2003-12-26 Guilhem Lavaux <guilhem@kaffe.org>
[official-gcc.git] / gcc / config / i960 / i960.h
blobad86dba003bd0bcde2a612f581ace9995a9df420
1 /* Definitions of target machine for GNU compiler, for Intel 80960
2 Copyright (C) 1992, 1993, 1995, 1996, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4 Contributed by Steven McGeady, Intel Corp.
5 Additional Work by Glenn Colon-Bonet, Jonathan Shapiro, Andy Wilson
6 Converted to GCC 2.0 by Jim Wilson and Michael Tiemann, Cygnus Support.
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
25 /* Note that some other tm.h files may include this one and then override
26 many of the definitions that relate to assembler syntax. */
28 /* Target CPU builtins. */
29 #define TARGET_CPU_CPP_BUILTINS() \
30 do \
31 { \
32 builtin_define_std ("i960"); \
33 builtin_define_std ("I960"); \
34 builtin_define_std ("i80960"); \
35 builtin_define_std ("I80960"); \
36 builtin_assert ("cpu=i960"); \
37 builtin_assert ("machine=i960"); \
38 } \
39 while (0)
41 #define MULTILIB_DEFAULTS { "mnumerics" }
43 /* Name to predefine in the preprocessor for processor variations.
44 -mic* options make characters signed by default. */
45 #define CPP_SPEC "%{mic*:-D__i960 -fsigned-char\
46 %{mka:-D__i960KA}%{mkb:-D__i960KB}\
47 %{mja:-D__i960JA}%{mjd:-D__i960JD}%{mjf:-D__i960JF}\
48 %{mrp:-D__i960RP}\
49 %{msa:-D__i960SA}%{msb:-D__i960SB}\
50 %{mmc:-D__i960MC}\
51 %{mca:-D__i960CA}%{mcc:-D__i960CC}\
52 %{mcf:-D__i960CF}}\
53 %{msoft-float:-D_SOFT_FLOAT}\
54 %{mka:-D__i960KA__ -D__i960_KA__}\
55 %{mkb:-D__i960KB__ -D__i960_KB__}\
56 %{msa:-D__i960SA__ -D__i960_SA__}\
57 %{msb:-D__i960SB__ -D__i960_SB__}\
58 %{mmc:-D__i960MC__ -D__i960_MC__}\
59 %{mca:-D__i960CA__ -D__i960_CA__}\
60 %{mcc:-D__i960CC__ -D__i960_CC__}\
61 %{mcf:-D__i960CF__ -D__i960_CF__}\
62 %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:\
63 %{!mcc:%{!mcf:-D__i960_KB -D__i960KB__ %{mic*:-D__i960KB}}}}}}}}}\
64 %{mlong-double-64:-D__LONG_DOUBLE_64__}"
66 /* Specs for the compiler, to handle processor variations.
67 If the user gives an explicit -gstabs or -gcoff option, then do not
68 try to add an implicit one, as this will fail.
69 -mic* options make characters signed by default. */
70 #define CC1_SPEC \
71 "%{mic*:-fsigned-char}\
72 %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:%{!mja:%{!mjd:%{!mjf:%{!mrp:-mka}}}}}}}}}}}}\
73 %{!gs*:%{!gc*:%{mbout:%{g*:-gstabs}}\
74 %{mcoff:%{g*:-gcoff}}\
75 %{!mbout:%{!mcoff:%{g*:-gstabs}}}}}"
77 /* Specs for the assembler, to handle processor variations.
78 For compatibility with Intel's gnu960 tool chain, pass -A options to
79 the assembler. */
80 #define ASM_SPEC \
81 "%{mka:-AKA}%{mkb:-AKB}%{msa:-ASA}%{msb:-ASB}\
82 %{mmc:-AMC}%{mca:-ACA}%{mcc:-ACC}%{mcf:-ACF}\
83 %{mja:-AJX}%{mjd:-AJX}%{mjf:-AJX}%{mrp:-AJX}\
84 %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:%{!mja:%{!mjd:%{!mjf:%{!mrp:-AKB}}}}}}}}}}}}\
85 %{mlink-relax:-linkrelax}"
87 /* Specs for the linker, to handle processor variations.
88 For compatibility with Intel's gnu960 tool chain, pass -F and -A options
89 to the linker. */
90 #define LINK_SPEC \
91 "%{mka:-AKA}%{mkb:-AKB}%{msa:-ASA}%{msb:-ASB}\
92 %{mmc:-AMC}%{mca:-ACA}%{mcc:-ACC}%{mcf:-ACF}\
93 %{mja:-AJX}%{mjd:-AJX}%{mjf:-AJX}%{mrp:-AJX}\
94 %{mbout:-Fbout}%{mcoff:-Fcoff}\
95 %{mlink-relax:-relax}"
97 /* Specs for the libraries to link with, to handle processor variations.
98 Compatible with Intel's gnu960 tool chain. */
99 #define LIB_SPEC "%{!nostdlib:-lcg %{p:-lprof}%{pg:-lgprof}\
100 %{mka:-lfpg}%{msa:-lfpg}%{mca:-lfpg}%{mcf:-lfpg} -lgnu}"
102 /* Defining the macro shows we can debug even without a frame pointer.
103 Actually, we can debug without FP. But defining the macro results in
104 that -O means FP elimination. Addressing through sp requires
105 negative offset and more one word addressing in the most cases
106 (offsets except for 0-4095 require one more word). Therefore we've
107 not defined the macro. */
108 /*#define CAN_DEBUG_WITHOUT_FP*/
110 /* Do leaf procedure and tail call optimizations for -O2 and higher. */
111 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
113 if ((LEVEL) >= 2) \
115 target_flags |= TARGET_FLAG_LEAFPROC; \
116 target_flags |= TARGET_FLAG_TAILCALL; \
120 /* Print subsidiary information on the compiler version in use. */
121 #define TARGET_VERSION fprintf (stderr," (intel 80960)");
123 /* Generate DBX debugging information. */
124 #define DBX_DEBUGGING_INFO 1
126 /* Generate SDB style debugging information. */
127 #define SDB_DEBUGGING_INFO 1
128 #define EXTENDED_SDB_BASIC_TYPES
130 /* Generate DBX_DEBUGGING_INFO by default. */
131 #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
133 /* Redefine this to print in hex. No value adjustment is necessary
134 anymore. */
135 #define PUT_SDB_TYPE(A) \
136 fprintf (asm_out_file, "\t.type\t0x%x;", A)
138 /* Handle pragmas for compatibility with Intel's compilers. */
140 extern int i960_maxbitalignment;
141 extern int i960_last_maxbitalignment;
143 #define REGISTER_TARGET_PRAGMAS() do { \
144 c_register_pragma (0, "align", i960_pr_align); \
145 c_register_pragma (0, "noalign", i960_pr_noalign); \
146 } while (0)
148 /* Run-time compilation parameters selecting different hardware subsets. */
150 /* 960 architecture with floating-point. */
151 #define TARGET_FLAG_NUMERICS 0x01
152 #define TARGET_NUMERICS (target_flags & TARGET_FLAG_NUMERICS)
154 /* 960 architecture with memory management. */
155 /* ??? Not used currently. */
156 #define TARGET_FLAG_PROTECTED 0x02
157 #define TARGET_PROTECTED (target_flags & TARGET_FLAG_PROTECTED)
159 /* The following three are mainly used to provide a little sanity checking
160 against the -mARCH flags given. The Jx series, for the purposes of
161 gcc, is a Kx with a data cache. */
163 /* Nonzero if we should generate code for the KA and similar processors.
