2003-12-26 Guilhem Lavaux <guilhem@kaffe.org>
[official-gcc.git] / gcc / cfgcleanup.c
blob056a32f4faa51671b66309951232e82f2a2de575
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains optimizer of the control flow. The main entrypoint is
23 cleanup_cfg. Following optimizations are performed:
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to it's
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
29 eliminated).
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
41 #include "timevar.h"
42 #include "output.h"
43 #include "insn-config.h"
44 #include "flags.h"
45 #include "recog.h"
46 #include "toplev.h"
47 #include "cselib.h"
48 #include "params.h"
49 #include "tm_p.h"
50 #include "target.h"
52 /* cleanup_cfg maintains following flags for each basic block. */
54 enum bb_flags
56 /* Set if BB is the forwarder block to avoid too many
57 forwarder_block_p calls. */
58 BB_FORWARDER_BLOCK = 1,
59 BB_NONTHREADABLE_BLOCK = 2
62 #define BB_FLAGS(BB) (enum bb_flags) (BB)->aux
63 #define BB_SET_FLAG(BB, FLAG) \
64 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux | (FLAG))
65 #define BB_CLEAR_FLAG(BB, FLAG) \
66 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux & ~(FLAG))
68 #define FORWARDER_BLOCK_P(BB) (BB_FLAGS (BB) & BB_FORWARDER_BLOCK)
70 static bool try_crossjump_to_edge (int, edge, edge);
71 static bool try_crossjump_bb (int, basic_block);
72 static bool outgoing_edges_match (int, basic_block, basic_block);
73 static int flow_find_cross_jump (int, basic_block, basic_block, rtx *, rtx *);
74 static bool insns_match_p (int, rtx, rtx);
76 static bool label_is_jump_target_p (rtx, rtx);
77 static bool tail_recursion_label_p (rtx);
78 static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
79 static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
80 static bool try_optimize_cfg (int);
81 static bool try_simplify_condjump (basic_block);
82 static bool try_forward_edges (int, basic_block);
83 static edge thread_jump (int, edge, basic_block);
84 static bool mark_effect (rtx, bitmap);
85 static void notice_new_block (basic_block);
86 static void update_forwarder_flag (basic_block);
87 static int mentions_nonequal_regs (rtx *, void *);
89 /* Set flags for newly created block. */
91 static void
92 notice_new_block (basic_block bb)
94 if (!bb)
95 return;
97 if (forwarder_block_p (bb))
98 BB_SET_FLAG (bb, BB_FORWARDER_BLOCK);
101 /* Recompute forwarder flag after block has been modified. */
103 static void
104 update_forwarder_flag (basic_block bb)
106 if (forwarder_block_p (bb))
107 BB_SET_FLAG (bb, BB_FORWARDER_BLOCK);
108 else
109 BB_CLEAR_FLAG (bb, BB_FORWARDER_BLOCK);
112 /* Simplify a conditional jump around an unconditional jump.
113 Return true if something changed. */
115 static bool
116 try_simplify_condjump (basic_block cbranch_block)
118 basic_block jump_block, jump_dest_block, cbranch_dest_block;
119 edge cbranch_jump_edge, cbranch_fallthru_edge;
120 rtx cbranch_insn;
121 rtx insn, next;
122 rtx end;
124 /* Verify that there are exactly two successors. */
125 if (!cbranch_block->succ
126 || !cbranch_block->succ->succ_next
127 || cbranch_block->succ->succ_next->succ_next)
128 return false;
130 /* Verify that we've got a normal conditional branch at the end
131 of the block. */
132 cbranch_insn = BB_END (cbranch_block);
133 if (!any_condjump_p (cbranch_insn))
134 return false;
136 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
137 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
139 /* The next block must not have multiple predecessors, must not
140 be the last block in the function, and must contain just the
141 unconditional jump. */
142 jump_block = cbranch_fallthru_edge->dest;
143 if (jump_block->pred->pred_next
144 || jump_block->next_bb == EXIT_BLOCK_PTR
145 || !FORWARDER_BLOCK_P (jump_block))
146 return false;
147 jump_dest_block = jump_block->succ->dest;
149 /* The conditional branch must target the block after the
150 unconditional branch. */
151 cbranch_dest_block = cbranch_jump_edge->dest;
153 if (!can_fallthru (jump_block, cbranch_dest_block))
154 return false;
156 /* Invert the conditional branch. */
157 if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
158 return false;
160 if (rtl_dump_file)
161 fprintf (rtl_dump_file, "Simplifying condjump %i around jump %i\n",
162 INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
164 /* Success. Update the CFG to match. Note that after this point
165 the edge variable names appear backwards; the redirection is done
166 this way to preserve edge profile data. */
167 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
168 cbranch_dest_block);
169 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
170 jump_dest_block);
171 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
172 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
173 update_br_prob_note (cbranch_block);
175 end = BB_END (jump_block);
176 /* Deleting a block may produce unreachable code warning even when we are
177 not deleting anything live. Suppress it by moving all the line number
178 notes out of the block. */
179 for (insn = BB_HEAD (jump_block); insn != NEXT_INSN (BB_END (jump_block));
180 insn = next)
182 next = NEXT_INSN (insn);
183 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
185 if (insn == BB_END (jump_block))
187 BB_END (jump_block) = PREV_INSN (insn);
188 if (insn == end)
189 break;
191 reorder_insns_nobb (insn, insn, end);
192 end = insn;
195 /* Delete the block with the unconditional jump, and clean up the mess. */
196 delete_block (jump_block);
197 tidy_fallthru_edge (cbranch_jump_edge, cbranch_block, cbranch_dest_block);
199 return true;
202 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
203 on register. Used by jump threading. */
205 static bool
206 mark_effect (rtx exp, regset nonequal)
208 int regno;
209 rtx dest;
210 switch (GET_CODE (exp))
212 /* In case we do clobber the register, mark it as equal, as we know the
213 value is dead so it don't have to match. */
214 case CLOBBER:
215 if (REG_P (XEXP (exp, 0)))
217 dest = XEXP (exp, 0);
218 regno = REGNO (dest);
219 CLEAR_REGNO_REG_SET (nonequal, regno);
220 if (regno < FIRST_PSEUDO_REGISTER)
222 int n = HARD_REGNO_NREGS (regno, GET_MODE (dest));
223 while (--n > 0)
224 CLEAR_REGNO_REG_SET (nonequal, regno + n);
227 return false;
229 case SET:
230 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
231 return false;
232 dest = SET_DEST (exp);
233 if (dest == pc_rtx)
234 return false;
235 if (!REG_P (dest))
236 return true;
237 regno = REGNO (dest);
238 SET_REGNO_REG_SET (nonequal, regno);
239 if (regno < FIRST_PSEUDO_REGISTER)
241 int n = HARD_REGNO_NREGS (regno, GET_MODE (dest));
242 while (--n > 0)
243 SET_REGNO_REG_SET (nonequal, regno + n);
245 return false;
247 default:
248 return false;
252 /* Return nonzero if X is a register set in regset DATA.
