2003-12-26 Guilhem Lavaux <guilhem@kaffe.org>
[official-gcc.git] / gcc / ada / layout.adb
blobdf3103239311884f2d0f2649c39e46731fb45a79
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- L A Y O U T --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2001-2003 Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Exp_Ch3; use Exp_Ch3;
33 with Exp_Util; use Exp_Util;
34 with Nlists; use Nlists;
35 with Nmake; use Nmake;
36 with Opt; use Opt;
37 with Repinfo; use Repinfo;
38 with Sem; use Sem;
39 with Sem_Ch13; use Sem_Ch13;
40 with Sem_Eval; use Sem_Eval;
41 with Sem_Util; use Sem_Util;
42 with Sinfo; use Sinfo;
43 with Snames; use Snames;
44 with Stand; use Stand;
45 with Targparm; use Targparm;
46 with Tbuild; use Tbuild;
47 with Ttypes; use Ttypes;
48 with Uintp; use Uintp;
50 package body Layout is
52 ------------------------
53 -- Local Declarations --
54 ------------------------
56 SSU : constant Int := Ttypes.System_Storage_Unit;
57 -- Short hand for System_Storage_Unit
59 Vname : constant Name_Id := Name_uV;
60 -- Formal parameter name used for functions generated for size offset
61 -- values that depend on the discriminant. All such functions have the
62 -- following form:
64 -- function xxx (V : vtyp) return Unsigned is
65 -- begin
66 -- return ... expression involving V.discrim
67 -- end xxx;
69 -----------------------
70 -- Local Subprograms --
71 -----------------------
73 procedure Adjust_Esize_Alignment (E : Entity_Id);
74 -- E is the entity for a type or object. This procedure checks that the
75 -- size and alignment are compatible, and if not either gives an error
76 -- message if they cannot be adjusted or else adjusts them appropriately.
78 function Assoc_Add
79 (Loc : Source_Ptr;
80 Left_Opnd : Node_Id;
81 Right_Opnd : Node_Id)
82 return Node_Id;
83 -- This is like Make_Op_Add except that it optimizes some cases knowing
84 -- that associative rearrangement is allowed for constant folding if one
85 -- of the operands is a compile time known value.
87 function Assoc_Multiply
88 (Loc : Source_Ptr;
89 Left_Opnd : Node_Id;
90 Right_Opnd : Node_Id)
91 return Node_Id;
92 -- This is like Make_Op_Multiply except that it optimizes some cases
93 -- knowing that associative rearrangement is allowed for constant
94 -- folding if one of the operands is a compile time known value
96 function Assoc_Subtract
97 (Loc : Source_Ptr;
98 Left_Opnd : Node_Id;
99 Right_Opnd : Node_Id)
100 return Node_Id;
101 -- This is like Make_Op_Subtract except that it optimizes some cases
102 -- knowing that associative rearrangement is allowed for constant
103 -- folding if one of the operands is a compile time known value
105 function Bits_To_SU (N : Node_Id) return Node_Id;
106 -- This is used when we cross the boundary from static sizes in bits to
107 -- dynamic sizes in storage units. If the argument N is anything other
108 -- than an integer literal, it is returned unchanged, but if it is an
109 -- integer literal, then it is taken as a size in bits, and is replaced
110 -- by the corresponding size in bytes.
112 function Compute_Length (Lo : Node_Id; Hi : Node_Id) return Node_Id;
113 -- Given expressions for the low bound (Lo) and the high bound (Hi),
114 -- Build an expression for the value hi-lo+1, converted to type
115 -- Standard.Unsigned. Takes care of the case where the operands
116 -- are of an enumeration type (so that the subtraction cannot be
117 -- done directly) by applying the Pos operator to Hi/Lo first.
119 function Expr_From_SO_Ref
120 (Loc : Source_Ptr;
121 D : SO_Ref;
122 Comp : Entity_Id := Empty)
123 return Node_Id;
124 -- Given a value D from a size or offset field, return an expression
125 -- representing the value stored. If the value is known at compile time,
126 -- then an N_Integer_Literal is returned with the appropriate value. If
127 -- the value references a constant entity, then an N_Identifier node
128 -- referencing this entity is returned. If the value denotes a size
129 -- function, then returns a call node denoting the given function, with
130 -- a single actual parameter that either refers to the parameter V of
131 -- an enclosing size function (if Comp is Empty or its type doesn't match
132 -- the function's formal), or else is a selected component V.c when Comp
133 -- denotes a component c whose type matches that of the function formal.
134 -- The Loc value is used for the Sloc value of constructed notes.
136 function SO_Ref_From_Expr
137 (Expr : Node_Id;
138 Ins_Type : Entity_Id;
139 Vtype : Entity_Id := Empty;
140 Make_Func : Boolean := False)
141 return Dynamic_SO_Ref;
142 -- This routine is used in the case where a size/offset value is dynamic
143 -- and is represented by the expression Expr. SO_Ref_From_Expr checks if
144 -- the Expr contains a reference to the identifier V, and if so builds
145 -- a function depending on discriminants of the formal parameter V which
146 -- is of type Vtype. Otherwise, if the parameter Make_Func is True, then
147 -- Expr will be encapsulated in a parameterless function; if Make_Func is
148 -- False, then a constant entity with the value Expr is built. The result
149 -- is a Dynamic_SO_Ref to the created entity. Note that Vtype can be
150 -- omitted if Expr does not contain any reference to V, the created entity.
151 -- The declaration created is inserted in the freeze actions of Ins_Type,
152 -- which also supplies the Sloc for created nodes. This function also takes
153 -- care of making sure that the expression is properly analyzed and
154 -- resolved (which may not be the case yet if we build the expression
155 -- in this unit).
157 function Get_Max_Size (E : Entity_Id) return Node_Id;
158 -- E is an array type or subtype that has at least one index bound that
159 -- is the value of a record discriminant. For such an array, the function
160 -- computes an expression that yields the maximum possible size of the
161 -- array in storage units. The result is not defined for any other type,
162 -- or for arrays that do not depend on discriminants, and it is a fatal
163 -- error to call this unless Size_Depends_On_Discriminant (E) is True.
165 procedure Layout_Array_Type (E : Entity_Id);
166 -- Front-end layout of non-bit-packed array type or subtype
168 procedure Layout_Record_Type (E : Entity_Id);
169 -- Front-end layout of record type
171 procedure Rewrite_Integer (N : Node_Id; V : Uint);
172 -- Rewrite node N with an integer literal whose value is V. The Sloc
173 -- for the new node is taken from N, and the type of the literal is
174 -- set to a copy of the type of N on entry.
176 procedure Set_And_Check_Static_Size
177 (E : Entity_Id;
178 Esiz : SO_Ref;
179 RM_Siz : SO_Ref);
180 -- This procedure is called to check explicit given sizes (possibly
181 -- stored in the Esize and RM_Size fields of E) against computed
182 -- Object_Size (Esiz) and Value_Size (RM_Siz) values. Appropriate
183 -- errors and warnings are posted if specified sizes are inconsistent
184 -- with specified sizes. On return, the Esize and RM_Size fields of
185 -- E are set (either from previously given values, or from the newly
186 -- computed values, as appropriate).
188 procedure Set_Composite_Alignment (E : Entity_Id);
189 -- This procedure is called for record types and subtypes, and also for
190 -- atomic array types and subtypes. If no alignment is set, and the size
191 -- is 2 or 4 (or 8 if the word size is 8), then the alignment is set to
192 -- match the size.
194 ----------------------------
195 -- Adjust_Esize_Alignment --
196 ----------------------------
198 procedure Adjust_Esize_Alignment (E : Entity_Id) is
199 Abits : Int;
200 Esize_Set : Boolean;
202 begin
203 -- Nothing to do if size unknown
205 if Unknown_Esize (E) then
206 return;
207 end if;
209 -- Determine if size is constrained by an attribute definition clause
210 -- which must be obeyed. If so, we cannot increase the size in this
211 -- routine.
213 -- For a type, the issue is whether an object size clause has been
214 -- set. A normal size clause constrains only the value size (RM_Size)
216 if Is_Type (E) then
217 Esize_Set := Has_Object_Size_Clause (E);
219 -- For an object, the issue is whether a size clause is present
221 else
222 Esize_Set := Has_Size_Clause (E);
223 end if;
225 -- If size is known it must be a multiple of the byte size
227 if Esize (E) mod SSU /= 0 then
229 -- If not, and size specified, then give error
231 if Esize_Set then
232 Error_Msg_NE
233 ("size for& not a multiple of byte size", Size_Clause (E), E);
234 return;
236 -- Otherwise bump up size to a byte boundary
238 else
239 Set_Esize (E, (Esize (E) + SSU - 1) / SSU * SSU);
240 end if;
241 end if;
243 -- Now we have the size set, it must be a multiple of the alignment
244 -- nothing more we can do here if the alignment is unknown here.
246 if Unknown_Alignment (E) then
247 return;
248 end if;
250 -- At this point both the Esize and Alignment are known, so we need
251 -- to make sure they are consistent.
253 Abits := UI_To_Int (Alignment (E)) * SSU;
255 if Esize (E) mod Abits = 0 then
256 return;
257 end if;
259 -- Here we have a situation where the Esize is not a multiple of
260 -- the alignment. We must either increase Esize or reduce the
261 -- alignment to correct this situation.
263 -- The case in which we can decrease the alignment is where the
264 -- alignment was not set by an alignment clause, and the type in
265 -- question is a discrete type, where it is definitely safe to
266 -- reduce the alignment. For example:
268 -- t : integer range 1 .. 2;
269 -- for t'size use 8;
271 -- In this situation, the initial alignment of t is 4, copied from
272 -- the Integer base type, but it is safe to reduce it to 1 at this
273 -- stage, since we will only be loading a single byte.
275 if Is_Discrete_Type (Etype (E))
276 and then not Has_Alignment_Clause (E)
277 then
278 loop
279 Abits := Abits / 2;
280 exit when Esize (E) mod Abits = 0;
281 end loop;
283 Init_Alignment (E, Abits / SSU);
284 return;
285 end if;
287 -- Now the only possible approach left is to increase the Esize
288 -- but we can't do that if the size was set by a specific clause.
