output_reloadnum;
202 /* Compare two RTX's. */
203 #define MATCHES(x, y) \
204 (x == y || (x != 0 && (GET_CODE (x) == REG \
205 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
206 : rtx_equal_p (x, y) && ! side_effects_p (x))))
208 /* Indicates if two reloads purposes are for similar enough things that we
209 can merge their reloads. */
210 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
211 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
212 || ((when1) == (when2) && (op1) == (op2)) \
213 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
214 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
215 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
216 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
217 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
219 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
220 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
221 ((when1) != (when2) \
222 || ! ((op1) == (op2) \
223 || (when1) == RELOAD_FOR_INPUT \
224 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
225 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
227 /* If we are going to reload an address, compute the reload type to
228 use. */
229 #define ADDR_TYPE(type) \
230 ((type) == RELOAD_FOR_INPUT_ADDRESS \
231 ? RELOAD_FOR_INPADDR_ADDRESS \
232 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
233 ? RELOAD_FOR_OUTADDR_ADDRESS \
234 : (type)))
236 #ifdef HAVE_SECONDARY_RELOADS
237 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
238 enum machine_mode, enum reload_type,
239 enum insn_code *);
240 #endif
241 static enum reg_class find_valid_class (enum machine_mode, int, unsigned int);
242 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
243 static void push_replacement (rtx *, int, enum machine_mode);
244 static void dup_replacements (rtx *, rtx *);
245 static void combine_reloads (void);
246 static int find_reusable_reload (rtx *, rtx, enum reg_class,
247 enum reload_type, int, int);
248 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
249 enum machine_mode, enum reg_class, int, int);
250 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
251 static struct decomposition decompose (rtx);
252 static int immune_p (rtx, rtx, struct decomposition);
253 static int alternative_allows_memconst (const char *, int);
254 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
255 int *);
256 static rtx make_memloc (rtx, int);
257 static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
258 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
259 int, enum reload_type, int, rtx);
260 static rtx subst_reg_equivs (rtx, rtx);
261 static rtx subst_indexed_address (rtx);
262 static void update_auto_inc_notes (rtx, int, int);
263 static int find_reloads_address_1 (enum machine_mode, rtx, int, rtx *,
264 int, enum reload_type,int, rtx);
265 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
266 enum machine_mode, int,
267 enum reload_type, int);
268 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
269 int, rtx);
270 static void copy_replacements_1 (rtx *, rtx *, int);
271 static int find_inc_amount (rtx, rtx);
273 #ifdef HAVE_SECONDARY_RELOADS
275 /* Determine if any secondary reloads are needed for loading (if IN_P is
276 nonzero) or storing (if IN_P is zero) X to or from a reload register of
277 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
278 are needed, push them.
280 Return the reload number of the secondary reload we made, or -1 if
281 we didn't need one. *PICODE is set to the insn_code to use if we do
282 need a secondary reload. */
284 static int
285 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
286 enum reg_class reload_class,
287 enum machine_mode reload_mode, enum reload_type type,
288 enum insn_code *picode)
290 enum reg_class class = NO_REGS;
291 enum machine_mode mode = reload_mode;
292 enum insn_code icode = CODE_FOR_nothing;
293 enum reg_class t_class = NO_REGS;
294 enum machine_mode t_mode = VOIDmode;
295 enum insn_code t_icode = CODE_FOR_nothing;
296 enum reload_type secondary_type;
297 int s_reload, t_reload = -1;
299 if (type == RELOAD_FOR_INPUT_ADDRESS
300 || type == RELOAD_FOR_OUTPUT_ADDRESS
301 || type == RELOAD_FOR_INPADDR_ADDRESS
302 || type == RELOAD_FOR_OUTADDR_ADDRESS)
303 secondary_type = type;
304 else
305 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
307 *picode = CODE_FOR_nothing;
309 /* If X is a paradoxical SUBREG, use the inner value to determine both the
310 mode and object being reloaded. */
311 if (GET_CODE (x) == SUBREG
312 && (GET_MODE_SIZE (GET_MODE (x))
313 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
315 x = SUBREG_REG (x);
316 reload_mode = GET_MODE (x);
319 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
320 is still a pseudo-register by now, it *must* have an equivalent MEM
321 but we don't want to assume that), use that equivalent when seeing if
322 a secondary reload is needed since whether or not a reload is needed
323 might be sensitive to the form of the MEM. */
325 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
326 && reg_equiv_mem[REGNO (x)] != 0)
327 x = reg_equiv_mem[REGNO (x)];
329 #ifdef SECONDARY_INPUT_RELOAD_CLASS
330 if (in_p)
331 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
332 #endif
334 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
335 if (! in_p)
336 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
337 #endif
339 /* If we don't need any secondary registers, done. */
340 if (class == NO_REGS)
341 return -1;
343 /* Get a possible insn to use. If the predicate doesn't accept X, don't
344 use the insn. */
346 icode = (in_p ? reload_in_optab[(int) reload_mode]
347 : reload_out_optab[(int) reload_mode]);
349 if (icode != CODE_FOR_nothing
350 && insn_data[(int) icode].operand[in_p].predicate
351 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
352 icode = CODE_FOR_nothing;
354 /* If we will be using an insn, see if it can directly handle the reload
355 register we will be using. If it can, the secondary reload is for a
356 scratch register. If it can't, we will use the secondary reload for
357 an intermediate register and require a tertiary reload for the scratch
358 register. */
360 if (icode != CODE_FOR_nothing)
362 /* If IN_P is nonzero, the reload register will be the output in
363 operand 0. If IN_P is zero, the reload register will be the input
364 in operand 1. Outputs should have an initial "=", which we must
365 skip. */
367 enum reg_class insn_class;
369 if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
370 insn_class = ALL_REGS;
371 else
373 const char *insn_constraint
374 = &insn_data[(int) icode].operand[!in_p].constraint[in_p];
375 char insn_letter = *insn_constraint;
376 insn_class
377 = (insn_letter == 'r' ? GENERAL_REGS
378 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) insn_letter,
379 insn_constraint));
381 if (insn_class == NO_REGS)
382 abort ();
383 if (in_p
384 && insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
385 abort ();
388 /* The scratch register's constraint must start with "=&". */
389 if (insn_data[(int) icode].operand[2].constraint[0] != '='
390 || insn_data[(int) icode].operand[2].constraint[1] != '&')
391 abort ();
393 if (reg_class_subset_p (reload_class, insn_class))
394 mode = insn_data[(int) icode].operand[2].mode;
395 else
397 const char *t_constraint
398 = &insn_data[(int) icode].operand[2].constraint[2];
399 char t_letter = *t_constraint;
400 class = insn_class;
401 t_mode = insn_data[(int) icode].operand[2].mode;
402 t_class = (t_letter == 'r' ? GENERAL_REGS
403 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) t_letter,
404 t_constraint));
405 t_icode = icode;
406 icode = CODE_FOR_nothing;
410 /* This case isn't valid, so fail. Reload is allowed to use the same
411 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
412 in the case of a secondary register, we actually need two different
413 registers for correct code. We fail here to prevent the possibility of
414 silently generating incorrect code later.
416 The convention is that secondary input reloads are valid only if the
417 secondary_class is different from class. If you have such a case, you
418 can not use secondary reloads, you must work around the problem some
419 other way.
421 Allow this when a reload_in/out pattern is being used. I.e. assume
422 that the generated code handles this case. */
424 if (in_p && class == reload_class && icode == CODE_FOR_nothing
425 && t_icode == CODE_FOR_nothing)
426 abort ();
428 /* If we need a tertiary reload, see if we have one we can reuse or else
429 make a new one. */
431 if (t_class != NO_REGS)
433 for (t_reload = 0; t_reload < n_reloads; t_reload++)
434 if (rld[t_reload].secondary_p
435 && (reg_class_subset_p (t_class, rld[t_reload].class)
436 || reg_class_subset_p (rld[t_reload].class, t_class))
437 && ((in_p && rld[t_reload].inmode == t_mode)
438 || (! in_p && rld[t_reload].outmode == t_mode))
439 && ((in_p && (rld[t_reload].secondary_in_icode
440 == CODE_FOR_nothing))
441 || (! in_p &&(rld[t_reload].secondary_out_icode
442 == CODE_FOR_nothing)))
443 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
444 && MERGABLE_RELOADS (secondary_type,
445 rld[t_reload].when_needed,
446 opnum, rld[t_reload].opnum))
448 if (in_p)
449 rld[t_reload].inmode = t_mode;
450 if (! in_p)
451 rld[t_reload].outmode = t_mode;
453 if (reg_class_subset_p (t_class, rld[t_reload].class))
454 rld[t_reload].class = t_class;
456 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
457 rld[t_reload].optional &= optional;
458 rld[t_reload].secondary_p = 1;
459 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
460 opnum, rld[t_reload].opnum))
461 rld[t_reload].when_needed = RELOAD_OTHER;
464 if (t_reload == n_reloads)
466 /* We need to make a new tertiary reload for this register class. */
467 rld[t_reload].in = rld[t_reload].out = 0;
468 rld[t_reload].class = t_class;
469 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
470 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
471 rld[t_reload].reg_rtx = 0;
472 rld[t_reload].optional = optional;
473 rld[t_reload].inc = 0;
474 /* Maybe we could combine these, but it seems too tricky. */
475 rld[t_reload].nocombine = 1;
476 rld[t_reload].in_reg = 0;
477 rld[t_reload].out_reg = 0;
478 rld[t_reload].opnum = opnum;
479 rld[t_reload].when_needed = secondary_type;
480 rld[t_reload].secondary_in_reload = -1;
481 rld[t_reload].secondary_out_reload = -1;
482 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
483 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
484 rld[t_reload].secondary_p = 1;
486 n_reloads++;
490 /* See if we can reuse an existing secondary reload. */
491 for (s_reload = 0; s_reload < n_reloads; s_reload++)
492 if (rld[s_reload].secondary_p
493 && (reg_class_subset_p (class, rld[s_reload].class)
494 || reg_class_subset_p (rld[s_reload].class, class))
495 && ((in_p && rld[s_reload].inmode == mode)
496 || (! in_p && rld[s_reload].outmode == mode))
497 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
498 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
499 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
500 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
501 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
502 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
503 opnum, rld[s_reload].opnum))
505 if (in_p)
506 rld[s_reload].inmode = mode;
507 if (! in_p)
508 rld[s_reload].outmode = mode;
510 if (reg_class_subset_p (class, rld[s_reload].class))
511 rld[s_reload].class = class;
513 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
514 rld[s_reload].optional &= optional;
515 rld[s_reload].secondary_p = 1;
516 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
517 opnum, rld[s_reload].opnum))
518 rld[s_reload].when_needed = RELOAD_OTHER;
521 if (s_reload == n_reloads)
523 #ifdef SECONDARY_MEMORY_NEEDED
524 /* If we need a memory location to copy between the two reload regs,
525 set it up now. Note that we do the input case before making
526 the reload and the output case after. This is due to the
527 way reloads are output. */
529 if (in_p && icode == CODE_FOR_nothing
530 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
532 get_secondary_mem (x, reload_mode, opnum, type);
534 /* We may have just added new reloads. Make sure we add
535 the new reload at the end. */
536 s_reload = n_reloads;
538 #endif
540 /* We need to make a new secondary reload for this register class. */
541 rld[s_reload].in = rld[s_reload].out = 0;
542 rld[s_reload].class = class;
544 rld[s_reload].inmode = in_p ? mode : VOIDmode;
545 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
546 rld[s_reload].reg_rtx = 0;
547 rld[s_reload].optional = optional;
548 rld[s_reload].inc = 0;
549 /* Maybe we could combine these, but it seems too tricky. */
550 rld[s_reload].nocombine = 1;
551 rld[s_reload].in_reg = 0;
552 rld[s_reload].out_reg = 0;
553 rld[s_reload].opnum = opnum;
554 rld[s_reload].when_needed = secondary_type;
555 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
556 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
557 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
558 rld[s_reload].secondary_out_icode
559 = ! in_p ? t_icode : CODE_FOR_nothing;
560 rld[s_reload].secondary_p = 1;
562 n_reloads++;
564 #ifdef SECONDARY_MEMORY_NEEDED
565 if (! in_p && icode == CODE_FOR_nothing
566 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
567 get_secondary_mem (x, mode, opnum, type);
568 #endif
571 *picode = icode;
572 return s_reload;
574 #endif /* HAVE_SECONDARY_RELOADS */
576 #ifdef SECONDARY_MEMORY_NEEDED
578 /* Return a memory location that will be used to copy X in mode MODE.
579 If we haven't already made a location for this mode in this insn,
580 call find_reloads_address on the location being returned. */
583 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
584 int opnum, enum reload_type type)
586 rtx loc;
587 int mem_valid;
589 /* By default, if MODE is narrower than a word, widen it to a word.
590 This is required because most machines that require these memory
591 locations do not support short load and stores from all registers
592 (e.g., FP registers). */
594 #ifdef SECONDARY_MEMORY_NEEDED_MODE
595 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
596 #else
597 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
598 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
599 #endif
601 /* If we already have made a MEM for this operand in MODE, return it. */
602 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
603 return secondary_memlocs_elim[(int) mode][opnum];
605 /* If this is the first time we've tried to get a MEM for this mode,
606 allocate a new one. `something_changed' in reload will get set
607 by noticing that the frame size has changed. */
609 if (secondary_memlocs[(int) mode] == 0)
611 #ifdef SECONDARY_MEMORY_NEEDED_RTX
612 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
613 #else
614 secondary_memlocs[(int) mode]
615 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
616 #endif
619 /* Get a version of the address doing any eliminations needed. If that
620 didn't give us a new MEM, make a new one if it isn't valid. */
622 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
623 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
625 if (! mem_valid && loc == secondary_memlocs[(int) mode])
626 loc = copy_rtx (loc);
628 /* The only time the call below will do anything is if the stack
629 offset is too large. In that case IND_LEVELS doesn't matter, so we
630 can just pass a zero. Adjust the type to be the address of the
631 corresponding object. If the address was valid, save the eliminated
632 address. If it wasn't valid, we need to make a reload each time, so
633 don't save it. */
635 if (! mem_valid)
637 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
638 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
639 : RELOAD_OTHER);
641 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
642 opnum, type, 0, 0);
645 secondary_memlocs_elim[(int) mode][opnum] = loc;
646 return loc;
649 /* Clear any secondary memory locations we've made. */
651 void
652 clear_secondary_mem (void)
654 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
656 #endif /* SECONDARY_MEMORY_NEEDED */
658 /* Find the largest class for which every register number plus N is valid in
659 M1 (if in range) and is cheap to move into REGNO.
660 Abort if no such class exists. */
662 static enum reg_class
663 find_valid_class (enum machine_mode m1 ATTRIBUTE_UNUSED, int n,
664 unsigned int dest_regno ATTRIBUTE_UNUSED)
666 int best_cost = -1;
667 int class;
668 int regno;
669 enum reg_class best_class = NO_REGS;
670 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
671 unsigned int best_size = 0;
672 int cost;
674 for (class = 1; class < N_REG_CLASSES; class++)
676 int bad = 0;
677 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
678 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
679 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
680 && ! HARD_REGNO_MODE_OK (regno + n, m1))
681 bad = 1;
683 if (bad)
684 continue;
685 cost = REGISTER_MOVE_COST (m1, class, dest_class);
687 if ((reg_class_size[class] > best_size
688 && (best_cost < 0 || best_cost >= cost))
689 || best_cost > cost)
691 best_class = class;
692 best_size = reg_class_size[class];
693 best_cost = REGISTER_MOVE_COST (m1, class, dest_class);
697 if (best_size == 0)
698 abort ();
700 return best_class;
703 /* Return the number of a previously made reload that can be combined with
704 a new one, or n_reloads if none of the existing reloads can be used.
705 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
706 push_reload, they determine the kind of the new reload that we try to
707 combine. P_IN points to the corresponding value of IN, which can be
708 modified by this function.
709 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
711 static int
712 find_reusable_reload (rtx *p_in, rtx out, enum reg_class class,
713 enum reload_type type, int opnum, int dont_share)
715 rtx in = *p_in;
716 int i;
717 /* We can't merge two reloads if the output of either one is
718 earlyclobbered. */
720 if (earlyclobber_operand_p (out))
721 return n_reloads;
723 /* We can use an existing reload if the class is right
724 and at least one of IN and OUT is a match
725 and the other is at worst neutral.
726 (A zero compared against anything is neutral.)
728 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
729 for the same thing since that can cause us to need more reload registers
730 than we otherwise would. */
732 for (i = 0; i < n_reloads; i++)
733 if ((reg_class_subset_p (class, rld[i].class)
734 || reg_class_subset_p (rld[i].class, class))
735 /* If the existing reload has a register, it must fit our class. */
736 && (rld[i].reg_rtx == 0
737 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
738 true_regnum (rld[i].reg_rtx)))
739 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
740 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
741 || (out != 0 && MATCHES (rld[i].out, out)
742 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
743 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
744 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
745 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
746 return i;
748 /* Reloading a plain reg for input can match a reload to postincrement
749 that reg, since the postincrement's value is the right value.
750 Likewise, it can match a preincrement reload, since we regard
751 the preincrementation as happening before any ref in this insn
752 to that register. */
753 for (i = 0; i < n_reloads; i++)
754 if ((reg_class_subset_p (class, rld[i].class)
755 || reg_class_subset_p (rld[i].class, class))
756 /* If the existing reload has a register, it must fit our
757 class. */
758 && (rld[i].reg_rtx == 0
759 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
760 true_regnum (rld[i].reg_rtx)))
761 && out == 0 && rld[i].out == 0 && rld[i].in != 0
762 && ((GET_CODE (in) == REG
763 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == 'a'
764 && MATCHES (XEXP (rld[i].in, 0), in))
765 || (GET_CODE (rld[i].in) == REG
766 && GET_RTX_CLASS (GET_CODE (in)) == 'a'
767 && MATCHES (XEXP (in, 0), rld[i].in)))
768 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
769 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
770 && MERGABLE_RELOADS (type, rld[i].when_needed,
771 opnum, rld[i].opnum))
773 /* Make sure reload_in ultimately has the increment,
774 not the plain register. */
775 if (GET_CODE (in) == REG)
776 *p_in = rld[i].in;
777 return i;
779 return n_reloads;
782 /* Return nonzero if X is a SUBREG which will require reloading of its
783 SUBREG_REG expression. */
785 static int
786 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
788 rtx inner;
790 /* Only SUBREGs are problematical. */
791 if (GET_CODE (x) != SUBREG)
792 return 0;
794 inner = SUBREG_REG (x);
796 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
797 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
798 return 1;
800 /* If INNER is not a hard register, then INNER will not need to
801 be reloaded. */
802 if (GET_CODE (inner) != REG
803 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
804 return 0;
806 /* If INNER is not ok for MODE, then INNER will need reloading. */
807 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
808 return 1;
810 /* If the outer part is a word or smaller, INNER larger than a
811 word and the number of regs for INNER is not the same as the
812 number of words in INNER, then INNER will need reloading. */
813 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
814 && output
815 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
816 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
817 != (int) HARD_REGNO_NREGS (REGNO (inner), GET_MODE (inner))));
820 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
821 requiring an extra reload register. The caller has already found that
822 IN contains some reference to REGNO, so check that we can produce the
823 new value in a single step. E.g. if we have
824 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
825 instruction that adds one to a register, this should succeed.
826 However, if we have something like
827 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
828 needs to be loaded into a register first, we need a separate reload
829 register.
830 Such PLUS reloads are generated by find_reload_address_part.
831 The out-of-range PLUS expressions are usually introduced in the instruction
832 patterns by register elimination and substituting pseudos without a home
833 by their function-invariant equivalences. */
834 static int
835 can_reload_into (rtx in, int regno, enum machine_mode mode)
837 rtx dst, test_insn;
838 int r = 0;
839 struct recog_data save_recog_data;
841 /* For matching constraints, we often get notional input reloads where
842 we want to use the original register as the reload register. I.e.
843 technically this is a non-optional input-output reload, but IN is
844 already a valid register, and has been chosen as the reload register.
845 Speed this up, since it trivially works. */
846 if (GET_CODE (in) == REG)
847 return 1;
849 /* To test MEMs properly, we'd have to take into account all the reloads
850 that are already scheduled, which can become quite complicated.
851 And since we've already handled address reloads for this MEM, it
852 should always succeed anyway. */
853 if (GET_CODE (in) == MEM)
854 return 1;
856 /* If we can make a simple SET insn that does the job, everything should
857 be fine. */
858 dst = gen_rtx_REG (mode, regno);
859 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
860 save_recog_data = recog_data;
861 if (recog_memoized (test_insn) >= 0)
863 extract_insn (test_insn);
864 r = constrain_operands (1);
866 recog_data = save_recog_data;
867 return r;
870 /* Record one reload that needs to be performed.
871 IN is an rtx saying where the data are to be found before this instruction.
872 OUT says where they must be stored after the instruction.
873 (IN is zero for data not read, and OUT is zero for data not written.)
874 INLOC and OUTLOC point to the places in the instructions where
875 IN and OUT were found.
876 If IN and OUT are both nonzero, it means the same register must be used
877 to reload both IN and OUT.
879 CLASS is a register class required for the reloaded data.
880 INMODE is the machine mode that the instruction requires
881 for the reg that replaces IN and OUTMODE is likewise for OUT.
883 If IN is zero, then OUT's location and mode should be passed as
884 INLOC and INMODE.
886 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
888 OPTIONAL nonzero means this reload does not need to be performed:
889 it can be discarded if that is more convenient.
891 OPNUM and TYPE say what the purpose of this reload is.
893 The return value is the reload-number for this reload.
895 If both IN and OUT are nonzero, in some rare cases we might
896 want to make two separate reloads. (Actually we never do this now.)
897 Therefore, the reload-number for OUT is stored in
898 output_reloadnum when we return; the return value applies to IN.
899 Usually (presently always), when IN and OUT are nonzero,
900 the two reload-numbers are equal, but the caller should be careful to
901 distinguish them. */
904 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
905 enum reg_class class, enum machine_mode inmode,
906 enum machine_mode outmode, int strict_low, int optional,
907 int opnum, enum reload_type type)
909 int i;
910 int dont_share = 0;
911 int dont_remove_subreg = 0;
912 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
913 int secondary_in_reload = -1, secondary_out_reload = -1;
914 enum insn_code secondary_in_icode = CODE_FOR_nothing;
915 enum insn_code secondary_out_icode = CODE_FOR_nothing;
917 /* INMODE and/or OUTMODE could be VOIDmode if no mode
918 has been specified for the operand. In that case,
919 use the operand's mode as the mode to reload. */
920 if (inmode == VOIDmode && in != 0)
921 inmode = GET_MODE (in);
922 if (outmode == VOIDmode && out != 0)
923 outmode = GET_MODE (out);
925 /* If IN is a pseudo register everywhere-equivalent to a constant, and
926 it is not in a hard register, reload straight from the constant,
927 since we want to get rid of such pseudo registers.
928 Often this is done earlier, but not always in find_reloads_address. */
929 if (in != 0 && GET_CODE (in) == REG)
931 int regno = REGNO (in);
933 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
934 && reg_equiv_constant[regno] != 0)
935 in = reg_equiv_constant[regno];
938 /* Likewise for OUT. Of course, OUT will never be equivalent to
939 an actual constant, but it might be equivalent to a memory location
940 (in the case of a parameter). */
941 if (out != 0 && GET_CODE (out) == REG)
943 int regno = REGNO (out);
945 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
946 && reg_equiv_constant[regno] != 0)
947 out = reg_equiv_constant[regno];
950 /* If we have a read-write operand with an address side-effect,
951 change either IN or OUT so the side-effect happens only once. */
952 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
953 switch (GET_CODE (XEXP (in, 0)))
955 case POST_INC: case POST_DEC: case POST_MODIFY:
956 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
957 break;
959 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
960 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
961 break;
963 default:
964 break;
967 /* If we are reloading a (SUBREG constant ...), really reload just the
968 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
969 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
970 a pseudo and hence will become a MEM) with M1 wider than M2 and the
971 register is a pseudo, also reload the inside expression.
972 For machines that extend byte loads, do this for any SUBREG of a pseudo
973 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
974 M2 is an integral mode that gets extended when loaded.
975 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
976 either M1 is not valid for R or M2 is wider than a word but we only
977 need one word to store an M2-sized quantity in R.
978 (However, if OUT is nonzero, we need to reload the reg *and*
979 the subreg, so do nothing here, and let following statement handle it.)
981 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
982 we can't handle it here because CONST_INT does not indicate a mode.
984 Similarly, we must reload the inside expression if we have a
985 STRICT_LOW_PART (presumably, in == out in the cas).
987 Also reload the inner expression if it does not require a secondary
988 reload but the SUBREG does.
