2003-12-26 Guilhem Lavaux <guilhem@kaffe.org>
[official-gcc.git] / gcc / explow.c
blob9e04bd896f971442cbde4bf5bfe2bd10b19afec5
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "hard-reg-set.h"
36 #include "insn-config.h"
37 #include "ggc.h"
38 #include "recog.h"
39 #include "langhooks.h"
41 static rtx break_out_memory_refs (rtx);
42 static void emit_stack_probe (rtx);
45 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
47 HOST_WIDE_INT
48 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
50 int width = GET_MODE_BITSIZE (mode);
52 /* You want to truncate to a _what_? */
53 if (! SCALAR_INT_MODE_P (mode))
54 abort ();
56 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
57 if (mode == BImode)
58 return c & 1 ? STORE_FLAG_VALUE : 0;
60 /* Sign-extend for the requested mode. */
62 if (width < HOST_BITS_PER_WIDE_INT)
64 HOST_WIDE_INT sign = 1;
65 sign <<= width - 1;
66 c &= (sign << 1) - 1;
67 c ^= sign;
68 c -= sign;
71 return c;
74 /* Return an rtx for the sum of X and the integer C.
76 This function should be used via the `plus_constant' macro. */
78 rtx
79 plus_constant_wide (rtx x, HOST_WIDE_INT c)
81 RTX_CODE code;
82 rtx y;
83 enum machine_mode mode;
84 rtx tem;
85 int all_constant = 0;
87 if (c == 0)
88 return x;
90 restart:
92 code = GET_CODE (x);
93 mode = GET_MODE (x);
94 y = x;
96 switch (code)
98 case CONST_INT:
99 return GEN_INT (INTVAL (x) + c);
101 case CONST_DOUBLE:
103 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
104 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
105 unsigned HOST_WIDE_INT l2 = c;
106 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
107 unsigned HOST_WIDE_INT lv;
108 HOST_WIDE_INT hv;
110 add_double (l1, h1, l2, h2, &lv, &hv);
112 return immed_double_const (lv, hv, VOIDmode);
115 case MEM:
116 /* If this is a reference to the constant pool, try replacing it with
117 a reference to a new constant. If the resulting address isn't
118 valid, don't return it because we have no way to validize it. */
119 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
120 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
123 = force_const_mem (GET_MODE (x),
124 plus_constant (get_pool_constant (XEXP (x, 0)),
125 c));
126 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
127 return tem;
129 break;
131 case CONST:
132 /* If adding to something entirely constant, set a flag
133 so that we can add a CONST around the result. */
134 x = XEXP (x, 0);
135 all_constant = 1;
136 goto restart;
138 case SYMBOL_REF:
139 case LABEL_REF:
140 all_constant = 1;
141 break;
143 case PLUS:
144 /* The interesting case is adding the integer to a sum.
145 Look for constant term in the sum and combine
146 with C. For an integer constant term, we make a combined
147 integer. For a constant term that is not an explicit integer,
148 we cannot really combine, but group them together anyway.
150 Restart or use a recursive call in case the remaining operand is
151 something that we handle specially, such as a SYMBOL_REF.
153 We may not immediately return from the recursive call here, lest
154 all_constant gets lost. */
156 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
158 c += INTVAL (XEXP (x, 1));
160 if (GET_MODE (x) != VOIDmode)
161 c = trunc_int_for_mode (c, GET_MODE (x));
163 x = XEXP (x, 0);
164 goto restart;
166 else if (CONSTANT_P (XEXP (x, 1)))
168 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
169 c = 0;
171 else if (find_constant_term_loc (&y))
173 /* We need to be careful since X may be shared and we can't
174 modify it in place. */
175 rtx copy = copy_rtx (x);
176 rtx *const_loc = find_constant_term_loc (&copy);
178 *const_loc = plus_constant (*const_loc, c);
179 x = copy;
180 c = 0;
182 break;
184 default:
185 break;
188 if (c != 0)
189 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
191 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
192 return x;
193 else if (all_constant)
194 return gen_rtx_CONST (mode, x);
195 else
196 return x;
199 /* If X is a sum, return a new sum like X but lacking any constant terms.
200 Add all the removed constant terms into *CONSTPTR.
201 X itself is not altered. The result != X if and only if
202 it is not isomorphic to X. */
205 eliminate_constant_term (rtx x, rtx *constptr)
207 rtx x0, x1;
208 rtx tem;
210 if (GET_CODE (x) != PLUS)
211 return x;
213 /* First handle constants appearing at this level explicitly. */
214 if (GET_CODE (XEXP (x, 1)) == CONST_INT
215 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
216 XEXP (x, 1)))
217 && GET_CODE (tem) == CONST_INT)
219 *constptr = tem;
220 return eliminate_constant_term (XEXP (x, 0), constptr);
223 tem = const0_rtx;
224 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
225 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
226 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
227 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
228 *constptr, tem))
229 && GET_CODE (tem) == CONST_INT)
231 *constptr = tem;
232 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
235 return x;
238 /* Return an rtx for the size in bytes of the value of EXP. */
241 expr_size (tree exp)
243 tree size = (*lang_hooks.expr_size) (exp);
245 if (CONTAINS_PLACEHOLDER_P (size))
246 size = build (WITH_RECORD_EXPR, sizetype, size, exp);
248 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
251 /* Return a wide integer for the size in bytes of the value of EXP, or -1
252 if the size can vary or is larger than an integer. */
254 HOST_WIDE_INT
255 int_expr_size (tree exp)
257 tree t = (*lang_hooks.expr_size) (exp);
259 if (t == 0
260 || TREE_CODE (t) != INTEGER_CST
261 || TREE_OVERFLOW (t)
262 || TREE_INT_CST_HIGH (t) != 0
263 /* If the result would appear negative, it's too big to represent. */
264 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
265 return -1;
267 return TREE_INT_CST_LOW (t);
270 /* Return a copy of X in which all memory references
271 and all constants that involve symbol refs
272 have been replaced with new temporary registers.
