2003-12-26 Guilhem Lavaux <guilhem@kaffe.org>
[official-gcc.git] / gcc / ada / exp_strm.adb
blob726f713fe3cb99ebd07757c42244d94cdfe5df33
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ S T R M --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2003, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Einfo; use Einfo;
29 with Namet; use Namet;
30 with Nlists; use Nlists;
31 with Nmake; use Nmake;
32 with Rtsfind; use Rtsfind;
33 with Sinfo; use Sinfo;
34 with Snames; use Snames;
35 with Stand; use Stand;
36 with Tbuild; use Tbuild;
37 with Ttypes; use Ttypes;
38 with Exp_Tss; use Exp_Tss;
39 with Uintp; use Uintp;
41 package body Exp_Strm is
43 -----------------------
44 -- Local Subprograms --
45 -----------------------
47 procedure Build_Array_Read_Write_Procedure
48 (Nod : Node_Id;
49 Typ : Entity_Id;
50 Decl : out Node_Id;
51 Pnam : Entity_Id;
52 Nam : Name_Id);
53 -- Common routine shared to build either an array Read procedure or an
54 -- array Write procedure, Nam is Name_Read or Name_Write to select which.
55 -- Pnam is the defining identifier for the constructed procedure. The
56 -- other parameters are as for Build_Array_Read_Procedure except that
57 -- the first parameter Nod supplies the Sloc to be used to generate code.
59 procedure Build_Record_Read_Write_Procedure
60 (Loc : Source_Ptr;
61 Typ : Entity_Id;
62 Decl : out Node_Id;
63 Pnam : Entity_Id;
64 Nam : Name_Id);
65 -- Common routine shared to build a record Read Write procedure, Nam
66 -- is Name_Read or Name_Write to select which. Pnam is the defining
67 -- identifier for the constructed procedure. The other parameters are
68 -- as for Build_Record_Read_Procedure.
70 procedure Build_Stream_Function
71 (Loc : Source_Ptr;
72 Typ : Entity_Id;
73 Decl : out Node_Id;
74 Fnam : Entity_Id;
75 Decls : List_Id;
76 Stms : List_Id);
77 -- Called to build an array or record stream function. The first three
78 -- arguments are the same as Build_Record_Or_Elementary_Input_Function.
79 -- Decls and Stms are the declarations and statements for the body and
80 -- The parameter Fnam is the name of the constructed function.
82 function Has_Stream_Standard_Rep (U_Type : Entity_Id) return Boolean;
83 -- This function is used to test U_Type, which is a type
84 -- Returns True if U_Type has a standard representation for stream
85 -- purposes, i.e. there is no non-standard enumeration representation
86 -- clause, and the size of the first subtype is the same as the size
87 -- of the root type.
89 function Make_Stream_Subprogram_Name
90 (Loc : Source_Ptr;
91 Typ : Entity_Id;
92 Nam : TSS_Name_Type) return Entity_Id;
93 -- Return the entity that identifies the stream subprogram for type Typ
94 -- that is identified by the given Nam. This procedure deals with the
95 -- difference between tagged types (where a single subprogram associated
96 -- with the type is generated) and all other cases (where a subprogram
97 -- is generated at the point of the stream attribute reference). The
98 -- Loc parameter is used as the Sloc of the created entity.
100 function Stream_Base_Type (E : Entity_Id) return Entity_Id;
101 -- Stream attributes work on the basis of the base type except for the
102 -- array case. For the array case, we do not go to the base type, but
103 -- to the first subtype if it is constrained. This avoids problems with
104 -- incorrect conversions in the packed array case. Stream_Base_Type is
105 -- exactly this function (returns the base type, unless we have an array
106 -- type whose first subtype is constrained, in which case it returns the
107 -- first subtype).
109 --------------------------------
110 -- Build_Array_Input_Function --
111 --------------------------------
113 -- The function we build looks like
115 -- function typSI[_nnn] (S : access RST) return Typ is
116 -- L1 : constant Index_Type_1 := Index_Type_1'Input (S);
117 -- H1 : constant Index_Type_1 := Index_Type_1'Input (S);
118 -- L2 : constant Index_Type_2 := Index_Type_2'Input (S);
119 -- H2 : constant Index_Type_2 := Index_Type_2'Input (S);
120 -- ..
121 -- Ln : constant Index_Type_n := Index_Type_n'Input (S);
122 -- Hn : constant Index_Type_n := Index_Type_n'Input (S);
124 -- V : Typ'Base (L1 .. H1, L2 .. H2, ... Ln .. Hn)
126 -- begin
127 -- Typ'Read (S, V);
128 -- return V;
129 -- end typSI[_nnn]
131 -- Note: the suffix [_nnn] is present for non-tagged types, where we
132 -- generate a local subprogram at the point of the occurrence of the
133 -- attribute reference, so the name must be unique.
135 procedure Build_Array_Input_Function
136 (Loc : Source_Ptr;
137 Typ : Entity_Id;
138 Decl : out Node_Id;
139 Fnam : out Entity_Id)
141 Dim : constant Pos := Number_Dimensions (Typ);
142 Lnam : Name_Id;
143 Hnam : Name_Id;
144 Decls : List_Id;
145 Ranges : List_Id;
146 Stms : List_Id;
147 Indx : Node_Id;
149 begin
150 Decls := New_List;
151 Ranges := New_List;
152 Indx := First_Index (Typ);
154 for J in 1 .. Dim loop
155 Lnam := New_External_Name ('L', J);
156 Hnam := New_External_Name ('H', J);
158 Append_To (Decls,
159 Make_Object_Declaration (Loc,
160 Defining_Identifier => Make_Defining_Identifier (Loc, Lnam),
161 Constant_Present => True,
162 Object_Definition => New_Occurrence_Of (Etype (Indx), Loc),
163 Expression =>
164 Make_Attribute_Reference (Loc,
165 Prefix =>
166 New_Occurrence_Of (Stream_Base_Type (Etype (Indx)), Loc),
167 Attribute_Name => Name_Input,
168 Expressions => New_List (Make_Identifier (Loc, Name_S)))));
170 Append_To (Decls,
171 Make_Object_Declaration (Loc,
172 Defining_Identifier => Make_Defining_Identifier (Loc, Hnam),
173 Constant_Present => True,
174 Object_Definition =>
175 New_Occurrence_Of (Stream_Base_Type (Etype (Indx)), Loc),
176 Expression =>
177 Make_Attribute_Reference (Loc,
178 Prefix =>
179 New_Occurrence_Of (Stream_Base_Type (Etype (Indx)), Loc),
180 Attribute_Name => Name_Input,
181 Expressions => New_List (Make_Identifier (Loc, Name_S)))));
183 Append_To (Ranges,
184 Make_Range (Loc,
185 Low_Bound => Make_Identifier (Loc, Lnam),
186 High_Bound => Make_Identifier (Loc, Hnam)));
188 Next_Index (Indx);
189 end loop;
191 -- If the first subtype is constrained, use it directly. Otherwise
192 -- build a subtype indication with the proper bounds.