253 Called via for_each_rtx. */
254 static int
255 mentions_nonequal_regs (rtx *x, void *data)
257 regset nonequal = (regset) data;
258 if (REG_P (*x))
260 int regno;
262 regno = REGNO (*x);
263 if (REGNO_REG_SET_P (nonequal, regno))
264 return 1;
265 if (regno < FIRST_PSEUDO_REGISTER)
267 int n = HARD_REGNO_NREGS (regno, GET_MODE (*x));
268 while (--n > 0)
269 if (REGNO_REG_SET_P (nonequal, regno + n))
270 return 1;
273 return 0;
275 /* Attempt to prove that the basic block B will have no side effects and
276 always continues in the same edge if reached via E. Return the edge
277 if exist, NULL otherwise. */
279 static edge
280 thread_jump (int mode, edge e, basic_block b)
282 rtx set1, set2, cond1, cond2, insn;
283 enum rtx_code code1, code2, reversed_code2;
284 bool reverse1 = false;
285 int i;
286 regset nonequal;
287 bool failed = false;
289 if (BB_FLAGS (b) & BB_NONTHREADABLE_BLOCK)
290 return NULL;
292 /* At the moment, we do handle only conditional jumps, but later we may
293 want to extend this code to tablejumps and others. */
294 if (!e->src->succ->succ_next || e->src->succ->succ_next->succ_next)
295 return NULL;
296 if (!b->succ || !b->succ->succ_next || b->succ->succ_next->succ_next)
298 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
299 return NULL;
302 /* Second branch must end with onlyjump, as we will eliminate the jump. */
303 if (!any_condjump_p (BB_END (e->src)))
304 return NULL;
306 if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
308 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
309 return NULL;
312 set1 = pc_set (BB_END (e->src));
313 set2 = pc_set (BB_END (b));
314 if (((e->flags & EDGE_FALLTHRU) != 0)
315 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
316 reverse1 = true;
318 cond1 = XEXP (SET_SRC (set1), 0);
319 cond2 = XEXP (SET_SRC (set2), 0);
320 if (reverse1)
321 code1 = reversed_comparison_code (cond1, BB_END (e->src));
322 else
323 code1 = GET_CODE (cond1);
325 code2 = GET_CODE (cond2);
326 reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
328 if (!comparison_dominates_p (code1, code2)
329 && !comparison_dominates_p (code1, reversed_code2))
330 return NULL;
332 /* Ensure that the comparison operators are equivalent.
333 ??? This is far too pessimistic. We should allow swapped operands,
334 different CCmodes, or for example comparisons for interval, that
335 dominate even when operands are not equivalent. */
336 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
337 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
338 return NULL;
340 /* Short circuit cases where block B contains some side effects, as we can't
341 safely bypass it. */
342 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
343 insn = NEXT_INSN (insn))
344 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
346 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
347 return NULL;
350 cselib_init ();
352 /* First process all values computed in the source basic block. */
353 for (insn = NEXT_INSN (BB_HEAD (e->src)); insn != NEXT_INSN (BB_END (e->src));
354 insn = NEXT_INSN (insn))
355 if (INSN_P (insn))
356 cselib_process_insn (insn);
358 nonequal = BITMAP_XMALLOC();
359 CLEAR_REG_SET (nonequal);
361 /* Now assume that we've continued by the edge E to B and continue
362 processing as if it were same basic block.
363 Our goal is to prove that whole block is an NOOP. */
365 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b)) && !failed;
366 insn = NEXT_INSN (insn))
368 if (INSN_P (insn))
370 rtx pat = PATTERN (insn);
372 if (GET_CODE (pat) == PARALLEL)
374 for (i = 0; i < XVECLEN (pat, 0); i++)
375 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
377 else
378 failed |= mark_effect (pat, nonequal);
381 cselib_process_insn (insn);
384 /* Later we should clear nonequal of dead registers. So far we don't
385 have life information in cfg_cleanup. */
386 if (failed)
388 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
389 goto failed_exit;
392 /* cond2 must not mention any register that is not equal to the
393 former block. */
394 if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
395 goto failed_exit;
397 /* In case liveness information is available, we need to prove equivalence
398 only of the live values. */
399 if (mode & CLEANUP_UPDATE_LIFE)
400 AND_REG_SET (nonequal, b->global_live_at_end);
402 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, goto failed_exit;);
404 BITMAP_XFREE (nonequal);
405 cselib_finish ();
406 if ((comparison_dominates_p (code1, code2) != 0)
407 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
408 return BRANCH_EDGE (b);
409 else
410 return FALLTHRU_EDGE (b);
412 failed_exit:
413 BITMAP_XFREE (nonequal);
414 cselib_finish ();
415 return NULL;
418 /* Attempt to forward edges leaving basic block B.
419 Return true if successful. */
421 static bool
422 try_forward_edges (int mode, basic_block b)
424 bool changed = false;
425 edge e, next, *threaded_edges = NULL;
427 for (e = b->succ; e; e = next)
429 basic_block target, first;
430 int counter;
431 bool threaded = false;
432 int nthreaded_edges = 0;
434 next = e->succ_next;
436 /* Skip complex edges because we don't know how to update them.
438 Still handle fallthru edges, as we can succeed to forward fallthru
439 edge to the same place as the branch edge of conditional branch
440 and turn conditional branch to an unconditional branch. */
441 if (e->flags & EDGE_COMPLEX)
442 continue;
444 target = first = e->dest;
445 counter = 0;
447 while (counter < n_basic_blocks)
449 basic_block new_target = NULL;
450 bool new_target_threaded = false;
452 if (FORWARDER_BLOCK_P (target)
453 && target->succ->dest != EXIT_BLOCK_PTR)
455 /* Bypass trivial infinite loops. */
456 if (target == target->succ->dest)
457 counter = n_basic_blocks;
458 new_target = target->succ->dest;
461 /* Allow to thread only over one edge at time to simplify updating
462 of probabilities. */
463 else if (mode & CLEANUP_THREADING)
465 edge t = thread_jump (mode, e, target);
466 if (t)
468 if (!threaded_edges)
469 threaded_edges = xmalloc (sizeof (*threaded_edges)
470 * n_basic_blocks);
471 else
473 int i;
475 /* Detect an infinite loop across blocks not
476 including the start block. */
477 for (i = 0; i < nthreaded_edges; ++i)
478 if (threaded_edges[i] == t)
479 break;
480 if (i < nthreaded_edges)
482 counter = n_basic_blocks;
483 break;
487 /* Detect an infinite loop across the start block. */
488 if (t->dest == b)
489 break;
491 if (nthreaded_edges >= n_basic_blocks)
492 abort ();
493 threaded_edges[nthreaded_edges++] = t;
495 new_target = t->dest;
496 new_target_threaded = true;
500 if (!new_target)
501 break;
503 /* Avoid killing of loop pre-headers, as it is the place loop
504 optimizer wants to hoist code to.
