2003-12-26 Guilhem Lavaux <guilhem@kaffe.org>
[official-gcc.git] / gcc / cp / search.c
blob15927c69166e00886e132772d5ea5339fd58e4b4
1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2002, 2003 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
24 /* High-level class interface. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "obstack.h"
33 #include "flags.h"
34 #include "rtl.h"
35 #include "output.h"
36 #include "toplev.h"
37 #include "stack.h"
39 /* Obstack used for remembering decision points of breadth-first. */
41 static struct obstack search_obstack;
43 /* Methods for pushing and popping objects to and from obstacks. */
45 struct stack_level *
46 push_stack_level (struct obstack *obstack, char *tp,/* Sony NewsOS 5.0 compiler doesn't like void * here. */
47 int size)
49 struct stack_level *stack;
50 obstack_grow (obstack, tp, size);
51 stack = (struct stack_level *) ((char*)obstack_next_free (obstack) - size);
52 obstack_finish (obstack);
53 stack->obstack = obstack;
54 stack->first = (tree *) obstack_base (obstack);
55 stack->limit = obstack_room (obstack) / sizeof (tree *);
56 return stack;
59 struct stack_level *
60 pop_stack_level (struct stack_level *stack)
62 struct stack_level *tem = stack;
63 struct obstack *obstack = tem->obstack;
64 stack = tem->prev;
65 obstack_free (obstack, tem);
66 return stack;
69 #define search_level stack_level
70 static struct search_level *search_stack;
72 struct vbase_info
74 /* The class dominating the hierarchy. */
75 tree type;
76 /* A pointer to a complete object of the indicated TYPE. */
77 tree decl_ptr;
78 tree inits;
81 static tree dfs_check_overlap (tree, void *);
82 static tree dfs_no_overlap_yet (tree, int, void *);
83 static base_kind lookup_base_r (tree, tree, base_access, bool, tree *);
84 static int dynamic_cast_base_recurse (tree, tree, bool, tree *);
85 static tree marked_pushdecls_p (tree, int, void *);
86 static tree unmarked_pushdecls_p (tree, int, void *);
87 static tree dfs_debug_unmarkedp (tree, int, void *);
88 static tree dfs_debug_mark (tree, void *);
89 static tree dfs_push_type_decls (tree, void *);
90 static tree dfs_push_decls (tree, void *);
91 static tree dfs_unuse_fields (tree, void *);
92 static tree add_conversions (tree, void *);
93 static int look_for_overrides_r (tree, tree);
94 static struct search_level *push_search_level (struct stack_level *,
95 struct obstack *);
96 static struct search_level *pop_search_level (struct stack_level *);
97 static tree bfs_walk (tree, tree (*) (tree, void *),
98 tree (*) (tree, int, void *), void *);
99 static tree lookup_field_queue_p (tree, int, void *);
100 static int shared_member_p (tree);
101 static tree lookup_field_r (tree, void *);
102 static tree dfs_accessible_queue_p (tree, int, void *);
103 static tree dfs_accessible_p (tree, void *);
104 static tree dfs_access_in_type (tree, void *);
105 static access_kind access_in_type (tree, tree);
106 static int protected_accessible_p (tree, tree, tree);
107 static int friend_accessible_p (tree, tree, tree);
108 static void setup_class_bindings (tree, int);
109 static int template_self_reference_p (tree, tree);
110 static tree dfs_get_pure_virtuals (tree, void *);
112 /* Allocate a level of searching. */
114 static struct search_level *
115 push_search_level (struct stack_level *stack, struct obstack *obstack)
117 struct search_level tem;
119 tem.prev = stack;
120 return push_stack_level (obstack, (char *)&tem, sizeof (tem));
123 /* Discard a level of search allocation. */
125 static struct search_level *
126 pop_search_level (struct stack_level *obstack)
128 struct search_level *stack = pop_stack_level (obstack);
130 return stack;
133 /* Variables for gathering statistics. */
134 #ifdef GATHER_STATISTICS
135 static int n_fields_searched;
136 static int n_calls_lookup_field, n_calls_lookup_field_1;
137 static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
138 static int n_calls_get_base_type;
139 static int n_outer_fields_searched;
140 static int n_contexts_saved;
141 #endif /* GATHER_STATISTICS */
144 /* Worker for lookup_base. BINFO is the binfo we are searching at,
145 BASE is the RECORD_TYPE we are searching for. ACCESS is the
146 required access checks. IS_VIRTUAL indicates if BINFO is morally
147 virtual.
149 If BINFO is of the required type, then *BINFO_PTR is examined to
150 compare with any other instance of BASE we might have already
151 discovered. *BINFO_PTR is initialized and a base_kind return value
152 indicates what kind of base was located.
154 Otherwise BINFO's bases are searched. */
156 static base_kind
157 lookup_base_r (tree binfo, tree base, base_access access,
158 bool is_virtual, /* inside a virtual part */
159 tree *binfo_ptr)
161 int i;
162 tree bases, accesses;
163 base_kind found = bk_not_base;
165 if (same_type_p (BINFO_TYPE (binfo), base))
167 /* We have found a base. Check against what we have found
168 already. */
169 found = bk_same_type;
170 if (is_virtual)
171 found = bk_via_virtual;
173 if (!*binfo_ptr)
174 *binfo_ptr = binfo;
175 else if (binfo != *binfo_ptr)
177 if (access != ba_any)
178 *binfo_ptr = NULL;
179 else if (!is_virtual)
180 /* Prefer a non-virtual base. */
181 *binfo_ptr = binfo;
182 found = bk_ambig;
185 return found;
188 bases = BINFO_BASETYPES (binfo);
189 accesses = BINFO_BASEACCESSES (binfo);
190 if (!bases)
191 return bk_not_base;
193 for (i = TREE_VEC_LENGTH (bases); i--;)
195 tree base_binfo = TREE_VEC_ELT (bases, i);
196 base_kind bk;
198 bk = lookup_base_r (base_binfo, base,
199 access,
200 is_virtual || TREE_VIA_VIRTUAL (base_binfo),
201 binfo_ptr);
203 switch (bk)
205 case bk_ambig:
206 if (access != ba_any)
207 return bk;
208 found = bk;
209 break;
211 case bk_same_type:
212 bk = bk_proper_base;
213 /* FALLTHROUGH */
214 case bk_proper_base:
215 my_friendly_assert (found == bk_not_base, 20010723);
216 found = bk;
217 break;
219 case bk_via_virtual:
220 if (found != bk_ambig)
221 found = bk;
222 break;
224 case bk_not_base:
225 break;
227 default:
228 abort ();
231 return found;
234 /* Returns true if type BASE is accessible in T. (BASE is known to be
235 a base class of T.) */
237 bool
238 accessible_base_p (tree t, tree base)
240 tree decl;
242 /* [class.access.base]
244 A base class is said to be accessible if an invented public
245 member of the base class is accessible. */
246 /* Rather than inventing a public member, we use the implicit
247 public typedef created in the scope of every class. */
248 decl = TYPE_FIELDS (base);
249 while (!DECL_SELF_REFERENCE_P (decl))
250 decl = TREE_CHAIN (decl);
251 while (ANON_AGGR_TYPE_P (t))
252 t = TYPE_CONTEXT (t);
253 return accessible_p (t, decl);
256 /* Lookup BASE in the hierarchy dominated by T. Do access checking as
257 ACCESS specifies. Return the binfo we discover. If KIND_PTR is
258 non-NULL, fill with information about what kind of base we
259 discovered.
261 If the base is inaccessible, or ambiguous, and the ba_quiet bit is
262 not set in ACCESS, then an error is issued and error_mark_node is
263 returned. If the ba_quiet bit is set, then no error is issued and
264 NULL_TREE is returned. */
266 tree
267 lookup_base (tree t, tree base, base_access access, base_kind *kind_ptr)
269 tree binfo = NULL; /* The binfo we've found so far. */
270 tree t_binfo = NULL;
271 base_kind bk;
273 if (t == error_mark_node || base == error_mark_node)
275 if (kind_ptr)
276 *kind_ptr = bk_not_base;
277 return error_mark_node;
279 my_friendly_assert (TYPE_P (base), 20011127);
281 if (!TYPE_P (t))
283 t_binfo = t;
284 t = BINFO_TYPE (t);
286 else
287 t_binfo = TYPE_BINFO (t);
289 /* Ensure that the types are instantiated. */
290 t = complete_type (TYPE_MAIN_VARIANT (t));
291 base = complete_type (TYPE_MAIN_VARIANT (base));
293 bk = lookup_base_r (t_binfo, base, access, 0, &binfo);
295 /* Check that the base is unambiguous and accessible. */
296 if (access != ba_any)
297 switch (bk)
299 case bk_not_base:
300 break;
302 case bk_ambig:
303 binfo = NULL_TREE;
304 if (!(access & ba_quiet))
306 error ("`%T' is an ambiguous base of `%T'", base, t);
307 binfo = error_mark_node;
309 break;
311 default:
312 if ((access & ~ba_quiet) != ba_ignore
313 /* If BASE is incomplete, then BASE and TYPE are probably
314 the same, in which case BASE is accessible. If they
315 are not the same, then TYPE is invalid. In that case,
316 there's no need to issue another error here, and
317 there's no implicit typedef to use in the code that
318 follows, so we skip the check. */
319 && COMPLETE_TYPE_P (base)
320 && !accessible_base_p (t, base))
322 if (!(access & ba_quiet))
324 error ("`%T' is an inaccessible base of `%T'", base, t);
325 binfo = error_mark_node;
327 else
328 binfo = NULL_TREE;
329 bk = bk_inaccessible;
331 break;
334 if (kind_ptr)
335 *kind_ptr = bk;
337 return binfo;
340 /* Worker function for get_dynamic_cast_base_type. */
342 static int
343 dynamic_cast_base_recurse (tree subtype, tree binfo, bool is_via_virtual,
344 tree *offset_ptr)
346 tree binfos, accesses;
347 int i, n_baselinks;
348 int worst = -2;
350 if (BINFO_TYPE (binfo) == subtype)
352 if (is_via_virtual)
353 return -1;
354 else
356 *offset_ptr = BINFO_OFFSET (binfo);
357 return 0;
361 binfos = BINFO_BASETYPES (binfo);
362 accesses = BINFO_BASEACCESSES (binfo);
363 n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
364 for (i = 0; i < n_baselinks; i++)
366 tree base_binfo = TREE_VEC_ELT (binfos, i);
367 tree base_access = TREE_VEC_ELT (accesses, i);
368 int rval;
370 if (base_access != access_public_node)
371 continue;
372 rval = dynamic_cast_base_recurse
373 (subtype, base_binfo,
374 is_via_virtual || TREE_VIA_VIRTUAL (base_binfo), offset_ptr);
375 if (worst == -2)
376 worst = rval;
377 else if (rval >= 0)
378 worst = worst >= 0 ? -3 : worst;
379 else if (rval == -1)
380 worst = -1;
381 else if (rval == -3 && worst != -1)
382 worst = -3;
384 return worst;
387 /* The dynamic cast runtime needs a hint about how the static SUBTYPE type
388 started from is related to the required TARGET type, in order to optimize
389 the inheritance graph search. This information is independent of the
390 current context, and ignores private paths, hence get_base_distance is
391 inappropriate. Return a TREE specifying the base offset, BOFF.