164 No FPU, no microcode instructions. */
165 #define TARGET_FLAG_K_SERIES 0x04
166 #define TARGET_K_SERIES (target_flags & TARGET_FLAG_K_SERIES)
168 /* Nonzero if we should generate code for the MC processor.
169 Not really different from KB for our purposes. */
170 #define TARGET_FLAG_MC 0x08
171 #define TARGET_MC (target_flags & TARGET_FLAG_MC)
173 /* Nonzero if we should generate code for the CA processor.
174 Enables different optimization strategies. */
175 #define TARGET_FLAG_C_SERIES 0x10
176 #define TARGET_C_SERIES (target_flags & TARGET_FLAG_C_SERIES)
178 /* Nonzero if we should generate leaf-procedures when we find them.
179 You may not want to do this because leaf-proc entries are
180 slower when not entered via BAL - this would be true when
181 a linker not supporting the optimization is used. */
182 #define TARGET_FLAG_LEAFPROC 0x20
183 #define TARGET_LEAFPROC (target_flags & TARGET_FLAG_LEAFPROC)
185 /* Nonzero if we should perform tail-call optimizations when we find them.
186 You may not want to do this because the detection of cases where
187 this is not valid is not totally complete. */
188 #define TARGET_FLAG_TAILCALL 0x40
189 #define TARGET_TAILCALL (target_flags & TARGET_FLAG_TAILCALL)
191 /* Nonzero if use of a complex addressing mode is a win on this implementation.
192 Complex addressing modes are probably not worthwhile on the K-series,
193 but they definitely are on the C-series. */
194 #define TARGET_FLAG_COMPLEX_ADDR 0x80
195 #define TARGET_COMPLEX_ADDR (target_flags & TARGET_FLAG_COMPLEX_ADDR)
197 /* Align code to 8 byte boundaries for faster fetching. */
198 #define TARGET_FLAG_CODE_ALIGN 0x100
199 #define TARGET_CODE_ALIGN (target_flags & TARGET_FLAG_CODE_ALIGN)
201 /* Append branch prediction suffixes to branch opcodes. */
202 /* ??? Not used currently. */
203 #define TARGET_FLAG_BRANCH_PREDICT 0x200
204 #define TARGET_BRANCH_PREDICT (target_flags & TARGET_FLAG_BRANCH_PREDICT)
206 /* Forces prototype and return promotions. */
207 /* ??? This does not work. */
208 #define TARGET_FLAG_CLEAN_LINKAGE 0x400
209 #define TARGET_CLEAN_LINKAGE (target_flags & TARGET_FLAG_CLEAN_LINKAGE)
211 /* For compatibility with iC960 v3.0. */
212 #define TARGET_FLAG_IC_COMPAT3_0 0x800
213 #define TARGET_IC_COMPAT3_0 (target_flags & TARGET_FLAG_IC_COMPAT3_0)
215 /* For compatibility with iC960 v2.0. */
216 #define TARGET_FLAG_IC_COMPAT2_0 0x1000
217 #define TARGET_IC_COMPAT2_0 (target_flags & TARGET_FLAG_IC_COMPAT2_0)
219 /* If no unaligned accesses are to be permitted. */
220 #define TARGET_FLAG_STRICT_ALIGN 0x2000
221 #define TARGET_STRICT_ALIGN (target_flags & TARGET_FLAG_STRICT_ALIGN)
223 /* For compatibility with iC960 assembler. */
224 #define TARGET_FLAG_ASM_COMPAT 0x4000
225 #define TARGET_ASM_COMPAT (target_flags & TARGET_FLAG_ASM_COMPAT)
227 /* For compatibility with the gcc960 v1.2 compiler. Use the old structure
228 alignment rules. Also, turns on STRICT_ALIGNMENT. */
229 #define TARGET_FLAG_OLD_ALIGN 0x8000
230 #define TARGET_OLD_ALIGN (target_flags & TARGET_FLAG_OLD_ALIGN)
232 /* Nonzero if long doubles are to be 64 bits. Useful for soft-float targets
233 if 80 bit long double support is missing. */
234 #define TARGET_FLAG_LONG_DOUBLE_64 0x10000
235 #define TARGET_LONG_DOUBLE_64 (target_flags & TARGET_FLAG_LONG_DOUBLE_64)
237 extern int target_flags;
239 /* Macro to define tables used to set the flags.
240 This is a list in braces of pairs in braces,
241 each pair being { "NAME", VALUE }
242 where VALUE is the bits to set or minus the bits to clear.
243 An empty string NAME is used to identify the default VALUE. */
245 /* ??? Not all ten of these architecture variations actually exist, but I
246 am not sure which are real and which aren't. */
248 #define TARGET_SWITCHES \
249 { {"sa", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
250 N_("Generate SA code")}, \
251 {"sb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
252 TARGET_FLAG_COMPLEX_ADDR), \
253 N_("Generate SB code")}, \
254 /* {"sc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED| \
255 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR), \
256 N_("Generate SC code")}, */ \
257 {"ka", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
258 N_("Generate KA code")}, \
259 {"kb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
260 TARGET_FLAG_COMPLEX_ADDR), \
261 N_("Generate KB code")}, \
262 /* {"kc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED| \
263 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR), \
264 N_("Generate KC code")}, */ \
265 {"ja", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
266 N_("Generate JA code")}, \
267 {"jd", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
268 N_("Generate JD code")}, \
269 {"jf", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
270 TARGET_FLAG_COMPLEX_ADDR), \
271 N_("Generate JF code")}, \
272 {"rp", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
273 N_("generate RP code")}, \
274 {"mc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED| \
275 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR), \
276 N_("Generate MC code")}, \
277 {"ca", (TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT| \
278 TARGET_FLAG_CODE_ALIGN|TARGET_FLAG_COMPLEX_ADDR),\
279 N_("Generate CA code")}, \
280 /* {"cb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_C_SERIES| \
281 TARGET_FLAG_BRANCH_PREDICT|TARGET_FLAG_CODE_ALIGN),\
282 N_("Generate CB code")}, \
283 {"cc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED| \
284 TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT|\
285 TARGET_FLAG_CODE_ALIGN), \
286 N_("Generate CC code")}, */ \
287 {"cf", (TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT| \
288 TARGET_FLAG_CODE_ALIGN|TARGET_FLAG_COMPLEX_ADDR),\
289 N_("Generate CF code")}, \
290 {"numerics", (TARGET_FLAG_NUMERICS), \
291 N_("Use hardware floating point instructions")}, \
292 {"soft-float", -(TARGET_FLAG_NUMERICS), \
293 N_("Use software floating point")}, \
294 {"leaf-procedures", TARGET_FLAG_LEAFPROC, \
295 N_("Use alternate leaf function entries")}, \
296 {"no-leaf-procedures", -(TARGET_FLAG_LEAFPROC), \
297 N_("Do not use alternate leaf function entries")}, \
298 {"tail-call", TARGET_FLAG_TAILCALL, \
299 N_("Perform tail call optimization")}, \
300 {"no-tail-call", -(TARGET_FLAG_TAILCALL), \
301 N_("Do not perform tail call optimization")}, \
302 {"complex-addr", TARGET_FLAG_COMPLEX_ADDR, \
303 N_("Use complex addressing modes")}, \
304 {"no-complex-addr", -(TARGET_FLAG_COMPLEX_ADDR), \
305 N_("Do not use complex addressing modes")}, \
306 {"code-align", TARGET_FLAG_CODE_ALIGN, \