290 if Esize_Set then
291 Error_Msg_NE
292 ("size for& is not a multiple of alignment",
293 Size_Clause (E), E);
295 -- Otherwise we can indeed increase the size to a multiple of alignment
297 else
298 Set_Esize (E, ((Esize (E) + (Abits - 1)) / Abits) * Abits);
299 end if;
300 end Adjust_Esize_Alignment;
302 ---------------
303 -- Assoc_Add --
304 ---------------
306 function Assoc_Add
307 (Loc : Source_Ptr;
308 Left_Opnd : Node_Id;
309 Right_Opnd : Node_Id)
310 return Node_Id
312 L : Node_Id;
313 R : Uint;
315 begin
316 -- Case of right operand is a constant
318 if Compile_Time_Known_Value (Right_Opnd) then
319 L := Left_Opnd;
320 R := Expr_Value (Right_Opnd);
322 -- Case of left operand is a constant
324 elsif Compile_Time_Known_Value (Left_Opnd) then
325 L := Right_Opnd;
326 R := Expr_Value (Left_Opnd);
328 -- Neither operand is a constant, do the addition with no optimization
330 else
331 return Make_Op_Add (Loc, Left_Opnd, Right_Opnd);
332 end if;
334 -- Case of left operand is an addition
336 if Nkind (L) = N_Op_Add then
338 -- (C1 + E) + C2 = (C1 + C2) + E
340 if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
341 Rewrite_Integer
342 (Sinfo.Left_Opnd (L),
343 Expr_Value (Sinfo.Left_Opnd (L)) + R);
344 return L;
346 -- (E + C1) + C2 = E + (C1 + C2)
348 elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L)) then
349 Rewrite_Integer
350 (Sinfo.Right_Opnd (L),
351 Expr_Value (Sinfo.Right_Opnd (L)) + R);
352 return L;
353 end if;
355 -- Case of left operand is a subtraction
357 elsif Nkind (L) = N_Op_Subtract then
359 -- (C1 - E) + C2 = (C1 + C2) + E
361 if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
362 Rewrite_Integer
363 (Sinfo.Left_Opnd (L),
364 Expr_Value (Sinfo.Left_Opnd (L)) + R);
365 return L;
367 -- (E - C1) + C2 = E - (C1 - C2)
369 elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L)) then
370 Rewrite_Integer
371 (Sinfo.Right_Opnd (L),
372 Expr_Value (Sinfo.Right_Opnd (L)) - R);
373 return L;
374 end if;
375 end if;
377 -- Not optimizable, do the addition
379 return Make_Op_Add (Loc, Left_Opnd, Right_Opnd);
380 end Assoc_Add;
382 --------------------
383 -- Assoc_Multiply --
384 --------------------
386 function Assoc_Multiply
387 (Loc : Source_Ptr;
388 Left_Opnd : Node_Id;
389 Right_Opnd : Node_Id)
390 return Node_Id
392 L : Node_Id;
393 R : Uint;
395 begin
396 -- Case of right operand is a constant
398 if Compile_Time_Known_Value (Right_Opnd) then
399 L := Left_Opnd;
400 R := Expr_Value (Right_Opnd);
402 -- Case of left operand is a constant
404 elsif Compile_Time_Known_Value (Left_Opnd) then
405 L := Right_Opnd;
406 R := Expr_Value (Left_Opnd);
408 -- Neither operand is a constant, do the multiply with no optimization
410 else
411 return Make_Op_Multiply (Loc, Left_Opnd, Right_Opnd);
412 end if;
414 -- Case of left operand is an multiplication
416 if Nkind (L) = N_Op_Multiply then
418 -- (C1 * E) * C2 = (C1 * C2) + E
420 if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
421 Rewrite_Integer
422 (Sinfo.Left_Opnd (L),
423 Expr_Value (Sinfo.Left_Opnd (L)) * R);
424 return L;
426 -- (E * C1) * C2 = E * (C1 * C2)
428 elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L)) then
429 Rewrite_Integer
430 (Sinfo.Right_Opnd (L),
431 Expr_Value (Sinfo.Right_Opnd (L)) * R);
432 return L;
433 end if;
434 end if;
436 -- Not optimizable, do the multiplication
438 return Make_Op_Multiply (Loc, Left_Opnd, Right_Opnd);
439 end Assoc_Multiply;
441 --------------------
442 -- Assoc_Subtract --
443 --------------------
445 function Assoc_Subtract
446 (Loc : Source_Ptr;
447 Left_Opnd : Node_Id;
448 Right_Opnd : Node_Id)
449 return Node_Id
451 L : Node_Id;
452 R : Uint;
454 begin
455 -- Case of right operand is a constant
457 if Compile_Time_Known_Value (Right_Opnd) then
458 L := Left_Opnd;
459 R := Expr_Value (Right_Opnd);
461 -- Right operand is a constant, do the subtract with no optimization
463 else
464 return Make_Op_Subtract (Loc, Left_Opnd, Right_Opnd);
465 end if;
467 -- Case of left operand is an addition
469 if Nkind (L) = N_Op_Add then
471 -- (C1 + E) - C2 = (C1 - C2) + E
473 if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
474 Rewrite_Integer
475 (Sinfo.Left_Opnd (L),
476 Expr_Value (Sinfo.Left_Opnd (L)) - R);
477 return L;
479 -- (E + C1) - C2 = E + (C1 - C2)
481 elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L)) then
482 Rewrite_Integer
483 (Sinfo.Right_Opnd (L),
484 Expr_Value (Sinfo.Right_Opnd (L)) - R);
485 return L;
486 end if;
488 -- Case of left operand is a subtraction
490 elsif Nkind (L) = N_Op_Subtract then
492 -- (C1 - E) - C2 = (C1 - C2) + E
494 if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
495 Rewrite_Integer
496 (Sinfo.Left_Opnd (L),
497 Expr_Value (Sinfo.Left_Opnd (L)) + R);
498 return L;
500 -- (E - C1) - C2 = E - (C1 + C2)
502 elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L)) then
503 Rewrite_Integer
504 (Sinfo.Right_Opnd (L),
505 Expr_Value (Sinfo.Right_Opnd (L)) + R);
506 return L;
507 end if;
508 end if;
510 -- Not optimizable, do the subtraction
512 return Make_Op_Subtract (Loc, Left_Opnd, Right_Opnd);
513 end Assoc_Subtract;
515 ----------------
516 -- Bits_To_SU --
517 ----------------
519 function Bits_To_SU (N : Node_Id) return Node_Id is
520 begin
521 if Nkind (N) = N_Integer_Literal then
522 Set_Intval (N, (Intval (N) + (SSU - 1)) / SSU);
523 end if;
525 return N;
526 end Bits_To_SU;
528 --------------------
529 -- Compute_Length --
530 --------------------
532 function Compute_Length (Lo : Node_Id; Hi : Node_Id) return Node_Id is
533 Loc : constant Source_Ptr := Sloc (Lo);
534 Typ : constant Entity_Id := Etype (Lo);
535 Lo_Op : Node_Id;
536 Hi_Op : Node_Id;
537 Lo_Dim : Uint;
538 Hi_Dim : Uint;
540 begin
541 -- If the bounds are First and Last attributes for the same dimension
542 -- and both have prefixes that denotes the same entity, then we create
543 -- and return a Length attribute. This may allow the back end to
544 -- generate better code in cases where it already has the length.
546 if Nkind (Lo) = N_Attribute_Reference
547 and then Attribute_Name (Lo) = Name_First
548 and then Nkind (Hi) = N_Attribute_Reference
549 and then Attribute_Name (Hi) = Name_Last
550 and then Is_Entity_Name (Prefix (Lo))
551 and then Is_Entity_Name (Prefix (Hi))
552 and then Entity (Prefix (Lo)) = Entity (Prefix (Hi))
553 then
554 Lo_Dim := Uint_1;
555 Hi_Dim := Uint_1;
557 if Present (First (Expressions (Lo))) then
558 Lo_Dim := Expr_Value (First (Expressions (Lo)));
559 end if;
561 if Present (First (Expressions (Hi))) then
562 Hi_Dim := Expr_Value (First (Expressions (Hi)));
563 end if;
565 if Lo_Dim = Hi_Dim then
566 return
567 Make_Attribute_Reference (Loc,
568 Prefix => New_Occurrence_Of
569 (Entity (Prefix (Lo)), Loc),
570 Attribute_Name => Name_Length,
571 Expressions => New_List
572 (Make_Integer_Literal (Loc, Lo_Dim)));
573 end if;
574 end if;
576 Lo_Op := New_Copy_Tree (Lo);
577 Hi_Op := New_Copy_Tree (Hi);
579 -- If type is enumeration type, then use Pos attribute to convert
580 -- to integer type for which subtraction is a permitted operation.
582 if Is_Enumeration_Type (Typ) then
583 Lo_Op :=
584 Make_Attribute_Reference (Loc,
585 Prefix => New_Occurrence_Of (Typ, Loc),
586 Attribute_Name => Name_Pos,
587 Expressions => New_List (Lo_Op));
589 Hi_Op :=
590 Make_Attribute_Reference (Loc,
591 Prefix => New_Occurrence_Of (Typ, Loc),
592 Attribute_Name => Name_Pos,
593 Expressions => New_List (Hi_Op));
594 end if;
596 return
597 Assoc_Add (Loc,
598 Left_Opnd =>
599 Assoc_Subtract (Loc,
600 Left_Opnd => Hi_Op,
601 Right_Opnd => Lo_Op),
602 Right_Opnd => Make_Integer_Literal (Loc, 1));
603 end Compute_Length;
605 ----------------------
606 -- Expr_From_SO_Ref --
607 ----------------------
609 function Expr_From_SO_Ref
610 (Loc : Source_Ptr;
611 D : SO_Ref;
612 Comp : Entity_Id := Empty)
613 return Node_Id
615 Ent : Entity_Id;
617 begin
618 if Is_Dynamic_SO_Ref (D) then
619 Ent := Get_Dynamic_SO_Entity (D);
621 if Is_Discrim_SO_Function (Ent) then
622 -- If a component is passed in whose type matches the type
623 -- of the function formal, then select that component from
624 -- the "V" parameter rather than passing "V" directly.
626 if Present (Comp)
627 and then Base_Type (Etype (Comp))
628 = Base_Type (Etype (First_Formal (Ent)))
629 then
630 return
631 Make_Function_Call (Loc,
632 Name => New_Occurrence_Of (Ent, Loc),
633 Parameter_Associations => New_List (
634 Make_Selected_Component (Loc,
635 Prefix => Make_Identifier (Loc, Chars => Vname),
636 Selector_Name => New_Occurrence_Of (Comp, Loc))));
638 else
639 return
640 Make_Function_Call (Loc,
641 Name => New_Occurrence_Of (Ent, Loc),
642 Parameter_Associations => New_List (
643 Make_Identifier (Loc, Chars => Vname)));
644 end if;
646 else
647 return New_Occurrence_Of (Ent, Loc);
648 end if;
650 else
651 return Make_Integer_Literal (Loc, D);
652 end if;
653 end Expr_From_SO_Ref;
655 ------------------
656 -- Get_Max_Size --
657 ------------------
659 function Get_Max_Size (E : Entity_Id) return Node_Id is
660 Loc : constant Source_Ptr := Sloc (E);
661 Indx : Node_Id;
662 Ityp : Entity_Id;
663 Lo : Node_Id;
664 Hi : Node_Id;
665 S : Uint;
666 Len : Node_Id;
668 type Val_Status_Type is (Const, Dynamic);
670 type Val_Type (Status : Val_Status_Type := Const) is
671 record
672 case Status is
673 when Const => Val : Uint;
674 when Dynamic => Nod : Node_Id;
675 end case;
676 end record;
677 -- Shows the status of the value so far. Const means that the value
678 -- is constant, and Val is the current constant value. Dynamic means
679 -- that the value is dynamic, and in this case Nod is the Node_Id of
680 -- the expression to compute the value.
682 Size : Val_Type;
683 -- Calculated value so far if Size.Status = Const,
684 -- or expression value so far if Size.Status = Dynamic.
686 SU_Convert_Required : Boolean := False;
687 -- This is set to True if the final result must be converted from
688 -- bits to storage units (rounding up to a storage unit boundary).
690 -----------------------
691 -- Local Subprograms --
692 -----------------------
694 procedure Max_Discrim (N : in out Node_Id);
695 -- If the node N represents a discriminant, replace it by the maximum
696 -- value of the discriminant.
698 procedure Min_Discrim (N : in out Node_Id);
699 -- If the node N represents a discriminant, replace it by the minimum
700 -- value of the discriminant.
702 -----------------
703 -- Max_Discrim --
704 -----------------
706 procedure Max_Discrim (N : in out Node_Id) is
707 begin
708 if Nkind (N) = N_Identifier
709 and then Ekind (Entity (N)) = E_Discriminant
710 then
711 N := Type_High_Bound (Etype (N));
712 end if;
713 end Max_Discrim;
715 -----------------
716 -- Min_Discrim --
717 -----------------
719 procedure Min_Discrim (N : in out Node_Id) is
720 begin
721 if Nkind (N) = N_Identifier
722 and then Ekind (Entity (N)) = E_Discriminant
723 then
724 N := Type_Low_Bound (Etype (N));
725 end if;
726 end Min_Discrim;
728 -- Start of processing for Get_Max_Size
730 begin
731 pragma Assert (Size_Depends_On_Discriminant (E));
733 -- Initialize status from component size
735 if Known_Static_Component_Size (E) then
736 Size := (Const, Component_Size (E));
738 else
739 Size := (Dynamic, Expr_From_SO_Ref (Loc, Component_Size (E)));
740 end if;
742 -- Loop through indices
744 Indx := First_Index (E);
745 while Present (Indx) loop
746 Ityp := Etype (Indx);
747 Lo := Type_Low_Bound (Ityp);
748 Hi := Type_High_Bound (Ityp);
750 Min_Discrim (Lo);
751 Max_Discrim (Hi);
753 -- Value of the current subscript range is statically known
755 if Compile_Time_Known_Value (Lo)
756 and then Compile_Time_Known_Value (Hi)
757 then
758 S := Expr_Value (Hi) - Expr_Value (Lo) + 1;
760 -- If known flat bound, entire size of array is zero!
762 if S <= 0 then
763 return Make_Integer_Literal (Loc, 0);
764 end if;
766 -- Current value is constant, evolve value
768 if Size.Status = Const then
769 Size.Val := Size.Val * S;
771 -- Current value is dynamic
773 else
774 -- An interesting little optimization, if we have a pending
775 -- conversion from bits to storage units, and the current
776 -- length is a multiple of the storage unit size, then we
777 -- can take the factor out here statically, avoiding some
778 -- extra dynamic computations at the end.
