2003-12-26 Guilhem Lavaux <guilhem@kaffe.org>
[official-gcc.git] / gcc / ada / 5omastop.adb
blobaa704d3a187fbece93043f539b73cea18711ccee
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- SYSTEM.MACHINE_STATE_OPERATIONS --
6 -- --
7 -- B o d y --
8 -- (Version for x86) --
9 -- --
10 -- Copyright (C) 1999-2002 Ada Core Technologies, Inc. --
11 -- --
12 -- GNAT is free software; you can redistribute it and/or modify it under --
13 -- terms of the GNU General Public License as published by the Free Soft- --
14 -- ware Foundation; either version 2, or (at your option) any later ver- --
15 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
16 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
17 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
18 -- for more details. You should have received a copy of the GNU General --
19 -- Public License distributed with GNAT; see file COPYING. If not, write --
20 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
21 -- MA 02111-1307, USA. --
22 -- --
23 -- As a special exception, if other files instantiate generics from this --
24 -- unit, or you link this unit with other files to produce an executable, --
25 -- this unit does not by itself cause the resulting executable to be --
26 -- covered by the GNU General Public License. This exception does not --
27 -- however invalidate any other reasons why the executable file might be --
28 -- covered by the GNU Public License. --
29 -- --
30 -- GNAT was originally developed by the GNAT team at New York University. --
31 -- Extensive contributions were provided by Ada Core Technologies Inc. --
32 -- --
33 ------------------------------------------------------------------------------
35 -- Note: it is very important that this unit not generate any exception
36 -- tables of any kind. Otherwise we get a nasty rtsfind recursion problem.
37 -- This means no subprograms, including implicitly generated ones.
39 with Unchecked_Conversion;
40 with System.Storage_Elements;
41 with System.Machine_Code; use System.Machine_Code;
42 with System.Memory;
44 package body System.Machine_State_Operations is
46 use System.Exceptions;
48 type Uns8 is mod 2 ** 8;
49 type Uns32 is mod 2 ** 32;
51 type Bits5 is mod 2 ** 5;
52 type Bits6 is mod 2 ** 6;
54 function To_Address is new Unchecked_Conversion (Uns32, Address);
56 type Uns32_Ptr is access all Uns32;
57 function To_Uns32_Ptr is new Unchecked_Conversion (Uns32, Uns32_Ptr);
59 -- Note: the type Uns32 has an alignment of 4. However, in some cases
60 -- values of type Uns32_Ptr will not be aligned (notably in the case
61 -- where we get the immediate field from an instruction). However this
62 -- does not matter in practice, since the x86 does not require that
63 -- operands be aligned.
65 ----------------------
66 -- General Approach --
67 ----------------------
69 -- For the x86 version of this unit, the Subprogram_Info_Type values
70 -- are simply the starting code address for the subprogram. Popping
71 -- of stack frames works by analyzing the code in the prolog, and
72 -- deriving from this analysis the necessary information for restoring
73 -- the registers, including the return point.
75 ---------------------------
76 -- Description of Prolog --
77 ---------------------------
79 -- If a frame pointer is present, the prolog looks like
81 -- pushl %ebp
82 -- movl %esp,%ebp
83 -- subl $nnn,%esp omitted if nnn = 0
84 -- pushl %edi omitted if edi not used
85 -- pushl %esi omitted if esi not used
86 -- pushl %ebx omitted if ebx not used
88 -- If a frame pointer is not present, the prolog looks like
90 -- subl $nnn,%esp omitted if nnn = 0
91 -- pushl %ebp omitted if ebp not used
92 -- pushl %edi omitted if edi not used
93 -- pushl %esi omitted if esi not used
94 -- pushl %ebx omitted if ebx not used
96 -- Note: any or all of the save over call registers may be used and
97 -- if so, will be saved using pushl as shown above. The order of the
98 -- pushl instructions will be as shown above for gcc generated code,
99 -- but the code in this unit does not assume this.
101 -------------------------
102 -- Description of Call --
103 -------------------------
105 -- A call looks like:
107 -- pushl ... push parameters
108 -- pushl ...