307 N_("Align code to 8 byte boundary")}, \
308 {"no-code-align", -(TARGET_FLAG_CODE_ALIGN), \
309 N_("Do not align code to 8 byte boundary")}, \
310 /* {"clean-linkage", (TARGET_FLAG_CLEAN_LINKAGE), \
311 N_("Force use of prototypes")}, \
312 {"no-clean-linkage", -(TARGET_FLAG_CLEAN_LINKAGE), \
313 N_("Do not force use of prototypes")}, */ \
314 {"ic-compat", TARGET_FLAG_IC_COMPAT2_0, \
315 N_("Enable compatibility with iC960 v2.0")}, \
316 {"ic2.0-compat", TARGET_FLAG_IC_COMPAT2_0, \
317 N_("Enable compatibility with iC960 v2.0")}, \
318 {"ic3.0-compat", TARGET_FLAG_IC_COMPAT3_0, \
319 N_("Enable compatibility with iC960 v3.0")}, \
320 {"asm-compat", TARGET_FLAG_ASM_COMPAT, \
321 N_("Enable compatibility with ic960 assembler")}, \
322 {"intel-asm", TARGET_FLAG_ASM_COMPAT, \
323 N_("Enable compatibility with ic960 assembler")}, \
324 {"strict-align", TARGET_FLAG_STRICT_ALIGN, \
325 N_("Do not permit unaligned accesses")}, \
326 {"no-strict-align", -(TARGET_FLAG_STRICT_ALIGN), \
327 N_("Permit unaligned accesses")}, \
328 {"old-align", (TARGET_FLAG_OLD_ALIGN|TARGET_FLAG_STRICT_ALIGN), \
329 N_("Layout types like Intel's v1.3 gcc")}, \
330 {"no-old-align", -(TARGET_FLAG_OLD_ALIGN|TARGET_FLAG_STRICT_ALIGN), \
331 N_("Do not layout types like Intel's v1.3 gcc")}, \
332 {"long-double-64", TARGET_FLAG_LONG_DOUBLE_64, \
333 N_("Use 64 bit long doubles")}, \
334 {"link-relax", 0, \
335 N_("Enable linker relaxation")}, \
336 {"no-link-relax", 0, \
337 N_("Do not enable linker relaxation")}, \
338 SUBTARGET_SWITCHES \
339 { "", TARGET_DEFAULT, \
340 NULL}}
342 /* This are meant to be redefined in the host dependent files */
343 #define SUBTARGET_SWITCHES
345 /* Override conflicting target switch options.
346 Doesn't actually detect if more than one -mARCH option is given, but
347 does handle the case of two blatantly conflicting -mARCH options. */
348 #define OVERRIDE_OPTIONS i960_initialize ()
350 /* Don't enable anything by default. The user is expected to supply a -mARCH
351 option. If none is given, then -mka is added by CC1_SPEC. */
352 #define TARGET_DEFAULT 0
354 /* Target machine storage layout. */
356 /* Define this if most significant bit is lowest numbered
357 in instructions that operate on numbered bit-fields. */
358 #define BITS_BIG_ENDIAN 0
360 /* Define this if most significant byte of a word is the lowest numbered.
361 The i960 case be either big endian or little endian. We only support
362 little endian, which is the most common. */
363 #define BYTES_BIG_ENDIAN 0
365 /* Define this if most significant word of a multiword number is lowest
366 numbered. */
367 #define WORDS_BIG_ENDIAN 0
369 /* Bitfields cannot cross word boundaries. */
370 #define BITFIELD_NBYTES_LIMITED 1
372 /* Width of a word, in units (bytes). */
373 #define UNITS_PER_WORD 4
375 /* Width in bits of a long double. */
376 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_64 ? 64 : 128)
377 #define MAX_LONG_DOUBLE_TYPE_SIZE 128
379 /* Define this to set long double type size to use in libgcc2.c, which can
380 not depend on target_flags. */
381 #if defined(__LONG_DOUBLE_64__)
382 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
383 #else
384 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
385 #endif
387 /* Allocation boundary (in *bits*) for storing pointers in memory. */
388 #define POINTER_BOUNDARY 32
390 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
391 #define PARM_BOUNDARY 32
393 /* Boundary (in *bits*) on which stack pointer should be aligned. */
394 #define STACK_BOUNDARY 128
396 /* Allocation boundary (in *bits*) for the code of a function. */
397 #define FUNCTION_BOUNDARY 128
399 /* Alignment of field after `int : 0' in a structure. */
400 #define EMPTY_FIELD_BOUNDARY 32
402 /* This makes zero-length anonymous fields lay the next field
403 at a word boundary. It also makes the whole struct have
404 at least word alignment if there are any bitfields at all. */
405 #define PCC_BITFIELD_TYPE_MATTERS 1
407 /* Every structure's size must be a multiple of this. */
408 #define STRUCTURE_SIZE_BOUNDARY 8
410 /* No data type wants to be aligned rounder than this.
411 Extended precision floats gets 4-word alignment. */
412 #define BIGGEST_ALIGNMENT 128
414 /* Define this if move instructions will actually fail to work
415 when given unaligned data.
416 80960 will work even with unaligned data, but it is slow. */
417 #define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
419 /* Specify alignment for string literals (which might be higher than the
420 base type's minimal alignment requirement. This allows strings to be
421 aligned on word boundaries, and optimizes calls to the str* and mem*
422 library functions. */
423 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
424 (TREE_CODE (EXP) == STRING_CST \
425 && i960_object_bytes_bitalign (int_size_in_bytes (TREE_TYPE (EXP))) > (int)(ALIGN) \
426 ? i960_object_bytes_bitalign (int_size_in_bytes (TREE_TYPE (EXP))) \
427 : (int)(ALIGN))
429 /* Macros to determine size of aggregates (structures and unions
430 in C). Normally, these may be defined to simply return the maximum
431 alignment and simple rounded-up size, but on some machines (like
432 the i960), the total size of a structure is based on a non-trivial
433 rounding method. */
435 #define ROUND_TYPE_ALIGN(TYPE, COMPUTED, SPECIFIED) \
436 i960_round_align (MAX ((COMPUTED), (SPECIFIED)), TYPE)
438 /* Standard register usage. */
440 /* Number of actual hardware registers.
441 The hardware registers are assigned numbers for the compiler
442 from 0 to just below FIRST_PSEUDO_REGISTER.
443 All registers that the compiler knows about must be given numbers,
444 even those that are not normally considered general registers.
446 Registers 0-15 are the global registers (g0-g15).
447 Registers 16-31 are the local registers (r0-r15).
448 Register 32-35 are the fp registers (fp0-fp3).
449 Register 36 is the condition code register.
450 Register 37 is unused. */
452 #define FIRST_PSEUDO_REGISTER 38
454 /* 1 for registers that have pervasive standard uses and are not available
455 for the register allocator. On 80960, this includes the frame pointer
456 (g15), the previous FP (r0), the stack pointer (r1), the return
457 instruction pointer (r2), and the argument pointer (g14). */
458 #define FIXED_REGISTERS \
459 {0, 0, 0, 0, 0, 0, 0, 0, \
460 0, 0, 0, 0, 0, 0, 1, 1, \
461 1, 1, 1, 0, 0, 0, 0, 0, \
462 0, 0, 0, 0, 0, 0, 0, 0, \
463 0, 0, 0, 0, 1, 1}
465 /* 1 for registers not available across function calls.
466 These must include the FIXED_REGISTERS and also any
467 registers that can be used without being saved.
