2003-12-26 Guilhem Lavaux <guilhem@kaffe.org>
[official-gcc.git] / gcc / config / alpha / alpha.c
blob87408d6f5f7b348e5c69f2356b32c4f6d61193da
1 /* Subroutines used for code generation on the DEC Alpha.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "real.h"
33 #include "insn-config.h"
34 #include "conditions.h"
35 #include "output.h"
36 #include "insn-attr.h"
37 #include "flags.h"
38 #include "recog.h"
39 #include "expr.h"
40 #include "optabs.h"
41 #include "reload.h"
42 #include "obstack.h"
43 #include "except.h"
44 #include "function.h"
45 #include "toplev.h"
46 #include "ggc.h"
47 #include "integrate.h"
48 #include "tm_p.h"
49 #include "target.h"
50 #include "target-def.h"
51 #include "debug.h"
52 #include "langhooks.h"
53 #include <splay-tree.h>
54 #include "cfglayout.h"
56 /* Specify which cpu to schedule for. */
58 enum processor_type alpha_cpu;
59 static const char * const alpha_cpu_name[] =
61 "ev4", "ev5", "ev6"
64 /* Specify how accurate floating-point traps need to be. */
66 enum alpha_trap_precision alpha_tp;
68 /* Specify the floating-point rounding mode. */
70 enum alpha_fp_rounding_mode alpha_fprm;
72 /* Specify which things cause traps. */
74 enum alpha_fp_trap_mode alpha_fptm;
76 /* Specify bit size of immediate TLS offsets. */
78 int alpha_tls_size = 32;
80 /* Strings decoded into the above options. */
82 const char *alpha_cpu_string; /* -mcpu= */
83 const char *alpha_tune_string; /* -mtune= */
84 const char *alpha_tp_string; /* -mtrap-precision=[p|s|i] */
85 const char *alpha_fprm_string; /* -mfp-rounding-mode=[n|m|c|d] */
86 const char *alpha_fptm_string; /* -mfp-trap-mode=[n|u|su|sui] */
87 const char *alpha_mlat_string; /* -mmemory-latency= */
88 const char *alpha_tls_size_string; /* -mtls-size=[16|32|64] */
90 /* Save information from a "cmpxx" operation until the branch or scc is
91 emitted. */
93 struct alpha_compare alpha_compare;
95 /* Nonzero if inside of a function, because the Alpha asm can't
96 handle .files inside of functions. */
98 static int inside_function = FALSE;
100 /* The number of cycles of latency we should assume on memory reads. */
102 int alpha_memory_latency = 3;
104 /* Whether the function needs the GP. */
106 static int alpha_function_needs_gp;
108 /* The alias set for prologue/epilogue register save/restore. */
110 static GTY(()) int alpha_sr_alias_set;
112 /* The assembler name of the current function. */
114 static const char *alpha_fnname;
116 /* The next explicit relocation sequence number. */
117 extern GTY(()) int alpha_next_sequence_number;
118 int alpha_next_sequence_number = 1;
120 /* The literal and gpdisp sequence numbers for this insn, as printed
121 by %# and %* respectively. */
122 extern GTY(()) int alpha_this_literal_sequence_number;
123 extern GTY(()) int alpha_this_gpdisp_sequence_number;
124 int alpha_this_literal_sequence_number;
125 int alpha_this_gpdisp_sequence_number;
127 /* Costs of various operations on the different architectures. */
129 struct alpha_rtx_cost_data
131 unsigned char fp_add;
132 unsigned char fp_mult;
133 unsigned char fp_div_sf;
134 unsigned char fp_div_df;
135 unsigned char int_mult_si;
136 unsigned char int_mult_di;
137 unsigned char int_shift;
138 unsigned char int_cmov;
141 static struct alpha_rtx_cost_data const alpha_rtx_cost_data[PROCESSOR_MAX] =
143 { /* EV4 */
144 COSTS_N_INSNS (6), /* fp_add */
145 COSTS_N_INSNS (6), /* fp_mult */
146 COSTS_N_INSNS (34), /* fp_div_sf */
147 COSTS_N_INSNS (63), /* fp_div_df */
148 COSTS_N_INSNS (23), /* int_mult_si */
149 COSTS_N_INSNS (23), /* int_mult_di */
150 COSTS_N_INSNS (2), /* int_shift */
151 COSTS_N_INSNS (2), /* int_cmov */
153 { /* EV5 */
154 COSTS_N_INSNS (4), /* fp_add */
155 COSTS_N_INSNS (4), /* fp_mult */
156 COSTS_N_INSNS (15), /* fp_div_sf */
157 COSTS_N_INSNS (22), /* fp_div_df */
158 COSTS_N_INSNS (8), /* int_mult_si */
159 COSTS_N_INSNS (12), /* int_mult_di */
160 COSTS_N_INSNS (1) + 1, /* int_shift */
161 COSTS_N_INSNS (1), /* int_cmov */
163 { /* EV6 */
164 COSTS_N_INSNS (4), /* fp_add */
165 COSTS_N_INSNS (4), /* fp_mult */
166 COSTS_N_INSNS (12), /* fp_div_sf */
167 COSTS_N_INSNS (15), /* fp_div_df */
168 COSTS_N_INSNS (7), /* int_mult_si */
169 COSTS_N_INSNS (7), /* int_mult_di */
170 COSTS_N_INSNS (1), /* int_shift */
171 COSTS_N_INSNS (2), /* int_cmov */
175 /* Get the number of args of a function in one of two ways. */
176 #if TARGET_ABI_OPEN_VMS || TARGET_ABI_UNICOSMK
177 #define NUM_ARGS current_function_args_info.num_args
178 #else
179 #define NUM_ARGS current_function_args_info
180 #endif
182 #define REG_PV 27
183 #define REG_RA 26
185 /* Declarations of static functions. */
186 static struct machine_function *alpha_init_machine_status (void);
187 static rtx alpha_emit_xfloating_compare (enum rtx_code, rtx, rtx);
189 #if TARGET_ABI_OPEN_VMS
190 static void alpha_write_linkage (FILE *, const char *, tree);
191 #endif
193 static void unicosmk_output_deferred_case_vectors (FILE *);
194 static void unicosmk_gen_dsib (unsigned long *);
195 static void unicosmk_output_ssib (FILE *, const char *);
196 static int unicosmk_need_dex (rtx);
198 /* Parse target option strings. */
200 void
201 override_options (void)
203 int i;
204 static const struct cpu_table {
205 const char *const name;
206 const enum processor_type processor;
207 const int flags;
208 } cpu_table[] = {
209 #define EV5_MASK (MASK_CPU_EV5)
210 #define EV6_MASK (MASK_CPU_EV6|MASK_BWX|MASK_MAX|MASK_FIX)
211 { "ev4", PROCESSOR_EV4, 0 },
212 { "ev45", PROCESSOR_EV4, 0 },
213 { "21064", PROCESSOR_EV4, 0 },
214 { "ev5", PROCESSOR_EV5, EV5_MASK },
215 { "21164", PROCESSOR_EV5, EV5_MASK },
216 { "ev56", PROCESSOR_EV5, EV5_MASK|MASK_BWX },
217 { "21164a", PROCESSOR_EV5, EV5_MASK|MASK_BWX },
218 { "pca56", PROCESSOR_EV5, EV5_MASK|MASK_BWX|MASK_MAX },
219 { "21164PC",PROCESSOR_EV5, EV5_MASK|MASK_BWX|MASK_MAX },
220 { "21164pc",PROCESSOR_EV5, EV5_MASK|MASK_BWX|MASK_MAX },
221 { "ev6", PROCESSOR_EV6, EV6_MASK },
222 { "21264", PROCESSOR_EV6, EV6_MASK },
223 { "ev67", PROCESSOR_EV6, EV6_MASK|MASK_CIX },
224 { "21264a", PROCESSOR_EV6, EV6_MASK|MASK_CIX },
225 { 0, 0, 0 }
228 /* Unicos/Mk doesn't have shared libraries. */
229 if (TARGET_ABI_UNICOSMK && flag_pic)
231 warning ("-f%s ignored for Unicos/Mk (not supported)",
232 (flag_pic > 1) ? "PIC" : "pic");
233 flag_pic = 0;
236 /* On Unicos/Mk, the native compiler consistently generates /d suffices for
237 floating-point instructions. Make that the default for this target. */
238 if (TARGET_ABI_UNICOSMK)
239 alpha_fprm = ALPHA_FPRM_DYN;
240 else
241 alpha_fprm = ALPHA_FPRM_NORM;
243 alpha_tp = ALPHA_TP_PROG;
244 alpha_fptm = ALPHA_FPTM_N;
246 /* We cannot use su and sui qualifiers for conversion instructions on
247 Unicos/Mk. I'm not sure if this is due to assembler or hardware
248 limitations. Right now, we issue a warning if -mieee is specified
249 and then ignore it; eventually, we should either get it right or
250 disable the option altogether. */
252 if (TARGET_IEEE)
254 if (TARGET_ABI_UNICOSMK)
255 warning ("-mieee not supported on Unicos/Mk");
256 else
258 alpha_tp = ALPHA_TP_INSN;
259 alpha_fptm = ALPHA_FPTM_SU;
263 if (TARGET_IEEE_WITH_INEXACT)
265 if (TARGET_ABI_UNICOSMK)
266 warning ("-mieee-with-inexact not supported on Unicos/Mk");
267 else
269 alpha_tp = ALPHA_TP_INSN;
270 alpha_fptm = ALPHA_FPTM_SUI;
274 if (alpha_tp_string)
276 if (! strcmp (alpha_tp_string, "p"))
277 alpha_tp = ALPHA_TP_PROG;
278 else if (! strcmp (alpha_tp_string, "f"))
279 alpha_tp = ALPHA_TP_FUNC;
280 else if (! strcmp (alpha_tp_string, "i"))
281 alpha_tp = ALPHA_TP_INSN;
282 else
283 error ("bad value `%s' for -mtrap-precision switch", alpha_tp_string);
286 if (alpha_fprm_string)
288 if (! strcmp (alpha_fprm_string, "n"))
289 alpha_fprm = ALPHA_FPRM_NORM;
290 else if (! strcmp (alpha_fprm_string, "m"))
291 alpha_fprm = ALPHA_FPRM_MINF;
292 else if (! strcmp (alpha_fprm_string, "c"))
293 alpha_fprm = ALPHA_FPRM_CHOP;
294 else if (! strcmp (alpha_fprm_string,"d"))
295 alpha_fprm = ALPHA_FPRM_DYN;
296 else
297 error ("bad value `%s' for -mfp-rounding-mode switch",
298 alpha_fprm_string);
301 if (alpha_fptm_string)
303 if (strcmp (alpha_fptm_string, "n") == 0)
304 alpha_fptm = ALPHA_FPTM_N;
305 else if (strcmp (alpha_fptm_string, "u") == 0)
306 alpha_fptm = ALPHA_FPTM_U;
307 else if (strcmp (alpha_fptm_string, "su") == 0)
308 alpha_fptm = ALPHA_FPTM_SU;
309 else if (strcmp (alpha_fptm_string, "sui") == 0)
310 alpha_fptm = ALPHA_FPTM_SUI;
311 else
312 error ("bad value `%s' for -mfp-trap-mode switch", alpha_fptm_string);
315 if (alpha_tls_size_string)
317 if (strcmp (alpha_tls_size_string, "16") == 0)
318 alpha_tls_size = 16;
319 else if (strcmp (alpha_tls_size_string, "32") == 0)
320 alpha_tls_size = 32;
321 else if (strcmp (alpha_tls_size_string, "64") == 0)
322 alpha_tls_size = 64;
323 else
324 error ("bad value `%s' for -mtls-size switch", alpha_tls_size_string);
327 alpha_cpu
328 = TARGET_CPU_DEFAULT & MASK_CPU_EV6 ? PROCESSOR_EV6
329 : (TARGET_CPU_DEFAULT & MASK_CPU_EV5 ? PROCESSOR_EV5 : PROCESSOR_EV4);
331 if (alpha_cpu_string)
333 for (i = 0; cpu_table [i].name; i++)
334 if (! strcmp (alpha_cpu_string, cpu_table [i].name))
336 alpha_cpu = cpu_table [i].processor;
337 target_flags &= ~ (MASK_BWX | MASK_MAX | MASK_FIX | MASK_CIX
338 | MASK_CPU_EV5 | MASK_CPU_EV6);
339 target_flags |= cpu_table [i].flags;
340 break;
342 if (! cpu_table [i].name)
343 error ("bad value `%s' for -mcpu switch", alpha_cpu_string);
346 if (alpha_tune_string)
348 for (i = 0; cpu_table [i].name; i++)
349 if (! strcmp (alpha_tune_string, cpu_table [i].name))
351 alpha_cpu = cpu_table [i].processor;
352 break;
354 if (! cpu_table [i].name)
355 error ("bad value `%s' for -mcpu switch", alpha_tune_string);
358 /* Do some sanity checks on the above options. */
360 if (TARGET_ABI_UNICOSMK && alpha_fptm != ALPHA_FPTM_N)
362 warning ("trap mode not supported on Unicos/Mk");
363 alpha_fptm = ALPHA_FPTM_N;
366 if ((alpha_fptm == ALPHA_FPTM_SU || alpha_fptm == ALPHA_FPTM_SUI)
367 && alpha_tp != ALPHA_TP_INSN && ! TARGET_CPU_EV6)
369 warning ("fp software completion requires -mtrap-precision=i");
370 alpha_tp = ALPHA_TP_INSN;
373 if (TARGET_CPU_EV6)
375 /* Except for EV6 pass 1 (not released), we always have precise
376 arithmetic traps. Which means we can do software completion
377 without minding trap shadows. */
378 alpha_tp = ALPHA_TP_PROG;
381 if (TARGET_FLOAT_VAX)
383 if (alpha_fprm == ALPHA_FPRM_MINF || alpha_fprm == ALPHA_FPRM_DYN)
385 warning ("rounding mode not supported for VAX floats");
386 alpha_fprm = ALPHA_FPRM_NORM;
388 if (alpha_fptm == ALPHA_FPTM_SUI)
390 warning ("trap mode not supported for VAX floats");
391 alpha_fptm = ALPHA_FPTM_SU;
396 char *end;
397 int lat;
399 if (!alpha_mlat_string)
400 alpha_mlat_string = "L1";
402 if (ISDIGIT ((unsigned char)alpha_mlat_string[0])
403 && (lat = strtol (alpha_mlat_string, &end, 10), *end == '\0'))
405 else if ((alpha_mlat_string[0] == 'L' || alpha_mlat_string[0] == 'l')
406 && ISDIGIT ((unsigned char)alpha_mlat_string[1])
407 && alpha_mlat_string[2] == '\0')
409 static int const cache_latency[][4] =
411 { 3, 30, -1 }, /* ev4 -- Bcache is a guess */
412 { 2, 12, 38 }, /* ev5 -- Bcache from PC164 LMbench numbers */
413 { 3, 12, 30 }, /* ev6 -- Bcache from DS20 LMbench. */
416 lat = alpha_mlat_string[1] - '0';
417 if (lat <= 0 || lat > 3 || cache_latency[alpha_cpu][lat-1] == -1)
419 warning ("L%d cache latency unknown for %s",
420 lat, alpha_cpu_name[alpha_cpu]);
421 lat = 3;
423 else
424 lat = cache_latency[alpha_cpu][lat-1];
426 else if (! strcmp (alpha_mlat_string, "main"))
428 /* Most current memories have about 370ns latency. This is
429 a reasonable guess for a fast cpu. */
430 lat = 150;
432 else
434 warning ("bad value `%s' for -mmemory-latency", alpha_mlat_string);
435 lat = 3;
438 alpha_memory_latency = lat;
441 /* Default the definition of "small data" to 8 bytes. */
442 if (!g_switch_set)
443 g_switch_value = 8;
445 /* Infer TARGET_SMALL_DATA from -fpic/-fPIC. */
446 if (flag_pic == 1)
447 target_flags |= MASK_SMALL_DATA;
448 else if (flag_pic == 2)
449 target_flags &= ~MASK_SMALL_DATA;
451 /* Align labels and loops for optimal branching. */
452 /* ??? Kludge these by not doing anything if we don't optimize and also if
453 we are writing ECOFF symbols to work around a bug in DEC's assembler. */
454 if (optimize > 0 && write_symbols != SDB_DEBUG)
456 if (align_loops <= 0)
457 align_loops = 16;
458 if (align_jumps <= 0)
459 align_jumps = 16;
461 if (align_functions <= 0)
462 align_functions = 16;
464 /* Acquire a unique set number for our register saves and restores. */
465 alpha_sr_alias_set = new_alias_set ();
467 /* Register variables and functions with the garbage collector. */
469 /* Set up function hooks. */
470 init_machine_status = alpha_init_machine_status;
472 /* Tell the compiler when we're using VAX floating point. */
473 if (TARGET_FLOAT_VAX)
475 REAL_MODE_FORMAT (SFmode) = &vax_f_format;
476 REAL_MODE_FORMAT (DFmode) = &vax_g_format;
477 REAL_MODE_FORMAT (TFmode) = NULL;
481 /* Returns 1 if VALUE is a mask that contains full bytes of zero or ones. */
484 zap_mask (HOST_WIDE_INT value)
486 int i;
488 for (i = 0; i < HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
489 i++, value >>= 8)
490 if ((value & 0xff) != 0 && (value & 0xff) != 0xff)
491 return 0;
493 return 1;
496 /* Returns 1 if OP is either the constant zero or a register. If a
497 register, it must be in the proper mode unless MODE is VOIDmode. */
500 reg_or_0_operand (rtx op, enum machine_mode mode)
502 return op == CONST0_RTX (mode) || register_operand (op, mode);
505 /* Return 1 if OP is a constant in the range of 0-63 (for a shift) or
506 any register. */
509 reg_or_6bit_operand (rtx op, enum machine_mode mode)
511 return ((GET_CODE (op) == CONST_INT
512 && (unsigned HOST_WIDE_INT) INTVAL (op) < 64)
513 || register_operand (op, mode));
517 /* Return 1 if OP is an 8-bit constant or any register. */
520 reg_or_8bit_operand (rtx op, enum machine_mode mode)
522 return ((GET_CODE (op) == CONST_INT
523 && (unsigned HOST_WIDE_INT) INTVAL (op) < 0x100)
524 || register_operand (op, mode));
527 /* Return 1 if OP is a constant or any register. */
530 reg_or_const_int_operand (rtx op, enum machine_mode mode)
532 return GET_CODE (op) == CONST_INT || register_operand (op, mode);
535 /* Return 1 if OP is an 8-bit constant. */
538 cint8_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
540 return ((GET_CODE (op) == CONST_INT
541 && (unsigned HOST_WIDE_INT) INTVAL (op) < 0x100));
544 /* Return 1 if the operand is a valid second operand to an add insn. */
547 add_operand (rtx op, enum machine_mode mode)
549 if (GET_CODE (op) == CONST_INT)
550 /* Constraints I, J, O and P are covered by K. */
551 return (CONST_OK_FOR_LETTER_P (INTVAL (op), 'K')
552 || CONST_OK_FOR_LETTER_P (INTVAL (op), 'L'));
554 return register_operand (op, mode);
557 /* Return 1 if the operand is a valid second operand to a sign-extending
558 add insn. */
561 sext_add_operand (rtx op, enum machine_mode mode)
563 if (GET_CODE (op) == CONST_INT)
564 return (CONST_OK_FOR_LETTER_P (INTVAL (op), 'I')
565 || CONST_OK_FOR_LETTER_P (INTVAL (op), 'O'));
567 return reg_not_elim_operand (op, mode);
570 /* Return 1 if OP is the constant 4 or 8. */
573 const48_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
575 return (GET_CODE (op) == CONST_INT
576 && (INTVAL (op) == 4 || INTVAL (op) == 8));
579 /* Return 1 if OP is a valid first operand to an AND insn. */
582 and_operand (rtx op, enum machine_mode mode)
584 if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == VOIDmode)
585 return (zap_mask (CONST_DOUBLE_LOW (op))
586 && zap_mask (CONST_DOUBLE_HIGH (op)));
588 if (GET_CODE (op) == CONST_INT)
589 return ((unsigned HOST_WIDE_INT) INTVAL (op) < 0x100
590 || (unsigned HOST_WIDE_INT) ~ INTVAL (op) < 0x100
591 || zap_mask (INTVAL (op)));
593 return register_operand (op, mode);
596 /* Return 1 if OP is a valid first operand to an IOR or XOR insn. */
599 or_operand (rtx op, enum machine_mode mode)
601 if (GET_CODE (op) == CONST_INT)
602 return ((unsigned HOST_WIDE_INT) INTVAL (op) < 0x100
603 || (unsigned HOST_WIDE_INT) ~ INTVAL (op) < 0x100);
605 return register_operand (op, mode);
608 /* Return 1 if OP is a constant that is the width, in bits, of an integral
609 mode smaller than DImode. */
612 mode_width_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
614 return (GET_CODE (op) == CONST_INT
615 && (INTVAL (op) == 8 || INTVAL (op) == 16
616 || INTVAL (op) == 32 || INTVAL (op) == 64));
619 /* Return 1 if OP is a constant that is the width of an integral machine mode
620 smaller than an integer. */
623 mode_mask_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
625 if (GET_CODE (op) == CONST_INT)
627 HOST_WIDE_INT value = INTVAL (op);
629 if (value == 0xff)
630 return 1;
631 if (value == 0xffff)
632 return 1;
633 if (value == 0xffffffff)
634 return 1;
635 if (value == -1)
636 return 1;
638 else if (HOST_BITS_PER_WIDE_INT == 32 && GET_CODE (op) == CONST_DOUBLE)
640 if (CONST_DOUBLE_LOW (op) == 0xffffffff && CONST_DOUBLE_HIGH (op) == 0)
641 return 1;
644 return 0;
647 /* Return 1 if OP is a multiple of 8 less than 64. */
650 mul8_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
652 return (GET_CODE (op) == CONST_INT
653 && (unsigned HOST_WIDE_INT) INTVAL (op) < 64
654 && (INTVAL (op) & 7) == 0);
657 /* Return 1 if OP is the zero constant for MODE. */
660 const0_operand (rtx op, enum machine_mode mode)
662 return op == CONST0_RTX (mode);
665 /* Return 1 if OP is a hard floating-point register. */
668 hard_fp_register_operand (rtx op, enum machine_mode mode)
670 if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op))
671 return 0;
673 if (GET_CODE (op) == SUBREG)
674 op = SUBREG_REG (op);
675 return GET_CODE (op) == REG && REGNO_REG_CLASS (REGNO (op)) == FLOAT_REGS;
678 /* Return 1 if OP is a hard general register. */
681 hard_int_register_operand (rtx op, enum machine_mode mode)
683 if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op))
684 return 0;
686 if (GET_CODE (op) == SUBREG)
687 op = SUBREG_REG (op);
688 return GET_CODE (op) == REG && REGNO_REG_CLASS (REGNO (op)) == GENERAL_REGS;
691 /* Return 1 if OP is a register or a constant integer. */
695 reg_or_cint_operand (rtx op, enum machine_mode mode)
697 return (GET_CODE (op) == CONST_INT
698 || register_operand (op, mode));
701 /* Return 1 if OP is something that can be reloaded into a register;
702 if it is a MEM, it need not be valid. */
705 some_operand (rtx op, enum machine_mode mode)
707 if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op))
708 return 0;
710 switch (GET_CODE (op))
712 case REG:
713 case MEM:
714 case CONST_INT:
715 case CONST_DOUBLE:
716 case CONST_VECTOR:
717 case LABEL_REF:
718 case SYMBOL_REF:
719 case CONST:
720 case HIGH:
721 return 1;
723 case SUBREG:
724 return some_operand (SUBREG_REG (op), VOIDmode);
726 default:
727 break;
730 return 0;
733 /* Likewise, but don't accept constants. */
736 some_ni_operand (rtx op, enum machine_mode mode)
738 if (GET_MODE (op) != mode && mode != VOIDmode)
739 return 0;
741 if (GET_CODE (op) == SUBREG)
742 op = SUBREG_REG (op);
744 return (GET_CODE (op) == REG || GET_CODE (op) == MEM);
747 /* Return 1 if OP is a valid operand for the source of a move insn. */
750 input_operand (rtx op, enum machine_mode mode)
752 if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op))
753 return 0;
755 if (GET_MODE_CLASS (mode) == MODE_FLOAT && GET_MODE (op) != mode)
756 return 0;
758 switch (GET_CODE (op))
760 case LABEL_REF:
761 case SYMBOL_REF:
762 case CONST:
763 if (TARGET_EXPLICIT_RELOCS)
765 /* We don't split symbolic operands into something unintelligable
766 until after reload, but we do not wish non-small, non-global
767 symbolic operands to be reconstructed from their high/lo_sum
768 form. */
769 return (small_symbolic_operand (op, mode)
770 || global_symbolic_operand (op, mode)
771 || gotdtp_symbolic_operand (op, mode)
772 || gottp_symbolic_operand (op, mode));
775 /* This handles both the Windows/NT and OSF cases. */
776 return mode == ptr_mode || mode == DImode;
778 case HIGH:
779 return (TARGET_EXPLICIT_RELOCS
780 && local_symbolic_operand (XEXP (op, 0), mode));
782 case REG:
783 case ADDRESSOF:
784 return 1;
786 case SUBREG:
787 if (register_operand (op, mode))
788 return 1;
789 /* ... fall through ... */
790 case MEM:
791 return ((TARGET_BWX || (mode != HImode && mode != QImode))
792 && general_operand (op, mode));
794 case CONST_DOUBLE:
795 case CONST_VECTOR:
796 return op == CONST0_RTX (mode);
798 case CONST_INT:
799 return mode == QImode || mode == HImode || add_operand (op, mode);
801 case CONSTANT_P_RTX:
802 return 1;
804 default:
805 break;
808 return 0;
811 /* Return 1 if OP is a SYMBOL_REF for a function known to be in this
812 file, and in the same section as the current function. */
815 samegp_function_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
817 if (GET_CODE (op) != SYMBOL_REF)
818 return false;
820 /* Easy test for recursion. */
821 if (op == XEXP (DECL_RTL (current_function_decl), 0))
822 return true;
824 /* Functions that are not local can be overridden, and thus may
825 not share the same gp. */
826 if (! SYMBOL_REF_LOCAL_P (op))
827 return false;
829 /* If -msmall-data is in effect, assume that there is only one GP
830 for the module, and so any local symbol has this property. We
831 need explicit relocations to be able to enforce this for symbols
832 not defined in this unit of translation, however. */
833 if (TARGET_EXPLICIT_RELOCS && TARGET_SMALL_DATA)
834 return true;
836 /* Functions that are not external are defined in this UoT,
837 and thus must share the same gp. */
838 return ! SYMBOL_REF_EXTERNAL_P (op);
841 /* Return 1 if OP is a SYMBOL_REF for which we can make a call via bsr. */
844 direct_call_operand (rtx op, enum machine_mode mode)
846 tree op_decl, cfun_sec, op_sec;
848 /* Must share the same GP. */
849 if (!samegp_function_operand (op, mode))
850 return false;
852 /* If profiling is implemented via linker tricks, we can't jump
853 to the nogp alternate entry point. Note that current_function_profile
854 would not be correct, since that doesn't indicate if the target
855 function uses profiling. */
856 /* ??? TARGET_PROFILING_NEEDS_GP isn't really the right test,
857 but is approximately correct for the OSF ABIs. Don't know
858 what to do for VMS, NT, or UMK. */
859 if (!TARGET_PROFILING_NEEDS_GP && profile_flag)
860 return false;
862 /* Must be a function. In some cases folks create thunks in static
863 data structures and then make calls to them. If we allow the
864 direct call, we'll get an error from the linker about !samegp reloc
865 against a symbol without a .prologue directive. */
866 if (!SYMBOL_REF_FUNCTION_P (op))
867 return false;
869 /* Must be "near" so that the branch is assumed to reach. With
870 -msmall-text, this is assumed true of all local symbols. Since
871 we've already checked samegp, locality is already assured. */
872 if (TARGET_SMALL_TEXT)
873 return true;
875 /* Otherwise, a decl is "near" if it is defined in the same section. */
876 if (flag_function_sections)
877 return false;
879 op_decl = SYMBOL_REF_DECL (op);
880 if (DECL_ONE_ONLY (current_function_decl)
881 || (op_decl && DECL_ONE_ONLY (op_decl)))
882 return false;
884 cfun_sec = DECL_SECTION_NAME (current_function_decl);
885 op_sec = op_decl ? DECL_SECTION_NAME (op_decl) : NULL;
886 return ((!cfun_sec && !op_sec)
887 || (cfun_sec && op_sec
888 && strcmp (TREE_STRING_POINTER (cfun_sec),
889 TREE_STRING_POINTER (op_sec)) == 0));
892 /* Return true if OP is a LABEL_REF, or SYMBOL_REF or CONST referencing
893 a (non-tls) variable known to be defined in this file. */
896 local_symbolic_operand (rtx op, enum machine_mode mode)
898 if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op))
899 return 0;
901 if (GET_CODE (op) == LABEL_REF)
902 return 1;
904 if (GET_CODE (op) == CONST
905 && GET_CODE (XEXP (op, 0)) == PLUS
906 && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT)
907 op = XEXP (XEXP (op, 0), 0);
909 if (GET_CODE (op) != SYMBOL_REF)
910 return 0;
912 return SYMBOL_REF_LOCAL_P (op) && !SYMBOL_REF_TLS_MODEL (op);
915 /* Return true if OP is a SYMBOL_REF or CONST referencing a variable
916 known to be defined in this file in the small data area. */
919 small_symbolic_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
921 if (! TARGET_SMALL_DATA)
922 return 0;
924 if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op))
925 return 0;
927 if (GET_CODE (op) == CONST
928 && GET_CODE (XEXP (op, 0)) == PLUS
929 && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT)
930 op = XEXP (XEXP (op, 0), 0);
932 if (GET_CODE (op) != SYMBOL_REF)
933 return 0;
935 /* ??? There's no encode_section_info equivalent for the rtl
936 constant pool, so SYMBOL_FLAG_SMALL never gets set. */
937 if (CONSTANT_POOL_ADDRESS_P (op))
938 return GET_MODE_SIZE (get_pool_mode (op)) <= g_switch_value;
940 return (SYMBOL_REF_LOCAL_P (op)
941 && SYMBOL_REF_SMALL_P (op)
942 && SYMBOL_REF_TLS_MODEL (op) == 0);
945 /* Return true if OP is a SYMBOL_REF or CONST referencing a variable
946 not known (or known not) to be defined in this file. */
949 global_symbolic_operand (rtx op, enum machine_mode mode)
951 if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op))
952 return 0;
954 if (GET_CODE (op) == CONST
955 && GET_CODE (XEXP (op, 0)) == PLUS
956 && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT)
957 op = XEXP (XEXP (op, 0), 0);
959 if (GET_CODE (op) != SYMBOL_REF)
960 return 0;
962 return !SYMBOL_REF_LOCAL_P (op) && !SYMBOL_REF_TLS_MODEL (op);
965 /* Return 1 if OP is a valid operand for the MEM of a CALL insn. */
968 call_operand (rtx op, enum machine_mode mode)
970 if (mode != Pmode)
971 return 0;
973 if (GET_CODE (op) == REG)
975 if (TARGET_ABI_OSF)
977 /* Disallow virtual registers to cope with pathological test cases
978 such as compile/930117-1.c in which the virtual reg decomposes
979 to the frame pointer. Which is a hard reg that is not $27. */
980 return (REGNO (op) == 27 || REGNO (op) > LAST_VIRTUAL_REGISTER);
982 else
983 return 1;
985 if (TARGET_ABI_UNICOSMK)
986 return 0;
987 if (GET_CODE (op) == SYMBOL_REF)
988 return 1;
990 return 0;
993 /* Returns 1 if OP is a symbolic operand, i.e. a symbol_ref or a label_ref,
994 possibly with an offset. */
997 symbolic_operand (rtx op, enum machine_mode mode)
999 if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op))
1000 return 0;
1001 if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF)
1002 return 1;
1003 if (GET_CODE (op) == CONST
1004 && GET_CODE (XEXP (op,0)) == PLUS
1005 && GET_CODE (XEXP (XEXP (op,0), 0)) == SYMBOL_REF
1006 && GET_CODE (XEXP (XEXP (op,0), 1)) == CONST_INT)
1007 return 1;
1008 return 0;
1011 /* Return true if OP is valid for a particular TLS relocation. */
1013 static int
1014 tls_symbolic_operand_1 (rtx op, enum machine_mode mode, int size, int unspec)
1016 if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op))
1017 return 0;
1019 if (GET_CODE (op) != CONST)
1020 return 0;
1021 op = XEXP (op, 0);
1023 if (GET_CODE (op) != UNSPEC || XINT (op, 1) != unspec)
1024 return 0;
1025 op = XVECEXP (op, 0, 0);
1027 if (GET_CODE (op) != SYMBOL_REF)
1028 return 0;
1030 if (SYMBOL_REF_LOCAL_P (op))
1032 if (alpha_tls_size > size)
1033 return 0;
1035 else
1037 if (size != 64)
1038 return 0;
1041 switch (SYMBOL_REF_TLS_MODEL (op))
1043 case TLS_MODEL_LOCAL_DYNAMIC:
1044 return unspec == UNSPEC_DTPREL;
1045 case TLS_MODEL_INITIAL_EXEC:
1046 return unspec == UNSPEC_TPREL && size == 64;
1047 case TLS_MODEL_LOCAL_EXEC:
1048 return unspec == UNSPEC_TPREL;
1049 default:
1050 abort ();
1054 /* Return true if OP is valid for 16-bit DTP relative relocations. */
1057 dtp16_symbolic_operand (rtx op, enum machine_mode mode)
1059 return tls_symbolic_operand_1 (op, mode, 16, UNSPEC_DTPREL);
1062 /* Return true if OP is valid for 32-bit DTP relative relocations. */
1065 dtp32_symbolic_operand (rtx op, enum machine_mode mode)
1067 return tls_symbolic_operand_1 (op, mode, 32, UNSPEC_DTPREL);
1070 /* Return true if OP is valid for 64-bit DTP relative relocations. */
1073 gotdtp_symbolic_operand (rtx op, enum machine_mode mode)
1075 return tls_symbolic_operand_1 (op, mode, 64, UNSPEC_DTPREL);
1078 /* Return true if OP is valid for 16-bit TP relative relocations. */
1081 tp16_symbolic_operand (rtx op, enum machine_mode mode)
1083 return tls_symbolic_operand_1 (op, mode, 16, UNSPEC_TPREL);
1086 /* Return true if OP is valid for 32-bit TP relative relocations. */
1089 tp32_symbolic_operand (rtx op, enum machine_mode mode)
1091 return tls_symbolic_operand_1 (op, mode, 32, UNSPEC_TPREL);
1094 /* Return true if OP is valid for 64-bit TP relative relocations. */
1097 gottp_symbolic_operand (rtx op, enum machine_mode mode)
1099 return tls_symbolic_operand_1 (op, mode, 64, UNSPEC_TPREL);
1102 /* Return 1 if OP is a valid Alpha comparison operator. Here we know which
1103 comparisons are valid in which insn. */
1106 alpha_comparison_operator (rtx op, enum machine_mode mode)
1108 enum rtx_code code = GET_CODE (op);
1110 if (mode != GET_MODE (op) && mode != VOIDmode)
1111 return 0;
1113 return (code == EQ || code == LE || code == LT
1114 || code == LEU || code == LTU);
1117 /* Return 1 if OP is a valid Alpha comparison operator against zero.
1118 Here we know which comparisons are valid in which insn. */
1121 alpha_zero_comparison_operator (rtx op, enum machine_mode mode)
1123 enum rtx_code code = GET_CODE (op);
1125 if (mode != GET_MODE (op) && mode != VOIDmode)
1126 return 0;
1128 return (code == EQ || code == NE || code == LE || code == LT
1129 || code == LEU || code == LTU);
1132 /* Return 1 if OP is a valid Alpha swapped comparison operator. */
1135 alpha_swapped_comparison_operator (rtx op, enum machine_mode mode)
1137 enum rtx_code code = GET_CODE (op);
1139 if ((mode != GET_MODE (op) && mode != VOIDmode)
1140 || GET_RTX_CLASS (code) != '<')
1141 return 0;
1143 code = swap_condition (code);
1144 return (code == EQ || code == LE || code == LT
1145 || code == LEU || code == LTU);
1148 /* Return 1 if OP is a signed comparison operation. */
1151 signed_comparison_operator (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1153 enum rtx_code code = GET_CODE (op);
1155 if (mode != GET_MODE (op) && mode != VOIDmode)
1156 return 0;
1158 return (code == EQ || code == NE
1159 || code == LE || code == LT
1160 || code == GE || code == GT);
1163 /* Return 1 if OP is a valid Alpha floating point comparison operator.
1164 Here we know which comparisons are valid in which insn. */
1167 alpha_fp_comparison_operator (rtx op, enum machine_mode mode)
1169 enum rtx_code code = GET_CODE (op);
1171 if (mode != GET_MODE (op) && mode != VOIDmode)
1172 return 0;
1174 return (code == EQ || code == LE || code == LT || code == UNORDERED);
1177 /* Return 1 if this is a divide or modulus operator. */
1180 divmod_operator (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1182 enum rtx_code code = GET_CODE (op);
1184 return (code == DIV || code == MOD || code == UDIV || code == UMOD);
1187 /* Return 1 if this is a float->int conversion operator. */
1190 fix_operator (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1192 enum rtx_code code = GET_CODE (op);
1194 return (code == FIX || code == UNSIGNED_FIX);
1197 /* Return 1 if this memory address is a known aligned register plus
1198 a constant. It must be a valid address. This means that we can do
1199 this as an aligned reference plus some offset.
1201 Take into account what reload will do. */
1204 aligned_memory_operand (rtx op, enum machine_mode mode)
1206 rtx base;
1208 if (reload_in_progress)
1210 rtx tmp = op;
1211 if (GET_CODE (tmp) == SUBREG)
1212 tmp = SUBREG_REG (tmp);
1213 if (GET_CODE (tmp) == REG
1214 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER)
1216 op = reg_equiv_memory_loc[REGNO (tmp)];
1217 if (op == 0)
1218 return 0;
1222 if (GET_CODE (op) != MEM
1223 || GET_MODE (op) != mode)
1224 return 0;
1225 op = XEXP (op, 0);
1227 /* LEGITIMIZE_RELOAD_ADDRESS creates (plus (plus reg const_hi) const_lo)
1228 sorts of constructs. Dig for the real base register. */
1229 if (reload_in_progress
1230 && GET_CODE (op) == PLUS
1231 && GET_CODE (XEXP (op, 0)) == PLUS)
1232 base = XEXP (XEXP (op, 0), 0);
1233 else
1235 if (! memory_address_p (mode, op))
1236 return 0;
1237 base = (GET_CODE (op) == PLUS ? XEXP (op, 0) : op);
1240 return (GET_CODE (base) == REG && REGNO_POINTER_ALIGN (REGNO (base)) >= 32);
1243 /* Similar, but return 1 if OP is a MEM which is not alignable. */
1246 unaligned_memory_operand (rtx op, enum machine_mode mode)
1248 rtx base;
1250 if (reload_in_progress)
1252 rtx tmp = op;
1253 if (GET_CODE (tmp) == SUBREG)
1254 tmp = SUBREG_REG (tmp);
1255 if (GET_CODE (tmp) == REG
1256 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER)
1258 op = reg_equiv_memory_loc[REGNO (tmp)];
1259 if (op == 0)
1260 return 0;
1264 if (GET_CODE (op) != MEM
1265 || GET_MODE (op) != mode)
1266 return 0;
1267 op = XEXP (op, 0);
1269 /* LEGITIMIZE_RELOAD_ADDRESS creates (plus (plus reg const_hi) const_lo)
1270 sorts of constructs. Dig for the real base register. */
1271 if (reload_in_progress
1272 && GET_CODE (op) == PLUS
1273 && GET_CODE (XEXP (op, 0)) == PLUS)
1274 base = XEXP (XEXP (op, 0), 0);
1275 else
1277 if (! memory_address_p (mode, op))
1278 return 0;
1279 base = (GET_CODE (op) == PLUS ? XEXP (op, 0) : op);
1282 return (GET_CODE (base) == REG && REGNO_POINTER_ALIGN (REGNO (base)) < 32);
1285 /* Return 1 if OP is either a register or an unaligned memory location. */
1288 reg_or_unaligned_mem_operand (rtx op, enum machine_mode mode)
1290 return register_operand (op, mode) || unaligned_memory_operand (op, mode);
1293 /* Return 1 if OP is any memory location. During reload a pseudo matches. */
1296 any_memory_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1298 return (GET_CODE (op) == MEM
1299 || (GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == REG)
1300 || (reload_in_progress && GET_CODE (op) == REG
1301 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1302 || (reload_in_progress && GET_CODE (op) == SUBREG
1303 && GET_CODE (SUBREG_REG (op)) == REG
1304 && REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER));
1307 /* Returns 1 if OP is not an eliminable register.