194 if Is_Constrained (Stream_Base_Type (Typ)) then
195 Append_To (Decls,
196 Make_Object_Declaration (Loc,
197 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
198 Object_Definition =>
199 New_Occurrence_Of (Stream_Base_Type (Typ), Loc)));
200 else
201 Append_To (Decls,
202 Make_Object_Declaration (Loc,
203 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
204 Object_Definition =>
205 Make_Subtype_Indication (Loc,
206 Subtype_Mark =>
207 New_Occurrence_Of (Stream_Base_Type (Typ), Loc),
208 Constraint =>
209 Make_Index_Or_Discriminant_Constraint (Loc,
210 Constraints => Ranges))));
211 end if;
213 Stms := New_List (
214 Make_Attribute_Reference (Loc,
215 Prefix => New_Occurrence_Of (Typ, Loc),
216 Attribute_Name => Name_Read,
217 Expressions => New_List (
218 Make_Identifier (Loc, Name_S),
219 Make_Identifier (Loc, Name_V))),
221 Make_Return_Statement (Loc,
222 Expression => Make_Identifier (Loc, Name_V)));
224 Fnam :=
225 Make_Defining_Identifier (Loc,
226 Chars => Make_TSS_Name_Local (Typ, TSS_Stream_Input));
228 Build_Stream_Function (Loc, Typ, Decl, Fnam, Decls, Stms);
229 end Build_Array_Input_Function;
231 ----------------------------------
232 -- Build_Array_Output_Procedure --
233 ----------------------------------
235 procedure Build_Array_Output_Procedure
236 (Loc : Source_Ptr;
237 Typ : Entity_Id;
238 Decl : out Node_Id;
239 Pnam : out Entity_Id)
241 Stms : List_Id;
242 Indx : Node_Id;
244 begin
245 -- Build series of statements to output bounds
247 Indx := First_Index (Typ);
248 Stms := New_List;
250 for J in 1 .. Number_Dimensions (Typ) loop
251 Append_To (Stms,
252 Make_Attribute_Reference (Loc,
253 Prefix =>
254 New_Occurrence_Of (Stream_Base_Type (Etype (Indx)), Loc),
255 Attribute_Name => Name_Write,
256 Expressions => New_List (
257 Make_Identifier (Loc, Name_S),
258 Make_Attribute_Reference (Loc,
259 Prefix => Make_Identifier (Loc, Name_V),
260 Attribute_Name => Name_First,
261 Expressions => New_List (
262 Make_Integer_Literal (Loc, J))))));
264 Append_To (Stms,
265 Make_Attribute_Reference (Loc,
266 Prefix =>
267 New_Occurrence_Of (Stream_Base_Type (Etype (Indx)), Loc),
268 Attribute_Name => Name_Write,
269 Expressions => New_List (
270 Make_Identifier (Loc, Name_S),
271 Make_Attribute_Reference (Loc,
272 Prefix => Make_Identifier (Loc, Name_V),
273 Attribute_Name => Name_Last,
274 Expressions => New_List (
275 Make_Integer_Literal (Loc, J))))));
277 Next_Index (Indx);
278 end loop;
280 -- Append Write attribute to write array elements
282 Append_To (Stms,
283 Make_Attribute_Reference (Loc,
284 Prefix => New_Occurrence_Of (Typ, Loc),
285 Attribute_Name => Name_Write,
286 Expressions => New_List (
287 Make_Identifier (Loc, Name_S),
288 Make_Identifier (Loc, Name_V))));
290 Pnam :=
291 Make_Defining_Identifier (Loc,
292 Chars => Make_TSS_Name_Local (Typ, TSS_Stream_Output));
294 Build_Stream_Procedure (Loc, Typ, Decl, Pnam, Stms, False);
295 end Build_Array_Output_Procedure;
297 --------------------------------
298 -- Build_Array_Read_Procedure --
299 --------------------------------
301 procedure Build_Array_Read_Procedure
302 (Nod : Node_Id;
303 Typ : Entity_Id;
304 Decl : out Node_Id;
305 Pnam : out Entity_Id)
307 Loc : constant Source_Ptr := Sloc (Nod);
309 begin
310 Pnam :=
311 Make_Defining_Identifier (Loc,
312 Chars => Make_TSS_Name_Local (Typ, TSS_Stream_Read));
313 Build_Array_Read_Write_Procedure (Nod, Typ, Decl, Pnam, Name_Read);
314 end Build_Array_Read_Procedure;
316 --------------------------------------
317 -- Build_Array_Read_Write_Procedure --
318 --------------------------------------
320 -- The form of the array read/write procedure is as follows:
322 -- procedure pnam (S : access RST, V : [out] Typ) is
323 -- begin
324 -- for L1 in V'Range (1) loop
325 -- for L2 in V'Range (2) loop
326 -- ...
327 -- for Ln in V'Range (n) loop
328 -- Component_Type'Read/Write (S, V (L1, L2, .. Ln));
329 -- end loop;
330 -- ..
331 -- end loop;
332 -- end loop
333 -- end pnam;
335 -- The out keyword for V is supplied in the Read case
337 procedure Build_Array_Read_Write_Procedure
338 (Nod : Node_Id;
339 Typ : Entity_Id;
340 Decl : out Node_Id;
341 Pnam : Entity_Id;
342 Nam : Name_Id)
344 Loc : constant Source_Ptr := Sloc (Nod);
345 Ndim : constant Pos := Number_Dimensions (Typ);
346 Ctyp : constant Entity_Id := Component_Type (Typ);
348 Stm : Node_Id;
349 Exl : List_Id;
350 RW : Entity_Id;
352 begin
353 -- First build the inner attribute call
355 Exl := New_List;
357 for J in 1 .. Ndim loop
358 Append_To (Exl, Make_Identifier (Loc, New_External_Name ('L', J)));
359 end loop;
361 Stm :=
362 Make_Attribute_Reference (Loc,
363 Prefix => New_Occurrence_Of (Stream_Base_Type (Ctyp), Loc),
364 Attribute_Name => Nam,
365 Expressions => New_List (
366 Make_Identifier (Loc, Name_S),
367 Make_Indexed_Component (Loc,
368 Prefix => Make_Identifier (Loc, Name_V),
369 Expressions => Exl)));
371 -- The corresponding stream attribute for the component type of the
372 -- array may be user-defined, and be frozen after the type for which
373 -- we are generating the stream subprogram. In that case, freeze the
374 -- stream attribute of the component type, whose declaration could not
375 -- generate any additional freezing actions in any case. See 5509-003.
