2003-12-26 Guilhem Lavaux <guilhem@kaffe.org>
[official-gcc.git] / gcc / config / ia64 / ia64.h
blob84e864908c1ca1ccb4297a0fede1c7e318372944
1 /* Definitions of target machine GNU compiler. IA-64 version.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by James E. Wilson <wilson@cygnus.com> and
4 David Mosberger <davidm@hpl.hp.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
23 /* ??? Look at ABI group documents for list of preprocessor macros and
24 other features required for ABI compliance. */
26 /* ??? Functions containing a non-local goto target save many registers. Why?
27 See for instance execute/920428-2.c. */
29 /* ??? Add support for short data/bss sections. */
32 /* Run-time target specifications */
34 /* Target CPU builtins. */
35 #define TARGET_CPU_CPP_BUILTINS() \
36 do { \
37 builtin_assert("cpu=ia64"); \
38 builtin_assert("machine=ia64"); \
39 builtin_define("__ia64"); \
40 builtin_define("__ia64__"); \
41 builtin_define("__itanium__"); \
42 if (TARGET_BIG_ENDIAN) \
43 builtin_define("__BIG_ENDIAN__"); \
44 } while (0)
46 #define EXTRA_SPECS \
47 { "asm_extra", ASM_EXTRA_SPEC },
49 #define CC1_SPEC "%(cc1_cpu) "
51 #define ASM_EXTRA_SPEC ""
54 /* This declaration should be present. */
55 extern int target_flags;
57 /* This series of macros is to allow compiler command arguments to enable or
58 disable the use of optional features of the target machine. */
60 #define MASK_BIG_ENDIAN 0x00000001 /* Generate big endian code. */
62 #define MASK_GNU_AS 0x00000002 /* Generate code for GNU as. */
64 #define MASK_GNU_LD 0x00000004 /* Generate code for GNU ld. */
66 #define MASK_NO_PIC 0x00000008 /* Generate code without GP reg. */
68 #define MASK_VOL_ASM_STOP 0x00000010 /* Emit stop bits for vol ext asm. */
70 #define MASK_ILP32 0x00000020 /* Generate ILP32 code. */
72 #define MASK_B_STEP 0x00000040 /* Emit code for Itanium B step. */
74 #define MASK_REG_NAMES 0x00000080 /* Use in/loc/out register names. */
76 #define MASK_NO_SDATA 0x00000100 /* Disable sdata/scommon/sbss. */
78 #define MASK_CONST_GP 0x00000200 /* treat gp as program-wide constant */
80 #define MASK_AUTO_PIC 0x00000400 /* generate automatically PIC */
82 #define MASK_INLINE_FLOAT_DIV_LAT 0x00000800 /* inline div, min latency. */
84 #define MASK_INLINE_FLOAT_DIV_THR 0x00001000 /* inline div, max throughput. */
86 #define MASK_INLINE_INT_DIV_LAT 0x00000800 /* inline div, min latency. */
88 #define MASK_INLINE_INT_DIV_THR 0x00001000 /* inline div, max throughput. */
90 #define MASK_INLINE_SQRT_LAT 0x00002000 /* inline sqrt, min latency. */
92 #define MASK_INLINE_SQRT_THR 0x00004000 /* inline sqrt, max throughput. */
94 #define MASK_DWARF2_ASM 0x40000000 /* test dwarf2 line info via gas. */
96 #define MASK_EARLY_STOP_BITS 0x00002000 /* tune stop bits for the model. */
98 #define TARGET_BIG_ENDIAN (target_flags & MASK_BIG_ENDIAN)
100 #define TARGET_GNU_AS (target_flags & MASK_GNU_AS)
102 #define TARGET_GNU_LD (target_flags & MASK_GNU_LD)
104 #define TARGET_NO_PIC (target_flags & MASK_NO_PIC)
106 #define TARGET_VOL_ASM_STOP (target_flags & MASK_VOL_ASM_STOP)
108 #define TARGET_ILP32 (target_flags & MASK_ILP32)
110 #define TARGET_B_STEP (target_flags & MASK_B_STEP)
112 #define TARGET_REG_NAMES (target_flags & MASK_REG_NAMES)
114 #define TARGET_NO_SDATA (target_flags & MASK_NO_SDATA)
116 #define TARGET_CONST_GP (target_flags & MASK_CONST_GP)
118 #define TARGET_AUTO_PIC (target_flags & MASK_AUTO_PIC)
120 #define TARGET_INLINE_FLOAT_DIV_LAT (target_flags & MASK_INLINE_FLOAT_DIV_LAT)
122 #define TARGET_INLINE_FLOAT_DIV_THR (target_flags & MASK_INLINE_FLOAT_DIV_THR)
124 #define TARGET_INLINE_INT_DIV_LAT (target_flags & MASK_INLINE_INT_DIV_LAT)
126 #define TARGET_INLINE_INT_DIV_THR (target_flags & MASK_INLINE_INT_DIV_THR)
128 #define TARGET_INLINE_FLOAT_DIV \
129 (target_flags & (MASK_INLINE_FLOAT_DIV_LAT | MASK_INLINE_FLOAT_DIV_THR))
131 #define TARGET_INLINE_INT_DIV \
132 (target_flags & (MASK_INLINE_INT_DIV_LAT | MASK_INLINE_INT_DIV_THR))
134 #define TARGET_INLINE_SQRT_LAT (target_flags & MASK_INLINE_SQRT_LAT)
136 #define TARGET_INLINE_SQRT_THR (target_flags & MASK_INLINE_SQRT_THR)
138 #define TARGET_INLINE_SQRT \
139 (target_flags & (MASK_INLINE_SQRT_LAT | MASK_INLINE_SQRT_THR))
141 #define TARGET_DWARF2_ASM (target_flags & MASK_DWARF2_ASM)
143 /* If the assembler supports thread-local storage, assume that the
144 system does as well. If a particular target system has an
145 assembler that supports TLS -- but the rest of the system does not
146 support TLS -- that system should explicit define TARGET_HAVE_TLS
147 to false in its own configuration file. */
148 #if !defined(TARGET_HAVE_TLS) && defined(HAVE_AS_TLS)
149 #define TARGET_HAVE_TLS true
150 #endif
152 extern int ia64_tls_size;
153 #define TARGET_TLS14 (ia64_tls_size == 14)
154 #define TARGET_TLS22 (ia64_tls_size == 22)
155 #define TARGET_TLS64 (ia64_tls_size == 64)
156 #define TARGET_EARLY_STOP_BITS (target_flags & MASK_EARLY_STOP_BITS)
158 #define TARGET_HPUX 0
159 #define TARGET_HPUX_LD 0
161 #ifndef HAVE_AS_LTOFFX_LDXMOV_RELOCS
162 #define HAVE_AS_LTOFFX_LDXMOV_RELOCS 0
163 #endif
165 /* This macro defines names of command options to set and clear bits in
166 `target_flags'. Its definition is an initializer with a subgrouping for
167 each command option. */
169 #define TARGET_SWITCHES \
171 { "big-endian", MASK_BIG_ENDIAN, \
172 N_("Generate big endian code") }, \
173 { "little-endian", -MASK_BIG_ENDIAN, \
174 N_("Generate little endian code") }, \
175 { "gnu-as", MASK_GNU_AS, \
176 N_("Generate code for GNU as") }, \
177 { "no-gnu-as", -MASK_GNU_AS, \
178 N_("Generate code for Intel as") }, \
179 { "gnu-ld", MASK_GNU_LD, \
180 N_("Generate code for GNU ld") }, \
181 { "no-gnu-ld", -MASK_GNU_LD, \
182 N_("Generate code for Intel ld") }, \
183 { "no-pic", MASK_NO_PIC, \
184 N_("Generate code without GP reg") }, \
185 { "volatile-asm-stop", MASK_VOL_ASM_STOP, \
186 N_("Emit stop bits before and after volatile extended asms") }, \
187 { "no-volatile-asm-stop", -MASK_VOL_ASM_STOP, \
188 N_("Don't emit stop bits before and after volatile extended asms") }, \
189 { "b-step", MASK_B_STEP, \
190 N_("Emit code for Itanium (TM) processor B step")}, \
191 { "register-names", MASK_REG_NAMES, \
192 N_("Use in/loc/out register names")}, \
193 { "no-sdata", MASK_NO_SDATA, \
194 N_("Disable use of sdata/scommon/sbss")}, \
195 { "sdata", -MASK_NO_SDATA, \
196 N_("Enable use of sdata/scommon/sbss")}, \
197 { "constant-gp", MASK_CONST_GP, \
198 N_("gp is constant (but save/restore gp on indirect calls)") }, \
199 { "auto-pic", MASK_AUTO_PIC, \
200 N_("Generate self-relocatable code") }, \
201 { "inline-float-divide-min-latency", MASK_INLINE_FLOAT_DIV_LAT, \
202 N_("Generate inline floating point division, optimize for latency") },\
203 { "inline-float-divide-max-throughput", MASK_INLINE_FLOAT_DIV_THR, \
204 N_("Generate inline floating point division, optimize for throughput") },\
205 { "inline-int-divide-min-latency", MASK_INLINE_INT_DIV_LAT, \
206 N_("Generate inline integer division, optimize for latency") }, \
207 { "inline-int-divide-max-throughput", MASK_INLINE_INT_DIV_THR, \
208 N_("Generate inline integer division, optimize for throughput") },\
209 { "inline-sqrt-min-latency", MASK_INLINE_SQRT_LAT, \
210 N_("Generate inline square root, optimize for latency") }, \
211 { "inline-sqrt-max-throughput", MASK_INLINE_SQRT_THR, \
212 N_("Generate inline square root, optimize for throughput") }, \
213 { "dwarf2-asm", MASK_DWARF2_ASM, \
214 N_("Enable Dwarf 2 line debug info via GNU as")}, \
215 { "no-dwarf2-asm", -MASK_DWARF2_ASM, \
216 N_("Disable Dwarf 2 line debug info via GNU as")}, \
217 { "early-stop-bits", MASK_EARLY_STOP_BITS, \
218 N_("Enable earlier placing stop bits for better scheduling")}, \
219 { "no-early-stop-bits", -MASK_EARLY_STOP_BITS, \
220 N_("Disable earlier placing stop bits")}, \
221 SUBTARGET_SWITCHES \
222 { "", TARGET_DEFAULT | TARGET_CPU_DEFAULT, \
223 NULL } \
226 /* Default target_flags if no switches are specified */
228 #ifndef TARGET_DEFAULT
229 #define TARGET_DEFAULT MASK_DWARF2_ASM
230 #endif
232 #ifndef TARGET_CPU_DEFAULT
233 #define TARGET_CPU_DEFAULT 0
234 #endif
236 #ifndef SUBTARGET_SWITCHES
237 #define SUBTARGET_SWITCHES
238 #endif
240 /* This macro is similar to `TARGET_SWITCHES' but defines names of command
241 options that have values. Its definition is an initializer with a
242 subgrouping for each command option. */
244 extern const char *ia64_fixed_range_string;
245 extern const char *ia64_tls_size_string;
247 /* Which processor to schedule for. The cpu attribute defines a list
248 that mirrors this list, so changes to i64.md must be made at the
249 same time. */
251 enum processor_type
253 PROCESSOR_ITANIUM, /* Original Itanium. */
254 PROCESSOR_ITANIUM2,
255 PROCESSOR_max
258 extern enum processor_type ia64_tune;
260 extern const char *ia64_tune_string;
262 #define TARGET_OPTIONS \
264 { "fixed-range=", &ia64_fixed_range_string, \
265 N_("Specify range of registers to make fixed"), 0}, \
266 { "tls-size=", &ia64_tls_size_string, \
267 N_("Specify bit size of immediate TLS offsets"), 0}, \
268 { "tune=", &ia64_tune_string, \
269 N_("Schedule code for given CPU"), 0}, \
272 /* Sometimes certain combinations of command options do not make sense on a
273 particular target machine. You can define a macro `OVERRIDE_OPTIONS' to
274 take account of this. This macro, if defined, is executed once just after
275 all the command options have been parsed. */
277 #define OVERRIDE_OPTIONS ia64_override_options ()
279 /* Some machines may desire to change what optimizations are performed for
280 various optimization levels. This macro, if defined, is executed once just
281 after the optimization level is determined and before the remainder of the
282 command options have been parsed. Values set in this macro are used as the
283 default values for the other command line options. */
285 /* #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) */
287 /* Driver configuration */
289 /* A C string constant that tells the GCC driver program options to pass to
290 `cc1'. It can also specify how to translate options you give to GCC into
291 options for GCC to pass to the `cc1'. */
293 #undef CC1_SPEC
294 #define CC1_SPEC "%{G*}"
296 /* A C string constant that tells the GCC driver program options to pass to
297 `cc1plus'. It can also specify how to translate options you give to GCC
298 into options for GCC to pass to the `cc1plus'. */
300 /* #define CC1PLUS_SPEC "" */
302 /* Storage Layout */
304 /* Define this macro to have the value 1 if the most significant bit in a byte
305 has the lowest number; otherwise define it to have the value zero. */
307 #define BITS_BIG_ENDIAN 0
309 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
311 /* Define this macro to have the value 1 if, in a multiword object, the most
312 significant word has the lowest number. */
314 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
316 #if defined(__BIG_ENDIAN__)
317 #define LIBGCC2_WORDS_BIG_ENDIAN 1
318 #else
319 #define LIBGCC2_WORDS_BIG_ENDIAN 0
320 #endif
322 #define UNITS_PER_WORD 8
324 #define POINTER_SIZE (TARGET_ILP32 ? 32 : 64)
326 /* A C expression whose value is zero if pointers that need to be extended
327 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and one if
328 they are zero-extended and negative one if there is a ptr_extend operation.