468 The latter must include the registers where values are returned
469 and the register where structure-value addresses are passed.
470 Aside from that, you can include as many other registers as you like. */
472 /* On the 80960, note that:
473 g0..g3 are used for return values,
474 g0..g7 may always be used for parameters,
475 g8..g11 may be used for parameters, but are preserved if they aren't,
476 g12 is the static chain if needed, otherwise is preserved
477 g13 is the struct return ptr if used, or temp, but may be trashed,
478 g14 is the leaf return ptr or the arg block ptr otherwise zero,
479 must be reset to zero before returning if it was used,
480 g15 is the frame pointer,
481 r0 is the previous FP,
482 r1 is the stack pointer,
483 r2 is the return instruction pointer,
484 r3-r15 are always available,
485 r3 is clobbered by calls in functions that use the arg pointer
486 r4-r11 may be clobbered by the mcount call when profiling
487 r4-r15 if otherwise unused may be used for preserving global registers
488 fp0..fp3 are never available. */
489 #define CALL_USED_REGISTERS \
490 {1, 1, 1, 1, 1, 1, 1, 1, \
491 0, 0, 0, 0, 0, 1, 1, 1, \
492 1, 1, 1, 0, 0, 0, 0, 0, \
493 0, 0, 0, 0, 0, 0, 0, 0, \
494 1, 1, 1, 1, 1, 1}
496 /* If no fp unit, make all of the fp registers fixed so that they can't
497 be used. */
498 #define CONDITIONAL_REGISTER_USAGE \
499 if (! TARGET_NUMERICS) { \
500 fixed_regs[32] = fixed_regs[33] = fixed_regs[34] = fixed_regs[35] = 1;\
503 /* Return number of consecutive hard regs needed starting at reg REGNO
504 to hold something of mode MODE.
505 This is ordinarily the length in words of a value of mode MODE
506 but can be less for certain modes in special long registers.
508 On 80960, ordinary registers hold 32 bits worth, but can be ganged
509 together to hold double or extended precision floating point numbers,
510 and the floating point registers hold any size floating point number */
511 #define HARD_REGNO_NREGS(REGNO, MODE) \
512 ((REGNO) < 32 \
513 ? (((MODE) == VOIDmode) \
514 ? 1 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) \
515 : ((REGNO) < FIRST_PSEUDO_REGISTER) ? 1 : 0)
517 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
518 On 80960, the cpu registers can hold any mode but the float registers
519 can only hold SFmode, DFmode, or TFmode. */
520 #define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok ((REGNO), (MODE))
522 /* Value is 1 if it is a good idea to tie two pseudo registers
523 when one has mode MODE1 and one has mode MODE2.
524 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
525 for any hard reg, then this must be 0 for correct output. */
527 #define MODES_TIEABLE_P(MODE1, MODE2) \
528 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
530 /* Specify the registers used for certain standard purposes.
531 The values of these macros are register numbers. */
533 /* 80960 pc isn't overloaded on a register that the compiler knows about. */
534 /* #define PC_REGNUM */
536 /* Register to use for pushing function arguments. */
537 #define STACK_POINTER_REGNUM 17
539 /* Actual top-of-stack address is same as
540 the contents of the stack pointer register. */
541 #define STACK_POINTER_OFFSET (-current_function_outgoing_args_size)
543 /* Base register for access to local variables of the function. */
544 #define FRAME_POINTER_REGNUM 15
546 /* Value should be nonzero if functions must have frame pointers.
547 Zero means the frame pointer need not be set up (and parms
548 may be accessed via the stack pointer) in functions that seem suitable.
549 This is computed in `reload', in reload1.c. */
550 /* ??? It isn't clear to me why this is here. Perhaps because of a bug (since
551 fixed) in the definition of INITIAL_FRAME_POINTER_OFFSET which would have
552 caused this to fail. */
553 /* ??? Must check current_function_has_nonlocal_goto, otherwise frame pointer
554 elimination messes up nonlocal goto sequences. I think this works for other
555 targets because they use indirect jumps for the return which disables fp
556 elimination. */
557 #define FRAME_POINTER_REQUIRED \
558 (! leaf_function_p () || current_function_has_nonlocal_goto)
560 /* Definitions for register eliminations.
562 This is an array of structures. Each structure initializes one pair
563 of eliminable registers. The "from" register number is given first,
564 followed by "to". Eliminations of the same "from" register are listed
565 in order of preference.. */
567 #define ELIMINABLE_REGS {{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
569 /* Given FROM and TO register numbers, say whether this elimination is allowed.
570 Frame pointer elimination is automatically handled. */
571 #define CAN_ELIMINATE(FROM, TO) 1
573 /* Define the offset between two registers, one to be eliminated, and
574 the other its replacement, at the start of a routine.
576 Since the stack grows upward on the i960, this must be a negative number.
577 This includes the 64 byte hardware register save area and the size of
578 the frame. */
580 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
581 do { (OFFSET) = - (64 + compute_frame_size (get_frame_size ())); } while (0)
583 /* Base register for access to arguments of the function. */
584 #define ARG_POINTER_REGNUM 14
586 /* Register in which static-chain is passed to a function.
587 On i960, we use g12. We can't use any local register, because we need
588 a register that can be set before a call or before a jump. */
589 #define STATIC_CHAIN_REGNUM 12
591 /* Functions which return large structures get the address
592 to place the wanted value at in g13. */
594 #define STRUCT_VALUE_REGNUM 13
596 /* The order in which to allocate registers. */
598 #define REG_ALLOC_ORDER \
599 { 4, 5, 6, 7, 0, 1, 2, 3, 13, /* g4, g5, g6, g7, g0, g1, g2, g3, g13 */ \
600 20, 21, 22, 23, 24, 25, 26, 27,/* r4, r5, r6, r7, r8, r9, r10, r11 */ \
601 28, 29, 30, 31, 19, 8, 9, 10, /* r12, r13, r14, r15, r3, g8, g9, g10 */ \
602 11, 12, /* g11, g12 */ \
603 32, 33, 34, 35, /* fp0, fp1, fp2, fp3 */ \
604 /* We can't actually allocate these. */ \
605 16, 17, 18, 14, 15, 36, 37} /* r0, r1, r2, g14, g15, cc */
607 /* Define the classes of registers for register constraints in the
608 machine description. Also define ranges of constants.
610 One of the classes must always be named ALL_REGS and include all hard regs.
611 If there is more than one class, another class must be named NO_REGS
612 and contain no registers.
614 The name GENERAL_REGS must be the name of a class (or an alias for
615 another name such as ALL_REGS). This is the class of registers
616 that is allowed by "g" or "r" in a register constraint.
617 Also, registers outside this class are allocated only when
618 instructions express preferences for them.
620 The classes must be numbered in nondecreasing order; that is,
621 a larger-numbered class must never be contained completely
622 in a smaller-numbered class.
624 For any two classes, it is very desirable that there be another
625 class that represents their union. */
627 /* The 80960 has four kinds of registers, global, local, floating point,
628 and condition code. The cc register is never allocated, so no class
629 needs to be defined for it. */
631 enum reg_class { NO_REGS, GLOBAL_REGS, LOCAL_REGS, LOCAL_OR_GLOBAL_REGS,
632 FP_REGS, ALL_REGS, LIM_REG_CLASSES };
634 /* 'r' includes floating point registers if TARGET_NUMERICS. 'd' never
635 does. */
636 #define GENERAL_REGS ((TARGET_NUMERICS) ? ALL_REGS : LOCAL_OR_GLOBAL_REGS)
638 #define N_REG_CLASSES (int) LIM_REG_CLASSES
640 /* Give names of register classes as strings for dump file. */
642 #define REG_CLASS_NAMES \
643 { "NO_REGS", "GLOBAL_REGS", "LOCAL_REGS", "LOCAL_OR_GLOBAL_REGS", \
644 "FP_REGS", "ALL_REGS" }
646 /* Define which registers fit in which classes.
