2003-12-26 Guilhem Lavaux <guilhem@kaffe.org>
[official-gcc.git] / gcc / ada / g-regexp.adb
blobab63d731c49ef192570057a9e4656b21754186fb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- G N A T . R E G E X P --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1999-2002 Ada Core Technologies, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
28 -- --
29 -- GNAT was originally developed by the GNAT team at New York University. --
30 -- Extensive contributions were provided by Ada Core Technologies Inc. --
31 -- --
32 ------------------------------------------------------------------------------
34 with Unchecked_Deallocation;
35 with Ada.Exceptions;
36 with GNAT.Case_Util;
38 package body GNAT.Regexp is
40 Open_Paren : constant Character := '(';
41 Close_Paren : constant Character := ')';
42 Open_Bracket : constant Character := '[';
43 Close_Bracket : constant Character := ']';
45 type State_Index is new Natural;
46 type Column_Index is new Natural;
48 type Regexp_Array is array
49 (State_Index range <>, Column_Index range <>) of State_Index;
50 -- First index is for the state number
51 -- Second index is for the character type
52 -- Contents is the new State
54 type Regexp_Array_Access is access Regexp_Array;
55 -- Use this type through the functions Set below, so that it
56 -- can grow dynamically depending on the needs.
58 type Mapping is array (Character'Range) of Column_Index;
59 -- Mapping between characters and column in the Regexp_Array
61 type Boolean_Array is array (State_Index range <>) of Boolean;
63 type Regexp_Value
64 (Alphabet_Size : Column_Index;
65 Num_States : State_Index) is
66 record
67 Map : Mapping;
68 States : Regexp_Array (1 .. Num_States, 0 .. Alphabet_Size);
69 Is_Final : Boolean_Array (1 .. Num_States);
70 Case_Sensitive : Boolean;
71 end record;
72 -- Deterministic finite-state machine
74 -----------------------
75 -- Local Subprograms --
76 -----------------------
78 procedure Set
79 (Table : in out Regexp_Array_Access;
80 State : State_Index;
81 Column : Column_Index;
82 Value : State_Index);
83 -- Sets a value in the table. If the table is too small, reallocate it
84 -- dynamically so that (State, Column) is a valid index in it.
86 function Get
87 (Table : Regexp_Array_Access;
88 State : State_Index;
89 Column : Column_Index)
90 return State_Index;
91 -- Returns the value in the table at (State, Column).
92 -- If this index does not exist in the table, returns 0
94 procedure Free is new Unchecked_Deallocation
95 (Regexp_Array, Regexp_Array_Access);
97 ------------
98 -- Adjust --
99 ------------
101 procedure Adjust (R : in out Regexp) is
102 Tmp : Regexp_Access;
104 begin
105 Tmp := new Regexp_Value (Alphabet_Size => R.R.Alphabet_Size,
106 Num_States => R.R.Num_States);
107 Tmp.all := R.R.all;
108 R.R := Tmp;
109 end Adjust;
111 -------------
112 -- Compile --
113 -------------
115 function Compile
116 (Pattern : String;
117 Glob : Boolean := False;
118 Case_Sensitive : Boolean := True)
119 return Regexp
121 S : String := Pattern;
122 -- The pattern which is really compiled (when the pattern is case
123 -- insensitive, we convert this string to lower-cases
125 Map : Mapping := (others => 0);
126 -- Mapping between characters and columns in the tables
128 Alphabet_Size : Column_Index := 0;
129 -- Number of significant characters in the regular expression.
130 -- This total does not include special operators, such as *, (, ...
132 procedure Create_Mapping;
133 -- Creates a mapping between characters in the regexp and columns
134 -- in the tables representing the regexp. Test that the regexp is
135 -- well-formed Modifies Alphabet_Size and Map
137 procedure Create_Primary_Table
138 (Table : out Regexp_Array_Access;
139 Num_States : out State_Index;
140 Start_State : out State_Index;
141 End_State : out State_Index);
142 -- Creates the first version of the regexp (this is a non determinist
143 -- finite state machine, which is unadapted for a fast pattern
144 -- matching algorithm). We use a recursive algorithm to process the
145 -- parenthesis sub-expressions.
147 -- Table : at the end of the procedure : Column 0 is for any character
148 -- ('.') and the last columns are for no character (closure)
149 -- Num_States is set to the number of states in the table
150 -- Start_State is the number of the starting state in the regexp
151 -- End_State is the number of the final state when the regexp matches
153 procedure Create_Primary_Table_Glob
154 (Table : out Regexp_Array_Access;
155 Num_States : out State_Index;
156 Start_State : out State_Index;
157 End_State : out State_Index);
158 -- Same function as above, but it deals with the second possible
159 -- grammar for 'globbing pattern', which is a kind of subset of the
160 -- whole regular expression grammar.