506 For fallthru forwarders, the LOOP_BEG note must appear between
507 the header of block and CODE_LABEL of the loop, for non forwarders
508 it must appear before the JUMP_INSN. */
509 if ((mode & CLEANUP_PRE_LOOP) && optimize)
511 rtx insn = (target->succ->flags & EDGE_FALLTHRU
512 ? BB_HEAD (target) : prev_nonnote_insn (BB_END (target)));
514 if (GET_CODE (insn) != NOTE)
515 insn = NEXT_INSN (insn);
517 for (; insn && GET_CODE (insn) != CODE_LABEL && !INSN_P (insn);
518 insn = NEXT_INSN (insn))
519 if (GET_CODE (insn) == NOTE
520 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
521 break;
523 if (GET_CODE (insn) == NOTE)
524 break;
526 /* Do not clean up branches to just past the end of a loop
527 at this time; it can mess up the loop optimizer's
528 recognition of some patterns. */
530 insn = PREV_INSN (BB_HEAD (target));
531 if (insn && GET_CODE (insn) == NOTE
532 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
533 break;
536 counter++;
537 target = new_target;
538 threaded |= new_target_threaded;
541 if (counter >= n_basic_blocks)
543 if (rtl_dump_file)
544 fprintf (rtl_dump_file, "Infinite loop in BB %i.\n",
545 target->index);
547 else if (target == first)
548 ; /* We didn't do anything. */
549 else
551 /* Save the values now, as the edge may get removed. */
552 gcov_type edge_count = e->count;
553 int edge_probability = e->probability;
554 int edge_frequency;
555 int n = 0;
557 /* Don't force if target is exit block. */
558 if (threaded && target != EXIT_BLOCK_PTR)
560 notice_new_block (redirect_edge_and_branch_force (e, target));
561 if (rtl_dump_file)
562 fprintf (rtl_dump_file, "Conditionals threaded.\n");
564 else if (!redirect_edge_and_branch (e, target))
566 if (rtl_dump_file)
567 fprintf (rtl_dump_file,
568 "Forwarding edge %i->%i to %i failed.\n",
569 b->index, e->dest->index, target->index);
570 continue;
573 /* We successfully forwarded the edge. Now update profile
574 data: for each edge we traversed in the chain, remove
575 the original edge's execution count. */
576 edge_frequency = ((edge_probability * b->frequency
577 + REG_BR_PROB_BASE / 2)
578 / REG_BR_PROB_BASE);
580 if (!FORWARDER_BLOCK_P (b) && forwarder_block_p (b))
581 BB_SET_FLAG (b, BB_FORWARDER_BLOCK);
585 edge t;
587 first->count -= edge_count;
588 if (first->count < 0)
589 first->count = 0;
590 first->frequency -= edge_frequency;
591 if (first->frequency < 0)
592 first->frequency = 0;
593 if (first->succ->succ_next)
595 edge e;
596 int prob;
597 if (n >= nthreaded_edges)
598 abort ();
599 t = threaded_edges [n++];
600 if (t->src != first)
601 abort ();
602 if (first->frequency)
603 prob = edge_frequency * REG_BR_PROB_BASE / first->frequency;
604 else
605 prob = 0;
606 if (prob > t->probability)
607 prob = t->probability;
608 t->probability -= prob;
609 prob = REG_BR_PROB_BASE - prob;
610 if (prob <= 0)
612 first->succ->probability = REG_BR_PROB_BASE;
613 first->succ->succ_next->probability = 0;
615 else
616 for (e = first->succ; e; e = e->succ_next)
617 e->probability = ((e->probability * REG_BR_PROB_BASE)
618 / (double) prob);
619 update_br_prob_note (first);
621 else
623 /* It is possible that as the result of
624 threading we've removed edge as it is
625 threaded to the fallthru edge. Avoid
626 getting out of sync. */
627 if (n < nthreaded_edges
628 && first == threaded_edges [n]->src)
629 n++;
630 t = first->succ;
633 t->count -= edge_count;
634 if (t->count < 0)
635 t->count = 0;
636 first = t->dest;
638 while (first != target);
640 changed = true;
644 if (threaded_edges)
645 free (threaded_edges);
646 return changed;
649 /* Return true if LABEL is a target of JUMP_INSN. This applies only
650 to non-complex jumps. That is, direct unconditional, conditional,
651 and tablejumps, but not computed jumps or returns. It also does
652 not apply to the fallthru case of a conditional jump. */
654 static bool
655 label_is_jump_target_p (rtx label, rtx jump_insn)
657 rtx tmp = JUMP_LABEL (jump_insn);
659 if (label == tmp)
660 return true;
662 if (tablejump_p (jump_insn, NULL, &tmp))
664 rtvec vec = XVEC (PATTERN (tmp),
665 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
666 int i, veclen = GET_NUM_ELEM (vec);
668 for (i = 0; i < veclen; ++i)
669 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
670 return true;
673 return false;
676 /* Return true if LABEL is used for tail recursion. */
678 static bool
679 tail_recursion_label_p (rtx label)
681 rtx x;
683 for (x = tail_recursion_label_list; x; x = XEXP (x, 1))
684 if (label == XEXP (x, 0))
685 return true;
687 return false;
690 /* Blocks A and B are to be merged into a single block. A has no incoming
691 fallthru edge, so it can be moved before B without adding or modifying
692 any jumps (aside from the jump from A to B). */
694 static void
695 merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
697 rtx barrier;
699 barrier = next_nonnote_insn (BB_END (a));
700 if (GET_CODE (barrier) != BARRIER)
701 abort ();
702 delete_insn (barrier);
704 /* Move block and loop notes out of the chain so that we do not
705 disturb their order.
707 ??? A better solution would be to squeeze out all the non-nested notes
708 and adjust the block trees appropriately. Even better would be to have
709 a tighter connection between block trees and rtl so that this is not
710 necessary. */
711 if (squeeze_notes (&BB_HEAD (a), &BB_END (a)))
712 abort ();
714 /* Scramble the insn chain. */
715 if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
716 reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
717 a->flags |= BB_DIRTY;
719 if (rtl_dump_file)
720 fprintf (rtl_dump_file, "Moved block %d before %d and merged.\n",
721 a->index, b->index);
723 /* Swap the records for the two blocks around. */
725 unlink_block (a);
726 link_block (a, b->prev_bb);
728 /* Now blocks A and B are contiguous. Merge them. */
729 merge_blocks (a, b);
732 /* Blocks A and B are to be merged into a single block. B has no outgoing
733 fallthru edge, so it can be moved after A without adding or modifying
734 any jumps (aside from the jump from A to B). */
736 static void
737 merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
739 rtx barrier, real_b_end;
740 rtx label, table;
742 real_b_end = BB_END (b);
744 /* If there is a jump table following block B temporarily add the jump table
745 to block B so that it will also be moved to the correct location. */
746 if (tablejump_p (BB_END (b), &label, &table)
747 && prev_active_insn (label) == BB_END (b))
749 BB_END (b) = table;
752 /* There had better have been a barrier there. Delete it. */
753 barrier = NEXT_INSN (BB_END (b));
754 if (barrier && GET_CODE (barrier) == BARRIER)
755 delete_insn (barrier);
757 /* Move block and loop notes out of the chain so that we do not
758 disturb their order.
760 ??? A better solution would be to squeeze out all the non-nested notes
761 and adjust the block trees appropriately. Even better would be to have
762 a tighter connection between block trees and rtl so that this is not
763 necessary. */
764 if (squeeze_notes (&BB_HEAD (b), &BB_END (b)))
765 abort ();
767 /* Scramble the insn chain. */
768 reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
770 /* Restore the real end of b. */
771 BB_END (b) = real_b_end;
773 if (rtl_dump_file)
774 fprintf (rtl_dump_file, "Moved block %d after %d and merged.\n",
775 b->index, a->index);
777 /* Now blocks A and B are contiguous. Merge them. */
778 merge_blocks (a, b);
781 /* Attempt to merge basic blocks that are potentially non-adjacent.
782 Return NULL iff the attempt failed, otherwise return basic block
783 where cleanup_cfg should continue. Because the merging commonly
784 moves basic block away or introduces another optimization
785 possibility, return basic block just before B so cleanup_cfg don't
786 need to iterate.