109 -- call ... perform the call
110 -- addl $nnn,%esp omitted if no parameters
112 -- Note that we are not absolutely guaranteed that the call is always
113 -- followed by an addl operation that readjusts %esp for this particular
114 -- call. There are two reasons for this:
116 -- 1) The addl can be delayed and combined in the case where more than
117 -- one call appears in sequence. This can be suppressed by using the
118 -- switch -fno-defer-pop and for Ada code, we automatically use
119 -- this switch, but we could still be dealing with C code that was
120 -- compiled without using this switch.
122 -- 2) Scheduling may result in moving the addl instruction away from
123 -- the call. It is not clear if this actually can happen at the
124 -- current time, but it is certainly conceptually possible.
126 -- The addl after the call is important, since we need to be able to
127 -- restore the proper %esp value when we pop the stack. However, we do
128 -- not try to compensate for either of the above effects. As noted above,
129 -- case 1 does not occur for Ada code, and it does not appear in practice
130 -- that case 2 occurs with any significant frequency (we have never seen
131 -- an example so far for gcc generated code).
133 -- Furthermore, it is only in the case of -fomit-frame-pointer that we
134 -- really get into trouble from not properly restoring %esp. If we have
135 -- a frame pointer, then the worst that happens is that %esp is slightly
136 -- more depressed than it should be. This could waste a bit of space on
137 -- the stack, and even in some cases cause a storage leak on the stack,
138 -- but it will not affect the functional correctness of the processing.
140 ----------------------------------------
141 -- Definitions of Instruction Formats --
142 ----------------------------------------
144 type Rcode is (eax, ecx, edx, ebx, esp, ebp, esi, edi);
145 pragma Warnings (Off, Rcode);
146 -- Code indicating which register is referenced in an instruction
148 -- The following define the format of a pushl instruction
150 Op_pushl : constant Bits5 := 2#01010#;
152 type Ins_pushl is record
153 Op : Bits5 := Op_pushl;
154 Reg : Rcode;
155 end record;
157 for Ins_pushl use record
158 Op at 0 range 3 .. 7;
159 Reg at 0 range 0 .. 2;
160 end record;
162 Ins_pushl_ebp : constant Ins_pushl := (Op_pushl, Reg => ebp);
164 type Ins_pushl_Ptr is access all Ins_pushl;
166 -- For the movl %esp,%ebp instruction, we only need to know the length
167 -- because we simply skip past it when we analyze the prolog.
169 Ins_movl_length : constant := 2;
171 -- The following define the format of addl/subl esp instructions
173 Op_Immed : constant Bits6 := 2#100000#;
175 Op2_addl_Immed : constant Bits5 := 2#11100#;
176 pragma Unreferenced (Op2_addl_Immed);
178 Op2_subl_Immed : constant Bits5 := 2#11101#;
180 type Word_Byte is (Word, Byte);
181 pragma Unreferenced (Byte);
183 type Ins_addl_subl_byte is record
184 Op : Bits6; -- Set to Op_Immed
185 w : Word_Byte; -- Word/Byte flag (set to 1 = byte)
186 s : Boolean; -- Sign extension bit (1 = extend)
187 Op2 : Bits5; -- Secondary opcode
188 Reg : Rcode; -- Register
189 Imm8 : Uns8; -- Immediate operand
190 end record;
192 for Ins_addl_subl_byte use record
193 Op at 0 range 2 .. 7;
194 w at 0 range 1 .. 1;
195 s at 0 range 0 .. 0;
196 Op2 at 1 range 3 .. 7;
197 Reg at 1 range 0 .. 2;
198 Imm8 at 2 range 0 .. 7;
199 end record;
201 type Ins_addl_subl_word is record
202 Op : Bits6; -- Set to Op_Immed
203 w : Word_Byte; -- Word/Byte flag (set to 0 = word)
204 s : Boolean; -- Sign extension bit (1 = extend)
205 Op2 : Bits5; -- Secondary opcode
206 Reg : Rcode; -- Register
207 Imm32 : Uns32; -- Immediate operand
208 end record;
210 for Ins_addl_subl_word use record
211 Op at 0 range 2 .. 7;
212 w at 0 range 1 .. 1;
213 s at 0 range 0 .. 0;
214 Op2 at 1 range 3 .. 7;
215 Reg at 1 range 0 .. 2;
216 Imm32 at 2 range 0 .. 31;
217 end record;
219 type Ins_addl_subl_byte_Ptr is access all Ins_addl_subl_byte;
220 type Ins_addl_subl_word_Ptr is access all Ins_addl_subl_word;
222 ---------------------
223 -- Prolog Analysis --
224 ---------------------
226 -- The analysis of the prolog answers the following questions:
228 -- 1. Is %ebp used as a frame pointer?