162 function Create_Secondary_Table
163 (First_Table : Regexp_Array_Access;
164 Num_States : State_Index;
165 Start_State : State_Index;
166 End_State : State_Index)
167 return Regexp;
168 -- Creates the definitive table representing the regular expression
169 -- This is actually a transformation of the primary table First_Table,
170 -- where every state is grouped with the states in its 'no-character'
171 -- columns. The transitions between the new states are then recalculated
172 -- and if necessary some new states are created.
174 -- Note that the resulting finite-state machine is not optimized in
175 -- terms of the number of states : it would be more time-consuming to
176 -- add a third pass to reduce the number of states in the machine, with
177 -- no speed improvement...
179 procedure Raise_Exception
180 (M : String;
181 Index : Integer);
182 pragma No_Return (Raise_Exception);
183 -- Raise an exception, indicating an error at character Index in S.
185 --------------------
186 -- Create_Mapping --
187 --------------------
189 procedure Create_Mapping is
191 procedure Add_In_Map (C : Character);
192 -- Add a character in the mapping, if it is not already defined
194 -----------------
195 -- Add_In_Map --
196 -----------------
198 procedure Add_In_Map (C : Character) is
199 begin
200 if Map (C) = 0 then
201 Alphabet_Size := Alphabet_Size + 1;
202 Map (C) := Alphabet_Size;
203 end if;
204 end Add_In_Map;
206 J : Integer := S'First;
207 Parenthesis_Level : Integer := 0;
208 Curly_Level : Integer := 0;
210 -- Start of processing for Create_Mapping
212 begin
213 while J <= S'Last loop
214 case S (J) is
215 when Open_Bracket =>
216 J := J + 1;
218 if S (J) = '^' then
219 J := J + 1;
220 end if;
222 if S (J) = ']' or S (J) = '-' then
223 J := J + 1;
224 end if;
226 -- The first character never has a special meaning
228 loop
229 if J > S'Last then
230 Raise_Exception
231 ("Ran out of characters while parsing ", J);
232 end if;
234 exit when S (J) = Close_Bracket;
236 if S (J) = '-'
237 and then S (J + 1) /= Close_Bracket
238 then
239 declare
240 Start : constant Integer := J - 1;
242 begin
243 J := J + 1;
245 if S (J) = '\' then
246 J := J + 1;
247 end if;
249 for Char in S (Start) .. S (J) loop
250 Add_In_Map (Char);
251 end loop;
252 end;
253 else
254 if S (J) = '\' then
255 J := J + 1;
256 end if;
258 Add_In_Map (S (J));
259 end if;
261 J := J + 1;
262 end loop;
264 -- A close bracket must follow a open_bracket,
265 -- and cannot be found alone on the line
267 when Close_Bracket =>
268 Raise_Exception
269 ("Incorrect character ']' in regular expression", J);
271 when '\' =>
272 if J < S'Last then
273 J := J + 1;
274 Add_In_Map (S (J));
276 else
277 -- \ not allowed at the end of the regexp
279 Raise_Exception
280 ("Incorrect character '\' in regular expression", J);
281 end if;
283 when Open_Paren =>
284 if not Glob then
285 Parenthesis_Level := Parenthesis_Level + 1;
286 else
287 Add_In_Map (Open_Paren);
288 end if;
290 when Close_Paren =>
291 if not Glob then
292 Parenthesis_Level := Parenthesis_Level - 1;
294 if Parenthesis_Level < 0 then
295 Raise_Exception
296 ("')' is not associated with '(' in regular "
297 & "expression", J);
298 end if;
300 if S (J - 1) = Open_Paren then
301 Raise_Exception
302 ("Empty parenthesis not allowed in regular "
303 & "expression", J);
304 end if;
306 else
307 Add_In_Map (Close_Paren);
308 end if;
310 when '.' =>
311 if Glob then
312 Add_In_Map ('.');
313 end if;
315 when '{' =>
316 if not Glob then
317 Add_In_Map (S (J));
318 else
319 Curly_Level := Curly_Level + 1;
320 end if;
322 when '}' =>
323 if not Glob then
324 Add_In_Map (S (J));
325 else
326 Curly_Level := Curly_Level - 1;
327 end if;
329 when '*' | '?' =>
330 if not Glob then
331 if J = S'First then
332 Raise_Exception
