2003-12-26 Guilhem Lavaux <guilhem@kaffe.org>
[official-gcc.git] / gcc / emit-rtl.c
blob6558fa73fe95030cf20d15ab6f4516780769f293
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
38 #include "config.h"
39 #include "system.h"
40 #include "coretypes.h"
41 #include "tm.h"
42 #include "toplev.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "tm_p.h"
46 #include "flags.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "hashtab.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "real.h"
55 #include "bitmap.h"
56 #include "basic-block.h"
57 #include "ggc.h"
58 #include "debug.h"
59 #include "langhooks.h"
61 /* Commonly used modes. */
63 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
64 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
65 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
66 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
69 /* This is *not* reset after each function. It gives each CODE_LABEL
70 in the entire compilation a unique label number. */
72 static GTY(()) int label_num = 1;
74 /* Highest label number in current function.
75 Zero means use the value of label_num instead.
76 This is nonzero only when belatedly compiling an inline function. */
78 static int last_label_num;
80 /* Value label_num had when set_new_last_label_num was called.
81 If label_num has not changed since then, last_label_num is valid. */
83 static int base_label_num;
85 /* Nonzero means do not generate NOTEs for source line numbers. */
87 static int no_line_numbers;
89 /* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
91 All of these are unique; no other rtx-object will be equal to any
92 of these. */
94 rtx global_rtl[GR_MAX];
96 /* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
106 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
108 rtx const_true_rtx;
110 REAL_VALUE_TYPE dconst0;
111 REAL_VALUE_TYPE dconst1;
112 REAL_VALUE_TYPE dconst2;
113 REAL_VALUE_TYPE dconst3;
114 REAL_VALUE_TYPE dconst10;
115 REAL_VALUE_TYPE dconstm1;
116 REAL_VALUE_TYPE dconstm2;
117 REAL_VALUE_TYPE dconsthalf;
118 REAL_VALUE_TYPE dconstthird;
119 REAL_VALUE_TYPE dconstpi;
120 REAL_VALUE_TYPE dconste;
122 /* All references to the following fixed hard registers go through
123 these unique rtl objects. On machines where the frame-pointer and
124 arg-pointer are the same register, they use the same unique object.
126 After register allocation, other rtl objects which used to be pseudo-regs
127 may be clobbered to refer to the frame-pointer register.
128 But references that were originally to the frame-pointer can be
129 distinguished from the others because they contain frame_pointer_rtx.
131 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
132 tricky: until register elimination has taken place hard_frame_pointer_rtx
133 should be used if it is being set, and frame_pointer_rtx otherwise. After
134 register elimination hard_frame_pointer_rtx should always be used.
135 On machines where the two registers are same (most) then these are the
136 same.
138 In an inline procedure, the stack and frame pointer rtxs may not be
139 used for anything else. */
140 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
141 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
142 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
144 /* This is used to implement __builtin_return_address for some machines.
145 See for instance the MIPS port. */
146 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
148 /* We make one copy of (const_int C) where C is in
149 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
150 to save space during the compilation and simplify comparisons of
151 integers. */
153 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
155 /* A hash table storing CONST_INTs whose absolute value is greater
156 than MAX_SAVED_CONST_INT. */
158 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
159 htab_t const_int_htab;
161 /* A hash table storing memory attribute structures. */
162 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
163 htab_t mem_attrs_htab;
165 /* A hash table storing register attribute structures. */
166 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
167 htab_t reg_attrs_htab;
169 /* A hash table storing all CONST_DOUBLEs. */
170 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
171 htab_t const_double_htab;
173 #define first_insn (cfun->emit->x_first_insn)
174 #define last_insn (cfun->emit->x_last_insn)
175 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
176 #define last_location (cfun->emit->x_last_location)
177 #define first_label_num (cfun->emit->x_first_label_num)
179 static rtx make_jump_insn_raw (rtx);
180 static rtx make_call_insn_raw (rtx);
181 static rtx find_line_note (rtx);
182 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
183 static void unshare_all_decls (tree);
184 static void reset_used_decls (tree);
185 static void mark_label_nuses (rtx);
186 static hashval_t const_int_htab_hash (const void *);
187 static int const_int_htab_eq (const void *, const void *);
188 static hashval_t const_double_htab_hash (const void *);
189 static int const_double_htab_eq (const void *, const void *);
190 static rtx lookup_const_double (rtx);
191 static hashval_t mem_attrs_htab_hash (const void *);
192 static int mem_attrs_htab_eq (const void *, const void *);
193 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
194 enum machine_mode);
195 static hashval_t reg_attrs_htab_hash (const void *);
196 static int reg_attrs_htab_eq (const void *, const void *);
197 static reg_attrs *get_reg_attrs (tree, int);
198 static tree component_ref_for_mem_expr (tree);
199 static rtx gen_const_vector_0 (enum machine_mode);
200 static rtx gen_complex_constant_part (enum machine_mode, rtx, int);
201 static void copy_rtx_if_shared_1 (rtx *orig);
203 /* Probability of the conditional branch currently proceeded by try_split.
204 Set to -1 otherwise. */
205 int split_branch_probability = -1;
207 /* Returns a hash code for X (which is a really a CONST_INT). */
209 static hashval_t
210 const_int_htab_hash (const void *x)
212 return (hashval_t) INTVAL ((rtx) x);
215 /* Returns nonzero if the value represented by X (which is really a
216 CONST_INT) is the same as that given by Y (which is really a
217 HOST_WIDE_INT *). */
219 static int
220 const_int_htab_eq (const void *x, const void *y)
222 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
225 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
226 static hashval_t
227 const_double_htab_hash (const void *x)
229 rtx value = (rtx) x;
230 hashval_t h;
232 if (GET_MODE (value) == VOIDmode)
233 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
234 else
236 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
237 /* MODE is used in the comparison, so it should be in the hash. */
238 h ^= GET_MODE (value);
240 return h;
243 /* Returns nonzero if the value represented by X (really a ...)
244 is the same as that represented by Y (really a ...) */
245 static int
246 const_double_htab_eq (const void *x, const void *y)
248 rtx a = (rtx)x, b = (rtx)y;
250 if (GET_MODE (a) != GET_MODE (b))
251 return 0;
252 if (GET_MODE (a) == VOIDmode)
253 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
254 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
255 else
256 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
257 CONST_DOUBLE_REAL_VALUE (b));
260 /* Returns a hash code for X (which is a really a mem_attrs *). */
262 static hashval_t
263 mem_attrs_htab_hash (const void *x)
265 mem_attrs *p = (mem_attrs *) x;
267 return (p->alias ^ (p->align * 1000)
268 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
269 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
270 ^ (size_t) p->expr);
273 /* Returns nonzero if the value represented by X (which is really a
274 mem_attrs *) is the same as that given by Y (which is also really a
275 mem_attrs *). */
277 static int
278 mem_attrs_htab_eq (const void *x, const void *y)
280 mem_attrs *p = (mem_attrs *) x;
281 mem_attrs *q = (mem_attrs *) y;
283 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
284 && p->size == q->size && p->align == q->align);
287 /* Allocate a new mem_attrs structure and insert it into the hash table if
288 one identical to it is not already in the table. We are doing this for
289 MEM of mode MODE. */
291 static mem_attrs *
292 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
293 unsigned int align, enum machine_mode mode)
295 mem_attrs attrs;
296 void **slot;
298 /* If everything is the default, we can just return zero.
299 This must match what the corresponding MEM_* macros return when the
300 field is not present. */
301 if (alias == 0 && expr == 0 && offset == 0
302 && (size == 0
303 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
304 && (STRICT_ALIGNMENT && mode != BLKmode
305 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
306 return 0;
308 attrs.alias = alias;
309 attrs.expr = expr;
310 attrs.offset = offset;
311 attrs.size = size;
312 attrs.align = align;
314 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
315 if (*slot == 0)
317 *slot = ggc_alloc (sizeof (mem_attrs));
318 memcpy (*slot, &attrs, sizeof (mem_attrs));
321 return *slot;
324 /* Returns a hash code for X (which is a really a reg_attrs *). */
326 static hashval_t
327 reg_attrs_htab_hash (const void *x)
329 reg_attrs *p = (reg_attrs *) x;
331 return ((p->offset * 1000) ^ (long) p->decl);
334 /* Returns nonzero if the value represented by X (which is really a
335 reg_attrs *) is the same as that given by Y (which is also really a
336 reg_attrs *). */
338 static int
339 reg_attrs_htab_eq (const void *x, const void *y)
341 reg_attrs *p = (reg_attrs *) x;
342 reg_attrs *q = (reg_attrs *) y;
344 return (p->decl == q->decl && p->offset == q->offset);
346 /* Allocate a new reg_attrs structure and insert it into the hash table if
347 one identical to it is not already in the table. We are doing this for
348 MEM of mode MODE. */
350 static reg_attrs *
351 get_reg_attrs (tree decl, int offset)
353 reg_attrs attrs;
354 void **slot;
356 /* If everything is the default, we can just return zero. */
357 if (decl == 0 && offset == 0)
358 return 0;
360 attrs.decl = decl;
361 attrs.offset = offset;
363 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
364 if (*slot == 0)
366 *slot = ggc_alloc (sizeof (reg_attrs));
367 memcpy (*slot, &attrs, sizeof (reg_attrs));
370 return *slot;
373 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
374 don't attempt to share with the various global pieces of rtl (such as
375 frame_pointer_rtx). */
378 gen_raw_REG (enum machine_mode mode, int regno)
380 rtx x = gen_rtx_raw_REG (mode, regno);
381 ORIGINAL_REGNO (x) = regno;
382 return x;
385 /* There are some RTL codes that require special attention; the generation
386 functions do the raw handling. If you add to this list, modify
387 special_rtx in gengenrtl.c as well. */
390 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
392 void **slot;
394 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
395 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
397 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
398 if (const_true_rtx && arg == STORE_FLAG_VALUE)
399 return const_true_rtx;
400 #endif
402 /* Look up the CONST_INT in the hash table. */
403 slot = htab_find_slot_with_hash (const_int_htab, &arg,
404 (hashval_t) arg, INSERT);
405 if (*slot == 0)
406 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
408 return (rtx) *slot;
412 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
414 return GEN_INT (trunc_int_for_mode (c, mode));
417 /* CONST_DOUBLEs might be created from pairs of integers, or from
418 REAL_VALUE_TYPEs. Also, their length is known only at run time,
419 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
421 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
422 hash table. If so, return its counterpart; otherwise add it
423 to the hash table and return it. */
424 static rtx
425 lookup_const_double (rtx real)
427 void **slot = htab_find_slot (const_double_htab, real, INSERT);
428 if (*slot == 0)
429 *slot = real;
431 return (rtx) *slot;
434 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
435 VALUE in mode MODE. */
437 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
439 rtx real = rtx_alloc (CONST_DOUBLE);
440 PUT_MODE (real, mode);
442 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
444 return lookup_const_double (real);
447 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
448 of ints: I0 is the low-order word and I1 is the high-order word.
449 Do not use this routine for non-integer modes; convert to
450 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
453 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
455 rtx value;
456 unsigned int i;
458 if (mode != VOIDmode)
460 int width;
461 if (GET_MODE_CLASS (mode) != MODE_INT
462 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
463 /* We can get a 0 for an error mark. */
464 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
465 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
466 abort ();
468 /* We clear out all bits that don't belong in MODE, unless they and
469 our sign bit are all one. So we get either a reasonable negative
470 value or a reasonable unsigned value for this mode. */
471 width = GET_MODE_BITSIZE (mode);
472 if (width < HOST_BITS_PER_WIDE_INT
473 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
474 != ((HOST_WIDE_INT) (-1) << (width - 1))))
475 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
476 else if (width == HOST_BITS_PER_WIDE_INT
477 && ! (i1 == ~0 && i0 < 0))
478 i1 = 0;
479 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
480 /* We cannot represent this value as a constant. */
481 abort ();
483 /* If this would be an entire word for the target, but is not for
484 the host, then sign-extend on the host so that the number will
485 look the same way on the host that it would on the target.
487 For example, when building a 64 bit alpha hosted 32 bit sparc
488 targeted compiler, then we want the 32 bit unsigned value -1 to be
489 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
490 The latter confuses the sparc backend. */
492 if (width < HOST_BITS_PER_WIDE_INT
493 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
494 i0 |= ((HOST_WIDE_INT) (-1) << width);
496 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
497 CONST_INT.
499 ??? Strictly speaking, this is wrong if we create a CONST_INT for
500 a large unsigned constant with the size of MODE being
501 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
502 in a wider mode. In that case we will mis-interpret it as a
503 negative number.
505 Unfortunately, the only alternative is to make a CONST_DOUBLE for
506 any constant in any mode if it is an unsigned constant larger
507 than the maximum signed integer in an int on the host. However,
508 doing this will break everyone that always expects to see a
509 CONST_INT for SImode and smaller.
511 We have always been making CONST_INTs in this case, so nothing
512 new is being broken. */
514 if (width <= HOST_BITS_PER_WIDE_INT)
515 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
518 /* If this integer fits in one word, return a CONST_INT. */
519 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
520 return GEN_INT (i0);
522 /* We use VOIDmode for integers. */
523 value = rtx_alloc (CONST_DOUBLE);
524 PUT_MODE (value, VOIDmode);
526 CONST_DOUBLE_LOW (value) = i0;
527 CONST_DOUBLE_HIGH (value) = i1;
529 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
530 XWINT (value, i) = 0;
532 return lookup_const_double (value);
536 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
538 /* In case the MD file explicitly references the frame pointer, have
539 all such references point to the same frame pointer. This is
540 used during frame pointer elimination to distinguish the explicit
541 references to these registers from pseudos that happened to be
542 assigned to them.
544 If we have eliminated the frame pointer or arg pointer, we will
545 be using it as a normal register, for example as a spill
546 register. In such cases, we might be accessing it in a mode that
547 is not Pmode and therefore cannot use the pre-allocated rtx.
549 Also don't do this when we are making new REGs in reload, since
550 we don't want to get confused with the real pointers. */
552 if (mode == Pmode && !reload_in_progress)
554 if (regno == FRAME_POINTER_REGNUM
555 && (!reload_completed || frame_pointer_needed))
556 return frame_pointer_rtx;
557 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
558 if (regno == HARD_FRAME_POINTER_REGNUM
559 && (!reload_completed || frame_pointer_needed))
560 return hard_frame_pointer_rtx;
561 #endif
562 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
563 if (regno == ARG_POINTER_REGNUM)
564 return arg_pointer_rtx;
565 #endif
566 #ifdef RETURN_ADDRESS_POINTER_REGNUM
567 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
568 return return_address_pointer_rtx;
569 #endif
570 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
571 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
572 return pic_offset_table_rtx;
573 if (regno == STACK_POINTER_REGNUM)
574 return stack_pointer_rtx;
577 #if 0
578 /* If the per-function register table has been set up, try to re-use
579 an existing entry in that table to avoid useless generation of RTL.
581 This code is disabled for now until we can fix the various backends
582 which depend on having non-shared hard registers in some cases. Long
583 term we want to re-enable this code as it can significantly cut down
584 on the amount of useless RTL that gets generated.
586 We'll also need to fix some code that runs after reload that wants to
587 set ORIGINAL_REGNO. */
589 if (cfun
590 && cfun->emit
591 && regno_reg_rtx
592 && regno < FIRST_PSEUDO_REGISTER
593 && reg_raw_mode[regno] == mode)
594 return regno_reg_rtx[regno];
595 #endif
597 return gen_raw_REG (mode, regno);
601 gen_rtx_MEM (enum machine_mode mode, rtx addr)
603 rtx rt = gen_rtx_raw_MEM (mode, addr);
605 /* This field is not cleared by the mere allocation of the rtx, so
606 we clear it here. */
607 MEM_ATTRS (rt) = 0;
609 return rt;
613 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
615 /* This is the most common failure type.
616 Catch it early so we can see who does it. */
617 if ((offset % GET_MODE_SIZE (mode)) != 0)
618 abort ();
620 /* This check isn't usable right now because combine will
621 throw arbitrary crap like a CALL into a SUBREG in
622 gen_lowpart_for_combine so we must just eat it. */
623 #if 0
624 /* Check for this too. */
625 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
626 abort ();
627 #endif
628 return gen_rtx_raw_SUBREG (mode, reg, offset);
631 /* Generate a SUBREG representing the least-significant part of REG if MODE
632 is smaller than mode of REG, otherwise paradoxical SUBREG. */
635 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
637 enum machine_mode inmode;
639 inmode = GET_MODE (reg);
640 if (inmode == VOIDmode)
641 inmode = mode;
642 return gen_rtx_SUBREG (mode, reg,
643 subreg_lowpart_offset (mode, inmode));
646 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
648 ** This routine generates an RTX of the size specified by
649 ** <code>, which is an RTX code. The RTX structure is initialized
650 ** from the arguments <element1> through <elementn>, which are
651 ** interpreted according to the specific RTX type's format. The
652 ** special machine mode associated with the rtx (if any) is specified
653 ** in <mode>.
655 ** gen_rtx can be invoked in a way which resembles the lisp-like
656 ** rtx it will generate. For example, the following rtx structure:
658 ** (plus:QI (mem:QI (reg:SI 1))
659 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
661 ** ...would be generated by the following C code:
663 ** gen_rtx (PLUS, QImode,
664 ** gen_rtx (MEM, QImode,
665 ** gen_rtx (REG, SImode, 1)),
666 ** gen_rtx (MEM, QImode,
667 ** gen_rtx (PLUS, SImode,
668 ** gen_rtx (REG, SImode, 2),
669 ** gen_rtx (REG, SImode, 3)))),
672 /*VARARGS2*/
674 gen_rtx (enum rtx_code code, enum machine_mode mode, ...)
