PR tree-optimization/87059
[official-gcc.git] / gcc / fold-const.c
blob1e44a2454adbc26fefef595da5f07deed6521959
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
28 /* The entry points in this file are fold, size_int_wide and size_binop.
30 fold takes a tree as argument and returns a simplified tree.
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
43 #include "config.h"
44 #include "system.h"
45 #include "coretypes.h"
46 #include "backend.h"
47 #include "target.h"
48 #include "rtl.h"
49 #include "tree.h"
50 #include "gimple.h"
51 #include "predict.h"
52 #include "memmodel.h"
53 #include "tm_p.h"
54 #include "tree-ssa-operands.h"
55 #include "optabs-query.h"
56 #include "cgraph.h"
57 #include "diagnostic-core.h"
58 #include "flags.h"
59 #include "alias.h"
60 #include "fold-const.h"
61 #include "fold-const-call.h"
62 #include "stor-layout.h"
63 #include "calls.h"
64 #include "tree-iterator.h"
65 #include "expr.h"
66 #include "intl.h"
67 #include "langhooks.h"
68 #include "tree-eh.h"
69 #include "gimplify.h"
70 #include "tree-dfa.h"
71 #include "builtins.h"
72 #include "generic-match.h"
73 #include "gimple-fold.h"
74 #include "params.h"
75 #include "tree-into-ssa.h"
76 #include "md5.h"
77 #include "case-cfn-macros.h"
78 #include "stringpool.h"
79 #include "tree-vrp.h"
80 #include "tree-ssanames.h"
81 #include "selftest.h"
82 #include "stringpool.h"
83 #include "attribs.h"
84 #include "tree-vector-builder.h"
85 #include "vec-perm-indices.h"
87 /* Nonzero if we are folding constants inside an initializer; zero
88 otherwise. */
89 int folding_initializer = 0;
91 /* The following constants represent a bit based encoding of GCC's
92 comparison operators. This encoding simplifies transformations
93 on relational comparison operators, such as AND and OR. */
94 enum comparison_code {
95 COMPCODE_FALSE = 0,
96 COMPCODE_LT = 1,
97 COMPCODE_EQ = 2,
98 COMPCODE_LE = 3,
99 COMPCODE_GT = 4,
100 COMPCODE_LTGT = 5,
101 COMPCODE_GE = 6,
102 COMPCODE_ORD = 7,
103 COMPCODE_UNORD = 8,
104 COMPCODE_UNLT = 9,
105 COMPCODE_UNEQ = 10,
106 COMPCODE_UNLE = 11,
107 COMPCODE_UNGT = 12,
108 COMPCODE_NE = 13,
109 COMPCODE_UNGE = 14,
110 COMPCODE_TRUE = 15
113 static bool negate_expr_p (tree);
114 static tree negate_expr (tree);
115 static tree associate_trees (location_t, tree, tree, enum tree_code, tree);
116 static enum comparison_code comparison_to_compcode (enum tree_code);
117 static enum tree_code compcode_to_comparison (enum comparison_code);
118 static int twoval_comparison_p (tree, tree *, tree *);
119 static tree eval_subst (location_t, tree, tree, tree, tree, tree);
120 static tree optimize_bit_field_compare (location_t, enum tree_code,
121 tree, tree, tree);
122 static int simple_operand_p (const_tree);
123 static bool simple_operand_p_2 (tree);
124 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
125 static tree range_predecessor (tree);
126 static tree range_successor (tree);
127 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree);
128 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree);
129 static tree unextend (tree, int, int, tree);
130 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
131 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
132 static tree fold_binary_op_with_conditional_arg (location_t,
133 enum tree_code, tree,
134 tree, tree,
135 tree, tree, int);
136 static tree fold_negate_const (tree, tree);
137 static tree fold_not_const (const_tree, tree);
138 static tree fold_relational_const (enum tree_code, tree, tree, tree);
139 static tree fold_convert_const (enum tree_code, tree, tree);
140 static tree fold_view_convert_expr (tree, tree);
141 static tree fold_negate_expr (location_t, tree);
144 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
145 Otherwise, return LOC. */
147 static location_t
148 expr_location_or (tree t, location_t loc)
150 location_t tloc = EXPR_LOCATION (t);
151 return tloc == UNKNOWN_LOCATION ? loc : tloc;
154 /* Similar to protected_set_expr_location, but never modify x in place,
155 if location can and needs to be set, unshare it. */
157 static inline tree
158 protected_set_expr_location_unshare (tree x, location_t loc)
160 if (CAN_HAVE_LOCATION_P (x)
161 && EXPR_LOCATION (x) != loc
162 && !(TREE_CODE (x) == SAVE_EXPR
163 || TREE_CODE (x) == TARGET_EXPR
164 || TREE_CODE (x) == BIND_EXPR))
166 x = copy_node (x);
167 SET_EXPR_LOCATION (x, loc);
169 return x;
172 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
173 division and returns the quotient. Otherwise returns
174 NULL_TREE. */
176 tree
177 div_if_zero_remainder (const_tree arg1, const_tree arg2)
179 widest_int quo;
181 if (wi::multiple_of_p (wi::to_widest (arg1), wi::to_widest (arg2),
182 SIGNED, &quo))
183 return wide_int_to_tree (TREE_TYPE (arg1), quo);
185 return NULL_TREE;
188 /* This is nonzero if we should defer warnings about undefined
189 overflow. This facility exists because these warnings are a
190 special case. The code to estimate loop iterations does not want
191 to issue any warnings, since it works with expressions which do not
192 occur in user code. Various bits of cleanup code call fold(), but
193 only use the result if it has certain characteristics (e.g., is a
194 constant); that code only wants to issue a warning if the result is
195 used. */
197 static int fold_deferring_overflow_warnings;
199 /* If a warning about undefined overflow is deferred, this is the
200 warning. Note that this may cause us to turn two warnings into
201 one, but that is fine since it is sufficient to only give one
202 warning per expression. */
204 static const char* fold_deferred_overflow_warning;
206 /* If a warning about undefined overflow is deferred, this is the
207 level at which the warning should be emitted. */
209 static enum warn_strict_overflow_code fold_deferred_overflow_code;
211 /* Start deferring overflow warnings. We could use a stack here to
212 permit nested calls, but at present it is not necessary. */
214 void
215 fold_defer_overflow_warnings (void)
217 ++fold_deferring_overflow_warnings;
220 /* Stop deferring overflow warnings. If there is a pending warning,
221 and ISSUE is true, then issue the warning if appropriate. STMT is
222 the statement with which the warning should be associated (used for
223 location information); STMT may be NULL. CODE is the level of the
224 warning--a warn_strict_overflow_code value. This function will use
225 the smaller of CODE and the deferred code when deciding whether to
226 issue the warning. CODE may be zero to mean to always use the
227 deferred code. */
229 void
230 fold_undefer_overflow_warnings (bool issue, const gimple *stmt, int code)
232 const char *warnmsg;
233 location_t locus;
235 gcc_assert (fold_deferring_overflow_warnings > 0);
236 --fold_deferring_overflow_warnings;
237 if (fold_deferring_overflow_warnings > 0)
239 if (fold_deferred_overflow_warning != NULL
240 && code != 0
241 && code < (int) fold_deferred_overflow_code)
242 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code;
243 return;
246 warnmsg = fold_deferred_overflow_warning;
247 fold_deferred_overflow_warning = NULL;
249 if (!issue || warnmsg == NULL)
250 return;
252 if (gimple_no_warning_p (stmt))
253 return;
255 /* Use the smallest code level when deciding to issue the
256 warning. */
257 if (code == 0 || code > (int) fold_deferred_overflow_code)
258 code = fold_deferred_overflow_code;
260 if (!issue_strict_overflow_warning (code))
261 return;
263 if (stmt == NULL)
264 locus = input_location;
265 else
266 locus = gimple_location (stmt);
267 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg);
270 /* Stop deferring overflow warnings, ignoring any deferred
271 warnings. */
273 void
274 fold_undefer_and_ignore_overflow_warnings (void)
276 fold_undefer_overflow_warnings (false, NULL, 0);
279 /* Whether we are deferring overflow warnings. */
281 bool
282 fold_deferring_overflow_warnings_p (void)
284 return fold_deferring_overflow_warnings > 0;
287 /* This is called when we fold something based on the fact that signed
288 overflow is undefined. */
290 void
291 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
293 if (fold_deferring_overflow_warnings > 0)
295 if (fold_deferred_overflow_warning == NULL
296 || wc < fold_deferred_overflow_code)
298 fold_deferred_overflow_warning = gmsgid;
299 fold_deferred_overflow_code = wc;
302 else if (issue_strict_overflow_warning (wc))
303 warning (OPT_Wstrict_overflow, gmsgid);
306 /* Return true if the built-in mathematical function specified by CODE
307 is odd, i.e. -f(x) == f(-x). */
309 bool
310 negate_mathfn_p (combined_fn fn)
312 switch (fn)
314 CASE_CFN_ASIN:
315 CASE_CFN_ASINH:
316 CASE_CFN_ATAN:
317 CASE_CFN_ATANH:
318 CASE_CFN_CASIN:
319 CASE_CFN_CASINH:
320 CASE_CFN_CATAN:
321 CASE_CFN_CATANH:
322 CASE_CFN_CBRT:
323 CASE_CFN_CPROJ:
324 CASE_CFN_CSIN:
325 CASE_CFN_CSINH:
326 CASE_CFN_CTAN:
327 CASE_CFN_CTANH:
328 CASE_CFN_ERF:
329 CASE_CFN_LLROUND:
330 CASE_CFN_LROUND:
331 CASE_CFN_ROUND:
332 CASE_CFN_SIN:
333 CASE_CFN_SINH:
334 CASE_CFN_TAN:
335 CASE_CFN_TANH:
336 CASE_CFN_TRUNC:
337 return true;
339 CASE_CFN_LLRINT:
340 CASE_CFN_LRINT:
341 CASE_CFN_NEARBYINT:
342 CASE_CFN_RINT:
343 return !flag_rounding_math;
345 default:
346 break;
348 return false;
351 /* Check whether we may negate an integer constant T without causing
352 overflow. */
354 bool
355 may_negate_without_overflow_p (const_tree t)
357 tree type;
359 gcc_assert (TREE_CODE (t) == INTEGER_CST);
361 type = TREE_TYPE (t);
362 if (TYPE_UNSIGNED (type))
363 return false;
365 return !wi::only_sign_bit_p (wi::to_wide (t));
368 /* Determine whether an expression T can be cheaply negated using
369 the function negate_expr without introducing undefined overflow. */
371 static bool
372 negate_expr_p (tree t)
374 tree type;
376 if (t == 0)
377 return false;
379 type = TREE_TYPE (t);
381 STRIP_SIGN_NOPS (t);
382 switch (TREE_CODE (t))
384 case INTEGER_CST:
385 if (INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type))
386 return true;
388 /* Check that -CST will not overflow type. */
389 return may_negate_without_overflow_p (t);
390 case BIT_NOT_EXPR:
391 return (INTEGRAL_TYPE_P (type)
392 && TYPE_OVERFLOW_WRAPS (type));
394 case FIXED_CST:
395 return true;
397 case NEGATE_EXPR:
398 return !TYPE_OVERFLOW_SANITIZED (type);
400 case REAL_CST:
401 /* We want to canonicalize to positive real constants. Pretend
402 that only negative ones can be easily negated. */
403 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
405 case COMPLEX_CST:
406 return negate_expr_p (TREE_REALPART (t))
407 && negate_expr_p (TREE_IMAGPART (t));
409 case VECTOR_CST:
411 if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))
412 return true;
414 /* Steps don't prevent negation. */
415 unsigned int count = vector_cst_encoded_nelts (t);
416 for (unsigned int i = 0; i < count; ++i)
417 if (!negate_expr_p (VECTOR_CST_ENCODED_ELT (t, i)))
418 return false;
420 return true;
423 case COMPLEX_EXPR:
424 return negate_expr_p (TREE_OPERAND (t, 0))
425 && negate_expr_p (TREE_OPERAND (t, 1));
427 case CONJ_EXPR:
428 return negate_expr_p (TREE_OPERAND (t, 0));
430 case PLUS_EXPR:
431 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
432 || HONOR_SIGNED_ZEROS (element_mode (type))
433 || (ANY_INTEGRAL_TYPE_P (type)
434 && ! TYPE_OVERFLOW_WRAPS (type)))
435 return false;
436 /* -(A + B) -> (-B) - A. */
437 if (negate_expr_p (TREE_OPERAND (t, 1)))
438 return true;
439 /* -(A + B) -> (-A) - B. */
440 return negate_expr_p (TREE_OPERAND (t, 0));
442 case MINUS_EXPR:
443 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
444 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
445 && !HONOR_SIGNED_ZEROS (element_mode (type))
446 && (! ANY_INTEGRAL_TYPE_P (type)
447 || TYPE_OVERFLOW_WRAPS (type));
449 case MULT_EXPR:
450 if (TYPE_UNSIGNED (type))
451 break;
452 /* INT_MIN/n * n doesn't overflow while negating one operand it does
453 if n is a (negative) power of two. */
454 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
455 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
456 && ! ((TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
457 && (wi::popcount
458 (wi::abs (wi::to_wide (TREE_OPERAND (t, 0))))) != 1)
459 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
460 && (wi::popcount
461 (wi::abs (wi::to_wide (TREE_OPERAND (t, 1))))) != 1)))
462 break;
464 /* Fall through. */
466 case RDIV_EXPR:
467 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t))))
468 return negate_expr_p (TREE_OPERAND (t, 1))
469 || negate_expr_p (TREE_OPERAND (t, 0));
470 break;
472 case TRUNC_DIV_EXPR:
473 case ROUND_DIV_EXPR:
474 case EXACT_DIV_EXPR:
475 if (TYPE_UNSIGNED (type))
476 break;
477 /* In general we can't negate A in A / B, because if A is INT_MIN and
478 B is not 1 we change the sign of the result. */
479 if (TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
480 && negate_expr_p (TREE_OPERAND (t, 0)))
481 return true;
482 /* In general we can't negate B in A / B, because if A is INT_MIN and
483 B is 1, we may turn this into INT_MIN / -1 which is undefined
484 and actually traps on some architectures. */
485 if (! ANY_INTEGRAL_TYPE_P (TREE_TYPE (t))
486 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
487 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
488 && ! integer_onep (TREE_OPERAND (t, 1))))
489 return negate_expr_p (TREE_OPERAND (t, 1));
490 break;
492 case NOP_EXPR:
493 /* Negate -((double)float) as (double)(-float). */
494 if (TREE_CODE (type) == REAL_TYPE)
496 tree tem = strip_float_extensions (t);
497 if (tem != t)
498 return negate_expr_p (tem);
500 break;
502 case CALL_EXPR:
503 /* Negate -f(x) as f(-x). */
504 if (negate_mathfn_p (get_call_combined_fn (t)))
505 return negate_expr_p (CALL_EXPR_ARG (t, 0));
506 break;
508 case RSHIFT_EXPR:
509 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
510 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
512 tree op1 = TREE_OPERAND (t, 1);
513 if (wi::to_wide (op1) == TYPE_PRECISION (type) - 1)
514 return true;
516 break;
518 default:
519 break;
521 return false;
524 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
525 simplification is possible.
526 If negate_expr_p would return true for T, NULL_TREE will never be
527 returned. */
529 static tree
530 fold_negate_expr_1 (location_t loc, tree t)
532 tree type = TREE_TYPE (t);
533 tree tem;
535 switch (TREE_CODE (t))
537 /* Convert - (~A) to A + 1. */
538 case BIT_NOT_EXPR:
539 if (INTEGRAL_TYPE_P (type))
540 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0),
541 build_one_cst (type));
542 break;
544 case INTEGER_CST:
545 tem = fold_negate_const (t, type);
546 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
547 || (ANY_INTEGRAL_TYPE_P (type)
548 && !TYPE_OVERFLOW_TRAPS (type)
549 && TYPE_OVERFLOW_WRAPS (type))
550 || (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0)
551 return tem;
552 break;
554 case POLY_INT_CST:
555 case REAL_CST:
556 case FIXED_CST:
557 tem = fold_negate_const (t, type);
558 return tem;
560 case COMPLEX_CST:
562 tree rpart = fold_negate_expr (loc, TREE_REALPART (t));
563 tree ipart = fold_negate_expr (loc, TREE_IMAGPART (t));
564 if (rpart && ipart)
565 return build_complex (type, rpart, ipart);
567 break;
569 case VECTOR_CST:
571 tree_vector_builder elts;
572 elts.new_unary_operation (type, t, true);
573 unsigned int count = elts.encoded_nelts ();
574 for (unsigned int i = 0; i < count; ++i)
576 tree elt = fold_negate_expr (loc, VECTOR_CST_ELT (t, i));
577 if (elt == NULL_TREE)
578 return NULL_TREE;
579 elts.quick_push (elt);
582 return elts.build ();
585 case COMPLEX_EXPR:
586 if (negate_expr_p (t))
587 return fold_build2_loc (loc, COMPLEX_EXPR, type,
588 fold_negate_expr (loc, TREE_OPERAND (t, 0)),
589 fold_negate_expr (loc, TREE_OPERAND (t, 1)));
590 break;
592 case CONJ_EXPR:
593 if (negate_expr_p (t))
594 return fold_build1_loc (loc, CONJ_EXPR, type,
595 fold_negate_expr (loc, TREE_OPERAND (t, 0)));
596 break;
598 case NEGATE_EXPR:
599 if (!TYPE_OVERFLOW_SANITIZED (type))
600 return TREE_OPERAND (t, 0);
601 break;
603 case PLUS_EXPR:
604 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
605 && !HONOR_SIGNED_ZEROS (element_mode (type)))
607 /* -(A + B) -> (-B) - A. */
608 if (negate_expr_p (TREE_OPERAND (t, 1)))
610 tem = negate_expr (TREE_OPERAND (t, 1));
611 return fold_build2_loc (loc, MINUS_EXPR, type,
612 tem, TREE_OPERAND (t, 0));
615 /* -(A + B) -> (-A) - B. */
616 if (negate_expr_p (TREE_OPERAND (t, 0)))
618 tem = negate_expr (TREE_OPERAND (t, 0));
619 return fold_build2_loc (loc, MINUS_EXPR, type,
620 tem, TREE_OPERAND (t, 1));
623 break;
625 case MINUS_EXPR:
626 /* - (A - B) -> B - A */
627 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
628 && !HONOR_SIGNED_ZEROS (element_mode (type)))
629 return fold_build2_loc (loc, MINUS_EXPR, type,
630 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
631 break;
633 case MULT_EXPR:
634 if (TYPE_UNSIGNED (type))
635 break;
637 /* Fall through. */
639 case RDIV_EXPR:
640 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)))
642 tem = TREE_OPERAND (t, 1);
643 if (negate_expr_p (tem))
644 return fold_build2_loc (loc, TREE_CODE (t), type,
645 TREE_OPERAND (t, 0), negate_expr (tem));
646 tem = TREE_OPERAND (t, 0);
647 if (negate_expr_p (tem))
648 return fold_build2_loc (loc, TREE_CODE (t), type,
649 negate_expr (tem), TREE_OPERAND (t, 1));
651 break;
653 case TRUNC_DIV_EXPR:
654 case ROUND_DIV_EXPR:
655 case EXACT_DIV_EXPR:
656 if (TYPE_UNSIGNED (type))
657 break;
658 /* In general we can't negate A in A / B, because if A is INT_MIN and
659 B is not 1 we change the sign of the result. */
660 if (TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
661 && negate_expr_p (TREE_OPERAND (t, 0)))
662 return fold_build2_loc (loc, TREE_CODE (t), type,
663 negate_expr (TREE_OPERAND (t, 0)),
664 TREE_OPERAND (t, 1));
665 /* In general we can't negate B in A / B, because if A is INT_MIN and
666 B is 1, we may turn this into INT_MIN / -1 which is undefined
667 and actually traps on some architectures. */
668 if ((! ANY_INTEGRAL_TYPE_P (TREE_TYPE (t))
669 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
670 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
671 && ! integer_onep (TREE_OPERAND (t, 1))))
672 && negate_expr_p (TREE_OPERAND (t, 1)))
673 return fold_build2_loc (loc, TREE_CODE (t), type,
674 TREE_OPERAND (t, 0),
675 negate_expr (TREE_OPERAND (t, 1)));
676 break;
678 case NOP_EXPR:
679 /* Convert -((double)float) into (double)(-float). */
680 if (TREE_CODE (type) == REAL_TYPE)
682 tem = strip_float_extensions (t);
683 if (tem != t && negate_expr_p (tem))
684 return fold_convert_loc (loc, type, negate_expr (tem));
686 break;
688 case CALL_EXPR:
689 /* Negate -f(x) as f(-x). */
690 if (negate_mathfn_p (get_call_combined_fn (t))
691 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
693 tree fndecl, arg;
695 fndecl = get_callee_fndecl (t);
696 arg = negate_expr (CALL_EXPR_ARG (t, 0));
697 return build_call_expr_loc (loc, fndecl, 1, arg);
699 break;
701 case RSHIFT_EXPR:
702 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
703 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
705 tree op1 = TREE_OPERAND (t, 1);
706 if (wi::to_wide (op1) == TYPE_PRECISION (type) - 1)
708 tree ntype = TYPE_UNSIGNED (type)
709 ? signed_type_for (type)
710 : unsigned_type_for (type);
711 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0));
712 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1);
713 return fold_convert_loc (loc, type, temp);
716 break;
718 default:
719 break;
722 return NULL_TREE;
725 /* A wrapper for fold_negate_expr_1. */
727 static tree
728 fold_negate_expr (location_t loc, tree t)
730 tree type = TREE_TYPE (t);
731 STRIP_SIGN_NOPS (t);
732 tree tem = fold_negate_expr_1 (loc, t);
733 if (tem == NULL_TREE)
734 return NULL_TREE;
735 return fold_convert_loc (loc, type, tem);
738 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
739 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
740 return NULL_TREE. */
742 static tree
743 negate_expr (tree t)
745 tree type, tem;
746 location_t loc;
748 if (t == NULL_TREE)
749 return NULL_TREE;
751 loc = EXPR_LOCATION (t);
752 type = TREE_TYPE (t);
753 STRIP_SIGN_NOPS (t);
755 tem = fold_negate_expr (loc, t);
756 if (!tem)
757 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t);
758 return fold_convert_loc (loc, type, tem);
761 /* Split a tree IN into a constant, literal and variable parts that could be
762 combined with CODE to make IN. "constant" means an expression with
763 TREE_CONSTANT but that isn't an actual constant. CODE must be a
764 commutative arithmetic operation. Store the constant part into *CONP,
765 the literal in *LITP and return the variable part. If a part isn't
766 present, set it to null. If the tree does not decompose in this way,
767 return the entire tree as the variable part and the other parts as null.
769 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
770 case, we negate an operand that was subtracted. Except if it is a
771 literal for which we use *MINUS_LITP instead.
773 If NEGATE_P is true, we are negating all of IN, again except a literal
774 for which we use *MINUS_LITP instead. If a variable part is of pointer
775 type, it is negated after converting to TYPE. This prevents us from
776 generating illegal MINUS pointer expression. LOC is the location of
777 the converted variable part.
779 If IN is itself a literal or constant, return it as appropriate.
781 Note that we do not guarantee that any of the three values will be the
782 same type as IN, but they will have the same signedness and mode. */
784 static tree
785 split_tree (tree in, tree type, enum tree_code code,
786 tree *minus_varp, tree *conp, tree *minus_conp,
787 tree *litp, tree *minus_litp, int negate_p)
789 tree var = 0;
790 *minus_varp = 0;
791 *conp = 0;
792 *minus_conp = 0;
793 *litp = 0;
794 *minus_litp = 0;
796 /* Strip any conversions that don't change the machine mode or signedness. */
797 STRIP_SIGN_NOPS (in);
799 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
800 || TREE_CODE (in) == FIXED_CST)
801 *litp = in;
802 else if (TREE_CODE (in) == code
803 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
804 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
805 /* We can associate addition and subtraction together (even
806 though the C standard doesn't say so) for integers because
807 the value is not affected. For reals, the value might be
808 affected, so we can't. */
809 && ((code == PLUS_EXPR && TREE_CODE (in) == POINTER_PLUS_EXPR)
810 || (code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
811 || (code == MINUS_EXPR
812 && (TREE_CODE (in) == PLUS_EXPR
813 || TREE_CODE (in) == POINTER_PLUS_EXPR)))))
815 tree op0 = TREE_OPERAND (in, 0);
816 tree op1 = TREE_OPERAND (in, 1);
817 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
818 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
820 /* First see if either of the operands is a literal, then a constant. */
821 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
822 || TREE_CODE (op0) == FIXED_CST)
823 *litp = op0, op0 = 0;
824 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
825 || TREE_CODE (op1) == FIXED_CST)
826 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
828 if (op0 != 0 && TREE_CONSTANT (op0))
829 *conp = op0, op0 = 0;
830 else if (op1 != 0 && TREE_CONSTANT (op1))
831 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
833 /* If we haven't dealt with either operand, this is not a case we can
834 decompose. Otherwise, VAR is either of the ones remaining, if any. */
835 if (op0 != 0 && op1 != 0)
836 var = in;
837 else if (op0 != 0)
838 var = op0;
839 else
840 var = op1, neg_var_p = neg1_p;
842 /* Now do any needed negations. */
843 if (neg_litp_p)
844 *minus_litp = *litp, *litp = 0;
845 if (neg_conp_p && *conp)
846 *minus_conp = *conp, *conp = 0;
847 if (neg_var_p && var)
848 *minus_varp = var, var = 0;
850 else if (TREE_CONSTANT (in))
851 *conp = in;
852 else if (TREE_CODE (in) == BIT_NOT_EXPR
853 && code == PLUS_EXPR)
855 /* -1 - X is folded to ~X, undo that here. Do _not_ do this
856 when IN is constant. */
857 *litp = build_minus_one_cst (type);
858 *minus_varp = TREE_OPERAND (in, 0);
860 else
861 var = in;
863 if (negate_p)
865 if (*litp)
866 *minus_litp = *litp, *litp = 0;
867 else if (*minus_litp)
868 *litp = *minus_litp, *minus_litp = 0;
869 if (*conp)
870 *minus_conp = *conp, *conp = 0;
871 else if (*minus_conp)
872 *conp = *minus_conp, *minus_conp = 0;
873 if (var)
874 *minus_varp = var, var = 0;
875 else if (*minus_varp)
876 var = *minus_varp, *minus_varp = 0;
879 if (*litp
880 && TREE_OVERFLOW_P (*litp))
881 *litp = drop_tree_overflow (*litp);
882 if (*minus_litp
883 && TREE_OVERFLOW_P (*minus_litp))
884 *minus_litp = drop_tree_overflow (*minus_litp);
886 return var;
889 /* Re-associate trees split by the above function. T1 and T2 are
890 either expressions to associate or null. Return the new
891 expression, if any. LOC is the location of the new expression. If
892 we build an operation, do it in TYPE and with CODE. */
894 static tree
895 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type)
897 if (t1 == 0)
899 gcc_assert (t2 == 0 || code != MINUS_EXPR);
900 return t2;
902 else if (t2 == 0)
903 return t1;
905 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
906 try to fold this since we will have infinite recursion. But do
907 deal with any NEGATE_EXPRs. */
908 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
909 || TREE_CODE (t1) == PLUS_EXPR || TREE_CODE (t2) == PLUS_EXPR
910 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
912 if (code == PLUS_EXPR)
914 if (TREE_CODE (t1) == NEGATE_EXPR)
915 return build2_loc (loc, MINUS_EXPR, type,
916 fold_convert_loc (loc, type, t2),
917 fold_convert_loc (loc, type,
918 TREE_OPERAND (t1, 0)));
919 else if (TREE_CODE (t2) == NEGATE_EXPR)
920 return build2_loc (loc, MINUS_EXPR, type,
921 fold_convert_loc (loc, type, t1),
922 fold_convert_loc (loc, type,
923 TREE_OPERAND (t2, 0)));
924 else if (integer_zerop (t2))
925 return fold_convert_loc (loc, type, t1);
927 else if (code == MINUS_EXPR)
929 if (integer_zerop (t2))
930 return fold_convert_loc (loc, type, t1);
933 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
934 fold_convert_loc (loc, type, t2));
937 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
938 fold_convert_loc (loc, type, t2));
941 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
942 for use in int_const_binop, size_binop and size_diffop. */
944 static bool
945 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
947 if (!INTEGRAL_TYPE_P (type1) && !POINTER_TYPE_P (type1))
948 return false;
949 if (!INTEGRAL_TYPE_P (type2) && !POINTER_TYPE_P (type2))
950 return false;
952 switch (code)
954 case LSHIFT_EXPR:
955 case RSHIFT_EXPR:
956 case LROTATE_EXPR:
957 case RROTATE_EXPR:
958 return true;
960 default:
961 break;
964 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
965 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
966 && TYPE_MODE (type1) == TYPE_MODE (type2);
969 /* Combine two wide ints ARG1 and ARG2 under operation CODE to produce
970 a new constant in RES. Return FALSE if we don't know how to
971 evaluate CODE at compile-time. */
973 bool
974 wide_int_binop (wide_int &res,
975 enum tree_code code, const wide_int &arg1, const wide_int &arg2,
976 signop sign, wi::overflow_type *overflow)
978 wide_int tmp;
979 *overflow = wi::OVF_NONE;
980 switch (code)
982 case BIT_IOR_EXPR:
983 res = wi::bit_or (arg1, arg2);
984 break;
986 case BIT_XOR_EXPR:
987 res = wi::bit_xor (arg1, arg2);
988 break;
990 case BIT_AND_EXPR:
991 res = wi::bit_and (arg1, arg2);
992 break;
994 case RSHIFT_EXPR:
995 case LSHIFT_EXPR:
996 if (wi::neg_p (arg2))
998 tmp = -arg2;
999 if (code == RSHIFT_EXPR)
1000 code = LSHIFT_EXPR;
1001 else
1002 code = RSHIFT_EXPR;
1004 else
1005 tmp = arg2;
1007 if (code == RSHIFT_EXPR)
1008 /* It's unclear from the C standard whether shifts can overflow.
1009 The following code ignores overflow; perhaps a C standard
1010 interpretation ruling is needed. */
1011 res = wi::rshift (arg1, tmp, sign);
1012 else
1013 res = wi::lshift (arg1, tmp);
1014 break;
1016 case RROTATE_EXPR:
1017 case LROTATE_EXPR:
1018 if (wi::neg_p (arg2))
1020 tmp = -arg2;
1021 if (code == RROTATE_EXPR)
1022 code = LROTATE_EXPR;
1023 else
1024 code = RROTATE_EXPR;
1026 else
1027 tmp = arg2;
1029 if (code == RROTATE_EXPR)
1030 res = wi::rrotate (arg1, tmp);
1031 else
1032 res = wi::lrotate (arg1, tmp);
1033 break;
1035 case PLUS_EXPR:
1036 res = wi::add (arg1, arg2, sign, overflow);
1037 break;
1039 case MINUS_EXPR:
1040 res = wi::sub (arg1, arg2, sign, overflow);
1041 break;
1043 case MULT_EXPR:
1044 res = wi::mul (arg1, arg2, sign, overflow);
1045 break;
1047 case MULT_HIGHPART_EXPR:
1048 res = wi::mul_high (arg1, arg2, sign);
1049 break;
1051 case TRUNC_DIV_EXPR:
1052 case EXACT_DIV_EXPR:
1053 if (arg2 == 0)
1054 return false;
1055 res = wi::div_trunc (arg1, arg2, sign, overflow);
1056 break;
1058 case FLOOR_DIV_EXPR:
1059 if (arg2 == 0)
1060 return false;
1061 res = wi::div_floor (arg1, arg2, sign, overflow);
1062 break;
1064 case CEIL_DIV_EXPR:
1065 if (arg2 == 0)
1066 return false;
1067 res = wi::div_ceil (arg1, arg2, sign, overflow);
1068 break;
1070 case ROUND_DIV_EXPR:
1071 if (arg2 == 0)
1072 return false;
1073 res = wi::div_round (arg1, arg2, sign, overflow);
1074 break;
1076 case TRUNC_MOD_EXPR:
1077 if (arg2 == 0)
1078 return false;
1079 res = wi::mod_trunc (arg1, arg2, sign, overflow);
1080 break;
1082 case FLOOR_MOD_EXPR:
1083 if (arg2 == 0)
1084 return false;
1085 res = wi::mod_floor (arg1, arg2, sign, overflow);
1086 break;
1088 case CEIL_MOD_EXPR:
1089 if (arg2 == 0)
1090 return false;
1091 res = wi::mod_ceil (arg1, arg2, sign, overflow);
1092 break;
1094 case ROUND_MOD_EXPR:
1095 if (arg2 == 0)
1096 return false;
1097 res = wi::mod_round (arg1, arg2, sign, overflow);
1098 break;
1100 case MIN_EXPR:
1101 res = wi::min (arg1, arg2, sign);
1102 break;
1104 case MAX_EXPR:
1105 res = wi::max (arg1, arg2, sign);
1106 break;
1108 default:
1109 return false;
1111 return true;
1114 /* Combine two poly int's ARG1 and ARG2 under operation CODE to
1115 produce a new constant in RES. Return FALSE if we don't know how
1116 to evaluate CODE at compile-time. */
1118 static bool
1119 poly_int_binop (poly_wide_int &res, enum tree_code code,
1120 const_tree arg1, const_tree arg2,
1121 signop sign, wi::overflow_type *overflow)
1123 gcc_assert (NUM_POLY_INT_COEFFS != 1);
1124 gcc_assert (poly_int_tree_p (arg1) && poly_int_tree_p (arg2));
1125 switch (code)
1127 case PLUS_EXPR:
1128 res = wi::add (wi::to_poly_wide (arg1),
1129 wi::to_poly_wide (arg2), sign, overflow);
1130 break;
1132 case MINUS_EXPR:
1133 res = wi::sub (wi::to_poly_wide (arg1),
1134 wi::to_poly_wide (arg2), sign, overflow);
1135 break;
1137 case MULT_EXPR:
1138 if (TREE_CODE (arg2) == INTEGER_CST)
1139 res = wi::mul (wi::to_poly_wide (arg1),
1140 wi::to_wide (arg2), sign, overflow);
1141 else if (TREE_CODE (arg1) == INTEGER_CST)
1142 res = wi::mul (wi::to_poly_wide (arg2),
1143 wi::to_wide (arg1), sign, overflow);
1144 else
1145 return NULL_TREE;
1146 break;
1148 case LSHIFT_EXPR:
1149 if (TREE_CODE (arg2) == INTEGER_CST)
1150 res = wi::to_poly_wide (arg1) << wi::to_wide (arg2);
1151 else
1152 return false;
1153 break;
1155 case BIT_IOR_EXPR:
1156 if (TREE_CODE (arg2) != INTEGER_CST
1157 || !can_ior_p (wi::to_poly_wide (arg1), wi::to_wide (arg2),
1158 &res))
1159 return false;
1160 break;
1162 default:
1163 return false;
1165 return true;
1168 /* Combine two integer constants ARG1 and ARG2 under operation CODE to
1169 produce a new constant. Return NULL_TREE if we don't know how to
1170 evaluate CODE at compile-time. */
1172 tree
1173 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2,
1174 int overflowable)
1176 bool success = false;
1177 poly_wide_int poly_res;
1178 tree type = TREE_TYPE (arg1);
1179 signop sign = TYPE_SIGN (type);
1180 wi::overflow_type overflow = wi::OVF_NONE;
1182 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST)
1184 wide_int warg1 = wi::to_wide (arg1), res;
1185 wide_int warg2 = wi::to_wide (arg2, TYPE_PRECISION (type));
1186 success = wide_int_binop (res, code, warg1, warg2, sign, &overflow);
1187 poly_res = res;
1189 else if (poly_int_tree_p (arg1) && poly_int_tree_p (arg2))
1190 success = poly_int_binop (poly_res, code, arg1, arg2, sign, &overflow);
1191 if (success)
1192 return force_fit_type (type, poly_res, overflowable,
1193 (((sign == SIGNED || overflowable == -1)
1194 && overflow)
1195 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2)));
1196 return NULL_TREE;
1199 /* Return true if binary operation OP distributes over addition in operand
1200 OPNO, with the other operand being held constant. OPNO counts from 1. */
1202 static bool
1203 distributes_over_addition_p (tree_code op, int opno)
1205 switch (op)
1207 case PLUS_EXPR:
1208 case MINUS_EXPR:
1209 case MULT_EXPR:
1210 return true;
1212 case LSHIFT_EXPR:
1213 return opno == 1;
1215 default:
1216 return false;
1220 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1221 constant. We assume ARG1 and ARG2 have the same data type, or at least
1222 are the same kind of constant and the same machine mode. Return zero if
1223 combining the constants is not allowed in the current operating mode. */
1225 static tree
1226 const_binop (enum tree_code code, tree arg1, tree arg2)
1228 /* Sanity check for the recursive cases. */
1229 if (!arg1 || !arg2)
1230 return NULL_TREE;
1232 STRIP_NOPS (arg1);
1233 STRIP_NOPS (arg2);
1235 if (poly_int_tree_p (arg1) && poly_int_tree_p (arg2))
1237 if (code == POINTER_PLUS_EXPR)
1238 return int_const_binop (PLUS_EXPR,
1239 arg1, fold_convert (TREE_TYPE (arg1), arg2));
1241 return int_const_binop (code, arg1, arg2);
1244 if (TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST)
1246 machine_mode mode;
1247 REAL_VALUE_TYPE d1;
1248 REAL_VALUE_TYPE d2;
1249 REAL_VALUE_TYPE value;
1250 REAL_VALUE_TYPE result;
1251 bool inexact;
1252 tree t, type;
1254 /* The following codes are handled by real_arithmetic. */
1255 switch (code)
1257 case PLUS_EXPR:
1258 case MINUS_EXPR:
1259 case MULT_EXPR:
1260 case RDIV_EXPR:
1261 case MIN_EXPR:
1262 case MAX_EXPR:
1263 break;
1265 default:
1266 return NULL_TREE;
1269 d1 = TREE_REAL_CST (arg1);
1270 d2 = TREE_REAL_CST (arg2);
1272 type = TREE_TYPE (arg1);
1273 mode = TYPE_MODE (type);
1275 /* Don't perform operation if we honor signaling NaNs and
1276 either operand is a signaling NaN. */
1277 if (HONOR_SNANS (mode)
1278 && (REAL_VALUE_ISSIGNALING_NAN (d1)
1279 || REAL_VALUE_ISSIGNALING_NAN (d2)))
1280 return NULL_TREE;
1282 /* Don't perform operation if it would raise a division
1283 by zero exception. */
1284 if (code == RDIV_EXPR
1285 && real_equal (&d2, &dconst0)
1286 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1287 return NULL_TREE;
1289 /* If either operand is a NaN, just return it. Otherwise, set up
1290 for floating-point trap; we return an overflow. */
1291 if (REAL_VALUE_ISNAN (d1))
1293 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1294 is off. */
1295 d1.signalling = 0;
1296 t = build_real (type, d1);
1297 return t;
1299 else if (REAL_VALUE_ISNAN (d2))
1301 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1302 is off. */
1303 d2.signalling = 0;
1304 t = build_real (type, d2);
1305 return t;
1308 inexact = real_arithmetic (&value, code, &d1, &d2);
1309 real_convert (&result, mode, &value);
1311 /* Don't constant fold this floating point operation if
1312 the result has overflowed and flag_trapping_math. */
1313 if (flag_trapping_math
1314 && MODE_HAS_INFINITIES (mode)
1315 && REAL_VALUE_ISINF (result)
1316 && !REAL_VALUE_ISINF (d1)
1317 && !REAL_VALUE_ISINF (d2))
1318 return NULL_TREE;
1320 /* Don't constant fold this floating point operation if the
1321 result may dependent upon the run-time rounding mode and
1322 flag_rounding_math is set, or if GCC's software emulation
1323 is unable to accurately represent the result. */
1324 if ((flag_rounding_math
1325 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1326 && (inexact || !real_identical (&result, &value)))
1327 return NULL_TREE;
1329 t = build_real (type, result);
1331 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1332 return t;
1335 if (TREE_CODE (arg1) == FIXED_CST)
1337 FIXED_VALUE_TYPE f1;
1338 FIXED_VALUE_TYPE f2;
1339 FIXED_VALUE_TYPE result;
1340 tree t, type;
1341 int sat_p;
1342 bool overflow_p;
1344 /* The following codes are handled by fixed_arithmetic. */
1345 switch (code)
1347 case PLUS_EXPR:
1348 case MINUS_EXPR:
1349 case MULT_EXPR:
1350 case TRUNC_DIV_EXPR:
1351 if (TREE_CODE (arg2) != FIXED_CST)
1352 return NULL_TREE;
1353 f2 = TREE_FIXED_CST (arg2);
1354 break;
1356 case LSHIFT_EXPR:
1357 case RSHIFT_EXPR:
1359 if (TREE_CODE (arg2) != INTEGER_CST)
1360 return NULL_TREE;
1361 wi::tree_to_wide_ref w2 = wi::to_wide (arg2);
1362 f2.data.high = w2.elt (1);
1363 f2.data.low = w2.ulow ();
1364 f2.mode = SImode;
1366 break;
1368 default:
1369 return NULL_TREE;
1372 f1 = TREE_FIXED_CST (arg1);
1373 type = TREE_TYPE (arg1);
1374 sat_p = TYPE_SATURATING (type);
1375 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1376 t = build_fixed (type, result);
1377 /* Propagate overflow flags. */
1378 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1379 TREE_OVERFLOW (t) = 1;
1380 return t;
1383 if (TREE_CODE (arg1) == COMPLEX_CST && TREE_CODE (arg2) == COMPLEX_CST)
1385 tree type = TREE_TYPE (arg1);
1386 tree r1 = TREE_REALPART (arg1);
1387 tree i1 = TREE_IMAGPART (arg1);
1388 tree r2 = TREE_REALPART (arg2);
1389 tree i2 = TREE_IMAGPART (arg2);
1390 tree real, imag;
1392 switch (code)
1394 case PLUS_EXPR:
1395 case MINUS_EXPR:
1396 real = const_binop (code, r1, r2);
1397 imag = const_binop (code, i1, i2);
1398 break;
1400 case MULT_EXPR:
1401 if (COMPLEX_FLOAT_TYPE_P (type))
1402 return do_mpc_arg2 (arg1, arg2, type,
1403 /* do_nonfinite= */ folding_initializer,
1404 mpc_mul);
1406 real = const_binop (MINUS_EXPR,
1407 const_binop (MULT_EXPR, r1, r2),
1408 const_binop (MULT_EXPR, i1, i2));
1409 imag = const_binop (PLUS_EXPR,
1410 const_binop (MULT_EXPR, r1, i2),
1411 const_binop (MULT_EXPR, i1, r2));
1412 break;
1414 case RDIV_EXPR:
1415 if (COMPLEX_FLOAT_TYPE_P (type))
1416 return do_mpc_arg2 (arg1, arg2, type,
1417 /* do_nonfinite= */ folding_initializer,
1418 mpc_div);
1419 /* Fallthru. */
1420 case TRUNC_DIV_EXPR:
1421 case CEIL_DIV_EXPR:
1422 case FLOOR_DIV_EXPR:
1423 case ROUND_DIV_EXPR:
1424 if (flag_complex_method == 0)
1426 /* Keep this algorithm in sync with
1427 tree-complex.c:expand_complex_div_straight().
