2003-12-26 Guilhem Lavaux <guilhem@kaffe.org>
[official-gcc.git] / gcc / ada / sem_eval.adb
blobcc6d6f3d79fecbaa0e6d418e352bc37f6648385f
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ E V A L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2003 Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Util; use Exp_Util;
35 with Nmake; use Nmake;
36 with Nlists; use Nlists;
37 with Opt; use Opt;
38 with Sem; use Sem;
39 with Sem_Cat; use Sem_Cat;
40 with Sem_Ch8; use Sem_Ch8;
41 with Sem_Res; use Sem_Res;
42 with Sem_Util; use Sem_Util;
43 with Sem_Type; use Sem_Type;
44 with Sem_Warn; use Sem_Warn;
45 with Sinfo; use Sinfo;
46 with Snames; use Snames;
47 with Stand; use Stand;
48 with Stringt; use Stringt;
49 with Tbuild; use Tbuild;
51 package body Sem_Eval is
53 -----------------------------------------
54 -- Handling of Compile Time Evaluation --
55 -----------------------------------------
57 -- The compile time evaluation of expressions is distributed over several
58 -- Eval_xxx procedures. These procedures are called immediatedly after
59 -- a subexpression is resolved and is therefore accomplished in a bottom
60 -- up fashion. The flags are synthesized using the following approach.
62 -- Is_Static_Expression is determined by following the detailed rules
63 -- in RM 4.9(4-14). This involves testing the Is_Static_Expression
64 -- flag of the operands in many cases.
66 -- Raises_Constraint_Error is set if any of the operands have the flag
67 -- set or if an attempt to compute the value of the current expression
68 -- results in detection of a runtime constraint error.
70 -- As described in the spec, the requirement is that Is_Static_Expression
71 -- be accurately set, and in addition for nodes for which this flag is set,
72 -- Raises_Constraint_Error must also be set. Furthermore a node which has
73 -- Is_Static_Expression set, and Raises_Constraint_Error clear, then the
74 -- requirement is that the expression value must be precomputed, and the
75 -- node is either a literal, or the name of a constant entity whose value
76 -- is a static expression.
78 -- The general approach is as follows. First compute Is_Static_Expression.
79 -- If the node is not static, then the flag is left off in the node and
80 -- we are all done. Otherwise for a static node, we test if any of the
81 -- operands will raise constraint error, and if so, propagate the flag
82 -- Raises_Constraint_Error to the result node and we are done (since the
83 -- error was already posted at a lower level).
85 -- For the case of a static node whose operands do not raise constraint
86 -- error, we attempt to evaluate the node. If this evaluation succeeds,
87 -- then the node is replaced by the result of this computation. If the
88 -- evaluation raises constraint error, then we rewrite the node with
89 -- Apply_Compile_Time_Constraint_Error to raise the exception and also
90 -- to post appropriate error messages.
92 ----------------
93 -- Local Data --
94 ----------------
96 type Bits is array (Nat range <>) of Boolean;
97 -- Used to convert unsigned (modular) values for folding logical ops
99 -- The following definitions are used to maintain a cache of nodes that
100 -- have compile time known values. The cache is maintained only for
101 -- discrete types (the most common case), and is populated by calls to
102 -- Compile_Time_Known_Value and Expr_Value, but only used by Expr_Value
103 -- since it is possible for the status to change (in particular it is
104 -- possible for a node to get replaced by a constraint error node).
106 CV_Bits : constant := 5;
107 -- Number of low order bits of Node_Id value used to reference entries
108 -- in the cache table.
110 CV_Cache_Size : constant Nat := 2 ** CV_Bits;
111 -- Size of cache for compile time values
113 subtype CV_Range is Nat range 0 .. CV_Cache_Size;
115 type CV_Entry is record
116 N : Node_Id;
117 V : Uint;
118 end record;
120 type CV_Cache_Array is array (CV_Range) of CV_Entry;
122 CV_Cache : CV_Cache_Array := (others => (Node_High_Bound, Uint_0));
123 -- This is the actual cache, with entries consisting of node/value pairs,
124 -- and the impossible value Node_High_Bound used for unset entries.
126 -----------------------
127 -- Local Subprograms --
128 -----------------------
130 function From_Bits (B : Bits; T : Entity_Id) return Uint;
131 -- Converts a bit string of length B'Length to a Uint value to be used
132 -- for a target of type T, which is a modular type. This procedure
133 -- includes the necessary reduction by the modulus in the case of a
134 -- non-binary modulus (for a binary modulus, the bit string is the
135 -- right length any way so all is well).
137 function Get_String_Val (N : Node_Id) return Node_Id;
138 -- Given a tree node for a folded string or character value, returns
139 -- the corresponding string literal or character literal (one of the
140 -- two must be available, or the operand would not have been marked
141 -- as foldable in the earlier analysis of the operation).
143 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean;
144 -- Bits represents the number of bits in an integer value to be computed
145 -- (but the value has not been computed yet). If this value in Bits is
146 -- reasonable, a result of True is returned, with the implication that
147 -- the caller should go ahead and complete the calculation. If the value
148 -- in Bits is unreasonably large, then an error is posted on node N, and
149 -- False is returned (and the caller skips the proposed calculation).
151 procedure Out_Of_Range (N : Node_Id);
152 -- This procedure is called if it is determined that node N, which
153 -- appears in a non-static context, is a compile time known value
154 -- which is outside its range, i.e. the range of Etype. This is used
155 -- in contexts where this is an illegality if N is static, and should
156 -- generate a warning otherwise.
158 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id);
159 -- N and Exp are nodes representing an expression, Exp is known
160 -- to raise CE. N is rewritten in term of Exp in the optimal way.
162 function String_Type_Len (Stype : Entity_Id) return Uint;
163 -- Given a string type, determines the length of the index type, or,
164 -- if this index type is non-static, the length of the base type of
165 -- this index type. Note that if the string type is itself static,
166 -- then the index type is static, so the second case applies only
167 -- if the string type passed is non-static.
169 function Test (Cond : Boolean) return Uint;
170 pragma Inline (Test);
171 -- This function simply returns the appropriate Boolean'Pos value
172 -- corresponding to the value of Cond as a universal integer. It is
173 -- used for producing the result of the static evaluation of the
174 -- logical operators
176 procedure Test_Expression_Is_Foldable
177 (N : Node_Id;
178 Op1 : Node_Id;
179 Stat : out Boolean;
180 Fold : out Boolean);
181 -- Tests to see if expression N whose single operand is Op1 is foldable,
182 -- i.e. the operand value is known at compile time. If the operation is
183 -- foldable, then Fold is True on return, and Stat indicates whether
184 -- the result is static (i.e. both operands were static). Note that it
185 -- is quite possible for Fold to be True, and Stat to be False, since
186 -- there are cases in which we know the value of an operand even though
187 -- it is not technically static (e.g. the static lower bound of a range
188 -- whose upper bound is non-static).
190 -- If Stat is set False on return, then Expression_Is_Foldable makes a
191 -- call to Check_Non_Static_Context on the operand. If Fold is False on
192 -- return, then all processing is complete, and the caller should
193 -- return, since there is nothing else to do.
195 procedure Test_Expression_Is_Foldable
196 (N : Node_Id;
197 Op1 : Node_Id;
198 Op2 : Node_Id;
199 Stat : out Boolean;
200 Fold : out Boolean);
201 -- Same processing, except applies to an expression N with two operands
202 -- Op1 and Op2.
204 procedure To_Bits (U : Uint; B : out Bits);
205 -- Converts a Uint value to a bit string of length B'Length
207 ------------------------------
208 -- Check_Non_Static_Context --
209 ------------------------------
211 procedure Check_Non_Static_Context (N : Node_Id) is
212 T : constant Entity_Id := Etype (N);
213 Checks_On : constant Boolean :=
214 not Index_Checks_Suppressed (T)
215 and not Range_Checks_Suppressed (T);
217 begin
218 -- Ignore cases of non-scalar types or error types
220 if T = Any_Type or else not Is_Scalar_Type (T) then
221 return;
222 end if;
224 -- At this stage we have a scalar type. If we have an expression
225 -- that raises CE, then we already issued a warning or error msg
226 -- so there is nothing more to be done in this routine.
228 if Raises_Constraint_Error (N) then
229 return;
230 end if;
232 -- Now we have a scalar type which is not marked as raising a
233 -- constraint error exception. The main purpose of this routine
234 -- is to deal with static expressions appearing in a non-static
235 -- context. That means that if we do not have a static expression
236 -- then there is not much to do. The one case that we deal with
237 -- here is that if we have a floating-point value that is out of
238 -- range, then we post a warning that an infinity will result.
240 if not Is_Static_Expression (N) then
241 if Is_Floating_Point_Type (T)
242 and then Is_Out_Of_Range (N, Base_Type (T))
243 then
244 Error_Msg_N
245 ("?float value out of range, infinity will be generated", N);
246 end if;
248 return;
249 end if;
251 -- Here we have the case of outer level static expression of
252 -- scalar type, where the processing of this procedure is needed.
254 -- For real types, this is where we convert the value to a machine
255 -- number (see RM 4.9(38)). Also see ACVC test C490001. We should
256 -- only need to do this if the parent is a constant declaration,
257 -- since in other cases, gigi should do the necessary conversion
258 -- correctly, but experimentation shows that this is not the case
259 -- on all machines, in particular if we do not convert all literals
260 -- to machine values in non-static contexts, then ACVC test C490001
261 -- fails on Sparc/Solaris and SGI/Irix.
263 if Nkind (N) = N_Real_Literal
264 and then not Is_Machine_Number (N)
265 and then not Is_Generic_Type (Etype (N))
266 and then Etype (N) /= Universal_Real
267 then
268 -- Check that value is in bounds before converting to machine
269 -- number, so as not to lose case where value overflows in the
270 -- least significant bit or less. See B490001.
272 if Is_Out_Of_Range (N, Base_Type (T)) then
273 Out_Of_Range (N);
274 return;
275 end if;
277 -- Note: we have to copy the node, to avoid problems with conformance
278 -- of very similar numbers (see ACVC tests B4A010C and B63103A).
280 Rewrite (N, New_Copy (N));
282 if not Is_Floating_Point_Type (T) then
283 Set_Realval
284 (N, Corresponding_Integer_Value (N) * Small_Value (T));
286 elsif not UR_Is_Zero (Realval (N)) then
288 -- Note: even though RM 4.9(38) specifies biased rounding,
289 -- this has been modified by AI-100 in order to prevent
290 -- confusing differences in rounding between static and
291 -- non-static expressions. AI-100 specifies that the effect
292 -- of such rounding is implementation dependent, and in GNAT
293 -- we round to nearest even to match the run-time behavior.
295 Set_Realval
296 (N, Machine (Base_Type (T), Realval (N), Round_Even, N));
297 end if;
299 Set_Is_Machine_Number (N);
300 end if;
302 -- Check for out of range universal integer. This is a non-static
303 -- context, so the integer value must be in range of the runtime
304 -- representation of universal integers.
306 -- We do this only within an expression, because that is the only
307 -- case in which non-static universal integer values can occur, and
308 -- furthermore, Check_Non_Static_Context is currently (incorrectly???)
309 -- called in contexts like the expression of a number declaration where
310 -- we certainly want to allow out of range values.
312 if Etype (N) = Universal_Integer
313 and then Nkind (N) = N_Integer_Literal
314 and then Nkind (Parent (N)) in N_Subexpr
315 and then
316 (Intval (N) < Expr_Value (Type_Low_Bound (Universal_Integer))
317 or else
318 Intval (N) > Expr_Value (Type_High_Bound (Universal_Integer)))
319 then
320 Apply_Compile_Time_Constraint_Error
321 (N, "non-static universal integer value out of range?",
322 CE_Range_Check_Failed);
324 -- Check out of range of base type
326 elsif Is_Out_Of_Range (N, Base_Type (T)) then
327 Out_Of_Range (N);
329 -- Give warning if outside subtype (where one or both of the
330 -- bounds of the subtype is static). This warning is omitted
331 -- if the expression appears in a range that could be null
332 -- (warnings are handled elsewhere for this case).
334 elsif T /= Base_Type (T)
335 and then Nkind (Parent (N)) /= N_Range
336 then
337 if Is_In_Range (N, T) then
338 null;
340 elsif Is_Out_Of_Range (N, T) then
341 Apply_Compile_Time_Constraint_Error
342 (N, "value not in range of}?", CE_Range_Check_Failed);
344 elsif Checks_On then
345 Enable_Range_Check (N);
347 else
348 Set_Do_Range_Check (N, False);
349 end if;
350 end if;
351 end Check_Non_Static_Context;
353 ---------------------------------
354 -- Check_String_Literal_Length --
355 ---------------------------------
357 procedure Check_String_Literal_Length (N : Node_Id; Ttype : Entity_Id) is
358 begin
359 if not Raises_Constraint_Error (N)
360 and then Is_Constrained (Ttype)
361 then
363 UI_From_Int (String_Length (Strval (N))) /= String_Type_Len (Ttype)
364 then
365 Apply_Compile_Time_Constraint_Error
366 (N, "string length wrong for}?",
367 CE_Length_Check_Failed,
368 Ent => Ttype,
369 Typ => Ttype);
370 end if;
371 end if;
372 end Check_String_Literal_Length;
374 --------------------------
375 -- Compile_Time_Compare --
376 --------------------------
378 function Compile_Time_Compare
379 (L, R : Node_Id;
380 Rec : Boolean := False)
381 return Compare_Result
383 Ltyp : constant Entity_Id := Etype (L);
384 Rtyp : constant Entity_Id := Etype (R);
386 procedure Compare_Decompose
387 (N : Node_Id;
388 R : out Node_Id;
389 V : out Uint);
390 -- This procedure decomposes the node N into an expression node
391 -- and a signed offset, so that the value of N is equal to the
392 -- value of R plus the value V (which may be negative). If no
393 -- such decomposition is possible, then on return R is a copy
394 -- of N, and V is set to zero.
396 function Compare_Fixup (N : Node_Id) return Node_Id;
397 -- This function deals with replacing 'Last and 'First references
398 -- with their corresponding type bounds, which we then can compare.
399 -- The argument is the original node, the result is the identity,
400 -- unless we have a 'Last/'First reference in which case the value
401 -- returned is the appropriate type bound.
403 function Is_Same_Value (L, R : Node_Id) return Boolean;
404 -- Returns True iff L and R represent expressions that definitely
405 -- have identical (but not necessarily compile time known) values
406 -- Indeed the caller is expected to have already dealt with the
407 -- cases of compile time known values, so these are not tested here.
409 -----------------------
410 -- Compare_Decompose --
411 -----------------------
413 procedure Compare_Decompose
414 (N : Node_Id;
415 R : out Node_Id;
416 V : out Uint)
418 begin
419 if Nkind (N) = N_Op_Add
420 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
421 then
422 R := Left_Opnd (N);
423 V := Intval (Right_Opnd (N));
424 return;
426 elsif Nkind (N) = N_Op_Subtract
427 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
428 then
429 R := Left_Opnd (N);
430 V := UI_Negate (Intval (Right_Opnd (N)));
431 return;
433 elsif Nkind (N) = N_Attribute_Reference then
435 if Attribute_Name (N) = Name_Succ then
436 R := First (Expressions (N));
437 V := Uint_1;
438 return;
440 elsif Attribute_Name (N) = Name_Pred then
441 R := First (Expressions (N));
442 V := Uint_Minus_1;
443 return;
444 end if;
445 end if;
447 R := N;
448 V := Uint_0;
449 end Compare_Decompose;
451 -------------------
452 -- Compare_Fixup --
453 -------------------
455 function Compare_Fixup (N : Node_Id) return Node_Id is
456 Indx : Node_Id;
457 Xtyp : Entity_Id;
458 Subs : Nat;
460 begin
461 if Nkind (N) = N_Attribute_Reference
462 and then (Attribute_Name (N) = Name_First
463 or else
464 Attribute_Name (N) = Name_Last)
465 then
466 Xtyp := Etype (Prefix (N));
468 -- If we have no type, then just abandon the attempt to do
469 -- a fixup, this is probably the result of some other error.
471 if No (Xtyp) then
472 return N;
473 end if;
475 -- Dereference an access type
477 if Is_Access_Type (Xtyp) then
478 Xtyp := Designated_Type (Xtyp);
479 end if;
481 -- If we don't have an array type at this stage, something
482 -- is peculiar, e.g. another error, and we abandon the attempt
483 -- at a fixup.