676 int i; /* Array indices... */
677 const char *fmt; /* Current rtx's format... */
678 rtx rt_val; /* RTX to return to caller... */
679 va_list p;
681 va_start (p, mode);
683 switch (code)
685 case CONST_INT:
686 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
687 break;
689 case CONST_DOUBLE:
691 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
692 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
694 rt_val = immed_double_const (arg0, arg1, mode);
696 break;
698 case REG:
699 rt_val = gen_rtx_REG (mode, va_arg (p, int));
700 break;
702 case MEM:
703 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
704 break;
706 default:
707 rt_val = rtx_alloc (code); /* Allocate the storage space. */
708 rt_val->mode = mode; /* Store the machine mode... */
710 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
711 for (i = 0; i < GET_RTX_LENGTH (code); i++)
713 switch (*fmt++)
715 case '0': /* Field with unknown use. Zero it. */
716 X0EXP (rt_val, i) = NULL_RTX;
717 break;
719 case 'i': /* An integer? */
720 XINT (rt_val, i) = va_arg (p, int);
721 break;
723 case 'w': /* A wide integer? */
724 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
725 break;
727 case 's': /* A string? */
728 XSTR (rt_val, i) = va_arg (p, char *);
729 break;
731 case 'e': /* An expression? */
732 case 'u': /* An insn? Same except when printing. */
733 XEXP (rt_val, i) = va_arg (p, rtx);
734 break;
736 case 'E': /* An RTX vector? */
737 XVEC (rt_val, i) = va_arg (p, rtvec);
738 break;
740 case 'b': /* A bitmap? */
741 XBITMAP (rt_val, i) = va_arg (p, bitmap);
742 break;
744 case 't': /* A tree? */
745 XTREE (rt_val, i) = va_arg (p, tree);
746 break;
748 default:
749 abort ();
752 break;
755 va_end (p);
756 return rt_val;
759 /* gen_rtvec (n, [rt1, ..., rtn])
761 ** This routine creates an rtvec and stores within it the
762 ** pointers to rtx's which are its arguments.
765 /*VARARGS1*/
766 rtvec
767 gen_rtvec (int n, ...)
769 int i, save_n;
770 rtx *vector;
771 va_list p;
773 va_start (p, n);
775 if (n == 0)
776 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
778 vector = alloca (n * sizeof (rtx));
780 for (i = 0; i < n; i++)
781 vector[i] = va_arg (p, rtx);
783 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
784 save_n = n;
785 va_end (p);
787 return gen_rtvec_v (save_n, vector);
790 rtvec
791 gen_rtvec_v (int n, rtx *argp)
793 int i;
794 rtvec rt_val;
796 if (n == 0)
797 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
799 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
801 for (i = 0; i < n; i++)
802 rt_val->elem[i] = *argp++;
804 return rt_val;
807 /* Generate a REG rtx for a new pseudo register of mode MODE.
808 This pseudo is assigned the next sequential register number. */
811 gen_reg_rtx (enum machine_mode mode)
813 struct function *f = cfun;
814 rtx val;
816 /* Don't let anything called after initial flow analysis create new
817 registers. */
818 if (no_new_pseudos)
819 abort ();
821 if (generating_concat_p
822 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
823 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
825 /* For complex modes, don't make a single pseudo.
826 Instead, make a CONCAT of two pseudos.
827 This allows noncontiguous allocation of the real and imaginary parts,
828 which makes much better code. Besides, allocating DCmode
829 pseudos overstrains reload on some machines like the 386. */
830 rtx realpart, imagpart;
831 enum machine_mode partmode = GET_MODE_INNER (mode);
833 realpart = gen_reg_rtx (partmode);
834 imagpart = gen_reg_rtx (partmode);
835 return gen_rtx_CONCAT (mode, realpart, imagpart);
838 /* Make sure regno_pointer_align, and regno_reg_rtx are large
839 enough to have an element for this pseudo reg number. */
841 if (reg_rtx_no == f->emit->regno_pointer_align_length)
843 int old_size = f->emit->regno_pointer_align_length;
844 char *new;
845 rtx *new1;
847 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
848 memset (new + old_size, 0, old_size);
849 f->emit->regno_pointer_align = (unsigned char *) new;
851 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
852 old_size * 2 * sizeof (rtx));
853 memset (new1 + old_size, 0, old_size * sizeof (rtx));
854 regno_reg_rtx = new1;
856 f->emit->regno_pointer_align_length = old_size * 2;
859 val = gen_raw_REG (mode, reg_rtx_no);
860 regno_reg_rtx[reg_rtx_no++] = val;
861 return val;
864 /* Generate a register with same attributes as REG,
865 but offsetted by OFFSET. */
868 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
870 rtx new = gen_rtx_REG (mode, regno);
871 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
872 REG_OFFSET (reg) + offset);
873 return new;
876 /* Set the decl for MEM to DECL. */
878 void
879 set_reg_attrs_from_mem (rtx reg, rtx mem)
881 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
882 REG_ATTRS (reg)
883 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
886 /* Set the register attributes for registers contained in PARM_RTX.
887 Use needed values from memory attributes of MEM. */
889 void
890 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
892 if (GET_CODE (parm_rtx) == REG)
893 set_reg_attrs_from_mem (parm_rtx, mem);
894 else if (GET_CODE (parm_rtx) == PARALLEL)
896 /* Check for a NULL entry in the first slot, used to indicate that the
897 parameter goes both on the stack and in registers. */
898 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
899 for (; i < XVECLEN (parm_rtx, 0); i++)
901 rtx x = XVECEXP (parm_rtx, 0, i);
902 if (GET_CODE (XEXP (x, 0)) == REG)
903 REG_ATTRS (XEXP (x, 0))
904 = get_reg_attrs (MEM_EXPR (mem),
905 INTVAL (XEXP (x, 1)));
910 /* Assign the RTX X to declaration T. */
911 void
912 set_decl_rtl (tree t, rtx x)
914 DECL_CHECK (t)->decl.rtl = x;
916 if (!x)
917 return;
918 /* For register, we maintain the reverse information too. */
919 if (GET_CODE (x) == REG)
920 REG_ATTRS (x) = get_reg_attrs (t, 0);
921 else if (GET_CODE (x) == SUBREG)
922 REG_ATTRS (SUBREG_REG (x))
923 = get_reg_attrs (t, -SUBREG_BYTE (x));
924 if (GET_CODE (x) == CONCAT)
926 if (REG_P (XEXP (x, 0)))
927 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
928 if (REG_P (XEXP (x, 1)))
929 REG_ATTRS (XEXP (x, 1))
930 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
932 if (GET_CODE (x) == PARALLEL)
934 int i;
935 for (i = 0; i < XVECLEN (x, 0); i++)
937 rtx y = XVECEXP (x, 0, i);
938 if (REG_P (XEXP (y, 0)))
939 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
944 /* Identify REG (which may be a CONCAT) as a user register. */
946 void
947 mark_user_reg (rtx reg)
949 if (GET_CODE (reg) == CONCAT)
951 REG_USERVAR_P (XEXP (reg, 0)) = 1;
952 REG_USERVAR_P (XEXP (reg, 1)) = 1;
954 else if (GET_CODE (reg) == REG)
955 REG_USERVAR_P (reg) = 1;
956 else
957 abort ();
960 /* Identify REG as a probable pointer register and show its alignment
961 as ALIGN, if nonzero. */
963 void
964 mark_reg_pointer (rtx reg, int align)
966 if (! REG_POINTER (reg))
968 REG_POINTER (reg) = 1;
970 if (align)
971 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
973 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
974 /* We can no-longer be sure just how aligned this pointer is. */
975 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
978 /* Return 1 plus largest pseudo reg number used in the current function. */
981 max_reg_num (void)
983 return reg_rtx_no;
986 /* Return 1 + the largest label number used so far in the current function. */
989 max_label_num (void)
991 if (last_label_num && label_num == base_label_num)
992 return last_label_num;
993 return label_num;
996 /* Return first label number used in this function (if any were used). */
999 get_first_label_num (void)
1001 return first_label_num;
1004 /* Return the final regno of X, which is a SUBREG of a hard
1005 register. */
1007 subreg_hard_regno (rtx x, int check_mode)
1009 enum machine_mode mode = GET_MODE (x);
1010 unsigned int byte_offset, base_regno, final_regno;
1011 rtx reg = SUBREG_REG (x);
1013 /* This is where we attempt to catch illegal subregs
1014 created by the compiler. */
1015 if (GET_CODE (x) != SUBREG
1016 || GET_CODE (reg) != REG)
1017 abort ();
1018 base_regno = REGNO (reg);
1019 if (base_regno >= FIRST_PSEUDO_REGISTER)
1020 abort ();
1021 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
1022 abort ();
1023 #ifdef ENABLE_CHECKING
1024 if (!subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
1025 SUBREG_BYTE (x), mode))
1026 abort ();
1027 #endif
1028 /* Catch non-congruent offsets too. */
1029 byte_offset = SUBREG_BYTE (x);
1030 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
1031 abort ();
1033 final_regno = subreg_regno (x);
1035 return final_regno;
1038 /* Return a value representing some low-order bits of X, where the number
1039 of low-order bits is given by MODE. Note that no conversion is done
1040 between floating-point and fixed-point values, rather, the bit
1041 representation is returned.
1043 This function handles the cases in common between gen_lowpart, below,
1044 and two variants in cse.c and combine.c. These are the cases that can
1045 be safely handled at all points in the compilation.
1047 If this is not a case we can handle, return 0. */
1050 gen_lowpart_common (enum machine_mode mode, rtx x)
1052 int msize = GET_MODE_SIZE (mode);
1053 int xsize = GET_MODE_SIZE (GET_MODE (x));
1054 int offset = 0;
1056 if (GET_MODE (x) == mode)
1057 return x;
1059 /* MODE must occupy no more words than the mode of X. */
1060 if (GET_MODE (x) != VOIDmode
1061 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1062 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
1063 return 0;
1065 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1066 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1067 && GET_MODE (x) != VOIDmode && msize > xsize)
1068 return 0;
1070 offset = subreg_lowpart_offset (mode, GET_MODE (x));
1072 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1073 && (GET_MODE_CLASS (mode) == MODE_INT
1074 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1076 /* If we are getting the low-order part of something that has been
1077 sign- or zero-extended, we can either just use the object being
1078 extended or make a narrower extension. If we want an even smaller
1079 piece than the size of the object being extended, call ourselves
1080 recursively.
1082 This case is used mostly by combine and cse. */
1084 if (GET_MODE (XEXP (x, 0)) == mode)
1085 return XEXP (x, 0);
1086 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1087 return gen_lowpart_common (mode, XEXP (x, 0));
1088 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
1089 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1091 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
1092 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR)
1093 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
1094 else if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
1095 return simplify_gen_subreg (mode, x, int_mode_for_mode (mode), offset);
1096 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
1097 from the low-order part of the constant. */
1098 else if ((GET_MODE_CLASS (mode) == MODE_INT
1099 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1100 && GET_MODE (x) == VOIDmode
1101 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
1103 /* If MODE is twice the host word size, X is already the desired
1104 representation. Otherwise, if MODE is wider than a word, we can't
1105 do this. If MODE is exactly a word, return just one CONST_INT. */
1107 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
1108 return x;
1109 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
1110 return 0;
1111 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
1112 return (GET_CODE (x) == CONST_INT ? x
1113 : GEN_INT (CONST_DOUBLE_LOW (x)));
1114 else
1116 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
1117 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
1118 : CONST_DOUBLE_LOW (x));
1120 /* Sign extend to HOST_WIDE_INT. */
1121 val = trunc_int_for_mode (val, mode);
1123 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
1124 : GEN_INT (val));
1128 /* The floating-point emulator can handle all conversions between
1129 FP and integer operands. This simplifies reload because it
1130 doesn't have to deal with constructs like (subreg:DI
1131 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
1132 /* Single-precision floats are always 32-bits and double-precision
1133 floats are always 64-bits. */
1135 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1136 && GET_MODE_BITSIZE (mode) == 32
1137 && GET_CODE (x) == CONST_INT)
1139 REAL_VALUE_TYPE r;
1140 long i = INTVAL (x);
1142 real_from_target (&r, &i, mode);
1143 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1145 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1146 && GET_MODE_BITSIZE (mode) == 64
1147 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
1148 && GET_MODE (x) == VOIDmode)
1150 REAL_VALUE_TYPE r;
1151 HOST_WIDE_INT low, high;
1152 long i[2];
1154 if (GET_CODE (x) == CONST_INT)
1156 low = INTVAL (x);
1157 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
1159 else
1161 low = CONST_DOUBLE_LOW (x);
1162 high = CONST_DOUBLE_HIGH (x);
1165 if (HOST_BITS_PER_WIDE_INT > 32)
1166 high = low >> 31 >> 1;
1168 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1169 target machine. */
1170 if (WORDS_BIG_ENDIAN)
1171 i[0] = high, i[1] = low;
1172 else
1173 i[0] = low, i[1] = high;
1175 real_from_target (&r, i, mode);
1176 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1178 else if ((GET_MODE_CLASS (mode) == MODE_INT
1179 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1180 && GET_CODE (x) == CONST_DOUBLE
1181 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1183 REAL_VALUE_TYPE r;
1184 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1185 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1187 /* Convert 'r' into an array of four 32-bit words in target word
1188 order. */
1189 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1190 switch (GET_MODE_BITSIZE (GET_MODE (x)))
1192 case 32:
1193 REAL_VALUE_TO_TARGET_SINGLE (r, i[3 * endian]);
1194 i[1] = 0;
1195 i[2] = 0;
1196 i[3 - 3 * endian] = 0;
1197 break;
1198 case 64:
1199 REAL_VALUE_TO_TARGET_DOUBLE (r, i + 2 * endian);
1200 i[2 - 2 * endian] = 0;
1201 i[3 - 2 * endian] = 0;
1202 break;
1203 case 96:
1204 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
1205 i[3 - 3 * endian] = 0;
1206 break;
1207 case 128:
1208 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1209 break;
1210 default:
1211 abort ();
1213 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1214 and return it. */
1215 #if HOST_BITS_PER_WIDE_INT == 32
1216 return immed_double_const (i[3 * endian], i[1 + endian], mode);
1217 #else
1218 if (HOST_BITS_PER_WIDE_INT != 64)
1219 abort ();
1221 return immed_double_const ((((unsigned long) i[3 * endian])
1222 | ((HOST_WIDE_INT) i[1 + endian] << 32)),
1223 (((unsigned long) i[2 - endian])
1224 | ((HOST_WIDE_INT) i[3 - 3 * endian] << 32)),
1225 mode);
1226 #endif
1228 /* If MODE is a condition code and X is a CONST_INT, the value of X
1229 must already have been "recognized" by the back-end, and we can
1230 assume that it is valid for this mode. */
1231 else if (GET_MODE_CLASS (mode) == MODE_CC
1232 && GET_CODE (x) == CONST_INT)
1233 return x;
1235 /* Otherwise, we can't do this. */
1236 return 0;
1239 /* Return the constant real or imaginary part (which has mode MODE)
1240 of a complex value X. The IMAGPART_P argument determines whether
1241 the real or complex component should be returned. This function
1242 returns NULL_RTX if the component isn't a constant. */
1244 static rtx
1245 gen_complex_constant_part (enum machine_mode mode, rtx x, int imagpart_p)
1247 tree decl, part;
1249 if (GET_CODE (x) == MEM
1250 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1252 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1253 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1255 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1256 if (TREE_CODE (part) == REAL_CST
1257 || TREE_CODE (part) == INTEGER_CST)
1258 return expand_expr (part, NULL_RTX, mode, 0);
1261 return NULL_RTX;
1264 /* Return the real part (which has mode MODE) of a complex value X.
1265 This always comes at the low address in memory. */
1268 gen_realpart (enum machine_mode mode, rtx x)
1270 rtx part;
1272 /* Handle complex constants. */
1273 part = gen_complex_constant_part (mode, x, 0);
1274 if (part != NULL_RTX)
1275 return part;
1277 if (WORDS_BIG_ENDIAN
1278 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1279 && REG_P (x)
1280 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1281 internal_error
1282 ("can't access real part of complex value in hard register");
1283 else if (WORDS_BIG_ENDIAN)
1284 return gen_highpart (mode, x);
1285 else
1286 return gen_lowpart (mode, x);
1289 /* Return the imaginary part (which has mode MODE) of a complex value X.
1290 This always comes at the high address in memory. */
1293 gen_imagpart (enum machine_mode mode, rtx x)
1295 rtx part;
1297 /* Handle complex constants. */
1298 part = gen_complex_constant_part (mode, x, 1);
1299 if (part != NULL_RTX)
1300 return part;
1302 if (WORDS_BIG_ENDIAN)
1303 return gen_lowpart (mode, x);
1304 else if (! WORDS_BIG_ENDIAN
1305 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1306 && REG_P (x)
1307 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1308 internal_error
1309 ("can't access imaginary part of complex value in hard register");
1310 else
1311 return gen_highpart (mode, x);
1314 /* Return 1 iff X, assumed to be a SUBREG,
1315 refers to the real part of the complex value in its containing reg.
1316 Complex values are always stored with the real part in the first word,
1317 regardless of WORDS_BIG_ENDIAN. */
1320 subreg_realpart_p (rtx x)
1322 if (GET_CODE (x) != SUBREG)
1323 abort ();
1325 return ((unsigned int) SUBREG_BYTE (x)
1326 < (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1329 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1330 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1331 least-significant part of X.
1332 MODE specifies how big a part of X to return;
1333 it usually should not be larger than a word.
1334 If X is a MEM whose address is a QUEUED, the value may be so also. */
1337 gen_lowpart (enum machine_mode mode, rtx x)
1339 rtx result = gen_lowpart_common (mode, x);
1341 if (result)
1342 return result;
1343 else if (GET_CODE (x) == REG)
1345 /* Must be a hard reg that's not valid in MODE. */
1346 result = gen_lowpart_common (mode, copy_to_reg (x));
1347 if (result == 0)
1348 abort ();
1349 return result;
1351 else if (GET_CODE (x) == MEM)
1353 /* The only additional case we can do is MEM. */
1354 int offset = 0;
1356 /* The following exposes the use of "x" to CSE. */
1357 if (GET_MODE_SIZE (GET_MODE (x)) <= UNITS_PER_WORD
1358 && SCALAR_INT_MODE_P (GET_MODE (x))
1359 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1360 GET_MODE_BITSIZE (GET_MODE (x)))
1361 && ! no_new_pseudos)
1362 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1364 if (WORDS_BIG_ENDIAN)
1365 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1366 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1368 if (BYTES_BIG_ENDIAN)
1369 /* Adjust the address so that the address-after-the-data
1370 is unchanged. */
1371 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1372 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1374 return adjust_address (x, mode, offset);
1376 else if (GET_CODE (x) == ADDRESSOF)
1377 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1378 else
1379 abort ();
1382 /* Like `gen_lowpart', but refer to the most significant part.