392 BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
393 and there are no public virtual SUBTYPE bases.
394 BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
395 BOFF == -2, SUBTYPE is not a public base.
396 BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
398 tree
399 get_dynamic_cast_base_type (tree subtype, tree target)
401 tree offset = NULL_TREE;
402 int boff = dynamic_cast_base_recurse (subtype, TYPE_BINFO (target),
403 false, &offset);
405 if (!boff)
406 return offset;
407 offset = build_int_2 (boff, -1);
408 TREE_TYPE (offset) = ssizetype;
409 return offset;
412 /* Search for a member with name NAME in a multiple inheritance
413 lattice specified by TYPE. If it does not exist, return NULL_TREE.
414 If the member is ambiguously referenced, return `error_mark_node'.
415 Otherwise, return a DECL with the indicated name. If WANT_TYPE is
416 true, type declarations are preferred. */
418 /* Do a 1-level search for NAME as a member of TYPE. The caller must
419 figure out whether it can access this field. (Since it is only one
420 level, this is reasonable.) */
422 tree
423 lookup_field_1 (tree type, tree name, bool want_type)
425 tree field;
427 if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
428 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
429 || TREE_CODE (type) == TYPENAME_TYPE)
430 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
431 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
432 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
433 the code often worked even when we treated the index as a list
434 of fields!)
435 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
436 return NULL_TREE;
438 if (TYPE_NAME (type)
439 && DECL_LANG_SPECIFIC (TYPE_NAME (type))
440 && DECL_SORTED_FIELDS (TYPE_NAME (type)))
442 tree *fields = &DECL_SORTED_FIELDS (TYPE_NAME (type))->elts[0];
443 int lo = 0, hi = DECL_SORTED_FIELDS (TYPE_NAME (type))->len;
444 int i;
446 while (lo < hi)
448 i = (lo + hi) / 2;
450 #ifdef GATHER_STATISTICS
451 n_fields_searched++;
452 #endif /* GATHER_STATISTICS */
454 if (DECL_NAME (fields[i]) > name)
455 hi = i;
456 else if (DECL_NAME (fields[i]) < name)
457 lo = i + 1;
458 else
460 field = NULL_TREE;
462 /* We might have a nested class and a field with the
463 same name; we sorted them appropriately via
464 field_decl_cmp, so just look for the first or last
465 field with this name. */
466 if (want_type)
469 field = fields[i--];
470 while (i >= lo && DECL_NAME (fields[i]) == name);
471 if (TREE_CODE (field) != TYPE_DECL
472 && !DECL_CLASS_TEMPLATE_P (field))
473 field = NULL_TREE;
475 else
478 field = fields[i++];
479 while (i < hi && DECL_NAME (fields[i]) == name);
481 return field;
484 return NULL_TREE;
487 field = TYPE_FIELDS (type);
489 #ifdef GATHER_STATISTICS
490 n_calls_lookup_field_1++;
491 #endif /* GATHER_STATISTICS */
492 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
494 #ifdef GATHER_STATISTICS
495 n_fields_searched++;
496 #endif /* GATHER_STATISTICS */
497 my_friendly_assert (DECL_P (field), 0);
498 if (DECL_NAME (field) == NULL_TREE
499 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
501 tree temp = lookup_field_1 (TREE_TYPE (field), name, want_type);
502 if (temp)
503 return temp;
505 if (TREE_CODE (field) == USING_DECL)
506 /* For now, we're just treating member using declarations as
507 old ARM-style access declarations. Thus, there's no reason
508 to return a USING_DECL, and the rest of the compiler can't
509 handle it. Once the class is defined, these are purged
510 from TYPE_FIELDS anyhow; see handle_using_decl. */
511 continue;
513 if (DECL_NAME (field) == name
514 && (!want_type
515 || TREE_CODE (field) == TYPE_DECL
516 || DECL_CLASS_TEMPLATE_P (field)))
517 return field;
519 /* Not found. */
520 if (name == vptr_identifier)
522 /* Give the user what s/he thinks s/he wants. */
523 if (TYPE_POLYMORPHIC_P (type))
524 return TYPE_VFIELD (type);
526 return NULL_TREE;
529 /* There are a number of cases we need to be aware of here:
530 current_class_type current_function_decl
531 global NULL NULL
532 fn-local NULL SET
533 class-local SET NULL
534 class->fn SET SET
535 fn->class SET SET
537 Those last two make life interesting. If we're in a function which is
538 itself inside a class, we need decls to go into the fn's decls (our
539 second case below). But if we're in a class and the class itself is
540 inside a function, we need decls to go into the decls for the class. To
541 achieve this last goal, we must see if, when both current_class_ptr and
542 current_function_decl are set, the class was declared inside that
543 function. If so, we know to put the decls into the class's scope. */
545 tree
546 current_scope (void)
548 if (current_function_decl == NULL_TREE)
549 return current_class_type;
550 if (current_class_type == NULL_TREE)
551 return current_function_decl;
552 if ((DECL_FUNCTION_MEMBER_P (current_function_decl)
553 && same_type_p (DECL_CONTEXT (current_function_decl),
554 current_class_type))
555 || (DECL_FRIEND_CONTEXT (current_function_decl)
556 && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
557 current_class_type)))
558 return current_function_decl;
560 return current_class_type;
563 /* Returns nonzero if we are currently in a function scope. Note
564 that this function returns zero if we are within a local class, but
565 not within a member function body of the local class. */
568 at_function_scope_p (void)
570 tree cs = current_scope ();
571 return cs && TREE_CODE (cs) == FUNCTION_DECL;
574 /* Returns true if the innermost active scope is a class scope. */
576 bool
577 at_class_scope_p (void)
579 tree cs = current_scope ();
580 return cs && TYPE_P (cs);
583 /* Returns true if the innermost active scope is a namespace scope. */
585 bool
586 at_namespace_scope_p (void)
588 /* We are in a namespace scope if we are not it a class scope or a
589 function scope. */
590 return !current_scope();
593 /* Return the scope of DECL, as appropriate when doing name-lookup. */
595 tree
596 context_for_name_lookup (tree decl)
598 /* [class.union]
600 For the purposes of name lookup, after the anonymous union
601 definition, the members of the anonymous union are considered to
602 have been defined in the scope in which the anonymous union is
603 declared. */
604 tree context = DECL_CONTEXT (decl);
606 while (context && TYPE_P (context) && ANON_AGGR_TYPE_P (context))
607 context = TYPE_CONTEXT (context);
608 if (!context)
609 context = global_namespace;
611 return context;
614 /* The accessibility routines use BINFO_ACCESS for scratch space
615 during the computation of the accessibility of some declaration. */
617 #define BINFO_ACCESS(NODE) \
618 ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
620 /* Set the access associated with NODE to ACCESS. */
622 #define SET_BINFO_ACCESS(NODE, ACCESS) \
623 ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
624 (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
626 /* Called from access_in_type via dfs_walk. Calculate the access to
627 DATA (which is really a DECL) in BINFO. */
629 static tree
630 dfs_access_in_type (tree binfo, void *data)
632 tree decl = (tree) data;
633 tree type = BINFO_TYPE (binfo);
634 access_kind access = ak_none;
636 if (context_for_name_lookup (decl) == type)
638 /* If we have descended to the scope of DECL, just note the
639 appropriate access. */
640 if (TREE_PRIVATE (decl))
641 access = ak_private;
642 else if (TREE_PROTECTED (decl))
643 access = ak_protected;
644 else
645 access = ak_public;
647 else
649 /* First, check for an access-declaration that gives us more
650 access to the DECL. The CONST_DECL for an enumeration
651 constant will not have DECL_LANG_SPECIFIC, and thus no
652 DECL_ACCESS. */
653 if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
655 tree decl_access = purpose_member (type, DECL_ACCESS (decl));
657 if (decl_access)
659 decl_access = TREE_VALUE (decl_access);
661 if (decl_access == access_public_node)
662 access = ak_public;
663 else if (decl_access == access_protected_node)
664 access = ak_protected;
665 else if (decl_access == access_private_node)
666 access = ak_private;
667 else
668 my_friendly_assert (false, 20030217);
672 if (!access)
674 int i;
675 int n_baselinks;
676 tree binfos, accesses;
678 /* Otherwise, scan our baseclasses, and pick the most favorable
679 access. */
680 binfos = BINFO_BASETYPES (binfo);
681 accesses = BINFO_BASEACCESSES (binfo);
682 n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
683 for (i = 0; i < n_baselinks; ++i)
685 tree base_binfo = TREE_VEC_ELT (binfos, i);
686 tree base_access = TREE_VEC_ELT (accesses, i);
687 access_kind base_access_now = BINFO_ACCESS (base_binfo);
689 if (base_access_now == ak_none || base_access_now == ak_private)
690 /* If it was not accessible in the base, or only
691 accessible as a private member, we can't access it
692 all. */
693 base_access_now = ak_none;
694 else if (base_access == access_protected_node)
695 /* Public and protected members in the base become
696 protected here. */
697 base_access_now = ak_protected;
698 else if (base_access == access_private_node)
699 /* Public and protected members in the base become
700 private here. */
701 base_access_now = ak_private;
703 /* See if the new access, via this base, gives more
704 access than our previous best access. */
705 if (base_access_now != ak_none
706 && (access == ak_none || base_access_now < access))
708 access = base_access_now;
710 /* If the new access is public, we can't do better. */
711 if (access == ak_public)
712 break;
718 /* Note the access to DECL in TYPE. */
719 SET_BINFO_ACCESS (binfo, access);
721 /* Mark TYPE as visited so that if we reach it again we do not
722 duplicate our efforts here. */
723 BINFO_MARKED (binfo) = 1;
725 return NULL_TREE;
728 /* Return the access to DECL in TYPE. */
730 static access_kind
731 access_in_type (tree type, tree decl)
733 tree binfo = TYPE_BINFO (type);
735 /* We must take into account
737 [class.paths]
739 If a name can be reached by several paths through a multiple
740 inheritance graph, the access is that of the path that gives
741 most access.