1429 Expand complex division to scalars, straightforward algorithm.
1430 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1431 t = br*br + bi*bi
1433 tree magsquared
1434 = const_binop (PLUS_EXPR,
1435 const_binop (MULT_EXPR, r2, r2),
1436 const_binop (MULT_EXPR, i2, i2));
1437 tree t1
1438 = const_binop (PLUS_EXPR,
1439 const_binop (MULT_EXPR, r1, r2),
1440 const_binop (MULT_EXPR, i1, i2));
1441 tree t2
1442 = const_binop (MINUS_EXPR,
1443 const_binop (MULT_EXPR, i1, r2),
1444 const_binop (MULT_EXPR, r1, i2));
1446 real = const_binop (code, t1, magsquared);
1447 imag = const_binop (code, t2, magsquared);
1449 else
1451 /* Keep this algorithm in sync with
1452 tree-complex.c:expand_complex_div_wide().
1454 Expand complex division to scalars, modified algorithm to minimize
1455 overflow with wide input ranges. */
1456 tree compare = fold_build2 (LT_EXPR, boolean_type_node,
1457 fold_abs_const (r2, TREE_TYPE (type)),
1458 fold_abs_const (i2, TREE_TYPE (type)));
1460 if (integer_nonzerop (compare))
1462 /* In the TRUE branch, we compute
1463 ratio = br/bi;
1464 div = (br * ratio) + bi;
1465 tr = (ar * ratio) + ai;
1466 ti = (ai * ratio) - ar;
1467 tr = tr / div;
1468 ti = ti / div; */
1469 tree ratio = const_binop (code, r2, i2);
1470 tree div = const_binop (PLUS_EXPR, i2,
1471 const_binop (MULT_EXPR, r2, ratio));
1472 real = const_binop (MULT_EXPR, r1, ratio);
1473 real = const_binop (PLUS_EXPR, real, i1);
1474 real = const_binop (code, real, div);
1476 imag = const_binop (MULT_EXPR, i1, ratio);
1477 imag = const_binop (MINUS_EXPR, imag, r1);
1478 imag = const_binop (code, imag, div);
1480 else
1482 /* In the FALSE branch, we compute
1483 ratio = d/c;
1484 divisor = (d * ratio) + c;
1485 tr = (b * ratio) + a;
1486 ti = b - (a * ratio);
1487 tr = tr / div;
1488 ti = ti / div; */
1489 tree ratio = const_binop (code, i2, r2);
1490 tree div = const_binop (PLUS_EXPR, r2,
1491 const_binop (MULT_EXPR, i2, ratio));
1493 real = const_binop (MULT_EXPR, i1, ratio);
1494 real = const_binop (PLUS_EXPR, real, r1);
1495 real = const_binop (code, real, div);
1497 imag = const_binop (MULT_EXPR, r1, ratio);
1498 imag = const_binop (MINUS_EXPR, i1, imag);
1499 imag = const_binop (code, imag, div);
1502 break;
1504 default:
1505 return NULL_TREE;
1508 if (real && imag)
1509 return build_complex (type, real, imag);
1512 if (TREE_CODE (arg1) == VECTOR_CST
1513 && TREE_CODE (arg2) == VECTOR_CST
1514 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)),
1515 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2))))
1517 tree type = TREE_TYPE (arg1);
1518 bool step_ok_p;
1519 if (VECTOR_CST_STEPPED_P (arg1)
1520 && VECTOR_CST_STEPPED_P (arg2))
1521 /* We can operate directly on the encoding if:
1523 a3 - a2 == a2 - a1 && b3 - b2 == b2 - b1
1524 implies
1525 (a3 op b3) - (a2 op b2) == (a2 op b2) - (a1 op b1)
1527 Addition and subtraction are the supported operators
1528 for which this is true. */
1529 step_ok_p = (code == PLUS_EXPR || code == MINUS_EXPR);
1530 else if (VECTOR_CST_STEPPED_P (arg1))
1531 /* We can operate directly on stepped encodings if:
1533 a3 - a2 == a2 - a1
1534 implies:
1535 (a3 op c) - (a2 op c) == (a2 op c) - (a1 op c)
1537 which is true if (x -> x op c) distributes over addition. */
1538 step_ok_p = distributes_over_addition_p (code, 1);
1539 else
1540 /* Similarly in reverse. */
1541 step_ok_p = distributes_over_addition_p (code, 2);
1542 tree_vector_builder elts;
1543 if (!elts.new_binary_operation (type, arg1, arg2, step_ok_p))
1544 return NULL_TREE;
1545 unsigned int count = elts.encoded_nelts ();
1546 for (unsigned int i = 0; i < count; ++i)
1548 tree elem1 = VECTOR_CST_ELT (arg1, i);
1549 tree elem2 = VECTOR_CST_ELT (arg2, i);
1551 tree elt = const_binop (code, elem1, elem2);
1553 /* It is possible that const_binop cannot handle the given
1554 code and return NULL_TREE */
1555 if (elt == NULL_TREE)
1556 return NULL_TREE;
1557 elts.quick_push (elt);
1560 return elts.build ();
1563 /* Shifts allow a scalar offset for a vector. */
1564 if (TREE_CODE (arg1) == VECTOR_CST
1565 && TREE_CODE (arg2) == INTEGER_CST)
1567 tree type = TREE_TYPE (arg1);
1568 bool step_ok_p = distributes_over_addition_p (code, 1);
1569 tree_vector_builder elts;
1570 if (!elts.new_unary_operation (type, arg1, step_ok_p))
1571 return NULL_TREE;
1572 unsigned int count = elts.encoded_nelts ();
1573 for (unsigned int i = 0; i < count; ++i)
1575 tree elem1 = VECTOR_CST_ELT (arg1, i);
1577 tree elt = const_binop (code, elem1, arg2);
1579 /* It is possible that const_binop cannot handle the given
1580 code and return NULL_TREE. */
1581 if (elt == NULL_TREE)
1582 return NULL_TREE;
1583 elts.quick_push (elt);
1586 return elts.build ();
1588 return NULL_TREE;
1591 /* Overload that adds a TYPE parameter to be able to dispatch
1592 to fold_relational_const. */
1594 tree
1595 const_binop (enum tree_code code, tree type, tree arg1, tree arg2)
1597 if (TREE_CODE_CLASS (code) == tcc_comparison)
1598 return fold_relational_const (code, type, arg1, arg2);
1600 /* ??? Until we make the const_binop worker take the type of the
1601 result as argument put those cases that need it here. */
1602 switch (code)
1604 case VEC_SERIES_EXPR:
1605 if (CONSTANT_CLASS_P (arg1)
1606 && CONSTANT_CLASS_P (arg2))
1607 return build_vec_series (type, arg1, arg2);
1608 return NULL_TREE;
1610 case COMPLEX_EXPR:
1611 if ((TREE_CODE (arg1) == REAL_CST
1612 && TREE_CODE (arg2) == REAL_CST)
1613 || (TREE_CODE (arg1) == INTEGER_CST
1614 && TREE_CODE (arg2) == INTEGER_CST))
1615 return build_complex (type, arg1, arg2);
1616 return NULL_TREE;
1618 case POINTER_DIFF_EXPR:
1619 if (poly_int_tree_p (arg1) && poly_int_tree_p (arg2))
1621 poly_offset_int res = (wi::to_poly_offset (arg1)
1622 - wi::to_poly_offset (arg2));
1623 return force_fit_type (type, res, 1,
1624 TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2));
1626 return NULL_TREE;
1628 case VEC_PACK_TRUNC_EXPR:
1629 case VEC_PACK_FIX_TRUNC_EXPR:
1630 case VEC_PACK_FLOAT_EXPR:
1632 unsigned int HOST_WIDE_INT out_nelts, in_nelts, i;
1634 if (TREE_CODE (arg1) != VECTOR_CST
1635 || TREE_CODE (arg2) != VECTOR_CST)
1636 return NULL_TREE;
1638 if (!VECTOR_CST_NELTS (arg1).is_constant (&in_nelts))
1639 return NULL_TREE;
1641 out_nelts = in_nelts * 2;
1642 gcc_assert (known_eq (in_nelts, VECTOR_CST_NELTS (arg2))
1643 && known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type)));
1645 tree_vector_builder elts (type, out_nelts, 1);
1646 for (i = 0; i < out_nelts; i++)
1648 tree elt = (i < in_nelts
1649 ? VECTOR_CST_ELT (arg1, i)
1650 : VECTOR_CST_ELT (arg2, i - in_nelts));
1651 elt = fold_convert_const (code == VEC_PACK_TRUNC_EXPR
1652 ? NOP_EXPR
1653 : code == VEC_PACK_FLOAT_EXPR
1654 ? FLOAT_EXPR : FIX_TRUNC_EXPR,
1655 TREE_TYPE (type), elt);
1656 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
1657 return NULL_TREE;
1658 elts.quick_push (elt);
1661 return elts.build ();
1664 case VEC_WIDEN_MULT_LO_EXPR:
1665 case VEC_WIDEN_MULT_HI_EXPR:
1666 case VEC_WIDEN_MULT_EVEN_EXPR:
1667 case VEC_WIDEN_MULT_ODD_EXPR:
1669 unsigned HOST_WIDE_INT out_nelts, in_nelts, out, ofs, scale;
1671 if (TREE_CODE (arg1) != VECTOR_CST || TREE_CODE (arg2) != VECTOR_CST)
1672 return NULL_TREE;
1674 if (!VECTOR_CST_NELTS (arg1).is_constant (&in_nelts))
1675 return NULL_TREE;
1676 out_nelts = in_nelts / 2;
1677 gcc_assert (known_eq (in_nelts, VECTOR_CST_NELTS (arg2))
1678 && known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type)));
1680 if (code == VEC_WIDEN_MULT_LO_EXPR)
1681 scale = 0, ofs = BYTES_BIG_ENDIAN ? out_nelts : 0;
1682 else if (code == VEC_WIDEN_MULT_HI_EXPR)
1683 scale = 0, ofs = BYTES_BIG_ENDIAN ? 0 : out_nelts;
1684 else if (code == VEC_WIDEN_MULT_EVEN_EXPR)
1685 scale = 1, ofs = 0;
1686 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1687 scale = 1, ofs = 1;
1689 tree_vector_builder elts (type, out_nelts, 1);
1690 for (out = 0; out < out_nelts; out++)
1692 unsigned int in = (out << scale) + ofs;
1693 tree t1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type),
1694 VECTOR_CST_ELT (arg1, in));
1695 tree t2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type),
1696 VECTOR_CST_ELT (arg2, in));
1698 if (t1 == NULL_TREE || t2 == NULL_TREE)
1699 return NULL_TREE;
1700 tree elt = const_binop (MULT_EXPR, t1, t2);
1701 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
1702 return NULL_TREE;
1703 elts.quick_push (elt);
1706 return elts.build ();
1709 default:;
1712 if (TREE_CODE_CLASS (code) != tcc_binary)
1713 return NULL_TREE;
1715 /* Make sure type and arg0 have the same saturating flag. */
1716 gcc_checking_assert (TYPE_SATURATING (type)
1717 == TYPE_SATURATING (TREE_TYPE (arg1)));
1719 return const_binop (code, arg1, arg2);
1722 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1723 Return zero if computing the constants is not possible. */
1725 tree
1726 const_unop (enum tree_code code, tree type, tree arg0)
1728 /* Don't perform the operation, other than NEGATE and ABS, if
1729 flag_signaling_nans is on and the operand is a signaling NaN. */
1730 if (TREE_CODE (arg0) == REAL_CST
1731 && HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
1732 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0))
1733 && code != NEGATE_EXPR
1734 && code != ABS_EXPR
1735 && code != ABSU_EXPR)
1736 return NULL_TREE;
1738 switch (code)
1740 CASE_CONVERT:
1741 case FLOAT_EXPR:
1742 case FIX_TRUNC_EXPR:
1743 case FIXED_CONVERT_EXPR:
1744 return fold_convert_const (code, type, arg0);
1746 case ADDR_SPACE_CONVERT_EXPR:
1747 /* If the source address is 0, and the source address space
1748 cannot have a valid object at 0, fold to dest type null. */
1749 if (integer_zerop (arg0)
1750 && !(targetm.addr_space.zero_address_valid
1751 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0))))))
1752 return fold_convert_const (code, type, arg0);
1753 break;
1755 case VIEW_CONVERT_EXPR:
1756 return fold_view_convert_expr (type, arg0);
1758 case NEGATE_EXPR:
1760 /* Can't call fold_negate_const directly here as that doesn't
1761 handle all cases and we might not be able to negate some
1762 constants. */
1763 tree tem = fold_negate_expr (UNKNOWN_LOCATION, arg0);
1764 if (tem && CONSTANT_CLASS_P (tem))
1765 return tem;
1766 break;
1769 case ABS_EXPR:
1770 case ABSU_EXPR:
1771 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
1772 return fold_abs_const (arg0, type);
1773 break;
1775 case CONJ_EXPR:
1776 if (TREE_CODE (arg0) == COMPLEX_CST)
1778 tree ipart = fold_negate_const (TREE_IMAGPART (arg0),
1779 TREE_TYPE (type));
1780 return build_complex (type, TREE_REALPART (arg0), ipart);
1782 break;
1784 case BIT_NOT_EXPR:
1785 if (TREE_CODE (arg0) == INTEGER_CST)
1786 return fold_not_const (arg0, type);
1787 else if (POLY_INT_CST_P (arg0))
1788 return wide_int_to_tree (type, -poly_int_cst_value (arg0));
1789 /* Perform BIT_NOT_EXPR on each element individually. */
1790 else if (TREE_CODE (arg0) == VECTOR_CST)
1792 tree elem;
1794 /* This can cope with stepped encodings because ~x == -1 - x. */
1795 tree_vector_builder elements;
1796 elements.new_unary_operation (type, arg0, true);
1797 unsigned int i, count = elements.encoded_nelts ();
1798 for (i = 0; i < count; ++i)
1800 elem = VECTOR_CST_ELT (arg0, i);
1801 elem = const_unop (BIT_NOT_EXPR, TREE_TYPE (type), elem);
1802 if (elem == NULL_TREE)
1803 break;
1804 elements.quick_push (elem);
1806 if (i == count)
1807 return elements.build ();
1809 break;
1811 case TRUTH_NOT_EXPR:
1812 if (TREE_CODE (arg0) == INTEGER_CST)
1813 return constant_boolean_node (integer_zerop (arg0), type);
1814 break;
1816 case REALPART_EXPR:
1817 if (TREE_CODE (arg0) == COMPLEX_CST)
1818 return fold_convert (type, TREE_REALPART (arg0));
1819 break;
1821 case IMAGPART_EXPR:
1822 if (TREE_CODE (arg0) == COMPLEX_CST)
1823 return fold_convert (type, TREE_IMAGPART (arg0));
1824 break;
1826 case VEC_UNPACK_LO_EXPR:
1827 case VEC_UNPACK_HI_EXPR:
1828 case VEC_UNPACK_FLOAT_LO_EXPR:
1829 case VEC_UNPACK_FLOAT_HI_EXPR:
1830 case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
1831 case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
1833 unsigned HOST_WIDE_INT out_nelts, in_nelts, i;
1834 enum tree_code subcode;
1836 if (TREE_CODE (arg0) != VECTOR_CST)
1837 return NULL_TREE;
1839 if (!VECTOR_CST_NELTS (arg0).is_constant (&in_nelts))
1840 return NULL_TREE;
1841 out_nelts = in_nelts / 2;
1842 gcc_assert (known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type)));
1844 unsigned int offset = 0;
1845 if ((!BYTES_BIG_ENDIAN) ^ (code == VEC_UNPACK_LO_EXPR
1846 || code == VEC_UNPACK_FLOAT_LO_EXPR
1847 || code == VEC_UNPACK_FIX_TRUNC_LO_EXPR))
1848 offset = out_nelts;
1850 if (code == VEC_UNPACK_LO_EXPR || code == VEC_UNPACK_HI_EXPR)
1851 subcode = NOP_EXPR;
1852 else if (code == VEC_UNPACK_FLOAT_LO_EXPR
1853 || code == VEC_UNPACK_FLOAT_HI_EXPR)
1854 subcode = FLOAT_EXPR;
1855 else
1856 subcode = FIX_TRUNC_EXPR;
1858 tree_vector_builder elts (type, out_nelts, 1);
1859 for (i = 0; i < out_nelts; i++)
1861 tree elt = fold_convert_const (subcode, TREE_TYPE (type),
1862 VECTOR_CST_ELT (arg0, i + offset));
1863 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
1864 return NULL_TREE;
1865 elts.quick_push (elt);
1868 return elts.build ();
1871 case VEC_DUPLICATE_EXPR:
1872 if (CONSTANT_CLASS_P (arg0))
1873 return build_vector_from_val (type, arg0);
1874 return NULL_TREE;
1876 default:
1877 break;
1880 return NULL_TREE;
1883 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1884 indicates which particular sizetype to create. */
1886 tree
1887 size_int_kind (poly_int64 number, enum size_type_kind kind)
1889 return build_int_cst (sizetype_tab[(int) kind], number);
1892 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1893 is a tree code. The type of the result is taken from the operands.
1894 Both must be equivalent integer types, ala int_binop_types_match_p.
1895 If the operands are constant, so is the result. */
1897 tree
1898 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1)
1900 tree type = TREE_TYPE (arg0);
1902 if (arg0 == error_mark_node || arg1 == error_mark_node)
1903 return error_mark_node;
1905 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
1906 TREE_TYPE (arg1)));
1908 /* Handle the special case of two poly_int constants faster. */
1909 if (poly_int_tree_p (arg0) && poly_int_tree_p (arg1))
1911 /* And some specific cases even faster than that. */
1912 if (code == PLUS_EXPR)
1914 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0))
1915 return arg1;
1916 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1917 return arg0;
1919 else if (code == MINUS_EXPR)
1921 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1922 return arg0;
1924 else if (code == MULT_EXPR)
1926 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0))
1927 return arg1;
1930 /* Handle general case of two integer constants. For sizetype
1931 constant calculations we always want to know about overflow,
1932 even in the unsigned case. */
1933 tree res = int_const_binop (code, arg0, arg1, -1);
1934 if (res != NULL_TREE)
1935 return res;
1938 return fold_build2_loc (loc, code, type, arg0, arg1);
1941 /* Given two values, either both of sizetype or both of bitsizetype,
1942 compute the difference between the two values. Return the value
1943 in signed type corresponding to the type of the operands. */
1945 tree
1946 size_diffop_loc (location_t loc, tree arg0, tree arg1)
1948 tree type = TREE_TYPE (arg0);
1949 tree ctype;
1951 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
1952 TREE_TYPE (arg1)));
1954 /* If the type is already signed, just do the simple thing. */
1955 if (!TYPE_UNSIGNED (type))
1956 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1);
1958 if (type == sizetype)
1959 ctype = ssizetype;
1960 else if (type == bitsizetype)
1961 ctype = sbitsizetype;
1962 else
1963 ctype = signed_type_for (type);
1965 /* If either operand is not a constant, do the conversions to the signed
1966 type and subtract. The hardware will do the right thing with any
1967 overflow in the subtraction. */
1968 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1969 return size_binop_loc (loc, MINUS_EXPR,
1970 fold_convert_loc (loc, ctype, arg0),
1971 fold_convert_loc (loc, ctype, arg1));
1973 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1974 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1975 overflow) and negate (which can't either). Special-case a result
1976 of zero while we're here. */
1977 if (tree_int_cst_equal (arg0, arg1))
1978 return build_int_cst (ctype, 0);
1979 else if (tree_int_cst_lt (arg1, arg0))
1980 return fold_convert_loc (loc, ctype,
1981 size_binop_loc (loc, MINUS_EXPR, arg0, arg1));
1982 else
1983 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0),
1984 fold_convert_loc (loc, ctype,
1985 size_binop_loc (loc,
1986 MINUS_EXPR,
1987 arg1, arg0)));
1990 /* A subroutine of fold_convert_const handling conversions of an
1991 INTEGER_CST to another integer type. */
1993 static tree
1994 fold_convert_const_int_from_int (tree type, const_tree arg1)
1996 /* Given an integer constant, make new constant with new type,
1997 appropriately sign-extended or truncated. Use widest_int
1998 so that any extension is done according ARG1's type. */
1999 return force_fit_type (type, wi::to_widest (arg1),
2000 !POINTER_TYPE_P (TREE_TYPE (arg1)),
2001 TREE_OVERFLOW (arg1));
2004 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2005 to an integer type. */
2007 static tree
2008 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
2010 bool overflow = false;
2011 tree t;
2013 /* The following code implements the floating point to integer
2014 conversion rules required by the Java Language Specification,
2015 that IEEE NaNs are mapped to zero and values that overflow
2016 the target precision saturate, i.e. values greater than
2017 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
2018 are mapped to INT_MIN. These semantics are allowed by the
2019 C and C++ standards that simply state that the behavior of
2020 FP-to-integer conversion is unspecified upon overflow. */
2022 wide_int val;
2023 REAL_VALUE_TYPE r;
2024 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
2026 switch (code)
2028 case FIX_TRUNC_EXPR:
2029 real_trunc (&r, VOIDmode, &x);
2030 break;
2032 default:
2033 gcc_unreachable ();
2036 /* If R is NaN, return zero and show we have an overflow. */
2037 if (REAL_VALUE_ISNAN (r))
2039 overflow = true;
2040 val = wi::zero (TYPE_PRECISION (type));
2043 /* See if R is less than the lower bound or greater than the
2044 upper bound. */
2046 if (! overflow)
2048 tree lt = TYPE_MIN_VALUE (type);
2049 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
2050 if (real_less (&r, &l))
2052 overflow = true;
2053 val = wi::to_wide (lt);
2057 if (! overflow)
2059 tree ut = TYPE_MAX_VALUE (type);
2060 if (ut)
2062 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
2063 if (real_less (&u, &r))
2065 overflow = true;
2066 val = wi::to_wide (ut);
2071 if (! overflow)
2072 val = real_to_integer (&r, &overflow, TYPE_PRECISION (type));
2074 t = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (arg1));
2075 return t;
2078 /* A subroutine of fold_convert_const handling conversions of a
2079 FIXED_CST to an integer type. */
2081 static tree
2082 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
2084 tree t;
2085 double_int temp, temp_trunc;
2086 scalar_mode mode;
2088 /* Right shift FIXED_CST to temp by fbit. */
2089 temp = TREE_FIXED_CST (arg1).data;
2090 mode = TREE_FIXED_CST (arg1).mode;
2091 if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT)
2093 temp = temp.rshift (GET_MODE_FBIT (mode),
2094 HOST_BITS_PER_DOUBLE_INT,
2095 SIGNED_FIXED_POINT_MODE_P (mode));
2097 /* Left shift temp to temp_trunc by fbit. */
2098 temp_trunc = temp.lshift (GET_MODE_FBIT (mode),
2099 HOST_BITS_PER_DOUBLE_INT,
2100 SIGNED_FIXED_POINT_MODE_P (mode));
2102 else
2104 temp = double_int_zero;
2105 temp_trunc = double_int_zero;
2108 /* If FIXED_CST is negative, we need to round the value toward 0.
2109 By checking if the fractional bits are not zero to add 1 to temp. */
2110 if (SIGNED_FIXED_POINT_MODE_P (mode)
2111 && temp_trunc.is_negative ()
2112 && TREE_FIXED_CST (arg1).data != temp_trunc)
2113 temp += double_int_one;
2115 /* Given a fixed-point constant, make new constant with new type,
2116 appropriately sign-extended or truncated. */
2117 t = force_fit_type (type, temp, -1,
2118 (temp.is_negative ()
2119 && (TYPE_UNSIGNED (type)
2120 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
2121 | TREE_OVERFLOW (arg1));
2123 return t;
2126 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2127 to another floating point type. */
2129 static tree
2130 fold_convert_const_real_from_real (tree type, const_tree arg1)
2132 REAL_VALUE_TYPE value;
2133 tree t;
2135 /* Don't perform the operation if flag_signaling_nans is on
2136 and the operand is a signaling NaN. */
2137 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1)))
2138 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1)))
2139 return NULL_TREE;
2141 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
2142 t = build_real (type, value);
2144 /* If converting an infinity or NAN to a representation that doesn't
2145 have one, set the overflow bit so that we can produce some kind of
2146 error message at the appropriate point if necessary. It's not the
2147 most user-friendly message, but it's better than nothing. */
2148 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1))
2149 && !MODE_HAS_INFINITIES (TYPE_MODE (type)))
2150 TREE_OVERFLOW (t) = 1;
2151 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
2152 && !MODE_HAS_NANS (TYPE_MODE (type)))
2153 TREE_OVERFLOW (t) = 1;
2154 /* Regular overflow, conversion produced an infinity in a mode that
2155 can't represent them. */
2156 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type))
2157 && REAL_VALUE_ISINF (value)
2158 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1)))
2159 TREE_OVERFLOW (t) = 1;
2160 else
2161 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2162 return t;
2165 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2166 to a floating point type. */
2168 static tree
2169 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
2171 REAL_VALUE_TYPE value;
2172 tree t;
2174 real_convert_from_fixed (&value, SCALAR_FLOAT_TYPE_MODE (type),
2175 &TREE_FIXED_CST (arg1));
2176 t = build_real (type, value);
2178 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2179 return t;
2182 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2183 to another fixed-point type. */
2185 static tree
2186 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
2188 FIXED_VALUE_TYPE value;
2189 tree t;
2190 bool overflow_p;
2192 overflow_p = fixed_convert (&value, SCALAR_TYPE_MODE (type),
2193 &TREE_FIXED_CST (arg1), TYPE_SATURATING (type));
2194 t = build_fixed (type, value);
2196 /* Propagate overflow flags. */
2197 if (overflow_p | TREE_OVERFLOW (arg1))
2198 TREE_OVERFLOW (t) = 1;
2199 return t;
2202 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2203 to a fixed-point type. */
2205 static tree
2206 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
2208 FIXED_VALUE_TYPE value;
2209 tree t;
2210 bool overflow_p;
2211 double_int di;
2213 gcc_assert (TREE_INT_CST_NUNITS (arg1) <= 2);
2215 di.low = TREE_INT_CST_ELT (arg1, 0);
2216 if (TREE_INT_CST_NUNITS (arg1) == 1)
2217 di.high = (HOST_WIDE_INT) di.low < 0 ? HOST_WIDE_INT_M1 : 0;
2218 else
2219 di.high = TREE_INT_CST_ELT (arg1, 1);
2221 overflow_p = fixed_convert_from_int (&value, SCALAR_TYPE_MODE (type), di,
2222 TYPE_UNSIGNED (TREE_TYPE (arg1)),
2223 TYPE_SATURATING (type));
2224 t = build_fixed (type, value);
2226 /* Propagate overflow flags. */
2227 if (overflow_p | TREE_OVERFLOW (arg1))
2228 TREE_OVERFLOW (t) = 1;
2229 return t;
2232 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2233 to a fixed-point type. */
2235 static tree
2236 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
2238 FIXED_VALUE_TYPE value;
2239 tree t;
2240 bool overflow_p;
2242 overflow_p = fixed_convert_from_real (&value, SCALAR_TYPE_MODE (type),
2243 &TREE_REAL_CST (arg1),
2244 TYPE_SATURATING (type));
2245 t = build_fixed (type, value);
2247 /* Propagate overflow flags. */
2248 if (overflow_p | TREE_OVERFLOW (arg1))
2249 TREE_OVERFLOW (t) = 1;
2250 return t;
2253 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2254 type TYPE. If no simplification can be done return NULL_TREE. */
2256 static tree
2257 fold_convert_const (enum tree_code code, tree type, tree arg1)
2259 tree arg_type = TREE_TYPE (arg1);
2260 if (arg_type == type)
2261 return arg1;
2263 /* We can't widen types, since the runtime value could overflow the
2264 original type before being extended to the new type. */
2265 if (POLY_INT_CST_P (arg1)
2266 && (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
2267 && TYPE_PRECISION (type) <= TYPE_PRECISION (arg_type))
2268 return build_poly_int_cst (type,
2269 poly_wide_int::from (poly_int_cst_value (arg1),
2270 TYPE_PRECISION (type),
2271 TYPE_SIGN (arg_type)));
2273 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
2274 || TREE_CODE (type) == OFFSET_TYPE)
2276 if (TREE_CODE (arg1) == INTEGER_CST)
2277 return fold_convert_const_int_from_int (type, arg1);
2278 else if (TREE_CODE (arg1) == REAL_CST)
2279 return fold_convert_const_int_from_real (code, type, arg1);
2280 else if (TREE_CODE (arg1) == FIXED_CST)
2281 return fold_convert_const_int_from_fixed (type, arg1);
2283 else if (TREE_CODE (type) == REAL_TYPE)
2285 if (TREE_CODE (arg1) == INTEGER_CST)
2286 return build_real_from_int_cst (type, arg1);
2287 else if (TREE_CODE (arg1) == REAL_CST)
2288 return fold_convert_const_real_from_real (type, arg1);
2289 else if (TREE_CODE (arg1) == FIXED_CST)
2290 return fold_convert_const_real_from_fixed (type, arg1);
2292 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
2294 if (TREE_CODE (arg1) == FIXED_CST)
2295 return fold_convert_const_fixed_from_fixed (type, arg1);
2296 else if (TREE_CODE (arg1) == INTEGER_CST)
2297 return fold_convert_const_fixed_from_int (type, arg1);
2298 else if (TREE_CODE (arg1) == REAL_CST)
2299 return fold_convert_const_fixed_from_real (type, arg1);
2301 else if (TREE_CODE (type) == VECTOR_TYPE)
2303 if (TREE_CODE (arg1) == VECTOR_CST
2304 && known_eq (TYPE_VECTOR_SUBPARTS (type), VECTOR_CST_NELTS (arg1)))
2306 tree elttype = TREE_TYPE (type);
2307 tree arg1_elttype = TREE_TYPE (TREE_TYPE (arg1));
2308 /* We can't handle steps directly when extending, since the
2309 values need to wrap at the original precision first. */
2310 bool step_ok_p
2311 = (INTEGRAL_TYPE_P (elttype)
2312 && INTEGRAL_TYPE_P (arg1_elttype)
2313 && TYPE_PRECISION (elttype) <= TYPE_PRECISION (arg1_elttype));
2314 tree_vector_builder v;
2315 if (!v.new_unary_operation (type, arg1, step_ok_p))
2316 return NULL_TREE;
2317 unsigned int len = v.encoded_nelts ();
2318 for (unsigned int i = 0; i < len; ++i)
2320 tree elt = VECTOR_CST_ELT (arg1, i);
2321 tree cvt = fold_convert_const (code, elttype, elt);
2322 if (cvt == NULL_TREE)
2323 return NULL_TREE;
2324 v.quick_push (cvt);
2326 return v.build ();
2329 return NULL_TREE;
2332 /* Construct a vector of zero elements of vector type TYPE. */
2334 static tree
2335 build_zero_vector (tree type)
2337 tree t;
2339 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2340 return build_vector_from_val (type, t);
2343 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2345 bool
2346 fold_convertible_p (const_tree type, const_tree arg)
2348 tree orig = TREE_TYPE (arg);
2350 if (type == orig)
2351 return true;
2353 if (TREE_CODE (arg) == ERROR_MARK
2354 || TREE_CODE (type) == ERROR_MARK
2355 || TREE_CODE (orig) == ERROR_MARK)
2356 return false;
2358 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2359 return true;
2361 switch (TREE_CODE (type))
2363 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2364 case POINTER_TYPE: case REFERENCE_TYPE:
2365 case OFFSET_TYPE:
2366 return (INTEGRAL_TYPE_P (orig)
2367 || (POINTER_TYPE_P (orig)
2368 && TYPE_PRECISION (type) <= TYPE_PRECISION (orig))
2369 || TREE_CODE (orig) == OFFSET_TYPE);
2371 case REAL_TYPE:
2372 case FIXED_POINT_TYPE:
2373 case VECTOR_TYPE:
2374 case VOID_TYPE:
2375 return TREE_CODE (type) == TREE_CODE (orig);
2377 default:
2378 return false;
2382 /* Convert expression ARG to type TYPE. Used by the middle-end for
2383 simple conversions in preference to calling the front-end's convert. */
2385 tree
2386 fold_convert_loc (location_t loc, tree type, tree arg)
2388 tree orig = TREE_TYPE (arg);
2389 tree tem;
2391 if (type == orig)
2392 return arg;
2394 if (TREE_CODE (arg) == ERROR_MARK
2395 || TREE_CODE (type) == ERROR_MARK
2396 || TREE_CODE (orig) == ERROR_MARK)
2397 return error_mark_node;
2399 switch (TREE_CODE (type))
2401 case POINTER_TYPE:
2402 case REFERENCE_TYPE:
2403 /* Handle conversions between pointers to different address spaces. */
2404 if (POINTER_TYPE_P (orig)
2405 && (TYPE_ADDR_SPACE (TREE_TYPE (type))
2406 != TYPE_ADDR_SPACE (TREE_TYPE (orig))))
2407 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg);
2408 /* fall through */
2410 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2411 case OFFSET_TYPE:
2412 if (TREE_CODE (arg) == INTEGER_CST)
2414 tem = fold_convert_const (NOP_EXPR, type, arg);
2415 if (tem != NULL_TREE)
2416 return tem;
2418 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2419 || TREE_CODE (orig) == OFFSET_TYPE)
2420 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2421 if (TREE_CODE (orig) == COMPLEX_TYPE)
2422 return fold_convert_loc (loc, type,
2423 fold_build1_loc (loc, REALPART_EXPR,
2424 TREE_TYPE (orig), arg));
2425 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2426 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2427 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2429 case REAL_TYPE:
2430 if (TREE_CODE (arg) == INTEGER_CST)
2432 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2433 if (tem != NULL_TREE)
2434 return tem;
2436 else if (TREE_CODE (arg) == REAL_CST)
2438 tem = fold_convert_const (NOP_EXPR, type, arg);
2439 if (tem != NULL_TREE)
2440 return tem;
2442 else if (TREE_CODE (arg) == FIXED_CST)
2444 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2445 if (tem != NULL_TREE)
2446 return tem;
2449 switch (TREE_CODE (orig))
2451 case INTEGER_TYPE:
2452 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2453 case POINTER_TYPE: case REFERENCE_TYPE:
2454 return fold_build1_loc (loc, FLOAT_EXPR, type, arg);
2456 case REAL_TYPE:
2457 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2459 case FIXED_POINT_TYPE:
2460 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2462 case COMPLEX_TYPE:
2463 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2464 return fold_convert_loc (loc, type, tem);
2466 default:
2467 gcc_unreachable ();
2470 case FIXED_POINT_TYPE:
2471 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
2472 || TREE_CODE (arg) == REAL_CST)
2474 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2475 if (tem != NULL_TREE)
2476 goto fold_convert_exit;
2479 switch (TREE_CODE (orig))
2481 case FIXED_POINT_TYPE:
2482 case INTEGER_TYPE:
2483 case ENUMERAL_TYPE:
2484 case BOOLEAN_TYPE:
2485 case REAL_TYPE:
2486 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2488 case COMPLEX_TYPE:
2489 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2490 return fold_convert_loc (loc, type, tem);
2492 default:
2493 gcc_unreachable ();
2496 case COMPLEX_TYPE:
2497 switch (TREE_CODE (orig))
2499 case INTEGER_TYPE:
2500 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2501 case POINTER_TYPE: case REFERENCE_TYPE:
2502 case REAL_TYPE:
2503 case FIXED_POINT_TYPE:
2504 return fold_build2_loc (loc, COMPLEX_EXPR, type,
2505 fold_convert_loc (loc, TREE_TYPE (type), arg),
2506 fold_convert_loc (loc, TREE_TYPE (type),
2507 integer_zero_node));
2508 case COMPLEX_TYPE:
2510 tree rpart, ipart;
2512 if (TREE_CODE (arg) == COMPLEX_EXPR)
2514 rpart = fold_convert_loc (loc, TREE_TYPE (type),
2515 TREE_OPERAND (arg, 0));
2516 ipart = fold_convert_loc (loc, TREE_TYPE (type),
2517 TREE_OPERAND (arg, 1));
2518 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2521 arg = save_expr (arg);
2522 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2523 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg);
2524 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart);
2525 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart);
2526 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2529 default:
2530 gcc_unreachable ();
2533 case VECTOR_TYPE:
2534 if (integer_zerop (arg))
2535 return build_zero_vector (type);
2536 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2537 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2538 || TREE_CODE (orig) == VECTOR_TYPE);
2539 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2541 case VOID_TYPE:
2542 tem = fold_ignored_result (arg);
2543 return fold_build1_loc (loc, NOP_EXPR, type, tem);
2545 default:
2546 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2547 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2548 gcc_unreachable ();
2550 fold_convert_exit:
2551 protected_set_expr_location_unshare (tem, loc);
2552 return tem;
2555 /* Return false if expr can be assumed not to be an lvalue, true
2556 otherwise. */
2558 static bool
2559 maybe_lvalue_p (const_tree x)
2561 /* We only need to wrap lvalue tree codes. */
2562 switch (TREE_CODE (x))
2564 case VAR_DECL:
2565 case PARM_DECL:
2566 case RESULT_DECL:
2567 case LABEL_DECL:
2568 case FUNCTION_DECL:
2569 case SSA_NAME:
2571 case COMPONENT_REF:
2572 case MEM_REF:
2573 case INDIRECT_REF:
2574 case ARRAY_REF:
2575 case ARRAY_RANGE_REF:
2576 case BIT_FIELD_REF:
2577 case OBJ_TYPE_REF:
2579 case REALPART_EXPR:
2580 case IMAGPART_EXPR:
2581 case PREINCREMENT_EXPR:
2582 case PREDECREMENT_EXPR:
2583 case SAVE_EXPR:
2584 case TRY_CATCH_EXPR:
2585 case WITH_CLEANUP_EXPR:
2586 case COMPOUND_EXPR:
2587 case MODIFY_EXPR:
2588 case TARGET_EXPR:
2589 case COND_EXPR:
2590 case BIND_EXPR:
2591 break;
2593 default:
2594 /* Assume the worst for front-end tree codes. */
2595 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2596 break;
2597 return false;
2600 return true;
2603 /* Return an expr equal to X but certainly not valid as an lvalue. */
2605 tree
2606 non_lvalue_loc (location_t loc, tree x)
2608 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2609 us. */
2610 if (in_gimple_form)
2611 return x;
2613 if (! maybe_lvalue_p (x))
2614 return x;
2615 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x);
2618 /* When pedantic, return an expr equal to X but certainly not valid as a
2619 pedantic lvalue. Otherwise, return X. */
2621 static tree
2622 pedantic_non_lvalue_loc (location_t loc, tree x)
2624 return protected_set_expr_location_unshare (x, loc);
2627 /* Given a tree comparison code, return the code that is the logical inverse.