1383 This is used to access the imaginary part of a complex number. */
1386 gen_highpart (enum machine_mode mode, rtx x)
1388 unsigned int msize = GET_MODE_SIZE (mode);
1389 rtx result;
1391 /* This case loses if X is a subreg. To catch bugs early,
1392 complain if an invalid MODE is used even in other cases. */
1393 if (msize > UNITS_PER_WORD
1394 && msize != (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)))
1395 abort ();
1397 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1398 subreg_highpart_offset (mode, GET_MODE (x)));
1400 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1401 the target if we have a MEM. gen_highpart must return a valid operand,
1402 emitting code if necessary to do so. */
1403 if (result != NULL_RTX && GET_CODE (result) == MEM)
1404 result = validize_mem (result);
1406 if (!result)
1407 abort ();
1408 return result;
1411 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1412 be VOIDmode constant. */
1414 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1416 if (GET_MODE (exp) != VOIDmode)
1418 if (GET_MODE (exp) != innermode)
1419 abort ();
1420 return gen_highpart (outermode, exp);
1422 return simplify_gen_subreg (outermode, exp, innermode,
1423 subreg_highpart_offset (outermode, innermode));
1426 /* Return offset in bytes to get OUTERMODE low part
1427 of the value in mode INNERMODE stored in memory in target format. */
1429 unsigned int
1430 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1432 unsigned int offset = 0;
1433 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1435 if (difference > 0)
1437 if (WORDS_BIG_ENDIAN)
1438 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1439 if (BYTES_BIG_ENDIAN)
1440 offset += difference % UNITS_PER_WORD;
1443 return offset;
1446 /* Return offset in bytes to get OUTERMODE high part
1447 of the value in mode INNERMODE stored in memory in target format. */
1448 unsigned int
1449 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1451 unsigned int offset = 0;
1452 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1454 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1455 abort ();
1457 if (difference > 0)
1459 if (! WORDS_BIG_ENDIAN)
1460 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1461 if (! BYTES_BIG_ENDIAN)
1462 offset += difference % UNITS_PER_WORD;
1465 return offset;
1468 /* Return 1 iff X, assumed to be a SUBREG,
1469 refers to the least significant part of its containing reg.
1470 If X is not a SUBREG, always return 1 (it is its own low part!). */
1473 subreg_lowpart_p (rtx x)
1475 if (GET_CODE (x) != SUBREG)
1476 return 1;
1477 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1478 return 0;
1480 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1481 == SUBREG_BYTE (x));
1485 /* Helper routine for all the constant cases of operand_subword.
1486 Some places invoke this directly. */
1489 constant_subword (rtx op, int offset, enum machine_mode mode)
1491 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1492 HOST_WIDE_INT val;
1494 /* If OP is already an integer word, return it. */
1495 if (GET_MODE_CLASS (mode) == MODE_INT
1496 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1497 return op;
1499 /* The output is some bits, the width of the target machine's word.
1500 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1501 host can't. */
1502 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1503 && GET_MODE_CLASS (mode) == MODE_FLOAT
1504 && GET_MODE_BITSIZE (mode) == 64
1505 && GET_CODE (op) == CONST_DOUBLE)
1507 long k[2];
1508 REAL_VALUE_TYPE rv;
1510 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1511 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1513 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1514 which the words are written depends on the word endianness.
1515 ??? This is a potential portability problem and should
1516 be fixed at some point.
1518 We must exercise caution with the sign bit. By definition there
1519 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1520 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1521 So we explicitly mask and sign-extend as necessary. */
1522 if (BITS_PER_WORD == 32)
1524 val = k[offset];
1525 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1526 return GEN_INT (val);
1528 #if HOST_BITS_PER_WIDE_INT >= 64
1529 else if (BITS_PER_WORD >= 64 && offset == 0)
1531 val = k[! WORDS_BIG_ENDIAN];
1532 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1533 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1534 return GEN_INT (val);
1536 #endif
1537 else if (BITS_PER_WORD == 16)
1539 val = k[offset >> 1];
1540 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1541 val >>= 16;
1542 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1543 return GEN_INT (val);
1545 else
1546 abort ();
1548 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1549 && GET_MODE_CLASS (mode) == MODE_FLOAT
1550 && GET_MODE_BITSIZE (mode) > 64
1551 && GET_CODE (op) == CONST_DOUBLE)
1553 long k[4];
1554 REAL_VALUE_TYPE rv;
1556 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1557 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1559 if (BITS_PER_WORD == 32)
1561 val = k[offset];
1562 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1563 return GEN_INT (val);
1565 #if HOST_BITS_PER_WIDE_INT >= 64
1566 else if (BITS_PER_WORD >= 64 && offset <= 1)
1568 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
1569 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1570 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1571 return GEN_INT (val);
1573 #endif
1574 else
1575 abort ();
1578 /* Single word float is a little harder, since single- and double-word
1579 values often do not have the same high-order bits. We have already
1580 verified that we want the only defined word of the single-word value. */
1581 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1582 && GET_MODE_BITSIZE (mode) == 32
1583 && GET_CODE (op) == CONST_DOUBLE)
1585 long l;
1586 REAL_VALUE_TYPE rv;
1588 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1589 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1591 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1592 val = l;
1593 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1595 if (BITS_PER_WORD == 16)
1597 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1598 val >>= 16;
1599 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1602 return GEN_INT (val);
1605 /* The only remaining cases that we can handle are integers.
1606 Convert to proper endianness now since these cases need it.
1607 At this point, offset == 0 means the low-order word.
1609 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1610 in general. However, if OP is (const_int 0), we can just return
1611 it for any word. */
1613 if (op == const0_rtx)
1614 return op;
1616 if (GET_MODE_CLASS (mode) != MODE_INT
1617 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1618 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1619 return 0;
1621 if (WORDS_BIG_ENDIAN)
1622 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
1624 /* Find out which word on the host machine this value is in and get
1625 it from the constant. */
1626 val = (offset / size_ratio == 0
1627 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1628 : (GET_CODE (op) == CONST_INT
1629 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1631 /* Get the value we want into the low bits of val. */
1632 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1633 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
1635 val = trunc_int_for_mode (val, word_mode);
1637 return GEN_INT (val);
1640 /* Return subword OFFSET of operand OP.
1641 The word number, OFFSET, is interpreted as the word number starting
1642 at the low-order address. OFFSET 0 is the low-order word if not
1643 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1645 If we cannot extract the required word, we return zero. Otherwise,
1646 an rtx corresponding to the requested word will be returned.
1648 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1649 reload has completed, a valid address will always be returned. After
1650 reload, if a valid address cannot be returned, we return zero.
1652 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1653 it is the responsibility of the caller.
1655 MODE is the mode of OP in case it is a CONST_INT.
1657 ??? This is still rather broken for some cases. The problem for the
1658 moment is that all callers of this thing provide no 'goal mode' to
1659 tell us to work with. This exists because all callers were written
1660 in a word based SUBREG world.
1661 Now use of this function can be deprecated by simplify_subreg in most
1662 cases.
1666 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1668 if (mode == VOIDmode)
1669 mode = GET_MODE (op);
1671 if (mode == VOIDmode)
1672 abort ();
1674 /* If OP is narrower than a word, fail. */
1675 if (mode != BLKmode
1676 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1677 return 0;
1679 /* If we want a word outside OP, return zero. */
1680 if (mode != BLKmode
1681 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1682 return const0_rtx;
1684 /* Form a new MEM at the requested address. */
1685 if (GET_CODE (op) == MEM)
1687 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1689 if (! validate_address)
1690 return new;
1692 else if (reload_completed)
1694 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1695 return 0;
1697 else
1698 return replace_equiv_address (new, XEXP (new, 0));
1701 /* Rest can be handled by simplify_subreg. */
1702 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1705 /* Similar to `operand_subword', but never return 0. If we can't extract
1706 the required subword, put OP into a register and try again. If that fails,
1707 abort. We always validate the address in this case.
1709 MODE is the mode of OP, in case it is CONST_INT. */
1712 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1714 rtx result = operand_subword (op, offset, 1, mode);
1716 if (result)
1717 return result;
1719 if (mode != BLKmode && mode != VOIDmode)
1721 /* If this is a register which can not be accessed by words, copy it
1722 to a pseudo register. */
1723 if (GET_CODE (op) == REG)
1724 op = copy_to_reg (op);
1725 else
1726 op = force_reg (mode, op);
1729 result = operand_subword (op, offset, 1, mode);
1730 if (result == 0)
1731 abort ();
1733 return result;
1736 /* Given a compare instruction, swap the operands.
1737 A test instruction is changed into a compare of 0 against the operand. */
1739 void
1740 reverse_comparison (rtx insn)
1742 rtx body = PATTERN (insn);
1743 rtx comp;
1745 if (GET_CODE (body) == SET)
1746 comp = SET_SRC (body);
1747 else
1748 comp = SET_SRC (XVECEXP (body, 0, 0));
1750 if (GET_CODE (comp) == COMPARE)
1752 rtx op0 = XEXP (comp, 0);
1753 rtx op1 = XEXP (comp, 1);
1754 XEXP (comp, 0) = op1;
1755 XEXP (comp, 1) = op0;
1757 else
1759 rtx new = gen_rtx_COMPARE (VOIDmode,
1760 CONST0_RTX (GET_MODE (comp)), comp);
1761 if (GET_CODE (body) == SET)
1762 SET_SRC (body) = new;
1763 else
1764 SET_SRC (XVECEXP (body, 0, 0)) = new;
1768 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1769 or (2) a component ref of something variable. Represent the later with
1770 a NULL expression. */
1772 static tree
1773 component_ref_for_mem_expr (tree ref)
1775 tree inner = TREE_OPERAND (ref, 0);
1777 if (TREE_CODE (inner) == COMPONENT_REF)
1778 inner = component_ref_for_mem_expr (inner);
1779 else
1781 tree placeholder_ptr = 0;
1783 /* Now remove any conversions: they don't change what the underlying
1784 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1785 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1786 || TREE_CODE (inner) == NON_LVALUE_EXPR
1787 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1788 || TREE_CODE (inner) == SAVE_EXPR
1789 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
1790 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1791 inner = find_placeholder (inner, &placeholder_ptr);
1792 else
1793 inner = TREE_OPERAND (inner, 0);
1795 if (! DECL_P (inner))
1796 inner = NULL_TREE;
1799 if (inner == TREE_OPERAND (ref, 0))
1800 return ref;
1801 else
1802 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1803 TREE_OPERAND (ref, 1));
1806 /* Given REF, a MEM, and T, either the type of X or the expression
1807 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1808 if we are making a new object of this type. BITPOS is nonzero if
1809 there is an offset outstanding on T that will be applied later. */
1811 void
1812 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1813 HOST_WIDE_INT bitpos)
1815 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1816 tree expr = MEM_EXPR (ref);
1817 rtx offset = MEM_OFFSET (ref);
1818 rtx size = MEM_SIZE (ref);
1819 unsigned int align = MEM_ALIGN (ref);
1820 HOST_WIDE_INT apply_bitpos = 0;
1821 tree type;
1823 /* It can happen that type_for_mode was given a mode for which there
1824 is no language-level type. In which case it returns NULL, which
1825 we can see here. */
1826 if (t == NULL_TREE)
1827 return;
1829 type = TYPE_P (t) ? t : TREE_TYPE (t);
1830 if (type == error_mark_node)
1831 return;
1833 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1834 wrong answer, as it assumes that DECL_RTL already has the right alias
1835 info. Callers should not set DECL_RTL until after the call to
1836 set_mem_attributes. */
1837 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1838 abort ();
1840 /* Get the alias set from the expression or type (perhaps using a
1841 front-end routine) and use it. */
1842 alias = get_alias_set (t);
1844 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1845 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1846 RTX_UNCHANGING_P (ref)
1847 |= ((lang_hooks.honor_readonly
1848 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1849 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1851 /* If we are making an object of this type, or if this is a DECL, we know
1852 that it is a scalar if the type is not an aggregate. */
1853 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1854 MEM_SCALAR_P (ref) = 1;
1856 /* We can set the alignment from the type if we are making an object,
1857 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1858 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1859 align = MAX (align, TYPE_ALIGN (type));
1861 /* If the size is known, we can set that. */
1862 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1863 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1865 /* If T is not a type, we may be able to deduce some more information about
1866 the expression. */
1867 if (! TYPE_P (t))
1869 maybe_set_unchanging (ref, t);
1870 if (TREE_THIS_VOLATILE (t))
1871 MEM_VOLATILE_P (ref) = 1;
1873 /* Now remove any conversions: they don't change what the underlying
1874 object is. Likewise for SAVE_EXPR. */
1875 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1876 || TREE_CODE (t) == NON_LVALUE_EXPR
1877 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1878 || TREE_CODE (t) == SAVE_EXPR)
1879 t = TREE_OPERAND (t, 0);
1881 /* If this expression can't be addressed (e.g., it contains a reference
1882 to a non-addressable field), show we don't change its alias set. */
1883 if (! can_address_p (t))
1884 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1886 /* If this is a decl, set the attributes of the MEM from it. */
1887 if (DECL_P (t))
1889 expr = t;
1890 offset = const0_rtx;
1891 apply_bitpos = bitpos;
1892 size = (DECL_SIZE_UNIT (t)
1893 && host_integerp (DECL_SIZE_UNIT (t), 1)
1894 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1895 align = DECL_ALIGN (t);
1898 /* If this is a constant, we know the alignment. */
1899 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1901 align = TYPE_ALIGN (type);
1902 #ifdef CONSTANT_ALIGNMENT
1903 align = CONSTANT_ALIGNMENT (t, align);
1904 #endif
1907 /* If this is a field reference and not a bit-field, record it. */
1908 /* ??? There is some information that can be gleened from bit-fields,
1909 such as the word offset in the structure that might be modified.
1910 But skip it for now. */
1911 else if (TREE_CODE (t) == COMPONENT_REF
1912 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1914 expr = component_ref_for_mem_expr (t);
1915 offset = const0_rtx;
1916 apply_bitpos = bitpos;
1917 /* ??? Any reason the field size would be different than
1918 the size we got from the type? */
1921 /* If this is an array reference, look for an outer field reference. */
1922 else if (TREE_CODE (t) == ARRAY_REF)
1924 tree off_tree = size_zero_node;
1925 /* We can't modify t, because we use it at the end of the
1926 function. */
1927 tree t2 = t;
1931 tree index = TREE_OPERAND (t2, 1);
1932 tree array = TREE_OPERAND (t2, 0);
1933 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
1934 tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
1935 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
1937 /* We assume all arrays have sizes that are a multiple of a byte.
1938 First subtract the lower bound, if any, in the type of the
1939 index, then convert to sizetype and multiply by the size of the
1940 array element. */
1941 if (low_bound != 0 && ! integer_zerop (low_bound))
1942 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
1943 index, low_bound));
1945 /* If the index has a self-referential type, pass it to a
1946 WITH_RECORD_EXPR; if the component size is, pass our
1947 component to one. */
1948 if (CONTAINS_PLACEHOLDER_P (index))
1949 index = build (WITH_RECORD_EXPR, TREE_TYPE (index), index, t2);
1950 if (CONTAINS_PLACEHOLDER_P (unit_size))
1951 unit_size = build (WITH_RECORD_EXPR, sizetype,
1952 unit_size, array);
1954 off_tree
1955 = fold (build (PLUS_EXPR, sizetype,
1956 fold (build (MULT_EXPR, sizetype,
1957 index,
1958 unit_size)),
1959 off_tree));
1960 t2 = TREE_OPERAND (t2, 0);
1962 while (TREE_CODE (t2) == ARRAY_REF);
1964 if (DECL_P (t2))
1966 expr = t2;
1967 offset = NULL;
1968 if (host_integerp (off_tree, 1))
1970 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1971 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1972 align = DECL_ALIGN (t2);
1973 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1974 align = aoff;
1975 offset = GEN_INT (ioff);
1976 apply_bitpos = bitpos;
1979 else if (TREE_CODE (t2) == COMPONENT_REF)
1981 expr = component_ref_for_mem_expr (t2);
1982 if (host_integerp (off_tree, 1))
1984 offset = GEN_INT (tree_low_cst (off_tree, 1));
1985 apply_bitpos = bitpos;
1987 /* ??? Any reason the field size would be different than
1988 the size we got from the type? */
1990 else if (flag_argument_noalias > 1
1991 && TREE_CODE (t2) == INDIRECT_REF
1992 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1994 expr = t2;
1995 offset = NULL;
1999 /* If this is a Fortran indirect argument reference, record the
2000 parameter decl. */
2001 else if (flag_argument_noalias > 1
2002 && TREE_CODE (t) == INDIRECT_REF
2003 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
2005 expr = t;
2006 offset = NULL;
2010 /* If we modified OFFSET based on T, then subtract the outstanding
2011 bit position offset. Similarly, increase the size of the accessed
2012 object to contain the negative offset. */
2013 if (apply_bitpos)
2015 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
2016 if (size)
2017 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
2020 /* Now set the attributes we computed above. */
2021 MEM_ATTRS (ref)
2022 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
2024 /* If this is already known to be a scalar or aggregate, we are done. */
2025 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
2026 return;
2028 /* If it is a reference into an aggregate, this is part of an aggregate.