333 ("'*', '+', '?' and '|' operators can not be in "
334 & "first position in regular expression", J);
335 end if;
336 end if;
338 when '|' | '+' =>
339 if not Glob then
340 if J = S'First then
342 -- These operators must apply to a sub-expression,
343 -- and cannot be found at the beginning of the line
345 Raise_Exception
346 ("'*', '+', '?' and '|' operators can not be in "
347 & "first position in regular expression", J);
348 end if;
350 else
351 Add_In_Map (S (J));
352 end if;
354 when others =>
355 Add_In_Map (S (J));
356 end case;
358 J := J + 1;
359 end loop;
361 -- A closing parenthesis must follow an open parenthesis
363 if Parenthesis_Level /= 0 then
364 Raise_Exception
365 ("'(' must always be associated with a ')'", J);
366 end if;
368 if Curly_Level /= 0 then
369 Raise_Exception
370 ("'{' must always be associated with a '}'", J);
371 end if;
372 end Create_Mapping;
374 --------------------------
375 -- Create_Primary_Table --
376 --------------------------
378 procedure Create_Primary_Table
379 (Table : out Regexp_Array_Access;
380 Num_States : out State_Index;
381 Start_State : out State_Index;
382 End_State : out State_Index)
384 Empty_Char : constant Column_Index := Alphabet_Size + 1;
386 Current_State : State_Index := 0;
387 -- Index of the last created state
389 procedure Add_Empty_Char
390 (State : State_Index;
391 To_State : State_Index);
392 -- Add a empty-character transition from State to To_State.
394 procedure Create_Repetition
395 (Repetition : Character;
396 Start_Prev : State_Index;
397 End_Prev : State_Index;
398 New_Start : out State_Index;
399 New_End : in out State_Index);
400 -- Create the table in case we have a '*', '+' or '?'.
401 -- Start_Prev .. End_Prev should indicate respectively the start and
402 -- end index of the previous expression, to which '*', '+' or '?' is
403 -- applied.
405 procedure Create_Simple
406 (Start_Index : Integer;
407 End_Index : Integer;
408 Start_State : out State_Index;
409 End_State : out State_Index);
410 -- Fill the table for the regexp Simple.
411 -- This is the recursive procedure called to handle () expressions
412 -- If End_State = 0, then the call to Create_Simple creates an
413 -- independent regexp, not a concatenation
414 -- Start_Index .. End_Index is the starting index in the string S.
416 -- Warning: it may look like we are creating too many empty-string
417 -- transitions, but they are needed to get the correct regexp.
418 -- The table is filled as follow ( s means start-state, e means
419 -- end-state) :
421 -- regexp state_num | a b * empty_string
422 -- ------- ---------------------------------------
423 -- a 1 (s) | 2 - - -
424 -- 2 (e) | - - - -
426 -- ab 1 (s) | 2 - - -
427 -- 2 | - - - 3
428 -- 3 | - 4 - -
429 -- 4 (e) | - - - -
431 -- a|b 1 | 2 - - -
432 -- 2 | - - - 6
433 -- 3 | - 4 - -
434 -- 4 | - - - 6
435 -- 5 (s) | - - - 1,3
436 -- 6 (e) | - - - -
438 -- a* 1 | 2 - - -
439 -- 2 | - - - 4
440 -- 3 (s) | - - - 1,4
441 -- 4 (e) | - - - 3
443 -- (a) 1 (s) | 2 - - -
444 -- 2 (e) | - - - -
446 -- a+ 1 | 2 - - -
447 -- 2 | - - - 4
448 -- 3 (s) | - - - 1
449 -- 4 (e) | - - - 3
451 -- a? 1 | 2 - - -
452 -- 2 | - - - 4
453 -- 3 (s) | - - - 1,4
454 -- 4 (e) | - - - -
456 -- . 1 (s) | 2 2 2 -
457 -- 2 (e) | - - - -
459 function Next_Sub_Expression
460 (Start_Index : Integer;
461 End_Index : Integer)
462 return Integer;
463 -- Returns the index of the last character of the next sub-expression
464 -- in Simple. Index can not be greater than End_Index
466 --------------------
467 -- Add_Empty_Char --
468 --------------------
470 procedure Add_Empty_Char
471 (State : State_Index;
472 To_State : State_Index)
474 J : Column_Index := Empty_Char;
476 begin
477 while Get (Table, State, J) /= 0 loop
478 J := J + 1;
479 end loop;
481 Set (Table, State, J, To_State);