485 if not Is_Array_Type (Xtyp) then
486 return N;
487 end if;
489 -- Ignore unconstrained array, since bounds are not meaningful
491 if not Is_Constrained (Xtyp) then
492 return N;
493 end if;
495 if Ekind (Xtyp) = E_String_Literal_Subtype then
496 if Attribute_Name (N) = Name_First then
497 return String_Literal_Low_Bound (Xtyp);
499 else -- Attribute_Name (N) = Name_Last
500 return Make_Integer_Literal (Sloc (N),
501 Intval => Intval (String_Literal_Low_Bound (Xtyp))
502 + String_Literal_Length (Xtyp));
503 end if;
504 end if;
506 -- Find correct index type
508 Indx := First_Index (Xtyp);
510 if Present (Expressions (N)) then
511 Subs := UI_To_Int (Expr_Value (First (Expressions (N))));
513 for J in 2 .. Subs loop
514 Indx := Next_Index (Indx);
515 end loop;
516 end if;
518 Xtyp := Etype (Indx);
520 if Attribute_Name (N) = Name_First then
521 return Type_Low_Bound (Xtyp);
523 else -- Attribute_Name (N) = Name_Last
524 return Type_High_Bound (Xtyp);
525 end if;
526 end if;
528 return N;
529 end Compare_Fixup;
531 -------------------
532 -- Is_Same_Value --
533 -------------------
535 function Is_Same_Value (L, R : Node_Id) return Boolean is
536 Lf : constant Node_Id := Compare_Fixup (L);
537 Rf : constant Node_Id := Compare_Fixup (R);
539 function Is_Same_Subscript (L, R : List_Id) return Boolean;
540 -- L, R are the Expressions values from two attribute nodes
541 -- for First or Last attributes. Either may be set to No_List
542 -- if no expressions are present (indicating subscript 1).
543 -- The result is True if both expressions represent the same
544 -- subscript (note that one case is where one subscript is
545 -- missing and the other is explicitly set to 1).
547 -----------------------
548 -- Is_Same_Subscript --
549 -----------------------
551 function Is_Same_Subscript (L, R : List_Id) return Boolean is
552 begin
553 if L = No_List then
554 if R = No_List then
555 return True;
556 else
557 return Expr_Value (First (R)) = Uint_1;
558 end if;
560 else
561 if R = No_List then
562 return Expr_Value (First (L)) = Uint_1;
563 else
564 return Expr_Value (First (L)) = Expr_Value (First (R));
565 end if;
566 end if;
567 end Is_Same_Subscript;
569 -- Start of processing for Is_Same_Value
571 begin
572 -- Values are the same if they are the same identifier and the
573 -- identifier refers to a constant object (E_Constant). This
574 -- does not however apply to Float types, since we may have two
575 -- NaN values and they should never compare equal.
577 if Nkind (Lf) = N_Identifier and then Nkind (Rf) = N_Identifier
578 and then Entity (Lf) = Entity (Rf)
579 and then not Is_Floating_Point_Type (Etype (L))
580 and then (Ekind (Entity (Lf)) = E_Constant or else
581 Ekind (Entity (Lf)) = E_In_Parameter or else
582 Ekind (Entity (Lf)) = E_Loop_Parameter)
583 then
584 return True;
586 -- Or if they are compile time known and identical
588 elsif Compile_Time_Known_Value (Lf)
589 and then
590 Compile_Time_Known_Value (Rf)
591 and then Expr_Value (Lf) = Expr_Value (Rf)
592 then
593 return True;
595 -- Or if they are both 'First or 'Last values applying to the
596 -- same entity (first and last don't change even if value does)
598 elsif Nkind (Lf) = N_Attribute_Reference
599 and then
600 Nkind (Rf) = N_Attribute_Reference
601 and then Attribute_Name (Lf) = Attribute_Name (Rf)
602 and then (Attribute_Name (Lf) = Name_First
603 or else
604 Attribute_Name (Lf) = Name_Last)
605 and then Is_Entity_Name (Prefix (Lf))
606 and then Is_Entity_Name (Prefix (Rf))
607 and then Entity (Prefix (Lf)) = Entity (Prefix (Rf))
608 and then Is_Same_Subscript (Expressions (Lf), Expressions (Rf))
609 then
610 return True;
612 -- All other cases, we can't tell
614 else
615 return False;
616 end if;
617 end Is_Same_Value;
619 -- Start of processing for Compile_Time_Compare
621 begin
622 -- If either operand could raise constraint error, then we cannot
623 -- know the result at compile time (since CE may be raised!)
625 if not (Cannot_Raise_Constraint_Error (L)
626 and then
627 Cannot_Raise_Constraint_Error (R))
628 then
629 return Unknown;
630 end if;
632 -- Identical operands are most certainly equal
634 if L = R then
635 return EQ;
637 -- If expressions have no types, then do not attempt to determine
638 -- if they are the same, since something funny is going on. One
639 -- case in which this happens is during generic template analysis,
640 -- when bounds are not fully analyzed.
642 elsif No (Ltyp) or else No (Rtyp) then
643 return Unknown;
645 -- We only attempt compile time analysis for scalar values, and
646 -- not for packed arrays represented as modular types, where the
647 -- semantics of comparison is quite different.
649 elsif not Is_Scalar_Type (Ltyp)
650 or else Is_Packed_Array_Type (Ltyp)
651 then
652 return Unknown;
654 -- Case where comparison involves two compile time known values
656 elsif Compile_Time_Known_Value (L)
657 and then Compile_Time_Known_Value (R)
658 then
659 -- For the floating-point case, we have to be a little careful, since
660 -- at compile time we are dealing with universal exact values, but at
661 -- runtime, these will be in non-exact target form. That's why the
662 -- returned results are LE and GE below instead of LT and GT.
664 if Is_Floating_Point_Type (Ltyp)
665 or else
666 Is_Floating_Point_Type (Rtyp)
667 then
668 declare
669 Lo : constant Ureal := Expr_Value_R (L);
670 Hi : constant Ureal := Expr_Value_R (R);
672 begin
673 if Lo < Hi then
674 return LE;
675 elsif Lo = Hi then
676 return EQ;
677 else
678 return GE;
679 end if;
680 end;
682 -- For the integer case we know exactly (note that this includes the
683 -- fixed-point case, where we know the run time integer values now)
685 else
686 declare
687 Lo : constant Uint := Expr_Value (L);
688 Hi : constant Uint := Expr_Value (R);
690 begin
691 if Lo < Hi then
692 return LT;
693 elsif Lo = Hi then
694 return EQ;
695 else
696 return GT;
697 end if;
698 end;
699 end if;
701 -- Cases where at least one operand is not known at compile time
703 else
704 -- Here is where we check for comparisons against maximum bounds of
705 -- types, where we know that no value can be outside the bounds of
706 -- the subtype. Note that this routine is allowed to assume that all
707 -- expressions are within their subtype bounds. Callers wishing to
708 -- deal with possibly invalid values must in any case take special
709 -- steps (e.g. conversions to larger types) to avoid this kind of
710 -- optimization, which is always considered to be valid. We do not
711 -- attempt this optimization with generic types, since the type
712 -- bounds may not be meaningful in this case.
714 -- We are in danger of an infinite recursion here. It does not seem
715 -- useful to go more than one level deep, so the parameter Rec is
716 -- used to protect ourselves against this infinite recursion.
718 if not Rec
719 and then Is_Discrete_Type (Ltyp)
720 and then Is_Discrete_Type (Rtyp)
721 and then not Is_Generic_Type (Ltyp)
722 and then not Is_Generic_Type (Rtyp)
723 then
724 -- See if we can get a decisive check against one operand and
725 -- a bound of the other operand (four possible tests here).
727 case Compile_Time_Compare (L, Type_Low_Bound (Rtyp), True) is
728 when LT => return LT;
729 when LE => return LE;
730 when EQ => return LE;
731 when others => null;
732 end case;
734 case Compile_Time_Compare (L, Type_High_Bound (Rtyp), True) is
735 when GT => return GT;
736 when GE => return GE;
737 when EQ => return GE;
738 when others => null;
739 end case;
741 case Compile_Time_Compare (Type_Low_Bound (Ltyp), R, True) is
742 when GT => return GT;
743 when GE => return GE;
744 when EQ => return GE;
745 when others => null;
746 end case;
748 case Compile_Time_Compare (Type_High_Bound (Ltyp), R, True) is
749 when LT => return LT;
750 when LE => return LE;
751 when EQ => return LE;
752 when others => null;
753 end case;
754 end if;
756 -- Next attempt is to decompose the expressions to extract
757 -- a constant offset resulting from the use of any of the forms:
759 -- expr + literal
760 -- expr - literal
761 -- typ'Succ (expr)
762 -- typ'Pred (expr)
764 -- Then we see if the two expressions are the same value, and if so
765 -- the result is obtained by comparing the offsets.
767 declare
768 Lnode : Node_Id;
769 Loffs : Uint;
770 Rnode : Node_Id;
771 Roffs : Uint;
773 begin
774 Compare_Decompose (L, Lnode, Loffs);
775 Compare_Decompose (R, Rnode, Roffs);
777 if Is_Same_Value (Lnode, Rnode) then
778 if Loffs = Roffs then
779 return EQ;
781 elsif Loffs < Roffs then
782 return LT;
784 else
785 return GT;
786 end if;
788 -- If the expressions are different, we cannot say at compile
789 -- time how they compare, so we return the Unknown indication.
791 else
792 return Unknown;
793 end if;
794 end;
795 end if;
796 end Compile_Time_Compare;
798 ------------------------------
799 -- Compile_Time_Known_Value --
800 ------------------------------
802 function Compile_Time_Known_Value (Op : Node_Id) return Boolean is
803 K : constant Node_Kind := Nkind (Op);
804 CV_Ent : CV_Entry renames CV_Cache (Nat (Op) mod CV_Cache_Size);
806 begin
807 -- Never known at compile time if bad type or raises constraint error
808 -- or empty (latter case occurs only as a result of a previous error)
810 if No (Op)
811 or else Op = Error
812 or else Etype (Op) = Any_Type
813 or else Raises_Constraint_Error (Op)
814 then
815 return False;
816 end if;
818 -- If this is not a static expression and we are in configurable run
819 -- time mode, then we consider it not known at compile time. This
820 -- avoids anomalies where whether something is permitted with a given
821 -- configurable run-time library depends on how good the compiler is
822 -- at optimizing and knowing that things are constant when they
823 -- are non-static.
825 if Configurable_Run_Time_Mode and then not Is_Static_Expression (Op) then
826 return False;
827 end if;
829 -- If we have an entity name, then see if it is the name of a constant
830 -- and if so, test the corresponding constant value, or the name of
831 -- an enumeration literal, which is always a constant.
833 if Present (Etype (Op)) and then Is_Entity_Name (Op) then
834 declare
835 E : constant Entity_Id := Entity (Op);
836 V : Node_Id;
838 begin
839 -- Never known at compile time if it is a packed array value.
840 -- We might want to try to evaluate these at compile time one
841 -- day, but we do not make that attempt now.
843 if Is_Packed_Array_Type (Etype (Op)) then
844 return False;
845 end if;
847 if Ekind (E) = E_Enumeration_Literal then
848 return True;
850 elsif Ekind (E) = E_Constant then
851 V := Constant_Value (E);
852 return Present (V) and then Compile_Time_Known_Value (V);
853 end if;
854 end;
856 -- We have a value, see if it is compile time known
858 else
859 -- Integer literals are worth storing in the cache
861 if K = N_Integer_Literal then
862 CV_Ent.N := Op;
863 CV_Ent.V := Intval (Op);
864 return True;
866 -- Other literals and NULL are known at compile time
868 elsif
869 K = N_Character_Literal
870 or else
871 K = N_Real_Literal
872 or else
873 K = N_String_Literal
874 or else
875 K = N_Null
876 then
877 return True;
879 -- Any reference to Null_Parameter is known at compile time. No
880 -- other attribute references (that have not already been folded)
881 -- are known at compile time.
883 elsif K = N_Attribute_Reference then
884 return Attribute_Name (Op) = Name_Null_Parameter;
885 end if;
886 end if;
888 -- If we fall through, not known at compile time
890 return False;
892 -- If we get an exception while trying to do this test, then some error
893 -- has occurred, and we simply say that the value is not known after all
895 exception
896 when others =>
897 return False;
898 end Compile_Time_Known_Value;
900 --------------------------------------
901 -- Compile_Time_Known_Value_Or_Aggr --
902 --------------------------------------
904 function Compile_Time_Known_Value_Or_Aggr (Op : Node_Id) return Boolean is
905 begin
906 -- If we have an entity name, then see if it is the name of a constant
907 -- and if so, test the corresponding constant value, or the name of
908 -- an enumeration literal, which is always a constant.
910 if Is_Entity_Name (Op) then
911 declare
912 E : constant Entity_Id := Entity (Op);
913 V : Node_Id;
915 begin
916 if Ekind (E) = E_Enumeration_Literal then
917 return True;
919 elsif Ekind (E) /= E_Constant then
920 return False;
922 else
923 V := Constant_Value (E);
924 return Present (V)
925 and then Compile_Time_Known_Value_Or_Aggr (V);
926 end if;
927 end;
929 -- We have a value, see if it is compile time known
931 else
932 if Compile_Time_Known_Value (Op) then
933 return True;
935 elsif Nkind (Op) = N_Aggregate then
937 if Present (Expressions (Op)) then
938 declare
939 Expr : Node_Id;
941 begin
942 Expr := First (Expressions (Op));
943 while Present (Expr) loop
944 if not Compile_Time_Known_Value_Or_Aggr (Expr) then
945 return False;
946 end if;
948 Next (Expr);
949 end loop;
950 end;
951 end if;
953 if Present (Component_Associations (Op)) then
954 declare
955 Cass : Node_Id;
957 begin
958 Cass := First (Component_Associations (Op));
959 while Present (Cass) loop
960 if not
961 Compile_Time_Known_Value_Or_Aggr (Expression (Cass))
962 then
963 return False;
964 end if;
966 Next (Cass);
967 end loop;
968 end;
969 end if;
971 return True;
973 -- All other types of values are not known at compile time
975 else
976 return False;
977 end if;
979 end if;
980 end Compile_Time_Known_Value_Or_Aggr;
982 -----------------
983 -- Eval_Actual --
984 -----------------
986 -- This is only called for actuals of functions that are not predefined
987 -- operators (which have already been rewritten as operators at this
988 -- stage), so the call can never be folded, and all that needs doing for
989 -- the actual is to do the check for a non-static context.
991 procedure Eval_Actual (N : Node_Id) is
992 begin
993 Check_Non_Static_Context (N);
994 end Eval_Actual;
996 --------------------
997 -- Eval_Allocator --
998 --------------------
1000 -- Allocators are never static, so all we have to do is to do the
1001 -- check for a non-static context if an expression is present.
1003 procedure Eval_Allocator (N : Node_Id) is
1004 Expr : constant Node_Id := Expression (N);
1006 begin
1007 if Nkind (Expr) = N_Qualified_Expression then
1008 Check_Non_Static_Context (Expression (Expr));
1009 end if;
1010 end Eval_Allocator;
1012 ------------------------
1013 -- Eval_Arithmetic_Op --
1014 ------------------------
1016 -- Arithmetic operations are static functions, so the result is static
1017 -- if both operands are static (RM 4.9(7), 4.9(20)).
1019 procedure Eval_Arithmetic_Op (N : Node_Id) is
1020 Left : constant Node_Id := Left_Opnd (N);
1021 Right : constant Node_Id := Right_Opnd (N);
1022 Ltype : constant Entity_Id := Etype (Left);
1023 Rtype : constant Entity_Id := Etype (Right);
1024 Stat : Boolean;
1025 Fold : Boolean;
1027 begin
1028 -- If not foldable we are done
1030 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1032 if not Fold then
1033 return;
1034 end if;
1036 -- Fold for cases where both operands are of integer type
1038 if Is_Integer_Type (Ltype) and then Is_Integer_Type (Rtype) then
1039 declare
1040 Left_Int : constant Uint := Expr_Value (Left);
1041 Right_Int : constant Uint := Expr_Value (Right);
1042 Result : Uint;
1044 begin
1045 case Nkind (N) is
1047 when N_Op_Add =>
1048 Result := Left_Int + Right_Int;
1050 when N_Op_Subtract =>
1051 Result := Left_Int - Right_Int;
1053 when N_Op_Multiply =>
1054 if OK_Bits
1055 (N, UI_From_Int
1056 (Num_Bits (Left_Int) + Num_Bits (Right_Int)))
1057 then
1058 Result := Left_Int * Right_Int;
1059 else
1060 Result := Left_Int;
1061 end if;
1063 when N_Op_Divide =>
1065 -- The exception Constraint_Error is raised by integer
1066 -- division, rem and mod if the right operand is zero.