2029 Otherwise we don't know. */
2030 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
2031 || TREE_CODE (t) == ARRAY_RANGE_REF
2032 || TREE_CODE (t) == BIT_FIELD_REF)
2033 MEM_IN_STRUCT_P (ref) = 1;
2036 void
2037 set_mem_attributes (rtx ref, tree t, int objectp)
2039 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2042 /* Set the decl for MEM to DECL. */
2044 void
2045 set_mem_attrs_from_reg (rtx mem, rtx reg)
2047 MEM_ATTRS (mem)
2048 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
2049 GEN_INT (REG_OFFSET (reg)),
2050 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
2053 /* Set the alias set of MEM to SET. */
2055 void
2056 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
2058 #ifdef ENABLE_CHECKING
2059 /* If the new and old alias sets don't conflict, something is wrong. */
2060 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
2061 abort ();
2062 #endif
2064 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
2065 MEM_SIZE (mem), MEM_ALIGN (mem),
2066 GET_MODE (mem));
2069 /* Set the alignment of MEM to ALIGN bits. */
2071 void
2072 set_mem_align (rtx mem, unsigned int align)
2074 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2075 MEM_OFFSET (mem), MEM_SIZE (mem), align,
2076 GET_MODE (mem));
2079 /* Set the expr for MEM to EXPR. */
2081 void
2082 set_mem_expr (rtx mem, tree expr)
2084 MEM_ATTRS (mem)
2085 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
2086 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
2089 /* Set the offset of MEM to OFFSET. */
2091 void
2092 set_mem_offset (rtx mem, rtx offset)
2094 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2095 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
2096 GET_MODE (mem));
2099 /* Set the size of MEM to SIZE. */
2101 void
2102 set_mem_size (rtx mem, rtx size)
2104 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2105 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
2106 GET_MODE (mem));
2109 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2110 and its address changed to ADDR. (VOIDmode means don't change the mode.
2111 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2112 returned memory location is required to be valid. The memory
2113 attributes are not changed. */
2115 static rtx
2116 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
2118 rtx new;
2120 if (GET_CODE (memref) != MEM)
2121 abort ();
2122 if (mode == VOIDmode)
2123 mode = GET_MODE (memref);
2124 if (addr == 0)
2125 addr = XEXP (memref, 0);
2127 if (validate)
2129 if (reload_in_progress || reload_completed)
2131 if (! memory_address_p (mode, addr))
2132 abort ();
2134 else
2135 addr = memory_address (mode, addr);
2138 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2139 return memref;
2141 new = gen_rtx_MEM (mode, addr);
2142 MEM_COPY_ATTRIBUTES (new, memref);
2143 return new;
2146 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2147 way we are changing MEMREF, so we only preserve the alias set. */
2150 change_address (rtx memref, enum machine_mode mode, rtx addr)
2152 rtx new = change_address_1 (memref, mode, addr, 1);
2153 enum machine_mode mmode = GET_MODE (new);
2155 MEM_ATTRS (new)
2156 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
2157 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
2158 (mmode == BLKmode ? BITS_PER_UNIT
2159 : GET_MODE_ALIGNMENT (mmode)),
2160 mmode);
2162 return new;
2165 /* Return a memory reference like MEMREF, but with its mode changed
2166 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2167 nonzero, the memory address is forced to be valid.
2168 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
2169 and caller is responsible for adjusting MEMREF base register. */
2172 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2173 int validate, int adjust)
2175 rtx addr = XEXP (memref, 0);
2176 rtx new;
2177 rtx memoffset = MEM_OFFSET (memref);
2178 rtx size = 0;
2179 unsigned int memalign = MEM_ALIGN (memref);
2181 /* ??? Prefer to create garbage instead of creating shared rtl.
2182 This may happen even if offset is nonzero -- consider
2183 (plus (plus reg reg) const_int) -- so do this always. */
2184 addr = copy_rtx (addr);
2186 if (adjust)
2188 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2189 object, we can merge it into the LO_SUM. */
2190 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2191 && offset >= 0
2192 && (unsigned HOST_WIDE_INT) offset
2193 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2194 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
2195 plus_constant (XEXP (addr, 1), offset));
2196 else
2197 addr = plus_constant (addr, offset);
2200 new = change_address_1 (memref, mode, addr, validate);
2202 /* Compute the new values of the memory attributes due to this adjustment.
2203 We add the offsets and update the alignment. */
2204 if (memoffset)
2205 memoffset = GEN_INT (offset + INTVAL (memoffset));
2207 /* Compute the new alignment by taking the MIN of the alignment and the
2208 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2209 if zero. */
2210 if (offset != 0)
2211 memalign
2212 = MIN (memalign,
2213 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2215 /* We can compute the size in a number of ways. */
2216 if (GET_MODE (new) != BLKmode)
2217 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
2218 else if (MEM_SIZE (memref))
2219 size = plus_constant (MEM_SIZE (memref), -offset);
2221 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2222 memoffset, size, memalign, GET_MODE (new));
2224 /* At some point, we should validate that this offset is within the object,
2225 if all the appropriate values are known. */
2226 return new;
2229 /* Return a memory reference like MEMREF, but with its mode changed
2230 to MODE and its address changed to ADDR, which is assumed to be
2231 MEMREF offseted by OFFSET bytes. If VALIDATE is
2232 nonzero, the memory address is forced to be valid. */
2235 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2236 HOST_WIDE_INT offset, int validate)
2238 memref = change_address_1 (memref, VOIDmode, addr, validate);
2239 return adjust_address_1 (memref, mode, offset, validate, 0);
2242 /* Return a memory reference like MEMREF, but whose address is changed by
2243 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2244 known to be in OFFSET (possibly 1). */
2247 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2249 rtx new, addr = XEXP (memref, 0);
2251 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2253 /* At this point we don't know _why_ the address is invalid. It
2254 could have secondary memory references, multiplies or anything.
2256 However, if we did go and rearrange things, we can wind up not
2257 being able to recognize the magic around pic_offset_table_rtx.
2258 This stuff is fragile, and is yet another example of why it is
2259 bad to expose PIC machinery too early. */
2260 if (! memory_address_p (GET_MODE (memref), new)
2261 && GET_CODE (addr) == PLUS
2262 && XEXP (addr, 0) == pic_offset_table_rtx)
2264 addr = force_reg (GET_MODE (addr), addr);
2265 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2268 update_temp_slot_address (XEXP (memref, 0), new);
2269 new = change_address_1 (memref, VOIDmode, new, 1);
2271 /* Update the alignment to reflect the offset. Reset the offset, which
2272 we don't know. */
2273 MEM_ATTRS (new)
2274 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2275 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2276 GET_MODE (new));
2277 return new;
2280 /* Return a memory reference like MEMREF, but with its address changed to
2281 ADDR. The caller is asserting that the actual piece of memory pointed
2282 to is the same, just the form of the address is being changed, such as
2283 by putting something into a register. */
2286 replace_equiv_address (rtx memref, rtx addr)
2288 /* change_address_1 copies the memory attribute structure without change
2289 and that's exactly what we want here. */
2290 update_temp_slot_address (XEXP (memref, 0), addr);
2291 return change_address_1 (memref, VOIDmode, addr, 1);
2294 /* Likewise, but the reference is not required to be valid. */
2297 replace_equiv_address_nv (rtx memref, rtx addr)
2299 return change_address_1 (memref, VOIDmode, addr, 0);
2302 /* Return a memory reference like MEMREF, but with its mode widened to
2303 MODE and offset by OFFSET. This would be used by targets that e.g.
2304 cannot issue QImode memory operations and have to use SImode memory
2305 operations plus masking logic. */
2308 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2310 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2311 tree expr = MEM_EXPR (new);
2312 rtx memoffset = MEM_OFFSET (new);
2313 unsigned int size = GET_MODE_SIZE (mode);
2315 /* If we don't know what offset we were at within the expression, then
2316 we can't know if we've overstepped the bounds. */
2317 if (! memoffset)
2318 expr = NULL_TREE;
2320 while (expr)
2322 if (TREE_CODE (expr) == COMPONENT_REF)
2324 tree field = TREE_OPERAND (expr, 1);
2326 if (! DECL_SIZE_UNIT (field))
2328 expr = NULL_TREE;
2329 break;
2332 /* Is the field at least as large as the access? If so, ok,
2333 otherwise strip back to the containing structure. */
2334 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2335 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2336 && INTVAL (memoffset) >= 0)
2337 break;
2339 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2341 expr = NULL_TREE;
2342 break;
2345 expr = TREE_OPERAND (expr, 0);
2346 memoffset = (GEN_INT (INTVAL (memoffset)
2347 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2348 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2349 / BITS_PER_UNIT)));
2351 /* Similarly for the decl. */
2352 else if (DECL_P (expr)
2353 && DECL_SIZE_UNIT (expr)
2354 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2355 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2356 && (! memoffset || INTVAL (memoffset) >= 0))
2357 break;
2358 else
2360 /* The widened memory access overflows the expression, which means
2361 that it could alias another expression. Zap it. */
2362 expr = NULL_TREE;
2363 break;
2367 if (! expr)
2368 memoffset = NULL_RTX;
2370 /* The widened memory may alias other stuff, so zap the alias set. */
2371 /* ??? Maybe use get_alias_set on any remaining expression. */
2373 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2374 MEM_ALIGN (new), mode);
2376 return new;
2379 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2382 gen_label_rtx (void)
2384 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2385 NULL, label_num++, NULL);
2388 /* For procedure integration. */
2390 /* Install new pointers to the first and last insns in the chain.
2391 Also, set cur_insn_uid to one higher than the last in use.
2392 Used for an inline-procedure after copying the insn chain. */
2394 void
2395 set_new_first_and_last_insn (rtx first, rtx last)
2397 rtx insn;
2399 first_insn = first;
2400 last_insn = last;
2401 cur_insn_uid = 0;
2403 for (insn = first; insn; insn = NEXT_INSN (insn))
2404 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2406 cur_insn_uid++;
2409 /* Set the last label number found in the current function.
2410 This is used when belatedly compiling an inline function. */
2412 void
2413 set_new_last_label_num (int last)
2415 base_label_num = label_num;
2416 last_label_num = last;
2419 /* Restore all variables describing the current status from the structure *P.
2420 This is used after a nested function. */
2422 void
2423 restore_emit_status (struct function *p ATTRIBUTE_UNUSED)
2425 last_label_num = 0;
2428 /* Go through all the RTL insn bodies and copy any invalid shared
2429 structure. This routine should only be called once. */
2431 void
2432 unshare_all_rtl (tree fndecl, rtx insn)
2434 tree decl;
2436 /* Make sure that virtual parameters are not shared. */
2437 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2438 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2440 /* Make sure that virtual stack slots are not shared. */
2441 unshare_all_decls (DECL_INITIAL (fndecl));
2443 /* Unshare just about everything else. */
2444 unshare_all_rtl_in_chain (insn);
2446 /* Make sure the addresses of stack slots found outside the insn chain
2447 (such as, in DECL_RTL of a variable) are not shared
2448 with the insn chain.
2450 This special care is necessary when the stack slot MEM does not
2451 actually appear in the insn chain. If it does appear, its address
2452 is unshared from all else at that point. */
2453 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2456 /* Go through all the RTL insn bodies and copy any invalid shared
2457 structure, again. This is a fairly expensive thing to do so it
2458 should be done sparingly. */
2460 void
2461 unshare_all_rtl_again (rtx insn)
2463 rtx p;
2464 tree decl;
2466 for (p = insn; p; p = NEXT_INSN (p))
2467 if (INSN_P (p))
2469 reset_used_flags (PATTERN (p));
2470 reset_used_flags (REG_NOTES (p));
2471 reset_used_flags (LOG_LINKS (p));
2474 /* Make sure that virtual stack slots are not shared. */
2475 reset_used_decls (DECL_INITIAL (cfun->decl));
2477 /* Make sure that virtual parameters are not shared. */
2478 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2479 reset_used_flags (DECL_RTL (decl));
2481 reset_used_flags (stack_slot_list);
2483 unshare_all_rtl (cfun->decl, insn);
2486 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2487 Recursively does the same for subexpressions. */
2489 static void
2490 verify_rtx_sharing (rtx orig, rtx insn)
2492 rtx x = orig;
2493 int i;
2494 enum rtx_code code;
2495 const char *format_ptr;
2497 if (x == 0)
2498 return;
2500 code = GET_CODE (x);
2502 /* These types may be freely shared. */
2504 switch (code)
2506 case REG:
2507 case QUEUED:
2508 case CONST_INT:
2509 case CONST_DOUBLE:
2510 case CONST_VECTOR:
2511 case SYMBOL_REF:
2512 case LABEL_REF:
2513 case CODE_LABEL:
2514 case PC:
2515 case CC0:
2516 case SCRATCH:
2517 /* SCRATCH must be shared because they represent distinct values. */
2518 return;
2520 case CONST:
2521 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2522 a LABEL_REF, it isn't sharable. */
2523 if (GET_CODE (XEXP (x, 0)) == PLUS
2524 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2525 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2526 return;
2527 break;
2529 case MEM:
2530 /* A MEM is allowed to be shared if its address is constant. */
2531 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2532 || reload_completed || reload_in_progress)
2533 return;
2535 break;
2537 default:
2538 break;
2541 /* This rtx may not be shared. If it has already been seen,
2542 replace it with a copy of itself. */
2544 if (RTX_FLAG (x, used))
2546 error ("Invalid rtl sharing found in the insn");
2547 debug_rtx (insn);
2548 error ("Shared rtx");
2549 debug_rtx (x);
2550 abort ();
2552 RTX_FLAG (x, used) = 1;
2554 /* Now scan the subexpressions recursively. */
2556 format_ptr = GET_RTX_FORMAT (code);
2558 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2560 switch (*format_ptr++)
2562 case 'e':
2563 verify_rtx_sharing (XEXP (x, i), insn);
2564 break;
2566 case 'E':
2567 if (XVEC (x, i) != NULL)
2569 int j;
2570 int len = XVECLEN (x, i);
2572 for (j = 0; j < len; j++)
2574 /* We allow sharing of ASM_OPERANDS inside single instruction. */
2575 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2576 && GET_CODE (SET_SRC (XVECEXP (x, i, j))) == ASM_OPERANDS)
2577 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2578 else
2579 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2582 break;
2585 return;
2588 /* Go through all the RTL insn bodies and check that there is no unexpected
2589 sharing in between the subexpressions. */
2591 void
2592 verify_rtl_sharing (void)
2594 rtx p;
2596 for (p = get_insns (); p; p = NEXT_INSN (p))
2597 if (INSN_P (p))
2599 reset_used_flags (PATTERN (p));
2600 reset_used_flags (REG_NOTES (p));
2601 reset_used_flags (LOG_LINKS (p));
2604 for (p = get_insns (); p; p = NEXT_INSN (p))
2605 if (INSN_P (p))
2607 verify_rtx_sharing (PATTERN (p), p);
2608 verify_rtx_sharing (REG_NOTES (p), p);
2609 verify_rtx_sharing (LOG_LINKS (p), p);
2613 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2614 Assumes the mark bits are cleared at entry. */
2616 void
2617 unshare_all_rtl_in_chain (rtx insn)
2619 for (; insn; insn = NEXT_INSN (insn))
2620 if (INSN_P (insn))
2622 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2623 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2624 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2628 /* Go through all virtual stack slots of a function and copy any
2629 shared structure. */
2630 static void
2631 unshare_all_decls (tree blk)
2633 tree t;
2635 /* Copy shared decls. */
2636 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2637 if (DECL_RTL_SET_P (t))
2638 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2640 /* Now process sub-blocks. */
2641 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2642 unshare_all_decls (t);
2645 /* Go through all virtual stack slots of a function and mark them as
2646 not shared. */
2647 static void
2648 reset_used_decls (tree blk)
2650 tree t;
2652 /* Mark decls. */
2653 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2654 if (DECL_RTL_SET_P (t))
2655 reset_used_flags (DECL_RTL (t));
2657 /* Now process sub-blocks. */
2658 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2659 reset_used_decls (t);
2662 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2663 placed in the result directly, rather than being copied. MAY_SHARE is
2664 either a MEM of an EXPR_LIST of MEMs. */
2667 copy_most_rtx (rtx orig, rtx may_share)
2669 rtx copy;
2670 int i, j;
2671 RTX_CODE code;
2672 const char *format_ptr;
2674 if (orig == may_share
2675 || (GET_CODE (may_share) == EXPR_LIST
2676 && in_expr_list_p (may_share, orig)))
2677 return orig;
2679 code = GET_CODE (orig);
2681 switch (code)
2683 case REG:
2684 case QUEUED:
2685 case CONST_INT:
2686 case CONST_DOUBLE:
2687 case CONST_VECTOR:
2688 case SYMBOL_REF:
2689 case CODE_LABEL:
2690 case PC:
2691 case CC0:
2692 return orig;
2693 default:
2694 break;
2697 copy = rtx_alloc (code);
2698 PUT_MODE (copy, GET_MODE (orig));
2699 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2700 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2701 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2702 RTX_FLAG (copy, integrated) = RTX_FLAG (orig, integrated);
2703 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2705 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2707 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2709 switch (*format_ptr++)
2711 case 'e':
2712 XEXP (copy, i) = XEXP (orig, i);
2713 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2714 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2715 break;
2717 case 'u':
2718 XEXP (copy, i) = XEXP (orig, i);
2719 break;
2721 case 'E':
2722 case 'V':
2723 XVEC (copy, i) = XVEC (orig, i);
2724 if (XVEC (orig, i) != NULL)
2726 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2727 for (j = 0; j < XVECLEN (copy, i); j++)
2728 XVECEXP (copy, i, j)
2729 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2731 break;
2733 case 'w':
2734 XWINT (copy, i) = XWINT (orig, i);
2735 break;
2737 case 'n':
2738 case 'i':
2739 XINT (copy, i) = XINT (orig, i);
2740 break;
2742 case 't':
2743 XTREE (copy, i) = XTREE (orig, i);
2744 break;
2746 case 's':
2747 case 'S':
2748 XSTR (copy, i) = XSTR (orig, i);
2749 break;
2751 case '0':
2752 X0ANY (copy, i) = X0ANY (orig, i);
2753 break;
2755 default:
2756 abort ();
2759 return copy;
2762 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2763 Recursively does the same for subexpressions. Uses
2764 copy_rtx_if_shared_1 to reduce stack space. */
2767 copy_rtx_if_shared (rtx orig)
2769 copy_rtx_if_shared_1 (&orig);
2770 return orig;
2773 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2774 use. Recursively does the same for subexpressions. */
2776 static void
2777 copy_rtx_if_shared_1 (rtx *orig1)
2779 rtx x;
2780 int i;
2781 enum rtx_code code;
2782 rtx *last_ptr;
2783 const char *format_ptr;
2784 int copied = 0;
2785 int length;
2787 /* Repeat is used to turn tail-recursion into iteration. */
2788 repeat:
2789 x = *orig1;
2791 if (x == 0)
2792 return;
2794 code = GET_CODE (x);
2796 /* These types may be freely shared. */
2798 switch (code)
2800 case REG:
2801 case QUEUED:
2802 case CONST_INT:
2803 case CONST_DOUBLE:
2804 case CONST_VECTOR:
2805 case SYMBOL_REF:
2806 case LABEL_REF:
2807 case CODE_LABEL:
2808 case PC:
2809 case CC0:
2810 case SCRATCH:
2811 /* SCRATCH must be shared because they represent distinct values. */
2812 return;
2814 case CONST:
2815 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2816 a LABEL_REF, it isn't sharable. */
2817 if (GET_CODE (XEXP (x, 0)) == PLUS
2818 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2819 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2820 return;
2821 break;
2823 case INSN:
2824 case JUMP_INSN:
2825 case CALL_INSN:
2826 case NOTE:
2827 case BARRIER:
2828 /* The chain of insns is not being copied. */
2829 return;
2831 default:
2832 break;
2835 /* This rtx may not be shared. If it has already been seen,
2836 replace it with a copy of itself. */
2838 if (RTX_FLAG (x, used))
2840 rtx copy;
2842 copy = rtx_alloc (code);
2843 memcpy (copy, x, RTX_SIZE (code));
2844 x = copy;
2845 copied = 1;
2847 RTX_FLAG (x, used) = 1;
2849 /* Now scan the subexpressions recursively.