273 Also emit code to load the memory locations and constants
274 into those registers.
276 If X contains no such constants or memory references,
277 X itself (not a copy) is returned.
279 If a constant is found in the address that is not a legitimate constant
280 in an insn, it is left alone in the hope that it might be valid in the
281 address.
283 X may contain no arithmetic except addition, subtraction and multiplication.
284 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
286 static rtx
287 break_out_memory_refs (rtx x)
289 if (GET_CODE (x) == MEM
290 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
291 && GET_MODE (x) != VOIDmode))
292 x = force_reg (GET_MODE (x), x);
293 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
294 || GET_CODE (x) == MULT)
296 rtx op0 = break_out_memory_refs (XEXP (x, 0));
297 rtx op1 = break_out_memory_refs (XEXP (x, 1));
299 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
300 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
303 return x;
306 /* Given X, a memory address in ptr_mode, convert it to an address
307 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
308 the fact that pointers are not allowed to overflow by commuting arithmetic
309 operations over conversions so that address arithmetic insns can be
310 used. */
313 convert_memory_address (enum machine_mode to_mode ATTRIBUTE_UNUSED,
314 rtx x)
316 #ifndef POINTERS_EXTEND_UNSIGNED
317 return x;
318 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
319 enum machine_mode from_mode;
320 rtx temp;
321 enum rtx_code code;
323 /* If X already has the right mode, just return it. */
324 if (GET_MODE (x) == to_mode)
325 return x;
327 from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
329 /* Here we handle some special cases. If none of them apply, fall through
330 to the default case. */
331 switch (GET_CODE (x))
333 case CONST_INT:
334 case CONST_DOUBLE:
335 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
336 code = TRUNCATE;
337 else if (POINTERS_EXTEND_UNSIGNED < 0)
338 break;
339 else if (POINTERS_EXTEND_UNSIGNED > 0)
340 code = ZERO_EXTEND;
341 else
342 code = SIGN_EXTEND;
343 temp = simplify_unary_operation (code, to_mode, x, from_mode);
344 if (temp)
345 return temp;
346 break;
348 case SUBREG:
349 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
350 && GET_MODE (SUBREG_REG (x)) == to_mode)
351 return SUBREG_REG (x);
352 break;
354 case LABEL_REF:
355 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
356 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
357 return temp;
358 break;
360 case SYMBOL_REF:
361 temp = shallow_copy_rtx (x);
362 PUT_MODE (temp, to_mode);
363 return temp;
364 break;
366 case CONST:
367 return gen_rtx_CONST (to_mode,
368 convert_memory_address (to_mode, XEXP (x, 0)));
369 break;
371 case PLUS:
372 case MULT:
373 /* For addition we can safely permute the conversion and addition
374 operation if one operand is a constant and converting the constant
375 does not change it. We can always safely permute them if we are
376 making the address narrower. */
377 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
378 || (GET_CODE (x) == PLUS
379 && GET_CODE (XEXP (x, 1)) == CONST_INT
380 && XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))))
381 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
382 convert_memory_address (to_mode, XEXP (x, 0)),
383 XEXP (x, 1));
384 break;
386 default:
387 break;
390 return convert_modes (to_mode, from_mode,
391 x, POINTERS_EXTEND_UNSIGNED);
392 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
395 /* Given a memory address or facsimile X, construct a new address,
396 currently equivalent, that is stable: future stores won't change it.
398 X must be composed of constants, register and memory references
399 combined with addition, subtraction and multiplication:
400 in other words, just what you can get from expand_expr if sum_ok is 1.
402 Works by making copies of all regs and memory locations used
403 by X and combining them the same way X does.
404 You could also stabilize the reference to this address
405 by copying the address to a register with copy_to_reg;
406 but then you wouldn't get indexed addressing in the reference. */
409 copy_all_regs (rtx x)
411 if (GET_CODE (x) == REG)
413 if (REGNO (x) != FRAME_POINTER_REGNUM
414 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
415 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
416 #endif
418 x = copy_to_reg (x);
420 else if (GET_CODE (x) == MEM)
421 x = copy_to_reg (x);
422 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
423 || GET_CODE (x) == MULT)
425 rtx op0 = copy_all_regs (XEXP (x, 0));
426 rtx op1 = copy_all_regs (XEXP (x, 1));
427 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
428 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
430 return x;
433 /* Return something equivalent to X but valid as a memory address
434 for something of mode MODE. When X is not itself valid, this
435 works by copying X or subexpressions of it into registers. */
438 memory_address (enum machine_mode mode, rtx x)
440 rtx oldx = x;
442 if (GET_CODE (x) == ADDRESSOF)
443 return x;
445 x = convert_memory_address (Pmode, x);
447 /* By passing constant addresses through registers
448 we get a chance to cse them. */
449 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
450 x = force_reg (Pmode, x);
452 /* Accept a QUEUED that refers to a REG
453 even though that isn't a valid address.
454 On attempting to put this in an insn we will call protect_from_queue
455 which will turn it into a REG, which is valid. */
456 else if (GET_CODE (x) == QUEUED
457 && GET_CODE (QUEUED_VAR (x)) == REG)
460 /* We get better cse by rejecting indirect addressing at this stage.