990 Finally, reload the inner expression if it is a register that is in
991 the class whose registers cannot be referenced in a different size
992 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
993 cannot reload just the inside since we might end up with the wrong
994 register class. But if it is inside a STRICT_LOW_PART, we have
995 no choice, so we hope we do get the right register class there. */
997 if (in != 0 && GET_CODE (in) == SUBREG
998 && (subreg_lowpart_p (in) || strict_low)
999 #ifdef CANNOT_CHANGE_MODE_CLASS
1000 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
1001 #endif
1002 && (CONSTANT_P (SUBREG_REG (in))
1003 || GET_CODE (SUBREG_REG (in)) == PLUS
1004 || strict_low
1005 || (((GET_CODE (SUBREG_REG (in)) == REG
1006 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1007 || GET_CODE (SUBREG_REG (in)) == MEM)
1008 && ((GET_MODE_SIZE (inmode)
1009 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1010 #ifdef LOAD_EXTEND_OP
1011 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1012 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1013 <= UNITS_PER_WORD)
1014 && (GET_MODE_SIZE (inmode)
1015 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1016 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1017 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
1018 #endif
1019 #ifdef WORD_REGISTER_OPERATIONS
1020 || ((GET_MODE_SIZE (inmode)
1021 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1022 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1023 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1024 / UNITS_PER_WORD)))
1025 #endif
1027 || (GET_CODE (SUBREG_REG (in)) == REG
1028 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1029 /* The case where out is nonzero
1030 is handled differently in the following statement. */
1031 && (out == 0 || subreg_lowpart_p (in))
1032 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1033 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1034 > UNITS_PER_WORD)
1035 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1036 / UNITS_PER_WORD)
1037 != (int) HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
1038 GET_MODE (SUBREG_REG (in)))))
1039 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1040 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1041 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
1042 && (SECONDARY_INPUT_RELOAD_CLASS (class,
1043 GET_MODE (SUBREG_REG (in)),
1044 SUBREG_REG (in))
1045 == NO_REGS))
1046 #endif
1047 #ifdef CANNOT_CHANGE_MODE_CLASS
1048 || (GET_CODE (SUBREG_REG (in)) == REG
1049 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1050 && REG_CANNOT_CHANGE_MODE_P
1051 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1052 #endif
1055 in_subreg_loc = inloc;
1056 inloc = &SUBREG_REG (in);
1057 in = *inloc;
1058 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1059 if (GET_CODE (in) == MEM)
1060 /* This is supposed to happen only for paradoxical subregs made by
1061 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1062 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
1063 abort ();
1064 #endif
1065 inmode = GET_MODE (in);
1068 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1069 either M1 is not valid for R or M2 is wider than a word but we only
1070 need one word to store an M2-sized quantity in R.
1072 However, we must reload the inner reg *as well as* the subreg in
1073 that case. */
1075 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1076 code above. This can happen if SUBREG_BYTE != 0. */
1078 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1080 enum reg_class in_class = class;
1082 if (GET_CODE (SUBREG_REG (in)) == REG)
1083 in_class
1084 = find_valid_class (inmode,
1085 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1086 GET_MODE (SUBREG_REG (in)),
1087 SUBREG_BYTE (in),
1088 GET_MODE (in)),
1089 REGNO (SUBREG_REG (in)));
1091 /* This relies on the fact that emit_reload_insns outputs the
1092 instructions for input reloads of type RELOAD_OTHER in the same
1093 order as the reloads. Thus if the outer reload is also of type
1094 RELOAD_OTHER, we are guaranteed that this inner reload will be
1095 output before the outer reload. */
1096 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1097 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1098 dont_remove_subreg = 1;
1101 /* Similarly for paradoxical and problematical SUBREGs on the output.
1102 Note that there is no reason we need worry about the previous value
1103 of SUBREG_REG (out); even if wider than out,
1104 storing in a subreg is entitled to clobber it all
1105 (except in the case of STRICT_LOW_PART,
1106 and in that case the constraint should label it input-output.) */
1107 if (out != 0 && GET_CODE (out) == SUBREG
1108 && (subreg_lowpart_p (out) || strict_low)
1109 #ifdef CANNOT_CHANGE_MODE_CLASS
1110 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
1111 #endif
1112 && (CONSTANT_P (SUBREG_REG (out))
1113 || strict_low
1114 || (((GET_CODE (SUBREG_REG (out)) == REG
1115 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1116 || GET_CODE (SUBREG_REG (out)) == MEM)
1117 && ((GET_MODE_SIZE (outmode)
1118 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1119 #ifdef WORD_REGISTER_OPERATIONS
1120 || ((GET_MODE_SIZE (outmode)
1121 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1122 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1123 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1124 / UNITS_PER_WORD)))
1125 #endif
1127 || (GET_CODE (SUBREG_REG (out)) == REG
1128 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1129 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1130 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1131 > UNITS_PER_WORD)
1132 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1133 / UNITS_PER_WORD)
1134 != (int) HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1135 GET_MODE (SUBREG_REG (out)))))
1136 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1137 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1138 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1139 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1140 GET_MODE (SUBREG_REG (out)),
1141 SUBREG_REG (out))
1142 == NO_REGS))
1143 #endif
1144 #ifdef CANNOT_CHANGE_MODE_CLASS
1145 || (GET_CODE (SUBREG_REG (out)) == REG
1146 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1147 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1148 GET_MODE (SUBREG_REG (out)),
1149 outmode))
1150 #endif
1153 out_subreg_loc = outloc;
1154 outloc = &SUBREG_REG (out);
1155 out = *outloc;
1156 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1157 if (GET_CODE (out) == MEM
1158 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1159 abort ();
1160 #endif
1161 outmode = GET_MODE (out);
1164 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1165 either M1 is not valid for R or M2 is wider than a word but we only
1166 need one word to store an M2-sized quantity in R.
1168 However, we must reload the inner reg *as well as* the subreg in
1169 that case. In this case, the inner reg is an in-out reload. */
1171 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1173 /* This relies on the fact that emit_reload_insns outputs the
1174 instructions for output reloads of type RELOAD_OTHER in reverse
1175 order of the reloads. Thus if the outer reload is also of type
1176 RELOAD_OTHER, we are guaranteed that this inner reload will be
1177 output after the outer reload. */
1178 dont_remove_subreg = 1;
1179 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1180 &SUBREG_REG (out),
1181 find_valid_class (outmode,
1182 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1183 GET_MODE (SUBREG_REG (out)),
1184 SUBREG_BYTE (out),
1185 GET_MODE (out)),
1186 REGNO (SUBREG_REG (out))),
1187 VOIDmode, VOIDmode, 0, 0,
1188 opnum, RELOAD_OTHER);
1191 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1192 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1193 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1194 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1195 dont_share = 1;
1197 /* If IN is a SUBREG of a hard register, make a new REG. This
1198 simplifies some of the cases below. */
1200 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1201 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1202 && ! dont_remove_subreg)
1203 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1205 /* Similarly for OUT. */
1206 if (out != 0 && GET_CODE (out) == SUBREG
1207 && GET_CODE (SUBREG_REG (out)) == REG
1208 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1209 && ! dont_remove_subreg)
1210 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1212 /* Narrow down the class of register wanted if that is
1213 desirable on this machine for efficiency. */
1214 if (in != 0)
1215 class = PREFERRED_RELOAD_CLASS (in, class);
1217 /* Output reloads may need analogous treatment, different in detail. */
1218 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1219 if (out != 0)
1220 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1221 #endif
1223 /* Make sure we use a class that can handle the actual pseudo
1224 inside any subreg. For example, on the 386, QImode regs
1225 can appear within SImode subregs. Although GENERAL_REGS
1226 can handle SImode, QImode needs a smaller class. */
1227 #ifdef LIMIT_RELOAD_CLASS
1228 if (in_subreg_loc)
1229 class = LIMIT_RELOAD_CLASS (inmode, class);
1230 else if (in != 0 && GET_CODE (in) == SUBREG)
1231 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1233 if (out_subreg_loc)
1234 class = LIMIT_RELOAD_CLASS (outmode, class);
1235 if (out != 0 && GET_CODE (out) == SUBREG)
1236 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1237 #endif
1239 /* Verify that this class is at least possible for the mode that
1240 is specified. */
1241 if (this_insn_is_asm)
1243 enum machine_mode mode;
1244 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1245 mode = inmode;
1246 else
1247 mode = outmode;
1248 if (mode == VOIDmode)
1250 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1251 mode = word_mode;
1252 if (in != 0)
1253 inmode = word_mode;
1254 if (out != 0)
1255 outmode = word_mode;
1257 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1258 if (HARD_REGNO_MODE_OK (i, mode)
1259 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1261 int nregs = HARD_REGNO_NREGS (i, mode);
1263 int j;
1264 for (j = 1; j < nregs; j++)
1265 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1266 break;
1267 if (j == nregs)
1268 break;
1270 if (i == FIRST_PSEUDO_REGISTER)
1272 error_for_asm (this_insn, "impossible register constraint in `asm'");
1273 class = ALL_REGS;
1277 /* Optional output reloads are always OK even if we have no register class,
1278 since the function of these reloads is only to have spill_reg_store etc.
1279 set, so that the storing insn can be deleted later. */
1280 if (class == NO_REGS
1281 && (optional == 0 || type != RELOAD_FOR_OUTPUT))
1282 abort ();
1284 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1286 if (i == n_reloads)
1288 /* See if we need a secondary reload register to move between CLASS
1289 and IN or CLASS and OUT. Get the icode and push any required reloads
1290 needed for each of them if so. */
1292 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1293 if (in != 0)
1294 secondary_in_reload
1295 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1296 &secondary_in_icode);
1297 #endif
1299 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1300 if (out != 0 && GET_CODE (out) != SCRATCH)
1301 secondary_out_reload
1302 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1303 type, &secondary_out_icode);
1304 #endif
1306 /* We found no existing reload suitable for re-use.
1307 So add an additional reload. */
1309 #ifdef SECONDARY_MEMORY_NEEDED
1310 /* If a memory location is needed for the copy, make one. */
1311 if (in != 0 && (GET_CODE (in) == REG || GET_CODE (in) == SUBREG)
1312 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1313 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1314 class, inmode))
1315 get_secondary_mem (in, inmode, opnum, type);
1316 #endif
1318 i = n_reloads;
1319 rld[i].in = in;
1320 rld[i].out = out;
1321 rld[i].class = class;
1322 rld[i].inmode = inmode;
1323 rld[i].outmode = outmode;
1324 rld[i].reg_rtx = 0;
1325 rld[i].optional = optional;
1326 rld[i].inc = 0;
1327 rld[i].nocombine = 0;
1328 rld[i].in_reg = inloc ? *inloc : 0;
1329 rld[i].out_reg = outloc ? *outloc : 0;
1330 rld[i].opnum = opnum;
1331 rld[i].when_needed = type;
1332 rld[i].secondary_in_reload = secondary_in_reload;
1333 rld[i].secondary_out_reload = secondary_out_reload;
1334 rld[i].secondary_in_icode = secondary_in_icode;
1335 rld[i].secondary_out_icode = secondary_out_icode;
1336 rld[i].secondary_p = 0;
1338 n_reloads++;
1340 #ifdef SECONDARY_MEMORY_NEEDED
1341 if (out != 0 && (GET_CODE (out) == REG || GET_CODE (out) == SUBREG)
1342 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1343 && SECONDARY_MEMORY_NEEDED (class,
1344 REGNO_REG_CLASS (reg_or_subregno (out)),
1345 outmode))
1346 get_secondary_mem (out, outmode, opnum, type);
1347 #endif
1349 else
1351 /* We are reusing an existing reload,
1352 but we may have additional information for it.
1353 For example, we may now have both IN and OUT
1354 while the old one may have just one of them. */
1356 /* The modes can be different. If they are, we want to reload in
1357 the larger mode, so that the value is valid for both modes. */
1358 if (inmode != VOIDmode
1359 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1360 rld[i].inmode = inmode;
1361 if (outmode != VOIDmode
1362 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1363 rld[i].outmode = outmode;
1364 if (in != 0)
1366 rtx in_reg = inloc ? *inloc : 0;
1367 /* If we merge reloads for two distinct rtl expressions that
1368 are identical in content, there might be duplicate address
1369 reloads. Remove the extra set now, so that if we later find
1370 that we can inherit this reload, we can get rid of the
1371 address reloads altogether.
1373 Do not do this if both reloads are optional since the result
1374 would be an optional reload which could potentially leave
1375 unresolved address replacements.
1377 It is not sufficient to call transfer_replacements since
1378 choose_reload_regs will remove the replacements for address
1379 reloads of inherited reloads which results in the same
1380 problem. */
1381 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1382 && ! (rld[i].optional && optional))
1384 /* We must keep the address reload with the lower operand
1385 number alive. */
1386 if (opnum > rld[i].opnum)
1388 remove_address_replacements (in);
1389 in = rld[i].in;
1390 in_reg = rld[i].in_reg;
1392 else
1393 remove_address_replacements (rld[i].in);
1395 rld[i].in = in;
1396 rld[i].in_reg = in_reg;
1398 if (out != 0)
1400 rld[i].out = out;
1401 rld[i].out_reg = outloc ? *outloc : 0;
1403 if (reg_class_subset_p (class, rld[i].class))
1404 rld[i].class = class;
1405 rld[i].optional &= optional;
1406 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1407 opnum, rld[i].opnum))
1408 rld[i].when_needed = RELOAD_OTHER;
1409 rld[i].opnum = MIN (rld[i].opnum, opnum);
1412 /* If the ostensible rtx being reloaded differs from the rtx found
1413 in the location to substitute, this reload is not safe to combine
1414 because we cannot reliably tell whether it appears in the insn. */
1416 if (in != 0 && in != *inloc)
1417 rld[i].nocombine = 1;
1419 #if 0
1420 /* This was replaced by changes in find_reloads_address_1 and the new
1421 function inc_for_reload, which go with a new meaning of reload_inc. */
1423 /* If this is an IN/OUT reload in an insn that sets the CC,
1424 it must be for an autoincrement. It doesn't work to store
1425 the incremented value after the insn because that would clobber the CC.
1426 So we must do the increment of the value reloaded from,
1427 increment it, store it back, then decrement again. */
1428 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1430 out = 0;
1431 rld[i].out = 0;
1432 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1433 /* If we did not find a nonzero amount-to-increment-by,
1434 that contradicts the belief that IN is being incremented
1435 in an address in this insn. */
1436 if (rld[i].inc == 0)
1437 abort ();
1439 #endif
1441 /* If we will replace IN and OUT with the reload-reg,
1442 record where they are located so that substitution need
1443 not do a tree walk. */
1445 if (replace_reloads)
1447 if (inloc != 0)
1449 struct replacement *r = &replacements[n_replacements++];
1450 r->what = i;
1451 r->subreg_loc = in_subreg_loc;
1452 r->where = inloc;
1453 r->mode = inmode;
1455 if (outloc != 0 && outloc != inloc)
1457 struct replacement *r = &replacements[n_replacements++];
1458 r->what = i;
1459 r->where = outloc;
1460 r->subreg_loc = out_subreg_loc;
1461 r->mode = outmode;
1465 /* If this reload is just being introduced and it has both
1466 an incoming quantity and an outgoing quantity that are
1467 supposed to be made to match, see if either one of the two
1468 can serve as the place to reload into.
1470 If one of them is acceptable, set rld[i].reg_rtx
1471 to that one. */
1473 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1475 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1476 inmode, outmode,
1477 rld[i].class, i,
1478 earlyclobber_operand_p (out));
1480 /* If the outgoing register already contains the same value
1481 as the incoming one, we can dispense with loading it.
1482 The easiest way to tell the caller that is to give a phony
1483 value for the incoming operand (same as outgoing one). */
1484 if (rld[i].reg_rtx == out
1485 && (GET_CODE (in) == REG || CONSTANT_P (in))
1486 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1487 static_reload_reg_p, i, inmode))
1488 rld[i].in = out;
1491 /* If this is an input reload and the operand contains a register that
1492 dies in this insn and is used nowhere else, see if it is the right class
1493 to be used for this reload. Use it if so. (This occurs most commonly
1494 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1495 this if it is also an output reload that mentions the register unless
1496 the output is a SUBREG that clobbers an entire register.
1498 Note that the operand might be one of the spill regs, if it is a
1499 pseudo reg and we are in a block where spilling has not taken place.
1500 But if there is no spilling in this block, that is OK.
1501 An explicitly used hard reg cannot be a spill reg. */
1503 if (rld[i].reg_rtx == 0 && in != 0)
1505 rtx note;
1506 int regno;
1507 enum machine_mode rel_mode = inmode;
1509 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1510 rel_mode = outmode;
1512 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1513 if (REG_NOTE_KIND (note) == REG_DEAD
1514 && GET_CODE (XEXP (note, 0)) == REG
1515 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1516 && reg_mentioned_p (XEXP (note, 0), in)
1517 && ! refers_to_regno_for_reload_p (regno,
1518 (regno
1519 + HARD_REGNO_NREGS (regno,
1520 rel_mode)),
1521 PATTERN (this_insn), inloc)
1522 /* If this is also an output reload, IN cannot be used as
1523 the reload register if it is set in this insn unless IN
1524 is also OUT. */
1525 && (out == 0 || in == out
1526 || ! hard_reg_set_here_p (regno,
1527 (regno
1528 + HARD_REGNO_NREGS (regno,
1529 rel_mode)),
1530 PATTERN (this_insn)))
1531 /* ??? Why is this code so different from the previous?
1532 Is there any simple coherent way to describe the two together?
1533 What's going on here. */
1534 && (in != out
1535 || (GET_CODE (in) == SUBREG
1536 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1537 / UNITS_PER_WORD)
1538 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1539 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1540 /* Make sure the operand fits in the reg that dies. */
1541 && (GET_MODE_SIZE (rel_mode)
1542 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1543 && HARD_REGNO_MODE_OK (regno, inmode)
1544 && HARD_REGNO_MODE_OK (regno, outmode))
1546 unsigned int offs;
1547 unsigned int nregs = MAX (HARD_REGNO_NREGS (regno, inmode),
1548 HARD_REGNO_NREGS (regno, outmode));
1550 for (offs = 0; offs < nregs; offs++)
1551 if (fixed_regs[regno + offs]
1552 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1553 regno + offs))
1554 break;
1556 if (offs == nregs
1557 && (! (refers_to_regno_for_reload_p
1558 (regno, (regno + HARD_REGNO_NREGS (regno, inmode)),
1559 in, (rtx *)0))
1560 || can_reload_into (in, regno, inmode)))
1562 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1563 break;
1568 if (out)
1569 output_reloadnum = i;
1571 return i;
1574 /* Record an additional place we must replace a value
1575 for which we have already recorded a reload.
1576 RELOADNUM is the value returned by push_reload
1577 when the reload was recorded.
1578 This is used in insn patterns that use match_dup. */
1580 static void
1581 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1583 if (replace_reloads)
1585 struct replacement *r = &replacements[n_replacements++];
1586 r->what = reloadnum;
1587 r->where = loc;
1588 r->subreg_loc = 0;
1589 r->mode = mode;
1593 /* Duplicate any replacement we have recorded to apply at
1594 location ORIG_LOC to also be performed at DUP_LOC.
1595 This is used in insn patterns that use match_dup. */
1597 static void
1598 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1600 int i, n = n_replacements;
1602 for (i = 0; i < n; i++)
1604 struct replacement *r = &replacements[i];
1605 if (r->where == orig_loc)
1606 push_replacement (dup_loc, r->what, r->mode);
1610 /* Transfer all replacements that used to be in reload FROM to be in
1611 reload TO. */
1613 void
1614 transfer_replacements (int to, int from)
1616 int i;
1618 for (i = 0; i < n_replacements; i++)
1619 if (replacements[i].what == from)
1620 replacements[i].what = to;
1623 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1624 or a subpart of it. If we have any replacements registered for IN_RTX,
1625 cancel the reloads that were supposed to load them.
1626 Return nonzero if we canceled any reloads. */
1628 remove_address_replacements (rtx in_rtx)
1630 int i, j;
1631 char reload_flags[MAX_RELOADS];
1632 int something_changed = 0;
1634 memset (reload_flags, 0, sizeof reload_flags);
1635 for (i = 0, j = 0; i < n_replacements; i++)
1637 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1638 reload_flags[replacements[i].what] |= 1;
1639 else
1641 replacements[j++] = replacements[i];
1642 reload_flags[replacements[i].what] |= 2;
1645 /* Note that the following store must be done before the recursive calls. */
1646 n_replacements = j;
1648 for (i = n_reloads - 1; i >= 0; i--)
1650 if (reload_flags[i] == 1)
1652 deallocate_reload_reg (i);
1653 remove_address_replacements (rld[i].in);
1654 rld[i].in = 0;
1655 something_changed = 1;
1658 return something_changed;
1661 /* If there is only one output reload, and it is not for an earlyclobber
1662 operand, try to combine it with a (logically unrelated) input reload
1663 to reduce the number of reload registers needed.
1665 This is safe if the input reload does not appear in
1666 the value being output-reloaded, because this implies
1667 it is not needed any more once the original insn completes.
1669 If that doesn't work, see we can use any of the registers that
1670 die in this insn as a reload register. We can if it is of the right
1671 class and does not appear in the value being output-reloaded. */
1673 static void
1674 combine_reloads (void)
1676 int i;
1677 int output_reload = -1;
1678 int secondary_out = -1;
1679 rtx note;
1681 /* Find the output reload; return unless there is exactly one
1682 and that one is mandatory. */
1684 for (i = 0; i < n_reloads; i++)
1685 if (rld[i].out != 0)
1687 if (output_reload >= 0)
1688 return;
1689 output_reload = i;
1692 if (output_reload < 0 || rld[output_reload].optional)
1693 return;
1695 /* An input-output reload isn't combinable. */
1697 if (rld[output_reload].in != 0)
1698 return;
1700 /* If this reload is for an earlyclobber operand, we can't do anything. */
1701 if (earlyclobber_operand_p (rld[output_reload].out))
1702 return;
1704 /* If there is a reload for part of the address of this operand, we would
1705 need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1706 its life to the point where doing this combine would not lower the
1707 number of spill registers needed. */
1708 for (i = 0; i < n_reloads; i++)
1709 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1710 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1711 && rld[i].opnum == rld[output_reload].opnum)
1712 return;
1714 /* Check each input reload; can we combine it? */
1716 for (i = 0; i < n_reloads; i++)
1717 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1718 /* Life span of this reload must not extend past main insn. */
1719 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1720 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1721 && rld[i].when_needed != RELOAD_OTHER
1722 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1723 == CLASS_MAX_NREGS (rld[output_reload].class,
1724 rld[output_reload].outmode))
1725 && rld[i].inc == 0
1726 && rld[i].reg_rtx == 0
1727 #ifdef SECONDARY_MEMORY_NEEDED
1728 /* Don't combine two reloads with different secondary
1729 memory locations. */
1730 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1731 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1732 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1733 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1734 #endif
1735 && (SMALL_REGISTER_CLASSES
1736 ? (rld[i].class == rld[output_reload].class)
1737 : (reg_class_subset_p (rld[i].class,
1738 rld[output_reload].class)
1739 || reg_class_subset_p (rld[output_reload].class,
1740 rld[i].class)))
1741 && (MATCHES (rld[i].in, rld[output_reload].out)
1742 /* Args reversed because the first arg seems to be
1743 the one that we imagine being modified
1744 while the second is the one that might be affected. */
1745 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1746 rld[i].in)
1747 /* However, if the input is a register that appears inside
1748 the output, then we also can't share.
1749 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1750 If the same reload reg is used for both reg 69 and the
1751 result to be stored in memory, then that result
1752 will clobber the address of the memory ref. */
1753 && ! (GET_CODE (rld[i].in) == REG
1754 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1755 rld[output_reload].out))))
1756 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1757 rld[i].when_needed != RELOAD_FOR_INPUT)
1758 && (reg_class_size[(int) rld[i].class]
1759 || SMALL_REGISTER_CLASSES)
1760 /* We will allow making things slightly worse by combining an
1761 input and an output, but no worse than that. */
1762 && (rld[i].when_needed == RELOAD_FOR_INPUT
1763 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1765 int j;
1767 /* We have found a reload to combine with! */
1768 rld[i].out = rld[output_reload].out;
1769 rld[i].out_reg = rld[output_reload].out_reg;
1770 rld[i].outmode = rld[output_reload].outmode;
1771 /* Mark the old output reload as inoperative. */
1772 rld[output_reload].out = 0;
1773 /* The combined reload is needed for the entire insn. */
1774 rld[i].when_needed = RELOAD_OTHER;
1775 /* If the output reload had a secondary reload, copy it. */
1776 if (rld[output_reload].secondary_out_reload != -1)
1778 rld[i].secondary_out_reload
1779 = rld[output_reload].secondary_out_reload;
1780 rld[i].secondary_out_icode
1781 = rld[output_reload].secondary_out_icode;
1784 #ifdef SECONDARY_MEMORY_NEEDED
1785 /* Copy any secondary MEM. */
1786 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1787 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1788 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1789 #endif
1790 /* If required, minimize the register class. */
1791 if (reg_class_subset_p (rld[output_reload].class,
1792 rld[i].class))
1793 rld[i].class = rld[output_reload].class;
1795 /* Transfer all replacements from the old reload to the combined. */
1796 for (j = 0; j < n_replacements; j++)
1797 if (replacements[j].what == output_reload)
1798 replacements[j].what = i;
1800 return;
1803 /* If this insn has only one operand that is modified or written (assumed
1804 to be the first), it must be the one corresponding to this reload. It
1805 is safe to use anything that dies in this insn for that output provided
1806 that it does not occur in the output (we already know it isn't an
1807 earlyclobber. If this is an asm insn, give up. */
1809 if (INSN_CODE (this_insn) == -1)
1810 return;
1812 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1813 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1814 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1815 return;
1817 /* See if some hard register that dies in this insn and is not used in
1818 the output is the right class. Only works if the register we pick
1819 up can fully hold our output reload. */
1820 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1821 if (REG_NOTE_KIND (note) == REG_DEAD
1822 && GET_CODE (XEXP (note, 0)) == REG
1823 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1824 rld[output_reload].out)
1825 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1826 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1827 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1828 REGNO (XEXP (note, 0)))
1829 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1830 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1831 /* Ensure that a secondary or tertiary reload for this output
1832 won't want this register. */
1833 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1834 || (! (TEST_HARD_REG_BIT
1835 (reg_class_contents[(int) rld[secondary_out].class],
1836 REGNO (XEXP (note, 0))))
1837 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1838 || ! (TEST_HARD_REG_BIT
1839 (reg_class_contents[(int) rld[secondary_out].class],
1840 REGNO (XEXP (note, 0)))))))
1841 && ! fixed_regs[REGNO (XEXP (note, 0))])
1843 rld[output_reload].reg_rtx
1844 = gen_rtx_REG (rld[output_reload].outmode,
1845 REGNO (XEXP (note, 0)));
1846 return;
1850 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1851 See if one of IN and OUT is a register that may be used;
1852 this is desirable since a spill-register won't be needed.