1309 This exists to cure a pathological abort in the s8addq (et al) patterns,
1311 long foo () { long t; bar(); return (long) &t * 26107; }
1313 which run afoul of a hack in reload to cure a (presumably) similar
1314 problem with lea-type instructions on other targets. But there is
1315 one of us and many of them, so work around the problem by selectively
1316 preventing combine from making the optimization. */
1319 reg_not_elim_operand (rtx op, enum machine_mode mode)
1321 rtx inner = op;
1322 if (GET_CODE (op) == SUBREG)
1323 inner = SUBREG_REG (op);
1324 if (inner == frame_pointer_rtx || inner == arg_pointer_rtx)
1325 return 0;
1327 return register_operand (op, mode);
1330 /* Return 1 is OP is a memory location that is not a reference (using
1331 an AND) to an unaligned location. Take into account what reload
1332 will do. */
1335 normal_memory_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1337 if (reload_in_progress)
1339 rtx tmp = op;
1340 if (GET_CODE (tmp) == SUBREG)
1341 tmp = SUBREG_REG (tmp);
1342 if (GET_CODE (tmp) == REG
1343 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER)
1345 op = reg_equiv_memory_loc[REGNO (tmp)];
1347 /* This may not have been assigned an equivalent address if it will
1348 be eliminated. In that case, it doesn't matter what we do. */
1349 if (op == 0)
1350 return 1;
1354 return GET_CODE (op) == MEM && GET_CODE (XEXP (op, 0)) != AND;
1357 /* Accept a register, but not a subreg of any kind. This allows us to
1358 avoid pathological cases in reload wrt data movement common in
1359 int->fp conversion. */
1362 reg_no_subreg_operand (rtx op, enum machine_mode mode)
1364 if (GET_CODE (op) != REG)
1365 return 0;
1366 return register_operand (op, mode);
1369 /* Recognize an addition operation that includes a constant. Used to
1370 convince reload to canonize (plus (plus reg c1) c2) during register
1371 elimination. */
1374 addition_operation (rtx op, enum machine_mode mode)
1376 if (GET_MODE (op) != mode && mode != VOIDmode)
1377 return 0;
1378 if (GET_CODE (op) == PLUS
1379 && register_operand (XEXP (op, 0), mode)
1380 && GET_CODE (XEXP (op, 1)) == CONST_INT
1381 && CONST_OK_FOR_LETTER_P (INTVAL (XEXP (op, 1)), 'K'))
1382 return 1;
1383 return 0;
1386 /* Implements CONST_OK_FOR_LETTER_P. Return true if the value matches
1387 the range defined for C in [I-P]. */
1389 bool
1390 alpha_const_ok_for_letter_p (HOST_WIDE_INT value, int c)
1392 switch (c)
1394 case 'I':
1395 /* An unsigned 8 bit constant. */
1396 return (unsigned HOST_WIDE_INT) value < 0x100;
1397 case 'J':
1398 /* The constant zero. */
1399 return value == 0;
1400 case 'K':
1401 /* A signed 16 bit constant. */
1402 return (unsigned HOST_WIDE_INT) (value + 0x8000) < 0x10000;
1403 case 'L':
1404 /* A shifted signed 16 bit constant appropriate for LDAH. */
1405 return ((value & 0xffff) == 0
1406 && ((value) >> 31 == -1 || value >> 31 == 0));
1407 case 'M':
1408 /* A constant that can be AND'ed with using a ZAP insn. */
1409 return zap_mask (value);
1410 case 'N':
1411 /* A complemented unsigned 8 bit constant. */
1412 return (unsigned HOST_WIDE_INT) (~ value) < 0x100;
1413 case 'O':
1414 /* A negated unsigned 8 bit constant. */
1415 return (unsigned HOST_WIDE_INT) (- value) < 0x100;
1416 case 'P':
1417 /* The constant 1, 2 or 3. */
1418 return value == 1 || value == 2 || value == 3;
1420 default:
1421 return false;
1425 /* Implements CONST_DOUBLE_OK_FOR_LETTER_P. Return true if VALUE
1426 matches for C in [GH]. */
1428 bool
1429 alpha_const_double_ok_for_letter_p (rtx value, int c)
1431 switch (c)
1433 case 'G':
1434 /* The floating point zero constant. */
1435 return (GET_MODE_CLASS (GET_MODE (value)) == MODE_FLOAT
1436 && value == CONST0_RTX (GET_MODE (value)));
1438 case 'H':
1439 /* A valid operand of a ZAP insn. */
1440 return (GET_MODE (value) == VOIDmode
1441 && zap_mask (CONST_DOUBLE_LOW (value))
1442 && zap_mask (CONST_DOUBLE_HIGH (value)));
1444 default:
1445 return false;
1449 /* Implements CONST_DOUBLE_OK_FOR_LETTER_P. Return true if VALUE
1450 matches for C. */
1452 bool
1453 alpha_extra_constraint (rtx value, int c)
1455 switch (c)
1457 case 'Q':
1458 return normal_memory_operand (value, VOIDmode);
1459 case 'R':
1460 return direct_call_operand (value, Pmode);
1461 case 'S':
1462 return (GET_CODE (value) == CONST_INT
1463 && (unsigned HOST_WIDE_INT) INTVAL (value) < 64);
1464 case 'T':
1465 return GET_CODE (value) == HIGH;
1466 case 'U':
1467 return TARGET_ABI_UNICOSMK && symbolic_operand (value, VOIDmode);
1468 case 'W':
1469 return (GET_CODE (value) == CONST_VECTOR
1470 && value == CONST0_RTX (GET_MODE (value)));
1471 default:
1472 return false;
1476 /* Return 1 if this function can directly return via $26. */
1479 direct_return (void)
1481 return (! TARGET_ABI_OPEN_VMS && ! TARGET_ABI_UNICOSMK
1482 && reload_completed
1483 && alpha_sa_size () == 0
1484 && get_frame_size () == 0
1485 && current_function_outgoing_args_size == 0
1486 && current_function_pretend_args_size == 0);
1489 /* Return the ADDR_VEC associated with a tablejump insn. */
1492 alpha_tablejump_addr_vec (rtx insn)
1494 rtx tmp;
1496 tmp = JUMP_LABEL (insn);
1497 if (!tmp)
1498 return NULL_RTX;
1499 tmp = NEXT_INSN (tmp);
1500 if (!tmp)
1501 return NULL_RTX;
1502 if (GET_CODE (tmp) == JUMP_INSN
1503 && GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC)
1504 return PATTERN (tmp);
1505 return NULL_RTX;
1508 /* Return the label of the predicted edge, or CONST0_RTX if we don't know. */
1511 alpha_tablejump_best_label (rtx insn)
1513 rtx jump_table = alpha_tablejump_addr_vec (insn);
1514 rtx best_label = NULL_RTX;
1516 /* ??? Once the CFG doesn't keep getting completely rebuilt, look
1517 there for edge frequency counts from profile data. */
1519 if (jump_table)
1521 int n_labels = XVECLEN (jump_table, 1);
1522 int best_count = -1;
1523 int i, j;
1525 for (i = 0; i < n_labels; i++)
1527 int count = 1;
1529 for (j = i + 1; j < n_labels; j++)
1530 if (XEXP (XVECEXP (jump_table, 1, i), 0)
1531 == XEXP (XVECEXP (jump_table, 1, j), 0))
1532 count++;
1534 if (count > best_count)
1535 best_count = count, best_label = XVECEXP (jump_table, 1, i);
1539 return best_label ? best_label : const0_rtx;
1542 /* Return the TLS model to use for SYMBOL. */
1544 static enum tls_model
1545 tls_symbolic_operand_type (rtx symbol)
1547 enum tls_model model;
1549 if (GET_CODE (symbol) != SYMBOL_REF)
1550 return 0;
1551 model = SYMBOL_REF_TLS_MODEL (symbol);
1553 /* Local-exec with a 64-bit size is the same code as initial-exec. */
1554 if (model == TLS_MODEL_LOCAL_EXEC && alpha_tls_size == 64)
1555 model = TLS_MODEL_INITIAL_EXEC;
1557 return model;
1560 /* Return true if the function DECL will share the same GP as any
1561 function in the current unit of translation. */
1563 static bool
1564 decl_has_samegp (tree decl)
1566 /* Functions that are not local can be overridden, and thus may
1567 not share the same gp. */
1568 if (!(*targetm.binds_local_p) (decl))
1569 return false;
1571 /* If -msmall-data is in effect, assume that there is only one GP
1572 for the module, and so any local symbol has this property. We
1573 need explicit relocations to be able to enforce this for symbols
1574 not defined in this unit of translation, however. */
1575 if (TARGET_EXPLICIT_RELOCS && TARGET_SMALL_DATA)
1576 return true;
1578 /* Functions that are not external are defined in this UoT. */
1579 /* ??? Irritatingly, static functions not yet emitted are still
1580 marked "external". Apply this to non-static functions only. */
1581 return !TREE_PUBLIC (decl) || !DECL_EXTERNAL (decl);
1584 /* Return true if EXP should be placed in the small data section. */
1586 static bool
1587 alpha_in_small_data_p (tree exp)
1589 /* We want to merge strings, so we never consider them small data. */
1590 if (TREE_CODE (exp) == STRING_CST)
1591 return false;
1593 if (TREE_CODE (exp) == VAR_DECL && DECL_SECTION_NAME (exp))
1595 const char *section = TREE_STRING_POINTER (DECL_SECTION_NAME (exp));
1596 if (strcmp (section, ".sdata") == 0
1597 || strcmp (section, ".sbss") == 0)
1598 return true;
1600 else
1602 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
1604 /* If this is an incomplete type with size 0, then we can't put it
1605 in sdata because it might be too big when completed. */
1606 if (size > 0 && (unsigned HOST_WIDE_INT) size <= g_switch_value)
1607 return true;
1610 return false;
1613 #if TARGET_ABI_OPEN_VMS
1614 static bool
1615 alpha_linkage_symbol_p (const char *symname)
1617 int symlen = strlen (symname);
1619 if (symlen > 4)
1620 return strcmp (&symname [symlen - 4], "..lk") == 0;
1622 return false;
1625 #define LINKAGE_SYMBOL_REF_P(X) \
1626 ((GET_CODE (X) == SYMBOL_REF \
1627 && alpha_linkage_symbol_p (XSTR (X, 0))) \
1628 || (GET_CODE (X) == CONST \
1629 && GET_CODE (XEXP (X, 0)) == PLUS \
1630 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
1631 && alpha_linkage_symbol_p (XSTR (XEXP (XEXP (X, 0), 0), 0))))
1632 #endif
1634 /* legitimate_address_p recognizes an RTL expression that is a valid
1635 memory address for an instruction. The MODE argument is the
1636 machine mode for the MEM expression that wants to use this address.
1638 For Alpha, we have either a constant address or the sum of a
1639 register and a constant address, or just a register. For DImode,
1640 any of those forms can be surrounded with an AND that clear the
1641 low-order three bits; this is an "unaligned" access. */
1643 bool
1644 alpha_legitimate_address_p (enum machine_mode mode, rtx x, int strict)
1646 /* If this is an ldq_u type address, discard the outer AND. */
1647 if (mode == DImode
1648 && GET_CODE (x) == AND
1649 && GET_CODE (XEXP (x, 1)) == CONST_INT
1650 && INTVAL (XEXP (x, 1)) == -8)
1651 x = XEXP (x, 0);
1653 /* Discard non-paradoxical subregs. */
1654 if (GET_CODE (x) == SUBREG
1655 && (GET_MODE_SIZE (GET_MODE (x))
1656 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
1657 x = SUBREG_REG (x);
1659 /* Unadorned general registers are valid. */
1660 if (REG_P (x)
1661 && (strict
1662 ? STRICT_REG_OK_FOR_BASE_P (x)
1663 : NONSTRICT_REG_OK_FOR_BASE_P (x)))
1664 return true;
1666 /* Constant addresses (i.e. +/- 32k) are valid. */
1667 if (CONSTANT_ADDRESS_P (x))
1668 return true;
1670 #if TARGET_ABI_OPEN_VMS
1671 if (LINKAGE_SYMBOL_REF_P (x))
1672 return true;
1673 #endif
1675 /* Register plus a small constant offset is valid. */
1676 if (GET_CODE (x) == PLUS)
1678 rtx ofs = XEXP (x, 1);
1679 x = XEXP (x, 0);
1681 /* Discard non-paradoxical subregs. */
1682 if (GET_CODE (x) == SUBREG
1683 && (GET_MODE_SIZE (GET_MODE (x))
1684 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
1685 x = SUBREG_REG (x);
1687 if (REG_P (x))
1689 if (! strict
1690 && NONSTRICT_REG_OK_FP_BASE_P (x)
1691 && GET_CODE (ofs) == CONST_INT)
1692 return true;
1693 if ((strict
1694 ? STRICT_REG_OK_FOR_BASE_P (x)
1695 : NONSTRICT_REG_OK_FOR_BASE_P (x))
1696 && CONSTANT_ADDRESS_P (ofs))
1697 return true;
1699 else if (GET_CODE (x) == ADDRESSOF
1700 && GET_CODE (ofs) == CONST_INT)
1701 return true;
1704 /* If we're managing explicit relocations, LO_SUM is valid, as
1705 are small data symbols. */
1706 else if (TARGET_EXPLICIT_RELOCS)
1708 if (small_symbolic_operand (x, Pmode))
1709 return true;
1711 if (GET_CODE (x) == LO_SUM)
1713 rtx ofs = XEXP (x, 1);
1714 x = XEXP (x, 0);
1716 /* Discard non-paradoxical subregs. */
1717 if (GET_CODE (x) == SUBREG
1718 && (GET_MODE_SIZE (GET_MODE (x))
1719 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
1720 x = SUBREG_REG (x);
1722 /* Must have a valid base register. */
1723 if (! (REG_P (x)
1724 && (strict
1725 ? STRICT_REG_OK_FOR_BASE_P (x)
1726 : NONSTRICT_REG_OK_FOR_BASE_P (x))))
1727 return false;
1729 /* The symbol must be local. */
1730 if (local_symbolic_operand (ofs, Pmode)
1731 || dtp32_symbolic_operand (ofs, Pmode)
1732 || tp32_symbolic_operand (ofs, Pmode))
1733 return true;
1737 return false;
1740 /* Build the SYMBOL_REF for __tls_get_addr. */
1742 static GTY(()) rtx tls_get_addr_libfunc;
1744 static rtx
1745 get_tls_get_addr (void)
1747 if (!tls_get_addr_libfunc)
1748 tls_get_addr_libfunc = init_one_libfunc ("__tls_get_addr");
1749 return tls_get_addr_libfunc;
1752 /* Try machine-dependent ways of modifying an illegitimate address
1753 to be legitimate. If we find one, return the new, valid address. */
1756 alpha_legitimize_address (rtx x, rtx scratch,
1757 enum machine_mode mode ATTRIBUTE_UNUSED)
1759 HOST_WIDE_INT addend;
1761 /* If the address is (plus reg const_int) and the CONST_INT is not a
1762 valid offset, compute the high part of the constant and add it to
1763 the register. Then our address is (plus temp low-part-const). */
1764 if (GET_CODE (x) == PLUS
1765 && GET_CODE (XEXP (x, 0)) == REG
1766 && GET_CODE (XEXP (x, 1)) == CONST_INT
1767 && ! CONSTANT_ADDRESS_P (XEXP (x, 1)))
1769 addend = INTVAL (XEXP (x, 1));
1770 x = XEXP (x, 0);
1771 goto split_addend;
1774 /* If the address is (const (plus FOO const_int)), find the low-order
1775 part of the CONST_INT. Then load FOO plus any high-order part of the
1776 CONST_INT into a register. Our address is (plus reg low-part-const).
1777 This is done to reduce the number of GOT entries. */
1778 if (!no_new_pseudos
1779 && GET_CODE (x) == CONST
1780 && GET_CODE (XEXP (x, 0)) == PLUS
1781 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
1783 addend = INTVAL (XEXP (XEXP (x, 0), 1));
1784 x = force_reg (Pmode, XEXP (XEXP (x, 0), 0));
1785 goto split_addend;
1788 /* If we have a (plus reg const), emit the load as in (2), then add
1789 the two registers, and finally generate (plus reg low-part-const) as
1790 our address. */
1791 if (!no_new_pseudos
1792 && GET_CODE (x) == PLUS
1793 && GET_CODE (XEXP (x, 0)) == REG
1794 && GET_CODE (XEXP (x, 1)) == CONST
1795 && GET_CODE (XEXP (XEXP (x, 1), 0)) == PLUS
1796 && GET_CODE (XEXP (XEXP (XEXP (x, 1), 0), 1)) == CONST_INT)
1798 addend = INTVAL (XEXP (XEXP (XEXP (x, 1), 0), 1));
1799 x = expand_simple_binop (Pmode, PLUS, XEXP (x, 0),
1800 XEXP (XEXP (XEXP (x, 1), 0), 0),
1801 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1802 goto split_addend;
1805 /* If this is a local symbol, split the address into HIGH/LO_SUM parts. */
1806 if (TARGET_EXPLICIT_RELOCS && symbolic_operand (x, Pmode))
1808 rtx r0, r16, eqv, tga, tp, insn, dest, seq;
1810 switch (tls_symbolic_operand_type (x))
1812 case TLS_MODEL_GLOBAL_DYNAMIC:
1813 start_sequence ();
1815 r0 = gen_rtx_REG (Pmode, 0);
1816 r16 = gen_rtx_REG (Pmode, 16);
1817 tga = get_tls_get_addr ();
1818 dest = gen_reg_rtx (Pmode);
1819 seq = GEN_INT (alpha_next_sequence_number++);
1821 emit_insn (gen_movdi_er_tlsgd (r16, pic_offset_table_rtx, x, seq));
1822 insn = gen_call_value_osf_tlsgd (r0, tga, seq);
1823 insn = emit_call_insn (insn);
1824 CONST_OR_PURE_CALL_P (insn) = 1;
1825 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), r16);
1827 insn = get_insns ();
1828 end_sequence ();
1830 emit_libcall_block (insn, dest, r0, x);
1831 return dest;
1833 case TLS_MODEL_LOCAL_DYNAMIC:
1834 start_sequence ();
1836 r0 = gen_rtx_REG (Pmode, 0);
1837 r16 = gen_rtx_REG (Pmode, 16);
1838 tga = get_tls_get_addr ();
1839 scratch = gen_reg_rtx (Pmode);
1840 seq = GEN_INT (alpha_next_sequence_number++);
1842 emit_insn (gen_movdi_er_tlsldm (r16, pic_offset_table_rtx, seq));
1843 insn = gen_call_value_osf_tlsldm (r0, tga, seq);
1844 insn = emit_call_insn (insn);
1845 CONST_OR_PURE_CALL_P (insn) = 1;
1846 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), r16);
1848 insn = get_insns ();
1849 end_sequence ();
1851 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
1852 UNSPEC_TLSLDM_CALL);
1853 emit_libcall_block (insn, scratch, r0, eqv);
1855 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), UNSPEC_DTPREL);
1856 eqv = gen_rtx_CONST (Pmode, eqv);
1858 if (alpha_tls_size == 64)
1860 dest = gen_reg_rtx (Pmode);
1861 emit_insn (gen_rtx_SET (VOIDmode, dest, eqv));
1862 emit_insn (gen_adddi3 (dest, dest, scratch));
1863 return dest;
1865 if (alpha_tls_size == 32)
1867 insn = gen_rtx_HIGH (Pmode, eqv);
1868 insn = gen_rtx_PLUS (Pmode, scratch, insn);
1869 scratch = gen_reg_rtx (Pmode);
1870 emit_insn (gen_rtx_SET (VOIDmode, scratch, insn));
1872 return gen_rtx_LO_SUM (Pmode, scratch, eqv);
1874 case TLS_MODEL_INITIAL_EXEC:
1875 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), UNSPEC_TPREL);
1876 eqv = gen_rtx_CONST (Pmode, eqv);
1877 tp = gen_reg_rtx (Pmode);
1878 scratch = gen_reg_rtx (Pmode);
1879 dest = gen_reg_rtx (Pmode);
1881 emit_insn (gen_load_tp (tp));
1882 emit_insn (gen_rtx_SET (VOIDmode, scratch, eqv));
1883 emit_insn (gen_adddi3 (dest, tp, scratch));
1884 return dest;
1886 case TLS_MODEL_LOCAL_EXEC:
1887 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), UNSPEC_TPREL);
1888 eqv = gen_rtx_CONST (Pmode, eqv);
1889 tp = gen_reg_rtx (Pmode);
1891 emit_insn (gen_load_tp (tp));
1892 if (alpha_tls_size == 32)
1894 insn = gen_rtx_HIGH (Pmode, eqv);
1895 insn = gen_rtx_PLUS (Pmode, tp, insn);
1896 tp = gen_reg_rtx (Pmode);
1897 emit_insn (gen_rtx_SET (VOIDmode, tp, insn));
1899 return gen_rtx_LO_SUM (Pmode, tp, eqv);
1902 if (local_symbolic_operand (x, Pmode))
1904 if (small_symbolic_operand (x, Pmode))
1905 return x;
1906 else
1908 if (!no_new_pseudos)
1909 scratch = gen_reg_rtx (Pmode);
1910 emit_insn (gen_rtx_SET (VOIDmode, scratch,
1911 gen_rtx_HIGH (Pmode, x)));
1912 return gen_rtx_LO_SUM (Pmode, scratch, x);
1917 return NULL;
1919 split_addend:
1921 HOST_WIDE_INT low, high;
1923 low = ((addend & 0xffff) ^ 0x8000) - 0x8000;
1924 addend -= low;
1925 high = ((addend & 0xffffffff) ^ 0x80000000) - 0x80000000;
1926 addend -= high;
1928 if (addend)
1929 x = expand_simple_binop (Pmode, PLUS, x, GEN_INT (addend),
1930 (no_new_pseudos ? scratch : NULL_RTX),
1931 1, OPTAB_LIB_WIDEN);
1932 if (high)
1933 x = expand_simple_binop (Pmode, PLUS, x, GEN_INT (high),
1934 (no_new_pseudos ? scratch : NULL_RTX),
1935 1, OPTAB_LIB_WIDEN);
1937 return plus_constant (x, low);
1941 /* We do not allow indirect calls to be optimized into sibling calls, nor
1942 can we allow a call to a function with a different GP to be optimized
1943 into a sibcall. */
1945 static bool
1946 alpha_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
1948 /* Can't do indirect tail calls, since we don't know if the target
1949 uses the same GP. */
1950 if (!decl)
1951 return false;
1953 /* Otherwise, we can make a tail call if the target function shares
1954 the same GP. */
1955 return decl_has_samegp (decl);
1958 /* For TARGET_EXPLICIT_RELOCS, we don't obfuscate a SYMBOL_REF to a
1959 small symbolic operand until after reload. At which point we need
1960 to replace (mem (symbol_ref)) with (mem (lo_sum $29 symbol_ref))
1961 so that sched2 has the proper dependency information. */
1963 static int
1964 some_small_symbolic_operand_1 (rtx *px, void *data ATTRIBUTE_UNUSED)
1966 rtx x = *px;
1968 /* Don't re-split. */
1969 if (GET_CODE (x) == LO_SUM)
1970 return -1;
1972 return small_symbolic_operand (x, Pmode) != 0;
1976 some_small_symbolic_operand (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
1978 return for_each_rtx (&x, some_small_symbolic_operand_1, NULL);
1981 static int
1982 split_small_symbolic_operand_1 (rtx *px, void *data ATTRIBUTE_UNUSED)
1984 rtx x = *px;
1986 /* Don't re-split. */
1987 if (GET_CODE (x) == LO_SUM)
1988 return -1;
1990 if (small_symbolic_operand (x, Pmode))
1992 x = gen_rtx_LO_SUM (Pmode, pic_offset_table_rtx, x);
1993 *px = x;
1994 return -1;
1997 return 0;
2001 split_small_symbolic_operand (rtx x)
2003 x = copy_insn (x);
2004 for_each_rtx (&x, split_small_symbolic_operand_1, NULL);
2005 return x;
2008 /* Indicate that INSN cannot be duplicated. This is true for any insn
2009 that we've marked with gpdisp relocs, since those have to stay in
2010 1-1 correspondence with one another.
2012 Technically we could copy them if we could set up a mapping from one
2013 sequence number to another, across the set of insns to be duplicated.
2014 This seems overly complicated and error-prone since interblock motion
2015 from sched-ebb could move one of the pair of insns to a different block.
2017 Also cannot allow jsr insns to be duplicated. If they throw exceptions,
2018 then they'll be in a different block from their ldgp. Which could lead
2019 the bb reorder code to think that it would be ok to copy just the block
2020 containing the call and branch to the block containing the ldgp. */
2022 static bool
2023 alpha_cannot_copy_insn_p (rtx insn)
2025 if (!reload_completed || !TARGET_EXPLICIT_RELOCS)
2026 return false;
2027 if (recog_memoized (insn) >= 0)
2028 return get_attr_cannot_copy (insn);
2029 else
2030 return false;
2034 /* Try a machine-dependent way of reloading an illegitimate address
2035 operand. If we find one, push the reload and return the new rtx. */
2038 alpha_legitimize_reload_address (rtx x,
2039 enum machine_mode mode ATTRIBUTE_UNUSED,
2040 int opnum, int type,
2041 int ind_levels ATTRIBUTE_UNUSED)
2043 /* We must recognize output that we have already generated ourselves. */
2044 if (GET_CODE (x) == PLUS
2045 && GET_CODE (XEXP (x, 0)) == PLUS
2046 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
2047 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2048 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2050 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
2051 BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
2052 opnum, type);
2053 return x;
2056 /* We wish to handle large displacements off a base register by
2057 splitting the addend across an ldah and the mem insn. This
2058 cuts number of extra insns needed from 3 to 1. */
2059 if (GET_CODE (x) == PLUS
2060 && GET_CODE (XEXP (x, 0)) == REG
2061 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2062 && REGNO_OK_FOR_BASE_P (REGNO (XEXP (x, 0)))
2063 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2065 HOST_WIDE_INT val = INTVAL (XEXP (x, 1));
2066 HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000;
2067 HOST_WIDE_INT high
2068 = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000;
2070 /* Check for 32-bit overflow. */
2071 if (high + low != val)
2072 return NULL_RTX;
2074 /* Reload the high part into a base reg; leave the low part
2075 in the mem directly. */
2076 x = gen_rtx_PLUS (GET_MODE (x),
2077 gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
2078 GEN_INT (high)),
2079 GEN_INT (low));
2081 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
2082 BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
2083 opnum, type);
2084 return x;
2087 return NULL_RTX;
2090 /* Compute a (partial) cost for rtx X. Return true if the complete
2091 cost has been computed, and false if subexpressions should be
2092 scanned. In either case, *TOTAL contains the cost result. */
2094 static bool
2095 alpha_rtx_costs (rtx x, int code, int outer_code, int *total)
2097 enum machine_mode mode = GET_MODE (x);
2098 bool float_mode_p = FLOAT_MODE_P (mode);
2100 switch (code)
2102 /* If this is an 8-bit constant, return zero since it can be used
2103 nearly anywhere with no cost. If it is a valid operand for an
2104 ADD or AND, likewise return 0 if we know it will be used in that
2105 context. Otherwise, return 2 since it might be used there later.
2106 All other constants take at least two insns. */
2107 case CONST_INT:
2108 if (INTVAL (x) >= 0 && INTVAL (x) < 256)
2110 *total = 0;
2111 return true;
2113 /* FALLTHRU */
2115 case CONST_DOUBLE:
2116 if (x == CONST0_RTX (mode))
2117 *total = 0;
2118 else if ((outer_code == PLUS && add_operand (x, VOIDmode))
2119 || (outer_code == AND && and_operand (x, VOIDmode)))
2120 *total = 0;
2121 else if (add_operand (x, VOIDmode) || and_operand (x, VOIDmode))
2122 *total = 2;
2123 else
2124 *total = COSTS_N_INSNS (2);
2125 return true;
2127 case CONST:
2128 case SYMBOL_REF:
2129 case LABEL_REF:
2130 if (TARGET_EXPLICIT_RELOCS && small_symbolic_operand (x, VOIDmode))
2131 *total = COSTS_N_INSNS (outer_code != MEM);
2132 else if (TARGET_EXPLICIT_RELOCS && local_symbolic_operand (x, VOIDmode))
2133 *total = COSTS_N_INSNS (1 + (outer_code != MEM));
2134 else if (tls_symbolic_operand_type (x))
2135 /* Estimate of cost for call_pal rduniq. */
2136 *total = COSTS_N_INSNS (15);
2137 else
2138 /* Otherwise we do a load from the GOT. */
2139 *total = COSTS_N_INSNS (alpha_memory_latency);
2140 return true;
2142 case PLUS:
2143 case MINUS:
2144 if (float_mode_p)
2145 *total = alpha_rtx_cost_data[alpha_cpu].fp_add;
2146 else if (GET_CODE (XEXP (x, 0)) == MULT
2147 && const48_operand (XEXP (XEXP (x, 0), 1), VOIDmode))
2149 *total = (rtx_cost (XEXP (XEXP (x, 0), 0), outer_code)
2150 + rtx_cost (XEXP (x, 1), outer_code) + 2);
2151 return true;
2153 return false;
2155 case MULT:
2156 if (float_mode_p)
2157 *total = alpha_rtx_cost_data[alpha_cpu].fp_mult;
2158 else if (mode == DImode)
2159 *total = alpha_rtx_cost_data[alpha_cpu].int_mult_di;
2160 else
2161 *total = alpha_rtx_cost_data[alpha_cpu].int_mult_si;
2162 return false;
2164 case ASHIFT:
2165 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2166 && INTVAL (XEXP (x, 1)) <= 3)
2168 *total = COSTS_N_INSNS (1);
2169 return false;
2171 /* FALLTHRU */
2173 case ASHIFTRT:
2174 case LSHIFTRT:
2175 *total = alpha_rtx_cost_data[alpha_cpu].int_shift;
2176 return false;
2178 case IF_THEN_ELSE:
2179 if (float_mode_p)
2180 *total = alpha_rtx_cost_data[alpha_cpu].fp_add;
2181 else
2182 *total = alpha_rtx_cost_data[alpha_cpu].int_cmov;
2183 return false;
2185 case DIV:
2186 case UDIV:
2187 case MOD:
2188 case UMOD:
2189 if (!float_mode_p)
2190 *total = COSTS_N_INSNS (70); /* ??? */
2191 else if (mode == SFmode)
2192 *total = alpha_rtx_cost_data[alpha_cpu].fp_div_sf;
2193 else
2194 *total = alpha_rtx_cost_data[alpha_cpu].fp_div_df;
2195 return false;
2197 case MEM:
2198 *total = COSTS_N_INSNS (alpha_memory_latency);
2199 return true;
2201 case NEG:
2202 if (! float_mode_p)
2204 *total = COSTS_N_INSNS (1);
2205 return false;
2207 /* FALLTHRU */
2209 case ABS:
2210 if (! float_mode_p)
2212 *total = COSTS_N_INSNS (1) + alpha_rtx_cost_data[alpha_cpu].int_cmov;
2213 return false;
2215 /* FALLTHRU */
2217 case FLOAT:
2218 case UNSIGNED_FLOAT:
2219 case FIX:
2220 case UNSIGNED_FIX:
2221 case FLOAT_EXTEND:
2222 case FLOAT_TRUNCATE:
2223 *total = alpha_rtx_cost_data[alpha_cpu].fp_add;
2224 return false;
2226 default:
2227 return false;
2231 /* REF is an alignable memory location. Place an aligned SImode
2232 reference into *PALIGNED_MEM and the number of bits to shift into
2233 *PBITNUM. SCRATCH is a free register for use in reloading out
2234 of range stack slots. */
2236 void
2237 get_aligned_mem (rtx ref, rtx *paligned_mem, rtx *pbitnum)
2239 rtx base;
2240 HOST_WIDE_INT offset = 0;
2242 if (GET_CODE (ref) != MEM)
2243 abort ();
2245 if (reload_in_progress
2246 && ! memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
2248 base = find_replacement (&XEXP (ref, 0));
2250 if (! memory_address_p (GET_MODE (ref), base))
2251 abort ();
2253 else
2255 base = XEXP (ref, 0);
2258 if (GET_CODE (base) == PLUS)
2259 offset += INTVAL (XEXP (base, 1)), base = XEXP (base, 0);
2261 *paligned_mem
2262 = widen_memory_access (ref, SImode, (offset & ~3) - offset);
2264 if (WORDS_BIG_ENDIAN)
2265 *pbitnum = GEN_INT (32 - (GET_MODE_BITSIZE (GET_MODE (ref))
2266 + (offset & 3) * 8));
2267 else
2268 *pbitnum = GEN_INT ((offset & 3) * 8);
2271 /* Similar, but just get the address. Handle the two reload cases.
2272 Add EXTRA_OFFSET to the address we return. */
2275 get_unaligned_address (rtx ref, int extra_offset)
2277 rtx base;
2278 HOST_WIDE_INT offset = 0;
2280 if (GET_CODE (ref) != MEM)
2281 abort ();
2283 if (reload_in_progress
2284 && ! memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
2286 base = find_replacement (&XEXP (ref, 0));
2288 if (! memory_address_p (GET_MODE (ref), base))
2289 abort ();
2291 else
2293 base = XEXP (ref, 0);
2296 if (GET_CODE (base) == PLUS)
2297 offset += INTVAL (XEXP (base, 1)), base = XEXP (base, 0);
2299 return plus_constant (base, offset + extra_offset);
2302 /* On the Alpha, all (non-symbolic) constants except zero go into
2303 a floating-point register via memory. Note that we cannot
2304 return anything that is not a subset of CLASS, and that some
2305 symbolic constants cannot be dropped to memory. */
2307 enum reg_class
2308 alpha_preferred_reload_class(rtx x, enum reg_class class)
2310 /* Zero is present in any register class. */
2311 if (x == CONST0_RTX (GET_MODE (x)))
2312 return class;
2314 /* These sorts of constants we can easily drop to memory. */
2315 if (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
2317 if (class == FLOAT_REGS)
2318 return NO_REGS;
2319 if (class == ALL_REGS)
2320 return GENERAL_REGS;
2321 return class;
2324 /* All other kinds of constants should not (and in the case of HIGH
2325 cannot) be dropped to memory -- instead we use a GENERAL_REGS
2326 secondary reload. */
2327 if (CONSTANT_P (x))
2328 return (class == ALL_REGS ? GENERAL_REGS : class);
2330 return class;
2333 /* Loading and storing HImode or QImode values to and from memory
2334 usually requires a scratch register. The exceptions are loading
2335 QImode and HImode from an aligned address to a general register
2336 unless byte instructions are permitted.
2338 We also cannot load an unaligned address or a paradoxical SUBREG
2339 into an FP register.
2341 We also cannot do integral arithmetic into FP regs, as might result
2342 from register elimination into a DImode fp register. */
2344 enum reg_class
2345 secondary_reload_class (enum reg_class class, enum machine_mode mode,
2346 rtx x, int in)
2348 if ((mode == QImode || mode == HImode) && ! TARGET_BWX)
2350 if (GET_CODE (x) == MEM
2351 || (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
2352 || (GET_CODE (x) == SUBREG
2353 && (GET_CODE (SUBREG_REG (x)) == MEM
2354 || (GET_CODE (SUBREG_REG (x)) == REG
2355 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER))))
2357 if (!in || !aligned_memory_operand(x, mode))
2358 return GENERAL_REGS;
2362 if (class == FLOAT_REGS)
2364 if (GET_CODE (x) == MEM && GET_CODE (XEXP (x, 0)) == AND)
2365 return GENERAL_REGS;
2367 if (GET_CODE (x) == SUBREG
2368 && (GET_MODE_SIZE (GET_MODE (x))
2369 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
2370 return GENERAL_REGS;
2372 if (in && INTEGRAL_MODE_P (mode)
2373 && ! (memory_operand (x, mode) || x == const0_rtx))
2374 return GENERAL_REGS;
2377 return NO_REGS;
2380 /* Subfunction of the following function. Update the flags of any MEM
2381 found in part of X. */
2383 static void
2384 alpha_set_memflags_1 (rtx x, int in_struct_p, int volatile_p, int unchanging_p)
2386 int i;
2388 switch (GET_CODE (x))
2390 case SEQUENCE:
2391 abort ();
2393 case PARALLEL:
2394 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2395 alpha_set_memflags_1 (XVECEXP (x, 0, i), in_struct_p, volatile_p,
2396 unchanging_p);
2397 break;
2399 case INSN:
2400 alpha_set_memflags_1 (PATTERN (x), in_struct_p, volatile_p,
2401 unchanging_p);
2402 break;
2404 case SET:
2405 alpha_set_memflags_1 (SET_DEST (x), in_struct_p, volatile_p,
2406 unchanging_p);
2407 alpha_set_memflags_1 (SET_SRC (x), in_struct_p, volatile_p,
2408 unchanging_p);
2409 break;
2411 case MEM:
2412 MEM_IN_STRUCT_P (x) = in_struct_p;
2413 MEM_VOLATILE_P (x) = volatile_p;
2414 RTX_UNCHANGING_P (x) = unchanging_p;
2415 /* Sadly, we cannot use alias sets because the extra aliasing
2416 produced by the AND interferes. Given that two-byte quantities
2417 are the only thing we would be able to differentiate anyway,
2418 there does not seem to be any point in convoluting the early
2419 out of the alias check. */
2420 break;
2422 default:
2423 break;
2427 /* Given INSN, which is an INSN list or the PATTERN of a single insn
2428 generated to perform a memory operation, look for any MEMs in either
2429 a SET_DEST or a SET_SRC and copy the in-struct, unchanging, and
2430 volatile flags from REF into each of the MEMs found. If REF is not
2431 a MEM, don't do anything. */
2433 void
2434 alpha_set_memflags (rtx insn, rtx ref)
2436 int in_struct_p, volatile_p, unchanging_p;
2438 if (GET_CODE (ref) != MEM)
2439 return;
2441 in_struct_p = MEM_IN_STRUCT_P (ref);
2442 volatile_p = MEM_VOLATILE_P (ref);
2443 unchanging_p = RTX_UNCHANGING_P (ref);
2445 /* This is only called from alpha.md, after having had something
2446 generated from one of the insn patterns. So if everything is
2447 zero, the pattern is already up-to-date. */
2448 if (! in_struct_p && ! volatile_p && ! unchanging_p)
2449 return;
2451 alpha_set_memflags_1 (insn, in_struct_p, volatile_p, unchanging_p);
2454 /* Internal routine for alpha_emit_set_const to check for N or below insns. */
2456 static rtx
2457 alpha_emit_set_const_1 (rtx target, enum machine_mode mode,
2458 HOST_WIDE_INT c, int n)
2460 HOST_WIDE_INT new;
2461 int i, bits;
2462 /* Use a pseudo if highly optimizing and still generating RTL. */
2463 rtx subtarget
2464 = (flag_expensive_optimizations && !no_new_pseudos ? 0 : target);
2465 rtx temp, insn;
2467 /* If this is a sign-extended 32-bit constant, we can do this in at most
2468 three insns, so do it if we have enough insns left. We always have
2469 a sign-extended 32-bit constant when compiling on a narrow machine. */
2471 if (HOST_BITS_PER_WIDE_INT != 64
2472 || c >> 31 == -1 || c >> 31 == 0)
2474 HOST_WIDE_INT low = ((c & 0xffff) ^ 0x8000) - 0x8000;
2475 HOST_WIDE_INT tmp1 = c - low;
2476 HOST_WIDE_INT high = (((tmp1 >> 16) & 0xffff) ^ 0x8000) - 0x8000;
2477 HOST_WIDE_INT extra = 0;
2479 /* If HIGH will be interpreted as negative but the constant is
2480 positive, we must adjust it to do two ldha insns. */
2482 if ((high & 0x8000) != 0 && c >= 0)
2484 extra = 0x4000;
2485 tmp1 -= 0x40000000;
2486 high = ((tmp1 >> 16) & 0xffff) - 2 * ((tmp1 >> 16) & 0x8000);
2489 if (c == low || (low == 0 && extra == 0))
2491 /* We used to use copy_to_suggested_reg (GEN_INT (c), target, mode)
2492 but that meant that we can't handle INT_MIN on 32-bit machines
2493 (like NT/Alpha), because we recurse indefinitely through
2494 emit_move_insn to gen_movdi. So instead, since we know exactly
2495 what we want, create it explicitly. */
2497 if (target == NULL)
2498 target = gen_reg_rtx (mode);
2499 emit_insn (gen_rtx_SET (VOIDmode, target, GEN_INT (c)));
2500 return target;
2502 else if (n >= 2 + (extra != 0))
2504 temp = copy_to_suggested_reg (GEN_INT (high << 16), subtarget, mode);
2506 /* As of 2002-02-23, addsi3 is only available when not optimizing.
2507 This means that if we go through expand_binop, we'll try to
2508 generate extensions, etc, which will require new pseudos, which
2509 will fail during some split phases. The SImode add patterns
2510 still exist, but are not named. So build the insns by hand. */
2512 if (extra != 0)
2514 if (! subtarget)
2515 subtarget = gen_reg_rtx (mode);
2516 insn = gen_rtx_PLUS (mode, temp, GEN_INT (extra << 16));
2517 insn = gen_rtx_SET (VOIDmode, subtarget, insn);
2518 emit_insn (insn);
2519 temp = subtarget;
2522 if (target == NULL)
2523 target = gen_reg_rtx (mode);
2524 insn = gen_rtx_PLUS (mode, temp, GEN_INT (low));
2525 insn = gen_rtx_SET (VOIDmode, target, insn);
2526 emit_insn (insn);
2527 return target;
2531 /* If we couldn't do it that way, try some other methods. But if we have
2532 no instructions left, don't bother. Likewise, if this is SImode and
2533 we can't make pseudos, we can't do anything since the expand_binop
2534 and expand_unop calls will widen and try to make pseudos. */
2536 if (n == 1 || (mode == SImode && no_new_pseudos))
2537 return 0;
2539 /* Next, see if we can load a related constant and then shift and possibly
2540 negate it to get the constant we want. Try this once each increasing
2541 numbers of insns. */
2543 for (i = 1; i < n; i++)
2545 /* First, see if minus some low bits, we've an easy load of
2546 high bits. */
2548 new = ((c & 0xffff) ^ 0x8000) - 0x8000;
2549 if (new != 0
2550 && (temp = alpha_emit_set_const (subtarget, mode, c - new, i)) != 0)
2551 return expand_binop (mode, add_optab, temp, GEN_INT (new),
2552 target, 0, OPTAB_WIDEN);
2554 /* Next try complementing. */
2555 if ((temp = alpha_emit_set_const (subtarget, mode, ~ c, i)) != 0)
2556 return expand_unop (mode, one_cmpl_optab, temp, target, 0);
2558 /* Next try to form a constant and do a left shift. We can do this
2559 if some low-order bits are zero; the exact_log2 call below tells
2560 us that information. The bits we are shifting out could be any
2561 value, but here we'll just try the 0- and sign-extended forms of
2562 the constant. To try to increase the chance of having the same
2563 constant in more than one insn, start at the highest number of
2564 bits to shift, but try all possibilities in case a ZAPNOT will
2565 be useful. */
2567 if ((bits = exact_log2 (c & - c)) > 0)
2568 for (; bits > 0; bits--)
2569 if ((temp = (alpha_emit_set_const
2570 (subtarget, mode, c >> bits, i))) != 0
2571 || ((temp = (alpha_emit_set_const
2572 (subtarget, mode,
2573 ((unsigned HOST_WIDE_INT) c) >> bits, i)))
2574 != 0))
2575 return expand_binop (mode, ashl_optab, temp, GEN_INT (bits),
2576 target, 0, OPTAB_WIDEN);
2578 /* Now try high-order zero bits. Here we try the shifted-in bits as
2579 all zero and all ones. Be careful to avoid shifting outside the
2580 mode and to avoid shifting outside the host wide int size. */
2581 /* On narrow hosts, don't shift a 1 into the high bit, since we'll
2582 confuse the recursive call and set all of the high 32 bits. */
2584 if ((bits = (MIN (HOST_BITS_PER_WIDE_INT, GET_MODE_SIZE (mode) * 8)
2585 - floor_log2 (c) - 1 - (HOST_BITS_PER_WIDE_INT < 64))) > 0)
2586 for (; bits > 0; bits--)
2587 if ((temp = alpha_emit_set_const (subtarget, mode,
2588 c << bits, i)) != 0
2589 || ((temp = (alpha_emit_set_const
2590 (subtarget, mode,
2591 ((c << bits) | (((HOST_WIDE_INT) 1 << bits) - 1)),
2592 i)))
2593 != 0))
2594 return expand_binop (mode, lshr_optab, temp, GEN_INT (bits),
2595 target, 1, OPTAB_WIDEN);
2597 /* Now try high-order 1 bits. We get that with a sign-extension.
