2003-12-26 Guilhem Lavaux <guilhem@kaffe.org>
[official-gcc.git] / gcc / config / frv / frv.h
blobefb655a96849d6a0420bd3bd7bffc7d3cc786a5b
1 /* Target macros for the FRV port of GCC.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Red Hat Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 2, or (at your
10 option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #ifndef __FRV_H__
23 #define __FRV_H__
25 /* Frv general purpose macros. */
26 /* Align an address. */
27 #define ADDR_ALIGN(addr,align) (((addr) + (align) - 1) & ~((align) - 1))
29 /* Return true if a value is inside a range. */
30 #define IN_RANGE_P(VALUE, LOW, HIGH) \
31 ( (((HOST_WIDE_INT)(VALUE)) >= (HOST_WIDE_INT)(LOW)) \
32 && (((HOST_WIDE_INT)(VALUE)) <= ((HOST_WIDE_INT)(HIGH))))
35 /* Driver configuration. */
37 /* A C expression which determines whether the option `-CHAR' takes arguments.
38 The value should be the number of arguments that option takes-zero, for many
39 options.
41 By default, this macro is defined to handle the standard options properly.
42 You need not define it unless you wish to add additional options which take
43 arguments.
45 Defined in svr4.h. */
46 #undef SWITCH_TAKES_ARG
47 #define SWITCH_TAKES_ARG(CHAR) \
48 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
50 /* A C expression which determines whether the option `-NAME' takes arguments.
51 The value should be the number of arguments that option takes-zero, for many
52 options. This macro rather than `SWITCH_TAKES_ARG' is used for
53 multi-character option names.
55 By default, this macro is defined as `DEFAULT_WORD_SWITCH_TAKES_ARG', which
56 handles the standard options properly. You need not define
57 `WORD_SWITCH_TAKES_ARG' unless you wish to add additional options which take
58 arguments. Any redefinition should call `DEFAULT_WORD_SWITCH_TAKES_ARG' and
59 then check for additional options.
61 Defined in svr4.h. */
62 #undef WORD_SWITCH_TAKES_ARG
64 /* A C string constant that tells the GCC driver program options to pass to
65 the assembler. It can also specify how to translate options you give to GNU
66 CC into options for GCC to pass to the assembler. See the file `sun3.h'
67 for an example of this.
69 Do not define this macro if it does not need to do anything.
71 Defined in svr4.h. */
72 #undef ASM_SPEC
73 #define ASM_SPEC "\
74 %{G*} %{v} %{n} %{T} %{Ym,*} %{Yd,*} %{Wa,*:%*} \
75 %{mtomcat-stats} \
76 %{!mno-eflags: \
77 %{mcpu=*} \
78 %{mgpr-*} %{mfpr-*} \
79 %{msoft-float} %{mhard-float} \
80 %{mdword} %{mno-dword} \
81 %{mdouble} %{mno-double} \
82 %{mmedia} %{mno-media} \
83 %{mmuladd} %{mno-muladd} \
84 %{mpack} %{mno-pack} \
85 %{fpic|fpie: -mpic} %{fPIC|fPIE: -mPIC} %{mlibrary-pic}}"
87 /* Another C string constant used much like `LINK_SPEC'. The difference
88 between the two is that `STARTFILE_SPEC' is used at the very beginning of
89 the command given to the linker.
91 If this macro is not defined, a default is provided that loads the standard
92 C startup file from the usual place. See `gcc.c'.
94 Defined in svr4.h. */
95 #undef STARTFILE_SPEC
96 #define STARTFILE_SPEC "crt0%O%s frvbegin%O%s"
98 /* Another C string constant used much like `LINK_SPEC'. The difference
99 between the two is that `ENDFILE_SPEC' is used at the very end of the
100 command given to the linker.
102 Do not define this macro if it does not need to do anything.
104 Defined in svr4.h. */
105 #undef ENDFILE_SPEC
106 #define ENDFILE_SPEC "frvend%O%s"
108 /* A C string constant that tells the GCC driver program options to pass to
109 CPP. It can also specify how to translate options you give to GCC into
110 options for GCC to pass to the CPP.
112 Do not define this macro if it does not need to do anything. */
114 /* The idea here is to use the -mcpu option to define macros based on the
115 processor's features, using the features of the default processor if
116 no -mcpu option is given. These macros can then be overridden by
117 other -m options. */
118 #define CPP_SPEC "\
119 %{mcpu=frv: %(cpp_frv)} \
120 %{mcpu=fr500: %(cpp_fr500)} \
121 %{mcpu=fr400: %(cpp_fr400)} \
122 %{mcpu=fr300: %(cpp_simple)} \
123 %{mcpu=tomcat: %(cpp_fr500)} \
124 %{mcpu=simple: %(cpp_simple)} \
125 %{!mcpu*: %(cpp_cpu_default)} \
126 %{mno-media: -D__FRV_ACC__=0 %{msoft-float: -D__FRV_FPR__=0}} \
127 %{mhard-float: -D__FRV_HARD_FLOAT__} \
128 %{msoft-float: -U__FRV_HARD_FLOAT__} \
129 %{mgpr-32: -U__FRV_GPR__ -D__FRV_GPR__=32} \
130 %{mgpr-64: -U__FRV_GPR__ -D__FRV_GPR__=64} \
131 %{mfpr-32: -U__FRV_FPR__ -D__FRV_FPR__=32} \
132 %{mfpr-64: -U__FRV_FPR__ -D__FRV_FPR__=64} \
133 %{macc-4: -U__FRV_ACC__ -D__FRV_ACC__=4} \
134 %{macc-8: -U__FRV_ACC__ -D__FRV_ACC__=8} \
135 %{mdword: -D__FRV_DWORD__} \
136 %{mno-dword: -U__FRV_DWORD__} \
137 %{mno-pack: -U__FRV_VLIW__} \
138 %{fleading-underscore: -D__FRV_UNDERSCORE__}"
140 /* CPU defaults. Each CPU has its own CPP spec that defines the default
141 macros for that CPU. Each CPU also has its own default target mask.
143 CPU GPRs FPRs ACCs FPU MulAdd ldd/std Issue rate
144 --- ---- ---- ---- --- ------ ------- ----------
145 FRV 64 64 8 double yes yes 4
146 FR500 64 64 8 single no yes 4
147 FR400 32 32 4 none no yes 2
148 Simple 32 0 0 none no no 1 */
151 #define CPP_FRV_SPEC "\
152 -D__FRV_GPR__=64 \
153 -D__FRV_FPR__=64 \
154 -D__FRV_ACC__=8 \
155 -D__FRV_HARD_FLOAT__ \
156 -D__FRV_DWORD__ \
157 -D__FRV_VLIW__=4"
159 #define CPP_FR500_SPEC "\
160 -D__FRV_GPR__=64 \
161 -D__FRV_FPR__=64 \
162 -D__FRV_ACC__=8 \
163 -D__FRV_HARD_FLOAT__ \
164 -D__FRV_DWORD__ \
165 -D__FRV_VLIW__=4"
167 #define CPP_FR400_SPEC "\
168 -D__FRV_GPR__=32 \
169 -D__FRV_FPR__=32 \
170 -D__FRV_ACC__=4 \
171 -D__FRV_DWORD__ \
172 -D__FRV_VLIW__=2"
174 #define CPP_SIMPLE_SPEC "\
175 -D__FRV_GPR__=32 \
176 -D__FRV_FPR__=0 \
177 -D__FRV_ACC__=0 \
178 %{mmedia: -D__FRV_ACC__=8} \
179 %{mhard-float|mmedia: -D__FRV_FPR__=64}"
181 #define MASK_DEFAULT_FRV \
182 (MASK_MEDIA \
183 | MASK_DOUBLE \
184 | MASK_MULADD \
185 | MASK_DWORD \
186 | MASK_PACK)
188 #define MASK_DEFAULT_FR500 \
189 (MASK_MEDIA | MASK_DWORD | MASK_PACK)
191 #define MASK_DEFAULT_FR400 \
192 (MASK_GPR_32 \
193 | MASK_FPR_32 \
194 | MASK_MEDIA \
195 | MASK_ACC_4 \
196 | MASK_SOFT_FLOAT \
197 | MASK_DWORD \
198 | MASK_PACK)
200 #define MASK_DEFAULT_SIMPLE \
201 (MASK_GPR_32 | MASK_SOFT_FLOAT)
203 /* A C string constant that tells the GCC driver program options to pass to
204 `cc1'. It can also specify how to translate options you give to GCC into
205 options for GCC to pass to the `cc1'.
207 Do not define this macro if it does not need to do anything. */
208 /* For ABI compliance, we need to put bss data into the normal data section. */
209 #define CC1_SPEC "%{G*}"
211 /* A C string constant that tells the GCC driver program options to pass to
212 the linker. It can also specify how to translate options you give to GCC
213 into options for GCC to pass to the linker.
215 Do not define this macro if it does not need to do anything.
217 Defined in svr4.h. */
218 /* Override the svr4.h version with one that dispenses without the svr4
219 shared library options, notably -G. */
220 #undef LINK_SPEC
221 #define LINK_SPEC "\
222 %{h*} %{v:-V} \
223 %{b} %{Wl,*:%*} \
224 %{static:-dn -Bstatic} \
225 %{shared:-Bdynamic} \
226 %{symbolic:-Bsymbolic} \
227 %{G*} \
228 %{YP,*} \
229 %{Qy:} %{!Qn:-Qy}"
231 /* Another C string constant used much like `LINK_SPEC'. The difference
232 between the two is that `LIB_SPEC' is used at the end of the command given
233 to the linker.
235 If this macro is not defined, a default is provided that loads the standard
236 C library from the usual place. See `gcc.c'.
238 Defined in svr4.h. */
240 #undef LIB_SPEC
241 #define LIB_SPEC "--start-group -lc -lsim --end-group"
243 /* This macro defines names of additional specifications to put in the specs
244 that can be used in various specifications like CC1_SPEC. Its definition
245 is an initializer with a subgrouping for each command option.
247 Each subgrouping contains a string constant, that defines the
248 specification name, and a string constant that used by the GCC driver
249 program.
251 Do not define this macro if it does not need to do anything. */
253 #ifndef SUBTARGET_EXTRA_SPECS
254 #define SUBTARGET_EXTRA_SPECS
255 #endif
257 #define EXTRA_SPECS \
258 { "cpp_frv", CPP_FRV_SPEC }, \
259 { "cpp_fr500", CPP_FR500_SPEC }, \
260 { "cpp_fr400", CPP_FR400_SPEC }, \
261 { "cpp_simple", CPP_SIMPLE_SPEC }, \
262 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
263 SUBTARGET_EXTRA_SPECS
265 #ifndef CPP_CPU_DEFAULT_SPEC
266 #define CPP_CPU_DEFAULT_SPEC CPP_FR500_SPEC
267 #define CPU_TYPE FRV_CPU_FR500
268 #endif
270 /* Allow us to easily change the default for -malloc-cc. */
271 #ifndef DEFAULT_NO_ALLOC_CC
272 #define MASK_DEFAULT_ALLOC_CC MASK_ALLOC_CC
273 #else
274 #define MASK_DEFAULT_ALLOC_CC 0
275 #endif
277 /* Run-time target specifications */
279 #define TARGET_CPU_CPP_BUILTINS() \
280 do \
282 builtin_define ("__frv__"); \
283 builtin_assert ("machine=frv"); \
285 while (0)
288 /* This declaration should be present. */
289 extern int target_flags;
291 /* This series of macros is to allow compiler command arguments to enable or
292 disable the use of optional features of the target machine. For example,
293 one machine description serves both the 68000 and the 68020; a command
294 argument tells the compiler whether it should use 68020-only instructions or
295 not. This command argument works by means of a macro `TARGET_68020' that
296 tests a bit in `target_flags'.
298 Define a macro `TARGET_FEATURENAME' for each such option. Its definition
299 should test a bit in `target_flags'; for example:
301 #define TARGET_68020 (target_flags & 1)
303 One place where these macros are used is in the condition-expressions of
304 instruction patterns. Note how `TARGET_68020' appears frequently in the
305 68000 machine description file, `m68k.md'. Another place they are used is
306 in the definitions of the other macros in the `MACHINE.h' file. */
308 #define MASK_GPR_32 0x00000001 /* Limit gprs to 32 registers */
309 #define MASK_FPR_32 0x00000002 /* Limit fprs to 32 registers */
310 #define MASK_SOFT_FLOAT 0x00000004 /* Use software floating point */
311 #define MASK_ALLOC_CC 0x00000008 /* Dynamically allocate icc/fcc's */
312 #define MASK_DWORD 0x00000010 /* Change ABi to allow dbl word insns*/
313 #define MASK_DOUBLE 0x00000020 /* Use double precision instructions */
314 #define MASK_MEDIA 0x00000040 /* Use media instructions */
315 #define MASK_MULADD 0x00000080 /* Use multiply add/subtract insns */
316 #define MASK_LIBPIC 0x00000100 /* -fpic that can be linked w/o pic */
317 #define MASK_ACC_4 0x00000200 /* Only use four media accumulators */
318 #define MASK_PACK 0x00000400 /* Set to enable packed output */
320 /* put debug masks up high */
321 #define MASK_DEBUG_ARG 0x40000000 /* debug argument handling */
322 #define MASK_DEBUG_ADDR 0x20000000 /* debug go_if_legitimate_address */
323 #define MASK_DEBUG_STACK 0x10000000 /* debug stack frame */
324 #define MASK_DEBUG 0x08000000 /* general debugging switch */
325 #define MASK_DEBUG_LOC 0x04000000 /* optimize line # table */
326 #define MASK_DEBUG_COND_EXEC 0x02000000 /* debug cond exec code */
327 #define MASK_NO_COND_MOVE 0x01000000 /* disable conditional moves */
328 #define MASK_NO_SCC 0x00800000 /* disable set conditional codes */
329 #define MASK_NO_COND_EXEC 0x00400000 /* disable conditional execution */
330 #define MASK_NO_VLIW_BRANCH 0x00200000 /* disable repacking branches */
331 #define MASK_NO_MULTI_CE 0x00100000 /* disable multi-level cond exec */
332 #define MASK_NO_NESTED_CE 0x00080000 /* disable nested cond exec */
334 #define MASK_DEFAULT MASK_DEFAULT_ALLOC_CC
336 #define TARGET_GPR_32 ((target_flags & MASK_GPR_32) != 0)
337 #define TARGET_FPR_32 ((target_flags & MASK_FPR_32) != 0)
338 #define TARGET_SOFT_FLOAT ((target_flags & MASK_SOFT_FLOAT) != 0)
339 #define TARGET_ALLOC_CC ((target_flags & MASK_ALLOC_CC) != 0)
340 #define TARGET_DWORD ((target_flags & MASK_DWORD) != 0)
341 #define TARGET_DOUBLE ((target_flags & MASK_DOUBLE) != 0)
342 #define TARGET_MEDIA ((target_flags & MASK_MEDIA) != 0)
343 #define TARGET_MULADD ((target_flags & MASK_MULADD) != 0)
344 #define TARGET_LIBPIC ((target_flags & MASK_LIBPIC) != 0)
345 #define TARGET_ACC_4 ((target_flags & MASK_ACC_4) != 0)
346 #define TARGET_DEBUG_ARG ((target_flags & MASK_DEBUG_ARG) != 0)
347 #define TARGET_DEBUG_ADDR ((target_flags & MASK_DEBUG_ADDR) != 0)
348 #define TARGET_DEBUG_STACK ((target_flags & MASK_DEBUG_STACK) != 0)
349 #define TARGET_DEBUG ((target_flags & MASK_DEBUG) != 0)
350 #define TARGET_DEBUG_LOC ((target_flags & MASK_DEBUG_LOC) != 0)
351 #define TARGET_DEBUG_COND_EXEC ((target_flags & MASK_DEBUG_COND_EXEC) != 0)
352 #define TARGET_NO_COND_MOVE ((target_flags & MASK_NO_COND_MOVE) != 0)
353 #define TARGET_NO_SCC ((target_flags & MASK_NO_SCC) != 0)
354 #define TARGET_NO_COND_EXEC ((target_flags & MASK_NO_COND_EXEC) != 0)
355 #define TARGET_NO_VLIW_BRANCH ((target_flags & MASK_NO_VLIW_BRANCH) != 0)
356 #define TARGET_NO_MULTI_CE ((target_flags & MASK_NO_MULTI_CE) != 0)
357 #define TARGET_NO_NESTED_CE ((target_flags & MASK_NO_NESTED_CE) != 0)
358 #define TARGET_PACK ((target_flags & MASK_PACK) != 0)
360 #define TARGET_GPR_64 (! TARGET_GPR_32)
361 #define TARGET_FPR_64 (! TARGET_FPR_32)
362 #define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
363 #define TARGET_FIXED_CC (! TARGET_ALLOC_CC)
364 #define TARGET_COND_MOVE (! TARGET_NO_COND_MOVE)
365 #define TARGET_SCC (! TARGET_NO_SCC)
366 #define TARGET_COND_EXEC (! TARGET_NO_COND_EXEC)
367 #define TARGET_VLIW_BRANCH (! TARGET_NO_VLIW_BRANCH)
368 #define TARGET_MULTI_CE (! TARGET_NO_MULTI_CE)
369 #define TARGET_NESTED_CE (! TARGET_NO_NESTED_CE)
370 #define TARGET_ACC_8 (! TARGET_ACC_4)
372 #define TARGET_HAS_FPRS (TARGET_HARD_FLOAT || TARGET_MEDIA)
374 #define NUM_GPRS (TARGET_GPR_32? 32 : 64)
375 #define NUM_FPRS (!TARGET_HAS_FPRS? 0 : TARGET_FPR_32? 32 : 64)
376 #define NUM_ACCS (!TARGET_MEDIA? 0 : TARGET_ACC_4? 4 : 8)
378 /* Macros to identify the blend of media instructions available. Revision 1
379 is the one found on the FR500. Revision 2 includes the changes made for
380 the FR400.
382 Treat the generic processor as a revision 1 machine for now, for
383 compatibility with earlier releases. */
385 #define TARGET_MEDIA_REV1 \
386 (TARGET_MEDIA \
387 && (frv_cpu_type == FRV_CPU_GENERIC \
388 || frv_cpu_type == FRV_CPU_FR500))
390 #define TARGET_MEDIA_REV2 \
391 (TARGET_MEDIA && frv_cpu_type == FRV_CPU_FR400)
393 /* This macro defines names of command options to set and clear bits in
394 `target_flags'. Its definition is an initializer with a subgrouping for
395 each command option.
397 Each subgrouping contains a string constant, that defines the option name,
398 a number, which contains the bits to set in `target_flags', and an optional
399 second string which is the textual description that will be displayed when
400 the user passes --help on the command line. If the number entry is negative
401 then the specified bits will be cleared instead of being set. If the second
402 string entry is present but empty, then no help information will be displayed
403 for that option, but it will not count as an undocumented option. The actual
404 option name, asseen on the command line is made by appending `-m' to the
405 specified name.
407 One of the subgroupings should have a null string. The number in this
408 grouping is the default value for `target_flags'. Any target options act
409 starting with that value.