1853 If so, return the register rtx that proves acceptable.
1855 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1856 CLASS is the register class required for the reload.
1858 If FOR_REAL is >= 0, it is the number of the reload,
1859 and in some cases when it can be discovered that OUT doesn't need
1860 to be computed, clear out rld[FOR_REAL].out.
1862 If FOR_REAL is -1, this should not be done, because this call
1863 is just to see if a register can be found, not to find and install it.
1865 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1866 puts an additional constraint on being able to use IN for OUT since
1867 IN must not appear elsewhere in the insn (it is assumed that IN itself
1868 is safe from the earlyclobber). */
1870 static rtx
1871 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1872 enum machine_mode inmode, enum machine_mode outmode,
1873 enum reg_class class, int for_real, int earlyclobber)
1875 rtx in = real_in;
1876 rtx out = real_out;
1877 int in_offset = 0;
1878 int out_offset = 0;
1879 rtx value = 0;
1881 /* If operands exceed a word, we can't use either of them
1882 unless they have the same size. */
1883 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1884 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1885 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1886 return 0;
1888 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1889 respectively refers to a hard register. */
1891 /* Find the inside of any subregs. */
1892 while (GET_CODE (out) == SUBREG)
1894 if (GET_CODE (SUBREG_REG (out)) == REG
1895 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1896 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1897 GET_MODE (SUBREG_REG (out)),
1898 SUBREG_BYTE (out),
1899 GET_MODE (out));
1900 out = SUBREG_REG (out);
1902 while (GET_CODE (in) == SUBREG)
1904 if (GET_CODE (SUBREG_REG (in)) == REG
1905 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1906 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1907 GET_MODE (SUBREG_REG (in)),
1908 SUBREG_BYTE (in),
1909 GET_MODE (in));
1910 in = SUBREG_REG (in);
1913 /* Narrow down the reg class, the same way push_reload will;
1914 otherwise we might find a dummy now, but push_reload won't. */
1915 class = PREFERRED_RELOAD_CLASS (in, class);
1917 /* See if OUT will do. */
1918 if (GET_CODE (out) == REG
1919 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1921 unsigned int regno = REGNO (out) + out_offset;
1922 unsigned int nwords = HARD_REGNO_NREGS (regno, outmode);
1923 rtx saved_rtx;
1925 /* When we consider whether the insn uses OUT,
1926 ignore references within IN. They don't prevent us
1927 from copying IN into OUT, because those refs would
1928 move into the insn that reloads IN.
1930 However, we only ignore IN in its role as this reload.
1931 If the insn uses IN elsewhere and it contains OUT,
1932 that counts. We can't be sure it's the "same" operand
1933 so it might not go through this reload. */
1934 saved_rtx = *inloc;
1935 *inloc = const0_rtx;
1937 if (regno < FIRST_PSEUDO_REGISTER
1938 && HARD_REGNO_MODE_OK (regno, outmode)
1939 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1940 PATTERN (this_insn), outloc))
1942 unsigned int i;
1944 for (i = 0; i < nwords; i++)
1945 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1946 regno + i))
1947 break;
1949 if (i == nwords)
1951 if (GET_CODE (real_out) == REG)
1952 value = real_out;
1953 else
1954 value = gen_rtx_REG (outmode, regno);
1958 *inloc = saved_rtx;
1961 /* Consider using IN if OUT was not acceptable
1962 or if OUT dies in this insn (like the quotient in a divmod insn).
1963 We can't use IN unless it is dies in this insn,
1964 which means we must know accurately which hard regs are live.
1965 Also, the result can't go in IN if IN is used within OUT,
1966 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1967 if (hard_regs_live_known
1968 && GET_CODE (in) == REG
1969 && REGNO (in) < FIRST_PSEUDO_REGISTER
1970 && (value == 0
1971 || find_reg_note (this_insn, REG_UNUSED, real_out))
1972 && find_reg_note (this_insn, REG_DEAD, real_in)
1973 && !fixed_regs[REGNO (in)]
1974 && HARD_REGNO_MODE_OK (REGNO (in),
1975 /* The only case where out and real_out might
1976 have different modes is where real_out
1977 is a subreg, and in that case, out
1978 has a real mode. */
1979 (GET_MODE (out) != VOIDmode
1980 ? GET_MODE (out) : outmode)))
1982 unsigned int regno = REGNO (in) + in_offset;
1983 unsigned int nwords = HARD_REGNO_NREGS (regno, inmode);
1985 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
1986 && ! hard_reg_set_here_p (regno, regno + nwords,
1987 PATTERN (this_insn))
1988 && (! earlyclobber
1989 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1990 PATTERN (this_insn), inloc)))
1992 unsigned int i;
1994 for (i = 0; i < nwords; i++)
1995 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1996 regno + i))
1997 break;
1999 if (i == nwords)
2001 /* If we were going to use OUT as the reload reg
2002 and changed our mind, it means OUT is a dummy that
2003 dies here. So don't bother copying value to it. */
2004 if (for_real >= 0 && value == real_out)
2005 rld[for_real].out = 0;
2006 if (GET_CODE (real_in) == REG)
2007 value = real_in;
2008 else
2009 value = gen_rtx_REG (inmode, regno);
2014 return value;
2017 /* This page contains subroutines used mainly for determining
2018 whether the IN or an OUT of a reload can serve as the
2019 reload register. */
2021 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2024 earlyclobber_operand_p (rtx x)
2026 int i;
2028 for (i = 0; i < n_earlyclobbers; i++)
2029 if (reload_earlyclobbers[i] == x)
2030 return 1;
2032 return 0;
2035 /* Return 1 if expression X alters a hard reg in the range
2036 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2037 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2038 X should be the body of an instruction. */
2040 static int
2041 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2043 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2045 rtx op0 = SET_DEST (x);
2047 while (GET_CODE (op0) == SUBREG)
2048 op0 = SUBREG_REG (op0);
2049 if (GET_CODE (op0) == REG)
2051 unsigned int r = REGNO (op0);
2053 /* See if this reg overlaps range under consideration. */
2054 if (r < end_regno
2055 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
2056 return 1;
2059 else if (GET_CODE (x) == PARALLEL)
2061 int i = XVECLEN (x, 0) - 1;
2063 for (; i >= 0; i--)
2064 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2065 return 1;
2068 return 0;
2071 /* Return 1 if ADDR is a valid memory address for mode MODE,
2072 and check that each pseudo reg has the proper kind of
2073 hard reg. */
2076 strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
2078 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2079 return 0;
2081 win:
2082 return 1;
2085 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2086 if they are the same hard reg, and has special hacks for
2087 autoincrement and autodecrement.
2088 This is specifically intended for find_reloads to use
2089 in determining whether two operands match.
2090 X is the operand whose number is the lower of the two.
2092 The value is 2 if Y contains a pre-increment that matches
2093 a non-incrementing address in X. */
2095 /* ??? To be completely correct, we should arrange to pass
2096 for X the output operand and for Y the input operand.
2097 For now, we assume that the output operand has the lower number
2098 because that is natural in (SET output (... input ...)). */
2101 operands_match_p (rtx x, rtx y)
2103 int i;
2104 RTX_CODE code = GET_CODE (x);
2105 const char *fmt;
2106 int success_2;
2108 if (x == y)
2109 return 1;
2110 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
2111 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
2112 && GET_CODE (SUBREG_REG (y)) == REG)))
2114 int j;
2116 if (code == SUBREG)
2118 i = REGNO (SUBREG_REG (x));
2119 if (i >= FIRST_PSEUDO_REGISTER)
2120 goto slow;
2121 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2122 GET_MODE (SUBREG_REG (x)),
2123 SUBREG_BYTE (x),
2124 GET_MODE (x));
2126 else
2127 i = REGNO (x);
2129 if (GET_CODE (y) == SUBREG)
2131 j = REGNO (SUBREG_REG (y));
2132 if (j >= FIRST_PSEUDO_REGISTER)
2133 goto slow;
2134 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2135 GET_MODE (SUBREG_REG (y)),
2136 SUBREG_BYTE (y),
2137 GET_MODE (y));
2139 else
2140 j = REGNO (y);
2142 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2143 multiple hard register group, so that for example (reg:DI 0) and
2144 (reg:SI 1) will be considered the same register. */
2145 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2146 && i < FIRST_PSEUDO_REGISTER)
2147 i += HARD_REGNO_NREGS (i, GET_MODE (x)) - 1;
2148 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2149 && j < FIRST_PSEUDO_REGISTER)
2150 j += HARD_REGNO_NREGS (j, GET_MODE (y)) - 1;
2152 return i == j;
2154 /* If two operands must match, because they are really a single
2155 operand of an assembler insn, then two postincrements are invalid
2156 because the assembler insn would increment only once.
2157 On the other hand, a postincrement matches ordinary indexing
2158 if the postincrement is the output operand. */
2159 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2160 return operands_match_p (XEXP (x, 0), y);
2161 /* Two preincrements are invalid
2162 because the assembler insn would increment only once.
2163 On the other hand, a preincrement matches ordinary indexing
2164 if the preincrement is the input operand.
2165 In this case, return 2, since some callers need to do special
2166 things when this happens. */
2167 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2168 || GET_CODE (y) == PRE_MODIFY)
2169 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2171 slow:
2173 /* Now we have disposed of all the cases
2174 in which different rtx codes can match. */
2175 if (code != GET_CODE (y))
2176 return 0;
2177 if (code == LABEL_REF)
2178 return XEXP (x, 0) == XEXP (y, 0);
2179 if (code == SYMBOL_REF)
2180 return XSTR (x, 0) == XSTR (y, 0);
2182 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2184 if (GET_MODE (x) != GET_MODE (y))
2185 return 0;
2187 /* Compare the elements. If any pair of corresponding elements
2188 fail to match, return 0 for the whole things. */
2190 success_2 = 0;
2191 fmt = GET_RTX_FORMAT (code);
2192 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2194 int val, j;
2195 switch (fmt[i])
2197 case 'w':
2198 if (XWINT (x, i) != XWINT (y, i))
2199 return 0;
2200 break;
2202 case 'i':
2203 if (XINT (x, i) != XINT (y, i))
2204 return 0;
2205 break;
2207 case 'e':
2208 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2209 if (val == 0)
2210 return 0;
2211 /* If any subexpression returns 2,
2212 we should return 2 if we are successful. */
2213 if (val == 2)
2214 success_2 = 1;
2215 break;
2217 case '0':
2218 break;
2220 case 'E':
2221 if (XVECLEN (x, i) != XVECLEN (y, i))
2222 return 0;
2223 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2225 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2226 if (val == 0)
2227 return 0;
2228 if (val == 2)
2229 success_2 = 1;
2231 break;
2233 /* It is believed that rtx's at this level will never
2234 contain anything but integers and other rtx's,
2235 except for within LABEL_REFs and SYMBOL_REFs. */
2236 default:
2237 abort ();
2240 return 1 + success_2;
2243 /* Describe the range of registers or memory referenced by X.
2244 If X is a register, set REG_FLAG and put the first register
2245 number into START and the last plus one into END.
2246 If X is a memory reference, put a base address into BASE
2247 and a range of integer offsets into START and END.
2248 If X is pushing on the stack, we can assume it causes no trouble,
2249 so we set the SAFE field. */
2251 static struct decomposition
2252 decompose (rtx x)
2254 struct decomposition val;
2255 int all_const = 0;
2257 val.reg_flag = 0;
2258 val.safe = 0;
2259 val.base = 0;
2260 if (GET_CODE (x) == MEM)
2262 rtx base = NULL_RTX, offset = 0;
2263 rtx addr = XEXP (x, 0);
2265 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2266 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2268 val.base = XEXP (addr, 0);
2269 val.start = -GET_MODE_SIZE (GET_MODE (x));
2270 val.end = GET_MODE_SIZE (GET_MODE (x));
2271 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2272 return val;
2275 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2277 if (GET_CODE (XEXP (addr, 1)) == PLUS
2278 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2279 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2281 val.base = XEXP (addr, 0);
2282 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2283 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2284 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2285 return val;
2289 if (GET_CODE (addr) == CONST)
2291 addr = XEXP (addr, 0);
2292 all_const = 1;
2294 if (GET_CODE (addr) == PLUS)
2296 if (CONSTANT_P (XEXP (addr, 0)))
2298 base = XEXP (addr, 1);
2299 offset = XEXP (addr, 0);
2301 else if (CONSTANT_P (XEXP (addr, 1)))
2303 base = XEXP (addr, 0);
2304 offset = XEXP (addr, 1);
2308 if (offset == 0)
2310 base = addr;
2311 offset = const0_rtx;
2313 if (GET_CODE (offset) == CONST)
2314 offset = XEXP (offset, 0);
2315 if (GET_CODE (offset) == PLUS)
2317 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2319 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2320 offset = XEXP (offset, 0);
2322 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2324 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2325 offset = XEXP (offset, 1);
2327 else
2329 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2330 offset = const0_rtx;
2333 else if (GET_CODE (offset) != CONST_INT)
2335 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2336 offset = const0_rtx;
2339 if (all_const && GET_CODE (base) == PLUS)
2340 base = gen_rtx_CONST (GET_MODE (base), base);
2342 if (GET_CODE (offset) != CONST_INT)
2343 abort ();
2345 val.start = INTVAL (offset);
2346 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2347 val.base = base;
2348 return val;
2350 else if (GET_CODE (x) == REG)
2352 val.reg_flag = 1;
2353 val.start = true_regnum (x);
2354 if (val.start < 0)
2356 /* A pseudo with no hard reg. */
2357 val.start = REGNO (x);
2358 val.end = val.start + 1;
2360 else
2361 /* A hard reg. */
2362 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2364 else if (GET_CODE (x) == SUBREG)
2366 if (GET_CODE (SUBREG_REG (x)) != REG)
2367 /* This could be more precise, but it's good enough. */
2368 return decompose (SUBREG_REG (x));
2369 val.reg_flag = 1;
2370 val.start = true_regnum (x);
2371 if (val.start < 0)
2372 return decompose (SUBREG_REG (x));
2373 else
2374 /* A hard reg. */
2375 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2377 else if (CONSTANT_P (x)
2378 /* This hasn't been assigned yet, so it can't conflict yet. */
2379 || GET_CODE (x) == SCRATCH)
2380 val.safe = 1;
2381 else
2382 abort ();
2383 return val;
2386 /* Return 1 if altering Y will not modify the value of X.
2387 Y is also described by YDATA, which should be decompose (Y). */
2389 static int
2390 immune_p (rtx x, rtx y, struct decomposition ydata)
2392 struct decomposition xdata;
2394 if (ydata.reg_flag)
2395 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2396 if (ydata.safe)
2397 return 1;
2399 if (GET_CODE (y) != MEM)
2400 abort ();
2401 /* If Y is memory and X is not, Y can't affect X. */
2402 if (GET_CODE (x) != MEM)
2403 return 1;
2405 xdata = decompose (x);
2407 if (! rtx_equal_p (xdata.base, ydata.base))
2409 /* If bases are distinct symbolic constants, there is no overlap. */
2410 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2411 return 1;
2412 /* Constants and stack slots never overlap. */
2413 if (CONSTANT_P (xdata.base)
2414 && (ydata.base == frame_pointer_rtx
2415 || ydata.base == hard_frame_pointer_rtx
2416 || ydata.base == stack_pointer_rtx))
2417 return 1;
2418 if (CONSTANT_P (ydata.base)
2419 && (xdata.base == frame_pointer_rtx
2420 || xdata.base == hard_frame_pointer_rtx
2421 || xdata.base == stack_pointer_rtx))
2422 return 1;
2423 /* If either base is variable, we don't know anything. */
2424 return 0;
2427 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2430 /* Similar, but calls decompose. */
2433 safe_from_earlyclobber (rtx op, rtx clobber)
2435 struct decomposition early_data;
2437 early_data = decompose (clobber);
2438 return immune_p (op, clobber, early_data);
2441 /* Main entry point of this file: search the body of INSN
2442 for values that need reloading and record them with push_reload.
2443 REPLACE nonzero means record also where the values occur
2444 so that subst_reloads can be used.
2446 IND_LEVELS says how many levels of indirection are supported by this
2447 machine; a value of zero means that a memory reference is not a valid
2448 memory address.
2450 LIVE_KNOWN says we have valid information about which hard
2451 regs are live at each point in the program; this is true when
2452 we are called from global_alloc but false when stupid register
2453 allocation has been done.
2455 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2456 which is nonnegative if the reg has been commandeered for reloading into.
2457 It is copied into STATIC_RELOAD_REG_P and referenced from there
2458 by various subroutines.
2460 Return TRUE if some operands need to be changed, because of swapping
2461 commutative operands, reg_equiv_address substitution, or whatever. */
2464 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2465 short *reload_reg_p)
2467 int insn_code_number;
2468 int i, j;
2469 int noperands;
2470 /* These start out as the constraints for the insn
2471 and they are chewed up as we consider alternatives. */
2472 char *constraints[MAX_RECOG_OPERANDS];
2473 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2474 a register. */
2475 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2476 char pref_or_nothing[MAX_RECOG_OPERANDS];
2477 /* Nonzero for a MEM operand whose entire address needs a reload. */
2478 int address_reloaded[MAX_RECOG_OPERANDS];
2479 /* Nonzero for an address operand that needs to be completely reloaded. */
2480 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2481 /* Value of enum reload_type to use for operand. */
2482 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2483 /* Value of enum reload_type to use within address of operand. */
2484 enum reload_type address_type[MAX_RECOG_OPERANDS];
2485 /* Save the usage of each operand. */
2486 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2487 int no_input_reloads = 0, no_output_reloads = 0;
2488 int n_alternatives;
2489 int this_alternative[MAX_RECOG_OPERANDS];
2490 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2491 char this_alternative_win[MAX_RECOG_OPERANDS];
2492 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2493 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2494 int this_alternative_matches[MAX_RECOG_OPERANDS];
2495 int swapped;
2496 int goal_alternative[MAX_RECOG_OPERANDS];
2497 int this_alternative_number;
2498 int goal_alternative_number = 0;
2499 int operand_reloadnum[MAX_RECOG_OPERANDS];
2500 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2501 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2502 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2503 char goal_alternative_win[MAX_RECOG_OPERANDS];
2504 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2505 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2506 int goal_alternative_swapped;
2507 int best;
2508 int commutative;
2509 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2510 rtx substed_operand[MAX_RECOG_OPERANDS];
2511 rtx body = PATTERN (insn);
2512 rtx set = single_set (insn);
2513 int goal_earlyclobber = 0, this_earlyclobber;
2514 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2515 int retval = 0;
2517 this_insn = insn;
2518 n_reloads = 0;
2519 n_replacements = 0;
2520 n_earlyclobbers = 0;
2521 replace_reloads = replace;
2522 hard_regs_live_known = live_known;
2523 static_reload_reg_p = reload_reg_p;
2525 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2526 neither are insns that SET cc0. Insns that use CC0 are not allowed
2527 to have any input reloads. */
2528 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2529 no_output_reloads = 1;
2531 #ifdef HAVE_cc0
2532 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2533 no_input_reloads = 1;
2534 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2535 no_output_reloads = 1;
2536 #endif
2538 #ifdef SECONDARY_MEMORY_NEEDED
2539 /* The eliminated forms of any secondary memory locations are per-insn, so
2540 clear them out here. */
2542 memset (secondary_memlocs_elim, 0, sizeof secondary_memlocs_elim);
2543 #endif
2545 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2546 is cheap to move between them. If it is not, there may not be an insn
2547 to do the copy, so we may need a reload. */
2548 if (GET_CODE (body) == SET
2549 && GET_CODE (SET_DEST (body)) == REG
2550 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2551 && GET_CODE (SET_SRC (body)) == REG
2552 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2553 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2554 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2555 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2556 return 0;
2558 extract_insn (insn);
2560 noperands = reload_n_operands = recog_data.n_operands;
2561 n_alternatives = recog_data.n_alternatives;
2563 /* Just return "no reloads" if insn has no operands with constraints. */
2564 if (noperands == 0 || n_alternatives == 0)
2565 return 0;
2567 insn_code_number = INSN_CODE (insn);
2568 this_insn_is_asm = insn_code_number < 0;
2570 memcpy (operand_mode, recog_data.operand_mode,
2571 noperands * sizeof (enum machine_mode));
2572 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2574 commutative = -1;
2576 /* If we will need to know, later, whether some pair of operands
2577 are the same, we must compare them now and save the result.
2578 Reloading the base and index registers will clobber them
2579 and afterward they will fail to match. */
2581 for (i = 0; i < noperands; i++)
2583 char *p;
2584 int c;
2586 substed_operand[i] = recog_data.operand[i];
2587 p = constraints[i];
2589 modified[i] = RELOAD_READ;
2591 /* Scan this operand's constraint to see if it is an output operand,
2592 an in-out operand, is commutative, or should match another. */
2594 while ((c = *p))
2596 p += CONSTRAINT_LEN (c, p);
2597 if (c == '=')
2598 modified[i] = RELOAD_WRITE;
2599 else if (c == '+')
2600 modified[i] = RELOAD_READ_WRITE;
2601 else if (c == '%')
2603 /* The last operand should not be marked commutative. */
2604 if (i == noperands - 1)
2605 abort ();
2607 commutative = i;
2609 else if (ISDIGIT (c))
2611 c = strtoul (p - 1, &p, 10);
2613 operands_match[c][i]
2614 = operands_match_p (recog_data.operand[c],
2615 recog_data.operand[i]);
2617 /* An operand may not match itself. */
2618 if (c == i)
2619 abort ();
2621 /* If C can be commuted with C+1, and C might need to match I,
2622 then C+1 might also need to match I. */
2623 if (commutative >= 0)
2625 if (c == commutative || c == commutative + 1)
2627 int other = c + (c == commutative ? 1 : -1);
2628 operands_match[other][i]
2629 = operands_match_p (recog_data.operand[other],
2630 recog_data.operand[i]);
2632 if (i == commutative || i == commutative + 1)
2634 int other = i + (i == commutative ? 1 : -1);
2635 operands_match[c][other]
2636 = operands_match_p (recog_data.operand[c],
2637 recog_data.operand[other]);
2639 /* Note that C is supposed to be less than I.
2640 No need to consider altering both C and I because in
2641 that case we would alter one into the other. */
2647 /* Examine each operand that is a memory reference or memory address
2648 and reload parts of the addresses into index registers.
2649 Also here any references to pseudo regs that didn't get hard regs
2650 but are equivalent to constants get replaced in the insn itself
2651 with those constants. Nobody will ever see them again.
2653 Finally, set up the preferred classes of each operand. */
2655 for (i = 0; i < noperands; i++)
2657 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2659 address_reloaded[i] = 0;
2660 address_operand_reloaded[i] = 0;
2661 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2662 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2663 : RELOAD_OTHER);
2664 address_type[i]
2665 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2666 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2667 : RELOAD_OTHER);
2669 if (*constraints[i] == 0)
2670 /* Ignore things like match_operator operands. */
2672 else if (constraints[i][0] == 'p'
2673 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2675 address_operand_reloaded[i]
2676 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2677 recog_data.operand[i],
2678 recog_data.operand_loc[i],
2679 i, operand_type[i], ind_levels, insn);
2681 /* If we now have a simple operand where we used to have a
2682 PLUS or MULT, re-recognize and try again. */
2683 if ((GET_RTX_CLASS (GET_CODE (*recog_data.operand_loc[i])) == 'o'
2684 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2685 && (GET_CODE (recog_data.operand[i]) == MULT
2686 || GET_CODE (recog_data.operand[i]) == PLUS))
2688 INSN_CODE (insn) = -1;
2689 retval = find_reloads (insn, replace, ind_levels, live_known,
2690 reload_reg_p);
2691 return retval;
2694 recog_data.operand[i] = *recog_data.operand_loc[i];
2695 substed_operand[i] = recog_data.operand[i];
2697 /* Address operands are reloaded in their existing mode,
2698 no matter what is specified in the machine description. */
2699 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2701 else if (code == MEM)
2703 address_reloaded[i]
2704 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2705 recog_data.operand_loc[i],
2706 XEXP (recog_data.operand[i], 0),
2707 &XEXP (recog_data.operand[i], 0),
2708 i, address_type[i], ind_levels, insn);
2709 recog_data.operand[i] = *recog_data.operand_loc[i];
2710 substed_operand[i] = recog_data.operand[i];
2712 else if (code == SUBREG)
2714 rtx reg = SUBREG_REG (recog_data.operand[i]);
2715 rtx op
2716 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2717 ind_levels,
2718 set != 0
2719 && &SET_DEST (set) == recog_data.operand_loc[i],
2720 insn,
2721 &address_reloaded[i]);
2723 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2724 that didn't get a hard register, emit a USE with a REG_EQUAL
2725 note in front so that we might inherit a previous, possibly
2726 wider reload. */
2728 if (replace
2729 && GET_CODE (op) == MEM
2730 && GET_CODE (reg) == REG
2731 && (GET_MODE_SIZE (GET_MODE (reg))
2732 >= GET_MODE_SIZE (GET_MODE (op))))
2733 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2734 insn),
2735 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2737 substed_operand[i] = recog_data.operand[i] = op;
2739 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2740 /* We can get a PLUS as an "operand" as a result of register
2741 elimination. See eliminate_regs and gen_reload. We handle
2742 a unary operator by reloading the operand. */
2743 substed_operand[i] = recog_data.operand[i]
2744 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2745 ind_levels, 0, insn,
2746 &address_reloaded[i]);
2747 else if (code == REG)
2749 /* This is equivalent to calling find_reloads_toplev.