2598 But one bit isn't enough here. Be careful to avoid shifting outside
2599 the mode and to avoid shifting outside the host wide int size. */
2601 if ((bits = (MIN (HOST_BITS_PER_WIDE_INT, GET_MODE_SIZE (mode) * 8)
2602 - floor_log2 (~ c) - 2)) > 0)
2603 for (; bits > 0; bits--)
2604 if ((temp = alpha_emit_set_const (subtarget, mode,
2605 c << bits, i)) != 0
2606 || ((temp = (alpha_emit_set_const
2607 (subtarget, mode,
2608 ((c << bits) | (((HOST_WIDE_INT) 1 << bits) - 1)),
2609 i)))
2610 != 0))
2611 return expand_binop (mode, ashr_optab, temp, GEN_INT (bits),
2612 target, 0, OPTAB_WIDEN);
2615 #if HOST_BITS_PER_WIDE_INT == 64
2616 /* Finally, see if can load a value into the target that is the same as the
2617 constant except that all bytes that are 0 are changed to be 0xff. If we
2618 can, then we can do a ZAPNOT to obtain the desired constant. */
2620 new = c;
2621 for (i = 0; i < 64; i += 8)
2622 if ((new & ((HOST_WIDE_INT) 0xff << i)) == 0)
2623 new |= (HOST_WIDE_INT) 0xff << i;
2625 /* We are only called for SImode and DImode. If this is SImode, ensure that
2626 we are sign extended to a full word. */
2628 if (mode == SImode)
2629 new = ((new & 0xffffffff) ^ 0x80000000) - 0x80000000;
2631 if (new != c && new != -1
2632 && (temp = alpha_emit_set_const (subtarget, mode, new, n - 1)) != 0)
2633 return expand_binop (mode, and_optab, temp, GEN_INT (c | ~ new),
2634 target, 0, OPTAB_WIDEN);
2635 #endif
2637 return 0;
2640 /* Try to output insns to set TARGET equal to the constant C if it can be
2641 done in less than N insns. Do all computations in MODE. Returns the place
2642 where the output has been placed if it can be done and the insns have been
2643 emitted. If it would take more than N insns, zero is returned and no
2644 insns and emitted. */
2647 alpha_emit_set_const (rtx target, enum machine_mode mode,
2648 HOST_WIDE_INT c, int n)
2650 rtx result = 0;
2651 rtx orig_target = target;
2652 int i;
2654 /* If we can't make any pseudos, TARGET is an SImode hard register, we
2655 can't load this constant in one insn, do this in DImode. */
2656 if (no_new_pseudos && mode == SImode
2657 && GET_CODE (target) == REG && REGNO (target) < FIRST_PSEUDO_REGISTER
2658 && (result = alpha_emit_set_const_1 (target, mode, c, 1)) == 0)
2660 target = gen_lowpart (DImode, target);
2661 mode = DImode;
2664 /* Try 1 insn, then 2, then up to N. */
2665 for (i = 1; i <= n; i++)
2667 result = alpha_emit_set_const_1 (target, mode, c, i);
2668 if (result)
2670 rtx insn = get_last_insn ();
2671 rtx set = single_set (insn);
2672 if (! CONSTANT_P (SET_SRC (set)))
2673 set_unique_reg_note (get_last_insn (), REG_EQUAL, GEN_INT (c));
2674 break;
2678 /* Allow for the case where we changed the mode of TARGET. */
2679 if (result == target)
2680 result = orig_target;
2682 return result;
2685 /* Having failed to find a 3 insn sequence in alpha_emit_set_const,
2686 fall back to a straight forward decomposition. We do this to avoid
2687 exponential run times encountered when looking for longer sequences
2688 with alpha_emit_set_const. */
2691 alpha_emit_set_long_const (rtx target, HOST_WIDE_INT c1, HOST_WIDE_INT c2)
2693 HOST_WIDE_INT d1, d2, d3, d4;
2695 /* Decompose the entire word */
2696 #if HOST_BITS_PER_WIDE_INT >= 64
2697 if (c2 != -(c1 < 0))
2698 abort ();
2699 d1 = ((c1 & 0xffff) ^ 0x8000) - 0x8000;
2700 c1 -= d1;
2701 d2 = ((c1 & 0xffffffff) ^ 0x80000000) - 0x80000000;
2702 c1 = (c1 - d2) >> 32;
2703 d3 = ((c1 & 0xffff) ^ 0x8000) - 0x8000;
2704 c1 -= d3;
2705 d4 = ((c1 & 0xffffffff) ^ 0x80000000) - 0x80000000;
2706 if (c1 != d4)
2707 abort ();
2708 #else
2709 d1 = ((c1 & 0xffff) ^ 0x8000) - 0x8000;
2710 c1 -= d1;
2711 d2 = ((c1 & 0xffffffff) ^ 0x80000000) - 0x80000000;
2712 if (c1 != d2)
2713 abort ();
2714 c2 += (d2 < 0);
2715 d3 = ((c2 & 0xffff) ^ 0x8000) - 0x8000;
2716 c2 -= d3;
2717 d4 = ((c2 & 0xffffffff) ^ 0x80000000) - 0x80000000;
2718 if (c2 != d4)
2719 abort ();
2720 #endif
2722 /* Construct the high word */
2723 if (d4)
2725 emit_move_insn (target, GEN_INT (d4));
2726 if (d3)
2727 emit_move_insn (target, gen_rtx_PLUS (DImode, target, GEN_INT (d3)));
2729 else
2730 emit_move_insn (target, GEN_INT (d3));
2732 /* Shift it into place */
2733 emit_move_insn (target, gen_rtx_ASHIFT (DImode, target, GEN_INT (32)));
2735 /* Add in the low bits. */
2736 if (d2)
2737 emit_move_insn (target, gen_rtx_PLUS (DImode, target, GEN_INT (d2)));
2738 if (d1)
2739 emit_move_insn (target, gen_rtx_PLUS (DImode, target, GEN_INT (d1)));
2741 return target;
2744 /* Expand a move instruction; return true if all work is done.
2745 We don't handle non-bwx subword loads here. */
2747 bool
2748 alpha_expand_mov (enum machine_mode mode, rtx *operands)
2750 /* If the output is not a register, the input must be. */
2751 if (GET_CODE (operands[0]) == MEM
2752 && ! reg_or_0_operand (operands[1], mode))
2753 operands[1] = force_reg (mode, operands[1]);
2755 /* Allow legitimize_address to perform some simplifications. */
2756 if (mode == Pmode && symbolic_operand (operands[1], mode))
2758 rtx tmp;
2760 /* With RTL inlining, at -O3, rtl is generated, stored, then actually
2761 compiled at the end of compilation. In the meantime, someone can
2762 re-encode-section-info on some symbol changing it e.g. from global
2763 to local-not-small. If this happens, we'd have emitted a plain
2764 load rather than a high+losum load and not recognize the insn.
2766 So if rtl inlining is in effect, we delay the global/not-global
2767 decision until rest_of_compilation by wrapping it in an
2768 UNSPEC_SYMBOL. */
2769 if (TARGET_EXPLICIT_RELOCS && flag_inline_functions
2770 && rtx_equal_function_value_matters
2771 && global_symbolic_operand (operands[1], mode))
2773 emit_insn (gen_movdi_er_maybe_g (operands[0], operands[1]));
2774 return true;
2777 tmp = alpha_legitimize_address (operands[1], operands[0], mode);
2778 if (tmp)
2780 if (tmp == operands[0])
2781 return true;
2782 operands[1] = tmp;
2783 return false;
2787 /* Early out for non-constants and valid constants. */
2788 if (! CONSTANT_P (operands[1]) || input_operand (operands[1], mode))
2789 return false;
2791 /* Split large integers. */
2792 if (GET_CODE (operands[1]) == CONST_INT
2793 || GET_CODE (operands[1]) == CONST_DOUBLE)
2795 HOST_WIDE_INT i0, i1;
2796 rtx temp = NULL_RTX;
2798 if (GET_CODE (operands[1]) == CONST_INT)
2800 i0 = INTVAL (operands[1]);
2801 i1 = -(i0 < 0);
2803 else if (HOST_BITS_PER_WIDE_INT >= 64)
2805 i0 = CONST_DOUBLE_LOW (operands[1]);
2806 i1 = -(i0 < 0);
2808 else
2810 i0 = CONST_DOUBLE_LOW (operands[1]);
2811 i1 = CONST_DOUBLE_HIGH (operands[1]);
2814 if (HOST_BITS_PER_WIDE_INT >= 64 || i1 == -(i0 < 0))
2815 temp = alpha_emit_set_const (operands[0], mode, i0, 3);
2817 if (!temp && TARGET_BUILD_CONSTANTS)
2818 temp = alpha_emit_set_long_const (operands[0], i0, i1);
2820 if (temp)
2822 if (rtx_equal_p (operands[0], temp))
2823 return true;
2824 operands[1] = temp;
2825 return false;
2829 /* Otherwise we've nothing left but to drop the thing to memory. */
2830 operands[1] = force_const_mem (mode, operands[1]);
2831 if (reload_in_progress)
2833 emit_move_insn (operands[0], XEXP (operands[1], 0));
2834 operands[1] = copy_rtx (operands[1]);
2835 XEXP (operands[1], 0) = operands[0];
2837 else
2838 operands[1] = validize_mem (operands[1]);
2839 return false;
2842 /* Expand a non-bwx QImode or HImode move instruction;
2843 return true if all work is done. */
2845 bool
2846 alpha_expand_mov_nobwx (enum machine_mode mode, rtx *operands)
2848 /* If the output is not a register, the input must be. */
2849 if (GET_CODE (operands[0]) == MEM)
2850 operands[1] = force_reg (mode, operands[1]);
2852 /* Handle four memory cases, unaligned and aligned for either the input
2853 or the output. The only case where we can be called during reload is
2854 for aligned loads; all other cases require temporaries. */
2856 if (GET_CODE (operands[1]) == MEM
2857 || (GET_CODE (operands[1]) == SUBREG
2858 && GET_CODE (SUBREG_REG (operands[1])) == MEM)
2859 || (reload_in_progress && GET_CODE (operands[1]) == REG
2860 && REGNO (operands[1]) >= FIRST_PSEUDO_REGISTER)
2861 || (reload_in_progress && GET_CODE (operands[1]) == SUBREG
2862 && GET_CODE (SUBREG_REG (operands[1])) == REG
2863 && REGNO (SUBREG_REG (operands[1])) >= FIRST_PSEUDO_REGISTER))
2865 if (aligned_memory_operand (operands[1], mode))
2867 if (reload_in_progress)
2869 emit_insn ((mode == QImode
2870 ? gen_reload_inqi_help
2871 : gen_reload_inhi_help)
2872 (operands[0], operands[1],
2873 gen_rtx_REG (SImode, REGNO (operands[0]))));
2875 else
2877 rtx aligned_mem, bitnum;
2878 rtx scratch = gen_reg_rtx (SImode);
2880 get_aligned_mem (operands[1], &aligned_mem, &bitnum);
2882 emit_insn ((mode == QImode
2883 ? gen_aligned_loadqi
2884 : gen_aligned_loadhi)
2885 (operands[0], aligned_mem, bitnum, scratch));
2888 else
2890 /* Don't pass these as parameters since that makes the generated
2891 code depend on parameter evaluation order which will cause
2892 bootstrap failures. */
2894 rtx temp1 = gen_reg_rtx (DImode);
2895 rtx temp2 = gen_reg_rtx (DImode);
2896 rtx seq = ((mode == QImode
2897 ? gen_unaligned_loadqi
2898 : gen_unaligned_loadhi)
2899 (operands[0], get_unaligned_address (operands[1], 0),
2900 temp1, temp2));
2902 alpha_set_memflags (seq, operands[1]);
2903 emit_insn (seq);
2905 return true;
2908 if (GET_CODE (operands[0]) == MEM
2909 || (GET_CODE (operands[0]) == SUBREG
2910 && GET_CODE (SUBREG_REG (operands[0])) == MEM)
2911 || (reload_in_progress && GET_CODE (operands[0]) == REG
2912 && REGNO (operands[0]) >= FIRST_PSEUDO_REGISTER)
2913 || (reload_in_progress && GET_CODE (operands[0]) == SUBREG
2914 && GET_CODE (SUBREG_REG (operands[0])) == REG
2915 && REGNO (operands[0]) >= FIRST_PSEUDO_REGISTER))
2917 if (aligned_memory_operand (operands[0], mode))
2919 rtx aligned_mem, bitnum;
2920 rtx temp1 = gen_reg_rtx (SImode);
2921 rtx temp2 = gen_reg_rtx (SImode);
2923 get_aligned_mem (operands[0], &aligned_mem, &bitnum);
2925 emit_insn (gen_aligned_store (aligned_mem, operands[1], bitnum,
2926 temp1, temp2));
2928 else
2930 rtx temp1 = gen_reg_rtx (DImode);
2931 rtx temp2 = gen_reg_rtx (DImode);
2932 rtx temp3 = gen_reg_rtx (DImode);
2933 rtx seq = ((mode == QImode
2934 ? gen_unaligned_storeqi
2935 : gen_unaligned_storehi)
2936 (get_unaligned_address (operands[0], 0),
2937 operands[1], temp1, temp2, temp3));
2939 alpha_set_memflags (seq, operands[0]);
2940 emit_insn (seq);
2942 return true;
2945 return false;
2948 /* Generate an unsigned DImode to FP conversion. This is the same code
2949 optabs would emit if we didn't have TFmode patterns.
2951 For SFmode, this is the only construction I've found that can pass
2952 gcc.c-torture/execute/ieee/rbug.c. No scenario that uses DFmode
2953 intermediates will work, because you'll get intermediate rounding
2954 that ruins the end result. Some of this could be fixed by turning
2955 on round-to-positive-infinity, but that requires diddling the fpsr,
2956 which kills performance. I tried turning this around and converting
2957 to a negative number, so that I could turn on /m, but either I did
2958 it wrong or there's something else cause I wound up with the exact
2959 same single-bit error. There is a branch-less form of this same code:
2961 srl $16,1,$1
2962 and $16,1,$2
2963 cmplt $16,0,$3
2964 or $1,$2,$2
2965 cmovge $16,$16,$2
2966 itoft $3,$f10
2967 itoft $2,$f11
2968 cvtqs $f11,$f11
2969 adds $f11,$f11,$f0
2970 fcmoveq $f10,$f11,$f0
2972 I'm not using it because it's the same number of instructions as
2973 this branch-full form, and it has more serialized long latency
2974 instructions on the critical path.
2976 For DFmode, we can avoid rounding errors by breaking up the word
2977 into two pieces, converting them separately, and adding them back:
2979 LC0: .long 0,0x5f800000
2981 itoft $16,$f11
2982 lda $2,LC0
2983 cmplt $16,0,$1
2984 cpyse $f11,$f31,$f10
2985 cpyse $f31,$f11,$f11
2986 s4addq $1,$2,$1
2987 lds $f12,0($1)
2988 cvtqt $f10,$f10
2989 cvtqt $f11,$f11
2990 addt $f12,$f10,$f0
2991 addt $f0,$f11,$f0
2993 This doesn't seem to be a clear-cut win over the optabs form.
2994 It probably all depends on the distribution of numbers being
2995 converted -- in the optabs form, all but high-bit-set has a
2996 much lower minimum execution time. */
2998 void
2999 alpha_emit_floatuns (rtx operands[2])
3001 rtx neglab, donelab, i0, i1, f0, in, out;
3002 enum machine_mode mode;
3004 out = operands[0];
3005 in = force_reg (DImode, operands[1]);
3006 mode = GET_MODE (out);
3007 neglab = gen_label_rtx ();
3008 donelab = gen_label_rtx ();
3009 i0 = gen_reg_rtx (DImode);
3010 i1 = gen_reg_rtx (DImode);
3011 f0 = gen_reg_rtx (mode);
3013 emit_cmp_and_jump_insns (in, const0_rtx, LT, const0_rtx, DImode, 0, neglab);
3015 emit_insn (gen_rtx_SET (VOIDmode, out, gen_rtx_FLOAT (mode, in)));
3016 emit_jump_insn (gen_jump (donelab));
3017 emit_barrier ();
3019 emit_label (neglab);
3021 emit_insn (gen_lshrdi3 (i0, in, const1_rtx));
3022 emit_insn (gen_anddi3 (i1, in, const1_rtx));
3023 emit_insn (gen_iordi3 (i0, i0, i1));
3024 emit_insn (gen_rtx_SET (VOIDmode, f0, gen_rtx_FLOAT (mode, i0)));
3025 emit_insn (gen_rtx_SET (VOIDmode, out, gen_rtx_PLUS (mode, f0, f0)));
3027 emit_label (donelab);
3030 /* Generate the comparison for a conditional branch. */
3033 alpha_emit_conditional_branch (enum rtx_code code)
3035 enum rtx_code cmp_code, branch_code;
3036 enum machine_mode cmp_mode, branch_mode = VOIDmode;
3037 rtx op0 = alpha_compare.op0, op1 = alpha_compare.op1;
3038 rtx tem;
3040 if (alpha_compare.fp_p && GET_MODE (op0) == TFmode)
3042 if (! TARGET_HAS_XFLOATING_LIBS)
3043 abort ();
3045 /* X_floating library comparison functions return
3046 -1 unordered
3047 0 false
3048 1 true
3049 Convert the compare against the raw return value. */
3051 switch (code)
3053 case UNORDERED:
3054 cmp_code = EQ;
3055 code = LT;
3056 break;
3057 case ORDERED:
3058 cmp_code = EQ;
3059 code = GE;
3060 break;
3061 case NE:
3062 cmp_code = NE;
3063 code = NE;
3064 break;
3065 default:
3066 cmp_code = code;
3067 code = GT;
3068 break;
3071 op0 = alpha_emit_xfloating_compare (cmp_code, op0, op1);
3072 op1 = const0_rtx;
3073 alpha_compare.fp_p = 0;
3076 /* The general case: fold the comparison code to the types of compares
3077 that we have, choosing the branch as necessary. */
3078 switch (code)
3080 case EQ: case LE: case LT: case LEU: case LTU:
3081 case UNORDERED:
3082 /* We have these compares: */
3083 cmp_code = code, branch_code = NE;
3084 break;
3086 case NE:
3087 case ORDERED:
3088 /* These must be reversed. */
3089 cmp_code = reverse_condition (code), branch_code = EQ;
3090 break;
3092 case GE: case GT: case GEU: case GTU:
3093 /* For FP, we swap them, for INT, we reverse them. */
3094 if (alpha_compare.fp_p)
3096 cmp_code = swap_condition (code);
3097 branch_code = NE;
3098 tem = op0, op0 = op1, op1 = tem;
3100 else
3102 cmp_code = reverse_condition (code);
3103 branch_code = EQ;
3105 break;
3107 default:
3108 abort ();
3111 if (alpha_compare.fp_p)
3113 cmp_mode = DFmode;
3114 if (flag_unsafe_math_optimizations)
3116 /* When we are not as concerned about non-finite values, and we
3117 are comparing against zero, we can branch directly. */
3118 if (op1 == CONST0_RTX (DFmode))
3119 cmp_code = NIL, branch_code = code;
3120 else if (op0 == CONST0_RTX (DFmode))
3122 /* Undo the swap we probably did just above. */
3123 tem = op0, op0 = op1, op1 = tem;
3124 branch_code = swap_condition (cmp_code);
3125 cmp_code = NIL;
3128 else
3130 /* ??? We mark the branch mode to be CCmode to prevent the
3131 compare and branch from being combined, since the compare
3132 insn follows IEEE rules that the branch does not. */
3133 branch_mode = CCmode;
3136 else
3138 cmp_mode = DImode;
3140 /* The following optimizations are only for signed compares. */
3141 if (code != LEU && code != LTU && code != GEU && code != GTU)
3143 /* Whee. Compare and branch against 0 directly. */
3144 if (op1 == const0_rtx)
3145 cmp_code = NIL, branch_code = code;
3147 /* If the constants doesn't fit into an immediate, but can
3148 be generated by lda/ldah, we adjust the argument and
3149 compare against zero, so we can use beq/bne directly. */
3150 else if (GET_CODE (op1) == CONST_INT && (code == EQ || code == NE))
3152 HOST_WIDE_INT v = INTVAL (op1), n = -v;
3154 if (! CONST_OK_FOR_LETTER_P (v, 'I')
3155 && (CONST_OK_FOR_LETTER_P (n, 'K')
3156 || CONST_OK_FOR_LETTER_P (n, 'L')))
3158 cmp_code = PLUS, branch_code = code;
3159 op1 = GEN_INT (n);
3164 if (!reg_or_0_operand (op0, DImode))
3165 op0 = force_reg (DImode, op0);
3166 if (cmp_code != PLUS && !reg_or_8bit_operand (op1, DImode))
3167 op1 = force_reg (DImode, op1);
3170 /* Emit an initial compare instruction, if necessary. */
3171 tem = op0;
3172 if (cmp_code != NIL)
3174 tem = gen_reg_rtx (cmp_mode);
3175 emit_move_insn (tem, gen_rtx_fmt_ee (cmp_code, cmp_mode, op0, op1));
3178 /* Zero the operands. */
3179 memset (&alpha_compare, 0, sizeof (alpha_compare));
3181 /* Return the branch comparison. */
3182 return gen_rtx_fmt_ee (branch_code, branch_mode, tem, CONST0_RTX (cmp_mode));
3185 /* Certain simplifications can be done to make invalid setcc operations
3186 valid. Return the final comparison, or NULL if we can't work. */
3189 alpha_emit_setcc (enum rtx_code code)
3191 enum rtx_code cmp_code;
3192 rtx op0 = alpha_compare.op0, op1 = alpha_compare.op1;
3193 int fp_p = alpha_compare.fp_p;
3194 rtx tmp;
3196 /* Zero the operands. */
3197 memset (&alpha_compare, 0, sizeof (alpha_compare));
3199 if (fp_p && GET_MODE (op0) == TFmode)
3201 if (! TARGET_HAS_XFLOATING_LIBS)
3202 abort ();
3204 /* X_floating library comparison functions return
3205 -1 unordered
3206 0 false
3207 1 true
3208 Convert the compare against the raw return value. */
3210 if (code == UNORDERED || code == ORDERED)
3211 cmp_code = EQ;
3212 else
3213 cmp_code = code;
3215 op0 = alpha_emit_xfloating_compare (cmp_code, op0, op1);
3216 op1 = const0_rtx;
3217 fp_p = 0;
3219 if (code == UNORDERED)
3220 code = LT;
3221 else if (code == ORDERED)
3222 code = GE;
3223 else
3224 code = GT;
3227 if (fp_p && !TARGET_FIX)
3228 return NULL_RTX;
3230 /* The general case: fold the comparison code to the types of compares
3231 that we have, choosing the branch as necessary. */
3233 cmp_code = NIL;
3234 switch (code)
3236 case EQ: case LE: case LT: case LEU: case LTU:
3237 case UNORDERED:
3238 /* We have these compares. */
3239 if (fp_p)
3240 cmp_code = code, code = NE;
3241 break;
3243 case NE:
3244 if (!fp_p && op1 == const0_rtx)
3245 break;
3246 /* FALLTHRU */
3248 case ORDERED:
3249 cmp_code = reverse_condition (code);
3250 code = EQ;
3251 break;
3253 case GE: case GT: case GEU: case GTU:
3254 /* These normally need swapping, but for integer zero we have
3255 special patterns that recognize swapped operands. */
3256 if (!fp_p && op1 == const0_rtx)
3257 break;
3258 code = swap_condition (code);
3259 if (fp_p)
3260 cmp_code = code, code = NE;
3261 tmp = op0, op0 = op1, op1 = tmp;
3262 break;
3264 default:
3265 abort ();
3268 if (!fp_p)
3270 if (!register_operand (op0, DImode))
3271 op0 = force_reg (DImode, op0);
3272 if (!reg_or_8bit_operand (op1, DImode))
3273 op1 = force_reg (DImode, op1);
3276 /* Emit an initial compare instruction, if necessary. */
3277 if (cmp_code != NIL)
3279 enum machine_mode mode = fp_p ? DFmode : DImode;
3281 tmp = gen_reg_rtx (mode);
3282 emit_insn (gen_rtx_SET (VOIDmode, tmp,
3283 gen_rtx_fmt_ee (cmp_code, mode, op0, op1)));
3285 op0 = fp_p ? gen_lowpart (DImode, tmp) : tmp;
3286 op1 = const0_rtx;
3289 /* Return the setcc comparison. */
3290 return gen_rtx_fmt_ee (code, DImode, op0, op1);
3294 /* Rewrite a comparison against zero CMP of the form
3295 (CODE (cc0) (const_int 0)) so it can be written validly in
3296 a conditional move (if_then_else CMP ...).
3297 If both of the operands that set cc0 are nonzero we must emit
3298 an insn to perform the compare (it can't be done within
3299 the conditional move). */
3302 alpha_emit_conditional_move (rtx cmp, enum machine_mode mode)
3304 enum rtx_code code = GET_CODE (cmp);
3305 enum rtx_code cmov_code = NE;
3306 rtx op0 = alpha_compare.op0;
3307 rtx op1 = alpha_compare.op1;
3308 int fp_p = alpha_compare.fp_p;
3309 enum machine_mode cmp_mode
3310 = (GET_MODE (op0) == VOIDmode ? DImode : GET_MODE (op0));
3311 enum machine_mode cmp_op_mode = fp_p ? DFmode : DImode;
3312 enum machine_mode cmov_mode = VOIDmode;
3313 int local_fast_math = flag_unsafe_math_optimizations;
3314 rtx tem;
3316 /* Zero the operands. */
3317 memset (&alpha_compare, 0, sizeof (alpha_compare));
3319 if (fp_p != FLOAT_MODE_P (mode))
3321 enum rtx_code cmp_code;
3323 if (! TARGET_FIX)
3324 return 0;
3326 /* If we have fp<->int register move instructions, do a cmov by
3327 performing the comparison in fp registers, and move the
3328 zero/nonzero value to integer registers, where we can then
3329 use a normal cmov, or vice-versa. */
3331 switch (code)
3333 case EQ: case LE: case LT: case LEU: case LTU:
3334 /* We have these compares. */
3335 cmp_code = code, code = NE;
3336 break;
3338 case NE:
3339 /* This must be reversed. */
3340 cmp_code = EQ, code = EQ;
3341 break;
3343 case GE: case GT: case GEU: case GTU:
3344 /* These normally need swapping, but for integer zero we have
3345 special patterns that recognize swapped operands. */
3346 if (!fp_p && op1 == const0_rtx)
3347 cmp_code = code, code = NE;
3348 else
3350 cmp_code = swap_condition (code);
3351 code = NE;
3352 tem = op0, op0 = op1, op1 = tem;
3354 break;
3356 default:
3357 abort ();
3360 tem = gen_reg_rtx (cmp_op_mode);
3361 emit_insn (gen_rtx_SET (VOIDmode, tem,
3362 gen_rtx_fmt_ee (cmp_code, cmp_op_mode,
3363 op0, op1)));
3365 cmp_mode = cmp_op_mode = fp_p ? DImode : DFmode;
3366 op0 = gen_lowpart (cmp_op_mode, tem);
3367 op1 = CONST0_RTX (cmp_op_mode);
3368 fp_p = !fp_p;
3369 local_fast_math = 1;
3372 /* We may be able to use a conditional move directly.
3373 This avoids emitting spurious compares. */
3374 if (signed_comparison_operator (cmp, VOIDmode)
3375 && (!fp_p || local_fast_math)
3376 && (op0 == CONST0_RTX (cmp_mode) || op1 == CONST0_RTX (cmp_mode)))
3377 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
3379 /* We can't put the comparison inside the conditional move;
3380 emit a compare instruction and put that inside the
3381 conditional move. Make sure we emit only comparisons we have;
3382 swap or reverse as necessary. */
3384 if (no_new_pseudos)
3385 return NULL_RTX;
3387 switch (code)
3389 case EQ: case LE: case LT: case LEU: case LTU:
3390 /* We have these compares: */
3391 break;
3393 case NE:
3394 /* This must be reversed. */
3395 code = reverse_condition (code);
3396 cmov_code = EQ;
3397 break;
3399 case GE: case GT: case GEU: case GTU:
3400 /* These must be swapped. */
3401 if (op1 != CONST0_RTX (cmp_mode))
3403 code = swap_condition (code);
3404 tem = op0, op0 = op1, op1 = tem;
3406 break;
3408 default:
3409 abort ();
3412 if (!fp_p)
3414 if (!reg_or_0_operand (op0, DImode))
3415 op0 = force_reg (DImode, op0);
3416 if (!reg_or_8bit_operand (op1, DImode))
3417 op1 = force_reg (DImode, op1);
3420 /* ??? We mark the branch mode to be CCmode to prevent the compare
3421 and cmov from being combined, since the compare insn follows IEEE
3422 rules that the cmov does not. */
3423 if (fp_p && !local_fast_math)
3424 cmov_mode = CCmode;
3426 tem = gen_reg_rtx (cmp_op_mode);
3427 emit_move_insn (tem, gen_rtx_fmt_ee (code, cmp_op_mode, op0, op1));
3428 return gen_rtx_fmt_ee (cmov_code, cmov_mode, tem, CONST0_RTX (cmp_op_mode));
3431 /* Simplify a conditional move of two constants into a setcc with
3432 arithmetic. This is done with a splitter since combine would
3433 just undo the work if done during code generation. It also catches
3434 cases we wouldn't have before cse. */
3437 alpha_split_conditional_move (enum rtx_code code, rtx dest, rtx cond,
3438 rtx t_rtx, rtx f_rtx)
3440 HOST_WIDE_INT t, f, diff;
3441 enum machine_mode mode;
3442 rtx target, subtarget, tmp;
3444 mode = GET_MODE (dest);
3445 t = INTVAL (t_rtx);
3446 f = INTVAL (f_rtx);
3447 diff = t - f;
3449 if (((code == NE || code == EQ) && diff < 0)
3450 || (code == GE || code == GT))
3452 code = reverse_condition (code);
3453 diff = t, t = f, f = diff;
3454 diff = t - f;
3457 subtarget = target = dest;
3458 if (mode != DImode)
3460 target = gen_lowpart (DImode, dest);
3461 if (! no_new_pseudos)
3462 subtarget = gen_reg_rtx (DImode);
3463 else
3464 subtarget = target;
3466 /* Below, we must be careful to use copy_rtx on target and subtarget
3467 in intermediate insns, as they may be a subreg rtx, which may not
3468 be shared. */
3470 if (f == 0 && exact_log2 (diff) > 0
3471 /* On EV6, we've got enough shifters to make non-arithmetic shifts
3472 viable over a longer latency cmove. On EV5, the E0 slot is a
3473 scarce resource, and on EV4 shift has the same latency as a cmove. */
3474 && (diff <= 8 || alpha_cpu == PROCESSOR_EV6))
3476 tmp = gen_rtx_fmt_ee (code, DImode, cond, const0_rtx);
3477 emit_insn (gen_rtx_SET (VOIDmode, copy_rtx (subtarget), tmp));
3479 tmp = gen_rtx_ASHIFT (DImode, copy_rtx (subtarget),
3480 GEN_INT (exact_log2 (t)));
3481 emit_insn (gen_rtx_SET (VOIDmode, target, tmp));
3483 else if (f == 0 && t == -1)
3485 tmp = gen_rtx_fmt_ee (code, DImode, cond, const0_rtx);
3486 emit_insn (gen_rtx_SET (VOIDmode, copy_rtx (subtarget), tmp));
3488 emit_insn (gen_negdi2 (target, copy_rtx (subtarget)));
3490 else if (diff == 1 || diff == 4 || diff == 8)
3492 rtx add_op;
3494 tmp = gen_rtx_fmt_ee (code, DImode, cond, const0_rtx);
3495 emit_insn (gen_rtx_SET (VOIDmode, copy_rtx (subtarget), tmp));
3497 if (diff == 1)
3498 emit_insn (gen_adddi3 (target, copy_rtx (subtarget), GEN_INT (f)));
3499 else
3501 add_op = GEN_INT (f);
3502 if (sext_add_operand (add_op, mode))
3504 tmp = gen_rtx_MULT (DImode, copy_rtx (subtarget),
3505 GEN_INT (diff));
3506 tmp = gen_rtx_PLUS (DImode, tmp, add_op);
3507 emit_insn (gen_rtx_SET (VOIDmode, target, tmp));
3509 else
3510 return 0;
3513 else
3514 return 0;
3516 return 1;
3519 /* Look up the function X_floating library function name for the
3520 given operation. */
3522 static const char *
3523 alpha_lookup_xfloating_lib_func (enum rtx_code code)
3525 struct xfloating_op
3527 const enum rtx_code code;
3528 const char *const func;
3531 static const struct xfloating_op vms_xfloating_ops[] =
3533 { PLUS, "OTS$ADD_X" },
3534 { MINUS, "OTS$SUB_X" },
3535 { MULT, "OTS$MUL_X" },
3536 { DIV, "OTS$DIV_X" },
3537 { EQ, "OTS$EQL_X" },
3538 { NE, "OTS$NEQ_X" },
3539 { LT, "OTS$LSS_X" },
3540 { LE, "OTS$LEQ_X" },
3541 { GT, "OTS$GTR_X" },
3542 { GE, "OTS$GEQ_X" },
3543 { FIX, "OTS$CVTXQ" },
3544 { FLOAT, "OTS$CVTQX" },
3545 { UNSIGNED_FLOAT, "OTS$CVTQUX" },
3546 { FLOAT_EXTEND, "OTS$CVT_FLOAT_T_X" },
3547 { FLOAT_TRUNCATE, "OTS$CVT_FLOAT_X_T" },
3550 static const struct xfloating_op osf_xfloating_ops[] =
3552 { PLUS, "_OtsAddX" },
3553 { MINUS, "_OtsSubX" },
3554 { MULT, "_OtsMulX" },
3555 { DIV, "_OtsDivX" },
3556 { EQ, "_OtsEqlX" },
3557 { NE, "_OtsNeqX" },
3558 { LT, "_OtsLssX" },
3559 { LE, "_OtsLeqX" },
3560 { GT, "_OtsGtrX" },
3561 { GE, "_OtsGeqX" },
3562 { FIX, "_OtsCvtXQ" },
3563 { FLOAT, "_OtsCvtQX" },
3564 { UNSIGNED_FLOAT, "_OtsCvtQUX" },
3565 { FLOAT_EXTEND, "_OtsConvertFloatTX" },
3566 { FLOAT_TRUNCATE, "_OtsConvertFloatXT" },
3569 const struct xfloating_op *ops;
3570 const long n = ARRAY_SIZE (osf_xfloating_ops);
3571 long i;
3573 /* How irritating. Nothing to key off for the table. Hardcode
3574 knowledge of the G_floating routines. */
3575 if (TARGET_FLOAT_VAX)
3577 if (TARGET_ABI_OPEN_VMS)
3579 if (code == FLOAT_EXTEND)
3580 return "OTS$CVT_FLOAT_G_X";
3581 if (code == FLOAT_TRUNCATE)
3582 return "OTS$CVT_FLOAT_X_G";
3584 else
3586 if (code == FLOAT_EXTEND)
3587 return "_OtsConvertFloatGX";
3588 if (code == FLOAT_TRUNCATE)
3589 return "_OtsConvertFloatXG";
3593 if (TARGET_ABI_OPEN_VMS)
3594 ops = vms_xfloating_ops;
3595 else
3596 ops = osf_xfloating_ops;
3598 for (i = 0; i < n; ++i)
3599 if (ops[i].code == code)
3600 return ops[i].func;
3602 abort();
3605 /* Most X_floating operations take the rounding mode as an argument.
3606 Compute that here. */
3608 static int
3609 alpha_compute_xfloating_mode_arg (enum rtx_code code,
3610 enum alpha_fp_rounding_mode round)
3612 int mode;
3614 switch (round)
3616 case ALPHA_FPRM_NORM:
3617 mode = 2;
3618 break;
3619 case ALPHA_FPRM_MINF:
3620 mode = 1;
3621 break;
3622 case ALPHA_FPRM_CHOP:
3623 mode = 0;
3624 break;
3625 case ALPHA_FPRM_DYN:
3626 mode = 4;
3627 break;
3628 default:
3629 abort ();
3631 /* XXX For reference, round to +inf is mode = 3. */
3634 if (code == FLOAT_TRUNCATE && alpha_fptm == ALPHA_FPTM_N)
3635 mode |= 0x10000;
3637 return mode;
3640 /* Emit an X_floating library function call.
3642 Note that these functions do not follow normal calling conventions:
3643 TFmode arguments are passed in two integer registers (as opposed to
3644 indirect); TFmode return values appear in R16+R17.