330 You need not define this macro if the `POINTER_SIZE' is equal to the width
331 of `Pmode'. */
332 /* Need this for 32 bit pointers, see hpux.h for setting it. */
333 /* #define POINTERS_EXTEND_UNSIGNED */
335 /* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
336 which has the specified mode and signedness is to be stored in a register.
337 This macro is only called when TYPE is a scalar type. */
338 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
339 do \
341 if (GET_MODE_CLASS (MODE) == MODE_INT \
342 && GET_MODE_SIZE (MODE) < 4) \
343 (MODE) = SImode; \
345 while (0)
347 /* ??? ABI doesn't allow us to define this. */
348 /* #define PROMOTE_FUNCTION_ARGS */
350 /* ??? ABI doesn't allow us to define this. */
351 /* #define PROMOTE_FUNCTION_RETURN */
353 #define PARM_BOUNDARY 64
355 /* Define this macro if you wish to preserve a certain alignment for the stack
356 pointer. The definition is a C expression for the desired alignment
357 (measured in bits). */
359 #define STACK_BOUNDARY 128
361 /* Align frames on double word boundaries */
362 #ifndef IA64_STACK_ALIGN
363 #define IA64_STACK_ALIGN(LOC) (((LOC) + 15) & ~15)
364 #endif
366 #define FUNCTION_BOUNDARY 128
368 /* Optional x86 80-bit float, quad-precision 128-bit float, and quad-word
369 128 bit integers all require 128 bit alignment. */
370 #define BIGGEST_ALIGNMENT 128
372 /* If defined, a C expression to compute the alignment for a static variable.
373 TYPE is the data type, and ALIGN is the alignment that the object
374 would ordinarily have. The value of this macro is used instead of that
375 alignment to align the object. */
377 #define DATA_ALIGNMENT(TYPE, ALIGN) \
378 (TREE_CODE (TYPE) == ARRAY_TYPE \
379 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
380 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
382 /* If defined, a C expression to compute the alignment given to a constant that
383 is being placed in memory. CONSTANT is the constant and ALIGN is the
384 alignment that the object would ordinarily have. The value of this macro is
385 used instead of that alignment to align the object. */
387 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
388 (TREE_CODE (EXP) == STRING_CST \
389 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
391 #define STRICT_ALIGNMENT 1
393 /* Define this if you wish to imitate the way many other C compilers handle
394 alignment of bitfields and the structures that contain them.
395 The behavior is that the type written for a bit-field (`int', `short', or
396 other integer type) imposes an alignment for the entire structure, as if the
397 structure really did contain an ordinary field of that type. In addition,
398 the bit-field is placed within the structure so that it would fit within such
399 a field, not crossing a boundary for it. */
400 #define PCC_BITFIELD_TYPE_MATTERS 1
402 /* An integer expression for the size in bits of the largest integer machine
403 mode that should actually be used. */
405 /* Allow pairs of registers to be used, which is the intent of the default. */
406 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
408 /* By default, the C++ compiler will use function addresses in the
409 vtable entries. Setting this nonzero tells the compiler to use
410 function descriptors instead. The value of this macro says how
411 many words wide the descriptor is (normally 2). It is assumed
412 that the address of a function descriptor may be treated as a
413 pointer to a function.
415 For reasons known only to HP, the vtable entries (as opposed to
416 normal function descriptors) are 16 bytes wide in 32-bit mode as
417 well, even though the 3rd and 4th words are unused. */
418 #define TARGET_VTABLE_USES_DESCRIPTORS (TARGET_ILP32 ? 4 : 2)
420 /* Due to silliness in the HPUX linker, vtable entries must be
421 8-byte aligned even in 32-bit mode. Rather than create multiple
422 ABIs, force this restriction on everyone else too. */
423 #define TARGET_VTABLE_ENTRY_ALIGN 64
425 /* Due to the above, we need extra padding for the data entries below 0
426 to retain the alignment of the descriptors. */
427 #define TARGET_VTABLE_DATA_ENTRY_DISTANCE (TARGET_ILP32 ? 2 : 1)
429 /* Layout of Source Language Data Types */
431 #define INT_TYPE_SIZE 32
433 #define SHORT_TYPE_SIZE 16
435 #define LONG_TYPE_SIZE (TARGET_ILP32 ? 32 : 64)
437 #define MAX_LONG_TYPE_SIZE 64
439 #define LONG_LONG_TYPE_SIZE 64
441 #define FLOAT_TYPE_SIZE 32
443 #define DOUBLE_TYPE_SIZE 64
445 /* long double is XFmode normally, TFmode for HPUX. */
446 #define LONG_DOUBLE_TYPE_SIZE (TARGET_HPUX ? 128 : 96)
448 /* We always want the XFmode operations from libgcc2.c. */
449 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 96
451 #define DEFAULT_SIGNED_CHAR 1
453 /* A C expression for a string describing the name of the data type to use for
454 size values. The typedef name `size_t' is defined using the contents of the
455 string. */
456 /* ??? Needs to be defined for P64 code. */
457 /* #define SIZE_TYPE */
459 /* A C expression for a string describing the name of the data type to use for
460 the result of subtracting two pointers. The typedef name `ptrdiff_t' is
461 defined using the contents of the string. See `SIZE_TYPE' above for more
462 information. */
463 /* ??? Needs to be defined for P64 code. */
464 /* #define PTRDIFF_TYPE */
466 /* A C expression for a string describing the name of the data type to use for
467 wide characters. The typedef name `wchar_t' is defined using the contents
468 of the string. See `SIZE_TYPE' above for more information. */
469 /* #define WCHAR_TYPE */
471 /* A C expression for the size in bits of the data type for wide characters.
472 This is used in `cpp', which cannot make use of `WCHAR_TYPE'. */
473 /* #define WCHAR_TYPE_SIZE */
476 /* Register Basics */
478 /* Number of hardware registers known to the compiler.
479 We have 128 general registers, 128 floating point registers,
480 64 predicate registers, 8 branch registers, one frame pointer,
481 and several "application" registers. */
483 #define FIRST_PSEUDO_REGISTER 334
485 /* Ranges for the various kinds of registers. */
486 #define ADDL_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 3)
487 #define GR_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 127)
488 #define FR_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 255)
489 #define PR_REGNO_P(REGNO) ((REGNO) >= 256 && (REGNO) <= 319)
490 #define BR_REGNO_P(REGNO) ((REGNO) >= 320 && (REGNO) <= 327)
491 #define GENERAL_REGNO_P(REGNO) \
492 (GR_REGNO_P (REGNO) || (REGNO) == FRAME_POINTER_REGNUM)
494 #define GR_REG(REGNO) ((REGNO) + 0)
495 #define FR_REG(REGNO) ((REGNO) + 128)
496 #define PR_REG(REGNO) ((REGNO) + 256)
497 #define BR_REG(REGNO) ((REGNO) + 320)
498 #define OUT_REG(REGNO) ((REGNO) + 120)
499 #define IN_REG(REGNO) ((REGNO) + 112)
500 #define LOC_REG(REGNO) ((REGNO) + 32)
502 #define AR_CCV_REGNUM 329
503 #define AR_UNAT_REGNUM 330
504 #define AR_PFS_REGNUM 331
505 #define AR_LC_REGNUM 332
506 #define AR_EC_REGNUM 333
508 #define IN_REGNO_P(REGNO) ((REGNO) >= IN_REG (0) && (REGNO) <= IN_REG (7))
509 #define LOC_REGNO_P(REGNO) ((REGNO) >= LOC_REG (0) && (REGNO) <= LOC_REG (79))
510 #define OUT_REGNO_P(REGNO) ((REGNO) >= OUT_REG (0) && (REGNO) <= OUT_REG (7))
512 #define AR_M_REGNO_P(REGNO) ((REGNO) == AR_CCV_REGNUM \
513 || (REGNO) == AR_UNAT_REGNUM)
514 #define AR_I_REGNO_P(REGNO) ((REGNO) >= AR_PFS_REGNUM \
515 && (REGNO) < FIRST_PSEUDO_REGISTER)
516 #define AR_REGNO_P(REGNO) ((REGNO) >= AR_CCV_REGNUM \
517 && (REGNO) < FIRST_PSEUDO_REGISTER)
520 /* ??? Don't really need two sets of macros. I like this one better because
521 it is less typing. */
522 #define R_GR(REGNO) GR_REG (REGNO)
523 #define R_FR(REGNO) FR_REG (REGNO)
524 #define R_PR(REGNO) PR_REG (REGNO)
525 #define R_BR(REGNO) BR_REG (REGNO)
527 /* An initializer that says which registers are used for fixed purposes all
528 throughout the compiled code and are therefore not available for general
529 allocation.
531 r0: constant 0
532 r1: global pointer (gp)
533 r12: stack pointer (sp)
534 r13: thread pointer (tp)
535 f0: constant 0.0
536 f1: constant 1.0
537 p0: constant true
538 fp: eliminable frame pointer */
540 /* The last 16 stacked regs are reserved for the 8 input and 8 output
541 registers. */
543 #define FIXED_REGISTERS \
544 { /* General registers. */ \
545 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, \
546 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
547 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
548 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
549 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
550 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
551 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
552 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
553 /* Floating-point registers. */ \
554 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
555 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
556 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
557 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
558 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
559 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
560 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
561 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
562 /* Predicate registers. */ \
563 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
564 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
565 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
566 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
567 /* Branch registers. */ \
568 0, 0, 0, 0, 0, 0, 0, 0, \
569 /*FP CCV UNAT PFS LC EC */ \
570 1, 1, 1, 1, 0, 1 \
573 /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered
574 (in general) by function calls as well as for fixed registers. This
575 macro therefore identifies the registers that are not available for
576 general allocation of values that must live across function calls. */
578 #define CALL_USED_REGISTERS \
579 { /* General registers. */ \
580 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
581 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
582 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
583 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
584 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
585 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
586 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
587 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
588 /* Floating-point registers. */ \
589 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
590 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
591 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
592 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
593 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
594 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
595 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
596 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
597 /* Predicate registers. */ \
598 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
599 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
600 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
601 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
602 /* Branch registers. */ \
603 1, 0, 0, 0, 0, 0, 1, 1, \
604 /*FP CCV UNAT PFS LC EC */ \
605 1, 1, 1, 1, 0, 1 \
608 /* Like `CALL_USED_REGISTERS' but used to overcome a historical
609 problem which makes CALL_USED_REGISTERS *always* include
610 all the FIXED_REGISTERS. Until this problem has been
611 resolved this macro can be used to overcome this situation.
612 In particular, block_propagate() requires this list
613 be accurate, or we can remove registers which should be live.
614 This macro is used in regs_invalidated_by_call. */
616 #define CALL_REALLY_USED_REGISTERS \
617 { /* General registers. */ \
618 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, \
619 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
620 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
621 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
622 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
623 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
624 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
625 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
626 /* Floating-point registers. */ \
627 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
628 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
629 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
630 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
631 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
632 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
633 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
634 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
635 /* Predicate registers. */ \
636 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
637 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
638 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
639 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
640 /* Branch registers. */ \
641 1, 0, 0, 0, 0, 0, 1, 1, \
642 /*FP CCV UNAT PFS LC EC */ \
643 0, 1, 0, 1, 0, 0 \
647 /* Define this macro if the target machine has register windows. This C
648 expression returns the register number as seen by the called function
649 corresponding to the register number OUT as seen by the calling function.
650 Return OUT if register number OUT is not an outbound register. */
652 #define INCOMING_REGNO(OUT) \
653 ((unsigned) ((OUT) - OUT_REG (0)) < 8 ? IN_REG ((OUT) - OUT_REG (0)) : (OUT))
655 /* Define this macro if the target machine has register windows. This C
656 expression returns the register number as seen by the calling function
657 corresponding to the register number IN as seen by the called function.