377 if Nam = Name_Read then
378 RW := TSS (Base_Type (Ctyp), TSS_Stream_Read);
379 else
380 RW := TSS (Base_Type (Ctyp), TSS_Stream_Write);
381 end if;
383 if Present (RW)
384 and then not Is_Frozen (RW)
385 then
386 Set_Is_Frozen (RW);
387 end if;
389 -- Now this is the big loop to wrap that statement up in a sequence
390 -- of loops. The first time around, Stm is the attribute call. The
391 -- second and subsequent times, Stm is an inner loop.
393 for J in 1 .. Ndim loop
394 Stm :=
395 Make_Implicit_Loop_Statement (Nod,
396 Iteration_Scheme =>
397 Make_Iteration_Scheme (Loc,
398 Loop_Parameter_Specification =>
399 Make_Loop_Parameter_Specification (Loc,
400 Defining_Identifier =>
401 Make_Defining_Identifier (Loc,
402 Chars => New_External_Name ('L', Ndim - J + 1)),
404 Discrete_Subtype_Definition =>
405 Make_Attribute_Reference (Loc,
406 Prefix => Make_Identifier (Loc, Name_V),
407 Attribute_Name => Name_Range,
409 Expressions => New_List (
410 Make_Integer_Literal (Loc, Ndim - J + 1))))),
412 Statements => New_List (Stm));
414 end loop;
416 Build_Stream_Procedure
417 (Loc, Typ, Decl, Pnam, New_List (Stm), Nam = Name_Read);
418 end Build_Array_Read_Write_Procedure;
420 ---------------------------------
421 -- Build_Array_Write_Procedure --
422 ---------------------------------
424 procedure Build_Array_Write_Procedure
425 (Nod : Node_Id;
426 Typ : Entity_Id;
427 Decl : out Node_Id;
428 Pnam : out Entity_Id)
430 Loc : constant Source_Ptr := Sloc (Nod);
432 begin
433 Pnam :=
434 Make_Defining_Identifier (Loc,
435 Chars => Make_TSS_Name_Local (Typ, TSS_Stream_Write));
436 Build_Array_Read_Write_Procedure (Nod, Typ, Decl, Pnam, Name_Write);
437 end Build_Array_Write_Procedure;
439 ---------------------------------
440 -- Build_Elementary_Input_Call --
441 ---------------------------------
443 function Build_Elementary_Input_Call (N : Node_Id) return Node_Id is
444 Loc : constant Source_Ptr := Sloc (N);
445 P_Type : constant Entity_Id := Entity (Prefix (N));
446 U_Type : constant Entity_Id := Underlying_Type (P_Type);
447 Rt_Type : constant Entity_Id := Root_Type (U_Type);
448 FST : constant Entity_Id := First_Subtype (U_Type);
449 P_Size : constant Uint := Esize (FST);
450 Res : Node_Id;
451 Strm : constant Node_Id := First (Expressions (N));
452 Targ : constant Node_Id := Next (Strm);
453 Lib_RE : RE_Id;
455 begin
456 -- Check first for Boolean and Character. These are enumeration types,
457 -- but we treat them specially, since they may require special handling
458 -- in the transfer protocol. However, this special handling only applies
459 -- if they have standard representation, otherwise they are treated like
460 -- any other enumeration type.
462 if Rt_Type = Standard_Boolean
463 and then Has_Stream_Standard_Rep (U_Type)
464 then
465 Lib_RE := RE_I_B;
467 elsif Rt_Type = Standard_Character
468 and then Has_Stream_Standard_Rep (U_Type)
469 then
470 Lib_RE := RE_I_C;
472 elsif Rt_Type = Standard_Wide_Character
473 and then Has_Stream_Standard_Rep (U_Type)
474 then
475 Lib_RE := RE_I_WC;
477 -- Floating point types
479 elsif Is_Floating_Point_Type (U_Type) then
481 if Rt_Type = Standard_Short_Float then
482 Lib_RE := RE_I_SF;
484 elsif Rt_Type = Standard_Float then
485 Lib_RE := RE_I_F;
487 elsif Rt_Type = Standard_Long_Float then
488 Lib_RE := RE_I_LF;
490 else pragma Assert (Rt_Type = Standard_Long_Long_Float);
491 Lib_RE := RE_I_LLF;
492 end if;
494 -- Signed integer types. Also includes signed fixed-point types and
495 -- enumeration types with a signed representation.
497 -- Note on signed integer types. We do not consider types as signed for
498 -- this purpose if they have no negative numbers, or if they have biased
499 -- representation. The reason is that the value in either case basically
500 -- represents an unsigned value.
502 -- For example, consider:
504 -- type W is range 0 .. 2**32 - 1;
505 -- for W'Size use 32;
507 -- This is a signed type, but the representation is unsigned, and may
508 -- be outside the range of a 32-bit signed integer, so this must be
509 -- treated as 32-bit unsigned.
511 -- Similarly, if we have
513 -- type W is range -1 .. +254;
514 -- for W'Size use 8;
516 -- then the representation is unsigned
518 elsif not Is_Unsigned_Type (FST)
519 and then
520 (Is_Fixed_Point_Type (U_Type)
521 or else
522 Is_Enumeration_Type (U_Type)
523 or else
524 (Is_Signed_Integer_Type (U_Type)
525 and then not Has_Biased_Representation (FST)))
526 then
527 if P_Size <= Standard_Short_Short_Integer_Size then
528 Lib_RE := RE_I_SSI;
530 elsif P_Size <= Standard_Short_Integer_Size then
531 Lib_RE := RE_I_SI;
533 elsif P_Size <= Standard_Integer_Size then
534 Lib_RE := RE_I_I;
536 elsif P_Size <= Standard_Long_Integer_Size then
537 Lib_RE := RE_I_LI;
539 else
540 Lib_RE := RE_I_LLI;
541 end if;
543 -- Unsigned integer types, also includes unsigned fixed-point types
544 -- and enumeration types with an unsigned representation (note that
545 -- we know they are unsigned because we already tested for signed).