3646 FUNC is the function name to call.
3647 TARGET is where the output belongs.
3648 OPERANDS are the inputs.
3649 NOPERANDS is the count of inputs.
3650 EQUIV is the expression equivalent for the function.
3653 static void
3654 alpha_emit_xfloating_libcall (const char *func, rtx target, rtx operands[],
3655 int noperands, rtx equiv)
3657 rtx usage = NULL_RTX, tmp, reg;
3658 int regno = 16, i;
3660 start_sequence ();
3662 for (i = 0; i < noperands; ++i)
3664 switch (GET_MODE (operands[i]))
3666 case TFmode:
3667 reg = gen_rtx_REG (TFmode, regno);
3668 regno += 2;
3669 break;
3671 case DFmode:
3672 reg = gen_rtx_REG (DFmode, regno + 32);
3673 regno += 1;
3674 break;
3676 case VOIDmode:
3677 if (GET_CODE (operands[i]) != CONST_INT)
3678 abort ();
3679 /* FALLTHRU */
3680 case DImode:
3681 reg = gen_rtx_REG (DImode, regno);
3682 regno += 1;
3683 break;
3685 default:
3686 abort ();
3689 emit_move_insn (reg, operands[i]);
3690 usage = alloc_EXPR_LIST (0, gen_rtx_USE (VOIDmode, reg), usage);
3693 switch (GET_MODE (target))
3695 case TFmode:
3696 reg = gen_rtx_REG (TFmode, 16);
3697 break;
3698 case DFmode:
3699 reg = gen_rtx_REG (DFmode, 32);
3700 break;
3701 case DImode:
3702 reg = gen_rtx_REG (DImode, 0);
3703 break;
3704 default:
3705 abort ();
3708 tmp = gen_rtx_MEM (QImode, init_one_libfunc (func));
3709 tmp = emit_call_insn (GEN_CALL_VALUE (reg, tmp, const0_rtx,
3710 const0_rtx, const0_rtx));
3711 CALL_INSN_FUNCTION_USAGE (tmp) = usage;
3713 tmp = get_insns ();
3714 end_sequence ();
3716 emit_libcall_block (tmp, target, reg, equiv);
3719 /* Emit an X_floating library function call for arithmetic (+,-,*,/). */
3721 void
3722 alpha_emit_xfloating_arith (enum rtx_code code, rtx operands[])
3724 const char *func;
3725 int mode;
3726 rtx out_operands[3];
3728 func = alpha_lookup_xfloating_lib_func (code);
3729 mode = alpha_compute_xfloating_mode_arg (code, alpha_fprm);
3731 out_operands[0] = operands[1];
3732 out_operands[1] = operands[2];
3733 out_operands[2] = GEN_INT (mode);
3734 alpha_emit_xfloating_libcall (func, operands[0], out_operands, 3,
3735 gen_rtx_fmt_ee (code, TFmode, operands[1],
3736 operands[2]));
3739 /* Emit an X_floating library function call for a comparison. */
3741 static rtx
3742 alpha_emit_xfloating_compare (enum rtx_code code, rtx op0, rtx op1)
3744 const char *func;
3745 rtx out, operands[2];
3747 func = alpha_lookup_xfloating_lib_func (code);
3749 operands[0] = op0;
3750 operands[1] = op1;
3751 out = gen_reg_rtx (DImode);
3753 /* ??? Strange mode for equiv because what's actually returned
3754 is -1,0,1, not a proper boolean value. */
3755 alpha_emit_xfloating_libcall (func, out, operands, 2,
3756 gen_rtx_fmt_ee (code, CCmode, op0, op1));
3758 return out;
3761 /* Emit an X_floating library function call for a conversion. */
3763 void
3764 alpha_emit_xfloating_cvt (enum rtx_code orig_code, rtx operands[])
3766 int noperands = 1, mode;
3767 rtx out_operands[2];
3768 const char *func;
3769 enum rtx_code code = orig_code;
3771 if (code == UNSIGNED_FIX)
3772 code = FIX;
3774 func = alpha_lookup_xfloating_lib_func (code);
3776 out_operands[0] = operands[1];
3778 switch (code)
3780 case FIX:
3781 mode = alpha_compute_xfloating_mode_arg (code, ALPHA_FPRM_CHOP);
3782 out_operands[1] = GEN_INT (mode);
3783 noperands = 2;
3784 break;
3785 case FLOAT_TRUNCATE:
3786 mode = alpha_compute_xfloating_mode_arg (code, alpha_fprm);
3787 out_operands[1] = GEN_INT (mode);
3788 noperands = 2;
3789 break;
3790 default:
3791 break;
3794 alpha_emit_xfloating_libcall (func, operands[0], out_operands, noperands,
3795 gen_rtx_fmt_e (orig_code,
3796 GET_MODE (operands[0]),
3797 operands[1]));
3800 /* Split a TFmode OP[1] into DImode OP[2,3] and likewise for
3801 OP[0] into OP[0,1]. Naturally, output operand ordering is
3802 little-endian. */
3804 void
3805 alpha_split_tfmode_pair (rtx operands[4])
3807 if (GET_CODE (operands[1]) == REG)
3809 operands[3] = gen_rtx_REG (DImode, REGNO (operands[1]) + 1);
3810 operands[2] = gen_rtx_REG (DImode, REGNO (operands[1]));
3812 else if (GET_CODE (operands[1]) == MEM)
3814 operands[3] = adjust_address (operands[1], DImode, 8);
3815 operands[2] = adjust_address (operands[1], DImode, 0);
3817 else if (operands[1] == CONST0_RTX (TFmode))
3818 operands[2] = operands[3] = const0_rtx;
3819 else
3820 abort ();
3822 if (GET_CODE (operands[0]) == REG)
3824 operands[1] = gen_rtx_REG (DImode, REGNO (operands[0]) + 1);
3825 operands[0] = gen_rtx_REG (DImode, REGNO (operands[0]));
3827 else if (GET_CODE (operands[0]) == MEM)
3829 operands[1] = adjust_address (operands[0], DImode, 8);
3830 operands[0] = adjust_address (operands[0], DImode, 0);
3832 else
3833 abort ();
3836 /* Implement negtf2 or abstf2. Op0 is destination, op1 is source,
3837 op2 is a register containing the sign bit, operation is the
3838 logical operation to be performed. */
3840 void
3841 alpha_split_tfmode_frobsign (rtx operands[3], rtx (*operation) (rtx, rtx, rtx))
3843 rtx high_bit = operands[2];
3844 rtx scratch;
3845 int move;
3847 alpha_split_tfmode_pair (operands);
3849 /* Detect three flavors of operand overlap. */
3850 move = 1;
3851 if (rtx_equal_p (operands[0], operands[2]))
3852 move = 0;
3853 else if (rtx_equal_p (operands[1], operands[2]))
3855 if (rtx_equal_p (operands[0], high_bit))
3856 move = 2;
3857 else
3858 move = -1;
3861 if (move < 0)
3862 emit_move_insn (operands[0], operands[2]);
3864 /* ??? If the destination overlaps both source tf and high_bit, then
3865 assume source tf is dead in its entirety and use the other half
3866 for a scratch register. Otherwise "scratch" is just the proper
3867 destination register. */
3868 scratch = operands[move < 2 ? 1 : 3];
3870 emit_insn ((*operation) (scratch, high_bit, operands[3]));
3872 if (move > 0)
3874 emit_move_insn (operands[0], operands[2]);
3875 if (move > 1)
3876 emit_move_insn (operands[1], scratch);
3880 /* Use ext[wlq][lh] as the Architecture Handbook describes for extracting
3881 unaligned data:
3883 unsigned: signed:
3884 word: ldq_u r1,X(r11) ldq_u r1,X(r11)
3885 ldq_u r2,X+1(r11) ldq_u r2,X+1(r11)
3886 lda r3,X(r11) lda r3,X+2(r11)
3887 extwl r1,r3,r1 extql r1,r3,r1
3888 extwh r2,r3,r2 extqh r2,r3,r2
3889 or r1.r2.r1 or r1,r2,r1
3890 sra r1,48,r1
3892 long: ldq_u r1,X(r11) ldq_u r1,X(r11)
3893 ldq_u r2,X+3(r11) ldq_u r2,X+3(r11)
3894 lda r3,X(r11) lda r3,X(r11)
3895 extll r1,r3,r1 extll r1,r3,r1
3896 extlh r2,r3,r2 extlh r2,r3,r2
3897 or r1.r2.r1 addl r1,r2,r1
3899 quad: ldq_u r1,X(r11)
3900 ldq_u r2,X+7(r11)
3901 lda r3,X(r11)
3902 extql r1,r3,r1
3903 extqh r2,r3,r2
3904 or r1.r2.r1
3907 void
3908 alpha_expand_unaligned_load (rtx tgt, rtx mem, HOST_WIDE_INT size,
3909 HOST_WIDE_INT ofs, int sign)
3911 rtx meml, memh, addr, extl, exth, tmp, mema;
3912 enum machine_mode mode;
3914 meml = gen_reg_rtx (DImode);
3915 memh = gen_reg_rtx (DImode);
3916 addr = gen_reg_rtx (DImode);
3917 extl = gen_reg_rtx (DImode);
3918 exth = gen_reg_rtx (DImode);
3920 mema = XEXP (mem, 0);
3921 if (GET_CODE (mema) == LO_SUM)
3922 mema = force_reg (Pmode, mema);
3924 /* AND addresses cannot be in any alias set, since they may implicitly
3925 alias surrounding code. Ideally we'd have some alias set that
3926 covered all types except those with alignment 8 or higher. */
3928 tmp = change_address (mem, DImode,
3929 gen_rtx_AND (DImode,
3930 plus_constant (mema, ofs),
3931 GEN_INT (-8)));
3932 set_mem_alias_set (tmp, 0);
3933 emit_move_insn (meml, tmp);
3935 tmp = change_address (mem, DImode,
3936 gen_rtx_AND (DImode,
3937 plus_constant (mema, ofs + size - 1),
3938 GEN_INT (-8)));
3939 set_mem_alias_set (tmp, 0);
3940 emit_move_insn (memh, tmp);
3942 if (WORDS_BIG_ENDIAN && sign && (size == 2 || size == 4))
3944 emit_move_insn (addr, plus_constant (mema, -1));
3946 emit_insn (gen_extqh_be (extl, meml, addr));
3947 emit_insn (gen_extxl_be (exth, memh, GEN_INT (64), addr));
3949 addr = expand_binop (DImode, ior_optab, extl, exth, tgt, 1, OPTAB_WIDEN);
3950 addr = expand_binop (DImode, ashr_optab, addr, GEN_INT (64 - size*8),
3951 addr, 1, OPTAB_WIDEN);
3953 else if (sign && size == 2)
3955 emit_move_insn (addr, plus_constant (mema, ofs+2));
3957 emit_insn (gen_extxl_le (extl, meml, GEN_INT (64), addr));
3958 emit_insn (gen_extqh_le (exth, memh, addr));
3960 /* We must use tgt here for the target. Alpha-vms port fails if we use
3961 addr for the target, because addr is marked as a pointer and combine
3962 knows that pointers are always sign-extended 32 bit values. */
3963 addr = expand_binop (DImode, ior_optab, extl, exth, tgt, 1, OPTAB_WIDEN);
3964 addr = expand_binop (DImode, ashr_optab, addr, GEN_INT (48),
3965 addr, 1, OPTAB_WIDEN);
3967 else
3969 if (WORDS_BIG_ENDIAN)
3971 emit_move_insn (addr, plus_constant (mema, ofs+size-1));
3972 switch ((int) size)
3974 case 2:
3975 emit_insn (gen_extwh_be (extl, meml, addr));
3976 mode = HImode;
3977 break;
3979 case 4:
3980 emit_insn (gen_extlh_be (extl, meml, addr));
3981 mode = SImode;
3982 break;
3984 case 8:
3985 emit_insn (gen_extqh_be (extl, meml, addr));
3986 mode = DImode;
3987 break;
3989 default:
3990 abort ();
3992 emit_insn (gen_extxl_be (exth, memh, GEN_INT (size*8), addr));
3994 else
3996 emit_move_insn (addr, plus_constant (mema, ofs));
3997 emit_insn (gen_extxl_le (extl, meml, GEN_INT (size*8), addr));
3998 switch ((int) size)
4000 case 2:
4001 emit_insn (gen_extwh_le (exth, memh, addr));
4002 mode = HImode;
4003 break;
4005 case 4:
4006 emit_insn (gen_extlh_le (exth, memh, addr));
4007 mode = SImode;
4008 break;
4010 case 8:
4011 emit_insn (gen_extqh_le (exth, memh, addr));
4012 mode = DImode;
4013 break;
4015 default:
4016 abort();
4020 addr = expand_binop (mode, ior_optab, gen_lowpart (mode, extl),
4021 gen_lowpart (mode, exth), gen_lowpart (mode, tgt),
4022 sign, OPTAB_WIDEN);
4025 if (addr != tgt)
4026 emit_move_insn (tgt, gen_lowpart(GET_MODE (tgt), addr));
4029 /* Similarly, use ins and msk instructions to perform unaligned stores. */
4031 void
4032 alpha_expand_unaligned_store (rtx dst, rtx src,
4033 HOST_WIDE_INT size, HOST_WIDE_INT ofs)
4035 rtx dstl, dsth, addr, insl, insh, meml, memh, dsta;
4037 dstl = gen_reg_rtx (DImode);
4038 dsth = gen_reg_rtx (DImode);
4039 insl = gen_reg_rtx (DImode);
4040 insh = gen_reg_rtx (DImode);
4042 dsta = XEXP (dst, 0);
4043 if (GET_CODE (dsta) == LO_SUM)
4044 dsta = force_reg (Pmode, dsta);
4046 /* AND addresses cannot be in any alias set, since they may implicitly
4047 alias surrounding code. Ideally we'd have some alias set that
4048 covered all types except those with alignment 8 or higher. */
4050 meml = change_address (dst, DImode,
4051 gen_rtx_AND (DImode,
4052 plus_constant (dsta, ofs),
4053 GEN_INT (-8)));
4054 set_mem_alias_set (meml, 0);
4056 memh = change_address (dst, DImode,
4057 gen_rtx_AND (DImode,
4058 plus_constant (dsta, ofs + size - 1),
4059 GEN_INT (-8)));
4060 set_mem_alias_set (memh, 0);
4062 emit_move_insn (dsth, memh);
4063 emit_move_insn (dstl, meml);
4064 if (WORDS_BIG_ENDIAN)
4066 addr = copy_addr_to_reg (plus_constant (dsta, ofs+size-1));
4068 if (src != const0_rtx)
4070 switch ((int) size)
4072 case 2:
4073 emit_insn (gen_inswl_be (insh, gen_lowpart (HImode,src), addr));
4074 break;
4075 case 4:
4076 emit_insn (gen_insll_be (insh, gen_lowpart (SImode,src), addr));
4077 break;
4078 case 8:
4079 emit_insn (gen_insql_be (insh, gen_lowpart (DImode,src), addr));
4080 break;
4082 emit_insn (gen_insxh (insl, gen_lowpart (DImode, src),
4083 GEN_INT (size*8), addr));
4086 switch ((int) size)
4088 case 2:
4089 emit_insn (gen_mskxl_be (dsth, dsth, GEN_INT (0xffff), addr));
4090 break;
4091 case 4:
4093 rtx msk = immed_double_const (0xffffffff, 0, DImode);
4094 emit_insn (gen_mskxl_be (dsth, dsth, msk, addr));
4095 break;
4097 case 8:
4098 emit_insn (gen_mskxl_be (dsth, dsth, constm1_rtx, addr));
4099 break;
4102 emit_insn (gen_mskxh (dstl, dstl, GEN_INT (size*8), addr));
4104 else
4106 addr = copy_addr_to_reg (plus_constant (dsta, ofs));
4108 if (src != const0_rtx)
4110 emit_insn (gen_insxh (insh, gen_lowpart (DImode, src),
4111 GEN_INT (size*8), addr));
4113 switch ((int) size)
4115 case 2:
4116 emit_insn (gen_inswl_le (insl, gen_lowpart (HImode, src), addr));
4117 break;
4118 case 4:
4119 emit_insn (gen_insll_le (insl, gen_lowpart (SImode, src), addr));
4120 break;
4121 case 8:
4122 emit_insn (gen_insql_le (insl, src, addr));
4123 break;
4127 emit_insn (gen_mskxh (dsth, dsth, GEN_INT (size*8), addr));
4129 switch ((int) size)
4131 case 2:
4132 emit_insn (gen_mskxl_le (dstl, dstl, GEN_INT (0xffff), addr));
4133 break;
4134 case 4:
4136 rtx msk = immed_double_const (0xffffffff, 0, DImode);
4137 emit_insn (gen_mskxl_le (dstl, dstl, msk, addr));
4138 break;
4140 case 8:
4141 emit_insn (gen_mskxl_le (dstl, dstl, constm1_rtx, addr));
4142 break;
4146 if (src != const0_rtx)
4148 dsth = expand_binop (DImode, ior_optab, insh, dsth, dsth, 0, OPTAB_WIDEN);
4149 dstl = expand_binop (DImode, ior_optab, insl, dstl, dstl, 0, OPTAB_WIDEN);
4152 if (WORDS_BIG_ENDIAN)
4154 emit_move_insn (meml, dstl);
4155 emit_move_insn (memh, dsth);
4157 else
4159 /* Must store high before low for degenerate case of aligned. */
4160 emit_move_insn (memh, dsth);
4161 emit_move_insn (meml, dstl);
4165 /* The block move code tries to maximize speed by separating loads and
4166 stores at the expense of register pressure: we load all of the data
4167 before we store it back out. There are two secondary effects worth
4168 mentioning, that this speeds copying to/from aligned and unaligned
4169 buffers, and that it makes the code significantly easier to write. */
4171 #define MAX_MOVE_WORDS 8
4173 /* Load an integral number of consecutive unaligned quadwords. */
4175 static void
4176 alpha_expand_unaligned_load_words (rtx *out_regs, rtx smem,
4177 HOST_WIDE_INT words, HOST_WIDE_INT ofs)
4179 rtx const im8 = GEN_INT (-8);
4180 rtx const i64 = GEN_INT (64);
4181 rtx ext_tmps[MAX_MOVE_WORDS], data_regs[MAX_MOVE_WORDS+1];
4182 rtx sreg, areg, tmp, smema;
4183 HOST_WIDE_INT i;
4185 smema = XEXP (smem, 0);
4186 if (GET_CODE (smema) == LO_SUM)
4187 smema = force_reg (Pmode, smema);
4189 /* Generate all the tmp registers we need. */
4190 for (i = 0; i < words; ++i)
4192 data_regs[i] = out_regs[i];
4193 ext_tmps[i] = gen_reg_rtx (DImode);
4195 data_regs[words] = gen_reg_rtx (DImode);
4197 if (ofs != 0)
4198 smem = adjust_address (smem, GET_MODE (smem), ofs);
4200 /* Load up all of the source data. */
4201 for (i = 0; i < words; ++i)
4203 tmp = change_address (smem, DImode,
4204 gen_rtx_AND (DImode,
4205 plus_constant (smema, 8*i),
4206 im8));
4207 set_mem_alias_set (tmp, 0);
4208 emit_move_insn (data_regs[i], tmp);
4211 tmp = change_address (smem, DImode,
4212 gen_rtx_AND (DImode,
4213 plus_constant (smema, 8*words - 1),
4214 im8));
4215 set_mem_alias_set (tmp, 0);
4216 emit_move_insn (data_regs[words], tmp);
4218 /* Extract the half-word fragments. Unfortunately DEC decided to make
4219 extxh with offset zero a noop instead of zeroing the register, so
4220 we must take care of that edge condition ourselves with cmov. */
4222 sreg = copy_addr_to_reg (smema);
4223 areg = expand_binop (DImode, and_optab, sreg, GEN_INT (7), NULL,
4224 1, OPTAB_WIDEN);
4225 if (WORDS_BIG_ENDIAN)
4226 emit_move_insn (sreg, plus_constant (sreg, 7));
4227 for (i = 0; i < words; ++i)
4229 if (WORDS_BIG_ENDIAN)
4231 emit_insn (gen_extqh_be (data_regs[i], data_regs[i], sreg));
4232 emit_insn (gen_extxl_be (ext_tmps[i], data_regs[i+1], i64, sreg));
4234 else
4236 emit_insn (gen_extxl_le (data_regs[i], data_regs[i], i64, sreg));
4237 emit_insn (gen_extqh_le (ext_tmps[i], data_regs[i+1], sreg));
4239 emit_insn (gen_rtx_SET (VOIDmode, ext_tmps[i],
4240 gen_rtx_IF_THEN_ELSE (DImode,
4241 gen_rtx_EQ (DImode, areg,
4242 const0_rtx),
4243 const0_rtx, ext_tmps[i])));
4246 /* Merge the half-words into whole words. */
4247 for (i = 0; i < words; ++i)
4249 out_regs[i] = expand_binop (DImode, ior_optab, data_regs[i],
4250 ext_tmps[i], data_regs[i], 1, OPTAB_WIDEN);
4254 /* Store an integral number of consecutive unaligned quadwords. DATA_REGS
4255 may be NULL to store zeros. */
4257 static void
4258 alpha_expand_unaligned_store_words (rtx *data_regs, rtx dmem,
4259 HOST_WIDE_INT words, HOST_WIDE_INT ofs)
4261 rtx const im8 = GEN_INT (-8);
4262 rtx const i64 = GEN_INT (64);
4263 rtx ins_tmps[MAX_MOVE_WORDS];
4264 rtx st_tmp_1, st_tmp_2, dreg;
4265 rtx st_addr_1, st_addr_2, dmema;
4266 HOST_WIDE_INT i;
4268 dmema = XEXP (dmem, 0);
4269 if (GET_CODE (dmema) == LO_SUM)
4270 dmema = force_reg (Pmode, dmema);
4272 /* Generate all the tmp registers we need. */
4273 if (data_regs != NULL)
4274 for (i = 0; i < words; ++i)
4275 ins_tmps[i] = gen_reg_rtx(DImode);
4276 st_tmp_1 = gen_reg_rtx(DImode);
4277 st_tmp_2 = gen_reg_rtx(DImode);
4279 if (ofs != 0)
4280 dmem = adjust_address (dmem, GET_MODE (dmem), ofs);
4282 st_addr_2 = change_address (dmem, DImode,
4283 gen_rtx_AND (DImode,
4284 plus_constant (dmema, words*8 - 1),
4285 im8));
4286 set_mem_alias_set (st_addr_2, 0);
4288 st_addr_1 = change_address (dmem, DImode,
4289 gen_rtx_AND (DImode, dmema, im8));
4290 set_mem_alias_set (st_addr_1, 0);
4292 /* Load up the destination end bits. */
4293 emit_move_insn (st_tmp_2, st_addr_2);
4294 emit_move_insn (st_tmp_1, st_addr_1);
4296 /* Shift the input data into place. */
4297 dreg = copy_addr_to_reg (dmema);
4298 if (WORDS_BIG_ENDIAN)
4299 emit_move_insn (dreg, plus_constant (dreg, 7));
4300 if (data_regs != NULL)
4302 for (i = words-1; i >= 0; --i)
4304 if (WORDS_BIG_ENDIAN)
4306 emit_insn (gen_insql_be (ins_tmps[i], data_regs[i], dreg));
4307 emit_insn (gen_insxh (data_regs[i], data_regs[i], i64, dreg));
4309 else
4311 emit_insn (gen_insxh (ins_tmps[i], data_regs[i], i64, dreg));
4312 emit_insn (gen_insql_le (data_regs[i], data_regs[i], dreg));
4315 for (i = words-1; i > 0; --i)
4317 ins_tmps[i-1] = expand_binop (DImode, ior_optab, data_regs[i],
4318 ins_tmps[i-1], ins_tmps[i-1], 1,
4319 OPTAB_WIDEN);
4323 /* Split and merge the ends with the destination data. */
4324 if (WORDS_BIG_ENDIAN)
4326 emit_insn (gen_mskxl_be (st_tmp_2, st_tmp_2, constm1_rtx, dreg));
4327 emit_insn (gen_mskxh (st_tmp_1, st_tmp_1, i64, dreg));
4329 else
4331 emit_insn (gen_mskxh (st_tmp_2, st_tmp_2, i64, dreg));
4332 emit_insn (gen_mskxl_le (st_tmp_1, st_tmp_1, constm1_rtx, dreg));
4335 if (data_regs != NULL)
4337 st_tmp_2 = expand_binop (DImode, ior_optab, st_tmp_2, ins_tmps[words-1],
4338 st_tmp_2, 1, OPTAB_WIDEN);
4339 st_tmp_1 = expand_binop (DImode, ior_optab, st_tmp_1, data_regs[0],
4340 st_tmp_1, 1, OPTAB_WIDEN);
4343 /* Store it all. */
4344 if (WORDS_BIG_ENDIAN)
4345 emit_move_insn (st_addr_1, st_tmp_1);
4346 else
4347 emit_move_insn (st_addr_2, st_tmp_2);
4348 for (i = words-1; i > 0; --i)
4350 rtx tmp = change_address (dmem, DImode,
4351 gen_rtx_AND (DImode,
4352 plus_constant(dmema,
4353 WORDS_BIG_ENDIAN ? i*8-1 : i*8),
4354 im8));
4355 set_mem_alias_set (tmp, 0);
4356 emit_move_insn (tmp, data_regs ? ins_tmps[i-1] : const0_rtx);
4358 if (WORDS_BIG_ENDIAN)
4359 emit_move_insn (st_addr_2, st_tmp_2);
4360 else
4361 emit_move_insn (st_addr_1, st_tmp_1);
4365 /* Expand string/block move operations.
4367 operands[0] is the pointer to the destination.
4368 operands[1] is the pointer to the source.
4369 operands[2] is the number of bytes to move.
4370 operands[3] is the alignment. */
4373 alpha_expand_block_move (rtx operands[])
4375 rtx bytes_rtx = operands[2];
4376 rtx align_rtx = operands[3];
4377 HOST_WIDE_INT orig_bytes = INTVAL (bytes_rtx);
4378 HOST_WIDE_INT bytes = orig_bytes;
4379 HOST_WIDE_INT src_align = INTVAL (align_rtx) * BITS_PER_UNIT;
4380 HOST_WIDE_INT dst_align = src_align;
4381 rtx orig_src = operands[1];
4382 rtx orig_dst = operands[0];
4383 rtx data_regs[2 * MAX_MOVE_WORDS + 16];
4384 rtx tmp;
4385 unsigned int i, words, ofs, nregs = 0;
4387 if (orig_bytes <= 0)
4388 return 1;
4389 else if (orig_bytes > MAX_MOVE_WORDS * UNITS_PER_WORD)
4390 return 0;
4392 /* Look for additional alignment information from recorded register info. */
4394 tmp = XEXP (orig_src, 0);
4395 if (GET_CODE (tmp) == REG)
4396 src_align = MAX (src_align, REGNO_POINTER_ALIGN (REGNO (tmp)));
4397 else if (GET_CODE (tmp) == PLUS
4398 && GET_CODE (XEXP (tmp, 0)) == REG
4399 && GET_CODE (XEXP (tmp, 1)) == CONST_INT)
4401 unsigned HOST_WIDE_INT c = INTVAL (XEXP (tmp, 1));
4402 unsigned int a = REGNO_POINTER_ALIGN (REGNO (XEXP (tmp, 0)));
4404 if (a > src_align)
4406 if (a >= 64 && c % 8 == 0)
4407 src_align = 64;
4408 else if (a >= 32 && c % 4 == 0)
4409 src_align = 32;
4410 else if (a >= 16 && c % 2 == 0)
4411 src_align = 16;
4415 tmp = XEXP (orig_dst, 0);
4416 if (GET_CODE (tmp) == REG)
4417 dst_align = MAX (dst_align, REGNO_POINTER_ALIGN (REGNO (tmp)));
4418 else if (GET_CODE (tmp) == PLUS
4419 && GET_CODE (XEXP (tmp, 0)) == REG
4420 && GET_CODE (XEXP (tmp, 1)) == CONST_INT)
4422 unsigned HOST_WIDE_INT c = INTVAL (XEXP (tmp, 1));
4423 unsigned int a = REGNO_POINTER_ALIGN (REGNO (XEXP (tmp, 0)));
4425 if (a > dst_align)
4427 if (a >= 64 && c % 8 == 0)
4428 dst_align = 64;
4429 else if (a >= 32 && c % 4 == 0)
4430 dst_align = 32;
4431 else if (a >= 16 && c % 2 == 0)
4432 dst_align = 16;
4436 /* Load the entire block into registers. */
4437 if (GET_CODE (XEXP (orig_src, 0)) == ADDRESSOF)
4439 enum machine_mode mode;
4441 tmp = XEXP (XEXP (orig_src, 0), 0);
4443 /* Don't use the existing register if we're reading more than
4444 is held in the register. Nor if there is not a mode that
4445 handles the exact size. */
4446 mode = mode_for_size (bytes * BITS_PER_UNIT, MODE_INT, 1);
4447 if (GET_CODE (tmp) == REG
4448 && mode != BLKmode
4449 && GET_MODE_SIZE (GET_MODE (tmp)) >= bytes)
4451 if (mode == TImode)
4453 data_regs[nregs] = gen_lowpart (DImode, tmp);
4454 data_regs[nregs + 1] = gen_highpart (DImode, tmp);
4455 nregs += 2;
4457 else
4458 data_regs[nregs++] = gen_lowpart (mode, tmp);
4460 goto src_done;
4463 /* No appropriate mode; fall back on memory. */
4464 orig_src = replace_equiv_address (orig_src,
4465 copy_addr_to_reg (XEXP (orig_src, 0)));
4466 src_align = GET_MODE_BITSIZE (GET_MODE (tmp));
4469 ofs = 0;
4470 if (src_align >= 64 && bytes >= 8)
4472 words = bytes / 8;
4474 for (i = 0; i < words; ++i)
4475 data_regs[nregs + i] = gen_reg_rtx (DImode);
4477 for (i = 0; i < words; ++i)
4478 emit_move_insn (data_regs[nregs + i],
4479 adjust_address (orig_src, DImode, ofs + i * 8));
4481 nregs += words;
4482 bytes -= words * 8;
4483 ofs += words * 8;
4486 if (src_align >= 32 && bytes >= 4)
4488 words = bytes / 4;
4490 for (i = 0; i < words; ++i)
4491 data_regs[nregs + i] = gen_reg_rtx (SImode);
4493 for (i = 0; i < words; ++i)
4494 emit_move_insn (data_regs[nregs + i],
4495 adjust_address (orig_src, SImode, ofs + i * 4));
4497 nregs += words;
4498 bytes -= words * 4;
4499 ofs += words * 4;
4502 if (bytes >= 8)
4504 words = bytes / 8;
4506 for (i = 0; i < words+1; ++i)
4507 data_regs[nregs + i] = gen_reg_rtx (DImode);
4509 alpha_expand_unaligned_load_words (data_regs + nregs, orig_src,
4510 words, ofs);
4512 nregs += words;
4513 bytes -= words * 8;
4514 ofs += words * 8;
4517 if (! TARGET_BWX && bytes >= 4)
4519 data_regs[nregs++] = tmp = gen_reg_rtx (SImode);
4520 alpha_expand_unaligned_load (tmp, orig_src, 4, ofs, 0);
4521 bytes -= 4;
4522 ofs += 4;
4525 if (bytes >= 2)
4527 if (src_align >= 16)
4529 do {
4530 data_regs[nregs++] = tmp = gen_reg_rtx (HImode);
4531 emit_move_insn (tmp, adjust_address (orig_src, HImode, ofs));
4532 bytes -= 2;
4533 ofs += 2;
4534 } while (bytes >= 2);
4536 else if (! TARGET_BWX)
4538 data_regs[nregs++] = tmp = gen_reg_rtx (HImode);
4539 alpha_expand_unaligned_load (tmp, orig_src, 2, ofs, 0);
4540 bytes -= 2;
4541 ofs += 2;
4545 while (bytes > 0)
4547 data_regs[nregs++] = tmp = gen_reg_rtx (QImode);
4548 emit_move_insn (tmp, adjust_address (orig_src, QImode, ofs));
4549 bytes -= 1;
4550 ofs += 1;
4553 src_done:
4555 if (nregs > ARRAY_SIZE (data_regs))
4556 abort ();
4558 /* Now save it back out again. */
4560 i = 0, ofs = 0;
4562 if (GET_CODE (XEXP (orig_dst, 0)) == ADDRESSOF)
4564 enum machine_mode mode;
4565 tmp = XEXP (XEXP (orig_dst, 0), 0);
4567 mode = mode_for_size (orig_bytes * BITS_PER_UNIT, MODE_INT, 1);
4568 if (GET_CODE (tmp) == REG && GET_MODE (tmp) == mode)
4570 if (nregs == 1)
4572 emit_move_insn (tmp, data_regs[0]);
4573 i = 1;
4574 goto dst_done;
4577 else if (nregs == 2 && mode == TImode)
4579 /* Undo the subregging done above when copying between
4580 two TImode registers. */
4581 if (GET_CODE (data_regs[0]) == SUBREG
4582 && GET_MODE (SUBREG_REG (data_regs[0])) == TImode)
4583 emit_move_insn (tmp, SUBREG_REG (data_regs[0]));
4584 else
4586 rtx seq;
4588 start_sequence ();
4589 emit_move_insn (gen_lowpart (DImode, tmp), data_regs[0]);
4590 emit_move_insn (gen_highpart (DImode, tmp), data_regs[1]);
4591 seq = get_insns ();
4592 end_sequence ();
4594 emit_no_conflict_block (seq, tmp, data_regs[0],
4595 data_regs[1], NULL_RTX);
4598 i = 2;
4599 goto dst_done;
4603 /* ??? If nregs > 1, consider reconstructing the word in regs. */
4604 /* ??? Optimize mode < dst_mode with strict_low_part. */
4606 /* No appropriate mode; fall back on memory. We can speed things
4607 up by recognizing extra alignment information. */
4608 orig_dst = replace_equiv_address (orig_dst,
4609 copy_addr_to_reg (XEXP (orig_dst, 0)));
4610 dst_align = GET_MODE_BITSIZE (GET_MODE (tmp));
4613 /* Write out the data in whatever chunks reading the source allowed. */
4614 if (dst_align >= 64)
4616 while (i < nregs && GET_MODE (data_regs[i]) == DImode)
4618 emit_move_insn (adjust_address (orig_dst, DImode, ofs),
4619 data_regs[i]);
4620 ofs += 8;
4621 i++;
4625 if (dst_align >= 32)
4627 /* If the source has remaining DImode regs, write them out in
4628 two pieces. */
4629 while (i < nregs && GET_MODE (data_regs[i]) == DImode)
4631 tmp = expand_binop (DImode, lshr_optab, data_regs[i], GEN_INT (32),
4632 NULL_RTX, 1, OPTAB_WIDEN);
4634 emit_move_insn (adjust_address (orig_dst, SImode, ofs),
4635 gen_lowpart (SImode, data_regs[i]));
4636 emit_move_insn (adjust_address (orig_dst, SImode, ofs + 4),
4637 gen_lowpart (SImode, tmp));
4638 ofs += 8;
4639 i++;
4642 while (i < nregs && GET_MODE (data_regs[i]) == SImode)
4644 emit_move_insn (adjust_address (orig_dst, SImode, ofs),
4645 data_regs[i]);
4646 ofs += 4;
4647 i++;
4651 if (i < nregs && GET_MODE (data_regs[i]) == DImode)
4653 /* Write out a remaining block of words using unaligned methods. */
4655 for (words = 1; i + words < nregs; words++)
4656 if (GET_MODE (data_regs[i + words]) != DImode)
4657 break;
4659 if (words == 1)
4660 alpha_expand_unaligned_store (orig_dst, data_regs[i], 8, ofs);
4661 else
4662 alpha_expand_unaligned_store_words (data_regs + i, orig_dst,
4663 words, ofs);
4665 i += words;
4666 ofs += words * 8;
4669 /* Due to the above, this won't be aligned. */
4670 /* ??? If we have more than one of these, consider constructing full
4671 words in registers and using alpha_expand_unaligned_store_words. */
4672 while (i < nregs && GET_MODE (data_regs[i]) == SImode)
4674 alpha_expand_unaligned_store (orig_dst, data_regs[i], 4, ofs);
4675 ofs += 4;
4676 i++;
4679 if (dst_align >= 16)
4680 while (i < nregs && GET_MODE (data_regs[i]) == HImode)
4682 emit_move_insn (adjust_address (orig_dst, HImode, ofs), data_regs[i]);
4683 i++;
4684 ofs += 2;
4686 else
4687 while (i < nregs && GET_MODE (data_regs[i]) == HImode)
4689 alpha_expand_unaligned_store (orig_dst, data_regs[i], 2, ofs);
4690 i++;
4691 ofs += 2;
4694 while (i < nregs && GET_MODE (data_regs[i]) == QImode)
4696 emit_move_insn (adjust_address (orig_dst, QImode, ofs), data_regs[i]);
4697 i++;
4698 ofs += 1;
4701 dst_done:
4703 if (i != nregs)
4704 abort ();
4706 return 1;
4710 alpha_expand_block_clear (rtx operands[])
4712 rtx bytes_rtx = operands[1];
4713 rtx align_rtx = operands[2];
4714 HOST_WIDE_INT orig_bytes = INTVAL (bytes_rtx);
4715 HOST_WIDE_INT bytes = orig_bytes;
4716 HOST_WIDE_INT align = INTVAL (align_rtx) * BITS_PER_UNIT;
4717 HOST_WIDE_INT alignofs = 0;
4718 rtx orig_dst = operands[0];
4719 rtx tmp;
4720 int i, words, ofs = 0;
4722 if (orig_bytes <= 0)
4723 return 1;
4724 if (orig_bytes > MAX_MOVE_WORDS * UNITS_PER_WORD)
4725 return 0;
4727 /* Look for stricter alignment. */
4728 tmp = XEXP (orig_dst, 0);
4729 if (GET_CODE (tmp) == REG)
4730 align = MAX (align, REGNO_POINTER_ALIGN (REGNO (tmp)));
4731 else if (GET_CODE (tmp) == PLUS
4732 && GET_CODE (XEXP (tmp, 0)) == REG
4733 && GET_CODE (XEXP (tmp, 1)) == CONST_INT)
4735 HOST_WIDE_INT c = INTVAL (XEXP (tmp, 1));
4736 int a = REGNO_POINTER_ALIGN (REGNO (XEXP (tmp, 0)));
4738 if (a > align)
4740 if (a >= 64)
4741 align = a, alignofs = 8 - c % 8;
4742 else if (a >= 32)
4743 align = a, alignofs = 4 - c % 4;
4744 else if (a >= 16)
4745 align = a, alignofs = 2 - c % 2;
4748 else if (GET_CODE (tmp) == ADDRESSOF)
4750 enum machine_mode mode;
4752 mode = mode_for_size (bytes * BITS_PER_UNIT, MODE_INT, 1);
4753 if (GET_MODE (XEXP (tmp, 0)) == mode)
4755 emit_move_insn (XEXP (tmp, 0), const0_rtx);
4756 return 1;
4759 /* No appropriate mode; fall back on memory. */
4760 orig_dst = replace_equiv_address (orig_dst, copy_addr_to_reg (tmp));
4761 align = GET_MODE_BITSIZE (GET_MODE (XEXP (tmp, 0)));
4764 /* Handle an unaligned prefix first. */
4766 if (alignofs > 0)
4768 #if HOST_BITS_PER_WIDE_INT >= 64
4769 /* Given that alignofs is bounded by align, the only time BWX could
4770 generate three stores is for a 7 byte fill. Prefer two individual
4771 stores over a load/mask/store sequence. */
4772 if ((!TARGET_BWX || alignofs == 7)
4773 && align >= 32
4774 && !(alignofs == 4 && bytes >= 4))
4776 enum machine_mode mode = (align >= 64 ? DImode : SImode);
4777 int inv_alignofs = (align >= 64 ? 8 : 4) - alignofs;
4778 rtx mem, tmp;
4779 HOST_WIDE_INT mask;
4781 mem = adjust_address (orig_dst, mode, ofs - inv_alignofs);
4782 set_mem_alias_set (mem, 0);
4784 mask = ~(~(HOST_WIDE_INT)0 << (inv_alignofs * 8));
4785 if (bytes < alignofs)
4787 mask |= ~(HOST_WIDE_INT)0 << ((inv_alignofs + bytes) * 8);
4788 ofs += bytes;
4789 bytes = 0;
4791 else
4793 bytes -= alignofs;
4794 ofs += alignofs;
4796 alignofs = 0;
4798 tmp = expand_binop (mode, and_optab, mem, GEN_INT (mask),
4799 NULL_RTX, 1, OPTAB_WIDEN);
4801 emit_move_insn (mem, tmp);
4803 #endif
4805 if (TARGET_BWX && (alignofs & 1) && bytes >= 1)
4807 emit_move_insn (adjust_address (orig_dst, QImode, ofs), const0_rtx);
4808 bytes -= 1;
4809 ofs += 1;
4810 alignofs -= 1;
4812 if (TARGET_BWX && align >= 16 && (alignofs & 3) == 2 && bytes >= 2)
4814 emit_move_insn (adjust_address (orig_dst, HImode, ofs), const0_rtx);
4815 bytes -= 2;
4816 ofs += 2;
4817 alignofs -= 2;
4819 if (alignofs == 4 && bytes >= 4)
4821 emit_move_insn (adjust_address (orig_dst, SImode, ofs), const0_rtx);
4822 bytes -= 4;
4823 ofs += 4;
4824 alignofs = 0;
4827 /* If we've not used the extra lead alignment information by now,
4828 we won't be able to. Downgrade align to match what's left over. */
4829 if (alignofs > 0)
4831 alignofs = alignofs & -alignofs;
4832 align = MIN (align, alignofs * BITS_PER_UNIT);
4836 /* Handle a block of contiguous long-words. */
4838 if (align >= 64 && bytes >= 8)
4840 words = bytes / 8;
4842 for (i = 0; i < words; ++i)
4843 emit_move_insn (adjust_address (orig_dst, DImode, ofs + i * 8),
4844 const0_rtx);
4846 bytes -= words * 8;
4847 ofs += words * 8;
4850 /* If the block is large and appropriately aligned, emit a single
4851 store followed by a sequence of stq_u insns. */
4853 if (align >= 32 && bytes > 16)
4855 rtx orig_dsta;
4857 emit_move_insn (adjust_address (orig_dst, SImode, ofs), const0_rtx);
4858 bytes -= 4;
4859 ofs += 4;
4861 orig_dsta = XEXP (orig_dst, 0);
4862 if (GET_CODE (orig_dsta) == LO_SUM)
4863 orig_dsta = force_reg (Pmode, orig_dsta);
4865 words = bytes / 8;
4866 for (i = 0; i < words; ++i)
4868 rtx mem
4869 = change_address (orig_dst, DImode,
4870 gen_rtx_AND (DImode,
4871 plus_constant (orig_dsta, ofs + i*8),
4872 GEN_INT (-8)));
4873 set_mem_alias_set (mem, 0);
4874 emit_move_insn (mem, const0_rtx);
4877 /* Depending on the alignment, the first stq_u may have overlapped
4878 with the initial stl, which means that the last stq_u didn't
4879 write as much as it would appear. Leave those questionable bytes
4880 unaccounted for. */
4881 bytes -= words * 8 - 4;
4882 ofs += words * 8 - 4;
4885 /* Handle a smaller block of aligned words. */
4887 if ((align >= 64 && bytes == 4)
4888 || (align == 32 && bytes >= 4))
4890 words = bytes / 4;
4892 for (i = 0; i < words; ++i)
4893 emit_move_insn (adjust_address (orig_dst, SImode, ofs + i * 4),
4894 const0_rtx);
4896 bytes -= words * 4;
4897 ofs += words * 4;
4900 /* An unaligned block uses stq_u stores for as many as possible. */
4902 if (bytes >= 8)
4904 words = bytes / 8;
4906 alpha_expand_unaligned_store_words (NULL, orig_dst, words, ofs);
4908 bytes -= words * 8;
4909 ofs += words * 8;
4912 /* Next clean up any trailing pieces. */
4914 #if HOST_BITS_PER_WIDE_INT >= 64
4915 /* Count the number of bits in BYTES for which aligned stores could
4916 be emitted. */
4917 words = 0;
4918 for (i = (TARGET_BWX ? 1 : 4); i * BITS_PER_UNIT <= align ; i <<= 1)
4919 if (bytes & i)
4920 words += 1;
4922 /* If we have appropriate alignment (and it wouldn't take too many
4923 instructions otherwise), mask out the bytes we need. */
4924 if (TARGET_BWX ? words > 2 : bytes > 0)
4926 if (align >= 64)
4928 rtx mem, tmp;
4929 HOST_WIDE_INT mask;
4931 mem = adjust_address (orig_dst, DImode, ofs);
4932 set_mem_alias_set (mem, 0);
4934 mask = ~(HOST_WIDE_INT)0 << (bytes * 8);
4936 tmp = expand_binop (DImode, and_optab, mem, GEN_INT (mask),
4937 NULL_RTX, 1, OPTAB_WIDEN);
4939 emit_move_insn (mem, tmp);
4940 return 1;
4942 else if (align >= 32 && bytes < 4)
4944 rtx mem, tmp;
4945 HOST_WIDE_INT mask;
4947 mem = adjust_address (orig_dst, SImode, ofs);
4948 set_mem_alias_set (mem, 0);
4950 mask = ~(HOST_WIDE_INT)0 << (bytes * 8);
4952 tmp = expand_binop (SImode, and_optab, mem, GEN_INT (mask),
4953 NULL_RTX, 1, OPTAB_WIDEN);
4955 emit_move_insn (mem, tmp);
4956 return 1;
4959 #endif
4961 if (!TARGET_BWX && bytes >= 4)
4963 alpha_expand_unaligned_store (orig_dst, const0_rtx, 4, ofs);
4964 bytes -= 4;
4965 ofs += 4;
4968 if (bytes >= 2)
4970 if (align >= 16)
4972 do {
4973 emit_move_insn (adjust_address (orig_dst, HImode, ofs),
4974 const0_rtx);
4975 bytes -= 2;
4976 ofs += 2;
4977 } while (bytes >= 2);
4979 else if (! TARGET_BWX)
4981 alpha_expand_unaligned_store (orig_dst, const0_rtx, 2, ofs);
4982 bytes -= 2;
4983 ofs += 2;
4987 while (bytes > 0)
4989 emit_move_insn (adjust_address (orig_dst, QImode, ofs), const0_rtx);
4990 bytes -= 1;
4991 ofs += 1;
4994 return 1;
4997 /* Returns a mask so that zap(x, value) == x & mask. */
5000 alpha_expand_zap_mask (HOST_WIDE_INT value)
5002 rtx result;
5003 int i;
5005 if (HOST_BITS_PER_WIDE_INT >= 64)
5007 HOST_WIDE_INT mask = 0;
5009 for (i = 7; i >= 0; --i)
5011 mask <<= 8;
5012 if (!((value >> i) & 1))
5013 mask |= 0xff;
5016 result = gen_int_mode (mask, DImode);
5018 else if (HOST_BITS_PER_WIDE_INT == 32)
5020 HOST_WIDE_INT mask_lo = 0, mask_hi = 0;
5022 for (i = 7; i >= 4; --i)
5024 mask_hi <<= 8;
5025 if (!((value >> i) & 1))
5026 mask_hi |= 0xff;
5029 for (i = 3; i >= 0; --i)
5031 mask_lo <<= 8;
5032 if (!((value >> i) & 1))
5033 mask_lo |= 0xff;
5036 result = immed_double_const (mask_lo, mask_hi, DImode);
5038 else
5039 abort ();
5041 return result;
5044 void
5045 alpha_expand_builtin_vector_binop (rtx (*gen) (rtx, rtx, rtx),
5046 enum machine_mode mode,
5047 rtx op0, rtx op1, rtx op2)
5049 op0 = gen_lowpart (mode, op0);
5051 if (op1 == const0_rtx)
5052 op1 = CONST0_RTX (mode);
5053 else
5054 op1 = gen_lowpart (mode, op1);
5056 if (op2 == const0_rtx)
5057 op2 = CONST0_RTX (mode);
5058 else
5059 op2 = gen_lowpart (mode, op2);
5061 emit_insn ((*gen) (op0, op1, op2));
5064 /* Adjust the cost of a scheduling dependency. Return the new cost of
5065 a dependency LINK or INSN on DEP_INSN. COST is the current cost. */
5067 static int
5068 alpha_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost)
5070 enum attr_type insn_type, dep_insn_type;
5072 /* If the dependence is an anti-dependence, there is no cost. For an
5073 output dependence, there is sometimes a cost, but it doesn't seem
5074 worth handling those few cases. */
5075 if (REG_NOTE_KIND (link) != 0)
5076 return cost;
5078 /* If we can't recognize the insns, we can't really do anything. */
5079 if (recog_memoized (insn) < 0 || recog_memoized (dep_insn) < 0)
5080 return cost;
5082 insn_type = get_attr_type (insn);
5083 dep_insn_type = get_attr_type (dep_insn);
5085 /* Bring in the user-defined memory latency. */
5086 if (dep_insn_type == TYPE_ILD
5087 || dep_insn_type == TYPE_FLD
5088 || dep_insn_type == TYPE_LDSYM)
5089 cost += alpha_memory_latency-1;
5091 /* Everything else handled in DFA bypasses now. */
5093 return cost;
5096 /* The number of instructions that can be issued per cycle. */
5098 static int
5099 alpha_issue_rate (void)
5101 return (alpha_cpu == PROCESSOR_EV4 ? 2 : 4);
5104 static int
5105 alpha_use_dfa_pipeline_interface (void)
5107 return true;
5110 /* How many alternative schedules to try. This should be as wide as the
5111 scheduling freedom in the DFA, but no wider. Making this value too
5112 large results extra work for the scheduler.