658 Return IN if register number IN is not an inbound register. */
660 #define OUTGOING_REGNO(IN) \
661 ((unsigned) ((IN) - IN_REG (0)) < 8 ? OUT_REG ((IN) - IN_REG (0)) : (IN))
663 /* Define this macro if the target machine has register windows. This
664 C expression returns true if the register is call-saved but is in the
665 register window. */
667 #define LOCAL_REGNO(REGNO) \
668 (IN_REGNO_P (REGNO) || LOC_REGNO_P (REGNO))
670 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
671 return the mode to be used for the comparison. Must be defined if
672 EXTRA_CC_MODES is defined. */
674 #define SELECT_CC_MODE(OP,X,Y) CCmode
676 /* Order of allocation of registers */
678 /* If defined, an initializer for a vector of integers, containing the numbers
679 of hard registers in the order in which GCC should prefer to use them
680 (from most preferred to least).
682 If this macro is not defined, registers are used lowest numbered first (all
683 else being equal).
685 One use of this macro is on machines where the highest numbered registers
686 must always be saved and the save-multiple-registers instruction supports
687 only sequences of consecutive registers. On such machines, define
688 `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
689 allocatable register first. */
691 /* ??? Should the GR return value registers come before or after the rest
692 of the caller-save GRs? */
694 #define REG_ALLOC_ORDER \
696 /* Caller-saved general registers. */ \
697 R_GR (14), R_GR (15), R_GR (16), R_GR (17), \
698 R_GR (18), R_GR (19), R_GR (20), R_GR (21), R_GR (22), R_GR (23), \
699 R_GR (24), R_GR (25), R_GR (26), R_GR (27), R_GR (28), R_GR (29), \
700 R_GR (30), R_GR (31), \
701 /* Output registers. */ \
702 R_GR (120), R_GR (121), R_GR (122), R_GR (123), R_GR (124), R_GR (125), \
703 R_GR (126), R_GR (127), \
704 /* Caller-saved general registers, also used for return values. */ \
705 R_GR (8), R_GR (9), R_GR (10), R_GR (11), \
706 /* addl caller-saved general registers. */ \
707 R_GR (2), R_GR (3), \
708 /* Caller-saved FP registers. */ \
709 R_FR (6), R_FR (7), \
710 /* Caller-saved FP registers, used for parameters and return values. */ \
711 R_FR (8), R_FR (9), R_FR (10), R_FR (11), \
712 R_FR (12), R_FR (13), R_FR (14), R_FR (15), \
713 /* Rotating caller-saved FP registers. */ \
714 R_FR (32), R_FR (33), R_FR (34), R_FR (35), \
715 R_FR (36), R_FR (37), R_FR (38), R_FR (39), R_FR (40), R_FR (41), \
716 R_FR (42), R_FR (43), R_FR (44), R_FR (45), R_FR (46), R_FR (47), \
717 R_FR (48), R_FR (49), R_FR (50), R_FR (51), R_FR (52), R_FR (53), \
718 R_FR (54), R_FR (55), R_FR (56), R_FR (57), R_FR (58), R_FR (59), \
719 R_FR (60), R_FR (61), R_FR (62), R_FR (63), R_FR (64), R_FR (65), \
720 R_FR (66), R_FR (67), R_FR (68), R_FR (69), R_FR (70), R_FR (71), \
721 R_FR (72), R_FR (73), R_FR (74), R_FR (75), R_FR (76), R_FR (77), \
722 R_FR (78), R_FR (79), R_FR (80), R_FR (81), R_FR (82), R_FR (83), \
723 R_FR (84), R_FR (85), R_FR (86), R_FR (87), R_FR (88), R_FR (89), \
724 R_FR (90), R_FR (91), R_FR (92), R_FR (93), R_FR (94), R_FR (95), \
725 R_FR (96), R_FR (97), R_FR (98), R_FR (99), R_FR (100), R_FR (101), \
726 R_FR (102), R_FR (103), R_FR (104), R_FR (105), R_FR (106), R_FR (107), \
727 R_FR (108), R_FR (109), R_FR (110), R_FR (111), R_FR (112), R_FR (113), \
728 R_FR (114), R_FR (115), R_FR (116), R_FR (117), R_FR (118), R_FR (119), \
729 R_FR (120), R_FR (121), R_FR (122), R_FR (123), R_FR (124), R_FR (125), \
730 R_FR (126), R_FR (127), \
731 /* Caller-saved predicate registers. */ \
732 R_PR (6), R_PR (7), R_PR (8), R_PR (9), R_PR (10), R_PR (11), \
733 R_PR (12), R_PR (13), R_PR (14), R_PR (15), \
734 /* Rotating caller-saved predicate registers. */ \
735 R_PR (16), R_PR (17), \
736 R_PR (18), R_PR (19), R_PR (20), R_PR (21), R_PR (22), R_PR (23), \
737 R_PR (24), R_PR (25), R_PR (26), R_PR (27), R_PR (28), R_PR (29), \
738 R_PR (30), R_PR (31), R_PR (32), R_PR (33), R_PR (34), R_PR (35), \
739 R_PR (36), R_PR (37), R_PR (38), R_PR (39), R_PR (40), R_PR (41), \
740 R_PR (42), R_PR (43), R_PR (44), R_PR (45), R_PR (46), R_PR (47), \
741 R_PR (48), R_PR (49), R_PR (50), R_PR (51), R_PR (52), R_PR (53), \
742 R_PR (54), R_PR (55), R_PR (56), R_PR (57), R_PR (58), R_PR (59), \
743 R_PR (60), R_PR (61), R_PR (62), R_PR (63), \
744 /* Caller-saved branch registers. */ \
745 R_BR (6), R_BR (7), \
747 /* Stacked callee-saved general registers. */ \
748 R_GR (32), R_GR (33), R_GR (34), R_GR (35), \
749 R_GR (36), R_GR (37), R_GR (38), R_GR (39), R_GR (40), R_GR (41), \
750 R_GR (42), R_GR (43), R_GR (44), R_GR (45), R_GR (46), R_GR (47), \
751 R_GR (48), R_GR (49), R_GR (50), R_GR (51), R_GR (52), R_GR (53), \
752 R_GR (54), R_GR (55), R_GR (56), R_GR (57), R_GR (58), R_GR (59), \
753 R_GR (60), R_GR (61), R_GR (62), R_GR (63), R_GR (64), R_GR (65), \
754 R_GR (66), R_GR (67), R_GR (68), R_GR (69), R_GR (70), R_GR (71), \
755 R_GR (72), R_GR (73), R_GR (74), R_GR (75), R_GR (76), R_GR (77), \
756 R_GR (78), R_GR (79), R_GR (80), R_GR (81), R_GR (82), R_GR (83), \
757 R_GR (84), R_GR (85), R_GR (86), R_GR (87), R_GR (88), R_GR (89), \
758 R_GR (90), R_GR (91), R_GR (92), R_GR (93), R_GR (94), R_GR (95), \
759 R_GR (96), R_GR (97), R_GR (98), R_GR (99), R_GR (100), R_GR (101), \
760 R_GR (102), R_GR (103), R_GR (104), R_GR (105), R_GR (106), R_GR (107), \
761 R_GR (108), \
762 /* Input registers. */ \
763 R_GR (112), R_GR (113), R_GR (114), R_GR (115), R_GR (116), R_GR (117), \
764 R_GR (118), R_GR (119), \
765 /* Callee-saved general registers. */ \
766 R_GR (4), R_GR (5), R_GR (6), R_GR (7), \
767 /* Callee-saved FP registers. */ \
768 R_FR (2), R_FR (3), R_FR (4), R_FR (5), R_FR (16), R_FR (17), \
769 R_FR (18), R_FR (19), R_FR (20), R_FR (21), R_FR (22), R_FR (23), \
770 R_FR (24), R_FR (25), R_FR (26), R_FR (27), R_FR (28), R_FR (29), \
771 R_FR (30), R_FR (31), \
772 /* Callee-saved predicate registers. */ \
773 R_PR (1), R_PR (2), R_PR (3), R_PR (4), R_PR (5), \
774 /* Callee-saved branch registers. */ \
775 R_BR (1), R_BR (2), R_BR (3), R_BR (4), R_BR (5), \
777 /* ??? Stacked registers reserved for fp, rp, and ar.pfs. */ \
778 R_GR (109), R_GR (110), R_GR (111), \
780 /* Special general registers. */ \
781 R_GR (0), R_GR (1), R_GR (12), R_GR (13), \
782 /* Special FP registers. */ \
783 R_FR (0), R_FR (1), \
784 /* Special predicate registers. */ \
785 R_PR (0), \
786 /* Special branch registers. */ \
787 R_BR (0), \
788 /* Other fixed registers. */ \
789 FRAME_POINTER_REGNUM, \
790 AR_CCV_REGNUM, AR_UNAT_REGNUM, AR_PFS_REGNUM, AR_LC_REGNUM, \
791 AR_EC_REGNUM \
794 /* How Values Fit in Registers */
796 /* A C expression for the number of consecutive hard registers, starting at
797 register number REGNO, required to hold a value of mode MODE. */
799 /* ??? We say that BImode PR values require two registers. This allows us to
800 easily store the normal and inverted values. We use CCImode to indicate
801 a single predicate register. */
803 #define HARD_REGNO_NREGS(REGNO, MODE) \
804 ((REGNO) == PR_REG (0) && (MODE) == DImode ? 64 \
805 : PR_REGNO_P (REGNO) && (MODE) == BImode ? 2 \
806 : PR_REGNO_P (REGNO) && (MODE) == CCImode ? 1 \
807 : FR_REGNO_P (REGNO) && (MODE) == XFmode ? 1 \
808 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
810 /* A C expression that is nonzero if it is permissible to store a value of mode
811 MODE in hard register number REGNO (or in several registers starting with
812 that one). */
814 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
815 (FR_REGNO_P (REGNO) ? \
816 GET_MODE_CLASS (MODE) != MODE_CC && \
817 (MODE) != TImode && \
818 (MODE) != BImode && \
819 (MODE) != TFmode \
820 : PR_REGNO_P (REGNO) ? \
821 (MODE) == BImode || GET_MODE_CLASS (MODE) == MODE_CC \
822 : GR_REGNO_P (REGNO) ? (MODE) != CCImode && (MODE) != XFmode \
823 : AR_REGNO_P (REGNO) ? (MODE) == DImode \
824 : BR_REGNO_P (REGNO) ? (MODE) == DImode \
825 : 0)
827 /* A C expression that is nonzero if it is desirable to choose register
828 allocation so as to avoid move instructions between a value of mode MODE1
829 and a value of mode MODE2.
831 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
832 ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
833 zero. */
834 /* Don't tie integer and FP modes, as that causes us to get integer registers
835 allocated for FP instructions. XFmode only supported in FP registers so
836 we can't tie it with any other modes. */
837 #define MODES_TIEABLE_P(MODE1, MODE2) \
838 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
839 && (((MODE1) == XFmode) == ((MODE2) == XFmode)) \
840 && (((MODE1) == BImode) == ((MODE2) == BImode)))
842 /* Handling Leaf Functions */
844 /* A C initializer for a vector, indexed by hard register number, which
845 contains 1 for a register that is allowable in a candidate for leaf function
846 treatment. */
847 /* ??? This might be useful. */
848 /* #define LEAF_REGISTERS */
850 /* A C expression whose value is the register number to which REGNO should be
851 renumbered, when a function is treated as a leaf function. */
852 /* ??? This might be useful. */
853 /* #define LEAF_REG_REMAP(REGNO) */
856 /* Register Classes */
858 /* An enumeral type that must be defined with all the register class names as
859 enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
860 register class, followed by one more enumeral value, `LIM_REG_CLASSES',
861 which is not a register class but rather tells how many classes there
862 are. */
863 /* ??? When compiling without optimization, it is possible for the only use of
864 a pseudo to be a parameter load from the stack with a REG_EQUIV note.
865 Regclass handles this case specially and does not assign any costs to the
866 pseudo. The pseudo then ends up using the last class before ALL_REGS.
867 Thus we must not let either PR_REGS or BR_REGS be the last class. The
868 testcase for this is gcc.c-torture/execute/va-arg-7.c. */
869 enum reg_class
871 NO_REGS,
872 PR_REGS,
873 BR_REGS,
874 AR_M_REGS,
875 AR_I_REGS,
876 ADDL_REGS,
877 GR_REGS,
878 FR_REGS,
879 GR_AND_BR_REGS,
880 GR_AND_FR_REGS,
881 ALL_REGS,
882 LIM_REG_CLASSES
885 #define GENERAL_REGS GR_REGS
887 /* The number of distinct register classes. */
888 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
890 /* An initializer containing the names of the register classes as C string
891 constants. These names are used in writing some of the debugging dumps. */
892 #define REG_CLASS_NAMES \
893 { "NO_REGS", "PR_REGS", "BR_REGS", "AR_M_REGS", "AR_I_REGS", \
894 "ADDL_REGS", "GR_REGS", "FR_REGS", \
895 "GR_AND_BR_REGS", "GR_AND_FR_REGS", "ALL_REGS" }
897 /* An initializer containing the contents of the register classes, as integers
898 which are bit masks. The Nth integer specifies the contents of class N.