411 Here is an example which defines `-m68000' and `-m68020' with opposite
412 meanings, and picks the latter as the default:
414 #define TARGET_SWITCHES \
415 { { "68020", 1, ""}, \
416 { "68000", -1, "Compile for the m68000"}, \
417 { "", 1, }}
419 This declaration must be present. */
421 #define TARGET_SWITCHES \
422 {{ "gpr-32", MASK_GPR_32, "Only use 32 gprs"}, \
423 { "gpr-64", -MASK_GPR_32, "Use 64 gprs"}, \
424 { "fpr-32", MASK_FPR_32, "Only use 32 fprs"}, \
425 { "fpr-64", -MASK_FPR_32, "Use 64 fprs"}, \
426 { "hard-float", -MASK_SOFT_FLOAT, "Use hardware floating point" },\
427 { "soft-float", MASK_SOFT_FLOAT, "Use software floating point" },\
428 { "alloc-cc", MASK_ALLOC_CC, "Dynamically allocate cc's" }, \
429 { "fixed-cc", -MASK_ALLOC_CC, "Just use icc0/fcc0" }, \
430 { "dword", MASK_DWORD, "Change ABI to allow double word insns" }, \
431 { "no-dword", -MASK_DWORD, "Do not use double word insns" }, \
432 { "double", MASK_DOUBLE, "Use fp double instructions" }, \
433 { "no-double", -MASK_DOUBLE, "Do not use fp double insns" }, \
434 { "media", MASK_MEDIA, "Use media instructions" }, \
435 { "no-media", -MASK_MEDIA, "Do not use media insns" }, \
436 { "muladd", MASK_MULADD, "Use multiply add/subtract instructions" }, \
437 { "no-muladd", -MASK_MULADD, "Do not use multiply add/subtract insns" }, \
438 { "library-pic", MASK_LIBPIC, "PIC support for building libraries" }, \
439 { "acc-4", MASK_ACC_4, "Use 4 media accumulators" }, \
440 { "acc-8", -MASK_ACC_4, "Use 8 media accumulators" }, \
441 { "pack", MASK_PACK, "Pack VLIW instructions" }, \
442 { "no-pack", -MASK_PACK, "Do not pack VLIW instructions" }, \
443 { "no-eflags", 0, "Do not mark ABI switches in e_flags" }, \
444 { "debug-arg", MASK_DEBUG_ARG, "Internal debug switch" }, \
445 { "debug-addr", MASK_DEBUG_ADDR, "Internal debug switch" }, \
446 { "debug-stack", MASK_DEBUG_STACK, "Internal debug switch" }, \
447 { "debug", MASK_DEBUG, "Internal debug switch" }, \
448 { "debug-cond-exec", MASK_DEBUG_COND_EXEC, "Internal debug switch" }, \
449 { "debug-loc", MASK_DEBUG_LOC, "Internal debug switch" }, \
450 { "cond-move", -MASK_NO_COND_MOVE, "Enable conditional moves" }, \
451 { "no-cond-move", MASK_NO_COND_MOVE, "Disable conditional moves" }, \
452 { "scc", -MASK_NO_SCC, "Enable setting gprs to the result of comparisons" }, \
453 { "no-scc", MASK_NO_SCC, "Disable setting gprs to the result of comparisons" }, \
454 { "cond-exec", -MASK_NO_COND_EXEC, "Enable conditional execution other than moves/scc" }, \
455 { "no-cond-exec", MASK_NO_COND_EXEC, "Disable conditional execution other than moves/scc" }, \
456 { "vliw-branch", -MASK_NO_VLIW_BRANCH, "Run pass to pack branches into VLIW insns" }, \
457 { "no-vliw-branch", MASK_NO_VLIW_BRANCH, "Do not run pass to pack branches into VLIW insns" }, \
458 { "multi-cond-exec", -MASK_NO_MULTI_CE, "Disable optimizing &&/|| in conditional execution" }, \
459 { "no-multi-cond-exec", MASK_NO_MULTI_CE, "Enable optimizing &&/|| in conditional execution" }, \
460 { "nested-cond-exec", -MASK_NO_NESTED_CE, "Enable nested conditional execution optimizations" }, \
461 { "no-nested-cond-exec" ,MASK_NO_NESTED_CE, "Disable nested conditional execution optimizations" }, \
462 { "tomcat-stats", 0, "Cause gas to print tomcat statistics" }, \
463 { "", MASK_DEFAULT, "" }} \
465 /* This macro is similar to `TARGET_SWITCHES' but defines names of command
466 options that have values. Its definition is an initializer with a
467 subgrouping for each command option.
469 Each subgrouping contains a string constant, that defines the fixed part of
470 the option name, the address of a variable, and an optional description string.
471 The variable, of type `char *', is set to the text following the fixed part of
472 the option as it is specified on the command line. The actual option name is
473 made by appending `-m' to the specified name.
475 Here is an example which defines `-mshort-data-NUMBER'. If the given option
476 is `-mshort-data-512', the variable `m88k_short_data' will be set to the
477 string `"512"'.
479 extern char *m88k_short_data;
480 #define TARGET_OPTIONS \
481 { { "short-data-", & m88k_short_data, \
482 "Specify the size of the short data section" } }
484 This declaration is optional. */
485 #define TARGET_OPTIONS \
487 { "cpu=", &frv_cpu_string, "Set cpu type", 0}, \
488 { "branch-cost=", &frv_branch_cost_string, "Internal debug switch", 0}, \
489 { "cond-exec-insns=", &frv_condexec_insns_str, "Internal debug switch", 0}, \
490 { "cond-exec-temps=", &frv_condexec_temps_str, "Internal debug switch", 0}, \
491 { "sched-lookahead=", &frv_sched_lookahead_str,"Internal debug switch", 0}, \
494 /* This macro is a C statement to print on `stderr' a string describing the
495 particular machine description choice. Every machine description should
496 define `TARGET_VERSION'. For example:
498 #ifdef MOTOROLA
499 #define TARGET_VERSION \
500 fprintf (stderr, " (68k, Motorola syntax)");
501 #else
502 #define TARGET_VERSION \
503 fprintf (stderr, " (68k, MIT syntax)");
504 #endif */
505 #define TARGET_VERSION fprintf (stderr, _(" (frv)"))
507 /* Sometimes certain combinations of command options do not make sense on a
508 particular target machine. You can define a macro `OVERRIDE_OPTIONS' to
509 take account of this. This macro, if defined, is executed once just after
510 all the command options have been parsed.
512 Don't use this macro to turn on various extra optimizations for `-O'. That
513 is what `OPTIMIZATION_OPTIONS' is for. */
515 #define OVERRIDE_OPTIONS frv_override_options ()
517 /* Some machines may desire to change what optimizations are performed for
518 various optimization levels. This macro, if defined, is executed once just
519 after the optimization level is determined and before the remainder of the
520 command options have been parsed. Values set in this macro are used as the
521 default values for the other command line options.
523 LEVEL is the optimization level specified; 2 if `-O2' is specified, 1 if
524 `-O' is specified, and 0 if neither is specified.
526 SIZE is nonzero if `-Os' is specified, 0 otherwise.
528 You should not use this macro to change options that are not
529 machine-specific. These should uniformly selected by the same optimization
530 level on all supported machines. Use this macro to enable machbine-specific
531 optimizations.
533 *Do not examine `write_symbols' in this macro!* The debugging options are
534 *not supposed to alter the generated code. */
535 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) frv_optimization_options (LEVEL, SIZE)
538 /* Define this macro if debugging can be performed even without a frame
539 pointer. If this macro is defined, GCC will turn on the
540 `-fomit-frame-pointer' option whenever `-O' is specified. */
541 /* Frv needs a specific frame layout that includes the frame pointer */
543 #define CAN_DEBUG_WITHOUT_FP
546 /* Small Data Area Support. */
547 /* Maximum size of variables that go in .sdata/.sbss.
548 The -msdata=foo switch also controls how small variables are handled. */
549 #ifndef SDATA_DEFAULT_SIZE
550 #define SDATA_DEFAULT_SIZE 8
551 #endif
554 /* Storage Layout */
556 /* Define this macro to have the value 1 if the most significant bit in a byte
557 has the lowest number; otherwise define it to have the value zero. This
558 means that bit-field instructions count from the most significant bit. If
559 the machine has no bit-field instructions, then this must still be defined,
560 but it doesn't matter which value it is defined to. This macro need not be
561 a constant.
563 This macro does not affect the way structure fields are packed into bytes or
564 words; that is controlled by `BYTES_BIG_ENDIAN'. */
565 #define BITS_BIG_ENDIAN 1
567 /* Define this macro to have the value 1 if the most significant byte in a word
568 has the lowest number. This macro need not be a constant. */
569 #define BYTES_BIG_ENDIAN 1
571 /* Define this macro to have the value 1 if, in a multiword object, the most
572 significant word has the lowest number. This applies to both memory
573 locations and registers; GCC fundamentally assumes that the order of
574 words in memory is the same as the order in registers. This macro need not
575 be a constant. */
576 #define WORDS_BIG_ENDIAN 1
578 /* Number of storage units in a word; normally 4. */
579 #define UNITS_PER_WORD 4
581 /* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
582 which has the specified mode and signedness is to be stored in a register.
583 This macro is only called when TYPE is a scalar type.
585 On most RISC machines, which only have operations that operate on a full
586 register, define this macro to set M to `word_mode' if M is an integer mode
587 narrower than `BITS_PER_WORD'. In most cases, only integer modes should be
588 widened because wider-precision floating-point operations are usually more
589 expensive than their narrower counterparts.
591 For most machines, the macro definition does not change UNSIGNEDP. However,
592 some machines, have instructions that preferentially handle either signed or
593 unsigned quantities of certain modes. For example, on the DEC Alpha, 32-bit
594 loads from memory and 32-bit add instructions sign-extend the result to 64
595 bits. On such machines, set UNSIGNEDP according to which kind of extension
596 is more efficient.
598 Do not define this macro if it would never modify MODE. */
599 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
600 do \
602 if (GET_MODE_CLASS (MODE) == MODE_INT \
603 && GET_MODE_SIZE (MODE) < 4) \
604 (MODE) = SImode; \
606 while (0)
608 /* Normal alignment required for function parameters on the stack, in bits.
609 All stack parameters receive at least this much alignment regardless of data
610 type. On most machines, this is the same as the size of an integer. */
611 #define PARM_BOUNDARY 32
613 /* Define this macro if you wish to preserve a certain alignment for the stack
614 pointer. The definition is a C expression for the desired alignment
615 (measured in bits).
617 If `PUSH_ROUNDING' is not defined, the stack will always be aligned to the
618 specified boundary. If `PUSH_ROUNDING' is defined and specifies a less
619 strict alignment than `STACK_BOUNDARY', the stack may be momentarily
620 unaligned while pushing arguments. */
621 #define STACK_BOUNDARY 64
623 /* Alignment required for a function entry point, in bits. */
624 #define FUNCTION_BOUNDARY 128
626 /* Biggest alignment that any data type can require on this machine,
627 in bits. */
628 #define BIGGEST_ALIGNMENT 64
630 /* @@@ A hack, needed because libobjc wants to use ADJUST_FIELD_ALIGN for
631 some reason. */
632 #ifdef IN_TARGET_LIBS
633 #define BIGGEST_FIELD_ALIGNMENT 64
634 #else
635 /* An expression for the alignment of a structure field FIELD if the
636 alignment computed in the usual way is COMPUTED. GCC uses this
637 value instead of the value in `BIGGEST_ALIGNMENT' or
638 `BIGGEST_FIELD_ALIGNMENT', if defined, for structure fields only. */
639 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
640 frv_adjust_field_align (FIELD, COMPUTED)
641 #endif
643 /* If defined, a C expression to compute the alignment for a static variable.
644 TYPE is the data type, and ALIGN is the alignment that the object
645 would ordinarily have. The value of this macro is used instead of that
646 alignment to align the object.
648 If this macro is not defined, then ALIGN is used.
650 One use of this macro is to increase alignment of medium-size data to make
651 it all fit in fewer cache lines. Another is to cause character arrays to be
652 word-aligned so that `strcpy' calls that copy constants to character arrays
653 can be done inline. */
654 #define DATA_ALIGNMENT(TYPE, ALIGN) \
655 (TREE_CODE (TYPE) == ARRAY_TYPE \
656 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
657 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
659 /* If defined, a C expression to compute the alignment given to a constant that
660 is being placed in memory. CONSTANT is the constant and ALIGN is the
661 alignment that the object would ordinarily have. The value of this macro is
662 used instead of that alignment to align the object.
664 If this macro is not defined, then ALIGN is used.
666 The typical use of this macro is to increase alignment for string constants
667 to be word aligned so that `strcpy' calls that copy constants can be done
668 inline. */
669 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
670 (TREE_CODE (EXP) == STRING_CST \
671 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
673 /* Define this macro to be the value 1 if instructions will fail to work if
674 given data not on the nominal alignment. If instructions will merely go
675 slower in that case, define this macro as 0. */
676 #define STRICT_ALIGNMENT 1
678 /* Define this if you wish to imitate the way many other C compilers handle
679 alignment of bitfields and the structures that contain them.
681 The behavior is that the type written for a bit-field (`int', `short', or
682 other integer type) imposes an alignment for the entire structure, as if the
683 structure really did contain an ordinary field of that type. In addition,
684 the bit-field is placed within the structure so that it would fit within such
685 a field, not crossing a boundary for it.
687 Thus, on most machines, a bit-field whose type is written as `int' would not
688 cross a four-byte boundary, and would force four-byte alignment for the
689 whole structure. (The alignment used may not be four bytes; it is
690 controlled by the other alignment parameters.)
692 If the macro is defined, its definition should be a C expression; a nonzero
693 value for the expression enables this behavior.
695 Note that if this macro is not defined, or its value is zero, some bitfields
696 may cross more than one alignment boundary. The compiler can support such
697 references if there are `insv', `extv', and `extzv' insns that can directly
698 reference memory.
700 The other known way of making bitfields work is to define
701 `STRUCTURE_SIZE_BOUNDARY' as large as `BIGGEST_ALIGNMENT'. Then every
702 structure can be accessed with fullwords.
704 Unless the machine has bit-field instructions or you define
705 `STRUCTURE_SIZE_BOUNDARY' that way, you must define
706 `PCC_BITFIELD_TYPE_MATTERS' to have a nonzero value.
708 If your aim is to make GCC use the same conventions for laying out
709 bitfields as are used by another compiler, here is how to investigate what
710 the other compiler does. Compile and run this program:
712 struct foo1
714 char x;
715 char :0;
716 char y;
719 struct foo2
721 char x;
722 int :0;
723 char y;
726 main ()
728 printf ("Size of foo1 is %d\n",
729 sizeof (struct foo1));
730 printf ("Size of foo2 is %d\n",
731 sizeof (struct foo2));
732 exit (0);
735 If this prints 2 and 5, then the compiler's behavior is what you would get
736 from `PCC_BITFIELD_TYPE_MATTERS'.
738 Defined in svr4.h. */
739 #define PCC_BITFIELD_TYPE_MATTERS 1
742 /* Layout of Source Language Data Types. */
744 #define CHAR_TYPE_SIZE 8
745 #define SHORT_TYPE_SIZE 16
746 #define INT_TYPE_SIZE 32
747 #define LONG_TYPE_SIZE 32
748 #define LONG_LONG_TYPE_SIZE 64
749 #define FLOAT_TYPE_SIZE 32
750 #define DOUBLE_TYPE_SIZE 64
751 #define LONG_DOUBLE_TYPE_SIZE 64
753 /* An expression whose value is 1 or 0, according to whether the type `char'
754 should be signed or unsigned by default. The user can always override this
755 default with the options `-fsigned-char' and `-funsigned-char'. */
756 #define DEFAULT_SIGNED_CHAR 1
759 /* General purpose registers. */
760 #define GPR_FIRST 0 /* First gpr */
761 #define GPR_LAST (GPR_FIRST + 63) /* Last gpr */
762 #define GPR_R0 GPR_FIRST /* R0, constant 0 */
763 #define GPR_FP (GPR_FIRST + 2) /* Frame pointer */
764 #define GPR_SP (GPR_FIRST + 1) /* Stack pointer */
765 /* small data register */
766 #define SDA_BASE_REG ((unsigned)(flag_pic ? PIC_REGNO : (GPR_FIRST+16)))
767 #define PIC_REGNO (GPR_FIRST + 17) /* PIC register */
769 #define FPR_FIRST 64 /* First FP reg */
770 #define FPR_LAST 127 /* Last FP reg */
772 #define DEFAULT_CONDEXEC_TEMPS 4 /* reserve 4 regs by default */
773 #define GPR_TEMP_NUM frv_condexec_temps /* # gprs to reserve for temps */
775 /* We reserve the last CR and CCR in each category to be used as a reload
776 register to reload the CR/CCR registers. This is a kludge. */
777 #define CC_FIRST 128 /* First ICC/FCC reg */
778 #define CC_LAST 135 /* Last ICC/FCC reg */
779 #define ICC_FIRST (CC_FIRST + 4) /* First ICC reg */
780 #define ICC_LAST (CC_FIRST + 7) /* Last ICC reg */
781 #define ICC_TEMP (CC_FIRST + 7) /* Temporary ICC reg */
782 #define FCC_FIRST (CC_FIRST) /* First FCC reg */
783 #define FCC_LAST (CC_FIRST + 3) /* Last FCC reg */
785 /* Amount to shift a value to locate a ICC or FCC register in the CCR
786 register and shift it to the bottom 4 bits. */
787 #define CC_SHIFT_RIGHT(REGNO) (((REGNO) - CC_FIRST) << 2)
789 /* Mask to isolate a single ICC/FCC value. */
790 #define CC_MASK 0xf
792 /* Masks to isolate the various bits in an ICC field. */
793 #define ICC_MASK_N 0x8 /* negative */
794 #define ICC_MASK_Z 0x4 /* zero */
795 #define ICC_MASK_V 0x2 /* overflow */
796 #define ICC_MASK_C 0x1 /* carry */
798 /* Mask to isolate the N/Z flags in an ICC. */
799 #define ICC_MASK_NZ (ICC_MASK_N | ICC_MASK_Z)
801 /* Mask to isolate the Z/C flags in an ICC. */
802 #define ICC_MASK_ZC (ICC_MASK_Z | ICC_MASK_C)
804 /* Masks to isolate the various bits in a FCC field. */
805 #define FCC_MASK_E 0x8 /* equal */
806 #define FCC_MASK_L 0x4 /* less than */
807 #define FCC_MASK_G 0x2 /* greater than */
808 #define FCC_MASK_U 0x1 /* unordered */
810 /* For CCR registers, the machine wants CR4..CR7 to be used for integer
811 code and CR0..CR3 to be used for floating point. */
812 #define CR_FIRST 136 /* First CCR */
813 #define CR_LAST 143 /* Last CCR */
814 #define CR_NUM (CR_LAST-CR_FIRST+1) /* # of CCRs (8) */
815 #define ICR_FIRST (CR_FIRST + 4) /* First integer CCR */
816 #define ICR_LAST (CR_FIRST + 7) /* Last integer CCR */
817 #define ICR_TEMP ICR_LAST /* Temp integer CCR */
818 #define FCR_FIRST (CR_FIRST + 0) /* First float CCR */
819 #define FCR_LAST (CR_FIRST + 3) /* Last float CCR */
821 /* Amount to shift a value to locate a CR register in the CCCR special purpose
822 register and shift it to the bottom 2 bits. */
823 #define CR_SHIFT_RIGHT(REGNO) (((REGNO) - CR_FIRST) << 1)
825 /* Mask to isolate a single CR value. */
826 #define CR_MASK 0x3
828 #define ACC_FIRST 144 /* First acc register */
829 #define ACC_LAST 151 /* Last acc register */
831 #define ACCG_FIRST 152 /* First accg register */
832 #define ACCG_LAST 159 /* Last accg register */
834 #define AP_FIRST 160 /* fake argument pointer */
836 #define SPR_FIRST 161
837 #define SPR_LAST 162
838 #define LR_REGNO (SPR_FIRST)
839 #define LCR_REGNO (SPR_FIRST + 1)
841 #define GPR_P(R) IN_RANGE_P (R, GPR_FIRST, GPR_LAST)
842 #define GPR_OR_AP_P(R) (GPR_P (R) || (R) == ARG_POINTER_REGNUM)
843 #define FPR_P(R) IN_RANGE_P (R, FPR_FIRST, FPR_LAST)
844 #define CC_P(R) IN_RANGE_P (R, CC_FIRST, CC_LAST)
845 #define ICC_P(R) IN_RANGE_P (R, ICC_FIRST, ICC_LAST)
846 #define FCC_P(R) IN_RANGE_P (R, FCC_FIRST, FCC_LAST)
847 #define CR_P(R) IN_RANGE_P (R, CR_FIRST, CR_LAST)
848 #define ICR_P(R) IN_RANGE_P (R, ICR_FIRST, ICR_LAST)
849 #define FCR_P(R) IN_RANGE_P (R, FCR_FIRST, FCR_LAST)
850 #define ACC_P(R) IN_RANGE_P (R, ACC_FIRST, ACC_LAST)
851 #define ACCG_P(R) IN_RANGE_P (R, ACCG_FIRST, ACCG_LAST)
852 #define SPR_P(R) IN_RANGE_P (R, SPR_FIRST, SPR_LAST)
854 #define GPR_OR_PSEUDO_P(R) (GPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
855 #define FPR_OR_PSEUDO_P(R) (FPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
856 #define GPR_AP_OR_PSEUDO_P(R) (GPR_OR_AP_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
857 #define CC_OR_PSEUDO_P(R) (CC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
858 #define ICC_OR_PSEUDO_P(R) (ICC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
859 #define FCC_OR_PSEUDO_P(R) (FCC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
860 #define CR_OR_PSEUDO_P(R) (CR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
861 #define ICR_OR_PSEUDO_P(R) (ICR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
862 #define FCR_OR_PSEUDO_P(R) (FCR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
863 #define ACC_OR_PSEUDO_P(R) (ACC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
864 #define ACCG_OR_PSEUDO_P(R) (ACCG_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
866 #define MAX_STACK_IMMEDIATE_OFFSET 2047
869 /* Register Basics. */
871 /* Number of hardware registers known to the compiler. They receive numbers 0
872 through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number
873 really is assigned the number `FIRST_PSEUDO_REGISTER'. */
874 #define FIRST_PSEUDO_REGISTER (SPR_LAST + 1)
876 /* The first/last register that can contain the arguments to a function. */
877 #define FIRST_ARG_REGNUM (GPR_FIRST + 8)
878 #define LAST_ARG_REGNUM (FIRST_ARG_REGNUM + FRV_NUM_ARG_REGS - 1)
880 /* Registers used by the exception handling functions. These should be
881 registers that are not otherwised used by the calling sequence. */
882 #define FIRST_EH_REGNUM 14
883 #define LAST_EH_REGNUM 15
885 /* Scratch registers used in the prologue, epilogue and thunks.