780 if SU_Convert_Required and then S mod SSU = 0 then
781 S := S / SSU;
782 SU_Convert_Required := False;
783 end if;
785 Size.Nod :=
786 Assoc_Multiply (Loc,
787 Left_Opnd => Size.Nod,
788 Right_Opnd =>
789 Make_Integer_Literal (Loc, Intval => S));
790 end if;
792 -- Value of the current subscript range is dynamic
794 else
795 -- If the current size value is constant, then here is where we
796 -- make a transition to dynamic values, which are always stored
797 -- in storage units, However, we do not want to convert to SU's
798 -- too soon, consider the case of a packed array of single bits,
799 -- we want to do the SU conversion after computing the size in
800 -- this case.
802 if Size.Status = Const then
804 -- If the current value is a multiple of the storage unit,
805 -- then most certainly we can do the conversion now, simply
806 -- by dividing the current value by the storage unit value.
807 -- If this works, we set SU_Convert_Required to False.
809 if Size.Val mod SSU = 0 then
811 Size :=
812 (Dynamic, Make_Integer_Literal (Loc, Size.Val / SSU));
813 SU_Convert_Required := False;
815 -- Otherwise, we go ahead and convert the value in bits,
816 -- and set SU_Convert_Required to True to ensure that the
817 -- final value is indeed properly converted.
819 else
820 Size := (Dynamic, Make_Integer_Literal (Loc, Size.Val));
821 SU_Convert_Required := True;
822 end if;
823 end if;
825 -- Length is hi-lo+1
827 Len := Compute_Length (Lo, Hi);
829 -- Check possible range of Len
831 declare
832 OK : Boolean;
833 LLo : Uint;
834 LHi : Uint;
836 begin
837 Set_Parent (Len, E);
838 Determine_Range (Len, OK, LLo, LHi);
840 Len := Convert_To (Standard_Unsigned, Len);
842 -- If we cannot verify that range cannot be super-flat,
843 -- we need a max with zero, since length must be non-neg.
845 if not OK or else LLo < 0 then
846 Len :=
847 Make_Attribute_Reference (Loc,
848 Prefix =>
849 New_Occurrence_Of (Standard_Unsigned, Loc),
850 Attribute_Name => Name_Max,
851 Expressions => New_List (
852 Make_Integer_Literal (Loc, 0),
853 Len));
854 end if;
855 end;
856 end if;
858 Next_Index (Indx);
859 end loop;
861 -- Here after processing all bounds to set sizes. If the value is
862 -- a constant, then it is bits, and we just return the value.
864 if Size.Status = Const then
865 return Make_Integer_Literal (Loc, Size.Val);
867 -- Case where the value is dynamic
869 else
870 -- Do convert from bits to SU's if needed
872 if SU_Convert_Required then
874 -- The expression required is (Size.Nod + SU - 1) / SU
876 Size.Nod :=
877 Make_Op_Divide (Loc,
878 Left_Opnd =>
879 Make_Op_Add (Loc,
880 Left_Opnd => Size.Nod,
881 Right_Opnd => Make_Integer_Literal (Loc, SSU - 1)),
882 Right_Opnd => Make_Integer_Literal (Loc, SSU));
883 end if;
885 return Size.Nod;
886 end if;
887 end Get_Max_Size;
889 -----------------------
890 -- Layout_Array_Type --
891 -----------------------
893 procedure Layout_Array_Type (E : Entity_Id) is
894 Loc : constant Source_Ptr := Sloc (E);
895 Ctyp : constant Entity_Id := Component_Type (E);
896 Indx : Node_Id;
897 Ityp : Entity_Id;
898 Lo : Node_Id;
899 Hi : Node_Id;
900 S : Uint;
901 Len : Node_Id;
903 Insert_Typ : Entity_Id;
904 -- This is the type with which any generated constants or functions
905 -- will be associated (i.e. inserted into the freeze actions). This
906 -- is normally the type being laid out. The exception occurs when
907 -- we are laying out Itype's which are local to a record type, and
908 -- whose scope is this record type. Such types do not have freeze
909 -- nodes (because we have no place to put them).
911 ------------------------------------
912 -- How An Array Type is Laid Out --
913 ------------------------------------
915 -- Here is what goes on. We need to multiply the component size of
916 -- the array (which has already been set) by the length of each of
917 -- the indexes. If all these values are known at compile time, then
918 -- the resulting size of the array is the appropriate constant value.
920 -- If the component size or at least one bound is dynamic (but no
921 -- discriminants are present), then the size will be computed as an
922 -- expression that calculates the proper size.
924 -- If there is at least one discriminant bound, then the size is also
925 -- computed as an expression, but this expression contains discriminant
926 -- values which are obtained by selecting from a function parameter, and
927 -- the size is given by a function that is passed the variant record in
928 -- question, and whose body is the expression.
930 type Val_Status_Type is (Const, Dynamic, Discrim);
932 type Val_Type (Status : Val_Status_Type := Const) is
933 record
934 case Status is
935 when Const =>
936 Val : Uint;
937 -- Calculated value so far if Val_Status = Const
939 when Dynamic | Discrim =>
940 Nod : Node_Id;
941 -- Expression value so far if Val_Status /= Const
943 end case;
944 end record;
945 -- Records the value or expression computed so far. Const means that
946 -- the value is constant, and Val is the current constant value.
947 -- Dynamic means that the value is dynamic, and in this case Nod is
948 -- the Node_Id of the expression to compute the value, and Discrim
949 -- means that at least one bound is a discriminant, in which case Nod
950 -- is the expression so far (which will be the body of the function).
952 Size : Val_Type;
953 -- Value of size computed so far. See comments above.
955 Vtyp : Entity_Id := Empty;
956 -- Variant record type for the formal parameter of the
957 -- discriminant function V if Status = Discrim.
959 SU_Convert_Required : Boolean := False;
960 -- This is set to True if the final result must be converted from
961 -- bits to storage units (rounding up to a storage unit boundary).
963 Storage_Divisor : Uint := UI_From_Int (SSU);
964 -- This is the amount that a nonstatic computed size will be divided
965 -- by to convert it from bits to storage units. This is normally
966 -- equal to SSU, but can be reduced in the case of packed components
967 -- that fit evenly into a storage unit.
969 Make_Size_Function : Boolean := False;
970 -- Indicates whether to request that SO_Ref_From_Expr should
971 -- encapsulate the array size expresion in a function.
973 procedure Discrimify (N : in out Node_Id);
974 -- If N represents a discriminant, then the Size.Status is set to
975 -- Discrim, and Vtyp is set. The parameter N is replaced with the
976 -- proper expression to extract the discriminant value from V.
978 ----------------
979 -- Discrimify --
980 ----------------
982 procedure Discrimify (N : in out Node_Id) is
983 Decl : Node_Id;
984 Typ : Entity_Id;
986 begin
987 if Nkind (N) = N_Identifier
988 and then Ekind (Entity (N)) = E_Discriminant
989 then
990 Set_Size_Depends_On_Discriminant (E);
992 if Size.Status /= Discrim then
993 Decl := Parent (Parent (Entity (N)));
994 Size := (Discrim, Size.Nod);
995 Vtyp := Defining_Identifier (Decl);
996 end if;
998 Typ := Etype (N);
1000 N :=
1001 Make_Selected_Component (Loc,
1002 Prefix => Make_Identifier (Loc, Chars => Vname),
1003 Selector_Name => New_Occurrence_Of (Entity (N), Loc));
1005 -- Set the Etype attributes of the selected name and its prefix.
1006 -- Analyze_And_Resolve can't be called here because the Vname
1007 -- entity denoted by the prefix will not yet exist (it's created
1008 -- by SO_Ref_From_Expr, called at the end of Layout_Array_Type).
1010 Set_Etype (Prefix (N), Vtyp);
1011 Set_Etype (N, Typ);
1012 end if;
1013 end Discrimify;
1015 -- Start of processing for Layout_Array_Type
1017 begin
1018 -- Default alignment is component alignment
1020 if Unknown_Alignment (E) then
1021 Set_Alignment (E, Alignment (Ctyp));
1022 end if;
1024 -- Calculate proper type for insertions
1026 if Is_Record_Type (Scope (E)) then
1027 Insert_Typ := Scope (E);
1028 else
1029 Insert_Typ := E;
1030 end if;
1032 -- If the component type is a generic formal type then there's no point
1033 -- in determining a size for the array type.
1035 if Is_Generic_Type (Ctyp) then
1036 return;
1037 end if;
1039 -- Deal with component size if base type
1041 if Ekind (E) = E_Array_Type then
1043 -- Cannot do anything if Esize of component type unknown
1045 if Unknown_Esize (Ctyp) then
1046 return;
1047 end if;
1049 -- Set component size if not set already
1051 if Unknown_Component_Size (E) then
1052 Set_Component_Size (E, Esize (Ctyp));
1053 end if;
1054 end if;
1056 -- (RM 13.3 (48)) says that the size of an unconstrained array
1057 -- is implementation defined. We choose to leave it as Unknown
1058 -- here, and the actual behavior is determined by the back end.
1060 if not Is_Constrained (E) then
1061 return;
1062 end if;
1064 -- Initialize status from component size
1066 if Known_Static_Component_Size (E) then
1067 Size := (Const, Component_Size (E));
1069 else
1070 Size := (Dynamic, Expr_From_SO_Ref (Loc, Component_Size (E)));
1071 end if;
1073 -- Loop to process array indices
1075 Indx := First_Index (E);
1076 while Present (Indx) loop
1077 Ityp := Etype (Indx);
1079 -- If an index of the array is a generic formal type then there's
1080 -- no point in determining a size for the array type.
1082 if Is_Generic_Type (Ityp) then
1083 return;
1084 end if;
1086 Lo := Type_Low_Bound (Ityp);
1087 Hi := Type_High_Bound (Ityp);
1089 -- Value of the current subscript range is statically known
1091 if Compile_Time_Known_Value (Lo)
1092 and then Compile_Time_Known_Value (Hi)
1093 then
1094 S := Expr_Value (Hi) - Expr_Value (Lo) + 1;
1096 -- If known flat bound, entire size of array is zero!
1098 if S <= 0 then
1099 Set_Esize (E, Uint_0);
1100 Set_RM_Size (E, Uint_0);
1101 return;
1102 end if;
1104 -- If constant, evolve value
1106 if Size.Status = Const then
1107 Size.Val := Size.Val * S;
1109 -- Current value is dynamic
1111 else
1112 -- An interesting little optimization, if we have a pending
1113 -- conversion from bits to storage units, and the current
1114 -- length is a multiple of the storage unit size, then we
1115 -- can take the factor out here statically, avoiding some
1116 -- extra dynamic computations at the end.
1118 if SU_Convert_Required and then S mod SSU = 0 then
1119 S := S / SSU;
1120 SU_Convert_Required := False;
1121 end if;
1123 -- Now go ahead and evolve the expression
1125 Size.Nod :=
1126 Assoc_Multiply (Loc,
1127 Left_Opnd => Size.Nod,
1128 Right_Opnd =>
1129 Make_Integer_Literal (Loc, Intval => S));
1130 end if;
1132 -- Value of the current subscript range is dynamic
1134 else
1135 -- If the current size value is constant, then here is where we
1136 -- make a transition to dynamic values, which are always stored
1137 -- in storage units, However, we do not want to convert to SU's
1138 -- too soon, consider the case of a packed array of single bits,
1139 -- we want to do the SU conversion after computing the size in
1140 -- this case.
1142 if Size.Status = Const then
1144 -- If the current value is a multiple of the storage unit,
1145 -- then most certainly we can do the conversion now, simply
1146 -- by dividing the current value by the storage unit value.
1147 -- If this works, we set SU_Convert_Required to False.
1149 if Size.Val mod SSU = 0 then
1150 Size :=
1151 (Dynamic, Make_Integer_Literal (Loc, Size.Val / SSU));
1152 SU_Convert_Required := False;
1154 -- If the current value is a factor of the storage unit,
1155 -- then we can use a value of one for the size and reduce
1156 -- the strength of the later division.
1158 elsif SSU mod Size.Val = 0 then
1159 Storage_Divisor := SSU / Size.Val;
1160 Size := (Dynamic, Make_Integer_Literal (Loc, Uint_1));
1161 SU_Convert_Required := True;
1163 -- Otherwise, we go ahead and convert the value in bits,
1164 -- and set SU_Convert_Required to True to ensure that the
1165 -- final value is indeed properly converted.