547 -- Also includes signed integer types that are unsigned in the sense
548 -- that they do not include negative numbers. See above for details.
550 elsif Is_Modular_Integer_Type (U_Type)
551 or else Is_Fixed_Point_Type (U_Type)
552 or else Is_Enumeration_Type (U_Type)
553 or else Is_Signed_Integer_Type (U_Type)
554 then
555 if P_Size <= Standard_Short_Short_Integer_Size then
556 Lib_RE := RE_I_SSU;
558 elsif P_Size <= Standard_Short_Integer_Size then
559 Lib_RE := RE_I_SU;
561 elsif P_Size <= Standard_Integer_Size then
562 Lib_RE := RE_I_U;
564 elsif P_Size <= Standard_Long_Integer_Size then
565 Lib_RE := RE_I_LU;
567 else
568 Lib_RE := RE_I_LLU;
569 end if;
571 else pragma Assert (Is_Access_Type (U_Type));
572 if P_Size > System_Address_Size then
573 Lib_RE := RE_I_AD;
574 else
575 Lib_RE := RE_I_AS;
576 end if;
577 end if;
579 -- Call the function, and do an unchecked conversion of the result
580 -- to the actual type of the prefix. If the target is a discriminant,
581 -- set target type to force a constraint check (13.13.2 (35)).
583 if Nkind (Targ) = N_Selected_Component
584 and then Present (Entity (Selector_Name (Targ)))
585 and then Ekind (Entity (Selector_Name (Targ)))
586 = E_Discriminant
587 then
588 Res :=
589 Unchecked_Convert_To (Base_Type (P_Type),
590 Make_Function_Call (Loc,
591 Name => New_Occurrence_Of (RTE (Lib_RE), Loc),
592 Parameter_Associations => New_List (
593 Relocate_Node (Strm))));
595 Set_Do_Range_Check (Res);
596 return Res;
598 else
599 return
600 Unchecked_Convert_To (P_Type,
601 Make_Function_Call (Loc,
602 Name => New_Occurrence_Of (RTE (Lib_RE), Loc),
603 Parameter_Associations => New_List (
604 Relocate_Node (Strm))));
605 end if;
606 end Build_Elementary_Input_Call;
608 ---------------------------------
609 -- Build_Elementary_Write_Call --
610 ---------------------------------
612 function Build_Elementary_Write_Call (N : Node_Id) return Node_Id is
613 Loc : constant Source_Ptr := Sloc (N);
614 P_Type : constant Entity_Id := Entity (Prefix (N));
615 U_Type : constant Entity_Id := Underlying_Type (P_Type);
616 Rt_Type : constant Entity_Id := Root_Type (U_Type);
617 FST : constant Entity_Id := First_Subtype (U_Type);
618 P_Size : constant Uint := Esize (FST);
619 Strm : constant Node_Id := First (Expressions (N));
620 Item : constant Node_Id := Next (Strm);
621 Lib_RE : RE_Id;
622 Libent : Entity_Id;
624 begin
625 -- Find the routine to be called
627 -- Check for First Boolean and Character. These are enumeration types,
628 -- but we treat them specially, since they may require special handling
629 -- in the transfer protocol. However, this special handling only applies
630 -- if they have standard representation, otherwise they are treated like
631 -- any other enumeration type.
633 if Rt_Type = Standard_Boolean
634 and then Has_Stream_Standard_Rep (U_Type)
635 then
636 Lib_RE := RE_W_B;
638 elsif Rt_Type = Standard_Character
639 and then Has_Stream_Standard_Rep (U_Type)
640 then
641 Lib_RE := RE_W_C;
643 elsif Rt_Type = Standard_Wide_Character
644 and then Has_Stream_Standard_Rep (U_Type)
645 then
646 Lib_RE := RE_W_WC;
648 -- Floating point types
650 elsif Is_Floating_Point_Type (U_Type) then
652 if Rt_Type = Standard_Short_Float then
653 Lib_RE := RE_W_SF;
655 elsif Rt_Type = Standard_Float then
656 Lib_RE := RE_W_F;
658 elsif Rt_Type = Standard_Long_Float then
659 Lib_RE := RE_W_LF;
661 else pragma Assert (Rt_Type = Standard_Long_Long_Float);
662 Lib_RE := RE_W_LLF;
663 end if;
665 -- Signed integer types. Also includes signed fixed-point types and
666 -- signed enumeration types share this circuitry.
668 -- Note on signed integer types. We do not consider types as signed for
669 -- this purpose if they have no negative numbers, or if they have biased
670 -- representation. The reason is that the value in either case basically
671 -- represents an unsigned value.
673 -- For example, consider:
675 -- type W is range 0 .. 2**32 - 1;
676 -- for W'Size use 32;
678 -- This is a signed type, but the representation is unsigned, and may
679 -- be outside the range of a 32-bit signed integer, so this must be
680 -- treated as 32-bit unsigned.
682 -- Similarly, if we have
684 -- type W is range -1 .. +254;
685 -- for W'Size use 8;
687 -- then the representation is also unsigned.
689 elsif not Is_Unsigned_Type (FST)
690 and then
691 (Is_Fixed_Point_Type (U_Type)
692 or else
693 Is_Enumeration_Type (U_Type)
694 or else
695 (Is_Signed_Integer_Type (U_Type)
696 and then not Has_Biased_Representation (FST)))
697 then
698 if P_Size <= Standard_Short_Short_Integer_Size then
699 Lib_RE := RE_W_SSI;
701 elsif P_Size <= Standard_Short_Integer_Size then
702 Lib_RE := RE_W_SI;
704 elsif P_Size <= Standard_Integer_Size then
705 Lib_RE := RE_W_I;
707 elsif P_Size <= Standard_Long_Integer_Size then
708 Lib_RE := RE_W_LI;
710 else
711 Lib_RE := RE_W_LLI;
712 end if;
714 -- Unsigned integer types, also includes unsigned fixed-point types
715 -- and unsigned enumeration types (note we know they are unsigned
716 -- because we already tested for signed above).
718 -- Also includes signed integer types that are unsigned in the sense
719 -- that they do not include negative numbers. See above for details.