461 Let the combiner create indirect addresses where appropriate.
462 For now, generate the code so that the subexpressions useful to share
463 are visible. But not if cse won't be done! */
464 else
466 if (! cse_not_expected && GET_CODE (x) != REG)
467 x = break_out_memory_refs (x);
469 /* At this point, any valid address is accepted. */
470 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
472 /* If it was valid before but breaking out memory refs invalidated it,
473 use it the old way. */
474 if (memory_address_p (mode, oldx))
475 goto win2;
477 /* Perform machine-dependent transformations on X
478 in certain cases. This is not necessary since the code
479 below can handle all possible cases, but machine-dependent
480 transformations can make better code. */
481 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
483 /* PLUS and MULT can appear in special ways
484 as the result of attempts to make an address usable for indexing.
485 Usually they are dealt with by calling force_operand, below.
486 But a sum containing constant terms is special
487 if removing them makes the sum a valid address:
488 then we generate that address in a register
489 and index off of it. We do this because it often makes
490 shorter code, and because the addresses thus generated
491 in registers often become common subexpressions. */
492 if (GET_CODE (x) == PLUS)
494 rtx constant_term = const0_rtx;
495 rtx y = eliminate_constant_term (x, &constant_term);
496 if (constant_term == const0_rtx
497 || ! memory_address_p (mode, y))
498 x = force_operand (x, NULL_RTX);
499 else
501 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
502 if (! memory_address_p (mode, y))
503 x = force_operand (x, NULL_RTX);
504 else
505 x = y;
509 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
510 x = force_operand (x, NULL_RTX);
512 /* If we have a register that's an invalid address,
513 it must be a hard reg of the wrong class. Copy it to a pseudo. */
514 else if (GET_CODE (x) == REG)
515 x = copy_to_reg (x);
517 /* Last resort: copy the value to a register, since
518 the register is a valid address. */
519 else
520 x = force_reg (Pmode, x);
522 goto done;
524 win2:
525 x = oldx;
526 win:
527 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
528 /* Don't copy an addr via a reg if it is one of our stack slots. */
529 && ! (GET_CODE (x) == PLUS
530 && (XEXP (x, 0) == virtual_stack_vars_rtx
531 || XEXP (x, 0) == virtual_incoming_args_rtx)))
533 if (general_operand (x, Pmode))
534 x = force_reg (Pmode, x);
535 else
536 x = force_operand (x, NULL_RTX);
540 done:
542 /* If we didn't change the address, we are done. Otherwise, mark
543 a reg as a pointer if we have REG or REG + CONST_INT. */
544 if (oldx == x)
545 return x;
546 else if (GET_CODE (x) == REG)
547 mark_reg_pointer (x, BITS_PER_UNIT);
548 else if (GET_CODE (x) == PLUS
549 && GET_CODE (XEXP (x, 0)) == REG
550 && GET_CODE (XEXP (x, 1)) == CONST_INT)
551 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
553 /* OLDX may have been the address on a temporary. Update the address
554 to indicate that X is now used. */
555 update_temp_slot_address (oldx, x);
557 return x;
560 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
563 memory_address_noforce (enum machine_mode mode, rtx x)
565 int ambient_force_addr = flag_force_addr;
566 rtx val;
568 flag_force_addr = 0;
569 val = memory_address (mode, x);
570 flag_force_addr = ambient_force_addr;
571 return val;
574 /* Convert a mem ref into one with a valid memory address.
575 Pass through anything else unchanged. */
578 validize_mem (rtx ref)
580 if (GET_CODE (ref) != MEM)
581 return ref;
582 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
583 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
584 return ref;
586 /* Don't alter REF itself, since that is probably a stack slot. */
587 return replace_equiv_address (ref, XEXP (ref, 0));
590 /* Given REF, either a MEM or a REG, and T, either the type of X or
591 the expression corresponding to REF, set RTX_UNCHANGING_P if
592 appropriate. */
594 void
595 maybe_set_unchanging (rtx ref, tree t)
597 /* We can set RTX_UNCHANGING_P from TREE_READONLY for decls whose
598 initialization is only executed once, or whose initializer always
599 has the same value. Currently we simplify this to PARM_DECLs in the
600 first case, and decls with TREE_CONSTANT initializers in the second.
602 We cannot do this for non-static aggregates, because of the double
603 writes that can be generated by store_constructor, depending on the
604 contents of the initializer. Yes, this does eliminate a good fraction
605 of the number of uses of RTX_UNCHANGING_P for a language like Ada.
606 It also eliminates a good quantity of bugs. Let this be incentive to
607 eliminate RTX_UNCHANGING_P entirely in favor of a more reliable
608 solution, perhaps based on alias sets. */
610 if ((TREE_READONLY (t) && DECL_P (t)
611 && (TREE_STATIC (t) || ! AGGREGATE_TYPE_P (TREE_TYPE (t)))
612 && (TREE_CODE (t) == PARM_DECL
613 || (DECL_INITIAL (t) && TREE_CONSTANT (DECL_INITIAL (t)))))
614 || TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
615 RTX_UNCHANGING_P (ref) = 1;
618 /* Return a modified copy of X with its memory address copied
619 into a temporary register to protect it from side effects.