1167 else
1168 Size := (Dynamic, Make_Integer_Literal (Loc, Size.Val));
1169 SU_Convert_Required := True;
1170 end if;
1171 end if;
1173 Discrimify (Lo);
1174 Discrimify (Hi);
1176 -- Length is hi-lo+1
1178 Len := Compute_Length (Lo, Hi);
1180 -- If Len isn't a Length attribute, then its range needs to
1181 -- be checked a possible Max with zero needs to be computed.
1183 if Nkind (Len) /= N_Attribute_Reference
1184 or else Attribute_Name (Len) /= Name_Length
1185 then
1186 declare
1187 OK : Boolean;
1188 LLo : Uint;
1189 LHi : Uint;
1191 begin
1192 -- Check possible range of Len
1194 Set_Parent (Len, E);
1195 Determine_Range (Len, OK, LLo, LHi);
1197 Len := Convert_To (Standard_Unsigned, Len);
1199 -- If range definitely flat or superflat,
1200 -- result size is zero
1202 if OK and then LHi <= 0 then
1203 Set_Esize (E, Uint_0);
1204 Set_RM_Size (E, Uint_0);
1205 return;
1206 end if;
1208 -- If we cannot verify that range cannot be super-flat,
1209 -- we need a maximum with zero, since length cannot be
1210 -- negative.
1212 if not OK or else LLo < 0 then
1213 Len :=
1214 Make_Attribute_Reference (Loc,
1215 Prefix =>
1216 New_Occurrence_Of (Standard_Unsigned, Loc),
1217 Attribute_Name => Name_Max,
1218 Expressions => New_List (
1219 Make_Integer_Literal (Loc, 0),
1220 Len));
1221 end if;
1222 end;
1223 end if;
1225 -- At this stage, Len has the expression for the length
1227 Size.Nod :=
1228 Assoc_Multiply (Loc,
1229 Left_Opnd => Size.Nod,
1230 Right_Opnd => Len);
1231 end if;
1233 Next_Index (Indx);
1234 end loop;
1236 -- Here after processing all bounds to set sizes. If the value is
1237 -- a constant, then it is bits, and the only thing we need to do
1238 -- is to check against explicit given size and do alignment adjust.
1240 if Size.Status = Const then
1241 Set_And_Check_Static_Size (E, Size.Val, Size.Val);
1242 Adjust_Esize_Alignment (E);
1244 -- Case where the value is dynamic
1246 else
1247 -- Do convert from bits to SU's if needed
1249 if SU_Convert_Required then
1251 -- The expression required is:
1252 -- (Size.Nod + Storage_Divisor - 1) / Storage_Divisor
1254 Size.Nod :=
1255 Make_Op_Divide (Loc,
1256 Left_Opnd =>
1257 Make_Op_Add (Loc,
1258 Left_Opnd => Size.Nod,
1259 Right_Opnd => Make_Integer_Literal
1260 (Loc, Storage_Divisor - 1)),
1261 Right_Opnd => Make_Integer_Literal (Loc, Storage_Divisor));
1262 end if;
1264 -- If the array entity is not declared at the library level and its
1265 -- not nested within a subprogram that is marked for inlining, then
1266 -- we request that the size expression be encapsulated in a function.
1267 -- Since this expression is not needed in most cases, we prefer not
1268 -- to incur the overhead of the computation on calls to the enclosing
1269 -- subprogram except for subprograms that require the size.
1271 if not Is_Library_Level_Entity (E) then
1272 Make_Size_Function := True;
1274 declare
1275 Parent_Subp : Entity_Id := Enclosing_Subprogram (E);
1277 begin
1278 while Present (Parent_Subp) loop
1279 if Is_Inlined (Parent_Subp) then
1280 Make_Size_Function := False;
1281 exit;
1282 end if;
1284 Parent_Subp := Enclosing_Subprogram (Parent_Subp);
1285 end loop;
1286 end;
1287 end if;
1289 -- Now set the dynamic size (the Value_Size is always the same
1290 -- as the Object_Size for arrays whose length is dynamic).
1292 -- ??? If Size.Status = Dynamic, Vtyp will not have been set.
1293 -- The added initialization sets it to Empty now, but is this
1294 -- correct?
1296 Set_Esize
1298 SO_Ref_From_Expr
1299 (Size.Nod, Insert_Typ, Vtyp, Make_Func => Make_Size_Function));
1300 Set_RM_Size (E, Esize (E));
1301 end if;
1302 end Layout_Array_Type;
1304 -------------------
1305 -- Layout_Object --
1306 -------------------
1308 procedure Layout_Object (E : Entity_Id) is
1309 T : constant Entity_Id := Etype (E);
1311 begin
1312 -- Nothing to do if backend does layout
1314 if not Frontend_Layout_On_Target then
1315 return;
1316 end if;
1318 -- Set size if not set for object and known for type. Use the
1319 -- RM_Size if that is known for the type and Esize is not.
1321 if Unknown_Esize (E) then
1322 if Known_Esize (T) then
1323 Set_Esize (E, Esize (T));
1325 elsif Known_RM_Size (T) then
1326 Set_Esize (E, RM_Size (T));
1327 end if;
1328 end if;
1330 -- Set alignment from type if unknown and type alignment known
1332 if Unknown_Alignment (E) and then Known_Alignment (T) then
1333 Set_Alignment (E, Alignment (T));
1334 end if;
1336 -- Make sure size and alignment are consistent
1338 Adjust_Esize_Alignment (E);
1340 -- Final adjustment, if we don't know the alignment, and the Esize
1341 -- was not set by an explicit Object_Size attribute clause, then
1342 -- we reset the Esize to unknown, since we really don't know it.
1344 if Unknown_Alignment (E)
1345 and then not Has_Size_Clause (E)
1346 then
1347 Set_Esize (E, Uint_0);
1348 end if;
1349 end Layout_Object;
1351 ------------------------
1352 -- Layout_Record_Type --
1353 ------------------------
1355 procedure Layout_Record_Type (E : Entity_Id) is
1356 Loc : constant Source_Ptr := Sloc (E);
1357 Decl : Node_Id;
1359 Comp : Entity_Id;
1360 -- Current component being laid out
1362 Prev_Comp : Entity_Id;
1363 -- Previous laid out component
1365 procedure Get_Next_Component_Location
1366 (Prev_Comp : Entity_Id;
1367 Align : Uint;
1368 New_Npos : out SO_Ref;
1369 New_Fbit : out SO_Ref;
1370 New_NPMax : out SO_Ref;
1371 Force_SU : Boolean);
1372 -- Given the previous component in Prev_Comp, which is already laid
1373 -- out, and the alignment of the following component, lays out the
1374 -- following component, and returns its starting position in New_Npos
1375 -- (Normalized_Position value), New_Fbit (Normalized_First_Bit value),
1376 -- and New_NPMax (Normalized_Position_Max value). If Prev_Comp is empty
1377 -- (no previous component is present), then New_Npos, New_Fbit and
1378 -- New_NPMax are all set to zero on return. This procedure is also
1379 -- used to compute the size of a record or variant by giving it the
1380 -- last component, and the record alignment. Force_SU is used to force
1381 -- the new component location to be aligned on a storage unit boundary,
1382 -- even in a packed record, False means that the new position does not
1383 -- need to be bumped to a storage unit boundary, True means a storage
1384 -- unit boundary is always required.
1386 procedure Layout_Component (Comp : Entity_Id; Prev_Comp : Entity_Id);
1387 -- Lays out component Comp, given Prev_Comp, the previously laid-out
1388 -- component (Prev_Comp = Empty if no components laid out yet). The
1389 -- alignment of the record itself is also updated if needed. Both
1390 -- Comp and Prev_Comp can be either components or discriminants.
1392 procedure Layout_Components
1393 (From : Entity_Id;
1394 To : Entity_Id;
1395 Esiz : out SO_Ref;
1396 RM_Siz : out SO_Ref);
1397 -- This procedure lays out the components of the given component list
1398 -- which contains the components starting with From and ending with To.
1399 -- The Next_Entity chain is used to traverse the components. On entry,
1400 -- Prev_Comp is set to the component preceding the list, so that the
1401 -- list is laid out after this component. Prev_Comp is set to Empty if
1402 -- the component list is to be laid out starting at the start of the
1403 -- record. On return, the components are all laid out, and Prev_Comp is
1404 -- set to the last laid out component. On return, Esiz is set to the
1405 -- resulting Object_Size value, which is the length of the record up
1406 -- to and including the last laid out entity. For Esiz, the value is
1407 -- adjusted to match the alignment of the record. RM_Siz is similarly
1408 -- set to the resulting Value_Size value, which is the same length, but
1409 -- not adjusted to meet the alignment. Note that in the case of variant
1410 -- records, Esiz represents the maximum size.
1412 procedure Layout_Non_Variant_Record;
1413 -- Procedure called to lay out a non-variant record type or subtype
1415 procedure Layout_Variant_Record;
1416 -- Procedure called to lay out a variant record type. Decl is set to the
1417 -- full type declaration for the variant record.
1419 ---------------------------------
1420 -- Get_Next_Component_Location --
1421 ---------------------------------
1423 procedure Get_Next_Component_Location
1424 (Prev_Comp : Entity_Id;
1425 Align : Uint;
1426 New_Npos : out SO_Ref;
1427 New_Fbit : out SO_Ref;
1428 New_NPMax : out SO_Ref;
1429 Force_SU : Boolean)
1431 begin
1432 -- No previous component, return zero position
1434 if No (Prev_Comp) then
1435 New_Npos := Uint_0;
1436 New_Fbit := Uint_0;
1437 New_NPMax := Uint_0;
1438 return;
1439 end if;
1441 -- Here we have a previous component
1443 declare
1444 Loc : constant Source_Ptr := Sloc (Prev_Comp);
1446 Old_Npos : constant SO_Ref := Normalized_Position (Prev_Comp);
1447 Old_Fbit : constant SO_Ref := Normalized_First_Bit (Prev_Comp);
1448 Old_NPMax : constant SO_Ref := Normalized_Position_Max (Prev_Comp);
1449 Old_Esiz : constant SO_Ref := Esize (Prev_Comp);
1451 Old_Maxsz : Node_Id;
1452 -- Expression representing maximum size of previous component
1454 begin
1455 -- Case where previous field had a dynamic size
1457 if Is_Dynamic_SO_Ref (Esize (Prev_Comp)) then
1459 -- If the previous field had a dynamic length, then it is
1460 -- required to occupy an integral number of storage units,
1461 -- and start on a storage unit boundary. This means that
1462 -- the Normalized_First_Bit value is zero in the previous
1463 -- component, and the new value is also set to zero.
1465 New_Fbit := Uint_0;
1467 -- In this case, the new position is given by an expression
1468 -- that is the sum of old normalized position and old size.
1470 New_Npos :=
1471 SO_Ref_From_Expr
1472 (Assoc_Add (Loc,
1473 Left_Opnd =>
1474 Expr_From_SO_Ref (Loc, Old_Npos),
1475 Right_Opnd =>
1476 Expr_From_SO_Ref (Loc, Old_Esiz, Prev_Comp)),
1477 Ins_Type => E,
1478 Vtype => E);
1480 -- Get maximum size of previous component
1482 if Size_Depends_On_Discriminant (Etype (Prev_Comp)) then
1483 Old_Maxsz := Get_Max_Size (Etype (Prev_Comp));
1484 else
1485 Old_Maxsz := Expr_From_SO_Ref (Loc, Old_Esiz, Prev_Comp);
1486 end if;
1488 -- Now we can compute the new max position. If the max size
1489 -- is static and the old position is static, then we can
1490 -- compute the new position statically.
1492 if Nkind (Old_Maxsz) = N_Integer_Literal
1493 and then Known_Static_Normalized_Position_Max (Prev_Comp)
1494 then
1495 New_NPMax := Old_NPMax + Intval (Old_Maxsz);
1497 -- Otherwise new max position is dynamic
1499 else
1500 New_NPMax :=
1501 SO_Ref_From_Expr
1502 (Assoc_Add (Loc,
1503 Left_Opnd => Expr_From_SO_Ref (Loc, Old_NPMax),
1504 Right_Opnd => Old_Maxsz),
1505 Ins_Type => E,
1506 Vtype => E);
1507 end if;
1509 -- Previous field has known static Esize
1511 else
1512 New_Fbit := Old_Fbit + Old_Esiz;
1514 -- Bump New_Fbit to storage unit boundary if required
1516 if New_Fbit /= 0 and then Force_SU then
1517 New_Fbit := (New_Fbit + SSU - 1) / SSU * SSU;
1518 end if;
1520 -- If old normalized position is static, we can go ahead
1521 -- and compute the new normalized position directly.