2628 It is generally not safe to do this for floating-point comparisons, except
2629 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2630 ERROR_MARK in this case. */
2632 enum tree_code
2633 invert_tree_comparison (enum tree_code code, bool honor_nans)
2635 if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR
2636 && code != ORDERED_EXPR && code != UNORDERED_EXPR)
2637 return ERROR_MARK;
2639 switch (code)
2641 case EQ_EXPR:
2642 return NE_EXPR;
2643 case NE_EXPR:
2644 return EQ_EXPR;
2645 case GT_EXPR:
2646 return honor_nans ? UNLE_EXPR : LE_EXPR;
2647 case GE_EXPR:
2648 return honor_nans ? UNLT_EXPR : LT_EXPR;
2649 case LT_EXPR:
2650 return honor_nans ? UNGE_EXPR : GE_EXPR;
2651 case LE_EXPR:
2652 return honor_nans ? UNGT_EXPR : GT_EXPR;
2653 case LTGT_EXPR:
2654 return UNEQ_EXPR;
2655 case UNEQ_EXPR:
2656 return LTGT_EXPR;
2657 case UNGT_EXPR:
2658 return LE_EXPR;
2659 case UNGE_EXPR:
2660 return LT_EXPR;
2661 case UNLT_EXPR:
2662 return GE_EXPR;
2663 case UNLE_EXPR:
2664 return GT_EXPR;
2665 case ORDERED_EXPR:
2666 return UNORDERED_EXPR;
2667 case UNORDERED_EXPR:
2668 return ORDERED_EXPR;
2669 default:
2670 gcc_unreachable ();
2674 /* Similar, but return the comparison that results if the operands are
2675 swapped. This is safe for floating-point. */
2677 enum tree_code
2678 swap_tree_comparison (enum tree_code code)
2680 switch (code)
2682 case EQ_EXPR:
2683 case NE_EXPR:
2684 case ORDERED_EXPR:
2685 case UNORDERED_EXPR:
2686 case LTGT_EXPR:
2687 case UNEQ_EXPR:
2688 return code;
2689 case GT_EXPR:
2690 return LT_EXPR;
2691 case GE_EXPR:
2692 return LE_EXPR;
2693 case LT_EXPR:
2694 return GT_EXPR;
2695 case LE_EXPR:
2696 return GE_EXPR;
2697 case UNGT_EXPR:
2698 return UNLT_EXPR;
2699 case UNGE_EXPR:
2700 return UNLE_EXPR;
2701 case UNLT_EXPR:
2702 return UNGT_EXPR;
2703 case UNLE_EXPR:
2704 return UNGE_EXPR;
2705 default:
2706 gcc_unreachable ();
2711 /* Convert a comparison tree code from an enum tree_code representation
2712 into a compcode bit-based encoding. This function is the inverse of
2713 compcode_to_comparison. */
2715 static enum comparison_code
2716 comparison_to_compcode (enum tree_code code)
2718 switch (code)
2720 case LT_EXPR:
2721 return COMPCODE_LT;
2722 case EQ_EXPR:
2723 return COMPCODE_EQ;
2724 case LE_EXPR:
2725 return COMPCODE_LE;
2726 case GT_EXPR:
2727 return COMPCODE_GT;
2728 case NE_EXPR:
2729 return COMPCODE_NE;
2730 case GE_EXPR:
2731 return COMPCODE_GE;
2732 case ORDERED_EXPR:
2733 return COMPCODE_ORD;
2734 case UNORDERED_EXPR:
2735 return COMPCODE_UNORD;
2736 case UNLT_EXPR:
2737 return COMPCODE_UNLT;
2738 case UNEQ_EXPR:
2739 return COMPCODE_UNEQ;
2740 case UNLE_EXPR:
2741 return COMPCODE_UNLE;
2742 case UNGT_EXPR:
2743 return COMPCODE_UNGT;
2744 case LTGT_EXPR:
2745 return COMPCODE_LTGT;
2746 case UNGE_EXPR:
2747 return COMPCODE_UNGE;
2748 default:
2749 gcc_unreachable ();
2753 /* Convert a compcode bit-based encoding of a comparison operator back
2754 to GCC's enum tree_code representation. This function is the
2755 inverse of comparison_to_compcode. */
2757 static enum tree_code
2758 compcode_to_comparison (enum comparison_code code)
2760 switch (code)
2762 case COMPCODE_LT:
2763 return LT_EXPR;
2764 case COMPCODE_EQ:
2765 return EQ_EXPR;
2766 case COMPCODE_LE:
2767 return LE_EXPR;
2768 case COMPCODE_GT:
2769 return GT_EXPR;
2770 case COMPCODE_NE:
2771 return NE_EXPR;
2772 case COMPCODE_GE:
2773 return GE_EXPR;
2774 case COMPCODE_ORD:
2775 return ORDERED_EXPR;
2776 case COMPCODE_UNORD:
2777 return UNORDERED_EXPR;
2778 case COMPCODE_UNLT:
2779 return UNLT_EXPR;
2780 case COMPCODE_UNEQ:
2781 return UNEQ_EXPR;
2782 case COMPCODE_UNLE:
2783 return UNLE_EXPR;
2784 case COMPCODE_UNGT:
2785 return UNGT_EXPR;
2786 case COMPCODE_LTGT:
2787 return LTGT_EXPR;
2788 case COMPCODE_UNGE:
2789 return UNGE_EXPR;
2790 default:
2791 gcc_unreachable ();
2795 /* Return true if COND1 tests the opposite condition of COND2. */
2797 bool
2798 inverse_conditions_p (const_tree cond1, const_tree cond2)
2800 return (COMPARISON_CLASS_P (cond1)
2801 && COMPARISON_CLASS_P (cond2)
2802 && (invert_tree_comparison
2803 (TREE_CODE (cond1),
2804 HONOR_NANS (TREE_OPERAND (cond1, 0))) == TREE_CODE (cond2))
2805 && operand_equal_p (TREE_OPERAND (cond1, 0),
2806 TREE_OPERAND (cond2, 0), 0)
2807 && operand_equal_p (TREE_OPERAND (cond1, 1),
2808 TREE_OPERAND (cond2, 1), 0));
2811 /* Return a tree for the comparison which is the combination of
2812 doing the AND or OR (depending on CODE) of the two operations LCODE
2813 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2814 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2815 if this makes the transformation invalid. */
2817 tree
2818 combine_comparisons (location_t loc,
2819 enum tree_code code, enum tree_code lcode,
2820 enum tree_code rcode, tree truth_type,
2821 tree ll_arg, tree lr_arg)
2823 bool honor_nans = HONOR_NANS (ll_arg);
2824 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2825 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2826 int compcode;
2828 switch (code)
2830 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2831 compcode = lcompcode & rcompcode;
2832 break;
2834 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2835 compcode = lcompcode | rcompcode;
2836 break;
2838 default:
2839 return NULL_TREE;
2842 if (!honor_nans)
2844 /* Eliminate unordered comparisons, as well as LTGT and ORD
2845 which are not used unless the mode has NaNs. */
2846 compcode &= ~COMPCODE_UNORD;
2847 if (compcode == COMPCODE_LTGT)
2848 compcode = COMPCODE_NE;
2849 else if (compcode == COMPCODE_ORD)
2850 compcode = COMPCODE_TRUE;
2852 else if (flag_trapping_math)
2854 /* Check that the original operation and the optimized ones will trap
2855 under the same condition. */
2856 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2857 && (lcompcode != COMPCODE_EQ)
2858 && (lcompcode != COMPCODE_ORD);
2859 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2860 && (rcompcode != COMPCODE_EQ)
2861 && (rcompcode != COMPCODE_ORD);
2862 bool trap = (compcode & COMPCODE_UNORD) == 0
2863 && (compcode != COMPCODE_EQ)
2864 && (compcode != COMPCODE_ORD);
2866 /* In a short-circuited boolean expression the LHS might be
2867 such that the RHS, if evaluated, will never trap. For
2868 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2869 if neither x nor y is NaN. (This is a mixed blessing: for
2870 example, the expression above will never trap, hence
2871 optimizing it to x < y would be invalid). */
2872 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2873 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2874 rtrap = false;
2876 /* If the comparison was short-circuited, and only the RHS
2877 trapped, we may now generate a spurious trap. */
2878 if (rtrap && !ltrap
2879 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2880 return NULL_TREE;
2882 /* If we changed the conditions that cause a trap, we lose. */
2883 if ((ltrap || rtrap) != trap)
2884 return NULL_TREE;
2887 if (compcode == COMPCODE_TRUE)
2888 return constant_boolean_node (true, truth_type);
2889 else if (compcode == COMPCODE_FALSE)
2890 return constant_boolean_node (false, truth_type);
2891 else
2893 enum tree_code tcode;
2895 tcode = compcode_to_comparison ((enum comparison_code) compcode);
2896 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg);
2900 /* Return nonzero if two operands (typically of the same tree node)
2901 are necessarily equal. FLAGS modifies behavior as follows:
2903 If OEP_ONLY_CONST is set, only return nonzero for constants.
2904 This function tests whether the operands are indistinguishable;
2905 it does not test whether they are equal using C's == operation.
2906 The distinction is important for IEEE floating point, because
2907 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2908 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2910 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2911 even though it may hold multiple values during a function.
2912 This is because a GCC tree node guarantees that nothing else is
2913 executed between the evaluation of its "operands" (which may often
2914 be evaluated in arbitrary order). Hence if the operands themselves
2915 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2916 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2917 unset means assuming isochronic (or instantaneous) tree equivalence.
2918 Unless comparing arbitrary expression trees, such as from different
2919 statements, this flag can usually be left unset.
2921 If OEP_PURE_SAME is set, then pure functions with identical arguments
2922 are considered the same. It is used when the caller has other ways
2923 to ensure that global memory is unchanged in between.
2925 If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects,
2926 not values of expressions.
2928 If OEP_LEXICOGRAPHIC is set, then also handle expressions with side-effects
2929 such as MODIFY_EXPR, RETURN_EXPR, as well as STATEMENT_LISTs.
2931 Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on
2932 any operand with side effect. This is unnecesarily conservative in the
2933 case we know that arg0 and arg1 are in disjoint code paths (such as in
2934 ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing
2935 addresses with TREE_CONSTANT flag set so we know that &var == &var
2936 even if var is volatile. */
2939 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
2941 /* When checking, verify at the outermost operand_equal_p call that
2942 if operand_equal_p returns non-zero then ARG0 and ARG1 has the same
2943 hash value. */
2944 if (flag_checking && !(flags & OEP_NO_HASH_CHECK))
2946 if (operand_equal_p (arg0, arg1, flags | OEP_NO_HASH_CHECK))
2948 if (arg0 != arg1)
2950 inchash::hash hstate0 (0), hstate1 (0);
2951 inchash::add_expr (arg0, hstate0, flags | OEP_HASH_CHECK);
2952 inchash::add_expr (arg1, hstate1, flags | OEP_HASH_CHECK);
2953 hashval_t h0 = hstate0.end ();
2954 hashval_t h1 = hstate1.end ();
2955 gcc_assert (h0 == h1);
2957 return 1;
2959 else
2960 return 0;
2963 /* If either is ERROR_MARK, they aren't equal. */
2964 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK
2965 || TREE_TYPE (arg0) == error_mark_node
2966 || TREE_TYPE (arg1) == error_mark_node)
2967 return 0;
2969 /* Similar, if either does not have a type (like a released SSA name),
2970 they aren't equal. */
2971 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1))
2972 return 0;
2974 /* We cannot consider pointers to different address space equal. */
2975 if (POINTER_TYPE_P (TREE_TYPE (arg0))
2976 && POINTER_TYPE_P (TREE_TYPE (arg1))
2977 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
2978 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1)))))
2979 return 0;
2981 /* Check equality of integer constants before bailing out due to
2982 precision differences. */
2983 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2985 /* Address of INTEGER_CST is not defined; check that we did not forget
2986 to drop the OEP_ADDRESS_OF flags. */
2987 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
2988 return tree_int_cst_equal (arg0, arg1);
2991 if (!(flags & OEP_ADDRESS_OF))
2993 /* If both types don't have the same signedness, then we can't consider
2994 them equal. We must check this before the STRIP_NOPS calls
2995 because they may change the signedness of the arguments. As pointers
2996 strictly don't have a signedness, require either two pointers or
2997 two non-pointers as well. */
2998 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
2999 || POINTER_TYPE_P (TREE_TYPE (arg0))
3000 != POINTER_TYPE_P (TREE_TYPE (arg1)))
3001 return 0;
3003 /* If both types don't have the same precision, then it is not safe
3004 to strip NOPs. */
3005 if (element_precision (TREE_TYPE (arg0))
3006 != element_precision (TREE_TYPE (arg1)))
3007 return 0;
3009 STRIP_NOPS (arg0);
3010 STRIP_NOPS (arg1);
3012 #if 0
3013 /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the
3014 sanity check once the issue is solved. */
3015 else
3016 /* Addresses of conversions and SSA_NAMEs (and many other things)
3017 are not defined. Check that we did not forget to drop the
3018 OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */
3019 gcc_checking_assert (!CONVERT_EXPR_P (arg0) && !CONVERT_EXPR_P (arg1)
3020 && TREE_CODE (arg0) != SSA_NAME);
3021 #endif
3023 /* In case both args are comparisons but with different comparison
3024 code, try to swap the comparison operands of one arg to produce
3025 a match and compare that variant. */
3026 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3027 && COMPARISON_CLASS_P (arg0)
3028 && COMPARISON_CLASS_P (arg1))
3030 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
3032 if (TREE_CODE (arg0) == swap_code)
3033 return operand_equal_p (TREE_OPERAND (arg0, 0),
3034 TREE_OPERAND (arg1, 1), flags)
3035 && operand_equal_p (TREE_OPERAND (arg0, 1),
3036 TREE_OPERAND (arg1, 0), flags);
3039 if (TREE_CODE (arg0) != TREE_CODE (arg1))
3041 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
3042 if (CONVERT_EXPR_P (arg0) && CONVERT_EXPR_P (arg1))
3044 else if (flags & OEP_ADDRESS_OF)
3046 /* If we are interested in comparing addresses ignore
3047 MEM_REF wrappings of the base that can appear just for
3048 TBAA reasons. */
3049 if (TREE_CODE (arg0) == MEM_REF
3050 && DECL_P (arg1)
3051 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ADDR_EXPR
3052 && TREE_OPERAND (TREE_OPERAND (arg0, 0), 0) == arg1
3053 && integer_zerop (TREE_OPERAND (arg0, 1)))
3054 return 1;
3055 else if (TREE_CODE (arg1) == MEM_REF
3056 && DECL_P (arg0)
3057 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ADDR_EXPR
3058 && TREE_OPERAND (TREE_OPERAND (arg1, 0), 0) == arg0
3059 && integer_zerop (TREE_OPERAND (arg1, 1)))
3060 return 1;
3061 return 0;
3063 else
3064 return 0;
3067 /* When not checking adddresses, this is needed for conversions and for
3068 COMPONENT_REF. Might as well play it safe and always test this. */
3069 if (TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
3070 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
3071 || (TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1))
3072 && !(flags & OEP_ADDRESS_OF)))
3073 return 0;
3075 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
3076 We don't care about side effects in that case because the SAVE_EXPR
3077 takes care of that for us. In all other cases, two expressions are
3078 equal if they have no side effects. If we have two identical
3079 expressions with side effects that should be treated the same due
3080 to the only side effects being identical SAVE_EXPR's, that will
3081 be detected in the recursive calls below.
3082 If we are taking an invariant address of two identical objects
3083 they are necessarily equal as well. */
3084 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
3085 && (TREE_CODE (arg0) == SAVE_EXPR
3086 || (flags & OEP_MATCH_SIDE_EFFECTS)
3087 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
3088 return 1;
3090 /* Next handle constant cases, those for which we can return 1 even
3091 if ONLY_CONST is set. */
3092 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
3093 switch (TREE_CODE (arg0))
3095 case INTEGER_CST:
3096 return tree_int_cst_equal (arg0, arg1);
3098 case FIXED_CST:
3099 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
3100 TREE_FIXED_CST (arg1));
3102 case REAL_CST:
3103 if (real_identical (&TREE_REAL_CST (arg0), &TREE_REAL_CST (arg1)))
3104 return 1;
3107 if (!HONOR_SIGNED_ZEROS (arg0))
3109 /* If we do not distinguish between signed and unsigned zero,
3110 consider them equal. */
3111 if (real_zerop (arg0) && real_zerop (arg1))
3112 return 1;
3114 return 0;
3116 case VECTOR_CST:
3118 if (VECTOR_CST_LOG2_NPATTERNS (arg0)
3119 != VECTOR_CST_LOG2_NPATTERNS (arg1))
3120 return 0;
3122 if (VECTOR_CST_NELTS_PER_PATTERN (arg0)
3123 != VECTOR_CST_NELTS_PER_PATTERN (arg1))
3124 return 0;
3126 unsigned int count = vector_cst_encoded_nelts (arg0);
3127 for (unsigned int i = 0; i < count; ++i)
3128 if (!operand_equal_p (VECTOR_CST_ENCODED_ELT (arg0, i),
3129 VECTOR_CST_ENCODED_ELT (arg1, i), flags))
3130 return 0;
3131 return 1;
3134 case COMPLEX_CST:
3135 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
3136 flags)
3137 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
3138 flags));
3140 case STRING_CST:
3141 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
3142 && ! memcmp (TREE_STRING_POINTER (arg0),
3143 TREE_STRING_POINTER (arg1),
3144 TREE_STRING_LENGTH (arg0)));
3146 case ADDR_EXPR:
3147 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3148 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
3149 flags | OEP_ADDRESS_OF
3150 | OEP_MATCH_SIDE_EFFECTS);
3151 case CONSTRUCTOR:
3152 /* In GIMPLE empty constructors are allowed in initializers of
3153 aggregates. */
3154 return !CONSTRUCTOR_NELTS (arg0) && !CONSTRUCTOR_NELTS (arg1);
3155 default:
3156 break;
3159 if (flags & OEP_ONLY_CONST)
3160 return 0;
3162 /* Define macros to test an operand from arg0 and arg1 for equality and a
3163 variant that allows null and views null as being different from any
3164 non-null value. In the latter case, if either is null, the both
3165 must be; otherwise, do the normal comparison. */
3166 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
3167 TREE_OPERAND (arg1, N), flags)
3169 #define OP_SAME_WITH_NULL(N) \
3170 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
3171 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
3173 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
3175 case tcc_unary:
3176 /* Two conversions are equal only if signedness and modes match. */
3177 switch (TREE_CODE (arg0))
3179 CASE_CONVERT:
3180 case FIX_TRUNC_EXPR:
3181 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
3182 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
3183 return 0;
3184 break;
3185 default:
3186 break;
3189 return OP_SAME (0);
3192 case tcc_comparison:
3193 case tcc_binary:
3194 if (OP_SAME (0) && OP_SAME (1))
3195 return 1;
3197 /* For commutative ops, allow the other order. */
3198 return (commutative_tree_code (TREE_CODE (arg0))
3199 && operand_equal_p (TREE_OPERAND (arg0, 0),
3200 TREE_OPERAND (arg1, 1), flags)
3201 && operand_equal_p (TREE_OPERAND (arg0, 1),
3202 TREE_OPERAND (arg1, 0), flags));
3204 case tcc_reference:
3205 /* If either of the pointer (or reference) expressions we are
3206 dereferencing contain a side effect, these cannot be equal,
3207 but their addresses can be. */
3208 if ((flags & OEP_MATCH_SIDE_EFFECTS) == 0
3209 && (TREE_SIDE_EFFECTS (arg0)
3210 || TREE_SIDE_EFFECTS (arg1)))
3211 return 0;
3213 switch (TREE_CODE (arg0))
3215 case INDIRECT_REF:
3216 if (!(flags & OEP_ADDRESS_OF)
3217 && (TYPE_ALIGN (TREE_TYPE (arg0))
3218 != TYPE_ALIGN (TREE_TYPE (arg1))))
3219 return 0;
3220 flags &= ~OEP_ADDRESS_OF;
3221 return OP_SAME (0);
3223 case IMAGPART_EXPR:
3224 /* Require the same offset. */
3225 if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3226 TYPE_SIZE (TREE_TYPE (arg1)),
3227 flags & ~OEP_ADDRESS_OF))
3228 return 0;
3230 /* Fallthru. */
3231 case REALPART_EXPR:
3232 case VIEW_CONVERT_EXPR:
3233 return OP_SAME (0);
3235 case TARGET_MEM_REF:
3236 case MEM_REF:
3237 if (!(flags & OEP_ADDRESS_OF))
3239 /* Require equal access sizes */
3240 if (TYPE_SIZE (TREE_TYPE (arg0)) != TYPE_SIZE (TREE_TYPE (arg1))
3241 && (!TYPE_SIZE (TREE_TYPE (arg0))
3242 || !TYPE_SIZE (TREE_TYPE (arg1))
3243 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3244 TYPE_SIZE (TREE_TYPE (arg1)),
3245 flags)))
3246 return 0;
3247 /* Verify that access happens in similar types. */
3248 if (!types_compatible_p (TREE_TYPE (arg0), TREE_TYPE (arg1)))
3249 return 0;
3250 /* Verify that accesses are TBAA compatible. */
3251 if (!alias_ptr_types_compatible_p
3252 (TREE_TYPE (TREE_OPERAND (arg0, 1)),
3253 TREE_TYPE (TREE_OPERAND (arg1, 1)))
3254 || (MR_DEPENDENCE_CLIQUE (arg0)
3255 != MR_DEPENDENCE_CLIQUE (arg1))
3256 || (MR_DEPENDENCE_BASE (arg0)
3257 != MR_DEPENDENCE_BASE (arg1)))
3258 return 0;
3259 /* Verify that alignment is compatible. */
3260 if (TYPE_ALIGN (TREE_TYPE (arg0))
3261 != TYPE_ALIGN (TREE_TYPE (arg1)))
3262 return 0;
3264 flags &= ~OEP_ADDRESS_OF;
3265 return (OP_SAME (0) && OP_SAME (1)
3266 /* TARGET_MEM_REF require equal extra operands. */
3267 && (TREE_CODE (arg0) != TARGET_MEM_REF
3268 || (OP_SAME_WITH_NULL (2)
3269 && OP_SAME_WITH_NULL (3)
3270 && OP_SAME_WITH_NULL (4))));
3272 case ARRAY_REF:
3273 case ARRAY_RANGE_REF:
3274 if (!OP_SAME (0))
3275 return 0;
3276 flags &= ~OEP_ADDRESS_OF;
3277 /* Compare the array index by value if it is constant first as we
3278 may have different types but same value here. */
3279 return ((tree_int_cst_equal (TREE_OPERAND (arg0, 1),
3280 TREE_OPERAND (arg1, 1))
3281 || OP_SAME (1))
3282 && OP_SAME_WITH_NULL (2)
3283 && OP_SAME_WITH_NULL (3)
3284 /* Compare low bound and element size as with OEP_ADDRESS_OF
3285 we have to account for the offset of the ref. */
3286 && (TREE_TYPE (TREE_OPERAND (arg0, 0))
3287 == TREE_TYPE (TREE_OPERAND (arg1, 0))
3288 || (operand_equal_p (array_ref_low_bound
3289 (CONST_CAST_TREE (arg0)),
3290 array_ref_low_bound
3291 (CONST_CAST_TREE (arg1)), flags)
3292 && operand_equal_p (array_ref_element_size
3293 (CONST_CAST_TREE (arg0)),
3294 array_ref_element_size
3295 (CONST_CAST_TREE (arg1)),
3296 flags))));
3298 case COMPONENT_REF:
3299 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3300 may be NULL when we're called to compare MEM_EXPRs. */
3301 if (!OP_SAME_WITH_NULL (0)
3302 || !OP_SAME (1))
3303 return 0;
3304 flags &= ~OEP_ADDRESS_OF;
3305 return OP_SAME_WITH_NULL (2);
3307 case BIT_FIELD_REF:
3308 if (!OP_SAME (0))
3309 return 0;
3310 flags &= ~OEP_ADDRESS_OF;
3311 return OP_SAME (1) && OP_SAME (2);
3313 default:
3314 return 0;
3317 case tcc_expression:
3318 switch (TREE_CODE (arg0))
3320 case ADDR_EXPR:
3321 /* Be sure we pass right ADDRESS_OF flag. */
3322 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3323 return operand_equal_p (TREE_OPERAND (arg0, 0),
3324 TREE_OPERAND (arg1, 0),
3325 flags | OEP_ADDRESS_OF);
3327 case TRUTH_NOT_EXPR:
3328 return OP_SAME (0);
3330 case TRUTH_ANDIF_EXPR:
3331 case TRUTH_ORIF_EXPR:
3332 return OP_SAME (0) && OP_SAME (1);
3334 case WIDEN_MULT_PLUS_EXPR:
3335 case WIDEN_MULT_MINUS_EXPR:
3336 if (!OP_SAME (2))
3337 return 0;
3338 /* The multiplcation operands are commutative. */
3339 /* FALLTHRU */
3341 case TRUTH_AND_EXPR:
3342 case TRUTH_OR_EXPR:
3343 case TRUTH_XOR_EXPR:
3344 if (OP_SAME (0) && OP_SAME (1))
3345 return 1;
3347 /* Otherwise take into account this is a commutative operation. */
3348 return (operand_equal_p (TREE_OPERAND (arg0, 0),
3349 TREE_OPERAND (arg1, 1), flags)
3350 && operand_equal_p (TREE_OPERAND (arg0, 1),
3351 TREE_OPERAND (arg1, 0), flags));
3353 case COND_EXPR:
3354 if (! OP_SAME (1) || ! OP_SAME_WITH_NULL (2))
3355 return 0;
3356 flags &= ~OEP_ADDRESS_OF;
3357 return OP_SAME (0);
3359 case BIT_INSERT_EXPR:
3360 /* BIT_INSERT_EXPR has an implict operand as the type precision
3361 of op1. Need to check to make sure they are the same. */
3362 if (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
3363 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
3364 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 1)))
3365 != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 1))))
3366 return false;
3367 /* FALLTHRU */
3369 case VEC_COND_EXPR:
3370 case DOT_PROD_EXPR:
3371 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3373 case MODIFY_EXPR:
3374 case INIT_EXPR:
3375 case COMPOUND_EXPR:
3376 case PREDECREMENT_EXPR:
3377 case PREINCREMENT_EXPR:
3378 case POSTDECREMENT_EXPR:
3379 case POSTINCREMENT_EXPR:
3380 if (flags & OEP_LEXICOGRAPHIC)
3381 return OP_SAME (0) && OP_SAME (1);
3382 return 0;
3384 case CLEANUP_POINT_EXPR:
3385 case EXPR_STMT:
3386 case SAVE_EXPR:
3387 if (flags & OEP_LEXICOGRAPHIC)
3388 return OP_SAME (0);
3389 return 0;
3391 default:
3392 return 0;
3395 case tcc_vl_exp:
3396 switch (TREE_CODE (arg0))
3398 case CALL_EXPR:
3399 if ((CALL_EXPR_FN (arg0) == NULL_TREE)
3400 != (CALL_EXPR_FN (arg1) == NULL_TREE))
3401 /* If not both CALL_EXPRs are either internal or normal function
3402 functions, then they are not equal. */
3403 return 0;
3404 else if (CALL_EXPR_FN (arg0) == NULL_TREE)
3406 /* If the CALL_EXPRs call different internal functions, then they
3407 are not equal. */
3408 if (CALL_EXPR_IFN (arg0) != CALL_EXPR_IFN (arg1))
3409 return 0;
3411 else
3413 /* If the CALL_EXPRs call different functions, then they are not
3414 equal. */
3415 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
3416 flags))
3417 return 0;
3420 /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */
3422 unsigned int cef = call_expr_flags (arg0);
3423 if (flags & OEP_PURE_SAME)
3424 cef &= ECF_CONST | ECF_PURE;
3425 else
3426 cef &= ECF_CONST;
3427 if (!cef && !(flags & OEP_LEXICOGRAPHIC))
3428 return 0;
3431 /* Now see if all the arguments are the same. */
3433 const_call_expr_arg_iterator iter0, iter1;
3434 const_tree a0, a1;
3435 for (a0 = first_const_call_expr_arg (arg0, &iter0),
3436 a1 = first_const_call_expr_arg (arg1, &iter1);
3437 a0 && a1;
3438 a0 = next_const_call_expr_arg (&iter0),
3439 a1 = next_const_call_expr_arg (&iter1))
3440 if (! operand_equal_p (a0, a1, flags))
3441 return 0;
3443 /* If we get here and both argument lists are exhausted
3444 then the CALL_EXPRs are equal. */
3445 return ! (a0 || a1);
3447 default:
3448 return 0;
3451 case tcc_declaration:
3452 /* Consider __builtin_sqrt equal to sqrt. */
3453 return (TREE_CODE (arg0) == FUNCTION_DECL
3454 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
3455 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
3456 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
3458 case tcc_exceptional:
3459 if (TREE_CODE (arg0) == CONSTRUCTOR)
3461 /* In GIMPLE constructors are used only to build vectors from
3462 elements. Individual elements in the constructor must be
3463 indexed in increasing order and form an initial sequence.
3465 We make no effort to compare constructors in generic.
3466 (see sem_variable::equals in ipa-icf which can do so for
3467 constants). */
3468 if (!VECTOR_TYPE_P (TREE_TYPE (arg0))
3469 || !VECTOR_TYPE_P (TREE_TYPE (arg1)))
3470 return 0;
3472 /* Be sure that vectors constructed have the same representation.
3473 We only tested element precision and modes to match.
3474 Vectors may be BLKmode and thus also check that the number of
3475 parts match. */
3476 if (maybe_ne (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)),
3477 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1))))
3478 return 0;
3480 vec<constructor_elt, va_gc> *v0 = CONSTRUCTOR_ELTS (arg0);
3481 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (arg1);
3482 unsigned int len = vec_safe_length (v0);
3484 if (len != vec_safe_length (v1))
3485 return 0;
3487 for (unsigned int i = 0; i < len; i++)
3489 constructor_elt *c0 = &(*v0)[i];
3490 constructor_elt *c1 = &(*v1)[i];
3492 if (!operand_equal_p (c0->value, c1->value, flags)
3493 /* In GIMPLE the indexes can be either NULL or matching i.
3494 Double check this so we won't get false
3495 positives for GENERIC. */
3496 || (c0->index
3497 && (TREE_CODE (c0->index) != INTEGER_CST
3498 || !compare_tree_int (c0->index, i)))
3499 || (c1->index
3500 && (TREE_CODE (c1->index) != INTEGER_CST
3501 || !compare_tree_int (c1->index, i))))
3502 return 0;
3504 return 1;
3506 else if (TREE_CODE (arg0) == STATEMENT_LIST
3507 && (flags & OEP_LEXICOGRAPHIC))
3509 /* Compare the STATEMENT_LISTs. */
3510 tree_stmt_iterator tsi1, tsi2;
3511 tree body1 = CONST_CAST_TREE (arg0);
3512 tree body2 = CONST_CAST_TREE (arg1);
3513 for (tsi1 = tsi_start (body1), tsi2 = tsi_start (body2); ;
3514 tsi_next (&tsi1), tsi_next (&tsi2))
3516 /* The lists don't have the same number of statements. */
3517 if (tsi_end_p (tsi1) ^ tsi_end_p (tsi2))
3518 return 0;
3519 if (tsi_end_p (tsi1) && tsi_end_p (tsi2))
3520 return 1;
3521 if (!operand_equal_p (tsi_stmt (tsi1), tsi_stmt (tsi2),
3522 flags & (OEP_LEXICOGRAPHIC
3523 | OEP_NO_HASH_CHECK)))
3524 return 0;
3527 return 0;
3529 case tcc_statement:
3530 switch (TREE_CODE (arg0))
3532 case RETURN_EXPR:
3533 if (flags & OEP_LEXICOGRAPHIC)
3534 return OP_SAME_WITH_NULL (0);
3535 return 0;
3536 case DEBUG_BEGIN_STMT:
3537 if (flags & OEP_LEXICOGRAPHIC)
3538 return 1;
3539 return 0;
3540 default:
3541 return 0;
3544 default:
3545 return 0;
3548 #undef OP_SAME
3549 #undef OP_SAME_WITH_NULL
3552 /* Similar to operand_equal_p, but see if ARG0 might be a variant of ARG1
3553 with a different signedness or a narrower precision. */
3555 static bool
3556 operand_equal_for_comparison_p (tree arg0, tree arg1)
3558 if (operand_equal_p (arg0, arg1, 0))
3559 return true;
3561 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
3562 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
3563 return false;
3565 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3566 and see if the inner values are the same. This removes any
3567 signedness comparison, which doesn't matter here. */
3568 tree op0 = arg0;
3569 tree op1 = arg1;
3570 STRIP_NOPS (op0);
3571 STRIP_NOPS (op1);
3572 if (operand_equal_p (op0, op1, 0))
3573 return true;
3575 /* Discard a single widening conversion from ARG1 and see if the inner
3576 value is the same as ARG0. */
3577 if (CONVERT_EXPR_P (arg1)
3578 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg1, 0)))
3579 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 0)))
3580 < TYPE_PRECISION (TREE_TYPE (arg1))
3581 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
3582 return true;
3584 return false;
3587 /* See if ARG is an expression that is either a comparison or is performing
3588 arithmetic on comparisons. The comparisons must only be comparing
3589 two different values, which will be stored in *CVAL1 and *CVAL2; if
3590 they are nonzero it means that some operands have already been found.
3591 No variables may be used anywhere else in the expression except in the
3592 comparisons.
3594 If this is true, return 1. Otherwise, return zero. */
3596 static int
3597 twoval_comparison_p (tree arg, tree *cval1, tree *cval2)
3599 enum tree_code code = TREE_CODE (arg);
3600 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3602 /* We can handle some of the tcc_expression cases here. */
3603 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3604 tclass = tcc_unary;
3605 else if (tclass == tcc_expression
3606 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
3607 || code == COMPOUND_EXPR))
3608 tclass = tcc_binary;
3610 switch (tclass)
3612 case tcc_unary:
3613 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2);
3615 case tcc_binary:
3616 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2)
3617 && twoval_comparison_p (TREE_OPERAND (arg, 1), cval1, cval2));
3619 case tcc_constant:
3620 return 1;
3622 case tcc_expression:
3623 if (code == COND_EXPR)
3624 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2)
3625 && twoval_comparison_p (TREE_OPERAND (arg, 1), cval1, cval2)
3626 && twoval_comparison_p (TREE_OPERAND (arg, 2), cval1, cval2));
3627 return 0;
3629 case tcc_comparison:
3630 /* First see if we can handle the first operand, then the second. For
3631 the second operand, we know *CVAL1 can't be zero. It must be that
3632 one side of the comparison is each of the values; test for the
3633 case where this isn't true by failing if the two operands
3634 are the same. */
3636 if (operand_equal_p (TREE_OPERAND (arg, 0),
3637 TREE_OPERAND (arg, 1), 0))
3638 return 0;
3640 if (*cval1 == 0)
3641 *cval1 = TREE_OPERAND (arg, 0);
3642 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
3644 else if (*cval2 == 0)
3645 *cval2 = TREE_OPERAND (arg, 0);
3646 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
3648 else
3649 return 0;
3651 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
3653 else if (*cval2 == 0)
3654 *cval2 = TREE_OPERAND (arg, 1);
3655 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
3657 else
3658 return 0;
3660 return 1;
3662 default:
3663 return 0;
3667 /* ARG is a tree that is known to contain just arithmetic operations and
3668 comparisons. Evaluate the operations in the tree substituting NEW0 for
3669 any occurrence of OLD0 as an operand of a comparison and likewise for
3670 NEW1 and OLD1. */
3672 static tree
3673 eval_subst (location_t loc, tree arg, tree old0, tree new0,
3674 tree old1, tree new1)
3676 tree type = TREE_TYPE (arg);
3677 enum tree_code code = TREE_CODE (arg);
3678 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3680 /* We can handle some of the tcc_expression cases here. */
3681 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3682 tclass = tcc_unary;
3683 else if (tclass == tcc_expression
3684 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
3685 tclass = tcc_binary;
3687 switch (tclass)
3689 case tcc_unary:
3690 return fold_build1_loc (loc, code, type,
3691 eval_subst (loc, TREE_OPERAND (arg, 0),
3692 old0, new0, old1, new1));
3694 case tcc_binary:
3695 return fold_build2_loc (loc, code, type,
3696 eval_subst (loc, TREE_OPERAND (arg, 0),
3697 old0, new0, old1, new1),
3698 eval_subst (loc, TREE_OPERAND (arg, 1),
3699 old0, new0, old1, new1));
3701 case tcc_expression:
3702 switch (code)
3704 case SAVE_EXPR:
3705 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0,
3706 old1, new1);
3708 case COMPOUND_EXPR:
3709 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0,
3710 old1, new1);
3712 case COND_EXPR:
3713 return fold_build3_loc (loc, code, type,
3714 eval_subst (loc, TREE_OPERAND (arg, 0),
3715 old0, new0, old1, new1),
3716 eval_subst (loc, TREE_OPERAND (arg, 1),
3717 old0, new0, old1, new1),
3718 eval_subst (loc, TREE_OPERAND (arg, 2),
3719 old0, new0, old1, new1));
3720 default:
3721 break;
3723 /* Fall through - ??? */
3725 case tcc_comparison:
3727 tree arg0 = TREE_OPERAND (arg, 0);
3728 tree arg1 = TREE_OPERAND (arg, 1);
3730 /* We need to check both for exact equality and tree equality. The
3731 former will be true if the operand has a side-effect. In that
3732 case, we know the operand occurred exactly once. */
3734 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
3735 arg0 = new0;
3736 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
3737 arg0 = new1;
3739 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
3740 arg1 = new0;
3741 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
3742 arg1 = new1;
3744 return fold_build2_loc (loc, code, type, arg0, arg1);
3747 default:
3748 return arg;
3752 /* Return a tree for the case when the result of an expression is RESULT
3753 converted to TYPE and OMITTED was previously an operand of the expression
3754 but is now not needed (e.g., we folded OMITTED * 0).
3756 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3757 the conversion of RESULT to TYPE. */
3759 tree
3760 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted)
3762 tree t = fold_convert_loc (loc, type, result);
3764 /* If the resulting operand is an empty statement, just return the omitted
3765 statement casted to void. */
3766 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3767 return build1_loc (loc, NOP_EXPR, void_type_node,
3768 fold_ignored_result (omitted));
3770 if (TREE_SIDE_EFFECTS (omitted))
3771 return build2_loc (loc, COMPOUND_EXPR, type,
3772 fold_ignored_result (omitted), t);
3774 return non_lvalue_loc (loc, t);
3777 /* Return a tree for the case when the result of an expression is RESULT
3778 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3779 of the expression but are now not needed.
3781 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3782 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3783 evaluated before OMITTED2. Otherwise, if neither has side effects,
3784 just do the conversion of RESULT to TYPE. */
3786 tree
3787 omit_two_operands_loc (location_t loc, tree type, tree result,
3788 tree omitted1, tree omitted2)
3790 tree t = fold_convert_loc (loc, type, result);
3792 if (TREE_SIDE_EFFECTS (omitted2))
3793 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t);
3794 if (TREE_SIDE_EFFECTS (omitted1))
3795 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t);
3797 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t;
3801 /* Return a simplified tree node for the truth-negation of ARG. This
3802 never alters ARG itself. We assume that ARG is an operation that
3803 returns a truth value (0 or 1).