788 It may be good idea to return basic block before C in the case
789 C has been moved after B and originally appeared earlier in the
790 insn sequence, but we have no information available about the
791 relative ordering of these two. Hopefully it is not too common. */
793 static basic_block
794 merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
796 basic_block next;
797 /* If C has a tail recursion label, do not merge. There is no
798 edge recorded from the call_placeholder back to this label, as
799 that would make optimize_sibling_and_tail_recursive_calls more
800 complex for no gain. */
801 if ((mode & CLEANUP_PRE_SIBCALL)
802 && GET_CODE (BB_HEAD (c)) == CODE_LABEL
803 && tail_recursion_label_p (BB_HEAD (c)))
804 return NULL;
806 /* If B has a fallthru edge to C, no need to move anything. */
807 if (e->flags & EDGE_FALLTHRU)
809 int b_index = b->index, c_index = c->index;
810 merge_blocks (b, c);
811 update_forwarder_flag (b);
813 if (rtl_dump_file)
814 fprintf (rtl_dump_file, "Merged %d and %d without moving.\n",
815 b_index, c_index);
817 return b->prev_bb == ENTRY_BLOCK_PTR ? b : b->prev_bb;
820 /* Otherwise we will need to move code around. Do that only if expensive
821 transformations are allowed. */
822 else if (mode & CLEANUP_EXPENSIVE)
824 edge tmp_edge, b_fallthru_edge;
825 bool c_has_outgoing_fallthru;
826 bool b_has_incoming_fallthru;
828 /* Avoid overactive code motion, as the forwarder blocks should be
829 eliminated by edge redirection instead. One exception might have
830 been if B is a forwarder block and C has no fallthru edge, but
831 that should be cleaned up by bb-reorder instead. */
832 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
833 return NULL;
835 /* We must make sure to not munge nesting of lexical blocks,
836 and loop notes. This is done by squeezing out all the notes
837 and leaving them there to lie. Not ideal, but functional. */
839 for (tmp_edge = c->succ; tmp_edge; tmp_edge = tmp_edge->succ_next)
840 if (tmp_edge->flags & EDGE_FALLTHRU)
841 break;
843 c_has_outgoing_fallthru = (tmp_edge != NULL);
845 for (tmp_edge = b->pred; tmp_edge; tmp_edge = tmp_edge->pred_next)
846 if (tmp_edge->flags & EDGE_FALLTHRU)
847 break;
849 b_has_incoming_fallthru = (tmp_edge != NULL);
850 b_fallthru_edge = tmp_edge;
851 next = b->prev_bb;
852 if (next == c)
853 next = next->prev_bb;
855 /* Otherwise, we're going to try to move C after B. If C does
856 not have an outgoing fallthru, then it can be moved
857 immediately after B without introducing or modifying jumps. */
858 if (! c_has_outgoing_fallthru)
860 merge_blocks_move_successor_nojumps (b, c);
861 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
864 /* If B does not have an incoming fallthru, then it can be moved
865 immediately before C without introducing or modifying jumps.
866 C cannot be the first block, so we do not have to worry about
867 accessing a non-existent block. */
869 if (b_has_incoming_fallthru)
871 basic_block bb;
873 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR)
874 return NULL;
875 bb = force_nonfallthru (b_fallthru_edge);
876 if (bb)
877 notice_new_block (bb);
880 merge_blocks_move_predecessor_nojumps (b, c);
881 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
884 return NULL;
888 /* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
890 static bool
891 insns_match_p (int mode ATTRIBUTE_UNUSED, rtx i1, rtx i2)
893 rtx p1, p2;
895 /* Verify that I1 and I2 are equivalent. */
896 if (GET_CODE (i1) != GET_CODE (i2))
897 return false;
899 p1 = PATTERN (i1);
900 p2 = PATTERN (i2);
902 if (GET_CODE (p1) != GET_CODE (p2))
903 return false;
905 /* If this is a CALL_INSN, compare register usage information.
906 If we don't check this on stack register machines, the two
907 CALL_INSNs might be merged leaving reg-stack.c with mismatching
908 numbers of stack registers in the same basic block.
909 If we don't check this on machines with delay slots, a delay slot may
910 be filled that clobbers a parameter expected by the subroutine.
912 ??? We take the simple route for now and assume that if they're
913 equal, they were constructed identically. */
915 if (GET_CODE (i1) == CALL_INSN
916 && (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
917 CALL_INSN_FUNCTION_USAGE (i2))
918 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2)))
919 return false;
921 #ifdef STACK_REGS
922 /* If cross_jump_death_matters is not 0, the insn's mode
923 indicates whether or not the insn contains any stack-like
924 regs. */
926 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
928 /* If register stack conversion has already been done, then
929 death notes must also be compared before it is certain that
930 the two instruction streams match. */
932 rtx note;
933 HARD_REG_SET i1_regset, i2_regset;
935 CLEAR_HARD_REG_SET (i1_regset);
936 CLEAR_HARD_REG_SET (i2_regset);
938 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
939 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
940 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
942 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
943 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
944 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
946 GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
948 return false;
950 done:
953 #endif
955 if (reload_completed
956 ? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
957 return true;
959 /* Do not do EQUIV substitution after reload. First, we're undoing the
960 work of reload_cse. Second, we may be undoing the work of the post-
961 reload splitting pass. */
962 /* ??? Possibly add a new phase switch variable that can be used by
963 targets to disallow the troublesome insns after splitting. */
964 if (!reload_completed)
966 /* The following code helps take care of G++ cleanups. */
967 rtx equiv1 = find_reg_equal_equiv_note (i1);
968 rtx equiv2 = find_reg_equal_equiv_note (i2);
970 if (equiv1 && equiv2
971 /* If the equivalences are not to a constant, they may
972 reference pseudos that no longer exist, so we can't
973 use them. */
974 && (! reload_completed
975 || (CONSTANT_P (XEXP (equiv1, 0))
976 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))))
978 rtx s1 = single_set (i1);
979 rtx s2 = single_set (i2);
980 if (s1 != 0 && s2 != 0
981 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
983 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
984 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
985 if (! rtx_renumbered_equal_p (p1, p2))
986 cancel_changes (0);
987 else if (apply_change_group ())
988 return true;
993 return false;
996 /* Look through the insns at the end of BB1 and BB2 and find the longest
997 sequence that are equivalent. Store the first insns for that sequence
998 in *F1 and *F2 and return the sequence length.