1523 if Known_Static_Normalized_Position (Prev_Comp) then
1524 New_Npos := Old_Npos;
1526 if New_Fbit >= SSU then
1527 New_Npos := New_Npos + New_Fbit / SSU;
1528 New_Fbit := New_Fbit mod SSU;
1529 end if;
1531 -- Bump alignment if stricter than prev
1533 if Align > Alignment (Etype (Prev_Comp)) then
1534 New_Npos := (New_Npos + Align - 1) / Align * Align;
1535 end if;
1537 -- The max position is always equal to the position if
1538 -- the latter is static, since arrays depending on the
1539 -- values of discriminants never have static sizes.
1541 New_NPMax := New_Npos;
1542 return;
1544 -- Case of old normalized position is dynamic
1546 else
1547 -- If new bit position is within the current storage unit,
1548 -- we can just copy the old position as the result position
1549 -- (we have already set the new first bit value).
1551 if New_Fbit < SSU then
1552 New_Npos := Old_Npos;
1553 New_NPMax := Old_NPMax;
1555 -- If new bit position is past the current storage unit, we
1556 -- need to generate a new dynamic value for the position
1557 -- ??? need to deal with alignment
1559 else
1560 New_Npos :=
1561 SO_Ref_From_Expr
1562 (Assoc_Add (Loc,
1563 Left_Opnd => Expr_From_SO_Ref (Loc, Old_Npos),
1564 Right_Opnd =>
1565 Make_Integer_Literal (Loc,
1566 Intval => New_Fbit / SSU)),
1567 Ins_Type => E,
1568 Vtype => E);
1570 New_NPMax :=
1571 SO_Ref_From_Expr
1572 (Assoc_Add (Loc,
1573 Left_Opnd => Expr_From_SO_Ref (Loc, Old_NPMax),
1574 Right_Opnd =>
1575 Make_Integer_Literal (Loc,
1576 Intval => New_Fbit / SSU)),
1577 Ins_Type => E,
1578 Vtype => E);
1579 New_Fbit := New_Fbit mod SSU;
1580 end if;
1581 end if;
1582 end if;
1583 end;
1584 end Get_Next_Component_Location;
1586 ----------------------
1587 -- Layout_Component --
1588 ----------------------
1590 procedure Layout_Component (Comp : Entity_Id; Prev_Comp : Entity_Id) is
1591 Ctyp : constant Entity_Id := Etype (Comp);
1592 Npos : SO_Ref;
1593 Fbit : SO_Ref;
1594 NPMax : SO_Ref;
1595 Forc : Boolean;
1597 begin
1598 -- Parent field is always at start of record, this will overlap
1599 -- the actual fields that are part of the parent, and that's fine
1601 if Chars (Comp) = Name_uParent then
1602 Set_Normalized_Position (Comp, Uint_0);
1603 Set_Normalized_First_Bit (Comp, Uint_0);
1604 Set_Normalized_Position_Max (Comp, Uint_0);
1605 Set_Component_Bit_Offset (Comp, Uint_0);
1606 Set_Esize (Comp, Esize (Ctyp));
1607 return;
1608 end if;
1610 -- Check case of type of component has a scope of the record we
1611 -- are laying out. When this happens, the type in question is an
1612 -- Itype that has not yet been laid out (that's because such
1613 -- types do not get frozen in the normal manner, because there
1614 -- is no place for the freeze nodes).
1616 if Scope (Ctyp) = E then
1617 Layout_Type (Ctyp);
1618 end if;
1620 -- Increase alignment of record if necessary. Note that we do not
1621 -- do this for packed records, which have an alignment of one by
1622 -- default, or for records for which an explicit alignment was
1623 -- specified with an alignment clause.
1625 if not Is_Packed (E)
1626 and then not Has_Alignment_Clause (E)
1627 and then Alignment (Ctyp) > Alignment (E)
1628 then
1629 Set_Alignment (E, Alignment (Ctyp));
1630 end if;
1632 -- If component already laid out, then we are done
1634 if Known_Normalized_Position (Comp) then
1635 return;
1636 end if;
1638 -- Set size of component from type. We use the Esize except in a
1639 -- packed record, where we use the RM_Size (since that is exactly
1640 -- what the RM_Size value, as distinct from the Object_Size is
1641 -- useful for!)
1643 if Is_Packed (E) then
1644 Set_Esize (Comp, RM_Size (Ctyp));
1645 else
1646 Set_Esize (Comp, Esize (Ctyp));
1647 end if;
1649 -- Compute the component position from the previous one. See if
1650 -- current component requires being on a storage unit boundary.
1652 -- If record is not packed, we always go to a storage unit boundary
1654 if not Is_Packed (E) then
1655 Forc := True;
1657 -- Packed cases
1659 else
1660 -- Elementary types do not need SU boundary in packed record
1662 if Is_Elementary_Type (Ctyp) then
1663 Forc := False;
1665 -- Packed array types with a modular packed array type do not
1666 -- force a storage unit boundary (since the code generation
1667 -- treats these as equivalent to the underlying modular type),
1669 elsif Is_Array_Type (Ctyp)
1670 and then Is_Bit_Packed_Array (Ctyp)
1671 and then Is_Modular_Integer_Type (Packed_Array_Type (Ctyp))
1672 then
1673 Forc := False;
1675 -- Record types with known length less than or equal to the length
1676 -- of long long integer can also be unaligned, since they can be
1677 -- treated as scalars.
1679 elsif Is_Record_Type (Ctyp)
1680 and then not Is_Dynamic_SO_Ref (Esize (Ctyp))
1681 and then Esize (Ctyp) <= Esize (Standard_Long_Long_Integer)
1682 then
1683 Forc := False;
1685 -- All other cases force a storage unit boundary, even when packed
1687 else
1688 Forc := True;
1689 end if;
1690 end if;
1692 -- Now get the next component location
1694 Get_Next_Component_Location
1695 (Prev_Comp, Alignment (Ctyp), Npos, Fbit, NPMax, Forc);
1696 Set_Normalized_Position (Comp, Npos);
1697 Set_Normalized_First_Bit (Comp, Fbit);
1698 Set_Normalized_Position_Max (Comp, NPMax);
1700 -- Set Component_Bit_Offset in the static case
1702 if Known_Static_Normalized_Position (Comp)
1703 and then Known_Normalized_First_Bit (Comp)
1704 then
1705 Set_Component_Bit_Offset (Comp, SSU * Npos + Fbit);
1706 end if;
1707 end Layout_Component;
1709 -----------------------
1710 -- Layout_Components --
1711 -----------------------
1713 procedure Layout_Components
1714 (From : Entity_Id;
1715 To : Entity_Id;
1716 Esiz : out SO_Ref;
1717 RM_Siz : out SO_Ref)
1719 End_Npos : SO_Ref;
1720 End_Fbit : SO_Ref;
1721 End_NPMax : SO_Ref;
1723 begin
1724 -- Only lay out components if there are some to lay out!
1726 if Present (From) then
1728 -- Lay out components with no component clauses
1730 Comp := From;
1731 loop
1732 if Ekind (Comp) = E_Component
1733 or else Ekind (Comp) = E_Discriminant
1734 then
1735 -- The compatibility of component clauses with composite
1736 -- types isn't checked in Sem_Ch13, so we check it here.
1738 if Present (Component_Clause (Comp)) then
1739 if Is_Composite_Type (Etype (Comp))
1740 and then Esize (Comp) < RM_Size (Etype (Comp))
1741 then
1742 Error_Msg_Uint_1 := RM_Size (Etype (Comp));
1743 Error_Msg_NE
1744 ("size for & too small, minimum allowed is ^",
1745 Component_Clause (Comp),
1746 Comp);
1747 end if;
1749 else
1750 Layout_Component (Comp, Prev_Comp);
1751 Prev_Comp := Comp;
1752 end if;
1753 end if;
1755 exit when Comp = To;
1756 Next_Entity (Comp);
1757 end loop;
1758 end if;
1760 -- Set size fields, both are zero if no components
1762 if No (Prev_Comp) then
1763 Esiz := Uint_0;
1764 RM_Siz := Uint_0;
1766 else
1767 -- First the object size, for which we align past the last
1768 -- field to the alignment of the record (the object size
1769 -- is required to be a multiple of the alignment).
1771 Get_Next_Component_Location
1772 (Prev_Comp,
1773 Alignment (E),
1774 End_Npos,
1775 End_Fbit,
1776 End_NPMax,
1777 Force_SU => True);
1779 -- If the resulting normalized position is a dynamic reference,
1780 -- then the size is dynamic, and is stored in storage units.
1781 -- In this case, we set the RM_Size to the same value, it is
1782 -- simply not worth distinguishing Esize and RM_Size values in
1783 -- the dynamic case, since the RM has nothing to say about them.
1785 -- Note that a size cannot have been given in this case, since
1786 -- size specifications cannot be given for variable length types.
1788 declare
1789 Align : constant Uint := Alignment (E);
1791 begin
1792 if Is_Dynamic_SO_Ref (End_Npos) then
1793 RM_Siz := End_Npos;
1795 -- Set the Object_Size allowing for alignment. In the
1796 -- dynamic case, we have to actually do the runtime
1797 -- computation. We can skip this in the non-packed
1798 -- record case if the last component has a smaller
1799 -- alignment than the overall record alignment.
1801 if Is_Dynamic_SO_Ref (End_NPMax) then
1802 Esiz := End_NPMax;
1804 if Is_Packed (E)
1805 or else Alignment (Etype (Prev_Comp)) < Align
1806 then
1807 -- The expression we build is
1808 -- (expr + align - 1) / align * align
1810 Esiz :=
1811 SO_Ref_From_Expr
1812 (Expr =>
1813 Make_Op_Multiply (Loc,
1814 Left_Opnd =>
1815 Make_Op_Divide (Loc,
1816 Left_Opnd =>
1817 Make_Op_Add (Loc,
1818 Left_Opnd =>
1819 Expr_From_SO_Ref (Loc, Esiz),
1820 Right_Opnd =>
1821 Make_Integer_Literal (Loc,
1822 Intval => Align - 1)),
1823 Right_Opnd =>
1824 Make_Integer_Literal (Loc, Align)),
1825 Right_Opnd =>
1826 Make_Integer_Literal (Loc, Align)),
1827 Ins_Type => E,
1828 Vtype => E);
1829 end if;
1831 -- Here Esiz is static, so we can adjust the alignment
1832 -- directly go give the required aligned value.
1834 else
1835 Esiz := (End_NPMax + Align - 1) / Align * Align * SSU;
1836 end if;
1838 -- Case where computed size is static
1840 else
1841 -- The ending size was computed in Npos in storage units,
1842 -- but the actual size is stored in bits, so adjust
1843 -- accordingly. We also adjust the size to match the
1844 -- alignment here.
1846 Esiz := (End_NPMax + Align - 1) / Align * Align * SSU;
1848 -- Compute the resulting Value_Size (RM_Size). For this
1849 -- purpose we do not force alignment of the record or
1850 -- storage size alignment of the result.
1852 Get_Next_Component_Location
1853 (Prev_Comp,
1854 Uint_0,
1855 End_Npos,
1856 End_Fbit,
1857 End_NPMax,
1858 Force_SU => False);
1860 RM_Siz := End_Npos * SSU + End_Fbit;
1861 Set_And_Check_Static_Size (E, Esiz, RM_Siz);
1862 end if;
1863 end;
1864 end if;
1865 end Layout_Components;
1867 -------------------------------
1868 -- Layout_Non_Variant_Record --
1869 -------------------------------
1871 procedure Layout_Non_Variant_Record is
1872 Esiz : SO_Ref;
1873 RM_Siz : SO_Ref;
1875 begin
1876 Layout_Components (First_Entity (E), Last_Entity (E), Esiz, RM_Siz);
1877 Set_Esize (E, Esiz);
1878 Set_RM_Size (E, RM_Siz);
1879 end Layout_Non_Variant_Record;
1881 ---------------------------
1882 -- Layout_Variant_Record --
1883 ---------------------------
1885 procedure Layout_Variant_Record is
1886 Tdef : constant Node_Id := Type_Definition (Decl);
1887 Dlist : constant List_Id := Discriminant_Specifications (Decl);
1888 Esiz : SO_Ref;
1889 RM_Siz : SO_Ref;
1891 RM_Siz_Expr : Node_Id := Empty;
1892 -- Expression for the evolving RM_Siz value. This is typically a
1893 -- conditional expression which involves tests of discriminant
1894 -- values that are formed as references to the entity V. At
1895 -- the end of scanning all the components, a suitable function
1896 -- is constructed in which V is the parameter.