3805 FIXME: one would think we would fold the result, but it causes
3806 problems with the dominator optimizer. */
3808 static tree
3809 fold_truth_not_expr (location_t loc, tree arg)
3811 tree type = TREE_TYPE (arg);
3812 enum tree_code code = TREE_CODE (arg);
3813 location_t loc1, loc2;
3815 /* If this is a comparison, we can simply invert it, except for
3816 floating-point non-equality comparisons, in which case we just
3817 enclose a TRUTH_NOT_EXPR around what we have. */
3819 if (TREE_CODE_CLASS (code) == tcc_comparison)
3821 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3822 if (FLOAT_TYPE_P (op_type)
3823 && flag_trapping_math
3824 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3825 && code != NE_EXPR && code != EQ_EXPR)
3826 return NULL_TREE;
3828 code = invert_tree_comparison (code, HONOR_NANS (op_type));
3829 if (code == ERROR_MARK)
3830 return NULL_TREE;
3832 tree ret = build2_loc (loc, code, type, TREE_OPERAND (arg, 0),
3833 TREE_OPERAND (arg, 1));
3834 if (TREE_NO_WARNING (arg))
3835 TREE_NO_WARNING (ret) = 1;
3836 return ret;
3839 switch (code)
3841 case INTEGER_CST:
3842 return constant_boolean_node (integer_zerop (arg), type);
3844 case TRUTH_AND_EXPR:
3845 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3846 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3847 return build2_loc (loc, TRUTH_OR_EXPR, type,
3848 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3849 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3851 case TRUTH_OR_EXPR:
3852 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3853 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3854 return build2_loc (loc, TRUTH_AND_EXPR, type,
3855 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3856 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3858 case TRUTH_XOR_EXPR:
3859 /* Here we can invert either operand. We invert the first operand
3860 unless the second operand is a TRUTH_NOT_EXPR in which case our
3861 result is the XOR of the first operand with the inside of the
3862 negation of the second operand. */
3864 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3865 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3866 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3867 else
3868 return build2_loc (loc, TRUTH_XOR_EXPR, type,
3869 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)),
3870 TREE_OPERAND (arg, 1));
3872 case TRUTH_ANDIF_EXPR:
3873 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3874 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3875 return build2_loc (loc, TRUTH_ORIF_EXPR, type,
3876 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3877 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3879 case TRUTH_ORIF_EXPR:
3880 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3881 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3882 return build2_loc (loc, TRUTH_ANDIF_EXPR, type,
3883 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3884 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3886 case TRUTH_NOT_EXPR:
3887 return TREE_OPERAND (arg, 0);
3889 case COND_EXPR:
3891 tree arg1 = TREE_OPERAND (arg, 1);
3892 tree arg2 = TREE_OPERAND (arg, 2);
3894 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3895 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc);
3897 /* A COND_EXPR may have a throw as one operand, which
3898 then has void type. Just leave void operands
3899 as they are. */
3900 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0),
3901 VOID_TYPE_P (TREE_TYPE (arg1))
3902 ? arg1 : invert_truthvalue_loc (loc1, arg1),
3903 VOID_TYPE_P (TREE_TYPE (arg2))
3904 ? arg2 : invert_truthvalue_loc (loc2, arg2));
3907 case COMPOUND_EXPR:
3908 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3909 return build2_loc (loc, COMPOUND_EXPR, type,
3910 TREE_OPERAND (arg, 0),
3911 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1)));
3913 case NON_LVALUE_EXPR:
3914 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3915 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0));
3917 CASE_CONVERT:
3918 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3919 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3921 /* fall through */
3923 case FLOAT_EXPR:
3924 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3925 return build1_loc (loc, TREE_CODE (arg), type,
3926 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3928 case BIT_AND_EXPR:
3929 if (!integer_onep (TREE_OPERAND (arg, 1)))
3930 return NULL_TREE;
3931 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0));
3933 case SAVE_EXPR:
3934 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3936 case CLEANUP_POINT_EXPR:
3937 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3938 return build1_loc (loc, CLEANUP_POINT_EXPR, type,
3939 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3941 default:
3942 return NULL_TREE;
3946 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3947 assume that ARG is an operation that returns a truth value (0 or 1
3948 for scalars, 0 or -1 for vectors). Return the folded expression if
3949 folding is successful. Otherwise, return NULL_TREE. */
3951 static tree
3952 fold_invert_truthvalue (location_t loc, tree arg)
3954 tree type = TREE_TYPE (arg);
3955 return fold_unary_loc (loc, VECTOR_TYPE_P (type)
3956 ? BIT_NOT_EXPR
3957 : TRUTH_NOT_EXPR,
3958 type, arg);
3961 /* Return a simplified tree node for the truth-negation of ARG. This
3962 never alters ARG itself. We assume that ARG is an operation that
3963 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3965 tree
3966 invert_truthvalue_loc (location_t loc, tree arg)
3968 if (TREE_CODE (arg) == ERROR_MARK)
3969 return arg;
3971 tree type = TREE_TYPE (arg);
3972 return fold_build1_loc (loc, VECTOR_TYPE_P (type)
3973 ? BIT_NOT_EXPR
3974 : TRUTH_NOT_EXPR,
3975 type, arg);
3978 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3979 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero
3980 and uses reverse storage order if REVERSEP is nonzero. ORIG_INNER
3981 is the original memory reference used to preserve the alias set of
3982 the access. */
3984 static tree
3985 make_bit_field_ref (location_t loc, tree inner, tree orig_inner, tree type,
3986 HOST_WIDE_INT bitsize, poly_int64 bitpos,
3987 int unsignedp, int reversep)
3989 tree result, bftype;
3991 /* Attempt not to lose the access path if possible. */
3992 if (TREE_CODE (orig_inner) == COMPONENT_REF)
3994 tree ninner = TREE_OPERAND (orig_inner, 0);
3995 machine_mode nmode;
3996 poly_int64 nbitsize, nbitpos;
3997 tree noffset;
3998 int nunsignedp, nreversep, nvolatilep = 0;
3999 tree base = get_inner_reference (ninner, &nbitsize, &nbitpos,
4000 &noffset, &nmode, &nunsignedp,
4001 &nreversep, &nvolatilep);
4002 if (base == inner
4003 && noffset == NULL_TREE
4004 && known_subrange_p (bitpos, bitsize, nbitpos, nbitsize)
4005 && !reversep
4006 && !nreversep
4007 && !nvolatilep)
4009 inner = ninner;
4010 bitpos -= nbitpos;
4014 alias_set_type iset = get_alias_set (orig_inner);
4015 if (iset == 0 && get_alias_set (inner) != iset)
4016 inner = fold_build2 (MEM_REF, TREE_TYPE (inner),
4017 build_fold_addr_expr (inner),
4018 build_int_cst (ptr_type_node, 0));
4020 if (known_eq (bitpos, 0) && !reversep)
4022 tree size = TYPE_SIZE (TREE_TYPE (inner));
4023 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
4024 || POINTER_TYPE_P (TREE_TYPE (inner)))
4025 && tree_fits_shwi_p (size)
4026 && tree_to_shwi (size) == bitsize)
4027 return fold_convert_loc (loc, type, inner);
4030 bftype = type;
4031 if (TYPE_PRECISION (bftype) != bitsize
4032 || TYPE_UNSIGNED (bftype) == !unsignedp)
4033 bftype = build_nonstandard_integer_type (bitsize, 0);
4035 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner,
4036 bitsize_int (bitsize), bitsize_int (bitpos));
4037 REF_REVERSE_STORAGE_ORDER (result) = reversep;
4039 if (bftype != type)
4040 result = fold_convert_loc (loc, type, result);
4042 return result;
4045 /* Optimize a bit-field compare.
4047 There are two cases: First is a compare against a constant and the
4048 second is a comparison of two items where the fields are at the same
4049 bit position relative to the start of a chunk (byte, halfword, word)
4050 large enough to contain it. In these cases we can avoid the shift
4051 implicit in bitfield extractions.
4053 For constants, we emit a compare of the shifted constant with the
4054 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
4055 compared. For two fields at the same position, we do the ANDs with the
4056 similar mask and compare the result of the ANDs.
4058 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
4059 COMPARE_TYPE is the type of the comparison, and LHS and RHS
4060 are the left and right operands of the comparison, respectively.
4062 If the optimization described above can be done, we return the resulting
4063 tree. Otherwise we return zero. */
4065 static tree
4066 optimize_bit_field_compare (location_t loc, enum tree_code code,
4067 tree compare_type, tree lhs, tree rhs)
4069 poly_int64 plbitpos, plbitsize, rbitpos, rbitsize;
4070 HOST_WIDE_INT lbitpos, lbitsize, nbitpos, nbitsize;
4071 tree type = TREE_TYPE (lhs);
4072 tree unsigned_type;
4073 int const_p = TREE_CODE (rhs) == INTEGER_CST;
4074 machine_mode lmode, rmode;
4075 scalar_int_mode nmode;
4076 int lunsignedp, runsignedp;
4077 int lreversep, rreversep;
4078 int lvolatilep = 0, rvolatilep = 0;
4079 tree linner, rinner = NULL_TREE;
4080 tree mask;
4081 tree offset;
4083 /* Get all the information about the extractions being done. If the bit size
4084 is the same as the size of the underlying object, we aren't doing an
4085 extraction at all and so can do nothing. We also don't want to
4086 do anything if the inner expression is a PLACEHOLDER_EXPR since we
4087 then will no longer be able to replace it. */
4088 linner = get_inner_reference (lhs, &plbitsize, &plbitpos, &offset, &lmode,
4089 &lunsignedp, &lreversep, &lvolatilep);
4090 if (linner == lhs
4091 || !known_size_p (plbitsize)
4092 || !plbitsize.is_constant (&lbitsize)
4093 || !plbitpos.is_constant (&lbitpos)
4094 || known_eq (lbitsize, GET_MODE_BITSIZE (lmode))
4095 || offset != 0
4096 || TREE_CODE (linner) == PLACEHOLDER_EXPR
4097 || lvolatilep)
4098 return 0;
4100 if (const_p)
4101 rreversep = lreversep;
4102 else
4104 /* If this is not a constant, we can only do something if bit positions,
4105 sizes, signedness and storage order are the same. */
4106 rinner
4107 = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
4108 &runsignedp, &rreversep, &rvolatilep);
4110 if (rinner == rhs
4111 || maybe_ne (lbitpos, rbitpos)
4112 || maybe_ne (lbitsize, rbitsize)
4113 || lunsignedp != runsignedp
4114 || lreversep != rreversep
4115 || offset != 0
4116 || TREE_CODE (rinner) == PLACEHOLDER_EXPR
4117 || rvolatilep)
4118 return 0;
4121 /* Honor the C++ memory model and mimic what RTL expansion does. */
4122 poly_uint64 bitstart = 0;
4123 poly_uint64 bitend = 0;
4124 if (TREE_CODE (lhs) == COMPONENT_REF)
4126 get_bit_range (&bitstart, &bitend, lhs, &plbitpos, &offset);
4127 if (!plbitpos.is_constant (&lbitpos) || offset != NULL_TREE)
4128 return 0;
4131 /* See if we can find a mode to refer to this field. We should be able to,
4132 but fail if we can't. */
4133 if (!get_best_mode (lbitsize, lbitpos, bitstart, bitend,
4134 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
4135 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
4136 TYPE_ALIGN (TREE_TYPE (rinner))),
4137 BITS_PER_WORD, false, &nmode))
4138 return 0;
4140 /* Set signed and unsigned types of the precision of this mode for the
4141 shifts below. */
4142 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
4144 /* Compute the bit position and size for the new reference and our offset
4145 within it. If the new reference is the same size as the original, we
4146 won't optimize anything, so return zero. */
4147 nbitsize = GET_MODE_BITSIZE (nmode);
4148 nbitpos = lbitpos & ~ (nbitsize - 1);
4149 lbitpos -= nbitpos;
4150 if (nbitsize == lbitsize)
4151 return 0;
4153 if (lreversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
4154 lbitpos = nbitsize - lbitsize - lbitpos;
4156 /* Make the mask to be used against the extracted field. */
4157 mask = build_int_cst_type (unsigned_type, -1);
4158 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize));
4159 mask = const_binop (RSHIFT_EXPR, mask,
4160 size_int (nbitsize - lbitsize - lbitpos));
4162 if (! const_p)
4164 if (nbitpos < 0)
4165 return 0;
4167 /* If not comparing with constant, just rework the comparison
4168 and return. */
4169 tree t1 = make_bit_field_ref (loc, linner, lhs, unsigned_type,
4170 nbitsize, nbitpos, 1, lreversep);
4171 t1 = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type, t1, mask);
4172 tree t2 = make_bit_field_ref (loc, rinner, rhs, unsigned_type,
4173 nbitsize, nbitpos, 1, rreversep);
4174 t2 = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type, t2, mask);
4175 return fold_build2_loc (loc, code, compare_type, t1, t2);
4178 /* Otherwise, we are handling the constant case. See if the constant is too
4179 big for the field. Warn and return a tree for 0 (false) if so. We do
4180 this not only for its own sake, but to avoid having to test for this
4181 error case below. If we didn't, we might generate wrong code.
4183 For unsigned fields, the constant shifted right by the field length should
4184 be all zero. For signed fields, the high-order bits should agree with
4185 the sign bit. */
4187 if (lunsignedp)
4189 if (wi::lrshift (wi::to_wide (rhs), lbitsize) != 0)
4191 warning (0, "comparison is always %d due to width of bit-field",
4192 code == NE_EXPR);
4193 return constant_boolean_node (code == NE_EXPR, compare_type);
4196 else
4198 wide_int tem = wi::arshift (wi::to_wide (rhs), lbitsize - 1);
4199 if (tem != 0 && tem != -1)
4201 warning (0, "comparison is always %d due to width of bit-field",
4202 code == NE_EXPR);
4203 return constant_boolean_node (code == NE_EXPR, compare_type);
4207 if (nbitpos < 0)
4208 return 0;
4210 /* Single-bit compares should always be against zero. */
4211 if (lbitsize == 1 && ! integer_zerop (rhs))
4213 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
4214 rhs = build_int_cst (type, 0);
4217 /* Make a new bitfield reference, shift the constant over the
4218 appropriate number of bits and mask it with the computed mask
4219 (in case this was a signed field). If we changed it, make a new one. */
4220 lhs = make_bit_field_ref (loc, linner, lhs, unsigned_type,
4221 nbitsize, nbitpos, 1, lreversep);
4223 rhs = const_binop (BIT_AND_EXPR,
4224 const_binop (LSHIFT_EXPR,
4225 fold_convert_loc (loc, unsigned_type, rhs),
4226 size_int (lbitpos)),
4227 mask);
4229 lhs = build2_loc (loc, code, compare_type,
4230 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs);
4231 return lhs;
4234 /* Subroutine for fold_truth_andor_1: decode a field reference.
4236 If EXP is a comparison reference, we return the innermost reference.
4238 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4239 set to the starting bit number.
4241 If the innermost field can be completely contained in a mode-sized
4242 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4244 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4245 otherwise it is not changed.
4247 *PUNSIGNEDP is set to the signedness of the field.
4249 *PREVERSEP is set to the storage order of the field.
4251 *PMASK is set to the mask used. This is either contained in a
4252 BIT_AND_EXPR or derived from the width of the field.
4254 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4256 Return 0 if this is not a component reference or is one that we can't
4257 do anything with. */
4259 static tree
4260 decode_field_reference (location_t loc, tree *exp_, HOST_WIDE_INT *pbitsize,
4261 HOST_WIDE_INT *pbitpos, machine_mode *pmode,
4262 int *punsignedp, int *preversep, int *pvolatilep,
4263 tree *pmask, tree *pand_mask)
4265 tree exp = *exp_;
4266 tree outer_type = 0;
4267 tree and_mask = 0;
4268 tree mask, inner, offset;
4269 tree unsigned_type;
4270 unsigned int precision;
4272 /* All the optimizations using this function assume integer fields.
4273 There are problems with FP fields since the type_for_size call
4274 below can fail for, e.g., XFmode. */
4275 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
4276 return 0;
4278 /* We are interested in the bare arrangement of bits, so strip everything
4279 that doesn't affect the machine mode. However, record the type of the
4280 outermost expression if it may matter below. */
4281 if (CONVERT_EXPR_P (exp)
4282 || TREE_CODE (exp) == NON_LVALUE_EXPR)
4283 outer_type = TREE_TYPE (exp);
4284 STRIP_NOPS (exp);
4286 if (TREE_CODE (exp) == BIT_AND_EXPR)
4288 and_mask = TREE_OPERAND (exp, 1);
4289 exp = TREE_OPERAND (exp, 0);
4290 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
4291 if (TREE_CODE (and_mask) != INTEGER_CST)
4292 return 0;
4295 poly_int64 poly_bitsize, poly_bitpos;
4296 inner = get_inner_reference (exp, &poly_bitsize, &poly_bitpos, &offset,
4297 pmode, punsignedp, preversep, pvolatilep);
4298 if ((inner == exp && and_mask == 0)
4299 || !poly_bitsize.is_constant (pbitsize)
4300 || !poly_bitpos.is_constant (pbitpos)
4301 || *pbitsize < 0
4302 || offset != 0
4303 || TREE_CODE (inner) == PLACEHOLDER_EXPR
4304 /* Reject out-of-bound accesses (PR79731). */
4305 || (! AGGREGATE_TYPE_P (TREE_TYPE (inner))
4306 && compare_tree_int (TYPE_SIZE (TREE_TYPE (inner)),
4307 *pbitpos + *pbitsize) < 0))
4308 return 0;
4310 *exp_ = exp;
4312 /* If the number of bits in the reference is the same as the bitsize of
4313 the outer type, then the outer type gives the signedness. Otherwise
4314 (in case of a small bitfield) the signedness is unchanged. */
4315 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
4316 *punsignedp = TYPE_UNSIGNED (outer_type);
4318 /* Compute the mask to access the bitfield. */
4319 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
4320 precision = TYPE_PRECISION (unsigned_type);
4322 mask = build_int_cst_type (unsigned_type, -1);
4324 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4325 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4327 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4328 if (and_mask != 0)
4329 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
4330 fold_convert_loc (loc, unsigned_type, and_mask), mask);
4332 *pmask = mask;
4333 *pand_mask = and_mask;
4334 return inner;
4337 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4338 bit positions and MASK is SIGNED. */
4340 static int
4341 all_ones_mask_p (const_tree mask, unsigned int size)
4343 tree type = TREE_TYPE (mask);
4344 unsigned int precision = TYPE_PRECISION (type);
4346 /* If this function returns true when the type of the mask is
4347 UNSIGNED, then there will be errors. In particular see
4348 gcc.c-torture/execute/990326-1.c. There does not appear to be
4349 any documentation paper trail as to why this is so. But the pre
4350 wide-int worked with that restriction and it has been preserved
4351 here. */
4352 if (size > precision || TYPE_SIGN (type) == UNSIGNED)
4353 return false;
4355 return wi::mask (size, false, precision) == wi::to_wide (mask);
4358 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4359 represents the sign bit of EXP's type. If EXP represents a sign
4360 or zero extension, also test VAL against the unextended type.
4361 The return value is the (sub)expression whose sign bit is VAL,
4362 or NULL_TREE otherwise. */
4364 tree
4365 sign_bit_p (tree exp, const_tree val)
4367 int width;
4368 tree t;
4370 /* Tree EXP must have an integral type. */
4371 t = TREE_TYPE (exp);
4372 if (! INTEGRAL_TYPE_P (t))
4373 return NULL_TREE;
4375 /* Tree VAL must be an integer constant. */
4376 if (TREE_CODE (val) != INTEGER_CST
4377 || TREE_OVERFLOW (val))
4378 return NULL_TREE;
4380 width = TYPE_PRECISION (t);
4381 if (wi::only_sign_bit_p (wi::to_wide (val), width))
4382 return exp;
4384 /* Handle extension from a narrower type. */
4385 if (TREE_CODE (exp) == NOP_EXPR
4386 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
4387 return sign_bit_p (TREE_OPERAND (exp, 0), val);
4389 return NULL_TREE;
4392 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
4393 to be evaluated unconditionally. */
4395 static int
4396 simple_operand_p (const_tree exp)
4398 /* Strip any conversions that don't change the machine mode. */
4399 STRIP_NOPS (exp);
4401 return (CONSTANT_CLASS_P (exp)
4402 || TREE_CODE (exp) == SSA_NAME
4403 || (DECL_P (exp)
4404 && ! TREE_ADDRESSABLE (exp)
4405 && ! TREE_THIS_VOLATILE (exp)
4406 && ! DECL_NONLOCAL (exp)
4407 /* Don't regard global variables as simple. They may be
4408 allocated in ways unknown to the compiler (shared memory,
4409 #pragma weak, etc). */
4410 && ! TREE_PUBLIC (exp)
4411 && ! DECL_EXTERNAL (exp)
4412 /* Weakrefs are not safe to be read, since they can be NULL.
4413 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
4414 have DECL_WEAK flag set. */
4415 && (! VAR_OR_FUNCTION_DECL_P (exp) || ! DECL_WEAK (exp))
4416 /* Loading a static variable is unduly expensive, but global
4417 registers aren't expensive. */
4418 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
4421 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
4422 to be evaluated unconditionally.
4423 I addition to simple_operand_p, we assume that comparisons, conversions,
4424 and logic-not operations are simple, if their operands are simple, too. */
4426 static bool
4427 simple_operand_p_2 (tree exp)
4429 enum tree_code code;
4431 if (TREE_SIDE_EFFECTS (exp)
4432 || tree_could_trap_p (exp))
4433 return false;
4435 while (CONVERT_EXPR_P (exp))
4436 exp = TREE_OPERAND (exp, 0);
4438 code = TREE_CODE (exp);
4440 if (TREE_CODE_CLASS (code) == tcc_comparison)
4441 return (simple_operand_p (TREE_OPERAND (exp, 0))
4442 && simple_operand_p (TREE_OPERAND (exp, 1)));
4444 if (code == TRUTH_NOT_EXPR)
4445 return simple_operand_p_2 (TREE_OPERAND (exp, 0));
4447 return simple_operand_p (exp);
4451 /* The following functions are subroutines to fold_range_test and allow it to
4452 try to change a logical combination of comparisons into a range test.
4454 For example, both
4455 X == 2 || X == 3 || X == 4 || X == 5
4457 X >= 2 && X <= 5
4458 are converted to
4459 (unsigned) (X - 2) <= 3
4461 We describe each set of comparisons as being either inside or outside
4462 a range, using a variable named like IN_P, and then describe the
4463 range with a lower and upper bound. If one of the bounds is omitted,
4464 it represents either the highest or lowest value of the type.
4466 In the comments below, we represent a range by two numbers in brackets
4467 preceded by a "+" to designate being inside that range, or a "-" to
4468 designate being outside that range, so the condition can be inverted by
4469 flipping the prefix. An omitted bound is represented by a "-". For
4470 example, "- [-, 10]" means being outside the range starting at the lowest
4471 possible value and ending at 10, in other words, being greater than 10.
4472 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4473 always false.
4475 We set up things so that the missing bounds are handled in a consistent
4476 manner so neither a missing bound nor "true" and "false" need to be
4477 handled using a special case. */
4479 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4480 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4481 and UPPER1_P are nonzero if the respective argument is an upper bound
4482 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4483 must be specified for a comparison. ARG1 will be converted to ARG0's
4484 type if both are specified. */
4486 static tree
4487 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
4488 tree arg1, int upper1_p)
4490 tree tem;
4491 int result;
4492 int sgn0, sgn1;
4494 /* If neither arg represents infinity, do the normal operation.
4495 Else, if not a comparison, return infinity. Else handle the special
4496 comparison rules. Note that most of the cases below won't occur, but
4497 are handled for consistency. */
4499 if (arg0 != 0 && arg1 != 0)
4501 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
4502 arg0, fold_convert (TREE_TYPE (arg0), arg1));
4503 STRIP_NOPS (tem);
4504 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
4507 if (TREE_CODE_CLASS (code) != tcc_comparison)
4508 return 0;
4510 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4511 for neither. In real maths, we cannot assume open ended ranges are
4512 the same. But, this is computer arithmetic, where numbers are finite.
4513 We can therefore make the transformation of any unbounded range with
4514 the value Z, Z being greater than any representable number. This permits
4515 us to treat unbounded ranges as equal. */
4516 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
4517 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
4518 switch (code)
4520 case EQ_EXPR:
4521 result = sgn0 == sgn1;
4522 break;
4523 case NE_EXPR:
4524 result = sgn0 != sgn1;
4525 break;
4526 case LT_EXPR:
4527 result = sgn0 < sgn1;
4528 break;
4529 case LE_EXPR:
4530 result = sgn0 <= sgn1;
4531 break;
4532 case GT_EXPR:
4533 result = sgn0 > sgn1;
4534 break;
4535 case GE_EXPR:
4536 result = sgn0 >= sgn1;
4537 break;
4538 default:
4539 gcc_unreachable ();
4542 return constant_boolean_node (result, type);
4545 /* Helper routine for make_range. Perform one step for it, return
4546 new expression if the loop should continue or NULL_TREE if it should
4547 stop. */
4549 tree
4550 make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1,
4551 tree exp_type, tree *p_low, tree *p_high, int *p_in_p,
4552 bool *strict_overflow_p)
4554 tree arg0_type = TREE_TYPE (arg0);
4555 tree n_low, n_high, low = *p_low, high = *p_high;
4556 int in_p = *p_in_p, n_in_p;
4558 switch (code)
4560 case TRUTH_NOT_EXPR:
4561 /* We can only do something if the range is testing for zero. */
4562 if (low == NULL_TREE || high == NULL_TREE
4563 || ! integer_zerop (low) || ! integer_zerop (high))
4564 return NULL_TREE;
4565 *p_in_p = ! in_p;
4566 return arg0;
4568 case EQ_EXPR: case NE_EXPR:
4569 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
4570 /* We can only do something if the range is testing for zero
4571 and if the second operand is an integer constant. Note that
4572 saying something is "in" the range we make is done by
4573 complementing IN_P since it will set in the initial case of
4574 being not equal to zero; "out" is leaving it alone. */
4575 if (low == NULL_TREE || high == NULL_TREE
4576 || ! integer_zerop (low) || ! integer_zerop (high)
4577 || TREE_CODE (arg1) != INTEGER_CST)
4578 return NULL_TREE;
4580 switch (code)
4582 case NE_EXPR: /* - [c, c] */
4583 low = high = arg1;
4584 break;
4585 case EQ_EXPR: /* + [c, c] */
4586 in_p = ! in_p, low = high = arg1;
4587 break;
4588 case GT_EXPR: /* - [-, c] */
4589 low = 0, high = arg1;
4590 break;
4591 case GE_EXPR: /* + [c, -] */
4592 in_p = ! in_p, low = arg1, high = 0;
4593 break;
4594 case LT_EXPR: /* - [c, -] */
4595 low = arg1, high = 0;
4596 break;
4597 case LE_EXPR: /* + [-, c] */
4598 in_p = ! in_p, low = 0, high = arg1;
4599 break;
4600 default:
4601 gcc_unreachable ();
4604 /* If this is an unsigned comparison, we also know that EXP is
4605 greater than or equal to zero. We base the range tests we make
4606 on that fact, so we record it here so we can parse existing
4607 range tests. We test arg0_type since often the return type
4608 of, e.g. EQ_EXPR, is boolean. */
4609 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
4611 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4612 in_p, low, high, 1,
4613 build_int_cst (arg0_type, 0),
4614 NULL_TREE))
4615 return NULL_TREE;
4617 in_p = n_in_p, low = n_low, high = n_high;
4619 /* If the high bound is missing, but we have a nonzero low
4620 bound, reverse the range so it goes from zero to the low bound
4621 minus 1. */
4622 if (high == 0 && low && ! integer_zerop (low))
4624 in_p = ! in_p;
4625 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
4626 build_int_cst (TREE_TYPE (low), 1), 0);
4627 low = build_int_cst (arg0_type, 0);
4631 *p_low = low;
4632 *p_high = high;
4633 *p_in_p = in_p;
4634 return arg0;
4636 case NEGATE_EXPR:
4637 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4638 low and high are non-NULL, then normalize will DTRT. */
4639 if (!TYPE_UNSIGNED (arg0_type)
4640 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4642 if (low == NULL_TREE)
4643 low = TYPE_MIN_VALUE (arg0_type);
4644 if (high == NULL_TREE)
4645 high = TYPE_MAX_VALUE (arg0_type);
4648 /* (-x) IN [a,b] -> x in [-b, -a] */
4649 n_low = range_binop (MINUS_EXPR, exp_type,
4650 build_int_cst (exp_type, 0),
4651 0, high, 1);
4652 n_high = range_binop (MINUS_EXPR, exp_type,
4653 build_int_cst (exp_type, 0),
4654 0, low, 0);
4655 if (n_high != 0 && TREE_OVERFLOW (n_high))
4656 return NULL_TREE;
4657 goto normalize;
4659 case BIT_NOT_EXPR:
4660 /* ~ X -> -X - 1 */
4661 return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0),
4662 build_int_cst (exp_type, 1));
4664 case PLUS_EXPR:
4665 case MINUS_EXPR:
4666 if (TREE_CODE (arg1) != INTEGER_CST)
4667 return NULL_TREE;
4669 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4670 move a constant to the other side. */
4671 if (!TYPE_UNSIGNED (arg0_type)
4672 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4673 return NULL_TREE;
4675 /* If EXP is signed, any overflow in the computation is undefined,
4676 so we don't worry about it so long as our computations on
4677 the bounds don't overflow. For unsigned, overflow is defined
4678 and this is exactly the right thing. */
4679 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4680 arg0_type, low, 0, arg1, 0);
4681 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4682 arg0_type, high, 1, arg1, 0);
4683 if ((n_low != 0 && TREE_OVERFLOW (n_low))
4684 || (n_high != 0 && TREE_OVERFLOW (n_high)))
4685 return NULL_TREE;
4687 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
4688 *strict_overflow_p = true;
4690 normalize:
4691 /* Check for an unsigned range which has wrapped around the maximum
4692 value thus making n_high < n_low, and normalize it. */
4693 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
4695 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
4696 build_int_cst (TREE_TYPE (n_high), 1), 0);
4697 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
4698 build_int_cst (TREE_TYPE (n_low), 1), 0);
4700 /* If the range is of the form +/- [ x+1, x ], we won't
4701 be able to normalize it. But then, it represents the
4702 whole range or the empty set, so make it
4703 +/- [ -, - ]. */
4704 if (tree_int_cst_equal (n_low, low)
4705 && tree_int_cst_equal (n_high, high))
4706 low = high = 0;
4707 else
4708 in_p = ! in_p;
4710 else
4711 low = n_low, high = n_high;
4713 *p_low = low;
4714 *p_high = high;
4715 *p_in_p = in_p;
4716 return arg0;
4718 CASE_CONVERT:
4719 case NON_LVALUE_EXPR:
4720 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
4721 return NULL_TREE;
4723 if (! INTEGRAL_TYPE_P (arg0_type)
4724 || (low != 0 && ! int_fits_type_p (low, arg0_type))
4725 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
4726 return NULL_TREE;
4728 n_low = low, n_high = high;
4730 if (n_low != 0)
4731 n_low = fold_convert_loc (loc, arg0_type, n_low);
4733 if (n_high != 0)
4734 n_high = fold_convert_loc (loc, arg0_type, n_high);
4736 /* If we're converting arg0 from an unsigned type, to exp,
4737 a signed type, we will be doing the comparison as unsigned.
4738 The tests above have already verified that LOW and HIGH
4739 are both positive.
4741 So we have to ensure that we will handle large unsigned
4742 values the same way that the current signed bounds treat
4743 negative values. */
4745 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
4747 tree high_positive;
4748 tree equiv_type;
4749 /* For fixed-point modes, we need to pass the saturating flag
4750 as the 2nd parameter. */
4751 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
4752 equiv_type
4753 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type),
4754 TYPE_SATURATING (arg0_type));
4755 else
4756 equiv_type
4757 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1);
4759 /* A range without an upper bound is, naturally, unbounded.
4760 Since convert would have cropped a very large value, use
4761 the max value for the destination type. */
4762 high_positive
4763 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
4764 : TYPE_MAX_VALUE (arg0_type);
4766 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4767 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
4768 fold_convert_loc (loc, arg0_type,
4769 high_positive),
4770 build_int_cst (arg0_type, 1));
4772 /* If the low bound is specified, "and" the range with the
4773 range for which the original unsigned value will be
4774 positive. */
4775 if (low != 0)
4777 if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high,
4778 1, fold_convert_loc (loc, arg0_type,
4779 integer_zero_node),
4780 high_positive))
4781 return NULL_TREE;
4783 in_p = (n_in_p == in_p);
4785 else
4787 /* Otherwise, "or" the range with the range of the input
4788 that will be interpreted as negative. */
4789 if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high,
4790 1, fold_convert_loc (loc, arg0_type,
4791 integer_zero_node),
4792 high_positive))
4793 return NULL_TREE;
4795 in_p = (in_p != n_in_p);
4799 *p_low = n_low;
4800 *p_high = n_high;
4801 *p_in_p = in_p;
4802 return arg0;
4804 default:
4805 return NULL_TREE;
4809 /* Given EXP, a logical expression, set the range it is testing into
4810 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4811 actually being tested. *PLOW and *PHIGH will be made of the same
4812 type as the returned expression. If EXP is not a comparison, we
4813 will most likely not be returning a useful value and range. Set
4814 *STRICT_OVERFLOW_P to true if the return value is only valid
4815 because signed overflow is undefined; otherwise, do not change
4816 *STRICT_OVERFLOW_P. */
4818 tree
4819 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
4820 bool *strict_overflow_p)
4822 enum tree_code code;
4823 tree arg0, arg1 = NULL_TREE;
4824 tree exp_type, nexp;
4825 int in_p;
4826 tree low, high;
4827 location_t loc = EXPR_LOCATION (exp);
4829 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4830 and see if we can refine the range. Some of the cases below may not
4831 happen, but it doesn't seem worth worrying about this. We "continue"
4832 the outer loop when we've changed something; otherwise we "break"
4833 the switch, which will "break" the while. */
4835 in_p = 0;
4836 low = high = build_int_cst (TREE_TYPE (exp), 0);
4838 while (1)
4840 code = TREE_CODE (exp);
4841 exp_type = TREE_TYPE (exp);
4842 arg0 = NULL_TREE;
4844 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
4846 if (TREE_OPERAND_LENGTH (exp) > 0)
4847 arg0 = TREE_OPERAND (exp, 0);
4848 if (TREE_CODE_CLASS (code) == tcc_binary
4849 || TREE_CODE_CLASS (code) == tcc_comparison
4850 || (TREE_CODE_CLASS (code) == tcc_expression
4851 && TREE_OPERAND_LENGTH (exp) > 1))
4852 arg1 = TREE_OPERAND (exp, 1);
4854 if (arg0 == NULL_TREE)
4855 break;
4857 nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low,
4858 &high, &in_p, strict_overflow_p);
4859 if (nexp == NULL_TREE)
4860 break;
4861 exp = nexp;
4864 /* If EXP is a constant, we can evaluate whether this is true or false. */
4865 if (TREE_CODE (exp) == INTEGER_CST)
4867 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4868 exp, 0, low, 0))
4869 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4870 exp, 1, high, 1)));
4871 low = high = 0;
4872 exp = 0;
4875 *pin_p = in_p, *plow = low, *phigh = high;
4876 return exp;
4879 /* Returns TRUE if [LOW, HIGH] range check can be optimized to
4880 a bitwise check i.e. when
4881 LOW == 0xXX...X00...0
4882 HIGH == 0xXX...X11...1
4883 Return corresponding mask in MASK and stem in VALUE. */
4885 static bool
4886 maskable_range_p (const_tree low, const_tree high, tree type, tree *mask,
4887 tree *value)
4889 if (TREE_CODE (low) != INTEGER_CST
4890 || TREE_CODE (high) != INTEGER_CST)
4891 return false;
4893 unsigned prec = TYPE_PRECISION (type);
4894 wide_int lo = wi::to_wide (low, prec);
4895 wide_int hi = wi::to_wide (high, prec);
4897 wide_int end_mask = lo ^ hi;
4898 if ((end_mask & (end_mask + 1)) != 0
4899 || (lo & end_mask) != 0)
4900 return false;
4902 wide_int stem_mask = ~end_mask;
4903 wide_int stem = lo & stem_mask;
4904 if (stem != (hi & stem_mask))
4905 return false;
4907 *mask = wide_int_to_tree (type, stem_mask);
4908 *value = wide_int_to_tree (type, stem);
4910 return true;
4913 /* Helper routine for build_range_check and match.pd. Return the type to
4914 perform the check or NULL if it shouldn't be optimized. */
4916 tree
4917 range_check_type (tree etype)
4919 /* First make sure that arithmetics in this type is valid, then make sure
4920 that it wraps around. */
4921 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE)
4922 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4923 TYPE_UNSIGNED (etype));
4925 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_OVERFLOW_WRAPS (etype))
4927 tree utype, minv, maxv;
4929 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4930 for the type in question, as we rely on this here. */
4931 utype = unsigned_type_for (etype);
4932 maxv = fold_convert (utype, TYPE_MAX_VALUE (etype));
4933 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4934 build_int_cst (TREE_TYPE (maxv), 1), 1);
4935 minv = fold_convert (utype, TYPE_MIN_VALUE (etype));
4937 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4938 minv, 1, maxv, 1)))
4939 etype = utype;
4940 else
4941 return NULL_TREE;
4943 return etype;
4946 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4947 type, TYPE, return an expression to test if EXP is in (or out of, depending
4948 on IN_P) the range. Return 0 if the test couldn't be created. */
4950 tree
4951 build_range_check (location_t loc, tree type, tree exp, int in_p,
4952 tree low, tree high)
4954 tree etype = TREE_TYPE (exp), mask, value;
4956 /* Disable this optimization for function pointer expressions
4957 on targets that require function pointer canonicalization. */
4958 if (targetm.have_canonicalize_funcptr_for_compare ()
4959 && TREE_CODE (etype) == POINTER_TYPE
4960 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4961 return NULL_TREE;
4963 if (! in_p)
4965 value = build_range_check (loc, type, exp, 1, low, high);
4966 if (value != 0)
4967 return invert_truthvalue_loc (loc, value);
4969 return 0;
4972 if (low == 0 && high == 0)
4973 return omit_one_operand_loc (loc, type, build_int_cst (type, 1), exp);
4975 if (low == 0)
4976 return fold_build2_loc (loc, LE_EXPR, type, exp,
4977 fold_convert_loc (loc, etype, high));
4979 if (high == 0)
4980 return fold_build2_loc (loc, GE_EXPR, type, exp,
4981 fold_convert_loc (loc, etype, low));
4983 if (operand_equal_p (low, high, 0))
4984 return fold_build2_loc (loc, EQ_EXPR, type, exp,
4985 fold_convert_loc (loc, etype, low));
4987 if (TREE_CODE (exp) == BIT_AND_EXPR
4988 && maskable_range_p (low, high, etype, &mask, &value))
4989 return fold_build2_loc (loc, EQ_EXPR, type,
4990 fold_build2_loc (loc, BIT_AND_EXPR, etype,
4991 exp, mask),
4992 value);
4994 if (integer_zerop (low))
4996 if (! TYPE_UNSIGNED (etype))
4998 etype = unsigned_type_for (etype);
4999 high = fold_convert_loc (loc, etype, high);
5000 exp = fold_convert_loc (loc, etype, exp);
5002 return build_range_check (loc, type, exp, 1, 0, high);
5005 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
5006 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
5008 int prec = TYPE_PRECISION (etype);
5010 if (wi::mask <widest_int> (prec - 1, false) == wi::to_widest (high))
5012 if (TYPE_UNSIGNED (etype))
5014 tree signed_etype = signed_type_for (etype);
5015 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
5016 etype
5017 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
5018 else
5019 etype = signed_etype;
5020 exp = fold_convert_loc (loc, etype, exp);
5022 return fold_build2_loc (loc, GT_EXPR, type, exp,
5023 build_int_cst (etype, 0));
5027 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
5028 This requires wrap-around arithmetics for the type of the expression. */
5029 etype = range_check_type (etype);
5030 if (etype == NULL_TREE)
5031 return NULL_TREE;
5033 if (POINTER_TYPE_P (etype))
5034 etype = unsigned_type_for (etype);
5036 high = fold_convert_loc (loc, etype, high);
5037 low = fold_convert_loc (loc, etype, low);
5038 exp = fold_convert_loc (loc, etype, exp);
5040 value = const_binop (MINUS_EXPR, high, low);
5042 if (value != 0 && !TREE_OVERFLOW (value))
5043 return build_range_check (loc, type,
5044 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low),
5045 1, build_int_cst (etype, 0), value);
5047 return 0;
5050 /* Return the predecessor of VAL in its type, handling the infinite case. */
5052 static tree
5053 range_predecessor (tree val)
5055 tree type = TREE_TYPE (val);
5057 if (INTEGRAL_TYPE_P (type)
5058 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
5059 return 0;
5060 else
5061 return range_binop (MINUS_EXPR, NULL_TREE, val, 0,
5062 build_int_cst (TREE_TYPE (val), 1), 0);
5065 /* Return the successor of VAL in its type, handling the infinite case. */
5067 static tree
5068 range_successor (tree val)
5070 tree type = TREE_TYPE (val);
5072 if (INTEGRAL_TYPE_P (type)
5073 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
5074 return 0;
5075 else
5076 return range_binop (PLUS_EXPR, NULL_TREE, val, 0,
5077 build_int_cst (TREE_TYPE (val), 1), 0);
5080 /* Given two ranges, see if we can merge them into one. Return 1 if we
5081 can, 0 if we can't. Set the output range into the specified parameters. */
5083 bool
5084 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
5085 tree high0, int in1_p, tree low1, tree high1)
5087 int no_overlap;
5088 int subset;
5089 int temp;
5090 tree tem;
5091 int in_p;
5092 tree low, high;
5093 int lowequal = ((low0 == 0 && low1 == 0)
5094 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
5095 low0, 0, low1, 0)));
5096 int highequal = ((high0 == 0 && high1 == 0)
5097 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
5098 high0, 1, high1, 1)));
5100 /* Make range 0 be the range that starts first, or ends last if they
5101 start at the same value. Swap them if it isn't. */
5102 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
5103 low0, 0, low1, 0))
5104 || (lowequal
5105 && integer_onep (range_binop (GT_EXPR, integer_type_node,
5106 high1, 1, high0, 1))))
5108 temp = in0_p, in0_p = in1_p, in1_p = temp;
5109 tem = low0, low0 = low1, low1 = tem;
5110 tem = high0, high0 = high1, high1 = tem;
5113 /* If the second range is != high1 where high1 is the type maximum of
5114 the type, try first merging with < high1 range. */
5115 if (low1
5116 && high1
5117 && TREE_CODE (low1) == INTEGER_CST
5118 && (TREE_CODE (TREE_TYPE (low1)) == INTEGER_TYPE
5119 || (TREE_CODE (TREE_TYPE (low1)) == ENUMERAL_TYPE
5120 && known_eq (TYPE_PRECISION (TREE_TYPE (low1)),
5121 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low1))))))
5122 && operand_equal_p (low1, high1, 0))
5124 if (tree_int_cst_equal (low1, TYPE_MAX_VALUE (TREE_TYPE (low1)))
5125 && merge_ranges (pin_p, plow, phigh, in0_p, low0, high0,
5126 !in1_p, NULL_TREE, range_predecessor (low1)))
5127 return true;
5128 /* Similarly for the second range != low1 where low1 is the type minimum
5129 of the type, try first merging with > low1 range. */
5130 if (tree_int_cst_equal (low1, TYPE_MIN_VALUE (TREE_TYPE (low1)))
5131 && merge_ranges (pin_p, plow, phigh, in0_p, low0, high0,
5132 !in1_p, range_successor (low1), NULL_TREE))
5133 return true;
5136 /* Now flag two cases, whether the ranges are disjoint or whether the
5137 second range is totally subsumed in the first. Note that the tests
5138 below are simplified by the ones above. */
5139 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
5140 high0, 1, low1, 0));
5141 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
5142 high1, 1, high0, 1));
5144 /* We now have four cases, depending on whether we are including or
5145 excluding the two ranges. */
5146 if (in0_p && in1_p)
5148 /* If they don't overlap, the result is false. If the second range
5149 is a subset it is the result. Otherwise, the range is from the start
5150 of the second to the end of the first. */
5151 if (no_overlap)
5152 in_p = 0, low = high = 0;
5153 else if (subset)
5154 in_p = 1, low = low1, high = high1;
5155 else
5156 in_p = 1, low = low1, high = high0;
5159 else if (in0_p && ! in1_p)
5161 /* If they don't overlap, the result is the first range. If they are
5162 equal, the result is false. If the second range is a subset of the
5163 first, and the ranges begin at the same place, we go from just after
5164 the end of the second range to the end of the first. If the second
5165 range is not a subset of the first, or if it is a subset and both
5166 ranges end at the same place, the range starts at the start of the
5167 first range and ends just before the second range.