2750 The code is duplicated for speed.
2751 When we find a pseudo always equivalent to a constant,
2752 we replace it by the constant. We must be sure, however,
2753 that we don't try to replace it in the insn in which it
2754 is being set. */
2755 int regno = REGNO (recog_data.operand[i]);
2756 if (reg_equiv_constant[regno] != 0
2757 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2759 /* Record the existing mode so that the check if constants are
2760 allowed will work when operand_mode isn't specified. */
2762 if (operand_mode[i] == VOIDmode)
2763 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2765 substed_operand[i] = recog_data.operand[i]
2766 = reg_equiv_constant[regno];
2768 if (reg_equiv_memory_loc[regno] != 0
2769 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2770 /* We need not give a valid is_set_dest argument since the case
2771 of a constant equivalence was checked above. */
2772 substed_operand[i] = recog_data.operand[i]
2773 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2774 ind_levels, 0, insn,
2775 &address_reloaded[i]);
2777 /* If the operand is still a register (we didn't replace it with an
2778 equivalent), get the preferred class to reload it into. */
2779 code = GET_CODE (recog_data.operand[i]);
2780 preferred_class[i]
2781 = ((code == REG && REGNO (recog_data.operand[i])
2782 >= FIRST_PSEUDO_REGISTER)
2783 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2784 : NO_REGS);
2785 pref_or_nothing[i]
2786 = (code == REG
2787 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2788 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2791 /* If this is simply a copy from operand 1 to operand 0, merge the
2792 preferred classes for the operands. */
2793 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2794 && recog_data.operand[1] == SET_SRC (set))
2796 preferred_class[0] = preferred_class[1]
2797 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2798 pref_or_nothing[0] |= pref_or_nothing[1];
2799 pref_or_nothing[1] |= pref_or_nothing[0];
2802 /* Now see what we need for pseudo-regs that didn't get hard regs
2803 or got the wrong kind of hard reg. For this, we must consider
2804 all the operands together against the register constraints. */
2806 best = MAX_RECOG_OPERANDS * 2 + 600;
2808 swapped = 0;
2809 goal_alternative_swapped = 0;
2810 try_swapped:
2812 /* The constraints are made of several alternatives.
2813 Each operand's constraint looks like foo,bar,... with commas
2814 separating the alternatives. The first alternatives for all
2815 operands go together, the second alternatives go together, etc.
2817 First loop over alternatives. */
2819 for (this_alternative_number = 0;
2820 this_alternative_number < n_alternatives;
2821 this_alternative_number++)
2823 /* Loop over operands for one constraint alternative. */
2824 /* LOSERS counts those that don't fit this alternative
2825 and would require loading. */
2826 int losers = 0;
2827 /* BAD is set to 1 if it some operand can't fit this alternative
2828 even after reloading. */
2829 int bad = 0;
2830 /* REJECT is a count of how undesirable this alternative says it is
2831 if any reloading is required. If the alternative matches exactly
2832 then REJECT is ignored, but otherwise it gets this much
2833 counted against it in addition to the reloading needed. Each
2834 ? counts three times here since we want the disparaging caused by
2835 a bad register class to only count 1/3 as much. */
2836 int reject = 0;
2838 this_earlyclobber = 0;
2840 for (i = 0; i < noperands; i++)
2842 char *p = constraints[i];
2843 char *end;
2844 int len;
2845 int win = 0;
2846 int did_match = 0;
2847 /* 0 => this operand can be reloaded somehow for this alternative. */
2848 int badop = 1;
2849 /* 0 => this operand can be reloaded if the alternative allows regs. */
2850 int winreg = 0;
2851 int c;
2852 int m;
2853 rtx operand = recog_data.operand[i];
2854 int offset = 0;
2855 /* Nonzero means this is a MEM that must be reloaded into a reg
2856 regardless of what the constraint says. */
2857 int force_reload = 0;
2858 int offmemok = 0;
2859 /* Nonzero if a constant forced into memory would be OK for this
2860 operand. */
2861 int constmemok = 0;
2862 int earlyclobber = 0;
2864 /* If the predicate accepts a unary operator, it means that
2865 we need to reload the operand, but do not do this for
2866 match_operator and friends. */
2867 if (GET_RTX_CLASS (GET_CODE (operand)) == '1' && *p != 0)
2868 operand = XEXP (operand, 0);
2870 /* If the operand is a SUBREG, extract
2871 the REG or MEM (or maybe even a constant) within.
2872 (Constants can occur as a result of reg_equiv_constant.) */
2874 while (GET_CODE (operand) == SUBREG)
2876 /* Offset only matters when operand is a REG and
2877 it is a hard reg. This is because it is passed
2878 to reg_fits_class_p if it is a REG and all pseudos
2879 return 0 from that function. */
2880 if (GET_CODE (SUBREG_REG (operand)) == REG
2881 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2883 if (!subreg_offset_representable_p
2884 (REGNO (SUBREG_REG (operand)),
2885 GET_MODE (SUBREG_REG (operand)),
2886 SUBREG_BYTE (operand),
2887 GET_MODE (operand)))
2888 force_reload = 1;
2889 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2890 GET_MODE (SUBREG_REG (operand)),
2891 SUBREG_BYTE (operand),
2892 GET_MODE (operand));
2894 operand = SUBREG_REG (operand);
2895 /* Force reload if this is a constant or PLUS or if there may
2896 be a problem accessing OPERAND in the outer mode. */
2897 if (CONSTANT_P (operand)
2898 || GET_CODE (operand) == PLUS
2899 /* We must force a reload of paradoxical SUBREGs
2900 of a MEM because the alignment of the inner value
2901 may not be enough to do the outer reference. On
2902 big-endian machines, it may also reference outside
2903 the object.
2905 On machines that extend byte operations and we have a
2906 SUBREG where both the inner and outer modes are no wider
2907 than a word and the inner mode is narrower, is integral,
2908 and gets extended when loaded from memory, combine.c has
2909 made assumptions about the behavior of the machine in such
2910 register access. If the data is, in fact, in memory we
2911 must always load using the size assumed to be in the
2912 register and let the insn do the different-sized
2913 accesses.
2915 This is doubly true if WORD_REGISTER_OPERATIONS. In
2916 this case eliminate_regs has left non-paradoxical
2917 subregs for push_reload to see. Make sure it does
2918 by forcing the reload.
2920 ??? When is it right at this stage to have a subreg
2921 of a mem that is _not_ to be handled specially? IMO
2922 those should have been reduced to just a mem. */
2923 || ((GET_CODE (operand) == MEM
2924 || (GET_CODE (operand)== REG
2925 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2926 #ifndef WORD_REGISTER_OPERATIONS
2927 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2928 < BIGGEST_ALIGNMENT)
2929 && (GET_MODE_SIZE (operand_mode[i])
2930 > GET_MODE_SIZE (GET_MODE (operand))))
2931 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
2932 #ifdef LOAD_EXTEND_OP
2933 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2934 && (GET_MODE_SIZE (GET_MODE (operand))
2935 <= UNITS_PER_WORD)
2936 && (GET_MODE_SIZE (operand_mode[i])
2937 > GET_MODE_SIZE (GET_MODE (operand)))
2938 && INTEGRAL_MODE_P (GET_MODE (operand))
2939 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2940 #endif
2942 #endif
2945 force_reload = 1;
2948 this_alternative[i] = (int) NO_REGS;
2949 this_alternative_win[i] = 0;
2950 this_alternative_match_win[i] = 0;
2951 this_alternative_offmemok[i] = 0;
2952 this_alternative_earlyclobber[i] = 0;
2953 this_alternative_matches[i] = -1;
2955 /* An empty constraint or empty alternative
2956 allows anything which matched the pattern. */
2957 if (*p == 0 || *p == ',')
2958 win = 1, badop = 0;
2960 /* Scan this alternative's specs for this operand;
2961 set WIN if the operand fits any letter in this alternative.
2962 Otherwise, clear BADOP if this operand could
2963 fit some letter after reloads,
2964 or set WINREG if this operand could fit after reloads
2965 provided the constraint allows some registers. */
2968 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
2970 case '\0':
2971 len = 0;
2972 break;
2973 case ',':
2974 c = '\0';
2975 break;
2977 case '=': case '+': case '*':
2978 break;
2980 case '%':
2981 /* The last operand should not be marked commutative. */
2982 if (i != noperands - 1)
2983 commutative = i;
2984 break;
2986 case '?':
2987 reject += 6;
2988 break;
2990 case '!':
2991 reject = 600;
2992 break;
2994 case '#':
2995 /* Ignore rest of this alternative as far as
2996 reloading is concerned. */
2998 p++;
2999 while (*p && *p != ',');
3000 len = 0;
3001 break;
3003 case '0': case '1': case '2': case '3': case '4':
3004 case '5': case '6': case '7': case '8': case '9':
3005 m = strtoul (p, &end, 10);
3006 p = end;
3007 len = 0;
3009 this_alternative_matches[i] = m;
3010 /* We are supposed to match a previous operand.
3011 If we do, we win if that one did.
3012 If we do not, count both of the operands as losers.
3013 (This is too conservative, since most of the time
3014 only a single reload insn will be needed to make
3015 the two operands win. As a result, this alternative
3016 may be rejected when it is actually desirable.) */
3017 if ((swapped && (m != commutative || i != commutative + 1))
3018 /* If we are matching as if two operands were swapped,
3019 also pretend that operands_match had been computed
3020 with swapped.
3021 But if I is the second of those and C is the first,
3022 don't exchange them, because operands_match is valid
3023 only on one side of its diagonal. */
3024 ? (operands_match
3025 [(m == commutative || m == commutative + 1)
3026 ? 2 * commutative + 1 - m : m]
3027 [(i == commutative || i == commutative + 1)
3028 ? 2 * commutative + 1 - i : i])
3029 : operands_match[m][i])
3031 /* If we are matching a non-offsettable address where an
3032 offsettable address was expected, then we must reject
3033 this combination, because we can't reload it. */
3034 if (this_alternative_offmemok[m]
3035 && GET_CODE (recog_data.operand[m]) == MEM
3036 && this_alternative[m] == (int) NO_REGS
3037 && ! this_alternative_win[m])
3038 bad = 1;
3040 did_match = this_alternative_win[m];
3042 else
3044 /* Operands don't match. */
3045 rtx value;
3046 /* Retroactively mark the operand we had to match
3047 as a loser, if it wasn't already. */
3048 if (this_alternative_win[m])
3049 losers++;
3050 this_alternative_win[m] = 0;
3051 if (this_alternative[m] == (int) NO_REGS)
3052 bad = 1;
3053 /* But count the pair only once in the total badness of
3054 this alternative, if the pair can be a dummy reload. */
3055 value
3056 = find_dummy_reload (recog_data.operand[i],
3057 recog_data.operand[m],
3058 recog_data.operand_loc[i],
3059 recog_data.operand_loc[m],
3060 operand_mode[i], operand_mode[m],
3061 this_alternative[m], -1,
3062 this_alternative_earlyclobber[m]);
3064 if (value != 0)
3065 losers--;
3067 /* This can be fixed with reloads if the operand
3068 we are supposed to match can be fixed with reloads. */
3069 badop = 0;
3070 this_alternative[i] = this_alternative[m];
3072 /* If we have to reload this operand and some previous
3073 operand also had to match the same thing as this
3074 operand, we don't know how to do that. So reject this
3075 alternative. */
3076 if (! did_match || force_reload)
3077 for (j = 0; j < i; j++)
3078 if (this_alternative_matches[j]
3079 == this_alternative_matches[i])
3080 badop = 1;
3081 break;
3083 case 'p':
3084 /* All necessary reloads for an address_operand
3085 were handled in find_reloads_address. */
3086 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3087 win = 1;
3088 badop = 0;
3089 break;
3091 case 'm':
3092 if (force_reload)
3093 break;
3094 if (GET_CODE (operand) == MEM
3095 || (GET_CODE (operand) == REG
3096 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3097 && reg_renumber[REGNO (operand)] < 0))
3098 win = 1;
3099 if (CONSTANT_P (operand)
3100 /* force_const_mem does not accept HIGH. */
3101 && GET_CODE (operand) != HIGH)
3102 badop = 0;
3103 constmemok = 1;
3104 break;
3106 case '<':
3107 if (GET_CODE (operand) == MEM
3108 && ! address_reloaded[i]
3109 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3110 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3111 win = 1;
3112 break;
3114 case '>':
3115 if (GET_CODE (operand) == MEM
3116 && ! address_reloaded[i]
3117 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3118 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3119 win = 1;
3120 break;
3122 /* Memory operand whose address is not offsettable. */
3123 case 'V':
3124 if (force_reload)
3125 break;
3126 if (GET_CODE (operand) == MEM
3127 && ! (ind_levels ? offsettable_memref_p (operand)
3128 : offsettable_nonstrict_memref_p (operand))
3129 /* Certain mem addresses will become offsettable
3130 after they themselves are reloaded. This is important;
3131 we don't want our own handling of unoffsettables
3132 to override the handling of reg_equiv_address. */
3133 && !(GET_CODE (XEXP (operand, 0)) == REG
3134 && (ind_levels == 0
3135 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3136 win = 1;
3137 break;
3139 /* Memory operand whose address is offsettable. */
3140 case 'o':
3141 if (force_reload)
3142 break;
3143 if ((GET_CODE (operand) == MEM
3144 /* If IND_LEVELS, find_reloads_address won't reload a
3145 pseudo that didn't get a hard reg, so we have to
3146 reject that case. */
3147 && ((ind_levels ? offsettable_memref_p (operand)
3148 : offsettable_nonstrict_memref_p (operand))
3149 /* A reloaded address is offsettable because it is now
3150 just a simple register indirect. */
3151 || address_reloaded[i]))
3152 || (GET_CODE (operand) == REG
3153 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3154 && reg_renumber[REGNO (operand)] < 0
3155 /* If reg_equiv_address is nonzero, we will be
3156 loading it into a register; hence it will be
3157 offsettable, but we cannot say that reg_equiv_mem
3158 is offsettable without checking. */
3159 && ((reg_equiv_mem[REGNO (operand)] != 0
3160 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3161 || (reg_equiv_address[REGNO (operand)] != 0))))
3162 win = 1;
3163 /* force_const_mem does not accept HIGH. */
3164 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3165 || GET_CODE (operand) == MEM)
3166 badop = 0;
3167 constmemok = 1;
3168 offmemok = 1;
3169 break;
3171 case '&':
3172 /* Output operand that is stored before the need for the
3173 input operands (and their index registers) is over. */
3174 earlyclobber = 1, this_earlyclobber = 1;
3175 break;
3177 case 'E':
3178 case 'F':
3179 if (GET_CODE (operand) == CONST_DOUBLE
3180 || (GET_CODE (operand) == CONST_VECTOR
3181 && (GET_MODE_CLASS (GET_MODE (operand))
3182 == MODE_VECTOR_FLOAT)))
3183 win = 1;
3184 break;
3186 case 'G':
3187 case 'H':
3188 if (GET_CODE (operand) == CONST_DOUBLE
3189 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3190 win = 1;
3191 break;
3193 case 's':
3194 if (GET_CODE (operand) == CONST_INT
3195 || (GET_CODE (operand) == CONST_DOUBLE
3196 && GET_MODE (operand) == VOIDmode))
3197 break;
3198 case 'i':
3199 if (CONSTANT_P (operand)
3200 #ifdef LEGITIMATE_PIC_OPERAND_P
3201 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3202 #endif
3204 win = 1;
3205 break;
3207 case 'n':
3208 if (GET_CODE (operand) == CONST_INT
3209 || (GET_CODE (operand) == CONST_DOUBLE
3210 && GET_MODE (operand) == VOIDmode))
3211 win = 1;
3212 break;
3214 case 'I':
3215 case 'J':
3216 case 'K':
3217 case 'L':
3218 case 'M':
3219 case 'N':
3220 case 'O':
3221 case 'P':
3222 if (GET_CODE (operand) == CONST_INT
3223 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3224 win = 1;
3225 break;
3227 case 'X':
3228 win = 1;
3229 break;
3231 case 'g':
3232 if (! force_reload
3233 /* A PLUS is never a valid operand, but reload can make
3234 it from a register when eliminating registers. */
3235 && GET_CODE (operand) != PLUS
3236 /* A SCRATCH is not a valid operand. */
3237 && GET_CODE (operand) != SCRATCH
3238 #ifdef LEGITIMATE_PIC_OPERAND_P
3239 && (! CONSTANT_P (operand)
3240 || ! flag_pic
3241 || LEGITIMATE_PIC_OPERAND_P (operand))
3242 #endif
3243 && (GENERAL_REGS == ALL_REGS
3244 || GET_CODE (operand) != REG
3245 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3246 && reg_renumber[REGNO (operand)] < 0)))
3247 win = 1;
3248 /* Drop through into 'r' case. */
3250 case 'r':
3251 this_alternative[i]
3252 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3253 goto reg;
3255 default:
3256 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3258 #ifdef EXTRA_CONSTRAINT_STR
3259 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3261 if (force_reload)
3262 break;
3263 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3264 win = 1;
3265 /* If the address was already reloaded,
3266 we win as well. */
3267 else if (GET_CODE (operand) == MEM
3268 && address_reloaded[i])
3269 win = 1;
3270 /* Likewise if the address will be reloaded because
3271 reg_equiv_address is nonzero. For reg_equiv_mem
3272 we have to check. */
3273 else if (GET_CODE (operand) == REG
3274 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3275 && reg_renumber[REGNO (operand)] < 0
3276 && ((reg_equiv_mem[REGNO (operand)] != 0
3277 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3278 || (reg_equiv_address[REGNO (operand)] != 0)))
3279 win = 1;
3281 /* If we didn't already win, we can reload
3282 constants via force_const_mem, and other
3283 MEMs by reloading the address like for 'o'. */
3284 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3285 || GET_CODE (operand) == MEM)
3286 badop = 0;
3287 constmemok = 1;
3288 offmemok = 1;
3289 break;
3291 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3293 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3294 win = 1;
3296 /* If we didn't already win, we can reload
3297 the address into a base register. */
3298 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3299 badop = 0;
3300 break;
3303 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3304 win = 1;
3305 #endif
3306 break;
3309 this_alternative[i]
3310 = (int) (reg_class_subunion
3311 [this_alternative[i]]
3312 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3313 reg:
3314 if (GET_MODE (operand) == BLKmode)
3315 break;
3316 winreg = 1;
3317 if (GET_CODE (operand) == REG
3318 && reg_fits_class_p (operand, this_alternative[i],
3319 offset, GET_MODE (recog_data.operand[i])))
3320 win = 1;
3321 break;
3323 while ((p += len), c);
3325 constraints[i] = p;
3327 /* If this operand could be handled with a reg,
3328 and some reg is allowed, then this operand can be handled. */
3329 if (winreg && this_alternative[i] != (int) NO_REGS)
3330 badop = 0;
3332 /* Record which operands fit this alternative. */
3333 this_alternative_earlyclobber[i] = earlyclobber;
3334 if (win && ! force_reload)
3335 this_alternative_win[i] = 1;
3336 else if (did_match && ! force_reload)
3337 this_alternative_match_win[i] = 1;
3338 else
3340 int const_to_mem = 0;
3342 this_alternative_offmemok[i] = offmemok;
3343 losers++;
3344 if (badop)
3345 bad = 1;
3346 /* Alternative loses if it has no regs for a reg operand. */
3347 if (GET_CODE (operand) == REG
3348 && this_alternative[i] == (int) NO_REGS
3349 && this_alternative_matches[i] < 0)
3350 bad = 1;
3352 /* If this is a constant that is reloaded into the desired
3353 class by copying it to memory first, count that as another
3354 reload. This is consistent with other code and is
3355 required to avoid choosing another alternative when
3356 the constant is moved into memory by this function on
3357 an early reload pass. Note that the test here is
3358 precisely the same as in the code below that calls
3359 force_const_mem. */
3360 if (CONSTANT_P (operand)
3361 /* force_const_mem does not accept HIGH. */
3362 && GET_CODE (operand) != HIGH
3363 && ((PREFERRED_RELOAD_CLASS (operand,
3364 (enum reg_class) this_alternative[i])
3365 == NO_REGS)
3366 || no_input_reloads)
3367 && operand_mode[i] != VOIDmode)
3369 const_to_mem = 1;
3370 if (this_alternative[i] != (int) NO_REGS)
3371 losers++;
3374 /* If we can't reload this value at all, reject this
3375 alternative. Note that we could also lose due to
3376 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3377 here. */
3379 if (! CONSTANT_P (operand)
3380 && (enum reg_class) this_alternative[i] != NO_REGS
3381 && (PREFERRED_RELOAD_CLASS (operand,
3382 (enum reg_class) this_alternative[i])
3383 == NO_REGS))
3384 bad = 1;
3386 /* Alternative loses if it requires a type of reload not
3387 permitted for this insn. We can always reload SCRATCH
3388 and objects with a REG_UNUSED note. */
3389 else if (GET_CODE (operand) != SCRATCH
3390 && modified[i] != RELOAD_READ && no_output_reloads
3391 && ! find_reg_note (insn, REG_UNUSED, operand))
3392 bad = 1;
3393 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3394 && ! const_to_mem)
3395 bad = 1;
3397 /* We prefer to reload pseudos over reloading other things,
3398 since such reloads may be able to be eliminated later.
3399 If we are reloading a SCRATCH, we won't be generating any
3400 insns, just using a register, so it is also preferred.
3401 So bump REJECT in other cases. Don't do this in the
3402 case where we are forcing a constant into memory and
3403 it will then win since we don't want to have a different
3404 alternative match then. */
3405 if (! (GET_CODE (operand) == REG
3406 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3407 && GET_CODE (operand) != SCRATCH
3408 && ! (const_to_mem && constmemok))
3409 reject += 2;
3411 /* Input reloads can be inherited more often than output
3412 reloads can be removed, so penalize output reloads. */
3413 if (operand_type[i] != RELOAD_FOR_INPUT
3414 && GET_CODE (operand) != SCRATCH)
3415 reject++;
3418 /* If this operand is a pseudo register that didn't get a hard
3419 reg and this alternative accepts some register, see if the
3420 class that we want is a subset of the preferred class for this
3421 register. If not, but it intersects that class, use the
3422 preferred class instead. If it does not intersect the preferred
3423 class, show that usage of this alternative should be discouraged;
3424 it will be discouraged more still if the register is `preferred
3425 or nothing'. We do this because it increases the chance of
3426 reusing our spill register in a later insn and avoiding a pair
3427 of memory stores and loads.
3429 Don't bother with this if this alternative will accept this
3430 operand.
3432 Don't do this for a multiword operand, since it is only a
3433 small win and has the risk of requiring more spill registers,
3434 which could cause a large loss.
3436 Don't do this if the preferred class has only one register
3437 because we might otherwise exhaust the class. */
3439 if (! win && ! did_match
3440 && this_alternative[i] != (int) NO_REGS
3441 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3442 && reg_class_size[(int) preferred_class[i]] > 1)
3444 if (! reg_class_subset_p (this_alternative[i],
3445 preferred_class[i]))
3447 /* Since we don't have a way of forming the intersection,
3448 we just do something special if the preferred class
3449 is a subset of the class we have; that's the most
3450 common case anyway. */
3451 if (reg_class_subset_p (preferred_class[i],
3452 this_alternative[i]))
3453 this_alternative[i] = (int) preferred_class[i];
3454 else
3455 reject += (2 + 2 * pref_or_nothing[i]);
3460 /* Now see if any output operands that are marked "earlyclobber"
3461 in this alternative conflict with any input operands
3462 or any memory addresses. */
3464 for (i = 0; i < noperands; i++)
3465 if (this_alternative_earlyclobber[i]
3466 && (this_alternative_win[i] || this_alternative_match_win[i]))
3468 struct decomposition early_data;
3470 early_data = decompose (recog_data.operand[i]);
3472 if (modified[i] == RELOAD_READ)
3473 abort ();
3475 if (this_alternative[i] == NO_REGS)
3477 this_alternative_earlyclobber[i] = 0;
3478 if (this_insn_is_asm)
3479 error_for_asm (this_insn,
3480 "`&' constraint used with no register class");
3481 else
3482 abort ();
3485 for (j = 0; j < noperands; j++)
3486 /* Is this an input operand or a memory ref? */
3487 if ((GET_CODE (recog_data.operand[j]) == MEM
3488 || modified[j] != RELOAD_WRITE)
3489 && j != i
3490 /* Ignore things like match_operator operands. */
3491 && *recog_data.constraints[j] != 0
3492 /* Don't count an input operand that is constrained to match
3493 the early clobber operand. */
3494 && ! (this_alternative_matches[j] == i
3495 && rtx_equal_p (recog_data.operand[i],
3496 recog_data.operand[j]))
3497 /* Is it altered by storing the earlyclobber operand? */
3498 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3499 early_data))
3501 /* If the output is in a single-reg class,
3502 it's costly to reload it, so reload the input instead. */
3503 if (reg_class_size[this_alternative[i]] == 1
3504 && (GET_CODE (recog_data.operand[j]) == REG
3505 || GET_CODE (recog_data.operand[j]) == SUBREG))
3507 losers++;
3508 this_alternative_win[j] = 0;
3509 this_alternative_match_win[j] = 0;
3511 else
3512 break;
3514 /* If an earlyclobber operand conflicts with something,
3515 it must be reloaded, so request this and count the cost. */
3516 if (j != noperands)
3518 losers++;
3519 this_alternative_win[i] = 0;
3520 this_alternative_match_win[j] = 0;
3521 for (j = 0; j < noperands; j++)
3522 if (this_alternative_matches[j] == i
3523 && this_alternative_match_win[j])
3525 this_alternative_win[j] = 0;
3526 this_alternative_match_win[j] = 0;
3527 losers++;
3532 /* If one alternative accepts all the operands, no reload required,
3533 choose that alternative; don't consider the remaining ones. */
3534 if (losers == 0)
3536 /* Unswap these so that they are never swapped at `finish'. */
3537 if (commutative >= 0)
3539 recog_data.operand[commutative] = substed_operand[commutative];
3540 recog_data.operand[commutative + 1]
3541 = substed_operand[commutative + 1];
3543 for (i = 0; i < noperands; i++)
3545 goal_alternative_win[i] = this_alternative_win[i];
3546 goal_alternative_match_win[i] = this_alternative_match_win[i];
3547 goal_alternative[i] = this_alternative[i];
3548 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3549 goal_alternative_matches[i] = this_alternative_matches[i];
3550 goal_alternative_earlyclobber[i]
3551 = this_alternative_earlyclobber[i];
3553 goal_alternative_number = this_alternative_number;
3554 goal_alternative_swapped = swapped;
3555 goal_earlyclobber = this_earlyclobber;
3556 goto finish;
3559 /* REJECT, set by the ! and ? constraint characters and when a register
3560 would be reloaded into a non-preferred class, discourages the use of
3561 this alternative for a reload goal. REJECT is incremented by six
3562 for each ? and two for each non-preferred class. */
3563 losers = losers * 6 + reject;
3565 /* If this alternative can be made to work by reloading,
3566 and it needs less reloading than the others checked so far,
3567 record it as the chosen goal for reloading. */
3568 if (! bad && best > losers)
3570 for (i = 0; i < noperands; i++)
3572 goal_alternative[i] = this_alternative[i];
3573 goal_alternative_win[i] = this_alternative_win[i];
3574 goal_alternative_match_win[i] = this_alternative_match_win[i];
3575 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3576 goal_alternative_matches[i] = this_alternative_matches[i];
3577 goal_alternative_earlyclobber[i]
3578 = this_alternative_earlyclobber[i];
3580 goal_alternative_swapped = swapped;
3581 best = losers;
3582 goal_alternative_number = this_alternative_number;
3583 goal_earlyclobber = this_earlyclobber;
3587 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3588 then we need to try each alternative twice,
3589 the second time matching those two operands
3590 as if we had exchanged them.