2850 We can store any replaced subexpressions directly into X
2851 since we know X is not shared! Any vectors in X
2852 must be copied if X was copied. */
2854 format_ptr = GET_RTX_FORMAT (code);
2855 length = GET_RTX_LENGTH (code);
2856 last_ptr = NULL;
2858 for (i = 0; i < length; i++)
2860 switch (*format_ptr++)
2862 case 'e':
2863 if (last_ptr)
2864 copy_rtx_if_shared_1 (last_ptr);
2865 last_ptr = &XEXP (x, i);
2866 break;
2868 case 'E':
2869 if (XVEC (x, i) != NULL)
2871 int j;
2872 int len = XVECLEN (x, i);
2874 /* Copy the vector iff I copied the rtx and the length
2875 is nonzero. */
2876 if (copied && len > 0)
2877 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2879 /* Call recsusively on all inside the vector. */
2880 for (j = 0; j < len; j++)
2882 if (last_ptr)
2883 copy_rtx_if_shared_1 (last_ptr);
2884 last_ptr = &XVECEXP (x, i, j);
2887 break;
2890 *orig1 = x;
2891 if (last_ptr)
2893 orig1 = last_ptr;
2894 goto repeat;
2896 return;
2899 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2900 to look for shared sub-parts. */
2902 void
2903 reset_used_flags (rtx x)
2905 int i, j;
2906 enum rtx_code code;
2907 const char *format_ptr;
2908 int length;
2910 /* Repeat is used to turn tail-recursion into iteration. */
2911 repeat:
2912 if (x == 0)
2913 return;
2915 code = GET_CODE (x);
2917 /* These types may be freely shared so we needn't do any resetting
2918 for them. */
2920 switch (code)
2922 case REG:
2923 case QUEUED:
2924 case CONST_INT:
2925 case CONST_DOUBLE:
2926 case CONST_VECTOR:
2927 case SYMBOL_REF:
2928 case CODE_LABEL:
2929 case PC:
2930 case CC0:
2931 return;
2933 case INSN:
2934 case JUMP_INSN:
2935 case CALL_INSN:
2936 case NOTE:
2937 case LABEL_REF:
2938 case BARRIER:
2939 /* The chain of insns is not being copied. */
2940 return;
2942 default:
2943 break;
2946 RTX_FLAG (x, used) = 0;
2948 format_ptr = GET_RTX_FORMAT (code);
2949 length = GET_RTX_LENGTH (code);
2951 for (i = 0; i < length; i++)
2953 switch (*format_ptr++)
2955 case 'e':
2956 if (i == length-1)
2958 x = XEXP (x, i);
2959 goto repeat;
2961 reset_used_flags (XEXP (x, i));
2962 break;
2964 case 'E':
2965 for (j = 0; j < XVECLEN (x, i); j++)
2966 reset_used_flags (XVECEXP (x, i, j));
2967 break;
2972 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2973 to look for shared sub-parts. */
2975 void
2976 set_used_flags (rtx x)
2978 int i, j;
2979 enum rtx_code code;
2980 const char *format_ptr;
2982 if (x == 0)
2983 return;
2985 code = GET_CODE (x);
2987 /* These types may be freely shared so we needn't do any resetting
2988 for them. */
2990 switch (code)
2992 case REG:
2993 case QUEUED:
2994 case CONST_INT:
2995 case CONST_DOUBLE:
2996 case CONST_VECTOR:
2997 case SYMBOL_REF:
2998 case CODE_LABEL:
2999 case PC:
3000 case CC0:
3001 return;
3003 case INSN:
3004 case JUMP_INSN:
3005 case CALL_INSN:
3006 case NOTE:
3007 case LABEL_REF:
3008 case BARRIER:
3009 /* The chain of insns is not being copied. */
3010 return;
3012 default:
3013 break;
3016 RTX_FLAG (x, used) = 1;
3018 format_ptr = GET_RTX_FORMAT (code);
3019 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3021 switch (*format_ptr++)
3023 case 'e':
3024 set_used_flags (XEXP (x, i));
3025 break;
3027 case 'E':
3028 for (j = 0; j < XVECLEN (x, i); j++)
3029 set_used_flags (XVECEXP (x, i, j));
3030 break;
3035 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3036 Return X or the rtx for the pseudo reg the value of X was copied into.
3037 OTHER must be valid as a SET_DEST. */
3040 make_safe_from (rtx x, rtx other)
3042 while (1)
3043 switch (GET_CODE (other))
3045 case SUBREG:
3046 other = SUBREG_REG (other);
3047 break;
3048 case STRICT_LOW_PART:
3049 case SIGN_EXTEND:
3050 case ZERO_EXTEND:
3051 other = XEXP (other, 0);
3052 break;
3053 default:
3054 goto done;
3056 done:
3057 if ((GET_CODE (other) == MEM
3058 && ! CONSTANT_P (x)
3059 && GET_CODE (x) != REG
3060 && GET_CODE (x) != SUBREG)
3061 || (GET_CODE (other) == REG
3062 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3063 || reg_mentioned_p (other, x))))
3065 rtx temp = gen_reg_rtx (GET_MODE (x));
3066 emit_move_insn (temp, x);
3067 return temp;
3069 return x;
3072 /* Emission of insns (adding them to the doubly-linked list). */
3074 /* Return the first insn of the current sequence or current function. */
3077 get_insns (void)
3079 return first_insn;
3082 /* Specify a new insn as the first in the chain. */
3084 void
3085 set_first_insn (rtx insn)
3087 if (PREV_INSN (insn) != 0)
3088 abort ();
3089 first_insn = insn;
3092 /* Return the last insn emitted in current sequence or current function. */
3095 get_last_insn (void)
3097 return last_insn;
3100 /* Specify a new insn as the last in the chain. */
3102 void
3103 set_last_insn (rtx insn)
3105 if (NEXT_INSN (insn) != 0)
3106 abort ();
3107 last_insn = insn;
3110 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3113 get_last_insn_anywhere (void)
3115 struct sequence_stack *stack;
3116 if (last_insn)
3117 return last_insn;
3118 for (stack = seq_stack; stack; stack = stack->next)
3119 if (stack->last != 0)
3120 return stack->last;
3121 return 0;
3124 /* Return the first nonnote insn emitted in current sequence or current
3125 function. This routine looks inside SEQUENCEs. */
3128 get_first_nonnote_insn (void)
3130 rtx insn = first_insn;
3132 while (insn)
3134 insn = next_insn (insn);
3135 if (insn == 0 || GET_CODE (insn) != NOTE)
3136 break;
3139 return insn;
3142 /* Return the last nonnote insn emitted in current sequence or current
3143 function. This routine looks inside SEQUENCEs. */
3146 get_last_nonnote_insn (void)
3148 rtx insn = last_insn;
3150 while (insn)
3152 insn = previous_insn (insn);
3153 if (insn == 0 || GET_CODE (insn) != NOTE)
3154 break;
3157 return insn;
3160 /* Return a number larger than any instruction's uid in this function. */
3163 get_max_uid (void)
3165 return cur_insn_uid;
3168 /* Renumber instructions so that no instruction UIDs are wasted. */
3170 void
3171 renumber_insns (FILE *stream)
3173 rtx insn;
3175 /* If we're not supposed to renumber instructions, don't. */
3176 if (!flag_renumber_insns)
3177 return;
3179 /* If there aren't that many instructions, then it's not really
3180 worth renumbering them. */
3181 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
3182 return;
3184 cur_insn_uid = 1;
3186 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3188 if (stream)
3189 fprintf (stream, "Renumbering insn %d to %d\n",
3190 INSN_UID (insn), cur_insn_uid);
3191 INSN_UID (insn) = cur_insn_uid++;
3195 /* Return the next insn. If it is a SEQUENCE, return the first insn
3196 of the sequence. */
3199 next_insn (rtx insn)
3201 if (insn)
3203 insn = NEXT_INSN (insn);
3204 if (insn && GET_CODE (insn) == INSN
3205 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3206 insn = XVECEXP (PATTERN (insn), 0, 0);
3209 return insn;
3212 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3213 of the sequence. */
3216 previous_insn (rtx insn)
3218 if (insn)
3220 insn = PREV_INSN (insn);
3221 if (insn && GET_CODE (insn) == INSN
3222 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3223 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3226 return insn;
3229 /* Return the next insn after INSN that is not a NOTE. This routine does not
3230 look inside SEQUENCEs. */
3233 next_nonnote_insn (rtx insn)
3235 while (insn)
3237 insn = NEXT_INSN (insn);
3238 if (insn == 0 || GET_CODE (insn) != NOTE)
3239 break;
3242 return insn;
3245 /* Return the previous insn before INSN that is not a NOTE. This routine does
3246 not look inside SEQUENCEs. */
3249 prev_nonnote_insn (rtx insn)
3251 while (insn)
3253 insn = PREV_INSN (insn);
3254 if (insn == 0 || GET_CODE (insn) != NOTE)
3255 break;
3258 return insn;
3261 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3262 or 0, if there is none. This routine does not look inside
3263 SEQUENCEs. */
3266 next_real_insn (rtx insn)
3268 while (insn)
3270 insn = NEXT_INSN (insn);
3271 if (insn == 0 || GET_CODE (insn) == INSN
3272 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
3273 break;
3276 return insn;
3279 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3280 or 0, if there is none. This routine does not look inside
3281 SEQUENCEs. */
3284 prev_real_insn (rtx insn)
3286 while (insn)
3288 insn = PREV_INSN (insn);
3289 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
3290 || GET_CODE (insn) == JUMP_INSN)
3291 break;
3294 return insn;
3297 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3298 This routine does not look inside SEQUENCEs. */
3301 last_call_insn (void)
3303 rtx insn;
3305 for (insn = get_last_insn ();
3306 insn && GET_CODE (insn) != CALL_INSN;
3307 insn = PREV_INSN (insn))
3310 return insn;
3313 /* Find the next insn after INSN that really does something. This routine
3314 does not look inside SEQUENCEs. Until reload has completed, this is the
3315 same as next_real_insn. */
3318 active_insn_p (rtx insn)
3320 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
3321 || (GET_CODE (insn) == INSN
3322 && (! reload_completed
3323 || (GET_CODE (PATTERN (insn)) != USE
3324 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3328 next_active_insn (rtx insn)
3330 while (insn)
3332 insn = NEXT_INSN (insn);
3333 if (insn == 0 || active_insn_p (insn))
3334 break;
3337 return insn;
3340 /* Find the last insn before INSN that really does something. This routine
3341 does not look inside SEQUENCEs. Until reload has completed, this is the
3342 same as prev_real_insn. */
3345 prev_active_insn (rtx insn)
3347 while (insn)
3349 insn = PREV_INSN (insn);
3350 if (insn == 0 || active_insn_p (insn))
3351 break;
3354 return insn;
3357 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3360 next_label (rtx insn)
3362 while (insn)
3364 insn = NEXT_INSN (insn);
3365 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3366 break;
3369 return insn;
3372 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3375 prev_label (rtx insn)
3377 while (insn)
3379 insn = PREV_INSN (insn);
3380 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3381 break;
3384 return insn;
3387 #ifdef HAVE_cc0
3388 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3389 and REG_CC_USER notes so we can find it. */
3391 void
3392 link_cc0_insns (rtx insn)
3394 rtx user = next_nonnote_insn (insn);
3396 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3397 user = XVECEXP (PATTERN (user), 0, 0);
3399 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3400 REG_NOTES (user));
3401 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3404 /* Return the next insn that uses CC0 after INSN, which is assumed to
3405 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3406 applied to the result of this function should yield INSN).
3408 Normally, this is simply the next insn. However, if a REG_CC_USER note
3409 is present, it contains the insn that uses CC0.
3411 Return 0 if we can't find the insn. */
3414 next_cc0_user (rtx insn)
3416 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3418 if (note)
3419 return XEXP (note, 0);
3421 insn = next_nonnote_insn (insn);
3422 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3423 insn = XVECEXP (PATTERN (insn), 0, 0);
3425 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3426 return insn;
3428 return 0;
3431 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3432 note, it is the previous insn. */
3435 prev_cc0_setter (rtx insn)
3437 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3439 if (note)
3440 return XEXP (note, 0);
3442 insn = prev_nonnote_insn (insn);
3443 if (! sets_cc0_p (PATTERN (insn)))
3444 abort ();
3446 return insn;
3448 #endif
3450 /* Increment the label uses for all labels present in rtx. */
3452 static void
3453 mark_label_nuses (rtx x)
3455 enum rtx_code code;
3456 int i, j;
3457 const char *fmt;
3459 code = GET_CODE (x);
3460 if (code == LABEL_REF)
3461 LABEL_NUSES (XEXP (x, 0))++;
3463 fmt = GET_RTX_FORMAT (code);
3464 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3466 if (fmt[i] == 'e')
3467 mark_label_nuses (XEXP (x, i));
3468 else if (fmt[i] == 'E')
3469 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3470 mark_label_nuses (XVECEXP (x, i, j));
3475 /* Try splitting insns that can be split for better scheduling.
3476 PAT is the pattern which might split.
3477 TRIAL is the insn providing PAT.
3478 LAST is nonzero if we should return the last insn of the sequence produced.
3480 If this routine succeeds in splitting, it returns the first or last
3481 replacement insn depending on the value of LAST. Otherwise, it
3482 returns TRIAL. If the insn to be returned can be split, it will be. */
3485 try_split (rtx pat, rtx trial, int last)
3487 rtx before = PREV_INSN (trial);
3488 rtx after = NEXT_INSN (trial);
3489 int has_barrier = 0;
3490 rtx tem;
3491 rtx note, seq;
3492 int probability;
3493 rtx insn_last, insn;
3494 int njumps = 0;
3496 if (any_condjump_p (trial)
3497 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3498 split_branch_probability = INTVAL (XEXP (note, 0));
3499 probability = split_branch_probability;
3501 seq = split_insns (pat, trial);
3503 split_branch_probability = -1;
3505 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3506 We may need to handle this specially. */
3507 if (after && GET_CODE (after) == BARRIER)
3509 has_barrier = 1;
3510 after = NEXT_INSN (after);
3513 if (!seq)
3514 return trial;
3516 /* Avoid infinite loop if any insn of the result matches
3517 the original pattern. */
3518 insn_last = seq;
3519 while (1)
3521 if (INSN_P (insn_last)
3522 && rtx_equal_p (PATTERN (insn_last), pat))
3523 return trial;
3524 if (!NEXT_INSN (insn_last))
3525 break;
3526 insn_last = NEXT_INSN (insn_last);
3529 /* Mark labels. */
3530 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3532 if (GET_CODE (insn) == JUMP_INSN)
3534 mark_jump_label (PATTERN (insn), insn, 0);
3535 njumps++;
3536 if (probability != -1
3537 && any_condjump_p (insn)
3538 && !find_reg_note (insn, REG_BR_PROB, 0))
3540 /* We can preserve the REG_BR_PROB notes only if exactly
3541 one jump is created, otherwise the machine description
3542 is responsible for this step using
3543 split_branch_probability variable. */
3544 if (njumps != 1)
3545 abort ();
3546 REG_NOTES (insn)
3547 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3548 GEN_INT (probability),
3549 REG_NOTES (insn));
3554 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3555 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3556 if (GET_CODE (trial) == CALL_INSN)
3558 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3559 if (GET_CODE (insn) == CALL_INSN)
3561 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3562 while (*p)
3563 p = &XEXP (*p, 1);
3564 *p = CALL_INSN_FUNCTION_USAGE (trial);
3565 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3569 /* Copy notes, particularly those related to the CFG. */
3570 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3572 switch (REG_NOTE_KIND (note))
3574 case REG_EH_REGION:
3575 insn = insn_last;
3576 while (insn != NULL_RTX)
3578 if (GET_CODE (insn) == CALL_INSN
3579 || (flag_non_call_exceptions
3580 && may_trap_p (PATTERN (insn))))
3581 REG_NOTES (insn)
3582 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3583 XEXP (note, 0),
3584 REG_NOTES (insn));
3585 insn = PREV_INSN (insn);
3587 break;
3589 case REG_NORETURN:
3590 case REG_SETJMP:
3591 case REG_ALWAYS_RETURN:
3592 insn = insn_last;
3593 while (insn != NULL_RTX)
3595 if (GET_CODE (insn) == CALL_INSN)
3596 REG_NOTES (insn)
3597 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3598 XEXP (note, 0),
3599 REG_NOTES (insn));
3600 insn = PREV_INSN (insn);
3602 break;
3604 case REG_NON_LOCAL_GOTO:
3605 insn = insn_last;
3606 while (insn != NULL_RTX)
3608 if (GET_CODE (insn) == JUMP_INSN)
3609 REG_NOTES (insn)
3610 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3611 XEXP (note, 0),
3612 REG_NOTES (insn));
3613 insn = PREV_INSN (insn);
3615 break;
3617 default:
3618 break;
3622 /* If there are LABELS inside the split insns increment the
3623 usage count so we don't delete the label. */
3624 if (GET_CODE (trial) == INSN)
3626 insn = insn_last;
3627 while (insn != NULL_RTX)
3629 if (GET_CODE (insn) == INSN)
3630 mark_label_nuses (PATTERN (insn));
3632 insn = PREV_INSN (insn);
3636 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3638 delete_insn (trial);
3639 if (has_barrier)
3640 emit_barrier_after (tem);
3642 /* Recursively call try_split for each new insn created; by the
3643 time control returns here that insn will be fully split, so
3644 set LAST and continue from the insn after the one returned.