5168 Otherwise, we can't describe this as a single range. */
5169 if (no_overlap)
5170 in_p = 1, low = low0, high = high0;
5171 else if (lowequal && highequal)
5172 in_p = 0, low = high = 0;
5173 else if (subset && lowequal)
5175 low = range_successor (high1);
5176 high = high0;
5177 in_p = 1;
5178 if (low == 0)
5180 /* We are in the weird situation where high0 > high1 but
5181 high1 has no successor. Punt. */
5182 return 0;
5185 else if (! subset || highequal)
5187 low = low0;
5188 high = range_predecessor (low1);
5189 in_p = 1;
5190 if (high == 0)
5192 /* low0 < low1 but low1 has no predecessor. Punt. */
5193 return 0;
5196 else
5197 return 0;
5200 else if (! in0_p && in1_p)
5202 /* If they don't overlap, the result is the second range. If the second
5203 is a subset of the first, the result is false. Otherwise,
5204 the range starts just after the first range and ends at the
5205 end of the second. */
5206 if (no_overlap)
5207 in_p = 1, low = low1, high = high1;
5208 else if (subset || highequal)
5209 in_p = 0, low = high = 0;
5210 else
5212 low = range_successor (high0);
5213 high = high1;
5214 in_p = 1;
5215 if (low == 0)
5217 /* high1 > high0 but high0 has no successor. Punt. */
5218 return 0;
5223 else
5225 /* The case where we are excluding both ranges. Here the complex case
5226 is if they don't overlap. In that case, the only time we have a
5227 range is if they are adjacent. If the second is a subset of the
5228 first, the result is the first. Otherwise, the range to exclude
5229 starts at the beginning of the first range and ends at the end of the
5230 second. */
5231 if (no_overlap)
5233 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
5234 range_successor (high0),
5235 1, low1, 0)))
5236 in_p = 0, low = low0, high = high1;
5237 else
5239 /* Canonicalize - [min, x] into - [-, x]. */
5240 if (low0 && TREE_CODE (low0) == INTEGER_CST)
5241 switch (TREE_CODE (TREE_TYPE (low0)))
5243 case ENUMERAL_TYPE:
5244 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (low0)),
5245 GET_MODE_BITSIZE
5246 (TYPE_MODE (TREE_TYPE (low0)))))
5247 break;
5248 /* FALLTHROUGH */
5249 case INTEGER_TYPE:
5250 if (tree_int_cst_equal (low0,
5251 TYPE_MIN_VALUE (TREE_TYPE (low0))))
5252 low0 = 0;
5253 break;
5254 case POINTER_TYPE:
5255 if (TYPE_UNSIGNED (TREE_TYPE (low0))
5256 && integer_zerop (low0))
5257 low0 = 0;
5258 break;
5259 default:
5260 break;
5263 /* Canonicalize - [x, max] into - [x, -]. */
5264 if (high1 && TREE_CODE (high1) == INTEGER_CST)
5265 switch (TREE_CODE (TREE_TYPE (high1)))
5267 case ENUMERAL_TYPE:
5268 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (high1)),
5269 GET_MODE_BITSIZE
5270 (TYPE_MODE (TREE_TYPE (high1)))))
5271 break;
5272 /* FALLTHROUGH */
5273 case INTEGER_TYPE:
5274 if (tree_int_cst_equal (high1,
5275 TYPE_MAX_VALUE (TREE_TYPE (high1))))
5276 high1 = 0;
5277 break;
5278 case POINTER_TYPE:
5279 if (TYPE_UNSIGNED (TREE_TYPE (high1))
5280 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
5281 high1, 1,
5282 build_int_cst (TREE_TYPE (high1), 1),
5283 1)))
5284 high1 = 0;
5285 break;
5286 default:
5287 break;
5290 /* The ranges might be also adjacent between the maximum and
5291 minimum values of the given type. For
5292 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
5293 return + [x + 1, y - 1]. */
5294 if (low0 == 0 && high1 == 0)
5296 low = range_successor (high0);
5297 high = range_predecessor (low1);
5298 if (low == 0 || high == 0)
5299 return 0;
5301 in_p = 1;
5303 else
5304 return 0;
5307 else if (subset)
5308 in_p = 0, low = low0, high = high0;
5309 else
5310 in_p = 0, low = low0, high = high1;
5313 *pin_p = in_p, *plow = low, *phigh = high;
5314 return 1;
5318 /* Subroutine of fold, looking inside expressions of the form
5319 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
5320 of the COND_EXPR. This function is being used also to optimize
5321 A op B ? C : A, by reversing the comparison first.
5323 Return a folded expression whose code is not a COND_EXPR
5324 anymore, or NULL_TREE if no folding opportunity is found. */
5326 static tree
5327 fold_cond_expr_with_comparison (location_t loc, tree type,
5328 tree arg0, tree arg1, tree arg2)
5330 enum tree_code comp_code = TREE_CODE (arg0);
5331 tree arg00 = TREE_OPERAND (arg0, 0);
5332 tree arg01 = TREE_OPERAND (arg0, 1);
5333 tree arg1_type = TREE_TYPE (arg1);
5334 tree tem;
5336 STRIP_NOPS (arg1);
5337 STRIP_NOPS (arg2);
5339 /* If we have A op 0 ? A : -A, consider applying the following
5340 transformations:
5342 A == 0? A : -A same as -A
5343 A != 0? A : -A same as A
5344 A >= 0? A : -A same as abs (A)
5345 A > 0? A : -A same as abs (A)
5346 A <= 0? A : -A same as -abs (A)
5347 A < 0? A : -A same as -abs (A)
5349 None of these transformations work for modes with signed
5350 zeros. If A is +/-0, the first two transformations will
5351 change the sign of the result (from +0 to -0, or vice
5352 versa). The last four will fix the sign of the result,
5353 even though the original expressions could be positive or
5354 negative, depending on the sign of A.
5356 Note that all these transformations are correct if A is
5357 NaN, since the two alternatives (A and -A) are also NaNs. */
5358 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5359 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
5360 ? real_zerop (arg01)
5361 : integer_zerop (arg01))
5362 && ((TREE_CODE (arg2) == NEGATE_EXPR
5363 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
5364 /* In the case that A is of the form X-Y, '-A' (arg2) may
5365 have already been folded to Y-X, check for that. */
5366 || (TREE_CODE (arg1) == MINUS_EXPR
5367 && TREE_CODE (arg2) == MINUS_EXPR
5368 && operand_equal_p (TREE_OPERAND (arg1, 0),
5369 TREE_OPERAND (arg2, 1), 0)
5370 && operand_equal_p (TREE_OPERAND (arg1, 1),
5371 TREE_OPERAND (arg2, 0), 0))))
5372 switch (comp_code)
5374 case EQ_EXPR:
5375 case UNEQ_EXPR:
5376 tem = fold_convert_loc (loc, arg1_type, arg1);
5377 return fold_convert_loc (loc, type, negate_expr (tem));
5378 case NE_EXPR:
5379 case LTGT_EXPR:
5380 return fold_convert_loc (loc, type, arg1);
5381 case UNGE_EXPR:
5382 case UNGT_EXPR:
5383 if (flag_trapping_math)
5384 break;
5385 /* Fall through. */
5386 case GE_EXPR:
5387 case GT_EXPR:
5388 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5389 break;
5390 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5391 return fold_convert_loc (loc, type, tem);
5392 case UNLE_EXPR:
5393 case UNLT_EXPR:
5394 if (flag_trapping_math)
5395 break;
5396 /* FALLTHRU */
5397 case LE_EXPR:
5398 case LT_EXPR:
5399 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5400 break;
5401 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5402 return negate_expr (fold_convert_loc (loc, type, tem));
5403 default:
5404 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5405 break;
5408 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5409 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5410 both transformations are correct when A is NaN: A != 0
5411 is then true, and A == 0 is false. */
5413 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5414 && integer_zerop (arg01) && integer_zerop (arg2))
5416 if (comp_code == NE_EXPR)
5417 return fold_convert_loc (loc, type, arg1);
5418 else if (comp_code == EQ_EXPR)
5419 return build_zero_cst (type);
5422 /* Try some transformations of A op B ? A : B.
5424 A == B? A : B same as B
5425 A != B? A : B same as A
5426 A >= B? A : B same as max (A, B)
5427 A > B? A : B same as max (B, A)
5428 A <= B? A : B same as min (A, B)
5429 A < B? A : B same as min (B, A)
5431 As above, these transformations don't work in the presence
5432 of signed zeros. For example, if A and B are zeros of
5433 opposite sign, the first two transformations will change
5434 the sign of the result. In the last four, the original
5435 expressions give different results for (A=+0, B=-0) and
5436 (A=-0, B=+0), but the transformed expressions do not.
5438 The first two transformations are correct if either A or B
5439 is a NaN. In the first transformation, the condition will
5440 be false, and B will indeed be chosen. In the case of the
5441 second transformation, the condition A != B will be true,
5442 and A will be chosen.
5444 The conversions to max() and min() are not correct if B is
5445 a number and A is not. The conditions in the original
5446 expressions will be false, so all four give B. The min()
5447 and max() versions would give a NaN instead. */
5448 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5449 && operand_equal_for_comparison_p (arg01, arg2)
5450 /* Avoid these transformations if the COND_EXPR may be used
5451 as an lvalue in the C++ front-end. PR c++/19199. */
5452 && (in_gimple_form
5453 || VECTOR_TYPE_P (type)
5454 || (! lang_GNU_CXX ()
5455 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
5456 || ! maybe_lvalue_p (arg1)
5457 || ! maybe_lvalue_p (arg2)))
5459 tree comp_op0 = arg00;
5460 tree comp_op1 = arg01;
5461 tree comp_type = TREE_TYPE (comp_op0);
5463 switch (comp_code)
5465 case EQ_EXPR:
5466 return fold_convert_loc (loc, type, arg2);
5467 case NE_EXPR:
5468 return fold_convert_loc (loc, type, arg1);
5469 case LE_EXPR:
5470 case LT_EXPR:
5471 case UNLE_EXPR:
5472 case UNLT_EXPR:
5473 /* In C++ a ?: expression can be an lvalue, so put the
5474 operand which will be used if they are equal first
5475 so that we can convert this back to the
5476 corresponding COND_EXPR. */
5477 if (!HONOR_NANS (arg1))
5479 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5480 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5481 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
5482 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1)
5483 : fold_build2_loc (loc, MIN_EXPR, comp_type,
5484 comp_op1, comp_op0);
5485 return fold_convert_loc (loc, type, tem);
5487 break;
5488 case GE_EXPR:
5489 case GT_EXPR:
5490 case UNGE_EXPR:
5491 case UNGT_EXPR:
5492 if (!HONOR_NANS (arg1))
5494 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5495 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5496 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
5497 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1)
5498 : fold_build2_loc (loc, MAX_EXPR, comp_type,
5499 comp_op1, comp_op0);
5500 return fold_convert_loc (loc, type, tem);
5502 break;
5503 case UNEQ_EXPR:
5504 if (!HONOR_NANS (arg1))
5505 return fold_convert_loc (loc, type, arg2);
5506 break;
5507 case LTGT_EXPR:
5508 if (!HONOR_NANS (arg1))
5509 return fold_convert_loc (loc, type, arg1);
5510 break;
5511 default:
5512 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5513 break;
5517 return NULL_TREE;
5522 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5523 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5524 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5525 false) >= 2)
5526 #endif
5528 /* EXP is some logical combination of boolean tests. See if we can
5529 merge it into some range test. Return the new tree if so. */
5531 static tree
5532 fold_range_test (location_t loc, enum tree_code code, tree type,
5533 tree op0, tree op1)
5535 int or_op = (code == TRUTH_ORIF_EXPR
5536 || code == TRUTH_OR_EXPR);
5537 int in0_p, in1_p, in_p;
5538 tree low0, low1, low, high0, high1, high;
5539 bool strict_overflow_p = false;
5540 tree tem, lhs, rhs;
5541 const char * const warnmsg = G_("assuming signed overflow does not occur "
5542 "when simplifying range test");
5544 if (!INTEGRAL_TYPE_P (type))
5545 return 0;
5547 lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
5548 rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
5550 /* If this is an OR operation, invert both sides; we will invert
5551 again at the end. */
5552 if (or_op)
5553 in0_p = ! in0_p, in1_p = ! in1_p;
5555 /* If both expressions are the same, if we can merge the ranges, and we
5556 can build the range test, return it or it inverted. If one of the
5557 ranges is always true or always false, consider it to be the same
5558 expression as the other. */
5559 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
5560 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
5561 in1_p, low1, high1)
5562 && (tem = (build_range_check (loc, type,
5563 lhs != 0 ? lhs
5564 : rhs != 0 ? rhs : integer_zero_node,
5565 in_p, low, high))) != 0)
5567 if (strict_overflow_p)
5568 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
5569 return or_op ? invert_truthvalue_loc (loc, tem) : tem;
5572 /* On machines where the branch cost is expensive, if this is a
5573 short-circuited branch and the underlying object on both sides
5574 is the same, make a non-short-circuit operation. */
5575 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5576 && !flag_sanitize_coverage
5577 && lhs != 0 && rhs != 0
5578 && (code == TRUTH_ANDIF_EXPR
5579 || code == TRUTH_ORIF_EXPR)
5580 && operand_equal_p (lhs, rhs, 0))
5582 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5583 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5584 which cases we can't do this. */
5585 if (simple_operand_p (lhs))
5586 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5587 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5588 type, op0, op1);
5590 else if (!lang_hooks.decls.global_bindings_p ()
5591 && !CONTAINS_PLACEHOLDER_P (lhs))
5593 tree common = save_expr (lhs);
5595 if ((lhs = build_range_check (loc, type, common,
5596 or_op ? ! in0_p : in0_p,
5597 low0, high0)) != 0
5598 && (rhs = build_range_check (loc, type, common,
5599 or_op ? ! in1_p : in1_p,
5600 low1, high1)) != 0)
5602 if (strict_overflow_p)
5603 fold_overflow_warning (warnmsg,
5604 WARN_STRICT_OVERFLOW_COMPARISON);
5605 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5606 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5607 type, lhs, rhs);
5612 return 0;
5615 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5616 bit value. Arrange things so the extra bits will be set to zero if and
5617 only if C is signed-extended to its full width. If MASK is nonzero,
5618 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5620 static tree
5621 unextend (tree c, int p, int unsignedp, tree mask)
5623 tree type = TREE_TYPE (c);
5624 int modesize = GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type));
5625 tree temp;
5627 if (p == modesize || unsignedp)
5628 return c;
5630 /* We work by getting just the sign bit into the low-order bit, then
5631 into the high-order bit, then sign-extend. We then XOR that value
5632 with C. */
5633 temp = build_int_cst (TREE_TYPE (c),
5634 wi::extract_uhwi (wi::to_wide (c), p - 1, 1));
5636 /* We must use a signed type in order to get an arithmetic right shift.
5637 However, we must also avoid introducing accidental overflows, so that
5638 a subsequent call to integer_zerop will work. Hence we must
5639 do the type conversion here. At this point, the constant is either
5640 zero or one, and the conversion to a signed type can never overflow.
5641 We could get an overflow if this conversion is done anywhere else. */
5642 if (TYPE_UNSIGNED (type))
5643 temp = fold_convert (signed_type_for (type), temp);
5645 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1));
5646 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1));
5647 if (mask != 0)
5648 temp = const_binop (BIT_AND_EXPR, temp,
5649 fold_convert (TREE_TYPE (c), mask));
5650 /* If necessary, convert the type back to match the type of C. */
5651 if (TYPE_UNSIGNED (type))
5652 temp = fold_convert (type, temp);
5654 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp));
5657 /* For an expression that has the form
5658 (A && B) || ~B
5660 (A || B) && ~B,
5661 we can drop one of the inner expressions and simplify to
5662 A || ~B
5664 A && ~B
5665 LOC is the location of the resulting expression. OP is the inner
5666 logical operation; the left-hand side in the examples above, while CMPOP
5667 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5668 removing a condition that guards another, as in
5669 (A != NULL && A->...) || A == NULL
5670 which we must not transform. If RHS_ONLY is true, only eliminate the
5671 right-most operand of the inner logical operation. */
5673 static tree
5674 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop,
5675 bool rhs_only)
5677 tree type = TREE_TYPE (cmpop);
5678 enum tree_code code = TREE_CODE (cmpop);
5679 enum tree_code truthop_code = TREE_CODE (op);
5680 tree lhs = TREE_OPERAND (op, 0);
5681 tree rhs = TREE_OPERAND (op, 1);
5682 tree orig_lhs = lhs, orig_rhs = rhs;
5683 enum tree_code rhs_code = TREE_CODE (rhs);
5684 enum tree_code lhs_code = TREE_CODE (lhs);
5685 enum tree_code inv_code;
5687 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop))
5688 return NULL_TREE;
5690 if (TREE_CODE_CLASS (code) != tcc_comparison)
5691 return NULL_TREE;
5693 if (rhs_code == truthop_code)
5695 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only);
5696 if (newrhs != NULL_TREE)
5698 rhs = newrhs;
5699 rhs_code = TREE_CODE (rhs);
5702 if (lhs_code == truthop_code && !rhs_only)
5704 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false);
5705 if (newlhs != NULL_TREE)
5707 lhs = newlhs;
5708 lhs_code = TREE_CODE (lhs);
5712 inv_code = invert_tree_comparison (code, HONOR_NANS (type));
5713 if (inv_code == rhs_code
5714 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0)
5715 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0))
5716 return lhs;
5717 if (!rhs_only && inv_code == lhs_code
5718 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0)
5719 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0))
5720 return rhs;
5721 if (rhs != orig_rhs || lhs != orig_lhs)
5722 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop),
5723 lhs, rhs);
5724 return NULL_TREE;
5727 /* Find ways of folding logical expressions of LHS and RHS:
5728 Try to merge two comparisons to the same innermost item.
5729 Look for range tests like "ch >= '0' && ch <= '9'".
5730 Look for combinations of simple terms on machines with expensive branches
5731 and evaluate the RHS unconditionally.
5733 For example, if we have p->a == 2 && p->b == 4 and we can make an
5734 object large enough to span both A and B, we can do this with a comparison
5735 against the object ANDed with the a mask.
5737 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5738 operations to do this with one comparison.
5740 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5741 function and the one above.
5743 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5744 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5746 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5747 two operands.
5749 We return the simplified tree or 0 if no optimization is possible. */
5751 static tree
5752 fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type,
5753 tree lhs, tree rhs)
5755 /* If this is the "or" of two comparisons, we can do something if
5756 the comparisons are NE_EXPR. If this is the "and", we can do something
5757 if the comparisons are EQ_EXPR. I.e.,
5758 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5760 WANTED_CODE is this operation code. For single bit fields, we can
5761 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5762 comparison for one-bit fields. */
5764 enum tree_code wanted_code;
5765 enum tree_code lcode, rcode;
5766 tree ll_arg, lr_arg, rl_arg, rr_arg;
5767 tree ll_inner, lr_inner, rl_inner, rr_inner;
5768 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
5769 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
5770 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
5771 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
5772 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
5773 int ll_reversep, lr_reversep, rl_reversep, rr_reversep;
5774 machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
5775 scalar_int_mode lnmode, rnmode;
5776 tree ll_mask, lr_mask, rl_mask, rr_mask;
5777 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
5778 tree l_const, r_const;
5779 tree lntype, rntype, result;
5780 HOST_WIDE_INT first_bit, end_bit;
5781 int volatilep;
5783 /* Start by getting the comparison codes. Fail if anything is volatile.
5784 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5785 it were surrounded with a NE_EXPR. */
5787 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
5788 return 0;
5790 lcode = TREE_CODE (lhs);
5791 rcode = TREE_CODE (rhs);
5793 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
5795 lhs = build2 (NE_EXPR, truth_type, lhs,
5796 build_int_cst (TREE_TYPE (lhs), 0));
5797 lcode = NE_EXPR;
5800 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
5802 rhs = build2 (NE_EXPR, truth_type, rhs,
5803 build_int_cst (TREE_TYPE (rhs), 0));
5804 rcode = NE_EXPR;
5807 if (TREE_CODE_CLASS (lcode) != tcc_comparison
5808 || TREE_CODE_CLASS (rcode) != tcc_comparison)
5809 return 0;
5811 ll_arg = TREE_OPERAND (lhs, 0);
5812 lr_arg = TREE_OPERAND (lhs, 1);
5813 rl_arg = TREE_OPERAND (rhs, 0);
5814 rr_arg = TREE_OPERAND (rhs, 1);
5816 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5817 if (simple_operand_p (ll_arg)
5818 && simple_operand_p (lr_arg))
5820 if (operand_equal_p (ll_arg, rl_arg, 0)
5821 && operand_equal_p (lr_arg, rr_arg, 0))
5823 result = combine_comparisons (loc, code, lcode, rcode,
5824 truth_type, ll_arg, lr_arg);
5825 if (result)
5826 return result;
5828 else if (operand_equal_p (ll_arg, rr_arg, 0)
5829 && operand_equal_p (lr_arg, rl_arg, 0))
5831 result = combine_comparisons (loc, code, lcode,
5832 swap_tree_comparison (rcode),
5833 truth_type, ll_arg, lr_arg);
5834 if (result)
5835 return result;
5839 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
5840 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
5842 /* If the RHS can be evaluated unconditionally and its operands are
5843 simple, it wins to evaluate the RHS unconditionally on machines
5844 with expensive branches. In this case, this isn't a comparison
5845 that can be merged. */
5847 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
5848 false) >= 2
5849 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
5850 && simple_operand_p (rl_arg)
5851 && simple_operand_p (rr_arg))
5853 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5854 if (code == TRUTH_OR_EXPR
5855 && lcode == NE_EXPR && integer_zerop (lr_arg)
5856 && rcode == NE_EXPR && integer_zerop (rr_arg)
5857 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5858 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5859 return build2_loc (loc, NE_EXPR, truth_type,
5860 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5861 ll_arg, rl_arg),
5862 build_int_cst (TREE_TYPE (ll_arg), 0));
5864 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5865 if (code == TRUTH_AND_EXPR
5866 && lcode == EQ_EXPR && integer_zerop (lr_arg)
5867 && rcode == EQ_EXPR && integer_zerop (rr_arg)
5868 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5869 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5870 return build2_loc (loc, EQ_EXPR, truth_type,
5871 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5872 ll_arg, rl_arg),
5873 build_int_cst (TREE_TYPE (ll_arg), 0));
5876 /* See if the comparisons can be merged. Then get all the parameters for
5877 each side. */
5879 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
5880 || (rcode != EQ_EXPR && rcode != NE_EXPR))
5881 return 0;
5883 ll_reversep = lr_reversep = rl_reversep = rr_reversep = 0;
5884 volatilep = 0;
5885 ll_inner = decode_field_reference (loc, &ll_arg,
5886 &ll_bitsize, &ll_bitpos, &ll_mode,
5887 &ll_unsignedp, &ll_reversep, &volatilep,
5888 &ll_mask, &ll_and_mask);
5889 lr_inner = decode_field_reference (loc, &lr_arg,
5890 &lr_bitsize, &lr_bitpos, &lr_mode,
5891 &lr_unsignedp, &lr_reversep, &volatilep,
5892 &lr_mask, &lr_and_mask);
5893 rl_inner = decode_field_reference (loc, &rl_arg,
5894 &rl_bitsize, &rl_bitpos, &rl_mode,
5895 &rl_unsignedp, &rl_reversep, &volatilep,
5896 &rl_mask, &rl_and_mask);
5897 rr_inner = decode_field_reference (loc, &rr_arg,
5898 &rr_bitsize, &rr_bitpos, &rr_mode,
5899 &rr_unsignedp, &rr_reversep, &volatilep,
5900 &rr_mask, &rr_and_mask);
5902 /* It must be true that the inner operation on the lhs of each
5903 comparison must be the same if we are to be able to do anything.
5904 Then see if we have constants. If not, the same must be true for
5905 the rhs's. */
5906 if (volatilep
5907 || ll_reversep != rl_reversep
5908 || ll_inner == 0 || rl_inner == 0
5909 || ! operand_equal_p (ll_inner, rl_inner, 0))
5910 return 0;
5912 if (TREE_CODE (lr_arg) == INTEGER_CST
5913 && TREE_CODE (rr_arg) == INTEGER_CST)
5915 l_const = lr_arg, r_const = rr_arg;
5916 lr_reversep = ll_reversep;
5918 else if (lr_reversep != rr_reversep
5919 || lr_inner == 0 || rr_inner == 0
5920 || ! operand_equal_p (lr_inner, rr_inner, 0))
5921 return 0;
5922 else
5923 l_const = r_const = 0;
5925 /* If either comparison code is not correct for our logical operation,
5926 fail. However, we can convert a one-bit comparison against zero into
5927 the opposite comparison against that bit being set in the field. */
5929 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5930 if (lcode != wanted_code)
5932 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5934 /* Make the left operand unsigned, since we are only interested
5935 in the value of one bit. Otherwise we are doing the wrong
5936 thing below. */
5937 ll_unsignedp = 1;
5938 l_const = ll_mask;
5940 else
5941 return 0;
5944 /* This is analogous to the code for l_const above. */
5945 if (rcode != wanted_code)
5947 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5949 rl_unsignedp = 1;
5950 r_const = rl_mask;
5952 else
5953 return 0;
5956 /* See if we can find a mode that contains both fields being compared on
5957 the left. If we can't, fail. Otherwise, update all constants and masks
5958 to be relative to a field of that size. */
5959 first_bit = MIN (ll_bitpos, rl_bitpos);
5960 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5961 if (!get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5962 TYPE_ALIGN (TREE_TYPE (ll_inner)), BITS_PER_WORD,
5963 volatilep, &lnmode))
5964 return 0;
5966 lnbitsize = GET_MODE_BITSIZE (lnmode);
5967 lnbitpos = first_bit & ~ (lnbitsize - 1);
5968 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5969 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5971 if (ll_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
5973 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5974 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5977 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask),
5978 size_int (xll_bitpos));
5979 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask),
5980 size_int (xrl_bitpos));
5982 if (l_const)
5984 l_const = fold_convert_loc (loc, lntype, l_const);
5985 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
5986 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos));
5987 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
5988 fold_build1_loc (loc, BIT_NOT_EXPR,
5989 lntype, ll_mask))))
5991 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5993 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5996 if (r_const)
5998 r_const = fold_convert_loc (loc, lntype, r_const);
5999 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
6000 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos));
6001 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
6002 fold_build1_loc (loc, BIT_NOT_EXPR,
6003 lntype, rl_mask))))
6005 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
6007 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
6011 /* If the right sides are not constant, do the same for it. Also,
6012 disallow this optimization if a size or signedness mismatch occurs
6013 between the left and right sides. */
6014 if (l_const == 0)
6016 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
6017 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
6018 /* Make sure the two fields on the right
6019 correspond to the left without being swapped. */
6020 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
6021 return 0;
6023 first_bit = MIN (lr_bitpos, rr_bitpos);
6024 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
6025 if (!get_best_mode (end_bit - first_bit, first_bit, 0, 0,
6026 TYPE_ALIGN (TREE_TYPE (lr_inner)), BITS_PER_WORD,
6027 volatilep, &rnmode))
6028 return 0;
6030 rnbitsize = GET_MODE_BITSIZE (rnmode);
6031 rnbitpos = first_bit & ~ (rnbitsize - 1);
6032 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
6033 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
6035 if (lr_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
6037 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
6038 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
6041 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
6042 rntype, lr_mask),
6043 size_int (xlr_bitpos));
6044 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
6045 rntype, rr_mask),
6046 size_int (xrr_bitpos));
6048 /* Make a mask that corresponds to both fields being compared.
6049 Do this for both items being compared. If the operands are the
6050 same size and the bits being compared are in the same position
6051 then we can do this by masking both and comparing the masked
6052 results. */
6053 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
6054 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask);
6055 if (lnbitsize == rnbitsize
6056 && xll_bitpos == xlr_bitpos
6057 && lnbitpos >= 0
6058 && rnbitpos >= 0)
6060 lhs = make_bit_field_ref (loc, ll_inner, ll_arg,
6061 lntype, lnbitsize, lnbitpos,
6062 ll_unsignedp || rl_unsignedp, ll_reversep);
6063 if (! all_ones_mask_p (ll_mask, lnbitsize))
6064 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
6066 rhs = make_bit_field_ref (loc, lr_inner, lr_arg,
6067 rntype, rnbitsize, rnbitpos,
6068 lr_unsignedp || rr_unsignedp, lr_reversep);
6069 if (! all_ones_mask_p (lr_mask, rnbitsize))
6070 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
6072 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
6075 /* There is still another way we can do something: If both pairs of
6076 fields being compared are adjacent, we may be able to make a wider
6077 field containing them both.
6079 Note that we still must mask the lhs/rhs expressions. Furthermore,
6080 the mask must be shifted to account for the shift done by
6081 make_bit_field_ref. */
6082 if (((ll_bitsize + ll_bitpos == rl_bitpos
6083 && lr_bitsize + lr_bitpos == rr_bitpos)
6084 || (ll_bitpos == rl_bitpos + rl_bitsize
6085 && lr_bitpos == rr_bitpos + rr_bitsize))
6086 && ll_bitpos >= 0
6087 && rl_bitpos >= 0
6088 && lr_bitpos >= 0
6089 && rr_bitpos >= 0)
6091 tree type;
6093 lhs = make_bit_field_ref (loc, ll_inner, ll_arg, lntype,
6094 ll_bitsize + rl_bitsize,
6095 MIN (ll_bitpos, rl_bitpos),
6096 ll_unsignedp, ll_reversep);
6097 rhs = make_bit_field_ref (loc, lr_inner, lr_arg, rntype,
6098 lr_bitsize + rr_bitsize,
6099 MIN (lr_bitpos, rr_bitpos),
6100 lr_unsignedp, lr_reversep);
6102 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
6103 size_int (MIN (xll_bitpos, xrl_bitpos)));
6104 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
6105 size_int (MIN (xlr_bitpos, xrr_bitpos)));
6107 /* Convert to the smaller type before masking out unwanted bits. */
6108 type = lntype;
6109 if (lntype != rntype)
6111 if (lnbitsize > rnbitsize)
6113 lhs = fold_convert_loc (loc, rntype, lhs);
6114 ll_mask = fold_convert_loc (loc, rntype, ll_mask);
6115 type = rntype;
6117 else if (lnbitsize < rnbitsize)
6119 rhs = fold_convert_loc (loc, lntype, rhs);
6120 lr_mask = fold_convert_loc (loc, lntype, lr_mask);
6121 type = lntype;
6125 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
6126 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
6128 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
6129 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
6131 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
6134 return 0;
6137 /* Handle the case of comparisons with constants. If there is something in
6138 common between the masks, those bits of the constants must be the same.
6139 If not, the condition is always false. Test for this to avoid generating
6140 incorrect code below. */
6141 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask);
6142 if (! integer_zerop (result)
6143 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const),
6144 const_binop (BIT_AND_EXPR, result, r_const)) != 1)
6146 if (wanted_code == NE_EXPR)
6148 warning (0, "%<or%> of unmatched not-equal tests is always 1");
6149 return constant_boolean_node (true, truth_type);
6151 else
6153 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
6154 return constant_boolean_node (false, truth_type);
6158 if (lnbitpos < 0)
6159 return 0;
6161 /* Construct the expression we will return. First get the component
6162 reference we will make. Unless the mask is all ones the width of
6163 that field, perform the mask operation. Then compare with the
6164 merged constant. */
6165 result = make_bit_field_ref (loc, ll_inner, ll_arg,
6166 lntype, lnbitsize, lnbitpos,
6167 ll_unsignedp || rl_unsignedp, ll_reversep);
6169 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
6170 if (! all_ones_mask_p (ll_mask, lnbitsize))
6171 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask);
6173 return build2_loc (loc, wanted_code, truth_type, result,
6174 const_binop (BIT_IOR_EXPR, l_const, r_const));
6177 /* T is an integer expression that is being multiplied, divided, or taken a
6178 modulus (CODE says which and what kind of divide or modulus) by a
6179 constant C. See if we can eliminate that operation by folding it with
6180 other operations already in T. WIDE_TYPE, if non-null, is a type that
6181 should be used for the computation if wider than our type.
6183 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
6184 (X * 2) + (Y * 4). We must, however, be assured that either the original
6185 expression would not overflow or that overflow is undefined for the type
6186 in the language in question.
6188 If we return a non-null expression, it is an equivalent form of the
6189 original computation, but need not be in the original type.
6191 We set *STRICT_OVERFLOW_P to true if the return values depends on
6192 signed overflow being undefined. Otherwise we do not change
6193 *STRICT_OVERFLOW_P. */
6195 static tree
6196 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
6197 bool *strict_overflow_p)
6199 /* To avoid exponential search depth, refuse to allow recursion past
6200 three levels. Beyond that (1) it's highly unlikely that we'll find
6201 something interesting and (2) we've probably processed it before
6202 when we built the inner expression. */
6204 static int depth;
6205 tree ret;
6207 if (depth > 3)
6208 return NULL;
6210 depth++;
6211 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
6212 depth--;
6214 return ret;
6217 static tree
6218 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
6219 bool *strict_overflow_p)
6221 tree type = TREE_TYPE (t);
6222 enum tree_code tcode = TREE_CODE (t);
6223 tree ctype = (wide_type != 0
6224 && (GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (wide_type))
6225 > GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type)))
6226 ? wide_type : type);
6227 tree t1, t2;
6228 int same_p = tcode == code;
6229 tree op0 = NULL_TREE, op1 = NULL_TREE;
6230 bool sub_strict_overflow_p;
6232 /* Don't deal with constants of zero here; they confuse the code below. */
6233 if (integer_zerop (c))
6234 return NULL_TREE;
6236 if (TREE_CODE_CLASS (tcode) == tcc_unary)
6237 op0 = TREE_OPERAND (t, 0);
6239 if (TREE_CODE_CLASS (tcode) == tcc_binary)
6240 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
6242 /* Note that we need not handle conditional operations here since fold
6243 already handles those cases. So just do arithmetic here. */
6244 switch (tcode)
6246 case INTEGER_CST:
6247 /* For a constant, we can always simplify if we are a multiply
6248 or (for divide and modulus) if it is a multiple of our constant. */
6249 if (code == MULT_EXPR
6250 || wi::multiple_of_p (wi::to_wide (t), wi::to_wide (c),
6251 TYPE_SIGN (type)))
6253 tree tem = const_binop (code, fold_convert (ctype, t),
6254 fold_convert (ctype, c));
6255 /* If the multiplication overflowed, we lost information on it.
6256 See PR68142 and PR69845. */
6257 if (TREE_OVERFLOW (tem))
6258 return NULL_TREE;
6259 return tem;
6261 break;
6263 CASE_CONVERT: case NON_LVALUE_EXPR:
6264 /* If op0 is an expression ... */
6265 if ((COMPARISON_CLASS_P (op0)
6266 || UNARY_CLASS_P (op0)
6267 || BINARY_CLASS_P (op0)
6268 || VL_EXP_CLASS_P (op0)
6269 || EXPRESSION_CLASS_P (op0))
6270 /* ... and has wrapping overflow, and its type is smaller
6271 than ctype, then we cannot pass through as widening. */
6272 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
6273 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
6274 && (TYPE_PRECISION (ctype)
6275 > TYPE_PRECISION (TREE_TYPE (op0))))
6276 /* ... or this is a truncation (t is narrower than op0),
6277 then we cannot pass through this narrowing. */
6278 || (TYPE_PRECISION (type)
6279 < TYPE_PRECISION (TREE_TYPE (op0)))
6280 /* ... or signedness changes for division or modulus,
6281 then we cannot pass through this conversion. */
6282 || (code != MULT_EXPR
6283 && (TYPE_UNSIGNED (ctype)
6284 != TYPE_UNSIGNED (TREE_TYPE (op0))))
6285 /* ... or has undefined overflow while the converted to
6286 type has not, we cannot do the operation in the inner type
6287 as that would introduce undefined overflow. */
6288 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
6289 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
6290 && !TYPE_OVERFLOW_UNDEFINED (type))))
6291 break;
6293 /* Pass the constant down and see if we can make a simplification. If
6294 we can, replace this expression with the inner simplification for
6295 possible later conversion to our or some other type. */
6296 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
6297 && TREE_CODE (t2) == INTEGER_CST
6298 && !TREE_OVERFLOW (t2)
6299 && (t1 = extract_muldiv (op0, t2, code,
6300 code == MULT_EXPR ? ctype : NULL_TREE,
6301 strict_overflow_p)) != 0)
6302 return t1;
6303 break;
6305 case ABS_EXPR:
6306 /* If widening the type changes it from signed to unsigned, then we
6307 must avoid building ABS_EXPR itself as unsigned. */
6308 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
6310 tree cstype = (*signed_type_for) (ctype);
6311 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
6312 != 0)
6314 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
6315 return fold_convert (ctype, t1);
6317 break;
6319 /* If the constant is negative, we cannot simplify this. */
6320 if (tree_int_cst_sgn (c) == -1)
6321 break;
6322 /* FALLTHROUGH */
6323 case NEGATE_EXPR:
6324 /* For division and modulus, type can't be unsigned, as e.g.
6325 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
6326 For signed types, even with wrapping overflow, this is fine. */
6327 if (code != MULT_EXPR && TYPE_UNSIGNED (type))
6328 break;
6329 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
6330 != 0)
6331 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
6332 break;
6334 case MIN_EXPR: case MAX_EXPR:
6335 /* If widening the type changes the signedness, then we can't perform
6336 this optimization as that changes the result. */
6337 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
6338 break;
6340 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6341 sub_strict_overflow_p = false;
6342 if ((t1 = extract_muldiv (op0, c, code, wide_type,
6343 &sub_strict_overflow_p)) != 0
6344 && (t2 = extract_muldiv (op1, c, code, wide_type,
6345 &sub_strict_overflow_p)) != 0)
6347 if (tree_int_cst_sgn (c) < 0)
6348 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
6349 if (sub_strict_overflow_p)
6350 *strict_overflow_p = true;
6351 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6352 fold_convert (ctype, t2));
6354 break;
6356 case LSHIFT_EXPR: case RSHIFT_EXPR:
6357 /* If the second operand is constant, this is a multiplication
6358 or floor division, by a power of two, so we can treat it that
6359 way unless the multiplier or divisor overflows. Signed
6360 left-shift overflow is implementation-defined rather than
6361 undefined in C90, so do not convert signed left shift into
6362 multiplication. */
6363 if (TREE_CODE (op1) == INTEGER_CST
6364 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
6365 /* const_binop may not detect overflow correctly,
6366 so check for it explicitly here. */
6367 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)),
6368 wi::to_wide (op1))
6369 && (t1 = fold_convert (ctype,
6370 const_binop (LSHIFT_EXPR, size_one_node,
6371 op1))) != 0
6372 && !TREE_OVERFLOW (t1))
6373 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
6374 ? MULT_EXPR : FLOOR_DIV_EXPR,
6375 ctype,
6376 fold_convert (ctype, op0),
6377 t1),
6378 c, code, wide_type, strict_overflow_p);
6379 break;
6381 case PLUS_EXPR: case MINUS_EXPR:
6382 /* See if we can eliminate the operation on both sides. If we can, we
6383 can return a new PLUS or MINUS. If we can't, the only remaining
6384 cases where we can do anything are if the second operand is a
6385 constant. */
6386 sub_strict_overflow_p = false;
6387 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
6388 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
6389 if (t1 != 0 && t2 != 0
6390 && TYPE_OVERFLOW_WRAPS (ctype)
6391 && (code == MULT_EXPR
6392 /* If not multiplication, we can only do this if both operands
6393 are divisible by c. */
6394 || (multiple_of_p (ctype, op0, c)
6395 && multiple_of_p (ctype, op1, c))))
6397 if (sub_strict_overflow_p)
6398 *strict_overflow_p = true;
6399 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6400 fold_convert (ctype, t2));
6403 /* If this was a subtraction, negate OP1 and set it to be an addition.