899 The way the integer MASK is interpreted is that register R is in the class
900 if `MASK & (1 << R)' is 1. */
901 #define REG_CLASS_CONTENTS \
903 /* NO_REGS. */ \
904 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
905 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
906 0x00000000, 0x00000000, 0x0000 }, \
907 /* PR_REGS. */ \
908 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
909 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
910 0xFFFFFFFF, 0xFFFFFFFF, 0x0000 }, \
911 /* BR_REGS. */ \
912 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
913 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
914 0x00000000, 0x00000000, 0x00FF }, \
915 /* AR_M_REGS. */ \
916 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
917 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
918 0x00000000, 0x00000000, 0x0600 }, \
919 /* AR_I_REGS. */ \
920 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
921 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
922 0x00000000, 0x00000000, 0x3800 }, \
923 /* ADDL_REGS. */ \
924 { 0x0000000F, 0x00000000, 0x00000000, 0x00000000, \
925 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
926 0x00000000, 0x00000000, 0x0000 }, \
927 /* GR_REGS. */ \
928 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
929 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
930 0x00000000, 0x00000000, 0x0100 }, \
931 /* FR_REGS. */ \
932 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
933 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
934 0x00000000, 0x00000000, 0x0000 }, \
935 /* GR_AND_BR_REGS. */ \
936 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
937 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
938 0x00000000, 0x00000000, 0x01FF }, \
939 /* GR_AND_FR_REGS. */ \
940 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
941 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
942 0x00000000, 0x00000000, 0x0100 }, \
943 /* ALL_REGS. */ \
944 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
945 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
946 0xFFFFFFFF, 0xFFFFFFFF, 0x3FFF }, \
949 /* A C expression whose value is a register class containing hard register
950 REGNO. In general there is more than one such class; choose a class which
951 is "minimal", meaning that no smaller class also contains the register. */
952 /* The NO_REGS case is primarily for the benefit of rws_access_reg, which
953 may call here with private (invalid) register numbers, such as
954 REG_VOLATILE. */
955 #define REGNO_REG_CLASS(REGNO) \
956 (ADDL_REGNO_P (REGNO) ? ADDL_REGS \
957 : GENERAL_REGNO_P (REGNO) ? GR_REGS \
958 : FR_REGNO_P (REGNO) ? FR_REGS \
959 : PR_REGNO_P (REGNO) ? PR_REGS \
960 : BR_REGNO_P (REGNO) ? BR_REGS \
961 : AR_M_REGNO_P (REGNO) ? AR_M_REGS \
962 : AR_I_REGNO_P (REGNO) ? AR_I_REGS \
963 : NO_REGS)
965 /* A macro whose definition is the name of the class to which a valid base
966 register must belong. A base register is one used in an address which is
967 the register value plus a displacement. */
968 #define BASE_REG_CLASS GENERAL_REGS
970 /* A macro whose definition is the name of the class to which a valid index
971 register must belong. An index register is one used in an address where its
972 value is either multiplied by a scale factor or added to another register
973 (as well as added to a displacement). This is needed for POST_MODIFY. */
974 #define INDEX_REG_CLASS GENERAL_REGS
976 /* A C expression which defines the machine-dependent operand constraint
977 letters for register classes. If CHAR is such a letter, the value should be
978 the register class corresponding to it. Otherwise, the value should be
979 `NO_REGS'. The register letter `r', corresponding to class `GENERAL_REGS',
980 will not be passed to this macro; you do not need to handle it. */
982 #define REG_CLASS_FROM_LETTER(CHAR) \
983 ((CHAR) == 'f' ? FR_REGS \
984 : (CHAR) == 'a' ? ADDL_REGS \
985 : (CHAR) == 'b' ? BR_REGS \
986 : (CHAR) == 'c' ? PR_REGS \
987 : (CHAR) == 'd' ? AR_M_REGS \
988 : (CHAR) == 'e' ? AR_I_REGS \
989 : NO_REGS)
991 /* A C expression which is nonzero if register number NUM is suitable for use
992 as a base register in operand addresses. It may be either a suitable hard
993 register or a pseudo register that has been allocated such a hard reg. */
994 #define REGNO_OK_FOR_BASE_P(REGNO) \
995 (GENERAL_REGNO_P (REGNO) || GENERAL_REGNO_P (reg_renumber[REGNO]))
997 /* A C expression which is nonzero if register number NUM is suitable for use
998 as an index register in operand addresses. It may be either a suitable hard
999 register or a pseudo register that has been allocated such a hard reg.
1000 This is needed for POST_MODIFY. */
1001 #define REGNO_OK_FOR_INDEX_P(NUM) REGNO_OK_FOR_BASE_P (NUM)
1003 /* A C expression that places additional restrictions on the register class to
1004 use when it is necessary to copy value X into a register in class CLASS.
1005 The value is a register class; perhaps CLASS, or perhaps another, smaller
1006 class. */
1008 /* Don't allow volatile mem reloads into floating point registers. This
1009 is defined to force reload to choose the r/m case instead of the f/f case
1010 when reloading (set (reg fX) (mem/v)).
1012 Do not reload expressions into AR regs. */
1014 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1015 (CLASS == FR_REGS && GET_CODE (X) == MEM && MEM_VOLATILE_P (X) ? NO_REGS \
1016 : CLASS == FR_REGS && GET_CODE (X) == CONST_DOUBLE ? NO_REGS \
1017 : GET_RTX_CLASS (GET_CODE (X)) != 'o' \
1018 && (CLASS == AR_M_REGS || CLASS == AR_I_REGS) ? NO_REGS \
1019 : CLASS)
1021 /* You should define this macro to indicate to the reload phase that it may
1022 need to allocate at least one register for a reload in addition to the
1023 register to contain the data. Specifically, if copying X to a register
1024 CLASS in MODE requires an intermediate register, you should define this
1025 to return the largest register class all of whose registers can be used
1026 as intermediate registers or scratch registers. */
1028 #define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
1029 ia64_secondary_reload_class (CLASS, MODE, X)
1031 /* Certain machines have the property that some registers cannot be copied to
1032 some other registers without using memory. Define this macro on those
1033 machines to be a C expression that is nonzero if objects of mode M in
1034 registers of CLASS1 can only be copied to registers of class CLASS2 by
1035 storing a register of CLASS1 into memory and loading that memory location
1036 into a register of CLASS2. */
1038 #if 0
1039 /* ??? May need this, but since we've disallowed XFmode in GR_REGS,
1040 I'm not quite sure how it could be invoked. The normal problems
1041 with unions should be solved with the addressof fiddling done by
1042 movxf and friends. */
1043 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1044 ((MODE) == XFmode && (((CLASS1) == GR_REGS && (CLASS2) == FR_REGS) \
1045 || ((CLASS1) == FR_REGS && (CLASS2) == GR_REGS)))
1046 #endif
1048 /* A C expression for the maximum number of consecutive registers of
1049 class CLASS needed to hold a value of mode MODE.
1050 This is closely related to the macro `HARD_REGNO_NREGS'. */
1052 #define CLASS_MAX_NREGS(CLASS, MODE) \
1053 ((MODE) == BImode && (CLASS) == PR_REGS ? 2 \
1054 : ((CLASS) == FR_REGS && (MODE) == XFmode) ? 1 \
1055 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1057 /* In FP regs, we can't change FP values to integer values and vice
1058 versa, but we can change e.g. DImode to SImode. */
1060 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1061 (GET_MODE_CLASS (FROM) != GET_MODE_CLASS (TO) \
1062 ? reg_classes_intersect_p (CLASS, FR_REGS) : 0)
1064 /* A C expression that defines the machine-dependent operand constraint
1065 letters (`I', `J', `K', .. 'P') that specify particular ranges of
1066 integer values. */
1068 /* 14 bit signed immediate for arithmetic instructions. */
1069 #define CONST_OK_FOR_I(VALUE) \
1070 ((unsigned HOST_WIDE_INT)(VALUE) + 0x2000 < 0x4000)
1071 /* 22 bit signed immediate for arith instructions with r0/r1/r2/r3 source. */
1072 #define CONST_OK_FOR_J(VALUE) \
1073 ((unsigned HOST_WIDE_INT)(VALUE) + 0x200000 < 0x400000)
1074 /* 8 bit signed immediate for logical instructions. */
1075 #define CONST_OK_FOR_K(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x80 < 0x100)
1076 /* 8 bit adjusted signed immediate for compare pseudo-ops. */
1077 #define CONST_OK_FOR_L(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x7F < 0x100)
1078 /* 6 bit unsigned immediate for shift counts. */
1079 #define CONST_OK_FOR_M(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) < 0x40)
1080 /* 9 bit signed immediate for load/store post-increments. */
1081 #define CONST_OK_FOR_N(VALUE) ((unsigned HOST_WIDE_INT)(VALUE) + 0x100 < 0x200)
1082 /* 0 for r0. Used by Linux kernel, do not change. */
1083 #define CONST_OK_FOR_O(VALUE) ((VALUE) == 0)
1084 /* 0 or -1 for dep instruction. */
1085 #define CONST_OK_FOR_P(VALUE) ((VALUE) == 0 || (VALUE) == -1)
1087 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1088 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) \
1089 : (C) == 'J' ? CONST_OK_FOR_J (VALUE) \
1090 : (C) == 'K' ? CONST_OK_FOR_K (VALUE) \
1091 : (C) == 'L' ? CONST_OK_FOR_L (VALUE) \
1092 : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
1093 : (C) == 'N' ? CONST_OK_FOR_N (VALUE) \
1094 : (C) == 'O' ? CONST_OK_FOR_O (VALUE) \
1095 : (C) == 'P' ? CONST_OK_FOR_P (VALUE) \
1096 : 0)
1098 /* A C expression that defines the machine-dependent operand constraint letters
1099 (`G', `H') that specify particular ranges of `const_double' values. */
1101 /* 0.0 and 1.0 for fr0 and fr1. */
1102 #define CONST_DOUBLE_OK_FOR_G(VALUE) \
1103 ((VALUE) == CONST0_RTX (GET_MODE (VALUE)) \
1104 || (VALUE) == CONST1_RTX (GET_MODE (VALUE)))
1106 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1107 ((C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) : 0)
1109 /* A C expression that defines the optional machine-dependent constraint
1110 letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
1111 types of operands, usually memory references, for the target machine. */
1113 /* Non-volatile memory for FP_REG loads/stores. */
1114 #define CONSTRAINT_OK_FOR_Q(VALUE) \
1115 (memory_operand((VALUE), VOIDmode) && ! MEM_VOLATILE_P (VALUE))
1116 /* 1..4 for shladd arguments. */
1117 #define CONSTRAINT_OK_FOR_R(VALUE) \
1118 (GET_CODE (VALUE) == CONST_INT && INTVAL (VALUE) >= 1 && INTVAL (VALUE) <= 4)
1119 /* Non-post-inc memory for asms and other unsavory creatures. */
1120 #define CONSTRAINT_OK_FOR_S(VALUE) \
1121 (GET_CODE (VALUE) == MEM \
1122 && GET_RTX_CLASS (GET_CODE (XEXP ((VALUE), 0))) != 'a' \
1123 && (reload_in_progress || memory_operand ((VALUE), VOIDmode)))
1124 /* Symbol ref to small-address-area: */
1125 #define CONSTRAINT_OK_FOR_T(VALUE) \
1126 (GET_CODE (VALUE) == SYMBOL_REF && SYMBOL_REF_SMALL_ADDR_P (VALUE))
1128 #define EXTRA_CONSTRAINT(VALUE, C) \
1129 ((C) == 'Q' ? CONSTRAINT_OK_FOR_Q (VALUE) \
1130 : (C) == 'R' ? CONSTRAINT_OK_FOR_R (VALUE) \
1131 : (C) == 'S' ? CONSTRAINT_OK_FOR_S (VALUE) \
1132 : (C) == 'T' ? CONSTRAINT_OK_FOR_T (VALUE) \
1133 : 0)
1135 /* Basic Stack Layout */
1137 /* Define this macro if pushing a word onto the stack moves the stack pointer
1138 to a smaller address. */
1139 #define STACK_GROWS_DOWNWARD 1
1141 /* Define this macro if the addresses of local variable slots are at negative
1142 offsets from the frame pointer. */
1143 /* #define FRAME_GROWS_DOWNWARD */
1145 /* Offset from the frame pointer to the first local variable slot to
1146 be allocated. */
1147 #define STARTING_FRAME_OFFSET 0
1149 /* Offset from the stack pointer register to the first location at which
1150 outgoing arguments are placed. If not specified, the default value of zero
1151 is used. This is the proper value for most machines. */
1152 /* IA64 has a 16 byte scratch area that is at the bottom of the stack. */
1153 #define STACK_POINTER_OFFSET 16
1155 /* Offset from the argument pointer register to the first argument's address.