1000 To simplify callers of this function, if the blocks match exactly,
1001 store the head of the blocks in *F1 and *F2. */
1003 static int
1004 flow_find_cross_jump (int mode ATTRIBUTE_UNUSED, basic_block bb1,
1005 basic_block bb2, rtx *f1, rtx *f2)
1007 rtx i1, i2, last1, last2, afterlast1, afterlast2;
1008 int ninsns = 0;
1010 /* Skip simple jumps at the end of the blocks. Complex jumps still
1011 need to be compared for equivalence, which we'll do below. */
1013 i1 = BB_END (bb1);
1014 last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
1015 if (onlyjump_p (i1)
1016 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1018 last1 = i1;
1019 i1 = PREV_INSN (i1);
1022 i2 = BB_END (bb2);
1023 if (onlyjump_p (i2)
1024 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1026 last2 = i2;
1027 /* Count everything except for unconditional jump as insn. */
1028 if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
1029 ninsns++;
1030 i2 = PREV_INSN (i2);
1033 while (true)
1035 /* Ignore notes. */
1036 while (!INSN_P (i1) && i1 != BB_HEAD (bb1))
1037 i1 = PREV_INSN (i1);
1039 while (!INSN_P (i2) && i2 != BB_HEAD (bb2))
1040 i2 = PREV_INSN (i2);
1042 if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
1043 break;
1045 if (!insns_match_p (mode, i1, i2))
1046 break;
1048 /* Don't begin a cross-jump with a NOTE insn. */
1049 if (INSN_P (i1))
1051 /* If the merged insns have different REG_EQUAL notes, then
1052 remove them. */
1053 rtx equiv1 = find_reg_equal_equiv_note (i1);
1054 rtx equiv2 = find_reg_equal_equiv_note (i2);
1056 if (equiv1 && !equiv2)
1057 remove_note (i1, equiv1);
1058 else if (!equiv1 && equiv2)
1059 remove_note (i2, equiv2);
1060 else if (equiv1 && equiv2
1061 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1063 remove_note (i1, equiv1);
1064 remove_note (i2, equiv2);
1067 afterlast1 = last1, afterlast2 = last2;
1068 last1 = i1, last2 = i2;
1069 ninsns++;
1072 i1 = PREV_INSN (i1);
1073 i2 = PREV_INSN (i2);
1076 #ifdef HAVE_cc0
1077 /* Don't allow the insn after a compare to be shared by
1078 cross-jumping unless the compare is also shared. */
1079 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
1080 last1 = afterlast1, last2 = afterlast2, ninsns--;
1081 #endif
1083 /* Include preceding notes and labels in the cross-jump. One,
1084 this may bring us to the head of the blocks as requested above.
1085 Two, it keeps line number notes as matched as may be. */
1086 if (ninsns)
1088 while (last1 != BB_HEAD (bb1) && !INSN_P (PREV_INSN (last1)))
1089 last1 = PREV_INSN (last1);
1091 if (last1 != BB_HEAD (bb1) && GET_CODE (PREV_INSN (last1)) == CODE_LABEL)
1092 last1 = PREV_INSN (last1);
1094 while (last2 != BB_HEAD (bb2) && !INSN_P (PREV_INSN (last2)))
1095 last2 = PREV_INSN (last2);
1097 if (last2 != BB_HEAD (bb2) && GET_CODE (PREV_INSN (last2)) == CODE_LABEL)
1098 last2 = PREV_INSN (last2);
1100 *f1 = last1;
1101 *f2 = last2;
1104 return ninsns;
1107 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1108 the branch instruction. This means that if we commonize the control
1109 flow before end of the basic block, the semantic remains unchanged.
1111 We may assume that there exists one edge with a common destination. */
1113 static bool
1114 outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
1116 int nehedges1 = 0, nehedges2 = 0;
1117 edge fallthru1 = 0, fallthru2 = 0;
1118 edge e1, e2;
1120 /* If BB1 has only one successor, we may be looking at either an
1121 unconditional jump, or a fake edge to exit. */
1122 if (bb1->succ && !bb1->succ->succ_next
1123 && (bb1->succ->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1124 && (GET_CODE (BB_END (bb1)) != JUMP_INSN || simplejump_p (BB_END (bb1))))
1125 return (bb2->succ && !bb2->succ->succ_next
1126 && (bb2->succ->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1127 && (GET_CODE (BB_END (bb2)) != JUMP_INSN || simplejump_p (BB_END (bb2))));
1129 /* Match conditional jumps - this may get tricky when fallthru and branch
1130 edges are crossed. */
1131 if (bb1->succ
1132 && bb1->succ->succ_next
1133 && !bb1->succ->succ_next->succ_next
1134 && any_condjump_p (BB_END (bb1))
1135 && onlyjump_p (BB_END (bb1)))
1137 edge b1, f1, b2, f2;
1138 bool reverse, match;
1139 rtx set1, set2, cond1, cond2;
1140 enum rtx_code code1, code2;
1142 if (!bb2->succ
1143 || !bb2->succ->succ_next
1144 || bb2->succ->succ_next->succ_next
1145 || !any_condjump_p (BB_END (bb2))
1146 || !onlyjump_p (BB_END (bb2)))
1147 return false;
1149 b1 = BRANCH_EDGE (bb1);
1150 b2 = BRANCH_EDGE (bb2);
1151 f1 = FALLTHRU_EDGE (bb1);
1152 f2 = FALLTHRU_EDGE (bb2);
1154 /* Get around possible forwarders on fallthru edges. Other cases
1155 should be optimized out already. */
1156 if (FORWARDER_BLOCK_P (f1->dest))
1157 f1 = f1->dest->succ;
1159 if (FORWARDER_BLOCK_P (f2->dest))
1160 f2 = f2->dest->succ;
1162 /* To simplify use of this function, return false if there are
1163 unneeded forwarder blocks. These will get eliminated later
1164 during cleanup_cfg. */
1165 if (FORWARDER_BLOCK_P (f1->dest)
1166 || FORWARDER_BLOCK_P (f2->dest)
1167 || FORWARDER_BLOCK_P (b1->dest)
1168 || FORWARDER_BLOCK_P (b2->dest))
1169 return false;
1171 if (f1->dest == f2->dest && b1->dest == b2->dest)
1172 reverse = false;
1173 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1174 reverse = true;
1175 else
1176 return false;
1178 set1 = pc_set (BB_END (bb1));
1179 set2 = pc_set (BB_END (bb2));
1180 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1181 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1182 reverse = !reverse;
1184 cond1 = XEXP (SET_SRC (set1), 0);
1185 cond2 = XEXP (SET_SRC (set2), 0);
1186 code1 = GET_CODE (cond1);
1187 if (reverse)
1188 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1189 else
1190 code2 = GET_CODE (cond2);
1192 if (code2 == UNKNOWN)
1193 return false;
1195 /* Verify codes and operands match. */
1196 match = ((code1 == code2
1197 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1198 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1199 || (code1 == swap_condition (code2)
1200 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1201 XEXP (cond2, 0))
1202 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1203 XEXP (cond2, 1))));
1205 /* If we return true, we will join the blocks. Which means that
1206 we will only have one branch prediction bit to work with. Thus
1207 we require the existing branches to have probabilities that are
1208 roughly similar. */
1209 if (match
1210 && !optimize_size
1211 && maybe_hot_bb_p (bb1)
1212 && maybe_hot_bb_p (bb2))
1214 int prob2;
1216 if (b1->dest == b2->dest)
1217 prob2 = b2->probability;
1218 else
1219 /* Do not use f2 probability as f2 may be forwarded. */
1220 prob2 = REG_BR_PROB_BASE - b2->probability;
1222 /* Fail if the difference in probabilities is greater than 50%.
1223 This rules out two well-predicted branches with opposite
1224 outcomes. */
1225 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1227 if (rtl_dump_file)
1228 fprintf (rtl_dump_file,
1229 "Outcomes of branch in bb %i and %i differs to much (%i %i)\n",
1230 bb1->index, bb2->index, b1->probability, prob2);
1232 return false;
1236 if (rtl_dump_file && match)
1237 fprintf (rtl_dump_file, "Conditionals in bb %i and %i match.\n",
1238 bb1->index, bb2->index);
1240 return match;
1243 /* Generic case - we are seeing a computed jump, table jump or trapping
1244 instruction. */
1246 #ifndef CASE_DROPS_THROUGH
1247 /* Check whether there are tablejumps in the end of BB1 and BB2.