886 OFFSET_REGNO is for loading constant addends that are too big for a
887 single instruction. TEMP_REGNO is used for transferring SPRs to and from
888 the stack, and various other activities. */
889 #define OFFSET_REGNO 4
890 #define TEMP_REGNO 5
892 /* Registers used in the prologue. OLD_SP_REGNO is the old stack pointer,
893 which is sometimes used to set up the frame pointer. */
894 #define OLD_SP_REGNO 6
896 /* Registers used in the epilogue. STACKADJ_REGNO stores the exception
897 handler's stack adjustment. */
898 #define STACKADJ_REGNO 6
900 /* Registers used in thunks. JMP_REGNO is used for loading the target
901 address. */
902 #define JUMP_REGNO 6
904 #define EH_RETURN_DATA_REGNO(N) ((N) <= (LAST_EH_REGNUM - FIRST_EH_REGNUM)? \
905 (N) + FIRST_EH_REGNUM : INVALID_REGNUM)
906 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, STACKADJ_REGNO)
907 #define EH_RETURN_HANDLER_RTX RETURN_ADDR_RTX (0, frame_pointer_rtx)
909 /* An initializer that says which registers are used for fixed purposes all
910 throughout the compiled code and are therefore not available for general
911 allocation. These would include the stack pointer, the frame pointer
912 (except on machines where that can be used as a general register when no
913 frame pointer is needed), the program counter on machines where that is
914 considered one of the addressable registers, and any other numbered register
915 with a standard use.
917 This information is expressed as a sequence of numbers, separated by commas
918 and surrounded by braces. The Nth number is 1 if register N is fixed, 0
919 otherwise.
921 The table initialized from this macro, and the table initialized by the
922 following one, may be overridden at run time either automatically, by the
923 actions of the macro `CONDITIONAL_REGISTER_USAGE', or by the user with the
924 command options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'. */
926 /* gr0 -- Hard Zero
927 gr1 -- Stack Pointer
928 gr2 -- Frame Pointer
929 gr3 -- Hidden Parameter
930 gr16 -- Small Data reserved
931 gr17 -- Pic reserved
932 gr28 -- OS reserved
933 gr29 -- OS reserved
934 gr30 -- OS reserved
935 gr31 -- OS reserved
936 cr3 -- reserved to reload FCC registers.
937 cr7 -- reserved to reload ICC registers. */
938 #define FIXED_REGISTERS \
939 { /* Integer Registers */ \
940 1, 1, 1, 1, 0, 0, 0, 0, /* 000-007, gr0 - gr7 */ \
941 0, 0, 0, 0, 0, 0, 0, 0, /* 008-015, gr8 - gr15 */ \
942 1, 1, 0, 0, 0, 0, 0, 0, /* 016-023, gr16 - gr23 */ \
943 0, 0, 0, 0, 1, 1, 1, 1, /* 024-031, gr24 - gr31 */ \
944 0, 0, 0, 0, 0, 0, 0, 0, /* 032-039, gr32 - gr39 */ \
945 0, 0, 0, 0, 0, 0, 0, 0, /* 040-040, gr48 - gr47 */ \
946 0, 0, 0, 0, 0, 0, 0, 0, /* 048-055, gr48 - gr55 */ \
947 0, 0, 0, 0, 0, 0, 0, 0, /* 056-063, gr56 - gr63 */ \
948 /* Float Registers */ \
949 0, 0, 0, 0, 0, 0, 0, 0, /* 064-071, fr0 - fr7 */ \
950 0, 0, 0, 0, 0, 0, 0, 0, /* 072-079, fr8 - fr15 */ \
951 0, 0, 0, 0, 0, 0, 0, 0, /* 080-087, fr16 - fr23 */ \
952 0, 0, 0, 0, 0, 0, 0, 0, /* 088-095, fr24 - fr31 */ \
953 0, 0, 0, 0, 0, 0, 0, 0, /* 096-103, fr32 - fr39 */ \
954 0, 0, 0, 0, 0, 0, 0, 0, /* 104-111, fr48 - fr47 */ \
955 0, 0, 0, 0, 0, 0, 0, 0, /* 112-119, fr48 - fr55 */ \
956 0, 0, 0, 0, 0, 0, 0, 0, /* 120-127, fr56 - fr63 */ \
957 /* Condition Code Registers */ \
958 0, 0, 0, 0, /* 128-131, fcc0 - fcc3 */ \
959 0, 0, 0, 1, /* 132-135, icc0 - icc3 */ \
960 /* Conditional execution Registers (CCR) */ \
961 0, 0, 0, 0, 0, 0, 0, 1, /* 136-143, cr0 - cr7 */ \
962 /* Accumulators */ \
963 1, 1, 1, 1, 1, 1, 1, 1, /* 144-151, acc0 - acc7 */ \
964 1, 1, 1, 1, 1, 1, 1, 1, /* 152-159, accg0 - accg7 */ \
965 /* Other registers */ \
966 1, /* 160, AP - fake arg ptr */ \
967 0, /* 161, LR - Link register*/ \
968 0, /* 162, LCR - Loop count reg*/ \
971 /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
972 general) by function calls as well as for fixed registers. This macro
973 therefore identifies the registers that are not available for general
974 allocation of values that must live across function calls.
976 If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
977 saves it on function entry and restores it on function exit, if the register
978 is used within the function. */
979 #define CALL_USED_REGISTERS \
980 { /* Integer Registers */ \
981 1, 1, 1, 1, 1, 1, 1, 1, /* 000-007, gr0 - gr7 */ \
982 1, 1, 1, 1, 1, 1, 1, 1, /* 008-015, gr8 - gr15 */ \
983 1, 1, 0, 0, 0, 0, 0, 0, /* 016-023, gr16 - gr23 */ \
984 0, 0, 0, 0, 1, 1, 1, 1, /* 024-031, gr24 - gr31 */ \
985 1, 1, 1, 1, 1, 1, 1, 1, /* 032-039, gr32 - gr39 */ \
986 1, 1, 1, 1, 1, 1, 1, 1, /* 040-040, gr48 - gr47 */ \
987 0, 0, 0, 0, 0, 0, 0, 0, /* 048-055, gr48 - gr55 */ \
988 0, 0, 0, 0, 0, 0, 0, 0, /* 056-063, gr56 - gr63 */ \
989 /* Float Registers */ \
990 1, 1, 1, 1, 1, 1, 1, 1, /* 064-071, fr0 - fr7 */ \
991 1, 1, 1, 1, 1, 1, 1, 1, /* 072-079, fr8 - fr15 */ \
992 0, 0, 0, 0, 0, 0, 0, 0, /* 080-087, fr16 - fr23 */ \
993 0, 0, 0, 0, 0, 0, 0, 0, /* 088-095, fr24 - fr31 */ \
994 1, 1, 1, 1, 1, 1, 1, 1, /* 096-103, fr32 - fr39 */ \
995 1, 1, 1, 1, 1, 1, 1, 1, /* 104-111, fr48 - fr47 */ \
996 0, 0, 0, 0, 0, 0, 0, 0, /* 112-119, fr48 - fr55 */ \
997 0, 0, 0, 0, 0, 0, 0, 0, /* 120-127, fr56 - fr63 */ \
998 /* Condition Code Registers */ \
999 1, 1, 1, 1, /* 128-131, fcc0 - fcc3 */ \
1000 1, 1, 1, 1, /* 132-135, icc0 - icc3 */ \
1001 /* Conditional execution Registers (CCR) */ \
1002 1, 1, 1, 1, 1, 1, 1, 1, /* 136-143, cr0 - cr7 */ \
1003 /* Accumulators */ \
1004 1, 1, 1, 1, 1, 1, 1, 1, /* 144-151, acc0 - acc7 */ \
1005 1, 1, 1, 1, 1, 1, 1, 1, /* 152-159, accg0 - accg7 */ \
1006 /* Other registers */ \
1007 1, /* 160, AP - fake arg ptr */ \
1008 1, /* 161, LR - Link register*/ \
1009 1, /* 162, LCR - Loop count reg */ \
1012 /* Zero or more C statements that may conditionally modify two variables
1013 `fixed_regs' and `call_used_regs' (both of type `char []') after they have
1014 been initialized from the two preceding macros.
1016 This is necessary in case the fixed or call-clobbered registers depend on
1017 target flags.
1019 You need not define this macro if it has no work to do.
1021 If the usage of an entire class of registers depends on the target flags,
1022 you may indicate this to GCC by using this macro to modify `fixed_regs' and
1023 `call_used_regs' to 1 for each of the registers in the classes which should
1024 not be used by GCC. Also define the macro `REG_CLASS_FROM_LETTER' to return
1025 `NO_REGS' if it is called with a letter for a class that shouldn't be used.
1027 (However, if this class is not included in `GENERAL_REGS' and all of the
1028 insn patterns whose constraints permit this class are controlled by target
1029 switches, then GCC will automatically avoid using these registers when the
1030 target switches are opposed to them.) */
1032 #define CONDITIONAL_REGISTER_USAGE frv_conditional_register_usage ()
1035 /* Order of allocation of registers. */
1037 /* If defined, an initializer for a vector of integers, containing the numbers
1038 of hard registers in the order in which GCC should prefer to use them
1039 (from most preferred to least).
1041 If this macro is not defined, registers are used lowest numbered first (all
1042 else being equal).
1044 One use of this macro is on machines where the highest numbered registers
1045 must always be saved and the save-multiple-registers instruction supports
1046 only sequences of consecutive registers. On such machines, define
1047 `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
1048 allocatable register first. */
1050 /* On the FRV, allocate GR16 and GR17 after other saved registers so that we
1051 have a better chance of allocating 2 registers at a time and can use the
1052 double word load/store instructions in the prologue. */
1053 #define REG_ALLOC_ORDER \
1055 /* volatile registers */ \
1056 GPR_FIRST + 4, GPR_FIRST + 5, GPR_FIRST + 6, GPR_FIRST + 7, \
1057 GPR_FIRST + 8, GPR_FIRST + 9, GPR_FIRST + 10, GPR_FIRST + 11, \
1058 GPR_FIRST + 12, GPR_FIRST + 13, GPR_FIRST + 14, GPR_FIRST + 15, \
1059 GPR_FIRST + 32, GPR_FIRST + 33, GPR_FIRST + 34, GPR_FIRST + 35, \
1060 GPR_FIRST + 36, GPR_FIRST + 37, GPR_FIRST + 38, GPR_FIRST + 39, \
1061 GPR_FIRST + 40, GPR_FIRST + 41, GPR_FIRST + 42, GPR_FIRST + 43, \
1062 GPR_FIRST + 44, GPR_FIRST + 45, GPR_FIRST + 46, GPR_FIRST + 47, \
1064 FPR_FIRST + 0, FPR_FIRST + 1, FPR_FIRST + 2, FPR_FIRST + 3, \
1065 FPR_FIRST + 4, FPR_FIRST + 5, FPR_FIRST + 6, FPR_FIRST + 7, \
1066 FPR_FIRST + 8, FPR_FIRST + 9, FPR_FIRST + 10, FPR_FIRST + 11, \
1067 FPR_FIRST + 12, FPR_FIRST + 13, FPR_FIRST + 14, FPR_FIRST + 15, \
1068 FPR_FIRST + 32, FPR_FIRST + 33, FPR_FIRST + 34, FPR_FIRST + 35, \
1069 FPR_FIRST + 36, FPR_FIRST + 37, FPR_FIRST + 38, FPR_FIRST + 39, \
1070 FPR_FIRST + 40, FPR_FIRST + 41, FPR_FIRST + 42, FPR_FIRST + 43, \
1071 FPR_FIRST + 44, FPR_FIRST + 45, FPR_FIRST + 46, FPR_FIRST + 47, \
1073 ICC_FIRST + 0, ICC_FIRST + 1, ICC_FIRST + 2, ICC_FIRST + 3, \
1074 FCC_FIRST + 0, FCC_FIRST + 1, FCC_FIRST + 2, FCC_FIRST + 3, \
1075 CR_FIRST + 0, CR_FIRST + 1, CR_FIRST + 2, CR_FIRST + 3, \
1076 CR_FIRST + 4, CR_FIRST + 5, CR_FIRST + 6, CR_FIRST + 7, \
1078 /* saved registers */ \
1079 GPR_FIRST + 18, GPR_FIRST + 19, \
1080 GPR_FIRST + 20, GPR_FIRST + 21, GPR_FIRST + 22, GPR_FIRST + 23, \
1081 GPR_FIRST + 24, GPR_FIRST + 25, GPR_FIRST + 26, GPR_FIRST + 27, \
1082 GPR_FIRST + 48, GPR_FIRST + 49, GPR_FIRST + 50, GPR_FIRST + 51, \
1083 GPR_FIRST + 52, GPR_FIRST + 53, GPR_FIRST + 54, GPR_FIRST + 55, \
1084 GPR_FIRST + 56, GPR_FIRST + 57, GPR_FIRST + 58, GPR_FIRST + 59, \
1085 GPR_FIRST + 60, GPR_FIRST + 61, GPR_FIRST + 62, GPR_FIRST + 63, \
1086 GPR_FIRST + 16, GPR_FIRST + 17, \
1088 FPR_FIRST + 16, FPR_FIRST + 17, FPR_FIRST + 18, FPR_FIRST + 19, \
1089 FPR_FIRST + 20, FPR_FIRST + 21, FPR_FIRST + 22, FPR_FIRST + 23, \
1090 FPR_FIRST + 24, FPR_FIRST + 25, FPR_FIRST + 26, FPR_FIRST + 27, \
1091 FPR_FIRST + 28, FPR_FIRST + 29, FPR_FIRST + 30, FPR_FIRST + 31, \
1092 FPR_FIRST + 48, FPR_FIRST + 49, FPR_FIRST + 50, FPR_FIRST + 51, \
1093 FPR_FIRST + 52, FPR_FIRST + 53, FPR_FIRST + 54, FPR_FIRST + 55, \
1094 FPR_FIRST + 56, FPR_FIRST + 57, FPR_FIRST + 58, FPR_FIRST + 59, \
1095 FPR_FIRST + 60, FPR_FIRST + 61, FPR_FIRST + 62, FPR_FIRST + 63, \
1097 /* special or fixed registers */ \
1098 GPR_FIRST + 0, GPR_FIRST + 1, GPR_FIRST + 2, GPR_FIRST + 3, \
1099 GPR_FIRST + 28, GPR_FIRST + 29, GPR_FIRST + 30, GPR_FIRST + 31, \
1100 ACC_FIRST + 0, ACC_FIRST + 1, ACC_FIRST + 2, ACC_FIRST + 3, \
1101 ACC_FIRST + 4, ACC_FIRST + 5, ACC_FIRST + 6, ACC_FIRST + 7, \
1102 ACCG_FIRST + 0, ACCG_FIRST + 1, ACCG_FIRST + 2, ACCG_FIRST + 3, \
1103 ACCG_FIRST + 4, ACCG_FIRST + 5, ACCG_FIRST + 6, ACCG_FIRST + 7, \
1104 AP_FIRST, LR_REGNO, LCR_REGNO \
1108 /* How Values Fit in Registers. */
1110 /* A C expression for the number of consecutive hard registers, starting at
1111 register number REGNO, required to hold a value of mode MODE.
1113 On a machine where all registers are exactly one word, a suitable definition
1114 of this macro is
1116 #define HARD_REGNO_NREGS(REGNO, MODE) \
1117 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
1118 / UNITS_PER_WORD)) */
1120 /* On the FRV, make the CC modes take 3 words in the integer registers, so that
1121 we can build the appropriate instructions to properly reload the values. */
1122 #define HARD_REGNO_NREGS(REGNO, MODE) frv_hard_regno_nregs (REGNO, MODE)
1124 /* A C expression that is nonzero if it is permissible to store a value of mode
1125 MODE in hard register number REGNO (or in several registers starting with
1126 that one). For a machine where all registers are equivalent, a suitable
1127 definition is
1129 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
1131 It is not necessary for this macro to check for the numbers of fixed
1132 registers, because the allocation mechanism considers them to be always
1133 occupied.
1135 On some machines, double-precision values must be kept in even/odd register
1136 pairs. The way to implement that is to define this macro to reject odd
1137 register numbers for such modes.
1139 The minimum requirement for a mode to be OK in a register is that the
1140 `movMODE' instruction pattern support moves between the register and any
1141 other hard register for which the mode is OK; and that moving a value into
1142 the register and back out not alter it.
1144 Since the same instruction used to move `SImode' will work for all narrower
1145 integer modes, it is not necessary on any machine for `HARD_REGNO_MODE_OK'
1146 to distinguish between these modes, provided you define patterns `movhi',
1147 etc., to take advantage of this. This is useful because of the interaction
1148 between `HARD_REGNO_MODE_OK' and `MODES_TIEABLE_P'; it is very desirable for
1149 all integer modes to be tieable.
1151 Many machines have special registers for floating point arithmetic. Often
1152 people assume that floating point machine modes are allowed only in floating
1153 point registers. This is not true. Any registers that can hold integers
1154 can safely *hold* a floating point machine mode, whether or not floating
1155 arithmetic can be done on it in those registers. Integer move instructions
1156 can be used to move the values.
1158 On some machines, though, the converse is true: fixed-point machine modes
1159 may not go in floating registers. This is true if the floating registers
1160 normalize any value stored in them, because storing a non-floating value
1161 there would garble it. In this case, `HARD_REGNO_MODE_OK' should reject
1162 fixed-point machine modes in floating registers. But if the floating
1163 registers do not automatically normalize, if you can store any bit pattern
1164 in one and retrieve it unchanged without a trap, then any machine mode may
1165 go in a floating register, so you can define this macro to say so.
1167 The primary significance of special floating registers is rather that they
1168 are the registers acceptable in floating point arithmetic instructions.
1169 However, this is of no concern to `HARD_REGNO_MODE_OK'. You handle it by
1170 writing the proper constraints for those instructions.