1156 On some machines it may depend on the data type of the function. */
1157 #define FIRST_PARM_OFFSET(FUNDECL) 0
1159 /* A C expression whose value is RTL representing the value of the return
1160 address for the frame COUNT steps up from the current frame, after the
1161 prologue. */
1163 /* ??? Frames other than zero would likely require interpreting the frame
1164 unwind info, so we don't try to support them. We would also need to define
1165 DYNAMIC_CHAIN_ADDRESS and SETUP_FRAME_ADDRESS (for the reg stack flush). */
1167 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1168 ia64_return_addr_rtx (COUNT, FRAME)
1170 /* A C expression whose value is RTL representing the location of the incoming
1171 return address at the beginning of any function, before the prologue. This
1172 RTL is either a `REG', indicating that the return value is saved in `REG',
1173 or a `MEM' representing a location in the stack. This enables DWARF2
1174 unwind info for C++ EH. */
1175 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, BR_REG (0))
1177 /* ??? This is not defined because of three problems.
1178 1) dwarf2out.c assumes that DWARF_FRAME_RETURN_COLUMN fits in one byte.
1179 The default value is FIRST_PSEUDO_REGISTER which doesn't. This can be
1180 worked around by setting PC_REGNUM to FR_REG (0) which is an otherwise
1181 unused register number.
1182 2) dwarf2out_frame_debug core dumps while processing prologue insns. We
1183 need to refine which insns have RTX_FRAME_RELATED_P set and which don't.
1184 3) It isn't possible to turn off EH frame info by defining DWARF2_UNIND_INFO
1185 to zero, despite what the documentation implies, because it is tested in
1186 a few places with #ifdef instead of #if. */
1187 #undef INCOMING_RETURN_ADDR_RTX
1189 /* A C expression whose value is an integer giving the offset, in bytes, from
1190 the value of the stack pointer register to the top of the stack frame at the
1191 beginning of any function, before the prologue. The top of the frame is
1192 defined to be the value of the stack pointer in the previous frame, just
1193 before the call instruction. */
1194 #define INCOMING_FRAME_SP_OFFSET 0
1197 /* Register That Address the Stack Frame. */
1199 /* The register number of the stack pointer register, which must also be a
1200 fixed register according to `FIXED_REGISTERS'. On most machines, the
1201 hardware determines which register this is. */
1203 #define STACK_POINTER_REGNUM 12
1205 /* The register number of the frame pointer register, which is used to access
1206 automatic variables in the stack frame. On some machines, the hardware
1207 determines which register this is. On other machines, you can choose any
1208 register you wish for this purpose. */
1210 #define FRAME_POINTER_REGNUM 328
1212 /* Base register for access to local variables of the function. */
1213 #define HARD_FRAME_POINTER_REGNUM LOC_REG (79)
1215 /* The register number of the arg pointer register, which is used to access the
1216 function's argument list. */
1217 /* r0 won't otherwise be used, so put the always eliminated argument pointer
1218 in it. */
1219 #define ARG_POINTER_REGNUM R_GR(0)
1221 /* Due to the way varargs and argument spilling happens, the argument
1222 pointer is not 16-byte aligned like the stack pointer. */
1223 #define INIT_EXPANDERS \
1224 do { \
1225 if (cfun && cfun->emit->regno_pointer_align) \
1226 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = 64; \
1227 } while (0)
1229 /* Register numbers used for passing a function's static chain pointer. */
1230 /* ??? The ABI sez the static chain should be passed as a normal parameter. */
1231 #define STATIC_CHAIN_REGNUM 15
1233 /* Eliminating the Frame Pointer and the Arg Pointer */
1235 /* A C expression which is nonzero if a function must have and use a frame
1236 pointer. This expression is evaluated in the reload pass. If its value is
1237 nonzero the function will have a frame pointer. */
1238 #define FRAME_POINTER_REQUIRED 0
1240 /* Show we can debug even without a frame pointer. */
1241 #define CAN_DEBUG_WITHOUT_FP
1243 /* If defined, this macro specifies a table of register pairs used to eliminate
1244 unneeded registers that point into the stack frame. */
1246 #define ELIMINABLE_REGS \
1248 {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1249 {ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1250 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1251 {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1254 /* A C expression that returns nonzero if the compiler is allowed to try to
1255 replace register number FROM with register number TO. The frame pointer
1256 is automatically handled. */
1258 #define CAN_ELIMINATE(FROM, TO) \
1259 (TO == BR_REG (0) ? current_function_is_leaf : 1)
1261 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
1262 specifies the initial difference between the specified pair of
1263 registers. This macro must be defined if `ELIMINABLE_REGS' is
1264 defined. */
1265 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1266 ((OFFSET) = ia64_initial_elimination_offset ((FROM), (TO)))
1268 /* Passing Function Arguments on the Stack */
1270 /* Define this macro if an argument declared in a prototype as an integral type
1271 smaller than `int' should actually be passed as an `int'. In addition to
1272 avoiding errors in certain cases of mismatch, it also makes for better code
1273 on certain machines. */
1274 /* ??? Investigate. */
1275 /* #define PROMOTE_PROTOTYPES */
1277 /* If defined, the maximum amount of space required for outgoing arguments will
1278 be computed and placed into the variable
1279 `current_function_outgoing_args_size'. */
1281 #define ACCUMULATE_OUTGOING_ARGS 1
1283 /* A C expression that should indicate the number of bytes of its own arguments
1284 that a function pops on returning, or 0 if the function pops no arguments
1285 and the caller must therefore pop them all after the function returns. */
1287 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
1290 /* Function Arguments in Registers */
1292 #define MAX_ARGUMENT_SLOTS 8
1293 #define MAX_INT_RETURN_SLOTS 4
1294 #define GR_ARG_FIRST IN_REG (0)
1295 #define GR_RET_FIRST GR_REG (8)
1296 #define GR_RET_LAST GR_REG (11)
1297 #define FR_ARG_FIRST FR_REG (8)
1298 #define FR_RET_FIRST FR_REG (8)
1299 #define FR_RET_LAST FR_REG (15)
1300 #define AR_ARG_FIRST OUT_REG (0)
1302 /* A C expression that controls whether a function argument is passed in a
1303 register, and which register. */
1305 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1306 ia64_function_arg (&CUM, MODE, TYPE, NAMED, 0)
1308 /* Define this macro if the target machine has "register windows", so that the
1309 register in which a function sees an arguments is not necessarily the same
1310 as the one in which the caller passed the argument. */
1312 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1313 ia64_function_arg (&CUM, MODE, TYPE, NAMED, 1)
1315 /* A C expression for the number of words, at the beginning of an argument,
1316 must be put in registers. The value must be zero for arguments that are
1317 passed entirely in registers or that are entirely pushed on the stack. */
1319 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1320 ia64_function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1322 /* A C expression that indicates when an argument must be passed by reference.
1323 If nonzero for an argument, a copy of that argument is made in memory and a
1324 pointer to the argument is passed instead of the argument itself. The
1325 pointer is passed in whatever way is appropriate for passing a pointer to
1326 that type. */
1328 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1329 ia64_function_arg_pass_by_reference (&CUM, MODE, TYPE, NAMED)
1331 /* Nonzero if we do not know how to pass TYPE solely in registers. */
1333 #define MUST_PASS_IN_STACK(MODE, TYPE) \
1334 ((TYPE) != 0 \
1335 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1336 || TREE_ADDRESSABLE (TYPE)))
1338 /* A C type for declaring a variable that is used as the first argument of
1339 `FUNCTION_ARG' and other related values. For some target machines, the type
1340 `int' suffices and can hold the number of bytes of argument so far. */
1342 typedef struct ia64_args
1344 int words; /* # words of arguments so far */
1345 int int_regs; /* # GR registers used so far */
1346 int fp_regs; /* # FR registers used so far */
1347 int prototype; /* whether function prototyped */
1348 } CUMULATIVE_ARGS;
1350 /* A C statement (sans semicolon) for initializing the variable CUM for the
1351 state at the beginning of the argument list. */
1353 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1354 do { \
1355 (CUM).words = 0; \
1356 (CUM).int_regs = 0; \
1357 (CUM).fp_regs = 0; \
1358 (CUM).prototype = ((FNTYPE) && TYPE_ARG_TYPES (FNTYPE)) || (LIBNAME); \
1359 } while (0)
1361 /* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1362 arguments for the function being compiled. If this macro is undefined,
1363 `INIT_CUMULATIVE_ARGS' is used instead. */
1365 /* We set prototype to true so that we never try to return a PARALLEL from
1366 function_arg. */
1367 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1368 do { \
1369 (CUM).words = 0; \
1370 (CUM).int_regs = 0; \
1371 (CUM).fp_regs = 0; \
1372 (CUM).prototype = 1; \
1373 } while (0)
1375 /* A C statement (sans semicolon) to update the summarizer variable CUM to
1376 advance past an argument in the argument list. The values MODE, TYPE and
1377 NAMED describe that argument. Once this is done, the variable CUM is
1378 suitable for analyzing the *following* argument with `FUNCTION_ARG'. */
1380 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1381 ia64_function_arg_advance (&CUM, MODE, TYPE, NAMED)
1383 /* If defined, a C expression that gives the alignment boundary, in bits, of an
1384 argument with the specified mode and type. */
1386 /* Arguments with alignment larger than 8 bytes start at the next even
1387 boundary. See ia64_function_arg. */
1389 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1390 (((TYPE) ? (TYPE_ALIGN (TYPE) > 8 * BITS_PER_UNIT) \
1391 : (((((MODE) == BLKmode \
1392 ? int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE)) \
1393 + UNITS_PER_WORD - 1) / UNITS_PER_WORD) > 1)) \
1394 ? 128 : PARM_BOUNDARY)
1396 /* A C expression that is nonzero if REGNO is the number of a hard register in
1397 which function arguments are sometimes passed. This does *not* include
1398 implicit arguments such as the static chain and the structure-value address.
1399 On many machines, no registers can be used for this purpose since all
1400 function arguments are pushed on the stack. */
1401 #define FUNCTION_ARG_REGNO_P(REGNO) \
1402 (((REGNO) >= AR_ARG_FIRST && (REGNO) < (AR_ARG_FIRST + MAX_ARGUMENT_SLOTS)) \
1403 || ((REGNO) >= FR_ARG_FIRST && (REGNO) < (FR_ARG_FIRST + MAX_ARGUMENT_SLOTS)))
1405 /* Implement `va_arg'. */
1406 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1407 ia64_va_arg (valist, type)
1409 /* How Scalar Function Values are Returned */
1411 /* A C expression to create an RTX representing the place where a function
1412 returns a value of data type VALTYPE. */
1414 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1415 ia64_function_value (VALTYPE, FUNC)
1417 /* A C expression to create an RTX representing the place where a library
1418 function returns a value of mode MODE. */
1420 #define LIBCALL_VALUE(MODE) \
1421 gen_rtx_REG (MODE, \
1422 (((GET_MODE_CLASS (MODE) == MODE_FLOAT \
1423 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) && \
1424 (MODE) != TFmode) \
1425 ? FR_RET_FIRST : GR_RET_FIRST))
1427 /* A C expression that is nonzero if REGNO is the number of a hard register in
1428 which the values of called function may come back. */
1430 #define FUNCTION_VALUE_REGNO_P(REGNO) \
1431 (((REGNO) >= GR_RET_FIRST && (REGNO) <= GR_RET_LAST) \
1432 || ((REGNO) >= FR_RET_FIRST && (REGNO) <= FR_RET_LAST))
1435 /* How Large Values are Returned */
1437 /* A nonzero value says to return the function value in memory, just as large
1438 structures are always returned. */
1440 #define RETURN_IN_MEMORY(TYPE) \
1441 ia64_return_in_memory (TYPE)
1443 /* If you define this macro to be 0, then the conventions used for structure
1444 and union return values are decided by the `RETURN_IN_MEMORY' macro. */
1446 #define DEFAULT_PCC_STRUCT_RETURN 0
1448 /* If the structure value address is passed in a register, then
1449 `STRUCT_VALUE_REGNUM' should be the number of that register. */
1451 #define STRUCT_VALUE_REGNUM GR_REG (8)
1454 /* Caller-Saves Register Allocation */
1456 /* A C expression to determine whether it is worthwhile to consider placing a
1457 pseudo-register in a call-clobbered hard register and saving and restoring
1458 it around each function call. The expression should be 1 when this is worth
1459 doing, and 0 otherwise.