1898 -----------------------
1899 -- Local Subprograms --
1900 -----------------------
1902 procedure Layout_Component_List
1903 (Clist : Node_Id;
1904 Esiz : out SO_Ref;
1905 RM_Siz_Expr : out Node_Id);
1906 -- Recursive procedure, called to lay out one component list
1907 -- Esiz and RM_Siz_Expr are set to the Object_Size and Value_Size
1908 -- values respectively representing the record size up to and
1909 -- including the last component in the component list (including
1910 -- any variants in this component list). RM_Siz_Expr is returned
1911 -- as an expression which may in the general case involve some
1912 -- references to the discriminants of the current record value,
1913 -- referenced by selecting from the entity V.
1915 ---------------------------
1916 -- Layout_Component_List --
1917 ---------------------------
1919 procedure Layout_Component_List
1920 (Clist : Node_Id;
1921 Esiz : out SO_Ref;
1922 RM_Siz_Expr : out Node_Id)
1924 Citems : constant List_Id := Component_Items (Clist);
1925 Vpart : constant Node_Id := Variant_Part (Clist);
1926 Prv : Node_Id;
1927 Var : Node_Id;
1928 RM_Siz : Uint;
1929 RMS_Ent : Entity_Id;
1931 begin
1932 if Is_Non_Empty_List (Citems) then
1933 Layout_Components
1934 (From => Defining_Identifier (First (Citems)),
1935 To => Defining_Identifier (Last (Citems)),
1936 Esiz => Esiz,
1937 RM_Siz => RM_Siz);
1938 else
1939 Layout_Components (Empty, Empty, Esiz, RM_Siz);
1940 end if;
1942 -- Case where no variants are present in the component list
1944 if No (Vpart) then
1946 -- The Esiz value has been correctly set by the call to
1947 -- Layout_Components, so there is nothing more to be done.
1949 -- For RM_Siz, we have an SO_Ref value, which we must convert
1950 -- to an appropriate expression.
1952 if Is_Static_SO_Ref (RM_Siz) then
1953 RM_Siz_Expr :=
1954 Make_Integer_Literal (Loc,
1955 Intval => RM_Siz);
1957 else
1958 RMS_Ent := Get_Dynamic_SO_Entity (RM_Siz);
1960 -- If the size is represented by a function, then we
1961 -- create an appropriate function call using V as
1962 -- the parameter to the call.
1964 if Is_Discrim_SO_Function (RMS_Ent) then
1965 RM_Siz_Expr :=
1966 Make_Function_Call (Loc,
1967 Name => New_Occurrence_Of (RMS_Ent, Loc),
1968 Parameter_Associations => New_List (
1969 Make_Identifier (Loc, Chars => Vname)));
1971 -- If the size is represented by a constant, then the
1972 -- expression we want is a reference to this constant
1974 else
1975 RM_Siz_Expr := New_Occurrence_Of (RMS_Ent, Loc);
1976 end if;
1977 end if;
1979 -- Case where variants are present in this component list
1981 else
1982 declare
1983 EsizV : SO_Ref;
1984 RM_SizV : Node_Id;
1985 Dchoice : Node_Id;
1986 Discrim : Node_Id;
1987 Dtest : Node_Id;
1989 begin
1990 RM_Siz_Expr := Empty;
1991 Prv := Prev_Comp;
1993 Var := Last (Variants (Vpart));
1994 while Present (Var) loop
1995 Prev_Comp := Prv;
1996 Layout_Component_List
1997 (Component_List (Var), EsizV, RM_SizV);
1999 -- Set the Object_Size. If this is the first variant,
2000 -- we just set the size of this first variant.
2002 if Var = Last (Variants (Vpart)) then
2003 Esiz := EsizV;
2005 -- Otherwise the Object_Size is formed as a maximum
2006 -- of Esiz so far from previous variants, and the new
2007 -- Esiz value from the variant we just processed.
2009 -- If both values are static, we can just compute the
2010 -- maximum directly to save building junk nodes.
2012 elsif not Is_Dynamic_SO_Ref (Esiz)
2013 and then not Is_Dynamic_SO_Ref (EsizV)
2014 then
2015 Esiz := UI_Max (Esiz, EsizV);
2017 -- If either value is dynamic, then we have to generate
2018 -- an appropriate Standard_Unsigned'Max attribute call.
2020 else
2021 Esiz :=
2022 SO_Ref_From_Expr
2023 (Make_Attribute_Reference (Loc,
2024 Attribute_Name => Name_Max,
2025 Prefix =>
2026 New_Occurrence_Of (Standard_Unsigned, Loc),
2027 Expressions => New_List (
2028 Expr_From_SO_Ref (Loc, Esiz),
2029 Expr_From_SO_Ref (Loc, EsizV))),
2030 Ins_Type => E,
2031 Vtype => E);
2032 end if;
2034 -- Now deal with Value_Size (RM_Siz). We are aiming at
2035 -- an expression that looks like:
2037 -- if xxDx (V.disc) then rmsiz1
2038 -- else if xxDx (V.disc) then rmsiz2
2039 -- else ...
2041 -- Where rmsiz1, rmsiz2... are the RM_Siz values for the
2042 -- individual variants, and xxDx are the discriminant
2043 -- checking functions generated for the variant type.
2045 -- If this is the first variant, we simply set the
2046 -- result as the expression. Note that this takes
2047 -- care of the others case.
2049 if No (RM_Siz_Expr) then
2050 RM_Siz_Expr := Bits_To_SU (RM_SizV);
2052 -- Otherwise construct the appropriate test
2054 else
2055 -- Discriminant to be tested
2057 Discrim :=
2058 Make_Selected_Component (Loc,
2059 Prefix =>
2060 Make_Identifier (Loc, Chars => Vname),
2061 Selector_Name =>
2062 New_Occurrence_Of
2063 (Entity (Name (Vpart)), Loc));
2065 -- The test to be used in general is a call to the
2066 -- discriminant checking function. However, it is
2067 -- definitely worth special casing the very common
2068 -- case where a single value is involved.
2070 Dchoice := First (Discrete_Choices (Var));
2072 if No (Next (Dchoice))
2073 and then Nkind (Dchoice) /= N_Range
2074 then
2075 Dtest :=
2076 Make_Op_Eq (Loc,
2077 Left_Opnd => Discrim,
2078 Right_Opnd => New_Copy (Dchoice));
2080 -- Generate a call to the discriminant-checking
2081 -- function for the variant. Note that the result
2082 -- has to be complemented since the function returns
2083 -- False when the passed discriminant value matches.
2085 else
2086 Dtest :=
2087 Make_Op_Not (Loc,
2088 Right_Opnd =>
2089 Make_Function_Call (Loc,
2090 Name =>
2091 New_Occurrence_Of
2092 (Dcheck_Function (Var), Loc),
2093 Parameter_Associations =>
2094 New_List (Discrim)));
2095 end if;
2097 RM_Siz_Expr :=
2098 Make_Conditional_Expression (Loc,
2099 Expressions =>
2100 New_List
2101 (Dtest, Bits_To_SU (RM_SizV), RM_Siz_Expr));
2102 end if;
2104 Prev (Var);
2105 end loop;
2106 end;
2107 end if;
2108 end Layout_Component_List;
2110 -- Start of processing for Layout_Variant_Record
2112 begin
2113 -- We need the discriminant checking functions, since we generate
2114 -- calls to these functions for the RM_Size expression, so make
2115 -- sure that these functions have been constructed in time.
2117 Build_Discr_Checking_Funcs (Decl);
2119 -- Lay out the discriminants
2121 Layout_Components
2122 (From => Defining_Identifier (First (Dlist)),
2123 To => Defining_Identifier (Last (Dlist)),
2124 Esiz => Esiz,
2125 RM_Siz => RM_Siz);
2127 -- Lay out the main component list (this will make recursive calls
2128 -- to lay out all component lists nested within variants).
2130 Layout_Component_List (Component_List (Tdef), Esiz, RM_Siz_Expr);
2131 Set_Esize (E, Esiz);
2133 -- If the RM_Size is a literal, set its value
2135 if Nkind (RM_Siz_Expr) = N_Integer_Literal then
2136 Set_RM_Size (E, Intval (RM_Siz_Expr));
2138 -- Otherwise we construct a dynamic SO_Ref
2140 else
2141 Set_RM_Size (E,
2142 SO_Ref_From_Expr
2143 (RM_Siz_Expr,
2144 Ins_Type => E,
2145 Vtype => E));
2146 end if;
2147 end Layout_Variant_Record;
2149 -- Start of processing for Layout_Record_Type
2151 begin
2152 -- If this is a cloned subtype, just copy the size fields from the
2153 -- original, nothing else needs to be done in this case, since the
2154 -- components themselves are all shared.
2156 if (Ekind (E) = E_Record_Subtype
2157 or else Ekind (E) = E_Class_Wide_Subtype)
2158 and then Present (Cloned_Subtype (E))
2159 then
2160 Set_Esize (E, Esize (Cloned_Subtype (E)));
2161 Set_RM_Size (E, RM_Size (Cloned_Subtype (E)));
2162 Set_Alignment (E, Alignment (Cloned_Subtype (E)));
2164 -- Another special case, class-wide types. The RM says that the size
2165 -- of such types is implementation defined (RM 13.3(48)). What we do
2166 -- here is to leave the fields set as unknown values, and the backend
2167 -- determines the actual behavior.
2169 elsif Ekind (E) = E_Class_Wide_Type then
2170 null;
2172 -- All other cases
2174 else
2175 -- Initialize alignment conservatively to 1. This value will
2176 -- be increased as necessary during processing of the record.
2178 if Unknown_Alignment (E) then
2179 Set_Alignment (E, Uint_1);
2180 end if;
2182 -- Initialize previous component. This is Empty unless there
2183 -- are components which have already been laid out by component
2184 -- clauses. If there are such components, we start our lay out of
2185 -- the remaining components following the last such component.
2187 Prev_Comp := Empty;
2189 Comp := First_Entity (E);
2190 while Present (Comp) loop
2191 if (Ekind (Comp) = E_Component
2192 or else Ekind (Comp) = E_Discriminant)
2193 and then Present (Component_Clause (Comp))
2194 then
2195 if No (Prev_Comp)
2196 or else
2197 Component_Bit_Offset (Comp) >
2198 Component_Bit_Offset (Prev_Comp)
2199 then
2200 Prev_Comp := Comp;
2201 end if;
2202 end if;
2204 Next_Entity (Comp);
2205 end loop;
2207 -- We have two separate circuits, one for non-variant records and
2208 -- one for variant records. For non-variant records, we simply go
2209 -- through the list of components. This handles all the non-variant
2210 -- cases including those cases of subtypes where there is no full
2211 -- type declaration, so the tree cannot be used to drive the layout.
2212 -- For variant records, we have to drive the layout from the tree
2213 -- since we need to understand the variant structure in this case.
2215 if Present (Full_View (E)) then
2216 Decl := Declaration_Node (Full_View (E));
2217 else
2218 Decl := Declaration_Node (E);
2219 end if;
2221 -- Scan all the components
2223 if Nkind (Decl) = N_Full_Type_Declaration
2224 and then Has_Discriminants (E)
2225 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
2226 and then Present (Component_List (Type_Definition (Decl)))
2227 and then
2228 Present (Variant_Part (Component_List (Type_Definition (Decl))))
2229 then
2230 Layout_Variant_Record;
2231 else
2232 Layout_Non_Variant_Record;
2233 end if;
2234 end if;
2235 end Layout_Record_Type;
2237 -----------------
2238 -- Layout_Type --
2239 -----------------
2241 procedure Layout_Type (E : Entity_Id) is
2242 begin
2243 -- For string literal types, for now, kill the size always, this
2244 -- is because gigi does not like or need the size to be set ???