6404 This simplifies the logic below. */
6405 if (tcode == MINUS_EXPR)
6407 tcode = PLUS_EXPR, op1 = negate_expr (op1);
6408 /* If OP1 was not easily negatable, the constant may be OP0. */
6409 if (TREE_CODE (op0) == INTEGER_CST)
6411 std::swap (op0, op1);
6412 std::swap (t1, t2);
6416 if (TREE_CODE (op1) != INTEGER_CST)
6417 break;
6419 /* If either OP1 or C are negative, this optimization is not safe for
6420 some of the division and remainder types while for others we need
6421 to change the code. */
6422 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
6424 if (code == CEIL_DIV_EXPR)
6425 code = FLOOR_DIV_EXPR;
6426 else if (code == FLOOR_DIV_EXPR)
6427 code = CEIL_DIV_EXPR;
6428 else if (code != MULT_EXPR
6429 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
6430 break;
6433 /* If it's a multiply or a division/modulus operation of a multiple
6434 of our constant, do the operation and verify it doesn't overflow. */
6435 if (code == MULT_EXPR
6436 || wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c),
6437 TYPE_SIGN (type)))
6439 op1 = const_binop (code, fold_convert (ctype, op1),
6440 fold_convert (ctype, c));
6441 /* We allow the constant to overflow with wrapping semantics. */
6442 if (op1 == 0
6443 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
6444 break;
6446 else
6447 break;
6449 /* If we have an unsigned type, we cannot widen the operation since it
6450 will change the result if the original computation overflowed. */
6451 if (TYPE_UNSIGNED (ctype) && ctype != type)
6452 break;
6454 /* The last case is if we are a multiply. In that case, we can
6455 apply the distributive law to commute the multiply and addition
6456 if the multiplication of the constants doesn't overflow
6457 and overflow is defined. With undefined overflow
6458 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
6459 if (code == MULT_EXPR && TYPE_OVERFLOW_WRAPS (ctype))
6460 return fold_build2 (tcode, ctype,
6461 fold_build2 (code, ctype,
6462 fold_convert (ctype, op0),
6463 fold_convert (ctype, c)),
6464 op1);
6466 break;
6468 case MULT_EXPR:
6469 /* We have a special case here if we are doing something like
6470 (C * 8) % 4 since we know that's zero. */
6471 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
6472 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
6473 /* If the multiplication can overflow we cannot optimize this. */
6474 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
6475 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
6476 && wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c),
6477 TYPE_SIGN (type)))
6479 *strict_overflow_p = true;
6480 return omit_one_operand (type, integer_zero_node, op0);
6483 /* ... fall through ... */
6485 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
6486 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
6487 /* If we can extract our operation from the LHS, do so and return a
6488 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6489 do something only if the second operand is a constant. */
6490 if (same_p
6491 && TYPE_OVERFLOW_WRAPS (ctype)
6492 && (t1 = extract_muldiv (op0, c, code, wide_type,
6493 strict_overflow_p)) != 0)
6494 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6495 fold_convert (ctype, op1));
6496 else if (tcode == MULT_EXPR && code == MULT_EXPR
6497 && TYPE_OVERFLOW_WRAPS (ctype)
6498 && (t1 = extract_muldiv (op1, c, code, wide_type,
6499 strict_overflow_p)) != 0)
6500 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6501 fold_convert (ctype, t1));
6502 else if (TREE_CODE (op1) != INTEGER_CST)
6503 return 0;
6505 /* If these are the same operation types, we can associate them
6506 assuming no overflow. */
6507 if (tcode == code)
6509 bool overflow_p = false;
6510 wi::overflow_type overflow_mul;
6511 signop sign = TYPE_SIGN (ctype);
6512 unsigned prec = TYPE_PRECISION (ctype);
6513 wide_int mul = wi::mul (wi::to_wide (op1, prec),
6514 wi::to_wide (c, prec),
6515 sign, &overflow_mul);
6516 overflow_p = TREE_OVERFLOW (c) | TREE_OVERFLOW (op1);
6517 if (overflow_mul
6518 && ((sign == UNSIGNED && tcode != MULT_EXPR) || sign == SIGNED))
6519 overflow_p = true;
6520 if (!overflow_p)
6521 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6522 wide_int_to_tree (ctype, mul));
6525 /* If these operations "cancel" each other, we have the main
6526 optimizations of this pass, which occur when either constant is a
6527 multiple of the other, in which case we replace this with either an
6528 operation or CODE or TCODE.
6530 If we have an unsigned type, we cannot do this since it will change
6531 the result if the original computation overflowed. */
6532 if (TYPE_OVERFLOW_UNDEFINED (ctype)
6533 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
6534 || (tcode == MULT_EXPR
6535 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
6536 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
6537 && code != MULT_EXPR)))
6539 if (wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c),
6540 TYPE_SIGN (type)))
6542 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6543 *strict_overflow_p = true;
6544 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6545 fold_convert (ctype,
6546 const_binop (TRUNC_DIV_EXPR,
6547 op1, c)));
6549 else if (wi::multiple_of_p (wi::to_wide (c), wi::to_wide (op1),
6550 TYPE_SIGN (type)))
6552 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6553 *strict_overflow_p = true;
6554 return fold_build2 (code, ctype, fold_convert (ctype, op0),
6555 fold_convert (ctype,
6556 const_binop (TRUNC_DIV_EXPR,
6557 c, op1)));
6560 break;
6562 default:
6563 break;
6566 return 0;
6569 /* Return a node which has the indicated constant VALUE (either 0 or
6570 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6571 and is of the indicated TYPE. */
6573 tree
6574 constant_boolean_node (bool value, tree type)
6576 if (type == integer_type_node)
6577 return value ? integer_one_node : integer_zero_node;
6578 else if (type == boolean_type_node)
6579 return value ? boolean_true_node : boolean_false_node;
6580 else if (TREE_CODE (type) == VECTOR_TYPE)
6581 return build_vector_from_val (type,
6582 build_int_cst (TREE_TYPE (type),
6583 value ? -1 : 0));
6584 else
6585 return fold_convert (type, value ? integer_one_node : integer_zero_node);
6589 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6590 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6591 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6592 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6593 COND is the first argument to CODE; otherwise (as in the example
6594 given here), it is the second argument. TYPE is the type of the
6595 original expression. Return NULL_TREE if no simplification is
6596 possible. */
6598 static tree
6599 fold_binary_op_with_conditional_arg (location_t loc,
6600 enum tree_code code,
6601 tree type, tree op0, tree op1,
6602 tree cond, tree arg, int cond_first_p)
6604 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
6605 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
6606 tree test, true_value, false_value;
6607 tree lhs = NULL_TREE;
6608 tree rhs = NULL_TREE;
6609 enum tree_code cond_code = COND_EXPR;
6611 /* Do not move possibly trapping operations into the conditional as this
6612 pessimizes code and causes gimplification issues when applied late. */
6613 if (operation_could_trap_p (code, FLOAT_TYPE_P (type),
6614 ANY_INTEGRAL_TYPE_P (type)
6615 && TYPE_OVERFLOW_TRAPS (type), op1))
6616 return NULL_TREE;
6618 if (TREE_CODE (cond) == COND_EXPR
6619 || TREE_CODE (cond) == VEC_COND_EXPR)
6621 test = TREE_OPERAND (cond, 0);
6622 true_value = TREE_OPERAND (cond, 1);
6623 false_value = TREE_OPERAND (cond, 2);
6624 /* If this operand throws an expression, then it does not make
6625 sense to try to perform a logical or arithmetic operation
6626 involving it. */
6627 if (VOID_TYPE_P (TREE_TYPE (true_value)))
6628 lhs = true_value;
6629 if (VOID_TYPE_P (TREE_TYPE (false_value)))
6630 rhs = false_value;
6632 else if (!(TREE_CODE (type) != VECTOR_TYPE
6633 && TREE_CODE (TREE_TYPE (cond)) == VECTOR_TYPE))
6635 tree testtype = TREE_TYPE (cond);
6636 test = cond;
6637 true_value = constant_boolean_node (true, testtype);
6638 false_value = constant_boolean_node (false, testtype);
6640 else
6641 /* Detect the case of mixing vector and scalar types - bail out. */
6642 return NULL_TREE;
6644 if (TREE_CODE (TREE_TYPE (test)) == VECTOR_TYPE)
6645 cond_code = VEC_COND_EXPR;
6647 /* This transformation is only worthwhile if we don't have to wrap ARG
6648 in a SAVE_EXPR and the operation can be simplified without recursing
6649 on at least one of the branches once its pushed inside the COND_EXPR. */
6650 if (!TREE_CONSTANT (arg)
6651 && (TREE_SIDE_EFFECTS (arg)
6652 || TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == VEC_COND_EXPR
6653 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value)))
6654 return NULL_TREE;
6656 arg = fold_convert_loc (loc, arg_type, arg);
6657 if (lhs == 0)
6659 true_value = fold_convert_loc (loc, cond_type, true_value);
6660 if (cond_first_p)
6661 lhs = fold_build2_loc (loc, code, type, true_value, arg);
6662 else
6663 lhs = fold_build2_loc (loc, code, type, arg, true_value);
6665 if (rhs == 0)
6667 false_value = fold_convert_loc (loc, cond_type, false_value);
6668 if (cond_first_p)
6669 rhs = fold_build2_loc (loc, code, type, false_value, arg);
6670 else
6671 rhs = fold_build2_loc (loc, code, type, arg, false_value);
6674 /* Check that we have simplified at least one of the branches. */
6675 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs))
6676 return NULL_TREE;
6678 return fold_build3_loc (loc, cond_code, type, test, lhs, rhs);
6682 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6684 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6685 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6686 ADDEND is the same as X.
6688 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6689 and finite. The problematic cases are when X is zero, and its mode
6690 has signed zeros. In the case of rounding towards -infinity,
6691 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6692 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6694 bool
6695 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
6697 if (!real_zerop (addend))
6698 return false;
6700 /* Don't allow the fold with -fsignaling-nans. */
6701 if (HONOR_SNANS (element_mode (type)))
6702 return false;
6704 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6705 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
6706 return true;
6708 /* In a vector or complex, we would need to check the sign of all zeros. */
6709 if (TREE_CODE (addend) != REAL_CST)
6710 return false;
6712 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6713 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
6714 negate = !negate;
6716 /* The mode has signed zeros, and we have to honor their sign.
6717 In this situation, there is only one case we can return true for.
6718 X - 0 is the same as X unless rounding towards -infinity is
6719 supported. */
6720 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type));
6723 /* Subroutine of match.pd that optimizes comparisons of a division by
6724 a nonzero integer constant against an integer constant, i.e.
6725 X/C1 op C2.
6727 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6728 GE_EXPR or LE_EXPR. ARG01 and ARG1 must be a INTEGER_CST. */
6730 enum tree_code
6731 fold_div_compare (enum tree_code code, tree c1, tree c2, tree *lo,
6732 tree *hi, bool *neg_overflow)
6734 tree prod, tmp, type = TREE_TYPE (c1);
6735 signop sign = TYPE_SIGN (type);
6736 wi::overflow_type overflow;
6738 /* We have to do this the hard way to detect unsigned overflow.
6739 prod = int_const_binop (MULT_EXPR, c1, c2); */
6740 wide_int val = wi::mul (wi::to_wide (c1), wi::to_wide (c2), sign, &overflow);
6741 prod = force_fit_type (type, val, -1, overflow);
6742 *neg_overflow = false;
6744 if (sign == UNSIGNED)
6746 tmp = int_const_binop (MINUS_EXPR, c1, build_int_cst (type, 1));
6747 *lo = prod;
6749 /* Likewise *hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6750 val = wi::add (wi::to_wide (prod), wi::to_wide (tmp), sign, &overflow);
6751 *hi = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (prod));
6753 else if (tree_int_cst_sgn (c1) >= 0)
6755 tmp = int_const_binop (MINUS_EXPR, c1, build_int_cst (type, 1));
6756 switch (tree_int_cst_sgn (c2))
6758 case -1:
6759 *neg_overflow = true;
6760 *lo = int_const_binop (MINUS_EXPR, prod, tmp);
6761 *hi = prod;
6762 break;
6764 case 0:
6765 *lo = fold_negate_const (tmp, type);
6766 *hi = tmp;
6767 break;
6769 case 1:
6770 *hi = int_const_binop (PLUS_EXPR, prod, tmp);
6771 *lo = prod;
6772 break;
6774 default:
6775 gcc_unreachable ();
6778 else
6780 /* A negative divisor reverses the relational operators. */
6781 code = swap_tree_comparison (code);
6783 tmp = int_const_binop (PLUS_EXPR, c1, build_int_cst (type, 1));
6784 switch (tree_int_cst_sgn (c2))
6786 case -1:
6787 *hi = int_const_binop (MINUS_EXPR, prod, tmp);
6788 *lo = prod;
6789 break;
6791 case 0:
6792 *hi = fold_negate_const (tmp, type);
6793 *lo = tmp;
6794 break;
6796 case 1:
6797 *neg_overflow = true;
6798 *lo = int_const_binop (PLUS_EXPR, prod, tmp);
6799 *hi = prod;
6800 break;
6802 default:
6803 gcc_unreachable ();
6807 if (code != EQ_EXPR && code != NE_EXPR)
6808 return code;
6810 if (TREE_OVERFLOW (*lo)
6811 || operand_equal_p (*lo, TYPE_MIN_VALUE (type), 0))
6812 *lo = NULL_TREE;
6813 if (TREE_OVERFLOW (*hi)
6814 || operand_equal_p (*hi, TYPE_MAX_VALUE (type), 0))
6815 *hi = NULL_TREE;
6817 return code;
6821 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6822 equality/inequality test, then return a simplified form of the test
6823 using a sign testing. Otherwise return NULL. TYPE is the desired
6824 result type. */
6826 static tree
6827 fold_single_bit_test_into_sign_test (location_t loc,
6828 enum tree_code code, tree arg0, tree arg1,
6829 tree result_type)
6831 /* If this is testing a single bit, we can optimize the test. */
6832 if ((code == NE_EXPR || code == EQ_EXPR)
6833 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6834 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6836 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6837 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6838 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6840 if (arg00 != NULL_TREE
6841 /* This is only a win if casting to a signed type is cheap,
6842 i.e. when arg00's type is not a partial mode. */
6843 && type_has_mode_precision_p (TREE_TYPE (arg00)))
6845 tree stype = signed_type_for (TREE_TYPE (arg00));
6846 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6847 result_type,
6848 fold_convert_loc (loc, stype, arg00),
6849 build_int_cst (stype, 0));
6853 return NULL_TREE;
6856 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6857 equality/inequality test, then return a simplified form of
6858 the test using shifts and logical operations. Otherwise return
6859 NULL. TYPE is the desired result type. */
6861 tree
6862 fold_single_bit_test (location_t loc, enum tree_code code,
6863 tree arg0, tree arg1, tree result_type)
6865 /* If this is testing a single bit, we can optimize the test. */
6866 if ((code == NE_EXPR || code == EQ_EXPR)
6867 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6868 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6870 tree inner = TREE_OPERAND (arg0, 0);
6871 tree type = TREE_TYPE (arg0);
6872 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6873 scalar_int_mode operand_mode = SCALAR_INT_TYPE_MODE (type);
6874 int ops_unsigned;
6875 tree signed_type, unsigned_type, intermediate_type;
6876 tree tem, one;
6878 /* First, see if we can fold the single bit test into a sign-bit
6879 test. */
6880 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1,
6881 result_type);
6882 if (tem)
6883 return tem;
6885 /* Otherwise we have (A & C) != 0 where C is a single bit,
6886 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6887 Similarly for (A & C) == 0. */
6889 /* If INNER is a right shift of a constant and it plus BITNUM does
6890 not overflow, adjust BITNUM and INNER. */
6891 if (TREE_CODE (inner) == RSHIFT_EXPR
6892 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6893 && bitnum < TYPE_PRECISION (type)
6894 && wi::ltu_p (wi::to_wide (TREE_OPERAND (inner, 1)),
6895 TYPE_PRECISION (type) - bitnum))
6897 bitnum += tree_to_uhwi (TREE_OPERAND (inner, 1));
6898 inner = TREE_OPERAND (inner, 0);
6901 /* If we are going to be able to omit the AND below, we must do our
6902 operations as unsigned. If we must use the AND, we have a choice.
6903 Normally unsigned is faster, but for some machines signed is. */
6904 ops_unsigned = (load_extend_op (operand_mode) == SIGN_EXTEND
6905 && !flag_syntax_only) ? 0 : 1;
6907 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6908 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6909 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6910 inner = fold_convert_loc (loc, intermediate_type, inner);
6912 if (bitnum != 0)
6913 inner = build2 (RSHIFT_EXPR, intermediate_type,
6914 inner, size_int (bitnum));
6916 one = build_int_cst (intermediate_type, 1);
6918 if (code == EQ_EXPR)
6919 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one);
6921 /* Put the AND last so it can combine with more things. */
6922 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
6924 /* Make sure to return the proper type. */
6925 inner = fold_convert_loc (loc, result_type, inner);
6927 return inner;
6929 return NULL_TREE;
6932 /* Test whether it is preferable two swap two operands, ARG0 and
6933 ARG1, for example because ARG0 is an integer constant and ARG1
6934 isn't. */
6936 bool
6937 tree_swap_operands_p (const_tree arg0, const_tree arg1)
6939 if (CONSTANT_CLASS_P (arg1))
6940 return 0;
6941 if (CONSTANT_CLASS_P (arg0))
6942 return 1;
6944 STRIP_NOPS (arg0);
6945 STRIP_NOPS (arg1);
6947 if (TREE_CONSTANT (arg1))
6948 return 0;
6949 if (TREE_CONSTANT (arg0))
6950 return 1;
6952 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6953 for commutative and comparison operators. Ensuring a canonical
6954 form allows the optimizers to find additional redundancies without
6955 having to explicitly check for both orderings. */
6956 if (TREE_CODE (arg0) == SSA_NAME
6957 && TREE_CODE (arg1) == SSA_NAME
6958 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
6959 return 1;
6961 /* Put SSA_NAMEs last. */
6962 if (TREE_CODE (arg1) == SSA_NAME)
6963 return 0;
6964 if (TREE_CODE (arg0) == SSA_NAME)
6965 return 1;
6967 /* Put variables last. */
6968 if (DECL_P (arg1))
6969 return 0;
6970 if (DECL_P (arg0))
6971 return 1;
6973 return 0;
6977 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6978 means A >= Y && A != MAX, but in this case we know that
6979 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6981 static tree
6982 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound)
6984 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
6986 if (TREE_CODE (bound) == LT_EXPR)
6987 a = TREE_OPERAND (bound, 0);
6988 else if (TREE_CODE (bound) == GT_EXPR)
6989 a = TREE_OPERAND (bound, 1);
6990 else
6991 return NULL_TREE;
6993 typea = TREE_TYPE (a);
6994 if (!INTEGRAL_TYPE_P (typea)
6995 && !POINTER_TYPE_P (typea))
6996 return NULL_TREE;
6998 if (TREE_CODE (ineq) == LT_EXPR)
7000 a1 = TREE_OPERAND (ineq, 1);
7001 y = TREE_OPERAND (ineq, 0);
7003 else if (TREE_CODE (ineq) == GT_EXPR)
7005 a1 = TREE_OPERAND (ineq, 0);
7006 y = TREE_OPERAND (ineq, 1);
7008 else
7009 return NULL_TREE;
7011 if (TREE_TYPE (a1) != typea)
7012 return NULL_TREE;
7014 if (POINTER_TYPE_P (typea))
7016 /* Convert the pointer types into integer before taking the difference. */
7017 tree ta = fold_convert_loc (loc, ssizetype, a);
7018 tree ta1 = fold_convert_loc (loc, ssizetype, a1);
7019 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta);
7021 else
7022 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a);
7024 if (!diff || !integer_onep (diff))
7025 return NULL_TREE;
7027 return fold_build2_loc (loc, GE_EXPR, type, a, y);
7030 /* Fold a sum or difference of at least one multiplication.
7031 Returns the folded tree or NULL if no simplification could be made. */
7033 static tree
7034 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type,
7035 tree arg0, tree arg1)
7037 tree arg00, arg01, arg10, arg11;
7038 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
7040 /* (A * C) +- (B * C) -> (A+-B) * C.
7041 (A * C) +- A -> A * (C+-1).
7042 We are most concerned about the case where C is a constant,
7043 but other combinations show up during loop reduction. Since
7044 it is not difficult, try all four possibilities. */
7046 if (TREE_CODE (arg0) == MULT_EXPR)
7048 arg00 = TREE_OPERAND (arg0, 0);
7049 arg01 = TREE_OPERAND (arg0, 1);
7051 else if (TREE_CODE (arg0) == INTEGER_CST)
7053 arg00 = build_one_cst (type);
7054 arg01 = arg0;
7056 else
7058 /* We cannot generate constant 1 for fract. */
7059 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7060 return NULL_TREE;
7061 arg00 = arg0;
7062 arg01 = build_one_cst (type);
7064 if (TREE_CODE (arg1) == MULT_EXPR)
7066 arg10 = TREE_OPERAND (arg1, 0);
7067 arg11 = TREE_OPERAND (arg1, 1);
7069 else if (TREE_CODE (arg1) == INTEGER_CST)
7071 arg10 = build_one_cst (type);
7072 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
7073 the purpose of this canonicalization. */
7074 if (wi::neg_p (wi::to_wide (arg1), TYPE_SIGN (TREE_TYPE (arg1)))
7075 && negate_expr_p (arg1)
7076 && code == PLUS_EXPR)
7078 arg11 = negate_expr (arg1);
7079 code = MINUS_EXPR;
7081 else
7082 arg11 = arg1;
7084 else
7086 /* We cannot generate constant 1 for fract. */
7087 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7088 return NULL_TREE;
7089 arg10 = arg1;
7090 arg11 = build_one_cst (type);
7092 same = NULL_TREE;
7094 /* Prefer factoring a common non-constant. */
7095 if (operand_equal_p (arg00, arg10, 0))
7096 same = arg00, alt0 = arg01, alt1 = arg11;
7097 else if (operand_equal_p (arg01, arg11, 0))
7098 same = arg01, alt0 = arg00, alt1 = arg10;
7099 else if (operand_equal_p (arg00, arg11, 0))
7100 same = arg00, alt0 = arg01, alt1 = arg10;
7101 else if (operand_equal_p (arg01, arg10, 0))
7102 same = arg01, alt0 = arg00, alt1 = arg11;
7104 /* No identical multiplicands; see if we can find a common
7105 power-of-two factor in non-power-of-two multiplies. This
7106 can help in multi-dimensional array access. */
7107 else if (tree_fits_shwi_p (arg01)
7108 && tree_fits_shwi_p (arg11))
7110 HOST_WIDE_INT int01, int11, tmp;
7111 bool swap = false;
7112 tree maybe_same;
7113 int01 = tree_to_shwi (arg01);
7114 int11 = tree_to_shwi (arg11);
7116 /* Move min of absolute values to int11. */
7117 if (absu_hwi (int01) < absu_hwi (int11))
7119 tmp = int01, int01 = int11, int11 = tmp;
7120 alt0 = arg00, arg00 = arg10, arg10 = alt0;
7121 maybe_same = arg01;
7122 swap = true;
7124 else
7125 maybe_same = arg11;
7127 if (exact_log2 (absu_hwi (int11)) > 0 && int01 % int11 == 0
7128 /* The remainder should not be a constant, otherwise we
7129 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
7130 increased the number of multiplications necessary. */
7131 && TREE_CODE (arg10) != INTEGER_CST)
7133 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00,
7134 build_int_cst (TREE_TYPE (arg00),
7135 int01 / int11));
7136 alt1 = arg10;
7137 same = maybe_same;
7138 if (swap)
7139 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
7143 if (!same)
7144 return NULL_TREE;
7146 if (! INTEGRAL_TYPE_P (type)
7147 || TYPE_OVERFLOW_WRAPS (type)
7148 /* We are neither factoring zero nor minus one. */
7149 || TREE_CODE (same) == INTEGER_CST)
7150 return fold_build2_loc (loc, MULT_EXPR, type,
7151 fold_build2_loc (loc, code, type,
7152 fold_convert_loc (loc, type, alt0),
7153 fold_convert_loc (loc, type, alt1)),
7154 fold_convert_loc (loc, type, same));
7156 /* Same may be zero and thus the operation 'code' may overflow. Likewise
7157 same may be minus one and thus the multiplication may overflow. Perform
7158 the sum operation in an unsigned type. */
7159 tree utype = unsigned_type_for (type);
7160 tree tem = fold_build2_loc (loc, code, utype,
7161 fold_convert_loc (loc, utype, alt0),
7162 fold_convert_loc (loc, utype, alt1));
7163 /* If the sum evaluated to a constant that is not -INF the multiplication
7164 cannot overflow. */
7165 if (TREE_CODE (tem) == INTEGER_CST
7166 && (wi::to_wide (tem)
7167 != wi::min_value (TYPE_PRECISION (utype), SIGNED)))
7168 return fold_build2_loc (loc, MULT_EXPR, type,
7169 fold_convert (type, tem), same);
7171 /* Do not resort to unsigned multiplication because
7172 we lose the no-overflow property of the expression. */
7173 return NULL_TREE;
7176 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7177 specified by EXPR into the buffer PTR of length LEN bytes.
7178 Return the number of bytes placed in the buffer, or zero
7179 upon failure. */
7181 static int
7182 native_encode_int (const_tree expr, unsigned char *ptr, int len, int off)
7184 tree type = TREE_TYPE (expr);
7185 int total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type));
7186 int byte, offset, word, words;
7187 unsigned char value;
7189 if ((off == -1 && total_bytes > len) || off >= total_bytes)
7190 return 0;
7191 if (off == -1)
7192 off = 0;
7194 if (ptr == NULL)
7195 /* Dry run. */
7196 return MIN (len, total_bytes - off);
7198 words = total_bytes / UNITS_PER_WORD;
7200 for (byte = 0; byte < total_bytes; byte++)
7202 int bitpos = byte * BITS_PER_UNIT;
7203 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
7204 number of bytes. */
7205 value = wi::extract_uhwi (wi::to_widest (expr), bitpos, BITS_PER_UNIT);
7207 if (total_bytes > UNITS_PER_WORD)
7209 word = byte / UNITS_PER_WORD;
7210 if (WORDS_BIG_ENDIAN)
7211 word = (words - 1) - word;
7212 offset = word * UNITS_PER_WORD;
7213 if (BYTES_BIG_ENDIAN)
7214 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7215 else
7216 offset += byte % UNITS_PER_WORD;
7218 else
7219 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7220 if (offset >= off && offset - off < len)
7221 ptr[offset - off] = value;
7223 return MIN (len, total_bytes - off);
7227 /* Subroutine of native_encode_expr. Encode the FIXED_CST
7228 specified by EXPR into the buffer PTR of length LEN bytes.
7229 Return the number of bytes placed in the buffer, or zero
7230 upon failure. */
7232 static int
7233 native_encode_fixed (const_tree expr, unsigned char *ptr, int len, int off)
7235 tree type = TREE_TYPE (expr);
7236 scalar_mode mode = SCALAR_TYPE_MODE (type);
7237 int total_bytes = GET_MODE_SIZE (mode);
7238 FIXED_VALUE_TYPE value;
7239 tree i_value, i_type;
7241 if (total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7242 return 0;
7244 i_type = lang_hooks.types.type_for_size (GET_MODE_BITSIZE (mode), 1);
7246 if (NULL_TREE == i_type || TYPE_PRECISION (i_type) != total_bytes)
7247 return 0;
7249 value = TREE_FIXED_CST (expr);
7250 i_value = double_int_to_tree (i_type, value.data);
7252 return native_encode_int (i_value, ptr, len, off);
7256 /* Subroutine of native_encode_expr. Encode the REAL_CST
7257 specified by EXPR into the buffer PTR of length LEN bytes.
7258 Return the number of bytes placed in the buffer, or zero
7259 upon failure. */
7261 static int
7262 native_encode_real (const_tree expr, unsigned char *ptr, int len, int off)
7264 tree type = TREE_TYPE (expr);
7265 int total_bytes = GET_MODE_SIZE (SCALAR_FLOAT_TYPE_MODE (type));
7266 int byte, offset, word, words, bitpos;
7267 unsigned char value;
7269 /* There are always 32 bits in each long, no matter the size of
7270 the hosts long. We handle floating point representations with
7271 up to 192 bits. */
7272 long tmp[6];
7274 if ((off == -1 && total_bytes > len) || off >= total_bytes)
7275 return 0;
7276 if (off == -1)
7277 off = 0;
7279 if (ptr == NULL)
7280 /* Dry run. */
7281 return MIN (len, total_bytes - off);
7283 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7285 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
7287 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7288 bitpos += BITS_PER_UNIT)
7290 byte = (bitpos / BITS_PER_UNIT) & 3;
7291 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
7293 if (UNITS_PER_WORD < 4)
7295 word = byte / UNITS_PER_WORD;
7296 if (WORDS_BIG_ENDIAN)
7297 word = (words - 1) - word;
7298 offset = word * UNITS_PER_WORD;
7299 if (BYTES_BIG_ENDIAN)
7300 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7301 else
7302 offset += byte % UNITS_PER_WORD;
7304 else
7306 offset = byte;
7307 if (BYTES_BIG_ENDIAN)
7309 /* Reverse bytes within each long, or within the entire float
7310 if it's smaller than a long (for HFmode). */
7311 offset = MIN (3, total_bytes - 1) - offset;
7312 gcc_assert (offset >= 0);
7315 offset = offset + ((bitpos / BITS_PER_UNIT) & ~3);
7316 if (offset >= off
7317 && offset - off < len)
7318 ptr[offset - off] = value;
7320 return MIN (len, total_bytes - off);
7323 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7324 specified by EXPR into the buffer PTR of length LEN bytes.
7325 Return the number of bytes placed in the buffer, or zero
7326 upon failure. */
7328 static int
7329 native_encode_complex (const_tree expr, unsigned char *ptr, int len, int off)
7331 int rsize, isize;
7332 tree part;
7334 part = TREE_REALPART (expr);
7335 rsize = native_encode_expr (part, ptr, len, off);
7336 if (off == -1 && rsize == 0)
7337 return 0;
7338 part = TREE_IMAGPART (expr);
7339 if (off != -1)
7340 off = MAX (0, off - GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (part))));
7341 isize = native_encode_expr (part, ptr ? ptr + rsize : NULL,
7342 len - rsize, off);
7343 if (off == -1 && isize != rsize)
7344 return 0;
7345 return rsize + isize;
7349 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7350 specified by EXPR into the buffer PTR of length LEN bytes.
7351 Return the number of bytes placed in the buffer, or zero
7352 upon failure. */
7354 static int
7355 native_encode_vector (const_tree expr, unsigned char *ptr, int len, int off)
7357 unsigned HOST_WIDE_INT i, count;
7358 int size, offset;
7359 tree itype, elem;
7361 offset = 0;
7362 if (!VECTOR_CST_NELTS (expr).is_constant (&count))
7363 return 0;
7364 itype = TREE_TYPE (TREE_TYPE (expr));
7365 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (itype));
7366 for (i = 0; i < count; i++)
7368 if (off >= size)
7370 off -= size;
7371 continue;
7373 elem = VECTOR_CST_ELT (expr, i);
7374 int res = native_encode_expr (elem, ptr ? ptr + offset : NULL,
7375 len - offset, off);
7376 if ((off == -1 && res != size) || res == 0)
7377 return 0;
7378 offset += res;
7379 if (offset >= len)
7380 return (off == -1 && i < count - 1) ? 0 : offset;
7381 if (off != -1)
7382 off = 0;
7384 return offset;
7388 /* Subroutine of native_encode_expr. Encode the STRING_CST
7389 specified by EXPR into the buffer PTR of length LEN bytes.
7390 Return the number of bytes placed in the buffer, or zero
7391 upon failure. */
7393 static int
7394 native_encode_string (const_tree expr, unsigned char *ptr, int len, int off)
7396 tree type = TREE_TYPE (expr);
7398 /* Wide-char strings are encoded in target byte-order so native
7399 encoding them is trivial. */
7400 if (BITS_PER_UNIT != CHAR_BIT
7401 || TREE_CODE (type) != ARRAY_TYPE
7402 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
7403 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type)))
7404 return 0;
7406 HOST_WIDE_INT total_bytes = tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (expr)));
7407 if ((off == -1 && total_bytes > len) || off >= total_bytes)
7408 return 0;
7409 if (off == -1)
7410 off = 0;
7411 if (ptr == NULL)
7412 /* Dry run. */;
7413 else if (TREE_STRING_LENGTH (expr) - off < MIN (total_bytes, len))
7415 int written = 0;
7416 if (off < TREE_STRING_LENGTH (expr))
7418 written = MIN (len, TREE_STRING_LENGTH (expr) - off);
7419 memcpy (ptr, TREE_STRING_POINTER (expr) + off, written);
7421 memset (ptr + written, 0,
7422 MIN (total_bytes - written, len - written));
7424 else
7425 memcpy (ptr, TREE_STRING_POINTER (expr) + off, MIN (total_bytes, len));
7426 return MIN (total_bytes - off, len);
7430 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7431 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7432 buffer PTR of length LEN bytes. If PTR is NULL, don't actually store
7433 anything, just do a dry run. If OFF is not -1 then start
7434 the encoding at byte offset OFF and encode at most LEN bytes.
7435 Return the number of bytes placed in the buffer, or zero upon failure. */
7438 native_encode_expr (const_tree expr, unsigned char *ptr, int len, int off)
7440 /* We don't support starting at negative offset and -1 is special. */
7441 if (off < -1)
7442 return 0;
7444 switch (TREE_CODE (expr))
7446 case INTEGER_CST:
7447 return native_encode_int (expr, ptr, len, off);
7449 case REAL_CST:
7450 return native_encode_real (expr, ptr, len, off);
7452 case FIXED_CST:
7453 return native_encode_fixed (expr, ptr, len, off);
7455 case COMPLEX_CST:
7456 return native_encode_complex (expr, ptr, len, off);
7458 case VECTOR_CST:
7459 return native_encode_vector (expr, ptr, len, off);
7461 case STRING_CST:
7462 return native_encode_string (expr, ptr, len, off);
7464 default:
7465 return 0;
7470 /* Subroutine of native_interpret_expr. Interpret the contents of
7471 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7472 If the buffer cannot be interpreted, return NULL_TREE. */
7474 static tree
7475 native_interpret_int (tree type, const unsigned char *ptr, int len)
7477 int total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type));
7479 if (total_bytes > len
7480 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7481 return NULL_TREE;
7483 wide_int result = wi::from_buffer (ptr, total_bytes);
7485 return wide_int_to_tree (type, result);
7489 /* Subroutine of native_interpret_expr. Interpret the contents of
7490 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7491 If the buffer cannot be interpreted, return NULL_TREE. */
7493 static tree
7494 native_interpret_fixed (tree type, const unsigned char *ptr, int len)
7496 scalar_mode mode = SCALAR_TYPE_MODE (type);
7497 int total_bytes = GET_MODE_SIZE (mode);
7498 double_int result;
7499 FIXED_VALUE_TYPE fixed_value;
7501 if (total_bytes > len
7502 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7503 return NULL_TREE;
7505 result = double_int::from_buffer (ptr, total_bytes);
7506 fixed_value = fixed_from_double_int (result, mode);
7508 return build_fixed (type, fixed_value);
7512 /* Subroutine of native_interpret_expr. Interpret the contents of
7513 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7514 If the buffer cannot be interpreted, return NULL_TREE. */
7516 static tree
7517 native_interpret_real (tree type, const unsigned char *ptr, int len)
7519 scalar_float_mode mode = SCALAR_FLOAT_TYPE_MODE (type);
7520 int total_bytes = GET_MODE_SIZE (mode);
7521 unsigned char value;
7522 /* There are always 32 bits in each long, no matter the size of
7523 the hosts long. We handle floating point representations with
7524 up to 192 bits. */
7525 REAL_VALUE_TYPE r;
7526 long tmp[6];
7528 if (total_bytes > len || total_bytes > 24)
7529 return NULL_TREE;
7530 int words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7532 memset (tmp, 0, sizeof (tmp));
7533 for (int bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7534 bitpos += BITS_PER_UNIT)
7536 /* Both OFFSET and BYTE index within a long;
7537 bitpos indexes the whole float. */
7538 int offset, byte = (bitpos / BITS_PER_UNIT) & 3;
7539 if (UNITS_PER_WORD < 4)
7541 int word = byte / UNITS_PER_WORD;
7542 if (WORDS_BIG_ENDIAN)
7543 word = (words - 1) - word;
7544 offset = word * UNITS_PER_WORD;
7545 if (BYTES_BIG_ENDIAN)
7546 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7547 else
7548 offset += byte % UNITS_PER_WORD;
7550 else
7552 offset = byte;
7553 if (BYTES_BIG_ENDIAN)
7555 /* Reverse bytes within each long, or within the entire float
7556 if it's smaller than a long (for HFmode). */
7557 offset = MIN (3, total_bytes - 1) - offset;
7558 gcc_assert (offset >= 0);
7561 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7563 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7566 real_from_target (&r, tmp, mode);
7567 return build_real (type, r);
7571 /* Subroutine of native_interpret_expr. Interpret the contents of
7572 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7573 If the buffer cannot be interpreted, return NULL_TREE. */
7575 static tree
7576 native_interpret_complex (tree type, const unsigned char *ptr, int len)
7578 tree etype, rpart, ipart;
7579 int size;
7581 etype = TREE_TYPE (type);
7582 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (etype));
7583 if (size * 2 > len)
7584 return NULL_TREE;
7585 rpart = native_interpret_expr (etype, ptr, size);
7586 if (!rpart)
7587 return NULL_TREE;
7588 ipart = native_interpret_expr (etype, ptr+size, size);
7589 if (!ipart)
7590 return NULL_TREE;
7591 return build_complex (type, rpart, ipart);
7595 /* Subroutine of native_interpret_expr. Interpret the contents of
7596 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7597 If the buffer cannot be interpreted, return NULL_TREE. */
7599 static tree
7600 native_interpret_vector (tree type, const unsigned char *ptr, unsigned int len)
7602 tree etype, elem;
7603 unsigned int i, size;
7604 unsigned HOST_WIDE_INT count;
7606 etype = TREE_TYPE (type);
7607 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (etype));
7608 if (!TYPE_VECTOR_SUBPARTS (type).is_constant (&count)
7609 || size * count > len)
7610 return NULL_TREE;
7612 tree_vector_builder elements (type, count, 1);
7613 for (i = 0; i < count; ++i)
7615 elem = native_interpret_expr (etype, ptr+(i*size), size);
7616 if (!elem)
7617 return NULL_TREE;
7618 elements.quick_push (elem);
7620 return elements.build ();
7624 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7625 the buffer PTR of length LEN as a constant of type TYPE. For
7626 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7627 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7628 return NULL_TREE. */
7630 tree
7631 native_interpret_expr (tree type, const unsigned char *ptr, int len)
7633 switch (TREE_CODE (type))
7635 case INTEGER_TYPE:
7636 case ENUMERAL_TYPE:
7637 case BOOLEAN_TYPE:
7638 case POINTER_TYPE:
7639 case REFERENCE_TYPE:
7640 return native_interpret_int (type, ptr, len);
7642 case REAL_TYPE:
7643 return native_interpret_real (type, ptr, len);
7645 case FIXED_POINT_TYPE:
7646 return native_interpret_fixed (type, ptr, len);
7648 case COMPLEX_TYPE:
7649 return native_interpret_complex (type, ptr, len);
7651 case VECTOR_TYPE:
7652 return native_interpret_vector (type, ptr, len);
7654 default:
7655 return NULL_TREE;
7659 /* Returns true if we can interpret the contents of a native encoding
7660 as TYPE. */
7662 static bool
7663 can_native_interpret_type_p (tree type)
7665 switch (TREE_CODE (type))
7667 case INTEGER_TYPE:
7668 case ENUMERAL_TYPE:
7669 case BOOLEAN_TYPE:
7670 case POINTER_TYPE:
7671 case REFERENCE_TYPE:
7672 case FIXED_POINT_TYPE:
7673 case REAL_TYPE:
7674 case COMPLEX_TYPE:
7675 case VECTOR_TYPE:
7676 return true;
7677 default:
7678 return false;
7683 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7684 TYPE at compile-time. If we're unable to perform the conversion
7685 return NULL_TREE. */
7687 static tree
7688 fold_view_convert_expr (tree type, tree expr)
7690 /* We support up to 512-bit values (for V8DFmode). */
7691 unsigned char buffer[64];
7692 int len;
7694 /* Check that the host and target are sane. */
7695 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7696 return NULL_TREE;
7698 len = native_encode_expr (expr, buffer, sizeof (buffer));
7699 if (len == 0)
7700 return NULL_TREE;
7702 return native_interpret_expr (type, buffer, len);
7705 /* Build an expression for the address of T. Folds away INDIRECT_REF
7706 to avoid confusing the gimplify process. */
7708 tree
7709 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype)
7711 /* The size of the object is not relevant when talking about its address. */
7712 if (TREE_CODE (t) == WITH_SIZE_EXPR)
7713 t = TREE_OPERAND (t, 0);
7715 if (TREE_CODE (t) == INDIRECT_REF)
7717 t = TREE_OPERAND (t, 0);
7719 if (TREE_TYPE (t) != ptrtype)
7720 t = build1_loc (loc, NOP_EXPR, ptrtype, t);
7722 else if (TREE_CODE (t) == MEM_REF
7723 && integer_zerop (TREE_OPERAND (t, 1)))
7724 return TREE_OPERAND (t, 0);
7725 else if (TREE_CODE (t) == MEM_REF
7726 && TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST)
7727 return fold_binary (POINTER_PLUS_EXPR, ptrtype,
7728 TREE_OPERAND (t, 0),
7729 convert_to_ptrofftype (TREE_OPERAND (t, 1)));
7730 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
7732 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0));
7734 if (TREE_TYPE (t) != ptrtype)
7735 t = fold_convert_loc (loc, ptrtype, t);
7737 else
7738 t = build1_loc (loc, ADDR_EXPR, ptrtype, t);
7740 return t;
7743 /* Build an expression for the address of T. */
7745 tree
7746 build_fold_addr_expr_loc (location_t loc, tree t)
7748 tree ptrtype = build_pointer_type (TREE_TYPE (t));
7750 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype);
7753 /* Fold a unary expression of code CODE and type TYPE with operand
7754 OP0. Return the folded expression if folding is successful.
7755 Otherwise, return NULL_TREE. */
7757 tree
7758 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
7760 tree tem;
7761 tree arg0;
7762 enum tree_code_class kind = TREE_CODE_CLASS (code);
7764 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7765 && TREE_CODE_LENGTH (code) == 1);
7767 arg0 = op0;
7768 if (arg0)
7770 if (CONVERT_EXPR_CODE_P (code)
7771 || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR)
7773 /* Don't use STRIP_NOPS, because signedness of argument type
7774 matters. */
7775 STRIP_SIGN_NOPS (arg0);
7777 else
7779 /* Strip any conversions that don't change the mode. This
7780 is safe for every expression, except for a comparison
7781 expression because its signedness is derived from its
7782 operands.