1461 If you don't define this macro, a default is used which is good on most
1462 machines: `4 * CALLS < REFS'. */
1463 /* ??? Investigate. */
1464 /* #define CALLER_SAVE_PROFITABLE(REFS, CALLS) */
1467 /* Function Entry and Exit */
1469 /* Define this macro as a C expression that is nonzero if the return
1470 instruction or the function epilogue ignores the value of the stack pointer;
1471 in other words, if it is safe to delete an instruction to adjust the stack
1472 pointer before a return from the function. */
1474 #define EXIT_IGNORE_STACK 1
1476 /* Define this macro as a C expression that is nonzero for registers
1477 used by the epilogue or the `return' pattern. */
1479 #define EPILOGUE_USES(REGNO) ia64_epilogue_uses (REGNO)
1481 /* Nonzero for registers used by the exception handling mechanism. */
1483 #define EH_USES(REGNO) ia64_eh_uses (REGNO)
1485 /* Output part N of a function descriptor for DECL. For ia64, both
1486 words are emitted with a single relocation, so ignore N > 0. */
1487 #define ASM_OUTPUT_FDESC(FILE, DECL, PART) \
1488 do { \
1489 if ((PART) == 0) \
1491 if (TARGET_ILP32) \
1492 fputs ("\tdata8.ua @iplt(", FILE); \
1493 else \
1494 fputs ("\tdata16.ua @iplt(", FILE); \
1495 assemble_name (FILE, XSTR (XEXP (DECL_RTL (DECL), 0), 0)); \
1496 fputs (")\n", FILE); \
1497 if (TARGET_ILP32) \
1498 fputs ("\tdata8.ua 0\n", FILE); \
1500 } while (0)
1502 /* Generating Code for Profiling. */
1504 /* A C statement or compound statement to output to FILE some assembler code to
1505 call the profiling subroutine `mcount'. */
1507 #undef FUNCTION_PROFILER
1508 #define FUNCTION_PROFILER(FILE, LABELNO) \
1509 do { \
1510 char buf[20]; \
1511 ASM_GENERATE_INTERNAL_LABEL (buf, "LP", LABELNO); \
1512 fputs ("\talloc out0 = ar.pfs, 8, 0, 4, 0\n", FILE); \
1513 if (TARGET_AUTO_PIC) \
1514 fputs ("\tmovl out3 = @gprel(", FILE); \
1515 else \
1516 fputs ("\taddl out3 = @ltoff(", FILE); \
1517 assemble_name (FILE, buf); \
1518 if (TARGET_AUTO_PIC) \
1519 fputs (");;\n", FILE); \
1520 else \
1521 fputs ("), r1;;\n", FILE); \
1522 fputs ("\tmov out1 = r1\n", FILE); \
1523 fputs ("\tmov out2 = b0\n", FILE); \
1524 fputs ("\tbr.call.sptk.many b0 = _mcount;;\n", FILE); \
1525 } while (0)
1527 /* Implementing the Varargs Macros. */
1529 /* Define this macro to store the anonymous register arguments into the stack
1530 so that all the arguments appear to have been passed consecutively on the
1531 stack. */
1533 #define SETUP_INCOMING_VARARGS(ARGS_SO_FAR, MODE, TYPE, PRETEND_ARGS_SIZE, SECOND_TIME) \
1534 ia64_setup_incoming_varargs (ARGS_SO_FAR, MODE, TYPE, & PRETEND_ARGS_SIZE, SECOND_TIME)
1536 /* Define this macro if the location where a function argument is passed
1537 depends on whether or not it is a named argument. */
1539 #define STRICT_ARGUMENT_NAMING 1
1542 /* Trampolines for Nested Functions. */
1544 /* We need 32 bytes, so we can save the sp, ar.rnat, ar.bsp, and ar.pfs of
1545 the function containing a non-local goto target. */
1547 #define STACK_SAVEAREA_MODE(LEVEL) \
1548 ((LEVEL) == SAVE_NONLOCAL ? OImode : Pmode)
1550 /* Output assembler code for a block containing the constant parts of
1551 a trampoline, leaving space for the variable parts.
1553 The trampoline should set the static chain pointer to value placed
1554 into the trampoline and should branch to the specified routine.
1555 To make the normal indirect-subroutine calling convention work,
1556 the trampoline must look like a function descriptor; the first
1557 word being the target address and the second being the target's
1558 global pointer.
1560 We abuse the concept of a global pointer by arranging for it
1561 to point to the data we need to load. The complete trampoline
1562 has the following form:
1564 +-------------------+ \
1565 TRAMP: | __ia64_trampoline | |
1566 +-------------------+ > fake function descriptor
1567 | TRAMP+16 | |
1568 +-------------------+ /
1569 | target descriptor |
1570 +-------------------+
1571 | static link |
1572 +-------------------+
1575 /* A C expression for the size in bytes of the trampoline, as an integer. */
1577 #define TRAMPOLINE_SIZE 32
1579 /* Alignment required for trampolines, in bits. */
1581 #define TRAMPOLINE_ALIGNMENT 64
1583 /* A C statement to initialize the variable parts of a trampoline. */
1585 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \
1586 ia64_initialize_trampoline((ADDR), (FNADDR), (STATIC_CHAIN))
1588 /* Implicit Calls to Library Routines */
1590 /* Define this macro if GCC should generate calls to the System V (and ANSI
1591 C) library functions `memcpy' and `memset' rather than the BSD functions
1592 `bcopy' and `bzero'. */
1594 #define TARGET_MEM_FUNCTIONS
1597 /* Addressing Modes */
1599 /* Define this macro if the machine supports post-increment addressing. */
1601 #define HAVE_POST_INCREMENT 1
1602 #define HAVE_POST_DECREMENT 1
1603 #define HAVE_POST_MODIFY_DISP 1
1604 #define HAVE_POST_MODIFY_REG 1
1606 /* A C expression that is 1 if the RTX X is a constant which is a valid
1607 address. */
1609 #define CONSTANT_ADDRESS_P(X) 0
1611 /* The max number of registers that can appear in a valid memory address. */
1613 #define MAX_REGS_PER_ADDRESS 2
1615 /* A C compound statement with a conditional `goto LABEL;' executed if X (an
1616 RTX) is a legitimate memory address on the target machine for a memory
1617 operand of mode MODE. */
1619 #define LEGITIMATE_ADDRESS_REG(X) \
1620 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1621 || (GET_CODE (X) == SUBREG && GET_CODE (XEXP (X, 0)) == REG \
1622 && REG_OK_FOR_BASE_P (XEXP (X, 0))))
1624 #define LEGITIMATE_ADDRESS_DISP(R, X) \
1625 (GET_CODE (X) == PLUS \
1626 && rtx_equal_p (R, XEXP (X, 0)) \
1627 && (LEGITIMATE_ADDRESS_REG (XEXP (X, 1)) \
1628 || (GET_CODE (XEXP (X, 1)) == CONST_INT \
1629 && INTVAL (XEXP (X, 1)) >= -256 \
1630 && INTVAL (XEXP (X, 1)) < 256)))
1632 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
1633 do { \
1634 if (LEGITIMATE_ADDRESS_REG (X)) \
1635 goto LABEL; \
1636 else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == POST_DEC) \
1637 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1638 && XEXP (X, 0) != arg_pointer_rtx) \
1639 goto LABEL; \
1640 else if (GET_CODE (X) == POST_MODIFY \
1641 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1642 && XEXP (X, 0) != arg_pointer_rtx \
1643 && LEGITIMATE_ADDRESS_DISP (XEXP (X, 0), XEXP (X, 1))) \
1644 goto LABEL; \
1645 } while (0)
1647 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1648 use as a base register. */
1650 #ifdef REG_OK_STRICT
1651 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1652 #else
1653 #define REG_OK_FOR_BASE_P(X) \
1654 (GENERAL_REGNO_P (REGNO (X)) || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1655 #endif
1657 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1658 use as an index register. This is needed for POST_MODIFY. */
1660 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1662 /* A C compound statement that attempts to replace X with a valid memory
1663 address for an operand of mode MODE.
1665 This must be present, but there is nothing useful to be done here. */
1667 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)
1669 /* A C statement or compound statement with a conditional `goto LABEL;'
1670 executed if memory address X (an RTX) can have different meanings depending
1671 on the machine mode of the memory reference it is used for or if the address
1672 is valid for some modes but not others. */
1674 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1675 if (GET_CODE (ADDR) == POST_DEC || GET_CODE (ADDR) == POST_INC) \
1676 goto LABEL;
1678 /* A C expression that is nonzero if X is a legitimate constant for an
1679 immediate operand on the target machine. */
1681 #define LEGITIMATE_CONSTANT_P(X) \
1682 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
1683 || GET_MODE (X) == DImode || CONST_DOUBLE_OK_FOR_G (X)) \
1686 /* Condition Code Status */
1688 /* One some machines not all possible comparisons are defined, but you can
1689 convert an invalid comparison into a valid one. */
1690 /* ??? Investigate. See the alpha definition. */
1691 /* #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) */
1694 /* Describing Relative Costs of Operations */
1696 /* A C expression for the cost of moving data from a register in class FROM to
1697 one in class TO, using MODE. */
1699 #define REGISTER_MOVE_COST ia64_register_move_cost
1701 /* A C expression for the cost of moving data of mode M between a
1702 register and memory. */
1703 #define MEMORY_MOVE_COST(MODE,CLASS,IN) \
1704 ((CLASS) == GENERAL_REGS || (CLASS) == FR_REGS \
1705 || (CLASS) == GR_AND_FR_REGS ? 4 : 10)
1707 /* A C expression for the cost of a branch instruction. A value of 1 is the
1708 default; other values are interpreted relative to that. Used by the
1709 if-conversion code as max instruction count. */
1710 /* ??? This requires investigation. The primary effect might be how
1711 many additional insn groups we run into, vs how good the dynamic
1712 branch predictor is. */
1714 #define BRANCH_COST 6
1716 /* Define this macro as a C expression which is nonzero if accessing less than
1717 a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1718 word of memory. */
1720 #define SLOW_BYTE_ACCESS 1
1722 /* Define this macro if it is as good or better to call a constant function
1723 address than to call an address kept in a register.