743 The algorithm we use is to make a post-order depth-first traversal
744 of the base-class hierarchy. As we come up the tree, we annotate
745 each node with the most lenient access. */
746 dfs_walk_real (binfo, 0, dfs_access_in_type, unmarkedp, decl);
747 dfs_walk (binfo, dfs_unmark, markedp, 0);
749 return BINFO_ACCESS (binfo);
752 /* Called from accessible_p via dfs_walk. */
754 static tree
755 dfs_accessible_queue_p (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
757 tree binfo = BINFO_BASETYPE (derived, ix);
759 if (BINFO_MARKED (binfo))
760 return NULL_TREE;
762 /* If this class is inherited via private or protected inheritance,
763 then we can't see it, unless we are a friend of the derived class. */
764 if (BINFO_BASEACCESS (derived, ix) != access_public_node
765 && !is_friend (BINFO_TYPE (derived), current_scope ()))
766 return NULL_TREE;
768 return binfo;
771 /* Called from accessible_p via dfs_walk. */
773 static tree
774 dfs_accessible_p (tree binfo, void *data ATTRIBUTE_UNUSED)
776 access_kind access;
778 BINFO_MARKED (binfo) = 1;
779 access = BINFO_ACCESS (binfo);
780 if (access != ak_none
781 && is_friend (BINFO_TYPE (binfo), current_scope ()))
782 return binfo;
784 return NULL_TREE;
787 /* Returns nonzero if it is OK to access DECL through an object
788 indicated by BINFO in the context of DERIVED. */
790 static int
791 protected_accessible_p (tree decl, tree derived, tree binfo)
793 access_kind access;
795 /* We're checking this clause from [class.access.base]
797 m as a member of N is protected, and the reference occurs in a
798 member or friend of class N, or in a member or friend of a
799 class P derived from N, where m as a member of P is private or
800 protected.
802 Here DERIVED is a possible P and DECL is m. accessible_p will
803 iterate over various values of N, but the access to m in DERIVED
804 does not change.
806 Note that I believe that the passage above is wrong, and should read
807 "...is private or protected or public"; otherwise you get bizarre results
808 whereby a public using-decl can prevent you from accessing a protected
809 member of a base. (jason 2000/02/28) */
811 /* If DERIVED isn't derived from m's class, then it can't be a P. */
812 if (!DERIVED_FROM_P (context_for_name_lookup (decl), derived))
813 return 0;
815 access = access_in_type (derived, decl);
817 /* If m is inaccessible in DERIVED, then it's not a P. */
818 if (access == ak_none)
819 return 0;
821 /* [class.protected]
823 When a friend or a member function of a derived class references
824 a protected nonstatic member of a base class, an access check
825 applies in addition to those described earlier in clause
826 _class.access_) Except when forming a pointer to member
827 (_expr.unary.op_), the access must be through a pointer to,
828 reference to, or object of the derived class itself (or any class
829 derived from that class) (_expr.ref_). If the access is to form
830 a pointer to member, the nested-name-specifier shall name the
831 derived class (or any class derived from that class). */
832 if (DECL_NONSTATIC_MEMBER_P (decl))
834 /* We can tell through what the reference is occurring by
835 chasing BINFO up to the root. */
836 tree t = binfo;
837 while (BINFO_INHERITANCE_CHAIN (t))
838 t = BINFO_INHERITANCE_CHAIN (t);
840 if (!DERIVED_FROM_P (derived, BINFO_TYPE (t)))
841 return 0;
844 return 1;
847 /* Returns nonzero if SCOPE is a friend of a type which would be able
848 to access DECL through the object indicated by BINFO. */
850 static int
851 friend_accessible_p (tree scope, tree decl, tree binfo)
853 tree befriending_classes;
854 tree t;
856 if (!scope)
857 return 0;
859 if (TREE_CODE (scope) == FUNCTION_DECL
860 || DECL_FUNCTION_TEMPLATE_P (scope))
861 befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
862 else if (TYPE_P (scope))
863 befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
864 else
865 return 0;
867 for (t = befriending_classes; t; t = TREE_CHAIN (t))
868 if (protected_accessible_p (decl, TREE_VALUE (t), binfo))
869 return 1;
871 /* Nested classes are implicitly friends of their enclosing types, as
872 per core issue 45 (this is a change from the standard). */
873 if (TYPE_P (scope))
874 for (t = TYPE_CONTEXT (scope); t && TYPE_P (t); t = TYPE_CONTEXT (t))
875 if (protected_accessible_p (decl, t, binfo))
876 return 1;
878 if (TREE_CODE (scope) == FUNCTION_DECL
879 || DECL_FUNCTION_TEMPLATE_P (scope))
881 /* Perhaps this SCOPE is a member of a class which is a
882 friend. */
883 if (DECL_CLASS_SCOPE_P (decl)
884 && friend_accessible_p (DECL_CONTEXT (scope), decl, binfo))
885 return 1;
887 /* Or an instantiation of something which is a friend. */
888 if (DECL_TEMPLATE_INFO (scope))
889 return friend_accessible_p (DECL_TI_TEMPLATE (scope), decl, binfo);
891 else if (CLASSTYPE_TEMPLATE_INFO (scope))
892 return friend_accessible_p (CLASSTYPE_TI_TEMPLATE (scope), decl, binfo);
894 return 0;
897 /* DECL is a declaration from a base class of TYPE, which was the
898 class used to name DECL. Return nonzero if, in the current
899 context, DECL is accessible. If TYPE is actually a BINFO node,
900 then we can tell in what context the access is occurring by looking
901 at the most derived class along the path indicated by BINFO. */
903 int
904 accessible_p (tree type, tree decl)
906 tree binfo;
907 tree t;
908 access_kind access;
910 /* Nonzero if it's OK to access DECL if it has protected
911 accessibility in TYPE. */
912 int protected_ok = 0;
914 /* If this declaration is in a block or namespace scope, there's no
915 access control. */
916 if (!TYPE_P (context_for_name_lookup (decl)))
917 return 1;
919 /* In a template declaration, we cannot be sure whether the
920 particular specialization that is instantiated will be a friend
921 or not. Therefore, all access checks are deferred until
922 instantiation. */
923 if (processing_template_decl)
924 return 1;
926 if (!TYPE_P (type))
928 binfo = type;
929 type = BINFO_TYPE (type);
931 else
932 binfo = TYPE_BINFO (type);
934 /* [class.access.base]
936 A member m is accessible when named in class N if
938 --m as a member of N is public, or
940 --m as a member of N is private, and the reference occurs in a
941 member or friend of class N, or
943 --m as a member of N is protected, and the reference occurs in a
944 member or friend of class N, or in a member or friend of a
945 class P derived from N, where m as a member of P is private or
946 protected, or
948 --there exists a base class B of N that is accessible at the point
949 of reference, and m is accessible when named in class B.
951 We walk the base class hierarchy, checking these conditions. */
953 /* Figure out where the reference is occurring. Check to see if
954 DECL is private or protected in this scope, since that will
955 determine whether protected access is allowed. */
956 if (current_class_type)
957 protected_ok = protected_accessible_p (decl, current_class_type, binfo);
959 /* Now, loop through the classes of which we are a friend. */
960 if (!protected_ok)
961 protected_ok = friend_accessible_p (current_scope (), decl, binfo);
963 /* Standardize the binfo that access_in_type will use. We don't
964 need to know what path was chosen from this point onwards. */
965 binfo = TYPE_BINFO (type);
967 /* Compute the accessibility of DECL in the class hierarchy
968 dominated by type. */
969 access = access_in_type (type, decl);
970 if (access == ak_public
971 || (access == ak_protected && protected_ok))
972 return 1;
973 else
975 /* Walk the hierarchy again, looking for a base class that allows
976 access. */
977 t = dfs_walk (binfo, dfs_accessible_p, dfs_accessible_queue_p, 0);
978 /* Clear any mark bits. Note that we have to walk the whole tree
979 here, since we have aborted the previous walk from some point
980 deep in the tree. */
981 dfs_walk (binfo, dfs_unmark, 0, 0);
983 return t != NULL_TREE;
987 struct lookup_field_info {
988 /* The type in which we're looking. */
989 tree type;
990 /* The name of the field for which we're looking. */
991 tree name;
992 /* If non-NULL, the current result of the lookup. */
993 tree rval;
994 /* The path to RVAL. */
995 tree rval_binfo;
996 /* If non-NULL, the lookup was ambiguous, and this is a list of the
997 candidates. */
998 tree ambiguous;
999 /* If nonzero, we are looking for types, not data members. */
1000 int want_type;
1001 /* If something went wrong, a message indicating what. */
1002 const char *errstr;
1005 /* Returns nonzero if BINFO is not hidden by the value found by the
1006 lookup so far. If BINFO is hidden, then there's no need to look in
1007 it. DATA is really a struct lookup_field_info. Called from
1008 lookup_field via breadth_first_search. */
1010 static tree
1011 lookup_field_queue_p (tree derived, int ix, void *data)
1013 tree binfo = BINFO_BASETYPE (derived, ix);
1014 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1016 /* Don't look for constructors or destructors in base classes. */
1017 if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name))
1018 return NULL_TREE;
1020 /* If this base class is hidden by the best-known value so far, we
1021 don't need to look. */
1022 if (lfi->rval_binfo && original_binfo (binfo, lfi->rval_binfo))
1023 return NULL_TREE;
1025 /* If this is a dependent base, don't look in it. */
1026 if (BINFO_DEPENDENT_BASE_P (binfo))
1027 return NULL_TREE;
1029 return binfo;
1032 /* Within the scope of a template class, you can refer to the to the
1033 current specialization with the name of the template itself. For
1034 example:
1036 template <typename T> struct S { S* sp; }
1038 Returns nonzero if DECL is such a declaration in a class TYPE. */
1040 static int
1041 template_self_reference_p (tree type, tree decl)
1043 return (CLASSTYPE_USE_TEMPLATE (type)
1044 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (type))
1045 && TREE_CODE (decl) == TYPE_DECL
1046 && DECL_ARTIFICIAL (decl)
1047 && DECL_NAME (decl) == constructor_name (type));
1051 /* Nonzero for a class member means that it is shared between all objects
1052 of that class.