7784 Note that this is done as an internal manipulation within
7785 the constant folder, in order to find the simplest
7786 representation of the arguments so that their form can be
7787 studied. In any cases, the appropriate type conversions
7788 should be put back in the tree that will get out of the
7789 constant folder. */
7790 STRIP_NOPS (arg0);
7793 if (CONSTANT_CLASS_P (arg0))
7795 tree tem = const_unop (code, type, arg0);
7796 if (tem)
7798 if (TREE_TYPE (tem) != type)
7799 tem = fold_convert_loc (loc, type, tem);
7800 return tem;
7805 tem = generic_simplify (loc, code, type, op0);
7806 if (tem)
7807 return tem;
7809 if (TREE_CODE_CLASS (code) == tcc_unary)
7811 if (TREE_CODE (arg0) == COMPOUND_EXPR)
7812 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7813 fold_build1_loc (loc, code, type,
7814 fold_convert_loc (loc, TREE_TYPE (op0),
7815 TREE_OPERAND (arg0, 1))));
7816 else if (TREE_CODE (arg0) == COND_EXPR)
7818 tree arg01 = TREE_OPERAND (arg0, 1);
7819 tree arg02 = TREE_OPERAND (arg0, 2);
7820 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
7821 arg01 = fold_build1_loc (loc, code, type,
7822 fold_convert_loc (loc,
7823 TREE_TYPE (op0), arg01));
7824 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
7825 arg02 = fold_build1_loc (loc, code, type,
7826 fold_convert_loc (loc,
7827 TREE_TYPE (op0), arg02));
7828 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0),
7829 arg01, arg02);
7831 /* If this was a conversion, and all we did was to move into
7832 inside the COND_EXPR, bring it back out. But leave it if
7833 it is a conversion from integer to integer and the
7834 result precision is no wider than a word since such a
7835 conversion is cheap and may be optimized away by combine,
7836 while it couldn't if it were outside the COND_EXPR. Then return
7837 so we don't get into an infinite recursion loop taking the
7838 conversion out and then back in. */
7840 if ((CONVERT_EXPR_CODE_P (code)
7841 || code == NON_LVALUE_EXPR)
7842 && TREE_CODE (tem) == COND_EXPR
7843 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
7844 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
7845 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
7846 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
7847 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
7848 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
7849 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7850 && (INTEGRAL_TYPE_P
7851 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
7852 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
7853 || flag_syntax_only))
7854 tem = build1_loc (loc, code, type,
7855 build3 (COND_EXPR,
7856 TREE_TYPE (TREE_OPERAND
7857 (TREE_OPERAND (tem, 1), 0)),
7858 TREE_OPERAND (tem, 0),
7859 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
7860 TREE_OPERAND (TREE_OPERAND (tem, 2),
7861 0)));
7862 return tem;
7866 switch (code)
7868 case NON_LVALUE_EXPR:
7869 if (!maybe_lvalue_p (op0))
7870 return fold_convert_loc (loc, type, op0);
7871 return NULL_TREE;
7873 CASE_CONVERT:
7874 case FLOAT_EXPR:
7875 case FIX_TRUNC_EXPR:
7876 if (COMPARISON_CLASS_P (op0))
7878 /* If we have (type) (a CMP b) and type is an integral type, return
7879 new expression involving the new type. Canonicalize
7880 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7881 non-integral type.
7882 Do not fold the result as that would not simplify further, also
7883 folding again results in recursions. */
7884 if (TREE_CODE (type) == BOOLEAN_TYPE)
7885 return build2_loc (loc, TREE_CODE (op0), type,
7886 TREE_OPERAND (op0, 0),
7887 TREE_OPERAND (op0, 1));
7888 else if (!INTEGRAL_TYPE_P (type) && !VOID_TYPE_P (type)
7889 && TREE_CODE (type) != VECTOR_TYPE)
7890 return build3_loc (loc, COND_EXPR, type, op0,
7891 constant_boolean_node (true, type),
7892 constant_boolean_node (false, type));
7895 /* Handle (T *)&A.B.C for A being of type T and B and C
7896 living at offset zero. This occurs frequently in
7897 C++ upcasting and then accessing the base. */
7898 if (TREE_CODE (op0) == ADDR_EXPR
7899 && POINTER_TYPE_P (type)
7900 && handled_component_p (TREE_OPERAND (op0, 0)))
7902 poly_int64 bitsize, bitpos;
7903 tree offset;
7904 machine_mode mode;
7905 int unsignedp, reversep, volatilep;
7906 tree base
7907 = get_inner_reference (TREE_OPERAND (op0, 0), &bitsize, &bitpos,
7908 &offset, &mode, &unsignedp, &reversep,
7909 &volatilep);
7910 /* If the reference was to a (constant) zero offset, we can use
7911 the address of the base if it has the same base type
7912 as the result type and the pointer type is unqualified. */
7913 if (!offset
7914 && known_eq (bitpos, 0)
7915 && (TYPE_MAIN_VARIANT (TREE_TYPE (type))
7916 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
7917 && TYPE_QUALS (type) == TYPE_UNQUALIFIED)
7918 return fold_convert_loc (loc, type,
7919 build_fold_addr_expr_loc (loc, base));
7922 if (TREE_CODE (op0) == MODIFY_EXPR
7923 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
7924 /* Detect assigning a bitfield. */
7925 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
7926 && DECL_BIT_FIELD
7927 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
7929 /* Don't leave an assignment inside a conversion
7930 unless assigning a bitfield. */
7931 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1));
7932 /* First do the assignment, then return converted constant. */
7933 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
7934 TREE_NO_WARNING (tem) = 1;
7935 TREE_USED (tem) = 1;
7936 return tem;
7939 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7940 constants (if x has signed type, the sign bit cannot be set
7941 in c). This folds extension into the BIT_AND_EXPR.
7942 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7943 very likely don't have maximal range for their precision and this
7944 transformation effectively doesn't preserve non-maximal ranges. */
7945 if (TREE_CODE (type) == INTEGER_TYPE
7946 && TREE_CODE (op0) == BIT_AND_EXPR
7947 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
7949 tree and_expr = op0;
7950 tree and0 = TREE_OPERAND (and_expr, 0);
7951 tree and1 = TREE_OPERAND (and_expr, 1);
7952 int change = 0;
7954 if (TYPE_UNSIGNED (TREE_TYPE (and_expr))
7955 || (TYPE_PRECISION (type)
7956 <= TYPE_PRECISION (TREE_TYPE (and_expr))))
7957 change = 1;
7958 else if (TYPE_PRECISION (TREE_TYPE (and1))
7959 <= HOST_BITS_PER_WIDE_INT
7960 && tree_fits_uhwi_p (and1))
7962 unsigned HOST_WIDE_INT cst;
7964 cst = tree_to_uhwi (and1);
7965 cst &= HOST_WIDE_INT_M1U
7966 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
7967 change = (cst == 0);
7968 if (change
7969 && !flag_syntax_only
7970 && (load_extend_op (TYPE_MODE (TREE_TYPE (and0)))
7971 == ZERO_EXTEND))
7973 tree uns = unsigned_type_for (TREE_TYPE (and0));
7974 and0 = fold_convert_loc (loc, uns, and0);
7975 and1 = fold_convert_loc (loc, uns, and1);
7978 if (change)
7980 tem = force_fit_type (type, wi::to_widest (and1), 0,
7981 TREE_OVERFLOW (and1));
7982 return fold_build2_loc (loc, BIT_AND_EXPR, type,
7983 fold_convert_loc (loc, type, and0), tem);
7987 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new
7988 cast (T1)X will fold away. We assume that this happens when X itself
7989 is a cast. */
7990 if (POINTER_TYPE_P (type)
7991 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
7992 && CONVERT_EXPR_P (TREE_OPERAND (arg0, 0)))
7994 tree arg00 = TREE_OPERAND (arg0, 0);
7995 tree arg01 = TREE_OPERAND (arg0, 1);
7997 return fold_build_pointer_plus_loc
7998 (loc, fold_convert_loc (loc, type, arg00), arg01);
8001 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
8002 of the same precision, and X is an integer type not narrower than
8003 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
8004 if (INTEGRAL_TYPE_P (type)
8005 && TREE_CODE (op0) == BIT_NOT_EXPR
8006 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8007 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
8008 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
8010 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
8011 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
8012 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
8013 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
8014 fold_convert_loc (loc, type, tem));
8017 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
8018 type of X and Y (integer types only). */
8019 if (INTEGRAL_TYPE_P (type)
8020 && TREE_CODE (op0) == MULT_EXPR
8021 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8022 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0)))
8024 /* Be careful not to introduce new overflows. */
8025 tree mult_type;
8026 if (TYPE_OVERFLOW_WRAPS (type))
8027 mult_type = type;
8028 else
8029 mult_type = unsigned_type_for (type);
8031 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
8033 tem = fold_build2_loc (loc, MULT_EXPR, mult_type,
8034 fold_convert_loc (loc, mult_type,
8035 TREE_OPERAND (op0, 0)),
8036 fold_convert_loc (loc, mult_type,
8037 TREE_OPERAND (op0, 1)));
8038 return fold_convert_loc (loc, type, tem);
8042 return NULL_TREE;
8044 case VIEW_CONVERT_EXPR:
8045 if (TREE_CODE (op0) == MEM_REF)
8047 if (TYPE_ALIGN (TREE_TYPE (op0)) != TYPE_ALIGN (type))
8048 type = build_aligned_type (type, TYPE_ALIGN (TREE_TYPE (op0)));
8049 tem = fold_build2_loc (loc, MEM_REF, type,
8050 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1));
8051 REF_REVERSE_STORAGE_ORDER (tem) = REF_REVERSE_STORAGE_ORDER (op0);
8052 return tem;
8055 return NULL_TREE;
8057 case NEGATE_EXPR:
8058 tem = fold_negate_expr (loc, arg0);
8059 if (tem)
8060 return fold_convert_loc (loc, type, tem);
8061 return NULL_TREE;
8063 case ABS_EXPR:
8064 /* Convert fabs((double)float) into (double)fabsf(float). */
8065 if (TREE_CODE (arg0) == NOP_EXPR
8066 && TREE_CODE (type) == REAL_TYPE)
8068 tree targ0 = strip_float_extensions (arg0);
8069 if (targ0 != arg0)
8070 return fold_convert_loc (loc, type,
8071 fold_build1_loc (loc, ABS_EXPR,
8072 TREE_TYPE (targ0),
8073 targ0));
8075 return NULL_TREE;
8077 case BIT_NOT_EXPR:
8078 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
8079 if (TREE_CODE (arg0) == BIT_XOR_EXPR
8080 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
8081 fold_convert_loc (loc, type,
8082 TREE_OPERAND (arg0, 0)))))
8083 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem,
8084 fold_convert_loc (loc, type,
8085 TREE_OPERAND (arg0, 1)));
8086 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
8087 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
8088 fold_convert_loc (loc, type,
8089 TREE_OPERAND (arg0, 1)))))
8090 return fold_build2_loc (loc, BIT_XOR_EXPR, type,
8091 fold_convert_loc (loc, type,
8092 TREE_OPERAND (arg0, 0)), tem);
8094 return NULL_TREE;
8096 case TRUTH_NOT_EXPR:
8097 /* Note that the operand of this must be an int
8098 and its values must be 0 or 1.
8099 ("true" is a fixed value perhaps depending on the language,
8100 but we don't handle values other than 1 correctly yet.) */
8101 tem = fold_truth_not_expr (loc, arg0);
8102 if (!tem)
8103 return NULL_TREE;
8104 return fold_convert_loc (loc, type, tem);
8106 case INDIRECT_REF:
8107 /* Fold *&X to X if X is an lvalue. */
8108 if (TREE_CODE (op0) == ADDR_EXPR)
8110 tree op00 = TREE_OPERAND (op0, 0);
8111 if ((VAR_P (op00)
8112 || TREE_CODE (op00) == PARM_DECL
8113 || TREE_CODE (op00) == RESULT_DECL)
8114 && !TREE_READONLY (op00))
8115 return op00;
8117 return NULL_TREE;
8119 default:
8120 return NULL_TREE;
8121 } /* switch (code) */
8125 /* If the operation was a conversion do _not_ mark a resulting constant
8126 with TREE_OVERFLOW if the original constant was not. These conversions
8127 have implementation defined behavior and retaining the TREE_OVERFLOW
8128 flag here would confuse later passes such as VRP. */
8129 tree
8130 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code,
8131 tree type, tree op0)
8133 tree res = fold_unary_loc (loc, code, type, op0);
8134 if (res
8135 && TREE_CODE (res) == INTEGER_CST
8136 && TREE_CODE (op0) == INTEGER_CST
8137 && CONVERT_EXPR_CODE_P (code))
8138 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0);
8140 return res;
8143 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
8144 operands OP0 and OP1. LOC is the location of the resulting expression.
8145 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
8146 Return the folded expression if folding is successful. Otherwise,
8147 return NULL_TREE. */
8148 static tree
8149 fold_truth_andor (location_t loc, enum tree_code code, tree type,
8150 tree arg0, tree arg1, tree op0, tree op1)
8152 tree tem;
8154 /* We only do these simplifications if we are optimizing. */
8155 if (!optimize)
8156 return NULL_TREE;
8158 /* Check for things like (A || B) && (A || C). We can convert this
8159 to A || (B && C). Note that either operator can be any of the four
8160 truth and/or operations and the transformation will still be
8161 valid. Also note that we only care about order for the
8162 ANDIF and ORIF operators. If B contains side effects, this
8163 might change the truth-value of A. */
8164 if (TREE_CODE (arg0) == TREE_CODE (arg1)
8165 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
8166 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
8167 || TREE_CODE (arg0) == TRUTH_AND_EXPR
8168 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
8169 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
8171 tree a00 = TREE_OPERAND (arg0, 0);
8172 tree a01 = TREE_OPERAND (arg0, 1);
8173 tree a10 = TREE_OPERAND (arg1, 0);
8174 tree a11 = TREE_OPERAND (arg1, 1);
8175 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
8176 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
8177 && (code == TRUTH_AND_EXPR
8178 || code == TRUTH_OR_EXPR));
8180 if (operand_equal_p (a00, a10, 0))
8181 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
8182 fold_build2_loc (loc, code, type, a01, a11));
8183 else if (commutative && operand_equal_p (a00, a11, 0))
8184 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
8185 fold_build2_loc (loc, code, type, a01, a10));
8186 else if (commutative && operand_equal_p (a01, a10, 0))
8187 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01,
8188 fold_build2_loc (loc, code, type, a00, a11));
8190 /* This case if tricky because we must either have commutative
8191 operators or else A10 must not have side-effects. */
8193 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
8194 && operand_equal_p (a01, a11, 0))
8195 return fold_build2_loc (loc, TREE_CODE (arg0), type,
8196 fold_build2_loc (loc, code, type, a00, a10),
8197 a01);
8200 /* See if we can build a range comparison. */
8201 if ((tem = fold_range_test (loc, code, type, op0, op1)) != 0)
8202 return tem;
8204 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR)
8205 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR))
8207 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true);
8208 if (tem)
8209 return fold_build2_loc (loc, code, type, tem, arg1);
8212 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR)
8213 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR))
8215 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false);
8216 if (tem)
8217 return fold_build2_loc (loc, code, type, arg0, tem);
8220 /* Check for the possibility of merging component references. If our
8221 lhs is another similar operation, try to merge its rhs with our
8222 rhs. Then try to merge our lhs and rhs. */
8223 if (TREE_CODE (arg0) == code
8224 && (tem = fold_truth_andor_1 (loc, code, type,
8225 TREE_OPERAND (arg0, 1), arg1)) != 0)
8226 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
8228 if ((tem = fold_truth_andor_1 (loc, code, type, arg0, arg1)) != 0)
8229 return tem;
8231 if (LOGICAL_OP_NON_SHORT_CIRCUIT
8232 && !flag_sanitize_coverage
8233 && (code == TRUTH_AND_EXPR
8234 || code == TRUTH_ANDIF_EXPR
8235 || code == TRUTH_OR_EXPR
8236 || code == TRUTH_ORIF_EXPR))
8238 enum tree_code ncode, icode;
8240 ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR)
8241 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR;
8242 icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR;
8244 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
8245 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
8246 We don't want to pack more than two leafs to a non-IF AND/OR
8247 expression.
8248 If tree-code of left-hand operand isn't an AND/OR-IF code and not
8249 equal to IF-CODE, then we don't want to add right-hand operand.
8250 If the inner right-hand side of left-hand operand has
8251 side-effects, or isn't simple, then we can't add to it,
8252 as otherwise we might destroy if-sequence. */
8253 if (TREE_CODE (arg0) == icode
8254 && simple_operand_p_2 (arg1)
8255 /* Needed for sequence points to handle trappings, and
8256 side-effects. */
8257 && simple_operand_p_2 (TREE_OPERAND (arg0, 1)))
8259 tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1),
8260 arg1);
8261 return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0),
8262 tem);
8264 /* Same as above but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8265 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8266 else if (TREE_CODE (arg1) == icode
8267 && simple_operand_p_2 (arg0)
8268 /* Needed for sequence points to handle trappings, and
8269 side-effects. */
8270 && simple_operand_p_2 (TREE_OPERAND (arg1, 0)))
8272 tem = fold_build2_loc (loc, ncode, type,
8273 arg0, TREE_OPERAND (arg1, 0));
8274 return fold_build2_loc (loc, icode, type, tem,
8275 TREE_OPERAND (arg1, 1));
8277 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8278 into (A OR B).
8279 For sequence point consistancy, we need to check for trapping,
8280 and side-effects. */
8281 else if (code == icode && simple_operand_p_2 (arg0)
8282 && simple_operand_p_2 (arg1))
8283 return fold_build2_loc (loc, ncode, type, arg0, arg1);
8286 return NULL_TREE;
8289 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8290 by changing CODE to reduce the magnitude of constants involved in
8291 ARG0 of the comparison.
8292 Returns a canonicalized comparison tree if a simplification was
8293 possible, otherwise returns NULL_TREE.
8294 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8295 valid if signed overflow is undefined. */
8297 static tree
8298 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type,
8299 tree arg0, tree arg1,
8300 bool *strict_overflow_p)
8302 enum tree_code code0 = TREE_CODE (arg0);
8303 tree t, cst0 = NULL_TREE;
8304 int sgn0;
8306 /* Match A +- CST code arg1. We can change this only if overflow
8307 is undefined. */
8308 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8309 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))
8310 /* In principle pointers also have undefined overflow behavior,
8311 but that causes problems elsewhere. */
8312 && !POINTER_TYPE_P (TREE_TYPE (arg0))
8313 && (code0 == MINUS_EXPR
8314 || code0 == PLUS_EXPR)
8315 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST))
8316 return NULL_TREE;
8318 /* Identify the constant in arg0 and its sign. */
8319 cst0 = TREE_OPERAND (arg0, 1);
8320 sgn0 = tree_int_cst_sgn (cst0);
8322 /* Overflowed constants and zero will cause problems. */
8323 if (integer_zerop (cst0)
8324 || TREE_OVERFLOW (cst0))
8325 return NULL_TREE;
8327 /* See if we can reduce the magnitude of the constant in
8328 arg0 by changing the comparison code. */
8329 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8330 if (code == LT_EXPR
8331 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8332 code = LE_EXPR;
8333 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8334 else if (code == GT_EXPR
8335 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8336 code = GE_EXPR;
8337 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8338 else if (code == LE_EXPR
8339 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8340 code = LT_EXPR;
8341 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8342 else if (code == GE_EXPR
8343 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8344 code = GT_EXPR;
8345 else
8346 return NULL_TREE;
8347 *strict_overflow_p = true;
8349 /* Now build the constant reduced in magnitude. But not if that
8350 would produce one outside of its types range. */
8351 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
8352 && ((sgn0 == 1
8353 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
8354 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
8355 || (sgn0 == -1
8356 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
8357 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
8358 return NULL_TREE;
8360 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8361 cst0, build_int_cst (TREE_TYPE (cst0), 1));
8362 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8363 t = fold_convert (TREE_TYPE (arg1), t);
8365 return fold_build2_loc (loc, code, type, t, arg1);
8368 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8369 overflow further. Try to decrease the magnitude of constants involved
8370 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8371 and put sole constants at the second argument position.
8372 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8374 static tree
8375 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type,
8376 tree arg0, tree arg1)
8378 tree t;
8379 bool strict_overflow_p;
8380 const char * const warnmsg = G_("assuming signed overflow does not occur "
8381 "when reducing constant in comparison");
8383 /* Try canonicalization by simplifying arg0. */
8384 strict_overflow_p = false;
8385 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1,
8386 &strict_overflow_p);
8387 if (t)
8389 if (strict_overflow_p)
8390 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8391 return t;
8394 /* Try canonicalization by simplifying arg1 using the swapped
8395 comparison. */
8396 code = swap_tree_comparison (code);
8397 strict_overflow_p = false;
8398 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0,
8399 &strict_overflow_p);
8400 if (t && strict_overflow_p)
8401 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8402 return t;
8405 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8406 space. This is used to avoid issuing overflow warnings for
8407 expressions like &p->x which can not wrap. */
8409 static bool
8410 pointer_may_wrap_p (tree base, tree offset, poly_int64 bitpos)
8412 if (!POINTER_TYPE_P (TREE_TYPE (base)))
8413 return true;
8415 if (maybe_lt (bitpos, 0))
8416 return true;
8418 poly_wide_int wi_offset;
8419 int precision = TYPE_PRECISION (TREE_TYPE (base));
8420 if (offset == NULL_TREE)
8421 wi_offset = wi::zero (precision);
8422 else if (!poly_int_tree_p (offset) || TREE_OVERFLOW (offset))
8423 return true;
8424 else
8425 wi_offset = wi::to_poly_wide (offset);
8427 wi::overflow_type overflow;
8428 poly_wide_int units = wi::shwi (bits_to_bytes_round_down (bitpos),
8429 precision);
8430 poly_wide_int total = wi::add (wi_offset, units, UNSIGNED, &overflow);
8431 if (overflow)
8432 return true;
8434 poly_uint64 total_hwi, size;
8435 if (!total.to_uhwi (&total_hwi)
8436 || !poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (base))),
8437 &size)
8438 || known_eq (size, 0U))
8439 return true;
8441 if (known_le (total_hwi, size))
8442 return false;
8444 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8445 array. */
8446 if (TREE_CODE (base) == ADDR_EXPR
8447 && poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_OPERAND (base, 0))),
8448 &size)
8449 && maybe_ne (size, 0U)
8450 && known_le (total_hwi, size))
8451 return false;
8453 return true;
8456 /* Return a positive integer when the symbol DECL is known to have
8457 a nonzero address, zero when it's known not to (e.g., it's a weak
8458 symbol), and a negative integer when the symbol is not yet in the
8459 symbol table and so whether or not its address is zero is unknown.
8460 For function local objects always return positive integer. */
8461 static int
8462 maybe_nonzero_address (tree decl)
8464 if (DECL_P (decl) && decl_in_symtab_p (decl))
8465 if (struct symtab_node *symbol = symtab_node::get_create (decl))
8466 return symbol->nonzero_address ();
8468 /* Function local objects are never NULL. */
8469 if (DECL_P (decl)
8470 && (DECL_CONTEXT (decl)
8471 && TREE_CODE (DECL_CONTEXT (decl)) == FUNCTION_DECL
8472 && auto_var_in_fn_p (decl, DECL_CONTEXT (decl))))
8473 return 1;
8475 return -1;
8478 /* Subroutine of fold_binary. This routine performs all of the
8479 transformations that are common to the equality/inequality
8480 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8481 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8482 fold_binary should call fold_binary. Fold a comparison with
8483 tree code CODE and type TYPE with operands OP0 and OP1. Return
8484 the folded comparison or NULL_TREE. */
8486 static tree
8487 fold_comparison (location_t loc, enum tree_code code, tree type,
8488 tree op0, tree op1)
8490 const bool equality_code = (code == EQ_EXPR || code == NE_EXPR);
8491 tree arg0, arg1, tem;
8493 arg0 = op0;
8494 arg1 = op1;
8496 STRIP_SIGN_NOPS (arg0);
8497 STRIP_SIGN_NOPS (arg1);
8499 /* For comparisons of pointers we can decompose it to a compile time
8500 comparison of the base objects and the offsets into the object.
8501 This requires at least one operand being an ADDR_EXPR or a
8502 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8503 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8504 && (TREE_CODE (arg0) == ADDR_EXPR
8505 || TREE_CODE (arg1) == ADDR_EXPR
8506 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
8507 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
8509 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
8510 poly_int64 bitsize, bitpos0 = 0, bitpos1 = 0;
8511 machine_mode mode;
8512 int volatilep, reversep, unsignedp;
8513 bool indirect_base0 = false, indirect_base1 = false;
8515 /* Get base and offset for the access. Strip ADDR_EXPR for
8516 get_inner_reference, but put it back by stripping INDIRECT_REF
8517 off the base object if possible. indirect_baseN will be true
8518 if baseN is not an address but refers to the object itself. */
8519 base0 = arg0;
8520 if (TREE_CODE (arg0) == ADDR_EXPR)
8522 base0
8523 = get_inner_reference (TREE_OPERAND (arg0, 0),
8524 &bitsize, &bitpos0, &offset0, &mode,
8525 &unsignedp, &reversep, &volatilep);
8526 if (TREE_CODE (base0) == INDIRECT_REF)
8527 base0 = TREE_OPERAND (base0, 0);
8528 else
8529 indirect_base0 = true;
8531 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
8533 base0 = TREE_OPERAND (arg0, 0);
8534 STRIP_SIGN_NOPS (base0);
8535 if (TREE_CODE (base0) == ADDR_EXPR)
8537 base0
8538 = get_inner_reference (TREE_OPERAND (base0, 0),
8539 &bitsize, &bitpos0, &offset0, &mode,
8540 &unsignedp, &reversep, &volatilep);
8541 if (TREE_CODE (base0) == INDIRECT_REF)
8542 base0 = TREE_OPERAND (base0, 0);
8543 else
8544 indirect_base0 = true;
8546 if (offset0 == NULL_TREE || integer_zerop (offset0))
8547 offset0 = TREE_OPERAND (arg0, 1);
8548 else
8549 offset0 = size_binop (PLUS_EXPR, offset0,
8550 TREE_OPERAND (arg0, 1));
8551 if (poly_int_tree_p (offset0))
8553 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset0),
8554 TYPE_PRECISION (sizetype));
8555 tem <<= LOG2_BITS_PER_UNIT;
8556 tem += bitpos0;
8557 if (tem.to_shwi (&bitpos0))
8558 offset0 = NULL_TREE;
8562 base1 = arg1;
8563 if (TREE_CODE (arg1) == ADDR_EXPR)
8565 base1
8566 = get_inner_reference (TREE_OPERAND (arg1, 0),
8567 &bitsize, &bitpos1, &offset1, &mode,
8568 &unsignedp, &reversep, &volatilep);
8569 if (TREE_CODE (base1) == INDIRECT_REF)
8570 base1 = TREE_OPERAND (base1, 0);
8571 else
8572 indirect_base1 = true;
8574 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
8576 base1 = TREE_OPERAND (arg1, 0);
8577 STRIP_SIGN_NOPS (base1);
8578 if (TREE_CODE (base1) == ADDR_EXPR)
8580 base1
8581 = get_inner_reference (TREE_OPERAND (base1, 0),
8582 &bitsize, &bitpos1, &offset1, &mode,
8583 &unsignedp, &reversep, &volatilep);
8584 if (TREE_CODE (base1) == INDIRECT_REF)
8585 base1 = TREE_OPERAND (base1, 0);
8586 else
8587 indirect_base1 = true;
8589 if (offset1 == NULL_TREE || integer_zerop (offset1))
8590 offset1 = TREE_OPERAND (arg1, 1);
8591 else
8592 offset1 = size_binop (PLUS_EXPR, offset1,
8593 TREE_OPERAND (arg1, 1));
8594 if (poly_int_tree_p (offset1))
8596 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset1),
8597 TYPE_PRECISION (sizetype));
8598 tem <<= LOG2_BITS_PER_UNIT;
8599 tem += bitpos1;
8600 if (tem.to_shwi (&bitpos1))
8601 offset1 = NULL_TREE;
8605 /* If we have equivalent bases we might be able to simplify. */
8606 if (indirect_base0 == indirect_base1
8607 && operand_equal_p (base0, base1,
8608 indirect_base0 ? OEP_ADDRESS_OF : 0))
8610 /* We can fold this expression to a constant if the non-constant
8611 offset parts are equal. */
8612 if ((offset0 == offset1
8613 || (offset0 && offset1
8614 && operand_equal_p (offset0, offset1, 0)))
8615 && (equality_code
8616 || (indirect_base0
8617 && (DECL_P (base0) || CONSTANT_CLASS_P (base0)))
8618 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))))
8620 if (!equality_code
8621 && maybe_ne (bitpos0, bitpos1)
8622 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8623 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8624 fold_overflow_warning (("assuming pointer wraparound does not "
8625 "occur when comparing P +- C1 with "
8626 "P +- C2"),
8627 WARN_STRICT_OVERFLOW_CONDITIONAL);
8629 switch (code)
8631 case EQ_EXPR:
8632 if (known_eq (bitpos0, bitpos1))
8633 return constant_boolean_node (true, type);
8634 if (known_ne (bitpos0, bitpos1))
8635 return constant_boolean_node (false, type);
8636 break;
8637 case NE_EXPR:
8638 if (known_ne (bitpos0, bitpos1))
8639 return constant_boolean_node (true, type);
8640 if (known_eq (bitpos0, bitpos1))
8641 return constant_boolean_node (false, type);
8642 break;
8643 case LT_EXPR:
8644 if (known_lt (bitpos0, bitpos1))
8645 return constant_boolean_node (true, type);
8646 if (known_ge (bitpos0, bitpos1))
8647 return constant_boolean_node (false, type);
8648 break;
8649 case LE_EXPR:
8650 if (known_le (bitpos0, bitpos1))
8651 return constant_boolean_node (true, type);
8652 if (known_gt (bitpos0, bitpos1))
8653 return constant_boolean_node (false, type);
8654 break;
8655 case GE_EXPR:
8656 if (known_ge (bitpos0, bitpos1))
8657 return constant_boolean_node (true, type);
8658 if (known_lt (bitpos0, bitpos1))
8659 return constant_boolean_node (false, type);
8660 break;
8661 case GT_EXPR:
8662 if (known_gt (bitpos0, bitpos1))
8663 return constant_boolean_node (true, type);
8664 if (known_le (bitpos0, bitpos1))
8665 return constant_boolean_node (false, type);
8666 break;
8667 default:;
8670 /* We can simplify the comparison to a comparison of the variable
8671 offset parts if the constant offset parts are equal.
8672 Be careful to use signed sizetype here because otherwise we
8673 mess with array offsets in the wrong way. This is possible
8674 because pointer arithmetic is restricted to retain within an
8675 object and overflow on pointer differences is undefined as of
8676 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8677 else if (known_eq (bitpos0, bitpos1)
8678 && (equality_code
8679 || (indirect_base0
8680 && (DECL_P (base0) || CONSTANT_CLASS_P (base0)))
8681 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))))
8683 /* By converting to signed sizetype we cover middle-end pointer
8684 arithmetic which operates on unsigned pointer types of size
8685 type size and ARRAY_REF offsets which are properly sign or
8686 zero extended from their type in case it is narrower than
8687 sizetype. */
8688 if (offset0 == NULL_TREE)
8689 offset0 = build_int_cst (ssizetype, 0);
8690 else
8691 offset0 = fold_convert_loc (loc, ssizetype, offset0);
8692 if (offset1 == NULL_TREE)
8693 offset1 = build_int_cst (ssizetype, 0);
8694 else
8695 offset1 = fold_convert_loc (loc, ssizetype, offset1);
8697 if (!equality_code
8698 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8699 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8700 fold_overflow_warning (("assuming pointer wraparound does not "
8701 "occur when comparing P +- C1 with "
8702 "P +- C2"),
8703 WARN_STRICT_OVERFLOW_COMPARISON);
8705 return fold_build2_loc (loc, code, type, offset0, offset1);
8708 /* For equal offsets we can simplify to a comparison of the
8709 base addresses. */
8710 else if (known_eq (bitpos0, bitpos1)
8711 && (indirect_base0
8712 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
8713 && (indirect_base1
8714 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
8715 && ((offset0 == offset1)
8716 || (offset0 && offset1
8717 && operand_equal_p (offset0, offset1, 0))))
8719 if (indirect_base0)
8720 base0 = build_fold_addr_expr_loc (loc, base0);
8721 if (indirect_base1)
8722 base1 = build_fold_addr_expr_loc (loc, base1);
8723 return fold_build2_loc (loc, code, type, base0, base1);
8725 /* Comparison between an ordinary (non-weak) symbol and a null
8726 pointer can be eliminated since such symbols must have a non
8727 null address. In C, relational expressions between pointers
8728 to objects and null pointers are undefined. The results
8729 below follow the C++ rules with the additional property that
8730 every object pointer compares greater than a null pointer.
8732 else if (((DECL_P (base0)
8733 && maybe_nonzero_address (base0) > 0
8734 /* Avoid folding references to struct members at offset 0 to
8735 prevent tests like '&ptr->firstmember == 0' from getting
8736 eliminated. When ptr is null, although the -> expression
8737 is strictly speaking invalid, GCC retains it as a matter
8738 of QoI. See PR c/44555. */
8739 && (offset0 == NULL_TREE && known_ne (bitpos0, 0)))
8740 || CONSTANT_CLASS_P (base0))
8741 && indirect_base0
8742 /* The caller guarantees that when one of the arguments is
8743 constant (i.e., null in this case) it is second. */
8744 && integer_zerop (arg1))
8746 switch (code)
8748 case EQ_EXPR:
8749 case LE_EXPR:
8750 case LT_EXPR:
8751 return constant_boolean_node (false, type);
8752 case GE_EXPR:
8753 case GT_EXPR:
8754 case NE_EXPR:
8755 return constant_boolean_node (true, type);
8756 default:
8757 gcc_unreachable ();
8762 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8763 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8764 the resulting offset is smaller in absolute value than the
8765 original one and has the same sign. */
8766 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8767 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8768 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8769 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8770 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
8771 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
8772 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
8773 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
8775 tree const1 = TREE_OPERAND (arg0, 1);
8776 tree const2 = TREE_OPERAND (arg1, 1);
8777 tree variable1 = TREE_OPERAND (arg0, 0);
8778 tree variable2 = TREE_OPERAND (arg1, 0);
8779 tree cst;
8780 const char * const warnmsg = G_("assuming signed overflow does not "
8781 "occur when combining constants around "
8782 "a comparison");
8784 /* Put the constant on the side where it doesn't overflow and is
8785 of lower absolute value and of same sign than before. */
8786 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8787 ? MINUS_EXPR : PLUS_EXPR,
8788 const2, const1);
8789 if (!TREE_OVERFLOW (cst)
8790 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2)
8791 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2))
8793 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8794 return fold_build2_loc (loc, code, type,
8795 variable1,
8796 fold_build2_loc (loc, TREE_CODE (arg1),
8797 TREE_TYPE (arg1),
8798 variable2, cst));
8801 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8802 ? MINUS_EXPR : PLUS_EXPR,
8803 const1, const2);
8804 if (!TREE_OVERFLOW (cst)
8805 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1)
8806 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1))
8808 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8809 return fold_build2_loc (loc, code, type,
8810 fold_build2_loc (loc, TREE_CODE (arg0),
8811 TREE_TYPE (arg0),
8812 variable1, cst),
8813 variable2);
8817 tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1);
8818 if (tem)
8819 return tem;
8821 /* If we are comparing an expression that just has comparisons
8822 of two integer values, arithmetic expressions of those comparisons,
8823 and constants, we can simplify it. There are only three cases
8824 to check: the two values can either be equal, the first can be
8825 greater, or the second can be greater. Fold the expression for
8826 those three values. Since each value must be 0 or 1, we have
8827 eight possibilities, each of which corresponds to the constant 0
8828 or 1 or one of the six possible comparisons.
8830 This handles common cases like (a > b) == 0 but also handles
8831 expressions like ((x > y) - (y > x)) > 0, which supposedly
8832 occur in macroized code. */
8834 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
8836 tree cval1 = 0, cval2 = 0;
8838 if (twoval_comparison_p (arg0, &cval1, &cval2)
8839 /* Don't handle degenerate cases here; they should already
8840 have been handled anyway. */
8841 && cval1 != 0 && cval2 != 0
8842 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
8843 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
8844 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
8845 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
8846 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
8847 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
8848 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
8850 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
8851 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
8853 /* We can't just pass T to eval_subst in case cval1 or cval2
8854 was the same as ARG1. */
8856 tree high_result
8857 = fold_build2_loc (loc, code, type,
8858 eval_subst (loc, arg0, cval1, maxval,
8859 cval2, minval),
8860 arg1);
8861 tree equal_result
8862 = fold_build2_loc (loc, code, type,
8863 eval_subst (loc, arg0, cval1, maxval,
8864 cval2, maxval),
8865 arg1);
8866 tree low_result
8867 = fold_build2_loc (loc, code, type,
8868 eval_subst (loc, arg0, cval1, minval,
8869 cval2, maxval),
8870 arg1);
8872 /* All three of these results should be 0 or 1. Confirm they are.