1725 Indirect function calls are more expensive that direct function calls, so
1726 don't cse function addresses. */
1728 #define NO_FUNCTION_CSE
1731 /* Dividing the output into sections. */
1733 /* A C expression whose value is a string containing the assembler operation
1734 that should precede instructions and read-only data. */
1736 #define TEXT_SECTION_ASM_OP "\t.text"
1738 /* A C expression whose value is a string containing the assembler operation to
1739 identify the following data as writable initialized data. */
1741 #define DATA_SECTION_ASM_OP "\t.data"
1743 /* If defined, a C expression whose value is a string containing the assembler
1744 operation to identify the following data as uninitialized global data. */
1746 #define BSS_SECTION_ASM_OP "\t.bss"
1748 #define IA64_DEFAULT_GVALUE 8
1750 /* Position Independent Code. */
1752 /* The register number of the register used to address a table of static data
1753 addresses in memory. */
1755 /* ??? Should modify ia64.md to use pic_offset_table_rtx instead of
1756 gen_rtx_REG (DImode, 1). */
1758 /* ??? Should we set flag_pic? Probably need to define
1759 LEGITIMIZE_PIC_OPERAND_P to make that work. */
1761 #define PIC_OFFSET_TABLE_REGNUM GR_REG (1)
1763 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM' is
1764 clobbered by calls. */
1766 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1769 /* The Overall Framework of an Assembler File. */
1771 /* A C string constant describing how to begin a comment in the target
1772 assembler language. The compiler assumes that the comment will end at the
1773 end of the line. */
1775 #define ASM_COMMENT_START "//"
1777 /* A C string constant for text to be output before each `asm' statement or
1778 group of consecutive ones. */
1780 #define ASM_APP_ON (TARGET_GNU_AS ? "#APP\n" : "//APP\n")
1782 /* A C string constant for text to be output after each `asm' statement or
1783 group of consecutive ones. */
1785 #define ASM_APP_OFF (TARGET_GNU_AS ? "#NO_APP\n" : "//NO_APP\n")
1787 /* Output of Uninitialized Variables. */
1789 /* This is all handled by svr4.h. */
1792 /* Output and Generation of Labels. */
1794 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
1795 assembler definition of a label named NAME. */
1797 /* See the ASM_OUTPUT_LABELREF definition in sysv4.h for an explanation of
1798 why ia64_asm_output_label exists. */
1800 extern int ia64_asm_output_label;
1801 #define ASM_OUTPUT_LABEL(STREAM, NAME) \
1802 do { \
1803 ia64_asm_output_label = 1; \
1804 assemble_name (STREAM, NAME); \
1805 fputs (":\n", STREAM); \
1806 ia64_asm_output_label = 0; \
1807 } while (0)
1809 /* Globalizing directive for a label. */
1810 #define GLOBAL_ASM_OP "\t.global "
1812 /* A C statement (sans semicolon) to output to the stdio stream STREAM any text
1813 necessary for declaring the name of an external symbol named NAME which is
1814 referenced in this compilation but not defined. */
1816 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1817 ia64_asm_output_external (FILE, DECL, NAME)
1819 /* A C statement to store into the string STRING a label whose name is made
1820 from the string PREFIX and the number NUM. */
1822 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1823 do { \
1824 sprintf (LABEL, "*.%s%d", PREFIX, NUM); \
1825 } while (0)
1827 /* ??? Not sure if using a ? in the name for Intel as is safe. */
1829 #define ASM_PN_FORMAT (TARGET_GNU_AS ? "%s.%lu" : "%s?%lu")
1831 /* A C statement to output to the stdio stream STREAM assembler code which
1832 defines (equates) the symbol NAME to have the value VALUE. */
1834 #define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
1835 do { \
1836 assemble_name (STREAM, NAME); \
1837 fputs (" = ", STREAM); \
1838 assemble_name (STREAM, VALUE); \
1839 fputc ('\n', STREAM); \
1840 } while (0)
1843 /* Macros Controlling Initialization Routines. */
1845 /* This is handled by svr4.h and sysv4.h. */
1848 /* Output of Assembler Instructions. */
1850 /* A C initializer containing the assembler's names for the machine registers,
1851 each one as a C string constant. */
1853 #define REGISTER_NAMES \
1855 /* General registers. */ \
1856 "ap", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
1857 "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", \
1858 "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", \
1859 "r30", "r31", \
1860 /* Local registers. */ \
1861 "loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7", \
1862 "loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15", \
1863 "loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23", \
1864 "loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31", \
1865 "loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39", \
1866 "loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47", \
1867 "loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55", \
1868 "loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63", \
1869 "loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71", \
1870 "loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79", \
1871 /* Input registers. */ \
1872 "in0", "in1", "in2", "in3", "in4", "in5", "in6", "in7", \
1873 /* Output registers. */ \
1874 "out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7", \
1875 /* Floating-point registers. */ \
1876 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", \
1877 "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", \
1878 "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", \
1879 "f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", \
1880 "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49", \
1881 "f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59", \
1882 "f60", "f61", "f62", "f63", "f64", "f65", "f66", "f67", "f68", "f69", \
1883 "f70", "f71", "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79", \
1884 "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", "f88", "f89", \
1885 "f90", "f91", "f92", "f93", "f94", "f95", "f96", "f97", "f98", "f99", \
1886 "f100","f101","f102","f103","f104","f105","f106","f107","f108","f109",\
1887 "f110","f111","f112","f113","f114","f115","f116","f117","f118","f119",\
1888 "f120","f121","f122","f123","f124","f125","f126","f127", \
1889 /* Predicate registers. */ \
1890 "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8", "p9", \
1891 "p10", "p11", "p12", "p13", "p14", "p15", "p16", "p17", "p18", "p19", \
1892 "p20", "p21", "p22", "p23", "p24", "p25", "p26", "p27", "p28", "p29", \
1893 "p30", "p31", "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39", \
1894 "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", "p48", "p49", \
1895 "p50", "p51", "p52", "p53", "p54", "p55", "p56", "p57", "p58", "p59", \
1896 "p60", "p61", "p62", "p63", \
1897 /* Branch registers. */ \
1898 "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", \
1899 /* Frame pointer. Application registers. */ \
1900 "sfp", "ar.ccv", "ar.unat", "ar.pfs", "ar.lc", "ar.ec", \
1903 /* If defined, a C initializer for an array of structures containing a name and
1904 a register number. This macro defines additional names for hard registers,
1905 thus allowing the `asm' option in declarations to refer to registers using
1906 alternate names. */
1908 #define ADDITIONAL_REGISTER_NAMES \
1910 { "gp", R_GR (1) }, \
1911 { "sp", R_GR (12) }, \
1912 { "in0", IN_REG (0) }, \
1913 { "in1", IN_REG (1) }, \
1914 { "in2", IN_REG (2) }, \
1915 { "in3", IN_REG (3) }, \
1916 { "in4", IN_REG (4) }, \
1917 { "in5", IN_REG (5) }, \
1918 { "in6", IN_REG (6) }, \
1919 { "in7", IN_REG (7) }, \
1920 { "out0", OUT_REG (0) }, \
1921 { "out1", OUT_REG (1) }, \
1922 { "out2", OUT_REG (2) }, \
1923 { "out3", OUT_REG (3) }, \
1924 { "out4", OUT_REG (4) }, \
1925 { "out5", OUT_REG (5) }, \
1926 { "out6", OUT_REG (6) }, \
1927 { "out7", OUT_REG (7) }, \
1928 { "loc0", LOC_REG (0) }, \
1929 { "loc1", LOC_REG (1) }, \
1930 { "loc2", LOC_REG (2) }, \
1931 { "loc3", LOC_REG (3) }, \
1932 { "loc4", LOC_REG (4) }, \
1933 { "loc5", LOC_REG (5) }, \
1934 { "loc6", LOC_REG (6) }, \
1935 { "loc7", LOC_REG (7) }, \
1936 { "loc8", LOC_REG (8) }, \
1937 { "loc9", LOC_REG (9) }, \
1938 { "loc10", LOC_REG (10) }, \
1939 { "loc11", LOC_REG (11) }, \
1940 { "loc12", LOC_REG (12) }, \
1941 { "loc13", LOC_REG (13) }, \
1942 { "loc14", LOC_REG (14) }, \
1943 { "loc15", LOC_REG (15) }, \
1944 { "loc16", LOC_REG (16) }, \
1945 { "loc17", LOC_REG (17) }, \
1946 { "loc18", LOC_REG (18) }, \
1947 { "loc19", LOC_REG (19) }, \
1948 { "loc20", LOC_REG (20) }, \
1949 { "loc21", LOC_REG (21) }, \
1950 { "loc22", LOC_REG (22) }, \
1951 { "loc23", LOC_REG (23) }, \
1952 { "loc24", LOC_REG (24) }, \
1953 { "loc25", LOC_REG (25) }, \
1954 { "loc26", LOC_REG (26) }, \
1955 { "loc27", LOC_REG (27) }, \
1956 { "loc28", LOC_REG (28) }, \
1957 { "loc29", LOC_REG (29) }, \
1958 { "loc30", LOC_REG (30) }, \
1959 { "loc31", LOC_REG (31) }, \
1960 { "loc32", LOC_REG (32) }, \
1961 { "loc33", LOC_REG (33) }, \
1962 { "loc34", LOC_REG (34) }, \
1963 { "loc35", LOC_REG (35) }, \
1964 { "loc36", LOC_REG (36) }, \
1965 { "loc37", LOC_REG (37) }, \
1966 { "loc38", LOC_REG (38) }, \
1967 { "loc39", LOC_REG (39) }, \
1968 { "loc40", LOC_REG (40) }, \
1969 { "loc41", LOC_REG (41) }, \
1970 { "loc42", LOC_REG (42) }, \
1971 { "loc43", LOC_REG (43) }, \
1972 { "loc44", LOC_REG (44) }, \
1973 { "loc45", LOC_REG (45) }, \
1974 { "loc46", LOC_REG (46) }, \
1975 { "loc47", LOC_REG (47) }, \
1976 { "loc48", LOC_REG (48) }, \
1977 { "loc49", LOC_REG (49) }, \
1978 { "loc50", LOC_REG (50) }, \
1979 { "loc51", LOC_REG (51) }, \
1980 { "loc52", LOC_REG (52) }, \
1981 { "loc53", LOC_REG (53) }, \
1982 { "loc54", LOC_REG (54) }, \
1983 { "loc55", LOC_REG (55) }, \
1984 { "loc56", LOC_REG (56) }, \
1985 { "loc57", LOC_REG (57) }, \
1986 { "loc58", LOC_REG (58) }, \
1987 { "loc59", LOC_REG (59) }, \
1988 { "loc60", LOC_REG (60) }, \
1989 { "loc61", LOC_REG (61) }, \
1990 { "loc62", LOC_REG (62) }, \
1991 { "loc63", LOC_REG (63) }, \
1992 { "loc64", LOC_REG (64) }, \
1993 { "loc65", LOC_REG (65) }, \
1994 { "loc66", LOC_REG (66) }, \
1995 { "loc67", LOC_REG (67) }, \
1996 { "loc68", LOC_REG (68) }, \
1997 { "loc69", LOC_REG (69) }, \
1998 { "loc70", LOC_REG (70) }, \
1999 { "loc71", LOC_REG (71) }, \
2000 { "loc72", LOC_REG (72) }, \
2001 { "loc73", LOC_REG (73) }, \
2002 { "loc74", LOC_REG (74) }, \
2003 { "loc75", LOC_REG (75) }, \
2004 { "loc76", LOC_REG (76) }, \
2005 { "loc77", LOC_REG (77) }, \
2006 { "loc78", LOC_REG (78) }, \
2007 { "loc79", LOC_REG (79) }, \
2010 /* Emit a dtp-relative reference to a TLS variable. */
2012 #ifdef HAVE_AS_TLS
2013 #define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
2014 ia64_output_dwarf_dtprel (FILE, SIZE, X)
2015 #endif
2017 /* A C compound statement to output to stdio stream STREAM the assembler syntax
2018 for an instruction operand X. X is an RTL expression. */
2020 #define PRINT_OPERAND(STREAM, X, CODE) \
2021 ia64_print_operand (STREAM, X, CODE)
2023 /* A C expression which evaluates to true if CODE is a valid punctuation
2024 character for use in the `PRINT_OPERAND' macro. */
2026 /* ??? Keep this around for now, as we might need it later. */
2028 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2029 ((CODE) == '+' || (CODE) == ',')
2031 /* A C compound statement to output to stdio stream STREAM the assembler syntax
2032 for an instruction operand that is a memory reference whose address is X. X
2033 is an RTL expression. */
2035 #define PRINT_OPERAND_ADDRESS(STREAM, X) \
2036 ia64_print_operand_address (STREAM, X)
2038 /* If defined, C string expressions to be used for the `%R', `%L', `%U', and
2039 `%I' options of `asm_fprintf' (see `final.c'). */
2041 #define REGISTER_PREFIX ""
2042 #define LOCAL_LABEL_PREFIX "."
2043 #define USER_LABEL_PREFIX ""
2044 #define IMMEDIATE_PREFIX ""
2047 /* Output of dispatch tables. */
2049 /* This macro should be provided on machines where the addresses in a dispatch
2050 table are relative to the table's own address. */
2052 /* ??? Depends on the pointer size. */
2054 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2055 do { \
2056 if (TARGET_ILP32) \
2057 fprintf (STREAM, "\tdata4 @pcrel(.L%d)\n", VALUE); \
2058 else \
2059 fprintf (STREAM, "\tdata8 @pcrel(.L%d)\n", VALUE); \
2060 } while (0)
2062 /* This is how to output an element of a case-vector that is absolute.