3591 To do this, really exchange them in operands.
3593 If we have just tried the alternatives the second time,
3594 return operands to normal and drop through. */
3596 if (commutative >= 0)
3598 swapped = !swapped;
3599 if (swapped)
3601 enum reg_class tclass;
3602 int t;
3604 recog_data.operand[commutative] = substed_operand[commutative + 1];
3605 recog_data.operand[commutative + 1] = substed_operand[commutative];
3606 /* Swap the duplicates too. */
3607 for (i = 0; i < recog_data.n_dups; i++)
3608 if (recog_data.dup_num[i] == commutative
3609 || recog_data.dup_num[i] == commutative + 1)
3610 *recog_data.dup_loc[i]
3611 = recog_data.operand[(int) recog_data.dup_num[i]];
3613 tclass = preferred_class[commutative];
3614 preferred_class[commutative] = preferred_class[commutative + 1];
3615 preferred_class[commutative + 1] = tclass;
3617 t = pref_or_nothing[commutative];
3618 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3619 pref_or_nothing[commutative + 1] = t;
3621 memcpy (constraints, recog_data.constraints,
3622 noperands * sizeof (char *));
3623 goto try_swapped;
3625 else
3627 recog_data.operand[commutative] = substed_operand[commutative];
3628 recog_data.operand[commutative + 1]
3629 = substed_operand[commutative + 1];
3630 /* Unswap the duplicates too. */
3631 for (i = 0; i < recog_data.n_dups; i++)
3632 if (recog_data.dup_num[i] == commutative
3633 || recog_data.dup_num[i] == commutative + 1)
3634 *recog_data.dup_loc[i]
3635 = recog_data.operand[(int) recog_data.dup_num[i]];
3639 /* The operands don't meet the constraints.
3640 goal_alternative describes the alternative
3641 that we could reach by reloading the fewest operands.
3642 Reload so as to fit it. */
3644 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3646 /* No alternative works with reloads?? */
3647 if (insn_code_number >= 0)
3648 fatal_insn ("unable to generate reloads for:", insn);
3649 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3650 /* Avoid further trouble with this insn. */
3651 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3652 n_reloads = 0;
3653 return 0;
3656 /* Jump to `finish' from above if all operands are valid already.
3657 In that case, goal_alternative_win is all 1. */
3658 finish:
3660 /* Right now, for any pair of operands I and J that are required to match,
3661 with I < J,
3662 goal_alternative_matches[J] is I.
3663 Set up goal_alternative_matched as the inverse function:
3664 goal_alternative_matched[I] = J. */
3666 for (i = 0; i < noperands; i++)
3667 goal_alternative_matched[i] = -1;
3669 for (i = 0; i < noperands; i++)
3670 if (! goal_alternative_win[i]
3671 && goal_alternative_matches[i] >= 0)
3672 goal_alternative_matched[goal_alternative_matches[i]] = i;
3674 for (i = 0; i < noperands; i++)
3675 goal_alternative_win[i] |= goal_alternative_match_win[i];
3677 /* If the best alternative is with operands 1 and 2 swapped,
3678 consider them swapped before reporting the reloads. Update the
3679 operand numbers of any reloads already pushed. */
3681 if (goal_alternative_swapped)
3683 rtx tem;
3685 tem = substed_operand[commutative];
3686 substed_operand[commutative] = substed_operand[commutative + 1];
3687 substed_operand[commutative + 1] = tem;
3688 tem = recog_data.operand[commutative];
3689 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3690 recog_data.operand[commutative + 1] = tem;
3691 tem = *recog_data.operand_loc[commutative];
3692 *recog_data.operand_loc[commutative]
3693 = *recog_data.operand_loc[commutative + 1];
3694 *recog_data.operand_loc[commutative + 1] = tem;
3696 for (i = 0; i < n_reloads; i++)
3698 if (rld[i].opnum == commutative)
3699 rld[i].opnum = commutative + 1;
3700 else if (rld[i].opnum == commutative + 1)
3701 rld[i].opnum = commutative;
3705 for (i = 0; i < noperands; i++)
3707 operand_reloadnum[i] = -1;
3709 /* If this is an earlyclobber operand, we need to widen the scope.
3710 The reload must remain valid from the start of the insn being
3711 reloaded until after the operand is stored into its destination.
3712 We approximate this with RELOAD_OTHER even though we know that we
3713 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3715 One special case that is worth checking is when we have an
3716 output that is earlyclobber but isn't used past the insn (typically
3717 a SCRATCH). In this case, we only need have the reload live
3718 through the insn itself, but not for any of our input or output
3719 reloads.
3720 But we must not accidentally narrow the scope of an existing
3721 RELOAD_OTHER reload - leave these alone.
3723 In any case, anything needed to address this operand can remain
3724 however they were previously categorized. */
3726 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3727 operand_type[i]
3728 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3729 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3732 /* Any constants that aren't allowed and can't be reloaded
3733 into registers are here changed into memory references. */
3734 for (i = 0; i < noperands; i++)
3735 if (! goal_alternative_win[i]
3736 && CONSTANT_P (recog_data.operand[i])
3737 /* force_const_mem does not accept HIGH. */
3738 && GET_CODE (recog_data.operand[i]) != HIGH
3739 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3740 (enum reg_class) goal_alternative[i])
3741 == NO_REGS)
3742 || no_input_reloads)
3743 && operand_mode[i] != VOIDmode)
3745 substed_operand[i] = recog_data.operand[i]
3746 = find_reloads_toplev (force_const_mem (operand_mode[i],
3747 recog_data.operand[i]),
3748 i, address_type[i], ind_levels, 0, insn,
3749 NULL);
3750 if (alternative_allows_memconst (recog_data.constraints[i],
3751 goal_alternative_number))
3752 goal_alternative_win[i] = 1;
3755 /* Record the values of the earlyclobber operands for the caller. */
3756 if (goal_earlyclobber)
3757 for (i = 0; i < noperands; i++)
3758 if (goal_alternative_earlyclobber[i])
3759 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3761 /* Now record reloads for all the operands that need them. */
3762 for (i = 0; i < noperands; i++)
3763 if (! goal_alternative_win[i])
3765 /* Operands that match previous ones have already been handled. */
3766 if (goal_alternative_matches[i] >= 0)
3768 /* Handle an operand with a nonoffsettable address
3769 appearing where an offsettable address will do
3770 by reloading the address into a base register.
3772 ??? We can also do this when the operand is a register and
3773 reg_equiv_mem is not offsettable, but this is a bit tricky,
3774 so we don't bother with it. It may not be worth doing. */
3775 else if (goal_alternative_matched[i] == -1
3776 && goal_alternative_offmemok[i]
3777 && GET_CODE (recog_data.operand[i]) == MEM)
3779 operand_reloadnum[i]
3780 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3781 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3782 MODE_BASE_REG_CLASS (VOIDmode),
3783 GET_MODE (XEXP (recog_data.operand[i], 0)),
3784 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3785 rld[operand_reloadnum[i]].inc
3786 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3788 /* If this operand is an output, we will have made any
3789 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3790 now we are treating part of the operand as an input, so
3791 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3793 if (modified[i] == RELOAD_WRITE)
3795 for (j = 0; j < n_reloads; j++)
3797 if (rld[j].opnum == i)
3799 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3800 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3801 else if (rld[j].when_needed
3802 == RELOAD_FOR_OUTADDR_ADDRESS)
3803 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3808 else if (goal_alternative_matched[i] == -1)
3810 operand_reloadnum[i]
3811 = push_reload ((modified[i] != RELOAD_WRITE
3812 ? recog_data.operand[i] : 0),
3813 (modified[i] != RELOAD_READ
3814 ? recog_data.operand[i] : 0),
3815 (modified[i] != RELOAD_WRITE
3816 ? recog_data.operand_loc[i] : 0),
3817 (modified[i] != RELOAD_READ
3818 ? recog_data.operand_loc[i] : 0),
3819 (enum reg_class) goal_alternative[i],
3820 (modified[i] == RELOAD_WRITE
3821 ? VOIDmode : operand_mode[i]),
3822 (modified[i] == RELOAD_READ
3823 ? VOIDmode : operand_mode[i]),
3824 (insn_code_number < 0 ? 0
3825 : insn_data[insn_code_number].operand[i].strict_low),
3826 0, i, operand_type[i]);
3828 /* In a matching pair of operands, one must be input only
3829 and the other must be output only.
3830 Pass the input operand as IN and the other as OUT. */
3831 else if (modified[i] == RELOAD_READ
3832 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3834 operand_reloadnum[i]
3835 = push_reload (recog_data.operand[i],
3836 recog_data.operand[goal_alternative_matched[i]],
3837 recog_data.operand_loc[i],
3838 recog_data.operand_loc[goal_alternative_matched[i]],
3839 (enum reg_class) goal_alternative[i],
3840 operand_mode[i],
3841 operand_mode[goal_alternative_matched[i]],
3842 0, 0, i, RELOAD_OTHER);
3843 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3845 else if (modified[i] == RELOAD_WRITE
3846 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3848 operand_reloadnum[goal_alternative_matched[i]]
3849 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3850 recog_data.operand[i],
3851 recog_data.operand_loc[goal_alternative_matched[i]],
3852 recog_data.operand_loc[i],
3853 (enum reg_class) goal_alternative[i],
3854 operand_mode[goal_alternative_matched[i]],
3855 operand_mode[i],
3856 0, 0, i, RELOAD_OTHER);
3857 operand_reloadnum[i] = output_reloadnum;
3859 else if (insn_code_number >= 0)
3860 abort ();
3861 else
3863 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3864 /* Avoid further trouble with this insn. */
3865 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3866 n_reloads = 0;
3867 return 0;
3870 else if (goal_alternative_matched[i] < 0
3871 && goal_alternative_matches[i] < 0
3872 && !address_operand_reloaded[i]
3873 && optimize)
3875 /* For each non-matching operand that's a MEM or a pseudo-register
3876 that didn't get a hard register, make an optional reload.
3877 This may get done even if the insn needs no reloads otherwise. */
3879 rtx operand = recog_data.operand[i];
3881 while (GET_CODE (operand) == SUBREG)
3882 operand = SUBREG_REG (operand);
3883 if ((GET_CODE (operand) == MEM
3884 || (GET_CODE (operand) == REG
3885 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3886 /* If this is only for an output, the optional reload would not
3887 actually cause us to use a register now, just note that
3888 something is stored here. */
3889 && ((enum reg_class) goal_alternative[i] != NO_REGS
3890 || modified[i] == RELOAD_WRITE)
3891 && ! no_input_reloads
3892 /* An optional output reload might allow to delete INSN later.
3893 We mustn't make in-out reloads on insns that are not permitted
3894 output reloads.
3895 If this is an asm, we can't delete it; we must not even call
3896 push_reload for an optional output reload in this case,
3897 because we can't be sure that the constraint allows a register,
3898 and push_reload verifies the constraints for asms. */
3899 && (modified[i] == RELOAD_READ
3900 || (! no_output_reloads && ! this_insn_is_asm)))
3901 operand_reloadnum[i]
3902 = push_reload ((modified[i] != RELOAD_WRITE
3903 ? recog_data.operand[i] : 0),
3904 (modified[i] != RELOAD_READ
3905 ? recog_data.operand[i] : 0),
3906 (modified[i] != RELOAD_WRITE
3907 ? recog_data.operand_loc[i] : 0),
3908 (modified[i] != RELOAD_READ
3909 ? recog_data.operand_loc[i] : 0),
3910 (enum reg_class) goal_alternative[i],
3911 (modified[i] == RELOAD_WRITE
3912 ? VOIDmode : operand_mode[i]),
3913 (modified[i] == RELOAD_READ
3914 ? VOIDmode : operand_mode[i]),
3915 (insn_code_number < 0 ? 0
3916 : insn_data[insn_code_number].operand[i].strict_low),
3917 1, i, operand_type[i]);
3918 /* If a memory reference remains (either as a MEM or a pseudo that
3919 did not get a hard register), yet we can't make an optional
3920 reload, check if this is actually a pseudo register reference;
3921 we then need to emit a USE and/or a CLOBBER so that reload
3922 inheritance will do the right thing. */
3923 else if (replace
3924 && (GET_CODE (operand) == MEM
3925 || (GET_CODE (operand) == REG
3926 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3927 && reg_renumber [REGNO (operand)] < 0)))
3929 operand = *recog_data.operand_loc[i];
3931 while (GET_CODE (operand) == SUBREG)
3932 operand = SUBREG_REG (operand);
3933 if (GET_CODE (operand) == REG)
3935 if (modified[i] != RELOAD_WRITE)
3936 /* We mark the USE with QImode so that we recognize
3937 it as one that can be safely deleted at the end
3938 of reload. */
3939 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
3940 insn), QImode);
3941 if (modified[i] != RELOAD_READ)
3942 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3946 else if (goal_alternative_matches[i] >= 0
3947 && goal_alternative_win[goal_alternative_matches[i]]
3948 && modified[i] == RELOAD_READ
3949 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3950 && ! no_input_reloads && ! no_output_reloads
3951 && optimize)
3953 /* Similarly, make an optional reload for a pair of matching
3954 objects that are in MEM or a pseudo that didn't get a hard reg. */
3956 rtx operand = recog_data.operand[i];
3958 while (GET_CODE (operand) == SUBREG)
3959 operand = SUBREG_REG (operand);
3960 if ((GET_CODE (operand) == MEM
3961 || (GET_CODE (operand) == REG
3962 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3963 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3964 != NO_REGS))
3965 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3966 = push_reload (recog_data.operand[goal_alternative_matches[i]],
3967 recog_data.operand[i],
3968 recog_data.operand_loc[goal_alternative_matches[i]],
3969 recog_data.operand_loc[i],
3970 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3971 operand_mode[goal_alternative_matches[i]],
3972 operand_mode[i],
3973 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3976 /* Perform whatever substitutions on the operands we are supposed
3977 to make due to commutativity or replacement of registers
3978 with equivalent constants or memory slots. */
3980 for (i = 0; i < noperands; i++)
3982 /* We only do this on the last pass through reload, because it is
3983 possible for some data (like reg_equiv_address) to be changed during
3984 later passes. Moreover, we loose the opportunity to get a useful
3985 reload_{in,out}_reg when we do these replacements. */
3987 if (replace)
3989 rtx substitution = substed_operand[i];
3991 *recog_data.operand_loc[i] = substitution;
3993 /* If we're replacing an operand with a LABEL_REF, we need
3994 to make sure that there's a REG_LABEL note attached to
3995 this instruction. */
3996 if (GET_CODE (insn) != JUMP_INSN
3997 && GET_CODE (substitution) == LABEL_REF
3998 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
3999 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
4000 XEXP (substitution, 0),
4001 REG_NOTES (insn));
4003 else
4004 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4007 /* If this insn pattern contains any MATCH_DUP's, make sure that
4008 they will be substituted if the operands they match are substituted.
4009 Also do now any substitutions we already did on the operands.
4011 Don't do this if we aren't making replacements because we might be
4012 propagating things allocated by frame pointer elimination into places
4013 it doesn't expect. */
4015 if (insn_code_number >= 0 && replace)
4016 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4018 int opno = recog_data.dup_num[i];
4019 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4020 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4023 #if 0
4024 /* This loses because reloading of prior insns can invalidate the equivalence
4025 (or at least find_equiv_reg isn't smart enough to find it any more),
4026 causing this insn to need more reload regs than it needed before.
4027 It may be too late to make the reload regs available.
4028 Now this optimization is done safely in choose_reload_regs. */
4030 /* For each reload of a reg into some other class of reg,
4031 search for an existing equivalent reg (same value now) in the right class.
4032 We can use it as long as we don't need to change its contents. */
4033 for (i = 0; i < n_reloads; i++)
4034 if (rld[i].reg_rtx == 0
4035 && rld[i].in != 0
4036 && GET_CODE (rld[i].in) == REG
4037 && rld[i].out == 0)
4039 rld[i].reg_rtx
4040 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4041 static_reload_reg_p, 0, rld[i].inmode);
4042 /* Prevent generation of insn to load the value
4043 because the one we found already has the value. */
4044 if (rld[i].reg_rtx)
4045 rld[i].in = rld[i].reg_rtx;
4047 #endif
4049 /* Perhaps an output reload can be combined with another
4050 to reduce needs by one. */
4051 if (!goal_earlyclobber)
4052 combine_reloads ();
4054 /* If we have a pair of reloads for parts of an address, they are reloading
4055 the same object, the operands themselves were not reloaded, and they
4056 are for two operands that are supposed to match, merge the reloads and
4057 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4059 for (i = 0; i < n_reloads; i++)
4061 int k;
4063 for (j = i + 1; j < n_reloads; j++)
4064 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4065 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4066 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4067 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4068 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4069 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4070 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4071 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4072 && rtx_equal_p (rld[i].in, rld[j].in)
4073 && (operand_reloadnum[rld[i].opnum] < 0
4074 || rld[operand_reloadnum[rld[i].opnum]].optional)
4075 && (operand_reloadnum[rld[j].opnum] < 0
4076 || rld[operand_reloadnum[rld[j].opnum]].optional)
4077 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4078 || (goal_alternative_matches[rld[j].opnum]
4079 == rld[i].opnum)))
4081 for (k = 0; k < n_replacements; k++)
4082 if (replacements[k].what == j)
4083 replacements[k].what = i;
4085 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4086 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4087 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4088 else
4089 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4090 rld[j].in = 0;
4094 /* Scan all the reloads and update their type.
4095 If a reload is for the address of an operand and we didn't reload
4096 that operand, change the type. Similarly, change the operand number
4097 of a reload when two operands match. If a reload is optional, treat it
4098 as though the operand isn't reloaded.
4100 ??? This latter case is somewhat odd because if we do the optional
4101 reload, it means the object is hanging around. Thus we need only
4102 do the address reload if the optional reload was NOT done.
4104 Change secondary reloads to be the address type of their operand, not
4105 the normal type.
4107 If an operand's reload is now RELOAD_OTHER, change any
4108 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4109 RELOAD_FOR_OTHER_ADDRESS. */
4111 for (i = 0; i < n_reloads; i++)
4113 if (rld[i].secondary_p
4114 && rld[i].when_needed == operand_type[rld[i].opnum])
4115 rld[i].when_needed = address_type[rld[i].opnum];
4117 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4118 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4119 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4120 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4121 && (operand_reloadnum[rld[i].opnum] < 0
4122 || rld[operand_reloadnum[rld[i].opnum]].optional))
4124 /* If we have a secondary reload to go along with this reload,
4125 change its type to RELOAD_FOR_OPADDR_ADDR. */
4127 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4128 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4129 && rld[i].secondary_in_reload != -1)
4131 int secondary_in_reload = rld[i].secondary_in_reload;
4133 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4135 /* If there's a tertiary reload we have to change it also. */
4136 if (secondary_in_reload > 0
4137 && rld[secondary_in_reload].secondary_in_reload != -1)
4138 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4139 = RELOAD_FOR_OPADDR_ADDR;
4142 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4143 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4144 && rld[i].secondary_out_reload != -1)
4146 int secondary_out_reload = rld[i].secondary_out_reload;
4148 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4150 /* If there's a tertiary reload we have to change it also. */
4151 if (secondary_out_reload
4152 && rld[secondary_out_reload].secondary_out_reload != -1)
4153 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4154 = RELOAD_FOR_OPADDR_ADDR;
4157 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4158 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4159 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4160 else
4161 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4164 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4165 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4166 && operand_reloadnum[rld[i].opnum] >= 0
4167 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4168 == RELOAD_OTHER))
4169 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4171 if (goal_alternative_matches[rld[i].opnum] >= 0)
4172 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4175 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4176 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4177 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4179 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4180 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4181 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4182 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4183 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4184 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4185 This is complicated by the fact that a single operand can have more
4186 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4187 choose_reload_regs without affecting code quality, and cases that
4188 actually fail are extremely rare, so it turns out to be better to fix
4189 the problem here by not generating cases that choose_reload_regs will
4190 fail for. */
4191 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4192 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4193 a single operand.
4194 We can reduce the register pressure by exploiting that a
4195 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4196 does not conflict with any of them, if it is only used for the first of
4197 the RELOAD_FOR_X_ADDRESS reloads. */
4199 int first_op_addr_num = -2;
4200 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4201 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4202 int need_change = 0;
4203 /* We use last_op_addr_reload and the contents of the above arrays
4204 first as flags - -2 means no instance encountered, -1 means exactly
4205 one instance encountered.
4206 If more than one instance has been encountered, we store the reload
4207 number of the first reload of the kind in question; reload numbers
4208 are known to be non-negative. */
4209 for (i = 0; i < noperands; i++)
4210 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4211 for (i = n_reloads - 1; i >= 0; i--)
4213 switch (rld[i].when_needed)
4215 case RELOAD_FOR_OPERAND_ADDRESS:
4216 if (++first_op_addr_num >= 0)
4218 first_op_addr_num = i;
4219 need_change = 1;
4221 break;
4222 case RELOAD_FOR_INPUT_ADDRESS:
4223 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4225 first_inpaddr_num[rld[i].opnum] = i;
4226 need_change = 1;
4228 break;
4229 case RELOAD_FOR_OUTPUT_ADDRESS:
4230 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4232 first_outpaddr_num[rld[i].opnum] = i;
4233 need_change = 1;
4235 break;
4236 default:
4237 break;
4241 if (need_change)
4243 for (i = 0; i < n_reloads; i++)
4245 int first_num;
4246 enum reload_type type;
4248 switch (rld[i].when_needed)
4250 case RELOAD_FOR_OPADDR_ADDR:
4251 first_num = first_op_addr_num;
4252 type = RELOAD_FOR_OPERAND_ADDRESS;
4253 break;
4254 case RELOAD_FOR_INPADDR_ADDRESS:
4255 first_num = first_inpaddr_num[rld[i].opnum];
4256 type = RELOAD_FOR_INPUT_ADDRESS;
4257 break;
4258 case RELOAD_FOR_OUTADDR_ADDRESS:
4259 first_num = first_outpaddr_num[rld[i].opnum];
4260 type = RELOAD_FOR_OUTPUT_ADDRESS;
4261 break;
4262 default:
4263 continue;
4265 if (first_num < 0)
4266 continue;
4267 else if (i > first_num)
4268 rld[i].when_needed = type;
4269 else
4271 /* Check if the only TYPE reload that uses reload I is
4272 reload FIRST_NUM. */
4273 for (j = n_reloads - 1; j > first_num; j--)
4275 if (rld[j].when_needed == type
4276 && (rld[i].secondary_p
4277 ? rld[j].secondary_in_reload == i
4278 : reg_mentioned_p (rld[i].in, rld[j].in)))
4280 rld[i].when_needed = type;
4281 break;
4289 /* See if we have any reloads that are now allowed to be merged
4290 because we've changed when the reload is needed to
4291 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4292 check for the most common cases. */
4294 for (i = 0; i < n_reloads; i++)
4295 if (rld[i].in != 0 && rld[i].out == 0
4296 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4297 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4298 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4299 for (j = 0; j < n_reloads; j++)
4300 if (i != j && rld[j].in != 0 && rld[j].out == 0
4301 && rld[j].when_needed == rld[i].when_needed
4302 && MATCHES (rld[i].in, rld[j].in)
4303 && rld[i].class == rld[j].class
4304 && !rld[i].nocombine && !rld[j].nocombine
4305 && rld[i].reg_rtx == rld[j].reg_rtx)
4307 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4308 transfer_replacements (i, j);
4309 rld[j].in = 0;
4312 #ifdef HAVE_cc0
4313 /* If we made any reloads for addresses, see if they violate a
4314 "no input reloads" requirement for this insn. But loads that we
4315 do after the insn (such as for output addresses) are fine. */
4316 if (no_input_reloads)
4317 for (i = 0; i < n_reloads; i++)
4318 if (rld[i].in != 0
4319 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
4320 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS)
4321 abort ();
4322 #endif
4324 /* Compute reload_mode and reload_nregs. */
4325 for (i = 0; i < n_reloads; i++)
4327 rld[i].mode
4328 = (rld[i].inmode == VOIDmode
4329 || (GET_MODE_SIZE (rld[i].outmode)
4330 > GET_MODE_SIZE (rld[i].inmode)))
4331 ? rld[i].outmode : rld[i].inmode;
4333 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4336 /* Special case a simple move with an input reload and a
4337 destination of a hard reg, if the hard reg is ok, use it. */
4338 for (i = 0; i < n_reloads; i++)
4339 if (rld[i].when_needed == RELOAD_FOR_INPUT
4340 && GET_CODE (PATTERN (insn)) == SET
4341 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
4342 && SET_SRC (PATTERN (insn)) == rld[i].in)
4344 rtx dest = SET_DEST (PATTERN (insn));
4345 unsigned int regno = REGNO (dest);
4347 if (regno < FIRST_PSEUDO_REGISTER
4348 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4349 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4351 int nr = HARD_REGNO_NREGS (regno, rld[i].mode);
4352 int ok = 1, nri;
4354 for (nri = 1; nri < nr; nri ++)
4355 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
4356 ok = 0;
4358 if (ok)
4359 rld[i].reg_rtx = dest;
4363 return retval;
4366 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4367 accepts a memory operand with constant address. */
4369 static int
4370 alternative_allows_memconst (const char *constraint, int altnum)
4372 int c;
4373 /* Skip alternatives before the one requested. */
4374 while (altnum > 0)
4376 while (*constraint++ != ',');
4377 altnum--;
4379 /* Scan the requested alternative for 'm' or 'o'.