3645 We can't use next_active_insn here since AFTER may be a note.
3646 Ignore deleted insns, which can be occur if not optimizing. */
3647 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3648 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3649 tem = try_split (PATTERN (tem), tem, 1);
3651 /* Return either the first or the last insn, depending on which was
3652 requested. */
3653 return last
3654 ? (after ? PREV_INSN (after) : last_insn)
3655 : NEXT_INSN (before);
3658 /* Make and return an INSN rtx, initializing all its slots.
3659 Store PATTERN in the pattern slots. */
3662 make_insn_raw (rtx pattern)
3664 rtx insn;
3666 insn = rtx_alloc (INSN);
3668 INSN_UID (insn) = cur_insn_uid++;
3669 PATTERN (insn) = pattern;
3670 INSN_CODE (insn) = -1;
3671 LOG_LINKS (insn) = NULL;
3672 REG_NOTES (insn) = NULL;
3673 INSN_LOCATOR (insn) = 0;
3674 BLOCK_FOR_INSN (insn) = NULL;
3676 #ifdef ENABLE_RTL_CHECKING
3677 if (insn
3678 && INSN_P (insn)
3679 && (returnjump_p (insn)
3680 || (GET_CODE (insn) == SET
3681 && SET_DEST (insn) == pc_rtx)))
3683 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3684 debug_rtx (insn);
3686 #endif
3688 return insn;
3691 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3693 static rtx
3694 make_jump_insn_raw (rtx pattern)
3696 rtx insn;
3698 insn = rtx_alloc (JUMP_INSN);
3699 INSN_UID (insn) = cur_insn_uid++;
3701 PATTERN (insn) = pattern;
3702 INSN_CODE (insn) = -1;
3703 LOG_LINKS (insn) = NULL;
3704 REG_NOTES (insn) = NULL;
3705 JUMP_LABEL (insn) = NULL;
3706 INSN_LOCATOR (insn) = 0;
3707 BLOCK_FOR_INSN (insn) = NULL;
3709 return insn;
3712 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3714 static rtx
3715 make_call_insn_raw (rtx pattern)
3717 rtx insn;
3719 insn = rtx_alloc (CALL_INSN);
3720 INSN_UID (insn) = cur_insn_uid++;
3722 PATTERN (insn) = pattern;
3723 INSN_CODE (insn) = -1;
3724 LOG_LINKS (insn) = NULL;
3725 REG_NOTES (insn) = NULL;
3726 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3727 INSN_LOCATOR (insn) = 0;
3728 BLOCK_FOR_INSN (insn) = NULL;
3730 return insn;
3733 /* Add INSN to the end of the doubly-linked list.
3734 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3736 void
3737 add_insn (rtx insn)
3739 PREV_INSN (insn) = last_insn;
3740 NEXT_INSN (insn) = 0;
3742 if (NULL != last_insn)
3743 NEXT_INSN (last_insn) = insn;
3745 if (NULL == first_insn)
3746 first_insn = insn;
3748 last_insn = insn;
3751 /* Add INSN into the doubly-linked list after insn AFTER. This and
3752 the next should be the only functions called to insert an insn once
3753 delay slots have been filled since only they know how to update a
3754 SEQUENCE. */
3756 void
3757 add_insn_after (rtx insn, rtx after)
3759 rtx next = NEXT_INSN (after);
3760 basic_block bb;
3762 if (optimize && INSN_DELETED_P (after))
3763 abort ();
3765 NEXT_INSN (insn) = next;
3766 PREV_INSN (insn) = after;
3768 if (next)
3770 PREV_INSN (next) = insn;
3771 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3772 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3774 else if (last_insn == after)
3775 last_insn = insn;
3776 else
3778 struct sequence_stack *stack = seq_stack;
3779 /* Scan all pending sequences too. */
3780 for (; stack; stack = stack->next)
3781 if (after == stack->last)
3783 stack->last = insn;
3784 break;
3787 if (stack == 0)
3788 abort ();
3791 if (GET_CODE (after) != BARRIER
3792 && GET_CODE (insn) != BARRIER
3793 && (bb = BLOCK_FOR_INSN (after)))
3795 set_block_for_insn (insn, bb);
3796 if (INSN_P (insn))
3797 bb->flags |= BB_DIRTY;
3798 /* Should not happen as first in the BB is always
3799 either NOTE or LABEL. */
3800 if (BB_END (bb) == after
3801 /* Avoid clobbering of structure when creating new BB. */
3802 && GET_CODE (insn) != BARRIER
3803 && (GET_CODE (insn) != NOTE
3804 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3805 BB_END (bb) = insn;
3808 NEXT_INSN (after) = insn;
3809 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3811 rtx sequence = PATTERN (after);
3812 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3816 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3817 the previous should be the only functions called to insert an insn once
3818 delay slots have been filled since only they know how to update a
3819 SEQUENCE. */
3821 void
3822 add_insn_before (rtx insn, rtx before)
3824 rtx prev = PREV_INSN (before);
3825 basic_block bb;
3827 if (optimize && INSN_DELETED_P (before))
3828 abort ();
3830 PREV_INSN (insn) = prev;
3831 NEXT_INSN (insn) = before;
3833 if (prev)
3835 NEXT_INSN (prev) = insn;
3836 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3838 rtx sequence = PATTERN (prev);
3839 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3842 else if (first_insn == before)
3843 first_insn = insn;
3844 else
3846 struct sequence_stack *stack = seq_stack;
3847 /* Scan all pending sequences too. */
3848 for (; stack; stack = stack->next)
3849 if (before == stack->first)
3851 stack->first = insn;
3852 break;
3855 if (stack == 0)
3856 abort ();
3859 if (GET_CODE (before) != BARRIER
3860 && GET_CODE (insn) != BARRIER
3861 && (bb = BLOCK_FOR_INSN (before)))
3863 set_block_for_insn (insn, bb);
3864 if (INSN_P (insn))
3865 bb->flags |= BB_DIRTY;
3866 /* Should not happen as first in the BB is always
3867 either NOTE or LABEl. */
3868 if (BB_HEAD (bb) == insn
3869 /* Avoid clobbering of structure when creating new BB. */
3870 && GET_CODE (insn) != BARRIER
3871 && (GET_CODE (insn) != NOTE
3872 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3873 abort ();
3876 PREV_INSN (before) = insn;
3877 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3878 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3881 /* Remove an insn from its doubly-linked list. This function knows how
3882 to handle sequences. */
3883 void
3884 remove_insn (rtx insn)
3886 rtx next = NEXT_INSN (insn);
3887 rtx prev = PREV_INSN (insn);
3888 basic_block bb;
3890 if (prev)
3892 NEXT_INSN (prev) = next;
3893 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3895 rtx sequence = PATTERN (prev);
3896 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3899 else if (first_insn == insn)
3900 first_insn = next;
3901 else
3903 struct sequence_stack *stack = seq_stack;
3904 /* Scan all pending sequences too. */
3905 for (; stack; stack = stack->next)
3906 if (insn == stack->first)
3908 stack->first = next;
3909 break;
3912 if (stack == 0)
3913 abort ();
3916 if (next)
3918 PREV_INSN (next) = prev;
3919 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3920 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3922 else if (last_insn == insn)
3923 last_insn = prev;
3924 else
3926 struct sequence_stack *stack = seq_stack;
3927 /* Scan all pending sequences too. */
3928 for (; stack; stack = stack->next)
3929 if (insn == stack->last)
3931 stack->last = prev;
3932 break;
3935 if (stack == 0)
3936 abort ();
3938 if (GET_CODE (insn) != BARRIER
3939 && (bb = BLOCK_FOR_INSN (insn)))
3941 if (INSN_P (insn))
3942 bb->flags |= BB_DIRTY;
3943 if (BB_HEAD (bb) == insn)
3945 /* Never ever delete the basic block note without deleting whole
3946 basic block. */
3947 if (GET_CODE (insn) == NOTE)
3948 abort ();
3949 BB_HEAD (bb) = next;
3951 if (BB_END (bb) == insn)
3952 BB_END (bb) = prev;
3956 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3958 void
3959 add_function_usage_to (rtx call_insn, rtx call_fusage)
3961 if (! call_insn || GET_CODE (call_insn) != CALL_INSN)
3962 abort ();
3964 /* Put the register usage information on the CALL. If there is already
3965 some usage information, put ours at the end. */
3966 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3968 rtx link;
3970 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3971 link = XEXP (link, 1))
3974 XEXP (link, 1) = call_fusage;
3976 else
3977 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3980 /* Delete all insns made since FROM.
3981 FROM becomes the new last instruction. */
3983 void
3984 delete_insns_since (rtx from)
3986 if (from == 0)
3987 first_insn = 0;
3988 else
3989 NEXT_INSN (from) = 0;
3990 last_insn = from;
3993 /* This function is deprecated, please use sequences instead.
3995 Move a consecutive bunch of insns to a different place in the chain.
3996 The insns to be moved are those between FROM and TO.
3997 They are moved to a new position after the insn AFTER.
3998 AFTER must not be FROM or TO or any insn in between.
4000 This function does not know about SEQUENCEs and hence should not be
4001 called after delay-slot filling has been done. */
4003 void
4004 reorder_insns_nobb (rtx from, rtx to, rtx after)
4006 /* Splice this bunch out of where it is now. */
4007 if (PREV_INSN (from))
4008 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4009 if (NEXT_INSN (to))
4010 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4011 if (last_insn == to)
4012 last_insn = PREV_INSN (from);
4013 if (first_insn == from)
4014 first_insn = NEXT_INSN (to);
4016 /* Make the new neighbors point to it and it to them. */
4017 if (NEXT_INSN (after))
4018 PREV_INSN (NEXT_INSN (after)) = to;
4020 NEXT_INSN (to) = NEXT_INSN (after);
4021 PREV_INSN (from) = after;
4022 NEXT_INSN (after) = from;
4023 if (after == last_insn)
4024 last_insn = to;
4027 /* Same as function above, but take care to update BB boundaries. */
4028 void
4029 reorder_insns (rtx from, rtx to, rtx after)
4031 rtx prev = PREV_INSN (from);
4032 basic_block bb, bb2;
4034 reorder_insns_nobb (from, to, after);
4036 if (GET_CODE (after) != BARRIER
4037 && (bb = BLOCK_FOR_INSN (after)))
4039 rtx x;
4040 bb->flags |= BB_DIRTY;
4042 if (GET_CODE (from) != BARRIER
4043 && (bb2 = BLOCK_FOR_INSN (from)))
4045 if (BB_END (bb2) == to)
4046 BB_END (bb2) = prev;
4047 bb2->flags |= BB_DIRTY;
4050 if (BB_END (bb) == after)
4051 BB_END (bb) = to;
4053 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4054 set_block_for_insn (x, bb);
4058 /* Return the line note insn preceding INSN. */
4060 static rtx
4061 find_line_note (rtx insn)
4063 if (no_line_numbers)
4064 return 0;
4066 for (; insn; insn = PREV_INSN (insn))
4067 if (GET_CODE (insn) == NOTE
4068 && NOTE_LINE_NUMBER (insn) >= 0)
4069 break;
4071 return insn;
4074 /* Like reorder_insns, but inserts line notes to preserve the line numbers
4075 of the moved insns when debugging. This may insert a note between AFTER
4076 and FROM, and another one after TO. */
4078 void
4079 reorder_insns_with_line_notes (rtx from, rtx to, rtx after)
4081 rtx from_line = find_line_note (from);
4082 rtx after_line = find_line_note (after);
4084 reorder_insns (from, to, after);
4086 if (from_line == after_line)
4087 return;
4089 if (from_line)
4090 emit_note_copy_after (from_line, after);
4091 if (after_line)
4092 emit_note_copy_after (after_line, to);
4095 /* Remove unnecessary notes from the instruction stream. */
4097 void
4098 remove_unnecessary_notes (void)
4100 rtx block_stack = NULL_RTX;
4101 rtx eh_stack = NULL_RTX;
4102 rtx insn;
4103 rtx next;
4104 rtx tmp;
4106 /* We must not remove the first instruction in the function because
4107 the compiler depends on the first instruction being a note. */
4108 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
4110 /* Remember what's next. */
4111 next = NEXT_INSN (insn);
4113 /* We're only interested in notes. */
4114 if (GET_CODE (insn) != NOTE)
4115 continue;
4117 switch (NOTE_LINE_NUMBER (insn))
4119 case NOTE_INSN_DELETED:
4120 case NOTE_INSN_LOOP_END_TOP_COND:
4121 remove_insn (insn);
4122 break;
4124 case NOTE_INSN_EH_REGION_BEG:
4125 eh_stack = alloc_INSN_LIST (insn, eh_stack);
4126 break;
4128 case NOTE_INSN_EH_REGION_END:
4129 /* Too many end notes. */
4130 if (eh_stack == NULL_RTX)
4131 abort ();
4132 /* Mismatched nesting. */
4133 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
4134 abort ();
4135 tmp = eh_stack;
4136 eh_stack = XEXP (eh_stack, 1);
4137 free_INSN_LIST_node (tmp);
4138 break;
4140 case NOTE_INSN_BLOCK_BEG:
4141 /* By now, all notes indicating lexical blocks should have
4142 NOTE_BLOCK filled in. */
4143 if (NOTE_BLOCK (insn) == NULL_TREE)
4144 abort ();
4145 block_stack = alloc_INSN_LIST (insn, block_stack);
4146 break;
4148 case NOTE_INSN_BLOCK_END:
4149 /* Too many end notes. */
4150 if (block_stack == NULL_RTX)
4151 abort ();
4152 /* Mismatched nesting. */
4153 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
4154 abort ();
4155 tmp = block_stack;
4156 block_stack = XEXP (block_stack, 1);
4157 free_INSN_LIST_node (tmp);
4159 /* Scan back to see if there are any non-note instructions
4160 between INSN and the beginning of this block. If not,
4161 then there is no PC range in the generated code that will
4162 actually be in this block, so there's no point in
4163 remembering the existence of the block. */
4164 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
4166 /* This block contains a real instruction. Note that we
4167 don't include labels; if the only thing in the block
4168 is a label, then there are still no PC values that
4169 lie within the block. */
4170 if (INSN_P (tmp))
4171 break;
4173 /* We're only interested in NOTEs. */
4174 if (GET_CODE (tmp) != NOTE)
4175 continue;
4177 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
4179 /* We just verified that this BLOCK matches us with
4180 the block_stack check above. Never delete the
4181 BLOCK for the outermost scope of the function; we
4182 can refer to names from that scope even if the
4183 block notes are messed up. */
4184 if (! is_body_block (NOTE_BLOCK (insn))
4185 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
4187 remove_insn (tmp);
4188 remove_insn (insn);
4190 break;
4192 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
4193 /* There's a nested block. We need to leave the
4194 current block in place since otherwise the debugger
4195 wouldn't be able to show symbols from our block in
4196 the nested block. */
4197 break;
4202 /* Too many begin notes. */
4203 if (block_stack || eh_stack)
4204 abort ();
4208 /* Emit insn(s) of given code and pattern
4209 at a specified place within the doubly-linked list.
4211 All of the emit_foo global entry points accept an object
4212 X which is either an insn list or a PATTERN of a single
4213 instruction.
4215 There are thus a few canonical ways to generate code and
4216 emit it at a specific place in the instruction stream. For
4217 example, consider the instruction named SPOT and the fact that
4218 we would like to emit some instructions before SPOT. We might
4219 do it like this:
4221 start_sequence ();
4222 ... emit the new instructions ...