2063 (Ia64 does not use such vectors, but we must define this macro anyway.) */
2065 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) abort ()
2067 /* Jump tables only need 8 byte alignment. */
2069 #define ADDR_VEC_ALIGN(ADDR_VEC) 3
2072 /* Assembler Commands for Exception Regions. */
2074 /* Select a format to encode pointers in exception handling data. CODE
2075 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2076 true if the symbol may be affected by dynamic relocations. */
2077 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
2078 (((CODE) == 1 ? DW_EH_PE_textrel : DW_EH_PE_datarel) \
2079 | ((GLOBAL) ? DW_EH_PE_indirect : 0) \
2080 | (TARGET_ILP32 ? DW_EH_PE_udata4 : DW_EH_PE_udata8))
2082 /* Handle special EH pointer encodings. Absolute, pc-relative, and
2083 indirect are handled automatically. */
2084 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
2085 do { \
2086 const char *reltag = NULL; \
2087 if (((ENCODING) & 0xF0) == DW_EH_PE_textrel) \
2088 reltag = "@segrel("; \
2089 else if (((ENCODING) & 0xF0) == DW_EH_PE_datarel) \
2090 reltag = "@gprel("; \
2091 if (reltag) \
2093 fputs (integer_asm_op (SIZE, FALSE), FILE); \
2094 fputs (reltag, FILE); \
2095 assemble_name (FILE, XSTR (ADDR, 0)); \
2096 fputc (')', FILE); \
2097 goto DONE; \
2099 } while (0)
2102 /* Assembler Commands for Alignment. */
2104 /* ??? Investigate. */
2106 /* The alignment (log base 2) to put in front of LABEL, which follows
2107 a BARRIER. */
2109 /* #define LABEL_ALIGN_AFTER_BARRIER(LABEL) */
2111 /* The desired alignment for the location counter at the beginning
2112 of a loop. */
2114 /* #define LOOP_ALIGN(LABEL) */
2116 /* Define this macro if `ASM_OUTPUT_SKIP' should not be used in the text
2117 section because it fails put zeros in the bytes that are skipped. */
2119 #define ASM_NO_SKIP_IN_TEXT 1
2121 /* A C statement to output to the stdio stream STREAM an assembler command to
2122 advance the location counter to a multiple of 2 to the POWER bytes. */
2124 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
2125 fprintf (STREAM, "\t.align %d\n", 1<<(POWER))
2128 /* Macros Affecting all Debug Formats. */
2130 /* This is handled in svr4.h and sysv4.h. */
2133 /* Specific Options for DBX Output. */
2135 /* This is handled by dbxelf.h which is included by svr4.h. */
2138 /* Open ended Hooks for DBX Output. */
2140 /* Likewise. */
2143 /* File names in DBX format. */
2145 /* Likewise. */
2148 /* Macros for SDB and Dwarf Output. */
2150 /* Define this macro if GCC should produce dwarf version 2 format debugging
2151 output in response to the `-g' option. */
2153 #define DWARF2_DEBUGGING_INFO 1
2155 #define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DWARF2_ASM)
2157 /* Use tags for debug info labels, so that they don't break instruction
2158 bundles. This also avoids getting spurious DV warnings from the
2159 assembler. This is similar to (*targetm.asm_out.internal_label), except that we
2160 add brackets around the label. */
2162 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
2163 fprintf (FILE, TARGET_GNU_AS ? "[.%s%d:]\n" : ".%s%d:\n", PREFIX, NUM)
2165 /* Use section-relative relocations for debugging offsets. Unlike other
2166 targets that fake this by putting the section VMA at 0, IA-64 has
2167 proper relocations for them. */
2168 #define ASM_OUTPUT_DWARF_OFFSET(FILE, SIZE, LABEL) \
2169 do { \
2170 fputs (integer_asm_op (SIZE, FALSE), FILE); \
2171 fputs ("@secrel(", FILE); \
2172 assemble_name (FILE, LABEL); \
2173 fputc (')', FILE); \
2174 } while (0)
2176 /* Emit a PC-relative relocation. */
2177 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
2178 do { \
2179 fputs (integer_asm_op (SIZE, FALSE), FILE); \
2180 fputs ("@pcrel(", FILE); \
2181 assemble_name (FILE, LABEL); \
2182 fputc (')', FILE); \
2183 } while (0)
2185 /* Register Renaming Parameters. */
2187 /* A C expression that is nonzero if hard register number REGNO2 can be
2188 considered for use as a rename register for REGNO1 */
2190 #define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
2191 ia64_hard_regno_rename_ok((REGNO1), (REGNO2))
2194 /* Miscellaneous Parameters. */
2196 /* Flag to mark data that is in the small address area (addressable
2197 via "addl", that is, within a 2MByte offset of 0. */
2198 #define SYMBOL_FLAG_SMALL_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2199 #define SYMBOL_REF_SMALL_ADDR_P(X) \
2200 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SMALL_ADDR) != 0)
2202 /* Define this if you have defined special-purpose predicates in the file
2203 `MACHINE.c'. For each predicate, list all rtl codes that can be in
2204 expressions matched by the predicate. */
2206 #define PREDICATE_CODES \
2207 { "call_operand", {SUBREG, REG, SYMBOL_REF}}, \
2208 { "got_symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2209 { "sdata_symbolic_operand", {SYMBOL_REF, CONST}}, \
2210 { "small_addr_symbolic_operand", {SYMBOL_REF}}, \
2211 { "symbolic_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2212 { "function_operand", {SYMBOL_REF}}, \
2213 { "setjmp_operand", {SYMBOL_REF}}, \
2214 { "destination_operand", {SUBREG, REG, MEM}}, \
2215 { "not_postinc_memory_operand", {MEM}}, \
2216 { "move_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
2217 CONSTANT_P_RTX, SYMBOL_REF, CONST, LABEL_REF}}, \
2218 { "gr_register_operand", {SUBREG, REG}}, \
2219 { "fr_register_operand", {SUBREG, REG}}, \
2220 { "grfr_register_operand", {SUBREG, REG}}, \
2221 { "gr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
2222 { "fr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
2223 { "grfr_nonimmediate_operand", {SUBREG, REG, MEM}}, \
2224 { "gr_reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
2225 { "gr_reg_or_5bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2226 { "gr_reg_or_6bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2227 { "gr_reg_or_8bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2228 { "grfr_reg_or_8bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2229 { "gr_reg_or_8bit_adjusted_operand", {SUBREG, REG, CONST_INT, \
2230 CONSTANT_P_RTX}}, \
2231 { "gr_reg_or_8bit_and_adjusted_operand", {SUBREG, REG, CONST_INT, \
2232 CONSTANT_P_RTX}}, \
2233 { "gr_reg_or_14bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2234 { "gr_reg_or_22bit_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2235 { "shift_count_operand", {SUBREG, REG, CONST_INT, CONSTANT_P_RTX}}, \
2236 { "shift_32bit_count_operand", {SUBREG, REG, CONST_INT, \
2237 CONSTANT_P_RTX}}, \
2238 { "shladd_operand", {CONST_INT}}, \
2239 { "fetchadd_operand", {CONST_INT}}, \
2240 { "fr_reg_or_fp01_operand", {SUBREG, REG, CONST_DOUBLE}}, \
2241 { "normal_comparison_operator", {EQ, NE, GT, LE, GTU, LEU}}, \
2242 { "adjusted_comparison_operator", {LT, GE, LTU, GEU}}, \
2243 { "signed_inequality_operator", {GE, GT, LE, LT}}, \
2244 { "predicate_operator", {NE, EQ}}, \
2245 { "condop_operator", {PLUS, MINUS, IOR, XOR, AND}}, \
2246 { "ar_lc_reg_operand", {REG}}, \
2247 { "ar_ccv_reg_operand", {REG}}, \
2248 { "ar_pfs_reg_operand", {REG}}, \
2249 { "general_xfmode_operand", {SUBREG, REG, CONST_DOUBLE, MEM}}, \
2250 { "destination_xfmode_operand", {SUBREG, REG, MEM}}, \
2251 { "xfreg_or_fp01_operand", {REG, CONST_DOUBLE}}, \
2252 { "basereg_operand", {SUBREG, REG}},
2254 /* An alias for a machine mode name. This is the machine mode that elements of
2255 a jump-table should have. */
2257 #define CASE_VECTOR_MODE ptr_mode
2259 /* Define as C expression which evaluates to nonzero if the tablejump
2260 instruction expects the table to contain offsets from the address of the
2261 table. */
2263 #define CASE_VECTOR_PC_RELATIVE 1
2265 /* Define this macro if operations between registers with integral mode smaller
2266 than a word are always performed on the entire register. */
2268 #define WORD_REGISTER_OPERATIONS
2270 /* Define this macro to be a C expression indicating when insns that read
2271 memory in MODE, an integral mode narrower than a word, set the bits outside
2272 of MODE to be either the sign-extension or the zero-extension of the data
2273 read. */
2275 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2277 /* The maximum number of bytes that a single instruction can move quickly from
2278 memory to memory. */
2279 #define MOVE_MAX 8
2281 /* A C expression which is nonzero if on this machine it is safe to "convert"
2282 an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
2283 than INPREC) by merely operating on it as if it had only OUTPREC bits. */
2285 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2287 /* A C expression describing the value returned by a comparison operator with
2288 an integral mode and stored by a store-flag instruction (`sCOND') when the
2289 condition is true. */
2291 /* ??? Investigate using STORE_FLAG_VALUE of -1 instead of 1. */
2293 /* An alias for the machine mode for pointers. */
2295 /* ??? This would change if we had ILP32 support. */
2297 #define Pmode DImode
2299 /* An alias for the machine mode used for memory references to functions being
2300 called, in `call' RTL expressions. */
2302 #define FUNCTION_MODE Pmode
2304 /* Define this macro to handle System V style pragmas: #pragma pack and
2305 #pragma weak. Note, #pragma weak will only be supported if SUPPORT_WEAK is
2306 defined. */
2308 /* If this architecture supports prefetch, define this to be the number of
2309 prefetch commands that can be executed in parallel.
2311 ??? This number is bogus and needs to be replaced before the value is
2312 actually used in optimizations. */
2314 #define SIMULTANEOUS_PREFETCHES 6
2316 /* If this architecture supports prefetch, define this to be the size of
2317 the cache line that is prefetched. */
2319 #define PREFETCH_BLOCK 32
2321 #define HANDLE_SYSV_PRAGMA 1
2323 /* A C expression for the maximum number of instructions to execute via
2324 conditional execution instructions instead of a branch. A value of
2325 BRANCH_COST+1 is the default if the machine does not use
2326 cc0, and 1 if it does use cc0. */
2327 /* ??? Investigate. */
2328 #define MAX_CONDITIONAL_EXECUTE 12
2330 extern int ia64_final_schedule;
2332 #define IA64_UNWIND_INFO 1
2333 #define IA64_UNWIND_EMIT(f,i) process_for_unwind_directive (f,i)
2335 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 15 : INVALID_REGNUM)
2337 /* This function contains machine specific function data. */
2338 struct machine_function GTY(())
2340 /* The new stack pointer when unwinding from EH. */
2341 rtx ia64_eh_epilogue_sp;
2343 /* The new bsp value when unwinding from EH. */
2344 rtx ia64_eh_epilogue_bsp;
2346 /* The GP value save register. */
2347 rtx ia64_gp_save;
2349 /* The number of varargs registers to save. */
2350 int n_varargs;
2354 enum ia64_builtins
2356 IA64_BUILTIN_SYNCHRONIZE,
2358 IA64_BUILTIN_FETCH_AND_ADD_SI,
2359 IA64_BUILTIN_FETCH_AND_SUB_SI,
2360 IA64_BUILTIN_FETCH_AND_OR_SI,
2361 IA64_BUILTIN_FETCH_AND_AND_SI,
2362 IA64_BUILTIN_FETCH_AND_XOR_SI,
2363 IA64_BUILTIN_FETCH_AND_NAND_SI,
2365 IA64_BUILTIN_ADD_AND_FETCH_SI,
2366 IA64_BUILTIN_SUB_AND_FETCH_SI,
2367 IA64_BUILTIN_OR_AND_FETCH_SI,
2368 IA64_BUILTIN_AND_AND_FETCH_SI,
2369 IA64_BUILTIN_XOR_AND_FETCH_SI,
2370 IA64_BUILTIN_NAND_AND_FETCH_SI,
2372 IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_SI,
2373 IA64_BUILTIN_VAL_COMPARE_AND_SWAP_SI,
2375 IA64_BUILTIN_SYNCHRONIZE_SI,
2377 IA64_BUILTIN_LOCK_TEST_AND_SET_SI,
2379 IA64_BUILTIN_LOCK_RELEASE_SI,
2381 IA64_BUILTIN_FETCH_AND_ADD_DI,
2382 IA64_BUILTIN_FETCH_AND_SUB_DI,
2383 IA64_BUILTIN_FETCH_AND_OR_DI,
2384 IA64_BUILTIN_FETCH_AND_AND_DI,
2385 IA64_BUILTIN_FETCH_AND_XOR_DI,
2386 IA64_BUILTIN_FETCH_AND_NAND_DI,
2388 IA64_BUILTIN_ADD_AND_FETCH_DI,
2389 IA64_BUILTIN_SUB_AND_FETCH_DI,
2390 IA64_BUILTIN_OR_AND_FETCH_DI,
2391 IA64_BUILTIN_AND_AND_FETCH_DI,
2392 IA64_BUILTIN_XOR_AND_FETCH_DI,
2393 IA64_BUILTIN_NAND_AND_FETCH_DI,
2395 IA64_BUILTIN_BOOL_COMPARE_AND_SWAP_DI,
2396 IA64_BUILTIN_VAL_COMPARE_AND_SWAP_DI,
2398 IA64_BUILTIN_SYNCHRONIZE_DI,
2400 IA64_BUILTIN_LOCK_TEST_AND_SET_DI,
2402 IA64_BUILTIN_LOCK_RELEASE_DI,
2404 IA64_BUILTIN_BSP,
2405 IA64_BUILTIN_FLUSHRS
2408 /* Codes for expand_compare_and_swap and expand_swap_and_compare. */
2409 enum fetchop_code {
2410 IA64_ADD_OP, IA64_SUB_OP, IA64_OR_OP, IA64_AND_OP, IA64_XOR_OP, IA64_NAND_OP
2413 #define DONT_USE_BUILTIN_SETJMP
2415 /* Output any profiling code before the prologue. */
2417 #undef PROFILE_BEFORE_PROLOGUE
2418 #define PROFILE_BEFORE_PROLOGUE 1
2422 /* Switch on code for querying unit reservations. */
2423 #define CPU_UNITS_QUERY 1
2425 /* End of ia64.h */