482 end Add_Empty_Char;
484 -----------------------
485 -- Create_Repetition --
486 -----------------------
488 procedure Create_Repetition
489 (Repetition : Character;
490 Start_Prev : State_Index;
491 End_Prev : State_Index;
492 New_Start : out State_Index;
493 New_End : in out State_Index)
495 begin
496 New_Start := Current_State + 1;
498 if New_End /= 0 then
499 Add_Empty_Char (New_End, New_Start);
500 end if;
502 Current_State := Current_State + 2;
503 New_End := Current_State;
505 Add_Empty_Char (End_Prev, New_End);
506 Add_Empty_Char (New_Start, Start_Prev);
508 if Repetition /= '+' then
509 Add_Empty_Char (New_Start, New_End);
510 end if;
512 if Repetition /= '?' then
513 Add_Empty_Char (New_End, New_Start);
514 end if;
515 end Create_Repetition;
517 -------------------
518 -- Create_Simple --
519 -------------------
521 procedure Create_Simple
522 (Start_Index : Integer;
523 End_Index : Integer;
524 Start_State : out State_Index;
525 End_State : out State_Index)
527 J : Integer := Start_Index;
528 Last_Start : State_Index := 0;
530 begin
531 Start_State := 0;
532 End_State := 0;
533 while J <= End_Index loop
534 case S (J) is
535 when Open_Paren =>
536 declare
537 J_Start : constant Integer := J + 1;
538 Next_Start : State_Index;
539 Next_End : State_Index;
541 begin
542 J := Next_Sub_Expression (J, End_Index);
543 Create_Simple (J_Start, J - 1, Next_Start, Next_End);
545 if J < End_Index
546 and then (S (J + 1) = '*' or else
547 S (J + 1) = '+' or else
548 S (J + 1) = '?')
549 then
550 J := J + 1;
551 Create_Repetition
552 (S (J),
553 Next_Start,
554 Next_End,
555 Last_Start,
556 End_State);
558 else
559 Last_Start := Next_Start;
561 if End_State /= 0 then
562 Add_Empty_Char (End_State, Last_Start);
563 end if;
565 End_State := Next_End;
566 end if;
567 end;
569 when '|' =>
570 declare
571 Start_Prev : constant State_Index := Start_State;
572 End_Prev : constant State_Index := End_State;
573 Start_J : constant Integer := J + 1;
574 Start_Next : State_Index := 0;
575 End_Next : State_Index := 0;
577 begin
578 J := Next_Sub_Expression (J, End_Index);
580 -- Create a new state for the start of the alternative
582 Current_State := Current_State + 1;
583 Last_Start := Current_State;
584 Start_State := Last_Start;
586 -- Create the tree for the second part of alternative
588 Create_Simple (Start_J, J, Start_Next, End_Next);
590 -- Create the end state
592 Add_Empty_Char (Last_Start, Start_Next);
593 Add_Empty_Char (Last_Start, Start_Prev);
594 Current_State := Current_State + 1;
595 End_State := Current_State;
596 Add_Empty_Char (End_Prev, End_State);
597 Add_Empty_Char (End_Next, End_State);
598 end;
600 when Open_Bracket =>
601 Current_State := Current_State + 1;
603 declare
604 Next_State : State_Index := Current_State + 1;
606 begin
607 J := J + 1;
609 if S (J) = '^' then
610 J := J + 1;
612 Next_State := 0;
614 for Column in 0 .. Alphabet_Size loop
615 Set (Table, Current_State, Column,
616 Value => Current_State + 1);
617 end loop;
618 end if;
620 -- Automatically add the first character
622 if S (J) = '-' or S (J) = ']' then
623 Set (Table, Current_State, Map (S (J)),
624 Value => Next_State);
625 J := J + 1;
626 end if;
628 -- Loop till closing bracket found
630 loop
631 exit when S (J) = Close_Bracket;
633 if S (J) = '-'
634 and then S (J + 1) /= ']'
635 then
636 declare
637 Start : constant Integer := J - 1;
639 begin
640 J := J + 1;
642 if S (J) = '\' then
643 J := J + 1;
644 end if;
646 for Char in S (Start) .. S (J) loop
647 Set (Table, Current_State, Map (Char),
648 Value => Next_State);
649 end loop;
650 end;
652 else
653 if S (J) = '\' then
654 J := J + 1;
655 end if;
657 Set (Table, Current_State, Map (S (J)),
658 Value => Next_State);
659 end if;
660 J := J + 1;
661 end loop;
662 end;