229 -- 2. How far is SP depressed (i.e. what is the stack frame size)
230 -- 3. Which registers are saved in the prolog, and in what order
232 -- The following data structure stores the answers to these questions
234 subtype SOC is Rcode range ebx .. edi;
235 -- Possible save over call registers
237 SOC_Max : constant := 4;
238 -- Max number of SOC registers that can be pushed
240 type SOC_Push_Regs_Type is array (1 .. 4) of Rcode;
241 -- Used to hold the register codes of pushed SOC registers
243 type Prolog_Type is record
245 Frame_Reg : Boolean;
246 -- This is set to True if %ebp is used as a frame register, and
247 -- False otherwise (in the False case, %ebp may be saved in the
248 -- usual manner along with the other SOC registers).
250 Frame_Length : Uns32;
251 -- Amount by which ESP is decremented on entry, includes the effects
252 -- of push's of save over call registers as indicated above, e.g. if
253 -- the prolog of a routine is:
255 -- pushl %ebp
256 -- movl %esp,%ebp
257 -- subl $424,%esp
258 -- pushl %edi
259 -- pushl %esi
260 -- pushl %ebx
262 -- Then the value of Frame_Length would be 436 (424 + 3 * 4). A
263 -- precise definition is that it is:
265 -- %esp on entry minus %esp after last SOC push
267 -- That definition applies both in the frame pointer present and
268 -- the frame pointer absent cases.
270 Num_SOC_Push : Integer range 0 .. SOC_Max;
271 -- Number of save over call registers actually saved by pushl
272 -- instructions (other than the initial pushl to save the frame
273 -- pointer if a frame pointer is in use).
275 SOC_Push_Regs : SOC_Push_Regs_Type;
276 -- The First Num_SOC_Push entries of this array are used to contain
277 -- the codes for the SOC registers, in the order in which they were
278 -- pushed. Note that this array excludes %ebp if it is used as a frame
279 -- register, since although %ebp is still considered an SOC register
280 -- in this case, it is saved and restored by a separate mechanism.
281 -- Also we will never see %esp represented in this list. Again, it is
282 -- true that %esp is saved over call, but it is restored by a separate
283 -- mechanism.
285 end record;
287 procedure Analyze_Prolog (A : Address; Prolog : out Prolog_Type);
288 -- Given the address of the start of the prolog for a procedure,
289 -- analyze the instructions of the prolog, and set Prolog to contain
290 -- the information obtained from this analysis.
292 ----------------------------------
293 -- Machine_State_Representation --
294 ----------------------------------
296 -- The type Machine_State is defined in the body of Ada.Exceptions as
297 -- a Storage_Array of length 1 .. Machine_State_Length. But really it
298 -- has structure as defined here. We use the structureless declaration
299 -- in Ada.Exceptions to avoid this unit from being implementation
300 -- dependent. The actual definition of Machine_State is as follows:
302 type SOC_Regs_Type is array (SOC) of Uns32;
304 type MState is record
305 eip : Uns32;
306 -- The instruction pointer location (which is the return point
307 -- value from the next level down in all cases).
309 Regs : SOC_Regs_Type;
310 -- Values of the save over call registers
311 end record;
313 for MState use record
314 eip at 0 range 0 .. 31;
315 Regs at 4 range 0 .. 5 * 32 - 1;
316 end record;
317 -- Note: the routines Enter_Handler, and Set_Machine_State reference
318 -- the fields in this structure non-symbolically.