721 elsif Is_Modular_Integer_Type (U_Type)
722 or else Is_Fixed_Point_Type (U_Type)
723 or else Is_Enumeration_Type (U_Type)
724 or else Is_Signed_Integer_Type (U_Type)
725 then
726 if P_Size <= Standard_Short_Short_Integer_Size then
727 Lib_RE := RE_W_SSU;
729 elsif P_Size <= Standard_Short_Integer_Size then
730 Lib_RE := RE_W_SU;
732 elsif P_Size <= Standard_Integer_Size then
733 Lib_RE := RE_W_U;
735 elsif P_Size <= Standard_Long_Integer_Size then
736 Lib_RE := RE_W_LU;
738 else
739 Lib_RE := RE_W_LLU;
740 end if;
742 else pragma Assert (Is_Access_Type (U_Type));
744 if P_Size > System_Address_Size then
745 Lib_RE := RE_W_AD;
746 else
747 Lib_RE := RE_W_AS;
748 end if;
749 end if;
751 -- Unchecked-convert parameter to the required type (i.e. the type of
752 -- the corresponding parameter, and call the appropriate routine.
754 Libent := RTE (Lib_RE);
756 return
757 Make_Procedure_Call_Statement (Loc,
758 Name => New_Occurrence_Of (Libent, Loc),
759 Parameter_Associations => New_List (
760 Relocate_Node (Strm),
761 Unchecked_Convert_To (Etype (Next_Formal (First_Formal (Libent))),
762 Relocate_Node (Item))));
763 end Build_Elementary_Write_Call;
765 -----------------------------------------
766 -- Build_Mutable_Record_Read_Procedure --
767 -----------------------------------------
769 procedure Build_Mutable_Record_Read_Procedure
770 (Loc : Source_Ptr;
771 Typ : Entity_Id;
772 Decl : out Node_Id;
773 Pnam : out Entity_Id)
775 Stms : List_Id;
776 Disc : Entity_Id;
777 Comp : Node_Id;
779 begin
780 Stms := New_List;
781 Disc := First_Discriminant (Typ);
783 -- Generate Reads for the discriminants of the type.
785 while Present (Disc) loop
786 Comp :=
787 Make_Selected_Component (Loc,
788 Prefix => Make_Identifier (Loc, Name_V),
789 Selector_Name => New_Occurrence_Of (Disc, Loc));
791 Set_Assignment_OK (Comp);
793 Append_To (Stms,
794 Make_Attribute_Reference (Loc,
795 Prefix => New_Occurrence_Of (Etype (Disc), Loc),
796 Attribute_Name => Name_Read,
797 Expressions => New_List (
798 Make_Identifier (Loc, Name_S),
799 Comp)));
801 Next_Discriminant (Disc);
802 end loop;
804 -- A mutable type cannot be a tagged type, so we generate a new name
805 -- for the stream procedure.
807 Pnam :=
808 Make_Defining_Identifier (Loc,
809 Chars => Make_TSS_Name_Local (Typ, TSS_Stream_Read));
810 Build_Record_Read_Write_Procedure (Loc, Typ, Decl, Pnam, Name_Read);
812 -- Read the discriminants before the rest of the components, so
813 -- that discriminant values are properly set of variants, etc.
814 -- If this is an empty record with discriminants, there are no
815 -- previous statements. If this is an unchecked union, the stream
816 -- procedure is erroneous, because there are no discriminants to read.
818 if Is_Unchecked_Union (Typ) then
819 Stms :=
820 New_List (
821 Make_Raise_Program_Error (Loc,
822 Reason => PE_Unchecked_Union_Restriction));
823 end if;
825 if Is_Non_Empty_List (
826 Statements (Handled_Statement_Sequence (Decl)))
827 then
828 Insert_List_Before
829 (First (Statements (Handled_Statement_Sequence (Decl))), Stms);
830 else
831 Set_Statements (Handled_Statement_Sequence (Decl), Stms);
832 end if;
833 end Build_Mutable_Record_Read_Procedure;
835 ------------------------------------------
836 -- Build_Mutable_Record_Write_Procedure --
837 ------------------------------------------
839 procedure Build_Mutable_Record_Write_Procedure
840 (Loc : Source_Ptr;
841 Typ : Entity_Id;
842 Decl : out Node_Id;
843 Pnam : out Entity_Id)
845 Stms : List_Id;
846 Disc : Entity_Id;
848 begin
849 Stms := New_List;
850 Disc := First_Discriminant (Typ);
852 -- Generate Writes for the discriminants of the type.
854 while Present (Disc) loop
856 Append_To (Stms,
857 Make_Attribute_Reference (Loc,
858 Prefix => New_Occurrence_Of (Etype (Disc), Loc),
859 Attribute_Name => Name_Write,
860 Expressions => New_List (
861 Make_Identifier (Loc, Name_S),
862 Make_Selected_Component (Loc,
863 Prefix => Make_Identifier (Loc, Name_V),
864 Selector_Name => New_Occurrence_Of (Disc, Loc)))));
866 Next_Discriminant (Disc);
867 end loop;
869 -- A mutable type cannot be a tagged type, so we generate a new name
870 -- for the stream procedure.
872 Pnam :=
873 Make_Defining_Identifier (Loc,
874 Chars => Make_TSS_Name_Local (Typ, TSS_Stream_Write));
875 Build_Record_Read_Write_Procedure (Loc, Typ, Decl, Pnam, Name_Write);
877 -- Write the discriminants before the rest of the components, so
878 -- that discriminant values are properly set of variants, etc.
879 -- If this is an unchecked union, the stream procedure is erroneous
880 -- because there are no discriminants to write.
882 if Is_Unchecked_Union (Typ) then
883 Stms :=
884 New_List (
885 Make_Raise_Program_Error (Loc,
886 Reason => PE_Unchecked_Union_Restriction));
887 end if;
889 if Is_Non_Empty_List (
890 Statements (Handled_Statement_Sequence (Decl)))
891 then
892 Insert_List_Before
893 (First (Statements (Handled_Statement_Sequence (Decl))), Stms);
894 else
895 Set_Statements (Handled_Statement_Sequence (Decl), Stms);
896 end if;
897 end Build_Mutable_Record_Write_Procedure;
899 -----------------------------------------------
900 -- Build_Record_Or_Elementary_Input_Function --
901 -----------------------------------------------
903 -- The function we build looks like
905 -- function InputN (S : access RST) return Typ is
906 -- C1 : constant Disc_Type_1;
907 -- Discr_Type_1'Read (S, C1);
908 -- C2 : constant Disc_Type_2;
909 -- Discr_Type_2'Read (S, C2);
910 -- ...