1054 [class.member.lookup]:If the resulting set of declarations are not all
1055 from sub-objects of the same type, or the set has a nonstatic member
1056 and includes members from distinct sub-objects, there is an ambiguity
1057 and the program is ill-formed.
1059 This function checks that T contains no nonstatic members. */
1061 static int
1062 shared_member_p (tree t)
1064 if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == TYPE_DECL \
1065 || TREE_CODE (t) == CONST_DECL)
1066 return 1;
1067 if (is_overloaded_fn (t))
1069 for (; t; t = OVL_NEXT (t))
1071 tree fn = OVL_CURRENT (t);
1072 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
1073 return 0;
1075 return 1;
1077 return 0;
1080 /* DATA is really a struct lookup_field_info. Look for a field with
1081 the name indicated there in BINFO. If this function returns a
1082 non-NULL value it is the result of the lookup. Called from
1083 lookup_field via breadth_first_search. */
1085 static tree
1086 lookup_field_r (tree binfo, void *data)
1088 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1089 tree type = BINFO_TYPE (binfo);
1090 tree nval = NULL_TREE;
1092 /* First, look for a function. There can't be a function and a data
1093 member with the same name, and if there's a function and a type
1094 with the same name, the type is hidden by the function. */
1095 if (!lfi->want_type)
1097 int idx = lookup_fnfields_1 (type, lfi->name);
1098 if (idx >= 0)
1099 nval = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), idx);
1102 if (!nval)
1103 /* Look for a data member or type. */
1104 nval = lookup_field_1 (type, lfi->name, lfi->want_type);
1106 /* If there is no declaration with the indicated name in this type,
1107 then there's nothing to do. */
1108 if (!nval)
1109 return NULL_TREE;
1111 /* If we're looking up a type (as with an elaborated type specifier)
1112 we ignore all non-types we find. */
1113 if (lfi->want_type && TREE_CODE (nval) != TYPE_DECL
1114 && !DECL_CLASS_TEMPLATE_P (nval))
1116 if (lfi->name == TYPE_IDENTIFIER (type))
1118 /* If the aggregate has no user defined constructors, we allow
1119 it to have fields with the same name as the enclosing type.
1120 If we are looking for that name, find the corresponding
1121 TYPE_DECL. */
1122 for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval))
1123 if (DECL_NAME (nval) == lfi->name
1124 && TREE_CODE (nval) == TYPE_DECL)
1125 break;
1127 else
1128 nval = NULL_TREE;
1129 if (!nval && CLASSTYPE_NESTED_UTDS (type) != NULL)
1131 binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type),
1132 lfi->name);
1133 if (e != NULL)
1134 nval = TYPE_MAIN_DECL (e->type);
1135 else
1136 return NULL_TREE;
1140 /* You must name a template base class with a template-id. */
1141 if (!same_type_p (type, lfi->type)
1142 && template_self_reference_p (type, nval))
1143 return NULL_TREE;
1145 /* If the lookup already found a match, and the new value doesn't
1146 hide the old one, we might have an ambiguity. */
1147 if (lfi->rval_binfo && !original_binfo (lfi->rval_binfo, binfo))
1149 if (nval == lfi->rval && shared_member_p (nval))
1150 /* The two things are really the same. */
1152 else if (original_binfo (binfo, lfi->rval_binfo))
1153 /* The previous value hides the new one. */
1155 else
1157 /* We have a real ambiguity. We keep a chain of all the
1158 candidates. */
1159 if (!lfi->ambiguous && lfi->rval)
1161 /* This is the first time we noticed an ambiguity. Add
1162 what we previously thought was a reasonable candidate
1163 to the list. */
1164 lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
1165 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1168 /* Add the new value. */
1169 lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
1170 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1171 lfi->errstr = "request for member `%D' is ambiguous";
1174 else
1176 lfi->rval = nval;
1177 lfi->rval_binfo = binfo;
1180 return NULL_TREE;
1183 /* Return a "baselink" which BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1184 BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1185 FUNCTIONS, and OPTYPE respectively. */
1187 tree
1188 build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
1190 tree baselink;
1192 my_friendly_assert (TREE_CODE (functions) == FUNCTION_DECL
1193 || TREE_CODE (functions) == TEMPLATE_DECL
1194 || TREE_CODE (functions) == TEMPLATE_ID_EXPR
1195 || TREE_CODE (functions) == OVERLOAD,
1196 20020730);
1197 my_friendly_assert (!optype || TYPE_P (optype), 20020730);
1198 my_friendly_assert (TREE_TYPE (functions), 20020805);
1200 baselink = make_node (BASELINK);
1201 TREE_TYPE (baselink) = TREE_TYPE (functions);
1202 BASELINK_BINFO (baselink) = binfo;
1203 BASELINK_ACCESS_BINFO (baselink) = access_binfo;
1204 BASELINK_FUNCTIONS (baselink) = functions;
1205 BASELINK_OPTYPE (baselink) = optype;
1207 return baselink;
1210 /* Look for a member named NAME in an inheritance lattice dominated by
1211 XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
1212 is 1, we enforce accessibility. If PROTECT is zero, then, for an
1213 ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
1214 messages about inaccessible or ambiguous lookup. If PROTECT is 2,
1215 we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1216 TREE_VALUEs are the list of ambiguous candidates.
1218 WANT_TYPE is 1 when we should only return TYPE_DECLs.
1220 If nothing can be found return NULL_TREE and do not issue an error. */
1222 tree
1223 lookup_member (tree xbasetype, tree name, int protect, bool want_type)
1225 tree rval, rval_binfo = NULL_TREE;
1226 tree type = NULL_TREE, basetype_path = NULL_TREE;
1227 struct lookup_field_info lfi;
1229 /* rval_binfo is the binfo associated with the found member, note,
1230 this can be set with useful information, even when rval is not
1231 set, because it must deal with ALL members, not just non-function
1232 members. It is used for ambiguity checking and the hidden
1233 checks. Whereas rval is only set if a proper (not hidden)
1234 non-function member is found. */
1236 const char *errstr = 0;
1238 my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 20030624);
1240 if (TREE_CODE (xbasetype) == TREE_VEC)
1242 type = BINFO_TYPE (xbasetype);
1243 basetype_path = xbasetype;
1245 else
1247 my_friendly_assert (IS_AGGR_TYPE_CODE (TREE_CODE (xbasetype)), 20030624);
1248 type = xbasetype;
1249 basetype_path = TYPE_BINFO (type);
1250 my_friendly_assert (!BINFO_INHERITANCE_CHAIN (basetype_path), 980827);
1253 if (type == current_class_type && TYPE_BEING_DEFINED (type)
1254 && IDENTIFIER_CLASS_VALUE (name))
1256 tree field = IDENTIFIER_CLASS_VALUE (name);
1257 if (! is_overloaded_fn (field)
1258 && ! (want_type && TREE_CODE (field) != TYPE_DECL))
1259 /* We're in the scope of this class, and the value has already
1260 been looked up. Just return the cached value. */
1261 return field;
1264 complete_type (type);
1266 #ifdef GATHER_STATISTICS
1267 n_calls_lookup_field++;
1268 #endif /* GATHER_STATISTICS */
1270 memset (&lfi, 0, sizeof (lfi));
1271 lfi.type = type;
1272 lfi.name = name;
1273 lfi.want_type = want_type;
1274 bfs_walk (basetype_path, &lookup_field_r, &lookup_field_queue_p, &lfi);
1275 rval = lfi.rval;
1276 rval_binfo = lfi.rval_binfo;
1277 if (rval_binfo)
1278 type = BINFO_TYPE (rval_binfo);
1279 errstr = lfi.errstr;
1281 /* If we are not interested in ambiguities, don't report them;
1282 just return NULL_TREE. */
1283 if (!protect && lfi.ambiguous)
1284 return NULL_TREE;
1286 if (protect == 2)
1288 if (lfi.ambiguous)
1289 return lfi.ambiguous;
1290 else
1291 protect = 0;