664 Current_State := Current_State + 1;
666 -- If the next symbol is a special symbol
668 if J < End_Index
669 and then (S (J + 1) = '*' or else
670 S (J + 1) = '+' or else
671 S (J + 1) = '?')
672 then
673 J := J + 1;
674 Create_Repetition
675 (S (J),
676 Current_State - 1,
677 Current_State,
678 Last_Start,
679 End_State);
681 else
682 Last_Start := Current_State - 1;
684 if End_State /= 0 then
685 Add_Empty_Char (End_State, Last_Start);
686 end if;
688 End_State := Current_State;
689 end if;
691 when '*' | '+' | '?' | Close_Paren | Close_Bracket =>
692 Raise_Exception
693 ("Incorrect character in regular expression :", J);
695 when others =>
696 Current_State := Current_State + 1;
698 -- Create the state for the symbol S (J)
700 if S (J) = '.' then
701 for K in 0 .. Alphabet_Size loop
702 Set (Table, Current_State, K,
703 Value => Current_State + 1);
704 end loop;
706 else
707 if S (J) = '\' then
708 J := J + 1;
709 end if;
711 Set (Table, Current_State, Map (S (J)),
712 Value => Current_State + 1);
713 end if;
715 Current_State := Current_State + 1;
717 -- If the next symbol is a special symbol
719 if J < End_Index
720 and then (S (J + 1) = '*' or else
721 S (J + 1) = '+' or else
722 S (J + 1) = '?')
723 then
724 J := J + 1;
725 Create_Repetition
726 (S (J),
727 Current_State - 1,
728 Current_State,
729 Last_Start,
730 End_State);
732 else
733 Last_Start := Current_State - 1;
735 if End_State /= 0 then
736 Add_Empty_Char (End_State, Last_Start);
737 end if;
739 End_State := Current_State;
740 end if;
742 end case;
744 if Start_State = 0 then
745 Start_State := Last_Start;
746 end if;
748 J := J + 1;
749 end loop;
750 end Create_Simple;
752 -------------------------
753 -- Next_Sub_Expression --
754 -------------------------
756 function Next_Sub_Expression
757 (Start_Index : Integer;
758 End_Index : Integer)
759 return Integer
761 J : Integer := Start_Index;
762 Start_On_Alter : Boolean := False;
764 begin
765 if S (J) = '|' then
766 Start_On_Alter := True;
767 end if;
769 loop
770 exit when J = End_Index;
771 J := J + 1;
773 case S (J) is
774 when '\' =>
775 J := J + 1;
777 when Open_Bracket =>
778 loop
779 J := J + 1;
780 exit when S (J) = Close_Bracket;
782 if S (J) = '\' then
783 J := J + 1;
784 end if;
785 end loop;
787 when Open_Paren =>
788 J := Next_Sub_Expression (J, End_Index);
790 when Close_Paren =>
791 return J;
793 when '|' =>
794 if Start_On_Alter then
795 return J - 1;
796 end if;
798 when others =>
799 null;
800 end case;
801 end loop;
803 return J;
804 end Next_Sub_Expression;
806 -- Start of Create_Primary_Table
808 begin
809 Table.all := (others => (others => 0));
810 Create_Simple (S'First, S'Last, Start_State, End_State);
811 Num_States := Current_State;
812 end Create_Primary_Table;
814 -------------------------------
815 -- Create_Primary_Table_Glob --
816 -------------------------------
818 procedure Create_Primary_Table_Glob
819 (Table : out Regexp_Array_Access;
820 Num_States : out State_Index;
821 Start_State : out State_Index;
822 End_State : out State_Index)
824 Empty_Char : constant Column_Index := Alphabet_Size + 1;
826 Current_State : State_Index := 0;
827 -- Index of the last created state
829 procedure Add_Empty_Char
830 (State : State_Index;
831 To_State : State_Index);
832 -- Add a empty-character transition from State to To_State.
834 procedure Create_Simple
835 (Start_Index : Integer;
836 End_Index : Integer;
837 Start_State : out State_Index;
838 End_State : out State_Index);
839 -- Fill the table for the S (Start_Index .. End_Index).