911 -- Cn : constant Disc_Type_n;
912 -- Discr_Type_n'Read (S, Cn);
913 -- V : Typ (C1, C2, .. Cn)
915 -- begin
916 -- Typ'Read (S, V);
917 -- return V;
918 -- end InputN
920 -- The discriminants are of course only present in the case of a record
921 -- with discriminants. In the case of a record with no discriminants, or
922 -- an elementary type, then no Cn constants are defined.
924 procedure Build_Record_Or_Elementary_Input_Function
925 (Loc : Source_Ptr;
926 Typ : Entity_Id;
927 Decl : out Node_Id;
928 Fnam : out Entity_Id)
930 Cn : Name_Id;
931 J : Pos;
932 Decls : List_Id;
933 Constr : List_Id;
934 Stms : List_Id;
935 Discr : Entity_Id;
936 Odef : Node_Id;
938 begin
939 Decls := New_List;
940 Constr := New_List;
942 J := 1;
944 if Has_Discriminants (Typ) then
945 Discr := First_Discriminant (Typ);
947 while Present (Discr) loop
948 Cn := New_External_Name ('C', J);
950 Append_To (Decls,
951 Make_Object_Declaration (Loc,
952 Defining_Identifier => Make_Defining_Identifier (Loc, Cn),
953 Object_Definition =>
954 New_Occurrence_Of (Etype (Discr), Loc)));
956 Append_To (Decls,
957 Make_Attribute_Reference (Loc,
958 Prefix => New_Occurrence_Of (Etype (Discr), Loc),
959 Attribute_Name => Name_Read,
960 Expressions => New_List (
961 Make_Identifier (Loc, Name_S),
962 Make_Identifier (Loc, Cn))));
964 Append_To (Constr, Make_Identifier (Loc, Cn));
966 Next_Discriminant (Discr);
967 J := J + 1;
968 end loop;
970 Odef :=
971 Make_Subtype_Indication (Loc,
972 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
973 Constraint =>
974 Make_Index_Or_Discriminant_Constraint (Loc,
975 Constraints => Constr));
977 -- If no discriminants, then just use the type with no constraint
979 else
980 Odef := New_Occurrence_Of (Typ, Loc);
981 end if;
983 Append_To (Decls,
984 Make_Object_Declaration (Loc,
985 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
986 Object_Definition => Odef));
988 Stms := New_List (
989 Make_Attribute_Reference (Loc,
990 Prefix => New_Occurrence_Of (Typ, Loc),
991 Attribute_Name => Name_Read,
992 Expressions => New_List (
993 Make_Identifier (Loc, Name_S),
994 Make_Identifier (Loc, Name_V))),
996 Make_Return_Statement (Loc,
997 Expression => Make_Identifier (Loc, Name_V)));
999 Fnam := Make_Stream_Subprogram_Name (Loc, Typ, TSS_Stream_Input);
1001 Build_Stream_Function (Loc, Typ, Decl, Fnam, Decls, Stms);
1002 end Build_Record_Or_Elementary_Input_Function;
1004 -------------------------------------------------
1005 -- Build_Record_Or_Elementary_Output_Procedure --
1006 -------------------------------------------------
1008 procedure Build_Record_Or_Elementary_Output_Procedure
1009 (Loc : Source_Ptr;
1010 Typ : Entity_Id;
1011 Decl : out Node_Id;
1012 Pnam : out Entity_Id)
1014 Stms : List_Id;
1015 Disc : Entity_Id;
1017 begin
1018 Stms := New_List;
1020 -- Note that of course there will be no discriminants for the
1021 -- elementary type case, so Has_Discriminants will be False.
1023 if Has_Discriminants (Typ) then
1024 Disc := First_Discriminant (Typ);
1026 while Present (Disc) loop
1027 Append_To (Stms,
1028 Make_Attribute_Reference (Loc,
1029 Prefix =>
1030 New_Occurrence_Of (Stream_Base_Type (Etype (Disc)), Loc),
1031 Attribute_Name => Name_Write,
1032 Expressions => New_List (
1033 Make_Identifier (Loc, Name_S),
1034 Make_Selected_Component (Loc,
1035 Prefix => Make_Identifier (Loc, Name_V),
1036 Selector_Name => New_Occurrence_Of (Disc, Loc)))));
1038 Next_Discriminant (Disc);
1039 end loop;
1040 end if;
1042 Append_To (Stms,
1043 Make_Attribute_Reference (Loc,
1044 Prefix => New_Occurrence_Of (Typ, Loc),
1045 Attribute_Name => Name_Write,
1046 Expressions => New_List (
1047 Make_Identifier (Loc, Name_S),
1048 Make_Identifier (Loc, Name_V))));
1050 Pnam := Make_Stream_Subprogram_Name (Loc, Typ, TSS_Stream_Output);
1052 Build_Stream_Procedure (Loc, Typ, Decl, Pnam, Stms, False);
1053 end Build_Record_Or_Elementary_Output_Procedure;
1055 ---------------------------------
1056 -- Build_Record_Read_Procedure --
1057 ---------------------------------
1059 procedure Build_Record_Read_Procedure
1060 (Loc : Source_Ptr;
1061 Typ : Entity_Id;
1062 Decl : out Node_Id;
1063 Pnam : out Entity_Id)
1065 begin
1066 Pnam := Make_Stream_Subprogram_Name (Loc, Typ, TSS_Stream_Read);
1067 Build_Record_Read_Write_Procedure (Loc, Typ, Decl, Pnam, Name_Read);
1068 end Build_Record_Read_Procedure;
1070 ---------------------------------------
1071 -- Build_Record_Read_Write_Procedure --
1072 ---------------------------------------
1074 -- The form of the record read/write procedure is as shown by the
1075 -- following example for a case with one discriminant case variant:
1077 -- procedure pnam (S : access RST, V : [out] Typ) is
1078 -- begin
1079 -- Component_Type'Read/Write (S, V.component);
1080 -- Component_Type'Read/Write (S, V.component);
1081 -- ...
1082 -- Component_Type'Read/Write (S, V.component);
1084 -- case V.discriminant is
1085 -- when choices =>
1086 -- Component_Type'Read/Write (S, V.component);
1087 -- Component_Type'Read/Write (S, V.component);
1088 -- ...