1294 /* [class.access]
1296 In the case of overloaded function names, access control is
1297 applied to the function selected by overloaded resolution. */
1298 if (rval && protect && !is_overloaded_fn (rval))
1299 perform_or_defer_access_check (basetype_path, rval);
1301 if (errstr && protect)
1303 error (errstr, name, type);
1304 if (lfi.ambiguous)
1305 print_candidates (lfi.ambiguous);
1306 rval = error_mark_node;
1309 if (rval && is_overloaded_fn (rval))
1310 rval = build_baselink (rval_binfo, basetype_path, rval,
1311 (IDENTIFIER_TYPENAME_P (name)
1312 ? TREE_TYPE (name): NULL_TREE));
1313 return rval;
1316 /* Like lookup_member, except that if we find a function member we
1317 return NULL_TREE. */
1319 tree
1320 lookup_field (tree xbasetype, tree name, int protect, bool want_type)
1322 tree rval = lookup_member (xbasetype, name, protect, want_type);
1324 /* Ignore functions. */
1325 if (rval && BASELINK_P (rval))
1326 return NULL_TREE;
1328 return rval;
1331 /* Like lookup_member, except that if we find a non-function member we
1332 return NULL_TREE. */
1334 tree
1335 lookup_fnfields (tree xbasetype, tree name, int protect)
1337 tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false);
1339 /* Ignore non-functions. */
1340 if (rval && !BASELINK_P (rval))
1341 return NULL_TREE;
1343 return rval;
1346 /* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
1347 corresponding to "operator TYPE ()", or -1 if there is no such
1348 operator. Only CLASS_TYPE itself is searched; this routine does
1349 not scan the base classes of CLASS_TYPE. */
1351 static int
1352 lookup_conversion_operator (tree class_type, tree type)
1354 int pass;
1355 int i;
1357 tree methods = CLASSTYPE_METHOD_VEC (class_type);
1359 for (pass = 0; pass < 2; ++pass)
1360 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1361 i < TREE_VEC_LENGTH (methods);
1362 ++i)
1364 tree fn = TREE_VEC_ELT (methods, i);
1365 /* The size of the vector may have some unused slots at the
1366 end. */
1367 if (!fn)
1368 break;
1370 /* All the conversion operators come near the beginning of the
1371 class. Therefore, if FN is not a conversion operator, there
1372 is no matching conversion operator in CLASS_TYPE. */
1373 fn = OVL_CURRENT (fn);
1374 if (!DECL_CONV_FN_P (fn))
1375 break;
1377 if (pass == 0)
1379 /* On the first pass we only consider exact matches. If
1380 the types match, this slot is the one where the right
1381 conversion operators can be found. */
1382 if (TREE_CODE (fn) != TEMPLATE_DECL
1383 && same_type_p (DECL_CONV_FN_TYPE (fn), type))
1384 return i;
1386 else
1388 /* On the second pass we look for template conversion
1389 operators. It may be possible to instantiate the
1390 template to get the type desired. All of the template
1391 conversion operators share a slot. By looking for
1392 templates second we ensure that specializations are
1393 preferred over templates. */
1394 if (TREE_CODE (fn) == TEMPLATE_DECL)
1395 return i;
1399 return -1;
1402 /* TYPE is a class type. Return the index of the fields within
1403 the method vector with name NAME, or -1 is no such field exists. */
1406 lookup_fnfields_1 (tree type, tree name)
1408 tree method_vec;
1409 tree *methods;
1410 tree tmp;
1411 int i;
1412 int len;
1414 if (!CLASS_TYPE_P (type))
1415 return -1;
1417 method_vec = CLASSTYPE_METHOD_VEC (type);
1419 if (!method_vec)
1420 return -1;
1422 methods = &TREE_VEC_ELT (method_vec, 0);
1423 len = TREE_VEC_LENGTH (method_vec);
1425 #ifdef GATHER_STATISTICS
1426 n_calls_lookup_fnfields_1++;
1427 #endif /* GATHER_STATISTICS */
1429 /* Constructors are first... */
1430 if (name == ctor_identifier)
1431 return (methods[CLASSTYPE_CONSTRUCTOR_SLOT]
1432 ? CLASSTYPE_CONSTRUCTOR_SLOT : -1);
1433 /* and destructors are second. */
1434 if (name == dtor_identifier)
1435 return (methods[CLASSTYPE_DESTRUCTOR_SLOT]
1436 ? CLASSTYPE_DESTRUCTOR_SLOT : -1);
1437 if (IDENTIFIER_TYPENAME_P (name))
1438 return lookup_conversion_operator (type, TREE_TYPE (name));
1440 /* Skip the conversion operators. */
1441 i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1442 while (i < len && methods[i] && DECL_CONV_FN_P (OVL_CURRENT (methods[i])))
1443 i++;
1445 /* If the type is complete, use binary search. */
1446 if (COMPLETE_TYPE_P (type))
1448 int lo = i;
1449 int hi = len;
1451 while (lo < hi)
1453 i = (lo + hi) / 2;
1455 #ifdef GATHER_STATISTICS
1456 n_outer_fields_searched++;
1457 #endif /* GATHER_STATISTICS */
1459 tmp = methods[i];
1460 /* This slot may be empty; we allocate more slots than we
1461 need. In that case, the entry we're looking for is
1462 closer to the beginning of the list. */
1463 if (tmp)
1464 tmp = DECL_NAME (OVL_CURRENT (tmp));
1465 if (!tmp || tmp > name)
1466 hi = i;
1467 else if (tmp < name)
1468 lo = i + 1;
1469 else
1470 return i;
1473 else
1474 for (; i < len && methods[i]; ++i)
1476 #ifdef GATHER_STATISTICS
1477 n_outer_fields_searched++;
1478 #endif /* GATHER_STATISTICS */
1480 tmp = OVL_CURRENT (methods[i]);
1481 if (DECL_NAME (tmp) == name)
1482 return i;
1485 return -1;
1488 /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
1489 the class or namespace used to qualify the name. CONTEXT_CLASS is
1490 the class corresponding to the object in which DECL will be used.
1491 Return a possibly modified version of DECL that takes into account
1492 the CONTEXT_CLASS.
1494 In particular, consider an expression like `B::m' in the context of
1495 a derived class `D'. If `B::m' has been resolved to a BASELINK,
1496 then the most derived class indicated by the BASELINK_BINFO will be
1497 `B', not `D'. This function makes that adjustment. */
1499 tree
1500 adjust_result_of_qualified_name_lookup (tree decl,
1501 tree qualifying_scope,
1502 tree context_class)
1504 if (context_class && CLASS_TYPE_P (qualifying_scope)
1505 && DERIVED_FROM_P (qualifying_scope, context_class)
1506 && BASELINK_P (decl))
1508 tree base;
1510 my_friendly_assert (CLASS_TYPE_P (context_class), 20020808);
1512 /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
1513 Because we do not yet know which function will be chosen by
1514 overload resolution, we cannot yet check either accessibility
1515 or ambiguity -- in either case, the choice of a static member
1516 function might make the usage valid. */
1517 base = lookup_base (context_class, qualifying_scope,
1518 ba_ignore | ba_quiet, NULL);
1519 if (base)
1521 BASELINK_ACCESS_BINFO (decl) = base;
1522 BASELINK_BINFO (decl)
1523 = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
1524 ba_ignore | ba_quiet,
1525 NULL);
1529 return decl;
1533 /* Walk the class hierarchy dominated by TYPE. FN is called for each
1534 type in the hierarchy, in a breadth-first preorder traversal.
1535 If it ever returns a non-NULL value, that value is immediately
1536 returned and the walk is terminated. At each node, FN is passed a
1537 BINFO indicating the path from the currently visited base-class to
1538 TYPE. Before each base-class is walked QFN is called. If the
1539 value returned is nonzero, the base-class is walked; otherwise it
1540 is not. If QFN is NULL, it is treated as a function which always
1541 returns 1. Both FN and QFN are passed the DATA whenever they are
1542 called.
1544 Implementation notes: Uses a circular queue, which starts off on
1545 the stack but gets moved to the malloc arena if it needs to be
1546 enlarged. The underflow and overflow conditions are
1547 indistinguishable except by context: if head == tail and we just
1548 moved the head pointer, the queue is empty, but if we just moved
1549 the tail pointer, the queue is full.