4380 If one of them is present, this alternative accepts memory constants. */
4381 for (; (c = *constraint) && c != ',' && c != '#';
4382 constraint += CONSTRAINT_LEN (c, constraint))
4383 if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
4384 return 1;
4385 return 0;
4388 /* Scan X for memory references and scan the addresses for reloading.
4389 Also checks for references to "constant" regs that we want to eliminate
4390 and replaces them with the values they stand for.
4391 We may alter X destructively if it contains a reference to such.
4392 If X is just a constant reg, we return the equivalent value
4393 instead of X.
4395 IND_LEVELS says how many levels of indirect addressing this machine
4396 supports.
4398 OPNUM and TYPE identify the purpose of the reload.
4400 IS_SET_DEST is true if X is the destination of a SET, which is not
4401 appropriate to be replaced by a constant.
4403 INSN, if nonzero, is the insn in which we do the reload. It is used
4404 to determine if we may generate output reloads, and where to put USEs
4405 for pseudos that we have to replace with stack slots.
4407 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4408 result of find_reloads_address. */
4410 static rtx
4411 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4412 int ind_levels, int is_set_dest, rtx insn,
4413 int *address_reloaded)
4415 RTX_CODE code = GET_CODE (x);
4417 const char *fmt = GET_RTX_FORMAT (code);
4418 int i;
4419 int copied;
4421 if (code == REG)
4423 /* This code is duplicated for speed in find_reloads. */
4424 int regno = REGNO (x);
4425 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4426 x = reg_equiv_constant[regno];
4427 #if 0
4428 /* This creates (subreg (mem...)) which would cause an unnecessary
4429 reload of the mem. */
4430 else if (reg_equiv_mem[regno] != 0)
4431 x = reg_equiv_mem[regno];
4432 #endif
4433 else if (reg_equiv_memory_loc[regno]
4434 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4436 rtx mem = make_memloc (x, regno);
4437 if (reg_equiv_address[regno]
4438 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4440 /* If this is not a toplevel operand, find_reloads doesn't see
4441 this substitution. We have to emit a USE of the pseudo so
4442 that delete_output_reload can see it. */
4443 if (replace_reloads && recog_data.operand[opnum] != x)
4444 /* We mark the USE with QImode so that we recognize it
4445 as one that can be safely deleted at the end of
4446 reload. */
4447 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4448 QImode);
4449 x = mem;
4450 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4451 opnum, type, ind_levels, insn);
4452 if (address_reloaded)
4453 *address_reloaded = i;
4456 return x;
4458 if (code == MEM)
4460 rtx tem = x;
4462 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4463 opnum, type, ind_levels, insn);
4464 if (address_reloaded)
4465 *address_reloaded = i;
4467 return tem;
4470 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4472 /* Check for SUBREG containing a REG that's equivalent to a constant.
4473 If the constant has a known value, truncate it right now.
4474 Similarly if we are extracting a single-word of a multi-word
4475 constant. If the constant is symbolic, allow it to be substituted
4476 normally. push_reload will strip the subreg later. If the
4477 constant is VOIDmode, abort because we will lose the mode of
4478 the register (this should never happen because one of the cases
4479 above should handle it). */
4481 int regno = REGNO (SUBREG_REG (x));
4482 rtx tem;
4484 if (subreg_lowpart_p (x)
4485 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4486 && reg_equiv_constant[regno] != 0
4487 && (tem = gen_lowpart_common (GET_MODE (x),
4488 reg_equiv_constant[regno])) != 0)
4489 return tem;
4491 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4492 && reg_equiv_constant[regno] != 0)
4494 tem =
4495 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4496 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4497 if (!tem)
4498 abort ();
4499 return tem;
4502 /* If the subreg contains a reg that will be converted to a mem,
4503 convert the subreg to a narrower memref now.
4504 Otherwise, we would get (subreg (mem ...) ...),
4505 which would force reload of the mem.
4507 We also need to do this if there is an equivalent MEM that is
4508 not offsettable. In that case, alter_subreg would produce an
4509 invalid address on big-endian machines.
4511 For machines that extend byte loads, we must not reload using
4512 a wider mode if we have a paradoxical SUBREG. find_reloads will
4513 force a reload in that case. So we should not do anything here. */
4515 else if (regno >= FIRST_PSEUDO_REGISTER
4516 #ifdef LOAD_EXTEND_OP
4517 && (GET_MODE_SIZE (GET_MODE (x))
4518 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4519 #endif
4520 && (reg_equiv_address[regno] != 0
4521 || (reg_equiv_mem[regno] != 0
4522 && (! strict_memory_address_p (GET_MODE (x),
4523 XEXP (reg_equiv_mem[regno], 0))
4524 || ! offsettable_memref_p (reg_equiv_mem[regno])
4525 || num_not_at_initial_offset))))
4526 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4527 insn);
4530 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4532 if (fmt[i] == 'e')
4534 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4535 ind_levels, is_set_dest, insn,
4536 address_reloaded);
4537 /* If we have replaced a reg with it's equivalent memory loc -
4538 that can still be handled here e.g. if it's in a paradoxical
4539 subreg - we must make the change in a copy, rather than using
4540 a destructive change. This way, find_reloads can still elect
4541 not to do the change. */
4542 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4544 x = shallow_copy_rtx (x);
4545 copied = 1;
4547 XEXP (x, i) = new_part;
4550 return x;
4553 /* Return a mem ref for the memory equivalent of reg REGNO.
4554 This mem ref is not shared with anything. */
4556 static rtx
4557 make_memloc (rtx ad, int regno)
4559 /* We must rerun eliminate_regs, in case the elimination
4560 offsets have changed. */
4561 rtx tem
4562 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4564 /* If TEM might contain a pseudo, we must copy it to avoid
4565 modifying it when we do the substitution for the reload. */
4566 if (rtx_varies_p (tem, 0))
4567 tem = copy_rtx (tem);
4569 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4570 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4572 /* Copy the result if it's still the same as the equivalence, to avoid
4573 modifying it when we do the substitution for the reload. */
4574 if (tem == reg_equiv_memory_loc[regno])
4575 tem = copy_rtx (tem);
4576 return tem;
4579 /* Returns true if AD could be turned into a valid memory reference
4580 to mode MODE by reloading the part pointed to by PART into a
4581 register. */
4583 static int
4584 maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
4586 int retv;
4587 rtx tem = *part;
4588 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4590 *part = reg;
4591 retv = memory_address_p (mode, ad);
4592 *part = tem;
4594 return retv;
4597 /* Record all reloads needed for handling memory address AD
4598 which appears in *LOC in a memory reference to mode MODE
4599 which itself is found in location *MEMREFLOC.
4600 Note that we take shortcuts assuming that no multi-reg machine mode
4601 occurs as part of an address.
4603 OPNUM and TYPE specify the purpose of this reload.
4605 IND_LEVELS says how many levels of indirect addressing this machine
4606 supports.
4608 INSN, if nonzero, is the insn in which we do the reload. It is used
4609 to determine if we may generate output reloads, and where to put USEs
4610 for pseudos that we have to replace with stack slots.
4612 Value is nonzero if this address is reloaded or replaced as a whole.
4613 This is interesting to the caller if the address is an autoincrement.
4615 Note that there is no verification that the address will be valid after
4616 this routine does its work. Instead, we rely on the fact that the address
4617 was valid when reload started. So we need only undo things that reload
4618 could have broken. These are wrong register types, pseudos not allocated
4619 to a hard register, and frame pointer elimination. */
4621 static int
4622 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4623 rtx *loc, int opnum, enum reload_type type,
4624 int ind_levels, rtx insn)
4626 int regno;
4627 int removed_and = 0;
4628 rtx tem;
4630 /* If the address is a register, see if it is a legitimate address and
4631 reload if not. We first handle the cases where we need not reload
4632 or where we must reload in a non-standard way. */
4634 if (GET_CODE (ad) == REG)
4636 regno = REGNO (ad);
4638 /* If the register is equivalent to an invariant expression, substitute
4639 the invariant, and eliminate any eliminable register references. */
4640 tem = reg_equiv_constant[regno];
4641 if (tem != 0
4642 && (tem = eliminate_regs (tem, mode, insn))
4643 && strict_memory_address_p (mode, tem))
4645 *loc = ad = tem;
4646 return 0;
4649 tem = reg_equiv_memory_loc[regno];
4650 if (tem != 0)
4652 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4654 tem = make_memloc (ad, regno);
4655 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4657 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4658 &XEXP (tem, 0), opnum,
4659 ADDR_TYPE (type), ind_levels, insn);
4661 /* We can avoid a reload if the register's equivalent memory
4662 expression is valid as an indirect memory address.
4663 But not all addresses are valid in a mem used as an indirect
4664 address: only reg or reg+constant. */
4666 if (ind_levels > 0
4667 && strict_memory_address_p (mode, tem)
4668 && (GET_CODE (XEXP (tem, 0)) == REG
4669 || (GET_CODE (XEXP (tem, 0)) == PLUS
4670 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4671 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4673 /* TEM is not the same as what we'll be replacing the
4674 pseudo with after reload, put a USE in front of INSN
4675 in the final reload pass. */
4676 if (replace_reloads
4677 && num_not_at_initial_offset
4678 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4680 *loc = tem;
4681 /* We mark the USE with QImode so that we
4682 recognize it as one that can be safely
4683 deleted at the end of reload. */
4684 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4685 insn), QImode);
4687 /* This doesn't really count as replacing the address
4688 as a whole, since it is still a memory access. */
4690 return 0;
4692 ad = tem;
4696 /* The only remaining case where we can avoid a reload is if this is a
4697 hard register that is valid as a base register and which is not the
4698 subject of a CLOBBER in this insn. */
4700 else if (regno < FIRST_PSEUDO_REGISTER
4701 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4702 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4703 return 0;
4705 /* If we do not have one of the cases above, we must do the reload. */
4706 push_reload (ad, NULL_RTX, loc, (rtx*) 0, MODE_BASE_REG_CLASS (mode),
4707 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4708 return 1;
4711 if (strict_memory_address_p (mode, ad))
4713 /* The address appears valid, so reloads are not needed.
4714 But the address may contain an eliminable register.
4715 This can happen because a machine with indirect addressing
4716 may consider a pseudo register by itself a valid address even when
4717 it has failed to get a hard reg.
4718 So do a tree-walk to find and eliminate all such regs. */
4720 /* But first quickly dispose of a common case. */
4721 if (GET_CODE (ad) == PLUS
4722 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4723 && GET_CODE (XEXP (ad, 0)) == REG
4724 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4725 return 0;
4727 subst_reg_equivs_changed = 0;
4728 *loc = subst_reg_equivs (ad, insn);
4730 if (! subst_reg_equivs_changed)
4731 return 0;
4733 /* Check result for validity after substitution. */
4734 if (strict_memory_address_p (mode, ad))
4735 return 0;
4738 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4741 if (memrefloc)
4743 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4744 ind_levels, win);
4746 break;
4747 win:
4748 *memrefloc = copy_rtx (*memrefloc);
4749 XEXP (*memrefloc, 0) = ad;
4750 move_replacements (&ad, &XEXP (*memrefloc, 0));
4751 return 1;
4753 while (0);
4754 #endif
4756 /* The address is not valid. We have to figure out why. First see if
4757 we have an outer AND and remove it if so. Then analyze what's inside. */
4759 if (GET_CODE (ad) == AND)
4761 removed_and = 1;
4762 loc = &XEXP (ad, 0);
4763 ad = *loc;
4766 /* One possibility for why the address is invalid is that it is itself
4767 a MEM. This can happen when the frame pointer is being eliminated, a
4768 pseudo is not allocated to a hard register, and the offset between the
4769 frame and stack pointers is not its initial value. In that case the
4770 pseudo will have been replaced by a MEM referring to the
4771 stack pointer. */
4772 if (GET_CODE (ad) == MEM)
4774 /* First ensure that the address in this MEM is valid. Then, unless
4775 indirect addresses are valid, reload the MEM into a register. */
4776 tem = ad;
4777 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4778 opnum, ADDR_TYPE (type),
4779 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4781 /* If tem was changed, then we must create a new memory reference to
4782 hold it and store it back into memrefloc. */
4783 if (tem != ad && memrefloc)
4785 *memrefloc = copy_rtx (*memrefloc);
4786 copy_replacements (tem, XEXP (*memrefloc, 0));
4787 loc = &XEXP (*memrefloc, 0);
4788 if (removed_and)
4789 loc = &XEXP (*loc, 0);
4792 /* Check similar cases as for indirect addresses as above except
4793 that we can allow pseudos and a MEM since they should have been
4794 taken care of above. */
4796 if (ind_levels == 0
4797 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4798 || GET_CODE (XEXP (tem, 0)) == MEM
4799 || ! (GET_CODE (XEXP (tem, 0)) == REG
4800 || (GET_CODE (XEXP (tem, 0)) == PLUS
4801 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4802 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4804 /* Must use TEM here, not AD, since it is the one that will
4805 have any subexpressions reloaded, if needed. */
4806 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4807 MODE_BASE_REG_CLASS (mode), GET_MODE (tem),
4808 VOIDmode, 0,
4809 0, opnum, type);
4810 return ! removed_and;
4812 else
4813 return 0;
4816 /* If we have address of a stack slot but it's not valid because the
4817 displacement is too large, compute the sum in a register.
4818 Handle all base registers here, not just fp/ap/sp, because on some
4819 targets (namely SH) we can also get too large displacements from
4820 big-endian corrections. */
4821 else if (GET_CODE (ad) == PLUS
4822 && GET_CODE (XEXP (ad, 0)) == REG
4823 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4824 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4825 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4827 /* Unshare the MEM rtx so we can safely alter it. */
4828 if (memrefloc)
4830 *memrefloc = copy_rtx (*memrefloc);
4831 loc = &XEXP (*memrefloc, 0);
4832 if (removed_and)
4833 loc = &XEXP (*loc, 0);
4836 if (double_reg_address_ok)
4838 /* Unshare the sum as well. */
4839 *loc = ad = copy_rtx (ad);
4841 /* Reload the displacement into an index reg.
4842 We assume the frame pointer or arg pointer is a base reg. */
4843 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4844 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4845 type, ind_levels);
4846 return 0;
4848 else
4850 /* If the sum of two regs is not necessarily valid,
4851 reload the sum into a base reg.
4852 That will at least work. */
4853 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4854 Pmode, opnum, type, ind_levels);
4856 return ! removed_and;
4859 /* If we have an indexed stack slot, there are three possible reasons why
4860 it might be invalid: The index might need to be reloaded, the address
4861 might have been made by frame pointer elimination and hence have a
4862 constant out of range, or both reasons might apply.
4864 We can easily check for an index needing reload, but even if that is the
4865 case, we might also have an invalid constant. To avoid making the
4866 conservative assumption and requiring two reloads, we see if this address
4867 is valid when not interpreted strictly. If it is, the only problem is
4868 that the index needs a reload and find_reloads_address_1 will take care
4869 of it.
4871 Handle all base registers here, not just fp/ap/sp, because on some
4872 targets (namely SPARC) we can also get invalid addresses from preventive
4873 subreg big-endian corrections made by find_reloads_toplev.
4875 If we decide to do something, it must be that `double_reg_address_ok'
4876 is true. We generate a reload of the base register + constant and
4877 rework the sum so that the reload register will be added to the index.
4878 This is safe because we know the address isn't shared.
4880 We check for the base register as both the first and second operand of
4881 the innermost PLUS. */
4883 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4884 && GET_CODE (XEXP (ad, 0)) == PLUS
4885 && GET_CODE (XEXP (XEXP (ad, 0), 0)) == REG
4886 && REGNO (XEXP (XEXP (ad, 0), 0)) < FIRST_PSEUDO_REGISTER
4887 && (REG_MODE_OK_FOR_BASE_P (XEXP (XEXP (ad, 0), 0), mode)
4888 || XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
4889 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4890 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4891 #endif
4892 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4893 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4894 #endif
4895 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4896 && ! maybe_memory_address_p (mode, ad, &XEXP (XEXP (ad, 0), 1)))
4898 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4899 plus_constant (XEXP (XEXP (ad, 0), 0),
4900 INTVAL (XEXP (ad, 1))),
4901 XEXP (XEXP (ad, 0), 1));
4902 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0),
4903 MODE_BASE_REG_CLASS (mode),
4904 GET_MODE (ad), opnum, type, ind_levels);
4905 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4906 type, 0, insn);
4908 return 0;
4911 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4912 && GET_CODE (XEXP (ad, 0)) == PLUS
4913 && GET_CODE (XEXP (XEXP (ad, 0), 1)) == REG
4914 && REGNO (XEXP (XEXP (ad, 0), 1)) < FIRST_PSEUDO_REGISTER
4915 && (REG_MODE_OK_FOR_BASE_P (XEXP (XEXP (ad, 0), 1), mode)
4916 || XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
4917 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4918 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4919 #endif
4920 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4921 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4922 #endif
4923 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4924 && ! maybe_memory_address_p (mode, ad, &XEXP (XEXP (ad, 0), 0)))
4926 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4927 XEXP (XEXP (ad, 0), 0),
4928 plus_constant (XEXP (XEXP (ad, 0), 1),
4929 INTVAL (XEXP (ad, 1))));
4930 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4931 MODE_BASE_REG_CLASS (mode),
4932 GET_MODE (ad), opnum, type, ind_levels);
4933 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4934 type, 0, insn);
4936 return 0;
4939 /* See if address becomes valid when an eliminable register
4940 in a sum is replaced. */
4942 tem = ad;
4943 if (GET_CODE (ad) == PLUS)
4944 tem = subst_indexed_address (ad);
4945 if (tem != ad && strict_memory_address_p (mode, tem))
4947 /* Ok, we win that way. Replace any additional eliminable
4948 registers. */
4950 subst_reg_equivs_changed = 0;
4951 tem = subst_reg_equivs (tem, insn);
4953 /* Make sure that didn't make the address invalid again. */
4955 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4957 *loc = tem;
4958 return 0;
4962 /* If constants aren't valid addresses, reload the constant address
4963 into a register. */
4964 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4966 /* If AD is an address in the constant pool, the MEM rtx may be shared.
4967 Unshare it so we can safely alter it. */
4968 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4969 && CONSTANT_POOL_ADDRESS_P (ad))
4971 *memrefloc = copy_rtx (*memrefloc);
4972 loc = &XEXP (*memrefloc, 0);
4973 if (removed_and)
4974 loc = &XEXP (*loc, 0);
4977 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4978 Pmode, opnum, type, ind_levels);
4979 return ! removed_and;
4982 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4983 insn);
4986 /* Find all pseudo regs appearing in AD
4987 that are eliminable in favor of equivalent values
4988 and do not have hard regs; replace them by their equivalents.
4989 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
4990 front of it for pseudos that we have to replace with stack slots. */
4992 static rtx
4993 subst_reg_equivs (rtx ad, rtx insn)
4995 RTX_CODE code = GET_CODE (ad);
4996 int i;
4997 const char *fmt;
4999 switch (code)
5001 case HIGH:
5002 case CONST_INT:
5003 case CONST:
5004 case CONST_DOUBLE:
5005 case CONST_VECTOR:
5006 case SYMBOL_REF:
5007 case LABEL_REF:
5008 case PC:
5009 case CC0:
5010 return ad;
5012 case REG:
5014 int regno = REGNO (ad);
5016 if (reg_equiv_constant[regno] != 0)
5018 subst_reg_equivs_changed = 1;
5019 return reg_equiv_constant[regno];
5021 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5023 rtx mem = make_memloc (ad, regno);
5024 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5026 subst_reg_equivs_changed = 1;
5027 /* We mark the USE with QImode so that we recognize it
5028 as one that can be safely deleted at the end of
5029 reload. */
5030 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5031 QImode);
5032 return mem;
5036 return ad;
5038 case PLUS:
5039 /* Quickly dispose of a common case. */
5040 if (XEXP (ad, 0) == frame_pointer_rtx
5041 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5042 return ad;
5043 break;
5045 default:
5046 break;
5049 fmt = GET_RTX_FORMAT (code);
5050 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5051 if (fmt[i] == 'e')
5052 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5053 return ad;
5056 /* Compute the sum of X and Y, making canonicalizations assumed in an
5057 address, namely: sum constant integers, surround the sum of two
5058 constants with a CONST, put the constant as the second operand, and
5059 group the constant on the outermost sum.
5061 This routine assumes both inputs are already in canonical form. */
5064 form_sum (rtx x, rtx y)
5066 rtx tem;
5067 enum machine_mode mode = GET_MODE (x);
5069 if (mode == VOIDmode)
5070 mode = GET_MODE (y);
5072 if (mode == VOIDmode)
5073 mode = Pmode;
5075 if (GET_CODE (x) == CONST_INT)
5076 return plus_constant (y, INTVAL (x));
5077 else if (GET_CODE (y) == CONST_INT)
5078 return plus_constant (x, INTVAL (y));
5079 else if (CONSTANT_P (x))
5080 tem = x, x = y, y = tem;
5082 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5083 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5085 /* Note that if the operands of Y are specified in the opposite
5086 order in the recursive calls below, infinite recursion will occur. */
5087 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5088 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5090 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5091 constant will have been placed second. */
5092 if (CONSTANT_P (x) && CONSTANT_P (y))
5094 if (GET_CODE (x) == CONST)
5095 x = XEXP (x, 0);
5096 if (GET_CODE (y) == CONST)
5097 y = XEXP (y, 0);
5099 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5102 return gen_rtx_PLUS (mode, x, y);
5105 /* If ADDR is a sum containing a pseudo register that should be
5106 replaced with a constant (from reg_equiv_constant),
5107 return the result of doing so, and also apply the associative
5108 law so that the result is more likely to be a valid address.
5109 (But it is not guaranteed to be one.)
5111 Note that at most one register is replaced, even if more are
5112 replaceable. Also, we try to put the result into a canonical form
5113 so it is more likely to be a valid address.
5115 In all other cases, return ADDR. */
5117 static rtx
5118 subst_indexed_address (rtx addr)
5120 rtx op0 = 0, op1 = 0, op2 = 0;
5121 rtx tem;
5122 int regno;
5124 if (GET_CODE (addr) == PLUS)
5126 /* Try to find a register to replace. */
5127 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5128 if (GET_CODE (op0) == REG
5129 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5130 && reg_renumber[regno] < 0
5131 && reg_equiv_constant[regno] != 0)
5132 op0 = reg_equiv_constant[regno];
5133 else if (GET_CODE (op1) == REG
5134 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5135 && reg_renumber[regno] < 0
5136 && reg_equiv_constant[regno] != 0)
5137 op1 = reg_equiv_constant[regno];
5138 else if (GET_CODE (op0) == PLUS
5139 && (tem = subst_indexed_address (op0)) != op0)
5140 op0 = tem;
5141 else if (GET_CODE (op1) == PLUS
5142 && (tem = subst_indexed_address (op1)) != op1)
5143 op1 = tem;
5144 else
5145 return addr;
5147 /* Pick out up to three things to add. */
5148 if (GET_CODE (op1) == PLUS)
5149 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5150 else if (GET_CODE (op0) == PLUS)
5151 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5153 /* Compute the sum. */
5154 if (op2 != 0)
5155 op1 = form_sum (op1, op2);
5156 if (op1 != 0)
5157 op0 = form_sum (op0, op1);
5159 return op0;
5161 return addr;
5164 /* Update the REG_INC notes for an insn. It updates all REG_INC
5165 notes for the instruction which refer to REGNO the to refer
5166 to the reload number.
5168 INSN is the insn for which any REG_INC notes need updating.
5170 REGNO is the register number which has been reloaded.
5172 RELOADNUM is the reload number. */
5174 static void
5175 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5176 int reloadnum ATTRIBUTE_UNUSED)
5178 #ifdef AUTO_INC_DEC
5179 rtx link;
5181 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5182 if (REG_NOTE_KIND (link) == REG_INC
5183 && (int) REGNO (XEXP (link, 0)) == regno)
5184 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5185 #endif
5188 /* Record the pseudo registers we must reload into hard registers in a
5189 subexpression of a would-be memory address, X referring to a value
5190 in mode MODE. (This function is not called if the address we find
5191 is strictly valid.)
5193 CONTEXT = 1 means we are considering regs as index regs,
5194 = 0 means we are considering them as base regs.