620 If X is not a MEM, it is returned unchanged (and not copied).
621 Perhaps even if it is a MEM, if there is no need to change it. */
624 stabilize (rtx x)
626 if (GET_CODE (x) != MEM
627 || ! rtx_unstable_p (XEXP (x, 0)))
628 return x;
630 return
631 replace_equiv_address (x, force_reg (Pmode, copy_all_regs (XEXP (x, 0))));
634 /* Copy the value or contents of X to a new temp reg and return that reg. */
637 copy_to_reg (rtx x)
639 rtx temp = gen_reg_rtx (GET_MODE (x));
641 /* If not an operand, must be an address with PLUS and MULT so
642 do the computation. */
643 if (! general_operand (x, VOIDmode))
644 x = force_operand (x, temp);
646 if (x != temp)
647 emit_move_insn (temp, x);
649 return temp;
652 /* Like copy_to_reg but always give the new register mode Pmode
653 in case X is a constant. */
656 copy_addr_to_reg (rtx x)
658 return copy_to_mode_reg (Pmode, x);
661 /* Like copy_to_reg but always give the new register mode MODE
662 in case X is a constant. */
665 copy_to_mode_reg (enum machine_mode mode, rtx x)
667 rtx temp = gen_reg_rtx (mode);
669 /* If not an operand, must be an address with PLUS and MULT so
670 do the computation. */
671 if (! general_operand (x, VOIDmode))
672 x = force_operand (x, temp);
674 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
675 abort ();
676 if (x != temp)
677 emit_move_insn (temp, x);
678 return temp;
681 /* Load X into a register if it is not already one.
682 Use mode MODE for the register.
683 X should be valid for mode MODE, but it may be a constant which
684 is valid for all integer modes; that's why caller must specify MODE.
686 The caller must not alter the value in the register we return,
687 since we mark it as a "constant" register. */
690 force_reg (enum machine_mode mode, rtx x)
692 rtx temp, insn, set;
694 if (GET_CODE (x) == REG)
695 return x;
697 if (general_operand (x, mode))
699 temp = gen_reg_rtx (mode);
700 insn = emit_move_insn (temp, x);
702 else
704 temp = force_operand (x, NULL_RTX);
705 if (GET_CODE (temp) == REG)
706 insn = get_last_insn ();
707 else
709 rtx temp2 = gen_reg_rtx (mode);
710 insn = emit_move_insn (temp2, temp);
711 temp = temp2;
715 /* Let optimizers know that TEMP's value never changes
716 and that X can be substituted for it. Don't get confused
717 if INSN set something else (such as a SUBREG of TEMP). */
718 if (CONSTANT_P (x)
719 && (set = single_set (insn)) != 0
720 && SET_DEST (set) == temp
721 && ! rtx_equal_p (x, SET_SRC (set)))
722 set_unique_reg_note (insn, REG_EQUAL, x);
724 return temp;
727 /* If X is a memory ref, copy its contents to a new temp reg and return
728 that reg. Otherwise, return X. */
731 force_not_mem (rtx x)
733 rtx temp;
735 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
736 return x;
738 temp = gen_reg_rtx (GET_MODE (x));
739 emit_move_insn (temp, x);
740 return temp;
743 /* Copy X to TARGET (if it's nonzero and a reg)
744 or to a new temp reg and return that reg.
745 MODE is the mode to use for X in case it is a constant. */
748 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
750 rtx temp;
752 if (target && GET_CODE (target) == REG)
753 temp = target;
754 else
755 temp = gen_reg_rtx (mode);
757 emit_move_insn (temp, x);
758 return temp;
761 /* Return the mode to use to store a scalar of TYPE and MODE.
762 PUNSIGNEDP points to the signedness of the type and may be adjusted
763 to show what signedness to use on extension operations.
765 FOR_CALL is nonzero if this call is promoting args for a call. */
767 enum machine_mode
768 promote_mode (tree type, enum machine_mode mode, int *punsignedp,
769 int for_call ATTRIBUTE_UNUSED)
771 enum tree_code code = TREE_CODE (type);
772 int unsignedp = *punsignedp;
774 #ifdef PROMOTE_FOR_CALL_ONLY
775 if (! for_call)
776 return mode;
777 #endif
779 switch (code)
781 #ifdef PROMOTE_MODE
782 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
783 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
784 PROMOTE_MODE (mode, unsignedp, type);
785 break;
786 #endif
788 #ifdef POINTERS_EXTEND_UNSIGNED
789 case REFERENCE_TYPE:
790 case POINTER_TYPE:
791 mode = Pmode;
792 unsignedp = POINTERS_EXTEND_UNSIGNED;
793 break;
794 #endif
796 default:
797 break;
800 *punsignedp = unsignedp;
801 return mode;
804 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
805 This pops when ADJUST is positive. ADJUST need not be constant. */
807 void
808 adjust_stack (rtx adjust)
810 rtx temp;
811 adjust = protect_from_queue (adjust, 0);
813 if (adjust == const0_rtx)
814 return;
816 /* We expect all variable sized adjustments to be multiple of
817 PREFERRED_STACK_BOUNDARY. */
818 if (GET_CODE (adjust) == CONST_INT)
819 stack_pointer_delta -= INTVAL (adjust);
821 temp = expand_binop (Pmode,
822 #ifdef STACK_GROWS_DOWNWARD
823 add_optab,
824 #else
825 sub_optab,
826 #endif
827 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
828 OPTAB_LIB_WIDEN);
830 if (temp != stack_pointer_rtx)
831 emit_move_insn (stack_pointer_rtx, temp);
834 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
835 This pushes when ADJUST is positive. ADJUST need not be constant. */
837 void
838 anti_adjust_stack (rtx adjust)
840 rtx temp;
841 adjust = protect_from_queue (adjust, 0);
843 if (adjust == const0_rtx)
844 return;
846 /* We expect all variable sized adjustments to be multiple of
847 PREFERRED_STACK_BOUNDARY. */
848 if (GET_CODE (adjust) == CONST_INT)
849 stack_pointer_delta += INTVAL (adjust);
851 temp = expand_binop (Pmode,
852 #ifdef STACK_GROWS_DOWNWARD
853 sub_optab,
854 #else
855 add_optab,
856 #endif
857 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
858 OPTAB_LIB_WIDEN);
860 if (temp != stack_pointer_rtx)
861 emit_move_insn (stack_pointer_rtx, temp);
864 /* Round the size of a block to be pushed up to the boundary required
865 by this machine. SIZE is the desired size, which need not be constant. */
868 round_push (rtx size)
870 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
872 if (align == 1)
873 return size;
875 if (GET_CODE (size) == CONST_INT)
877 HOST_WIDE_INT new = (INTVAL (size) + align - 1) / align * align;
879 if (INTVAL (size) != new)
880 size = GEN_INT (new);
882 else
884 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
885 but we know it can't. So add ourselves and then do
886 TRUNC_DIV_EXPR. */
887 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
888 NULL_RTX, 1, OPTAB_LIB_WIDEN);
889 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
890 NULL_RTX, 1);
891 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
894 return size;
897 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
898 to a previously-created save area. If no save area has been allocated,
899 this function will allocate one. If a save area is specified, it
900 must be of the proper mode.