840 -- This is the recursive procedure called to handle () expressions
842 --------------------
843 -- Add_Empty_Char --
844 --------------------
846 procedure Add_Empty_Char
847 (State : State_Index;
848 To_State : State_Index)
850 J : Column_Index := Empty_Char;
852 begin
853 while Get (Table, State, J) /= 0 loop
854 J := J + 1;
855 end loop;
857 Set (Table, State, J,
858 Value => To_State);
859 end Add_Empty_Char;
861 -------------------
862 -- Create_Simple --
863 -------------------
865 procedure Create_Simple
866 (Start_Index : Integer;
867 End_Index : Integer;
868 Start_State : out State_Index;
869 End_State : out State_Index)
871 J : Integer := Start_Index;
872 Last_Start : State_Index := 0;
874 begin
875 Start_State := 0;
876 End_State := 0;
878 while J <= End_Index loop
879 case S (J) is
881 when Open_Bracket =>
882 Current_State := Current_State + 1;
884 declare
885 Next_State : State_Index := Current_State + 1;
887 begin
888 J := J + 1;
890 if S (J) = '^' then
891 J := J + 1;
892 Next_State := 0;
894 for Column in 0 .. Alphabet_Size loop
895 Set (Table, Current_State, Column,
896 Value => Current_State + 1);
897 end loop;
898 end if;
900 -- Automatically add the first character
902 if S (J) = '-' or S (J) = ']' then
903 Set (Table, Current_State, Map (S (J)),
904 Value => Current_State);
905 J := J + 1;
906 end if;
908 -- Loop till closing bracket found
910 loop
911 exit when S (J) = Close_Bracket;
913 if S (J) = '-'
914 and then S (J + 1) /= ']'
915 then
916 declare
917 Start : constant Integer := J - 1;
918 begin
919 J := J + 1;
921 if S (J) = '\' then
922 J := J + 1;
923 end if;
925 for Char in S (Start) .. S (J) loop
926 Set (Table, Current_State, Map (Char),
927 Value => Next_State);
928 end loop;
929 end;
931 else
932 if S (J) = '\' then
933 J := J + 1;
934 end if;
936 Set (Table, Current_State, Map (S (J)),
937 Value => Next_State);
938 end if;
939 J := J + 1;
940 end loop;
941 end;
943 Last_Start := Current_State;
944 Current_State := Current_State + 1;
946 if End_State /= 0 then
947 Add_Empty_Char (End_State, Last_Start);
948 end if;
950 End_State := Current_State;
952 when '{' =>
953 declare
954 End_Sub : Integer;
955 Start_Regexp_Sub : State_Index;
956 End_Regexp_Sub : State_Index;
957 Create_Start : State_Index := 0;
959 Create_End : State_Index := 0;
960 -- Initialized to avoid junk warning
962 begin
963 while S (J) /= '}' loop
965 -- First step : find sub pattern
967 End_Sub := J + 1;
968 while S (End_Sub) /= ','
969 and then S (End_Sub) /= '}'
970 loop
971 End_Sub := End_Sub + 1;
972 end loop;
974 -- Second step : create a sub pattern
976 Create_Simple
977 (J + 1,
978 End_Sub - 1,
979 Start_Regexp_Sub,
980 End_Regexp_Sub);
982 J := End_Sub;
984 -- Third step : create an alternative
986 if Create_Start = 0 then
987 Current_State := Current_State + 1;
988 Create_Start := Current_State;
989 Add_Empty_Char (Create_Start, Start_Regexp_Sub);
990 Current_State := Current_State + 1;
991 Create_End := Current_State;
992 Add_Empty_Char (End_Regexp_Sub, Create_End);
994 else
995 Current_State := Current_State + 1;
996 Add_Empty_Char (Current_State, Create_Start);
997 Create_Start := Current_State;
998 Add_Empty_Char (Create_Start, Start_Regexp_Sub);
999 Add_Empty_Char (End_Regexp_Sub, Create_End);
1000 end if;
1001 end loop;
1003 if End_State /= 0 then
1004 Add_Empty_Char (End_State, Create_Start);
1005 end if;
1007 End_State := Create_End;
1008 Last_Start := Create_Start;
1009 end;
1011 when '*' =>
1012 Current_State := Current_State + 1;
1014 if End_State /= 0 then
1015 Add_Empty_Char (End_State, Current_State);
1016 end if;
1018 Add_Empty_Char (Current_State, Current_State + 1);
1019 Add_Empty_Char (Current_State, Current_State + 3);
1020 Last_Start := Current_State;
1022 Current_State := Current_State + 1;
1024 for K in 0 .. Alphabet_Size loop
1025 Set (Table, Current_State, K,
1026 Value => Current_State + 1);
1027 end loop;
1029 Current_State := Current_State + 1;
1030 Add_Empty_Char (Current_State, Current_State + 1);
1032 Current_State := Current_State + 1;
1033 Add_Empty_Char (Current_State, Last_Start);
1034 End_State := Current_State;
1036 when others =>
1037 Current_State := Current_State + 1;
1039 if S (J) = '?' then
1040 for K in 0 .. Alphabet_Size loop
1041 Set (Table, Current_State, K,
1042 Value => Current_State + 1);
1043 end loop;
1045 else
1046 if S (J) = '\' then
1047 J := J + 1;
1048 end if;
1050 -- Create the state for the symbol S (J)
1052 Set (Table, Current_State, Map (S (J)),
1053 Value => Current_State + 1);
1054 end if;