5196 OPNUM and TYPE specify the purpose of any reloads made.
5198 IND_LEVELS says how many levels of indirect addressing are
5199 supported at this point in the address.
5201 INSN, if nonzero, is the insn in which we do the reload. It is used
5202 to determine if we may generate output reloads.
5204 We return nonzero if X, as a whole, is reloaded or replaced. */
5206 /* Note that we take shortcuts assuming that no multi-reg machine mode
5207 occurs as part of an address.
5208 Also, this is not fully machine-customizable; it works for machines
5209 such as VAXen and 68000's and 32000's, but other possible machines
5210 could have addressing modes that this does not handle right. */
5212 static int
5213 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5214 rtx *loc, int opnum, enum reload_type type,
5215 int ind_levels, rtx insn)
5217 RTX_CODE code = GET_CODE (x);
5219 switch (code)
5221 case PLUS:
5223 rtx orig_op0 = XEXP (x, 0);
5224 rtx orig_op1 = XEXP (x, 1);
5225 RTX_CODE code0 = GET_CODE (orig_op0);
5226 RTX_CODE code1 = GET_CODE (orig_op1);
5227 rtx op0 = orig_op0;
5228 rtx op1 = orig_op1;
5230 if (GET_CODE (op0) == SUBREG)
5232 op0 = SUBREG_REG (op0);
5233 code0 = GET_CODE (op0);
5234 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5235 op0 = gen_rtx_REG (word_mode,
5236 (REGNO (op0) +
5237 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5238 GET_MODE (SUBREG_REG (orig_op0)),
5239 SUBREG_BYTE (orig_op0),
5240 GET_MODE (orig_op0))));
5243 if (GET_CODE (op1) == SUBREG)
5245 op1 = SUBREG_REG (op1);
5246 code1 = GET_CODE (op1);
5247 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5248 /* ??? Why is this given op1's mode and above for
5249 ??? op0 SUBREGs we use word_mode? */
5250 op1 = gen_rtx_REG (GET_MODE (op1),
5251 (REGNO (op1) +
5252 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5253 GET_MODE (SUBREG_REG (orig_op1)),
5254 SUBREG_BYTE (orig_op1),
5255 GET_MODE (orig_op1))));
5257 /* Plus in the index register may be created only as a result of
5258 register remateralization for expression like &localvar*4. Reload it.
5259 It may be possible to combine the displacement on the outer level,
5260 but it is probably not worthwhile to do so. */
5261 if (context)
5263 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5264 opnum, ADDR_TYPE (type), ind_levels, insn);
5265 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5266 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5267 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5268 return 1;
5271 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5272 || code0 == ZERO_EXTEND || code1 == MEM)
5274 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5275 type, ind_levels, insn);
5276 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5277 type, ind_levels, insn);
5280 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5281 || code1 == ZERO_EXTEND || code0 == MEM)
5283 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5284 type, ind_levels, insn);
5285 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5286 type, ind_levels, insn);
5289 else if (code0 == CONST_INT || code0 == CONST
5290 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5291 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5292 type, ind_levels, insn);
5294 else if (code1 == CONST_INT || code1 == CONST
5295 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5296 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5297 type, ind_levels, insn);
5299 else if (code0 == REG && code1 == REG)
5301 if (REG_OK_FOR_INDEX_P (op0)
5302 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5303 return 0;
5304 else if (REG_OK_FOR_INDEX_P (op1)
5305 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5306 return 0;
5307 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5308 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5309 type, ind_levels, insn);
5310 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5311 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5312 type, ind_levels, insn);
5313 else if (REG_OK_FOR_INDEX_P (op1))
5314 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5315 type, ind_levels, insn);
5316 else if (REG_OK_FOR_INDEX_P (op0))
5317 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5318 type, ind_levels, insn);
5319 else
5321 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5322 type, ind_levels, insn);
5323 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5324 type, ind_levels, insn);
5328 else if (code0 == REG)
5330 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5331 type, ind_levels, insn);
5332 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5333 type, ind_levels, insn);
5336 else if (code1 == REG)
5338 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5339 type, ind_levels, insn);
5340 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5341 type, ind_levels, insn);
5345 return 0;
5347 case POST_MODIFY:
5348 case PRE_MODIFY:
5350 rtx op0 = XEXP (x, 0);
5351 rtx op1 = XEXP (x, 1);
5353 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5354 return 0;
5356 /* Currently, we only support {PRE,POST}_MODIFY constructs
5357 where a base register is {inc,dec}remented by the contents
5358 of another register or by a constant value. Thus, these
5359 operands must match. */
5360 if (op0 != XEXP (op1, 0))
5361 abort ();
5363 /* Require index register (or constant). Let's just handle the
5364 register case in the meantime... If the target allows
5365 auto-modify by a constant then we could try replacing a pseudo
5366 register with its equivalent constant where applicable. */
5367 if (REG_P (XEXP (op1, 1)))
5368 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5369 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5370 opnum, type, ind_levels, insn);
5372 if (REG_P (XEXP (op1, 0)))
5374 int regno = REGNO (XEXP (op1, 0));
5375 int reloadnum;
5377 /* A register that is incremented cannot be constant! */
5378 if (regno >= FIRST_PSEUDO_REGISTER
5379 && reg_equiv_constant[regno] != 0)
5380 abort ();
5382 /* Handle a register that is equivalent to a memory location
5383 which cannot be addressed directly. */
5384 if (reg_equiv_memory_loc[regno] != 0
5385 && (reg_equiv_address[regno] != 0
5386 || num_not_at_initial_offset))
5388 rtx tem = make_memloc (XEXP (x, 0), regno);
5390 if (reg_equiv_address[regno]
5391 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5393 /* First reload the memory location's address.
5394 We can't use ADDR_TYPE (type) here, because we need to
5395 write back the value after reading it, hence we actually
5396 need two registers. */
5397 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5398 &XEXP (tem, 0), opnum,
5399 RELOAD_OTHER,
5400 ind_levels, insn);
5402 /* Then reload the memory location into a base
5403 register. */
5404 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5405 &XEXP (op1, 0),
5406 MODE_BASE_REG_CLASS (mode),
5407 GET_MODE (x), GET_MODE (x), 0,
5408 0, opnum, RELOAD_OTHER);
5410 update_auto_inc_notes (this_insn, regno, reloadnum);
5411 return 0;
5415 if (reg_renumber[regno] >= 0)
5416 regno = reg_renumber[regno];
5418 /* We require a base register here... */
5419 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5421 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5422 &XEXP (op1, 0), &XEXP (x, 0),
5423 MODE_BASE_REG_CLASS (mode),
5424 GET_MODE (x), GET_MODE (x), 0, 0,
5425 opnum, RELOAD_OTHER);
5427 update_auto_inc_notes (this_insn, regno, reloadnum);
5428 return 0;
5431 else
5432 abort ();
5434 return 0;
5436 case POST_INC:
5437 case POST_DEC:
5438 case PRE_INC:
5439 case PRE_DEC:
5440 if (GET_CODE (XEXP (x, 0)) == REG)
5442 int regno = REGNO (XEXP (x, 0));
5443 int value = 0;
5444 rtx x_orig = x;
5446 /* A register that is incremented cannot be constant! */
5447 if (regno >= FIRST_PSEUDO_REGISTER
5448 && reg_equiv_constant[regno] != 0)
5449 abort ();
5451 /* Handle a register that is equivalent to a memory location
5452 which cannot be addressed directly. */
5453 if (reg_equiv_memory_loc[regno] != 0
5454 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5456 rtx tem = make_memloc (XEXP (x, 0), regno);
5457 if (reg_equiv_address[regno]
5458 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5460 /* First reload the memory location's address.
5461 We can't use ADDR_TYPE (type) here, because we need to
5462 write back the value after reading it, hence we actually
5463 need two registers. */
5464 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5465 &XEXP (tem, 0), opnum, type,
5466 ind_levels, insn);
5467 /* Put this inside a new increment-expression. */
5468 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5469 /* Proceed to reload that, as if it contained a register. */
5473 /* If we have a hard register that is ok as an index,
5474 don't make a reload. If an autoincrement of a nice register
5475 isn't "valid", it must be that no autoincrement is "valid".
5476 If that is true and something made an autoincrement anyway,
5477 this must be a special context where one is allowed.
5478 (For example, a "push" instruction.)
5479 We can't improve this address, so leave it alone. */
5481 /* Otherwise, reload the autoincrement into a suitable hard reg
5482 and record how much to increment by. */
5484 if (reg_renumber[regno] >= 0)
5485 regno = reg_renumber[regno];
5486 if ((regno >= FIRST_PSEUDO_REGISTER
5487 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5488 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5490 int reloadnum;
5492 /* If we can output the register afterwards, do so, this
5493 saves the extra update.
5494 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5495 CALL_INSN - and it does not set CC0.
5496 But don't do this if we cannot directly address the
5497 memory location, since this will make it harder to
5498 reuse address reloads, and increases register pressure.
5499 Also don't do this if we can probably update x directly. */
5500 rtx equiv = (GET_CODE (XEXP (x, 0)) == MEM
5501 ? XEXP (x, 0)
5502 : reg_equiv_mem[regno]);
5503 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5504 if (insn && GET_CODE (insn) == INSN && equiv
5505 && memory_operand (equiv, GET_MODE (equiv))
5506 #ifdef HAVE_cc0
5507 && ! sets_cc0_p (PATTERN (insn))
5508 #endif
5509 && ! (icode != CODE_FOR_nothing
5510 && ((*insn_data[icode].operand[0].predicate)
5511 (equiv, Pmode))
5512 && ((*insn_data[icode].operand[1].predicate)
5513 (equiv, Pmode))))
5515 /* We use the original pseudo for loc, so that
5516 emit_reload_insns() knows which pseudo this
5517 reload refers to and updates the pseudo rtx, not
5518 its equivalent memory location, as well as the
5519 corresponding entry in reg_last_reload_reg. */
5520 loc = &XEXP (x_orig, 0);
5521 x = XEXP (x, 0);
5522 reloadnum
5523 = push_reload (x, x, loc, loc,
5524 (context ? INDEX_REG_CLASS :
5525 MODE_BASE_REG_CLASS (mode)),
5526 GET_MODE (x), GET_MODE (x), 0, 0,
5527 opnum, RELOAD_OTHER);
5529 else
5531 reloadnum
5532 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5533 (context ? INDEX_REG_CLASS :
5534 MODE_BASE_REG_CLASS (mode)),
5535 GET_MODE (x), GET_MODE (x), 0, 0,
5536 opnum, type);
5537 rld[reloadnum].inc
5538 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5540 value = 1;
5543 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5544 reloadnum);
5546 return value;
5549 else if (GET_CODE (XEXP (x, 0)) == MEM)
5551 /* This is probably the result of a substitution, by eliminate_regs,
5552 of an equivalent address for a pseudo that was not allocated to a
5553 hard register. Verify that the specified address is valid and
5554 reload it into a register. */
5555 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5556 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5557 rtx link;
5558 int reloadnum;
5560 /* Since we know we are going to reload this item, don't decrement
5561 for the indirection level.
5563 Note that this is actually conservative: it would be slightly
5564 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5565 reload1.c here. */
5566 /* We can't use ADDR_TYPE (type) here, because we need to
5567 write back the value after reading it, hence we actually
5568 need two registers. */
5569 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5570 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5571 opnum, type, ind_levels, insn);
5573 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5574 (context ? INDEX_REG_CLASS :
5575 MODE_BASE_REG_CLASS (mode)),
5576 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5577 rld[reloadnum].inc
5578 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5580 link = FIND_REG_INC_NOTE (this_insn, tem);
5581 if (link != 0)
5582 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5584 return 1;
5586 return 0;
5588 case MEM:
5589 /* This is probably the result of a substitution, by eliminate_regs, of
5590 an equivalent address for a pseudo that was not allocated to a hard
5591 register. Verify that the specified address is valid and reload it
5592 into a register.
5594 Since we know we are going to reload this item, don't decrement for
5595 the indirection level.
5597 Note that this is actually conservative: it would be slightly more
5598 efficient to use the value of SPILL_INDIRECT_LEVELS from
5599 reload1.c here. */
5601 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5602 opnum, ADDR_TYPE (type), ind_levels, insn);
5603 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5604 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5605 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5606 return 1;
5608 case REG:
5610 int regno = REGNO (x);
5612 if (reg_equiv_constant[regno] != 0)
5614 find_reloads_address_part (reg_equiv_constant[regno], loc,
5615 (context ? INDEX_REG_CLASS :
5616 MODE_BASE_REG_CLASS (mode)),
5617 GET_MODE (x), opnum, type, ind_levels);
5618 return 1;
5621 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5622 that feeds this insn. */
5623 if (reg_equiv_mem[regno] != 0)
5625 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5626 (context ? INDEX_REG_CLASS :
5627 MODE_BASE_REG_CLASS (mode)),
5628 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5629 return 1;
5631 #endif
5633 if (reg_equiv_memory_loc[regno]
5634 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5636 rtx tem = make_memloc (x, regno);
5637 if (reg_equiv_address[regno] != 0
5638 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5640 x = tem;
5641 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5642 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5643 ind_levels, insn);
5647 if (reg_renumber[regno] >= 0)
5648 regno = reg_renumber[regno];
5650 if ((regno >= FIRST_PSEUDO_REGISTER
5651 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5652 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5654 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5655 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5656 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5657 return 1;
5660 /* If a register appearing in an address is the subject of a CLOBBER
5661 in this insn, reload it into some other register to be safe.
5662 The CLOBBER is supposed to make the register unavailable
5663 from before this insn to after it. */
5664 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5666 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5667 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5668 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5669 return 1;
5672 return 0;
5674 case SUBREG:
5675 if (GET_CODE (SUBREG_REG (x)) == REG)
5677 /* If this is a SUBREG of a hard register and the resulting register
5678 is of the wrong class, reload the whole SUBREG. This avoids
5679 needless copies if SUBREG_REG is multi-word. */
5680 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5682 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5684 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5685 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5687 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5688 (context ? INDEX_REG_CLASS :
5689 MODE_BASE_REG_CLASS (mode)),
5690 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5691 return 1;
5694 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5695 is larger than the class size, then reload the whole SUBREG. */
5696 else
5698 enum reg_class class = (context ? INDEX_REG_CLASS
5699 : MODE_BASE_REG_CLASS (mode));
5700 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5701 > reg_class_size[class])
5703 x = find_reloads_subreg_address (x, 0, opnum, type,
5704 ind_levels, insn);
5705 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5706 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5707 return 1;
5711 break;
5713 default:
5714 break;
5718 const char *fmt = GET_RTX_FORMAT (code);
5719 int i;
5721 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5723 if (fmt[i] == 'e')
5724 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5725 opnum, type, ind_levels, insn);
5729 return 0;
5732 /* X, which is found at *LOC, is a part of an address that needs to be
5733 reloaded into a register of class CLASS. If X is a constant, or if
5734 X is a PLUS that contains a constant, check that the constant is a
5735 legitimate operand and that we are supposed to be able to load
5736 it into the register.
5738 If not, force the constant into memory and reload the MEM instead.
5740 MODE is the mode to use, in case X is an integer constant.
5742 OPNUM and TYPE describe the purpose of any reloads made.
5744 IND_LEVELS says how many levels of indirect addressing this machine
5745 supports. */
5747 static void
5748 find_reloads_address_part (rtx x, rtx *loc, enum reg_class class,
5749 enum machine_mode mode, int opnum,
5750 enum reload_type type, int ind_levels)
5752 if (CONSTANT_P (x)
5753 && (! LEGITIMATE_CONSTANT_P (x)
5754 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5756 rtx tem;
5758 tem = x = force_const_mem (mode, x);
5759 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5760 opnum, type, ind_levels, 0);
5763 else if (GET_CODE (x) == PLUS
5764 && CONSTANT_P (XEXP (x, 1))
5765 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5766 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5768 rtx tem;
5770 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5771 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5772 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5773 opnum, type, ind_levels, 0);
5776 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5777 mode, VOIDmode, 0, 0, opnum, type);
5780 /* X, a subreg of a pseudo, is a part of an address that needs to be
5781 reloaded.
5783 If the pseudo is equivalent to a memory location that cannot be directly
5784 addressed, make the necessary address reloads.
5786 If address reloads have been necessary, or if the address is changed
5787 by register elimination, return the rtx of the memory location;
5788 otherwise, return X.
5790 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5791 memory location.
5793 OPNUM and TYPE identify the purpose of the reload.
5795 IND_LEVELS says how many levels of indirect addressing are
5796 supported at this point in the address.
5798 INSN, if nonzero, is the insn in which we do the reload. It is used
5799 to determine where to put USEs for pseudos that we have to replace with
5800 stack slots. */
5802 static rtx
5803 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
5804 enum reload_type type, int ind_levels, rtx insn)
5806 int regno = REGNO (SUBREG_REG (x));
5808 if (reg_equiv_memory_loc[regno])
5810 /* If the address is not directly addressable, or if the address is not
5811 offsettable, then it must be replaced. */
5812 if (! force_replace
5813 && (reg_equiv_address[regno]
5814 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5815 force_replace = 1;
5817 if (force_replace || num_not_at_initial_offset)
5819 rtx tem = make_memloc (SUBREG_REG (x), regno);
5821 /* If the address changes because of register elimination, then
5822 it must be replaced. */
5823 if (force_replace
5824 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5826 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5827 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5828 int offset;
5830 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
5831 hold the correct (negative) byte offset. */
5832 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
5833 offset = inner_size - outer_size;
5834 else
5835 offset = SUBREG_BYTE (x);
5837 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5838 PUT_MODE (tem, GET_MODE (x));
5840 /* If this was a paradoxical subreg that we replaced, the
5841 resulting memory must be sufficiently aligned to allow
5842 us to widen the mode of the memory. */
5843 if (outer_size > inner_size && STRICT_ALIGNMENT)
5845 rtx base;
5847 base = XEXP (tem, 0);
5848 if (GET_CODE (base) == PLUS)
5850 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5851 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5852 return x;
5853 base = XEXP (base, 0);
5855 if (GET_CODE (base) != REG
5856 || (REGNO_POINTER_ALIGN (REGNO (base))
5857 < outer_size * BITS_PER_UNIT))
5858 return x;
5861 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5862 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5863 ind_levels, insn);
5865 /* If this is not a toplevel operand, find_reloads doesn't see
5866 this substitution. We have to emit a USE of the pseudo so
5867 that delete_output_reload can see it. */
5868 if (replace_reloads && recog_data.operand[opnum] != x)
5869 /* We mark the USE with QImode so that we recognize it
5870 as one that can be safely deleted at the end of
5871 reload. */
5872 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
5873 SUBREG_REG (x)),
5874 insn), QImode);
5875 x = tem;
5879 return x;
5882 /* Substitute into the current INSN the registers into which we have reloaded
5883 the things that need reloading. The array `replacements'
5884 contains the locations of all pointers that must be changed
5885 and says what to replace them with.
5887 Return the rtx that X translates into; usually X, but modified. */
5889 void
5890 subst_reloads (rtx insn)
5892 int i;
5894 for (i = 0; i < n_replacements; i++)
5896 struct replacement *r = &replacements[i];
5897 rtx reloadreg = rld[r->what].reg_rtx;
5898 if (reloadreg)
5900 #ifdef ENABLE_CHECKING
5901 /* Internal consistency test. Check that we don't modify
5902 anything in the equivalence arrays. Whenever something from
5903 those arrays needs to be reloaded, it must be unshared before
5904 being substituted into; the equivalence must not be modified.
5905 Otherwise, if the equivalence is used after that, it will
5906 have been modified, and the thing substituted (probably a
5907 register) is likely overwritten and not a usable equivalence. */
5908 int check_regno;
5910 for (check_regno = 0; check_regno < max_regno; check_regno++)
5912 #define CHECK_MODF(ARRAY) \
5913 if (ARRAY[check_regno] \
5914 && loc_mentioned_in_p (r->where, \
5915 ARRAY[check_regno])) \
5916 abort ()
5918 CHECK_MODF (reg_equiv_constant);
5919 CHECK_MODF (reg_equiv_memory_loc);
5920 CHECK_MODF (reg_equiv_address);
5921 CHECK_MODF (reg_equiv_mem);
5922 #undef CHECK_MODF
5924 #endif /* ENABLE_CHECKING */
5926 /* If we're replacing a LABEL_REF with a register, add a
5927 REG_LABEL note to indicate to flow which label this
5928 register refers to. */
5929 if (GET_CODE (*r->where) == LABEL_REF
5930 && GET_CODE (insn) == JUMP_INSN)
5931 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
5932 XEXP (*r->where, 0),
5933 REG_NOTES (insn));
5935 /* Encapsulate RELOADREG so its machine mode matches what
5936 used to be there. Note that gen_lowpart_common will
5937 do the wrong thing if RELOADREG is multi-word. RELOADREG
5938 will always be a REG here. */
5939 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5940 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
5942 /* If we are putting this into a SUBREG and RELOADREG is a
5943 SUBREG, we would be making nested SUBREGs, so we have to fix
5944 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5946 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5948 if (GET_MODE (*r->subreg_loc)
5949 == GET_MODE (SUBREG_REG (reloadreg)))
5950 *r->subreg_loc = SUBREG_REG (reloadreg);
5951 else
5953 int final_offset =
5954 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
5956 /* When working with SUBREGs the rule is that the byte
5957 offset must be a multiple of the SUBREG's mode. */
5958 final_offset = (final_offset /
5959 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5960 final_offset = (final_offset *
5961 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5963 *r->where = SUBREG_REG (reloadreg);
5964 SUBREG_BYTE (*r->subreg_loc) = final_offset;
5967 else
5968 *r->where = reloadreg;
5970 /* If reload got no reg and isn't optional, something's wrong. */
5971 else if (! rld[r->what].optional)
5972 abort ();
5976 /* Make a copy of any replacements being done into X and move those
5977 copies to locations in Y, a copy of X. */
5979 void
5980 copy_replacements (rtx x, rtx y)
5982 /* We can't support X being a SUBREG because we might then need to know its
5983 location if something inside it was replaced. */
5984 if (GET_CODE (x) == SUBREG)
5985 abort ();
5987 copy_replacements_1 (&x, &y, n_replacements);
5990 static void
5991 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
5993 int i, j;
5994 rtx x, y;
5995 struct replacement *r;
5996 enum rtx_code code;
5997 const char *fmt;
5999 for (j = 0; j < orig_replacements; j++)
6001 if (replacements[j].subreg_loc == px)
6003 r = &replacements[n_replacements++];
6004 r->where = replacements[j].where;
6005 r->subreg_loc = py;
6006 r->what = replacements[j].what;
6007 r->mode = replacements[j].mode;
6009 else if (replacements[j].where == px)
6011 r = &replacements[n_replacements++];
6012 r->where = py;
6013 r->subreg_loc = 0;
6014 r->what = replacements[j].what;
6015 r->mode = replacements[j].mode;
6019 x = *px;
6020 y = *py;
6021 code = GET_CODE (x);
6022 fmt = GET_RTX_FORMAT (code);
6024 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6026 if (fmt[i] == 'e')
6027 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6028 else if (fmt[i] == 'E')
6029 for (j = XVECLEN (x, i); --j >= 0; )
6030 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6031 orig_replacements);
6035 /* Change any replacements being done to *X to be done to *Y. */
6037 void
6038 move_replacements (rtx *x, rtx *y)
6040 int i;
6042 for (i = 0; i < n_replacements; i++)
6043 if (replacements[i].subreg_loc == x)
6044 replacements[i].subreg_loc = y;
6045 else if (replacements[i].where == x)
6047 replacements[i].where = y;
6048 replacements[i].subreg_loc = 0;
6052 /* If LOC was scheduled to be replaced by something, return the replacement.
6053 Otherwise, return *LOC. */
6056 find_replacement (rtx *loc)
6058 struct replacement *r;
6060 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6062 rtx reloadreg = rld[r->what].reg_rtx;
6064 if (reloadreg && r->where == loc)
6066 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6067 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6069 return reloadreg;
6071 else if (reloadreg && r->subreg_loc == loc)
6073 /* RELOADREG must be either a REG or a SUBREG.
6075 ??? Is it actually still ever a SUBREG? If so, why? */
6077 if (GET_CODE (reloadreg) == REG)
6078 return gen_rtx_REG (GET_MODE (*loc),
6079 (REGNO (reloadreg) +
6080 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6081 GET_MODE (SUBREG_REG (*loc)),
6082 SUBREG_BYTE (*loc),
6083 GET_MODE (*loc))));
6084 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6085 return reloadreg;
6086 else
6088 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6090 /* When working with SUBREGs the rule is that the byte
6091 offset must be a multiple of the SUBREG's mode. */
6092 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6093 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6094 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6095 final_offset);
6100 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6101 what's inside and make a new rtl if so. */
6102 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6103 || GET_CODE (*loc) == MULT)
6105 rtx x = find_replacement (&XEXP (*loc, 0));
6106 rtx y = find_replacement (&XEXP (*loc, 1));
6108 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6109 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6112 return *loc;
6115 /* Return nonzero if register in range [REGNO, ENDREGNO)
6116 appears either explicitly or implicitly in X
6117 other than being stored into (except for earlyclobber operands).
6119 References contained within the substructure at LOC do not count.
6120 LOC may be zero, meaning don't ignore anything.
6122 This is similar to refers_to_regno_p in rtlanal.c except that we
6123 look at equivalences for pseudos that didn't get hard registers. */
6126 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6127 rtx x, rtx *loc)
6129 int i;
6130 unsigned int r;
6131 RTX_CODE code;
6132 const char *fmt;
6134 if (x == 0)
6135 return 0;
6137 repeat:
6138 code = GET_CODE (x);
6140 switch (code)
6142 case REG:
6143 r = REGNO (x);
6145 /* If this is a pseudo, a hard register must not have been allocated.