2246 if Ekind (E) = E_String_Literal_Subtype then
2247 Set_Esize (E, Uint_0);
2248 Set_RM_Size (E, Uint_0);
2249 return;
2250 end if;
2252 -- For access types, set size/alignment. This is system address
2253 -- size, except for fat pointers (unconstrained array access types),
2254 -- where the size is two times the address size, to accommodate the
2255 -- two pointers that are required for a fat pointer (data and
2256 -- template). Note that E_Access_Protected_Subprogram_Type is not
2257 -- an access type for this purpose since it is not a pointer but is
2258 -- equivalent to a record. For access subtypes, copy the size from
2259 -- the base type since Gigi represents them the same way.
2261 if Is_Access_Type (E) then
2263 -- If Esize already set (e.g. by a size clause), then nothing
2264 -- further to be done here.
2266 if Known_Esize (E) then
2267 null;
2269 -- Access to subprogram is a strange beast, and we let the
2270 -- backend figure out what is needed (it may be some kind
2271 -- of fat pointer, including the static link for example.
2273 elsif Ekind (E) = E_Access_Protected_Subprogram_Type then
2274 null;
2276 -- For access subtypes, copy the size information from base type
2278 elsif Ekind (E) = E_Access_Subtype then
2279 Set_Size_Info (E, Base_Type (E));
2280 Set_RM_Size (E, RM_Size (Base_Type (E)));
2282 -- For other access types, we use either address size, or, if
2283 -- a fat pointer is used (pointer-to-unconstrained array case),
2284 -- twice the address size to accommodate a fat pointer.
2286 else
2287 declare
2288 Desig : Entity_Id := Designated_Type (E);
2290 begin
2291 if Is_Private_Type (Desig)
2292 and then Present (Full_View (Desig))
2293 then
2294 Desig := Full_View (Desig);
2295 end if;
2297 if Is_Array_Type (Desig)
2298 and then not Is_Constrained (Desig)
2299 and then not Has_Completion_In_Body (Desig)
2300 and then not Debug_Flag_6
2301 then
2302 Init_Size (E, 2 * System_Address_Size);
2304 -- Check for bad convention set
2306 if Warn_On_Export_Import
2307 and then
2308 (Convention (E) = Convention_C
2309 or else
2310 Convention (E) = Convention_CPP)
2311 then
2312 Error_Msg_N
2313 ("?this access type does not " &
2314 "correspond to C pointer", E);
2315 end if;
2317 else
2318 Init_Size (E, System_Address_Size);
2319 end if;
2320 end;
2321 end if;
2323 Set_Prim_Alignment (E);
2325 -- Scalar types: set size and alignment
2327 elsif Is_Scalar_Type (E) then
2329 -- For discrete types, the RM_Size and Esize must be set
2330 -- already, since this is part of the earlier processing
2331 -- and the front end is always required to lay out the
2332 -- sizes of such types (since they are available as static
2333 -- attributes). All we do is to check that this rule is
2334 -- indeed obeyed!
2336 if Is_Discrete_Type (E) then
2338 -- If the RM_Size is not set, then here is where we set it.
2340 -- Note: an RM_Size of zero looks like not set here, but this
2341 -- is a rare case, and we can simply reset it without any harm.
2343 if not Known_RM_Size (E) then
2344 Set_Discrete_RM_Size (E);
2345 end if;
2347 -- If Esize for a discrete type is not set then set it
2349 if not Known_Esize (E) then
2350 declare
2351 S : Int := 8;
2353 begin
2354 loop
2355 -- If size is big enough, set it and exit
2357 if S >= RM_Size (E) then
2358 Init_Esize (E, S);
2359 exit;
2361 -- If the RM_Size is greater than 64 (happens only
2362 -- when strange values are specified by the user,
2363 -- then Esize is simply a copy of RM_Size, it will
2364 -- be further refined later on)
2366 elsif S = 64 then
2367 Set_Esize (E, RM_Size (E));
2368 exit;
2370 -- Otherwise double possible size and keep trying
2372 else
2373 S := S * 2;
2374 end if;
2375 end loop;
2376 end;
2377 end if;
2379 -- For non-discrete sclar types, if the RM_Size is not set,
2380 -- then set it now to a copy of the Esize if the Esize is set.
2382 else
2383 if Known_Esize (E) and then Unknown_RM_Size (E) then
2384 Set_RM_Size (E, Esize (E));
2385 end if;
2386 end if;
2388 Set_Prim_Alignment (E);
2390 -- Non-primitive types
2392 else
2393 -- If RM_Size is known, set Esize if not known
2395 if Known_RM_Size (E) and then Unknown_Esize (E) then
2397 -- If the alignment is known, we bump the Esize up to the
2398 -- next alignment boundary if it is not already on one.
2400 if Known_Alignment (E) then
2401 declare
2402 A : constant Uint := Alignment_In_Bits (E);
2403 S : constant SO_Ref := RM_Size (E);
2405 begin
2406 Set_Esize (E, (S * A + A - 1) / A);
2407 end;
2408 end if;
2410 -- If Esize is set, and RM_Size is not, RM_Size is copied from
2411 -- Esize at least for now this seems reasonable, and is in any
2412 -- case needed for compatibility with old versions of gigi.
2413 -- look to be unknown.
2415 elsif Known_Esize (E) and then Unknown_RM_Size (E) then
2416 Set_RM_Size (E, Esize (E));
2417 end if;
2419 -- For array base types, set component size if object size of
2420 -- the component type is known and is a small power of 2 (8,
2421 -- 16, 32, 64), since this is what will always be used.
2423 if Ekind (E) = E_Array_Type
2424 and then Unknown_Component_Size (E)
2425 then
2426 declare
2427 CT : constant Entity_Id := Component_Type (E);
2429 begin
2430 -- For some reasons, access types can cause trouble,
2431 -- So let's just do this for discrete types ???
2433 if Present (CT)
2434 and then Is_Discrete_Type (CT)
2435 and then Known_Static_Esize (CT)
2436 then
2437 declare
2438 S : constant Uint := Esize (CT);
2440 begin
2441 if S = 8 or else
2442 S = 16 or else
2443 S = 32 or else
2444 S = 64
2445 then
2446 Set_Component_Size (E, Esize (CT));
2447 end if;
2448 end;
2449 end if;
2450 end;
2451 end if;
2452 end if;
2454 -- Lay out array and record types if front end layout set
2456 if Frontend_Layout_On_Target then
2457 if Is_Array_Type (E) and then not Is_Bit_Packed_Array (E) then
2458 Layout_Array_Type (E);
2459 elsif Is_Record_Type (E) then
2460 Layout_Record_Type (E);
2461 end if;
2463 -- Case of backend layout, we still do a little in the front end
2465 else
2466 -- Processing for record types
2468 if Is_Record_Type (E) then
2470 -- Special remaining processing for record types with a known
2471 -- size of 16, 32, or 64 bits whose alignment is not yet set.
2472 -- For these types, we set a corresponding alignment matching
2473 -- the size if possible, or as large as possible if not.
2475 if Convention (E) = Convention_Ada
2476 and then not Debug_Flag_Q
2477 then
2478 Set_Composite_Alignment (E);
2479 end if;
2481 -- Procressing for array types
2483 elsif Is_Array_Type (E) then
2485 -- For arrays that are required to be atomic, we do the same
2486 -- processing as described above for short records, since we
2487 -- really need to have the alignment set for the whole array.
2489 if Is_Atomic (E) and then not Debug_Flag_Q then
2490 Set_Composite_Alignment (E);
2491 end if;
2493 -- For unpacked array types, set an alignment of 1 if we know
2494 -- that the component alignment is not greater than 1. The reason
2495 -- we do this is to avoid unnecessary copying of slices of such
2496 -- arrays when passed to subprogram parameters (see special test
2497 -- in Exp_Ch6.Expand_Actuals).
2499 if not Is_Packed (E)
2500 and then Unknown_Alignment (E)
2501 then
2502 if Known_Static_Component_Size (E)
2503 and then Component_Size (E) = 1
2504 then
2505 Set_Alignment (E, Uint_1);
2506 end if;
2507 end if;
2508 end if;
2509 end if;
2511 -- Final step is to check that Esize and RM_Size are compatible
2513 if Known_Static_Esize (E) and then Known_Static_RM_Size (E) then
2514 if Esize (E) < RM_Size (E) then
2516 -- Esize is less than RM_Size. That's not good. First we test
2517 -- whether this was set deliberately with an Object_Size clause
2518 -- and if so, object to the clause.
2520 if Has_Object_Size_Clause (E) then
2521 Error_Msg_Uint_1 := RM_Size (E);
2522 Error_Msg_F
2523 ("object size is too small, minimum is ^",
2524 Expression (Get_Attribute_Definition_Clause
2525 (E, Attribute_Object_Size)));
2526 end if;
2528 -- Adjust Esize up to RM_Size value
2530 declare
2531 Size : constant Uint := RM_Size (E);
2533 begin
2534 Set_Esize (E, RM_Size (E));
2536 -- For scalar types, increase Object_Size to power of 2,
2537 -- but not less than a storage unit in any case (i.e.,
2538 -- normally this means it will be byte addressable).
2540 if Is_Scalar_Type (E) then
2541 if Size <= System_Storage_Unit then
2542 Init_Esize (E, System_Storage_Unit);
2543 elsif Size <= 16 then
2544 Init_Esize (E, 16);
2545 elsif Size <= 32 then
2546 Init_Esize (E, 32);
2547 else
2548 Set_Esize (E, (Size + 63) / 64 * 64);
2549 end if;
2551 -- Finally, make sure that alignment is consistent with
2552 -- the newly assigned size.
2554 while Alignment (E) * System_Storage_Unit < Esize (E)
2555 and then Alignment (E) < Maximum_Alignment
2556 loop
2557 Set_Alignment (E, 2 * Alignment (E));
2558 end loop;
2559 end if;
2560 end;
2561 end if;
2562 end if;
2563 end Layout_Type;
2565 ---------------------
2566 -- Rewrite_Integer --
2567 ---------------------
2569 procedure Rewrite_Integer (N : Node_Id; V : Uint) is
2570 Loc : constant Source_Ptr := Sloc (N);
2571 Typ : constant Entity_Id := Etype (N);
2573 begin
2574 Rewrite (N, Make_Integer_Literal (Loc, Intval => V));
2575 Set_Etype (N, Typ);
2576 end Rewrite_Integer;
2578 -------------------------------
2579 -- Set_And_Check_Static_Size --
2580 -------------------------------
2582 procedure Set_And_Check_Static_Size
2583 (E : Entity_Id;
2584 Esiz : SO_Ref;
2585 RM_Siz : SO_Ref)
2587 SC : Node_Id;
2589 procedure Check_Size_Too_Small (Spec : Uint; Min : Uint);
2590 -- Spec is the number of bit specified in the size clause, and
2591 -- Min is the minimum computed size. An error is given that the
2592 -- specified size is too small if Spec < Min, and in this case
2593 -- both Esize and RM_Size are set to unknown in E. The error
2594 -- message is posted on node SC.
2596 procedure Check_Unused_Bits (Spec : Uint; Max : Uint);
2597 -- Spec is the number of bits specified in the size clause, and
2598 -- Max is the maximum computed size. A warning is given about
2599 -- unused bits if Spec > Max. This warning is posted on node SC.
2601 --------------------------
2602 -- Check_Size_Too_Small --
2603 --------------------------
2605 procedure Check_Size_Too_Small (Spec : Uint; Min : Uint) is
2606 begin
2607 if Spec < Min then
2608 Error_Msg_Uint_1 := Min;
2609 Error_Msg_NE
2610 ("size for & too small, minimum allowed is ^", SC, E);
2611 Init_Esize (E);
2612 Init_RM_Size (E);
2613 end if;
2614 end Check_Size_Too_Small;
2616 -----------------------
2617 -- Check_Unused_Bits --
2618 -----------------------
2620 procedure Check_Unused_Bits (Spec : Uint; Max : Uint) is
2621 begin
2622 if Spec > Max then
2623 Error_Msg_Uint_1 := Spec - Max;
2624 Error_Msg_NE ("?^ bits of & unused", SC, E);
2625 end if;
2626 end Check_Unused_Bits;
2628 -- Start of processing for Set_And_Check_Static_Size
2630 begin
2631 -- Case where Object_Size (Esize) is already set by a size clause
2633 if Known_Static_Esize (E) then
2634 SC := Size_Clause (E);
2636 if No (SC) then
2637 SC := Get_Attribute_Definition_Clause (E, Attribute_Object_Size);
2638 end if;
2640 -- Perform checks on specified size against computed sizes
2642 if Present (SC) then
2643 Check_Unused_Bits (Esize (E), Esiz);
2644 Check_Size_Too_Small (Esize (E), RM_Siz);
2645 end if;
2646 end if;
2648 -- Case where Value_Size (RM_Size) is set by specific Value_Size
2649 -- clause (we do not need to worry about Value_Size being set by
2650 -- a Size clause, since that will have set Esize as well, and we
2651 -- already took care of that case).