1056 Last_Start := Current_State;
1057 Current_State := Current_State + 1;
1059 if End_State /= 0 then
1060 Add_Empty_Char (End_State, Last_Start);
1061 end if;
1063 End_State := Current_State;
1065 end case;
1067 if Start_State = 0 then
1068 Start_State := Last_Start;
1069 end if;
1071 J := J + 1;
1072 end loop;
1073 end Create_Simple;
1075 -- Start of processing for Create_Primary_Table_Glob
1077 begin
1078 Table.all := (others => (others => 0));
1079 Create_Simple (S'First, S'Last, Start_State, End_State);
1080 Num_States := Current_State;
1081 end Create_Primary_Table_Glob;
1083 ----------------------------
1084 -- Create_Secondary_Table --
1085 ----------------------------
1087 function Create_Secondary_Table
1088 (First_Table : Regexp_Array_Access;
1089 Num_States : State_Index;
1090 Start_State : State_Index;
1091 End_State : State_Index)
1092 return Regexp
1094 pragma Warnings (Off, Num_States);
1096 Last_Index : constant State_Index := First_Table'Last (1);
1097 type Meta_State is array (1 .. Last_Index) of Boolean;
1099 Table : Regexp_Array (1 .. Last_Index, 0 .. Alphabet_Size) :=
1100 (others => (others => 0));
1102 Meta_States : array (1 .. Last_Index + 1) of Meta_State :=
1103 (others => (others => False));
1105 Temp_State_Not_Null : Boolean;
1107 Is_Final : Boolean_Array (1 .. Last_Index) := (others => False);
1109 Current_State : State_Index := 1;
1110 Nb_State : State_Index := 1;
1112 procedure Closure
1113 (State : in out Meta_State;
1114 Item : State_Index);
1115 -- Compute the closure of the state (that is every other state which
1116 -- has a empty-character transition) and add it to the state
1118 -------------
1119 -- Closure --
1120 -------------
1122 procedure Closure
1123 (State : in out Meta_State;
1124 Item : State_Index)
1126 begin
1127 if State (Item) then
1128 return;
1129 end if;
1131 State (Item) := True;
1133 for Column in Alphabet_Size + 1 .. First_Table'Last (2) loop
1134 if First_Table (Item, Column) = 0 then
1135 return;
1136 end if;
1138 Closure (State, First_Table (Item, Column));
1139 end loop;
1140 end Closure;
1142 -- Start of procesing for Create_Secondary_Table
1144 begin
1145 -- Create a new state
1147 Closure (Meta_States (Current_State), Start_State);
1149 while Current_State <= Nb_State loop
1151 -- If this new meta-state includes the primary table end state,
1152 -- then this meta-state will be a final state in the regexp
1154 if Meta_States (Current_State)(End_State) then
1155 Is_Final (Current_State) := True;
1156 end if;
1158 -- For every character in the regexp, calculate the possible
1159 -- transitions from Current_State
1161 for Column in 0 .. Alphabet_Size loop
1162 Meta_States (Nb_State + 1) := (others => False);
1163 Temp_State_Not_Null := False;
1165 for K in Meta_States (Current_State)'Range loop
1166 if Meta_States (Current_State)(K)
1167 and then First_Table (K, Column) /= 0
1168 then
1169 Closure
1170 (Meta_States (Nb_State + 1), First_Table (K, Column));
1171 Temp_State_Not_Null := True;
1172 end if;
1173 end loop;
1175 -- If at least one transition existed
1177 if Temp_State_Not_Null then
1179 -- Check if this new state corresponds to an old one
1181 for K in 1 .. Nb_State loop
1182 if Meta_States (K) = Meta_States (Nb_State + 1) then
1183 Table (Current_State, Column) := K;
1184 exit;
1185 end if;
1186 end loop;
1188 -- If not, create a new state
1190 if Table (Current_State, Column) = 0 then
1191 Nb_State := Nb_State + 1;
1192 Table (Current_State, Column) := Nb_State;
1193 end if;
1194 end if;
1195 end loop;
1197 Current_State := Current_State + 1;
1198 end loop;
1200 -- Returns the regexp
1202 declare
1203 R : Regexp_Access;
1205 begin
1206 R := new Regexp_Value (Alphabet_Size => Alphabet_Size,
1207 Num_States => Nb_State);
1208 R.Map := Map;
1209 R.Is_Final := Is_Final (1 .. Nb_State);
1210 R.Case_Sensitive := Case_Sensitive;
1212 for State in 1 .. Nb_State loop
1213 for K in 0 .. Alphabet_Size loop
1214 R.States (State, K) := Table (State, K);
1215 end loop;
1216 end loop;
1218 return (Ada.Finalization.Controlled with R => R);
1219 end;
1220 end Create_Secondary_Table;
1222 ---------------------
1223 -- Raise_Exception --
1224 ---------------------
1226 procedure Raise_Exception
1227 (M : String;
1228 Index : Integer)
1230 begin
1231 Ada.Exceptions.Raise_Exception
1232 (Error_In_Regexp'Identity, M & " at offset " & Index'Img);
1233 end Raise_Exception;
1235 -- Start of processing for Compile
1237 begin
1238 -- Special case for the empty string: it always matches, and the
1239 -- following processing would fail on it.