5114 For EV4, loads can be issued to either IB0 or IB1, thus we have 2
5115 alternative schedules. For EV5, we can choose between E0/E1 and
5116 FA/FM. For EV6, an arithmetic insn can be issued to U0/U1/L0/L1. */
5118 static int
5119 alpha_multipass_dfa_lookahead (void)
5121 return (alpha_cpu == PROCESSOR_EV6 ? 4 : 2);
5124 /* Machine-specific function data. */
5126 struct machine_function GTY(())
5128 /* For unicosmk. */
5129 /* List of call information words for calls from this function. */
5130 struct rtx_def *first_ciw;
5131 struct rtx_def *last_ciw;
5132 int ciw_count;
5134 /* List of deferred case vectors. */
5135 struct rtx_def *addr_list;
5137 /* For OSF. */
5138 const char *some_ld_name;
5141 /* How to allocate a 'struct machine_function'. */
5143 static struct machine_function *
5144 alpha_init_machine_status (void)
5146 return ((struct machine_function *)
5147 ggc_alloc_cleared (sizeof (struct machine_function)));
5150 /* Functions to save and restore alpha_return_addr_rtx. */
5152 /* Start the ball rolling with RETURN_ADDR_RTX. */
5155 alpha_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
5157 if (count != 0)
5158 return const0_rtx;
5160 return get_hard_reg_initial_val (Pmode, REG_RA);
5163 /* Return or create a pseudo containing the gp value for the current
5164 function. Needed only if TARGET_LD_BUGGY_LDGP. */
5167 alpha_gp_save_rtx (void)
5169 rtx r = get_hard_reg_initial_val (DImode, 29);
5170 if (GET_CODE (r) != MEM)
5171 r = gen_mem_addressof (r, NULL_TREE, /*rescan=*/true);
5172 return r;
5175 static int
5176 alpha_ra_ever_killed (void)
5178 rtx top;
5180 if (!has_hard_reg_initial_val (Pmode, REG_RA))
5181 return regs_ever_live[REG_RA];
5183 push_topmost_sequence ();
5184 top = get_insns ();
5185 pop_topmost_sequence ();
5187 return reg_set_between_p (gen_rtx_REG (Pmode, REG_RA), top, NULL_RTX);
5191 /* Return the trap mode suffix applicable to the current
5192 instruction, or NULL. */
5194 static const char *
5195 get_trap_mode_suffix (void)
5197 enum attr_trap_suffix s = get_attr_trap_suffix (current_output_insn);
5199 switch (s)
5201 case TRAP_SUFFIX_NONE:
5202 return NULL;
5204 case TRAP_SUFFIX_SU:
5205 if (alpha_fptm >= ALPHA_FPTM_SU)
5206 return "su";
5207 return NULL;
5209 case TRAP_SUFFIX_SUI:
5210 if (alpha_fptm >= ALPHA_FPTM_SUI)
5211 return "sui";
5212 return NULL;
5214 case TRAP_SUFFIX_V_SV:
5215 switch (alpha_fptm)
5217 case ALPHA_FPTM_N:
5218 return NULL;
5219 case ALPHA_FPTM_U:
5220 return "v";
5221 case ALPHA_FPTM_SU:
5222 case ALPHA_FPTM_SUI:
5223 return "sv";
5225 break;
5227 case TRAP_SUFFIX_V_SV_SVI:
5228 switch (alpha_fptm)
5230 case ALPHA_FPTM_N:
5231 return NULL;
5232 case ALPHA_FPTM_U:
5233 return "v";
5234 case ALPHA_FPTM_SU:
5235 return "sv";
5236 case ALPHA_FPTM_SUI:
5237 return "svi";
5239 break;
5241 case TRAP_SUFFIX_U_SU_SUI:
5242 switch (alpha_fptm)
5244 case ALPHA_FPTM_N:
5245 return NULL;
5246 case ALPHA_FPTM_U:
5247 return "u";
5248 case ALPHA_FPTM_SU:
5249 return "su";
5250 case ALPHA_FPTM_SUI:
5251 return "sui";
5253 break;
5255 abort ();
5258 /* Return the rounding mode suffix applicable to the current
5259 instruction, or NULL. */
5261 static const char *
5262 get_round_mode_suffix (void)
5264 enum attr_round_suffix s = get_attr_round_suffix (current_output_insn);
5266 switch (s)
5268 case ROUND_SUFFIX_NONE:
5269 return NULL;
5270 case ROUND_SUFFIX_NORMAL:
5271 switch (alpha_fprm)
5273 case ALPHA_FPRM_NORM:
5274 return NULL;
5275 case ALPHA_FPRM_MINF:
5276 return "m";
5277 case ALPHA_FPRM_CHOP:
5278 return "c";
5279 case ALPHA_FPRM_DYN:
5280 return "d";
5282 break;
5284 case ROUND_SUFFIX_C:
5285 return "c";
5287 abort ();
5290 /* Locate some local-dynamic symbol still in use by this function
5291 so that we can print its name in some movdi_er_tlsldm pattern. */
5293 static int
5294 get_some_local_dynamic_name_1 (rtx *px, void *data ATTRIBUTE_UNUSED)
5296 rtx x = *px;
5298 if (GET_CODE (x) == SYMBOL_REF
5299 && SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
5301 cfun->machine->some_ld_name = XSTR (x, 0);
5302 return 1;
5305 return 0;
5308 static const char *
5309 get_some_local_dynamic_name (void)
5311 rtx insn;
5313 if (cfun->machine->some_ld_name)
5314 return cfun->machine->some_ld_name;
5316 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
5317 if (INSN_P (insn)
5318 && for_each_rtx (&PATTERN (insn), get_some_local_dynamic_name_1, 0))
5319 return cfun->machine->some_ld_name;
5321 abort ();
5324 /* Print an operand. Recognize special options, documented below. */
5326 void
5327 print_operand (FILE *file, rtx x, int code)
5329 int i;
5331 switch (code)
5333 case '~':
5334 /* Print the assembler name of the current function. */
5335 assemble_name (file, alpha_fnname);
5336 break;
5338 case '&':
5339 assemble_name (file, get_some_local_dynamic_name ());
5340 break;
5342 case '/':
5344 const char *trap = get_trap_mode_suffix ();
5345 const char *round = get_round_mode_suffix ();
5347 if (trap || round)
5348 fprintf (file, (TARGET_AS_SLASH_BEFORE_SUFFIX ? "/%s%s" : "%s%s"),
5349 (trap ? trap : ""), (round ? round : ""));
5350 break;
5353 case ',':
5354 /* Generates single precision instruction suffix. */
5355 fputc ((TARGET_FLOAT_VAX ? 'f' : 's'), file);
5356 break;
5358 case '-':
5359 /* Generates double precision instruction suffix. */
5360 fputc ((TARGET_FLOAT_VAX ? 'g' : 't'), file);
5361 break;
5363 case '+':
5364 /* Generates a nop after a noreturn call at the very end of the
5365 function. */
5366 if (next_real_insn (current_output_insn) == 0)
5367 fprintf (file, "\n\tnop");
5368 break;
5370 case '#':
5371 if (alpha_this_literal_sequence_number == 0)
5372 alpha_this_literal_sequence_number = alpha_next_sequence_number++;
5373 fprintf (file, "%d", alpha_this_literal_sequence_number);
5374 break;
5376 case '*':
5377 if (alpha_this_gpdisp_sequence_number == 0)
5378 alpha_this_gpdisp_sequence_number = alpha_next_sequence_number++;
5379 fprintf (file, "%d", alpha_this_gpdisp_sequence_number);
5380 break;
5382 case 'H':
5383 if (GET_CODE (x) == HIGH)
5384 output_addr_const (file, XEXP (x, 0));
5385 else
5386 output_operand_lossage ("invalid %%H value");
5387 break;
5389 case 'J':
5391 const char *lituse;
5393 if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLSGD_CALL)
5395 x = XVECEXP (x, 0, 0);
5396 lituse = "lituse_tlsgd";
5398 else if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_TLSLDM_CALL)
5400 x = XVECEXP (x, 0, 0);
5401 lituse = "lituse_tlsldm";
5403 else if (GET_CODE (x) == CONST_INT)
5404 lituse = "lituse_jsr";
5405 else
5407 output_operand_lossage ("invalid %%J value");
5408 break;
5411 if (x != const0_rtx)
5412 fprintf (file, "\t\t!%s!%d", lituse, (int) INTVAL (x));
5414 break;
5416 case 'r':
5417 /* If this operand is the constant zero, write it as "$31". */
5418 if (GET_CODE (x) == REG)
5419 fprintf (file, "%s", reg_names[REGNO (x)]);
5420 else if (x == CONST0_RTX (GET_MODE (x)))
5421 fprintf (file, "$31");
5422 else
5423 output_operand_lossage ("invalid %%r value");
5424 break;
5426 case 'R':
5427 /* Similar, but for floating-point. */
5428 if (GET_CODE (x) == REG)
5429 fprintf (file, "%s", reg_names[REGNO (x)]);
5430 else if (x == CONST0_RTX (GET_MODE (x)))
5431 fprintf (file, "$f31");
5432 else
5433 output_operand_lossage ("invalid %%R value");
5434 break;
5436 case 'N':
5437 /* Write the 1's complement of a constant. */
5438 if (GET_CODE (x) != CONST_INT)
5439 output_operand_lossage ("invalid %%N value");
5441 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ~ INTVAL (x));
5442 break;
5444 case 'P':
5445 /* Write 1 << C, for a constant C. */
5446 if (GET_CODE (x) != CONST_INT)
5447 output_operand_lossage ("invalid %%P value");
5449 fprintf (file, HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT) 1 << INTVAL (x));
5450 break;
5452 case 'h':
5453 /* Write the high-order 16 bits of a constant, sign-extended. */
5454 if (GET_CODE (x) != CONST_INT)
5455 output_operand_lossage ("invalid %%h value");
5457 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) >> 16);
5458 break;
5460 case 'L':
5461 /* Write the low-order 16 bits of a constant, sign-extended. */
5462 if (GET_CODE (x) != CONST_INT)
5463 output_operand_lossage ("invalid %%L value");
5465 fprintf (file, HOST_WIDE_INT_PRINT_DEC,
5466 (INTVAL (x) & 0xffff) - 2 * (INTVAL (x) & 0x8000));
5467 break;
5469 case 'm':
5470 /* Write mask for ZAP insn. */
5471 if (GET_CODE (x) == CONST_DOUBLE)
5473 HOST_WIDE_INT mask = 0;
5474 HOST_WIDE_INT value;
5476 value = CONST_DOUBLE_LOW (x);
5477 for (i = 0; i < HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
5478 i++, value >>= 8)
5479 if (value & 0xff)
5480 mask |= (1 << i);
5482 value = CONST_DOUBLE_HIGH (x);
5483 for (i = 0; i < HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
5484 i++, value >>= 8)
5485 if (value & 0xff)
5486 mask |= (1 << (i + sizeof (int)));
5488 fprintf (file, HOST_WIDE_INT_PRINT_DEC, mask & 0xff);
5491 else if (GET_CODE (x) == CONST_INT)
5493 HOST_WIDE_INT mask = 0, value = INTVAL (x);
5495 for (i = 0; i < 8; i++, value >>= 8)
5496 if (value & 0xff)
5497 mask |= (1 << i);
5499 fprintf (file, HOST_WIDE_INT_PRINT_DEC, mask);
5501 else
5502 output_operand_lossage ("invalid %%m value");
5503 break;
5505 case 'M':
5506 /* 'b', 'w', 'l', or 'q' as the value of the constant. */
5507 if (GET_CODE (x) != CONST_INT
5508 || (INTVAL (x) != 8 && INTVAL (x) != 16
5509 && INTVAL (x) != 32 && INTVAL (x) != 64))
5510 output_operand_lossage ("invalid %%M value");
5512 fprintf (file, "%s",
5513 (INTVAL (x) == 8 ? "b"
5514 : INTVAL (x) == 16 ? "w"
5515 : INTVAL (x) == 32 ? "l"
5516 : "q"));
5517 break;
5519 case 'U':
5520 /* Similar, except do it from the mask. */
5521 if (GET_CODE (x) == CONST_INT)
5523 HOST_WIDE_INT value = INTVAL (x);
5525 if (value == 0xff)
5527 fputc ('b', file);
5528 break;
5530 if (value == 0xffff)
5532 fputc ('w', file);
5533 break;
5535 if (value == 0xffffffff)
5537 fputc ('l', file);
5538 break;
5540 if (value == -1)
5542 fputc ('q', file);
5543 break;
5546 else if (HOST_BITS_PER_WIDE_INT == 32
5547 && GET_CODE (x) == CONST_DOUBLE
5548 && CONST_DOUBLE_LOW (x) == 0xffffffff
5549 && CONST_DOUBLE_HIGH (x) == 0)
5551 fputc ('l', file);
5552 break;
5554 output_operand_lossage ("invalid %%U value");
5555 break;
5557 case 's':
5558 /* Write the constant value divided by 8 for little-endian mode or
5559 (56 - value) / 8 for big-endian mode. */
5561 if (GET_CODE (x) != CONST_INT
5562 || (unsigned HOST_WIDE_INT) INTVAL (x) >= (WORDS_BIG_ENDIAN
5563 ? 56
5564 : 64)
5565 || (INTVAL (x) & 7) != 0)
5566 output_operand_lossage ("invalid %%s value");
5568 fprintf (file, HOST_WIDE_INT_PRINT_DEC,
5569 WORDS_BIG_ENDIAN
5570 ? (56 - INTVAL (x)) / 8
5571 : INTVAL (x) / 8);
5572 break;
5574 case 'S':
5575 /* Same, except compute (64 - c) / 8 */
5577 if (GET_CODE (x) != CONST_INT
5578 && (unsigned HOST_WIDE_INT) INTVAL (x) >= 64
5579 && (INTVAL (x) & 7) != 8)
5580 output_operand_lossage ("invalid %%s value");
5582 fprintf (file, HOST_WIDE_INT_PRINT_DEC, (64 - INTVAL (x)) / 8);
5583 break;
5585 case 't':
5587 /* On Unicos/Mk systems: use a DEX expression if the symbol
5588 clashes with a register name. */
5589 int dex = unicosmk_need_dex (x);
5590 if (dex)
5591 fprintf (file, "DEX(%d)", dex);
5592 else
5593 output_addr_const (file, x);
5595 break;
5597 case 'C': case 'D': case 'c': case 'd':
5598 /* Write out comparison name. */
5600 enum rtx_code c = GET_CODE (x);
5602 if (GET_RTX_CLASS (c) != '<')
5603 output_operand_lossage ("invalid %%C value");
5605 else if (code == 'D')
5606 c = reverse_condition (c);
5607 else if (code == 'c')
5608 c = swap_condition (c);
5609 else if (code == 'd')
5610 c = swap_condition (reverse_condition (c));
5612 if (c == LEU)
5613 fprintf (file, "ule");
5614 else if (c == LTU)
5615 fprintf (file, "ult");
5616 else if (c == UNORDERED)
5617 fprintf (file, "un");
5618 else
5619 fprintf (file, "%s", GET_RTX_NAME (c));
5621 break;
5623 case 'E':
5624 /* Write the divide or modulus operator. */
5625 switch (GET_CODE (x))
5627 case DIV:
5628 fprintf (file, "div%s", GET_MODE (x) == SImode ? "l" : "q");
5629 break;
5630 case UDIV:
5631 fprintf (file, "div%su", GET_MODE (x) == SImode ? "l" : "q");
5632 break;
5633 case MOD:
5634 fprintf (file, "rem%s", GET_MODE (x) == SImode ? "l" : "q");
5635 break;
5636 case UMOD:
5637 fprintf (file, "rem%su", GET_MODE (x) == SImode ? "l" : "q");
5638 break;
5639 default:
5640 output_operand_lossage ("invalid %%E value");
5641 break;
5643 break;
5645 case 'A':
5646 /* Write "_u" for unaligned access. */
5647 if (GET_CODE (x) == MEM && GET_CODE (XEXP (x, 0)) == AND)
5648 fprintf (file, "_u");
5649 break;
5651 case 0:
5652 if (GET_CODE (x) == REG)
5653 fprintf (file, "%s", reg_names[REGNO (x)]);
5654 else if (GET_CODE (x) == MEM)
5655 output_address (XEXP (x, 0));
5656 else if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == UNSPEC)
5658 switch (XINT (XEXP (x, 0), 1))
5660 case UNSPEC_DTPREL:
5661 case UNSPEC_TPREL:
5662 output_addr_const (file, XVECEXP (XEXP (x, 0), 0, 0));
5663 break;
5664 default:
5665 output_operand_lossage ("unknown relocation unspec");
5666 break;
5669 else
5670 output_addr_const (file, x);
5671 break;
5673 default:
5674 output_operand_lossage ("invalid %%xn code");
5678 void
5679 print_operand_address (FILE *file, rtx addr)
5681 int basereg = 31;
5682 HOST_WIDE_INT offset = 0;
5684 if (GET_CODE (addr) == AND)
5685 addr = XEXP (addr, 0);
5687 if (GET_CODE (addr) == PLUS
5688 && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5690 offset = INTVAL (XEXP (addr, 1));
5691 addr = XEXP (addr, 0);
5694 if (GET_CODE (addr) == LO_SUM)
5696 const char *reloc16, *reloclo;
5697 rtx op1 = XEXP (addr, 1);
5699 if (GET_CODE (op1) == CONST && GET_CODE (XEXP (op1, 0)) == UNSPEC)
5701 op1 = XEXP (op1, 0);
5702 switch (XINT (op1, 1))
5704 case UNSPEC_DTPREL:
5705 reloc16 = NULL;
5706 reloclo = (alpha_tls_size == 16 ? "dtprel" : "dtprello");
5707 break;
5708 case UNSPEC_TPREL:
5709 reloc16 = NULL;
5710 reloclo = (alpha_tls_size == 16 ? "tprel" : "tprello");
5711 break;
5712 default:
5713 output_operand_lossage ("unknown relocation unspec");
5714 return;
5717 output_addr_const (file, XVECEXP (op1, 0, 0));
5719 else
5721 reloc16 = "gprel";
5722 reloclo = "gprellow";
5723 output_addr_const (file, op1);
5726 if (offset)
5727 fprintf (file, "+" HOST_WIDE_INT_PRINT_DEC, offset);
5729 addr = XEXP (addr, 0);
5730 if (GET_CODE (addr) == REG)
5731 basereg = REGNO (addr);
5732 else if (GET_CODE (addr) == SUBREG
5733 && GET_CODE (SUBREG_REG (addr)) == REG)
5734 basereg = subreg_regno (addr);
5735 else
5736 abort ();
5738 fprintf (file, "($%d)\t\t!%s", basereg,
5739 (basereg == 29 ? reloc16 : reloclo));
5740 return;
5743 if (GET_CODE (addr) == REG)
5744 basereg = REGNO (addr);
5745 else if (GET_CODE (addr) == SUBREG
5746 && GET_CODE (SUBREG_REG (addr)) == REG)
5747 basereg = subreg_regno (addr);
5748 else if (GET_CODE (addr) == CONST_INT)
5749 offset = INTVAL (addr);
5751 #if TARGET_ABI_OPEN_VMS
5752 else if (GET_CODE (addr) == SYMBOL_REF)
5754 fprintf (file, "%s", XSTR (addr, 0));
5755 return;
5757 else if (GET_CODE (addr) == CONST
5758 && GET_CODE (XEXP (addr, 0)) == PLUS
5759 && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF)
5761 fprintf (file, "%s+" HOST_WIDE_INT_PRINT_DEC,
5762 XSTR (XEXP (XEXP (addr, 0), 0), 0),
5763 INTVAL (XEXP (XEXP (addr, 0), 1)));
5764 return;
5766 #endif
5768 else
5769 abort ();
5771 fprintf (file, HOST_WIDE_INT_PRINT_DEC "($%d)", offset, basereg);
5774 /* Emit RTL insns to initialize the variable parts of a trampoline at
5775 TRAMP. FNADDR is an RTX for the address of the function's pure
5776 code. CXT is an RTX for the static chain value for the function.
5778 The three offset parameters are for the individual template's
5779 layout. A JMPOFS < 0 indicates that the trampoline does not
5780 contain instructions at all.
5782 We assume here that a function will be called many more times than
5783 its address is taken (e.g., it might be passed to qsort), so we
5784 take the trouble to initialize the "hint" field in the JMP insn.
5785 Note that the hint field is PC (new) + 4 * bits 13:0. */
5787 void
5788 alpha_initialize_trampoline (rtx tramp, rtx fnaddr, rtx cxt,
5789 int fnofs, int cxtofs, int jmpofs)
5791 rtx temp, temp1, addr;
5792 /* VMS really uses DImode pointers in memory at this point. */
5793 enum machine_mode mode = TARGET_ABI_OPEN_VMS ? Pmode : ptr_mode;
5795 #ifdef POINTERS_EXTEND_UNSIGNED
5796 fnaddr = convert_memory_address (mode, fnaddr);
5797 cxt = convert_memory_address (mode, cxt);
5798 #endif
5800 /* Store function address and CXT. */
5801 addr = memory_address (mode, plus_constant (tramp, fnofs));
5802 emit_move_insn (gen_rtx_MEM (mode, addr), fnaddr);
5803 addr = memory_address (mode, plus_constant (tramp, cxtofs));
5804 emit_move_insn (gen_rtx_MEM (mode, addr), cxt);
5806 /* This has been disabled since the hint only has a 32k range, and in
5807 no existing OS is the stack within 32k of the text segment. */
5808 if (0 && jmpofs >= 0)
5810 /* Compute hint value. */
5811 temp = force_operand (plus_constant (tramp, jmpofs+4), NULL_RTX);
5812 temp = expand_binop (DImode, sub_optab, fnaddr, temp, temp, 1,
5813 OPTAB_WIDEN);
5814 temp = expand_shift (RSHIFT_EXPR, Pmode, temp,
5815 build_int_2 (2, 0), NULL_RTX, 1);
5816 temp = expand_and (SImode, gen_lowpart (SImode, temp),
5817 GEN_INT (0x3fff), 0);
5819 /* Merge in the hint. */
5820 addr = memory_address (SImode, plus_constant (tramp, jmpofs));
5821 temp1 = force_reg (SImode, gen_rtx_MEM (SImode, addr));
5822 temp1 = expand_and (SImode, temp1, GEN_INT (0xffffc000), NULL_RTX);
5823 temp1 = expand_binop (SImode, ior_optab, temp1, temp, temp1, 1,
5824 OPTAB_WIDEN);
5825 emit_move_insn (gen_rtx_MEM (SImode, addr), temp1);
5828 #ifdef TRANSFER_FROM_TRAMPOLINE
5829 emit_library_call (init_one_libfunc ("__enable_execute_stack"),
5830 0, VOIDmode, 1, tramp, Pmode);
5831 #endif
5833 if (jmpofs >= 0)
5834 emit_insn (gen_imb ());
5837 /* Determine where to put an argument to a function.
5838 Value is zero to push the argument on the stack,
5839 or a hard register in which to store the argument.
5841 MODE is the argument's machine mode.
5842 TYPE is the data type of the argument (as a tree).
5843 This is null for libcalls where that information may
5844 not be available.
5845 CUM is a variable of type CUMULATIVE_ARGS which gives info about
5846 the preceding args and about the function being called.
5847 NAMED is nonzero if this argument is a named parameter
5848 (otherwise it is an extra parameter matching an ellipsis).
5850 On Alpha the first 6 words of args are normally in registers
5851 and the rest are pushed. */
5854 function_arg (CUMULATIVE_ARGS cum, enum machine_mode mode, tree type,
5855 int named ATTRIBUTE_UNUSED)
5857 int basereg;
5858 int num_args;
5860 /* Don't get confused and pass small structures in FP registers. */
5861 if (type && AGGREGATE_TYPE_P (type))
5862 basereg = 16;
5863 else
5865 #ifdef ENABLE_CHECKING
5866 /* With SPLIT_COMPLEX_ARGS, we shouldn't see any raw complex
5867 values here. */
5868 if (COMPLEX_MODE_P (mode))
5869 abort ();
5870 #endif
5872 /* Set up defaults for FP operands passed in FP registers, and
5873 integral operands passed in integer registers. */
5874 if (TARGET_FPREGS && GET_MODE_CLASS (mode) == MODE_FLOAT)
5875 basereg = 32 + 16;
5876 else
5877 basereg = 16;
5880 /* ??? Irritatingly, the definition of CUMULATIVE_ARGS is different for
5881 the three platforms, so we can't avoid conditional compilation. */
5882 #if TARGET_ABI_OPEN_VMS
5884 if (mode == VOIDmode)
5885 return alpha_arg_info_reg_val (cum);
5887 num_args = cum.num_args;
5888 if (num_args >= 6 || MUST_PASS_IN_STACK (mode, type))
5889 return NULL_RTX;
5891 #elif TARGET_ABI_UNICOSMK
5893 int size;
5895 /* If this is the last argument, generate the call info word (CIW). */
5896 /* ??? We don't include the caller's line number in the CIW because
5897 I don't know how to determine it if debug infos are turned off. */
5898 if (mode == VOIDmode)
5900 int i;
5901 HOST_WIDE_INT lo;
5902 HOST_WIDE_INT hi;
5903 rtx ciw;
5905 lo = 0;
5907 for (i = 0; i < cum.num_reg_words && i < 5; i++)
5908 if (cum.reg_args_type[i])
5909 lo |= (1 << (7 - i));
5911 if (cum.num_reg_words == 6 && cum.reg_args_type[5])
5912 lo |= 7;
5913 else
5914 lo |= cum.num_reg_words;
5916 #if HOST_BITS_PER_WIDE_INT == 32
5917 hi = (cum.num_args << 20) | cum.num_arg_words;
5918 #else
5919 lo = lo | ((HOST_WIDE_INT) cum.num_args << 52)
5920 | ((HOST_WIDE_INT) cum.num_arg_words << 32);
5921 hi = 0;
5922 #endif
5923 ciw = immed_double_const (lo, hi, DImode);
5925 return gen_rtx_UNSPEC (DImode, gen_rtvec (1, ciw),
5926 UNSPEC_UMK_LOAD_CIW);
5929 size = ALPHA_ARG_SIZE (mode, type, named);
5930 num_args = cum.num_reg_words;
5931 if (MUST_PASS_IN_STACK (mode, type)
5932 || cum.num_reg_words + size > 6 || cum.force_stack)
5933 return NULL_RTX;
5934 else if (type && TYPE_MODE (type) == BLKmode)
5936 rtx reg1, reg2;
5938 reg1 = gen_rtx_REG (DImode, num_args + 16);
5939 reg1 = gen_rtx_EXPR_LIST (DImode, reg1, const0_rtx);
5941 /* The argument fits in two registers. Note that we still need to
5942 reserve a register for empty structures. */
5943 if (size == 0)
5944 return NULL_RTX;
5945 else if (size == 1)
5946 return gen_rtx_PARALLEL (mode, gen_rtvec (1, reg1));
5947 else
5949 reg2 = gen_rtx_REG (DImode, num_args + 17);
5950 reg2 = gen_rtx_EXPR_LIST (DImode, reg2, GEN_INT (8));
5951 return gen_rtx_PARALLEL (mode, gen_rtvec (2, reg1, reg2));
5955 #elif TARGET_ABI_OSF
5957 if (cum >= 6)
5958 return NULL_RTX;
5959 num_args = cum;
5961 /* VOID is passed as a special flag for "last argument". */
5962 if (type == void_type_node)
5963 basereg = 16;
5964 else if (MUST_PASS_IN_STACK (mode, type))
5965 return NULL_RTX;
5966 else if (FUNCTION_ARG_PASS_BY_REFERENCE (cum, mode, type, named))
5967 basereg = 16;
5969 #else
5970 #error Unhandled ABI
5971 #endif
5973 return gen_rtx_REG (mode, num_args + basereg);
5976 /* Return true if TYPE must be returned in memory, instead of in registers. */
5978 static bool
5979 alpha_return_in_memory (tree type, tree fndecl ATTRIBUTE_UNUSED)
5981 enum machine_mode mode = VOIDmode;
5982 int size;
5984 if (type)
5986 mode = TYPE_MODE (type);
5988 /* All aggregates are returned in memory. */
5989 if (AGGREGATE_TYPE_P (type))
5990 return true;
5993 size = GET_MODE_SIZE (mode);
5994 switch (GET_MODE_CLASS (mode))
5996 case MODE_VECTOR_FLOAT:
5997 /* Pass all float vectors in memory, like an aggregate. */
5998 return true;
6000 case MODE_COMPLEX_FLOAT:
6001 /* We judge complex floats on the size of their element,
6002 not the size of the whole type. */
6003 size = GET_MODE_UNIT_SIZE (mode);
6004 break;
6006 case MODE_INT:
6007 case MODE_FLOAT:
6008 case MODE_COMPLEX_INT:
6009 case MODE_VECTOR_INT:
6010 break;
6012 default:
6013 /* ??? We get called on all sorts of random stuff from
6014 aggregate_value_p. We can't abort, but it's not clear
6015 what's safe to return. Pretend it's a struct I guess. */
6016 return true;
6019 /* Otherwise types must fit in one register. */
6020 return size > UNITS_PER_WORD;
6023 /* Define how to find the value returned by a function. VALTYPE is the
6024 data type of the value (as a tree). If the precise function being
6025 called is known, FUNC is its FUNCTION_DECL; otherwise, FUNC is 0.
6026 MODE is set instead of VALTYPE for libcalls.
6028 On Alpha the value is found in $0 for integer functions and
6029 $f0 for floating-point functions. */
6032 function_value (tree valtype, tree func ATTRIBUTE_UNUSED,
6033 enum machine_mode mode)
6035 unsigned int regnum;
6036 enum mode_class class;
6038 #ifdef ENABLE_CHECKING
6039 if (valtype && alpha_return_in_memory (valtype, func))
6040 abort ();
6041 #endif
6043 if (valtype)
6044 mode = TYPE_MODE (valtype);
6046 class = GET_MODE_CLASS (mode);
6047 switch (class)
6049 case MODE_INT:
6050 /* Do the same thing as PROMOTE_MODE. */
6051 mode = DImode;
6052 /* FALLTHRU */
6054 case MODE_COMPLEX_INT:
6055 case MODE_VECTOR_INT:
6056 regnum = 0;
6057 break;
6059 case MODE_FLOAT:
6060 regnum = 32;
6061 break;
6063 case MODE_COMPLEX_FLOAT:
6065 enum machine_mode cmode = GET_MODE_INNER (mode);
6067 return gen_rtx_PARALLEL
6068 (VOIDmode,
6069 gen_rtvec (2,
6070 gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (cmode, 32),
6071 GEN_INT (0)),
6072 gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (cmode, 33),
6073 GEN_INT (GET_MODE_SIZE (cmode)))));
6076 default:
6077 abort ();
6080 return gen_rtx_REG (mode, regnum);
6083 static tree
6084 alpha_build_builtin_va_list (void)
6086 tree base, ofs, space, record, type_decl;
6088 if (TARGET_ABI_OPEN_VMS || TARGET_ABI_UNICOSMK)
6089 return ptr_type_node;
6091 record = (*lang_hooks.types.make_type) (RECORD_TYPE);
6092 type_decl = build_decl (TYPE_DECL, get_identifier ("__va_list_tag"), record);
6093 TREE_CHAIN (record) = type_decl;
6094 TYPE_NAME (record) = type_decl;
6096 /* C++? SET_IS_AGGR_TYPE (record, 1); */
6098 /* Dummy field to prevent alignment warnings. */
6099 space = build_decl (FIELD_DECL, NULL_TREE, integer_type_node);
6100 DECL_FIELD_CONTEXT (space) = record;
6101 DECL_ARTIFICIAL (space) = 1;
6102 DECL_IGNORED_P (space) = 1;
6104 ofs = build_decl (FIELD_DECL, get_identifier ("__offset"),
6105 integer_type_node);
6106 DECL_FIELD_CONTEXT (ofs) = record;
6107 TREE_CHAIN (ofs) = space;
6109 base = build_decl (FIELD_DECL, get_identifier ("__base"),
6110 ptr_type_node);
6111 DECL_FIELD_CONTEXT (base) = record;
6112 TREE_CHAIN (base) = ofs;
6114 TYPE_FIELDS (record) = base;
6115 layout_type (record);
6117 return record;
6120 /* Perform any needed actions needed for a function that is receiving a
6121 variable number of arguments. */
6123 static void
6124 alpha_setup_incoming_varargs (CUMULATIVE_ARGS *pcum,
6125 enum machine_mode mode ATTRIBUTE_UNUSED,
6126 tree type ATTRIBUTE_UNUSED,
6127 int *pretend_size, int no_rtl)
6129 #if TARGET_ABI_UNICOSMK
6130 /* On Unicos/Mk, the standard subroutine __T3E_MISMATCH stores all register
6131 arguments on the stack. Unfortunately, it doesn't always store the first
6132 one (i.e. the one that arrives in $16 or $f16). This is not a problem
6133 with stdargs as we always have at least one named argument there. */
6134 int num_reg_words = pcum->num_reg_words;
6135 if (num_reg_words < 6)
6137 if (!no_rtl)
6139 emit_insn (gen_umk_mismatch_args (GEN_INT (num_reg_words + 1)));
6140 emit_insn (gen_arg_home_umk ());
6142 *pretend_size = 0;
6144 #elif TARGET_ABI_OPEN_VMS
6145 /* For VMS, we allocate space for all 6 arg registers plus a count.
6147 However, if NO registers need to be saved, don't allocate any space.
6148 This is not only because we won't need the space, but because AP
6149 includes the current_pretend_args_size and we don't want to mess up
6150 any ap-relative addresses already made. */
6151 if (pcum->num_args < 6)
6153 if (!no_rtl)
6155 emit_move_insn (gen_rtx_REG (DImode, 1), virtual_incoming_args_rtx);
6156 emit_insn (gen_arg_home ());
6158 *pretend_size = 7 * UNITS_PER_WORD;
6160 #else
6161 /* On OSF/1 and friends, we allocate space for all 12 arg registers, but
6162 only push those that are remaining. However, if NO registers need to
6163 be saved, don't allocate any space. This is not only because we won't
6164 need the space, but because AP includes the current_pretend_args_size
6165 and we don't want to mess up any ap-relative addresses already made.
6167 If we are not to use the floating-point registers, save the integer
6168 registers where we would put the floating-point registers. This is
6169 not the most efficient way to implement varargs with just one register
6170 class, but it isn't worth doing anything more efficient in this rare
6171 case. */
6172 CUMULATIVE_ARGS cum = *pcum;
6174 if (cum >= 6)
6175 return;
6177 if (!no_rtl)
6179 int set = get_varargs_alias_set ();
6180 rtx tmp;
6182 tmp = gen_rtx_MEM (BLKmode,
6183 plus_constant (virtual_incoming_args_rtx,
6184 (cum + 6) * UNITS_PER_WORD));
6185 set_mem_alias_set (tmp, set);
6186 move_block_from_reg (16 + cum, tmp, 6 - cum);
6188 tmp = gen_rtx_MEM (BLKmode,
6189 plus_constant (virtual_incoming_args_rtx,
6190 cum * UNITS_PER_WORD));
6191 set_mem_alias_set (tmp, set);
6192 move_block_from_reg (16 + (TARGET_FPREGS ? 32 : 0) + cum, tmp,
6193 6 - cum);
6195 *pretend_size = 12 * UNITS_PER_WORD;
6196 #endif
6199 void
6200 alpha_va_start (tree valist, rtx nextarg ATTRIBUTE_UNUSED)
6202 HOST_WIDE_INT offset;
6203 tree t, offset_field, base_field;
6205 if (TREE_CODE (TREE_TYPE (valist)) == ERROR_MARK)
6206 return;
6208 if (TARGET_ABI_UNICOSMK)
6209 std_expand_builtin_va_start (valist, nextarg);
6211 /* For Unix, SETUP_INCOMING_VARARGS moves the starting address base
6212 up by 48, storing fp arg registers in the first 48 bytes, and the
6213 integer arg registers in the next 48 bytes. This is only done,
6214 however, if any integer registers need to be stored.
6216 If no integer registers need be stored, then we must subtract 48
6217 in order to account for the integer arg registers which are counted
6218 in argsize above, but which are not actually stored on the stack.
6219 Must further be careful here about structures straddling the last
6220 integer argument register; that futzes with pretend_args_size,
6221 which changes the meaning of AP. */
6223 if (NUM_ARGS <= 6)
6224 offset = TARGET_ABI_OPEN_VMS ? UNITS_PER_WORD : 6 * UNITS_PER_WORD;
6225 else
6226 offset = -6 * UNITS_PER_WORD + current_function_pretend_args_size;
6228 if (TARGET_ABI_OPEN_VMS)
6230 nextarg = plus_constant (nextarg, offset);
6231 nextarg = plus_constant (nextarg, NUM_ARGS * UNITS_PER_WORD);
6232 t = build (MODIFY_EXPR, TREE_TYPE (valist), valist,
6233 make_tree (ptr_type_node, nextarg));
6234 TREE_SIDE_EFFECTS (t) = 1;
6236 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6238 else
6240 base_field = TYPE_FIELDS (TREE_TYPE (valist));
6241 offset_field = TREE_CHAIN (base_field);
6243 base_field = build (COMPONENT_REF, TREE_TYPE (base_field),
6244 valist, base_field);
6245 offset_field = build (COMPONENT_REF, TREE_TYPE (offset_field),
6246 valist, offset_field);
6248 t = make_tree (ptr_type_node, virtual_incoming_args_rtx);
6249 t = build (PLUS_EXPR, ptr_type_node, t, build_int_2 (offset, 0));
6250 t = build (MODIFY_EXPR, TREE_TYPE (base_field), base_field, t);
6251 TREE_SIDE_EFFECTS (t) = 1;
6252 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6254 t = build_int_2 (NUM_ARGS * UNITS_PER_WORD, 0);
6255 t = build (MODIFY_EXPR, TREE_TYPE (offset_field), offset_field, t);
6256 TREE_SIDE_EFFECTS (t) = 1;
6257 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6262 alpha_va_arg (tree valist, tree type)
6264 rtx addr;
6265 tree t, type_size, rounded_size;
6266 tree offset_field, base_field, addr_tree, addend;
6267 tree wide_type, wide_ofs;
6268 int indirect = 0;
6270 if (TARGET_ABI_OPEN_VMS || TARGET_ABI_UNICOSMK)
6271 return std_expand_builtin_va_arg (valist, type);
6273 if (type == error_mark_node
6274 || (type_size = TYPE_SIZE_UNIT (TYPE_MAIN_VARIANT (type))) == NULL
6275 || TREE_OVERFLOW (type_size))
6276 rounded_size = size_zero_node;
6277 else
6278 rounded_size = fold (build (MULT_EXPR, sizetype,
6279 fold (build (TRUNC_DIV_EXPR, sizetype,
6280 fold (build (PLUS_EXPR, sizetype,
6281 type_size,
6282 size_int (7))),
6283 size_int (8))),
6284 size_int (8)));
6286 base_field = TYPE_FIELDS (TREE_TYPE (valist));
6287 offset_field = TREE_CHAIN (base_field);
6289 base_field = build (COMPONENT_REF, TREE_TYPE (base_field),
6290 valist, base_field);
6291 offset_field = build (COMPONENT_REF, TREE_TYPE (offset_field),
6292 valist, offset_field);
6294 /* If the type could not be passed in registers, skip the block
6295 reserved for the registers. */
6296 if (MUST_PASS_IN_STACK (TYPE_MODE (type), type))
6298 t = build (MODIFY_EXPR, TREE_TYPE (offset_field), offset_field,
6299 build (MAX_EXPR, TREE_TYPE (offset_field),
6300 offset_field, build_int_2 (6*8, 0)));
6301 TREE_SIDE_EFFECTS (t) = 1;
6302 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6305 wide_type = make_signed_type (64);
6306 wide_ofs = save_expr (build1 (CONVERT_EXPR, wide_type, offset_field));
6308 addend = wide_ofs;
6310 if (TYPE_MODE (type) == TFmode || TYPE_MODE (type) == TCmode)
6312 indirect = 1;
6313 rounded_size = size_int (UNITS_PER_WORD);
6315 else if (TREE_CODE (type) == COMPLEX_TYPE)
6317 rtx real_part, imag_part, value, tmp;
6319 real_part = alpha_va_arg (valist, TREE_TYPE (type));
6320 imag_part = alpha_va_arg (valist, TREE_TYPE (type));
6322 /* ??? Most irritatingly, we're not returning the value here,
6323 but the address. Since real_part and imag_part are not
6324 necessarily contiguous, we must copy to local storage. */
6326 real_part = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (type)), real_part);
6327 imag_part = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (type)), imag_part);
6328 value = gen_rtx_CONCAT (TYPE_MODE (type), real_part, imag_part);
6330 tmp = assign_temp (type, 0, 1, 0);
6331 emit_move_insn (tmp, value);
6333 return XEXP (tmp, 0);
6335 else if (TREE_CODE (type) == REAL_TYPE)
6337 tree fpaddend, cond;
6339 fpaddend = fold (build (PLUS_EXPR, TREE_TYPE (addend),
6340 addend, build_int_2 (-6*8, 0)));
6342 cond = fold (build (LT_EXPR, integer_type_node,
6343 wide_ofs, build_int_2 (6*8, 0)));
6345 addend = fold (build (COND_EXPR, TREE_TYPE (addend), cond,
6346 fpaddend, addend));
6349 addr_tree = build (PLUS_EXPR, TREE_TYPE (base_field),
6350 base_field, addend);
6352 addr = expand_expr (addr_tree, NULL_RTX, Pmode, EXPAND_NORMAL);
6353 addr = copy_to_reg (addr);
6355 t = build (MODIFY_EXPR, TREE_TYPE (offset_field), offset_field,
6356 build (PLUS_EXPR, TREE_TYPE (offset_field),
6357 offset_field, rounded_size));
6358 TREE_SIDE_EFFECTS (t) = 1;
6359 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6361 if (indirect)
6363 addr = force_reg (Pmode, addr);
6364 addr = gen_rtx_MEM (Pmode, addr);
6367 return addr;
6370 /* Builtins. */
6372 enum alpha_builtin
6374 ALPHA_BUILTIN_CMPBGE,
6375 ALPHA_BUILTIN_EXTBL,
6376 ALPHA_BUILTIN_EXTWL,
6377 ALPHA_BUILTIN_EXTLL,
6378 ALPHA_BUILTIN_EXTQL,
6379 ALPHA_BUILTIN_EXTWH,
6380 ALPHA_BUILTIN_EXTLH,
6381 ALPHA_BUILTIN_EXTQH,
6382 ALPHA_BUILTIN_INSBL,
6383 ALPHA_BUILTIN_INSWL,
6384 ALPHA_BUILTIN_INSLL,
6385 ALPHA_BUILTIN_INSQL,
6386 ALPHA_BUILTIN_INSWH,
6387 ALPHA_BUILTIN_INSLH,
6388 ALPHA_BUILTIN_INSQH,
6389 ALPHA_BUILTIN_MSKBL,
6390 ALPHA_BUILTIN_MSKWL,
6391 ALPHA_BUILTIN_MSKLL,
6392 ALPHA_BUILTIN_MSKQL,
6393 ALPHA_BUILTIN_MSKWH,
6394 ALPHA_BUILTIN_MSKLH,
6395 ALPHA_BUILTIN_MSKQH,
6396 ALPHA_BUILTIN_UMULH,
6397 ALPHA_BUILTIN_ZAP,
6398 ALPHA_BUILTIN_ZAPNOT,
6399 ALPHA_BUILTIN_AMASK,
6400 ALPHA_BUILTIN_IMPLVER,
6401 ALPHA_BUILTIN_RPCC,
6402 ALPHA_BUILTIN_THREAD_POINTER,
6403 ALPHA_BUILTIN_SET_THREAD_POINTER,
6405 /* TARGET_MAX */
6406 ALPHA_BUILTIN_MINUB8,
6407 ALPHA_BUILTIN_MINSB8,
6408 ALPHA_BUILTIN_MINUW4,
6409 ALPHA_BUILTIN_MINSW4,
6410 ALPHA_BUILTIN_MAXUB8,
6411 ALPHA_BUILTIN_MAXSB8,
6412 ALPHA_BUILTIN_MAXUW4,
6413 ALPHA_BUILTIN_MAXSW4,
6414 ALPHA_BUILTIN_PERR,
6415 ALPHA_BUILTIN_PKLB,
6416 ALPHA_BUILTIN_PKWB,
6417 ALPHA_BUILTIN_UNPKBL,
6418 ALPHA_BUILTIN_UNPKBW,
6420 /* TARGET_CIX */
6421 ALPHA_BUILTIN_CTTZ,
6422 ALPHA_BUILTIN_CTLZ,
6423 ALPHA_BUILTIN_CTPOP,
6425 ALPHA_BUILTIN_max
6428 static unsigned int const code_for_builtin[ALPHA_BUILTIN_max] = {
6429 CODE_FOR_builtin_cmpbge,
6430 CODE_FOR_builtin_extbl,
6431 CODE_FOR_builtin_extwl,
6432 CODE_FOR_builtin_extll,
6433 CODE_FOR_builtin_extql,
6434 CODE_FOR_builtin_extwh,
6435 CODE_FOR_builtin_extlh,
6436 CODE_FOR_builtin_extqh,
6437 CODE_FOR_builtin_insbl,
6438 CODE_FOR_builtin_inswl,
6439 CODE_FOR_builtin_insll,
6440 CODE_FOR_builtin_insql,
6441 CODE_FOR_builtin_inswh,
6442 CODE_FOR_builtin_inslh,
6443 CODE_FOR_builtin_insqh,
6444 CODE_FOR_builtin_mskbl,
6445 CODE_FOR_builtin_mskwl,
6446 CODE_FOR_builtin_mskll,
6447 CODE_FOR_builtin_mskql,
6448 CODE_FOR_builtin_mskwh,
6449 CODE_FOR_builtin_msklh,
6450 CODE_FOR_builtin_mskqh,
6451 CODE_FOR_umuldi3_highpart,
6452 CODE_FOR_builtin_zap,
6453 CODE_FOR_builtin_zapnot,
6454 CODE_FOR_builtin_amask,
6455 CODE_FOR_builtin_implver,
6456 CODE_FOR_builtin_rpcc,
6457 CODE_FOR_load_tp,
6458 CODE_FOR_set_tp,
6460 /* TARGET_MAX */
6461 CODE_FOR_builtin_minub8,
6462 CODE_FOR_builtin_minsb8,
6463 CODE_FOR_builtin_minuw4,
6464 CODE_FOR_builtin_minsw4,
6465 CODE_FOR_builtin_maxub8,
6466 CODE_FOR_builtin_maxsb8,
6467 CODE_FOR_builtin_maxuw4,
6468 CODE_FOR_builtin_maxsw4,
6469 CODE_FOR_builtin_perr,
6470 CODE_FOR_builtin_pklb,
6471 CODE_FOR_builtin_pkwb,
6472 CODE_FOR_builtin_unpkbl,
6473 CODE_FOR_builtin_unpkbw,
6475 /* TARGET_CIX */
6476 CODE_FOR_builtin_cttz,
6477 CODE_FOR_builtin_ctlz,
6478 CODE_FOR_builtin_ctpop
6481 struct alpha_builtin_def
6483 const char *name;
6484 enum alpha_builtin code;
6485 unsigned int target_mask;
6488 static struct alpha_builtin_def const zero_arg_builtins[] = {
6489 { "__builtin_alpha_implver", ALPHA_BUILTIN_IMPLVER, 0 },
6490 { "__builtin_alpha_rpcc", ALPHA_BUILTIN_RPCC, 0 }
6493 static struct alpha_builtin_def const one_arg_builtins[] = {
6494 { "__builtin_alpha_amask", ALPHA_BUILTIN_AMASK, 0 },
6495 { "__builtin_alpha_pklb", ALPHA_BUILTIN_PKLB, MASK_MAX },
6496 { "__builtin_alpha_pkwb", ALPHA_BUILTIN_PKWB, MASK_MAX },
6497 { "__builtin_alpha_unpkbl", ALPHA_BUILTIN_UNPKBL, MASK_MAX },
6498 { "__builtin_alpha_unpkbw", ALPHA_BUILTIN_UNPKBW, MASK_MAX },
6499 { "__builtin_alpha_cttz", ALPHA_BUILTIN_CTTZ, MASK_CIX },
6500 { "__builtin_alpha_ctlz", ALPHA_BUILTIN_CTLZ, MASK_CIX },
6501 { "__builtin_alpha_ctpop", ALPHA_BUILTIN_CTPOP, MASK_CIX }
6504 static struct alpha_builtin_def const two_arg_builtins[] = {
6505 { "__builtin_alpha_cmpbge", ALPHA_BUILTIN_CMPBGE, 0 },
6506 { "__builtin_alpha_extbl", ALPHA_BUILTIN_EXTBL, 0 },
6507 { "__builtin_alpha_extwl", ALPHA_BUILTIN_EXTWL, 0 },
6508 { "__builtin_alpha_extll", ALPHA_BUILTIN_EXTLL, 0 },
6509 { "__builtin_alpha_extql", ALPHA_BUILTIN_EXTQL, 0 },
6510 { "__builtin_alpha_extwh", ALPHA_BUILTIN_EXTWH, 0 },
6511 { "__builtin_alpha_extlh", ALPHA_BUILTIN_EXTLH, 0 },
6512 { "__builtin_alpha_extqh", ALPHA_BUILTIN_EXTQH, 0 },
6513 { "__builtin_alpha_insbl", ALPHA_BUILTIN_INSBL, 0 },
6514 { "__builtin_alpha_inswl", ALPHA_BUILTIN_INSWL, 0 },
6515 { "__builtin_alpha_insll", ALPHA_BUILTIN_INSLL, 0 },
6516 { "__builtin_alpha_insql", ALPHA_BUILTIN_INSQL, 0 },
6517 { "__builtin_alpha_inswh", ALPHA_BUILTIN_INSWH, 0 },
6518 { "__builtin_alpha_inslh", ALPHA_BUILTIN_INSLH, 0 },
6519 { "__builtin_alpha_insqh", ALPHA_BUILTIN_INSQH, 0 },
6520 { "__builtin_alpha_mskbl", ALPHA_BUILTIN_MSKBL, 0 },
6521 { "__builtin_alpha_mskwl", ALPHA_BUILTIN_MSKWL, 0 },
6522 { "__builtin_alpha_mskll", ALPHA_BUILTIN_MSKLL, 0 },
6523 { "__builtin_alpha_mskql", ALPHA_BUILTIN_MSKQL, 0 },
6524 { "__builtin_alpha_mskwh", ALPHA_BUILTIN_MSKWH, 0 },
6525 { "__builtin_alpha_msklh", ALPHA_BUILTIN_MSKLH, 0 },
6526 { "__builtin_alpha_mskqh", ALPHA_BUILTIN_MSKQH, 0 },
6527 { "__builtin_alpha_umulh", ALPHA_BUILTIN_UMULH, 0 },
6528 { "__builtin_alpha_zap", ALPHA_BUILTIN_ZAP, 0 },
6529 { "__builtin_alpha_zapnot", ALPHA_BUILTIN_ZAPNOT, 0 },
6530 { "__builtin_alpha_minub8", ALPHA_BUILTIN_MINUB8, MASK_MAX },
6531 { "__builtin_alpha_minsb8", ALPHA_BUILTIN_MINSB8, MASK_MAX },
6532 { "__builtin_alpha_minuw4", ALPHA_BUILTIN_MINUW4, MASK_MAX },
6533 { "__builtin_alpha_minsw4", ALPHA_BUILTIN_MINSW4, MASK_MAX },
6534 { "__builtin_alpha_maxub8", ALPHA_BUILTIN_MAXUB8, MASK_MAX },
6535 { "__builtin_alpha_maxsb8", ALPHA_BUILTIN_MAXSB8, MASK_MAX },
6536 { "__builtin_alpha_maxuw4", ALPHA_BUILTIN_MAXUW4, MASK_MAX },
6537 { "__builtin_alpha_maxsw4", ALPHA_BUILTIN_MAXSW4, MASK_MAX },
6538 { "__builtin_alpha_perr", ALPHA_BUILTIN_PERR, MASK_MAX }
6541 static void
6542 alpha_init_builtins (void)
6544 const struct alpha_builtin_def *p;
6545 tree ftype;
6546 size_t i;
6548 ftype = build_function_type (long_integer_type_node, void_list_node);
6550 p = zero_arg_builtins;
6551 for (i = 0; i < ARRAY_SIZE (zero_arg_builtins); ++i, ++p)
6552 if ((target_flags & p->target_mask) == p->target_mask)
6553 builtin_function (p->name, ftype, p->code, BUILT_IN_MD,
6554 NULL, NULL_TREE);
6556 ftype = build_function_type_list (long_integer_type_node,
6557 long_integer_type_node, NULL_TREE);
6559 p = one_arg_builtins;
6560 for (i = 0; i < ARRAY_SIZE (one_arg_builtins); ++i, ++p)
6561 if ((target_flags & p->target_mask) == p->target_mask)
6562 builtin_function (p->name, ftype, p->code, BUILT_IN_MD,
6563 NULL, NULL_TREE);
6565 ftype = build_function_type_list (long_integer_type_node,
6566 long_integer_type_node,
6567 long_integer_type_node, NULL_TREE);
6569 p = two_arg_builtins;
6570 for (i = 0; i < ARRAY_SIZE (two_arg_builtins); ++i, ++p)
6571 if ((target_flags & p->target_mask) == p->target_mask)
6572 builtin_function (p->name, ftype, p->code, BUILT_IN_MD,
6573 NULL, NULL_TREE);
6575 ftype = build_function_type (ptr_type_node, void_list_node);
6576 builtin_function ("__builtin_thread_pointer", ftype,
6577 ALPHA_BUILTIN_THREAD_POINTER, BUILT_IN_MD,
6578 NULL, NULL_TREE);
6580 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
6581 builtin_function ("__builtin_set_thread_pointer", ftype,
6582 ALPHA_BUILTIN_SET_THREAD_POINTER, BUILT_IN_MD,
6583 NULL, NULL_TREE);
6586 /* Expand an expression EXP that calls a built-in function,
6587 with result going to TARGET if that's convenient
6588 (and in mode MODE if that's convenient).