2653 if Known_Static_RM_Size (E) then
2654 SC := Get_Attribute_Definition_Clause (E, Attribute_Value_Size);
2656 -- Perform checks on specified size against computed sizes
2658 if Present (SC) then
2659 Check_Unused_Bits (RM_Size (E), Esiz);
2660 Check_Size_Too_Small (RM_Size (E), RM_Siz);
2661 end if;
2662 end if;
2664 -- Set sizes if unknown
2666 if Unknown_Esize (E) then
2667 Set_Esize (E, Esiz);
2668 end if;
2670 if Unknown_RM_Size (E) then
2671 Set_RM_Size (E, RM_Siz);
2672 end if;
2673 end Set_And_Check_Static_Size;
2675 -----------------------------
2676 -- Set_Composite_Alignment --
2677 -----------------------------
2679 procedure Set_Composite_Alignment (E : Entity_Id) is
2680 Siz : Uint;
2681 Align : Nat;
2683 begin
2684 if Unknown_Alignment (E) then
2685 if Known_Static_Esize (E) then
2686 Siz := Esize (E);
2688 elsif Unknown_Esize (E)
2689 and then Known_Static_RM_Size (E)
2690 then
2691 Siz := RM_Size (E);
2693 else
2694 return;
2695 end if;
2697 -- Size is known, alignment is not set
2699 -- Reset alignment to match size if size is exactly 2, 4, or 8 bytes
2701 if Siz = 2 * System_Storage_Unit then
2702 Align := 2;
2703 elsif Siz = 4 * System_Storage_Unit then
2704 Align := 4;
2705 elsif Siz = 8 * System_Storage_Unit then
2706 Align := 8;
2708 -- On VMS, also reset for odd "in between" sizes, e.g. a 17-bit
2709 -- record is given an alignment of 4. This is more consistent with
2710 -- what DEC Ada does.
2712 elsif OpenVMS_On_Target and then Siz > System_Storage_Unit then
2714 if Siz <= 2 * System_Storage_Unit then
2715 Align := 2;
2716 elsif Siz <= 4 * System_Storage_Unit then
2717 Align := 4;
2718 elsif Siz <= 8 * System_Storage_Unit then
2719 Align := 8;
2720 else
2721 return;
2722 end if;
2724 -- No special alignment fiddling needed
2726 else
2727 return;
2728 end if;
2730 -- Here Align is set to the proposed improved alignment
2732 if Align > Maximum_Alignment then
2733 Align := Maximum_Alignment;
2734 end if;
2736 -- Further processing for record types only to reduce the alignment
2737 -- set by the above processing in some specific cases. We do not
2738 -- do this for atomic records, since we need max alignment there.
2740 if Is_Record_Type (E) then
2742 -- For records, there is generally no point in setting alignment
2743 -- higher than word size since we cannot do better than move by
2744 -- words in any case
2746 if Align > System_Word_Size / System_Storage_Unit then
2747 Align := System_Word_Size / System_Storage_Unit;
2748 end if;
2750 -- Check components. If any component requires a higher
2751 -- alignment, then we set that higher alignment in any case.
2753 declare
2754 Comp : Entity_Id;
2756 begin
2757 Comp := First_Component (E);
2758 while Present (Comp) loop
2759 if Known_Alignment (Etype (Comp)) then
2760 declare
2761 Calign : constant Uint := Alignment (Etype (Comp));
2763 begin
2764 -- The cases to worry about are when the alignment
2765 -- of the component type is larger than the alignment
2766 -- we have so far, and either there is no component
2767 -- clause for the alignment, or the length set by
2768 -- the component clause matches the alignment set.
2770 if Calign > Align
2771 and then
2772 (Unknown_Esize (Comp)
2773 or else (Known_Static_Esize (Comp)
2774 and then
2775 Esize (Comp) =
2776 Calign * System_Storage_Unit))
2777 then
2778 Align := UI_To_Int (Calign);
2779 end if;
2780 end;
2781 end if;
2783 Next_Component (Comp);
2784 end loop;
2785 end;
2786 end if;
2788 -- Set chosen alignment
2790 Set_Alignment (E, UI_From_Int (Align));
2792 if Known_Static_Esize (E)
2793 and then Esize (E) < Align * System_Storage_Unit
2794 then
2795 Set_Esize (E, UI_From_Int (Align * System_Storage_Unit));
2796 end if;
2797 end if;
2798 end Set_Composite_Alignment;
2800 --------------------------
2801 -- Set_Discrete_RM_Size --
2802 --------------------------
2804 procedure Set_Discrete_RM_Size (Def_Id : Entity_Id) is
2805 FST : constant Entity_Id := First_Subtype (Def_Id);
2807 begin
2808 -- All discrete types except for the base types in standard
2809 -- are constrained, so indicate this by setting Is_Constrained.
2811 Set_Is_Constrained (Def_Id);
2813 -- We set generic types to have an unknown size, since the
2814 -- representation of a generic type is irrelevant, in view
2815 -- of the fact that they have nothing to do with code.
2817 if Is_Generic_Type (Root_Type (FST)) then
2818 Set_RM_Size (Def_Id, Uint_0);
2820 -- If the subtype statically matches the first subtype, then
2821 -- it is required to have exactly the same layout. This is
2822 -- required by aliasing considerations.
2824 elsif Def_Id /= FST and then
2825 Subtypes_Statically_Match (Def_Id, FST)
2826 then
2827 Set_RM_Size (Def_Id, RM_Size (FST));
2828 Set_Size_Info (Def_Id, FST);
2830 -- In all other cases the RM_Size is set to the minimum size.
2831 -- Note that this routine is never called for subtypes for which
2832 -- the RM_Size is set explicitly by an attribute clause.
2834 else
2835 Set_RM_Size (Def_Id, UI_From_Int (Minimum_Size (Def_Id)));
2836 end if;
2837 end Set_Discrete_RM_Size;
2839 ------------------------
2840 -- Set_Prim_Alignment --
2841 ------------------------
2843 procedure Set_Prim_Alignment (E : Entity_Id) is
2844 begin
2845 -- Do not set alignment for packed array types, unless we are doing
2846 -- front end layout, because otherwise this is always handled in the
2847 -- backend.
2849 if Is_Packed_Array_Type (E) and then not Frontend_Layout_On_Target then
2850 return;
2852 -- If there is an alignment clause, then we respect it
2854 elsif Has_Alignment_Clause (E) then
2855 return;
2857 -- If the size is not set, then don't attempt to set the alignment. This
2858 -- happens in the backend layout case for access-to-subprogram types.
2860 elsif not Known_Static_Esize (E) then
2861 return;
2863 -- For access types, do not set the alignment if the size is less than
2864 -- the allowed minimum size. This avoids cascaded error messages.
2866 elsif Is_Access_Type (E)
2867 and then Esize (E) < System_Address_Size
2868 then
2869 return;
2870 end if;
2872 -- Here we calculate the alignment as the largest power of two
2873 -- multiple of System.Storage_Unit that does not exceed either
2874 -- the actual size of the type, or the maximum allowed alignment.
2876 declare
2877 S : constant Int :=
2878 UI_To_Int (Esize (E)) / SSU;
2879 A : Nat;
2881 begin
2882 A := 1;
2883 while 2 * A <= Ttypes.Maximum_Alignment
2884 and then 2 * A <= S
2885 loop
2886 A := 2 * A;
2887 end loop;
2889 -- Now we think we should set the alignment to A, but we
2890 -- skip this if an alignment is already set to a value
2891 -- greater than A (happens for derived types).
2893 -- However, if the alignment is known and too small it
2894 -- must be increased, this happens in a case like:
2896 -- type R is new Character;
2897 -- for R'Size use 16;
2899 -- Here the alignment inherited from Character is 1, but
2900 -- it must be increased to 2 to reflect the increased size.
2902 if Unknown_Alignment (E) or else Alignment (E) < A then
2903 Init_Alignment (E, A);
2904 end if;
2905 end;
2906 end Set_Prim_Alignment;
2908 ----------------------
2909 -- SO_Ref_From_Expr --
2910 ----------------------
2912 function SO_Ref_From_Expr
2913 (Expr : Node_Id;
2914 Ins_Type : Entity_Id;
2915 Vtype : Entity_Id := Empty;
2916 Make_Func : Boolean := False)
2917 return Dynamic_SO_Ref
2919 Loc : constant Source_Ptr := Sloc (Ins_Type);
2921 K : constant Entity_Id :=
2922 Make_Defining_Identifier (Loc,
2923 Chars => New_Internal_Name ('K'));
2925 Decl : Node_Id;
2927 function Check_Node_V_Ref (N : Node_Id) return Traverse_Result;
2928 -- Function used to check one node for reference to V
2930 function Has_V_Ref is new Traverse_Func (Check_Node_V_Ref);
2931 -- Function used to traverse tree to check for reference to V
2933 ----------------------
2934 -- Check_Node_V_Ref --
2935 ----------------------
2937 function Check_Node_V_Ref (N : Node_Id) return Traverse_Result is
2938 begin
2939 if Nkind (N) = N_Identifier then
2940 if Chars (N) = Vname then
2941 return Abandon;
2942 else
2943 return Skip;
2944 end if;
2946 else
2947 return OK;
2948 end if;
2949 end Check_Node_V_Ref;
2951 -- Start of processing for SO_Ref_From_Expr
2953 begin
2954 -- Case of expression is an integer literal, in this case we just
2955 -- return the value (which must always be non-negative, since size
2956 -- and offset values can never be negative).
2958 if Nkind (Expr) = N_Integer_Literal then
2959 pragma Assert (Intval (Expr) >= 0);
2960 return Intval (Expr);
2961 end if;
2963 -- Case where there is a reference to V, create function
2965 if Has_V_Ref (Expr) = Abandon then
2967 pragma Assert (Present (Vtype));
2968 Set_Is_Discrim_SO_Function (K);
2970 Decl :=
2971 Make_Subprogram_Body (Loc,
2973 Specification =>
2974 Make_Function_Specification (Loc,
2975 Defining_Unit_Name => K,
2976 Parameter_Specifications => New_List (
2977 Make_Parameter_Specification (Loc,
2978 Defining_Identifier =>
2979 Make_Defining_Identifier (Loc, Chars => Vname),
2980 Parameter_Type =>
2981 New_Occurrence_Of (Vtype, Loc))),
2982 Subtype_Mark =>
2983 New_Occurrence_Of (Standard_Unsigned, Loc)),
2985 Declarations => Empty_List,
2987 Handled_Statement_Sequence =>
2988 Make_Handled_Sequence_Of_Statements (Loc,
2989 Statements => New_List (
2990 Make_Return_Statement (Loc,
2991 Expression => Expr))));
2993 -- The caller requests that the expression be encapsulated in
2994 -- a parameterless function.
2996 elsif Make_Func then
2997 Decl :=
2998 Make_Subprogram_Body (Loc,
3000 Specification =>
3001 Make_Function_Specification (Loc,
3002 Defining_Unit_Name => K,
3003 Parameter_Specifications => Empty_List,
3004 Subtype_Mark => New_Occurrence_Of (Standard_Unsigned, Loc)),
3006 Declarations => Empty_List,
3008 Handled_Statement_Sequence =>
3009 Make_Handled_Sequence_Of_Statements (Loc,
3010 Statements => New_List (
3011 Make_Return_Statement (Loc, Expression => Expr))));
3013 -- No reference to V and function not requested, so create a constant
3015 else
3016 Decl :=
3017 Make_Object_Declaration (Loc,
3018 Defining_Identifier => K,
3019 Object_Definition =>
3020 New_Occurrence_Of (Standard_Unsigned, Loc),
3021 Constant_Present => True,
3022 Expression => Expr);
3023 end if;
3025 Append_Freeze_Action (Ins_Type, Decl);
3026 Analyze (Decl);
3027 return Create_Dynamic_SO_Ref (K);
3028 end SO_Ref_From_Expr;
3030 end Layout;