1172 On some machines, the floating registers are especially slow to access, so
1173 that it is better to store a value in a stack frame than in such a register
1174 if floating point arithmetic is not being done. As long as the floating
1175 registers are not in class `GENERAL_REGS', they will not be used unless some
1176 pattern's constraint asks for one. */
1177 #define HARD_REGNO_MODE_OK(REGNO, MODE) frv_hard_regno_mode_ok (REGNO, MODE)
1179 /* A C expression that is nonzero if it is desirable to choose register
1180 allocation so as to avoid move instructions between a value of mode MODE1
1181 and a value of mode MODE2.
1183 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
1184 ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
1185 zero. */
1186 #define MODES_TIEABLE_P(MODE1, MODE2) (MODE1 == MODE2)
1188 /* Define this macro if the compiler should avoid copies to/from CCmode
1189 registers. You should only define this macro if support fo copying to/from
1190 CCmode is incomplete. */
1191 #define AVOID_CCMODE_COPIES
1194 /* Register Classes. */
1196 /* An enumeral type that must be defined with all the register class names as
1197 enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
1198 register class, followed by one more enumeral value, `LIM_REG_CLASSES',
1199 which is not a register class but rather tells how many classes there are.
1201 Each register class has a number, which is the value of casting the class
1202 name to type `int'. The number serves as an index in many of the tables
1203 described below. */
1204 enum reg_class
1206 NO_REGS,
1207 ICC_REGS,
1208 FCC_REGS,
1209 CC_REGS,
1210 ICR_REGS,
1211 FCR_REGS,
1212 CR_REGS,
1213 LCR_REG,
1214 LR_REG,
1215 SPR_REGS,
1216 QUAD_ACC_REGS,
1217 EVEN_ACC_REGS,
1218 ACC_REGS,
1219 ACCG_REGS,
1220 QUAD_FPR_REGS,
1221 FEVEN_REGS,
1222 FPR_REGS,
1223 QUAD_REGS,
1224 EVEN_REGS,
1225 GPR_REGS,
1226 ALL_REGS,
1227 LIM_REG_CLASSES
1230 #define GENERAL_REGS GPR_REGS
1232 /* The number of distinct register classes, defined as follows:
1234 #define N_REG_CLASSES (int) LIM_REG_CLASSES */
1235 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1237 /* An initializer containing the names of the register classes as C string
1238 constants. These names are used in writing some of the debugging dumps. */
1239 #define REG_CLASS_NAMES { \
1240 "NO_REGS", \
1241 "ICC_REGS", \
1242 "FCC_REGS", \
1243 "CC_REGS", \
1244 "ICR_REGS", \
1245 "FCR_REGS", \
1246 "CR_REGS", \
1247 "LCR_REG", \
1248 "LR_REG", \
1249 "SPR_REGS", \
1250 "QUAD_ACC_REGS", \
1251 "EVEN_ACC_REGS", \
1252 "ACC_REGS", \
1253 "ACCG_REGS", \
1254 "QUAD_FPR_REGS", \
1255 "FEVEN_REGS", \
1256 "FPR_REGS", \
1257 "QUAD_REGS", \
1258 "EVEN_REGS", \
1259 "GPR_REGS", \
1260 "ALL_REGS" \
1263 /* An initializer containing the contents of the register classes, as integers
1264 which are bit masks. The Nth integer specifies the contents of class N.
1265 The way the integer MASK is interpreted is that register R is in the class
1266 if `MASK & (1 << R)' is 1.
1268 When the machine has more than 32 registers, an integer does not suffice.
1269 Then the integers are replaced by sub-initializers, braced groupings
1270 containing several integers. Each sub-initializer must be suitable as an
1271 initializer for the type `HARD_REG_SET' which is defined in
1272 `hard-reg-set.h'. */
1273 #define REG_CLASS_CONTENTS \
1274 { /* gr0-gr31 gr32-gr63 fr0-fr31 fr32-fr-63 cc/ccr/acc ap/spr */ \
1275 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* NO_REGS */\
1276 { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000f0,0x0}, /* ICC_REGS */\
1277 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000000f,0x0}, /* FCC_REGS */\
1278 { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000ff,0x0}, /* CC_REGS */\
1279 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000f000,0x0}, /* ICR_REGS */\
1280 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000f00,0x0}, /* FCR_REGS */\
1281 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000ff00,0x0}, /* CR_REGS */\
1282 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x4}, /* LCR_REGS */\
1283 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x2}, /* LR_REGS */\
1284 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x6}, /* SPR_REGS */\
1285 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00ff0000,0x0}, /* QUAD_ACC */\
1286 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00ff0000,0x0}, /* EVEN_ACC */\
1287 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00ff0000,0x0}, /* ACC_REGS */\
1288 { 0x00000000,0x00000000,0x00000000,0x00000000,0xff000000,0x0}, /* ACCG_REGS*/\
1289 { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* QUAD_FPR */\
1290 { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* FEVEN_REG*/\
1291 { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* FPR_REGS */\
1292 { 0x0ffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* QUAD_REGS*/\
1293 { 0xfffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* EVEN_REGS*/\
1294 { 0xffffffff,0xffffffff,0x00000000,0x00000000,0x00000000,0x1}, /* GPR_REGS */\
1295 { 0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0x7}, /* ALL_REGS */\
1298 /* A C expression whose value is a register class containing hard register
1299 REGNO. In general there is more than one such class; choose a class which
1300 is "minimal", meaning that no smaller class also contains the register. */
1302 extern enum reg_class regno_reg_class[];
1303 #define REGNO_REG_CLASS(REGNO) regno_reg_class [REGNO]
1305 /* A macro whose definition is the name of the class to which a valid base
1306 register must belong. A base register is one used in an address which is
1307 the register value plus a displacement. */
1308 #define BASE_REG_CLASS GPR_REGS
1310 /* A macro whose definition is the name of the class to which a valid index
1311 register must belong. An index register is one used in an address where its
1312 value is either multiplied by a scale factor or added to another register
1313 (as well as added to a displacement). */
1314 #define INDEX_REG_CLASS GPR_REGS
1316 /* A C expression which defines the machine-dependent operand constraint
1317 letters for register classes. If CHAR is such a letter, the value should be
1318 the register class corresponding to it. Otherwise, the value should be
1319 `NO_REGS'. The register letter `r', corresponding to class `GENERAL_REGS',
1320 will not be passed to this macro; you do not need to handle it.
1322 The following letters are unavailable, due to being used as
1323 constraints:
1324 '0'..'9'
1325 '<', '>'
1326 'E', 'F', 'G', 'H'
1327 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P'
1328 'Q', 'R', 'S', 'T', 'U'
1329 'V', 'X'
1330 'g', 'i', 'm', 'n', 'o', 'p', 'r', 's' */
1332 extern enum reg_class reg_class_from_letter[];
1333 #define REG_CLASS_FROM_LETTER(CHAR) reg_class_from_letter [(unsigned char)(CHAR)]
1335 /* A C expression which is nonzero if register number NUM is suitable for use
1336 as a base register in operand addresses. It may be either a suitable hard
1337 register or a pseudo register that has been allocated such a hard register. */
1338 #define REGNO_OK_FOR_BASE_P(NUM) \
1339 ((NUM) < FIRST_PSEUDO_REGISTER \
1340 ? GPR_P (NUM) \
1341 : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
1343 /* A C expression which is nonzero if register number NUM is suitable for use
1344 as an index register in operand addresses. It may be either a suitable hard
1345 register or a pseudo register that has been allocated such a hard register.
1347 The difference between an index register and a base register is that the
1348 index register may be scaled. If an address involves the sum of two
1349 registers, neither one of them scaled, then either one may be labeled the
1350 "base" and the other the "index"; but whichever labeling is used must fit
1351 the machine's constraints of which registers may serve in each capacity.
1352 The compiler will try both labelings, looking for one that is valid, and
1353 will reload one or both registers only if neither labeling works. */
1354 #define REGNO_OK_FOR_INDEX_P(NUM) \
1355 ((NUM) < FIRST_PSEUDO_REGISTER \
1356 ? GPR_P (NUM) \
1357 : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
1359 /* A C expression that places additional restrictions on the register class to
1360 use when it is necessary to copy value X into a register in class CLASS.
1361 The value is a register class; perhaps CLASS, or perhaps another, smaller
1362 class. On many machines, the following definition is safe:
1364 #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
1366 Sometimes returning a more restrictive class makes better code. For
1367 example, on the 68000, when X is an integer constant that is in range for a
1368 `moveq' instruction, the value of this macro is always `DATA_REGS' as long
1369 as CLASS includes the data registers. Requiring a data register guarantees
1370 that a `moveq' will be used.
1372 If X is a `const_double', by returning `NO_REGS' you can force X into a
1373 memory constant. This is useful on certain machines where immediate
1374 floating values cannot be loaded into certain kinds of registers.
1376 This declaration must be present. */
1377 #define PREFERRED_RELOAD_CLASS(X, CLASS) CLASS
1379 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1380 frv_secondary_reload_class (CLASS, MODE, X, TRUE)
1382 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1383 frv_secondary_reload_class (CLASS, MODE, X, FALSE)
1385 /* A C expression whose value is nonzero if pseudos that have been assigned to
1386 registers of class CLASS would likely be spilled because registers of CLASS
1387 are needed for spill registers.
1389 The default value of this macro returns 1 if CLASS has exactly one register
1390 and zero otherwise. On most machines, this default should be used. Only
1391 define this macro to some other expression if pseudo allocated by
1392 `local-alloc.c' end up in memory because their hard registers were needed
1393 for spill registers. If this macro returns nonzero for those classes, those
1394 pseudos will only be allocated by `global.c', which knows how to reallocate
1395 the pseudo to another register. If there would not be another register
1396 available for reallocation, you should not change the definition of this
1397 macro since the only effect of such a definition would be to slow down
1398 register allocation. */
1399 #define CLASS_LIKELY_SPILLED_P(CLASS) frv_class_likely_spilled_p (CLASS)
1401 /* A C expression for the maximum number of consecutive registers of
1402 class CLASS needed to hold a value of mode MODE.
1404 This is closely related to the macro `HARD_REGNO_NREGS'. In fact, the value
1405 of the macro `CLASS_MAX_NREGS (CLASS, MODE)' should be the maximum value of
1406 `HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO values in the class CLASS.
1408 This macro helps control the handling of multiple-word values in
1409 the reload pass.
1411 This declaration is required. */
1412 #define CLASS_MAX_NREGS(CLASS, MODE) frv_class_max_nregs (CLASS, MODE)
1414 #define ZERO_P(x) (x == CONST0_RTX (GET_MODE (x)))
1416 /* 6 bit signed immediate. */
1417 #define CONST_OK_FOR_I(VALUE) IN_RANGE_P(VALUE, -32, 31)
1418 /* 10 bit signed immediate. */
1419 #define CONST_OK_FOR_J(VALUE) IN_RANGE_P(VALUE, -512, 511)
1420 /* Unused */
1421 #define CONST_OK_FOR_K(VALUE) 0
1422 /* 16 bit signed immediate. */
1423 #define CONST_OK_FOR_L(VALUE) IN_RANGE_P(VALUE, -32768, 32767)
1424 /* 16 bit unsigned immediate. */
1425 #define CONST_OK_FOR_M(VALUE) IN_RANGE_P (VALUE, 0, 65535)
1426 /* 12 bit signed immediate that is negative. */
1427 #define CONST_OK_FOR_N(VALUE) IN_RANGE_P(VALUE, -2048, -1)
1428 /* Zero */
1429 #define CONST_OK_FOR_O(VALUE) ((VALUE) == 0)
1430 /* 12 bit signed immediate that is negative. */
1431 #define CONST_OK_FOR_P(VALUE) IN_RANGE_P(VALUE, 1, 2047)
1433 /* A C expression that defines the machine-dependent operand constraint letters
1434 (`I', `J', `K', .. 'P') that specify particular ranges of integer values.
1435 If C is one of those letters, the expression should check that VALUE, an
1436 integer, is in the appropriate range and return 1 if so, 0 otherwise. If C
1437 is not one of those letters, the value should be 0 regardless of VALUE. */
1438 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1439 ( (C) == 'I' ? CONST_OK_FOR_I (VALUE) \
1440 : (C) == 'J' ? CONST_OK_FOR_J (VALUE) \
1441 : (C) == 'K' ? CONST_OK_FOR_K (VALUE) \
1442 : (C) == 'L' ? CONST_OK_FOR_L (VALUE) \
1443 : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
1444 : (C) == 'N' ? CONST_OK_FOR_N (VALUE) \
1445 : (C) == 'O' ? CONST_OK_FOR_O (VALUE) \
1446 : (C) == 'P' ? CONST_OK_FOR_P (VALUE) \
1447 : 0)
1450 /* A C expression that defines the machine-dependent operand constraint letters
1451 (`G', `H') that specify particular ranges of `const_double' values.
1453 If C is one of those letters, the expression should check that VALUE, an RTX
1454 of code `const_double', is in the appropriate range and return 1 if so, 0
1455 otherwise. If C is not one of those letters, the value should be 0
1456 regardless of VALUE.
1458 `const_double' is used for all floating-point constants and for `DImode'
1459 fixed-point constants. A given letter can accept either or both kinds of
1460 values. It can use `GET_MODE' to distinguish between these kinds. */
1462 #define CONST_DOUBLE_OK_FOR_G(VALUE) \
1463 ((GET_MODE (VALUE) == VOIDmode \
1464 && CONST_DOUBLE_LOW (VALUE) == 0 \
1465 && CONST_DOUBLE_HIGH (VALUE) == 0) \
1466 || ((GET_MODE (VALUE) == SFmode \
1467 || GET_MODE (VALUE) == DFmode) \
1468 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))))
1470 #define CONST_DOUBLE_OK_FOR_H(VALUE) 0
1472 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1473 ( (C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) \
1474 : (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE) \
1475 : 0)
1477 /* A C expression that defines the optional machine-dependent constraint
1478 letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
1479 types of operands, usually memory references, for the target machine.
1480 Normally this macro will not be defined. If it is required for a particular
1481 target machine, it should return 1 if VALUE corresponds to the operand type
1482 represented by the constraint letter C. If C is not defined as an extra
1483 constraint, the value returned should be 0 regardless of VALUE.
1485 For example, on the ROMP, load instructions cannot have their output in r0
1486 if the memory reference contains a symbolic address. Constraint letter `Q'
1487 is defined as representing a memory address that does *not* contain a
1488 symbolic address. An alternative is specified with a `Q' constraint on the
1489 input and `r' on the output. The next alternative specifies `m' on the
1490 input and a register class that does not include r0 on the output. */
1492 /* Small data references */
1493 #define EXTRA_CONSTRAINT_FOR_Q(VALUE) \
1494 (small_data_symbolic_operand (VALUE, GET_MODE (VALUE)))
1496 /* Double word memory ops that take one instruction. */
1497 #define EXTRA_CONSTRAINT_FOR_R(VALUE) \
1498 (dbl_memory_one_insn_operand (VALUE, GET_MODE (VALUE)))
1500 /* SYMBOL_REF */
1501 #define EXTRA_CONSTRAINT_FOR_S(VALUE) (GET_CODE (VALUE) == SYMBOL_REF)
1503 /* Double word memory ops that take two instructions. */
1504 #define EXTRA_CONSTRAINT_FOR_T(VALUE) \
1505 (dbl_memory_two_insn_operand (VALUE, GET_MODE (VALUE)))
1507 /* Memory operand for conditional execution. */
1508 #define EXTRA_CONSTRAINT_FOR_U(VALUE) \
1509 (condexec_memory_operand (VALUE, GET_MODE (VALUE)))
1511 #define EXTRA_CONSTRAINT(VALUE, C) \
1512 ( (C) == 'Q' ? EXTRA_CONSTRAINT_FOR_Q (VALUE) \
1513 : (C) == 'R' ? EXTRA_CONSTRAINT_FOR_R (VALUE) \
1514 : (C) == 'S' ? EXTRA_CONSTRAINT_FOR_S (VALUE) \
1515 : (C) == 'T' ? EXTRA_CONSTRAINT_FOR_T (VALUE) \
1516 : (C) == 'U' ? EXTRA_CONSTRAINT_FOR_U (VALUE) \
1517 : 0)
1520 /* Basic Stack Layout. */
1522 /* Structure to describe information about a saved range of registers */
1524 typedef struct frv_stack_regs {
1525 const char * name; /* name of the register ranges */
1526 int first; /* first register in the range */
1527 int last; /* last register in the range */
1528 int size_1word; /* # of bytes to be stored via 1 word stores */
1529 int size_2words; /* # of bytes to be stored via 2 word stores */
1530 unsigned char field_p; /* true if the registers are a single SPR */
1531 unsigned char dword_p; /* true if we can do dword stores */
1532 unsigned char special_p; /* true if the regs have a fixed save loc. */
1533 } frv_stack_regs_t;
1535 /* Register ranges to look into saving. */
1536 #define STACK_REGS_GPR 0 /* Gprs (normally gr16..gr31, gr48..gr63) */
1537 #define STACK_REGS_FPR 1 /* Fprs (normally fr16..fr31, fr48..fr63) */
1538 #define STACK_REGS_LR 2 /* LR register */
1539 #define STACK_REGS_CC 3 /* CCrs (normally not saved) */
1540 #define STACK_REGS_LCR 5 /* lcr register */
1541 #define STACK_REGS_STDARG 6 /* stdarg registers */
1542 #define STACK_REGS_STRUCT 7 /* structure return (gr3) */
1543 #define STACK_REGS_FP 8 /* FP register */
1544 #define STACK_REGS_MAX 9 /* # of register ranges */
1546 /* Values for save_p field. */
1547 #define REG_SAVE_NO_SAVE 0 /* register not saved */
1548 #define REG_SAVE_1WORD 1 /* save the register */
1549 #define REG_SAVE_2WORDS 2 /* save register and register+1 */
1551 /* Structure used to define the frv stack. */
1553 typedef struct frv_stack {
1554 int total_size; /* total bytes allocated for stack */
1555 int vars_size; /* variable save area size */
1556 int parameter_size; /* outgoing parameter size */
1557 int stdarg_size; /* size of regs needed to be saved for stdarg */
1558 int regs_size; /* size of the saved registers */
1559 int regs_size_1word; /* # of bytes to be stored via 1 word stores */
1560 int regs_size_2words; /* # of bytes to be stored via 2 word stores */
1561 int header_size; /* size of the old FP, struct ret., LR save */
1562 int pretend_size; /* size of pretend args */
1563 int vars_offset; /* offset to save local variables from new SP*/
1564 int regs_offset; /* offset to save registers from new SP */
1565 /* register range information */
1566 frv_stack_regs_t regs[STACK_REGS_MAX];
1567 /* offset to store each register */
1568 int reg_offset[FIRST_PSEUDO_REGISTER];
1569 /* whether to save register (& reg+1) */
1570 unsigned char save_p[FIRST_PSEUDO_REGISTER];
1571 } frv_stack_t;
1573 /* Define this macro if pushing a word onto the stack moves the stack pointer
1574 to a smaller address. */
1575 #define STACK_GROWS_DOWNWARD 1
1577 /* Define this macro if the addresses of local variable slots are at negative
1578 offsets from the frame pointer. */
1579 #define FRAME_GROWS_DOWNWARD
1581 /* Offset from the frame pointer to the first local variable slot to be
1582 allocated.
1584 If `FRAME_GROWS_DOWNWARD', find the next slot's offset by subtracting the
1585 first slot's length from `STARTING_FRAME_OFFSET'. Otherwise, it is found by
1586 adding the length of the first slot to the value `STARTING_FRAME_OFFSET'. */
1587 #define STARTING_FRAME_OFFSET 0
1589 /* Offset from the stack pointer register to the first location at which
1590 outgoing arguments are placed. If not specified, the default value of zero
1591 is used. This is the proper value for most machines.
1593 If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
1594 location at which outgoing arguments are placed. */
1595 #define STACK_POINTER_OFFSET 0
1597 /* Offset from the argument pointer register to the first argument's address.
1598 On some machines it may depend on the data type of the function.
1600 If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
1601 argument's address. */
1602 #define FIRST_PARM_OFFSET(FUNDECL) 0
1604 /* A C expression whose value is RTL representing the address in a stack frame
1605 where the pointer to the caller's frame is stored. Assume that FRAMEADDR is
1606 an RTL expression for the address of the stack frame itself.