1248 Return true if they are identical. */
1250 rtx label1, label2;
1251 rtx table1, table2;
1253 if (tablejump_p (BB_END (bb1), &label1, &table1)
1254 && tablejump_p (BB_END (bb2), &label2, &table2)
1255 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1257 /* The labels should never be the same rtx. If they really are same
1258 the jump tables are same too. So disable crossjumping of blocks BB1
1259 and BB2 because when deleting the common insns in the end of BB1
1260 by delete_block () the jump table would be deleted too. */
1261 /* If LABEL2 is referenced in BB1->END do not do anything
1262 because we would loose information when replacing
1263 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1264 if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
1266 /* Set IDENTICAL to true when the tables are identical. */
1267 bool identical = false;
1268 rtx p1, p2;
1270 p1 = PATTERN (table1);
1271 p2 = PATTERN (table2);
1272 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1274 identical = true;
1276 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1277 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1278 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1279 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1281 int i;
1283 identical = true;
1284 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1285 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1286 identical = false;
1289 if (identical)
1291 replace_label_data rr;
1292 bool match;
1294 /* Temporarily replace references to LABEL1 with LABEL2
1295 in BB1->END so that we could compare the instructions. */
1296 rr.r1 = label1;
1297 rr.r2 = label2;
1298 rr.update_label_nuses = false;
1299 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1301 match = insns_match_p (mode, BB_END (bb1), BB_END (bb2));
1302 if (rtl_dump_file && match)
1303 fprintf (rtl_dump_file,
1304 "Tablejumps in bb %i and %i match.\n",
1305 bb1->index, bb2->index);
1307 /* Set the original label in BB1->END because when deleting
1308 a block whose end is a tablejump, the tablejump referenced
1309 from the instruction is deleted too. */
1310 rr.r1 = label2;
1311 rr.r2 = label1;
1312 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1314 return match;
1317 return false;
1320 #endif
1322 /* First ensure that the instructions match. There may be many outgoing
1323 edges so this test is generally cheaper. */
1324 if (!insns_match_p (mode, BB_END (bb1), BB_END (bb2)))
1325 return false;
1327 /* Search the outgoing edges, ensure that the counts do match, find possible
1328 fallthru and exception handling edges since these needs more
1329 validation. */
1330 for (e1 = bb1->succ, e2 = bb2->succ; e1 && e2;
1331 e1 = e1->succ_next, e2 = e2->succ_next)
1333 if (e1->flags & EDGE_EH)
1334 nehedges1++;
1336 if (e2->flags & EDGE_EH)
1337 nehedges2++;
1339 if (e1->flags & EDGE_FALLTHRU)
1340 fallthru1 = e1;
1341 if (e2->flags & EDGE_FALLTHRU)
1342 fallthru2 = e2;
1345 /* If number of edges of various types does not match, fail. */
1346 if (e1 || e2
1347 || nehedges1 != nehedges2
1348 || (fallthru1 != 0) != (fallthru2 != 0))
1349 return false;
1351 /* fallthru edges must be forwarded to the same destination. */
1352 if (fallthru1)
1354 basic_block d1 = (forwarder_block_p (fallthru1->dest)
1355 ? fallthru1->dest->succ->dest: fallthru1->dest);
1356 basic_block d2 = (forwarder_block_p (fallthru2->dest)
1357 ? fallthru2->dest->succ->dest: fallthru2->dest);
1359 if (d1 != d2)
1360 return false;
1363 /* Ensure the same EH region. */
1365 rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
1366 rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
1368 if (!n1 && n2)
1369 return false;
1371 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1372 return false;
1375 /* We don't need to match the rest of edges as above checks should be enough
1376 to ensure that they are equivalent. */
1377 return true;
1380 /* E1 and E2 are edges with the same destination block. Search their
1381 predecessors for common code. If found, redirect control flow from
1382 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
1384 static bool
1385 try_crossjump_to_edge (int mode, edge e1, edge e2)
1387 int nmatch;
1388 basic_block src1 = e1->src, src2 = e2->src;
1389 basic_block redirect_to, redirect_from, to_remove;
1390 rtx newpos1, newpos2;
1391 edge s;
1393 /* Search backward through forwarder blocks. We don't need to worry
1394 about multiple entry or chained forwarders, as they will be optimized
1395 away. We do this to look past the unconditional jump following a
1396 conditional jump that is required due to the current CFG shape. */
1397 if (src1->pred
1398 && !src1->pred->pred_next
1399 && FORWARDER_BLOCK_P (src1))
1400 e1 = src1->pred, src1 = e1->src;
1402 if (src2->pred
1403 && !src2->pred->pred_next
1404 && FORWARDER_BLOCK_P (src2))
1405 e2 = src2->pred, src2 = e2->src;
1407 /* Nothing to do if we reach ENTRY, or a common source block. */
1408 if (src1 == ENTRY_BLOCK_PTR || src2 == ENTRY_BLOCK_PTR)
1409 return false;
1410 if (src1 == src2)
1411 return false;
1413 /* Seeing more than 1 forwarder blocks would confuse us later... */
1414 if (FORWARDER_BLOCK_P (e1->dest)
1415 && FORWARDER_BLOCK_P (e1->dest->succ->dest))
1416 return false;
1418 if (FORWARDER_BLOCK_P (e2->dest)
1419 && FORWARDER_BLOCK_P (e2->dest->succ->dest))
1420 return false;
1422 /* Likewise with dead code (possibly newly created by the other optimizations
1423 of cfg_cleanup). */
1424 if (!src1->pred || !src2->pred)
1425 return false;
1427 /* Look for the common insn sequence, part the first ... */
1428 if (!outgoing_edges_match (mode, src1, src2))
1429 return false;
1431 /* ... and part the second. */
1432 nmatch = flow_find_cross_jump (mode, src1, src2, &newpos1, &newpos2);
1433 if (!nmatch)
1434 return false;
1436 #ifndef CASE_DROPS_THROUGH
1437 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1438 will be deleted.