647 This is an initializer for a vector of HARD_REG_SET
648 of length N_REG_CLASSES. */
650 #define REG_CLASS_CONTENTS \
651 { {0, 0}, {0x0ffff, 0}, {0xffff0000, 0}, {-1,0}, {0, -1}, {-1,-1}}
653 /* The same information, inverted:
654 Return the class number of the smallest class containing
655 reg number REGNO. This could be a conditional expression
656 or could index an array. */
658 #define REGNO_REG_CLASS(REGNO) \
659 ((REGNO) < 16 ? GLOBAL_REGS \
660 : (REGNO) < 32 ? LOCAL_REGS \
661 : (REGNO) < 36 ? FP_REGS \
662 : NO_REGS)
664 /* The class value for index registers, and the one for base regs.
665 There is currently no difference between base and index registers on the
666 i960, but this distinction may one day be useful. */
667 #define INDEX_REG_CLASS LOCAL_OR_GLOBAL_REGS
668 #define BASE_REG_CLASS LOCAL_OR_GLOBAL_REGS
670 /* Get reg_class from a letter such as appears in the machine description.
671 'f' is a floating point register (fp0..fp3)
672 'l' is a local register (r0-r15)
673 'b' is a global register (g0-g15)
674 'd' is any local or global register
675 'r' or 'g' are pre-defined to the class GENERAL_REGS. */
676 /* 'l' and 'b' are probably never used. Note that 'd' and 'r' are *not*
677 the same thing, since 'r' may include the fp registers. */
678 #define REG_CLASS_FROM_LETTER(C) \
679 (((C) == 'f') && (TARGET_NUMERICS) ? FP_REGS : ((C) == 'l' ? LOCAL_REGS : \
680 (C) == 'b' ? GLOBAL_REGS : ((C) == 'd' ? LOCAL_OR_GLOBAL_REGS : NO_REGS)))
682 /* The letters I, J, K, L and M in a register constraint string
683 can be used to stand for particular ranges of immediate operands.
684 This macro defines what the ranges are.
685 C is the letter, and VALUE is a constant value.
686 Return 1 if VALUE is in the range specified by C.
688 For 80960:
689 'I' is used for literal values 0..31
690 'J' means literal 0
691 'K' means 0..-31. */
693 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
694 ((C) == 'I' ? (((unsigned) (VALUE)) <= 31) \
695 : (C) == 'J' ? ((VALUE) == 0) \
696 : (C) == 'K' ? ((VALUE) >= -31 && (VALUE) <= 0) \
697 : (C) == 'M' ? ((VALUE) >= -32 && (VALUE) <= 0) \
698 : 0)
700 /* Similar, but for floating constants, and defining letters G and H.
701 Here VALUE is the CONST_DOUBLE rtx itself.
702 For the 80960, G is 0.0 and H is 1.0. */
704 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
705 ((TARGET_NUMERICS) && \
706 (((C) == 'G' && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
707 || ((C) == 'H' && ((VALUE) == CONST1_RTX (GET_MODE (VALUE))))))
709 /* Given an rtx X being reloaded into a reg required to be
710 in class CLASS, return the class of reg to actually use.
711 In general this is just CLASS; but on some machines
712 in some cases it is preferable to use a more restrictive class. */
714 /* On 960, can't load constant into floating-point reg except
715 0.0 or 1.0.
717 Any hard reg is ok as a src operand of a reload insn. */
719 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
720 (GET_CODE (X) == REG && REGNO (X) < FIRST_PSEUDO_REGISTER \
721 ? (CLASS) \
722 : ((CLASS) == FP_REGS && CONSTANT_P (X) \
723 && (X) != CONST0_RTX (DFmode) && (X) != CONST1_RTX (DFmode)\
724 && (X) != CONST0_RTX (SFmode) && (X) != CONST1_RTX (SFmode)\
725 ? NO_REGS \
726 : (CLASS) == ALL_REGS ? LOCAL_OR_GLOBAL_REGS : (CLASS)))
728 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
729 secondary_reload_class (CLASS, MODE, IN)
731 /* Return the maximum number of consecutive registers
732 needed to represent mode MODE in a register of class CLASS. */
733 /* On 80960, this is the size of MODE in words,
734 except in the FP regs, where a single reg is always enough. */
735 #define CLASS_MAX_NREGS(CLASS, MODE) \
736 ((CLASS) == FP_REGS ? 1 : HARD_REGNO_NREGS (0, (MODE)))
738 /* Stack layout; function entry, exit and calling. */
740 /* Define this if pushing a word on the stack
741 makes the stack pointer a smaller address. */
742 /* #define STACK_GROWS_DOWNWARD */
744 /* Define this if the nominal address of the stack frame
745 is at the high-address end of the local variables;
746 that is, each additional local variable allocated
747 goes at a more negative offset in the frame. */
748 /* #define FRAME_GROWS_DOWNWARD */
750 /* Offset within stack frame to start allocating local variables at.
751 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
752 first local allocated. Otherwise, it is the offset to the BEGINNING
753 of the first local allocated.
755 The i960 has a 64 byte register save area, plus possibly some extra
756 bytes allocated for varargs functions. */
757 #define STARTING_FRAME_OFFSET 64
759 /* If we generate an insn to push BYTES bytes,
760 this says how many the stack pointer really advances by.
761 On 80960, don't define this because there are no push insns. */
762 /* #define PUSH_ROUNDING(BYTES) BYTES */
764 /* Offset of first parameter from the argument pointer register value. */
765 #define FIRST_PARM_OFFSET(FNDECL) 0
767 /* When a parameter is passed in a register, no stack space is
768 allocated for it. However, when args are passed in the
769 stack, space is allocated for every register parameter. */
770 #define MAYBE_REG_PARM_STACK_SPACE 48
771 #define FINAL_REG_PARM_STACK_SPACE(CONST_SIZE, VAR_SIZE) \
772 i960_final_reg_parm_stack_space (CONST_SIZE, VAR_SIZE);
773 #define REG_PARM_STACK_SPACE(DECL) i960_reg_parm_stack_space (DECL)
774 #define OUTGOING_REG_PARM_STACK_SPACE
776 /* Keep the stack pointer constant throughout the function. */
777 #define ACCUMULATE_OUTGOING_ARGS 1
779 /* Value is 1 if returning from a function call automatically
780 pops the arguments described by the number-of-args field in the call.
781 FUNDECL is the declaration node of the function (as a tree),
782 FUNTYPE is the data type of the function (as a tree),
783 or for a library call it is an identifier node for the subroutine name. */
785 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
787 /* Define how to find the value returned by a library function
788 assuming the value has mode MODE. */
790 #define LIBCALL_VALUE(MODE) gen_rtx_REG ((MODE), 0)
792 /* 1 if N is a possible register number for a function value
793 as seen by the caller.
794 On 80960, returns are in g0..g3 */
796 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
798 /* 1 if N is a possible register number for function argument passing.
799 On 80960, parameters are passed in g0..g11 */
801 #define FUNCTION_ARG_REGNO_P(N) ((N) < 12)
803 /* Perform any needed actions needed for a function that is receiving a
804 variable number of arguments.