1068 if Right_Int = 0 then
1069 Apply_Compile_Time_Constraint_Error
1070 (N, "division by zero",
1071 CE_Divide_By_Zero,
1072 Warn => not Stat);
1073 return;
1075 else
1076 Result := Left_Int / Right_Int;
1077 end if;
1079 when N_Op_Mod =>
1081 -- The exception Constraint_Error is raised by integer
1082 -- division, rem and mod if the right operand is zero.
1084 if Right_Int = 0 then
1085 Apply_Compile_Time_Constraint_Error
1086 (N, "mod with zero divisor",
1087 CE_Divide_By_Zero,
1088 Warn => not Stat);
1089 return;
1090 else
1091 Result := Left_Int mod Right_Int;
1092 end if;
1094 when N_Op_Rem =>
1096 -- The exception Constraint_Error is raised by integer
1097 -- division, rem and mod if the right operand is zero.
1099 if Right_Int = 0 then
1100 Apply_Compile_Time_Constraint_Error
1101 (N, "rem with zero divisor",
1102 CE_Divide_By_Zero,
1103 Warn => not Stat);
1104 return;
1106 else
1107 Result := Left_Int rem Right_Int;
1108 end if;
1110 when others =>
1111 raise Program_Error;
1112 end case;
1114 -- Adjust the result by the modulus if the type is a modular type
1116 if Is_Modular_Integer_Type (Ltype) then
1117 Result := Result mod Modulus (Ltype);
1118 end if;
1120 Fold_Uint (N, Result, Stat);
1121 end;
1123 -- Cases where at least one operand is a real. We handle the cases
1124 -- of both reals, or mixed/real integer cases (the latter happen
1125 -- only for divide and multiply, and the result is always real).
1127 elsif Is_Real_Type (Ltype) or else Is_Real_Type (Rtype) then
1128 declare
1129 Left_Real : Ureal;
1130 Right_Real : Ureal;
1131 Result : Ureal;
1133 begin
1134 if Is_Real_Type (Ltype) then
1135 Left_Real := Expr_Value_R (Left);
1136 else
1137 Left_Real := UR_From_Uint (Expr_Value (Left));
1138 end if;
1140 if Is_Real_Type (Rtype) then
1141 Right_Real := Expr_Value_R (Right);
1142 else
1143 Right_Real := UR_From_Uint (Expr_Value (Right));
1144 end if;
1146 if Nkind (N) = N_Op_Add then
1147 Result := Left_Real + Right_Real;
1149 elsif Nkind (N) = N_Op_Subtract then
1150 Result := Left_Real - Right_Real;
1152 elsif Nkind (N) = N_Op_Multiply then
1153 Result := Left_Real * Right_Real;
1155 else pragma Assert (Nkind (N) = N_Op_Divide);
1156 if UR_Is_Zero (Right_Real) then
1157 Apply_Compile_Time_Constraint_Error
1158 (N, "division by zero", CE_Divide_By_Zero);
1159 return;
1160 end if;
1162 Result := Left_Real / Right_Real;
1163 end if;
1165 Fold_Ureal (N, Result, Stat);
1166 end;
1167 end if;
1168 end Eval_Arithmetic_Op;
1170 ----------------------------
1171 -- Eval_Character_Literal --
1172 ----------------------------
1174 -- Nothing to be done!
1176 procedure Eval_Character_Literal (N : Node_Id) is
1177 pragma Warnings (Off, N);
1179 begin
1180 null;
1181 end Eval_Character_Literal;
1183 ------------------------
1184 -- Eval_Concatenation --
1185 ------------------------
1187 -- Concatenation is a static function, so the result is static if
1188 -- both operands are static (RM 4.9(7), 4.9(21)).
1190 procedure Eval_Concatenation (N : Node_Id) is
1191 Left : constant Node_Id := Left_Opnd (N);
1192 Right : constant Node_Id := Right_Opnd (N);
1193 C_Typ : constant Entity_Id := Root_Type (Component_Type (Etype (N)));
1194 Stat : Boolean;
1195 Fold : Boolean;
1197 begin
1198 -- Concatenation is never static in Ada 83, so if Ada 83
1199 -- check operand non-static context
1201 if Ada_83
1202 and then Comes_From_Source (N)
1203 then
1204 Check_Non_Static_Context (Left);
1205 Check_Non_Static_Context (Right);
1206 return;
1207 end if;
1209 -- If not foldable we are done. In principle concatenation that yields
1210 -- any string type is static (i.e. an array type of character types).
1211 -- However, character types can include enumeration literals, and
1212 -- concatenation in that case cannot be described by a literal, so we
1213 -- only consider the operation static if the result is an array of
1214 -- (a descendant of) a predefined character type.
1216 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1218 if (C_Typ = Standard_Character
1219 or else C_Typ = Standard_Wide_Character)
1220 and then Fold
1221 then
1222 null;
1223 else
1224 Set_Is_Static_Expression (N, False);
1225 return;
1226 end if;
1228 -- Compile time string concatenation.
1230 -- ??? Note that operands that are aggregates can be marked as
1231 -- static, so we should attempt at a later stage to fold
1232 -- concatenations with such aggregates.
1234 declare
1235 Left_Str : constant Node_Id := Get_String_Val (Left);
1236 Left_Len : Nat;
1237 Right_Str : constant Node_Id := Get_String_Val (Right);
1239 begin
1240 -- Establish new string literal, and store left operand. We make
1241 -- sure to use the special Start_String that takes an operand if
1242 -- the left operand is a string literal. Since this is optimized
1243 -- in the case where that is the most recently created string
1244 -- literal, we ensure efficient time/space behavior for the
1245 -- case of a concatenation of a series of string literals.
1247 if Nkind (Left_Str) = N_String_Literal then
1248 Left_Len := String_Length (Strval (Left_Str));
1249 Start_String (Strval (Left_Str));
1250 else
1251 Start_String;
1252 Store_String_Char (Char_Literal_Value (Left_Str));
1253 Left_Len := 1;
1254 end if;
1256 -- Now append the characters of the right operand
1258 if Nkind (Right_Str) = N_String_Literal then
1259 declare
1260 S : constant String_Id := Strval (Right_Str);
1262 begin
1263 for J in 1 .. String_Length (S) loop
1264 Store_String_Char (Get_String_Char (S, J));
1265 end loop;
1266 end;
1267 else
1268 Store_String_Char (Char_Literal_Value (Right_Str));
1269 end if;
1271 Set_Is_Static_Expression (N, Stat);
1273 if Stat then
1275 -- If left operand is the empty string, the result is the
1276 -- right operand, including its bounds if anomalous.
1278 if Left_Len = 0
1279 and then Is_Array_Type (Etype (Right))
1280 and then Etype (Right) /= Any_String
1281 then
1282 Set_Etype (N, Etype (Right));
1283 end if;
1285 Fold_Str (N, End_String, True);
1286 end if;
1287 end;
1288 end Eval_Concatenation;
1290 ---------------------------------
1291 -- Eval_Conditional_Expression --
1292 ---------------------------------
1294 -- This GNAT internal construct can never be statically folded, so the
1295 -- only required processing is to do the check for non-static context
1296 -- for the two expression operands.
1298 procedure Eval_Conditional_Expression (N : Node_Id) is
1299 Condition : constant Node_Id := First (Expressions (N));
1300 Then_Expr : constant Node_Id := Next (Condition);
1301 Else_Expr : constant Node_Id := Next (Then_Expr);
1303 begin
1304 Check_Non_Static_Context (Then_Expr);
1305 Check_Non_Static_Context (Else_Expr);
1306 end Eval_Conditional_Expression;
1308 ----------------------
1309 -- Eval_Entity_Name --
1310 ----------------------
1312 -- This procedure is used for identifiers and expanded names other than
1313 -- named numbers (see Eval_Named_Integer, Eval_Named_Real. These are
1314 -- static if they denote a static constant (RM 4.9(6)) or if the name
1315 -- denotes an enumeration literal (RM 4.9(22)).
1317 procedure Eval_Entity_Name (N : Node_Id) is
1318 Def_Id : constant Entity_Id := Entity (N);
1319 Val : Node_Id;
1321 begin
1322 -- Enumeration literals are always considered to be constants
1323 -- and cannot raise constraint error (RM 4.9(22)).
1325 if Ekind (Def_Id) = E_Enumeration_Literal then
1326 Set_Is_Static_Expression (N);
1327 return;
1329 -- A name is static if it denotes a static constant (RM 4.9(5)), and
1330 -- we also copy Raise_Constraint_Error. Notice that even if non-static,
1331 -- it does not violate 10.2.1(8) here, since this is not a variable.
1333 elsif Ekind (Def_Id) = E_Constant then
1335 -- Deferred constants must always be treated as nonstatic
1336 -- outside the scope of their full view.
1338 if Present (Full_View (Def_Id))
1339 and then not In_Open_Scopes (Scope (Def_Id))
1340 then
1341 Val := Empty;
1342 else
1343 Val := Constant_Value (Def_Id);
1344 end if;
1346 if Present (Val) then
1347 Set_Is_Static_Expression
1348 (N, Is_Static_Expression (Val)
1349 and then Is_Static_Subtype (Etype (Def_Id)));
1350 Set_Raises_Constraint_Error (N, Raises_Constraint_Error (Val));
1352 if not Is_Static_Expression (N)
1353 and then not Is_Generic_Type (Etype (N))
1354 then
1355 Validate_Static_Object_Name (N);
1356 end if;
1358 return;
1359 end if;
1360 end if;
1362 -- Fall through if the name is not static.
1364 Validate_Static_Object_Name (N);
1365 end Eval_Entity_Name;
1367 ----------------------------
1368 -- Eval_Indexed_Component --
1369 ----------------------------
1371 -- Indexed components are never static, so we need to perform the check
1372 -- for non-static context on the index values. Then, we check if the
1373 -- value can be obtained at compile time, even though it is non-static.
1375 procedure Eval_Indexed_Component (N : Node_Id) is
1376 Expr : Node_Id;
1378 begin
1379 -- Check for non-static context on index values
1381 Expr := First (Expressions (N));
1382 while Present (Expr) loop
1383 Check_Non_Static_Context (Expr);
1384 Next (Expr);
1385 end loop;
1387 -- If the indexed component appears in an object renaming declaration
1388 -- then we do not want to try to evaluate it, since in this case we
1389 -- need the identity of the array element.
1391 if Nkind (Parent (N)) = N_Object_Renaming_Declaration then
1392 return;
1394 -- Similarly if the indexed component appears as the prefix of an
1395 -- attribute we don't want to evaluate it, because at least for
1396 -- some cases of attributes we need the identify (e.g. Access, Size)
1398 elsif Nkind (Parent (N)) = N_Attribute_Reference then
1399 return;
1400 end if;
1402 -- Note: there are other cases, such as the left side of an assignment,
1403 -- or an OUT parameter for a call, where the replacement results in the
1404 -- illegal use of a constant, But these cases are illegal in the first
1405 -- place, so the replacement, though silly, is harmless.
1407 -- Now see if this is a constant array reference
1409 if List_Length (Expressions (N)) = 1
1410 and then Is_Entity_Name (Prefix (N))
1411 and then Ekind (Entity (Prefix (N))) = E_Constant
1412 and then Present (Constant_Value (Entity (Prefix (N))))
1413 then
1414 declare
1415 Loc : constant Source_Ptr := Sloc (N);
1416 Arr : constant Node_Id := Constant_Value (Entity (Prefix (N)));
1417 Sub : constant Node_Id := First (Expressions (N));
1419 Atyp : Entity_Id;
1420 -- Type of array
1422 Lin : Nat;
1423 -- Linear one's origin subscript value for array reference
1425 Lbd : Node_Id;
1426 -- Lower bound of the first array index
1428 Elm : Node_Id;
1429 -- Value from constant array
1431 begin
1432 Atyp := Etype (Arr);
1434 if Is_Access_Type (Atyp) then
1435 Atyp := Designated_Type (Atyp);
1436 end if;
1438 -- If we have an array type (we should have but perhaps there
1439 -- are error cases where this is not the case), then see if we
1440 -- can do a constant evaluation of the array reference.
1442 if Is_Array_Type (Atyp) then
1443 if Ekind (Atyp) = E_String_Literal_Subtype then
1444 Lbd := String_Literal_Low_Bound (Atyp);
1445 else
1446 Lbd := Type_Low_Bound (Etype (First_Index (Atyp)));
1447 end if;
1449 if Compile_Time_Known_Value (Sub)
1450 and then Nkind (Arr) = N_Aggregate
1451 and then Compile_Time_Known_Value (Lbd)
1452 and then Is_Discrete_Type (Component_Type (Atyp))
1453 then
1454 Lin := UI_To_Int (Expr_Value (Sub) - Expr_Value (Lbd)) + 1;
1456 if List_Length (Expressions (Arr)) >= Lin then
1457 Elm := Pick (Expressions (Arr), Lin);
1459 -- If the resulting expression is compile time known,
1460 -- then we can rewrite the indexed component with this
1461 -- value, being sure to mark the result as non-static.
1462 -- We also reset the Sloc, in case this generates an
1463 -- error later on (e.g. 136'Access).
1465 if Compile_Time_Known_Value (Elm) then
1466 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
1467 Set_Is_Static_Expression (N, False);
1468 Set_Sloc (N, Loc);
1469 end if;
1470 end if;
1471 end if;
1472 end if;
1473 end;
1474 end if;
1475 end Eval_Indexed_Component;
1477 --------------------------
1478 -- Eval_Integer_Literal --
1479 --------------------------
1481 -- Numeric literals are static (RM 4.9(1)), and have already been marked
1482 -- as static by the analyzer. The reason we did it that early is to allow
1483 -- the possibility of turning off the Is_Static_Expression flag after
1484 -- analysis, but before resolution, when integer literals are generated
1485 -- in the expander that do not correspond to static expressions.
1487 procedure Eval_Integer_Literal (N : Node_Id) is
1488 T : constant Entity_Id := Etype (N);
1490 begin
1491 -- If the literal appears in a non-expression context, then it is
1492 -- certainly appearing in a non-static context, so check it. This
1493 -- is actually a redundant check, since Check_Non_Static_Context
1494 -- would check it, but it seems worth while avoiding the call.
1496 if Nkind (Parent (N)) not in N_Subexpr then
1497 Check_Non_Static_Context (N);
1498 end if;
1500 -- Modular integer literals must be in their base range
1502 if Is_Modular_Integer_Type (T)
1503 and then Is_Out_Of_Range (N, Base_Type (T))
1504 then
1505 Out_Of_Range (N);
1506 end if;
1507 end Eval_Integer_Literal;
1509 ---------------------
1510 -- Eval_Logical_Op --
1511 ---------------------
1513 -- Logical operations are static functions, so the result is potentially
1514 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
1516 procedure Eval_Logical_Op (N : Node_Id) is
1517 Left : constant Node_Id := Left_Opnd (N);
1518 Right : constant Node_Id := Right_Opnd (N);
1519 Stat : Boolean;
1520 Fold : Boolean;
1522 begin
1523 -- If not foldable we are done
1525 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1527 if not Fold then
1528 return;
1529 end if;
1531 -- Compile time evaluation of logical operation
1533 declare
1534 Left_Int : constant Uint := Expr_Value (Left);
1535 Right_Int : constant Uint := Expr_Value (Right);
1537 begin
1538 if Is_Modular_Integer_Type (Etype (N)) then
1539 declare
1540 Left_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
1541 Right_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
1543 begin
1544 To_Bits (Left_Int, Left_Bits);
1545 To_Bits (Right_Int, Right_Bits);
1547 -- Note: should really be able to use array ops instead of
1548 -- these loops, but they weren't working at the time ???
1550 if Nkind (N) = N_Op_And then
1551 for J in Left_Bits'Range loop
1552 Left_Bits (J) := Left_Bits (J) and Right_Bits (J);
1553 end loop;
1555 elsif Nkind (N) = N_Op_Or then
1556 for J in Left_Bits'Range loop
1557 Left_Bits (J) := Left_Bits (J) or Right_Bits (J);
1558 end loop;
1560 else
1561 pragma Assert (Nkind (N) = N_Op_Xor);
1563 for J in Left_Bits'Range loop
1564 Left_Bits (J) := Left_Bits (J) xor Right_Bits (J);
1565 end loop;
1566 end if;
1568 Fold_Uint (N, From_Bits (Left_Bits, Etype (N)), Stat);
1569 end;
1571 else
1572 pragma Assert (Is_Boolean_Type (Etype (N)));
1574 if Nkind (N) = N_Op_And then
1575 Fold_Uint (N,
1576 Test (Is_True (Left_Int) and then Is_True (Right_Int)), Stat);
1578 elsif Nkind (N) = N_Op_Or then
1579 Fold_Uint (N,
1580 Test (Is_True (Left_Int) or else Is_True (Right_Int)), Stat);
1582 else
1583 pragma Assert (Nkind (N) = N_Op_Xor);
1584 Fold_Uint (N,
1585 Test (Is_True (Left_Int) xor Is_True (Right_Int)), Stat);
1586 end if;
1587 end if;
1588 end;
1589 end Eval_Logical_Op;
1591 ------------------------
1592 -- Eval_Membership_Op --
1593 ------------------------
1595 -- A membership test is potentially static if the expression is static,
1596 -- and the range is a potentially static range, or is a subtype mark
1597 -- denoting a static subtype (RM 4.9(12)).