320 type MState_Ptr is access all MState;
322 function To_MState_Ptr is
323 new Unchecked_Conversion (Machine_State, MState_Ptr);
325 ----------------------------
326 -- Allocate_Machine_State --
327 ----------------------------
329 function Allocate_Machine_State return Machine_State is
330 use System.Storage_Elements;
332 begin
333 return Machine_State
334 (Memory.Alloc (MState'Max_Size_In_Storage_Elements));
335 end Allocate_Machine_State;
337 --------------------
338 -- Analyze_Prolog --
339 --------------------
341 procedure Analyze_Prolog (A : Address; Prolog : out Prolog_Type) is
342 Ptr : Address;
343 Ppl : Ins_pushl_Ptr;
344 Pas : Ins_addl_subl_byte_Ptr;
346 function To_Ins_pushl_Ptr is
347 new Unchecked_Conversion (Address, Ins_pushl_Ptr);
349 function To_Ins_addl_subl_byte_Ptr is
350 new Unchecked_Conversion (Address, Ins_addl_subl_byte_Ptr);
352 function To_Ins_addl_subl_word_Ptr is
353 new Unchecked_Conversion (Address, Ins_addl_subl_word_Ptr);
355 begin
356 Ptr := A;
357 Prolog.Frame_Length := 0;
359 if Ptr = Null_Address then
360 Prolog.Num_SOC_Push := 0;
361 Prolog.Frame_Reg := True;
362 return;
363 end if;
365 if To_Ins_pushl_Ptr (Ptr).all = Ins_pushl_ebp then
366 Ptr := Ptr + 1 + Ins_movl_length;
367 Prolog.Frame_Reg := True;
368 else
369 Prolog.Frame_Reg := False;
370 end if;
372 Pas := To_Ins_addl_subl_byte_Ptr (Ptr);
374 if Pas.Op = Op_Immed
375 and then Pas.Op2 = Op2_subl_Immed
376 and then Pas.Reg = esp
377 then
378 if Pas.w = Word then
379 Prolog.Frame_Length := Prolog.Frame_Length +
380 To_Ins_addl_subl_word_Ptr (Ptr).Imm32;
381 Ptr := Ptr + 6;
383 else
384 Prolog.Frame_Length := Prolog.Frame_Length + Uns32 (Pas.Imm8);
385 Ptr := Ptr + 3;
387 -- Note: we ignore sign extension, since a sign extended
388 -- value that was negative would imply a ludicrous frame size.
389 end if;
390 end if;
392 -- Now scan push instructions for SOC registers
394 Prolog.Num_SOC_Push := 0;
396 loop
397 Ppl := To_Ins_pushl_Ptr (Ptr);
399 if Ppl.Op = Op_pushl and then Ppl.Reg in SOC then
400 Prolog.Num_SOC_Push := Prolog.Num_SOC_Push + 1;
401 Prolog.SOC_Push_Regs (Prolog.Num_SOC_Push) := Ppl.Reg;
402 Prolog.Frame_Length := Prolog.Frame_Length + 4;
403 Ptr := Ptr + 1;
405 else
406 exit;
407 end if;
408 end loop;
410 end Analyze_Prolog;
412 -------------------
413 -- Enter_Handler --
414 -------------------
416 procedure Enter_Handler (M : Machine_State; Handler : Handler_Loc) is
417 begin
418 Asm ("mov %0,%%edx", Inputs => Machine_State'Asm_Input ("r", M));
419 Asm ("mov %0,%%eax", Inputs => Handler_Loc'Asm_Input ("r", Handler));
421 Asm ("mov 4(%%edx),%%ebx"); -- M.Regs (ebx)
422 Asm ("mov 12(%%edx),%%ebp"); -- M.Regs (ebp)
423 Asm ("mov 16(%%edx),%%esi"); -- M.Regs (esi)
424 Asm ("mov 20(%%edx),%%edi"); -- M.Regs (edi)
425 Asm ("mov 8(%%edx),%%esp"); -- M.Regs (esp)
426 Asm ("jmp %*%%eax");
427 end Enter_Handler;
429 ----------------
430 -- Fetch_Code --
431 ----------------
433 function Fetch_Code (Loc : Code_Loc) return Code_Loc is
434 begin
435 return Loc;
436 end Fetch_Code;
438 ------------------------
439 -- Free_Machine_State --
440 ------------------------
442 procedure Free_Machine_State (M : in out Machine_State) is
443 begin
444 Memory.Free (Address (M));
445 M := Machine_State (Null_Address);
446 end Free_Machine_State;
448 ------------------
449 -- Get_Code_Loc --
450 ------------------
452 function Get_Code_Loc (M : Machine_State) return Code_Loc is
454 Asm_Call_Size : constant := 2;
455 -- Minimum size for a call instruction under ix86. Using the minimum
456 -- size is safe here as the call point computed from the return point
457 -- will always be inside the call instruction.