1608 If you don't define this macro, the default is to return the value of
1609 FRAMEADDR--that is, the stack frame address is also the address of the stack
1610 word that points to the previous frame. */
1611 #define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) frv_dynamic_chain_address (FRAMEADDR)
1613 /* A C expression whose value is RTL representing the value of the return
1614 address for the frame COUNT steps up from the current frame, after the
1615 prologue. FRAMEADDR is the frame pointer of the COUNT frame, or the frame
1616 pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
1617 defined.
1619 The value of the expression must always be the correct address when COUNT is
1620 zero, but may be `NULL_RTX' if there is not way to determine the return
1621 address of other frames. */
1622 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) frv_return_addr_rtx (COUNT, FRAMEADDR)
1624 /* This function contains machine specific function data. */
1625 struct machine_function GTY(())
1627 /* True if we have created an rtx that relies on the stack frame. */
1628 int frame_needed;
1631 #define RETURN_POINTER_REGNUM LR_REGNO
1633 /* A C expression whose value is RTL representing the location of the incoming
1634 return address at the beginning of any function, before the prologue. This
1635 RTL is either a `REG', indicating that the return value is saved in `REG',
1636 or a `MEM' representing a location in the stack.
1638 You only need to define this macro if you want to support call frame
1639 debugging information like that provided by DWARF 2. */
1640 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (SImode, RETURN_POINTER_REGNUM)
1643 /* Register That Address the Stack Frame. */
1645 /* The register number of the stack pointer register, which must also be a
1646 fixed register according to `FIXED_REGISTERS'. On most machines, the
1647 hardware determines which register this is. */
1648 #define STACK_POINTER_REGNUM (GPR_FIRST + 1)
1650 /* The register number of the frame pointer register, which is used to access
1651 automatic variables in the stack frame. On some machines, the hardware
1652 determines which register this is. On other machines, you can choose any
1653 register you wish for this purpose. */
1654 #define FRAME_POINTER_REGNUM (GPR_FIRST + 2)
1656 /* The register number of the arg pointer register, which is used to access the
1657 function's argument list. On some machines, this is the same as the frame
1658 pointer register. On some machines, the hardware determines which register
1659 this is. On other machines, you can choose any register you wish for this
1660 purpose. If this is not the same register as the frame pointer register,
1661 then you must mark it as a fixed register according to `FIXED_REGISTERS', or
1662 arrange to be able to eliminate it. */
1664 /* On frv this is a fake register that is eliminated in
1665 terms of either the frame pointer or stack pointer. */
1666 #define ARG_POINTER_REGNUM AP_FIRST
1668 /* Register numbers used for passing a function's static chain pointer. If
1669 register windows are used, the register number as seen by the called
1670 function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as
1671 seen by the calling function is `STATIC_CHAIN_REGNUM'. If these registers
1672 are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
1674 The static chain register need not be a fixed register.
1676 If the static chain is passed in memory, these macros should not be defined;
1677 instead, the next two macros should be defined. */
1678 #define STATIC_CHAIN_REGNUM (GPR_FIRST + 7)
1679 #define STATIC_CHAIN_INCOMING_REGNUM (GPR_FIRST + 7)
1682 /* Eliminating the Frame Pointer and the Arg Pointer. */
1684 /* A C expression which is nonzero if a function must have and use a frame
1685 pointer. This expression is evaluated in the reload pass. If its value is
1686 nonzero the function will have a frame pointer.
1688 The expression can in principle examine the current function and decide
1689 according to the facts, but on most machines the constant 0 or the constant
1690 1 suffices. Use 0 when the machine allows code to be generated with no
1691 frame pointer, and doing so saves some time or space. Use 1 when there is
1692 no possible advantage to avoiding a frame pointer.
1694 In certain cases, the compiler does not know how to produce valid code
1695 without a frame pointer. The compiler recognizes those cases and
1696 automatically gives the function a frame pointer regardless of what
1697 `FRAME_POINTER_REQUIRED' says. You don't need to worry about them.
1699 In a function that does not require a frame pointer, the frame pointer
1700 register can be allocated for ordinary usage, unless you mark it as a fixed
1701 register. See `FIXED_REGISTERS' for more information. */
1702 #define FRAME_POINTER_REQUIRED frv_frame_pointer_required ()
1704 /* If defined, this macro specifies a table of register pairs used to eliminate
1705 unneeded registers that point into the stack frame. If it is not defined,
1706 the only elimination attempted by the compiler is to replace references to
1707 the frame pointer with references to the stack pointer.
1709 The definition of this macro is a list of structure initializations, each of
1710 which specifies an original and replacement register.
1712 On some machines, the position of the argument pointer is not known until
1713 the compilation is completed. In such a case, a separate hard register must
1714 be used for the argument pointer. This register can be eliminated by
1715 replacing it with either the frame pointer or the argument pointer,
1716 depending on whether or not the frame pointer has been eliminated.
1718 In this case, you might specify:
1719 #define ELIMINABLE_REGS \
1720 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1721 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1722 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1724 Note that the elimination of the argument pointer with the stack pointer is
1725 specified first since that is the preferred elimination. */
1727 #define ELIMINABLE_REGS \
1729 {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1730 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1731 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM} \
1734 /* A C expression that returns nonzero if the compiler is allowed to try to
1735 replace register number FROM with register number TO. This macro need only
1736 be defined if `ELIMINABLE_REGS' is defined, and will usually be the constant
1737 1, since most of the cases preventing register elimination are things that
1738 the compiler already knows about. */
1740 #define CAN_ELIMINATE(FROM, TO) \
1741 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1742 ? ! frame_pointer_needed \
1743 : 1)
1745 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It specifies the
1746 initial difference between the specified pair of registers. This macro must
1747 be defined if `ELIMINABLE_REGS' is defined. */
1749 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1750 (OFFSET) = frv_initial_elimination_offset (FROM, TO)
1753 /* Passing Function Arguments on the Stack. */
1755 /* If defined, the maximum amount of space required for outgoing arguments will
1756 be computed and placed into the variable
1757 `current_function_outgoing_args_size'. No space will be pushed onto the
1758 stack for each call; instead, the function prologue should increase the
1759 stack frame size by this amount.
1761 Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not
1762 proper. */
1763 #define ACCUMULATE_OUTGOING_ARGS 1
1765 /* A C expression that should indicate the number of bytes of its own arguments
1766 that a function pops on returning, or 0 if the function pops no arguments
1767 and the caller must therefore pop them all after the function returns.
1769 FUNDECL is a C variable whose value is a tree node that describes the
1770 function in question. Normally it is a node of type `FUNCTION_DECL' that
1771 describes the declaration of the function. From this it is possible to
1772 obtain the DECL_ATTRIBUTES of the function.
1774 FUNTYPE is a C variable whose value is a tree node that describes the
1775 function in question. Normally it is a node of type `FUNCTION_TYPE' that
1776 describes the data type of the function. From this it is possible to obtain
1777 the data types of the value and arguments (if known).
1779 When a call to a library function is being considered, FUNTYPE will contain
1780 an identifier node for the library function. Thus, if you need to
1781 distinguish among various library functions, you can do so by their names.
1782 Note that "library function" in this context means a function used to
1783 perform arithmetic, whose name is known specially in the compiler and was
1784 not mentioned in the C code being compiled.
1786 STACK-SIZE is the number of bytes of arguments passed on the stack. If a
1787 variable number of bytes is passed, it is zero, and argument popping will
1788 always be the responsibility of the calling function.
1790 On the VAX, all functions always pop their arguments, so the definition of
1791 this macro is STACK-SIZE. On the 68000, using the standard calling
1792 convention, no functions pop their arguments, so the value of the macro is
1793 always 0 in this case. But an alternative calling convention is available
1794 in which functions that take a fixed number of arguments pop them but other
1795 functions (such as `printf') pop nothing (the caller pops all). When this
1796 convention is in use, FUNTYPE is examined to determine whether a function
1797 takes a fixed number of arguments. */
1798 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
1801 /* Function Arguments in Registers. */
1803 /* Nonzero if we do not know how to pass TYPE solely in registers.
1804 We cannot do so in the following cases:
1806 - if the type has variable size
1807 - if the type is marked as addressable (it is required to be constructed
1808 into the stack)
1809 - if the type is a structure or union. */
1811 #define MUST_PASS_IN_STACK(MODE,TYPE) \
1812 (((MODE) == BLKmode) \
1813 || ((TYPE) != 0 \
1814 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1815 || TREE_CODE (TYPE) == RECORD_TYPE \
1816 || TREE_CODE (TYPE) == UNION_TYPE \
1817 || TREE_CODE (TYPE) == QUAL_UNION_TYPE \
1818 || TREE_ADDRESSABLE (TYPE))))
1820 /* The number of register assigned to holding function arguments. */
1822 #define FRV_NUM_ARG_REGS 6
1824 /* A C expression that controls whether a function argument is passed in a
1825 register, and which register.
1827 The arguments are CUM, of type CUMULATIVE_ARGS, which summarizes (in a way
1828 defined by INIT_CUMULATIVE_ARGS and FUNCTION_ARG_ADVANCE) all of the previous
1829 arguments so far passed in registers; MODE, the machine mode of the argument;
1830 TYPE, the data type of the argument as a tree node or 0 if that is not known
1831 (which happens for C support library functions); and NAMED, which is 1 for an
1832 ordinary argument and 0 for nameless arguments that correspond to `...' in the
1833 called function's prototype.
1835 The value of the expression should either be a `reg' RTX for the hard
1836 register in which to pass the argument, or zero to pass the argument on the
1837 stack.
1839 For machines like the VAX and 68000, where normally all arguments are
1840 pushed, zero suffices as a definition.
1842 The usual way to make the ANSI library `stdarg.h' work on a machine where
1843 some arguments are usually passed in registers, is to cause nameless
1844 arguments to be passed on the stack instead. This is done by making
1845 `FUNCTION_ARG' return 0 whenever NAMED is 0.
1847 You may use the macro `MUST_PASS_IN_STACK (MODE, TYPE)' in the definition of
1848 this macro to determine if this argument is of a type that must be passed in
1849 the stack. If `REG_PARM_STACK_SPACE' is not defined and `FUNCTION_ARG'
1850 returns nonzero for such an argument, the compiler will abort. If
1851 `REG_PARM_STACK_SPACE' is defined, the argument will be computed in the
1852 stack and then loaded into a register. */
1853 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1854 frv_function_arg (&CUM, MODE, TYPE, NAMED, FALSE)
1856 /* Define this macro if the target machine has "register windows", so that the
1857 register in which a function sees an arguments is not necessarily the same
1858 as the one in which the caller passed the argument.
1860 For such machines, `FUNCTION_ARG' computes the register in which the caller
1861 passes the value, and `FUNCTION_INCOMING_ARG' should be defined in a similar
1862 fashion to tell the function being called where the arguments will arrive.
1864 If `FUNCTION_INCOMING_ARG' is not defined, `FUNCTION_ARG' serves both
1865 purposes. */
1867 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1868 frv_function_arg (&CUM, MODE, TYPE, NAMED, TRUE)
1870 /* A C expression for the number of words, at the beginning of an argument,
1871 must be put in registers. The value must be zero for arguments that are
1872 passed entirely in registers or that are entirely pushed on the stack.
1874 On some machines, certain arguments must be passed partially in registers
1875 and partially in memory. On these machines, typically the first N words of
1876 arguments are passed in registers, and the rest on the stack. If a
1877 multi-word argument (a `double' or a structure) crosses that boundary, its
1878 first few words must be passed in registers and the rest must be pushed.
1879 This macro tells the compiler when this occurs, and how many of the words
1880 should go in registers.
1882 `FUNCTION_ARG' for these arguments should return the first register to be
1883 used by the caller for this argument; likewise `FUNCTION_INCOMING_ARG', for
1884 the called function. */
1885 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1886 frv_function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1888 /* extern int frv_function_arg_partial_nregs (CUMULATIVE_ARGS, int, Tree, int); */
1890 /* A C expression that indicates when an argument must be passed by reference.
1891 If nonzero for an argument, a copy of that argument is made in memory and a
1892 pointer to the argument is passed instead of the argument itself. The
1893 pointer is passed in whatever way is appropriate for passing a pointer to
1894 that type.
1896 On machines where `REG_PARM_STACK_SPACE' is not defined, a suitable
1897 definition of this macro might be
1898 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1899 MUST_PASS_IN_STACK (MODE, TYPE) */
1900 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1901 frv_function_arg_pass_by_reference (&CUM, MODE, TYPE, NAMED)
1903 /* If defined, a C expression that indicates when it is the called function's
1904 responsibility to make a copy of arguments passed by invisible reference.
1905 Normally, the caller makes a copy and passes the address of the copy to the
1906 routine being called. When FUNCTION_ARG_CALLEE_COPIES is defined and is
1907 nonzero, the caller does not make a copy. Instead, it passes a pointer to
1908 the "live" value. The called function must not modify this value. If it
1909 can be determined that the value won't be modified, it need not make a copy;
1910 otherwise a copy must be made. */
1911 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
1912 frv_function_arg_callee_copies (&CUM, MODE, TYPE, NAMED)
1914 /* If defined, a C expression that indicates when it is more desirable to keep
1915 an argument passed by invisible reference as a reference, rather than
1916 copying it to a pseudo register. */
1917 #define FUNCTION_ARG_KEEP_AS_REFERENCE(CUM, MODE, TYPE, NAMED) \
1918 frv_function_arg_keep_as_reference (&CUM, MODE, TYPE, NAMED)
1920 /* A C type for declaring a variable that is used as the first argument of
1921 `FUNCTION_ARG' and other related values. For some target machines, the type
1922 `int' suffices and can hold the number of bytes of argument so far.
1924 There is no need to record in `CUMULATIVE_ARGS' anything about the arguments
1925 that have been passed on the stack. The compiler has other variables to
1926 keep track of that. For target machines on which all arguments are passed
1927 on the stack, there is no need to store anything in `CUMULATIVE_ARGS';
1928 however, the data structure must exist and should not be empty, so use
1929 `int'. */
1930 #define CUMULATIVE_ARGS int
1932 /* A C statement (sans semicolon) for initializing the variable CUM for the
1933 state at the beginning of the argument list. The variable has type
1934 `CUMULATIVE_ARGS'. The value of FNTYPE is the tree node for the data type
1935 of the function which will receive the args, or 0 if the args are to a
1936 compiler support library function. The value of INDIRECT is nonzero when
1937 processing an indirect call, for example a call through a function pointer.
1938 The value of INDIRECT is zero for a call to an explicitly named function, a
1939 library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
1940 arguments for the function being compiled.
1942 When processing a call to a compiler support library function, LIBNAME
1943 identifies which one. It is a `symbol_ref' rtx which contains the name of
1944 the function, as a string. LIBNAME is 0 when an ordinary C function call is
1945 being processed. Thus, each time this macro is called, either LIBNAME or
1946 FNTYPE is nonzero, but never both of them at once. */
1948 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL) \
1949 frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, FNDECL, FALSE)
1951 /* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1952 arguments for the function being compiled. If this macro is undefined,
1953 `INIT_CUMULATIVE_ARGS' is used instead.
1955 The value passed for LIBNAME is always 0, since library routines with
1956 special calling conventions are never compiled with GCC. The argument
1957 LIBNAME exists for symmetry with `INIT_CUMULATIVE_ARGS'. */
1959 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1960 frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, NULL, TRUE)
1962 /* A C statement (sans semicolon) to update the summarizer variable CUM to
1963 advance past an argument in the argument list. The values MODE, TYPE and
1964 NAMED describe that argument. Once this is done, the variable CUM is
1965 suitable for analyzing the *following* argument with `FUNCTION_ARG', etc.
1967 This macro need not do anything if the argument in question was passed on
1968 the stack. The compiler knows how to track the amount of stack space used
1969 for arguments without any special help. */
1970 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1971 frv_function_arg_advance (&CUM, MODE, TYPE, NAMED)
1973 /* If defined, a C expression that gives the alignment boundary, in bits, of an
1974 argument with the specified mode and type. If it is not defined,
1975 `PARM_BOUNDARY' is used for all arguments. */
1977 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1978 frv_function_arg_boundary (MODE, TYPE)
1980 /* A C expression that is nonzero if REGNO is the number of a hard register in
1981 which function arguments are sometimes passed. This does *not* include
1982 implicit arguments such as the static chain and the structure-value address.
1983 On many machines, no registers can be used for this purpose since all
1984 function arguments are pushed on the stack. */
1985 #define FUNCTION_ARG_REGNO_P(REGNO) \
1986 ((REGNO) >= FIRST_ARG_REGNUM && ((REGNO) <= LAST_ARG_REGNUM))
1989 /* How Scalar Function Values are Returned. */
1991 /* The number of the hard register that is used to return a scalar value from a
1992 function call. */
1993 #define RETURN_VALUE_REGNUM (GPR_FIRST + 8)
1995 /* A C expression to create an RTX representing the place where a function
1996 returns a value of data type VALTYPE. VALTYPE is a tree node representing a
1997 data type. Write `TYPE_MODE (VALTYPE)' to get the machine mode used to
1998 represent that type. On many machines, only the mode is relevant.
1999 (Actually, on most machines, scalar values are returned in the same place
2000 regardless of mode).
2002 If `PROMOTE_FUNCTION_RETURN' is defined, you must apply the same promotion
2003 rules specified in `PROMOTE_MODE' if VALTYPE is a scalar type.
2005 If the precise function being called is known, FUNC is a tree node
2006 (`FUNCTION_DECL') for it; otherwise, FUNC is a null pointer. This makes it
2007 possible to use a different value-returning convention for specific
2008 functions when all their calls are known.
2010 `FUNCTION_VALUE' is not used for return vales with aggregate data types,
2011 because these are returned in another way. See `STRUCT_VALUE_REGNUM' and
2012 related macros, below. */
2013 #define FUNCTION_VALUE(VALTYPE, FUNC) \
2014 gen_rtx (REG, TYPE_MODE (VALTYPE), RETURN_VALUE_REGNUM)
2016 /* A C expression to create an RTX representing the place where a library
2017 function returns a value of mode MODE.
2019 Note that "library function" in this context means a compiler support
2020 routine, used to perform arithmetic, whose name is known specially by the
2021 compiler and was not mentioned in the C code being compiled.
2023 The definition of `LIBRARY_VALUE' need not be concerned aggregate data
2024 types, because none of the library functions returns such types. */
2025 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, RETURN_VALUE_REGNUM)
2027 /* A C expression that is nonzero if REGNO is the number of a hard register in
2028 which the values of called function may come back.
2030 A register whose use for returning values is limited to serving as the
2031 second of a pair (for a value of type `double', say) need not be recognized
2032 by this macro. So for most machines, this definition suffices:
2034 #define FUNCTION_VALUE_REGNO_P(N) ((N) == RETURN)
2036 If the machine has register windows, so that the caller and the called
2037 function use different registers for the return value, this macro should
2038 recognize only the caller's register numbers. */
2039 #define FUNCTION_VALUE_REGNO_P(REGNO) ((REGNO) == RETURN_VALUE_REGNUM)
2042 /* How Large Values are Returned. */
2044 /* If the structure value address is passed in a register, then
2045 `STRUCT_VALUE_REGNUM' should be the number of that register. */
2046 #define STRUCT_VALUE_REGNUM (GPR_FIRST + 3)
2049 /* Function Entry and Exit. */
2051 /* Define this macro as a C expression that is nonzero if the return
2052 instruction or the function epilogue ignores the value of the stack pointer;
2053 in other words, if it is safe to delete an instruction to adjust the stack
2054 pointer before a return from the function.
2056 Note that this macro's value is relevant only for functions for which frame
2057 pointers are maintained. It is never safe to delete a final stack
2058 adjustment in a function that has no frame pointer, and the compiler knows
2059 this regardless of `EXIT_IGNORE_STACK'. */
2060 #define EXIT_IGNORE_STACK 1
2062 /* Generating Code for Profiling. */
2064 /* A C statement or compound statement to output to FILE some assembler code to
2065 call the profiling subroutine `mcount'. Before calling, the assembler code
2066 must load the address of a counter variable into a register where `mcount'
2067 expects to find the address. The name of this variable is `LP' followed by
2068 the number LABELNO, so you would generate the name using `LP%d' in a
2069 `fprintf'.