1550 Start with enough room for ten concurrent base classes. That
1551 will be enough for most hierarchies. */
1552 #define BFS_WALK_INITIAL_QUEUE_SIZE 10
1554 static tree
1555 bfs_walk (tree binfo,
1556 tree (*fn) (tree, void *),
1557 tree (*qfn) (tree, int, void *),
1558 void *data)
1560 tree rval = NULL_TREE;
1562 tree bases_initial[BFS_WALK_INITIAL_QUEUE_SIZE];
1563 /* A circular queue of the base classes of BINFO. These will be
1564 built up in breadth-first order, except where QFN prunes the
1565 search. */
1566 size_t head, tail;
1567 size_t base_buffer_size = BFS_WALK_INITIAL_QUEUE_SIZE;
1568 tree *base_buffer = bases_initial;
1570 head = tail = 0;
1571 base_buffer[tail++] = binfo;
1573 while (head != tail)
1575 int n_bases, ix;
1576 tree binfo = base_buffer[head++];
1577 if (head == base_buffer_size)
1578 head = 0;
1580 /* Is this the one we're looking for? If so, we're done. */
1581 rval = fn (binfo, data);
1582 if (rval)
1583 goto done;
1585 n_bases = BINFO_N_BASETYPES (binfo);
1586 for (ix = 0; ix != n_bases; ix++)
1588 tree base_binfo;
1590 if (qfn)
1591 base_binfo = (*qfn) (binfo, ix, data);
1592 else
1593 base_binfo = BINFO_BASETYPE (binfo, ix);
1595 if (base_binfo)
1597 base_buffer[tail++] = base_binfo;
1598 if (tail == base_buffer_size)
1599 tail = 0;
1600 if (tail == head)
1602 tree *new_buffer = xmalloc (2 * base_buffer_size
1603 * sizeof (tree));
1604 memcpy (&new_buffer[0], &base_buffer[0],
1605 tail * sizeof (tree));
1606 memcpy (&new_buffer[head + base_buffer_size],
1607 &base_buffer[head],
1608 (base_buffer_size - head) * sizeof (tree));
1609 if (base_buffer_size != BFS_WALK_INITIAL_QUEUE_SIZE)
1610 free (base_buffer);
1611 base_buffer = new_buffer;
1612 head += base_buffer_size;
1613 base_buffer_size *= 2;
1619 done:
1620 if (base_buffer_size != BFS_WALK_INITIAL_QUEUE_SIZE)
1621 free (base_buffer);
1622 return rval;
1625 /* Exactly like bfs_walk, except that a depth-first traversal is
1626 performed, and PREFN is called in preorder, while POSTFN is called
1627 in postorder. */
1629 tree
1630 dfs_walk_real (tree binfo,
1631 tree (*prefn) (tree, void *),
1632 tree (*postfn) (tree, void *),
1633 tree (*qfn) (tree, int, void *),
1634 void *data)
1636 tree rval = NULL_TREE;
1638 /* Call the pre-order walking function. */
1639 if (prefn)
1641 rval = (*prefn) (binfo, data);
1642 if (rval)
1643 return rval;
1646 /* Process the basetypes. */
1647 if (BINFO_BASETYPES (binfo))
1649 int i, n = TREE_VEC_LENGTH (BINFO_BASETYPES (binfo));
1650 for (i = 0; i != n; i++)
1652 tree base_binfo;
1654 if (qfn)
1655 base_binfo = (*qfn) (binfo, i, data);
1656 else
1657 base_binfo = BINFO_BASETYPE (binfo, i);
1659 if (base_binfo)
1661 rval = dfs_walk_real (base_binfo, prefn, postfn, qfn, data);
1662 if (rval)
1663 return rval;
1668 /* Call the post-order walking function. */
1669 if (postfn)
1670 rval = (*postfn) (binfo, data);
1672 return rval;
1675 /* Exactly like bfs_walk, except that a depth-first post-order traversal is
1676 performed. */
1678 tree
1679 dfs_walk (tree binfo,
1680 tree (*fn) (tree, void *),
1681 tree (*qfn) (tree, int, void *),
1682 void *data)
1684 return dfs_walk_real (binfo, 0, fn, qfn, data);
1687 /* Check that virtual overrider OVERRIDER is acceptable for base function
1688 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
1691 check_final_overrider (tree overrider, tree basefn)
1693 tree over_type = TREE_TYPE (overrider);
1694 tree base_type = TREE_TYPE (basefn);
1695 tree over_return = TREE_TYPE (over_type);
1696 tree base_return = TREE_TYPE (base_type);
1697 tree over_throw = TYPE_RAISES_EXCEPTIONS (over_type);
1698 tree base_throw = TYPE_RAISES_EXCEPTIONS (base_type);
1699 int fail = 0;
1701 if (same_type_p (base_return, over_return))
1702 /* OK */;
1703 else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
1704 || (TREE_CODE (base_return) == TREE_CODE (over_return)
1705 && POINTER_TYPE_P (base_return)))
1707 /* Potentially covariant. */
1708 unsigned base_quals, over_quals;
1710 fail = !POINTER_TYPE_P (base_return);
1711 if (!fail)
1713 fail = cp_type_quals (base_return) != cp_type_quals (over_return);
1715 base_return = TREE_TYPE (base_return);
1716 over_return = TREE_TYPE (over_return);
1718 base_quals = cp_type_quals (base_return);
1719 over_quals = cp_type_quals (over_return);
1721 if ((base_quals & over_quals) != over_quals)
1722 fail = 1;
1724 if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
1726 tree binfo = lookup_base (over_return, base_return,
1727 ba_check | ba_quiet, NULL);
1729 if (!binfo)
1730 fail = 1;
1732 else if (!pedantic
1733 && can_convert (TREE_TYPE (base_type), TREE_TYPE (over_type)))
1734 /* GNU extension, allow trivial pointer conversions such as
1735 converting to void *, or qualification conversion. */
1737 /* can_convert will permit user defined conversion from a
1738 (reference to) class type. We must reject them. */
1739 over_return = non_reference (TREE_TYPE (over_type));
1740 if (CLASS_TYPE_P (over_return))
1741 fail = 2;
1743 else
1744 fail = 2;
1746 else
1747 fail = 2;
1748 if (!fail)
1749 /* OK */;
1750 else if (IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (overrider)))
1751 return 0;
1752 else
1754 if (fail == 1)
1756 cp_error_at ("invalid covariant return type for `%#D'", overrider);
1757 cp_error_at (" overriding `%#D'", basefn);
1759 else
1761 cp_error_at ("conflicting return type specified for `%#D'",
1762 overrider);
1763 cp_error_at (" overriding `%#D'", basefn);
1765 SET_IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (overrider),
1766 DECL_CONTEXT (overrider));
1767 return 0;
1770 /* Check throw specifier is at least as strict. */
1771 if (!comp_except_specs (base_throw, over_throw, 0))
1773 if (!IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (overrider)))
1775 cp_error_at ("looser throw specifier for `%#F'", overrider);
1776 cp_error_at (" overriding `%#F'", basefn);
1777 SET_IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (overrider),
1778 DECL_CONTEXT (overrider));
1780 return 0;
1783 return 1;
1786 /* Given a class TYPE, and a function decl FNDECL, look for
1787 virtual functions in TYPE's hierarchy which FNDECL overrides.
1788 We do not look in TYPE itself, only its bases.
1790 Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
1791 find that it overrides anything.
1793 We check that every function which is overridden, is correctly
1794 overridden. */
1797 look_for_overrides (tree type, tree fndecl)
1799 tree binfo = TYPE_BINFO (type);
1800 tree basebinfos = BINFO_BASETYPES (binfo);
1801 int nbasebinfos = basebinfos ? TREE_VEC_LENGTH (basebinfos) : 0;
1802 int ix;
1803 int found = 0;
1805 for (ix = 0; ix != nbasebinfos; ix++)
1807 tree basetype = BINFO_TYPE (TREE_VEC_ELT (basebinfos, ix));
1809 if (TYPE_POLYMORPHIC_P (basetype))
1810 found += look_for_overrides_r (basetype, fndecl);
1812 return found;
1815 /* Look in TYPE for virtual functions with the same signature as
1816 FNDECL. */
1818 tree
1819 look_for_overrides_here (tree type, tree fndecl)
1821 int ix;
1823 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl))
1824 ix = CLASSTYPE_DESTRUCTOR_SLOT;
1825 else
1826 ix = lookup_fnfields_1 (type, DECL_NAME (fndecl));
1827 if (ix >= 0)
1829 tree fns = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), ix);
1831 for (; fns; fns = OVL_NEXT (fns))
1833 tree fn = OVL_CURRENT (fns);
1835 if (!DECL_VIRTUAL_P (fn))
1836 /* Not a virtual. */;
1837 else if (DECL_CONTEXT (fn) != type)
1838 /* Introduced with a using declaration. */;
1839 else if (DECL_STATIC_FUNCTION_P (fndecl))
1841 tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
1842 tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1843 if (compparms (TREE_CHAIN (btypes), dtypes))
1844 return fn;
1846 else if (same_signature_p (fndecl, fn))
1847 return fn;
1850 return NULL_TREE;
1853 /* Look in TYPE for virtual functions overridden by FNDECL. Check both
1854 TYPE itself and its bases. */
1856 static int
1857 look_for_overrides_r (tree type, tree fndecl)
1859 tree fn = look_for_overrides_here (type, fndecl);
1860 if (fn)
1862 if (DECL_STATIC_FUNCTION_P (fndecl))
1864 /* A static member function cannot match an inherited
1865 virtual member function. */
1866 cp_error_at ("`%#D' cannot be declared", fndecl);
1867 cp_error_at (" since `%#D' declared in base class", fn);
1869 else
1871 /* It's definitely virtual, even if not explicitly set. */
1872 DECL_VIRTUAL_P (fndecl) = 1;
1873 check_final_overrider (fndecl, fn);
1875 return 1;
1878 /* We failed to find one declared in this class. Look in its bases. */
1879 return look_for_overrides (type, fndecl);
1882 /* Called via dfs_walk from dfs_get_pure_virtuals. */
1884 static tree
1885 dfs_get_pure_virtuals (tree binfo, void *data)
1887 tree type = (tree) data;
1889 /* We're not interested in primary base classes; the derived class
1890 of which they are a primary base will contain the information we
1891 need. */
1892 if (!BINFO_PRIMARY_P (binfo))
1894 tree virtuals;
1896 for (virtuals = BINFO_VIRTUALS (binfo);
1897 virtuals;
1898 virtuals = TREE_CHAIN (virtuals))
1899 if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
1900 CLASSTYPE_PURE_VIRTUALS (type)
1901 = tree_cons (NULL_TREE, BV_FN (virtuals),
1902 CLASSTYPE_PURE_VIRTUALS (type));
1905 BINFO_MARKED (binfo) = 1;
1907 return NULL_TREE;
1910 /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
1912 void
1913 get_pure_virtuals (tree type)
1915 tree vbases;
1917 /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
1918 is going to be overridden. */
1919 CLASSTYPE_PURE_VIRTUALS (type) = NULL_TREE;
1920 /* Now, run through all the bases which are not primary bases, and
1921 collect the pure virtual functions. We look at the vtable in
1922 each class to determine what pure virtual functions are present.
1923 (A primary base is not interesting because the derived class of
1924 which it is a primary base will contain vtable entries for the
1925 pure virtuals in the base class. */
1926 dfs_walk (TYPE_BINFO (type), dfs_get_pure_virtuals, unmarkedp, type);
1927 dfs_walk (TYPE_BINFO (type), dfs_unmark, markedp, type);
1929 /* Put the pure virtuals in dfs order. */
1930 CLASSTYPE_PURE_VIRTUALS (type) = nreverse (CLASSTYPE_PURE_VIRTUALS (type));
1932 for (vbases = CLASSTYPE_VBASECLASSES (type);
1933 vbases;
1934 vbases = TREE_CHAIN (vbases))
1936 tree virtuals;
1938 for (virtuals = BINFO_VIRTUALS (TREE_VALUE (vbases));
1939 virtuals;
1940 virtuals = TREE_CHAIN (virtuals))
1942 tree base_fndecl = BV_FN (virtuals);
1943 if (DECL_NEEDS_FINAL_OVERRIDER_P (base_fndecl))
1944 error ("`%#D' needs a final overrider", base_fndecl);
1949 /* DEPTH-FIRST SEARCH ROUTINES. */
1951 tree
1952 markedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1954 tree binfo = BINFO_BASETYPE (derived, ix);
1956 return BINFO_MARKED (binfo) ? binfo : NULL_TREE;
1959 tree
1960 unmarkedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1962 tree binfo = BINFO_BASETYPE (derived, ix);
1964 return !BINFO_MARKED (binfo) ? binfo : NULL_TREE;
1967 static tree
1968 marked_pushdecls_p (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1970 tree binfo = BINFO_BASETYPE (derived, ix);
1972 return (!BINFO_DEPENDENT_BASE_P (binfo)
1973 && BINFO_PUSHDECLS_MARKED (binfo)) ? binfo : NULL_TREE;
1976 static tree
1977 unmarked_pushdecls_p (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
1979 tree binfo = BINFO_BASETYPE (derived, ix);
1981 return (!BINFO_DEPENDENT_BASE_P (binfo)
1982 && !BINFO_PUSHDECLS_MARKED (binfo)) ? binfo : NULL_TREE;
1985 /* The worker functions for `dfs_walk'. These do not need to
1986 test anything (vis a vis marking) if they are paired with
1987 a predicate function (above). */
1989 tree
1990 dfs_unmark (tree binfo, void *data ATTRIBUTE_UNUSED)
1992 BINFO_MARKED (binfo) = 0;
1993 return NULL_TREE;
1997 /* Debug info for C++ classes can get very large; try to avoid
1998 emitting it everywhere.