459 MS : constant MState_Ptr := To_MState_Ptr (M);
461 begin
462 if MS.eip = 0 then
463 return To_Address (MS.eip);
464 else
465 -- When doing a call the return address is pushed to the stack.
466 -- We want to return the call point address, so we substract
467 -- Asm_Call_Size from the return address. This value is set
468 -- to 5 as an asm call takes 5 bytes on x86 architectures.
470 return To_Address (MS.eip - Asm_Call_Size);
471 end if;
472 end Get_Code_Loc;
474 --------------------------
475 -- Machine_State_Length --
476 --------------------------
478 function Machine_State_Length
479 return System.Storage_Elements.Storage_Offset
481 begin
482 return MState'Max_Size_In_Storage_Elements;
483 end Machine_State_Length;
485 ---------------
486 -- Pop_Frame --
487 ---------------
489 procedure Pop_Frame
490 (M : Machine_State;
491 Info : Subprogram_Info_Type)
493 MS : constant MState_Ptr := To_MState_Ptr (M);
494 PL : Prolog_Type;
496 SOC_Ptr : Uns32;
497 -- Pointer to stack location after last SOC push
499 Rtn_Ptr : Uns32;
500 -- Pointer to stack location containing return address
502 begin
503 Analyze_Prolog (Info, PL);
505 -- Case of frame register, use EBP, safer than ESP
507 if PL.Frame_Reg then
508 SOC_Ptr := MS.Regs (ebp) - PL.Frame_Length;
509 Rtn_Ptr := MS.Regs (ebp) + 4;
510 MS.Regs (ebp) := To_Uns32_Ptr (MS.Regs (ebp)).all;
512 -- No frame pointer, use ESP, and hope we have it exactly right!
514 else
515 SOC_Ptr := MS.Regs (esp);
516 Rtn_Ptr := SOC_Ptr + PL.Frame_Length;
517 end if;
519 -- Get saved values of SOC registers
521 for J in reverse 1 .. PL.Num_SOC_Push loop
522 MS.Regs (PL.SOC_Push_Regs (J)) := To_Uns32_Ptr (SOC_Ptr).all;
523 SOC_Ptr := SOC_Ptr + 4;
524 end loop;
526 MS.eip := To_Uns32_Ptr (Rtn_Ptr).all;
527 MS.Regs (esp) := Rtn_Ptr + 4;
528 end Pop_Frame;
530 -----------------------
531 -- Set_Machine_State --
532 -----------------------
534 procedure Set_Machine_State (M : Machine_State) is
535 N : constant Asm_Output_Operand := No_Output_Operands;
537 begin
538 Asm ("mov %0,%%edx", N, Machine_State'Asm_Input ("r", M));
540 -- At this stage, we have the following situation (note that we
541 -- are assuming that the -fomit-frame-pointer switch has not been
542 -- used in compiling this procedure.
544 -- (value of M)
545 -- return point
546 -- old ebp <------ current ebp/esp value
548 -- The values of registers ebx/esi/edi are unchanged from entry
549 -- so they have the values we want, and %edx points to the parameter
550 -- value M, so we can store these values directly.
552 Asm ("mov %%ebx,4(%%edx)"); -- M.Regs (ebx)
553 Asm ("mov %%esi,16(%%edx)"); -- M.Regs (esi)
554 Asm ("mov %%edi,20(%%edx)"); -- M.Regs (edi)
556 -- The desired value of ebp is the old value
558 Asm ("mov 0(%%ebp),%%eax");
559 Asm ("mov %%eax,12(%%edx)"); -- M.Regs (ebp)
561 -- The return point is the desired eip value
563 Asm ("mov 4(%%ebp),%%eax");
564 Asm ("mov %%eax,(%%edx)"); -- M.eip
566 -- Finally, the desired %esp value is the value at the point of
567 -- call to this routine *before* pushing the parameter value.
569 Asm ("lea 12(%%ebp),%%eax");
570 Asm ("mov %%eax,8(%%edx)"); -- M.Regs (esp)
571 end Set_Machine_State;
573 ------------------------------
574 -- Set_Signal_Machine_State --
575 ------------------------------
577 procedure Set_Signal_Machine_State
578 (M : Machine_State;
579 Context : System.Address)
581 pragma Warnings (Off, M);
582 pragma Warnings (Off, Context);
584 begin
585 null;
586 end Set_Signal_Machine_State;
588 end System.Machine_State_Operations;