1240 if S = "" then
1241 return (Ada.Finalization.Controlled with
1242 R => new Regexp_Value'
1243 (Alphabet_Size => 0,
1244 Num_States => 1,
1245 Map => (others => 0),
1246 States => (others => (others => 1)),
1247 Is_Final => (others => True),
1248 Case_Sensitive => True));
1249 end if;
1251 if not Case_Sensitive then
1252 GNAT.Case_Util.To_Lower (S);
1253 end if;
1255 Create_Mapping;
1257 -- Creates the primary table
1259 declare
1260 Table : Regexp_Array_Access;
1261 Num_States : State_Index;
1262 Start_State : State_Index;
1263 End_State : State_Index;
1264 R : Regexp;
1266 begin
1267 Table := new Regexp_Array (1 .. 100,
1268 0 .. Alphabet_Size + 10);
1269 if not Glob then
1270 Create_Primary_Table (Table, Num_States, Start_State, End_State);
1271 else
1272 Create_Primary_Table_Glob
1273 (Table, Num_States, Start_State, End_State);
1274 end if;
1276 -- Creates the secondary table
1278 R := Create_Secondary_Table
1279 (Table, Num_States, Start_State, End_State);
1280 Free (Table);
1281 return R;
1282 end;
1283 end Compile;
1285 --------------
1286 -- Finalize --
1287 --------------
1289 procedure Finalize (R : in out Regexp) is
1290 procedure Free is new
1291 Unchecked_Deallocation (Regexp_Value, Regexp_Access);
1293 begin
1294 Free (R.R);
1295 end Finalize;
1297 ---------
1298 -- Get --
1299 ---------
1301 function Get
1302 (Table : Regexp_Array_Access;
1303 State : State_Index;
1304 Column : Column_Index)
1305 return State_Index
1307 begin
1308 if State <= Table'Last (1)
1309 and then Column <= Table'Last (2)
1310 then
1311 return Table (State, Column);
1312 else
1313 return 0;
1314 end if;
1315 end Get;
1317 -----------
1318 -- Match --
1319 -----------
1321 function Match (S : String; R : Regexp) return Boolean is
1322 Current_State : State_Index := 1;
1324 begin
1325 if R.R = null then
1326 raise Constraint_Error;
1327 end if;
1329 for Char in S'Range loop
1331 if R.R.Case_Sensitive then
1332 Current_State := R.R.States (Current_State, R.R.Map (S (Char)));
1333 else
1334 Current_State :=
1335 R.R.States (Current_State,
1336 R.R.Map (GNAT.Case_Util.To_Lower (S (Char))));
1337 end if;
1339 if Current_State = 0 then
1340 return False;
1341 end if;
1343 end loop;
1345 return R.R.Is_Final (Current_State);
1346 end Match;
1348 ---------
1349 -- Set --
1350 ---------
1352 procedure Set
1353 (Table : in out Regexp_Array_Access;
1354 State : State_Index;
1355 Column : Column_Index;
1356 Value : State_Index)
1358 New_Lines : State_Index;
1359 New_Columns : Column_Index;
1360 New_Table : Regexp_Array_Access;
1362 begin
1363 if State <= Table'Last (1)
1364 and then Column <= Table'Last (2)
1365 then
1366 Table (State, Column) := Value;
1367 else
1368 -- Doubles the size of the table until it is big enough that
1369 -- (State, Column) is a valid index
1371 New_Lines := Table'Last (1) * (State / Table'Last (1) + 1);
1372 New_Columns := Table'Last (2) * (Column / Table'Last (2) + 1);
1373 New_Table := new Regexp_Array (Table'First (1) .. New_Lines,
1374 Table'First (2) .. New_Columns);
1375 New_Table.all := (others => (others => 0));
1377 for J in Table'Range (1) loop
1378 for K in Table'Range (2) loop
1379 New_Table (J, K) := Table (J, K);
1380 end loop;
1381 end loop;
1383 Free (Table);
1384 Table := New_Table;
1385 Table (State, Column) := Value;
1386 end if;
1387 end Set;
1389 end GNAT.Regexp;