1439 If we have tablejumps in the end of SRC1 and SRC2
1440 they have been already compared for equivalence in outgoing_edges_match ()
1441 so replace the references to TABLE1 by references to TABLE2. */
1443 rtx label1, label2;
1444 rtx table1, table2;
1446 if (tablejump_p (BB_END (src1), &label1, &table1)
1447 && tablejump_p (BB_END (src2), &label2, &table2)
1448 && label1 != label2)
1450 replace_label_data rr;
1451 rtx insn;
1453 /* Replace references to LABEL1 with LABEL2. */
1454 rr.r1 = label1;
1455 rr.r2 = label2;
1456 rr.update_label_nuses = true;
1457 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1459 /* Do not replace the label in SRC1->END because when deleting
1460 a block whose end is a tablejump, the tablejump referenced
1461 from the instruction is deleted too. */
1462 if (insn != BB_END (src1))
1463 for_each_rtx (&insn, replace_label, &rr);
1467 #endif
1469 /* Avoid splitting if possible. */
1470 if (newpos2 == BB_HEAD (src2))
1471 redirect_to = src2;
1472 else
1474 if (rtl_dump_file)
1475 fprintf (rtl_dump_file, "Splitting bb %i before %i insns\n",
1476 src2->index, nmatch);
1477 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
1480 if (rtl_dump_file)
1481 fprintf (rtl_dump_file,
1482 "Cross jumping from bb %i to bb %i; %i common insns\n",
1483 src1->index, src2->index, nmatch);
1485 redirect_to->count += src1->count;
1486 redirect_to->frequency += src1->frequency;
1487 /* We may have some registers visible trought the block. */
1488 redirect_to->flags |= BB_DIRTY;
1490 /* Recompute the frequencies and counts of outgoing edges. */
1491 for (s = redirect_to->succ; s; s = s->succ_next)
1493 edge s2;
1494 basic_block d = s->dest;
1496 if (FORWARDER_BLOCK_P (d))
1497 d = d->succ->dest;
1499 for (s2 = src1->succ; ; s2 = s2->succ_next)
1501 basic_block d2 = s2->dest;
1502 if (FORWARDER_BLOCK_P (d2))
1503 d2 = d2->succ->dest;
1504 if (d == d2)
1505 break;
1508 s->count += s2->count;
1510 /* Take care to update possible forwarder blocks. We verified
1511 that there is no more than one in the chain, so we can't run
1512 into infinite loop. */
1513 if (FORWARDER_BLOCK_P (s->dest))
1515 s->dest->succ->count += s2->count;
1516 s->dest->count += s2->count;
1517 s->dest->frequency += EDGE_FREQUENCY (s);
1520 if (FORWARDER_BLOCK_P (s2->dest))
1522 s2->dest->succ->count -= s2->count;
1523 if (s2->dest->succ->count < 0)
1524 s2->dest->succ->count = 0;
1525 s2->dest->count -= s2->count;
1526 s2->dest->frequency -= EDGE_FREQUENCY (s);
1527 if (s2->dest->frequency < 0)
1528 s2->dest->frequency = 0;
1529 if (s2->dest->count < 0)
1530 s2->dest->count = 0;
1533 if (!redirect_to->frequency && !src1->frequency)
1534 s->probability = (s->probability + s2->probability) / 2;
1535 else
1536 s->probability
1537 = ((s->probability * redirect_to->frequency +
1538 s2->probability * src1->frequency)
1539 / (redirect_to->frequency + src1->frequency));
1542 update_br_prob_note (redirect_to);
1544 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
1546 /* Skip possible basic block header. */
1547 if (GET_CODE (newpos1) == CODE_LABEL)
1548 newpos1 = NEXT_INSN (newpos1);
1550 if (GET_CODE (newpos1) == NOTE)
1551 newpos1 = NEXT_INSN (newpos1);
1553 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
1554 to_remove = redirect_from->succ->dest;
1556 redirect_edge_and_branch_force (redirect_from->succ, redirect_to);
1557 delete_block (to_remove);
1559 update_forwarder_flag (redirect_from);
1561 return true;
1564 /* Search the predecessors of BB for common insn sequences. When found,
1565 share code between them by redirecting control flow. Return true if
1566 any changes made. */
1568 static bool
1569 try_crossjump_bb (int mode, basic_block bb)
1571 edge e, e2, nexte2, nexte, fallthru;
1572 bool changed;
1573 int n = 0, max;
1575 /* Nothing to do if there is not at least two incoming edges. */
1576 if (!bb->pred || !bb->pred->pred_next)
1577 return false;
1579 /* It is always cheapest to redirect a block that ends in a branch to
1580 a block that falls through into BB, as that adds no branches to the
1581 program. We'll try that combination first. */
1582 fallthru = NULL;
1583 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
1584 for (e = bb->pred; e ; e = e->pred_next, n++)
1586 if (e->flags & EDGE_FALLTHRU)
1587 fallthru = e;
1588 if (n > max)
1589 return false;
1592 changed = false;
1593 for (e = bb->pred; e; e = nexte)
1595 nexte = e->pred_next;
1597 /* As noted above, first try with the fallthru predecessor. */
1598 if (fallthru)
1600 /* Don't combine the fallthru edge into anything else.
1601 If there is a match, we'll do it the other way around. */
1602 if (e == fallthru)
1603 continue;
1605 if (try_crossjump_to_edge (mode, e, fallthru))
1607 changed = true;
1608 nexte = bb->pred;
1609 continue;
1613 /* Non-obvious work limiting check: Recognize that we're going
1614 to call try_crossjump_bb on every basic block. So if we have
1615 two blocks with lots of outgoing edges (a switch) and they
1616 share lots of common destinations, then we would do the
1617 cross-jump check once for each common destination.
1619 Now, if the blocks actually are cross-jump candidates, then
1620 all of their destinations will be shared. Which means that
1621 we only need check them for cross-jump candidacy once. We
1622 can eliminate redundant checks of crossjump(A,B) by arbitrarily
1623 choosing to do the check from the block for which the edge
1624 in question is the first successor of A. */
1625 if (e->src->succ != e)
1626 continue;
1628 for (e2 = bb->pred; e2; e2 = nexte2)
1630 nexte2 = e2->pred_next;
1632 if (e2 == e)
1633 continue;
1635 /* We've already checked the fallthru edge above. */
1636 if (e2 == fallthru)
1637 continue;
1639 /* The "first successor" check above only prevents multiple
1640 checks of crossjump(A,B). In order to prevent redundant
1641 checks of crossjump(B,A), require that A be the block
1642 with the lowest index. */
1643 if (e->src->index > e2->src->index)
1644 continue;
1646 if (try_crossjump_to_edge (mode, e, e2))
1648 changed = true;
1649 nexte = bb->pred;
1650 break;
1655 return changed;
1658 /* Do simple CFG optimizations - basic block merging, simplifying of jump
1659 instructions etc. Return nonzero if changes were made. */
1661 static bool
1662 try_optimize_cfg (int mode)
1664 bool changed_overall = false;
1665 bool changed;
1666 int iterations = 0;
1667 basic_block bb, b, next;
1669 if (mode & CLEANUP_CROSSJUMP)
1670 add_noreturn_fake_exit_edges ();
1672 FOR_EACH_BB (bb)
1673 update_forwarder_flag (bb);
1675 if (mode & CLEANUP_UPDATE_LIFE)
1676 clear_bb_flags ();
1678 if (! (* targetm.cannot_modify_jumps_p) ())
1680 /* Attempt to merge blocks as made possible by edge removal. If
1681 a block has only one successor, and the successor has only
1682 one predecessor, they may be combined. */
1685 changed = false;
1686 iterations++;