902 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
903 are emitted at the current position. */
905 void
906 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
908 rtx sa = *psave;
909 /* The default is that we use a move insn and save in a Pmode object. */
910 rtx (*fcn) (rtx, rtx) = gen_move_insn;
911 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
913 /* See if this machine has anything special to do for this kind of save. */
914 switch (save_level)
916 #ifdef HAVE_save_stack_block
917 case SAVE_BLOCK:
918 if (HAVE_save_stack_block)
919 fcn = gen_save_stack_block;
920 break;
921 #endif
922 #ifdef HAVE_save_stack_function
923 case SAVE_FUNCTION:
924 if (HAVE_save_stack_function)
925 fcn = gen_save_stack_function;
926 break;
927 #endif
928 #ifdef HAVE_save_stack_nonlocal
929 case SAVE_NONLOCAL:
930 if (HAVE_save_stack_nonlocal)
931 fcn = gen_save_stack_nonlocal;
932 break;
933 #endif
934 default:
935 break;
938 /* If there is no save area and we have to allocate one, do so. Otherwise
939 verify the save area is the proper mode. */
941 if (sa == 0)
943 if (mode != VOIDmode)
945 if (save_level == SAVE_NONLOCAL)
946 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
947 else
948 *psave = sa = gen_reg_rtx (mode);
951 else
953 if (mode == VOIDmode || GET_MODE (sa) != mode)
954 abort ();
957 if (after)
959 rtx seq;
961 start_sequence ();
962 /* We must validize inside the sequence, to ensure that any instructions
963 created by the validize call also get moved to the right place. */
964 if (sa != 0)
965 sa = validize_mem (sa);
966 emit_insn (fcn (sa, stack_pointer_rtx));
967 seq = get_insns ();
968 end_sequence ();
969 emit_insn_after (seq, after);
971 else
973 if (sa != 0)
974 sa = validize_mem (sa);
975 emit_insn (fcn (sa, stack_pointer_rtx));
979 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
980 area made by emit_stack_save. If it is zero, we have nothing to do.
982 Put any emitted insns after insn AFTER, if nonzero, otherwise at
983 current position. */
985 void
986 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
988 /* The default is that we use a move insn. */
989 rtx (*fcn) (rtx, rtx) = gen_move_insn;
991 /* See if this machine has anything special to do for this kind of save. */
992 switch (save_level)
994 #ifdef HAVE_restore_stack_block
995 case SAVE_BLOCK:
996 if (HAVE_restore_stack_block)
997 fcn = gen_restore_stack_block;
998 break;
999 #endif
1000 #ifdef HAVE_restore_stack_function
1001 case SAVE_FUNCTION:
1002 if (HAVE_restore_stack_function)
1003 fcn = gen_restore_stack_function;
1004 break;
1005 #endif
1006 #ifdef HAVE_restore_stack_nonlocal
1007 case SAVE_NONLOCAL:
1008 if (HAVE_restore_stack_nonlocal)
1009 fcn = gen_restore_stack_nonlocal;
1010 break;
1011 #endif
1012 default:
1013 break;
1016 if (sa != 0)
1018 sa = validize_mem (sa);
1019 /* These clobbers prevent the scheduler from moving
1020 references to variable arrays below the code
1021 that deletes (pops) the arrays. */
1022 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1023 gen_rtx_MEM (BLKmode,
1024 gen_rtx_SCRATCH (VOIDmode))));
1025 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1026 gen_rtx_MEM (BLKmode, stack_pointer_rtx)));
1029 if (after)
1031 rtx seq;
1033 start_sequence ();
1034 emit_insn (fcn (stack_pointer_rtx, sa));
1035 seq = get_insns ();
1036 end_sequence ();
1037 emit_insn_after (seq, after);
1039 else
1040 emit_insn (fcn (stack_pointer_rtx, sa));
1043 #ifdef SETJMP_VIA_SAVE_AREA
1044 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1045 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1046 platforms, the dynamic stack space used can corrupt the original
1047 frame, thus causing a crash if a longjmp unwinds to it. */
1049 void
1050 optimize_save_area_alloca (rtx insns)
1052 rtx insn;
1054 for (insn = insns; insn; insn = NEXT_INSN(insn))
1056 rtx note;
1058 if (GET_CODE (insn) != INSN)
1059 continue;
1061 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1063 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1064 continue;
1066 if (!current_function_calls_setjmp)
1068 rtx pat = PATTERN (insn);
1070 /* If we do not see the note in a pattern matching
1071 these precise characteristics, we did something
1072 entirely wrong in allocate_dynamic_stack_space.