2000 Note that this optimization wins even when the target supports
2001 BINCL (if only slightly), and reduces the amount of work for the
2002 linker. */
2004 void
2005 maybe_suppress_debug_info (tree t)
2007 /* We can't do the usual TYPE_DECL_SUPPRESS_DEBUG thing with DWARF, which
2008 does not support name references between translation units. It supports
2009 symbolic references between translation units, but only within a single
2010 executable or shared library.
2012 For DWARF 2, we handle TYPE_DECL_SUPPRESS_DEBUG by pretending
2013 that the type was never defined, so we only get the members we
2014 actually define. */
2015 if (write_symbols == DWARF_DEBUG || write_symbols == NO_DEBUG)
2016 return;
2018 /* We might have set this earlier in cp_finish_decl. */
2019 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;
2021 /* If we already know how we're handling this class, handle debug info
2022 the same way. */
2023 if (CLASSTYPE_INTERFACE_KNOWN (t))
2025 if (CLASSTYPE_INTERFACE_ONLY (t))
2026 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2027 /* else don't set it. */
2029 /* If the class has a vtable, write out the debug info along with
2030 the vtable. */
2031 else if (TYPE_CONTAINS_VPTR_P (t))
2032 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2034 /* Otherwise, just emit the debug info normally. */
2037 /* Note that we want debugging information for a base class of a class
2038 whose vtable is being emitted. Normally, this would happen because
2039 calling the constructor for a derived class implies calling the
2040 constructors for all bases, which involve initializing the
2041 appropriate vptr with the vtable for the base class; but in the
2042 presence of optimization, this initialization may be optimized
2043 away, so we tell finish_vtable_vardecl that we want the debugging
2044 information anyway. */
2046 static tree
2047 dfs_debug_mark (tree binfo, void *data ATTRIBUTE_UNUSED)
2049 tree t = BINFO_TYPE (binfo);
2051 CLASSTYPE_DEBUG_REQUESTED (t) = 1;
2053 return NULL_TREE;
2056 /* Returns BINFO if we haven't already noted that we want debugging
2057 info for this base class. */
2059 static tree
2060 dfs_debug_unmarkedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
2062 tree binfo = BINFO_BASETYPE (derived, ix);
2064 return (!CLASSTYPE_DEBUG_REQUESTED (BINFO_TYPE (binfo))
2065 ? binfo : NULL_TREE);
2068 /* Write out the debugging information for TYPE, whose vtable is being
2069 emitted. Also walk through our bases and note that we want to
2070 write out information for them. This avoids the problem of not
2071 writing any debug info for intermediate basetypes whose
2072 constructors, and thus the references to their vtables, and thus
2073 the vtables themselves, were optimized away. */
2075 void
2076 note_debug_info_needed (tree type)
2078 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
2080 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
2081 rest_of_type_compilation (type, toplevel_bindings_p ());
2084 dfs_walk (TYPE_BINFO (type), dfs_debug_mark, dfs_debug_unmarkedp, 0);
2087 /* Subroutines of push_class_decls (). */
2089 static void
2090 setup_class_bindings (tree name, int type_binding_p)
2092 tree type_binding = NULL_TREE;
2093 tree value_binding;
2095 /* If we've already done the lookup for this declaration, we're
2096 done. */
2097 if (IDENTIFIER_CLASS_VALUE (name))
2098 return;
2100 /* First, deal with the type binding. */
2101 if (type_binding_p)
2103 type_binding = lookup_member (current_class_type, name,
2104 /*protect=*/2, /*want_type=*/true);
2105 if (TREE_CODE (type_binding) == TREE_LIST
2106 && TREE_TYPE (type_binding) == error_mark_node)
2107 /* NAME is ambiguous. */
2108 push_class_level_binding (name, type_binding);
2109 else
2110 pushdecl_class_level (type_binding);
2113 /* Now, do the value binding. */
2114 value_binding = lookup_member (current_class_type, name,
2115 /*protect=*/2, /*want_type=*/false);
2117 if (type_binding_p
2118 && (TREE_CODE (value_binding) == TYPE_DECL
2119 || DECL_CLASS_TEMPLATE_P (value_binding)
2120 || (TREE_CODE (value_binding) == TREE_LIST
2121 && TREE_TYPE (value_binding) == error_mark_node
2122 && (TREE_CODE (TREE_VALUE (value_binding))
2123 == TYPE_DECL))))
2124 /* We found a type-binding, even when looking for a non-type
2125 binding. This means that we already processed this binding
2126 above. */;
2127 else if (value_binding)
2129 if (TREE_CODE (value_binding) == TREE_LIST
2130 && TREE_TYPE (value_binding) == error_mark_node)
2131 /* NAME is ambiguous. */
2132 push_class_level_binding (name, value_binding);
2133 else
2135 if (BASELINK_P (value_binding))
2136 /* NAME is some overloaded functions. */
2137 value_binding = BASELINK_FUNCTIONS (value_binding);
2138 /* Two conversion operators that convert to the same type
2139 may have different names. (See
2140 mangle_conv_op_name_for_type.) To avoid recording the
2141 same conversion operator declaration more than once we
2142 must check to see that the same operator was not already
2143 found under another name. */
2144 if (IDENTIFIER_TYPENAME_P (name)
2145 && is_overloaded_fn (value_binding))
2147 tree fns;
2148 for (fns = value_binding; fns; fns = OVL_NEXT (fns))
2149 if (IDENTIFIER_CLASS_VALUE (DECL_NAME (OVL_CURRENT (fns))))
2150 return;
2152 pushdecl_class_level (value_binding);
2157 /* Push class-level declarations for any names appearing in BINFO that
2158 are TYPE_DECLS. */
2160 static tree
2161 dfs_push_type_decls (tree binfo, void *data ATTRIBUTE_UNUSED)
2163 tree type;
2164 tree fields;
2166 type = BINFO_TYPE (binfo);
2167 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2168 if (DECL_NAME (fields) && TREE_CODE (fields) == TYPE_DECL
2169 && !(!same_type_p (type, current_class_type)
2170 && template_self_reference_p (type, fields)))
2171 setup_class_bindings (DECL_NAME (fields), /*type_binding_p=*/1);
2173 /* We can't just use BINFO_MARKED because envelope_add_decl uses
2174 DERIVED_FROM_P, which calls get_base_distance. */
2175 BINFO_PUSHDECLS_MARKED (binfo) = 1;
2177 return NULL_TREE;
2180 /* Push class-level declarations for any names appearing in BINFO that
2181 are not TYPE_DECLS. */
2183 static tree
2184 dfs_push_decls (tree binfo, void *data)
2186 tree type = BINFO_TYPE (binfo);
2187 tree method_vec;
2188 tree fields;
2190 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2191 if (DECL_NAME (fields)
2192 && TREE_CODE (fields) != TYPE_DECL
2193 && TREE_CODE (fields) != USING_DECL
2194 && !DECL_ARTIFICIAL (fields))
2195 setup_class_bindings (DECL_NAME (fields), /*type_binding_p=*/0);
2196 else if (TREE_CODE (fields) == FIELD_DECL
2197 && ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
2198 dfs_push_decls (TYPE_BINFO (TREE_TYPE (fields)), data);
2200 method_vec = (CLASS_TYPE_P (type)
2201 ? CLASSTYPE_METHOD_VEC (type) : NULL_TREE);
2203 if (method_vec && TREE_VEC_LENGTH (method_vec) >= 3)
2205 tree *methods;
2206 tree *end;
2208 /* Farm out constructors and destructors. */
2209 end = TREE_VEC_END (method_vec);
2211 for (methods = &TREE_VEC_ELT (method_vec, 2);
2212 methods < end && *methods;
2213 methods++)
2214 setup_class_bindings (DECL_NAME (OVL_CURRENT (*methods)),
2215 /*type_binding_p=*/0);
2218 BINFO_PUSHDECLS_MARKED (binfo) = 0;
2220 return NULL_TREE;
2223 /* When entering the scope of a class, we cache all of the
2224 fields that that class provides within its inheritance
2225 lattice. Where ambiguities result, we mark them
2226 with `error_mark_node' so that if they are encountered
2227 without explicit qualification, we can emit an error
2228 message. */
2230 void
2231 push_class_decls (tree type)
2233 search_stack = push_search_level (search_stack, &search_obstack);
2235 /* Enter type declarations and mark. */
2236 dfs_walk (TYPE_BINFO (type), dfs_push_type_decls, unmarked_pushdecls_p, 0);
2238 /* Enter non-type declarations and unmark. */
2239 dfs_walk (TYPE_BINFO (type), dfs_push_decls, marked_pushdecls_p, 0);
2242 /* Here's a subroutine we need because C lacks lambdas. */
2244 static tree
2245 dfs_unuse_fields (tree binfo, void *data ATTRIBUTE_UNUSED)
2247 tree type = TREE_TYPE (binfo);
2248 tree fields;
2250 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2252 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
2253 continue;
2255 TREE_USED (fields) = 0;
2256 if (DECL_NAME (fields) == NULL_TREE
2257 && ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