6589 SUBTARGET may be used as the target for computing one of EXP's operands.
6590 IGNORE is nonzero if the value is to be ignored. */
6592 static rtx
6593 alpha_expand_builtin (tree exp, rtx target,
6594 rtx subtarget ATTRIBUTE_UNUSED,
6595 enum machine_mode mode ATTRIBUTE_UNUSED,
6596 int ignore ATTRIBUTE_UNUSED)
6598 #define MAX_ARGS 2
6600 tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
6601 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
6602 tree arglist = TREE_OPERAND (exp, 1);
6603 enum insn_code icode;
6604 rtx op[MAX_ARGS], pat;
6605 int arity;
6606 bool nonvoid;
6608 if (fcode >= ALPHA_BUILTIN_max)
6609 internal_error ("bad builtin fcode");
6610 icode = code_for_builtin[fcode];
6611 if (icode == 0)
6612 internal_error ("bad builtin fcode");
6614 nonvoid = TREE_TYPE (TREE_TYPE (fndecl)) != void_type_node;
6616 for (arglist = TREE_OPERAND (exp, 1), arity = 0;
6617 arglist;
6618 arglist = TREE_CHAIN (arglist), arity++)
6620 const struct insn_operand_data *insn_op;
6622 tree arg = TREE_VALUE (arglist);
6623 if (arg == error_mark_node)
6624 return NULL_RTX;
6625 if (arity > MAX_ARGS)
6626 return NULL_RTX;
6628 insn_op = &insn_data[icode].operand[arity + nonvoid];
6630 op[arity] = expand_expr (arg, NULL_RTX, insn_op->mode, 0);
6632 if (!(*insn_op->predicate) (op[arity], insn_op->mode))
6633 op[arity] = copy_to_mode_reg (insn_op->mode, op[arity]);
6636 if (nonvoid)
6638 enum machine_mode tmode = insn_data[icode].operand[0].mode;
6639 if (!target
6640 || GET_MODE (target) != tmode
6641 || !(*insn_data[icode].operand[0].predicate) (target, tmode))
6642 target = gen_reg_rtx (tmode);
6645 switch (arity)
6647 case 0:
6648 pat = GEN_FCN (icode) (target);
6649 break;
6650 case 1:
6651 if (nonvoid)
6652 pat = GEN_FCN (icode) (target, op[0]);
6653 else
6654 pat = GEN_FCN (icode) (op[0]);
6655 break;
6656 case 2:
6657 pat = GEN_FCN (icode) (target, op[0], op[1]);
6658 break;
6659 default:
6660 abort ();
6662 if (!pat)
6663 return NULL_RTX;
6664 emit_insn (pat);
6666 if (nonvoid)
6667 return target;
6668 else
6669 return const0_rtx;
6672 /* This page contains routines that are used to determine what the function
6673 prologue and epilogue code will do and write them out. */
6675 /* Compute the size of the save area in the stack. */
6677 /* These variables are used for communication between the following functions.
6678 They indicate various things about the current function being compiled
6679 that are used to tell what kind of prologue, epilogue and procedure
6680 descriptor to generate. */
6682 /* Nonzero if we need a stack procedure. */
6683 enum alpha_procedure_types {PT_NULL = 0, PT_REGISTER = 1, PT_STACK = 2};
6684 static enum alpha_procedure_types alpha_procedure_type;
6686 /* Register number (either FP or SP) that is used to unwind the frame. */
6687 static int vms_unwind_regno;
6689 /* Register number used to save FP. We need not have one for RA since
6690 we don't modify it for register procedures. This is only defined
6691 for register frame procedures. */
6692 static int vms_save_fp_regno;
6694 /* Register number used to reference objects off our PV. */
6695 static int vms_base_regno;
6697 /* Compute register masks for saved registers. */
6699 static void
6700 alpha_sa_mask (unsigned long *imaskP, unsigned long *fmaskP)
6702 unsigned long imask = 0;
6703 unsigned long fmask = 0;
6704 unsigned int i;
6706 /* Irritatingly, there are two kinds of thunks -- those created with
6707 TARGET_ASM_OUTPUT_MI_THUNK and those with DECL_THUNK_P that go
6708 through the regular part of the compiler. In the
6709 TARGET_ASM_OUTPUT_MI_THUNK case we don't have valid register life
6710 info, but assemble_start_function wants to output .frame and
6711 .mask directives. */
6712 if (current_function_is_thunk && !no_new_pseudos)
6714 *imaskP = 0;
6715 *fmaskP = 0;
6716 return;
6719 if (TARGET_ABI_OPEN_VMS && alpha_procedure_type == PT_STACK)
6720 imask |= (1UL << HARD_FRAME_POINTER_REGNUM);
6722 /* One for every register we have to save. */
6723 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6724 if (! fixed_regs[i] && ! call_used_regs[i]
6725 && regs_ever_live[i] && i != REG_RA
6726 && (!TARGET_ABI_UNICOSMK || i != HARD_FRAME_POINTER_REGNUM))
6728 if (i < 32)
6729 imask |= (1UL << i);
6730 else
6731 fmask |= (1UL << (i - 32));
6734 /* We need to restore these for the handler. */
6735 if (current_function_calls_eh_return)
6737 for (i = 0; ; ++i)
6739 unsigned regno = EH_RETURN_DATA_REGNO (i);
6740 if (regno == INVALID_REGNUM)
6741 break;
6742 imask |= 1UL << regno;
6745 /* Glibc likes to use $31 as an unwind stopper for crt0. To
6746 avoid hackery in unwind-dw2.c, we need to actively store a
6747 zero in the prologue of _Unwind_RaiseException et al. */
6748 imask |= 1UL << 31;
6751 /* If any register spilled, then spill the return address also. */
6752 /* ??? This is required by the Digital stack unwind specification
6753 and isn't needed if we're doing Dwarf2 unwinding. */
6754 if (imask || fmask || alpha_ra_ever_killed ())
6755 imask |= (1UL << REG_RA);
6757 *imaskP = imask;
6758 *fmaskP = fmask;
6762 alpha_sa_size (void)
6764 unsigned long mask[2];
6765 int sa_size = 0;
6766 int i, j;
6768 alpha_sa_mask (&mask[0], &mask[1]);
6770 if (TARGET_ABI_UNICOSMK)
6772 if (mask[0] || mask[1])
6773 sa_size = 14;
6775 else
6777 for (j = 0; j < 2; ++j)
6778 for (i = 0; i < 32; ++i)
6779 if ((mask[j] >> i) & 1)
6780 sa_size++;
6783 if (TARGET_ABI_UNICOSMK)
6785 /* We might not need to generate a frame if we don't make any calls
6786 (including calls to __T3E_MISMATCH if this is a vararg function),
6787 don't have any local variables which require stack slots, don't
6788 use alloca and have not determined that we need a frame for other
6789 reasons. */
6791 alpha_procedure_type
6792 = (sa_size || get_frame_size() != 0
6793 || current_function_outgoing_args_size
6794 || current_function_stdarg || current_function_calls_alloca
6795 || frame_pointer_needed)
6796 ? PT_STACK : PT_REGISTER;
6798 /* Always reserve space for saving callee-saved registers if we
6799 need a frame as required by the calling convention. */
6800 if (alpha_procedure_type == PT_STACK)
6801 sa_size = 14;
6803 else if (TARGET_ABI_OPEN_VMS)
6805 /* Start by assuming we can use a register procedure if we don't
6806 make any calls (REG_RA not used) or need to save any
6807 registers and a stack procedure if we do. */
6808 if ((mask[0] >> REG_RA) & 1)
6809 alpha_procedure_type = PT_STACK;
6810 else if (get_frame_size() != 0)
6811 alpha_procedure_type = PT_REGISTER;
6812 else
6813 alpha_procedure_type = PT_NULL;
6815 /* Don't reserve space for saving FP & RA yet. Do that later after we've
6816 made the final decision on stack procedure vs register procedure. */
6817 if (alpha_procedure_type == PT_STACK)
6818 sa_size -= 2;
6820 /* Decide whether to refer to objects off our PV via FP or PV.
6821 If we need FP for something else or if we receive a nonlocal
6822 goto (which expects PV to contain the value), we must use PV.
6823 Otherwise, start by assuming we can use FP. */
6825 vms_base_regno
6826 = (frame_pointer_needed
6827 || current_function_has_nonlocal_label
6828 || alpha_procedure_type == PT_STACK
6829 || current_function_outgoing_args_size)
6830 ? REG_PV : HARD_FRAME_POINTER_REGNUM;
6832 /* If we want to copy PV into FP, we need to find some register
6833 in which to save FP. */
6835 vms_save_fp_regno = -1;
6836 if (vms_base_regno == HARD_FRAME_POINTER_REGNUM)
6837 for (i = 0; i < 32; i++)
6838 if (! fixed_regs[i] && call_used_regs[i] && ! regs_ever_live[i])
6839 vms_save_fp_regno = i;
6841 if (vms_save_fp_regno == -1 && alpha_procedure_type == PT_REGISTER)
6842 vms_base_regno = REG_PV, alpha_procedure_type = PT_STACK;
6843 else if (alpha_procedure_type == PT_NULL)
6844 vms_base_regno = REG_PV;
6846 /* Stack unwinding should be done via FP unless we use it for PV. */
6847 vms_unwind_regno = (vms_base_regno == REG_PV
6848 ? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM);
6850 /* If this is a stack procedure, allow space for saving FP and RA. */
6851 if (alpha_procedure_type == PT_STACK)
6852 sa_size += 2;
6854 else
6856 /* Our size must be even (multiple of 16 bytes). */
6857 if (sa_size & 1)
6858 sa_size++;
6861 return sa_size * 8;
6864 /* Define the offset between two registers, one to be eliminated,
6865 and the other its replacement, at the start of a routine. */
6867 HOST_WIDE_INT
6868 alpha_initial_elimination_offset (unsigned int from,
6869 unsigned int to ATTRIBUTE_UNUSED)
6871 HOST_WIDE_INT ret;
6873 ret = alpha_sa_size ();
6874 ret += ALPHA_ROUND (current_function_outgoing_args_size);
6876 if (from == FRAME_POINTER_REGNUM)
6878 else if (from == ARG_POINTER_REGNUM)
6879 ret += (ALPHA_ROUND (get_frame_size ()
6880 + current_function_pretend_args_size)
6881 - current_function_pretend_args_size);
6882 else
6883 abort ();
6885 return ret;
6889 alpha_pv_save_size (void)
6891 alpha_sa_size ();
6892 return alpha_procedure_type == PT_STACK ? 8 : 0;
6896 alpha_using_fp (void)
6898 alpha_sa_size ();
6899 return vms_unwind_regno == HARD_FRAME_POINTER_REGNUM;
6902 #if TARGET_ABI_OPEN_VMS
6904 const struct attribute_spec vms_attribute_table[] =
6906 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
6907 { "overlaid", 0, 0, true, false, false, NULL },
6908 { "global", 0, 0, true, false, false, NULL },
6909 { "initialize", 0, 0, true, false, false, NULL },
6910 { NULL, 0, 0, false, false, false, NULL }
6913 #endif
6915 static int
6916 find_lo_sum_using_gp (rtx *px, void *data ATTRIBUTE_UNUSED)
6918 return GET_CODE (*px) == LO_SUM && XEXP (*px, 0) == pic_offset_table_rtx;
6922 alpha_find_lo_sum_using_gp (rtx insn)
6924 return for_each_rtx (&PATTERN (insn), find_lo_sum_using_gp, NULL) > 0;
6927 static int
6928 alpha_does_function_need_gp (void)
6930 rtx insn;
6932 /* The GP being variable is an OSF abi thing. */
6933 if (! TARGET_ABI_OSF)
6934 return 0;
6936 /* We need the gp to load the address of __mcount. */
6937 if (TARGET_PROFILING_NEEDS_GP && current_function_profile)
6938 return 1;
6940 /* The code emitted by alpha_output_mi_thunk_osf uses the gp. */
6941 if (current_function_is_thunk)
6942 return 1;
6944 /* The nonlocal receiver pattern assumes that the gp is valid for
6945 the nested function. Reasonable because it's almost always set
6946 correctly already. For the cases where that's wrong, make sure
6947 the nested function loads its gp on entry. */
6948 if (current_function_has_nonlocal_goto)
6949 return 1;
6951 /* If we need a GP (we have a LDSYM insn or a CALL_INSN), load it first.
6952 Even if we are a static function, we still need to do this in case
6953 our address is taken and passed to something like qsort. */
6955 push_topmost_sequence ();
6956 insn = get_insns ();
6957 pop_topmost_sequence ();
6959 for (; insn; insn = NEXT_INSN (insn))
6960 if (INSN_P (insn)
6961 && GET_CODE (PATTERN (insn)) != USE
6962 && GET_CODE (PATTERN (insn)) != CLOBBER
6963 && get_attr_usegp (insn))
6964 return 1;
6966 return 0;
6970 /* Helper function to set RTX_FRAME_RELATED_P on instructions, including
6971 sequences. */
6973 static rtx
6974 set_frame_related_p (void)
6976 rtx seq = get_insns ();
6977 rtx insn;
6979 end_sequence ();
6981 if (!seq)
6982 return NULL_RTX;
6984 if (INSN_P (seq))
6986 insn = seq;
6987 while (insn != NULL_RTX)
6989 RTX_FRAME_RELATED_P (insn) = 1;
6990 insn = NEXT_INSN (insn);
6992 seq = emit_insn (seq);
6994 else
6996 seq = emit_insn (seq);
6997 RTX_FRAME_RELATED_P (seq) = 1;
6999 return seq;
7002 #define FRP(exp) (start_sequence (), exp, set_frame_related_p ())
7004 /* Write function prologue. */
7006 /* On vms we have two kinds of functions:
7008 - stack frame (PROC_STACK)
7009 these are 'normal' functions with local vars and which are
7010 calling other functions
7011 - register frame (PROC_REGISTER)
7012 keeps all data in registers, needs no stack
7014 We must pass this to the assembler so it can generate the
7015 proper pdsc (procedure descriptor)
7016 This is done with the '.pdesc' command.
7018 On not-vms, we don't really differentiate between the two, as we can
7019 simply allocate stack without saving registers. */
7021 void
7022 alpha_expand_prologue (void)
7024 /* Registers to save. */
7025 unsigned long imask = 0;
7026 unsigned long fmask = 0;
7027 /* Stack space needed for pushing registers clobbered by us. */
7028 HOST_WIDE_INT sa_size;
7029 /* Complete stack size needed. */
7030 HOST_WIDE_INT frame_size;
7031 /* Offset from base reg to register save area. */
7032 HOST_WIDE_INT reg_offset;
7033 rtx sa_reg, mem;
7034 int i;
7036 sa_size = alpha_sa_size ();
7038 frame_size = get_frame_size ();
7039 if (TARGET_ABI_OPEN_VMS)
7040 frame_size = ALPHA_ROUND (sa_size
7041 + (alpha_procedure_type == PT_STACK ? 8 : 0)
7042 + frame_size
7043 + current_function_pretend_args_size);
7044 else if (TARGET_ABI_UNICOSMK)
7045 /* We have to allocate space for the DSIB if we generate a frame. */
7046 frame_size = ALPHA_ROUND (sa_size
7047 + (alpha_procedure_type == PT_STACK ? 48 : 0))
7048 + ALPHA_ROUND (frame_size
7049 + current_function_outgoing_args_size);
7050 else
7051 frame_size = (ALPHA_ROUND (current_function_outgoing_args_size)
7052 + sa_size
7053 + ALPHA_ROUND (frame_size
7054 + current_function_pretend_args_size));
7056 if (TARGET_ABI_OPEN_VMS)
7057 reg_offset = 8;
7058 else
7059 reg_offset = ALPHA_ROUND (current_function_outgoing_args_size);
7061 alpha_sa_mask (&imask, &fmask);
7063 /* Emit an insn to reload GP, if needed. */
7064 if (TARGET_ABI_OSF)
7066 alpha_function_needs_gp = alpha_does_function_need_gp ();
7067 if (alpha_function_needs_gp)
7068 emit_insn (gen_prologue_ldgp ());
7071 /* TARGET_PROFILING_NEEDS_GP actually implies that we need to insert
7072 the call to mcount ourselves, rather than having the linker do it
7073 magically in response to -pg. Since _mcount has special linkage,
7074 don't represent the call as a call. */
7075 if (TARGET_PROFILING_NEEDS_GP && current_function_profile)
7076 emit_insn (gen_prologue_mcount ());
7078 if (TARGET_ABI_UNICOSMK)
7079 unicosmk_gen_dsib (&imask);
7081 /* Adjust the stack by the frame size. If the frame size is > 4096
7082 bytes, we need to be sure we probe somewhere in the first and last
7083 4096 bytes (we can probably get away without the latter test) and
7084 every 8192 bytes in between. If the frame size is > 32768, we
7085 do this in a loop. Otherwise, we generate the explicit probe
7086 instructions.
7088 Note that we are only allowed to adjust sp once in the prologue. */
7090 if (frame_size <= 32768)
7092 if (frame_size > 4096)
7094 int probed = 4096;
7097 emit_insn (gen_probe_stack (GEN_INT (TARGET_ABI_UNICOSMK
7098 ? -probed + 64
7099 : -probed)));
7100 while ((probed += 8192) < frame_size);
7102 /* We only have to do this probe if we aren't saving registers. */
7103 if (sa_size == 0 && probed + 4096 < frame_size)
7104 emit_insn (gen_probe_stack (GEN_INT (-frame_size)));
7107 if (frame_size != 0)
7108 FRP (emit_insn (gen_adddi3 (stack_pointer_rtx, stack_pointer_rtx,
7109 GEN_INT (TARGET_ABI_UNICOSMK
7110 ? -frame_size + 64
7111 : -frame_size))));
7113 else
7115 /* Here we generate code to set R22 to SP + 4096 and set R23 to the
7116 number of 8192 byte blocks to probe. We then probe each block
7117 in the loop and then set SP to the proper location. If the
7118 amount remaining is > 4096, we have to do one more probe if we
7119 are not saving any registers. */
7121 HOST_WIDE_INT blocks = (frame_size + 4096) / 8192;
7122 HOST_WIDE_INT leftover = frame_size + 4096 - blocks * 8192;
7123 rtx ptr = gen_rtx_REG (DImode, 22);
7124 rtx count = gen_rtx_REG (DImode, 23);
7125 rtx seq;
7127 emit_move_insn (count, GEN_INT (blocks));
7128 emit_insn (gen_adddi3 (ptr, stack_pointer_rtx,
7129 GEN_INT (TARGET_ABI_UNICOSMK ? 4096 - 64 : 4096)));
7131 /* Because of the difficulty in emitting a new basic block this
7132 late in the compilation, generate the loop as a single insn. */
7133 emit_insn (gen_prologue_stack_probe_loop (count, ptr));
7135 if (leftover > 4096 && sa_size == 0)
7137 rtx last = gen_rtx_MEM (DImode, plus_constant (ptr, -leftover));
7138 MEM_VOLATILE_P (last) = 1;
7139 emit_move_insn (last, const0_rtx);
7142 if (TARGET_ABI_WINDOWS_NT)
7144 /* For NT stack unwind (done by 'reverse execution'), it's
7145 not OK to take the result of a loop, even though the value
7146 is already in ptr, so we reload it via a single operation
7147 and subtract it to sp.
7149 Yes, that's correct -- we have to reload the whole constant
7150 into a temporary via ldah+lda then subtract from sp. To
7151 ensure we get ldah+lda, we use a special pattern. */
7153 HOST_WIDE_INT lo, hi;
7154 lo = ((frame_size & 0xffff) ^ 0x8000) - 0x8000;
7155 hi = frame_size - lo;
7157 emit_move_insn (ptr, GEN_INT (hi));
7158 emit_insn (gen_nt_lda (ptr, GEN_INT (lo)));
7159 seq = emit_insn (gen_subdi3 (stack_pointer_rtx, stack_pointer_rtx,
7160 ptr));
7162 else
7164 seq = emit_insn (gen_adddi3 (stack_pointer_rtx, ptr,
7165 GEN_INT (-leftover)));
7168 /* This alternative is special, because the DWARF code cannot
7169 possibly intuit through the loop above. So we invent this
7170 note it looks at instead. */
7171 RTX_FRAME_RELATED_P (seq) = 1;
7172 REG_NOTES (seq)
7173 = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
7174 gen_rtx_SET (VOIDmode, stack_pointer_rtx,
7175 gen_rtx_PLUS (Pmode, stack_pointer_rtx,
7176 GEN_INT (TARGET_ABI_UNICOSMK
7177 ? -frame_size + 64
7178 : -frame_size))),
7179 REG_NOTES (seq));
7182 if (!TARGET_ABI_UNICOSMK)
7184 /* Cope with very large offsets to the register save area. */
7185 sa_reg = stack_pointer_rtx;
7186 if (reg_offset + sa_size > 0x8000)
7188 int low = ((reg_offset & 0xffff) ^ 0x8000) - 0x8000;
7189 HOST_WIDE_INT bias;
7191 if (low + sa_size <= 0x8000)
7192 bias = reg_offset - low, reg_offset = low;
7193 else
7194 bias = reg_offset, reg_offset = 0;
7196 sa_reg = gen_rtx_REG (DImode, 24);
7197 FRP (emit_insn (gen_adddi3 (sa_reg, stack_pointer_rtx,
7198 GEN_INT (bias))));
7201 /* Save regs in stack order. Beginning with VMS PV. */
7202 if (TARGET_ABI_OPEN_VMS && alpha_procedure_type == PT_STACK)
7204 mem = gen_rtx_MEM (DImode, stack_pointer_rtx);
7205 set_mem_alias_set (mem, alpha_sr_alias_set);
7206 FRP (emit_move_insn (mem, gen_rtx_REG (DImode, REG_PV)));
7209 /* Save register RA next. */
7210 if (imask & (1UL << REG_RA))
7212 mem = gen_rtx_MEM (DImode, plus_constant (sa_reg, reg_offset));
7213 set_mem_alias_set (mem, alpha_sr_alias_set);
7214 FRP (emit_move_insn (mem, gen_rtx_REG (DImode, REG_RA)));
7215 imask &= ~(1UL << REG_RA);
7216 reg_offset += 8;
7219 /* Now save any other registers required to be saved. */
7220 for (i = 0; i < 31; i++)
7221 if (imask & (1UL << i))
7223 mem = gen_rtx_MEM (DImode, plus_constant (sa_reg, reg_offset));
7224 set_mem_alias_set (mem, alpha_sr_alias_set);
7225 FRP (emit_move_insn (mem, gen_rtx_REG (DImode, i)));
7226 reg_offset += 8;
7229 /* Store a zero if requested for unwinding. */
7230 if (imask & (1UL << 31))
7232 rtx insn, t;
7234 mem = gen_rtx_MEM (DImode, plus_constant (sa_reg, reg_offset));
7235 set_mem_alias_set (mem, alpha_sr_alias_set);
7236 insn = emit_move_insn (mem, const0_rtx);
7238 RTX_FRAME_RELATED_P (insn) = 1;
7239 t = gen_rtx_REG (Pmode, 31);
7240 t = gen_rtx_SET (VOIDmode, mem, t);
7241 t = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, t, REG_NOTES (insn));
7242 REG_NOTES (insn) = t;
7244 reg_offset += 8;
7247 for (i = 0; i < 31; i++)
7248 if (fmask & (1UL << i))
7250 mem = gen_rtx_MEM (DFmode, plus_constant (sa_reg, reg_offset));
7251 set_mem_alias_set (mem, alpha_sr_alias_set);
7252 FRP (emit_move_insn (mem, gen_rtx_REG (DFmode, i+32)));
7253 reg_offset += 8;
7256 else if (TARGET_ABI_UNICOSMK && alpha_procedure_type == PT_STACK)
7258 /* The standard frame on the T3E includes space for saving registers.
7259 We just have to use it. We don't have to save the return address and
7260 the old frame pointer here - they are saved in the DSIB. */
7262 reg_offset = -56;
7263 for (i = 9; i < 15; i++)
7264 if (imask & (1UL << i))
7266 mem = gen_rtx_MEM (DImode, plus_constant(hard_frame_pointer_rtx,
7267 reg_offset));
7268 set_mem_alias_set (mem, alpha_sr_alias_set);
7269 FRP (emit_move_insn (mem, gen_rtx_REG (DImode, i)));
7270 reg_offset -= 8;
7272 for (i = 2; i < 10; i++)
7273 if (fmask & (1UL << i))
7275 mem = gen_rtx_MEM (DFmode, plus_constant (hard_frame_pointer_rtx,
7276 reg_offset));
7277 set_mem_alias_set (mem, alpha_sr_alias_set);
7278 FRP (emit_move_insn (mem, gen_rtx_REG (DFmode, i+32)));
7279 reg_offset -= 8;
7283 if (TARGET_ABI_OPEN_VMS)
7285 if (alpha_procedure_type == PT_REGISTER)
7286 /* Register frame procedures save the fp.
7287 ?? Ought to have a dwarf2 save for this. */
7288 emit_move_insn (gen_rtx_REG (DImode, vms_save_fp_regno),
7289 hard_frame_pointer_rtx);
7291 if (alpha_procedure_type != PT_NULL && vms_base_regno != REG_PV)
7292 emit_insn (gen_force_movdi (gen_rtx_REG (DImode, vms_base_regno),
7293 gen_rtx_REG (DImode, REG_PV)));
7295 if (alpha_procedure_type != PT_NULL
7296 && vms_unwind_regno == HARD_FRAME_POINTER_REGNUM)
7297 FRP (emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx));
7299 /* If we have to allocate space for outgoing args, do it now. */
7300 if (current_function_outgoing_args_size != 0)
7302 rtx seq
7303 = emit_move_insn (stack_pointer_rtx,
7304 plus_constant
7305 (hard_frame_pointer_rtx,
7306 - (ALPHA_ROUND
7307 (current_function_outgoing_args_size))));
7309 /* Only set FRAME_RELATED_P on the stack adjustment we just emitted
7310 if ! frame_pointer_needed. Setting the bit will change the CFA
7311 computation rule to use sp again, which would be wrong if we had
7312 frame_pointer_needed, as this means sp might move unpredictably
7313 later on.
7315 Also, note that
7316 frame_pointer_needed
7317 => vms_unwind_regno == HARD_FRAME_POINTER_REGNUM
7319 current_function_outgoing_args_size != 0
7320 => alpha_procedure_type != PT_NULL,
7322 so when we are not setting the bit here, we are guaranteed to
7323 have emitted an FRP frame pointer update just before. */
7324 RTX_FRAME_RELATED_P (seq) = ! frame_pointer_needed;
7327 else if (!TARGET_ABI_UNICOSMK)
7329 /* If we need a frame pointer, set it from the stack pointer. */
7330 if (frame_pointer_needed)
7332 if (TARGET_CAN_FAULT_IN_PROLOGUE)
7333 FRP (emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx));
7334 else
7335 /* This must always be the last instruction in the
7336 prologue, thus we emit a special move + clobber. */
7337 FRP (emit_insn (gen_init_fp (hard_frame_pointer_rtx,
7338 stack_pointer_rtx, sa_reg)));
7342 /* The ABIs for VMS and OSF/1 say that while we can schedule insns into
7343 the prologue, for exception handling reasons, we cannot do this for
7344 any insn that might fault. We could prevent this for mems with a
7345 (clobber:BLK (scratch)), but this doesn't work for fp insns. So we
7346 have to prevent all such scheduling with a blockage.
7348 Linux, on the other hand, never bothered to implement OSF/1's
7349 exception handling, and so doesn't care about such things. Anyone
7350 planning to use dwarf2 frame-unwind info can also omit the blockage. */
7352 if (! TARGET_CAN_FAULT_IN_PROLOGUE)
7353 emit_insn (gen_blockage ());
7356 /* Output the textual info surrounding the prologue. */
7358 void
7359 alpha_start_function (FILE *file, const char *fnname,
7360 tree decl ATTRIBUTE_UNUSED)
7362 unsigned long imask = 0;
7363 unsigned long fmask = 0;
7364 /* Stack space needed for pushing registers clobbered by us. */
7365 HOST_WIDE_INT sa_size;
7366 /* Complete stack size needed. */
7367 unsigned HOST_WIDE_INT frame_size;
7368 /* Offset from base reg to register save area. */
7369 HOST_WIDE_INT reg_offset;
7370 char *entry_label = (char *) alloca (strlen (fnname) + 6);
7371 int i;
7373 /* Don't emit an extern directive for functions defined in the same file. */
7374 if (TARGET_ABI_UNICOSMK)
7376 tree name_tree;
7377 name_tree = get_identifier (fnname);
7378 TREE_ASM_WRITTEN (name_tree) = 1;
7381 alpha_fnname = fnname;
7382 sa_size = alpha_sa_size ();
7384 frame_size = get_frame_size ();
7385 if (TARGET_ABI_OPEN_VMS)
7386 frame_size = ALPHA_ROUND (sa_size
7387 + (alpha_procedure_type == PT_STACK ? 8 : 0)
7388 + frame_size
7389 + current_function_pretend_args_size);
7390 else if (TARGET_ABI_UNICOSMK)
7391 frame_size = ALPHA_ROUND (sa_size
7392 + (alpha_procedure_type == PT_STACK ? 48 : 0))
7393 + ALPHA_ROUND (frame_size
7394 + current_function_outgoing_args_size);
7395 else
7396 frame_size = (ALPHA_ROUND (current_function_outgoing_args_size)
7397 + sa_size
7398 + ALPHA_ROUND (frame_size
7399 + current_function_pretend_args_size));
7401 if (TARGET_ABI_OPEN_VMS)
7402 reg_offset = 8;
7403 else
7404 reg_offset = ALPHA_ROUND (current_function_outgoing_args_size);
7406 alpha_sa_mask (&imask, &fmask);
7408 /* Ecoff can handle multiple .file directives, so put out file and lineno.
7409 We have to do that before the .ent directive as we cannot switch
7410 files within procedures with native ecoff because line numbers are
7411 linked to procedure descriptors.
7412 Outputting the lineno helps debugging of one line functions as they
7413 would otherwise get no line number at all. Please note that we would
7414 like to put out last_linenum from final.c, but it is not accessible. */
7416 if (write_symbols == SDB_DEBUG)
7418 #ifdef ASM_OUTPUT_SOURCE_FILENAME
7419 ASM_OUTPUT_SOURCE_FILENAME (file,
7420 DECL_SOURCE_FILE (current_function_decl));
7421 #endif
7422 #ifdef ASM_OUTPUT_SOURCE_LINE
7423 if (debug_info_level != DINFO_LEVEL_TERSE)
7424 ASM_OUTPUT_SOURCE_LINE (file,
7425 DECL_SOURCE_LINE (current_function_decl), 0);
7426 #endif
7429 /* Issue function start and label. */
7430 if (TARGET_ABI_OPEN_VMS
7431 || (!TARGET_ABI_UNICOSMK && !flag_inhibit_size_directive))
7433 fputs ("\t.ent ", file);
7434 assemble_name (file, fnname);
7435 putc ('\n', file);
7437 /* If the function needs GP, we'll write the "..ng" label there.