1688 if (rtl_dump_file)
1689 fprintf (rtl_dump_file,
1690 "\n\ntry_optimize_cfg iteration %i\n\n",
1691 iterations);
1693 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR;)
1695 basic_block c;
1696 edge s;
1697 bool changed_here = false;
1699 /* Delete trivially dead basic blocks. */
1700 while (b->pred == NULL)
1702 c = b->prev_bb;
1703 if (rtl_dump_file)
1704 fprintf (rtl_dump_file, "Deleting block %i.\n",
1705 b->index);
1707 delete_block (b);
1708 if (!(mode & CLEANUP_CFGLAYOUT))
1709 changed = true;
1710 b = c;
1713 /* Remove code labels no longer used. Don't do this
1714 before CALL_PLACEHOLDER is removed, as some branches
1715 may be hidden within. */
1716 if (b->pred->pred_next == NULL
1717 && (b->pred->flags & EDGE_FALLTHRU)
1718 && !(b->pred->flags & EDGE_COMPLEX)
1719 && GET_CODE (BB_HEAD (b)) == CODE_LABEL
1720 && (!(mode & CLEANUP_PRE_SIBCALL)
1721 || !tail_recursion_label_p (BB_HEAD (b)))
1722 /* If the previous block ends with a branch to this
1723 block, we can't delete the label. Normally this
1724 is a condjump that is yet to be simplified, but
1725 if CASE_DROPS_THRU, this can be a tablejump with
1726 some element going to the same place as the
1727 default (fallthru). */
1728 && (b->pred->src == ENTRY_BLOCK_PTR
1729 || GET_CODE (BB_END (b->pred->src)) != JUMP_INSN
1730 || ! label_is_jump_target_p (BB_HEAD (b),
1731 BB_END (b->pred->src))))
1733 rtx label = BB_HEAD (b);
1735 delete_insn_chain (label, label);
1736 /* In the case label is undeletable, move it after the
1737 BASIC_BLOCK note. */
1738 if (NOTE_LINE_NUMBER (BB_HEAD (b)) == NOTE_INSN_DELETED_LABEL)
1740 rtx bb_note = NEXT_INSN (BB_HEAD (b));
1742 reorder_insns_nobb (label, label, bb_note);
1743 BB_HEAD (b) = bb_note;
1745 if (rtl_dump_file)
1746 fprintf (rtl_dump_file, "Deleted label in block %i.\n",
1747 b->index);
1750 /* If we fall through an empty block, we can remove it. */
1751 if (!(mode & CLEANUP_CFGLAYOUT)
1752 && b->pred->pred_next == NULL
1753 && (b->pred->flags & EDGE_FALLTHRU)
1754 && GET_CODE (BB_HEAD (b)) != CODE_LABEL
1755 && FORWARDER_BLOCK_P (b)
1756 /* Note that forwarder_block_p true ensures that
1757 there is a successor for this block. */
1758 && (b->succ->flags & EDGE_FALLTHRU)
1759 && n_basic_blocks > 1)
1761 if (rtl_dump_file)
1762 fprintf (rtl_dump_file,
1763 "Deleting fallthru block %i.\n",
1764 b->index);
1766 c = b->prev_bb == ENTRY_BLOCK_PTR ? b->next_bb : b->prev_bb;
1767 redirect_edge_succ_nodup (b->pred, b->succ->dest);
1768 delete_block (b);
1769 changed = true;
1770 b = c;
1773 if ((s = b->succ) != NULL
1774 && s->succ_next == NULL
1775 && !(s->flags & EDGE_COMPLEX)
1776 && (c = s->dest) != EXIT_BLOCK_PTR
1777 && c->pred->pred_next == NULL
1778 && b != c)
1780 /* When not in cfg_layout mode use code aware of reordering
1781 INSN. This code possibly creates new basic blocks so it
1782 does not fit merge_blocks interface and is kept here in
1783 hope that it will become useless once more of compiler
1784 is transformed to use cfg_layout mode. */
1786 if ((mode & CLEANUP_CFGLAYOUT)
1787 && can_merge_blocks_p (b, c))
1789 merge_blocks (b, c);
1790 update_forwarder_flag (b);
1791 changed_here = true;
1793 else if (!(mode & CLEANUP_CFGLAYOUT)
1794 /* If the jump insn has side effects,
1795 we can't kill the edge. */
1796 && (GET_CODE (BB_END (b)) != JUMP_INSN
1797 || (flow2_completed
1798 ? simplejump_p (BB_END (b))
1799 : onlyjump_p (BB_END (b))))
1800 && (next = merge_blocks_move (s, b, c, mode)))
1802 b = next;
1803 changed_here = true;
1807 /* Simplify branch over branch. */
1808 if ((mode & CLEANUP_EXPENSIVE)
1809 && !(mode & CLEANUP_CFGLAYOUT)
1810 && try_simplify_condjump (b))
1811 changed_here = true;
1813 /* If B has a single outgoing edge, but uses a
1814 non-trivial jump instruction without side-effects, we
1815 can either delete the jump entirely, or replace it
1816 with a simple unconditional jump. Use
1817 redirect_edge_and_branch to do the dirty work. */
1818 if (b->succ
1819 && ! b->succ->succ_next
1820 && b->succ->dest != EXIT_BLOCK_PTR
1821 && onlyjump_p (BB_END (b))
1822 && redirect_edge_and_branch (b->succ, b->succ->dest))
1824 update_forwarder_flag (b);
1825 changed_here = true;
1828 /* Simplify branch to branch. */
1829 if (try_forward_edges (mode, b))
1830 changed_here = true;
1832 /* Look for shared code between blocks. */
1833 if ((mode & CLEANUP_CROSSJUMP)
1834 && try_crossjump_bb (mode, b))
1835 changed_here = true;
1837 /* Don't get confused by the index shift caused by
1838 deleting blocks. */
1839 if (!changed_here)
1840 b = b->next_bb;
1841 else
1842 changed = true;
1845 if ((mode & CLEANUP_CROSSJUMP)
1846 && try_crossjump_bb (mode, EXIT_BLOCK_PTR))
1847 changed = true;
1849 #ifdef ENABLE_CHECKING
1850 if (changed)
1851 verify_flow_info ();
1852 #endif
1854 changed_overall |= changed;
1856 while (changed);
1859 if (mode & CLEANUP_CROSSJUMP)
1860 remove_fake_edges ();
1862 clear_aux_for_blocks ();
1864 return changed_overall;
1867 /* Delete all unreachable basic blocks. */
1869 bool
1870 delete_unreachable_blocks (void)
1872 bool changed = false;
1873 basic_block b, next_bb;
1875 find_unreachable_blocks ();
1877 /* Delete all unreachable basic blocks. */
1879 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR; b = next_bb)
1881 next_bb = b->next_bb;
1883 if (!(b->flags & BB_REACHABLE))
1885 delete_block (b);
1886 changed = true;
1890 if (changed)
1891 tidy_fallthru_edges ();
1892 return changed;
1895 /* Tidy the CFG by deleting unreachable code and whatnot. */
1897 bool
1898 cleanup_cfg (int mode)
1900 bool changed = false;
1902 timevar_push (TV_CLEANUP_CFG);
1903 if (delete_unreachable_blocks ())
1905 changed = true;
1906 /* We've possibly created trivially dead code. Cleanup it right
1907 now to introduce more opportunities for try_optimize_cfg. */
1908 if (!(mode & (CLEANUP_NO_INSN_DEL
1909 | CLEANUP_UPDATE_LIFE | CLEANUP_PRE_SIBCALL))
1910 && !reload_completed)
1911 delete_trivially_dead_insns (get_insns(), max_reg_num ());
1914 compact_blocks ();
1916 while (try_optimize_cfg (mode))
1918 delete_unreachable_blocks (), changed = true;
1919 if (mode & CLEANUP_UPDATE_LIFE)
1921 /* Cleaning up CFG introduces more opportunities for dead code
1922 removal that in turn may introduce more opportunities for
1923 cleaning up the CFG. */
1924 if (!update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
1925 PROP_DEATH_NOTES
1926 | PROP_SCAN_DEAD_CODE
1927 | PROP_KILL_DEAD_CODE
1928 | PROP_LOG_LINKS))
1929 break;
1931 else if (!(mode & (CLEANUP_NO_INSN_DEL | CLEANUP_PRE_SIBCALL))
1932 && (mode & CLEANUP_EXPENSIVE)
1933 && !reload_completed)
1935 if (!delete_trivially_dead_insns (get_insns(), max_reg_num ()))
1936 break;
1938 else
1939 break;
1940 delete_dead_jumptables ();
1943 /* Kill the data we won't maintain. */
1944 free_EXPR_LIST_list (&label_value_list);
1945 timevar_pop (TV_CLEANUP_CFG);
1947 return changed;