1074 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1075 was defined on a machine where stacks grow towards higher
1076 addresses.
1078 Right now only supported port with stack that grow upward
1079 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1080 if (GET_CODE (pat) != SET
1081 || SET_DEST (pat) != stack_pointer_rtx
1082 || GET_CODE (SET_SRC (pat)) != MINUS
1083 || XEXP (SET_SRC (pat), 0) != stack_pointer_rtx)
1084 abort ();
1086 /* This will now be transformed into a (set REG REG)
1087 so we can just blow away all the other notes. */
1088 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1089 REG_NOTES (insn) = NULL_RTX;
1091 else
1093 /* setjmp was called, we must remove the REG_SAVE_AREA
1094 note so that later passes do not get confused by its
1095 presence. */
1096 if (note == REG_NOTES (insn))
1098 REG_NOTES (insn) = XEXP (note, 1);
1100 else
1102 rtx srch;
1104 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1105 if (XEXP (srch, 1) == note)
1106 break;
1108 if (srch == NULL_RTX)
1109 abort ();
1111 XEXP (srch, 1) = XEXP (note, 1);
1114 /* Once we've seen the note of interest, we need not look at
1115 the rest of them. */
1116 break;
1120 #endif /* SETJMP_VIA_SAVE_AREA */
1122 /* Return an rtx representing the address of an area of memory dynamically
1123 pushed on the stack. This region of memory is always aligned to
1124 a multiple of BIGGEST_ALIGNMENT.
1126 Any required stack pointer alignment is preserved.
1128 SIZE is an rtx representing the size of the area.
1129 TARGET is a place in which the address can be placed.
1131 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1134 allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1136 #ifdef SETJMP_VIA_SAVE_AREA
1137 rtx setjmpless_size = NULL_RTX;
1138 #endif
1140 /* If we're asking for zero bytes, it doesn't matter what we point
1141 to since we can't dereference it. But return a reasonable
1142 address anyway. */
1143 if (size == const0_rtx)
1144 return virtual_stack_dynamic_rtx;
1146 /* Otherwise, show we're calling alloca or equivalent. */
1147 current_function_calls_alloca = 1;
1149 /* Ensure the size is in the proper mode. */
1150 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1151 size = convert_to_mode (Pmode, size, 1);
1153 /* We can't attempt to minimize alignment necessary, because we don't
1154 know the final value of preferred_stack_boundary yet while executing
1155 this code. */
1156 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1158 /* We will need to ensure that the address we return is aligned to
1159 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1160 always know its final value at this point in the compilation (it
1161 might depend on the size of the outgoing parameter lists, for
1162 example), so we must align the value to be returned in that case.
1163 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1164 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1165 We must also do an alignment operation on the returned value if
1166 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1168 If we have to align, we must leave space in SIZE for the hole
1169 that might result from the alignment operation. */
1171 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1172 #define MUST_ALIGN 1
1173 #else
1174 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1175 #endif
1177 if (MUST_ALIGN)
1178 size
1179 = force_operand (plus_constant (size,
1180 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1181 NULL_RTX);
1183 #ifdef SETJMP_VIA_SAVE_AREA
1184 /* If setjmp restores regs from a save area in the stack frame,
1185 avoid clobbering the reg save area. Note that the offset of
1186 virtual_incoming_args_rtx includes the preallocated stack args space.
1187 It would be no problem to clobber that, but it's on the wrong side
1188 of the old save area. */
1190 rtx dynamic_offset
1191 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1192 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1194 if (!current_function_calls_setjmp)
1196 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1198 /* See optimize_save_area_alloca to understand what is being
1199 set up here. */
1201 /* ??? Code below assumes that the save area needs maximal
1202 alignment. This constraint may be too strong. */
1203 if (PREFERRED_STACK_BOUNDARY != BIGGEST_ALIGNMENT)
1204 abort ();
1206 if (GET_CODE (size) == CONST_INT)
1208 HOST_WIDE_INT new = INTVAL (size) / align * align;
1210 if (INTVAL (size) != new)
1211 setjmpless_size = GEN_INT (new);
1212 else
1213 setjmpless_size = size;
1215 else
1217 /* Since we know overflow is not possible, we avoid using
1218 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1219 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1220 GEN_INT (align), NULL_RTX, 1);
1221 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1222 GEN_INT (align), NULL_RTX, 1);
1224 /* Our optimization works based upon being able to perform a simple
1225 transformation of this RTL into a (set REG REG) so make sure things
1226 did in fact end up in a REG. */
1227 if (!register_operand (setjmpless_size, Pmode))
1228 setjmpless_size = force_reg (Pmode, setjmpless_size);
1231 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1232 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1234 #endif /* SETJMP_VIA_SAVE_AREA */
1236 /* Round the size to a multiple of the required stack alignment.
1237 Since the stack if presumed to be rounded before this allocation,
1238 this will maintain the required alignment.