2258 unuse_fields (TREE_TYPE (fields));
2261 return NULL_TREE;
2264 void
2265 unuse_fields (tree type)
2267 dfs_walk (TYPE_BINFO (type), dfs_unuse_fields, unmarkedp, 0);
2270 void
2271 pop_class_decls (void)
2273 /* We haven't pushed a search level when dealing with cached classes,
2274 so we'd better not try to pop it. */
2275 if (search_stack)
2276 search_stack = pop_search_level (search_stack);
2279 void
2280 print_search_statistics (void)
2282 #ifdef GATHER_STATISTICS
2283 fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
2284 n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
2285 fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
2286 n_outer_fields_searched, n_calls_lookup_fnfields);
2287 fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
2288 #else /* GATHER_STATISTICS */
2289 fprintf (stderr, "no search statistics\n");
2290 #endif /* GATHER_STATISTICS */
2293 void
2294 init_search_processing (void)
2296 gcc_obstack_init (&search_obstack);
2299 void
2300 reinit_search_statistics (void)
2302 #ifdef GATHER_STATISTICS
2303 n_fields_searched = 0;
2304 n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
2305 n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
2306 n_calls_get_base_type = 0;
2307 n_outer_fields_searched = 0;
2308 n_contexts_saved = 0;
2309 #endif /* GATHER_STATISTICS */
2312 static tree
2313 add_conversions (tree binfo, void *data)
2315 int i;
2316 tree method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo));
2317 tree *conversions = (tree *) data;
2319 /* Some builtin types have no method vector, not even an empty one. */
2320 if (!method_vec)
2321 return NULL_TREE;
2323 for (i = 2; i < TREE_VEC_LENGTH (method_vec); ++i)
2325 tree tmp = TREE_VEC_ELT (method_vec, i);
2326 tree name;
2328 if (!tmp || ! DECL_CONV_FN_P (OVL_CURRENT (tmp)))
2329 break;
2331 name = DECL_NAME (OVL_CURRENT (tmp));
2333 /* Make sure we don't already have this conversion. */
2334 if (! IDENTIFIER_MARKED (name))
2336 tree t;
2338 /* Make sure that we do not already have a conversion
2339 operator for this type. Merely checking the NAME is not
2340 enough because two conversion operators to the same type
2341 may not have the same NAME. */
2342 for (t = *conversions; t; t = TREE_CHAIN (t))
2344 tree fn;
2345 for (fn = TREE_VALUE (t); fn; fn = OVL_NEXT (fn))
2346 if (same_type_p (TREE_TYPE (name),
2347 DECL_CONV_FN_TYPE (OVL_CURRENT (fn))))
2348 break;
2349 if (fn)
2350 break;
2352 if (!t)
2354 *conversions = tree_cons (binfo, tmp, *conversions);
2355 IDENTIFIER_MARKED (name) = 1;
2359 return NULL_TREE;
2362 /* Return a TREE_LIST containing all the non-hidden user-defined
2363 conversion functions for TYPE (and its base-classes). The
2364 TREE_VALUE of each node is a FUNCTION_DECL or an OVERLOAD
2365 containing the conversion functions. The TREE_PURPOSE is the BINFO
2366 from which the conversion functions in this node were selected. */
2368 tree
2369 lookup_conversions (tree type)
2371 tree t;
2372 tree conversions = NULL_TREE;
2374 complete_type (type);
2375 bfs_walk (TYPE_BINFO (type), add_conversions, 0, &conversions);
2377 for (t = conversions; t; t = TREE_CHAIN (t))
2378 IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (t)))) = 0;
2380 return conversions;
2383 struct overlap_info
2385 tree compare_type;
2386 int found_overlap;
2389 /* Check whether the empty class indicated by EMPTY_BINFO is also present
2390 at offset 0 in COMPARE_TYPE, and set found_overlap if so. */
2392 static tree
2393 dfs_check_overlap (tree empty_binfo, void *data)
2395 struct overlap_info *oi = (struct overlap_info *) data;
2396 tree binfo;
2397 for (binfo = TYPE_BINFO (oi->compare_type);
2399 binfo = BINFO_BASETYPE (binfo, 0))
2401 if (BINFO_TYPE (binfo) == BINFO_TYPE (empty_binfo))
2403 oi->found_overlap = 1;
2404 break;
2406 else if (BINFO_BASETYPES (binfo) == NULL_TREE)
2407 break;
2410 return NULL_TREE;
2413 /* Trivial function to stop base traversal when we find something. */
2415 static tree
2416 dfs_no_overlap_yet (tree derived, int ix, void *data)
2418 tree binfo = BINFO_BASETYPE (derived, ix);
2419 struct overlap_info *oi = (struct overlap_info *) data;
2421 return !oi->found_overlap ? binfo : NULL_TREE;
2424 /* Returns nonzero if EMPTY_TYPE or any of its bases can also be found at
2425 offset 0 in NEXT_TYPE. Used in laying out empty base class subobjects. */
2428 types_overlap_p (tree empty_type, tree next_type)
2430 struct overlap_info oi;
2432 if (! IS_AGGR_TYPE (next_type))
2433 return 0;
2434 oi.compare_type = next_type;
2435 oi.found_overlap = 0;
2436 dfs_walk (TYPE_BINFO (empty_type), dfs_check_overlap,
2437 dfs_no_overlap_yet, &oi);
2438 return oi.found_overlap;
2441 /* Given a vtable VAR, determine which of the inherited classes the vtable
2442 inherits (in a loose sense) functions from.
2444 FIXME: This does not work with the new ABI. */
2446 tree
2447 binfo_for_vtable (tree var)
2449 tree main_binfo = TYPE_BINFO (DECL_CONTEXT (var));
2450 tree binfos = TYPE_BINFO_BASETYPES (BINFO_TYPE (main_binfo));
2451 int n_baseclasses = CLASSTYPE_N_BASECLASSES (BINFO_TYPE (main_binfo));
2452 int i;
2454 for (i = 0; i < n_baseclasses; i++)
2456 tree base_binfo = TREE_VEC_ELT (binfos, i);
2457 if (base_binfo != NULL_TREE && BINFO_VTABLE (base_binfo) == var)
2458 return base_binfo;
2461 /* If no secondary base classes matched, return the primary base, if
2462 there is one. */
2463 if (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (main_binfo)))
2464 return get_primary_binfo (main_binfo);
2466 return main_binfo;
2469 /* Returns the binfo of the first direct or indirect virtual base derived
2470 from BINFO, or NULL if binfo is not via virtual. */
2472 tree
2473 binfo_from_vbase (tree binfo)
2475 for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
2477 if (TREE_VIA_VIRTUAL (binfo))
2478 return binfo;
2480 return NULL_TREE;
2483 /* Returns the binfo of the first direct or indirect virtual base derived
2484 from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2485 via virtual. */
2487 tree
2488 binfo_via_virtual (tree binfo, tree limit)
2490 for (; binfo && (!limit || !same_type_p (BINFO_TYPE (binfo), limit));
2491 binfo = BINFO_INHERITANCE_CHAIN (binfo))
2493 if (TREE_VIA_VIRTUAL (binfo))
2494 return binfo;
2496 return NULL_TREE;
2499 /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2500 Find the equivalent binfo within whatever graph HERE is located.
2501 This is the inverse of original_binfo. */
2503 tree
2504 copied_binfo (tree binfo, tree here)
2506 tree result = NULL_TREE;
2508 if (TREE_VIA_VIRTUAL (binfo))
2510 tree t;
2512 for (t = here; BINFO_INHERITANCE_CHAIN (t);
2513 t = BINFO_INHERITANCE_CHAIN (t))
2514 continue;
2516 result = purpose_member (BINFO_TYPE (binfo),
2517 CLASSTYPE_VBASECLASSES (BINFO_TYPE (t)));
2518 result = TREE_VALUE (result);
2520 else if (BINFO_INHERITANCE_CHAIN (binfo))
2522 tree base_binfos;
2523 int ix, n;
2525 base_binfos = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2526 base_binfos = BINFO_BASETYPES (base_binfos);
2527 n = TREE_VEC_LENGTH (base_binfos);
2528 for (ix = 0; ix != n; ix++)
2530 tree base = TREE_VEC_ELT (base_binfos, ix);
2532 if (BINFO_TYPE (base) == BINFO_TYPE (binfo))
2534 result = base;
2535 break;
2539 else
2541 my_friendly_assert (BINFO_TYPE (here) == BINFO_TYPE (binfo), 20030202);
2542 result = here;
2545 my_friendly_assert (result, 20030202);
2546 return result;
2549 /* BINFO is some base binfo of HERE, within some other
2550 hierarchy. Return the equivalent binfo, but in the hierarchy
2551 dominated by HERE. This is the inverse of copied_binfo. If BINFO
2552 is not a base binfo of HERE, returns NULL_TREE. */
2554 tree
2555 original_binfo (tree binfo, tree here)
2557 tree result = NULL;
2559 if (BINFO_TYPE (binfo) == BINFO_TYPE (here))
2560 result = here;
2561 else if (TREE_VIA_VIRTUAL (binfo))
2563 result = purpose_member (BINFO_TYPE (binfo),
2564 CLASSTYPE_VBASECLASSES (BINFO_TYPE (here)));
2565 if (result)
2566 result = TREE_VALUE (result);
2568 else if (BINFO_INHERITANCE_CHAIN (binfo))
2570 tree base_binfos;
2572 base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2573 if (base_binfos)
2575 int ix, n;
2577 base_binfos = BINFO_BASETYPES (base_binfos);
2578 n = TREE_VEC_LENGTH (base_binfos);
2579 for (ix = 0; ix != n; ix++)
2581 tree base = TREE_VEC_ELT (base_binfos, ix);
2583 if (BINFO_TYPE (base) == BINFO_TYPE (binfo))
2585 result = base;
2586 break;
2592 return result;