1599 procedure Eval_Membership_Op (N : Node_Id) is
1600 Left : constant Node_Id := Left_Opnd (N);
1601 Right : constant Node_Id := Right_Opnd (N);
1602 Def_Id : Entity_Id;
1603 Lo : Node_Id;
1604 Hi : Node_Id;
1605 Result : Boolean;
1606 Stat : Boolean;
1607 Fold : Boolean;
1609 begin
1610 -- Ignore if error in either operand, except to make sure that
1611 -- Any_Type is properly propagated to avoid junk cascaded errors.
1613 if Etype (Left) = Any_Type
1614 or else Etype (Right) = Any_Type
1615 then
1616 Set_Etype (N, Any_Type);
1617 return;
1618 end if;
1620 -- Case of right operand is a subtype name
1622 if Is_Entity_Name (Right) then
1623 Def_Id := Entity (Right);
1625 if (Is_Scalar_Type (Def_Id) or else Is_String_Type (Def_Id))
1626 and then Is_OK_Static_Subtype (Def_Id)
1627 then
1628 Test_Expression_Is_Foldable (N, Left, Stat, Fold);
1630 if not Fold or else not Stat then
1631 return;
1632 end if;
1633 else
1634 Check_Non_Static_Context (Left);
1635 return;
1636 end if;
1638 -- For string membership tests we will check the length
1639 -- further below.
1641 if not Is_String_Type (Def_Id) then
1642 Lo := Type_Low_Bound (Def_Id);
1643 Hi := Type_High_Bound (Def_Id);
1645 else
1646 Lo := Empty;
1647 Hi := Empty;
1648 end if;
1650 -- Case of right operand is a range
1652 else
1653 if Is_Static_Range (Right) then
1654 Test_Expression_Is_Foldable (N, Left, Stat, Fold);
1656 if not Fold or else not Stat then
1657 return;
1659 -- If one bound of range raises CE, then don't try to fold
1661 elsif not Is_OK_Static_Range (Right) then
1662 Check_Non_Static_Context (Left);
1663 return;
1664 end if;
1666 else
1667 Check_Non_Static_Context (Left);
1668 return;
1669 end if;
1671 -- Here we know range is an OK static range
1673 Lo := Low_Bound (Right);
1674 Hi := High_Bound (Right);
1675 end if;
1677 -- For strings we check that the length of the string expression is
1678 -- compatible with the string subtype if the subtype is constrained,
1679 -- or if unconstrained then the test is always true.
1681 if Is_String_Type (Etype (Right)) then
1682 if not Is_Constrained (Etype (Right)) then
1683 Result := True;
1685 else
1686 declare
1687 Typlen : constant Uint := String_Type_Len (Etype (Right));
1688 Strlen : constant Uint :=
1689 UI_From_Int (String_Length (Strval (Get_String_Val (Left))));
1690 begin
1691 Result := (Typlen = Strlen);
1692 end;
1693 end if;
1695 -- Fold the membership test. We know we have a static range and Lo
1696 -- and Hi are set to the expressions for the end points of this range.
1698 elsif Is_Real_Type (Etype (Right)) then
1699 declare
1700 Leftval : constant Ureal := Expr_Value_R (Left);
1702 begin
1703 Result := Expr_Value_R (Lo) <= Leftval
1704 and then Leftval <= Expr_Value_R (Hi);
1705 end;
1707 else
1708 declare
1709 Leftval : constant Uint := Expr_Value (Left);
1711 begin
1712 Result := Expr_Value (Lo) <= Leftval
1713 and then Leftval <= Expr_Value (Hi);
1714 end;
1715 end if;
1717 if Nkind (N) = N_Not_In then
1718 Result := not Result;
1719 end if;
1721 Fold_Uint (N, Test (Result), True);
1722 Warn_On_Known_Condition (N);
1723 end Eval_Membership_Op;
1725 ------------------------
1726 -- Eval_Named_Integer --
1727 ------------------------
1729 procedure Eval_Named_Integer (N : Node_Id) is
1730 begin
1731 Fold_Uint (N,
1732 Expr_Value (Expression (Declaration_Node (Entity (N)))), True);
1733 end Eval_Named_Integer;
1735 ---------------------
1736 -- Eval_Named_Real --
1737 ---------------------
1739 procedure Eval_Named_Real (N : Node_Id) is
1740 begin
1741 Fold_Ureal (N,
1742 Expr_Value_R (Expression (Declaration_Node (Entity (N)))), True);
1743 end Eval_Named_Real;
1745 -------------------
1746 -- Eval_Op_Expon --
1747 -------------------
1749 -- Exponentiation is a static functions, so the result is potentially
1750 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
1752 procedure Eval_Op_Expon (N : Node_Id) is
1753 Left : constant Node_Id := Left_Opnd (N);
1754 Right : constant Node_Id := Right_Opnd (N);
1755 Stat : Boolean;
1756 Fold : Boolean;
1758 begin
1759 -- If not foldable we are done
1761 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1763 if not Fold then
1764 return;
1765 end if;
1767 -- Fold exponentiation operation
1769 declare
1770 Right_Int : constant Uint := Expr_Value (Right);
1772 begin
1773 -- Integer case
1775 if Is_Integer_Type (Etype (Left)) then
1776 declare
1777 Left_Int : constant Uint := Expr_Value (Left);
1778 Result : Uint;
1780 begin
1781 -- Exponentiation of an integer raises the exception
1782 -- Constraint_Error for a negative exponent (RM 4.5.6)
1784 if Right_Int < 0 then
1785 Apply_Compile_Time_Constraint_Error
1786 (N, "integer exponent negative",
1787 CE_Range_Check_Failed,
1788 Warn => not Stat);
1789 return;
1791 else
1792 if OK_Bits (N, Num_Bits (Left_Int) * Right_Int) then
1793 Result := Left_Int ** Right_Int;
1794 else
1795 Result := Left_Int;
1796 end if;
1798 if Is_Modular_Integer_Type (Etype (N)) then
1799 Result := Result mod Modulus (Etype (N));
1800 end if;
1802 Fold_Uint (N, Result, Stat);
1803 end if;
1804 end;
1806 -- Real case
1808 else
1809 declare
1810 Left_Real : constant Ureal := Expr_Value_R (Left);
1812 begin
1813 -- Cannot have a zero base with a negative exponent
1815 if UR_Is_Zero (Left_Real) then
1817 if Right_Int < 0 then
1818 Apply_Compile_Time_Constraint_Error
1819 (N, "zero ** negative integer",
1820 CE_Range_Check_Failed,
1821 Warn => not Stat);
1822 return;
1823 else
1824 Fold_Ureal (N, Ureal_0, Stat);
1825 end if;
1827 else
1828 Fold_Ureal (N, Left_Real ** Right_Int, Stat);
1829 end if;
1830 end;
1831 end if;
1832 end;
1833 end Eval_Op_Expon;
1835 -----------------
1836 -- Eval_Op_Not --
1837 -----------------
1839 -- The not operation is a static functions, so the result is potentially
1840 -- static if the operand is potentially static (RM 4.9(7), 4.9(20)).
1842 procedure Eval_Op_Not (N : Node_Id) is
1843 Right : constant Node_Id := Right_Opnd (N);
1844 Stat : Boolean;
1845 Fold : Boolean;
1847 begin
1848 -- If not foldable we are done
1850 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
1852 if not Fold then
1853 return;
1854 end if;
1856 -- Fold not operation
1858 declare
1859 Rint : constant Uint := Expr_Value (Right);
1860 Typ : constant Entity_Id := Etype (N);
1862 begin
1863 -- Negation is equivalent to subtracting from the modulus minus
1864 -- one. For a binary modulus this is equivalent to the ones-
1865 -- component of the original value. For non-binary modulus this
1866 -- is an arbitrary but consistent definition.
1868 if Is_Modular_Integer_Type (Typ) then
1869 Fold_Uint (N, Modulus (Typ) - 1 - Rint, Stat);
1871 else
1872 pragma Assert (Is_Boolean_Type (Typ));
1873 Fold_Uint (N, Test (not Is_True (Rint)), Stat);
1874 end if;
1876 Set_Is_Static_Expression (N, Stat);
1877 end;
1878 end Eval_Op_Not;
1880 -------------------------------
1881 -- Eval_Qualified_Expression --
1882 -------------------------------
1884 -- A qualified expression is potentially static if its subtype mark denotes
1885 -- a static subtype and its expression is potentially static (RM 4.9 (11)).
1887 procedure Eval_Qualified_Expression (N : Node_Id) is
1888 Operand : constant Node_Id := Expression (N);
1889 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
1891 Stat : Boolean;
1892 Fold : Boolean;
1893 Hex : Boolean;
1895 begin
1896 -- Can only fold if target is string or scalar and subtype is static
1897 -- Also, do not fold if our parent is an allocator (this is because
1898 -- the qualified expression is really part of the syntactic structure
1899 -- of an allocator, and we do not want to end up with something that
1900 -- corresponds to "new 1" where the 1 is the result of folding a
1901 -- qualified expression).
1903 if not Is_Static_Subtype (Target_Type)
1904 or else Nkind (Parent (N)) = N_Allocator
1905 then
1906 Check_Non_Static_Context (Operand);
1907 return;
1908 end if;
1910 -- If not foldable we are done
1912 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
1914 if not Fold then
1915 return;
1917 -- Don't try fold if target type has constraint error bounds
1919 elsif not Is_OK_Static_Subtype (Target_Type) then
1920 Set_Raises_Constraint_Error (N);
1921 return;
1922 end if;
1924 -- Here we will fold, save Print_In_Hex indication
1926 Hex := Nkind (Operand) = N_Integer_Literal
1927 and then Print_In_Hex (Operand);
1929 -- Fold the result of qualification
1931 if Is_Discrete_Type (Target_Type) then
1932 Fold_Uint (N, Expr_Value (Operand), Stat);
1934 -- Preserve Print_In_Hex indication
1936 if Hex and then Nkind (N) = N_Integer_Literal then
1937 Set_Print_In_Hex (N);
1938 end if;
1940 elsif Is_Real_Type (Target_Type) then
1941 Fold_Ureal (N, Expr_Value_R (Operand), Stat);
1943 else
1944 Fold_Str (N, Strval (Get_String_Val (Operand)), Stat);
1946 if not Stat then
1947 Set_Is_Static_Expression (N, False);
1948 else
1949 Check_String_Literal_Length (N, Target_Type);
1950 end if;
1952 return;
1953 end if;
1955 -- The expression may be foldable but not static
1957 Set_Is_Static_Expression (N, Stat);
1959 if Is_Out_Of_Range (N, Etype (N)) then
1960 Out_Of_Range (N);
1961 end if;
1962 end Eval_Qualified_Expression;
1964 -----------------------
1965 -- Eval_Real_Literal --
1966 -----------------------
1968 -- Numeric literals are static (RM 4.9(1)), and have already been marked
1969 -- as static by the analyzer. The reason we did it that early is to allow
1970 -- the possibility of turning off the Is_Static_Expression flag after
1971 -- analysis, but before resolution, when integer literals are generated
1972 -- in the expander that do not correspond to static expressions.
1974 procedure Eval_Real_Literal (N : Node_Id) is
1975 begin
1976 -- If the literal appears in a non-expression context, then it is
1977 -- certainly appearing in a non-static context, so check it.
1979 if Nkind (Parent (N)) not in N_Subexpr then
1980 Check_Non_Static_Context (N);
1981 end if;
1983 end Eval_Real_Literal;
1985 ------------------------
1986 -- Eval_Relational_Op --
1987 ------------------------
1989 -- Relational operations are static functions, so the result is static
1990 -- if both operands are static (RM 4.9(7), 4.9(20)).
1992 procedure Eval_Relational_Op (N : Node_Id) is
1993 Left : constant Node_Id := Left_Opnd (N);
1994 Right : constant Node_Id := Right_Opnd (N);
1995 Typ : constant Entity_Id := Etype (Left);
1996 Result : Boolean;
1997 Stat : Boolean;
1998 Fold : Boolean;
2000 begin
2001 -- One special case to deal with first. If we can tell that
2002 -- the result will be false because the lengths of one or
2003 -- more index subtypes are compile time known and different,
2004 -- then we can replace the entire result by False. We only
2005 -- do this for one dimensional arrays, because the case of
2006 -- multi-dimensional arrays is rare and too much trouble!
2008 if Is_Array_Type (Typ)
2009 and then Number_Dimensions (Typ) = 1
2010 and then (Nkind (N) = N_Op_Eq
2011 or else Nkind (N) = N_Op_Ne)
2012 then
2013 if Raises_Constraint_Error (Left)
2014 or else Raises_Constraint_Error (Right)
2015 then
2016 return;
2017 end if;
2019 declare
2020 procedure Get_Static_Length (Op : Node_Id; Len : out Uint);
2021 -- If Op is an expression for a constrained array with a
2022 -- known at compile time length, then Len is set to this
2023 -- (non-negative length). Otherwise Len is set to minus 1.
2025 -----------------------
2026 -- Get_Static_Length --
2027 -----------------------
2029 procedure Get_Static_Length (Op : Node_Id; Len : out Uint) is
2030 T : Entity_Id;
2032 begin
2033 if Nkind (Op) = N_String_Literal then
2034 Len := UI_From_Int (String_Length (Strval (Op)));
2036 elsif not Is_Constrained (Etype (Op)) then
2037 Len := Uint_Minus_1;
2039 else
2040 T := Etype (First_Index (Etype (Op)));
2042 if Is_Discrete_Type (T)
2043 and then
2044 Compile_Time_Known_Value (Type_Low_Bound (T))
2045 and then
2046 Compile_Time_Known_Value (Type_High_Bound (T))
2047 then
2048 Len := UI_Max (Uint_0,
2049 Expr_Value (Type_High_Bound (T)) -
2050 Expr_Value (Type_Low_Bound (T)) + 1);
2051 else
2052 Len := Uint_Minus_1;
2053 end if;
2054 end if;
2055 end Get_Static_Length;
2057 Len_L : Uint;
2058 Len_R : Uint;
2060 begin
2061 Get_Static_Length (Left, Len_L);
2062 Get_Static_Length (Right, Len_R);
2064 if Len_L /= Uint_Minus_1
2065 and then Len_R /= Uint_Minus_1
2066 and then Len_L /= Len_R
2067 then
2068 Fold_Uint (N, Test (Nkind (N) = N_Op_Ne), False);
2069 Warn_On_Known_Condition (N);
2070 return;
2071 end if;
2072 end;
2073 end if;
2075 -- Can only fold if type is scalar (don't fold string ops)
2077 if not Is_Scalar_Type (Typ) then
2078 Check_Non_Static_Context (Left);
2079 Check_Non_Static_Context (Right);
2080 return;
2081 end if;
2083 -- If not foldable we are done
2085 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2087 if not Fold then
2088 return;
2089 end if;
2091 -- Integer and Enumeration (discrete) type cases
2093 if Is_Discrete_Type (Typ) then
2094 declare
2095 Left_Int : constant Uint := Expr_Value (Left);
2096 Right_Int : constant Uint := Expr_Value (Right);
2098 begin
2099 case Nkind (N) is
2100 when N_Op_Eq => Result := Left_Int = Right_Int;
2101 when N_Op_Ne => Result := Left_Int /= Right_Int;
2102 when N_Op_Lt => Result := Left_Int < Right_Int;
2103 when N_Op_Le => Result := Left_Int <= Right_Int;
2104 when N_Op_Gt => Result := Left_Int > Right_Int;
2105 when N_Op_Ge => Result := Left_Int >= Right_Int;
2107 when others =>
2108 raise Program_Error;
2109 end case;
2111 Fold_Uint (N, Test (Result), Stat);
2112 end;
2114 -- Real type case
2116 else
2117 pragma Assert (Is_Real_Type (Typ));
2119 declare
2120 Left_Real : constant Ureal := Expr_Value_R (Left);
2121 Right_Real : constant Ureal := Expr_Value_R (Right);
2123 begin
2124 case Nkind (N) is
2125 when N_Op_Eq => Result := (Left_Real = Right_Real);
2126 when N_Op_Ne => Result := (Left_Real /= Right_Real);
2127 when N_Op_Lt => Result := (Left_Real < Right_Real);
2128 when N_Op_Le => Result := (Left_Real <= Right_Real);
2129 when N_Op_Gt => Result := (Left_Real > Right_Real);
2130 when N_Op_Ge => Result := (Left_Real >= Right_Real);
2132 when others =>
2133 raise Program_Error;
2134 end case;
2136 Fold_Uint (N, Test (Result), Stat);
2137 end;
2138 end if;
2140 Warn_On_Known_Condition (N);
2141 end Eval_Relational_Op;
2143 ----------------
2144 -- Eval_Shift --
2145 ----------------
2147 -- Shift operations are intrinsic operations that can never be static,
2148 -- so the only processing required is to perform the required check for
2149 -- a non static context for the two operands.