7438 Otherwise, do it here. */
7439 if (TARGET_ABI_OSF
7440 && ! alpha_function_needs_gp
7441 && ! current_function_is_thunk)
7443 putc ('$', file);
7444 assemble_name (file, fnname);
7445 fputs ("..ng:\n", file);
7449 strcpy (entry_label, fnname);
7450 if (TARGET_ABI_OPEN_VMS)
7451 strcat (entry_label, "..en");
7453 /* For public functions, the label must be globalized by appending an
7454 additional colon. */
7455 if (TARGET_ABI_UNICOSMK && TREE_PUBLIC (decl))
7456 strcat (entry_label, ":");
7458 ASM_OUTPUT_LABEL (file, entry_label);
7459 inside_function = TRUE;
7461 if (TARGET_ABI_OPEN_VMS)
7462 fprintf (file, "\t.base $%d\n", vms_base_regno);
7464 if (!TARGET_ABI_OPEN_VMS && !TARGET_ABI_UNICOSMK && TARGET_IEEE_CONFORMANT
7465 && !flag_inhibit_size_directive)
7467 /* Set flags in procedure descriptor to request IEEE-conformant
7468 math-library routines. The value we set it to is PDSC_EXC_IEEE
7469 (/usr/include/pdsc.h). */
7470 fputs ("\t.eflag 48\n", file);
7473 /* Set up offsets to alpha virtual arg/local debugging pointer. */
7474 alpha_auto_offset = -frame_size + current_function_pretend_args_size;
7475 alpha_arg_offset = -frame_size + 48;
7477 /* Describe our frame. If the frame size is larger than an integer,
7478 print it as zero to avoid an assembler error. We won't be
7479 properly describing such a frame, but that's the best we can do. */
7480 if (TARGET_ABI_UNICOSMK)
7482 else if (TARGET_ABI_OPEN_VMS)
7483 fprintf (file, "\t.frame $%d," HOST_WIDE_INT_PRINT_DEC ",$26,"
7484 HOST_WIDE_INT_PRINT_DEC "\n",
7485 vms_unwind_regno,
7486 frame_size >= (1UL << 31) ? 0 : frame_size,
7487 reg_offset);
7488 else if (!flag_inhibit_size_directive)
7489 fprintf (file, "\t.frame $%d," HOST_WIDE_INT_PRINT_DEC ",$26,%d\n",
7490 (frame_pointer_needed
7491 ? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM),
7492 frame_size >= (1UL << 31) ? 0 : frame_size,
7493 current_function_pretend_args_size);
7495 /* Describe which registers were spilled. */
7496 if (TARGET_ABI_UNICOSMK)
7498 else if (TARGET_ABI_OPEN_VMS)
7500 if (imask)
7501 /* ??? Does VMS care if mask contains ra? The old code didn't
7502 set it, so I don't here. */
7503 fprintf (file, "\t.mask 0x%lx,0\n", imask & ~(1UL << REG_RA));
7504 if (fmask)
7505 fprintf (file, "\t.fmask 0x%lx,0\n", fmask);
7506 if (alpha_procedure_type == PT_REGISTER)
7507 fprintf (file, "\t.fp_save $%d\n", vms_save_fp_regno);
7509 else if (!flag_inhibit_size_directive)
7511 if (imask)
7513 fprintf (file, "\t.mask 0x%lx," HOST_WIDE_INT_PRINT_DEC "\n", imask,
7514 frame_size >= (1UL << 31) ? 0 : reg_offset - frame_size);
7516 for (i = 0; i < 32; ++i)
7517 if (imask & (1UL << i))
7518 reg_offset += 8;
7521 if (fmask)
7522 fprintf (file, "\t.fmask 0x%lx," HOST_WIDE_INT_PRINT_DEC "\n", fmask,
7523 frame_size >= (1UL << 31) ? 0 : reg_offset - frame_size);
7526 #if TARGET_ABI_OPEN_VMS
7527 /* Ifdef'ed cause link_section are only available then. */
7528 readonly_data_section ();
7529 fprintf (file, "\t.align 3\n");
7530 assemble_name (file, fnname); fputs ("..na:\n", file);
7531 fputs ("\t.ascii \"", file);
7532 assemble_name (file, fnname);
7533 fputs ("\\0\"\n", file);
7534 alpha_need_linkage (fnname, 1);
7535 text_section ();
7536 #endif
7539 /* Emit the .prologue note at the scheduled end of the prologue. */
7541 static void
7542 alpha_output_function_end_prologue (FILE *file)
7544 if (TARGET_ABI_UNICOSMK)
7546 else if (TARGET_ABI_OPEN_VMS)
7547 fputs ("\t.prologue\n", file);
7548 else if (TARGET_ABI_WINDOWS_NT)
7549 fputs ("\t.prologue 0\n", file);
7550 else if (!flag_inhibit_size_directive)
7551 fprintf (file, "\t.prologue %d\n",
7552 alpha_function_needs_gp || current_function_is_thunk);
7555 /* Write function epilogue. */
7557 /* ??? At some point we will want to support full unwind, and so will
7558 need to mark the epilogue as well. At the moment, we just confuse
7559 dwarf2out. */
7560 #undef FRP
7561 #define FRP(exp) exp
7563 void
7564 alpha_expand_epilogue (void)
7566 /* Registers to save. */
7567 unsigned long imask = 0;
7568 unsigned long fmask = 0;
7569 /* Stack space needed for pushing registers clobbered by us. */
7570 HOST_WIDE_INT sa_size;
7571 /* Complete stack size needed. */
7572 HOST_WIDE_INT frame_size;
7573 /* Offset from base reg to register save area. */
7574 HOST_WIDE_INT reg_offset;
7575 int fp_is_frame_pointer, fp_offset;
7576 rtx sa_reg, sa_reg_exp = NULL;
7577 rtx sp_adj1, sp_adj2, mem;
7578 rtx eh_ofs;
7579 int i;
7581 sa_size = alpha_sa_size ();
7583 frame_size = get_frame_size ();
7584 if (TARGET_ABI_OPEN_VMS)
7585 frame_size = ALPHA_ROUND (sa_size
7586 + (alpha_procedure_type == PT_STACK ? 8 : 0)
7587 + frame_size
7588 + current_function_pretend_args_size);
7589 else if (TARGET_ABI_UNICOSMK)
7590 frame_size = ALPHA_ROUND (sa_size
7591 + (alpha_procedure_type == PT_STACK ? 48 : 0))
7592 + ALPHA_ROUND (frame_size
7593 + current_function_outgoing_args_size);
7594 else
7595 frame_size = (ALPHA_ROUND (current_function_outgoing_args_size)
7596 + sa_size
7597 + ALPHA_ROUND (frame_size
7598 + current_function_pretend_args_size));
7600 if (TARGET_ABI_OPEN_VMS)
7602 if (alpha_procedure_type == PT_STACK)
7603 reg_offset = 8;
7604 else
7605 reg_offset = 0;
7607 else
7608 reg_offset = ALPHA_ROUND (current_function_outgoing_args_size);
7610 alpha_sa_mask (&imask, &fmask);
7612 fp_is_frame_pointer
7613 = ((TARGET_ABI_OPEN_VMS && alpha_procedure_type == PT_STACK)
7614 || (!TARGET_ABI_OPEN_VMS && frame_pointer_needed));
7615 fp_offset = 0;
7616 sa_reg = stack_pointer_rtx;
7618 if (current_function_calls_eh_return)
7619 eh_ofs = EH_RETURN_STACKADJ_RTX;
7620 else
7621 eh_ofs = NULL_RTX;
7623 if (!TARGET_ABI_UNICOSMK && sa_size)
7625 /* If we have a frame pointer, restore SP from it. */
7626 if ((TARGET_ABI_OPEN_VMS
7627 && vms_unwind_regno == HARD_FRAME_POINTER_REGNUM)
7628 || (!TARGET_ABI_OPEN_VMS && frame_pointer_needed))
7629 FRP (emit_move_insn (stack_pointer_rtx, hard_frame_pointer_rtx));
7631 /* Cope with very large offsets to the register save area. */
7632 if (reg_offset + sa_size > 0x8000)
7634 int low = ((reg_offset & 0xffff) ^ 0x8000) - 0x8000;
7635 HOST_WIDE_INT bias;
7637 if (low + sa_size <= 0x8000)
7638 bias = reg_offset - low, reg_offset = low;
7639 else
7640 bias = reg_offset, reg_offset = 0;
7642 sa_reg = gen_rtx_REG (DImode, 22);
7643 sa_reg_exp = plus_constant (stack_pointer_rtx, bias);
7645 FRP (emit_move_insn (sa_reg, sa_reg_exp));
7648 /* Restore registers in order, excepting a true frame pointer. */
7650 mem = gen_rtx_MEM (DImode, plus_constant (sa_reg, reg_offset));
7651 if (! eh_ofs)
7652 set_mem_alias_set (mem, alpha_sr_alias_set);
7653 FRP (emit_move_insn (gen_rtx_REG (DImode, REG_RA), mem));
7655 reg_offset += 8;
7656 imask &= ~(1UL << REG_RA);
7658 for (i = 0; i < 31; ++i)
7659 if (imask & (1UL << i))
7661 if (i == HARD_FRAME_POINTER_REGNUM && fp_is_frame_pointer)
7662 fp_offset = reg_offset;
7663 else
7665 mem = gen_rtx_MEM (DImode, plus_constant(sa_reg, reg_offset));
7666 set_mem_alias_set (mem, alpha_sr_alias_set);
7667 FRP (emit_move_insn (gen_rtx_REG (DImode, i), mem));
7669 reg_offset += 8;
7672 if (imask & (1UL << 31))
7673 reg_offset += 8;
7675 for (i = 0; i < 31; ++i)
7676 if (fmask & (1UL << i))
7678 mem = gen_rtx_MEM (DFmode, plus_constant(sa_reg, reg_offset));
7679 set_mem_alias_set (mem, alpha_sr_alias_set);
7680 FRP (emit_move_insn (gen_rtx_REG (DFmode, i+32), mem));
7681 reg_offset += 8;
7684 else if (TARGET_ABI_UNICOSMK && alpha_procedure_type == PT_STACK)
7686 /* Restore callee-saved general-purpose registers. */
7688 reg_offset = -56;
7690 for (i = 9; i < 15; i++)
7691 if (imask & (1UL << i))
7693 mem = gen_rtx_MEM (DImode, plus_constant(hard_frame_pointer_rtx,
7694 reg_offset));
7695 set_mem_alias_set (mem, alpha_sr_alias_set);
7696 FRP (emit_move_insn (gen_rtx_REG (DImode, i), mem));
7697 reg_offset -= 8;
7700 for (i = 2; i < 10; i++)
7701 if (fmask & (1UL << i))
7703 mem = gen_rtx_MEM (DFmode, plus_constant(hard_frame_pointer_rtx,
7704 reg_offset));
7705 set_mem_alias_set (mem, alpha_sr_alias_set);
7706 FRP (emit_move_insn (gen_rtx_REG (DFmode, i+32), mem));
7707 reg_offset -= 8;
7710 /* Restore the return address from the DSIB. */
7712 mem = gen_rtx_MEM (DImode, plus_constant(hard_frame_pointer_rtx, -8));
7713 set_mem_alias_set (mem, alpha_sr_alias_set);
7714 FRP (emit_move_insn (gen_rtx_REG (DImode, REG_RA), mem));
7717 if (frame_size || eh_ofs)
7719 sp_adj1 = stack_pointer_rtx;
7721 if (eh_ofs)
7723 sp_adj1 = gen_rtx_REG (DImode, 23);
7724 emit_move_insn (sp_adj1,
7725 gen_rtx_PLUS (Pmode, stack_pointer_rtx, eh_ofs));
7728 /* If the stack size is large, begin computation into a temporary
7729 register so as not to interfere with a potential fp restore,
7730 which must be consecutive with an SP restore. */
7731 if (frame_size < 32768
7732 && ! (TARGET_ABI_UNICOSMK && current_function_calls_alloca))
7733 sp_adj2 = GEN_INT (frame_size);
7734 else if (TARGET_ABI_UNICOSMK)
7736 sp_adj1 = gen_rtx_REG (DImode, 23);
7737 FRP (emit_move_insn (sp_adj1, hard_frame_pointer_rtx));
7738 sp_adj2 = const0_rtx;
7740 else if (frame_size < 0x40007fffL)
7742 int low = ((frame_size & 0xffff) ^ 0x8000) - 0x8000;
7744 sp_adj2 = plus_constant (sp_adj1, frame_size - low);
7745 if (sa_reg_exp && rtx_equal_p (sa_reg_exp, sp_adj2))
7746 sp_adj1 = sa_reg;
7747 else
7749 sp_adj1 = gen_rtx_REG (DImode, 23);
7750 FRP (emit_move_insn (sp_adj1, sp_adj2));
7752 sp_adj2 = GEN_INT (low);
7754 else
7756 rtx tmp = gen_rtx_REG (DImode, 23);
7757 FRP (sp_adj2 = alpha_emit_set_const (tmp, DImode, frame_size, 3));
7758 if (!sp_adj2)
7760 /* We can't drop new things to memory this late, afaik,
7761 so build it up by pieces. */
7762 FRP (sp_adj2 = alpha_emit_set_long_const (tmp, frame_size,
7763 -(frame_size < 0)));
7764 if (!sp_adj2)
7765 abort ();
7769 /* From now on, things must be in order. So emit blockages. */
7771 /* Restore the frame pointer. */
7772 if (TARGET_ABI_UNICOSMK)
7774 emit_insn (gen_blockage ());
7775 mem = gen_rtx_MEM (DImode,
7776 plus_constant (hard_frame_pointer_rtx, -16));
7777 set_mem_alias_set (mem, alpha_sr_alias_set);
7778 FRP (emit_move_insn (hard_frame_pointer_rtx, mem));
7780 else if (fp_is_frame_pointer)
7782 emit_insn (gen_blockage ());
7783 mem = gen_rtx_MEM (DImode, plus_constant (sa_reg, fp_offset));
7784 set_mem_alias_set (mem, alpha_sr_alias_set);
7785 FRP (emit_move_insn (hard_frame_pointer_rtx, mem));
7787 else if (TARGET_ABI_OPEN_VMS)
7789 emit_insn (gen_blockage ());
7790 FRP (emit_move_insn (hard_frame_pointer_rtx,
7791 gen_rtx_REG (DImode, vms_save_fp_regno)));
7794 /* Restore the stack pointer. */
7795 emit_insn (gen_blockage ());
7796 if (sp_adj2 == const0_rtx)
7797 FRP (emit_move_insn (stack_pointer_rtx, sp_adj1));
7798 else
7799 FRP (emit_move_insn (stack_pointer_rtx,
7800 gen_rtx_PLUS (DImode, sp_adj1, sp_adj2)));
7802 else
7804 if (TARGET_ABI_OPEN_VMS && alpha_procedure_type == PT_REGISTER)
7806 emit_insn (gen_blockage ());
7807 FRP (emit_move_insn (hard_frame_pointer_rtx,
7808 gen_rtx_REG (DImode, vms_save_fp_regno)));
7810 else if (TARGET_ABI_UNICOSMK && alpha_procedure_type != PT_STACK)
7812 /* Decrement the frame pointer if the function does not have a
7813 frame. */
7815 emit_insn (gen_blockage ());
7816 FRP (emit_insn (gen_adddi3 (hard_frame_pointer_rtx,
7817 hard_frame_pointer_rtx, GEN_INT (-1))));
7822 /* Output the rest of the textual info surrounding the epilogue. */
7824 void
7825 alpha_end_function (FILE *file, const char *fnname, tree decl ATTRIBUTE_UNUSED)
7827 /* End the function. */
7828 if (!TARGET_ABI_UNICOSMK && !flag_inhibit_size_directive)
7830 fputs ("\t.end ", file);
7831 assemble_name (file, fnname);
7832 putc ('\n', file);
7834 inside_function = FALSE;
7836 #if TARGET_ABI_OPEN_VMS
7837 alpha_write_linkage (file, fnname, decl);
7838 #endif
7840 /* Output jump tables and the static subroutine information block. */
7841 if (TARGET_ABI_UNICOSMK)
7843 unicosmk_output_ssib (file, fnname);
7844 unicosmk_output_deferred_case_vectors (file);
7848 #if TARGET_ABI_OSF
7849 /* Emit a tail call to FUNCTION after adjusting THIS by DELTA.
7851 In order to avoid the hordes of differences between generated code
7852 with and without TARGET_EXPLICIT_RELOCS, and to avoid duplicating
7853 lots of code loading up large constants, generate rtl and emit it
7854 instead of going straight to text.
7856 Not sure why this idea hasn't been explored before... */
7858 static void
7859 alpha_output_mi_thunk_osf (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
7860 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
7861 tree function)
7863 HOST_WIDE_INT hi, lo;
7864 rtx this, insn, funexp;
7866 /* We always require a valid GP. */
7867 emit_insn (gen_prologue_ldgp ());
7868 emit_note (NOTE_INSN_PROLOGUE_END);
7870 /* Find the "this" pointer. If the function returns a structure,
7871 the structure return pointer is in $16. */
7872 if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
7873 this = gen_rtx_REG (Pmode, 17);
7874 else
7875 this = gen_rtx_REG (Pmode, 16);
7877 /* Add DELTA. When possible we use ldah+lda. Otherwise load the
7878 entire constant for the add. */
7879 lo = ((delta & 0xffff) ^ 0x8000) - 0x8000;
7880 hi = (((delta - lo) & 0xffffffff) ^ 0x80000000) - 0x80000000;
7881 if (hi + lo == delta)
7883 if (hi)
7884 emit_insn (gen_adddi3 (this, this, GEN_INT (hi)));
7885 if (lo)
7886 emit_insn (gen_adddi3 (this, this, GEN_INT (lo)));
7888 else
7890 rtx tmp = alpha_emit_set_long_const (gen_rtx_REG (Pmode, 0),
7891 delta, -(delta < 0));
7892 emit_insn (gen_adddi3 (this, this, tmp));
7895 /* Add a delta stored in the vtable at VCALL_OFFSET. */
7896 if (vcall_offset)
7898 rtx tmp, tmp2;
7900 tmp = gen_rtx_REG (Pmode, 0);
7901 emit_move_insn (tmp, gen_rtx_MEM (Pmode, this));
7903 lo = ((vcall_offset & 0xffff) ^ 0x8000) - 0x8000;
7904 hi = (((vcall_offset - lo) & 0xffffffff) ^ 0x80000000) - 0x80000000;
7905 if (hi + lo == vcall_offset)
7907 if (hi)
7908 emit_insn (gen_adddi3 (tmp, tmp, GEN_INT (hi)));
7910 else
7912 tmp2 = alpha_emit_set_long_const (gen_rtx_REG (Pmode, 1),
7913 vcall_offset, -(vcall_offset < 0));
7914 emit_insn (gen_adddi3 (tmp, tmp, tmp2));
7915 lo = 0;
7917 if (lo)
7918 tmp2 = gen_rtx_PLUS (Pmode, tmp, GEN_INT (lo));
7919 else
7920 tmp2 = tmp;
7921 emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp2));
7923 emit_insn (gen_adddi3 (this, this, tmp));
7926 /* Generate a tail call to the target function. */
7927 if (! TREE_USED (function))
7929 assemble_external (function);
7930 TREE_USED (function) = 1;
7932 funexp = XEXP (DECL_RTL (function), 0);
7933 funexp = gen_rtx_MEM (FUNCTION_MODE, funexp);
7934 insn = emit_call_insn (gen_sibcall (funexp, const0_rtx));
7935 SIBLING_CALL_P (insn) = 1;
7937 /* Run just enough of rest_of_compilation to get the insns emitted.
7938 There's not really enough bulk here to make other passes such as
7939 instruction scheduling worth while. Note that use_thunk calls
7940 assemble_start_function and assemble_end_function. */
7941 insn = get_insns ();
7942 insn_locators_initialize ();
7943 shorten_branches (insn);
7944 final_start_function (insn, file, 1);
7945 final (insn, file, 1, 0);
7946 final_end_function ();
7948 #endif /* TARGET_ABI_OSF */
7950 /* Debugging support. */
7952 #include "gstab.h"
7954 /* Count the number of sdb related labels are generated (to find block
7955 start and end boundaries). */
7957 int sdb_label_count = 0;
7959 /* Next label # for each statement. */
7961 static int sym_lineno = 0;
7963 /* Count the number of .file directives, so that .loc is up to date. */
7965 static int num_source_filenames = 0;
7967 /* Name of the file containing the current function. */
7969 static const char *current_function_file = "";
7971 /* Offsets to alpha virtual arg/local debugging pointers. */
7973 long alpha_arg_offset;
7974 long alpha_auto_offset;
7976 /* Emit a new filename to a stream. */
7978 void
7979 alpha_output_filename (FILE *stream, const char *name)
7981 static int first_time = TRUE;
7982 char ltext_label_name[100];
7984 if (first_time)
7986 first_time = FALSE;
7987 ++num_source_filenames;
7988 current_function_file = name;
7989 fprintf (stream, "\t.file\t%d ", num_source_filenames);
7990 output_quoted_string (stream, name);
7991 fprintf (stream, "\n");
7992 if (!TARGET_GAS && write_symbols == DBX_DEBUG)
7993 fprintf (stream, "\t#@stabs\n");
7996 else if (write_symbols == DBX_DEBUG)
7998 ASM_GENERATE_INTERNAL_LABEL (ltext_label_name, "Ltext", 0);
7999 fprintf (stream, "%s", ASM_STABS_OP);
8000 output_quoted_string (stream, name);
8001 fprintf (stream, ",%d,0,0,%s\n", N_SOL, &ltext_label_name[1]);
8004 else if (name != current_function_file
8005 && strcmp (name, current_function_file) != 0)
8007 if (inside_function && ! TARGET_GAS)
8008 fprintf (stream, "\t#.file\t%d ", num_source_filenames);
8009 else
8011 ++num_source_filenames;
8012 current_function_file = name;
8013 fprintf (stream, "\t.file\t%d ", num_source_filenames);
8016 output_quoted_string (stream, name);
8017 fprintf (stream, "\n");
8021 /* Emit a linenumber to a stream. */
8023 void
8024 alpha_output_lineno (FILE *stream, int line)
8026 if (write_symbols == DBX_DEBUG)
8028 /* mips-tfile doesn't understand .stabd directives. */
8029 ++sym_lineno;
8030 fprintf (stream, "$LM%d:\n%s%d,0,%d,$LM%d\n",
8031 sym_lineno, ASM_STABN_OP, N_SLINE, line, sym_lineno);
8033 else
8034 fprintf (stream, "\n\t.loc\t%d %d\n", num_source_filenames, line);
8037 /* Structure to show the current status of registers and memory. */
8039 struct shadow_summary
8041 struct {
8042 unsigned int i : 31; /* Mask of int regs */
8043 unsigned int fp : 31; /* Mask of fp regs */
8044 unsigned int mem : 1; /* mem == imem | fpmem */
8045 } used, defd;
8048 /* Summary the effects of expression X on the machine. Update SUM, a pointer
8049 to the summary structure. SET is nonzero if the insn is setting the
8050 object, otherwise zero. */
8052 static void
8053 summarize_insn (rtx x, struct shadow_summary *sum, int set)
8055 const char *format_ptr;
8056 int i, j;
8058 if (x == 0)
8059 return;
8061 switch (GET_CODE (x))
8063 /* ??? Note that this case would be incorrect if the Alpha had a
8064 ZERO_EXTRACT in SET_DEST. */
8065 case SET:
8066 summarize_insn (SET_SRC (x), sum, 0);
8067 summarize_insn (SET_DEST (x), sum, 1);
8068 break;
8070 case CLOBBER:
8071 summarize_insn (XEXP (x, 0), sum, 1);
8072 break;
8074 case USE:
8075 summarize_insn (XEXP (x, 0), sum, 0);
8076 break;
8078 case ASM_OPERANDS:
8079 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
8080 summarize_insn (ASM_OPERANDS_INPUT (x, i), sum, 0);
8081 break;
8083 case PARALLEL:
8084 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
8085 summarize_insn (XVECEXP (x, 0, i), sum, 0);
8086 break;
8088 case SUBREG:
8089 summarize_insn (SUBREG_REG (x), sum, 0);
8090 break;
8092 case REG:
8094 int regno = REGNO (x);
8095 unsigned long mask = ((unsigned long) 1) << (regno % 32);
8097 if (regno == 31 || regno == 63)
8098 break;
8100 if (set)
8102 if (regno < 32)
8103 sum->defd.i |= mask;
8104 else
8105 sum->defd.fp |= mask;
8107 else
8109 if (regno < 32)
8110 sum->used.i |= mask;
8111 else
8112 sum->used.fp |= mask;
8115 break;
8117 case MEM:
8118 if (set)
8119 sum->defd.mem = 1;
8120 else
8121 sum->used.mem = 1;
8123 /* Find the regs used in memory address computation: */
8124 summarize_insn (XEXP (x, 0), sum, 0);
8125 break;
8127 case CONST_INT: case CONST_DOUBLE:
8128 case SYMBOL_REF: case LABEL_REF: case CONST:
8129 case SCRATCH: case ASM_INPUT:
8130 break;
8132 /* Handle common unary and binary ops for efficiency. */
8133 case COMPARE: case PLUS: case MINUS: case MULT: case DIV:
8134 case MOD: case UDIV: case UMOD: case AND: case IOR:
8135 case XOR: case ASHIFT: case ROTATE: case ASHIFTRT: case LSHIFTRT:
8136 case ROTATERT: case SMIN: case SMAX: case UMIN: case UMAX:
8137 case NE: case EQ: case GE: case GT: case LE:
8138 case LT: case GEU: case GTU: case LEU: case LTU:
8139 summarize_insn (XEXP (x, 0), sum, 0);
8140 summarize_insn (XEXP (x, 1), sum, 0);
8141 break;
8143 case NEG: case NOT: case SIGN_EXTEND: case ZERO_EXTEND:
8144 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE: case FLOAT:
8145 case FIX: case UNSIGNED_FLOAT: case UNSIGNED_FIX: case ABS:
8146 case SQRT: case FFS:
8147 summarize_insn (XEXP (x, 0), sum, 0);
8148 break;
8150 default:
8151 format_ptr = GET_RTX_FORMAT (GET_CODE (x));
8152 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
8153 switch (format_ptr[i])
8155 case 'e':
8156 summarize_insn (XEXP (x, i), sum, 0);
8157 break;
8159 case 'E':
8160 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8161 summarize_insn (XVECEXP (x, i, j), sum, 0);
8162 break;
8164 case 'i':
8165 break;
8167 default:
8168 abort ();
8173 /* Ensure a sufficient number of `trapb' insns are in the code when
8174 the user requests code with a trap precision of functions or
8175 instructions.
8177 In naive mode, when the user requests a trap-precision of
8178 "instruction", a trapb is needed after every instruction that may
8179 generate a trap. This ensures that the code is resumption safe but
8180 it is also slow.
8182 When optimizations are turned on, we delay issuing a trapb as long
8183 as possible. In this context, a trap shadow is the sequence of
8184 instructions that starts with a (potentially) trap generating
8185 instruction and extends to the next trapb or call_pal instruction
8186 (but GCC never generates call_pal by itself). We can delay (and
8187 therefore sometimes omit) a trapb subject to the following
8188 conditions:
8190 (a) On entry to the trap shadow, if any Alpha register or memory
8191 location contains a value that is used as an operand value by some
8192 instruction in the trap shadow (live on entry), then no instruction
8193 in the trap shadow may modify the register or memory location.
8195 (b) Within the trap shadow, the computation of the base register
8196 for a memory load or store instruction may not involve using the
8197 result of an instruction that might generate an UNPREDICTABLE
8198 result.
8200 (c) Within the trap shadow, no register may be used more than once
8201 as a destination register. (This is to make life easier for the
8202 trap-handler.)
8204 (d) The trap shadow may not include any branch instructions. */
8206 static void
8207 alpha_handle_trap_shadows (void)
8209 struct shadow_summary shadow;
8210 int trap_pending, exception_nesting;
8211 rtx i, n;
8213 trap_pending = 0;
8214 exception_nesting = 0;
8215 shadow.used.i = 0;
8216 shadow.used.fp = 0;
8217 shadow.used.mem = 0;
8218 shadow.defd = shadow.used;
8220 for (i = get_insns (); i ; i = NEXT_INSN (i))
8222 if (GET_CODE (i) == NOTE)
8224 switch (NOTE_LINE_NUMBER (i))
8226 case NOTE_INSN_EH_REGION_BEG:
8227 exception_nesting++;
8228 if (trap_pending)
8229 goto close_shadow;
8230 break;
8232 case NOTE_INSN_EH_REGION_END:
8233 exception_nesting--;
8234 if (trap_pending)
8235 goto close_shadow;
8236 break;
8238 case NOTE_INSN_EPILOGUE_BEG:
8239 if (trap_pending && alpha_tp >= ALPHA_TP_FUNC)
8240 goto close_shadow;
8241 break;
8244 else if (trap_pending)
8246 if (alpha_tp == ALPHA_TP_FUNC)
8248 if (GET_CODE (i) == JUMP_INSN
8249 && GET_CODE (PATTERN (i)) == RETURN)
8250 goto close_shadow;
8252 else if (alpha_tp == ALPHA_TP_INSN)
8254 if (optimize > 0)
8256 struct shadow_summary sum;
8258 sum.used.i = 0;
8259 sum.used.fp = 0;
8260 sum.used.mem = 0;
8261 sum.defd = sum.used;
8263 switch (GET_CODE (i))
8265 case INSN:
8266 /* Annoyingly, get_attr_trap will abort on these. */
8267 if (GET_CODE (PATTERN (i)) == USE
8268 || GET_CODE (PATTERN (i)) == CLOBBER)
8269 break;
8271 summarize_insn (PATTERN (i), &sum, 0);
8273 if ((sum.defd.i & shadow.defd.i)
8274 || (sum.defd.fp & shadow.defd.fp))
8276 /* (c) would be violated */
8277 goto close_shadow;
8280 /* Combine shadow with summary of current insn: */
8281 shadow.used.i |= sum.used.i;
8282 shadow.used.fp |= sum.used.fp;
8283 shadow.used.mem |= sum.used.mem;
8284 shadow.defd.i |= sum.defd.i;
8285 shadow.defd.fp |= sum.defd.fp;
8286 shadow.defd.mem |= sum.defd.mem;
8288 if ((sum.defd.i & shadow.used.i)
8289 || (sum.defd.fp & shadow.used.fp)
8290 || (sum.defd.mem & shadow.used.mem))
8292 /* (a) would be violated (also takes care of (b)) */
8293 if (get_attr_trap (i) == TRAP_YES
8294 && ((sum.defd.i & sum.used.i)
8295 || (sum.defd.fp & sum.used.fp)))
8296 abort ();
8298 goto close_shadow;
8300 break;
8302 case JUMP_INSN:
8303 case CALL_INSN:
8304 case CODE_LABEL:
8305 goto close_shadow;
8307 default:
8308 abort ();
8311 else
8313 close_shadow:
8314 n = emit_insn_before (gen_trapb (), i);
8315 PUT_MODE (n, TImode);
8316 PUT_MODE (i, TImode);
8317 trap_pending = 0;
8318 shadow.used.i = 0;
8319 shadow.used.fp = 0;
8320 shadow.used.mem = 0;
8321 shadow.defd = shadow.used;
8326 if ((exception_nesting > 0 || alpha_tp >= ALPHA_TP_FUNC)
8327 && GET_CODE (i) == INSN
8328 && GET_CODE (PATTERN (i)) != USE
8329 && GET_CODE (PATTERN (i)) != CLOBBER
8330 && get_attr_trap (i) == TRAP_YES)
8332 if (optimize && !trap_pending)
8333 summarize_insn (PATTERN (i), &shadow, 0);
8334 trap_pending = 1;
8339 /* Alpha can only issue instruction groups simultaneously if they are
8340 suitably aligned. This is very processor-specific. */
8342 enum alphaev4_pipe {
8343 EV4_STOP = 0,
8344 EV4_IB0 = 1,
8345 EV4_IB1 = 2,
8346 EV4_IBX = 4
8349 enum alphaev5_pipe {
8350 EV5_STOP = 0,
8351 EV5_NONE = 1,
8352 EV5_E01 = 2,
8353 EV5_E0 = 4,
8354 EV5_E1 = 8,
8355 EV5_FAM = 16,
8356 EV5_FA = 32,
8357 EV5_FM = 64
8360 static enum alphaev4_pipe
8361 alphaev4_insn_pipe (rtx insn)
8363 if (recog_memoized (insn) < 0)
8364 return EV4_STOP;
8365 if (get_attr_length (insn) != 4)
8366 return EV4_STOP;
8368 switch (get_attr_type (insn))
8370 case TYPE_ILD:
8371 case TYPE_FLD:
8372 return EV4_IBX;
8374 case TYPE_LDSYM:
8375 case TYPE_IADD:
8376 case TYPE_ILOG:
8377 case TYPE_ICMOV:
8378 case TYPE_ICMP:
8379 case TYPE_IST:
8380 case TYPE_FST:
8381 case TYPE_SHIFT:
8382 case TYPE_IMUL:
8383 case TYPE_FBR:
8384 return EV4_IB0;
8386 case TYPE_MISC:
8387 case TYPE_IBR:
8388 case TYPE_JSR:
8389 case TYPE_CALLPAL:
8390 case TYPE_FCPYS:
8391 case TYPE_FCMOV:
8392 case TYPE_FADD:
8393 case TYPE_FDIV:
8394 case TYPE_FMUL:
8395 return EV4_IB1;
8397 default:
8398 abort ();
8402 static enum alphaev5_pipe
8403 alphaev5_insn_pipe (rtx insn)
8405 if (recog_memoized (insn) < 0)
8406 return EV5_STOP;
8407 if (get_attr_length (insn) != 4)
8408 return EV5_STOP;
8410 switch (get_attr_type (insn))
8412 case TYPE_ILD:
8413 case TYPE_FLD:
8414 case TYPE_LDSYM:
8415 case TYPE_IADD:
8416 case TYPE_ILOG:
8417 case TYPE_ICMOV:
8418 case TYPE_ICMP:
8419 return EV5_E01;
8421 case TYPE_IST:
8422 case TYPE_FST:
8423 case TYPE_SHIFT:
8424 case TYPE_IMUL:
8425 case TYPE_MISC:
8426 case TYPE_MVI:
8427 return EV5_E0;
8429 case TYPE_IBR:
8430 case TYPE_JSR:
8431 case TYPE_CALLPAL:
8432 return EV5_E1;
8434 case TYPE_FCPYS:
8435 return EV5_FAM;
8437 case TYPE_FBR:
8438 case TYPE_FCMOV:
8439 case TYPE_FADD:
8440 case TYPE_FDIV:
8441 return EV5_FA;
8443 case TYPE_FMUL:
8444 return EV5_FM;
8446 default:
8447 abort();
8451 /* IN_USE is a mask of the slots currently filled within the insn group.
8452 The mask bits come from alphaev4_pipe above. If EV4_IBX is set, then
8453 the insn in EV4_IB0 can be swapped by the hardware into EV4_IB1.
8455 LEN is, of course, the length of the group in bytes. */
8457 static rtx
8458 alphaev4_next_group (rtx insn, int *pin_use, int *plen)
8460 int len, in_use;
8462 len = in_use = 0;
8464 if (! INSN_P (insn)
8465 || GET_CODE (PATTERN (insn)) == CLOBBER
8466 || GET_CODE (PATTERN (insn)) == USE)
8467 goto next_and_done;
8469 while (1)
8471 enum alphaev4_pipe pipe;
8473 pipe = alphaev4_insn_pipe (insn);
8474 switch (pipe)
8476 case EV4_STOP:
8477 /* Force complex instructions to start new groups. */
8478 if (in_use)
8479 goto done;
8481 /* If this is a completely unrecognized insn, its an asm.
8482 We don't know how long it is, so record length as -1 to
8483 signal a needed realignment. */
8484 if (recog_memoized (insn) < 0)
8485 len = -1;
8486 else
8487 len = get_attr_length (insn);
8488 goto next_and_done;
8490 case EV4_IBX:
8491 if (in_use & EV4_IB0)
8493 if (in_use & EV4_IB1)
8494 goto done;
8495 in_use |= EV4_IB1;
8497 else
8498 in_use |= EV4_IB0 | EV4_IBX;
8499 break;
8501 case EV4_IB0:
8502 if (in_use & EV4_IB0)
8504 if (!(in_use & EV4_IBX) || (in_use & EV4_IB1))
8505 goto done;
8506 in_use |= EV4_IB1;
8508 in_use |= EV4_IB0;
8509 break;
8511 case EV4_IB1:
8512 if (in_use & EV4_IB1)
8513 goto done;
8514 in_use |= EV4_IB1;
8515 break;
8517 default:
8518 abort();
8520 len += 4;
8522 /* Haifa doesn't do well scheduling branches. */
8523 if (GET_CODE (insn) == JUMP_INSN)
8524 goto next_and_done;
8526 next:
8527 insn = next_nonnote_insn (insn);
8529 if (!insn || ! INSN_P (insn))
8530 goto done;
8532 /* Let Haifa tell us where it thinks insn group boundaries are. */
8533 if (GET_MODE (insn) == TImode)
8534 goto done;
8536 if (GET_CODE (insn) == CLOBBER || GET_CODE (insn) == USE)
8537 goto next;
8540 next_and_done:
8541 insn = next_nonnote_insn (insn);
8543 done:
8544 *plen = len;
8545 *pin_use = in_use;
8546 return insn;
8549 /* IN_USE is a mask of the slots currently filled within the insn group.
8550 The mask bits come from alphaev5_pipe above. If EV5_E01 is set, then
8551 the insn in EV5_E0 can be swapped by the hardware into EV5_E1.
8553 LEN is, of course, the length of the group in bytes. */
8555 static rtx
8556 alphaev5_next_group (rtx insn, int *pin_use, int *plen)
8558 int len, in_use;
8560 len = in_use = 0;
8562 if (! INSN_P (insn)
8563 || GET_CODE (PATTERN (insn)) == CLOBBER
8564 || GET_CODE (PATTERN (insn)) == USE)
8565 goto next_and_done;
8567 while (1)
8569 enum alphaev5_pipe pipe;
8571 pipe = alphaev5_insn_pipe (insn);
8572 switch (pipe)
8574 case EV5_STOP:
8575 /* Force complex instructions to start new groups. */
8576 if (in_use)
8577 goto done;
8579 /* If this is a completely unrecognized insn, its an asm.
8580 We don't know how long it is, so record length as -1 to
8581 signal a needed realignment. */
8582 if (recog_memoized (insn) < 0)
8583 len = -1;
8584 else
8585 len = get_attr_length (insn);
8586 goto next_and_done;
8588 /* ??? Most of the places below, we would like to abort, as
8589 it would indicate an error either in Haifa, or in the
8590 scheduling description. Unfortunately, Haifa never
8591 schedules the last instruction of the BB, so we don't
8592 have an accurate TI bit to go off. */
8593 case EV5_E01:
8594 if (in_use & EV5_E0)
8596 if (in_use & EV5_E1)
8597 goto done;
8598 in_use |= EV5_E1;
8600 else
8601 in_use |= EV5_E0 | EV5_E01;
8602 break;
8604 case EV5_E0:
8605 if (in_use & EV5_E0)
8607 if (!(in_use & EV5_E01) || (in_use & EV5_E1))
8608 goto done;
8609 in_use |= EV5_E1;
8611 in_use |= EV5_E0;
8612 break;
8614 case EV5_E1:
8615 if (in_use & EV5_E1)
8616 goto done;
8617 in_use |= EV5_E1;
8618 break;
8620 case EV5_FAM:
8621 if (in_use & EV5_FA)
8623 if (in_use & EV5_FM)
8624 goto done;
8625 in_use |= EV5_FM;
8627 else
8628 in_use |= EV5_FA | EV5_FAM;
8629 break;
8631 case EV5_FA:
8632 if (in_use & EV5_FA)
8633 goto done;
8634 in_use |= EV5_FA;
8635 break;
8637 case EV5_FM:
8638 if (in_use & EV5_FM)
8639 goto done;
8640 in_use |= EV5_FM;
8641 break;
8643 case EV5_NONE:
8644 break;
8646 default:
8647 abort();
8649 len += 4;
8651 /* Haifa doesn't do well scheduling branches. */
8652 /* ??? If this is predicted not-taken, slotting continues, except
8653 that no more IBR, FBR, or JSR insns may be slotted. */
8654 if (GET_CODE (insn) == JUMP_INSN)
8655 goto next_and_done;
8657 next:
8658 insn = next_nonnote_insn (insn);
8660 if (!insn || ! INSN_P (insn))
8661 goto done;
8663 /* Let Haifa tell us where it thinks insn group boundaries are. */
8664 if (GET_MODE (insn) == TImode)
8665 goto done;
8667 if (GET_CODE (insn) == CLOBBER || GET_CODE (insn) == USE)
8668 goto next;
8671 next_and_done:
8672 insn = next_nonnote_insn (insn);
8674 done:
8675 *plen = len;
8676 *pin_use = in_use;
8677 return insn;
8680 static rtx
8681 alphaev4_next_nop (int *pin_use)
8683 int in_use = *pin_use;
8684 rtx nop;
8686 if (!(in_use & EV4_IB0))
8688 in_use |= EV4_IB0;
8689 nop = gen_nop ();
8691 else if ((in_use & (EV4_IBX|EV4_IB1)) == EV4_IBX)
8693 in_use |= EV4_IB1;
8694 nop = gen_nop ();
8696 else if (TARGET_FP && !(in_use & EV4_IB1))
8698 in_use |= EV4_IB1;
8699 nop = gen_fnop ();
8701 else
8702 nop = gen_unop ();
8704 *pin_use = in_use;
8705 return nop;
8708 static rtx
8709 alphaev5_next_nop (int *pin_use)
8711 int in_use = *pin_use;
8712 rtx nop;
8714 if (!(in_use & EV5_E1))
8716 in_use |= EV5_E1;
8717 nop = gen_nop ();
8719 else if (TARGET_FP && !(in_use & EV5_FA))
8721 in_use |= EV5_FA;
8722 nop = gen_fnop ();
8724 else if (TARGET_FP && !(in_use & EV5_FM))
8726 in_use |= EV5_FM;
8727 nop = gen_fnop ();
8729 else
8730 nop = gen_unop ();
8732 *pin_use = in_use;
8733 return nop;
8736 /* The instruction group alignment main loop. */
8738 static void
8739 alpha_align_insns (unsigned int max_align,
8740 rtx (*next_group) (rtx, int *, int *),
8741 rtx (*next_nop) (int *))
8743 /* ALIGN is the known alignment for the insn group. */
8744 unsigned int align;
8745 /* OFS is the offset of the current insn in the insn group. */
8746 int ofs;
8747 int prev_in_use, in_use, len;
8748 rtx i, next;
8750 /* Let shorten branches care for assigning alignments to code labels. */
8751 shorten_branches (get_insns ());
8753 if (align_functions < 4)
8754 align = 4;
8755 else if ((unsigned int) align_functions < max_align)
8756 align = align_functions;
8757 else
8758 align = max_align;
8760 ofs = prev_in_use = 0;
8761 i = get_insns ();
8762 if (GET_CODE (i) == NOTE)
8763 i = next_nonnote_insn (i);
8765 while (i)
8767 next = (*next_group) (i, &in_use, &len);
8769 /* When we see a label, resync alignment etc. */
8770 if (GET_CODE (i) == CODE_LABEL)
8772 unsigned int new_align = 1 << label_to_alignment (i);
8774 if (new_align >= align)
8776 align = new_align < max_align ? new_align : max_align;
8777 ofs = 0;
8780 else if (ofs & (new_align-1))
8781 ofs = (ofs | (new_align-1)) + 1;
8782 if (len != 0)
8783 abort();
8786 /* Handle complex instructions special. */
8787 else if (in_use == 0)
8789 /* Asms will have length < 0. This is a signal that we have
8790 lost alignment knowledge. Assume, however, that the asm
8791 will not mis-align instructions. */
8792 if (len < 0)
8794 ofs = 0;
8795 align = 4;
8796 len = 0;
8800 /* If the known alignment is smaller than the recognized insn group,
8801 realign the output. */
8802 else if ((int) align < len)
8804 unsigned int new_log_align = len > 8 ? 4 : 3;
8805 rtx prev, where;
8807 where = prev = prev_nonnote_insn (i);
8808 if (!where || GET_CODE (where) != CODE_LABEL)
8809 where = i;
8811 /* Can't realign between a call and its gp reload. */
8812 if (! (TARGET_EXPLICIT_RELOCS
8813 && prev && GET_CODE (prev) == CALL_INSN))
8815 emit_insn_before (gen_realign (GEN_INT (new_log_align)), where);
8816 align = 1 << new_log_align;
8817 ofs = 0;
8821 /* If the group won't fit in the same INT16 as the previous,
8822 we need to add padding to keep the group together. Rather
8823 than simply leaving the insn filling to the assembler, we
8824 can make use of the knowledge of what sorts of instructions
8825 were issued in the previous group to make sure that all of
8826 the added nops are really free. */
8827 else if (ofs + len > (int) align)
8829 int nop_count = (align - ofs) / 4;
8830 rtx where;
8832 /* Insert nops before labels, branches, and calls to truly merge
8833 the execution of the nops with the previous instruction group. */
8834 where = prev_nonnote_insn (i);
8835 if (where)
8837 if (GET_CODE (where) == CODE_LABEL)
8839 rtx where2 = prev_nonnote_insn (where);
8840 if (where2 && GET_CODE (where2) == JUMP_INSN)
8841 where = where2;
8843 else if (GET_CODE (where) == INSN)
8844 where = i;
8846 else
8847 where = i;
8850 emit_insn_before ((*next_nop)(&prev_in_use), where);
8851 while (--nop_count);
8852 ofs = 0;
8855 ofs = (ofs + len) & (align - 1);
8856 prev_in_use = in_use;
8857 i = next;
8861 /* Machine dependent reorg pass. */
8863 static void
8864 alpha_reorg (void)
8866 if (alpha_tp != ALPHA_TP_PROG || flag_exceptions)
8867 alpha_handle_trap_shadows ();
8869 /* Due to the number of extra trapb insns, don't bother fixing up
8870 alignment when trap precision is instruction. Moreover, we can
8871 only do our job when sched2 is run. */
8872 if (optimize && !optimize_size
8873 && alpha_tp != ALPHA_TP_INSN
8874 && flag_schedule_insns_after_reload)
8876 if (alpha_cpu == PROCESSOR_EV4)
8877 alpha_align_insns (8, alphaev4_next_group, alphaev4_next_nop);
8878 else if (alpha_cpu == PROCESSOR_EV5)
8879 alpha_align_insns (16, alphaev5_next_group, alphaev5_next_nop);
8883 #if !TARGET_ABI_UNICOSMK
8885 #ifdef HAVE_STAMP_H
8886 #include <stamp.h>
8887 #endif
8889 static void
8890 alpha_file_start (void)
8892 #ifdef OBJECT_FORMAT_ELF
8893 /* If emitting dwarf2 debug information, we cannot generate a .file
8894 directive to start the file, as it will conflict with dwarf2out
8895 file numbers. So it's only useful when emitting mdebug output. */
8896 targetm.file_start_file_directive = (write_symbols == DBX_DEBUG);
8897 #endif
8899 default_file_start ();
8900 #ifdef MS_STAMP
8901 fprintf (asm_out_file, "\t.verstamp %d %d\n", MS_STAMP, LS_STAMP);
8902 #endif
8904 fputs ("\t.set noreorder\n", asm_out_file);
8905 fputs ("\t.set volatile\n", asm_out_file);
8906 if (!TARGET_ABI_OPEN_VMS)
8907 fputs ("\t.set noat\n", asm_out_file);
8908 if (TARGET_EXPLICIT_RELOCS)
8909 fputs ("\t.set nomacro\n", asm_out_file);
8910 if (TARGET_SUPPORT_ARCH | TARGET_BWX | TARGET_MAX | TARGET_FIX | TARGET_CIX)
8911 fprintf (asm_out_file,
8912 "\t.arch %s\n",
8913 TARGET_CPU_EV6 ? "ev6"
8914 : (TARGET_CPU_EV5
8915 ? (TARGET_MAX ? "pca56" : TARGET_BWX ? "ev56" : "ev5")
8916 : "ev4"));
8918 #endif
8920 #ifdef OBJECT_FORMAT_ELF
8922 /* Switch to the section to which we should output X. The only thing
8923 special we do here is to honor small data. */
8925 static void
8926 alpha_elf_select_rtx_section (enum machine_mode mode, rtx x,
8927 unsigned HOST_WIDE_INT align)
8929 if (TARGET_SMALL_DATA && GET_MODE_SIZE (mode) <= g_switch_value)
8930 /* ??? Consider using mergeable sdata sections. */
8931 sdata_section ();
8932 else
8933 default_elf_select_rtx_section (mode, x, align);
8936 #endif /* OBJECT_FORMAT_ELF */
8938 /* Structure to collect function names for final output in link section. */
8939 /* Note that items marked with GTY can't be ifdef'ed out. */
8941 enum links_kind {KIND_UNUSED, KIND_LOCAL, KIND_EXTERN};
8942 enum reloc_kind {KIND_LINKAGE, KIND_CODEADDR};
8944 struct alpha_links GTY(())
8946 int num;
8947 rtx linkage;
8948 enum links_kind lkind;
8949 enum reloc_kind rkind;
8952 struct alpha_funcs GTY(())
8954 int num;
8955 splay_tree GTY ((param1_is (char *), param2_is (struct alpha_links *)))
8956 links;
8959 static GTY ((param1_is (char *), param2_is (struct alpha_links *)))
8960 splay_tree alpha_links_tree;
8961 static GTY ((param1_is (tree), param2_is (struct alpha_funcs *)))
8962 splay_tree alpha_funcs_tree;
8964 static GTY(()) int alpha_funcs_num;
8966 #if TARGET_ABI_OPEN_VMS
8968 /* Return the VMS argument type corresponding to MODE. */
8970 enum avms_arg_type
8971 alpha_arg_type (enum machine_mode mode)
8973 switch (mode)
8975 case SFmode:
8976 return TARGET_FLOAT_VAX ? FF : FS;
8977 case DFmode:
8978 return TARGET_FLOAT_VAX ? FD : FT;
8979 default:
8980 return I64;
8984 /* Return an rtx for an integer representing the VMS Argument Information
8985 register value. */
8988 alpha_arg_info_reg_val (CUMULATIVE_ARGS cum)
8990 unsigned HOST_WIDE_INT regval = cum.num_args;
8991 int i;
8993 for (i = 0; i < 6; i++)
8994 regval |= ((int) cum.atypes[i]) << (i * 3 + 8);
8996 return GEN_INT (regval);
8999 /* Make (or fake) .linkage entry for function call.