4223 insns_head = get_insns ();
4224 end_sequence ();
4226 emit_insn_before (insns_head, SPOT);
4228 It used to be common to generate SEQUENCE rtl instead, but that
4229 is a relic of the past which no longer occurs. The reason is that
4230 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4231 generated would almost certainly die right after it was created. */
4233 /* Make X be output before the instruction BEFORE. */
4236 emit_insn_before (rtx x, rtx before)
4238 rtx last = before;
4239 rtx insn;
4241 #ifdef ENABLE_RTL_CHECKING
4242 if (before == NULL_RTX)
4243 abort ();
4244 #endif
4246 if (x == NULL_RTX)
4247 return last;
4249 switch (GET_CODE (x))
4251 case INSN:
4252 case JUMP_INSN:
4253 case CALL_INSN:
4254 case CODE_LABEL:
4255 case BARRIER:
4256 case NOTE:
4257 insn = x;
4258 while (insn)
4260 rtx next = NEXT_INSN (insn);
4261 add_insn_before (insn, before);
4262 last = insn;
4263 insn = next;
4265 break;
4267 #ifdef ENABLE_RTL_CHECKING
4268 case SEQUENCE:
4269 abort ();
4270 break;
4271 #endif
4273 default:
4274 last = make_insn_raw (x);
4275 add_insn_before (last, before);
4276 break;
4279 return last;
4282 /* Make an instruction with body X and code JUMP_INSN
4283 and output it before the instruction BEFORE. */
4286 emit_jump_insn_before (rtx x, rtx before)
4288 rtx insn, last = NULL_RTX;
4290 #ifdef ENABLE_RTL_CHECKING
4291 if (before == NULL_RTX)
4292 abort ();
4293 #endif
4295 switch (GET_CODE (x))
4297 case INSN:
4298 case JUMP_INSN:
4299 case CALL_INSN:
4300 case CODE_LABEL:
4301 case BARRIER:
4302 case NOTE:
4303 insn = x;
4304 while (insn)
4306 rtx next = NEXT_INSN (insn);
4307 add_insn_before (insn, before);
4308 last = insn;
4309 insn = next;
4311 break;
4313 #ifdef ENABLE_RTL_CHECKING
4314 case SEQUENCE:
4315 abort ();
4316 break;
4317 #endif
4319 default:
4320 last = make_jump_insn_raw (x);
4321 add_insn_before (last, before);
4322 break;
4325 return last;
4328 /* Make an instruction with body X and code CALL_INSN
4329 and output it before the instruction BEFORE. */
4332 emit_call_insn_before (rtx x, rtx before)
4334 rtx last = NULL_RTX, insn;
4336 #ifdef ENABLE_RTL_CHECKING
4337 if (before == NULL_RTX)
4338 abort ();
4339 #endif
4341 switch (GET_CODE (x))
4343 case INSN:
4344 case JUMP_INSN:
4345 case CALL_INSN:
4346 case CODE_LABEL:
4347 case BARRIER:
4348 case NOTE:
4349 insn = x;
4350 while (insn)
4352 rtx next = NEXT_INSN (insn);
4353 add_insn_before (insn, before);
4354 last = insn;
4355 insn = next;
4357 break;
4359 #ifdef ENABLE_RTL_CHECKING
4360 case SEQUENCE:
4361 abort ();
4362 break;
4363 #endif
4365 default:
4366 last = make_call_insn_raw (x);
4367 add_insn_before (last, before);
4368 break;
4371 return last;
4374 /* Make an insn of code BARRIER
4375 and output it before the insn BEFORE. */
4378 emit_barrier_before (rtx before)
4380 rtx insn = rtx_alloc (BARRIER);
4382 INSN_UID (insn) = cur_insn_uid++;
4384 add_insn_before (insn, before);
4385 return insn;
4388 /* Emit the label LABEL before the insn BEFORE. */
4391 emit_label_before (rtx label, rtx before)
4393 /* This can be called twice for the same label as a result of the
4394 confusion that follows a syntax error! So make it harmless. */
4395 if (INSN_UID (label) == 0)
4397 INSN_UID (label) = cur_insn_uid++;
4398 add_insn_before (label, before);
4401 return label;
4404 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4407 emit_note_before (int subtype, rtx before)
4409 rtx note = rtx_alloc (NOTE);
4410 INSN_UID (note) = cur_insn_uid++;
4411 NOTE_SOURCE_FILE (note) = 0;
4412 NOTE_LINE_NUMBER (note) = subtype;
4413 BLOCK_FOR_INSN (note) = NULL;
4415 add_insn_before (note, before);
4416 return note;
4419 /* Helper for emit_insn_after, handles lists of instructions
4420 efficiently. */
4422 static rtx emit_insn_after_1 (rtx, rtx);
4424 static rtx
4425 emit_insn_after_1 (rtx first, rtx after)
4427 rtx last;
4428 rtx after_after;
4429 basic_block bb;
4431 if (GET_CODE (after) != BARRIER
4432 && (bb = BLOCK_FOR_INSN (after)))
4434 bb->flags |= BB_DIRTY;
4435 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4436 if (GET_CODE (last) != BARRIER)
4437 set_block_for_insn (last, bb);
4438 if (GET_CODE (last) != BARRIER)
4439 set_block_for_insn (last, bb);
4440 if (BB_END (bb) == after)
4441 BB_END (bb) = last;
4443 else
4444 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4445 continue;
4447 after_after = NEXT_INSN (after);
4449 NEXT_INSN (after) = first;
4450 PREV_INSN (first) = after;
4451 NEXT_INSN (last) = after_after;
4452 if (after_after)
4453 PREV_INSN (after_after) = last;
4455 if (after == last_insn)
4456 last_insn = last;
4457 return last;
4460 /* Make X be output after the insn AFTER. */
4463 emit_insn_after (rtx x, rtx after)
4465 rtx last = after;
4467 #ifdef ENABLE_RTL_CHECKING
4468 if (after == NULL_RTX)
4469 abort ();
4470 #endif
4472 if (x == NULL_RTX)
4473 return last;
4475 switch (GET_CODE (x))
4477 case INSN:
4478 case JUMP_INSN:
4479 case CALL_INSN:
4480 case CODE_LABEL:
4481 case BARRIER:
4482 case NOTE:
4483 last = emit_insn_after_1 (x, after);
4484 break;
4486 #ifdef ENABLE_RTL_CHECKING
4487 case SEQUENCE:
4488 abort ();
4489 break;
4490 #endif
4492 default:
4493 last = make_insn_raw (x);
4494 add_insn_after (last, after);
4495 break;
4498 return last;
4501 /* Similar to emit_insn_after, except that line notes are to be inserted so
4502 as to act as if this insn were at FROM. */
4504 void
4505 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4507 rtx from_line = find_line_note (from);
4508 rtx after_line = find_line_note (after);
4509 rtx insn = emit_insn_after (x, after);
4511 if (from_line)
4512 emit_note_copy_after (from_line, after);
4514 if (after_line)
4515 emit_note_copy_after (after_line, insn);
4518 /* Make an insn of code JUMP_INSN with body X
4519 and output it after the insn AFTER. */
4522 emit_jump_insn_after (rtx x, rtx after)
4524 rtx last;
4526 #ifdef ENABLE_RTL_CHECKING
4527 if (after == NULL_RTX)
4528 abort ();
4529 #endif
4531 switch (GET_CODE (x))
4533 case INSN:
4534 case JUMP_INSN:
4535 case CALL_INSN:
4536 case CODE_LABEL:
4537 case BARRIER:
4538 case NOTE:
4539 last = emit_insn_after_1 (x, after);
4540 break;
4542 #ifdef ENABLE_RTL_CHECKING
4543 case SEQUENCE:
4544 abort ();
4545 break;
4546 #endif
4548 default:
4549 last = make_jump_insn_raw (x);
4550 add_insn_after (last, after);
4551 break;
4554 return last;
4557 /* Make an instruction with body X and code CALL_INSN
4558 and output it after the instruction AFTER. */
4561 emit_call_insn_after (rtx x, rtx after)
4563 rtx last;
4565 #ifdef ENABLE_RTL_CHECKING
4566 if (after == NULL_RTX)
4567 abort ();
4568 #endif
4570 switch (GET_CODE (x))
4572 case INSN:
4573 case JUMP_INSN:
4574 case CALL_INSN:
4575 case CODE_LABEL:
4576 case BARRIER:
4577 case NOTE:
4578 last = emit_insn_after_1 (x, after);
4579 break;
4581 #ifdef ENABLE_RTL_CHECKING
4582 case SEQUENCE:
4583 abort ();
4584 break;
4585 #endif
4587 default:
4588 last = make_call_insn_raw (x);
4589 add_insn_after (last, after);
4590 break;
4593 return last;
4596 /* Make an insn of code BARRIER
4597 and output it after the insn AFTER. */
4600 emit_barrier_after (rtx after)
4602 rtx insn = rtx_alloc (BARRIER);
4604 INSN_UID (insn) = cur_insn_uid++;
4606 add_insn_after (insn, after);
4607 return insn;
4610 /* Emit the label LABEL after the insn AFTER. */
4613 emit_label_after (rtx label, rtx after)
4615 /* This can be called twice for the same label
4616 as a result of the confusion that follows a syntax error!
4617 So make it harmless. */
4618 if (INSN_UID (label) == 0)
4620 INSN_UID (label) = cur_insn_uid++;
4621 add_insn_after (label, after);
4624 return label;
4627 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4630 emit_note_after (int subtype, rtx after)
4632 rtx note = rtx_alloc (NOTE);
4633 INSN_UID (note) = cur_insn_uid++;
4634 NOTE_SOURCE_FILE (note) = 0;
4635 NOTE_LINE_NUMBER (note) = subtype;
4636 BLOCK_FOR_INSN (note) = NULL;
4637 add_insn_after (note, after);
4638 return note;
4641 /* Emit a copy of note ORIG after the insn AFTER. */
4644 emit_note_copy_after (rtx orig, rtx after)
4646 rtx note;
4648 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4650 cur_insn_uid++;
4651 return 0;
4654 note = rtx_alloc (NOTE);
4655 INSN_UID (note) = cur_insn_uid++;
4656 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4657 NOTE_DATA (note) = NOTE_DATA (orig);
4658 BLOCK_FOR_INSN (note) = NULL;
4659 add_insn_after (note, after);
4660 return note;
4663 /* Like emit_insn_after, but set INSN_LOCATOR according to SCOPE. */
4665 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4667 rtx last = emit_insn_after (pattern, after);
4669 after = NEXT_INSN (after);
4670 while (1)
4672 if (active_insn_p (after))
4673 INSN_LOCATOR (after) = loc;
4674 if (after == last)
4675 break;
4676 after = NEXT_INSN (after);
4678 return last;
4681 /* Like emit_jump_insn_after, but set INSN_LOCATOR according to SCOPE. */
4683 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4685 rtx last = emit_jump_insn_after (pattern, after);
4687 after = NEXT_INSN (after);
4688 while (1)
4690 if (active_insn_p (after))
4691 INSN_LOCATOR (after) = loc;
4692 if (after == last)
4693 break;
4694 after = NEXT_INSN (after);
4696 return last;
4699 /* Like emit_call_insn_after, but set INSN_LOCATOR according to SCOPE. */
4701 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4703 rtx last = emit_call_insn_after (pattern, after);
4705 after = NEXT_INSN (after);
4706 while (1)
4708 if (active_insn_p (after))
4709 INSN_LOCATOR (after) = loc;
4710 if (after == last)
4711 break;
4712 after = NEXT_INSN (after);
4714 return last;
4717 /* Like emit_insn_before, but set INSN_LOCATOR according to SCOPE. */
4719 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4721 rtx first = PREV_INSN (before);
4722 rtx last = emit_insn_before (pattern, before);
4724 first = NEXT_INSN (first);
4725 while (1)
4727 if (active_insn_p (first))
4728 INSN_LOCATOR (first) = loc;
4729 if (first == last)
4730 break;
4731 first = NEXT_INSN (first);
4733 return last;
4736 /* Take X and emit it at the end of the doubly-linked
4737 INSN list.
4739 Returns the last insn emitted. */
4742 emit_insn (rtx x)
4744 rtx last = last_insn;
4745 rtx insn;
4747 if (x == NULL_RTX)
4748 return last;
4750 switch (GET_CODE (x))
4752 case INSN:
4753 case JUMP_INSN:
4754 case CALL_INSN:
4755 case CODE_LABEL:
4756 case BARRIER:
4757 case NOTE:
4758 insn = x;
4759 while (insn)
4761 rtx next = NEXT_INSN (insn);
4762 add_insn (insn);
4763 last = insn;
4764 insn = next;
4766 break;
4768 #ifdef ENABLE_RTL_CHECKING
4769 case SEQUENCE:
4770 abort ();
4771 break;
4772 #endif
4774 default:
4775 last = make_insn_raw (x);
4776 add_insn (last);
4777 break;
4780 return last;
4783 /* Make an insn of code JUMP_INSN with pattern X
4784 and add it to the end of the doubly-linked list. */
4787 emit_jump_insn (rtx x)
4789 rtx last = NULL_RTX, insn;
4791 switch (GET_CODE (x))
4793 case INSN:
4794 case JUMP_INSN:
4795 case CALL_INSN:
4796 case CODE_LABEL:
4797 case BARRIER:
4798 case NOTE:
4799 insn = x;
4800 while (insn)
4802 rtx next = NEXT_INSN (insn);
4803 add_insn (insn);
4804 last = insn;
4805 insn = next;
4807 break;
4809 #ifdef ENABLE_RTL_CHECKING
4810 case SEQUENCE:
4811 abort ();
4812 break;
4813 #endif
4815 default:
4816 last = make_jump_insn_raw (x);
4817 add_insn (last);
4818 break;
4821 return last;
4824 /* Make an insn of code CALL_INSN with pattern X
4825 and add it to the end of the doubly-linked list. */
4828 emit_call_insn (rtx x)
4830 rtx insn;
4832 switch (GET_CODE (x))
4834 case INSN:
4835 case JUMP_INSN:
4836 case CALL_INSN:
4837 case CODE_LABEL:
4838 case BARRIER:
4839 case NOTE:
4840 insn = emit_insn (x);
4841 break;
4843 #ifdef ENABLE_RTL_CHECKING
4844 case SEQUENCE:
4845 abort ();
4846 break;
4847 #endif
4849 default:
4850 insn = make_call_insn_raw (x);
4851 add_insn (insn);
4852 break;
4855 return insn;
4858 /* Add the label LABEL to the end of the doubly-linked list. */
4861 emit_label (rtx label)
4863 /* This can be called twice for the same label
4864 as a result of the confusion that follows a syntax error!
4865 So make it harmless. */
4866 if (INSN_UID (label) == 0)
4868 INSN_UID (label) = cur_insn_uid++;
4869 add_insn (label);
4871 return label;
4874 /* Make an insn of code BARRIER
4875 and add it to the end of the doubly-linked list. */
4878 emit_barrier (void)
4880 rtx barrier = rtx_alloc (BARRIER);
4881 INSN_UID (barrier) = cur_insn_uid++;
4882 add_insn (barrier);
4883 return barrier;
4886 /* Make line numbering NOTE insn for LOCATION add it to the end
4887 of the doubly-linked list, but only if line-numbers are desired for
4888 debugging info and it doesn't match the previous one. */
4891 emit_line_note (location_t location)
4893 rtx note;
4895 set_file_and_line_for_stmt (location);
4897 if (location.file && last_location.file
4898 && !strcmp (location.file, last_location.file)
4899 && location.line == last_location.line)
4900 return NULL_RTX;
4901 last_location = location;
4903 if (no_line_numbers)
4905 cur_insn_uid++;
4906 return NULL_RTX;
4909 note = emit_note (location.line);
4910 NOTE_SOURCE_FILE (note) = location.file;
4912 return note;
4915 /* Emit a copy of note ORIG. */
4918 emit_note_copy (rtx orig)
4920 rtx note;
4922 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4924 cur_insn_uid++;
4925 return NULL_RTX;
4928 note = rtx_alloc (NOTE);
4930 INSN_UID (note) = cur_insn_uid++;
4931 NOTE_DATA (note) = NOTE_DATA (orig);
4932 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4933 BLOCK_FOR_INSN (note) = NULL;
4934 add_insn (note);
4936 return note;
4939 /* Make an insn of code NOTE or type NOTE_NO
4940 and add it to the end of the doubly-linked list. */
4943 emit_note (int note_no)
4945 rtx note;
4947 note = rtx_alloc (NOTE);
4948 INSN_UID (note) = cur_insn_uid++;
4949 NOTE_LINE_NUMBER (note) = note_no;
4950 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4951 BLOCK_FOR_INSN (note) = NULL;
4952 add_insn (note);
4953 return note;
4956 /* Cause next statement to emit a line note even if the line number
4957 has not changed. */
4959 void
4960 force_next_line_note (void)
4962 last_location.line = -1;
4965 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4966 note of this type already exists, remove it first. */
4969 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4971 rtx note = find_reg_note (insn, kind, NULL_RTX);
4973 switch (kind)
4975 case REG_EQUAL:
4976 case REG_EQUIV:
4977 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4978 has multiple sets (some callers assume single_set
4979 means the insn only has one set, when in fact it
4980 means the insn only has one * useful * set). */
4981 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4983 if (note)
4984 abort ();
4985 return NULL_RTX;
4988 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4989 It serves no useful purpose and breaks eliminate_regs. */
4990 if (GET_CODE (datum) == ASM_OPERANDS)
4991 return NULL_RTX;
4992 break;
4994 default:
4995 break;
4998 if (note)
5000 XEXP (note, 0) = datum;
5001 return note;
5004 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
5005 return REG_NOTES (insn);
5008 /* Return an indication of which type of insn should have X as a body.
5009 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5011 enum rtx_code
5012 classify_insn (rtx x)
5014 if (GET_CODE (x) == CODE_LABEL)
5015 return CODE_LABEL;
5016 if (GET_CODE (x) == CALL)
5017 return CALL_INSN;
5018 if (GET_CODE (x) == RETURN)
5019 return JUMP_INSN;
5020 if (GET_CODE (x) == SET)
5022 if (SET_DEST (x) == pc_rtx)
5023 return JUMP_INSN;
5024 else if (GET_CODE (SET_SRC (x)) == CALL)
5025 return CALL_INSN;
5026 else
5027 return INSN;
5029 if (GET_CODE (x) == PARALLEL)
5031 int j;
5032 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5033 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5034 return CALL_INSN;
5035 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5036 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5037 return JUMP_INSN;
5038 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5039 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5040 return CALL_INSN;
5042 return INSN;
5045 /* Emit the rtl pattern X as an appropriate kind of insn.
5046 If X is a label, it is simply added into the insn chain. */
5049 emit (rtx x)
5051 enum rtx_code code = classify_insn (x);
5053 if (code == CODE_LABEL)
5054 return emit_label (x);
5055 else if (code == INSN)
5056 return emit_insn (x);
5057 else if (code == JUMP_INSN)
5059 rtx insn = emit_jump_insn (x);
5060 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5061 return emit_barrier ();
5062 return insn;
5064 else if (code == CALL_INSN)
5065 return emit_call_insn (x);
5066 else
5067 abort ();
5070 /* Space for free sequence stack entries. */
5071 static GTY ((deletable (""))) struct sequence_stack *free_sequence_stack;
5073 /* Begin emitting insns to a sequence which can be packaged in an
5074 RTL_EXPR. If this sequence will contain something that might cause
5075 the compiler to pop arguments to function calls (because those
5076 pops have previously been deferred; see INHIBIT_DEFER_POP for more
5077 details), use do_pending_stack_adjust before calling this function.