2151 -- Actually we could do some compile time evaluation here some time ???
2153 procedure Eval_Shift (N : Node_Id) is
2154 begin
2155 Check_Non_Static_Context (Left_Opnd (N));
2156 Check_Non_Static_Context (Right_Opnd (N));
2157 end Eval_Shift;
2159 ------------------------
2160 -- Eval_Short_Circuit --
2161 ------------------------
2163 -- A short circuit operation is potentially static if both operands
2164 -- are potentially static (RM 4.9 (13))
2166 procedure Eval_Short_Circuit (N : Node_Id) is
2167 Kind : constant Node_Kind := Nkind (N);
2168 Left : constant Node_Id := Left_Opnd (N);
2169 Right : constant Node_Id := Right_Opnd (N);
2170 Left_Int : Uint;
2171 Rstat : constant Boolean :=
2172 Is_Static_Expression (Left)
2173 and then Is_Static_Expression (Right);
2175 begin
2176 -- Short circuit operations are never static in Ada 83
2178 if Ada_83
2179 and then Comes_From_Source (N)
2180 then
2181 Check_Non_Static_Context (Left);
2182 Check_Non_Static_Context (Right);
2183 return;
2184 end if;
2186 -- Now look at the operands, we can't quite use the normal call to
2187 -- Test_Expression_Is_Foldable here because short circuit operations
2188 -- are a special case, they can still be foldable, even if the right
2189 -- operand raises constraint error.
2191 -- If either operand is Any_Type, just propagate to result and
2192 -- do not try to fold, this prevents cascaded errors.
2194 if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
2195 Set_Etype (N, Any_Type);
2196 return;
2198 -- If left operand raises constraint error, then replace node N with
2199 -- the raise constraint error node, and we are obviously not foldable.
2200 -- Is_Static_Expression is set from the two operands in the normal way,
2201 -- and we check the right operand if it is in a non-static context.
2203 elsif Raises_Constraint_Error (Left) then
2204 if not Rstat then
2205 Check_Non_Static_Context (Right);
2206 end if;
2208 Rewrite_In_Raise_CE (N, Left);
2209 Set_Is_Static_Expression (N, Rstat);
2210 return;
2212 -- If the result is not static, then we won't in any case fold
2214 elsif not Rstat then
2215 Check_Non_Static_Context (Left);
2216 Check_Non_Static_Context (Right);
2217 return;
2218 end if;
2220 -- Here the result is static, note that, unlike the normal processing
2221 -- in Test_Expression_Is_Foldable, we did *not* check above to see if
2222 -- the right operand raises constraint error, that's because it is not
2223 -- significant if the left operand is decisive.
2225 Set_Is_Static_Expression (N);
2227 -- It does not matter if the right operand raises constraint error if
2228 -- it will not be evaluated. So deal specially with the cases where
2229 -- the right operand is not evaluated. Note that we will fold these
2230 -- cases even if the right operand is non-static, which is fine, but
2231 -- of course in these cases the result is not potentially static.
2233 Left_Int := Expr_Value (Left);
2235 if (Kind = N_And_Then and then Is_False (Left_Int))
2236 or else (Kind = N_Or_Else and Is_True (Left_Int))
2237 then
2238 Fold_Uint (N, Left_Int, Rstat);
2239 return;
2240 end if;
2242 -- If first operand not decisive, then it does matter if the right
2243 -- operand raises constraint error, since it will be evaluated, so
2244 -- we simply replace the node with the right operand. Note that this
2245 -- properly propagates Is_Static_Expression and Raises_Constraint_Error
2246 -- (both are set to True in Right).
2248 if Raises_Constraint_Error (Right) then
2249 Rewrite_In_Raise_CE (N, Right);
2250 Check_Non_Static_Context (Left);
2251 return;
2252 end if;
2254 -- Otherwise the result depends on the right operand
2256 Fold_Uint (N, Expr_Value (Right), Rstat);
2257 return;
2258 end Eval_Short_Circuit;
2260 ----------------
2261 -- Eval_Slice --
2262 ----------------
2264 -- Slices can never be static, so the only processing required is to
2265 -- check for non-static context if an explicit range is given.
2267 procedure Eval_Slice (N : Node_Id) is
2268 Drange : constant Node_Id := Discrete_Range (N);
2270 begin
2271 if Nkind (Drange) = N_Range then
2272 Check_Non_Static_Context (Low_Bound (Drange));
2273 Check_Non_Static_Context (High_Bound (Drange));
2274 end if;
2275 end Eval_Slice;
2277 -------------------------
2278 -- Eval_String_Literal --
2279 -------------------------
2281 procedure Eval_String_Literal (N : Node_Id) is
2282 T : constant Entity_Id := Etype (N);
2283 B : constant Entity_Id := Base_Type (T);
2284 I : Entity_Id;
2286 begin
2287 -- Nothing to do if error type (handles cases like default expressions
2288 -- or generics where we have not yet fully resolved the type)
2290 if B = Any_Type or else B = Any_String then
2291 return;
2293 -- String literals are static if the subtype is static (RM 4.9(2)), so
2294 -- reset the static expression flag (it was set unconditionally in
2295 -- Analyze_String_Literal) if the subtype is non-static. We tell if
2296 -- the subtype is static by looking at the lower bound.
2298 elsif not Is_OK_Static_Expression (String_Literal_Low_Bound (T)) then
2299 Set_Is_Static_Expression (N, False);
2301 elsif Nkind (Original_Node (N)) = N_Type_Conversion then
2302 Set_Is_Static_Expression (N, False);
2304 -- Test for illegal Ada 95 cases. A string literal is illegal in
2305 -- Ada 95 if its bounds are outside the index base type and this
2306 -- index type is static. This can hapen in only two ways. Either
2307 -- the string literal is too long, or it is null, and the lower
2308 -- bound is type'First. In either case it is the upper bound that
2309 -- is out of range of the index type.
2311 elsif Ada_95 then
2312 if Root_Type (B) = Standard_String
2313 or else Root_Type (B) = Standard_Wide_String
2314 then
2315 I := Standard_Positive;
2316 else
2317 I := Etype (First_Index (B));
2318 end if;
2320 if String_Literal_Length (T) > String_Type_Len (B) then
2321 Apply_Compile_Time_Constraint_Error
2322 (N, "string literal too long for}", CE_Length_Check_Failed,
2323 Ent => B,
2324 Typ => First_Subtype (B));
2326 elsif String_Literal_Length (T) = 0
2327 and then not Is_Generic_Type (I)
2328 and then Expr_Value (String_Literal_Low_Bound (T)) =
2329 Expr_Value (Type_Low_Bound (Base_Type (I)))
2330 then
2331 Apply_Compile_Time_Constraint_Error
2332 (N, "null string literal not allowed for}",
2333 CE_Length_Check_Failed,
2334 Ent => B,
2335 Typ => First_Subtype (B));
2336 end if;
2337 end if;
2339 end Eval_String_Literal;
2341 --------------------------
2342 -- Eval_Type_Conversion --
2343 --------------------------
2345 -- A type conversion is potentially static if its subtype mark is for a
2346 -- static scalar subtype, and its operand expression is potentially static
2347 -- (RM 4.9 (10))
2349 procedure Eval_Type_Conversion (N : Node_Id) is
2350 Operand : constant Node_Id := Expression (N);
2351 Source_Type : constant Entity_Id := Etype (Operand);
2352 Target_Type : constant Entity_Id := Etype (N);
2354 Stat : Boolean;
2355 Fold : Boolean;
2357 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean;
2358 -- Returns true if type T is an integer type, or if it is a
2359 -- fixed-point type to be treated as an integer (i.e. the flag
2360 -- Conversion_OK is set on the conversion node).
2362 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean;
2363 -- Returns true if type T is a floating-point type, or if it is a
2364 -- fixed-point type that is not to be treated as an integer (i.e. the
2365 -- flag Conversion_OK is not set on the conversion node).
2367 ------------------------------
2368 -- To_Be_Treated_As_Integer --
2369 ------------------------------
2371 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean is
2372 begin
2373 return
2374 Is_Integer_Type (T)
2375 or else (Is_Fixed_Point_Type (T) and then Conversion_OK (N));
2376 end To_Be_Treated_As_Integer;
2378 ---------------------------
2379 -- To_Be_Treated_As_Real --
2380 ---------------------------
2382 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean is
2383 begin
2384 return
2385 Is_Floating_Point_Type (T)
2386 or else (Is_Fixed_Point_Type (T) and then not Conversion_OK (N));
2387 end To_Be_Treated_As_Real;
2389 -- Start of processing for Eval_Type_Conversion
2391 begin
2392 -- Cannot fold if target type is non-static or if semantic error.
2394 if not Is_Static_Subtype (Target_Type) then
2395 Check_Non_Static_Context (Operand);
2396 return;
2398 elsif Error_Posted (N) then
2399 return;
2400 end if;
2402 -- If not foldable we are done
2404 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
2406 if not Fold then
2407 return;
2409 -- Don't try fold if target type has constraint error bounds
2411 elsif not Is_OK_Static_Subtype (Target_Type) then
2412 Set_Raises_Constraint_Error (N);
2413 return;
2414 end if;
2416 -- Remaining processing depends on operand types. Note that in the
2417 -- following type test, fixed-point counts as real unless the flag
2418 -- Conversion_OK is set, in which case it counts as integer.
2420 -- Fold conversion, case of string type. The result is not static.
2422 if Is_String_Type (Target_Type) then
2423 Fold_Str (N, Strval (Get_String_Val (Operand)), False);
2425 return;
2427 -- Fold conversion, case of integer target type
2429 elsif To_Be_Treated_As_Integer (Target_Type) then
2430 declare
2431 Result : Uint;
2433 begin
2434 -- Integer to integer conversion
2436 if To_Be_Treated_As_Integer (Source_Type) then
2437 Result := Expr_Value (Operand);
2439 -- Real to integer conversion
2441 else
2442 Result := UR_To_Uint (Expr_Value_R (Operand));
2443 end if;
2445 -- If fixed-point type (Conversion_OK must be set), then the
2446 -- result is logically an integer, but we must replace the
2447 -- conversion with the corresponding real literal, since the
2448 -- type from a semantic point of view is still fixed-point.
2450 if Is_Fixed_Point_Type (Target_Type) then
2451 Fold_Ureal
2452 (N, UR_From_Uint (Result) * Small_Value (Target_Type), Stat);
2454 -- Otherwise result is integer literal
2456 else
2457 Fold_Uint (N, Result, Stat);
2458 end if;
2459 end;
2461 -- Fold conversion, case of real target type
2463 elsif To_Be_Treated_As_Real (Target_Type) then
2464 declare
2465 Result : Ureal;
2467 begin
2468 if To_Be_Treated_As_Real (Source_Type) then
2469 Result := Expr_Value_R (Operand);
2470 else
2471 Result := UR_From_Uint (Expr_Value (Operand));
2472 end if;
2474 Fold_Ureal (N, Result, Stat);
2475 end;
2477 -- Enumeration types
2479 else
2480 Fold_Uint (N, Expr_Value (Operand), Stat);
2481 end if;
2483 if Is_Out_Of_Range (N, Etype (N)) then
2484 Out_Of_Range (N);
2485 end if;
2487 end Eval_Type_Conversion;
2489 -------------------
2490 -- Eval_Unary_Op --
2491 -------------------
2493 -- Predefined unary operators are static functions (RM 4.9(20)) and thus
2494 -- are potentially static if the operand is potentially static (RM 4.9(7))
2496 procedure Eval_Unary_Op (N : Node_Id) is
2497 Right : constant Node_Id := Right_Opnd (N);
2498 Stat : Boolean;
2499 Fold : Boolean;
2501 begin
2502 -- If not foldable we are done
2504 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
2506 if not Fold then
2507 return;
2508 end if;
2510 -- Fold for integer case
2512 if Is_Integer_Type (Etype (N)) then
2513 declare
2514 Rint : constant Uint := Expr_Value (Right);
2515 Result : Uint;
2517 begin
2518 -- In the case of modular unary plus and abs there is no need
2519 -- to adjust the result of the operation since if the original
2520 -- operand was in bounds the result will be in the bounds of the
2521 -- modular type. However, in the case of modular unary minus the
2522 -- result may go out of the bounds of the modular type and needs
2523 -- adjustment.
2525 if Nkind (N) = N_Op_Plus then
2526 Result := Rint;
2528 elsif Nkind (N) = N_Op_Minus then
2529 if Is_Modular_Integer_Type (Etype (N)) then
2530 Result := (-Rint) mod Modulus (Etype (N));
2531 else
2532 Result := (-Rint);
2533 end if;
2535 else
2536 pragma Assert (Nkind (N) = N_Op_Abs);
2537 Result := abs Rint;
2538 end if;
2540 Fold_Uint (N, Result, Stat);
2541 end;
2543 -- Fold for real case
2545 elsif Is_Real_Type (Etype (N)) then
2546 declare
2547 Rreal : constant Ureal := Expr_Value_R (Right);
2548 Result : Ureal;
2550 begin
2551 if Nkind (N) = N_Op_Plus then
2552 Result := Rreal;
2554 elsif Nkind (N) = N_Op_Minus then
2555 Result := UR_Negate (Rreal);
2557 else
2558 pragma Assert (Nkind (N) = N_Op_Abs);
2559 Result := abs Rreal;
2560 end if;
2562 Fold_Ureal (N, Result, Stat);
2563 end;
2564 end if;
2565 end Eval_Unary_Op;
2567 -------------------------------
2568 -- Eval_Unchecked_Conversion --
2569 -------------------------------
2571 -- Unchecked conversions can never be static, so the only required
2572 -- processing is to check for a non-static context for the operand.
2574 procedure Eval_Unchecked_Conversion (N : Node_Id) is
2575 begin
2576 Check_Non_Static_Context (Expression (N));
2577 end Eval_Unchecked_Conversion;
2579 --------------------
2580 -- Expr_Rep_Value --
2581 --------------------
2583 function Expr_Rep_Value (N : Node_Id) return Uint is
2584 Kind : constant Node_Kind := Nkind (N);
2585 Ent : Entity_Id;
2587 begin
2588 if Is_Entity_Name (N) then
2589 Ent := Entity (N);
2591 -- An enumeration literal that was either in the source or
2592 -- created as a result of static evaluation.
2594 if Ekind (Ent) = E_Enumeration_Literal then
2595 return Enumeration_Rep (Ent);
2597 -- A user defined static constant
2599 else
2600 pragma Assert (Ekind (Ent) = E_Constant);
2601 return Expr_Rep_Value (Constant_Value (Ent));
2602 end if;
2604 -- An integer literal that was either in the source or created
2605 -- as a result of static evaluation.
2607 elsif Kind = N_Integer_Literal then
2608 return Intval (N);
2610 -- A real literal for a fixed-point type. This must be the fixed-point
2611 -- case, either the literal is of a fixed-point type, or it is a bound
2612 -- of a fixed-point type, with type universal real. In either case we
2613 -- obtain the desired value from Corresponding_Integer_Value.
2615 elsif Kind = N_Real_Literal then
2616 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
2617 return Corresponding_Integer_Value (N);
2619 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
2621 elsif Kind = N_Attribute_Reference
2622 and then Attribute_Name (N) = Name_Null_Parameter
2623 then
2624 return Uint_0;
2626 -- Otherwise must be character literal
2628 else
2629 pragma Assert (Kind = N_Character_Literal);
2630 Ent := Entity (N);
2632 -- Since Character literals of type Standard.Character don't
2633 -- have any defining character literals built for them, they
2634 -- do not have their Entity set, so just use their Char
2635 -- code. Otherwise for user-defined character literals use
2636 -- their Pos value as usual which is the same as the Rep value.