1240 If the stack grows downward, we could save an insn by subtracting
1241 SIZE from the stack pointer and then aligning the stack pointer.
1242 The problem with this is that the stack pointer may be unaligned
1243 between the execution of the subtraction and alignment insns and
1244 some machines do not allow this. Even on those that do, some
1245 signal handlers malfunction if a signal should occur between those
1246 insns. Since this is an extremely rare event, we have no reliable
1247 way of knowing which systems have this problem. So we avoid even
1248 momentarily mis-aligning the stack. */
1250 /* If we added a variable amount to SIZE,
1251 we can no longer assume it is aligned. */
1252 #if !defined (SETJMP_VIA_SAVE_AREA)
1253 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1254 #endif
1255 size = round_push (size);
1257 do_pending_stack_adjust ();
1259 /* We ought to be called always on the toplevel and stack ought to be aligned
1260 properly. */
1261 if (stack_pointer_delta % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT))
1262 abort ();
1264 /* If needed, check that we have the required amount of stack. Take into
1265 account what has already been checked. */
1266 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1267 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1269 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1270 if (target == 0 || GET_CODE (target) != REG
1271 || REGNO (target) < FIRST_PSEUDO_REGISTER
1272 || GET_MODE (target) != Pmode)
1273 target = gen_reg_rtx (Pmode);
1275 mark_reg_pointer (target, known_align);
1277 /* Perform the required allocation from the stack. Some systems do
1278 this differently than simply incrementing/decrementing from the
1279 stack pointer, such as acquiring the space by calling malloc(). */
1280 #ifdef HAVE_allocate_stack
1281 if (HAVE_allocate_stack)
1283 enum machine_mode mode = STACK_SIZE_MODE;
1284 insn_operand_predicate_fn pred;
1286 /* We don't have to check against the predicate for operand 0 since
1287 TARGET is known to be a pseudo of the proper mode, which must
1288 be valid for the operand. For operand 1, convert to the
1289 proper mode and validate. */
1290 if (mode == VOIDmode)
1291 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1293 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1294 if (pred && ! ((*pred) (size, mode)))
1295 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1297 emit_insn (gen_allocate_stack (target, size));
1299 else
1300 #endif
1302 #ifndef STACK_GROWS_DOWNWARD
1303 emit_move_insn (target, virtual_stack_dynamic_rtx);
1304 #endif
1306 /* Check stack bounds if necessary. */
1307 if (current_function_limit_stack)
1309 rtx available;
1310 rtx space_available = gen_label_rtx ();
1311 #ifdef STACK_GROWS_DOWNWARD
1312 available = expand_binop (Pmode, sub_optab,
1313 stack_pointer_rtx, stack_limit_rtx,
1314 NULL_RTX, 1, OPTAB_WIDEN);
1315 #else
1316 available = expand_binop (Pmode, sub_optab,
1317 stack_limit_rtx, stack_pointer_rtx,
1318 NULL_RTX, 1, OPTAB_WIDEN);
1319 #endif
1320 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1321 space_available);
1322 #ifdef HAVE_trap
1323 if (HAVE_trap)
1324 emit_insn (gen_trap ());
1325 else
1326 #endif
1327 error ("stack limits not supported on this target");
1328 emit_barrier ();
1329 emit_label (space_available);
1332 anti_adjust_stack (size);
1333 #ifdef SETJMP_VIA_SAVE_AREA
1334 if (setjmpless_size != NULL_RTX)
1336 rtx note_target = get_last_insn ();
1338 REG_NOTES (note_target)
1339 = gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
1340 REG_NOTES (note_target));
1342 #endif /* SETJMP_VIA_SAVE_AREA */
1344 #ifdef STACK_GROWS_DOWNWARD
1345 emit_move_insn (target, virtual_stack_dynamic_rtx);
1346 #endif
1349 if (MUST_ALIGN)
1351 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1352 but we know it can't. So add ourselves and then do
1353 TRUNC_DIV_EXPR. */
1354 target = expand_binop (Pmode, add_optab, target,
1355 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1356 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1357 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1358 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1359 NULL_RTX, 1);
1360 target = expand_mult (Pmode, target,
1361 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1362 NULL_RTX, 1);
1365 /* Record the new stack level for nonlocal gotos. */
1366 if (nonlocal_goto_handler_slots != 0)
1367 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1369 return target;
1372 /* A front end may want to override GCC's stack checking by providing a
1373 run-time routine to call to check the stack, so provide a mechanism for
1374 calling that routine. */
1376 static GTY(()) rtx stack_check_libfunc;
1378 void
1379 set_stack_check_libfunc (rtx libfunc)
1381 stack_check_libfunc = libfunc;
1384 /* Emit one stack probe at ADDRESS, an address within the stack. */
1386 static void
1387 emit_stack_probe (rtx address)
1389 rtx memref = gen_rtx_MEM (word_mode, address);
1391 MEM_VOLATILE_P (memref) = 1;
1393 if (STACK_CHECK_PROBE_LOAD)
1394 emit_move_insn (gen_reg_rtx (word_mode), memref);
1395 else
1396 emit_move_insn (memref, const0_rtx);
1399 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1400 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1401 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1402 subtract from the stack. If SIZE is constant, this is done
1403 with a fixed number of probes. Otherwise, we must make a loop. */
1405 #ifdef STACK_GROWS_DOWNWARD
1406 #define STACK_GROW_OP MINUS
1407 #else
1408 #define STACK_GROW_OP PLUS
1409 #endif
1411 void
1412 probe_stack_range (HOST_WIDE_INT first, rtx size)
1414 /* First ensure SIZE is Pmode. */
1415 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1416 size = convert_to_mode (Pmode, size, 1);