5078 That will ensure that the deferred pops are not accidentally
5079 emitted in the middle of this sequence. */
5081 void
5082 start_sequence (void)
5084 struct sequence_stack *tem;
5086 if (free_sequence_stack != NULL)
5088 tem = free_sequence_stack;
5089 free_sequence_stack = tem->next;
5091 else
5092 tem = ggc_alloc (sizeof (struct sequence_stack));
5094 tem->next = seq_stack;
5095 tem->first = first_insn;
5096 tem->last = last_insn;
5097 tem->sequence_rtl_expr = seq_rtl_expr;
5099 seq_stack = tem;
5101 first_insn = 0;
5102 last_insn = 0;
5105 /* Similarly, but indicate that this sequence will be placed in T, an
5106 RTL_EXPR. See the documentation for start_sequence for more
5107 information about how to use this function. */
5109 void
5110 start_sequence_for_rtl_expr (tree t)
5112 start_sequence ();
5114 seq_rtl_expr = t;
5117 /* Set up the insn chain starting with FIRST as the current sequence,
5118 saving the previously current one. See the documentation for
5119 start_sequence for more information about how to use this function. */
5121 void
5122 push_to_sequence (rtx first)
5124 rtx last;
5126 start_sequence ();
5128 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
5130 first_insn = first;
5131 last_insn = last;
5134 /* Set up the insn chain from a chain stort in FIRST to LAST. */
5136 void
5137 push_to_full_sequence (rtx first, rtx last)
5139 start_sequence ();
5140 first_insn = first;
5141 last_insn = last;
5142 /* We really should have the end of the insn chain here. */
5143 if (last && NEXT_INSN (last))
5144 abort ();
5147 /* Set up the outer-level insn chain
5148 as the current sequence, saving the previously current one. */
5150 void
5151 push_topmost_sequence (void)
5153 struct sequence_stack *stack, *top = NULL;
5155 start_sequence ();
5157 for (stack = seq_stack; stack; stack = stack->next)
5158 top = stack;
5160 first_insn = top->first;
5161 last_insn = top->last;
5162 seq_rtl_expr = top->sequence_rtl_expr;
5165 /* After emitting to the outer-level insn chain, update the outer-level
5166 insn chain, and restore the previous saved state. */
5168 void
5169 pop_topmost_sequence (void)
5171 struct sequence_stack *stack, *top = NULL;
5173 for (stack = seq_stack; stack; stack = stack->next)
5174 top = stack;
5176 top->first = first_insn;
5177 top->last = last_insn;
5178 /* ??? Why don't we save seq_rtl_expr here? */
5180 end_sequence ();
5183 /* After emitting to a sequence, restore previous saved state.
5185 To get the contents of the sequence just made, you must call
5186 `get_insns' *before* calling here.
5188 If the compiler might have deferred popping arguments while
5189 generating this sequence, and this sequence will not be immediately
5190 inserted into the instruction stream, use do_pending_stack_adjust
5191 before calling get_insns. That will ensure that the deferred
5192 pops are inserted into this sequence, and not into some random
5193 location in the instruction stream. See INHIBIT_DEFER_POP for more
5194 information about deferred popping of arguments. */
5196 void
5197 end_sequence (void)
5199 struct sequence_stack *tem = seq_stack;
5201 first_insn = tem->first;
5202 last_insn = tem->last;
5203 seq_rtl_expr = tem->sequence_rtl_expr;
5204 seq_stack = tem->next;
5206 memset (tem, 0, sizeof (*tem));
5207 tem->next = free_sequence_stack;
5208 free_sequence_stack = tem;
5211 /* This works like end_sequence, but records the old sequence in FIRST
5212 and LAST. */
5214 void
5215 end_full_sequence (rtx *first, rtx *last)
5217 *first = first_insn;
5218 *last = last_insn;
5219 end_sequence ();
5222 /* Return 1 if currently emitting into a sequence. */
5225 in_sequence_p (void)
5227 return seq_stack != 0;
5230 /* Put the various virtual registers into REGNO_REG_RTX. */
5232 void
5233 init_virtual_regs (struct emit_status *es)
5235 rtx *ptr = es->x_regno_reg_rtx;
5236 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5237 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5238 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5239 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5240 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5244 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5245 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5246 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5247 static int copy_insn_n_scratches;
5249 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5250 copied an ASM_OPERANDS.
5251 In that case, it is the original input-operand vector. */
5252 static rtvec orig_asm_operands_vector;
5254 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5255 copied an ASM_OPERANDS.
5256 In that case, it is the copied input-operand vector. */
5257 static rtvec copy_asm_operands_vector;
5259 /* Likewise for the constraints vector. */
5260 static rtvec orig_asm_constraints_vector;
5261 static rtvec copy_asm_constraints_vector;
5263 /* Recursively create a new copy of an rtx for copy_insn.
5264 This function differs from copy_rtx in that it handles SCRATCHes and
5265 ASM_OPERANDs properly.
5266 Normally, this function is not used directly; use copy_insn as front end.
5267 However, you could first copy an insn pattern with copy_insn and then use
5268 this function afterwards to properly copy any REG_NOTEs containing
5269 SCRATCHes. */
5272 copy_insn_1 (rtx orig)
5274 rtx copy;
5275 int i, j;
5276 RTX_CODE code;
5277 const char *format_ptr;
5279 code = GET_CODE (orig);
5281 switch (code)
5283 case REG:
5284 case QUEUED:
5285 case CONST_INT:
5286 case CONST_DOUBLE:
5287 case CONST_VECTOR:
5288 case SYMBOL_REF:
5289 case CODE_LABEL:
5290 case PC:
5291 case CC0:
5292 case ADDRESSOF:
5293 return orig;
5295 case SCRATCH:
5296 for (i = 0; i < copy_insn_n_scratches; i++)
5297 if (copy_insn_scratch_in[i] == orig)
5298 return copy_insn_scratch_out[i];
5299 break;
5301 case CONST:
5302 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5303 a LABEL_REF, it isn't sharable. */
5304 if (GET_CODE (XEXP (orig, 0)) == PLUS
5305 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5306 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5307 return orig;
5308 break;
5310 /* A MEM with a constant address is not sharable. The problem is that
5311 the constant address may need to be reloaded. If the mem is shared,
5312 then reloading one copy of this mem will cause all copies to appear
5313 to have been reloaded. */
5315 default:
5316 break;
5319 copy = rtx_alloc (code);
5321 /* Copy the various flags, and other information. We assume that
5322 all fields need copying, and then clear the fields that should
5323 not be copied. That is the sensible default behavior, and forces
5324 us to explicitly document why we are *not* copying a flag. */
5325 memcpy (copy, orig, RTX_HDR_SIZE);
5327 /* We do not copy the USED flag, which is used as a mark bit during
5328 walks over the RTL. */
5329 RTX_FLAG (copy, used) = 0;
5331 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5332 if (GET_RTX_CLASS (code) == 'i')
5334 RTX_FLAG (copy, jump) = 0;
5335 RTX_FLAG (copy, call) = 0;
5336 RTX_FLAG (copy, frame_related) = 0;
5339 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5341 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5343 copy->u.fld[i] = orig->u.fld[i];
5344 switch (*format_ptr++)
5346 case 'e':
5347 if (XEXP (orig, i) != NULL)
5348 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5349 break;
5351 case 'E':
5352 case 'V':
5353 if (XVEC (orig, i) == orig_asm_constraints_vector)
5354 XVEC (copy, i) = copy_asm_constraints_vector;
5355 else if (XVEC (orig, i) == orig_asm_operands_vector)
5356 XVEC (copy, i) = copy_asm_operands_vector;
5357 else if (XVEC (orig, i) != NULL)
5359 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5360 for (j = 0; j < XVECLEN (copy, i); j++)
5361 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5363 break;
5365 case 't':
5366 case 'w':
5367 case 'i':
5368 case 's':
5369 case 'S':
5370 case 'u':
5371 case '0':
5372 /* These are left unchanged. */
5373 break;
5375 default:
5376 abort ();
5380 if (code == SCRATCH)
5382 i = copy_insn_n_scratches++;
5383 if (i >= MAX_RECOG_OPERANDS)
5384 abort ();
5385 copy_insn_scratch_in[i] = orig;
5386 copy_insn_scratch_out[i] = copy;
5388 else if (code == ASM_OPERANDS)
5390 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5391 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5392 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5393 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5396 return copy;
5399 /* Create a new copy of an rtx.
5400 This function differs from copy_rtx in that it handles SCRATCHes and
5401 ASM_OPERANDs properly.
5402 INSN doesn't really have to be a full INSN; it could be just the
5403 pattern. */
5405 copy_insn (rtx insn)
5407 copy_insn_n_scratches = 0;
5408 orig_asm_operands_vector = 0;
5409 orig_asm_constraints_vector = 0;
5410 copy_asm_operands_vector = 0;
5411 copy_asm_constraints_vector = 0;
5412 return copy_insn_1 (insn);
5415 /* Initialize data structures and variables in this file
5416 before generating rtl for each function. */
5418 void
5419 init_emit (void)
5421 struct function *f = cfun;
5423 f->emit = ggc_alloc (sizeof (struct emit_status));
5424 first_insn = NULL;
5425 last_insn = NULL;
5426 seq_rtl_expr = NULL;
5427 cur_insn_uid = 1;
5428 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5429 last_location.line = 0;
5430 last_location.file = 0;
5431 first_label_num = label_num;
5432 last_label_num = 0;
5433 seq_stack = NULL;
5435 /* Init the tables that describe all the pseudo regs. */
5437 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5439 f->emit->regno_pointer_align
5440 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5441 * sizeof (unsigned char));
5443 regno_reg_rtx
5444 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5446 /* Put copies of all the hard registers into regno_reg_rtx. */
5447 memcpy (regno_reg_rtx,
5448 static_regno_reg_rtx,
5449 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5451 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5452 init_virtual_regs (f->emit);
5454 /* Indicate that the virtual registers and stack locations are
5455 all pointers. */
5456 REG_POINTER (stack_pointer_rtx) = 1;
5457 REG_POINTER (frame_pointer_rtx) = 1;
5458 REG_POINTER (hard_frame_pointer_rtx) = 1;
5459 REG_POINTER (arg_pointer_rtx) = 1;
5461 REG_POINTER (virtual_incoming_args_rtx) = 1;
5462 REG_POINTER (virtual_stack_vars_rtx) = 1;
5463 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5464 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5465 REG_POINTER (virtual_cfa_rtx) = 1;
5467 #ifdef STACK_BOUNDARY
5468 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5469 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5470 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5471 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5473 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5474 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5475 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5476 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5477 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5478 #endif
5480 #ifdef INIT_EXPANDERS
5481 INIT_EXPANDERS;
5482 #endif
5485 /* Generate the constant 0. */
5487 static rtx
5488 gen_const_vector_0 (enum machine_mode mode)
5490 rtx tem;
5491 rtvec v;
5492 int units, i;
5493 enum machine_mode inner;
5495 units = GET_MODE_NUNITS (mode);
5496 inner = GET_MODE_INNER (mode);
5498 v = rtvec_alloc (units);
5500 /* We need to call this function after we to set CONST0_RTX first. */
5501 if (!CONST0_RTX (inner))
5502 abort ();
5504 for (i = 0; i < units; ++i)
5505 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5507 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5508 return tem;
5511 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5512 all elements are zero. */
5514 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5516 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5517 int i;
5519 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5520 if (RTVEC_ELT (v, i) != inner_zero)
5521 return gen_rtx_raw_CONST_VECTOR (mode, v);
5522 return CONST0_RTX (mode);
5525 /* Create some permanent unique rtl objects shared between all functions.
5526 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5528 void
5529 init_emit_once (int line_numbers)
5531 int i;
5532 enum machine_mode mode;
5533 enum machine_mode double_mode;
5535 /* We need reg_raw_mode, so initialize the modes now. */
5536 init_reg_modes_once ();
5538 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5539 tables. */
5540 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5541 const_int_htab_eq, NULL);
5543 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5544 const_double_htab_eq, NULL);
5546 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5547 mem_attrs_htab_eq, NULL);
5548 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5549 reg_attrs_htab_eq, NULL);
5551 no_line_numbers = ! line_numbers;
5553 /* Compute the word and byte modes. */
5555 byte_mode = VOIDmode;
5556 word_mode = VOIDmode;
5557 double_mode = VOIDmode;
5559 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5560 mode = GET_MODE_WIDER_MODE (mode))
5562 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5563 && byte_mode == VOIDmode)
5564 byte_mode = mode;
5566 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5567 && word_mode == VOIDmode)
5568 word_mode = mode;
5571 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5572 mode = GET_MODE_WIDER_MODE (mode))
5574 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5575 && double_mode == VOIDmode)
5576 double_mode = mode;
5579 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5581 /* Assign register numbers to the globally defined register rtx.
5582 This must be done at runtime because the register number field
5583 is in a union and some compilers can't initialize unions. */
5585 pc_rtx = gen_rtx (PC, VOIDmode);
5586 cc0_rtx = gen_rtx (CC0, VOIDmode);
5587 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5588 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5589 if (hard_frame_pointer_rtx == 0)
5590 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5591 HARD_FRAME_POINTER_REGNUM);
5592 if (arg_pointer_rtx == 0)
5593 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5594 virtual_incoming_args_rtx =
5595 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5596 virtual_stack_vars_rtx =
5597 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5598 virtual_stack_dynamic_rtx =
5599 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5600 virtual_outgoing_args_rtx =
5601 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5602 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5604 /* Initialize RTL for commonly used hard registers. These are
5605 copied into regno_reg_rtx as we begin to compile each function. */
5606 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5607 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5609 #ifdef INIT_EXPANDERS
5610 /* This is to initialize {init|mark|free}_machine_status before the first
5611 call to push_function_context_to. This is needed by the Chill front
5612 end which calls push_function_context_to before the first call to
5613 init_function_start. */
5614 INIT_EXPANDERS;
5615 #endif
5617 /* Create the unique rtx's for certain rtx codes and operand values. */
5619 /* Don't use gen_rtx here since gen_rtx in this case
5620 tries to use these variables. */
5621 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5622 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5623 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5625 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5626 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5627 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5628 else
5629 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5631 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5632 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5633 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5634 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5635 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5636 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5637 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5639 dconsthalf = dconst1;
5640 dconsthalf.exp--;
5642 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5644 /* Initialize mathematical constants for constant folding builtins.
5645 These constants need to be given to at least 160 bits precision. */
5646 real_from_string (&dconstpi,
5647 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5648 real_from_string (&dconste,
5649 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5651 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5653 REAL_VALUE_TYPE *r =
5654 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5656 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5657 mode = GET_MODE_WIDER_MODE (mode))
5658 const_tiny_rtx[i][(int) mode] =
5659 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5661 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5663 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5664 mode = GET_MODE_WIDER_MODE (mode))
5665 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5667 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5668 mode != VOIDmode;
5669 mode = GET_MODE_WIDER_MODE (mode))
5670 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5673 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5674 mode != VOIDmode;
5675 mode = GET_MODE_WIDER_MODE (mode))
5676 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5678 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5679 mode != VOIDmode;
5680 mode = GET_MODE_WIDER_MODE (mode))
5681 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5683 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5684 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5685 const_tiny_rtx[0][i] = const0_rtx;
5687 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5688 if (STORE_FLAG_VALUE == 1)
5689 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5691 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5692 return_address_pointer_rtx
5693 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5694 #endif
5696 #ifdef STATIC_CHAIN_REGNUM
5697 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5699 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5700 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5701 static_chain_incoming_rtx
5702 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5703 else
5704 #endif
5705 static_chain_incoming_rtx = static_chain_rtx;
5706 #endif
5708 #ifdef STATIC_CHAIN
5709 static_chain_rtx = STATIC_CHAIN;
5711 #ifdef STATIC_CHAIN_INCOMING
5712 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5713 #else
5714 static_chain_incoming_rtx = static_chain_rtx;
5715 #endif
5716 #endif
5718 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5719 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5722 /* Query and clear/ restore no_line_numbers. This is used by the
5723 switch / case handling in stmt.c to give proper line numbers in
5724 warnings about unreachable code. */
5727 force_line_numbers (void)
5729 int old = no_line_numbers;
5731 no_line_numbers = 0;
5732 if (old)
5733 force_next_line_note ();
5734 return old;
5737 void
5738 restore_line_number_status (int old_value)
5740 no_line_numbers = old_value;
5743 /* Produce exact duplicate of insn INSN after AFTER.
5744 Care updating of libcall regions if present. */
5747 emit_copy_of_insn_after (rtx insn, rtx after)
5749 rtx new;
5750 rtx note1, note2, link;
5752 switch (GET_CODE (insn))
5754 case INSN:
5755 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5756 break;
5758 case JUMP_INSN:
5759 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5760 break;
5762 case CALL_INSN:
5763 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5764 if (CALL_INSN_FUNCTION_USAGE (insn))
5765 CALL_INSN_FUNCTION_USAGE (new)
5766 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5767 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5768 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5769 break;
5771 default:
5772 abort ();
5775 /* Update LABEL_NUSES. */
5776 mark_jump_label (PATTERN (new), new, 0);
5778 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5780 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5781 make them. */
5782 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5783 if (REG_NOTE_KIND (link) != REG_LABEL)
5785 if (GET_CODE (link) == EXPR_LIST)
5786 REG_NOTES (new)
5787 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5788 XEXP (link, 0),
5789 REG_NOTES (new)));
5790 else
5791 REG_NOTES (new)
5792 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5793 XEXP (link, 0),
5794 REG_NOTES (new)));
5797 /* Fix the libcall sequences. */
5798 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5800 rtx p = new;
5801 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5802 p = PREV_INSN (p);
5803 XEXP (note1, 0) = p;
5804 XEXP (note2, 0) = new;
5806 INSN_CODE (new) = INSN_CODE (insn);
5807 return new;
5810 #include "gt-emit-rtl.h"