2638 if No (Ent) then
2639 return UI_From_Int (Int (Char_Literal_Value (N)));
2640 else
2641 return Enumeration_Rep (Ent);
2642 end if;
2643 end if;
2644 end Expr_Rep_Value;
2646 ----------------
2647 -- Expr_Value --
2648 ----------------
2650 function Expr_Value (N : Node_Id) return Uint is
2651 Kind : constant Node_Kind := Nkind (N);
2652 CV_Ent : CV_Entry renames CV_Cache (Nat (N) mod CV_Cache_Size);
2653 Ent : Entity_Id;
2654 Val : Uint;
2656 begin
2657 -- If already in cache, then we know it's compile time known and
2658 -- we can return the value that was previously stored in the cache
2659 -- since compile time known values cannot change :-)
2661 if CV_Ent.N = N then
2662 return CV_Ent.V;
2663 end if;
2665 -- Otherwise proceed to test value
2667 if Is_Entity_Name (N) then
2668 Ent := Entity (N);
2670 -- An enumeration literal that was either in the source or
2671 -- created as a result of static evaluation.
2673 if Ekind (Ent) = E_Enumeration_Literal then
2674 Val := Enumeration_Pos (Ent);
2676 -- A user defined static constant
2678 else
2679 pragma Assert (Ekind (Ent) = E_Constant);
2680 Val := Expr_Value (Constant_Value (Ent));
2681 end if;
2683 -- An integer literal that was either in the source or created
2684 -- as a result of static evaluation.
2686 elsif Kind = N_Integer_Literal then
2687 Val := Intval (N);
2689 -- A real literal for a fixed-point type. This must be the fixed-point
2690 -- case, either the literal is of a fixed-point type, or it is a bound
2691 -- of a fixed-point type, with type universal real. In either case we
2692 -- obtain the desired value from Corresponding_Integer_Value.
2694 elsif Kind = N_Real_Literal then
2696 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
2697 Val := Corresponding_Integer_Value (N);
2699 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
2701 elsif Kind = N_Attribute_Reference
2702 and then Attribute_Name (N) = Name_Null_Parameter
2703 then
2704 Val := Uint_0;
2706 -- Otherwise must be character literal
2708 else
2709 pragma Assert (Kind = N_Character_Literal);
2710 Ent := Entity (N);
2712 -- Since Character literals of type Standard.Character don't
2713 -- have any defining character literals built for them, they
2714 -- do not have their Entity set, so just use their Char
2715 -- code. Otherwise for user-defined character literals use
2716 -- their Pos value as usual.
2718 if No (Ent) then
2719 Val := UI_From_Int (Int (Char_Literal_Value (N)));
2720 else
2721 Val := Enumeration_Pos (Ent);
2722 end if;
2723 end if;
2725 -- Come here with Val set to value to be returned, set cache
2727 CV_Ent.N := N;
2728 CV_Ent.V := Val;
2729 return Val;
2730 end Expr_Value;
2732 ------------------
2733 -- Expr_Value_E --
2734 ------------------
2736 function Expr_Value_E (N : Node_Id) return Entity_Id is
2737 Ent : constant Entity_Id := Entity (N);
2739 begin
2740 if Ekind (Ent) = E_Enumeration_Literal then
2741 return Ent;
2742 else
2743 pragma Assert (Ekind (Ent) = E_Constant);
2744 return Expr_Value_E (Constant_Value (Ent));
2745 end if;
2746 end Expr_Value_E;
2748 ------------------
2749 -- Expr_Value_R --
2750 ------------------
2752 function Expr_Value_R (N : Node_Id) return Ureal is
2753 Kind : constant Node_Kind := Nkind (N);
2754 Ent : Entity_Id;
2755 Expr : Node_Id;
2757 begin
2758 if Kind = N_Real_Literal then
2759 return Realval (N);
2761 elsif Kind = N_Identifier or else Kind = N_Expanded_Name then
2762 Ent := Entity (N);
2763 pragma Assert (Ekind (Ent) = E_Constant);
2764 return Expr_Value_R (Constant_Value (Ent));
2766 elsif Kind = N_Integer_Literal then
2767 return UR_From_Uint (Expr_Value (N));
2769 -- Strange case of VAX literals, which are at this stage transformed
2770 -- into Vax_Type!x_To_y(IEEE_Literal). See Expand_N_Real_Literal in
2771 -- Exp_Vfpt for further details.
2773 elsif Vax_Float (Etype (N))
2774 and then Nkind (N) = N_Unchecked_Type_Conversion
2775 then
2776 Expr := Expression (N);
2778 if Nkind (Expr) = N_Function_Call
2779 and then Present (Parameter_Associations (Expr))
2780 then
2781 Expr := First (Parameter_Associations (Expr));
2783 if Nkind (Expr) = N_Real_Literal then
2784 return Realval (Expr);
2785 end if;
2786 end if;
2788 -- Peculiar VMS case, if we have xxx'Null_Parameter, return 0.0
2790 elsif Kind = N_Attribute_Reference
2791 and then Attribute_Name (N) = Name_Null_Parameter
2792 then
2793 return Ureal_0;
2794 end if;
2796 -- If we fall through, we have a node that cannot be interepreted
2797 -- as a compile time constant. That is definitely an error.
2799 raise Program_Error;
2800 end Expr_Value_R;
2802 ------------------
2803 -- Expr_Value_S --
2804 ------------------
2806 function Expr_Value_S (N : Node_Id) return Node_Id is
2807 begin
2808 if Nkind (N) = N_String_Literal then
2809 return N;
2810 else
2811 pragma Assert (Ekind (Entity (N)) = E_Constant);
2812 return Expr_Value_S (Constant_Value (Entity (N)));
2813 end if;
2814 end Expr_Value_S;
2816 --------------------------
2817 -- Flag_Non_Static_Expr --
2818 --------------------------
2820 procedure Flag_Non_Static_Expr (Msg : String; Expr : Node_Id) is
2821 begin
2822 if Error_Posted (Expr) and then not All_Errors_Mode then
2823 return;
2824 else
2825 Error_Msg_F (Msg, Expr);
2826 Why_Not_Static (Expr);
2827 end if;
2828 end Flag_Non_Static_Expr;
2830 --------------
2831 -- Fold_Str --
2832 --------------
2834 procedure Fold_Str (N : Node_Id; Val : String_Id; Static : Boolean) is
2835 Loc : constant Source_Ptr := Sloc (N);
2836 Typ : constant Entity_Id := Etype (N);
2838 begin
2839 Rewrite (N, Make_String_Literal (Loc, Strval => Val));
2841 -- We now have the literal with the right value, both the actual type
2842 -- and the expected type of this literal are taken from the expression
2843 -- that was evaluated.
2845 Analyze (N);
2846 Set_Is_Static_Expression (N, Static);
2847 Set_Etype (N, Typ);
2848 Resolve (N);
2849 end Fold_Str;
2851 ---------------
2852 -- Fold_Uint --
2853 ---------------
2855 procedure Fold_Uint (N : Node_Id; Val : Uint; Static : Boolean) is
2856 Loc : constant Source_Ptr := Sloc (N);
2857 Typ : Entity_Id := Etype (N);
2858 Ent : Entity_Id;
2860 begin
2861 -- If we are folding a named number, retain the entity in the
2862 -- literal, for ASIS use.
2864 if Is_Entity_Name (N)
2865 and then Ekind (Entity (N)) = E_Named_Integer
2866 then
2867 Ent := Entity (N);
2868 else
2869 Ent := Empty;
2870 end if;
2872 if Is_Private_Type (Typ) then
2873 Typ := Full_View (Typ);
2874 end if;
2876 -- For a result of type integer, subsitute an N_Integer_Literal node
2877 -- for the result of the compile time evaluation of the expression.
2879 if Is_Integer_Type (Typ) then
2880 Rewrite (N, Make_Integer_Literal (Loc, Val));
2881 Set_Original_Entity (N, Ent);
2883 -- Otherwise we have an enumeration type, and we substitute either
2884 -- an N_Identifier or N_Character_Literal to represent the enumeration
2885 -- literal corresponding to the given value, which must always be in
2886 -- range, because appropriate tests have already been made for this.
2888 else pragma Assert (Is_Enumeration_Type (Typ));
2889 Rewrite (N, Get_Enum_Lit_From_Pos (Etype (N), Val, Loc));
2890 end if;
2892 -- We now have the literal with the right value, both the actual type
2893 -- and the expected type of this literal are taken from the expression
2894 -- that was evaluated.
2896 Analyze (N);
2897 Set_Is_Static_Expression (N, Static);
2898 Set_Etype (N, Typ);
2899 Resolve (N);
2900 end Fold_Uint;
2902 ----------------
2903 -- Fold_Ureal --
2904 ----------------
2906 procedure Fold_Ureal (N : Node_Id; Val : Ureal; Static : Boolean) is
2907 Loc : constant Source_Ptr := Sloc (N);
2908 Typ : constant Entity_Id := Etype (N);
2909 Ent : Entity_Id;
2911 begin
2912 -- If we are folding a named number, retain the entity in the
2913 -- literal, for ASIS use.
2915 if Is_Entity_Name (N)
2916 and then Ekind (Entity (N)) = E_Named_Real
2917 then
2918 Ent := Entity (N);
2919 else
2920 Ent := Empty;
2921 end if;
2923 Rewrite (N, Make_Real_Literal (Loc, Realval => Val));
2924 Set_Original_Entity (N, Ent);
2926 -- Both the actual and expected type comes from the original expression
2928 Analyze (N);
2929 Set_Is_Static_Expression (N, Static);
2930 Set_Etype (N, Typ);
2931 Resolve (N);
2932 end Fold_Ureal;
2934 ---------------
2935 -- From_Bits --
2936 ---------------
2938 function From_Bits (B : Bits; T : Entity_Id) return Uint is
2939 V : Uint := Uint_0;
2941 begin
2942 for J in 0 .. B'Last loop
2943 if B (J) then
2944 V := V + 2 ** J;
2945 end if;
2946 end loop;
2948 if Non_Binary_Modulus (T) then
2949 V := V mod Modulus (T);
2950 end if;
2952 return V;
2953 end From_Bits;
2955 --------------------
2956 -- Get_String_Val --
2957 --------------------
2959 function Get_String_Val (N : Node_Id) return Node_Id is
2960 begin
2961 if Nkind (N) = N_String_Literal then
2962 return N;
2964 elsif Nkind (N) = N_Character_Literal then
2965 return N;
2967 else
2968 pragma Assert (Is_Entity_Name (N));
2969 return Get_String_Val (Constant_Value (Entity (N)));
2970 end if;
2971 end Get_String_Val;
2973 ----------------
2974 -- Initialize --
2975 ----------------
2977 procedure Initialize is
2978 begin
2979 CV_Cache := (others => (Node_High_Bound, Uint_0));
2980 end Initialize;
2982 --------------------
2983 -- In_Subrange_Of --
2984 --------------------
2986 function In_Subrange_Of
2987 (T1 : Entity_Id;
2988 T2 : Entity_Id;
2989 Fixed_Int : Boolean := False)
2990 return Boolean
2992 L1 : Node_Id;
2993 H1 : Node_Id;
2995 L2 : Node_Id;
2996 H2 : Node_Id;
2998 begin
2999 if T1 = T2 or else Is_Subtype_Of (T1, T2) then
3000 return True;
3002 -- Never in range if both types are not scalar. Don't know if this can
3003 -- actually happen, but just in case.
3005 elsif not Is_Scalar_Type (T1) or else not Is_Scalar_Type (T1) then
3006 return False;
3008 else
3009 L1 := Type_Low_Bound (T1);
3010 H1 := Type_High_Bound (T1);
3012 L2 := Type_Low_Bound (T2);
3013 H2 := Type_High_Bound (T2);
3015 -- Check bounds to see if comparison possible at compile time
3017 if Compile_Time_Compare (L1, L2) in Compare_GE
3018 and then
3019 Compile_Time_Compare (H1, H2) in Compare_LE
3020 then
3021 return True;
3022 end if;
3024 -- If bounds not comparable at compile time, then the bounds of T2
3025 -- must be compile time known or we cannot answer the query.
3027 if not Compile_Time_Known_Value (L2)
3028 or else not Compile_Time_Known_Value (H2)
3029 then
3030 return False;
3031 end if;
3033 -- If the bounds of T1 are know at compile time then use these
3034 -- ones, otherwise use the bounds of the base type (which are of
3035 -- course always static).
3037 if not Compile_Time_Known_Value (L1) then
3038 L1 := Type_Low_Bound (Base_Type (T1));
3039 end if;
3041 if not Compile_Time_Known_Value (H1) then
3042 H1 := Type_High_Bound (Base_Type (T1));
3043 end if;
3045 -- Fixed point types should be considered as such only if
3046 -- flag Fixed_Int is set to False.
3048 if Is_Floating_Point_Type (T1) or else Is_Floating_Point_Type (T2)
3049 or else (Is_Fixed_Point_Type (T1) and then not Fixed_Int)
3050 or else (Is_Fixed_Point_Type (T2) and then not Fixed_Int)
3051 then
3052 return
3053 Expr_Value_R (L2) <= Expr_Value_R (L1)
3054 and then
3055 Expr_Value_R (H2) >= Expr_Value_R (H1);
3057 else
3058 return
3059 Expr_Value (L2) <= Expr_Value (L1)
3060 and then
3061 Expr_Value (H2) >= Expr_Value (H1);
3063 end if;
3064 end if;
3066 -- If any exception occurs, it means that we have some bug in the compiler
3067 -- possibly triggered by a previous error, or by some unforseen peculiar
3068 -- occurrence. However, this is only an optimization attempt, so there is
3069 -- really no point in crashing the compiler. Instead we just decide, too
3070 -- bad, we can't figure out the answer in this case after all.
3072 exception
3073 when others =>
3075 -- Debug flag K disables this behavior (useful for debugging)
3077 if Debug_Flag_K then
3078 raise;
3079 else
3080 return False;
3081 end if;
3082 end In_Subrange_Of;
3084 -----------------
3085 -- Is_In_Range --
3086 -----------------
3088 function Is_In_Range
3089 (N : Node_Id;
3090 Typ : Entity_Id;
3091 Fixed_Int : Boolean := False;
3092 Int_Real : Boolean := False)
3093 return Boolean
3095 Val : Uint;
3096 Valr : Ureal;
3098 begin
3099 -- Universal types have no range limits, so always in range.
3101 if Typ = Universal_Integer or else Typ = Universal_Real then
3102 return True;
3104 -- Never in range if not scalar type. Don't know if this can
3105 -- actually happen, but our spec allows it, so we must check!
3107 elsif not Is_Scalar_Type (Typ) then
3108 return False;
3110 -- Never in range unless we have a compile time known value.
3112 elsif not Compile_Time_Known_Value (N) then
3113 return False;
3115 else
3116 declare
3117 Lo : constant Node_Id := Type_Low_Bound (Typ);
3118 Hi : constant Node_Id := Type_High_Bound (Typ);
3119 LB_Known : constant Boolean := Compile_Time_Known_Value (Lo);
3120 UB_Known : constant Boolean := Compile_Time_Known_Value (Hi);
3122 begin
3123 -- Fixed point types should be considered as such only in
3124 -- flag Fixed_Int is set to False.
3126 if Is_Floating_Point_Type (Typ)
3127 or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
3128 or else Int_Real
3129 then
3130 Valr := Expr_Value_R (N);
3132 if LB_Known and then Valr >= Expr_Value_R (Lo)
3133 and then UB_Known and then Valr <= Expr_Value_R (Hi)
3134 then
3135 return True;
3136 else
3137 return False;
3138 end if;
3140 else
3141 Val := Expr_Value (N);
3143 if LB_Known and then Val >= Expr_Value (Lo)
3144 and then UB_Known and then Val <= Expr_Value (Hi)
3145 then
3146 return True;
3147 else
3148 return False;
3149 end if;
3150 end if;
3151 end;
3152 end if;
3153 end Is_In_Range;
3155 -------------------
3156 -- Is_Null_Range --
3157 -------------------
3159 function Is_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
3160 Typ : constant Entity_Id := Etype (Lo);
3162 begin
3163 if not Compile_Time_Known_Value (Lo)
3164 or else not Compile_Time_Known_Value (Hi)
3165 then
3166 return False;
3167 end if;
3169 if Is_Discrete_Type (Typ) then
3170 return Expr_Value (Lo) > Expr_Value (Hi);
3172 else
3173 pragma Assert (Is_Real_Type (Typ));
3174 return Expr_Value_R (Lo) > Expr_Value_R (Hi);
3175 end if;
3176 end Is_Null_Range;
3178 -----------------------------
3179 -- Is_OK_Static_Expression --
3180 -----------------------------
3182 function Is_OK_Static_Expression (N : Node_Id) return Boolean is
3183 begin
3184 return Is_Static_Expression (N)
3185 and then not Raises_Constraint_Error (N);
3186 end Is_OK_Static_Expression;
3188 ------------------------
3189 -- Is_OK_Static_Range --
3190 ------------------------
3192 -- A static range is a range whose bounds are static expressions, or a
3193 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
3194 -- We have already converted range attribute references, so we get the
3195 -- "or" part of this rule without needing a special test.