2071 The details of how the address should be passed to `mcount' are determined
2072 by your operating system environment, not by GCC. To figure them out,
2073 compile a small program for profiling using the system's installed C
2074 compiler and look at the assembler code that results.
2076 This declaration must be present, but it can be an abort if profiling is
2077 not implemented. */
2079 #define FUNCTION_PROFILER(FILE, LABELNO)
2082 /* Implementing the Varargs Macros. */
2084 /* If defined, is a C expression that produces the machine-specific code for a
2085 call to `__builtin_saveregs'. This code will be moved to the very beginning
2086 of the function, before any parameter access are made. The return value of
2087 this function should be an RTX that contains the value to use as the return
2088 of `__builtin_saveregs'.
2090 If this macro is not defined, the compiler will output an ordinary call to
2091 the library function `__builtin_saveregs'. */
2093 #define EXPAND_BUILTIN_SAVEREGS() frv_expand_builtin_saveregs ()
2095 /* This macro offers an alternative to using `__builtin_saveregs' and defining
2096 the macro `EXPAND_BUILTIN_SAVEREGS'. Use it to store the anonymous register
2097 arguments into the stack so that all the arguments appear to have been
2098 passed consecutively on the stack. Once this is done, you can use the
2099 standard implementation of varargs that works for machines that pass all
2100 their arguments on the stack.
2102 The argument ARGS_SO_FAR is the `CUMULATIVE_ARGS' data structure, containing
2103 the values that obtain after processing of the named arguments. The
2104 arguments MODE and TYPE describe the last named argument--its machine mode
2105 and its data type as a tree node.
2107 The macro implementation should do two things: first, push onto the stack
2108 all the argument registers *not* used for the named arguments, and second,
2109 store the size of the data thus pushed into the `int'-valued variable whose
2110 name is supplied as the argument PRETEND_ARGS_SIZE. The value that you
2111 store here will serve as additional offset for setting up the stack frame.
2113 Because you must generate code to push the anonymous arguments at compile
2114 time without knowing their data types, `SETUP_INCOMING_VARARGS' is only
2115 useful on machines that have just a single category of argument register and
2116 use it uniformly for all data types.
2118 If the argument SECOND_TIME is nonzero, it means that the arguments of the
2119 function are being analyzed for the second time. This happens for an inline
2120 function, which is not actually compiled until the end of the source file.
2121 The macro `SETUP_INCOMING_VARARGS' should not generate any instructions in
2122 this case. */
2123 #define SETUP_INCOMING_VARARGS(ARGS_SO_FAR, MODE, TYPE, PRETEND_ARGS_SIZE, SECOND_TIME) \
2124 frv_setup_incoming_varargs (& ARGS_SO_FAR, (int) MODE, TYPE, \
2125 & PRETEND_ARGS_SIZE, SECOND_TIME)
2127 /* Implement the stdarg/varargs va_start macro. STDARG_P is nonzero if this
2128 is stdarg.h instead of varargs.h. VALIST is the tree of the va_list
2129 variable to initialize. NEXTARG is the machine independent notion of the
2130 'next' argument after the variable arguments. If not defined, a standard
2131 implementation will be defined that works for arguments passed on the stack. */
2133 #define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
2134 (frv_expand_builtin_va_start(VALIST, NEXTARG))
2136 /* Implement the stdarg/varargs va_arg macro. VALIST is the variable of type
2137 va_list as a tree, TYPE is the type passed to va_arg. */
2139 #define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
2140 (frv_expand_builtin_va_arg (VALIST, TYPE))
2143 /* Trampolines for Nested Functions. */
2145 /* A C expression for the size in bytes of the trampoline, as an integer. */
2146 #define TRAMPOLINE_SIZE frv_trampoline_size ()
2148 /* Alignment required for trampolines, in bits.
2150 If you don't define this macro, the value of `BIGGEST_ALIGNMENT' is used for
2151 aligning trampolines. */
2152 #define TRAMPOLINE_ALIGNMENT 32
2154 /* A C statement to initialize the variable parts of a trampoline. ADDR is an
2155 RTX for the address of the trampoline; FNADDR is an RTX for the address of
2156 the nested function; STATIC_CHAIN is an RTX for the static chain value that
2157 should be passed to the function when it is called. */
2158 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \
2159 frv_initialize_trampoline (ADDR, FNADDR, STATIC_CHAIN)
2161 /* Define this macro if trampolines need a special subroutine to do their work.
2162 The macro should expand to a series of `asm' statements which will be
2163 compiled with GCC. They go in a library function named
2164 `__transfer_from_trampoline'.
2166 If you need to avoid executing the ordinary prologue code of a compiled C
2167 function when you jump to the subroutine, you can do so by placing a special
2168 label of your own in the assembler code. Use one `asm' statement to
2169 generate an assembler label, and another to make the label global. Then
2170 trampolines can use that label to jump directly to your special assembler
2171 code. */
2173 #ifdef __FRV_UNDERSCORE__
2174 #define TRAMPOLINE_TEMPLATE_NAME "___trampoline_template"
2175 #else
2176 #define TRAMPOLINE_TEMPLATE_NAME "__trampoline_template"
2177 #endif
2179 #define TRANSFER_FROM_TRAMPOLINE \
2180 extern int _write (int, const void *, unsigned); \
2182 void \
2183 __trampoline_setup (short * addr, int size, int fnaddr, int sc) \
2185 extern short __trampoline_template[]; \
2186 short * to = addr; \
2187 short * from = &__trampoline_template[0]; \
2188 int i; \
2190 if (size < 20) \
2192 _write (2, "__trampoline_setup bad size\n", \
2193 sizeof ("__trampoline_setup bad size\n") - 1); \
2194 exit (-1); \
2197 to[0] = from[0]; \
2198 to[1] = (short)(fnaddr); \
2199 to[2] = from[2]; \
2200 to[3] = (short)(sc); \
2201 to[4] = from[4]; \
2202 to[5] = (short)(fnaddr >> 16); \
2203 to[6] = from[6]; \
2204 to[7] = (short)(sc >> 16); \
2205 to[8] = from[8]; \
2206 to[9] = from[9]; \
2208 for (i = 0; i < 20; i++) \
2209 __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
2212 __asm__("\n" \
2213 "\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n" \
2214 "\t.text\n" \
2215 TRAMPOLINE_TEMPLATE_NAME ":\n" \
2216 "\tsetlos #0, gr6\n" /* jump register */ \
2217 "\tsetlos #0, gr7\n" /* static chain */ \
2218 "\tsethi #0, gr6\n" \
2219 "\tsethi #0, gr7\n" \
2220 "\tjmpl @(gr0,gr6)\n");
2223 /* Addressing Modes. */
2225 /* A C expression that is 1 if the RTX X is a constant which is a valid
2226 address. On most machines, this can be defined as `CONSTANT_P (X)', but a
2227 few machines are more restrictive in which constant addresses are supported.
2229 `CONSTANT_P' accepts integer-values expressions whose values are not
2230 explicitly known, such as `symbol_ref', `label_ref', and `high' expressions
2231 and `const' arithmetic expressions, in addition to `const_int' and
2232 `const_double' expressions. */
2233 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
2235 /* A number, the maximum number of registers that can appear in a valid memory
2236 address. Note that it is up to you to specify a value equal to the maximum
2237 number that `GO_IF_LEGITIMATE_ADDRESS' would ever accept. */
2238 #define MAX_REGS_PER_ADDRESS 2
2240 /* A C compound statement with a conditional `goto LABEL;' executed if X (an
2241 RTX) is a legitimate memory address on the target machine for a memory
2242 operand of mode MODE.
2244 It usually pays to define several simpler macros to serve as subroutines for
2245 this one. Otherwise it may be too complicated to understand.
2247 This macro must exist in two variants: a strict variant and a non-strict
2248 one. The strict variant is used in the reload pass. It must be defined so
2249 that any pseudo-register that has not been allocated a hard register is
2250 considered a memory reference. In contexts where some kind of register is
2251 required, a pseudo-register with no hard register must be rejected.
2253 The non-strict variant is used in other passes. It must be defined to
2254 accept all pseudo-registers in every context where some kind of register is
2255 required.
2257 Compiler source files that want to use the strict variant of this macro
2258 define the macro `REG_OK_STRICT'. You should use an `#ifdef REG_OK_STRICT'
2259 conditional to define the strict variant in that case and the non-strict
2260 variant otherwise.
2262 Subroutines to check for acceptable registers for various purposes (one for
2263 base registers, one for index registers, and so on) are typically among the
2264 subroutines used to define `GO_IF_LEGITIMATE_ADDRESS'. Then only these
2265 subroutine macros need have two variants; the higher levels of macros may be
2266 the same whether strict or not.
2268 Normally, constant addresses which are the sum of a `symbol_ref' and an
2269 integer are stored inside a `const' RTX to mark them as constant.
2270 Therefore, there is no need to recognize such sums specifically as
2271 legitimate addresses. Normally you would simply recognize any `const' as
2272 legitimate.
2274 Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle constant sums that
2275 are not marked with `const'. It assumes that a naked `plus' indicates
2276 indexing. If so, then you *must* reject such naked constant sums as
2277 illegitimate addresses, so that none of them will be given to
2278 `PRINT_OPERAND_ADDRESS'.
2280 On some machines, whether a symbolic address is legitimate depends on the
2281 section that the address refers to. On these machines, define the macro
2282 `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and
2283 then check for it here. When you see a `const', you will have to look
2284 inside it to find the `symbol_ref' in order to determine the section.
2286 The best way to modify the name string is by adding text to the beginning,
2287 with suitable punctuation to prevent any ambiguity. Allocate the new name
2288 in `saveable_obstack'. You will have to modify `ASM_OUTPUT_LABELREF' to
2289 remove and decode the added text and output the name accordingly, and define
2290 `(* targetm.strip_name_encoding)' to access the original name string.
2292 You can check the information stored here into the `symbol_ref' in the
2293 definitions of the macros `GO_IF_LEGITIMATE_ADDRESS' and
2294 `PRINT_OPERAND_ADDRESS'. */
2296 #ifdef REG_OK_STRICT
2297 #define REG_OK_STRICT_P 1
2298 #else
2299 #define REG_OK_STRICT_P 0
2300 #endif
2302 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
2303 do \
2305 if (frv_legitimate_address_p (MODE, X, REG_OK_STRICT_P, FALSE)) \
2306 goto LABEL; \
2308 while (0)
2310 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
2311 use as a base register. For hard registers, it should always accept those
2312 which the hardware permits and reject the others. Whether the macro accepts
2313 or rejects pseudo registers must be controlled by `REG_OK_STRICT' as
2314 described above. This usually requires two variant definitions, of which
2315 `REG_OK_STRICT' controls the one actually used. */
2316 #ifdef REG_OK_STRICT
2317 #define REG_OK_FOR_BASE_P(X) GPR_P (REGNO (X))
2318 #else
2319 #define REG_OK_FOR_BASE_P(X) GPR_AP_OR_PSEUDO_P (REGNO (X))
2320 #endif
2322 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
2323 use as an index register.
2325 The difference between an index register and a base register is that the
2326 index register may be scaled. If an address involves the sum of two
2327 registers, neither one of them scaled, then either one may be labeled the
2328 "base" and the other the "index"; but whichever labeling is used must fit
2329 the machine's constraints of which registers may serve in each capacity.
2330 The compiler will try both labelings, looking for one that is valid, and
2331 will reload one or both registers only if neither labeling works. */
2332 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
2334 /* A C compound statement that attempts to replace X with a valid memory
2335 address for an operand of mode MODE. WIN will be a C statement label
2336 elsewhere in the code; the macro definition may use
2338 GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
2340 to avoid further processing if the address has become legitimate.
2342 X will always be the result of a call to `break_out_memory_refs', and OLDX
2343 will be the operand that was given to that function to produce X.
2345 The code generated by this macro should not alter the substructure of X. If
2346 it transforms X into a more legitimate form, it should assign X (which will
2347 always be a C variable) a new value.
2349 It is not necessary for this macro to come up with a legitimate address.
2350 The compiler has standard ways of doing so in all cases. In fact, it is
2351 safe for this macro to do nothing. But often a machine-dependent strategy
2352 can generate better code. */
2354 /* On the FRV, we use it to convert small data and pic references into using
2355 the appropriate pointer in the address. */
2356 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
2357 do \
2359 rtx newx = frv_legitimize_address (X, OLDX, MODE); \
2361 if (newx) \
2363 (X) = newx; \
2364 goto WIN; \
2367 while (0)
2369 /* A C statement or compound statement with a conditional `goto LABEL;'
2370 executed if memory address X (an RTX) can have different meanings depending
2371 on the machine mode of the memory reference it is used for or if the address
2372 is valid for some modes but not others.
2374 Autoincrement and autodecrement addresses typically have mode-dependent
2375 effects because the amount of the increment or decrement is the size of the
2376 operand being addressed. Some machines have other mode-dependent addresses.
2377 Many RISC machines have no mode-dependent addresses.
2379 You may assume that ADDR is a valid address for the machine. */
2380 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
2382 /* A C expression that is nonzero if X is a legitimate constant for an
2383 immediate operand on the target machine. You can assume that X satisfies
2384 `CONSTANT_P', so you need not check this. In fact, `1' is a suitable
2385 definition for this macro on machines where anything `CONSTANT_P' is valid. */
2386 #define LEGITIMATE_CONSTANT_P(X) frv_legitimate_constant_p (X)
2388 /* The load-and-update commands allow pre-modification in addresses.
2389 The index has to be in a register. */
2390 #define HAVE_PRE_MODIFY_REG 1
2393 /* Returns a mode from class `MODE_CC' to be used when comparison operation
2394 code OP is applied to rtx X and Y. For example, on the SPARC,
2395 `SELECT_CC_MODE' is defined as (see *note Jump Patterns::. for a
2396 description of the reason for this definition)
2398 #define SELECT_CC_MODE(OP,X,Y) \
2399 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2400 ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
2401 : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
2402 || GET_CODE (X) == NEG) \
2403 ? CC_NOOVmode : CCmode))
2405 You need not define this macro if `EXTRA_CC_MODES' is not defined. */
2406 #define SELECT_CC_MODE(OP, X, Y) \
2407 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2408 ? CC_FPmode \
2409 : (((OP) == LEU || (OP) == GTU || (OP) == LTU || (OP) == GEU) \
2410 ? CC_UNSmode \
2411 : CCmode))
2413 /* A C expression whose value is one if it is always safe to reverse a
2414 comparison whose mode is MODE. If `SELECT_CC_MODE' can ever return MODE for
2415 a floating-point inequality comparison, then `REVERSIBLE_CC_MODE (MODE)'
2416 must be zero.
2418 You need not define this macro if it would always returns zero or if the
2419 floating-point format is anything other than `IEEE_FLOAT_FORMAT'. For
2420 example, here is the definition used on the SPARC, where floating-point
2421 inequality comparisons are always given `CCFPEmode':
2423 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode) */
2425 /* On frv, don't consider floating point comparisons to be reversible. In
2426 theory, fp equality comparisons can be reversible */
2427 #define REVERSIBLE_CC_MODE(MODE) ((MODE) == CCmode || (MODE) == CC_UNSmode)
2429 /* Frv CCR_MODE's are not reversible. */
2430 #define REVERSE_CONDEXEC_PREDICATES_P(x,y) 0
2433 /* Describing Relative Costs of Operations. */
2435 /* A C expression for the cost of moving data from a register in class FROM to
2436 one in class TO. The classes are expressed using the enumeration values
2437 such as `GENERAL_REGS'. A value of 4 is the default; other values are
2438 interpreted relative to that.
2440 It is not required that the cost always equal 2 when FROM is the same as TO;
2441 on some machines it is expensive to move between registers if they are not
2442 general registers.
2444 If reload sees an insn consisting of a single `set' between two hard
2445 registers, and if `REGISTER_MOVE_COST' applied to their classes returns a
2446 value of 2, reload does not check to ensure that the constraints of the insn
2447 are met. Setting a cost of other than 2 will allow reload to verify that
2448 the constraints are met. You should do this if the `movM' pattern's
2449 constraints do not allow such copying. */
2450 #define REGISTER_MOVE_COST(MODE, FROM, TO) frv_register_move_cost (FROM, TO)
2452 /* A C expression for the cost of moving data of mode M between a register and
2453 memory. A value of 2 is the default; this cost is relative to those in
2454 `REGISTER_MOVE_COST'.
2456 If moving between registers and memory is more expensive than between two
2457 registers, you should define this macro to express the relative cost. */
2458 #define MEMORY_MOVE_COST(M,C,I) 4
2460 /* A C expression for the cost of a branch instruction. A value of 1 is the
2461 default; other values are interpreted relative to that. */
2463 /* Here are additional macros which do not specify precise relative costs, but
2464 only that certain actions are more expensive than GCC would ordinarily
2465 expect. */
2467 /* We used to default the branch cost to 2, but I changed it to 1, to avoid
2468 generating SCC instructions and or/and-ing them together, and then doing the
2469 branch on the result, which collectively generate much worse code. */
2470 #ifndef DEFAULT_BRANCH_COST
2471 #define DEFAULT_BRANCH_COST 1
2472 #endif
2474 #define BRANCH_COST frv_branch_cost_int
2476 /* Define this macro as a C expression which is nonzero if accessing less than
2477 a word of memory (i.e. a `char' or a `short') is no faster than accessing a
2478 word of memory, i.e., if such access require more than one instruction or if
2479 there is no difference in cost between byte and (aligned) word loads.
2481 When this macro is not defined, the compiler will access a field by finding
2482 the smallest containing object; when it is defined, a fullword load will be
2483 used if alignment permits. Unless bytes accesses are faster than word
2484 accesses, using word accesses is preferable since it may eliminate
2485 subsequent memory access if subsequent accesses occur to other fields in the
2486 same word of the structure, but to different bytes. */
2487 #define SLOW_BYTE_ACCESS 1
2489 /* Define this macro if it is as good or better to call a constant function
2490 address than to call an address kept in a register. */
2491 #define NO_FUNCTION_CSE
2493 /* Define this macro if it is as good or better for a function to call itself
2494 with an explicit address than to call an address kept in a register. */
2495 #define NO_RECURSIVE_FUNCTION_CSE
2498 /* Dividing the output into sections. */
2500 /* A C expression whose value is a string containing the assembler operation
2501 that should precede instructions and read-only data. Normally `".text"' is
2502 right. */
2503 #define TEXT_SECTION_ASM_OP "\t.text"
2505 /* A C expression whose value is a string containing the assembler operation to
2506 identify the following data as writable initialized data. Normally
2507 `".data"' is right. */
2508 #define DATA_SECTION_ASM_OP "\t.data"
2510 /* If defined, a C expression whose value is a string containing the
2511 assembler operation to identify the following data as
2512 uninitialized global data. If not defined, and neither
2513 `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
2514 uninitialized global data will be output in the data section if
2515 `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
2516 used. */
2517 #define BSS_SECTION_ASM_OP "\t.section .bss,\"aw\""
2519 /* Short Data Support */
2520 #define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
2522 /* On svr4, we *do* have support for the .init and .fini sections, and we
2523 can put stuff in there to be executed before and after `main'. We let
2524 crtstuff.c and other files know this by defining the following symbols.
2525 The definitions say how to change sections to the .init and .fini
2526 sections. This is the same for all known svr4 assemblers.