9001 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition.
9003 Return an SYMBOL_REF rtx for the linkage. */
9006 alpha_need_linkage (const char *name, int is_local)
9008 splay_tree_node node;
9009 struct alpha_links *al;
9011 if (name[0] == '*')
9012 name++;
9014 if (is_local)
9016 struct alpha_funcs *cfaf;
9018 if (!alpha_funcs_tree)
9019 alpha_funcs_tree = splay_tree_new_ggc ((splay_tree_compare_fn)
9020 splay_tree_compare_pointers);
9022 cfaf = (struct alpha_funcs *) ggc_alloc (sizeof (struct alpha_funcs));
9024 cfaf->links = 0;
9025 cfaf->num = ++alpha_funcs_num;
9027 splay_tree_insert (alpha_funcs_tree,
9028 (splay_tree_key) current_function_decl,
9029 (splay_tree_value) cfaf);
9032 if (alpha_links_tree)
9034 /* Is this name already defined? */
9036 node = splay_tree_lookup (alpha_links_tree, (splay_tree_key) name);
9037 if (node)
9039 al = (struct alpha_links *) node->value;
9040 if (is_local)
9042 /* Defined here but external assumed. */
9043 if (al->lkind == KIND_EXTERN)
9044 al->lkind = KIND_LOCAL;
9046 else
9048 /* Used here but unused assumed. */
9049 if (al->lkind == KIND_UNUSED)
9050 al->lkind = KIND_LOCAL;
9052 return al->linkage;
9055 else
9056 alpha_links_tree = splay_tree_new_ggc ((splay_tree_compare_fn) strcmp);
9058 al = (struct alpha_links *) ggc_alloc (sizeof (struct alpha_links));
9059 name = ggc_strdup (name);
9061 /* Assume external if no definition. */
9062 al->lkind = (is_local ? KIND_UNUSED : KIND_EXTERN);
9064 /* Ensure we have an IDENTIFIER so assemble_name can mark it used. */
9065 get_identifier (name);
9067 /* Construct a SYMBOL_REF for us to call. */
9069 size_t name_len = strlen (name);
9070 char *linksym = alloca (name_len + 6);
9071 linksym[0] = '$';
9072 memcpy (linksym + 1, name, name_len);
9073 memcpy (linksym + 1 + name_len, "..lk", 5);
9074 al->linkage = gen_rtx_SYMBOL_REF (Pmode,
9075 ggc_alloc_string (linksym, name_len + 5));
9078 splay_tree_insert (alpha_links_tree, (splay_tree_key) name,
9079 (splay_tree_value) al);
9081 return al->linkage;
9085 alpha_use_linkage (rtx linkage, tree cfundecl, int lflag, int rflag)
9087 splay_tree_node cfunnode;
9088 struct alpha_funcs *cfaf;
9089 struct alpha_links *al;
9090 const char *name = XSTR (linkage, 0);
9092 cfaf = (struct alpha_funcs *) 0;
9093 al = (struct alpha_links *) 0;
9095 cfunnode = splay_tree_lookup (alpha_funcs_tree, (splay_tree_key) cfundecl);
9096 cfaf = (struct alpha_funcs *) cfunnode->value;
9098 if (cfaf->links)
9100 splay_tree_node lnode;
9102 /* Is this name already defined? */
9104 lnode = splay_tree_lookup (cfaf->links, (splay_tree_key) name);
9105 if (lnode)
9106 al = (struct alpha_links *) lnode->value;
9108 else
9109 cfaf->links = splay_tree_new_ggc ((splay_tree_compare_fn) strcmp);
9111 if (!al)
9113 size_t name_len;
9114 size_t buflen;
9115 char buf [512];
9116 char *linksym;
9117 splay_tree_node node = 0;
9118 struct alpha_links *anl;
9120 if (name[0] == '*')
9121 name++;
9123 name_len = strlen (name);
9125 al = (struct alpha_links *) ggc_alloc (sizeof (struct alpha_links));
9126 al->num = cfaf->num;
9128 node = splay_tree_lookup (alpha_links_tree, (splay_tree_key) name);
9129 if (node)
9131 anl = (struct alpha_links *) node->value;
9132 al->lkind = anl->lkind;
9135 sprintf (buf, "$%d..%s..lk", cfaf->num, name);
9136 buflen = strlen (buf);
9137 linksym = alloca (buflen + 1);
9138 memcpy (linksym, buf, buflen + 1);
9140 al->linkage = gen_rtx_SYMBOL_REF
9141 (Pmode, ggc_alloc_string (linksym, buflen + 1));
9143 splay_tree_insert (cfaf->links, (splay_tree_key) name,
9144 (splay_tree_value) al);
9147 if (rflag)
9148 al->rkind = KIND_CODEADDR;
9149 else
9150 al->rkind = KIND_LINKAGE;
9152 if (lflag)
9153 return gen_rtx_MEM (Pmode, plus_constant (al->linkage, 8));
9154 else
9155 return al->linkage;
9158 static int
9159 alpha_write_one_linkage (splay_tree_node node, void *data)
9161 const char *const name = (const char *) node->key;
9162 struct alpha_links *link = (struct alpha_links *) node->value;
9163 FILE *stream = (FILE *) data;
9165 fprintf (stream, "$%d..%s..lk:\n", link->num, name);
9166 if (link->rkind == KIND_CODEADDR)
9168 if (link->lkind == KIND_LOCAL)
9170 /* Local and used */
9171 fprintf (stream, "\t.quad %s..en\n", name);
9173 else
9175 /* External and used, request code address. */
9176 fprintf (stream, "\t.code_address %s\n", name);
9179 else
9181 if (link->lkind == KIND_LOCAL)
9183 /* Local and used, build linkage pair. */
9184 fprintf (stream, "\t.quad %s..en\n", name);
9185 fprintf (stream, "\t.quad %s\n", name);
9187 else
9189 /* External and used, request linkage pair. */
9190 fprintf (stream, "\t.linkage %s\n", name);
9194 return 0;
9197 static void
9198 alpha_write_linkage (FILE *stream, const char *funname, tree fundecl)
9200 splay_tree_node node;
9201 struct alpha_funcs *func;
9203 link_section ();
9204 fprintf (stream, "\t.align 3\n");
9205 node = splay_tree_lookup (alpha_funcs_tree, (splay_tree_key) fundecl);
9206 func = (struct alpha_funcs *) node->value;
9208 fputs ("\t.name ", stream);
9209 assemble_name (stream, funname);
9210 fputs ("..na\n", stream);
9211 ASM_OUTPUT_LABEL (stream, funname);
9212 fprintf (stream, "\t.pdesc ");
9213 assemble_name (stream, funname);
9214 fprintf (stream, "..en,%s\n",
9215 alpha_procedure_type == PT_STACK ? "stack"
9216 : alpha_procedure_type == PT_REGISTER ? "reg" : "null");
9218 if (func->links)
9220 splay_tree_foreach (func->links, alpha_write_one_linkage, stream);
9221 /* splay_tree_delete (func->links); */
9225 /* Given a decl, a section name, and whether the decl initializer
9226 has relocs, choose attributes for the section. */
9228 #define SECTION_VMS_OVERLAY SECTION_FORGET
9229 #define SECTION_VMS_GLOBAL SECTION_MACH_DEP
9230 #define SECTION_VMS_INITIALIZE (SECTION_VMS_GLOBAL << 1)
9232 static unsigned int
9233 vms_section_type_flags (tree decl, const char *name, int reloc)
9235 unsigned int flags = default_section_type_flags (decl, name, reloc);
9237 if (decl && DECL_ATTRIBUTES (decl)
9238 && lookup_attribute ("overlaid", DECL_ATTRIBUTES (decl)))
9239 flags |= SECTION_VMS_OVERLAY;
9240 if (decl && DECL_ATTRIBUTES (decl)
9241 && lookup_attribute ("global", DECL_ATTRIBUTES (decl)))
9242 flags |= SECTION_VMS_GLOBAL;
9243 if (decl && DECL_ATTRIBUTES (decl)
9244 && lookup_attribute ("initialize", DECL_ATTRIBUTES (decl)))
9245 flags |= SECTION_VMS_INITIALIZE;
9247 return flags;
9250 /* Switch to an arbitrary section NAME with attributes as specified
9251 by FLAGS. ALIGN specifies any known alignment requirements for
9252 the section; 0 if the default should be used. */
9254 static void
9255 vms_asm_named_section (const char *name, unsigned int flags)
9257 fputc ('\n', asm_out_file);
9258 fprintf (asm_out_file, ".section\t%s", name);
9260 if (flags & SECTION_VMS_OVERLAY)
9261 fprintf (asm_out_file, ",OVR");
9262 if (flags & SECTION_VMS_GLOBAL)
9263 fprintf (asm_out_file, ",GBL");
9264 if (flags & SECTION_VMS_INITIALIZE)
9265 fprintf (asm_out_file, ",NOMOD");
9266 if (flags & SECTION_DEBUG)
9267 fprintf (asm_out_file, ",NOWRT");
9269 fputc ('\n', asm_out_file);
9272 /* Record an element in the table of global constructors. SYMBOL is
9273 a SYMBOL_REF of the function to be called; PRIORITY is a number
9274 between 0 and MAX_INIT_PRIORITY.
9276 Differs from default_ctors_section_asm_out_constructor in that the
9277 width of the .ctors entry is always 64 bits, rather than the 32 bits
9278 used by a normal pointer. */
9280 static void
9281 vms_asm_out_constructor (rtx symbol, int priority ATTRIBUTE_UNUSED)
9283 ctors_section ();
9284 assemble_align (BITS_PER_WORD);
9285 assemble_integer (symbol, UNITS_PER_WORD, BITS_PER_WORD, 1);
9288 static void
9289 vms_asm_out_destructor (rtx symbol, int priority ATTRIBUTE_UNUSED)
9291 dtors_section ();
9292 assemble_align (BITS_PER_WORD);
9293 assemble_integer (symbol, UNITS_PER_WORD, BITS_PER_WORD, 1);
9295 #else
9298 alpha_need_linkage (const char *name ATTRIBUTE_UNUSED,
9299 int is_local ATTRIBUTE_UNUSED)
9301 return NULL_RTX;
9305 alpha_use_linkage (rtx linkage ATTRIBUTE_UNUSED,
9306 tree cfundecl ATTRIBUTE_UNUSED,
9307 int lflag ATTRIBUTE_UNUSED,
9308 int rflag ATTRIBUTE_UNUSED)
9310 return NULL_RTX;
9313 #endif /* TARGET_ABI_OPEN_VMS */
9315 #if TARGET_ABI_UNICOSMK
9317 /* Define the offset between two registers, one to be eliminated, and the
9318 other its replacement, at the start of a routine. */
9321 unicosmk_initial_elimination_offset (int from, int to)
9323 int fixed_size;
9325 fixed_size = alpha_sa_size();
9326 if (fixed_size != 0)
9327 fixed_size += 48;
9329 if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
9330 return -fixed_size;
9331 else if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
9332 return 0;
9333 else if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
9334 return (ALPHA_ROUND (current_function_outgoing_args_size)
9335 + ALPHA_ROUND (get_frame_size()));
9336 else if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
9337 return (ALPHA_ROUND (fixed_size)
9338 + ALPHA_ROUND (get_frame_size()
9339 + current_function_outgoing_args_size));
9340 else
9341 abort ();
9344 /* Output the module name for .ident and .end directives. We have to strip
9345 directories and add make sure that the module name starts with a letter
9346 or '$'. */
9348 static void
9349 unicosmk_output_module_name (FILE *file)
9351 const char *name = lbasename (main_input_filename);
9352 unsigned len = strlen (name);
9353 char *clean_name = alloca (len + 2);
9354 char *ptr = clean_name;
9356 /* CAM only accepts module names that start with a letter or '$'. We
9357 prefix the module name with a '$' if necessary. */
9359 if (!ISALPHA (*name))
9360 *ptr++ = '$';
9361 memcpy (ptr, name, len + 1);
9362 clean_symbol_name (clean_name);
9363 fputs (clean_name, file);
9366 /* Output the definition of a common variable. */
9368 void
9369 unicosmk_output_common (FILE *file, const char *name, int size, int align)
9371 tree name_tree;
9372 printf ("T3E__: common %s\n", name);
9374 common_section ();
9375 fputs("\t.endp\n\n\t.psect ", file);
9376 assemble_name(file, name);
9377 fprintf(file, ",%d,common\n", floor_log2 (align / BITS_PER_UNIT));
9378 fprintf(file, "\t.byte\t0:%d\n", size);
9380 /* Mark the symbol as defined in this module. */
9381 name_tree = get_identifier (name);
9382 TREE_ASM_WRITTEN (name_tree) = 1;
9385 #define SECTION_PUBLIC SECTION_MACH_DEP
9386 #define SECTION_MAIN (SECTION_PUBLIC << 1)
9387 static int current_section_align;
9389 static unsigned int
9390 unicosmk_section_type_flags (tree decl, const char *name,
9391 int reloc ATTRIBUTE_UNUSED)
9393 unsigned int flags = default_section_type_flags (decl, name, reloc);
9395 if (!decl)
9396 return flags;
9398 if (TREE_CODE (decl) == FUNCTION_DECL)
9400 current_section_align = floor_log2 (FUNCTION_BOUNDARY / BITS_PER_UNIT);
9401 if (align_functions_log > current_section_align)
9402 current_section_align = align_functions_log;
9404 if (! strcmp (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)), "main"))
9405 flags |= SECTION_MAIN;
9407 else
9408 current_section_align = floor_log2 (DECL_ALIGN (decl) / BITS_PER_UNIT);
9410 if (TREE_PUBLIC (decl))
9411 flags |= SECTION_PUBLIC;
9413 return flags;
9416 /* Generate a section name for decl and associate it with the
9417 declaration. */
9419 static void
9420 unicosmk_unique_section (tree decl, int reloc ATTRIBUTE_UNUSED)
9422 const char *name;
9423 int len;
9425 if (!decl)
9426 abort ();
9428 name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
9429 name = default_strip_name_encoding (name);
9430 len = strlen (name);
9432 if (TREE_CODE (decl) == FUNCTION_DECL)
9434 char *string;
9436 /* It is essential that we prefix the section name here because
9437 otherwise the section names generated for constructors and
9438 destructors confuse collect2. */
9440 string = alloca (len + 6);
9441 sprintf (string, "code@%s", name);
9442 DECL_SECTION_NAME (decl) = build_string (len + 5, string);
9444 else if (TREE_PUBLIC (decl))
9445 DECL_SECTION_NAME (decl) = build_string (len, name);
9446 else
9448 char *string;
9450 string = alloca (len + 6);
9451 sprintf (string, "data@%s", name);
9452 DECL_SECTION_NAME (decl) = build_string (len + 5, string);
9456 /* Switch to an arbitrary section NAME with attributes as specified
9457 by FLAGS. ALIGN specifies any known alignment requirements for
9458 the section; 0 if the default should be used. */
9460 static void
9461 unicosmk_asm_named_section (const char *name, unsigned int flags)
9463 const char *kind;
9465 /* Close the previous section. */
9467 fputs ("\t.endp\n\n", asm_out_file);
9469 /* Find out what kind of section we are opening. */
9471 if (flags & SECTION_MAIN)
9472 fputs ("\t.start\tmain\n", asm_out_file);
9474 if (flags & SECTION_CODE)
9475 kind = "code";
9476 else if (flags & SECTION_PUBLIC)
9477 kind = "common";
9478 else
9479 kind = "data";
9481 if (current_section_align != 0)
9482 fprintf (asm_out_file, "\t.psect\t%s,%d,%s\n", name,
9483 current_section_align, kind);
9484 else
9485 fprintf (asm_out_file, "\t.psect\t%s,%s\n", name, kind);
9488 static void
9489 unicosmk_insert_attributes (tree decl, tree *attr_ptr ATTRIBUTE_UNUSED)
9491 if (DECL_P (decl)
9492 && (TREE_PUBLIC (decl) || TREE_CODE (decl) == FUNCTION_DECL))
9493 unicosmk_unique_section (decl, 0);
9496 /* Output an alignment directive. We have to use the macro 'gcc@code@align'
9497 in code sections because .align fill unused space with zeroes. */
9499 void
9500 unicosmk_output_align (FILE *file, int align)
9502 if (inside_function)
9503 fprintf (file, "\tgcc@code@align\t%d\n", align);
9504 else
9505 fprintf (file, "\t.align\t%d\n", align);
9508 /* Add a case vector to the current function's list of deferred case
9509 vectors. Case vectors have to be put into a separate section because CAM
9510 does not allow data definitions in code sections. */
9512 void
9513 unicosmk_defer_case_vector (rtx lab, rtx vec)
9515 struct machine_function *machine = cfun->machine;
9517 vec = gen_rtx_EXPR_LIST (VOIDmode, lab, vec);
9518 machine->addr_list = gen_rtx_EXPR_LIST (VOIDmode, vec,
9519 machine->addr_list);
9522 /* Output a case vector. */
9524 static void
9525 unicosmk_output_addr_vec (FILE *file, rtx vec)
9527 rtx lab = XEXP (vec, 0);
9528 rtx body = XEXP (vec, 1);
9529 int vlen = XVECLEN (body, 0);
9530 int idx;
9532 (*targetm.asm_out.internal_label) (file, "L", CODE_LABEL_NUMBER (lab));
9534 for (idx = 0; idx < vlen; idx++)
9536 ASM_OUTPUT_ADDR_VEC_ELT
9537 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
9541 /* Output current function's deferred case vectors. */
9543 static void
9544 unicosmk_output_deferred_case_vectors (FILE *file)
9546 struct machine_function *machine = cfun->machine;
9547 rtx t;
9549 if (machine->addr_list == NULL_RTX)
9550 return;
9552 data_section ();
9553 for (t = machine->addr_list; t; t = XEXP (t, 1))
9554 unicosmk_output_addr_vec (file, XEXP (t, 0));
9557 /* Generate the name of the SSIB section for the current function. */
9559 #define SSIB_PREFIX "__SSIB_"
9560 #define SSIB_PREFIX_LEN 7
9562 static const char *
9563 unicosmk_ssib_name (void)
9565 /* This is ok since CAM won't be able to deal with names longer than that
9566 anyway. */
9568 static char name[256];
9570 rtx x;
9571 const char *fnname;
9572 int len;
9574 x = DECL_RTL (cfun->decl);
9575 if (GET_CODE (x) != MEM)
9576 abort ();
9577 x = XEXP (x, 0);
9578 if (GET_CODE (x) != SYMBOL_REF)
9579 abort ();
9580 fnname = XSTR (x, 0);
9582 len = strlen (fnname);
9583 if (len + SSIB_PREFIX_LEN > 255)
9584 len = 255 - SSIB_PREFIX_LEN;
9586 strcpy (name, SSIB_PREFIX);
9587 strncpy (name + SSIB_PREFIX_LEN, fnname, len);
9588 name[len + SSIB_PREFIX_LEN] = 0;
9590 return name;
9593 /* Set up the dynamic subprogram information block (DSIB) and update the
9594 frame pointer register ($15) for subroutines which have a frame. If the
9595 subroutine doesn't have a frame, simply increment $15. */
9597 static void
9598 unicosmk_gen_dsib (unsigned long *imaskP)
9600 if (alpha_procedure_type == PT_STACK)
9602 const char *ssib_name;
9603 rtx mem;
9605 /* Allocate 64 bytes for the DSIB. */
9607 FRP (emit_insn (gen_adddi3 (stack_pointer_rtx, stack_pointer_rtx,
9608 GEN_INT (-64))));
9609 emit_insn (gen_blockage ());
9611 /* Save the return address. */
9613 mem = gen_rtx_MEM (DImode, plus_constant (stack_pointer_rtx, 56));
9614 set_mem_alias_set (mem, alpha_sr_alias_set);
9615 FRP (emit_move_insn (mem, gen_rtx_REG (DImode, REG_RA)));
9616 (*imaskP) &= ~(1UL << REG_RA);
9618 /* Save the old frame pointer. */
9620 mem = gen_rtx_MEM (DImode, plus_constant (stack_pointer_rtx, 48));
9621 set_mem_alias_set (mem, alpha_sr_alias_set);
9622 FRP (emit_move_insn (mem, hard_frame_pointer_rtx));
9623 (*imaskP) &= ~(1UL << HARD_FRAME_POINTER_REGNUM);
9625 emit_insn (gen_blockage ());
9627 /* Store the SSIB pointer. */
9629 ssib_name = ggc_strdup (unicosmk_ssib_name ());
9630 mem = gen_rtx_MEM (DImode, plus_constant (stack_pointer_rtx, 32));
9631 set_mem_alias_set (mem, alpha_sr_alias_set);
9633 FRP (emit_move_insn (gen_rtx_REG (DImode, 5),
9634 gen_rtx_SYMBOL_REF (Pmode, ssib_name)));
9635 FRP (emit_move_insn (mem, gen_rtx_REG (DImode, 5)));
9637 /* Save the CIW index. */
9639 mem = gen_rtx_MEM (DImode, plus_constant (stack_pointer_rtx, 24));
9640 set_mem_alias_set (mem, alpha_sr_alias_set);
9641 FRP (emit_move_insn (mem, gen_rtx_REG (DImode, 25)));
9643 emit_insn (gen_blockage ());
9645 /* Set the new frame pointer. */
9647 FRP (emit_insn (gen_adddi3 (hard_frame_pointer_rtx,
9648 stack_pointer_rtx, GEN_INT (64))));
9651 else
9653 /* Increment the frame pointer register to indicate that we do not
9654 have a frame. */
9656 FRP (emit_insn (gen_adddi3 (hard_frame_pointer_rtx,
9657 hard_frame_pointer_rtx, GEN_INT (1))));
9661 /* Output the static subroutine information block for the current
9662 function. */
9664 static void
9665 unicosmk_output_ssib (FILE *file, const char *fnname)
9667 int len;
9668 int i;
9669 rtx x;
9670 rtx ciw;
9671 struct machine_function *machine = cfun->machine;
9673 ssib_section ();
9674 fprintf (file, "\t.endp\n\n\t.psect\t%s%s,data\n", user_label_prefix,
9675 unicosmk_ssib_name ());
9677 /* Some required stuff and the function name length. */
9679 len = strlen (fnname);
9680 fprintf (file, "\t.quad\t^X20008%2.2X28\n", len);
9682 /* Saved registers
9683 ??? We don't do that yet. */
9685 fputs ("\t.quad\t0\n", file);
9687 /* Function address. */
9689 fputs ("\t.quad\t", file);
9690 assemble_name (file, fnname);
9691 putc ('\n', file);
9693 fputs ("\t.quad\t0\n", file);
9694 fputs ("\t.quad\t0\n", file);
9696 /* Function name.
9697 ??? We do it the same way Cray CC does it but this could be
9698 simplified. */
9700 for( i = 0; i < len; i++ )
9701 fprintf (file, "\t.byte\t%d\n", (int)(fnname[i]));
9702 if( (len % 8) == 0 )
9703 fputs ("\t.quad\t0\n", file);
9704 else
9705 fprintf (file, "\t.bits\t%d : 0\n", (8 - (len % 8))*8);
9707 /* All call information words used in the function. */
9709 for (x = machine->first_ciw; x; x = XEXP (x, 1))
9711 ciw = XEXP (x, 0);
9712 #if HOST_BITS_PER_WIDE_INT == 32
9713 fprintf (file, "\t.quad\t" HOST_WIDE_INT_PRINT_DOUBLE_HEX "\n",
9714 CONST_DOUBLE_HIGH (ciw), CONST_DOUBLE_LOW (ciw));
9715 #else
9716 fprintf (file, "\t.quad\t" HOST_WIDE_INT_PRINT_HEX "\n", INTVAL (ciw));
9717 #endif
9721 /* Add a call information word (CIW) to the list of the current function's
9722 CIWs and return its index.
9724 X is a CONST_INT or CONST_DOUBLE representing the CIW. */
9727 unicosmk_add_call_info_word (rtx x)
9729 rtx node;
9730 struct machine_function *machine = cfun->machine;
9732 node = gen_rtx_EXPR_LIST (VOIDmode, x, NULL_RTX);
9733 if (machine->first_ciw == NULL_RTX)
9734 machine->first_ciw = node;
9735 else
9736 XEXP (machine->last_ciw, 1) = node;
9738 machine->last_ciw = node;
9739 ++machine->ciw_count;
9741 return GEN_INT (machine->ciw_count
9742 + strlen (current_function_name)/8 + 5);
9745 static char unicosmk_section_buf[100];
9747 char *
9748 unicosmk_text_section (void)
9750 static int count = 0;
9751 sprintf (unicosmk_section_buf, "\t.endp\n\n\t.psect\tgcc@text___%d,code",
9752 count++);
9753 return unicosmk_section_buf;
9756 char *
9757 unicosmk_data_section (void)
9759 static int count = 1;
9760 sprintf (unicosmk_section_buf, "\t.endp\n\n\t.psect\tgcc@data___%d,data",
9761 count++);
9762 return unicosmk_section_buf;
9765 /* The Cray assembler doesn't accept extern declarations for symbols which
9766 are defined in the same file. We have to keep track of all global
9767 symbols which are referenced and/or defined in a source file and output
9768 extern declarations for those which are referenced but not defined at
9769 the end of file. */
9771 /* List of identifiers for which an extern declaration might have to be
9772 emitted. */
9773 /* FIXME: needs to use GC, so it can be saved and restored for PCH. */
9775 struct unicosmk_extern_list
9777 struct unicosmk_extern_list *next;
9778 const char *name;
9781 static struct unicosmk_extern_list *unicosmk_extern_head = 0;
9783 /* Output extern declarations which are required for every asm file. */
9785 static void
9786 unicosmk_output_default_externs (FILE *file)
9788 static const char *const externs[] =
9789 { "__T3E_MISMATCH" };
9791 int i;
9792 int n;
9794 n = ARRAY_SIZE (externs);
9796 for (i = 0; i < n; i++)
9797 fprintf (file, "\t.extern\t%s\n", externs[i]);
9800 /* Output extern declarations for global symbols which are have been
9801 referenced but not defined. */
9803 static void
9804 unicosmk_output_externs (FILE *file)
9806 struct unicosmk_extern_list *p;
9807 const char *real_name;
9808 int len;
9809 tree name_tree;
9811 len = strlen (user_label_prefix);
9812 for (p = unicosmk_extern_head; p != 0; p = p->next)
9814 /* We have to strip the encoding and possibly remove user_label_prefix
9815 from the identifier in order to handle -fleading-underscore and
9816 explicit asm names correctly (cf. gcc.dg/asm-names-1.c). */
9817 real_name = default_strip_name_encoding (p->name);
9818 if (len && p->name[0] == '*'
9819 && !memcmp (real_name, user_label_prefix, len))
9820 real_name += len;
9822 name_tree = get_identifier (real_name);
9823 if (! TREE_ASM_WRITTEN (name_tree))
9825 TREE_ASM_WRITTEN (name_tree) = 1;
9826 fputs ("\t.extern\t", file);
9827 assemble_name (file, p->name);
9828 putc ('\n', file);
9833 /* Record an extern. */
9835 void
9836 unicosmk_add_extern (const char *name)
9838 struct unicosmk_extern_list *p;
9840 p = (struct unicosmk_extern_list *)
9841 xmalloc (sizeof (struct unicosmk_extern_list));
9842 p->next = unicosmk_extern_head;
9843 p->name = name;
9844 unicosmk_extern_head = p;
9847 /* The Cray assembler generates incorrect code if identifiers which
9848 conflict with register names are used as instruction operands. We have
9849 to replace such identifiers with DEX expressions. */
9851 /* Structure to collect identifiers which have been replaced by DEX
9852 expressions. */
9853 /* FIXME: needs to use GC, so it can be saved and restored for PCH. */
9855 struct unicosmk_dex {
9856 struct unicosmk_dex *next;
9857 const char *name;
9860 /* List of identifiers which have been replaced by DEX expressions. The DEX
9861 number is determined by the position in the list. */
9863 static struct unicosmk_dex *unicosmk_dex_list = NULL;
9865 /* The number of elements in the DEX list. */
9867 static int unicosmk_dex_count = 0;
9869 /* Check if NAME must be replaced by a DEX expression. */
9871 static int
9872 unicosmk_special_name (const char *name)
9874 if (name[0] == '*')
9875 ++name;
9877 if (name[0] == '$')
9878 ++name;
9880 if (name[0] != 'r' && name[0] != 'f' && name[0] != 'R' && name[0] != 'F')
9881 return 0;
9883 switch (name[1])
9885 case '1': case '2':
9886 return (name[2] == '\0' || (ISDIGIT (name[2]) && name[3] == '\0'));
9888 case '3':
9889 return (name[2] == '\0'
9890 || ((name[2] == '0' || name[2] == '1') && name[3] == '\0'));
9892 default:
9893 return (ISDIGIT (name[1]) && name[2] == '\0');
9897 /* Return the DEX number if X must be replaced by a DEX expression and 0
9898 otherwise. */
9900 static int
9901 unicosmk_need_dex (rtx x)
9903 struct unicosmk_dex *dex;
9904 const char *name;
9905 int i;
9907 if (GET_CODE (x) != SYMBOL_REF)
9908 return 0;
9910 name = XSTR (x,0);
9911 if (! unicosmk_special_name (name))
9912 return 0;
9914 i = unicosmk_dex_count;
9915 for (dex = unicosmk_dex_list; dex; dex = dex->next)
9917 if (! strcmp (name, dex->name))
9918 return i;
9919 --i;
9922 dex = (struct unicosmk_dex *) xmalloc (sizeof (struct unicosmk_dex));
9923 dex->name = name;
9924 dex->next = unicosmk_dex_list;
9925 unicosmk_dex_list = dex;
9927 ++unicosmk_dex_count;
9928 return unicosmk_dex_count;
9931 /* Output the DEX definitions for this file. */
9933 static void
9934 unicosmk_output_dex (FILE *file)
9936 struct unicosmk_dex *dex;
9937 int i;
9939 if (unicosmk_dex_list == NULL)
9940 return;
9942 fprintf (file, "\t.dexstart\n");
9944 i = unicosmk_dex_count;
9945 for (dex = unicosmk_dex_list; dex; dex = dex->next)
9947 fprintf (file, "\tDEX (%d) = ", i);
9948 assemble_name (file, dex->name);
9949 putc ('\n', file);
9950 --i;
9953 fprintf (file, "\t.dexend\n");
9956 /* Output text that to appear at the beginning of an assembler file. */
9958 static void
9959 unicosmk_file_start (void)
9961 int i;
9963 fputs ("\t.ident\t", asm_out_file);
9964 unicosmk_output_module_name (asm_out_file);
9965 fputs ("\n\n", asm_out_file);
9967 /* The Unicos/Mk assembler uses different register names. Instead of trying
9968 to support them, we simply use micro definitions. */
9970 /* CAM has different register names: rN for the integer register N and fN
9971 for the floating-point register N. Instead of trying to use these in
9972 alpha.md, we define the symbols $N and $fN to refer to the appropriate
9973 register. */
9975 for (i = 0; i < 32; ++i)
9976 fprintf (asm_out_file, "$%d <- r%d\n", i, i);
9978 for (i = 0; i < 32; ++i)
9979 fprintf (asm_out_file, "$f%d <- f%d\n", i, i);
9981 putc ('\n', asm_out_file);
9983 /* The .align directive fill unused space with zeroes which does not work
9984 in code sections. We define the macro 'gcc@code@align' which uses nops
9985 instead. Note that it assumes that code sections always have the
9986 biggest possible alignment since . refers to the current offset from
9987 the beginning of the section. */
9989 fputs ("\t.macro gcc@code@align n\n", asm_out_file);
9990 fputs ("gcc@n@bytes = 1 << n\n", asm_out_file);
9991 fputs ("gcc@here = . % gcc@n@bytes\n", asm_out_file);
9992 fputs ("\t.if ne, gcc@here, 0\n", asm_out_file);
9993 fputs ("\t.repeat (gcc@n@bytes - gcc@here) / 4\n", asm_out_file);
9994 fputs ("\tbis r31,r31,r31\n", asm_out_file);
9995 fputs ("\t.endr\n", asm_out_file);
9996 fputs ("\t.endif\n", asm_out_file);
9997 fputs ("\t.endm gcc@code@align\n\n", asm_out_file);
9999 /* Output extern declarations which should always be visible. */
10000 unicosmk_output_default_externs (asm_out_file);
10002 /* Open a dummy section. We always need to be inside a section for the
10003 section-switching code to work correctly.
10004 ??? This should be a module id or something like that. I still have to
10005 figure out what the rules for those are. */
10006 fputs ("\n\t.psect\t$SG00000,data\n", asm_out_file);
10009 /* Output text to appear at the end of an assembler file. This includes all
10010 pending extern declarations and DEX expressions. */
10012 static void
10013 unicosmk_file_end (void)
10015 fputs ("\t.endp\n\n", asm_out_file);
10017 /* Output all pending externs. */
10019 unicosmk_output_externs (asm_out_file);
10021 /* Output dex definitions used for functions whose names conflict with
10022 register names. */
10024 unicosmk_output_dex (asm_out_file);
10026 fputs ("\t.end\t", asm_out_file);
10027 unicosmk_output_module_name (asm_out_file);
10028 putc ('\n', asm_out_file);
10031 #else
10033 static void
10034 unicosmk_output_deferred_case_vectors (FILE *file ATTRIBUTE_UNUSED)
10037 static void
10038 unicosmk_gen_dsib (unsigned long *imaskP ATTRIBUTE_UNUSED)
10041 static void
10042 unicosmk_output_ssib (FILE * file ATTRIBUTE_UNUSED,
10043 const char * fnname ATTRIBUTE_UNUSED)
10047 unicosmk_add_call_info_word (rtx x ATTRIBUTE_UNUSED)
10049 return NULL_RTX;
10052 static int
10053 unicosmk_need_dex (rtx x ATTRIBUTE_UNUSED)
10055 return 0;
10058 #endif /* TARGET_ABI_UNICOSMK */
10060 static void
10061 alpha_init_libfuncs (void)
10063 if (TARGET_ABI_UNICOSMK)
10065 /* Prevent gcc from generating calls to __divsi3. */
10066 set_optab_libfunc (sdiv_optab, SImode, 0);
10067 set_optab_libfunc (udiv_optab, SImode, 0);
10069 /* Use the functions provided by the system library
10070 for DImode integer division. */
10071 set_optab_libfunc (sdiv_optab, DImode, "$sldiv");
10072 set_optab_libfunc (udiv_optab, DImode, "$uldiv");
10074 else if (TARGET_ABI_OPEN_VMS)
10076 /* Use the VMS runtime library functions for division and
10077 remainder. */
10078 set_optab_libfunc (sdiv_optab, SImode, "OTS$DIV_I");
10079 set_optab_libfunc (sdiv_optab, DImode, "OTS$DIV_L");
10080 set_optab_libfunc (udiv_optab, SImode, "OTS$DIV_UI");
10081 set_optab_libfunc (udiv_optab, DImode, "OTS$DIV_UL");
10082 set_optab_libfunc (smod_optab, SImode, "OTS$REM_I");
10083 set_optab_libfunc (smod_optab, DImode, "OTS$REM_L");
10084 set_optab_libfunc (umod_optab, SImode, "OTS$REM_UI");
10085 set_optab_libfunc (umod_optab, DImode, "OTS$REM_UL");
10090 /* Initialize the GCC target structure. */
10091 #if TARGET_ABI_OPEN_VMS
10092 # undef TARGET_ATTRIBUTE_TABLE
10093 # define TARGET_ATTRIBUTE_TABLE vms_attribute_table
10094 # undef TARGET_SECTION_TYPE_FLAGS
10095 # define TARGET_SECTION_TYPE_FLAGS vms_section_type_flags
10096 #endif
10098 #undef TARGET_IN_SMALL_DATA_P
10099 #define TARGET_IN_SMALL_DATA_P alpha_in_small_data_p
10101 #if TARGET_ABI_UNICOSMK
10102 # undef TARGET_INSERT_ATTRIBUTES
10103 # define TARGET_INSERT_ATTRIBUTES unicosmk_insert_attributes
10104 # undef TARGET_SECTION_TYPE_FLAGS
10105 # define TARGET_SECTION_TYPE_FLAGS unicosmk_section_type_flags
10106 # undef TARGET_ASM_UNIQUE_SECTION
10107 # define TARGET_ASM_UNIQUE_SECTION unicosmk_unique_section
10108 # undef TARGET_ASM_GLOBALIZE_LABEL
10109 # define TARGET_ASM_GLOBALIZE_LABEL hook_void_FILEptr_constcharptr
10110 #endif
10112 #undef TARGET_ASM_ALIGNED_HI_OP
10113 #define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
10114 #undef TARGET_ASM_ALIGNED_DI_OP
10115 #define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t"
10117 /* Default unaligned ops are provided for ELF systems. To get unaligned
10118 data for non-ELF systems, we have to turn off auto alignment. */
10119 #ifndef OBJECT_FORMAT_ELF
10120 #undef TARGET_ASM_UNALIGNED_HI_OP
10121 #define TARGET_ASM_UNALIGNED_HI_OP "\t.align 0\n\t.word\t"
10122 #undef TARGET_ASM_UNALIGNED_SI_OP
10123 #define TARGET_ASM_UNALIGNED_SI_OP "\t.align 0\n\t.long\t"
10124 #undef TARGET_ASM_UNALIGNED_DI_OP
10125 #define TARGET_ASM_UNALIGNED_DI_OP "\t.align 0\n\t.quad\t"
10126 #endif
10128 #ifdef OBJECT_FORMAT_ELF
10129 #undef TARGET_ASM_SELECT_RTX_SECTION
10130 #define TARGET_ASM_SELECT_RTX_SECTION alpha_elf_select_rtx_section
10131 #endif
10133 #undef TARGET_ASM_FUNCTION_END_PROLOGUE
10134 #define TARGET_ASM_FUNCTION_END_PROLOGUE alpha_output_function_end_prologue
10136 #undef TARGET_INIT_LIBFUNCS
10137 #define TARGET_INIT_LIBFUNCS alpha_init_libfuncs
10139 #if TARGET_ABI_UNICOSMK
10140 #undef TARGET_ASM_FILE_START
10141 #define TARGET_ASM_FILE_START unicosmk_file_start
10142 #undef TARGET_ASM_FILE_END
10143 #define TARGET_ASM_FILE_END unicosmk_file_end
10144 #else
10145 #undef TARGET_ASM_FILE_START
10146 #define TARGET_ASM_FILE_START alpha_file_start
10147 #undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
10148 #define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
10149 #endif
10151 #undef TARGET_SCHED_ADJUST_COST
10152 #define TARGET_SCHED_ADJUST_COST alpha_adjust_cost
10153 #undef TARGET_SCHED_ISSUE_RATE
10154 #define TARGET_SCHED_ISSUE_RATE alpha_issue_rate
10155 #undef TARGET_SCHED_USE_DFA_PIPELINE_INTERFACE
10156 #define TARGET_SCHED_USE_DFA_PIPELINE_INTERFACE \
10157 alpha_use_dfa_pipeline_interface
10158 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
10159 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
10160 alpha_multipass_dfa_lookahead
10162 #undef TARGET_HAVE_TLS
10163 #define TARGET_HAVE_TLS HAVE_AS_TLS
10165 #undef TARGET_INIT_BUILTINS
10166 #define TARGET_INIT_BUILTINS alpha_init_builtins
10167 #undef TARGET_EXPAND_BUILTIN
10168 #define TARGET_EXPAND_BUILTIN alpha_expand_builtin
10170 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
10171 #define TARGET_FUNCTION_OK_FOR_SIBCALL alpha_function_ok_for_sibcall
10172 #undef TARGET_CANNOT_COPY_INSN_P
10173 #define TARGET_CANNOT_COPY_INSN_P alpha_cannot_copy_insn_p
10175 #if TARGET_ABI_OSF
10176 #undef TARGET_ASM_OUTPUT_MI_THUNK
10177 #define TARGET_ASM_OUTPUT_MI_THUNK alpha_output_mi_thunk_osf
10178 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
10179 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_tree_hwi_hwi_tree_true
10180 #endif
10182 #undef TARGET_RTX_COSTS
10183 #define TARGET_RTX_COSTS alpha_rtx_costs
10184 #undef TARGET_ADDRESS_COST
10185 #define TARGET_ADDRESS_COST hook_int_rtx_0
10187 #undef TARGET_MACHINE_DEPENDENT_REORG
10188 #define TARGET_MACHINE_DEPENDENT_REORG alpha_reorg
10190 #undef TARGET_PROMOTE_FUNCTION_ARGS
10191 #define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_tree_true
10192 #undef TARGET_PROMOTE_FUNCTION_RETURN
10193 #define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true
10194 #undef TARGET_PROMOTE_PROTOTYPES
10195 #define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_false
10196 #undef TARGET_STRUCT_VALUE_RTX
10197 #define TARGET_STRUCT_VALUE_RTX hook_rtx_tree_int_null
10198 #undef TARGET_RETURN_IN_MEMORY
10199 #define TARGET_RETURN_IN_MEMORY alpha_return_in_memory
10200 #undef TARGET_SETUP_INCOMING_VARARGS
10201 #define TARGET_SETUP_INCOMING_VARARGS alpha_setup_incoming_varargs
10202 #undef TARGET_STRICT_ARGUMENT_NAMING
10203 #define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
10204 #undef TARGET_PRETEND_OUTGOING_VARARGS_NAMED
10205 #define TARGET_PRETEND_OUTGOING_VARARGS_NAMED hook_bool_CUMULATIVE_ARGS_true
10207 #undef TARGET_BUILD_BUILTIN_VA_LIST
10208 #define TARGET_BUILD_BUILTIN_VA_LIST alpha_build_builtin_va_list
10210 struct gcc_target targetm = TARGET_INITIALIZER;
10213 #include "gt-alpha.h"