806 CUM is as above.
808 MODE and TYPE are the mode and type of the current parameter.
810 PRETEND_SIZE is a variable that should be set to the amount of stack
811 that must be pushed by the prolog to pretend that our caller pushed
814 Normally, this macro will push all remaining incoming registers on the
815 stack and set PRETEND_SIZE to the length of the registers pushed. */
817 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
818 i960_setup_incoming_varargs(&CUM,MODE,TYPE,&PRETEND_SIZE,NO_RTL)
820 /* Implement `va_start' for varargs and stdarg. */
821 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
822 i960_va_start (valist, nextarg)
824 /* Implement `va_arg'. */
825 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
826 i960_va_arg (valist, type)
828 /* Define a data type for recording info about an argument list
829 during the scan of that argument list. This data type should
830 hold all necessary information about the function itself
831 and about the args processed so far, enough to enable macros
832 such as FUNCTION_ARG to determine where the next arg should go.
834 On 80960, this is two integers, which count the number of register
835 parameters and the number of stack parameters seen so far. */
837 struct cum_args { int ca_nregparms; int ca_nstackparms; };
839 #define CUMULATIVE_ARGS struct cum_args
841 /* Define the number of registers that can hold parameters.
842 This macro is used only in macro definitions below and/or i960.c. */
843 #define NPARM_REGS 12
845 /* Define how to round to the next parameter boundary.
846 This macro is used only in macro definitions below and/or i960.c. */
847 #define ROUND_PARM(X, MULTIPLE_OF) \
848 ((((X) + (MULTIPLE_OF) - 1) / (MULTIPLE_OF)) * MULTIPLE_OF)
850 /* Initialize a variable CUM of type CUMULATIVE_ARGS
851 for a call to a function whose data type is FNTYPE.
852 For a library call, FNTYPE is 0.
854 On 80960, the offset always starts at 0; the first parm reg is g0. */
856 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
857 ((CUM).ca_nregparms = 0, (CUM).ca_nstackparms = 0)
859 /* Update the data in CUM to advance over an argument
860 of mode MODE and data type TYPE.
861 CUM should be advanced to align with the data type accessed and
862 also the size of that data type in # of regs.
863 (TYPE is null for libcalls where that information may not be available.) */
865 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
866 i960_function_arg_advance(&CUM, MODE, TYPE, NAMED)
868 /* Indicate the alignment boundary for an argument of the specified mode and
869 type. */
870 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
871 (((TYPE) != 0) \
872 ? ((TYPE_ALIGN (TYPE) <= PARM_BOUNDARY) \
873 ? PARM_BOUNDARY \
874 : TYPE_ALIGN (TYPE)) \
875 : ((GET_MODE_ALIGNMENT (MODE) <= PARM_BOUNDARY) \
876 ? PARM_BOUNDARY \
877 : GET_MODE_ALIGNMENT (MODE)))
879 /* Determine where to put an argument to a function.
880 Value is zero to push the argument on the stack,
881 or a hard register in which to store the argument.
883 MODE is the argument's machine mode.
884 TYPE is the data type of the argument (as a tree).
885 This is null for libcalls where that information may
886 not be available.
887 CUM is a variable of type CUMULATIVE_ARGS which gives info about
888 the preceding args and about the function being called.
889 NAMED is nonzero if this argument is a named parameter
890 (otherwise it is an extra parameter matching an ellipsis). */
892 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
893 i960_function_arg(&CUM, MODE, TYPE, NAMED)
895 /* Define how to find the value returned by a function.
896 VALTYPE is the data type of the value (as a tree).
897 If the precise function being called is known, FUNC is its FUNCTION_DECL;
898 otherwise, FUNC is 0. */
900 #define FUNCTION_VALUE(TYPE, FUNC) \
901 gen_rtx_REG (TYPE_MODE (TYPE), 0)
903 /* Force aggregates and objects larger than 16 bytes to be returned in memory,
904 since we only have 4 registers available for return values. */
906 #define RETURN_IN_MEMORY(TYPE) \
907 (TYPE_MODE (TYPE) == BLKmode || int_size_in_bytes (TYPE) > 16)
909 /* Don't default to pcc-struct-return, because we have already specified
910 exactly how to return structures in the RETURN_IN_MEMORY macro. */
911 #define DEFAULT_PCC_STRUCT_RETURN 0
913 /* For an arg passed partly in registers and partly in memory,
914 this is the number of registers used.
915 This never happens on 80960. */
917 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
919 /* Output the label for a function definition.
920 This handles leaf functions and a few other things for the i960. */
922 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
923 i960_function_name_declare (FILE, NAME, DECL)
925 /* Output assembler code to FILE to increment profiler label # LABELNO
926 for profiling a function entry. */
928 #define FUNCTION_PROFILER(FILE, LABELNO) \
929 output_function_profiler ((FILE), (LABELNO));
931 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
932 the stack pointer does not matter. The value is tested only in
933 functions that have frame pointers.
934 No definition is equivalent to always zero. */
936 #define EXIT_IGNORE_STACK 1
938 /* Addressing modes, and classification of registers for them. */
940 /* Macros to check register numbers against specific register classes. */
942 /* These assume that REGNO is a hard or pseudo reg number.
943 They give nonzero only if REGNO is a hard reg of the suitable class
944 or a pseudo reg currently allocated to a suitable hard reg.
945 Since they use reg_renumber, they are safe only once reg_renumber
946 has been allocated, which happens in local-alloc.c. */
948 #define REGNO_OK_FOR_INDEX_P(REGNO) \
949 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
950 #define REGNO_OK_FOR_BASE_P(REGNO) \
951 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
952 #define REGNO_OK_FOR_FP_P(REGNO) \
953 ((REGNO) < 36 || (unsigned) reg_renumber[REGNO] < 36)
955 /* Now macros that check whether X is a register and also,
956 strictly, whether it is in a specified class.
958 These macros are specific to the 960, and may be used only
959 in code for printing assembler insns and in conditions for
960 define_optimization. */
962 /* 1 if X is an fp register. */
964 #define FP_REG_P(X) (REGNO (X) >= 32 && REGNO (X) < 36)
966 /* Maximum number of registers that can appear in a valid memory address. */
967 #define MAX_REGS_PER_ADDRESS 2
969 #define CONSTANT_ADDRESS_P(X) \
970 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
971 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
972 || GET_CODE (X) == HIGH)
974 /* LEGITIMATE_CONSTANT_P is nonzero if the constant value X
975 is a legitimate general operand.
976 It is given that X satisfies CONSTANT_P.
978 Anything but a CONST_DOUBLE can be made to work, excepting 0.0 and 1.0.
980 ??? This probably should be defined to 1. */
982 #define LEGITIMATE_CONSTANT_P(X) \
983 ((GET_CODE (X) != CONST_DOUBLE) || fp_literal ((X), GET_MODE (X)))
985 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
986 and check its validity for a certain class.
987 We have two alternate definitions for each of them.
988 The usual definition accepts all pseudo regs; the other rejects
989 them unless they have been allocated suitable hard regs.
990 The symbol REG_OK_STRICT causes the latter definition to be used.
992 Most source files want to accept pseudo regs in the hope that
993 they will get allocated to the class that the insn wants them to be in.