2528 The standard System V.4 macros will work, but they look ugly in the
2529 assembly output, so redefine them. */
2531 #undef INIT_SECTION_ASM_OP
2532 #undef FINI_SECTION_ASM_OP
2533 #define INIT_SECTION_ASM_OP "\t.section .init,\"ax\""
2534 #define FINI_SECTION_ASM_OP "\t.section .fini,\"ax\""
2536 #undef CTORS_SECTION_ASM_OP
2537 #undef DTORS_SECTION_ASM_OP
2538 #define CTORS_SECTION_ASM_OP "\t.section\t.ctors,\"a\""
2539 #define DTORS_SECTION_ASM_OP "\t.section\t.dtors,\"a\""
2541 /* A C expression whose value is a string containing the assembler operation to
2542 switch to the fixup section that records all initialized pointers in a -fpic
2543 program so they can be changed program startup time if the program is loaded
2544 at a different address than linked for. */
2545 #define FIXUP_SECTION_ASM_OP "\t.section .rofixup,\"a\""
2547 /* A list of names for sections other than the standard two, which are
2548 `in_text' and `in_data'. You need not define this macro
2549 on a system with no other sections (that GCC needs to use). */
2550 #undef EXTRA_SECTIONS
2551 #define EXTRA_SECTIONS in_sdata, in_const, in_fixup
2553 /* One or more functions to be defined in "varasm.c". These
2554 functions should do jobs analogous to those of `text_section' and
2555 `data_section', for your additional sections. Do not define this
2556 macro if you do not define `EXTRA_SECTIONS'. */
2557 #undef EXTRA_SECTION_FUNCTIONS
2558 #define EXTRA_SECTION_FUNCTIONS \
2559 SDATA_SECTION_FUNCTION \
2560 FIXUP_SECTION_FUNCTION
2562 #define SDATA_SECTION_FUNCTION \
2563 void \
2564 sdata_section (void) \
2566 if (in_section != in_sdata) \
2568 fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
2569 in_section = in_sdata; \
2573 #define FIXUP_SECTION_FUNCTION \
2574 void \
2575 fixup_section (void) \
2577 if (in_section != in_fixup) \
2579 fprintf (asm_out_file, "%s\n", FIXUP_SECTION_ASM_OP); \
2580 in_section = in_fixup; \
2584 /* Position Independent Code. */
2586 /* A C expression that is nonzero if X is a legitimate immediate operand on the
2587 target machine when generating position independent code. You can assume
2588 that X satisfies `CONSTANT_P', so you need not check this. You can also
2589 assume FLAG_PIC is true, so you need not check it either. You need not
2590 define this macro if all constants (including `SYMBOL_REF') can be immediate
2591 operands when generating position independent code. */
2592 #define LEGITIMATE_PIC_OPERAND_P(X) \
2593 ( GET_CODE (X) == CONST_INT \
2594 || GET_CODE (X) == CONST_DOUBLE \
2595 || (GET_CODE (X) == HIGH && GET_CODE (XEXP (X, 0)) == CONST_INT) \
2596 || GET_CODE (X) == CONSTANT_P_RTX)
2599 /* The Overall Framework of an Assembler File. */
2601 /* A C string constant describing how to begin a comment in the target
2602 assembler language. The compiler assumes that the comment will end at the
2603 end of the line. */
2604 #define ASM_COMMENT_START ";"
2606 /* A C string constant for text to be output before each `asm' statement or
2607 group of consecutive ones. Normally this is `"#APP"', which is a comment
2608 that has no effect on most assemblers but tells the GNU assembler that it
2609 must check the lines that follow for all valid assembler constructs. */
2610 #define ASM_APP_ON "#APP\n"
2612 /* A C string constant for text to be output after each `asm' statement or
2613 group of consecutive ones. Normally this is `"#NO_APP"', which tells the
2614 GNU assembler to resume making the time-saving assumptions that are valid
2615 for ordinary compiler output. */
2616 #define ASM_APP_OFF "#NO_APP\n"
2619 /* Output of Data. */
2621 /* This is how to output a label to dwarf/dwarf2. */
2622 #define ASM_OUTPUT_DWARF_ADDR(STREAM, LABEL) \
2623 do { \
2624 fprintf (STREAM, "\t.picptr\t"); \
2625 assemble_name (STREAM, LABEL); \
2626 } while (0)
2628 /* Whether to emit the gas specific dwarf2 line number support. */
2629 #define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DEBUG_LOC)
2631 /* Output of Uninitialized Variables. */
2633 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
2634 assembler definition of a local-common-label named NAME whose size is SIZE
2635 bytes. The variable ROUNDED is the size rounded up to whatever alignment
2636 the caller wants.
2638 Use the expression `assemble_name (STREAM, NAME)' to output the name itself;
2639 before and after that, output the additional assembler syntax for defining
2640 the name, and a newline.
2642 This macro controls how the assembler definitions of uninitialized static
2643 variables are output. */
2644 #undef ASM_OUTPUT_LOCAL
2646 /* Like `ASM_OUTPUT_LOCAL' except takes the required alignment as a separate,
2647 explicit argument. If you define this macro, it is used in place of
2648 `ASM_OUTPUT_LOCAL', and gives you more flexibility in handling the required
2649 alignment of the variable. The alignment is specified as the number of
2650 bits.
2652 Defined in svr4.h. */
2653 #undef ASM_OUTPUT_ALIGNED_LOCAL
2655 /* This is for final.c, because it is used by ASM_DECLARE_OBJECT_NAME. */
2656 extern int size_directive_output;
2658 /* Like `ASM_OUTPUT_ALIGNED_LOCAL' except that it takes an additional
2659 parameter - the DECL of variable to be output, if there is one.
2660 This macro can be called with DECL == NULL_TREE. If you define
2661 this macro, it is used in place of `ASM_OUTPUT_LOCAL' and
2662 `ASM_OUTPUT_ALIGNED_LOCAL', and gives you more flexibility in
2663 handling the destination of the variable. */
2664 #undef ASM_OUTPUT_ALIGNED_DECL_LOCAL
2665 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(STREAM, DECL, NAME, SIZE, ALIGN) \
2666 do { \
2667 if ((SIZE) > 0 && (SIZE) <= g_switch_value) \
2668 named_section (0, ".sbss", 0); \
2669 else \
2670 bss_section (); \
2671 ASM_OUTPUT_ALIGN (STREAM, floor_log2 ((ALIGN) / BITS_PER_UNIT)); \
2672 ASM_DECLARE_OBJECT_NAME (STREAM, NAME, DECL); \
2673 ASM_OUTPUT_SKIP (STREAM, (SIZE) ? (SIZE) : 1); \
2674 } while (0)
2677 /* Output and Generation of Labels. */
2679 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
2680 assembler definition of a label named NAME. Use the expression
2681 `assemble_name (STREAM, NAME)' to output the name itself; before and after
2682 that, output the additional assembler syntax for defining the name, and a
2683 newline. */
2684 #define ASM_OUTPUT_LABEL(STREAM, NAME) \
2685 do { \
2686 assemble_name (STREAM, NAME); \
2687 fputs (":\n", STREAM); \
2688 } while (0)
2690 /* Globalizing directive for a label. */
2691 #define GLOBAL_ASM_OP "\t.globl "
2693 /* A C statement to store into the string STRING a label whose name is made
2694 from the string PREFIX and the number NUM.
2696 This string, when output subsequently by `assemble_name', should produce the
2697 output that `(*targetm.asm_out.internal_label)' would produce with the same PREFIX
2698 and NUM.
2700 If the string begins with `*', then `assemble_name' will output the rest of
2701 the string unchanged. It is often convenient for
2702 `ASM_GENERATE_INTERNAL_LABEL' to use `*' in this way. If the string doesn't
2703 start with `*', then `ASM_OUTPUT_LABELREF' gets to output the string, and
2704 may change it. (Of course, `ASM_OUTPUT_LABELREF' is also part of your
2705 machine description, so you should know what it does on your machine.)
2707 Defined in svr4.h. */
2708 #undef ASM_GENERATE_INTERNAL_LABEL
2709 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
2710 do { \
2711 sprintf (LABEL, "*.%s%ld", PREFIX, (long)NUM); \
2712 } while (0)
2715 /* Macros Controlling Initialization Routines. */
2717 /* If defined, a C string constant for the assembler operation to identify the
2718 following data as initialization code. If not defined, GCC will assume
2719 such a section does not exist. When you are using special sections for
2720 initialization and termination functions, this macro also controls how
2721 `crtstuff.c' and `libgcc2.c' arrange to run the initialization functions.
2723 Defined in svr4.h. */
2724 #undef INIT_SECTION_ASM_OP
2726 /* If defined, `main' will call `__main' despite the presence of
2727 `INIT_SECTION_ASM_OP'. This macro should be defined for systems where the
2728 init section is not actually run automatically, but is still useful for
2729 collecting the lists of constructors and destructors. */
2730 #define INVOKE__main
2732 /* Output of Assembler Instructions. */
2734 /* A C initializer containing the assembler's names for the machine registers,
2735 each one as a C string constant. This is what translates register numbers
2736 in the compiler into assembler language. */
2737 #define REGISTER_NAMES \
2739 "gr0", "sp", "fp", "gr3", "gr4", "gr5", "gr6", "gr7", \
2740 "gr8", "gr9", "gr10", "gr11", "gr12", "gr13", "gr14", "gr15", \
2741 "gr16", "gr17", "gr18", "gr19", "gr20", "gr21", "gr22", "gr23", \
2742 "gr24", "gr25", "gr26", "gr27", "gr28", "gr29", "gr30", "gr31", \
2743 "gr32", "gr33", "gr34", "gr35", "gr36", "gr37", "gr38", "gr39", \
2744 "gr40", "gr41", "gr42", "gr43", "gr44", "gr45", "gr46", "gr47", \
2745 "gr48", "gr49", "gr50", "gr51", "gr52", "gr53", "gr54", "gr55", \
2746 "gr56", "gr57", "gr58", "gr59", "gr60", "gr61", "gr62", "gr63", \
2748 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \
2749 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", \
2750 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23", \
2751 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31", \
2752 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39", \
2753 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47", \
2754 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55", \
2755 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63", \
2757 "fcc0", "fcc1", "fcc2", "fcc3", "icc0", "icc1", "icc2", "icc3", \
2758 "cc0", "cc1", "cc2", "cc3", "cc4", "cc5", "cc6", "cc7", \
2759 "acc0", "acc1", "acc2", "acc3", "acc4", "acc5", "acc6", "acc7", \
2760 "accg0","accg1","accg2","accg3","accg4","accg5","accg6","accg7", \
2761 "ap", "lr", "lcr" \
2764 /* Define this macro if you are using an unusual assembler that
2765 requires different names for the machine instructions.
2767 The definition is a C statement or statements which output an
2768 assembler instruction opcode to the stdio stream STREAM. The
2769 macro-operand PTR is a variable of type `char *' which points to
2770 the opcode name in its "internal" form--the form that is written
2771 in the machine description. The definition should output the
2772 opcode name to STREAM, performing any translation you desire, and
2773 increment the variable PTR to point at the end of the opcode so
2774 that it will not be output twice.
2776 In fact, your macro definition may process less than the entire
2777 opcode name, or more than the opcode name; but if you want to
2778 process text that includes `%'-sequences to substitute operands,
2779 you must take care of the substitution yourself. Just be sure to
2780 increment PTR over whatever text should not be output normally.
2782 If you need to look at the operand values, they can be found as the
2783 elements of `recog_operand'.
2785 If the macro definition does nothing, the instruction is output in
2786 the usual way. */
2788 #define ASM_OUTPUT_OPCODE(STREAM, PTR)\
2789 (PTR) = frv_asm_output_opcode (STREAM, PTR)
2791 /* If defined, a C statement to be executed just prior to the output
2792 of assembler code for INSN, to modify the extracted operands so
2793 they will be output differently.
2795 Here the argument OPVEC is the vector containing the operands
2796 extracted from INSN, and NOPERANDS is the number of elements of
2797 the vector which contain meaningful data for this insn. The
2798 contents of this vector are what will be used to convert the insn
2799 template into assembler code, so you can change the assembler
2800 output by changing the contents of the vector.
2802 This macro is useful when various assembler syntaxes share a single
2803 file of instruction patterns; by defining this macro differently,
2804 you can cause a large class of instructions to be output
2805 differently (such as with rearranged operands). Naturally,
2806 variations in assembler syntax affecting individual insn patterns
2807 ought to be handled by writing conditional output routines in
2808 those patterns.
2810 If this macro is not defined, it is equivalent to a null statement. */
2812 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)\
2813 frv_final_prescan_insn (INSN, OPVEC, NOPERANDS)
2816 /* A C compound statement to output to stdio stream STREAM the assembler syntax
2817 for an instruction operand X. X is an RTL expression.
2819 CODE is a value that can be used to specify one of several ways of printing
2820 the operand. It is used when identical operands must be printed differently
2821 depending on the context. CODE comes from the `%' specification that was
2822 used to request printing of the operand. If the specification was just
2823 `%DIGIT' then CODE is 0; if the specification was `%LTR DIGIT' then CODE is
2824 the ASCII code for LTR.
2826 If X is a register, this macro should print the register's name. The names
2827 can be found in an array `reg_names' whose type is `char *[]'. `reg_names'
2828 is initialized from `REGISTER_NAMES'.
2830 When the machine description has a specification `%PUNCT' (a `%' followed by
2831 a punctuation character), this macro is called with a null pointer for X and
2832 the punctuation character for CODE. */
2833 #define PRINT_OPERAND(STREAM, X, CODE) frv_print_operand (STREAM, X, CODE)
2835 /* A C expression which evaluates to true if CODE is a valid punctuation
2836 character for use in the `PRINT_OPERAND' macro. If
2837 `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no punctuation
2838 characters (except for the standard one, `%') are used in this way. */
2839 /* . == gr0
2840 # == hint operand -- always zero for now
2841 @ == small data base register (gr16)
2842 ~ == pic register (gr17)
2843 * == temporary integer CCR register (cr3)
2844 & == temporary integer ICC register (icc3) */
2845 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2846 ((CODE) == '.' || (CODE) == '#' || (CODE) == '@' || (CODE) == '~' \
2847 || (CODE) == '*' || (CODE) == '&')
2849 /* A C compound statement to output to stdio stream STREAM the assembler syntax
2850 for an instruction operand that is a memory reference whose address is X. X
2851 is an RTL expression.
2853 On some machines, the syntax for a symbolic address depends on the section
2854 that the address refers to. On these machines, define the macro
2855 `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and
2856 then check for it here.
2858 This declaration must be present. */
2859 #define PRINT_OPERAND_ADDRESS(STREAM, X) frv_print_operand_address (STREAM, X)
2861 /* If defined, C string expressions to be used for the `%R', `%L', `%U', and
2862 `%I' options of `asm_fprintf' (see `final.c'). These are useful when a
2863 single `md' file must support multiple assembler formats. In that case, the
2864 various `tm.h' files can define these macros differently.
2866 USER_LABEL_PREFIX is defined in svr4.h. */
2867 #undef USER_LABEL_PREFIX
2868 #define USER_LABEL_PREFIX ""
2869 #define REGISTER_PREFIX ""
2870 #define LOCAL_LABEL_PREFIX "."
2871 #define IMMEDIATE_PREFIX "#"
2874 /* Output of dispatch tables. */
2876 /* This macro should be provided on machines where the addresses in a dispatch
2877 table are relative to the table's own address.
2879 The definition should be a C statement to output to the stdio stream STREAM
2880 an assembler pseudo-instruction to generate a difference between two labels.
2881 VALUE and REL are the numbers of two internal labels. The definitions of
2882 these labels are output using `(*targetm.asm_out.internal_label)', and they must be
2883 printed in the same way here. For example,
2885 fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL) */
2886 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2887 fprintf (STREAM, "\t.word .L%d-.L%d\n", VALUE, REL)
2889 /* This macro should be provided on machines where the addresses in a dispatch
2890 table are absolute.
2892 The definition should be a C statement to output to the stdio stream STREAM
2893 an assembler pseudo-instruction to generate a reference to a label. VALUE
2894 is the number of an internal label whose definition is output using
2895 `(*targetm.asm_out.internal_label)'. For example,
2897 fprintf (STREAM, "\t.word L%d\n", VALUE) */
2898 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2899 fprintf (STREAM, "\t.word .L%d\n", VALUE)
2901 /* Define this if the label before a jump-table needs to be output specially.
2902 The first three arguments are the same as for `(*targetm.asm_out.internal_label)';
2903 the fourth argument is the jump-table which follows (a `jump_insn'
2904 containing an `addr_vec' or `addr_diff_vec').
2906 This feature is used on system V to output a `swbeg' statement for the
2907 table.
2909 If this macro is not defined, these labels are output with
2910 `(*targetm.asm_out.internal_label)'.
2912 Defined in svr4.h. */
2913 /* When generating embedded PIC or mips16 code we want to put the jump
2914 table in the .text section. In all other cases, we want to put the
2915 jump table in the .rdata section. Unfortunately, we can't use
2916 JUMP_TABLES_IN_TEXT_SECTION, because it is not conditional.
2917 Instead, we use ASM_OUTPUT_CASE_LABEL to switch back to the .text
2918 section if appropriate. */
2920 #undef ASM_OUTPUT_CASE_LABEL
2921 #define ASM_OUTPUT_CASE_LABEL(STREAM, PREFIX, NUM, TABLE) \
2922 do { \
2923 if (flag_pic) \
2924 function_section (current_function_decl); \
2925 (*targetm.asm_out.internal_label) (STREAM, PREFIX, NUM); \
2926 } while (0)
2928 /* Define this to determine whether case statement labels are relative to
2929 the start of the case statement or not. */
2931 #define CASE_VECTOR_PC_RELATIVE (flag_pic)
2934 /* Assembler Commands for Exception Regions. */
2936 /* Define this macro to 0 if your target supports DWARF 2 frame unwind
2937 information, but it does not yet work with exception handling. Otherwise,
2938 if your target supports this information (if it defines
2939 `INCOMING_RETURN_ADDR_RTX' and either `UNALIGNED_INT_ASM_OP' or
2940 `OBJECT_FORMAT_ELF'), GCC will provide a default definition of 1.
2942 If this macro is defined to 1, the DWARF 2 unwinder will be the default
2943 exception handling mechanism; otherwise, setjmp/longjmp will be used by
2944 default.
2946 If this macro is defined to anything, the DWARF 2 unwinder will be used
2947 instead of inline unwinders and __unwind_function in the non-setjmp case. */
2948 #define DWARF2_UNWIND_INFO 1
2950 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2952 /* Assembler Commands for Alignment. */
2954 /* A C statement to output to the stdio stream STREAM an assembler instruction
2955 to advance the location counter by NBYTES bytes. Those bytes should be zero
2956 when loaded. NBYTES will be a C expression of type `int'.
2958 Defined in svr4.h. */
2959 #undef ASM_OUTPUT_SKIP
2960 #define ASM_OUTPUT_SKIP(STREAM, NBYTES) \
2961 fprintf (STREAM, "\t.zero\t%u\n", (int)(NBYTES))
2963 /* A C statement to output to the stdio stream STREAM an assembler command to
2964 advance the location counter to a multiple of 2 to the POWER bytes. POWER
2965 will be a C expression of type `int'. */
2966 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
2967 fprintf ((STREAM), "\t.p2align %d\n", (POWER))
2969 /* Inside the text section, align with unpacked nops rather than zeros. */
2970 #define ASM_OUTPUT_ALIGN_WITH_NOP(STREAM, POWER) \
2971 fprintf ((STREAM), "\t.p2alignl %d,0x80880000\n", (POWER))
2973 /* Macros Affecting all Debug Formats. */
2975 /* A C expression that returns the DBX register number for the compiler
2976 register number REGNO. In simple cases, the value of this expression may be
2977 REGNO itself. But sometimes there are some registers that the compiler
2978 knows about and DBX does not, or vice versa. In such cases, some register
2979 may need to have one number in the compiler and another for DBX.
2981 If two registers have consecutive numbers inside GCC, and they can be
2982 used as a pair to hold a multiword value, then they *must* have consecutive
2983 numbers after renumbering with `DBX_REGISTER_NUMBER'. Otherwise, debuggers
2984 will be unable to access such a pair, because they expect register pairs to
2985 be consecutive in their own numbering scheme.
2987 If you find yourself defining `DBX_REGISTER_NUMBER' in way that does not
2988 preserve register pairs, then what you must do instead is redefine the
2989 actual register numbering scheme.