6146 X must therefore either be a constant or be in memory. */
6147 if (r >= FIRST_PSEUDO_REGISTER)
6149 if (reg_equiv_memory_loc[r])
6150 return refers_to_regno_for_reload_p (regno, endregno,
6151 reg_equiv_memory_loc[r],
6152 (rtx*) 0);
6154 if (reg_equiv_constant[r])
6155 return 0;
6157 abort ();
6160 return (endregno > r
6161 && regno < r + (r < FIRST_PSEUDO_REGISTER
6162 ? HARD_REGNO_NREGS (r, GET_MODE (x))
6163 : 1));
6165 case SUBREG:
6166 /* If this is a SUBREG of a hard reg, we can see exactly which
6167 registers are being modified. Otherwise, handle normally. */
6168 if (GET_CODE (SUBREG_REG (x)) == REG
6169 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6171 unsigned int inner_regno = subreg_regno (x);
6172 unsigned int inner_endregno
6173 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6174 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6176 return endregno > inner_regno && regno < inner_endregno;
6178 break;
6180 case CLOBBER:
6181 case SET:
6182 if (&SET_DEST (x) != loc
6183 /* Note setting a SUBREG counts as referring to the REG it is in for
6184 a pseudo but not for hard registers since we can
6185 treat each word individually. */
6186 && ((GET_CODE (SET_DEST (x)) == SUBREG
6187 && loc != &SUBREG_REG (SET_DEST (x))
6188 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
6189 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6190 && refers_to_regno_for_reload_p (regno, endregno,
6191 SUBREG_REG (SET_DEST (x)),
6192 loc))
6193 /* If the output is an earlyclobber operand, this is
6194 a conflict. */
6195 || ((GET_CODE (SET_DEST (x)) != REG
6196 || earlyclobber_operand_p (SET_DEST (x)))
6197 && refers_to_regno_for_reload_p (regno, endregno,
6198 SET_DEST (x), loc))))
6199 return 1;
6201 if (code == CLOBBER || loc == &SET_SRC (x))
6202 return 0;
6203 x = SET_SRC (x);
6204 goto repeat;
6206 default:
6207 break;
6210 /* X does not match, so try its subexpressions. */
6212 fmt = GET_RTX_FORMAT (code);
6213 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6215 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6217 if (i == 0)
6219 x = XEXP (x, 0);
6220 goto repeat;
6222 else
6223 if (refers_to_regno_for_reload_p (regno, endregno,
6224 XEXP (x, i), loc))
6225 return 1;
6227 else if (fmt[i] == 'E')
6229 int j;
6230 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6231 if (loc != &XVECEXP (x, i, j)
6232 && refers_to_regno_for_reload_p (regno, endregno,
6233 XVECEXP (x, i, j), loc))
6234 return 1;
6237 return 0;
6240 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6241 we check if any register number in X conflicts with the relevant register
6242 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6243 contains a MEM (we don't bother checking for memory addresses that can't
6244 conflict because we expect this to be a rare case.
6246 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6247 that we look at equivalences for pseudos that didn't get hard registers. */
6250 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6252 int regno, endregno;
6254 /* Overly conservative. */
6255 if (GET_CODE (x) == STRICT_LOW_PART
6256 || GET_RTX_CLASS (GET_CODE (x)) == 'a')
6257 x = XEXP (x, 0);
6259 /* If either argument is a constant, then modifying X can not affect IN. */
6260 if (CONSTANT_P (x) || CONSTANT_P (in))
6261 return 0;
6262 else if (GET_CODE (x) == SUBREG)
6264 regno = REGNO (SUBREG_REG (x));
6265 if (regno < FIRST_PSEUDO_REGISTER)
6266 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6267 GET_MODE (SUBREG_REG (x)),
6268 SUBREG_BYTE (x),
6269 GET_MODE (x));
6271 else if (GET_CODE (x) == REG)
6273 regno = REGNO (x);
6275 /* If this is a pseudo, it must not have been assigned a hard register.
6276 Therefore, it must either be in memory or be a constant. */
6278 if (regno >= FIRST_PSEUDO_REGISTER)
6280 if (reg_equiv_memory_loc[regno])
6281 return refers_to_mem_for_reload_p (in);
6282 else if (reg_equiv_constant[regno])
6283 return 0;
6284 abort ();
6287 else if (GET_CODE (x) == MEM)
6288 return refers_to_mem_for_reload_p (in);
6289 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6290 || GET_CODE (x) == CC0)
6291 return reg_mentioned_p (x, in);
6292 else if (GET_CODE (x) == PLUS)
6294 /* We actually want to know if X is mentioned somewhere inside IN.
6295 We must not say that (plus (sp) (const_int 124)) is in
6296 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6297 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6298 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6299 while (GET_CODE (in) == MEM)
6300 in = XEXP (in, 0);
6301 if (GET_CODE (in) == REG)
6302 return 0;
6303 else if (GET_CODE (in) == PLUS)
6304 return (reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6305 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6306 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6307 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6309 else
6310 abort ();
6312 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6313 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6315 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6318 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6319 registers. */
6322 refers_to_mem_for_reload_p (rtx x)
6324 const char *fmt;
6325 int i;
6327 if (GET_CODE (x) == MEM)
6328 return 1;
6330 if (GET_CODE (x) == REG)
6331 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6332 && reg_equiv_memory_loc[REGNO (x)]);
6334 fmt = GET_RTX_FORMAT (GET_CODE (x));
6335 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6336 if (fmt[i] == 'e'
6337 && (GET_CODE (XEXP (x, i)) == MEM
6338 || refers_to_mem_for_reload_p (XEXP (x, i))))
6339 return 1;
6341 return 0;
6344 /* Check the insns before INSN to see if there is a suitable register
6345 containing the same value as GOAL.
6346 If OTHER is -1, look for a register in class CLASS.
6347 Otherwise, just see if register number OTHER shares GOAL's value.
6349 Return an rtx for the register found, or zero if none is found.
6351 If RELOAD_REG_P is (short *)1,
6352 we reject any hard reg that appears in reload_reg_rtx
6353 because such a hard reg is also needed coming into this insn.
6355 If RELOAD_REG_P is any other nonzero value,
6356 it is a vector indexed by hard reg number
6357 and we reject any hard reg whose element in the vector is nonnegative
6358 as well as any that appears in reload_reg_rtx.
6360 If GOAL is zero, then GOALREG is a register number; we look
6361 for an equivalent for that register.
6363 MODE is the machine mode of the value we want an equivalence for.
6364 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6366 This function is used by jump.c as well as in the reload pass.
6368 If GOAL is the sum of the stack pointer and a constant, we treat it
6369 as if it were a constant except that sp is required to be unchanging. */
6372 find_equiv_reg (rtx goal, rtx insn, enum reg_class class, int other,
6373 short *reload_reg_p, int goalreg, enum machine_mode mode)
6375 rtx p = insn;
6376 rtx goaltry, valtry, value, where;
6377 rtx pat;
6378 int regno = -1;
6379 int valueno;
6380 int goal_mem = 0;
6381 int goal_const = 0;
6382 int goal_mem_addr_varies = 0;
6383 int need_stable_sp = 0;
6384 int nregs;
6385 int valuenregs;
6387 if (goal == 0)
6388 regno = goalreg;
6389 else if (GET_CODE (goal) == REG)
6390 regno = REGNO (goal);
6391 else if (GET_CODE (goal) == MEM)
6393 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6394 if (MEM_VOLATILE_P (goal))
6395 return 0;
6396 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6397 return 0;
6398 /* An address with side effects must be reexecuted. */
6399 switch (code)
6401 case POST_INC:
6402 case PRE_INC:
6403 case POST_DEC:
6404 case PRE_DEC:
6405 case POST_MODIFY:
6406 case PRE_MODIFY:
6407 return 0;
6408 default:
6409 break;
6411 goal_mem = 1;
6413 else if (CONSTANT_P (goal))
6414 goal_const = 1;
6415 else if (GET_CODE (goal) == PLUS
6416 && XEXP (goal, 0) == stack_pointer_rtx
6417 && CONSTANT_P (XEXP (goal, 1)))
6418 goal_const = need_stable_sp = 1;
6419 else if (GET_CODE (goal) == PLUS
6420 && XEXP (goal, 0) == frame_pointer_rtx
6421 && CONSTANT_P (XEXP (goal, 1)))
6422 goal_const = 1;
6423 else
6424 return 0;
6426 /* Scan insns back from INSN, looking for one that copies
6427 a value into or out of GOAL.
6428 Stop and give up if we reach a label. */
6430 while (1)
6432 p = PREV_INSN (p);
6433 if (p == 0 || GET_CODE (p) == CODE_LABEL)
6434 return 0;
6436 if (GET_CODE (p) == INSN
6437 /* If we don't want spill regs ... */
6438 && (! (reload_reg_p != 0
6439 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6440 /* ... then ignore insns introduced by reload; they aren't
6441 useful and can cause results in reload_as_needed to be
6442 different from what they were when calculating the need for
6443 spills. If we notice an input-reload insn here, we will
6444 reject it below, but it might hide a usable equivalent.
6445 That makes bad code. It may even abort: perhaps no reg was
6446 spilled for this insn because it was assumed we would find
6447 that equivalent. */
6448 || INSN_UID (p) < reload_first_uid))
6450 rtx tem;
6451 pat = single_set (p);
6453 /* First check for something that sets some reg equal to GOAL. */
6454 if (pat != 0
6455 && ((regno >= 0
6456 && true_regnum (SET_SRC (pat)) == regno
6457 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6459 (regno >= 0
6460 && true_regnum (SET_DEST (pat)) == regno
6461 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6463 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6464 /* When looking for stack pointer + const,
6465 make sure we don't use a stack adjust. */
6466 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6467 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6468 || (goal_mem
6469 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6470 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6471 || (goal_mem
6472 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6473 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6474 /* If we are looking for a constant,
6475 and something equivalent to that constant was copied
6476 into a reg, we can use that reg. */
6477 || (goal_const && REG_NOTES (p) != 0
6478 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6479 && ((rtx_equal_p (XEXP (tem, 0), goal)
6480 && (valueno
6481 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6482 || (GET_CODE (SET_DEST (pat)) == REG
6483 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6484 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6485 == MODE_FLOAT)
6486 && GET_CODE (goal) == CONST_INT
6487 && 0 != (goaltry
6488 = operand_subword (XEXP (tem, 0), 0, 0,
6489 VOIDmode))
6490 && rtx_equal_p (goal, goaltry)
6491 && (valtry
6492 = operand_subword (SET_DEST (pat), 0, 0,
6493 VOIDmode))
6494 && (valueno = true_regnum (valtry)) >= 0)))
6495 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6496 NULL_RTX))
6497 && GET_CODE (SET_DEST (pat)) == REG
6498 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6499 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6500 == MODE_FLOAT)
6501 && GET_CODE (goal) == CONST_INT
6502 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6503 VOIDmode))
6504 && rtx_equal_p (goal, goaltry)
6505 && (valtry
6506 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6507 && (valueno = true_regnum (valtry)) >= 0)))
6509 if (other >= 0)
6511 if (valueno != other)
6512 continue;
6514 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6515 continue;
6516 else
6518 int i;
6520 for (i = HARD_REGNO_NREGS (valueno, mode) - 1; i >= 0; i--)
6521 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6522 valueno + i))
6523 break;
6524 if (i >= 0)
6525 continue;
6527 value = valtry;
6528 where = p;
6529 break;
6534 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6535 (or copying VALUE into GOAL, if GOAL is also a register).
6536 Now verify that VALUE is really valid. */
6538 /* VALUENO is the register number of VALUE; a hard register. */
6540 /* Don't try to re-use something that is killed in this insn. We want
6541 to be able to trust REG_UNUSED notes. */
6542 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6543 return 0;
6545 /* If we propose to get the value from the stack pointer or if GOAL is
6546 a MEM based on the stack pointer, we need a stable SP. */
6547 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6548 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6549 goal)))
6550 need_stable_sp = 1;
6552 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6553 if (GET_MODE (value) != mode)
6554 return 0;
6556 /* Reject VALUE if it was loaded from GOAL
6557 and is also a register that appears in the address of GOAL. */
6559 if (goal_mem && value == SET_DEST (single_set (where))
6560 && refers_to_regno_for_reload_p (valueno,
6561 (valueno
6562 + HARD_REGNO_NREGS (valueno, mode)),
6563 goal, (rtx*) 0))
6564 return 0;
6566 /* Reject registers that overlap GOAL. */
6568 if (!goal_mem && !goal_const
6569 && regno + (int) HARD_REGNO_NREGS (regno, mode) > valueno
6570 && regno < valueno + (int) HARD_REGNO_NREGS (valueno, mode))
6571 return 0;
6573 nregs = HARD_REGNO_NREGS (regno, mode);
6574 valuenregs = HARD_REGNO_NREGS (valueno, mode);
6576 /* Reject VALUE if it is one of the regs reserved for reloads.
6577 Reload1 knows how to reuse them anyway, and it would get
6578 confused if we allocated one without its knowledge.
6579 (Now that insns introduced by reload are ignored above,
6580 this case shouldn't happen, but I'm not positive.) */
6582 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6584 int i;
6585 for (i = 0; i < valuenregs; ++i)
6586 if (reload_reg_p[valueno + i] >= 0)
6587 return 0;
6590 /* Reject VALUE if it is a register being used for an input reload
6591 even if it is not one of those reserved. */
6593 if (reload_reg_p != 0)
6595 int i;
6596 for (i = 0; i < n_reloads; i++)
6597 if (rld[i].reg_rtx != 0 && rld[i].in)
6599 int regno1 = REGNO (rld[i].reg_rtx);
6600 int nregs1 = HARD_REGNO_NREGS (regno1,
6601 GET_MODE (rld[i].reg_rtx));
6602 if (regno1 < valueno + valuenregs
6603 && regno1 + nregs1 > valueno)
6604 return 0;
6608 if (goal_mem)
6609 /* We must treat frame pointer as varying here,
6610 since it can vary--in a nonlocal goto as generated by expand_goto. */
6611 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6613 /* Now verify that the values of GOAL and VALUE remain unaltered
6614 until INSN is reached. */
6616 p = insn;
6617 while (1)
6619 p = PREV_INSN (p);
6620 if (p == where)
6621 return value;
6623 /* Don't trust the conversion past a function call
6624 if either of the two is in a call-clobbered register, or memory. */
6625 if (GET_CODE (p) == CALL_INSN)
6627 int i;
6629 if (goal_mem || need_stable_sp)
6630 return 0;
6632 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6633 for (i = 0; i < nregs; ++i)
6634 if (call_used_regs[regno + i])
6635 return 0;
6637 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6638 for (i = 0; i < valuenregs; ++i)
6639 if (call_used_regs[valueno + i])
6640 return 0;
6641 #ifdef NON_SAVING_SETJMP
6642 if (NON_SAVING_SETJMP && find_reg_note (p, REG_SETJMP, NULL))
6643 return 0;
6644 #endif
6647 if (INSN_P (p))
6649 pat = PATTERN (p);
6651 /* Watch out for unspec_volatile, and volatile asms. */
6652 if (volatile_insn_p (pat))
6653 return 0;
6655 /* If this insn P stores in either GOAL or VALUE, return 0.
6656 If GOAL is a memory ref and this insn writes memory, return 0.
6657 If GOAL is a memory ref and its address is not constant,
6658 and this insn P changes a register used in GOAL, return 0. */
6660 if (GET_CODE (pat) == COND_EXEC)
6661 pat = COND_EXEC_CODE (pat);
6662 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6664 rtx dest = SET_DEST (pat);
6665 while (GET_CODE (dest) == SUBREG
6666 || GET_CODE (dest) == ZERO_EXTRACT
6667 || GET_CODE (dest) == SIGN_EXTRACT
6668 || GET_CODE (dest) == STRICT_LOW_PART)
6669 dest = XEXP (dest, 0);
6670 if (GET_CODE (dest) == REG)
6672 int xregno = REGNO (dest);
6673 int xnregs;
6674 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6675 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6676 else
6677 xnregs = 1;
6678 if (xregno < regno + nregs && xregno + xnregs > regno)
6679 return 0;
6680 if (xregno < valueno + valuenregs
6681 && xregno + xnregs > valueno)
6682 return 0;
6683 if (goal_mem_addr_varies
6684 && reg_overlap_mentioned_for_reload_p (dest, goal))
6685 return 0;
6686 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6687 return 0;
6689 else if (goal_mem && GET_CODE (dest) == MEM
6690 && ! push_operand (dest, GET_MODE (dest)))
6691 return 0;
6692 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6693 && reg_equiv_memory_loc[regno] != 0)
6694 return 0;
6695 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6696 return 0;
6698 else if (GET_CODE (pat) == PARALLEL)
6700 int i;
6701 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6703 rtx v1 = XVECEXP (pat, 0, i);
6704 if (GET_CODE (v1) == COND_EXEC)
6705 v1 = COND_EXEC_CODE (v1);
6706 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6708 rtx dest = SET_DEST (v1);
6709 while (GET_CODE (dest) == SUBREG
6710 || GET_CODE (dest) == ZERO_EXTRACT
6711 || GET_CODE (dest) == SIGN_EXTRACT
6712 || GET_CODE (dest) == STRICT_LOW_PART)
6713 dest = XEXP (dest, 0);
6714 if (GET_CODE (dest) == REG)
6716 int xregno = REGNO (dest);
6717 int xnregs;
6718 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6719 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6720 else
6721 xnregs = 1;
6722 if (xregno < regno + nregs
6723 && xregno + xnregs > regno)
6724 return 0;
6725 if (xregno < valueno + valuenregs
6726 && xregno + xnregs > valueno)
6727 return 0;
6728 if (goal_mem_addr_varies
6729 && reg_overlap_mentioned_for_reload_p (dest,
6730 goal))
6731 return 0;
6732 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6733 return 0;
6735 else if (goal_mem && GET_CODE (dest) == MEM
6736 && ! push_operand (dest, GET_MODE (dest)))
6737 return 0;
6738 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6739 && reg_equiv_memory_loc[regno] != 0)
6740 return 0;
6741 else if (need_stable_sp
6742 && push_operand (dest, GET_MODE (dest)))
6743 return 0;
6748 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6750 rtx link;
6752 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6753 link = XEXP (link, 1))
6755 pat = XEXP (link, 0);
6756 if (GET_CODE (pat) == CLOBBER)
6758 rtx dest = SET_DEST (pat);
6760 if (GET_CODE (dest) == REG)
6762 int xregno = REGNO (dest);
6763 int xnregs
6764 = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6766 if (xregno < regno + nregs
6767 && xregno + xnregs > regno)
6768 return 0;
6769 else if (xregno < valueno + valuenregs
6770 && xregno + xnregs > valueno)
6771 return 0;
6772 else if (goal_mem_addr_varies
6773 && reg_overlap_mentioned_for_reload_p (dest,
6774 goal))
6775 return 0;
6778 else if (goal_mem && GET_CODE (dest) == MEM
6779 && ! push_operand (dest, GET_MODE (dest)))
6780 return 0;
6781 else if (need_stable_sp
6782 && push_operand (dest, GET_MODE (dest)))
6783 return 0;
6788 #ifdef AUTO_INC_DEC
6789 /* If this insn auto-increments or auto-decrements
6790 either regno or valueno, return 0 now.
6791 If GOAL is a memory ref and its address is not constant,
6792 and this insn P increments a register used in GOAL, return 0. */
6794 rtx link;
6796 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6797 if (REG_NOTE_KIND (link) == REG_INC
6798 && GET_CODE (XEXP (link, 0)) == REG)
6800 int incno = REGNO (XEXP (link, 0));
6801 if (incno < regno + nregs && incno >= regno)
6802 return 0;
6803 if (incno < valueno + valuenregs && incno >= valueno)
6804 return 0;
6805 if (goal_mem_addr_varies
6806 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6807 goal))
6808 return 0;
6811 #endif
6816 /* Find a place where INCED appears in an increment or decrement operator
6817 within X, and return the amount INCED is incremented or decremented by.
6818 The value is always positive. */
6820 static int
6821 find_inc_amount (rtx x, rtx inced)
6823 enum rtx_code code = GET_CODE (x);
6824 const char *fmt;
6825 int i;
6827 if (code == MEM)
6829 rtx addr = XEXP (x, 0);
6830 if ((GET_CODE (addr) == PRE_DEC
6831 || GET_CODE (addr) == POST_DEC
6832 || GET_CODE (addr) == PRE_INC
6833 || GET_CODE (addr) == POST_INC)
6834 && XEXP (addr, 0) == inced)
6835 return GET_MODE_SIZE (GET_MODE (x));
6836 else if ((GET_CODE (addr) == PRE_MODIFY
6837 || GET_CODE (addr) == POST_MODIFY)
6838 && GET_CODE (XEXP (addr, 1)) == PLUS
6839 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6840 && XEXP (addr, 0) == inced
6841 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6843 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6844 return i < 0 ? -i : i;
6848 fmt = GET_RTX_FORMAT (code);
6849 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6851 if (fmt[i] == 'e')
6853 int tem = find_inc_amount (XEXP (x, i), inced);
6854 if (tem != 0)
6855 return tem;
6857 if (fmt[i] == 'E')
6859 int j;
6860 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6862 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6863 if (tem != 0)
6864 return tem;
6869 return 0;
6872 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6873 If SETS is nonzero, also consider SETs. */
6876 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
6877 int sets)
6879 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
6880 unsigned int endregno = regno + nregs;
6882 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6883 || (sets && GET_CODE (PATTERN (insn)) == SET))
6884 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6886 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6888 return test >= regno && test < endregno;
6891 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6893 int i = XVECLEN (PATTERN (insn), 0) - 1;
6895 for (; i >= 0; i--)
6897 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6898 if ((GET_CODE (elt) == CLOBBER
6899 || (sets && GET_CODE (PATTERN (insn)) == SET))
6900 && GET_CODE (XEXP (elt, 0)) == REG)
6902 unsigned int test = REGNO (XEXP (elt, 0));
6904 if (test >= regno && test < endregno)
6905 return 1;
6910 return 0;
6913 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
6915 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
6917 int regno;
6919 if (GET_MODE (reloadreg) == mode)
6920 return reloadreg;
6922 regno = REGNO (reloadreg);
6924 if (WORDS_BIG_ENDIAN)
6925 regno += HARD_REGNO_NREGS (regno, GET_MODE (reloadreg))
6926 - HARD_REGNO_NREGS (regno, mode);
6928 return gen_rtx_REG (mode, regno);
6931 static const char *const reload_when_needed_name[] =
6933 "RELOAD_FOR_INPUT",
6934 "RELOAD_FOR_OUTPUT",
6935 "RELOAD_FOR_INSN",
6936 "RELOAD_FOR_INPUT_ADDRESS",
6937 "RELOAD_FOR_INPADDR_ADDRESS",
6938 "RELOAD_FOR_OUTPUT_ADDRESS",
6939 "RELOAD_FOR_OUTADDR_ADDRESS",
6940 "RELOAD_FOR_OPERAND_ADDRESS",
6941 "RELOAD_FOR_OPADDR_ADDR",
6942 "RELOAD_OTHER",
6943 "RELOAD_FOR_OTHER_ADDRESS"
6946 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6948 /* These functions are used to print the variables set by 'find_reloads' */
6950 void
6951 debug_reload_to_stream (FILE *f)
6953 int r;
6954 const char *prefix;
6956 if (! f)
6957 f = stderr;
6958 for (r = 0; r < n_reloads; r++)
6960 fprintf (f, "Reload %d: ", r);
6962 if (rld[r].in != 0)
6964 fprintf (f, "reload_in (%s) = ",
6965 GET_MODE_NAME (rld[r].inmode));
6966 print_inline_rtx (f, rld[r].in, 24);
6967 fprintf (f, "\n\t");
6970 if (rld[r].out != 0)
6972 fprintf (f, "reload_out (%s) = ",
6973 GET_MODE_NAME (rld[r].outmode));
6974 print_inline_rtx (f, rld[r].out, 24);
6975 fprintf (f, "\n\t");
6978 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
6980 fprintf (f, "%s (opnum = %d)",
6981 reload_when_needed_name[(int) rld[r].when_needed],
6982 rld[r].opnum);
6984 if (rld[r].optional)
6985 fprintf (f, ", optional");
6987 if (rld[r].nongroup)
6988 fprintf (f, ", nongroup");
6990 if (rld[r].inc != 0)
6991 fprintf (f, ", inc by %d", rld[r].inc);
6993 if (rld[r].nocombine)
6994 fprintf (f, ", can't combine");
6996 if (rld[r].secondary_p)
6997 fprintf (f, ", secondary_reload_p");
6999 if (rld[r].in_reg != 0)
7001 fprintf (f, "\n\treload_in_reg: ");
7002 print_inline_rtx (f, rld[r].in_reg, 24);
7005 if (rld[r].out_reg != 0)
7007 fprintf (f, "\n\treload_out_reg: ");
7008 print_inline_rtx (f, rld[r].out_reg, 24);
7011 if (rld[r].reg_rtx != 0)
7013 fprintf (f, "\n\treload_reg_rtx: ");
7014 print_inline_rtx (f, rld[r].reg_rtx, 24);
7017 prefix = "\n\t";
7018 if (rld[r].secondary_in_reload != -1)
7020 fprintf (f, "%ssecondary_in_reload = %d",
7021 prefix, rld[r].secondary_in_reload);
7022 prefix = ", ";
7025 if (rld[r].secondary_out_reload != -1)
7026 fprintf (f, "%ssecondary_out_reload = %d\n",
7027 prefix, rld[r].secondary_out_reload);
7029 prefix = "\n\t";
7030 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7032 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7033 insn_data[rld[r].secondary_in_icode].name);
7034 prefix = ", ";
7037 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7038 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7039 insn_data[rld[r].secondary_out_icode].name);
7041 fprintf (f, "\n");
7045 void
7046 debug_reload (void)
7048 debug_reload_to_stream (stderr);