994 Source files for reload pass need to be strict.
995 After reload, it makes no difference, since pseudo regs have
996 been eliminated by then. */
998 #ifndef REG_OK_STRICT
1000 /* Nonzero if X is a hard reg that can be used as an index
1001 or if it is a pseudo reg. */
1002 #define REG_OK_FOR_INDEX_P(X) \
1003 (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1004 /* Nonzero if X is a hard reg that can be used as a base reg
1005 or if it is a pseudo reg. */
1006 #define REG_OK_FOR_BASE_P(X) \
1007 (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1009 #define REG_OK_FOR_INDEX_P_STRICT(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1010 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1012 #else
1014 /* Nonzero if X is a hard reg that can be used as an index. */
1015 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1016 /* Nonzero if X is a hard reg that can be used as a base reg. */
1017 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1019 #endif
1021 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1022 that is a valid memory address for an instruction.
1023 The MODE argument is the machine mode for the MEM expression
1024 that wants to use this address.
1026 On 80960, legitimate addresses are:
1027 base ld (g0),r0
1028 disp (12 or 32 bit) ld foo,r0
1029 base + index ld (g0)[g1*1],r0
1030 base + displ ld 0xf00(g0),r0
1031 base + index*scale + displ ld 0xf00(g0)[g1*4],r0
1032 index*scale + base ld (g0)[g1*4],r0
1033 index*scale + displ ld 0xf00[g1*4],r0
1034 index*scale ld [g1*4],r0
1035 index + base + displ ld 0xf00(g0)[g1*1],r0
1037 In each case, scale can be 1, 2, 4, 8, or 16. */
1039 /* Returns 1 if the scale factor of an index term is valid. */
1040 #define SCALE_TERM_P(X) \
1041 (GET_CODE (X) == CONST_INT \
1042 && (INTVAL (X) == 1 || INTVAL (X) == 2 || INTVAL (X) == 4 \
1043 || INTVAL(X) == 8 || INTVAL (X) == 16))
1046 #ifdef REG_OK_STRICT
1047 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1048 { if (legitimate_address_p (MODE, X, 1)) goto ADDR; }
1049 #else
1050 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1051 { if (legitimate_address_p (MODE, X, 0)) goto ADDR; }
1052 #endif
1054 /* Try machine-dependent ways of modifying an illegitimate address
1055 to be legitimate. If we find one, return the new, valid address.
1056 This macro is used in only one place: `memory_address' in explow.c.
1058 OLDX is the address as it was before break_out_memory_refs was called.
1059 In some cases it is useful to look at this to decide what needs to be done.
1061 MODE and WIN are passed so that this macro can use
1062 GO_IF_LEGITIMATE_ADDRESS.
1064 It is always safe for this macro to do nothing. It exists to recognize
1065 opportunities to optimize the output. */
1067 /* On 80960, convert non-canonical addresses to canonical form. */
1069 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1070 { rtx orig_x = (X); \
1071 (X) = legitimize_address (X, OLDX, MODE); \
1072 if ((X) != orig_x && memory_address_p (MODE, X)) \
1073 goto WIN; }
1075 /* Go to LABEL if ADDR (a legitimate address expression)
1076 has an effect that depends on the machine mode it is used for.
1077 On the 960 this is never true. */
1079 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1081 /* Specify the machine mode that this machine uses
1082 for the index in the tablejump instruction. */
1083 #define CASE_VECTOR_MODE SImode
1085 /* Define as C expression which evaluates to nonzero if the tablejump
1086 instruction expects the table to contain offsets from the address of the
1087 table.
1088 Do not define this if the table should contain absolute addresses. */
1089 /* #define CASE_VECTOR_PC_RELATIVE 1 */
1091 /* Define this as 1 if `char' should by default be signed; else as 0. */
1092 #define DEFAULT_SIGNED_CHAR 0
1094 /* Max number of bytes we can move from memory to memory
1095 in one reasonably fast instruction. */
1096 #define MOVE_MAX 16
1098 /* Define if operations between registers always perform the operation
1099 on the full register even if a narrower mode is specified. */
1100 #define WORD_REGISTER_OPERATIONS
1102 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1103 will either zero-extend or sign-extend. The value of this macro should
1104 be the code that says which one of the two operations is implicitly
1105 done, NIL if none. */
1106 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1108 /* Nonzero if access to memory by bytes is no faster than for words.
1109 Value changed to 1 after reports of poor bit-field code with g++.
1110 Indications are that code is usually as good, sometimes better. */
1112 #define SLOW_BYTE_ACCESS 1
1114 /* Define this to be nonzero if shift instructions ignore all but the low-order
1115 few bits. */
1116 #define SHIFT_COUNT_TRUNCATED 0
1118 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1119 is done just by pretending it is already truncated. */
1120 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1122 /* Specify the machine mode that pointers have.
1123 After generation of rtl, the compiler makes no further distinction
1124 between pointers and any other objects of this machine mode. */
1125 #define Pmode SImode
1127 /* Specify the widest mode that BLKmode objects can be promoted to */
1128 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1130 /* These global variables are used to pass information between
1131 cc setter and cc user at insn emit time. */
1133 extern struct rtx_def *i960_compare_op0, *i960_compare_op1;
1135 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1136 return the mode to be used for the comparison. For floating-point, CCFPmode
1137 should be used. CC_NOOVmode should be used when the first operand is a
1138 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1139 needed. */
1140 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode (OP, X)
1142 /* A function address in a call instruction is a byte address
1143 (for indexing purposes) so give the MEM rtx a byte's mode. */
1144 #define FUNCTION_MODE SImode
1146 /* Define this if addresses of constant functions
1147 shouldn't be put through pseudo regs where they can be cse'd.
1148 Desirable on machines where ordinary constants are expensive
1149 but a CALL with constant address is cheap. */
1150 #define NO_FUNCTION_CSE
1152 /* Use memcpy, etc. instead of bcopy. */
1154 #ifndef WIND_RIVER
1155 #define TARGET_MEM_FUNCTIONS 1
1156 #endif
1158 /* Control the assembler format that we output. */
1160 /* Output to assembler file text saying following lines
1161 may contain character constants, extra white space, comments, etc. */
1163 #define ASM_APP_ON ""
1165 /* Output to assembler file text saying following lines
1166 no longer contain unusual constructs. */
1168 #define ASM_APP_OFF ""
1170 /* Output before read-only data. */
1172 #define TEXT_SECTION_ASM_OP "\t.text"
1174 /* Output before writable data. */
1176 #define DATA_SECTION_ASM_OP "\t.data"
1178 /* How to refer to registers in assembler output.
1179 This sequence is indexed by compiler's hard-register-number (see above). */
1181 #define REGISTER_NAMES { \
1182 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", \
1183 "g8", "g9", "g10", "g11", "g12", "g13", "g14", "fp", \
1184 "pfp","sp", "rip", "r3", "r4", "r5", "r6", "r7", \
1185 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1186 "fp0","fp1","fp2", "fp3", "cc", "fake" }
1188 /* How to renumber registers for dbx and gdb.