3197 function Is_OK_Static_Range (N : Node_Id) return Boolean is
3198 begin
3199 return Is_OK_Static_Expression (Low_Bound (N))
3200 and then Is_OK_Static_Expression (High_Bound (N));
3201 end Is_OK_Static_Range;
3203 --------------------------
3204 -- Is_OK_Static_Subtype --
3205 --------------------------
3207 -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
3208 -- where neither bound raises constraint error when evaluated.
3210 function Is_OK_Static_Subtype (Typ : Entity_Id) return Boolean is
3211 Base_T : constant Entity_Id := Base_Type (Typ);
3212 Anc_Subt : Entity_Id;
3214 begin
3215 -- First a quick check on the non static subtype flag. As described
3216 -- in further detail in Einfo, this flag is not decisive in all cases,
3217 -- but if it is set, then the subtype is definitely non-static.
3219 if Is_Non_Static_Subtype (Typ) then
3220 return False;
3221 end if;
3223 Anc_Subt := Ancestor_Subtype (Typ);
3225 if Anc_Subt = Empty then
3226 Anc_Subt := Base_T;
3227 end if;
3229 if Is_Generic_Type (Root_Type (Base_T))
3230 or else Is_Generic_Actual_Type (Base_T)
3231 then
3232 return False;
3234 -- String types
3236 elsif Is_String_Type (Typ) then
3237 return
3238 Ekind (Typ) = E_String_Literal_Subtype
3239 or else
3240 (Is_OK_Static_Subtype (Component_Type (Typ))
3241 and then Is_OK_Static_Subtype (Etype (First_Index (Typ))));
3243 -- Scalar types
3245 elsif Is_Scalar_Type (Typ) then
3246 if Base_T = Typ then
3247 return True;
3249 else
3250 -- Scalar_Range (Typ) might be an N_Subtype_Indication, so
3251 -- use Get_Type_Low,High_Bound.
3253 return Is_OK_Static_Subtype (Anc_Subt)
3254 and then Is_OK_Static_Expression (Type_Low_Bound (Typ))
3255 and then Is_OK_Static_Expression (Type_High_Bound (Typ));
3256 end if;
3258 -- Types other than string and scalar types are never static
3260 else
3261 return False;
3262 end if;
3263 end Is_OK_Static_Subtype;
3265 ---------------------
3266 -- Is_Out_Of_Range --
3267 ---------------------
3269 function Is_Out_Of_Range
3270 (N : Node_Id;
3271 Typ : Entity_Id;
3272 Fixed_Int : Boolean := False;
3273 Int_Real : Boolean := False)
3274 return Boolean
3276 Val : Uint;
3277 Valr : Ureal;
3279 begin
3280 -- Universal types have no range limits, so always in range.
3282 if Typ = Universal_Integer or else Typ = Universal_Real then
3283 return False;
3285 -- Never out of range if not scalar type. Don't know if this can
3286 -- actually happen, but our spec allows it, so we must check!
3288 elsif not Is_Scalar_Type (Typ) then
3289 return False;
3291 -- Never out of range if this is a generic type, since the bounds
3292 -- of generic types are junk. Note that if we only checked for
3293 -- static expressions (instead of compile time known values) below,
3294 -- we would not need this check, because values of a generic type
3295 -- can never be static, but they can be known at compile time.
3297 elsif Is_Generic_Type (Typ) then
3298 return False;
3300 -- Never out of range unless we have a compile time known value
3302 elsif not Compile_Time_Known_Value (N) then
3303 return False;
3305 else
3306 declare
3307 Lo : constant Node_Id := Type_Low_Bound (Typ);
3308 Hi : constant Node_Id := Type_High_Bound (Typ);
3309 LB_Known : constant Boolean := Compile_Time_Known_Value (Lo);
3310 UB_Known : constant Boolean := Compile_Time_Known_Value (Hi);
3312 begin
3313 -- Real types (note that fixed-point types are not treated
3314 -- as being of a real type if the flag Fixed_Int is set,
3315 -- since in that case they are regarded as integer types).
3317 if Is_Floating_Point_Type (Typ)
3318 or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
3319 or else Int_Real
3320 then
3321 Valr := Expr_Value_R (N);
3323 if LB_Known and then Valr < Expr_Value_R (Lo) then
3324 return True;
3326 elsif UB_Known and then Expr_Value_R (Hi) < Valr then
3327 return True;
3329 else
3330 return False;
3331 end if;
3333 else
3334 Val := Expr_Value (N);
3336 if LB_Known and then Val < Expr_Value (Lo) then
3337 return True;
3339 elsif UB_Known and then Expr_Value (Hi) < Val then
3340 return True;
3342 else
3343 return False;
3344 end if;
3345 end if;
3346 end;
3347 end if;
3348 end Is_Out_Of_Range;
3350 ---------------------
3351 -- Is_Static_Range --
3352 ---------------------
3354 -- A static range is a range whose bounds are static expressions, or a
3355 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
3356 -- We have already converted range attribute references, so we get the
3357 -- "or" part of this rule without needing a special test.
3359 function Is_Static_Range (N : Node_Id) return Boolean is
3360 begin
3361 return Is_Static_Expression (Low_Bound (N))
3362 and then Is_Static_Expression (High_Bound (N));
3363 end Is_Static_Range;
3365 -----------------------
3366 -- Is_Static_Subtype --
3367 -----------------------
3369 -- Determines if Typ is a static subtype as defined in (RM 4.9(26)).
3371 function Is_Static_Subtype (Typ : Entity_Id) return Boolean is
3372 Base_T : constant Entity_Id := Base_Type (Typ);
3373 Anc_Subt : Entity_Id;
3375 begin
3376 -- First a quick check on the non static subtype flag. As described
3377 -- in further detail in Einfo, this flag is not decisive in all cases,
3378 -- but if it is set, then the subtype is definitely non-static.
3380 if Is_Non_Static_Subtype (Typ) then
3381 return False;
3382 end if;
3384 Anc_Subt := Ancestor_Subtype (Typ);
3386 if Anc_Subt = Empty then
3387 Anc_Subt := Base_T;
3388 end if;
3390 if Is_Generic_Type (Root_Type (Base_T))
3391 or else Is_Generic_Actual_Type (Base_T)
3392 then
3393 return False;
3395 -- String types
3397 elsif Is_String_Type (Typ) then
3398 return
3399 Ekind (Typ) = E_String_Literal_Subtype
3400 or else
3401 (Is_Static_Subtype (Component_Type (Typ))
3402 and then Is_Static_Subtype (Etype (First_Index (Typ))));
3404 -- Scalar types
3406 elsif Is_Scalar_Type (Typ) then
3407 if Base_T = Typ then
3408 return True;
3410 else
3411 return Is_Static_Subtype (Anc_Subt)
3412 and then Is_Static_Expression (Type_Low_Bound (Typ))
3413 and then Is_Static_Expression (Type_High_Bound (Typ));
3414 end if;
3416 -- Types other than string and scalar types are never static
3418 else
3419 return False;
3420 end if;
3421 end Is_Static_Subtype;
3423 --------------------
3424 -- Not_Null_Range --
3425 --------------------
3427 function Not_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
3428 Typ : constant Entity_Id := Etype (Lo);
3430 begin
3431 if not Compile_Time_Known_Value (Lo)
3432 or else not Compile_Time_Known_Value (Hi)
3433 then
3434 return False;
3435 end if;
3437 if Is_Discrete_Type (Typ) then
3438 return Expr_Value (Lo) <= Expr_Value (Hi);
3440 else
3441 pragma Assert (Is_Real_Type (Typ));
3443 return Expr_Value_R (Lo) <= Expr_Value_R (Hi);
3444 end if;
3445 end Not_Null_Range;
3447 -------------
3448 -- OK_Bits --
3449 -------------
3451 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean is
3452 begin
3453 -- We allow a maximum of 500,000 bits which seems a reasonable limit
3455 if Bits < 500_000 then
3456 return True;
3458 else
3459 Error_Msg_N ("static value too large, capacity exceeded", N);
3460 return False;
3461 end if;
3462 end OK_Bits;
3464 ------------------
3465 -- Out_Of_Range --
3466 ------------------
3468 procedure Out_Of_Range (N : Node_Id) is
3469 begin
3470 -- If we have the static expression case, then this is an illegality
3471 -- in Ada 95 mode, except that in an instance, we never generate an
3472 -- error (if the error is legitimate, it was already diagnosed in
3473 -- the template). The expression to compute the length of a packed
3474 -- array is attached to the array type itself, and deserves a separate
3475 -- message.
3477 if Is_Static_Expression (N)
3478 and then not In_Instance
3479 and then not In_Inlined_Body
3480 and then Ada_95
3481 then
3482 if Nkind (Parent (N)) = N_Defining_Identifier
3483 and then Is_Array_Type (Parent (N))
3484 and then Present (Packed_Array_Type (Parent (N)))
3485 and then Present (First_Rep_Item (Parent (N)))
3486 then
3487 Error_Msg_N
3488 ("length of packed array must not exceed Integer''Last",
3489 First_Rep_Item (Parent (N)));
3490 Rewrite (N, Make_Integer_Literal (Sloc (N), Uint_1));
3492 else
3493 Apply_Compile_Time_Constraint_Error
3494 (N, "value not in range of}", CE_Range_Check_Failed);
3495 end if;
3497 -- Here we generate a warning for the Ada 83 case, or when we are
3498 -- in an instance, or when we have a non-static expression case.
3500 else
3501 Apply_Compile_Time_Constraint_Error
3502 (N, "value not in range of}?", CE_Range_Check_Failed);
3503 end if;
3504 end Out_Of_Range;
3506 -------------------------
3507 -- Rewrite_In_Raise_CE --
3508 -------------------------
3510 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id) is
3511 Typ : constant Entity_Id := Etype (N);
3513 begin
3514 -- If we want to raise CE in the condition of a raise_CE node
3515 -- we may as well get rid of the condition
3517 if Present (Parent (N))
3518 and then Nkind (Parent (N)) = N_Raise_Constraint_Error
3519 then
3520 Set_Condition (Parent (N), Empty);
3522 -- If the expression raising CE is a N_Raise_CE node, we can use
3523 -- that one. We just preserve the type of the context
3525 elsif Nkind (Exp) = N_Raise_Constraint_Error then
3526 Rewrite (N, Exp);
3527 Set_Etype (N, Typ);
3529 -- We have to build an explicit raise_ce node
3531 else
3532 Rewrite (N,
3533 Make_Raise_Constraint_Error (Sloc (Exp),
3534 Reason => CE_Range_Check_Failed));
3535 Set_Raises_Constraint_Error (N);
3536 Set_Etype (N, Typ);
3537 end if;
3538 end Rewrite_In_Raise_CE;
3540 ---------------------
3541 -- String_Type_Len --
3542 ---------------------
3544 function String_Type_Len (Stype : Entity_Id) return Uint is
3545 NT : constant Entity_Id := Etype (First_Index (Stype));
3546 T : Entity_Id;
3548 begin
3549 if Is_OK_Static_Subtype (NT) then
3550 T := NT;
3551 else
3552 T := Base_Type (NT);
3553 end if;
3555 return Expr_Value (Type_High_Bound (T)) -
3556 Expr_Value (Type_Low_Bound (T)) + 1;
3557 end String_Type_Len;
3559 ------------------------------------
3560 -- Subtypes_Statically_Compatible --
3561 ------------------------------------
3563 function Subtypes_Statically_Compatible
3564 (T1 : Entity_Id;
3565 T2 : Entity_Id)
3566 return Boolean
3568 begin
3569 if Is_Scalar_Type (T1) then
3571 -- Definitely compatible if we match
3573 if Subtypes_Statically_Match (T1, T2) then
3574 return True;
3576 -- If either subtype is nonstatic then they're not compatible
3578 elsif not Is_Static_Subtype (T1)
3579 or else not Is_Static_Subtype (T2)
3580 then
3581 return False;
3583 -- If either type has constraint error bounds, then consider that
3584 -- they match to avoid junk cascaded errors here.
3586 elsif not Is_OK_Static_Subtype (T1)
3587 or else not Is_OK_Static_Subtype (T2)
3588 then
3589 return True;
3591 -- Base types must match, but we don't check that (should
3592 -- we???) but we do at least check that both types are
3593 -- real, or both types are not real.
3595 elsif Is_Real_Type (T1) /= Is_Real_Type (T2) then
3596 return False;
3598 -- Here we check the bounds
3600 else
3601 declare
3602 LB1 : constant Node_Id := Type_Low_Bound (T1);
3603 HB1 : constant Node_Id := Type_High_Bound (T1);
3604 LB2 : constant Node_Id := Type_Low_Bound (T2);
3605 HB2 : constant Node_Id := Type_High_Bound (T2);
3607 begin
3608 if Is_Real_Type (T1) then
3609 return
3610 (Expr_Value_R (LB1) > Expr_Value_R (HB1))
3611 or else
3612 (Expr_Value_R (LB2) <= Expr_Value_R (LB1)
3613 and then
3614 Expr_Value_R (HB1) <= Expr_Value_R (HB2));
3616 else
3617 return
3618 (Expr_Value (LB1) > Expr_Value (HB1))
3619 or else
3620 (Expr_Value (LB2) <= Expr_Value (LB1)
3621 and then
3622 Expr_Value (HB1) <= Expr_Value (HB2));
3623 end if;
3624 end;
3625 end if;
3627 elsif Is_Access_Type (T1) then
3628 return not Is_Constrained (T2)
3629 or else Subtypes_Statically_Match
3630 (Designated_Type (T1), Designated_Type (T2));
3632 else
3633 return (Is_Composite_Type (T1) and then not Is_Constrained (T2))
3634 or else Subtypes_Statically_Match (T1, T2);
3635 end if;
3636 end Subtypes_Statically_Compatible;
3638 -------------------------------
3639 -- Subtypes_Statically_Match --
3640 -------------------------------
3642 -- Subtypes statically match if they have statically matching constraints
3643 -- (RM 4.9.1(2)). Constraints statically match if there are none, or if
3644 -- they are the same identical constraint, or if they are static and the
3645 -- values match (RM 4.9.1(1)).
3647 function Subtypes_Statically_Match (T1, T2 : Entity_Id) return Boolean is
3648 begin
3649 -- A type always statically matches itself
3651 if T1 = T2 then
3652 return True;
3654 -- Scalar types
3656 elsif Is_Scalar_Type (T1) then
3658 -- Base types must be the same
3660 if Base_Type (T1) /= Base_Type (T2) then
3661 return False;
3662 end if;
3664 -- A constrained numeric subtype never matches an unconstrained
3665 -- subtype, i.e. both types must be constrained or unconstrained.
3667 -- To understand the requirement for this test, see RM 4.9.1(1).
3668 -- As is made clear in RM 3.5.4(11), type Integer, for example
3669 -- is a constrained subtype with constraint bounds matching the
3670 -- bounds of its corresponding uncontrained base type. In this
3671 -- situation, Integer and Integer'Base do not statically match,
3672 -- even though they have the same bounds.
3674 -- We only apply this test to types in Standard and types that
3675 -- appear in user programs. That way, we do not have to be
3676 -- too careful about setting Is_Constrained right for itypes.
3678 if Is_Numeric_Type (T1)
3679 and then (Is_Constrained (T1) /= Is_Constrained (T2))
3680 and then (Scope (T1) = Standard_Standard
3681 or else Comes_From_Source (T1))
3682 and then (Scope (T2) = Standard_Standard
3683 or else Comes_From_Source (T2))
3684 then
3685 return False;
3686 end if;
3688 -- If there was an error in either range, then just assume
3689 -- the types statically match to avoid further junk errors
3691 if Error_Posted (Scalar_Range (T1))
3692 or else
3693 Error_Posted (Scalar_Range (T2))
3694 then
3695 return True;
3696 end if;
3698 -- Otherwise both types have bound that can be compared
3700 declare
3701 LB1 : constant Node_Id := Type_Low_Bound (T1);
3702 HB1 : constant Node_Id := Type_High_Bound (T1);
3703 LB2 : constant Node_Id := Type_Low_Bound (T2);
3704 HB2 : constant Node_Id := Type_High_Bound (T2);
3706 begin
3707 -- If the bounds are the same tree node, then match
3709 if LB1 = LB2 and then HB1 = HB2 then
3710 return True;
3712 -- Otherwise bounds must be static and identical value
3714 else
3715 if not Is_Static_Subtype (T1)
3716 or else not Is_Static_Subtype (T2)
3717 then
3718 return False;
3720 -- If either type has constraint error bounds, then say
3721 -- that they match to avoid junk cascaded errors here.