2991 This declaration is required. */
2992 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2994 /* A C expression that returns the type of debugging output GCC produces
2995 when the user specifies `-g' or `-ggdb'. Define this if you have arranged
2996 for GCC to support more than one format of debugging output. Currently,
2997 the allowable values are `DBX_DEBUG', `SDB_DEBUG', `DWARF_DEBUG',
2998 `DWARF2_DEBUG', and `XCOFF_DEBUG'.
3000 The value of this macro only affects the default debugging output; the user
3001 can always get a specific type of output by using `-gstabs', `-gcoff',
3002 `-gdwarf-1', `-gdwarf-2', or `-gxcoff'.
3004 Defined in svr4.h. */
3005 #undef PREFERRED_DEBUGGING_TYPE
3006 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
3008 /* Miscellaneous Parameters. */
3010 /* Define this if you have defined special-purpose predicates in the file
3011 `MACHINE.c'. This macro is called within an initializer of an array of
3012 structures. The first field in the structure is the name of a predicate and
3013 the second field is an array of rtl codes. For each predicate, list all rtl
3014 codes that can be in expressions matched by the predicate. The list should
3015 have a trailing comma. Here is an example of two entries in the list for a
3016 typical RISC machine:
3018 #define PREDICATE_CODES \
3019 {"gen_reg_rtx_operand", {SUBREG, REG}}, \
3020 {"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},
3022 Defining this macro does not affect the generated code (however, incorrect
3023 definitions that omit an rtl code that may be matched by the predicate can
3024 cause the compiler to malfunction). Instead, it allows the table built by
3025 `genrecog' to be more compact and efficient, thus speeding up the compiler.
3026 The most important predicates to include in the list specified by this macro
3027 are thoses used in the most insn patterns. */
3028 #define PREDICATE_CODES \
3029 { "integer_register_operand", { REG, SUBREG }}, \
3030 { "frv_load_operand", { REG, SUBREG, MEM }}, \
3031 { "gpr_no_subreg_operand", { REG }}, \
3032 { "gpr_or_fpr_operand", { REG, SUBREG }}, \
3033 { "gpr_or_int12_operand", { REG, SUBREG, CONST_INT }}, \
3034 { "gpr_fpr_or_int12_operand", { REG, SUBREG, CONST_INT }}, \
3035 { "gpr_or_int10_operand", { REG, SUBREG, CONST_INT }}, \
3036 { "gpr_or_int_operand", { REG, SUBREG, CONST_INT }}, \
3037 { "move_source_operand", { REG, SUBREG, CONST_INT, MEM, \
3038 CONST_DOUBLE, CONST, \
3039 SYMBOL_REF, LABEL_REF }}, \
3040 { "move_destination_operand", { REG, SUBREG, MEM }}, \
3041 { "condexec_source_operand", { REG, SUBREG, CONST_INT, MEM, \
3042 CONST_DOUBLE }}, \
3043 { "condexec_dest_operand", { REG, SUBREG, MEM }}, \
3044 { "reg_or_0_operand", { REG, SUBREG, CONST_INT }}, \
3045 { "lr_operand", { REG }}, \
3046 { "gpr_or_memory_operand", { REG, SUBREG, MEM }}, \
3047 { "fpr_or_memory_operand", { REG, SUBREG, MEM }}, \
3048 { "int12_operand", { CONST_INT }}, \
3049 { "int_2word_operand", { CONST_INT, CONST_DOUBLE, \
3050 SYMBOL_REF, LABEL_REF, CONST }}, \
3051 { "pic_register_operand", { REG }}, \
3052 { "pic_symbolic_operand", { SYMBOL_REF, LABEL_REF, CONST }}, \
3053 { "small_data_register_operand", { REG }}, \
3054 { "small_data_symbolic_operand", { SYMBOL_REF, CONST }}, \
3055 { "icc_operand", { REG }}, \
3056 { "fcc_operand", { REG }}, \
3057 { "cc_operand", { REG }}, \
3058 { "icr_operand", { REG }}, \
3059 { "fcr_operand", { REG }}, \
3060 { "cr_operand", { REG }}, \
3061 { "fpr_operand", { REG, SUBREG }}, \
3062 { "even_reg_operand", { REG, SUBREG }}, \
3063 { "odd_reg_operand", { REG, SUBREG }}, \
3064 { "even_gpr_operand", { REG, SUBREG }}, \
3065 { "odd_gpr_operand", { REG, SUBREG }}, \
3066 { "quad_fpr_operand", { REG, SUBREG }}, \
3067 { "even_fpr_operand", { REG, SUBREG }}, \
3068 { "odd_fpr_operand", { REG, SUBREG }}, \
3069 { "dbl_memory_one_insn_operand", { MEM }}, \
3070 { "dbl_memory_two_insn_operand", { MEM }}, \
3071 { "call_operand", { REG, SUBREG, PLUS, CONST_INT, \
3072 SYMBOL_REF, LABEL_REF, CONST }}, \
3073 { "upper_int16_operand", { CONST_INT }}, \
3074 { "uint16_operand", { CONST_INT }}, \
3075 { "relational_operator", { EQ, NE, LE, LT, GE, GT, \
3076 LEU, LTU, GEU, GTU }}, \
3077 { "signed_relational_operator", { EQ, NE, LE, LT, GE, GT }}, \
3078 { "unsigned_relational_operator", { LEU, LTU, GEU, GTU }}, \
3079 { "float_relational_operator", { EQ, NE, LE, LT, GE, GT }}, \
3080 { "ccr_eqne_operator", { EQ, NE }}, \
3081 { "minmax_operator", { SMIN, SMAX, UMIN, UMAX }}, \
3082 { "condexec_si_binary_operator", { PLUS, MINUS, AND, IOR, XOR, \
3083 ASHIFT, ASHIFTRT, LSHIFTRT }}, \
3084 { "condexec_si_media_operator", { AND, IOR, XOR }}, \
3085 { "condexec_si_divide_operator", { DIV, UDIV }}, \
3086 { "condexec_si_unary_operator", { NOT, NEG }}, \
3087 { "condexec_sf_add_operator", { PLUS, MINUS }}, \
3088 { "condexec_sf_conv_operator", { ABS, NEG }}, \
3089 { "intop_compare_operator", { PLUS, MINUS, AND, IOR, XOR, \
3090 ASHIFT, ASHIFTRT, LSHIFTRT }}, \
3091 { "condexec_intop_cmp_operator", { PLUS, MINUS, AND, IOR, XOR, \
3092 ASHIFT, ASHIFTRT, LSHIFTRT }}, \
3093 { "fpr_or_int6_operand", { REG, SUBREG, CONST_INT }}, \
3094 { "int6_operand", { CONST_INT }}, \
3095 { "int5_operand", { CONST_INT }}, \
3096 { "uint5_operand", { CONST_INT }}, \
3097 { "uint4_operand", { CONST_INT }}, \
3098 { "uint1_operand", { CONST_INT }}, \
3099 { "acc_operand", { REG, SUBREG }}, \
3100 { "even_acc_operand", { REG, SUBREG }}, \
3101 { "quad_acc_operand", { REG, SUBREG }}, \
3102 { "accg_operand", { REG, SUBREG }},
3104 /* An alias for a machine mode name. This is the machine mode that elements of
3105 a jump-table should have. */
3106 #define CASE_VECTOR_MODE SImode
3108 /* Define this macro if operations between registers with integral mode smaller
3109 than a word are always performed on the entire register. Most RISC machines
3110 have this property and most CISC machines do not. */
3111 #define WORD_REGISTER_OPERATIONS
3113 /* Define this macro to be a C expression indicating when insns that read
3114 memory in MODE, an integral mode narrower than a word, set the bits outside
3115 of MODE to be either the sign-extension or the zero-extension of the data
3116 read. Return `SIGN_EXTEND' for values of MODE for which the insn
3117 sign-extends, `ZERO_EXTEND' for which it zero-extends, and `NIL' for other
3118 modes.
3120 This macro is not called with MODE non-integral or with a width greater than
3121 or equal to `BITS_PER_WORD', so you may return any value in this case. Do
3122 not define this macro if it would always return `NIL'. On machines where
3123 this macro is defined, you will normally define it as the constant
3124 `SIGN_EXTEND' or `ZERO_EXTEND'. */
3125 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
3127 /* Define if loading short immediate values into registers sign extends. */
3128 #define SHORT_IMMEDIATES_SIGN_EXTEND
3130 /* The maximum number of bytes that a single instruction can move quickly from
3131 memory to memory. */
3132 #define MOVE_MAX 8
3134 /* A C expression which is nonzero if on this machine it is safe to "convert"
3135 an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
3136 than INPREC) by merely operating on it as if it had only OUTPREC bits.
3138 On many machines, this expression can be 1.
3140 When `TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for modes for
3141 which `MODES_TIEABLE_P' is 0, suboptimal code can result. If this is the
3142 case, making `TRULY_NOOP_TRUNCATION' return 0 in such cases may improve
3143 things. */
3144 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
3146 /* An alias for the machine mode for pointers. On most machines, define this
3147 to be the integer mode corresponding to the width of a hardware pointer;
3148 `SImode' on 32-bit machine or `DImode' on 64-bit machines. On some machines
3149 you must define this to be one of the partial integer modes, such as
3150 `PSImode'.
3152 The width of `Pmode' must be at least as large as the value of
3153 `POINTER_SIZE'. If it is not equal, you must define the macro
3154 `POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to `Pmode'. */
3155 #define Pmode SImode
3157 /* An alias for the machine mode used for memory references to functions being
3158 called, in `call' RTL expressions. On most machines this should be
3159 `QImode'. */
3160 #define FUNCTION_MODE QImode
3162 /* Define this macro to handle System V style pragmas: #pragma pack and
3163 #pragma weak. Note, #pragma weak will only be supported if SUPPORT_WEAK is
3164 defined.
3166 Defined in svr4.h. */
3167 #define HANDLE_SYSV_PRAGMA 1
3169 /* A C expression for the maximum number of instructions to execute via
3170 conditional execution instructions instead of a branch. A value of
3171 BRANCH_COST+1 is the default if the machine does not use
3172 cc0, and 1 if it does use cc0. */
3173 #define MAX_CONDITIONAL_EXECUTE frv_condexec_insns
3175 /* Default value of MAX_CONDITIONAL_EXECUTE if no -mcond-exec-insns= */
3176 #define DEFAULT_CONDEXEC_INSNS 8
3178 /* A C expression to modify the code described by the conditional if
3179 information CE_INFO, possibly updating the tests in TRUE_EXPR, and
3180 FALSE_EXPR for converting if-then and if-then-else code to conditional
3181 instructions. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if the
3182 tests cannot be converted. */
3183 #define IFCVT_MODIFY_TESTS(CE_INFO, TRUE_EXPR, FALSE_EXPR) \
3184 frv_ifcvt_modify_tests (CE_INFO, &TRUE_EXPR, &FALSE_EXPR)
3186 /* A C expression to modify the code described by the conditional if
3187 information CE_INFO, for the basic block BB, possibly updating the tests in
3188 TRUE_EXPR, and FALSE_EXPR for converting the && and || parts of if-then or
3189 if-then-else code to conditional instructions. OLD_TRUE and OLD_FALSE are
3190 the previous tests. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if
3191 the tests cannot be converted. */
3192 #define IFCVT_MODIFY_MULTIPLE_TESTS(CE_INFO, BB, TRUE_EXPR, FALSE_EXPR) \
3193 frv_ifcvt_modify_multiple_tests (CE_INFO, BB, &TRUE_EXPR, &FALSE_EXPR)
3195 /* A C expression to modify the code described by the conditional if
3196 information CE_INFO with the new PATTERN in INSN. If PATTERN is a null
3197 pointer after the IFCVT_MODIFY_INSN macro executes, it is assumed that that
3198 insn cannot be converted to be executed conditionally. */
3199 #define IFCVT_MODIFY_INSN(CE_INFO, PATTERN, INSN) \
3200 (PATTERN) = frv_ifcvt_modify_insn (CE_INFO, PATTERN, INSN)
3202 /* A C expression to perform any final machine dependent modifications in
3203 converting code to conditional execution in the code described by the
3204 conditional if information CE_INFO. */
3205 #define IFCVT_MODIFY_FINAL(CE_INFO) frv_ifcvt_modify_final (CE_INFO)
3207 /* A C expression to cancel any machine dependent modifications in converting
3208 code to conditional execution in the code described by the conditional if
3209 information CE_INFO. */
3210 #define IFCVT_MODIFY_CANCEL(CE_INFO) frv_ifcvt_modify_cancel (CE_INFO)
3212 /* Initialize the extra fields provided by IFCVT_EXTRA_FIELDS. */
3213 #define IFCVT_INIT_EXTRA_FIELDS(CE_INFO) frv_ifcvt_init_extra_fields (CE_INFO)
3215 /* Indicate how many instructions can be issued at the same time. */
3216 #define ISSUE_RATE \
3217 (! TARGET_PACK ? 1 \
3218 : (frv_cpu_type == FRV_CPU_GENERIC \
3219 || frv_cpu_type == FRV_CPU_FR500 \
3220 || frv_cpu_type == FRV_CPU_TOMCAT) ? 4 \
3221 : frv_cpu_type == FRV_CPU_FR400 ? 2 : 1)
3223 /* Set and clear whether this insn begins a VLIW insn. */
3224 #define CLEAR_VLIW_START(INSN) PUT_MODE (INSN, VOIDmode)
3225 #define SET_VLIW_START(INSN) PUT_MODE (INSN, TImode)
3227 /* The definition of the following macro results in that the 2nd jump
3228 optimization (after the 2nd insn scheduling) is minimal. It is
3229 necessary to define when start cycle marks of insns (TImode is used
3230 for this) is used for VLIW insn packing. Some jump optimizations
3231 make such marks invalid. These marks are corrected for some
3232 (minimal) optimizations. ??? Probably the macro is temporary.
3233 Final solution could making the 2nd jump optimizations before the
3234 2nd instruction scheduling or corrections of the marks for all jump
3235 optimizations. Although some jump optimizations are actually
3236 deoptimizations for VLIW (super-scalar) processors. */
3238 #define MINIMAL_SECOND_JUMP_OPTIMIZATION
3240 /* Return true if parallel operations are expected to be emitted via the
3241 packing flag. */
3242 #define PACKING_FLAG_USED_P() \
3243 (optimize && flag_schedule_insns_after_reload && ISSUE_RATE > 1)
3245 /* If the following macro is defined and nonzero and deterministic
3246 finite state automata are used for pipeline hazard recognition, the
3247 code making resource-constrained software pipelining is on. */
3248 #define RCSP_SOFTWARE_PIPELINING 1
3250 /* If the following macro is defined and nonzero and deterministic
3251 finite state automata are used for pipeline hazard recognition, we
3252 will try to exchange insns in queue ready to improve the schedule.
3253 The more macro value, the more tries will be made. */
3254 #define FIRST_CYCLE_MULTIPASS_SCHEDULING 1
3256 /* The following macro is used only when value of
3257 FIRST_CYCLE_MULTIPASS_SCHEDULING is nonzero. The more macro value,
3258 the more tries will be made to choose better schedule. If the
3259 macro value is zero or negative there will be no multi-pass
3260 scheduling. */
3261 #define FIRST_CYCLE_MULTIPASS_SCHEDULING_LOOKAHEAD frv_sched_lookahead
3263 enum frv_builtins
3265 FRV_BUILTIN_MAND,
3266 FRV_BUILTIN_MOR,
3267 FRV_BUILTIN_MXOR,
3268 FRV_BUILTIN_MNOT,
3269 FRV_BUILTIN_MAVEH,
3270 FRV_BUILTIN_MSATHS,
3271 FRV_BUILTIN_MSATHU,
3272 FRV_BUILTIN_MADDHSS,
3273 FRV_BUILTIN_MADDHUS,
3274 FRV_BUILTIN_MSUBHSS,
3275 FRV_BUILTIN_MSUBHUS,
3276 FRV_BUILTIN_MPACKH,
3277 FRV_BUILTIN_MQADDHSS,
3278 FRV_BUILTIN_MQADDHUS,
3279 FRV_BUILTIN_MQSUBHSS,
3280 FRV_BUILTIN_MQSUBHUS,
3281 FRV_BUILTIN_MUNPACKH,
3282 FRV_BUILTIN_MDPACKH,
3283 FRV_BUILTIN_MBTOH,
3284 FRV_BUILTIN_MHTOB,
3285 FRV_BUILTIN_MCOP1,
3286 FRV_BUILTIN_MCOP2,
3287 FRV_BUILTIN_MROTLI,
3288 FRV_BUILTIN_MROTRI,
3289 FRV_BUILTIN_MWCUT,
3290 FRV_BUILTIN_MSLLHI,
3291 FRV_BUILTIN_MSRLHI,
3292 FRV_BUILTIN_MSRAHI,
3293 FRV_BUILTIN_MEXPDHW,
3294 FRV_BUILTIN_MEXPDHD,
3295 FRV_BUILTIN_MMULHS,
3296 FRV_BUILTIN_MMULHU,
3297 FRV_BUILTIN_MMULXHS,
3298 FRV_BUILTIN_MMULXHU,
3299 FRV_BUILTIN_MMACHS,
3300 FRV_BUILTIN_MMACHU,
3301 FRV_BUILTIN_MMRDHS,
3302 FRV_BUILTIN_MMRDHU,
3303 FRV_BUILTIN_MQMULHS,
3304 FRV_BUILTIN_MQMULHU,
3305 FRV_BUILTIN_MQMULXHU,
3306 FRV_BUILTIN_MQMULXHS,
3307 FRV_BUILTIN_MQMACHS,
3308 FRV_BUILTIN_MQMACHU,
3309 FRV_BUILTIN_MCPXRS,
3310 FRV_BUILTIN_MCPXRU,
3311 FRV_BUILTIN_MCPXIS,
3312 FRV_BUILTIN_MCPXIU,
3313 FRV_BUILTIN_MQCPXRS,
3314 FRV_BUILTIN_MQCPXRU,
3315 FRV_BUILTIN_MQCPXIS,
3316 FRV_BUILTIN_MQCPXIU,
3317 FRV_BUILTIN_MCUT,
3318 FRV_BUILTIN_MCUTSS,
3319 FRV_BUILTIN_MWTACC,
3320 FRV_BUILTIN_MWTACCG,
3321 FRV_BUILTIN_MRDACC,
3322 FRV_BUILTIN_MRDACCG,
3323 FRV_BUILTIN_MTRAP,
3324 FRV_BUILTIN_MCLRACC,
3325 FRV_BUILTIN_MCLRACCA,
3326 FRV_BUILTIN_MDUNPACKH,
3327 FRV_BUILTIN_MBTOHE,
3328 FRV_BUILTIN_MQXMACHS,
3329 FRV_BUILTIN_MQXMACXHS,
3330 FRV_BUILTIN_MQMACXHS,
3331 FRV_BUILTIN_MADDACCS,
3332 FRV_BUILTIN_MSUBACCS,
3333 FRV_BUILTIN_MASACCS,
3334 FRV_BUILTIN_MDADDACCS,
3335 FRV_BUILTIN_MDSUBACCS,
3336 FRV_BUILTIN_MDASACCS,
3337 FRV_BUILTIN_MABSHS,
3338 FRV_BUILTIN_MDROTLI,
3339 FRV_BUILTIN_MCPLHI,
3340 FRV_BUILTIN_MCPLI,
3341 FRV_BUILTIN_MDCUTSSI,
3342 FRV_BUILTIN_MQSATHS,
3343 FRV_BUILTIN_MHSETLOS,
3344 FRV_BUILTIN_MHSETLOH,
3345 FRV_BUILTIN_MHSETHIS,
3346 FRV_BUILTIN_MHSETHIH,
3347 FRV_BUILTIN_MHDSETS,
3348 FRV_BUILTIN_MHDSETH
3351 /* Enable prototypes on the call rtl functions. */
3352 #define MD_CALL_PROTOTYPES 1
3354 extern GTY(()) rtx frv_compare_op0; /* operand save for */
3355 extern GTY(()) rtx frv_compare_op1; /* comparison generation */
3357 #endif /* __FRV_H__ */