1189 In the 960 encoding, g0..g15 are registers 16..31. */
1191 #define DBX_REGISTER_NUMBER(REGNO) \
1192 (((REGNO) < 16) ? (REGNO) + 16 \
1193 : (((REGNO) > 31) ? (REGNO) : (REGNO) - 16))
1195 /* Don't emit dbx records longer than this. This is an arbitrary value. */
1196 #define DBX_CONTIN_LENGTH 1500
1198 /* This is how to output a note to DBX telling it the line number
1199 to which the following sequence of instructions corresponds. */
1201 #define ASM_OUTPUT_SOURCE_LINE(FILE, LINE, COUNTER) \
1202 { if (write_symbols == SDB_DEBUG) { \
1203 fprintf ((FILE), "\t.ln %d\n", \
1204 (sdb_begin_function_line \
1205 ? (LINE) - sdb_begin_function_line : 1)); \
1206 } else if (write_symbols == DBX_DEBUG) { \
1207 fprintf((FILE),"\t.stabd 68,0,%d\n",(LINE)); \
1210 /* Globalizing directive for a label. */
1211 #define GLOBAL_ASM_OP "\t.globl "
1213 /* The prefix to add to user-visible assembler symbols. */
1215 #define USER_LABEL_PREFIX "_"
1217 /* This is how to store into the string LABEL
1218 the symbol_ref name of an internal numbered label where
1219 PREFIX is the class of label and NUM is the number within the class.
1220 This is suitable for output with `assemble_name'. */
1222 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1223 sprintf (LABEL, "*%s%lu", PREFIX, (unsigned long)(NUM))
1225 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1226 fprintf (FILE, "\tst\t%s,(sp)\n\taddo\t4,sp,sp\n", reg_names[REGNO])
1228 /* This is how to output an insn to pop a register from the stack.
1229 It need not be very fast code. */
1231 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1232 fprintf (FILE, "\tsubo\t4,sp,sp\n\tld\t(sp),%s\n", reg_names[REGNO])
1234 /* This is how to output an element of a case-vector that is absolute. */
1236 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1237 fprintf (FILE, "\t.word L%d\n", VALUE)
1239 /* This is how to output an element of a case-vector that is relative. */
1241 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1242 fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
1244 /* This is how to output an assembler line that says to advance the
1245 location counter to a multiple of 2**LOG bytes. */
1247 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1248 fprintf (FILE, "\t.align %d\n", (LOG))
1250 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1251 fprintf (FILE, "\t.space %d\n", (int)(SIZE))
1253 /* This says how to output an assembler line
1254 to define a global common symbol. */
1256 /* For common objects, output unpadded size... gld960 & lnk960 both
1257 have code to align each common object at link time. Also, if size
1258 is 0, treat this as a declaration, not a definition - i.e.,
1259 do nothing at all. */
1261 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1262 { if ((SIZE) != 0) \
1264 fputs (".globl ", (FILE)), \
1265 assemble_name ((FILE), (NAME)), \
1266 fputs ("\n.comm ", (FILE)), \
1267 assemble_name ((FILE), (NAME)), \
1268 fprintf ((FILE), ",%d\n", (int)(SIZE)); \
1272 /* This says how to output an assembler line to define a local common symbol.
1273 Output unpadded size, with request to linker to align as requested.
1274 0 size should not be possible here. */
1276 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
1277 ( fputs (".bss\t", (FILE)), \
1278 assemble_name ((FILE), (NAME)), \
1279 fprintf ((FILE), ",%d,%d\n", (int)(SIZE), \
1280 (floor_log2 ((ALIGN) / BITS_PER_UNIT))))
1282 /* A C statement (sans semicolon) to output to the stdio stream
1283 FILE the assembler definition of uninitialized global DECL named
1284 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
1285 Try to use asm_output_aligned_bss to implement this macro. */
1287 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1288 do { \
1289 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
1290 } while (0)
1292 /* Output text for an #ident directive. */
1293 #define ASM_OUTPUT_IDENT(FILE, STR) fprintf(FILE, "\t# %s\n", STR);
1295 /* Align code to 8 byte boundary if TARGET_CODE_ALIGN is true. */
1297 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) (TARGET_CODE_ALIGN ? 3 : 0)
1300 /* Print operand X (an rtx) in assembler syntax to file FILE.
1301 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1302 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1304 #define PRINT_OPERAND(FILE, X, CODE) \
1305 i960_print_operand (FILE, X, CODE);
1307 /* Print a memory address as an operand to reference that memory location. */
1309 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1310 i960_print_operand_addr (FILE, ADDR)
1312 /* Determine which codes are valid without a following integer. These must
1313 not be alphabetic (the characters are chosen so that
1314 PRINT_OPERAND_PUNCT_VALID_P translates into a simple range change when
1315 using ASCII). */
1317 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '+')
1319 /* Output assembler code for a block containing the constant parts
1320 of a trampoline, leaving space for the variable parts. */
1322 /* On the i960, the trampoline contains three instructions:
1323 ldconst _function, r4
1324 ldconst static addr, g12
1325 jump (r4) */
1327 #define TRAMPOLINE_TEMPLATE(FILE) \
1329 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x8C203000)); \
1330 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x00000000)); \
1331 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x8CE03000)); \
1332 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x00000000)); \
1333 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x84212000)); \
1336 /* Length in units of the trampoline for entering a nested function. */
1338 #define TRAMPOLINE_SIZE 20
1340 /* Emit RTL insns to initialize the variable parts of a trampoline.
1341 FNADDR is an RTX for the address of the function's pure code.
1342 CXT is an RTX for the static chain value for the function. */
1344 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1346 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 4)), FNADDR); \
1347 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 12)), CXT); \
1350 /* Generate RTL to flush the register windows so as to make arbitrary frames
1351 available. */
1352 #define SETUP_FRAME_ADDRESSES() \
1353 emit_insn (gen_flush_register_windows ())
1355 #define BUILTIN_SETJMP_FRAME_VALUE hard_frame_pointer_rtx
1357 #if 0
1358 /* Promote char and short arguments to ints, when want compatibility with
1359 the iC960 compilers. */
1361 /* ??? In order for this to work, all users would need to be changed
1362 to test the value of the macro at run time. */
1363 #define PROMOTE_PROTOTYPES TARGET_CLEAN_LINKAGE
1364 /* ??? This does not exist. */
1365 #define PROMOTE_RETURN TARGET_CLEAN_LINKAGE
1366 #endif
1368 /* Instruction type definitions. Used to alternate instructions types for
1369 better performance on the C series chips. */
1371 enum insn_types { I_TYPE_REG, I_TYPE_MEM, I_TYPE_CTRL };
1373 /* Holds the insn type of the last insn output to the assembly file. */
1375 extern enum insn_types i960_last_insn_type;
1377 /* Parse opcodes, and set the insn last insn type based on them. */
1379 #define ASM_OUTPUT_OPCODE(FILE, INSN) i960_scan_opcode (INSN)
1381 /* Table listing what rtl codes each predicate in i960.c will accept. */
1383 #define PREDICATE_CODES \
1384 {"fpmove_src_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
1385 LABEL_REF, SUBREG, REG, MEM}}, \
1386 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
1387 {"logic_operand", {SUBREG, REG, CONST_INT}}, \
1388 {"fp_arith_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1389 {"signed_arith_operand", {SUBREG, REG, CONST_INT}}, \
1390 {"literal", {CONST_INT}}, \
1391 {"fp_literal_one", {CONST_DOUBLE}}, \
1392 {"fp_literal_double", {CONST_DOUBLE}}, \
1393 {"fp_literal", {CONST_DOUBLE}}, \
1394 {"signed_literal", {CONST_INT}}, \
1395 {"symbolic_memory_operand", {SUBREG, MEM}}, \
1396 {"eq_or_neq", {EQ, NE}}, \
1397 {"arith32_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF, CONST_INT, \
1398 CONST_DOUBLE, CONST}}, \
1399 {"power2_operand", {CONST_INT}}, \
1400 {"cmplpower2_operand", {CONST_INT}},
1402 /* Defined in reload.c, and used in insn-recog.c. */
1404 extern int rtx_equal_function_value_matters;