1089 -- Component_Type'Read/Write (S, V.component);
1091 -- when choices =>
1092 -- Component_Type'Read/Write (S, V.component);
1093 -- Component_Type'Read/Write (S, V.component);
1094 -- ...
1095 -- Component_Type'Read/Write (S, V.component);
1096 -- ...
1097 -- end case;
1098 -- end pnam;
1100 -- The out keyword for V is supplied in the Read case
1102 procedure Build_Record_Read_Write_Procedure
1103 (Loc : Source_Ptr;
1104 Typ : Entity_Id;
1105 Decl : out Node_Id;
1106 Pnam : Entity_Id;
1107 Nam : Name_Id)
1109 Rdef : Node_Id;
1110 Stms : List_Id;
1111 Typt : Entity_Id;
1113 function Make_Component_List_Attributes (CL : Node_Id) return List_Id;
1114 -- Returns a sequence of attributes to process the components that
1115 -- are referenced in the given component list.
1117 function Make_Field_Attribute (C : Entity_Id) return Node_Id;
1118 -- Given C, the entity for a discriminant or component, build
1119 -- an attribute for the corresponding field values.
1121 function Make_Field_Attributes (Clist : List_Id) return List_Id;
1122 -- Given Clist, a component items list, construct series of attributes
1123 -- for fieldwise processing of the corresponding components.
1125 ------------------------------------
1126 -- Make_Component_List_Attributes --
1127 ------------------------------------
1129 function Make_Component_List_Attributes (CL : Node_Id) return List_Id is
1130 CI : constant List_Id := Component_Items (CL);
1131 VP : constant Node_Id := Variant_Part (CL);
1133 Result : List_Id;
1134 Alts : List_Id;
1135 V : Node_Id;
1136 DC : Node_Id;
1137 DCH : List_Id;
1139 begin
1140 Result := Make_Field_Attributes (CI);
1142 -- If a component is an unchecked union, there is no discriminant
1143 -- and we cannot generate a read/write procedure for it.
1145 if Present (VP) then
1146 if Is_Unchecked_Union (Scope (Entity (Name (VP)))) then
1147 return New_List (
1148 Make_Raise_Program_Error (Sloc (VP),
1149 Reason => PE_Unchecked_Union_Restriction));
1150 end if;
1152 V := First_Non_Pragma (Variants (VP));
1153 Alts := New_List;
1154 while Present (V) loop
1156 DCH := New_List;
1157 DC := First (Discrete_Choices (V));
1158 while Present (DC) loop
1159 Append_To (DCH, New_Copy_Tree (DC));
1160 Next (DC);
1161 end loop;
1163 Append_To (Alts,
1164 Make_Case_Statement_Alternative (Loc,
1165 Discrete_Choices => DCH,
1166 Statements =>
1167 Make_Component_List_Attributes (Component_List (V))));
1168 Next_Non_Pragma (V);
1169 end loop;
1171 -- Note: in the following, we make sure that we use new occurrence
1172 -- of for the selector, since there are cases in which we make a
1173 -- reference to a hidden discriminant that is not visible.
1175 Append_To (Result,
1176 Make_Case_Statement (Loc,
1177 Expression =>
1178 Make_Selected_Component (Loc,
1179 Prefix => Make_Identifier (Loc, Name_V),
1180 Selector_Name =>
1181 New_Occurrence_Of (Entity (Name (VP)), Loc)),
1182 Alternatives => Alts));
1184 end if;
1186 return Result;
1187 end Make_Component_List_Attributes;
1189 --------------------------
1190 -- Make_Field_Attribute --
1191 --------------------------
1193 function Make_Field_Attribute (C : Entity_Id) return Node_Id is
1194 begin
1195 return
1196 Make_Attribute_Reference (Loc,
1197 Prefix =>
1198 New_Occurrence_Of (Stream_Base_Type (Etype (C)), Loc),
1199 Attribute_Name => Nam,
1200 Expressions => New_List (
1201 Make_Identifier (Loc, Name_S),
1202 Make_Selected_Component (Loc,
1203 Prefix => Make_Identifier (Loc, Name_V),
1204 Selector_Name => New_Occurrence_Of (C, Loc))));
1205 end Make_Field_Attribute;
1207 ---------------------------
1208 -- Make_Field_Attributes --
1209 ---------------------------
1211 function Make_Field_Attributes (Clist : List_Id) return List_Id is
1212 Item : Node_Id;
1213 Result : List_Id;
1215 begin
1216 Result := New_List;
1218 if Present (Clist) then
1219 Item := First (Clist);
1221 -- Loop through components, skipping all internal components,
1222 -- which are not part of the value (e.g. _Tag), except that we
1223 -- don't skip the _Parent, since we do want to process that
1224 -- recursively.
1226 while Present (Item) loop
1227 if Nkind (Item) = N_Component_Declaration
1228 and then
1229 (Chars (Defining_Identifier (Item)) = Name_uParent
1230 or else
1231 not Is_Internal_Name (Chars (Defining_Identifier (Item))))
1232 then
1233 Append_To
1234 (Result,
1235 Make_Field_Attribute (Defining_Identifier (Item)));
1236 end if;
1238 Next (Item);
1239 end loop;
1240 end if;
1242 return Result;
1243 end Make_Field_Attributes;
1245 -- Start of processing for Build_Record_Read_Write_Procedure
1247 begin
1248 -- For the protected type case, use corresponding record
1250 if Is_Protected_Type (Typ) then
1251 Typt := Corresponding_Record_Type (Typ);
1252 else
1253 Typt := Typ;
1254 end if;
1256 -- Note that we do nothing with the discriminants, since Read and
1257 -- Write do not read or write the discriminant values. All handling
1258 -- of discriminants occurs in the Input and Output subprograms.
1260 Rdef := Type_Definition
1261 (Declaration_Node (Base_Type (Underlying_Type (Typt))));
1262 Stms := Empty_List;
1264 -- In record extension case, the fields we want, including the _Parent
1265 -- field representing the parent type, are to be found in the extension.
1266 -- Note that we will naturally process the _Parent field using the type
1267 -- of the parent, and hence its stream attributes, which is appropriate.