3723 elsif not Is_OK_Static_Subtype (T1)
3724 or else not Is_OK_Static_Subtype (T2)
3725 then
3726 return True;
3728 elsif Is_Real_Type (T1) then
3729 return
3730 (Expr_Value_R (LB1) = Expr_Value_R (LB2))
3731 and then
3732 (Expr_Value_R (HB1) = Expr_Value_R (HB2));
3734 else
3735 return
3736 Expr_Value (LB1) = Expr_Value (LB2)
3737 and then
3738 Expr_Value (HB1) = Expr_Value (HB2);
3739 end if;
3740 end if;
3741 end;
3743 -- Type with discriminants
3745 elsif Has_Discriminants (T1) or else Has_Discriminants (T2) then
3746 if Has_Discriminants (T1) /= Has_Discriminants (T2) then
3747 return False;
3748 end if;
3750 declare
3751 DL1 : constant Elist_Id := Discriminant_Constraint (T1);
3752 DL2 : constant Elist_Id := Discriminant_Constraint (T2);
3754 DA1 : Elmt_Id := First_Elmt (DL1);
3755 DA2 : Elmt_Id := First_Elmt (DL2);
3757 begin
3758 if DL1 = DL2 then
3759 return True;
3761 elsif Is_Constrained (T1) /= Is_Constrained (T2) then
3762 return False;
3763 end if;
3765 while Present (DA1) loop
3766 declare
3767 Expr1 : constant Node_Id := Node (DA1);
3768 Expr2 : constant Node_Id := Node (DA2);
3770 begin
3771 if not Is_Static_Expression (Expr1)
3772 or else not Is_Static_Expression (Expr2)
3773 then
3774 return False;
3776 -- If either expression raised a constraint error,
3777 -- consider the expressions as matching, since this
3778 -- helps to prevent cascading errors.
3780 elsif Raises_Constraint_Error (Expr1)
3781 or else Raises_Constraint_Error (Expr2)
3782 then
3783 null;
3785 elsif Expr_Value (Expr1) /= Expr_Value (Expr2) then
3786 return False;
3787 end if;
3788 end;
3790 Next_Elmt (DA1);
3791 Next_Elmt (DA2);
3792 end loop;
3793 end;
3795 return True;
3797 -- A definite type does not match an indefinite or classwide type.
3799 elsif
3800 Has_Unknown_Discriminants (T1) /= Has_Unknown_Discriminants (T2)
3801 then
3802 return False;
3804 -- Array type
3806 elsif Is_Array_Type (T1) then
3808 -- If either subtype is unconstrained then both must be,
3809 -- and if both are unconstrained then no further checking
3810 -- is needed.
3812 if not Is_Constrained (T1) or else not Is_Constrained (T2) then
3813 return not (Is_Constrained (T1) or else Is_Constrained (T2));
3814 end if;
3816 -- Both subtypes are constrained, so check that the index
3817 -- subtypes statically match.
3819 declare
3820 Index1 : Node_Id := First_Index (T1);
3821 Index2 : Node_Id := First_Index (T2);
3823 begin
3824 while Present (Index1) loop
3825 if not
3826 Subtypes_Statically_Match (Etype (Index1), Etype (Index2))
3827 then
3828 return False;
3829 end if;
3831 Next_Index (Index1);
3832 Next_Index (Index2);
3833 end loop;
3835 return True;
3836 end;
3838 elsif Is_Access_Type (T1) then
3839 return Subtypes_Statically_Match
3840 (Designated_Type (T1),
3841 Designated_Type (T2));
3843 -- All other types definitely match
3845 else
3846 return True;
3847 end if;
3848 end Subtypes_Statically_Match;
3850 ----------
3851 -- Test --
3852 ----------
3854 function Test (Cond : Boolean) return Uint is
3855 begin
3856 if Cond then
3857 return Uint_1;
3858 else
3859 return Uint_0;
3860 end if;
3861 end Test;
3863 ---------------------------------
3864 -- Test_Expression_Is_Foldable --
3865 ---------------------------------
3867 -- One operand case
3869 procedure Test_Expression_Is_Foldable
3870 (N : Node_Id;
3871 Op1 : Node_Id;
3872 Stat : out Boolean;
3873 Fold : out Boolean)
3875 begin
3876 Stat := False;
3878 -- If operand is Any_Type, just propagate to result and do not
3879 -- try to fold, this prevents cascaded errors.
3881 if Etype (Op1) = Any_Type then
3882 Set_Etype (N, Any_Type);
3883 Fold := False;
3884 return;
3886 -- If operand raises constraint error, then replace node N with the
3887 -- raise constraint error node, and we are obviously not foldable.
3888 -- Note that this replacement inherits the Is_Static_Expression flag
3889 -- from the operand.
3891 elsif Raises_Constraint_Error (Op1) then
3892 Rewrite_In_Raise_CE (N, Op1);
3893 Fold := False;
3894 return;
3896 -- If the operand is not static, then the result is not static, and
3897 -- all we have to do is to check the operand since it is now known
3898 -- to appear in a non-static context.
3900 elsif not Is_Static_Expression (Op1) then
3901 Check_Non_Static_Context (Op1);
3902 Fold := Compile_Time_Known_Value (Op1);
3903 return;
3905 -- An expression of a formal modular type is not foldable because
3906 -- the modulus is unknown.
3908 elsif Is_Modular_Integer_Type (Etype (Op1))
3909 and then Is_Generic_Type (Etype (Op1))
3910 then
3911 Check_Non_Static_Context (Op1);
3912 Fold := False;
3913 return;
3915 -- Here we have the case of an operand whose type is OK, which is
3916 -- static, and which does not raise constraint error, we can fold.
3918 else
3919 Set_Is_Static_Expression (N);
3920 Fold := True;
3921 Stat := True;
3922 end if;
3923 end Test_Expression_Is_Foldable;
3925 -- Two operand case
3927 procedure Test_Expression_Is_Foldable
3928 (N : Node_Id;
3929 Op1 : Node_Id;
3930 Op2 : Node_Id;
3931 Stat : out Boolean;
3932 Fold : out Boolean)
3934 Rstat : constant Boolean := Is_Static_Expression (Op1)
3935 and then Is_Static_Expression (Op2);
3937 begin
3938 Stat := False;
3940 -- If either operand is Any_Type, just propagate to result and
3941 -- do not try to fold, this prevents cascaded errors.
3943 if Etype (Op1) = Any_Type or else Etype (Op2) = Any_Type then
3944 Set_Etype (N, Any_Type);
3945 Fold := False;
3946 return;
3948 -- If left operand raises constraint error, then replace node N with
3949 -- the raise constraint error node, and we are obviously not foldable.
3950 -- Is_Static_Expression is set from the two operands in the normal way,
3951 -- and we check the right operand if it is in a non-static context.
3953 elsif Raises_Constraint_Error (Op1) then
3954 if not Rstat then
3955 Check_Non_Static_Context (Op2);
3956 end if;
3958 Rewrite_In_Raise_CE (N, Op1);
3959 Set_Is_Static_Expression (N, Rstat);
3960 Fold := False;
3961 return;
3963 -- Similar processing for the case of the right operand. Note that
3964 -- we don't use this routine for the short-circuit case, so we do
3965 -- not have to worry about that special case here.
3967 elsif Raises_Constraint_Error (Op2) then
3968 if not Rstat then
3969 Check_Non_Static_Context (Op1);
3970 end if;
3972 Rewrite_In_Raise_CE (N, Op2);
3973 Set_Is_Static_Expression (N, Rstat);
3974 Fold := False;
3975 return;
3977 -- Exclude expressions of a generic modular type, as above.
3979 elsif Is_Modular_Integer_Type (Etype (Op1))
3980 and then Is_Generic_Type (Etype (Op1))
3981 then
3982 Check_Non_Static_Context (Op1);
3983 Fold := False;
3984 return;
3986 -- If result is not static, then check non-static contexts on operands
3987 -- since one of them may be static and the other one may not be static
3989 elsif not Rstat then
3990 Check_Non_Static_Context (Op1);
3991 Check_Non_Static_Context (Op2);
3992 Fold := Compile_Time_Known_Value (Op1)
3993 and then Compile_Time_Known_Value (Op2);
3994 return;
3996 -- Else result is static and foldable. Both operands are static,
3997 -- and neither raises constraint error, so we can definitely fold.
3999 else
4000 Set_Is_Static_Expression (N);
4001 Fold := True;
4002 Stat := True;
4003 return;
4004 end if;
4005 end Test_Expression_Is_Foldable;
4007 --------------
4008 -- To_Bits --
4009 --------------
4011 procedure To_Bits (U : Uint; B : out Bits) is
4012 begin
4013 for J in 0 .. B'Last loop
4014 B (J) := (U / (2 ** J)) mod 2 /= 0;
4015 end loop;
4016 end To_Bits;
4018 --------------------
4019 -- Why_Not_Static --
4020 --------------------
4022 procedure Why_Not_Static (Expr : Node_Id) is
4023 N : constant Node_Id := Original_Node (Expr);
4024 Typ : Entity_Id;
4025 E : Entity_Id;
4027 procedure Why_Not_Static_List (L : List_Id);
4028 -- A version that can be called on a list of expressions. Finds
4029 -- all non-static violations in any element of the list.
4031 -------------------------
4032 -- Why_Not_Static_List --
4033 -------------------------
4035 procedure Why_Not_Static_List (L : List_Id) is
4036 N : Node_Id;
4038 begin
4039 if Is_Non_Empty_List (L) then
4040 N := First (L);
4041 while Present (N) loop
4042 Why_Not_Static (N);
4043 Next (N);
4044 end loop;
4045 end if;
4046 end Why_Not_Static_List;
4048 -- Start of processing for Why_Not_Static
4050 begin
4051 -- If in ACATS mode (debug flag 2), then suppress all these
4052 -- messages, this avoids massive updates to the ACATS base line.
4054 if Debug_Flag_2 then
4055 return;
4056 end if;
4058 -- Ignore call on error or empty node
4060 if No (Expr) or else Nkind (Expr) = N_Error then
4061 return;
4062 end if;
4064 -- Preprocessing for sub expressions
4066 if Nkind (Expr) in N_Subexpr then
4068 -- Nothing to do if expression is static
4070 if Is_OK_Static_Expression (Expr) then
4071 return;
4072 end if;
4074 -- Test for constraint error raised
4076 if Raises_Constraint_Error (Expr) then
4077 Error_Msg_N
4078 ("expression raises exception, cannot be static " &
4079 "('R'M 4.9(34))!", N);
4080 return;
4081 end if;
4083 -- If no type, then something is pretty wrong, so ignore
4085 Typ := Etype (Expr);
4087 if No (Typ) then
4088 return;
4089 end if;
4091 -- Type must be scalar or string type
4093 if not Is_Scalar_Type (Typ)
4094 and then not Is_String_Type (Typ)
4095 then
4096 Error_Msg_N
4097 ("static expression must have scalar or string type " &
4098 "('R'M 4.9(2))!", N);
4099 return;
4100 end if;
4101 end if;
4103 -- If we got through those checks, test particular node kind
4105 case Nkind (N) is
4106 when N_Expanded_Name | N_Identifier | N_Operator_Symbol =>
4107 E := Entity (N);
4109 if Is_Named_Number (E) then
4110 null;
4112 elsif Ekind (E) = E_Constant then
4113 if not Is_Static_Expression (Constant_Value (E)) then
4114 Error_Msg_NE
4115 ("& is not a static constant ('R'M 4.9(5))!", N, E);
4116 end if;
4118 else
4119 Error_Msg_NE
4120 ("& is not static constant or named number " &
4121 "('R'M 4.9(5))!", N, E);
4122 end if;
4124 when N_Binary_Op | N_And_Then | N_Or_Else | N_In | N_Not_In =>
4125 if Nkind (N) in N_Op_Shift then
4126 Error_Msg_N
4127 ("shift functions are never static ('R'M 4.9(6,18))!", N);
4129 else
4130 Why_Not_Static (Left_Opnd (N));
4131 Why_Not_Static (Right_Opnd (N));
4132 end if;
4134 when N_Unary_Op =>
4135 Why_Not_Static (Right_Opnd (N));
4137 when N_Attribute_Reference =>
4138 Why_Not_Static_List (Expressions (N));
4140 E := Etype (Prefix (N));
4142 if E = Standard_Void_Type then
4143 return;
4144 end if;
4146 -- Special case non-scalar'Size since this is a common error
4148 if Attribute_Name (N) = Name_Size then
4149 Error_Msg_N
4150 ("size attribute is only static for scalar type " &
4151 "('R'M 4.9(7,8))", N);
4153 -- Flag array cases
4155 elsif Is_Array_Type (E) then
4156 if Attribute_Name (N) /= Name_First
4157 and then
4158 Attribute_Name (N) /= Name_Last
4159 and then
4160 Attribute_Name (N) /= Name_Length
4161 then
4162 Error_Msg_N
4163 ("static array attribute must be Length, First, or Last " &
4164 "('R'M 4.9(8))!", N);
4166 -- Since we know the expression is not-static (we already
4167 -- tested for this, must mean array is not static).
4169 else
4170 Error_Msg_N
4171 ("prefix is non-static array ('R'M 4.9(8))!", Prefix (N));
4172 end if;
4174 return;
4176 -- Special case generic types, since again this is a common
4177 -- source of confusion.
4179 elsif Is_Generic_Actual_Type (E)
4180 or else
4181 Is_Generic_Type (E)
4182 then
4183 Error_Msg_N
4184 ("attribute of generic type is never static " &
4185 "('R'M 4.9(7,8))!", N);
4187 elsif Is_Static_Subtype (E) then
4188 null;
4190 elsif Is_Scalar_Type (E) then
4191 Error_Msg_N
4192 ("prefix type for attribute is not static scalar subtype " &
4193 "('R'M 4.9(7))!", N);
4195 else
4196 Error_Msg_N
4197 ("static attribute must apply to array/scalar type " &
4198 "('R'M 4.9(7,8))!", N);
4199 end if;
4201 when N_String_Literal =>
4202 Error_Msg_N
4203 ("subtype of string literal is non-static ('R'M 4.9(4))!", N);
4205 when N_Explicit_Dereference =>
4206 Error_Msg_N
4207 ("explicit dereference is never static ('R'M 4.9)!", N);
4209 when N_Function_Call =>
4210 Why_Not_Static_List (Parameter_Associations (N));
4211 Error_Msg_N ("non-static function call ('R'M 4.9(6,18))!", N);
4213 when N_Parameter_Association =>
4214 Why_Not_Static (Explicit_Actual_Parameter (N));
4216 when N_Indexed_Component =>
4217 Error_Msg_N
4218 ("indexed component is never static ('R'M 4.9)!", N);
4220 when N_Procedure_Call_Statement =>
4221 Error_Msg_N
4222 ("procedure call is never static ('R'M 4.9)!", N);
4224 when N_Qualified_Expression =>
4225 Why_Not_Static (Expression (N));
4227 when N_Aggregate | N_Extension_Aggregate =>
4228 Error_Msg_N
4229 ("an aggregate is never static ('R'M 4.9)!", N);
4231 when N_Range =>
4232 Why_Not_Static (Low_Bound (N));
4233 Why_Not_Static (High_Bound (N));
4235 when N_Range_Constraint =>
4236 Why_Not_Static (Range_Expression (N));
4238 when N_Subtype_Indication =>
4239 Why_Not_Static (Constraint (N));
4241 when N_Selected_Component =>
4242 Error_Msg_N
4243 ("selected component is never static ('R'M 4.9)!", N);
4245 when N_Slice =>
4246 Error_Msg_N
4247 ("slice is never static ('R'M 4.9)!", N);
4249 when N_Type_Conversion =>
4250 Why_Not_Static (Expression (N));
4252 if not Is_Scalar_Type (Etype (Prefix (N)))
4253 or else not Is_Static_Subtype (Etype (Prefix (N)))
4254 then
4255 Error_Msg_N
4256 ("static conversion requires static scalar subtype result " &
4257 "('R'M 4.9(9))!", N);
4258 end if;
4260 when N_Unchecked_Type_Conversion =>
4261 Error_Msg_N
4262 ("unchecked type conversion is never static ('R'M 4.9)!", N);
4264 when others =>
4265 null;
4267 end case;
4268 end Why_Not_Static;
4270 end Sem_Eval;