1418 /* Next see if the front end has set up a function for us to call to
1419 check the stack. */
1420 if (stack_check_libfunc != 0)
1422 rtx addr = memory_address (QImode,
1423 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1424 stack_pointer_rtx,
1425 plus_constant (size, first)));
1427 addr = convert_memory_address (ptr_mode, addr);
1428 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1429 ptr_mode);
1432 /* Next see if we have an insn to check the stack. Use it if so. */
1433 #ifdef HAVE_check_stack
1434 else if (HAVE_check_stack)
1436 insn_operand_predicate_fn pred;
1437 rtx last_addr
1438 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1439 stack_pointer_rtx,
1440 plus_constant (size, first)),
1441 NULL_RTX);
1443 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1444 if (pred && ! ((*pred) (last_addr, Pmode)))
1445 last_addr = copy_to_mode_reg (Pmode, last_addr);
1447 emit_insn (gen_check_stack (last_addr));
1449 #endif
1451 /* If we have to generate explicit probes, see if we have a constant
1452 small number of them to generate. If so, that's the easy case. */
1453 else if (GET_CODE (size) == CONST_INT
1454 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1456 HOST_WIDE_INT offset;
1458 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1459 for values of N from 1 until it exceeds LAST. If only one
1460 probe is needed, this will not generate any code. Then probe
1461 at LAST. */
1462 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1463 offset < INTVAL (size);
1464 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1465 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1466 stack_pointer_rtx,
1467 GEN_INT (offset)));
1469 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1470 stack_pointer_rtx,
1471 plus_constant (size, first)));
1474 /* In the variable case, do the same as above, but in a loop. We emit loop
1475 notes so that loop optimization can be done. */
1476 else
1478 rtx test_addr
1479 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1480 stack_pointer_rtx,
1481 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1482 NULL_RTX);
1483 rtx last_addr
1484 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1485 stack_pointer_rtx,
1486 plus_constant (size, first)),
1487 NULL_RTX);
1488 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1489 rtx loop_lab = gen_label_rtx ();
1490 rtx test_lab = gen_label_rtx ();
1491 rtx end_lab = gen_label_rtx ();
1492 rtx temp;
1494 if (GET_CODE (test_addr) != REG
1495 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1496 test_addr = force_reg (Pmode, test_addr);
1498 emit_note (NOTE_INSN_LOOP_BEG);
1499 emit_jump (test_lab);
1501 emit_label (loop_lab);
1502 emit_stack_probe (test_addr);
1504 emit_note (NOTE_INSN_LOOP_CONT);
1506 #ifdef STACK_GROWS_DOWNWARD
1507 #define CMP_OPCODE GTU
1508 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1509 1, OPTAB_WIDEN);
1510 #else
1511 #define CMP_OPCODE LTU
1512 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1513 1, OPTAB_WIDEN);
1514 #endif
1516 if (temp != test_addr)
1517 abort ();
1519 emit_label (test_lab);
1520 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1521 NULL_RTX, Pmode, 1, loop_lab);
1522 emit_jump (end_lab);
1523 emit_note (NOTE_INSN_LOOP_END);
1524 emit_label (end_lab);
1526 emit_stack_probe (last_addr);
1530 /* Return an rtx representing the register or memory location
1531 in which a scalar value of data type VALTYPE
1532 was returned by a function call to function FUNC.
1533 FUNC is a FUNCTION_DECL node if the precise function is known,
1534 otherwise 0.
1535 OUTGOING is 1 if on a machine with register windows this function
1536 should return the register in which the function will put its result
1537 and 0 otherwise. */
1540 hard_function_value (tree valtype, tree func ATTRIBUTE_UNUSED,
1541 int outgoing ATTRIBUTE_UNUSED)
1543 rtx val;
1545 #ifdef FUNCTION_OUTGOING_VALUE
1546 if (outgoing)
1547 val = FUNCTION_OUTGOING_VALUE (valtype, func);
1548 else
1549 #endif
1550 val = FUNCTION_VALUE (valtype, func);
1552 if (GET_CODE (val) == REG
1553 && GET_MODE (val) == BLKmode)
1555 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1556 enum machine_mode tmpmode;
1558 /* int_size_in_bytes can return -1. We don't need a check here
1559 since the value of bytes will be large enough that no mode
1560 will match and we will abort later in this function. */
1562 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1563 tmpmode != VOIDmode;
1564 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1566 /* Have we found a large enough mode? */
1567 if (GET_MODE_SIZE (tmpmode) >= bytes)
1568 break;
1571 /* No suitable mode found. */
1572 if (tmpmode == VOIDmode)
1573 abort ();
1575 PUT_MODE (val, tmpmode);
1577 return val;
1580 /* Return an rtx representing the register or memory location
1581 in which a scalar value of mode MODE was returned by a library call. */
1584 hard_libcall_value (enum machine_mode mode)
1586 return LIBCALL_VALUE (mode);
1589 /* Look up the tree code for a given rtx code
1590 to provide the arithmetic operation for REAL_ARITHMETIC.
1591 The function returns an int because the caller may not know
1592 what `enum tree_code' means. */
1595 rtx_to_tree_code (enum rtx_code code)
1597 enum tree_code tcode;
1599 switch (code)
1601 case PLUS:
1602 tcode = PLUS_EXPR;
1603 break;
1604 case MINUS:
1605 tcode = MINUS_EXPR;
1606 break;
1607 case MULT:
1608 tcode = MULT_EXPR;
1609 break;
1610 case DIV:
1611 tcode = RDIV_EXPR;
1612 break;
1613 case SMIN:
1614 tcode = MIN_EXPR;
1615 break;
1616 case SMAX:
1617 tcode = MAX_EXPR;
1618 break;
1619 default:
1620 tcode = LAST_AND_UNUSED_TREE_CODE;
1621 break;
1623 return ((int) tcode);
1626 #include "gt-explow.h"