1269 if Nkind (Rdef) = N_Derived_Type_Definition then
1270 Rdef := Record_Extension_Part (Rdef);
1271 end if;
1273 if Present (Component_List (Rdef)) then
1274 Append_List_To (Stms,
1275 Make_Component_List_Attributes (Component_List (Rdef)));
1276 end if;
1278 Build_Stream_Procedure
1279 (Loc, Typ, Decl, Pnam, Stms, Nam = Name_Read);
1280 end Build_Record_Read_Write_Procedure;
1282 ----------------------------------
1283 -- Build_Record_Write_Procedure --
1284 ----------------------------------
1286 procedure Build_Record_Write_Procedure
1287 (Loc : Source_Ptr;
1288 Typ : Entity_Id;
1289 Decl : out Node_Id;
1290 Pnam : out Entity_Id)
1292 begin
1293 Pnam := Make_Stream_Subprogram_Name (Loc, Typ, TSS_Stream_Write);
1294 Build_Record_Read_Write_Procedure (Loc, Typ, Decl, Pnam, Name_Write);
1295 end Build_Record_Write_Procedure;
1297 -------------------------------
1298 -- Build_Stream_Attr_Profile --
1299 -------------------------------
1301 function Build_Stream_Attr_Profile
1302 (Loc : Source_Ptr;
1303 Typ : Entity_Id;
1304 Nam : TSS_Name_Type) return List_Id
1306 Profile : List_Id;
1308 begin
1309 Profile := New_List (
1310 Make_Parameter_Specification (Loc,
1311 Defining_Identifier => Make_Defining_Identifier (Loc, Name_S),
1312 Parameter_Type =>
1313 Make_Access_Definition (Loc,
1314 Subtype_Mark => New_Reference_To (
1315 Class_Wide_Type (RTE (RE_Root_Stream_Type)), Loc))));
1317 if Nam /= TSS_Stream_Input then
1318 Append_To (Profile,
1319 Make_Parameter_Specification (Loc,
1320 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
1321 Out_Present => (Nam = TSS_Stream_Read),
1322 Parameter_Type => New_Reference_To (Typ, Loc)));
1323 end if;
1325 return Profile;
1326 end Build_Stream_Attr_Profile;
1328 ---------------------------
1329 -- Build_Stream_Function --
1330 ---------------------------
1332 procedure Build_Stream_Function
1333 (Loc : Source_Ptr;
1334 Typ : Entity_Id;
1335 Decl : out Node_Id;
1336 Fnam : Entity_Id;
1337 Decls : List_Id;
1338 Stms : List_Id)
1340 Spec : Node_Id;
1342 begin
1343 -- Construct function specification
1345 Spec :=
1346 Make_Function_Specification (Loc,
1347 Defining_Unit_Name => Fnam,
1349 Parameter_Specifications => New_List (
1350 Make_Parameter_Specification (Loc,
1351 Defining_Identifier => Make_Defining_Identifier (Loc, Name_S),
1352 Parameter_Type =>
1353 Make_Access_Definition (Loc,
1354 Subtype_Mark => New_Reference_To (
1355 Class_Wide_Type (RTE (RE_Root_Stream_Type)), Loc)))),
1357 Subtype_Mark => New_Occurrence_Of (Typ, Loc));
1359 Decl :=
1360 Make_Subprogram_Body (Loc,
1361 Specification => Spec,
1362 Declarations => Decls,
1363 Handled_Statement_Sequence =>
1364 Make_Handled_Sequence_Of_Statements (Loc,
1365 Statements => Stms));
1366 end Build_Stream_Function;
1368 ----------------------------
1369 -- Build_Stream_Procedure --
1370 ----------------------------
1372 procedure Build_Stream_Procedure
1373 (Loc : Source_Ptr;
1374 Typ : Entity_Id;
1375 Decl : out Node_Id;
1376 Pnam : Entity_Id;
1377 Stms : List_Id;
1378 Outp : Boolean)
1380 Spec : Node_Id;
1382 begin
1383 -- Construct procedure specification
1385 Spec :=
1386 Make_Procedure_Specification (Loc,
1387 Defining_Unit_Name => Pnam,
1389 Parameter_Specifications => New_List (
1390 Make_Parameter_Specification (Loc,
1391 Defining_Identifier => Make_Defining_Identifier (Loc, Name_S),
1392 Parameter_Type =>
1393 Make_Access_Definition (Loc,
1394 Subtype_Mark => New_Reference_To (
1395 Class_Wide_Type (RTE (RE_Root_Stream_Type)), Loc))),
1397 Make_Parameter_Specification (Loc,
1398 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
1399 Out_Present => Outp,
1400 Parameter_Type => New_Occurrence_Of (Typ, Loc))));
1402 Decl :=
1403 Make_Subprogram_Body (Loc,
1404 Specification => Spec,
1405 Declarations => Empty_List,
1406 Handled_Statement_Sequence =>
1407 Make_Handled_Sequence_Of_Statements (Loc,
1408 Statements => Stms));
1409 end Build_Stream_Procedure;
1411 -----------------------------
1412 -- Has_Stream_Standard_Rep --
1413 -----------------------------
1415 function Has_Stream_Standard_Rep (U_Type : Entity_Id) return Boolean is
1416 begin
1417 if Has_Non_Standard_Rep (U_Type) then
1418 return False;
1419 else
1420 return
1421 Esize (First_Subtype (U_Type)) = Esize (Root_Type (U_Type));
1422 end if;
1423 end Has_Stream_Standard_Rep;
1425 ---------------------------------
1426 -- Make_Stream_Subprogram_Name --
1427 ---------------------------------
1429 function Make_Stream_Subprogram_Name
1430 (Loc : Source_Ptr;
1431 Typ : Entity_Id;
1432 Nam : TSS_Name_Type) return Entity_Id
1434 Sname : Name_Id;
1436 begin
1437 -- For tagged types, we are dealing with a TSS associated with the
1438 -- declaration, so we use the standard primitive function name. For
1439 -- other types, generate a local TSS name since we are generating
1440 -- the subprogram at the point of use.
1442 if Is_Tagged_Type (Typ) then
1443 Sname := Make_TSS_Name (Typ, Nam);
1444 else
1445 Sname := Make_TSS_Name_Local (Typ, Nam);
1446 end if;
1448 return Make_Defining_Identifier (Loc, Sname);
1449 end Make_Stream_Subprogram_Name;
1451 ----------------------
1452 -- Stream_Base_Type --
1453 ----------------------
1455 function Stream_Base_Type (E : Entity_Id) return Entity_Id is
1456 begin
1457 if Is_Array_Type (E)
1458 and then Is_First_Subtype (E)
1459 then
1460 return E;
1461 else
1462 return Base_Type (E);
1463 end if;
1464 end Stream_Base_Type;
1466 end Exp_Strm;