8873 Then use those values to select the proper code to use. */
8875 if (TREE_CODE (high_result) == INTEGER_CST
8876 && TREE_CODE (equal_result) == INTEGER_CST
8877 && TREE_CODE (low_result) == INTEGER_CST)
8879 /* Make a 3-bit mask with the high-order bit being the
8880 value for `>', the next for '=', and the low for '<'. */
8881 switch ((integer_onep (high_result) * 4)
8882 + (integer_onep (equal_result) * 2)
8883 + integer_onep (low_result))
8885 case 0:
8886 /* Always false. */
8887 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
8888 case 1:
8889 code = LT_EXPR;
8890 break;
8891 case 2:
8892 code = EQ_EXPR;
8893 break;
8894 case 3:
8895 code = LE_EXPR;
8896 break;
8897 case 4:
8898 code = GT_EXPR;
8899 break;
8900 case 5:
8901 code = NE_EXPR;
8902 break;
8903 case 6:
8904 code = GE_EXPR;
8905 break;
8906 case 7:
8907 /* Always true. */
8908 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
8911 return fold_build2_loc (loc, code, type, cval1, cval2);
8916 return NULL_TREE;
8920 /* Subroutine of fold_binary. Optimize complex multiplications of the
8921 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8922 argument EXPR represents the expression "z" of type TYPE. */
8924 static tree
8925 fold_mult_zconjz (location_t loc, tree type, tree expr)
8927 tree itype = TREE_TYPE (type);
8928 tree rpart, ipart, tem;
8930 if (TREE_CODE (expr) == COMPLEX_EXPR)
8932 rpart = TREE_OPERAND (expr, 0);
8933 ipart = TREE_OPERAND (expr, 1);
8935 else if (TREE_CODE (expr) == COMPLEX_CST)
8937 rpart = TREE_REALPART (expr);
8938 ipart = TREE_IMAGPART (expr);
8940 else
8942 expr = save_expr (expr);
8943 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr);
8944 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr);
8947 rpart = save_expr (rpart);
8948 ipart = save_expr (ipart);
8949 tem = fold_build2_loc (loc, PLUS_EXPR, itype,
8950 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart),
8951 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart));
8952 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem,
8953 build_zero_cst (itype));
8957 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
8958 CONSTRUCTOR ARG into array ELTS, which has NELTS elements, and return
8959 true if successful. */
8961 static bool
8962 vec_cst_ctor_to_array (tree arg, unsigned int nelts, tree *elts)
8964 unsigned HOST_WIDE_INT i, nunits;
8966 if (TREE_CODE (arg) == VECTOR_CST
8967 && VECTOR_CST_NELTS (arg).is_constant (&nunits))
8969 for (i = 0; i < nunits; ++i)
8970 elts[i] = VECTOR_CST_ELT (arg, i);
8972 else if (TREE_CODE (arg) == CONSTRUCTOR)
8974 constructor_elt *elt;
8976 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt)
8977 if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
8978 return false;
8979 else
8980 elts[i] = elt->value;
8982 else
8983 return false;
8984 for (; i < nelts; i++)
8985 elts[i]
8986 = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node);
8987 return true;
8990 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
8991 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
8992 NULL_TREE otherwise. */
8994 static tree
8995 fold_vec_perm (tree type, tree arg0, tree arg1, const vec_perm_indices &sel)
8997 unsigned int i;
8998 unsigned HOST_WIDE_INT nelts;
8999 bool need_ctor = false;
9001 if (!sel.length ().is_constant (&nelts))
9002 return NULL_TREE;
9003 gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (type), nelts)
9004 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)), nelts)
9005 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)), nelts));
9006 if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type)
9007 || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type))
9008 return NULL_TREE;
9010 tree *in_elts = XALLOCAVEC (tree, nelts * 2);
9011 if (!vec_cst_ctor_to_array (arg0, nelts, in_elts)
9012 || !vec_cst_ctor_to_array (arg1, nelts, in_elts + nelts))
9013 return NULL_TREE;
9015 tree_vector_builder out_elts (type, nelts, 1);
9016 for (i = 0; i < nelts; i++)
9018 HOST_WIDE_INT index;
9019 if (!sel[i].is_constant (&index))
9020 return NULL_TREE;
9021 if (!CONSTANT_CLASS_P (in_elts[index]))
9022 need_ctor = true;
9023 out_elts.quick_push (unshare_expr (in_elts[index]));
9026 if (need_ctor)
9028 vec<constructor_elt, va_gc> *v;
9029 vec_alloc (v, nelts);
9030 for (i = 0; i < nelts; i++)
9031 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, out_elts[i]);
9032 return build_constructor (type, v);
9034 else
9035 return out_elts.build ();
9038 /* Try to fold a pointer difference of type TYPE two address expressions of
9039 array references AREF0 and AREF1 using location LOC. Return a
9040 simplified expression for the difference or NULL_TREE. */
9042 static tree
9043 fold_addr_of_array_ref_difference (location_t loc, tree type,
9044 tree aref0, tree aref1,
9045 bool use_pointer_diff)
9047 tree base0 = TREE_OPERAND (aref0, 0);
9048 tree base1 = TREE_OPERAND (aref1, 0);
9049 tree base_offset = build_int_cst (type, 0);
9051 /* If the bases are array references as well, recurse. If the bases
9052 are pointer indirections compute the difference of the pointers.
9053 If the bases are equal, we are set. */
9054 if ((TREE_CODE (base0) == ARRAY_REF
9055 && TREE_CODE (base1) == ARRAY_REF
9056 && (base_offset
9057 = fold_addr_of_array_ref_difference (loc, type, base0, base1,
9058 use_pointer_diff)))
9059 || (INDIRECT_REF_P (base0)
9060 && INDIRECT_REF_P (base1)
9061 && (base_offset
9062 = use_pointer_diff
9063 ? fold_binary_loc (loc, POINTER_DIFF_EXPR, type,
9064 TREE_OPERAND (base0, 0),
9065 TREE_OPERAND (base1, 0))
9066 : fold_binary_loc (loc, MINUS_EXPR, type,
9067 fold_convert (type,
9068 TREE_OPERAND (base0, 0)),
9069 fold_convert (type,
9070 TREE_OPERAND (base1, 0)))))
9071 || operand_equal_p (base0, base1, OEP_ADDRESS_OF))
9073 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1));
9074 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1));
9075 tree esz = fold_convert_loc (loc, type, array_ref_element_size (aref0));
9076 tree diff = fold_build2_loc (loc, MINUS_EXPR, type, op0, op1);
9077 return fold_build2_loc (loc, PLUS_EXPR, type,
9078 base_offset,
9079 fold_build2_loc (loc, MULT_EXPR, type,
9080 diff, esz));
9082 return NULL_TREE;
9085 /* If the real or vector real constant CST of type TYPE has an exact
9086 inverse, return it, else return NULL. */
9088 tree
9089 exact_inverse (tree type, tree cst)
9091 REAL_VALUE_TYPE r;
9092 tree unit_type;
9093 machine_mode mode;
9095 switch (TREE_CODE (cst))
9097 case REAL_CST:
9098 r = TREE_REAL_CST (cst);
9100 if (exact_real_inverse (TYPE_MODE (type), &r))
9101 return build_real (type, r);
9103 return NULL_TREE;
9105 case VECTOR_CST:
9107 unit_type = TREE_TYPE (type);
9108 mode = TYPE_MODE (unit_type);
9110 tree_vector_builder elts;
9111 if (!elts.new_unary_operation (type, cst, false))
9112 return NULL_TREE;
9113 unsigned int count = elts.encoded_nelts ();
9114 for (unsigned int i = 0; i < count; ++i)
9116 r = TREE_REAL_CST (VECTOR_CST_ELT (cst, i));
9117 if (!exact_real_inverse (mode, &r))
9118 return NULL_TREE;
9119 elts.quick_push (build_real (unit_type, r));
9122 return elts.build ();
9125 default:
9126 return NULL_TREE;
9130 /* Mask out the tz least significant bits of X of type TYPE where
9131 tz is the number of trailing zeroes in Y. */
9132 static wide_int
9133 mask_with_tz (tree type, const wide_int &x, const wide_int &y)
9135 int tz = wi::ctz (y);
9136 if (tz > 0)
9137 return wi::mask (tz, true, TYPE_PRECISION (type)) & x;
9138 return x;
9141 /* Return true when T is an address and is known to be nonzero.
9142 For floating point we further ensure that T is not denormal.
9143 Similar logic is present in nonzero_address in rtlanal.h.
9145 If the return value is based on the assumption that signed overflow
9146 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
9147 change *STRICT_OVERFLOW_P. */
9149 static bool
9150 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
9152 tree type = TREE_TYPE (t);
9153 enum tree_code code;
9155 /* Doing something useful for floating point would need more work. */
9156 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
9157 return false;
9159 code = TREE_CODE (t);
9160 switch (TREE_CODE_CLASS (code))
9162 case tcc_unary:
9163 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
9164 strict_overflow_p);
9165 case tcc_binary:
9166 case tcc_comparison:
9167 return tree_binary_nonzero_warnv_p (code, type,
9168 TREE_OPERAND (t, 0),
9169 TREE_OPERAND (t, 1),
9170 strict_overflow_p);
9171 case tcc_constant:
9172 case tcc_declaration:
9173 case tcc_reference:
9174 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
9176 default:
9177 break;
9180 switch (code)
9182 case TRUTH_NOT_EXPR:
9183 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
9184 strict_overflow_p);
9186 case TRUTH_AND_EXPR:
9187 case TRUTH_OR_EXPR:
9188 case TRUTH_XOR_EXPR:
9189 return tree_binary_nonzero_warnv_p (code, type,
9190 TREE_OPERAND (t, 0),
9191 TREE_OPERAND (t, 1),
9192 strict_overflow_p);
9194 case COND_EXPR:
9195 case CONSTRUCTOR:
9196 case OBJ_TYPE_REF:
9197 case ASSERT_EXPR:
9198 case ADDR_EXPR:
9199 case WITH_SIZE_EXPR:
9200 case SSA_NAME:
9201 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
9203 case COMPOUND_EXPR:
9204 case MODIFY_EXPR:
9205 case BIND_EXPR:
9206 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
9207 strict_overflow_p);
9209 case SAVE_EXPR:
9210 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
9211 strict_overflow_p);
9213 case CALL_EXPR:
9215 tree fndecl = get_callee_fndecl (t);
9216 if (!fndecl) return false;
9217 if (flag_delete_null_pointer_checks && !flag_check_new
9218 && DECL_IS_OPERATOR_NEW (fndecl)
9219 && !TREE_NOTHROW (fndecl))
9220 return true;
9221 if (flag_delete_null_pointer_checks
9222 && lookup_attribute ("returns_nonnull",
9223 TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
9224 return true;
9225 return alloca_call_p (t);
9228 default:
9229 break;
9231 return false;
9234 /* Return true when T is an address and is known to be nonzero.
9235 Handle warnings about undefined signed overflow. */
9237 bool
9238 tree_expr_nonzero_p (tree t)
9240 bool ret, strict_overflow_p;
9242 strict_overflow_p = false;
9243 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
9244 if (strict_overflow_p)
9245 fold_overflow_warning (("assuming signed overflow does not occur when "
9246 "determining that expression is always "
9247 "non-zero"),
9248 WARN_STRICT_OVERFLOW_MISC);
9249 return ret;
9252 /* Return true if T is known not to be equal to an integer W. */
9254 bool
9255 expr_not_equal_to (tree t, const wide_int &w)
9257 wide_int min, max, nz;
9258 value_range_type rtype;
9259 switch (TREE_CODE (t))
9261 case INTEGER_CST:
9262 return wi::to_wide (t) != w;
9264 case SSA_NAME:
9265 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
9266 return false;
9267 rtype = get_range_info (t, &min, &max);
9268 if (rtype == VR_RANGE)
9270 if (wi::lt_p (max, w, TYPE_SIGN (TREE_TYPE (t))))
9271 return true;
9272 if (wi::lt_p (w, min, TYPE_SIGN (TREE_TYPE (t))))
9273 return true;
9275 else if (rtype == VR_ANTI_RANGE
9276 && wi::le_p (min, w, TYPE_SIGN (TREE_TYPE (t)))
9277 && wi::le_p (w, max, TYPE_SIGN (TREE_TYPE (t))))
9278 return true;
9279 /* If T has some known zero bits and W has any of those bits set,
9280 then T is known not to be equal to W. */
9281 if (wi::ne_p (wi::zext (wi::bit_and_not (w, get_nonzero_bits (t)),
9282 TYPE_PRECISION (TREE_TYPE (t))), 0))
9283 return true;
9284 return false;
9286 default:
9287 return false;
9291 /* Fold a binary expression of code CODE and type TYPE with operands
9292 OP0 and OP1. LOC is the location of the resulting expression.
9293 Return the folded expression if folding is successful. Otherwise,
9294 return NULL_TREE. */
9296 tree
9297 fold_binary_loc (location_t loc, enum tree_code code, tree type,
9298 tree op0, tree op1)
9300 enum tree_code_class kind = TREE_CODE_CLASS (code);
9301 tree arg0, arg1, tem;
9302 tree t1 = NULL_TREE;
9303 bool strict_overflow_p;
9304 unsigned int prec;
9306 gcc_assert (IS_EXPR_CODE_CLASS (kind)
9307 && TREE_CODE_LENGTH (code) == 2
9308 && op0 != NULL_TREE
9309 && op1 != NULL_TREE);
9311 arg0 = op0;
9312 arg1 = op1;
9314 /* Strip any conversions that don't change the mode. This is
9315 safe for every expression, except for a comparison expression
9316 because its signedness is derived from its operands. So, in
9317 the latter case, only strip conversions that don't change the
9318 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9319 preserved.
9321 Note that this is done as an internal manipulation within the
9322 constant folder, in order to find the simplest representation
9323 of the arguments so that their form can be studied. In any
9324 cases, the appropriate type conversions should be put back in
9325 the tree that will get out of the constant folder. */
9327 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
9329 if (code == MIN_EXPR || code == MAX_EXPR)
9331 tree typ0 = TREE_TYPE (arg0);
9332 tree typ1 = TREE_TYPE (arg1);
9333 gcc_assert (TYPE_SIGN (typ0) == TYPE_SIGN (typ1)
9334 && TYPE_MODE (typ0) == TYPE_MODE (typ1));
9337 STRIP_SIGN_NOPS (arg0);
9338 STRIP_SIGN_NOPS (arg1);
9340 else
9342 STRIP_NOPS (arg0);
9343 STRIP_NOPS (arg1);
9346 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9347 constant but we can't do arithmetic on them. */
9348 if (CONSTANT_CLASS_P (arg0) && CONSTANT_CLASS_P (arg1))
9350 tem = const_binop (code, type, arg0, arg1);
9351 if (tem != NULL_TREE)
9353 if (TREE_TYPE (tem) != type)
9354 tem = fold_convert_loc (loc, type, tem);
9355 return tem;
9359 /* If this is a commutative operation, and ARG0 is a constant, move it
9360 to ARG1 to reduce the number of tests below. */
9361 if (commutative_tree_code (code)
9362 && tree_swap_operands_p (arg0, arg1))
9363 return fold_build2_loc (loc, code, type, op1, op0);
9365 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9366 to ARG1 to reduce the number of tests below. */
9367 if (kind == tcc_comparison
9368 && tree_swap_operands_p (arg0, arg1))
9369 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0);
9371 tem = generic_simplify (loc, code, type, op0, op1);
9372 if (tem)
9373 return tem;
9375 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9377 First check for cases where an arithmetic operation is applied to a
9378 compound, conditional, or comparison operation. Push the arithmetic
9379 operation inside the compound or conditional to see if any folding
9380 can then be done. Convert comparison to conditional for this purpose.
9381 The also optimizes non-constant cases that used to be done in
9382 expand_expr.
9384 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9385 one of the operands is a comparison and the other is a comparison, a
9386 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9387 code below would make the expression more complex. Change it to a
9388 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9389 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9391 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
9392 || code == EQ_EXPR || code == NE_EXPR)
9393 && !VECTOR_TYPE_P (TREE_TYPE (arg0))
9394 && ((truth_value_p (TREE_CODE (arg0))
9395 && (truth_value_p (TREE_CODE (arg1))
9396 || (TREE_CODE (arg1) == BIT_AND_EXPR
9397 && integer_onep (TREE_OPERAND (arg1, 1)))))
9398 || (truth_value_p (TREE_CODE (arg1))
9399 && (truth_value_p (TREE_CODE (arg0))
9400 || (TREE_CODE (arg0) == BIT_AND_EXPR
9401 && integer_onep (TREE_OPERAND (arg0, 1)))))))
9403 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR
9404 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
9405 : TRUTH_XOR_EXPR,
9406 boolean_type_node,
9407 fold_convert_loc (loc, boolean_type_node, arg0),
9408 fold_convert_loc (loc, boolean_type_node, arg1));
9410 if (code == EQ_EXPR)
9411 tem = invert_truthvalue_loc (loc, tem);
9413 return fold_convert_loc (loc, type, tem);
9416 if (TREE_CODE_CLASS (code) == tcc_binary
9417 || TREE_CODE_CLASS (code) == tcc_comparison)
9419 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9421 tem = fold_build2_loc (loc, code, type,
9422 fold_convert_loc (loc, TREE_TYPE (op0),
9423 TREE_OPERAND (arg0, 1)), op1);
9424 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9425 tem);
9427 if (TREE_CODE (arg1) == COMPOUND_EXPR)
9429 tem = fold_build2_loc (loc, code, type, op0,
9430 fold_convert_loc (loc, TREE_TYPE (op1),
9431 TREE_OPERAND (arg1, 1)));
9432 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
9433 tem);
9436 if (TREE_CODE (arg0) == COND_EXPR
9437 || TREE_CODE (arg0) == VEC_COND_EXPR
9438 || COMPARISON_CLASS_P (arg0))
9440 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9441 arg0, arg1,
9442 /*cond_first_p=*/1);
9443 if (tem != NULL_TREE)
9444 return tem;
9447 if (TREE_CODE (arg1) == COND_EXPR
9448 || TREE_CODE (arg1) == VEC_COND_EXPR
9449 || COMPARISON_CLASS_P (arg1))
9451 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9452 arg1, arg0,
9453 /*cond_first_p=*/0);
9454 if (tem != NULL_TREE)
9455 return tem;
9459 switch (code)
9461 case MEM_REF:
9462 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9463 if (TREE_CODE (arg0) == ADDR_EXPR
9464 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF)
9466 tree iref = TREE_OPERAND (arg0, 0);
9467 return fold_build2 (MEM_REF, type,
9468 TREE_OPERAND (iref, 0),
9469 int_const_binop (PLUS_EXPR, arg1,
9470 TREE_OPERAND (iref, 1)));
9473 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9474 if (TREE_CODE (arg0) == ADDR_EXPR
9475 && handled_component_p (TREE_OPERAND (arg0, 0)))
9477 tree base;
9478 poly_int64 coffset;
9479 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0),
9480 &coffset);
9481 if (!base)
9482 return NULL_TREE;
9483 return fold_build2 (MEM_REF, type,
9484 build_fold_addr_expr (base),
9485 int_const_binop (PLUS_EXPR, arg1,
9486 size_int (coffset)));
9489 return NULL_TREE;
9491 case POINTER_PLUS_EXPR:
9492 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9493 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9494 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9495 return fold_convert_loc (loc, type,
9496 fold_build2_loc (loc, PLUS_EXPR, sizetype,
9497 fold_convert_loc (loc, sizetype,
9498 arg1),
9499 fold_convert_loc (loc, sizetype,
9500 arg0)));
9502 return NULL_TREE;
9504 case PLUS_EXPR:
9505 if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
9507 /* X + (X / CST) * -CST is X % CST. */
9508 if (TREE_CODE (arg1) == MULT_EXPR
9509 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
9510 && operand_equal_p (arg0,
9511 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0))
9513 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
9514 tree cst1 = TREE_OPERAND (arg1, 1);
9515 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1),
9516 cst1, cst0);
9517 if (sum && integer_zerop (sum))
9518 return fold_convert_loc (loc, type,
9519 fold_build2_loc (loc, TRUNC_MOD_EXPR,
9520 TREE_TYPE (arg0), arg0,
9521 cst0));
9525 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
9526 one. Make sure the type is not saturating and has the signedness of
9527 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9528 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9529 if ((TREE_CODE (arg0) == MULT_EXPR
9530 || TREE_CODE (arg1) == MULT_EXPR)
9531 && !TYPE_SATURATING (type)
9532 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9533 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9534 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9536 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9537 if (tem)
9538 return tem;
9541 if (! FLOAT_TYPE_P (type))
9543 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9544 (plus (plus (mult) (mult)) (foo)) so that we can
9545 take advantage of the factoring cases below. */
9546 if (ANY_INTEGRAL_TYPE_P (type)
9547 && TYPE_OVERFLOW_WRAPS (type)
9548 && (((TREE_CODE (arg0) == PLUS_EXPR
9549 || TREE_CODE (arg0) == MINUS_EXPR)
9550 && TREE_CODE (arg1) == MULT_EXPR)
9551 || ((TREE_CODE (arg1) == PLUS_EXPR
9552 || TREE_CODE (arg1) == MINUS_EXPR)
9553 && TREE_CODE (arg0) == MULT_EXPR)))
9555 tree parg0, parg1, parg, marg;
9556 enum tree_code pcode;
9558 if (TREE_CODE (arg1) == MULT_EXPR)
9559 parg = arg0, marg = arg1;
9560 else
9561 parg = arg1, marg = arg0;
9562 pcode = TREE_CODE (parg);
9563 parg0 = TREE_OPERAND (parg, 0);
9564 parg1 = TREE_OPERAND (parg, 1);
9565 STRIP_NOPS (parg0);
9566 STRIP_NOPS (parg1);
9568 if (TREE_CODE (parg0) == MULT_EXPR
9569 && TREE_CODE (parg1) != MULT_EXPR)
9570 return fold_build2_loc (loc, pcode, type,
9571 fold_build2_loc (loc, PLUS_EXPR, type,
9572 fold_convert_loc (loc, type,
9573 parg0),
9574 fold_convert_loc (loc, type,
9575 marg)),
9576 fold_convert_loc (loc, type, parg1));
9577 if (TREE_CODE (parg0) != MULT_EXPR
9578 && TREE_CODE (parg1) == MULT_EXPR)
9579 return
9580 fold_build2_loc (loc, PLUS_EXPR, type,
9581 fold_convert_loc (loc, type, parg0),
9582 fold_build2_loc (loc, pcode, type,
9583 fold_convert_loc (loc, type, marg),
9584 fold_convert_loc (loc, type,
9585 parg1)));
9588 else
9590 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9591 to __complex__ ( x, y ). This is not the same for SNaNs or
9592 if signed zeros are involved. */
9593 if (!HONOR_SNANS (element_mode (arg0))
9594 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9595 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9597 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9598 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9599 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9600 bool arg0rz = false, arg0iz = false;
9601 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9602 || (arg0i && (arg0iz = real_zerop (arg0i))))
9604 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9605 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9606 if (arg0rz && arg1i && real_zerop (arg1i))
9608 tree rp = arg1r ? arg1r
9609 : build1 (REALPART_EXPR, rtype, arg1);
9610 tree ip = arg0i ? arg0i
9611 : build1 (IMAGPART_EXPR, rtype, arg0);
9612 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9614 else if (arg0iz && arg1r && real_zerop (arg1r))
9616 tree rp = arg0r ? arg0r
9617 : build1 (REALPART_EXPR, rtype, arg0);
9618 tree ip = arg1i ? arg1i
9619 : build1 (IMAGPART_EXPR, rtype, arg1);
9620 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9625 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9626 We associate floats only if the user has specified
9627 -fassociative-math. */
9628 if (flag_associative_math
9629 && TREE_CODE (arg1) == PLUS_EXPR
9630 && TREE_CODE (arg0) != MULT_EXPR)
9632 tree tree10 = TREE_OPERAND (arg1, 0);
9633 tree tree11 = TREE_OPERAND (arg1, 1);
9634 if (TREE_CODE (tree11) == MULT_EXPR
9635 && TREE_CODE (tree10) == MULT_EXPR)
9637 tree tree0;
9638 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10);
9639 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11);
9642 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9643 We associate floats only if the user has specified
9644 -fassociative-math. */
9645 if (flag_associative_math
9646 && TREE_CODE (arg0) == PLUS_EXPR
9647 && TREE_CODE (arg1) != MULT_EXPR)
9649 tree tree00 = TREE_OPERAND (arg0, 0);
9650 tree tree01 = TREE_OPERAND (arg0, 1);
9651 if (TREE_CODE (tree01) == MULT_EXPR
9652 && TREE_CODE (tree00) == MULT_EXPR)
9654 tree tree0;
9655 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1);
9656 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0);
9661 bit_rotate:
9662 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9663 is a rotate of A by C1 bits. */
9664 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9665 is a rotate of A by B bits.
9666 Similarly for (A << B) | (A >> (-B & C3)) where C3 is Z-1,
9667 though in this case CODE must be | and not + or ^, otherwise
9668 it doesn't return A when B is 0. */
9670 enum tree_code code0, code1;
9671 tree rtype;
9672 code0 = TREE_CODE (arg0);
9673 code1 = TREE_CODE (arg1);
9674 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
9675 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
9676 && operand_equal_p (TREE_OPERAND (arg0, 0),
9677 TREE_OPERAND (arg1, 0), 0)
9678 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
9679 TYPE_UNSIGNED (rtype))
9680 /* Only create rotates in complete modes. Other cases are not
9681 expanded properly. */
9682 && (element_precision (rtype)
9683 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype))))
9685 tree tree01, tree11;
9686 tree orig_tree01, orig_tree11;
9687 enum tree_code code01, code11;
9689 tree01 = orig_tree01 = TREE_OPERAND (arg0, 1);
9690 tree11 = orig_tree11 = TREE_OPERAND (arg1, 1);
9691 STRIP_NOPS (tree01);
9692 STRIP_NOPS (tree11);
9693 code01 = TREE_CODE (tree01);
9694 code11 = TREE_CODE (tree11);
9695 if (code11 != MINUS_EXPR
9696 && (code01 == MINUS_EXPR || code01 == BIT_AND_EXPR))
9698 std::swap (code0, code1);
9699 std::swap (code01, code11);
9700 std::swap (tree01, tree11);
9701 std::swap (orig_tree01, orig_tree11);
9703 if (code01 == INTEGER_CST
9704 && code11 == INTEGER_CST
9705 && (wi::to_widest (tree01) + wi::to_widest (tree11)
9706 == element_precision (rtype)))
9708 tem = build2_loc (loc, LROTATE_EXPR,
9709 rtype, TREE_OPERAND (arg0, 0),
9710 code0 == LSHIFT_EXPR
9711 ? orig_tree01 : orig_tree11);
9712 return fold_convert_loc (loc, type, tem);
9714 else if (code11 == MINUS_EXPR)
9716 tree tree110, tree111;
9717 tree110 = TREE_OPERAND (tree11, 0);
9718 tree111 = TREE_OPERAND (tree11, 1);
9719 STRIP_NOPS (tree110);
9720 STRIP_NOPS (tree111);
9721 if (TREE_CODE (tree110) == INTEGER_CST
9722 && compare_tree_int (tree110,
9723 element_precision (rtype)) == 0
9724 && operand_equal_p (tree01, tree111, 0))
9726 tem = build2_loc (loc, (code0 == LSHIFT_EXPR
9727 ? LROTATE_EXPR : RROTATE_EXPR),
9728 rtype, TREE_OPERAND (arg0, 0),
9729 orig_tree01);
9730 return fold_convert_loc (loc, type, tem);
9733 else if (code == BIT_IOR_EXPR
9734 && code11 == BIT_AND_EXPR
9735 && pow2p_hwi (element_precision (rtype)))
9737 tree tree110, tree111;
9738 tree110 = TREE_OPERAND (tree11, 0);
9739 tree111 = TREE_OPERAND (tree11, 1);
9740 STRIP_NOPS (tree110);
9741 STRIP_NOPS (tree111);
9742 if (TREE_CODE (tree110) == NEGATE_EXPR
9743 && TREE_CODE (tree111) == INTEGER_CST
9744 && compare_tree_int (tree111,
9745 element_precision (rtype) - 1) == 0
9746 && operand_equal_p (tree01, TREE_OPERAND (tree110, 0), 0))
9748 tem = build2_loc (loc, (code0 == LSHIFT_EXPR
9749 ? LROTATE_EXPR : RROTATE_EXPR),
9750 rtype, TREE_OPERAND (arg0, 0),
9751 orig_tree01);
9752 return fold_convert_loc (loc, type, tem);
9758 associate:
9759 /* In most languages, can't associate operations on floats through
9760 parentheses. Rather than remember where the parentheses were, we
9761 don't associate floats at all, unless the user has specified
9762 -fassociative-math.
9763 And, we need to make sure type is not saturating. */
9765 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
9766 && !TYPE_SATURATING (type))
9768 tree var0, minus_var0, con0, minus_con0, lit0, minus_lit0;
9769 tree var1, minus_var1, con1, minus_con1, lit1, minus_lit1;
9770 tree atype = type;
9771 bool ok = true;
9773 /* Split both trees into variables, constants, and literals. Then
9774 associate each group together, the constants with literals,
9775 then the result with variables. This increases the chances of
9776 literals being recombined later and of generating relocatable
9777 expressions for the sum of a constant and literal. */
9778 var0 = split_tree (arg0, type, code,
9779 &minus_var0, &con0, &minus_con0,
9780 &lit0, &minus_lit0, 0);
9781 var1 = split_tree (arg1, type, code,
9782 &minus_var1, &con1, &minus_con1,
9783 &lit1, &minus_lit1, code == MINUS_EXPR);
9785 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9786 if (code == MINUS_EXPR)
9787 code = PLUS_EXPR;
9789 /* With undefined overflow prefer doing association in a type
9790 which wraps on overflow, if that is one of the operand types. */
9791 if ((POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
9792 && !TYPE_OVERFLOW_WRAPS (type))
9794 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9795 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
9796 atype = TREE_TYPE (arg0);
9797 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9798 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
9799 atype = TREE_TYPE (arg1);
9800 gcc_assert (TYPE_PRECISION (atype) == TYPE_PRECISION (type));
9803 /* With undefined overflow we can only associate constants with one
9804 variable, and constants whose association doesn't overflow. */
9805 if ((POINTER_TYPE_P (atype) || INTEGRAL_TYPE_P (atype))
9806 && !TYPE_OVERFLOW_WRAPS (atype))
9808 if ((var0 && var1) || (minus_var0 && minus_var1))
9810 /* ??? If split_tree would handle NEGATE_EXPR we could
9811 simply reject these cases and the allowed cases would
9812 be the var0/minus_var1 ones. */
9813 tree tmp0 = var0 ? var0 : minus_var0;
9814 tree tmp1 = var1 ? var1 : minus_var1;
9815 bool one_neg = false;
9817 if (TREE_CODE (tmp0) == NEGATE_EXPR)
9819 tmp0 = TREE_OPERAND (tmp0, 0);
9820 one_neg = !one_neg;
9822 if (CONVERT_EXPR_P (tmp0)
9823 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9824 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9825 <= TYPE_PRECISION (atype)))
9826 tmp0 = TREE_OPERAND (tmp0, 0);
9827 if (TREE_CODE (tmp1) == NEGATE_EXPR)
9829 tmp1 = TREE_OPERAND (tmp1, 0);
9830 one_neg = !one_neg;
9832 if (CONVERT_EXPR_P (tmp1)
9833 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9834 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9835 <= TYPE_PRECISION (atype)))
9836 tmp1 = TREE_OPERAND (tmp1, 0);
9837 /* The only case we can still associate with two variables
9838 is if they cancel out. */
9839 if (!one_neg
9840 || !operand_equal_p (tmp0, tmp1, 0))
9841 ok = false;
9843 else if ((var0 && minus_var1
9844 && ! operand_equal_p (var0, minus_var1, 0))
9845 || (minus_var0 && var1
9846 && ! operand_equal_p (minus_var0, var1, 0)))
9847 ok = false;
9850 /* Only do something if we found more than two objects. Otherwise,
9851 nothing has changed and we risk infinite recursion. */
9852 if (ok
9853 && ((var0 != 0) + (var1 != 0)
9854 + (minus_var0 != 0) + (minus_var1 != 0)
9855 + (con0 != 0) + (con1 != 0)
9856 + (minus_con0 != 0) + (minus_con1 != 0)
9857 + (lit0 != 0) + (lit1 != 0)
9858 + (minus_lit0 != 0) + (minus_lit1 != 0)) > 2)
9860 var0 = associate_trees (loc, var0, var1, code, atype);
9861 minus_var0 = associate_trees (loc, minus_var0, minus_var1,
9862 code, atype);
9863 con0 = associate_trees (loc, con0, con1, code, atype);
9864 minus_con0 = associate_trees (loc, minus_con0, minus_con1,
9865 code, atype);
9866 lit0 = associate_trees (loc, lit0, lit1, code, atype);
9867 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1,
9868 code, atype);
9870 if (minus_var0 && var0)
9872 var0 = associate_trees (loc, var0, minus_var0,
9873 MINUS_EXPR, atype);
9874 minus_var0 = 0;
9876 if (minus_con0 && con0)
9878 con0 = associate_trees (loc, con0, minus_con0,
9879 MINUS_EXPR, atype);
9880 minus_con0 = 0;
9883 /* Preserve the MINUS_EXPR if the negative part of the literal is
9884 greater than the positive part. Otherwise, the multiplicative
9885 folding code (i.e extract_muldiv) may be fooled in case
9886 unsigned constants are subtracted, like in the following
9887 example: ((X*2 + 4) - 8U)/2. */
9888 if (minus_lit0 && lit0)
9890 if (TREE_CODE (lit0) == INTEGER_CST
9891 && TREE_CODE (minus_lit0) == INTEGER_CST
9892 && tree_int_cst_lt (lit0, minus_lit0)
9893 /* But avoid ending up with only negated parts. */
9894 && (var0 || con0))
9896 minus_lit0 = associate_trees (loc, minus_lit0, lit0,
9897 MINUS_EXPR, atype);
9898 lit0 = 0;
9900 else
9902 lit0 = associate_trees (loc, lit0, minus_lit0,
9903 MINUS_EXPR, atype);
9904 minus_lit0 = 0;
9908 /* Don't introduce overflows through reassociation. */
9909 if ((lit0 && TREE_OVERFLOW_P (lit0))
9910 || (minus_lit0 && TREE_OVERFLOW_P (minus_lit0)))
9911 return NULL_TREE;
9913 /* Eliminate lit0 and minus_lit0 to con0 and minus_con0. */
9914 con0 = associate_trees (loc, con0, lit0, code, atype);
9915 lit0 = 0;
9916 minus_con0 = associate_trees (loc, minus_con0, minus_lit0,
9917 code, atype);
9918 minus_lit0 = 0;
9920 /* Eliminate minus_con0. */
9921 if (minus_con0)
9923 if (con0)
9924 con0 = associate_trees (loc, con0, minus_con0,
9925 MINUS_EXPR, atype);
9926 else if (var0)
9927 var0 = associate_trees (loc, var0, minus_con0,
9928 MINUS_EXPR, atype);
9929 else
9930 gcc_unreachable ();
9931 minus_con0 = 0;
9934 /* Eliminate minus_var0. */
9935 if (minus_var0)
9937 if (con0)
9938 con0 = associate_trees (loc, con0, minus_var0,
9939 MINUS_EXPR, atype);
9940 else
9941 gcc_unreachable ();
9942 minus_var0 = 0;
9945 return
9946 fold_convert_loc (loc, type, associate_trees (loc, var0, con0,
9947 code, atype));
9951 return NULL_TREE;
9953 case POINTER_DIFF_EXPR:
9954 case MINUS_EXPR:
9955 /* Fold &a[i] - &a[j] to i-j. */
9956 if (TREE_CODE (arg0) == ADDR_EXPR
9957 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
9958 && TREE_CODE (arg1) == ADDR_EXPR
9959 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
9961 tree tem = fold_addr_of_array_ref_difference (loc, type,
9962 TREE_OPERAND (arg0, 0),
9963 TREE_OPERAND (arg1, 0),
9964 code
9965 == POINTER_DIFF_EXPR);
9966 if (tem)
9967 return tem;
9970 /* Further transformations are not for pointers. */
9971 if (code == POINTER_DIFF_EXPR)
9972 return NULL_TREE;
9974 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
9975 if (TREE_CODE (arg0) == NEGATE_EXPR
9976 && negate_expr_p (op1)
9977 /* If arg0 is e.g. unsigned int and type is int, then this could
9978 introduce UB, because if A is INT_MIN at runtime, the original
9979 expression can be well defined while the latter is not.
9980 See PR83269. */
9981 && !(ANY_INTEGRAL_TYPE_P (type)
9982 && TYPE_OVERFLOW_UNDEFINED (type)
9983 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9984 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))))
9985 return fold_build2_loc (loc, MINUS_EXPR, type, negate_expr (op1),
9986 fold_convert_loc (loc, type,
9987 TREE_OPERAND (arg0, 0)));
9989 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
9990 __complex__ ( x, -y ). This is not the same for SNaNs or if
9991 signed zeros are involved. */
9992 if (!HONOR_SNANS (element_mode (arg0))
9993 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9994 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9996 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9997 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9998 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9999 bool arg0rz = false, arg0iz = false;
10000 if ((arg0r && (arg0rz = real_zerop (arg0r)))
10001 || (arg0i && (arg0iz = real_zerop (arg0i))))
10003 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
10004 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
10005 if (arg0rz && arg1i && real_zerop (arg1i))
10007 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype,
10008 arg1r ? arg1r
10009 : build1 (REALPART_EXPR, rtype, arg1));
10010 tree ip = arg0i ? arg0i
10011 : build1 (IMAGPART_EXPR, rtype, arg0);
10012 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10014 else if (arg0iz && arg1r && real_zerop (arg1r))
10016 tree rp = arg0r ? arg0r
10017 : build1 (REALPART_EXPR, rtype, arg0);
10018 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype,
10019 arg1i ? arg1i
10020 : build1 (IMAGPART_EXPR, rtype, arg1));
10021 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
10026 /* A - B -> A + (-B) if B is easily negatable. */
10027 if (negate_expr_p (op1)
10028 && ! TYPE_OVERFLOW_SANITIZED (type)
10029 && ((FLOAT_TYPE_P (type)
10030 /* Avoid this transformation if B is a positive REAL_CST. */
10031 && (TREE_CODE (op1) != REAL_CST
10032 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1))))
10033 || INTEGRAL_TYPE_P (type)))
10034 return fold_build2_loc (loc, PLUS_EXPR, type,
10035 fold_convert_loc (loc, type, arg0),
10036 negate_expr (op1));
10038 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
10039 one. Make sure the type is not saturating and has the signedness of
10040 the stripped operands, as fold_plusminus_mult_expr will re-associate.
10041 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
10042 if ((TREE_CODE (arg0) == MULT_EXPR
10043 || TREE_CODE (arg1) == MULT_EXPR)
10044 && !TYPE_SATURATING (type)
10045 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
10046 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
10047 && (!FLOAT_TYPE_P (type) || flag_associative_math))
10049 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
10050 if (tem)
10051 return tem;
10054 goto associate;
10056 case MULT_EXPR:
10057 if (! FLOAT_TYPE_P (type))
10059 /* Transform x * -C into -x * C if x is easily negatable. */
10060 if (TREE_CODE (op1) == INTEGER_CST
10061 && tree_int_cst_sgn (op1) == -1
10062 && negate_expr_p (op0)
10063 && negate_expr_p (op1)
10064 && (tem = negate_expr (op1)) != op1
10065 && ! TREE_OVERFLOW (tem))
10066 return fold_build2_loc (loc, MULT_EXPR, type,
10067 fold_convert_loc (loc, type,
10068 negate_expr (op0)), tem);
10070 strict_overflow_p = false;
10071 if (TREE_CODE (arg1) == INTEGER_CST
10072 && (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10073 &strict_overflow_p)) != 0)
10075 if (strict_overflow_p)
10076 fold_overflow_warning (("assuming signed overflow does not "
10077 "occur when simplifying "
10078 "multiplication"),
10079 WARN_STRICT_OVERFLOW_MISC);
10080 return fold_convert_loc (loc, type, tem);
10083 /* Optimize z * conj(z) for integer complex numbers. */
10084 if (TREE_CODE (arg0) == CONJ_EXPR
10085 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10086 return fold_mult_zconjz (loc, type, arg1);
10087 if (TREE_CODE (arg1) == CONJ_EXPR
10088 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10089 return fold_mult_zconjz (loc, type, arg0);
10091 else
10093 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
10094 This is not the same for NaNs or if signed zeros are
10095 involved. */
10096 if (!HONOR_NANS (arg0)
10097 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
10098 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
10099 && TREE_CODE (arg1) == COMPLEX_CST
10100 && real_zerop (TREE_REALPART (arg1)))
10102 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10103 if (real_onep (TREE_IMAGPART (arg1)))
10104 return
10105 fold_build2_loc (loc, COMPLEX_EXPR, type,
10106 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR,
10107 rtype, arg0)),
10108 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0));
10109 else if (real_minus_onep (TREE_IMAGPART (arg1)))
10110 return
10111 fold_build2_loc (loc, COMPLEX_EXPR, type,
10112 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0),
10113 negate_expr (fold_build1_loc (loc, REALPART_EXPR,
10114 rtype, arg0)));
10117 /* Optimize z * conj(z) for floating point complex numbers.
10118 Guarded by flag_unsafe_math_optimizations as non-finite
10119 imaginary components don't produce scalar results. */
10120 if (flag_unsafe_math_optimizations
10121 && TREE_CODE (arg0) == CONJ_EXPR
10122 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10123 return fold_mult_zconjz (loc, type, arg1);
10124 if (flag_unsafe_math_optimizations
10125 && TREE_CODE (arg1) == CONJ_EXPR
10126 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10127 return fold_mult_zconjz (loc, type, arg0);
10129 goto associate;
10131 case BIT_IOR_EXPR:
10132 /* Canonicalize (X & C1) | C2. */
10133 if (TREE_CODE (arg0) == BIT_AND_EXPR
10134 && TREE_CODE (arg1) == INTEGER_CST
10135 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10137 int width = TYPE_PRECISION (type), w;
10138 wide_int c1 = wi::to_wide (TREE_OPERAND (arg0, 1));
10139 wide_int c2 = wi::to_wide (arg1);
10141 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
10142 if ((c1 & c2) == c1)
10143 return omit_one_operand_loc (loc, type, arg1,
10144 TREE_OPERAND (arg0, 0));
10146 wide_int msk = wi::mask (width, false,
10147 TYPE_PRECISION (TREE_TYPE (arg1)));
10149 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
10150 if (wi::bit_and_not (msk, c1 | c2) == 0)
10152 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10153 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1);
10156 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
10157 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
10158 mode which allows further optimizations. */
10159 c1 &= msk;
10160 c2 &= msk;
10161 wide_int c3 = wi::bit_and_not (c1, c2);
10162 for (w = BITS_PER_UNIT; w <= width; w <<= 1)
10164 wide_int mask = wi::mask (w, false,
10165 TYPE_PRECISION (type));
10166 if (((c1 | c2) & mask) == mask
10167 && wi::bit_and_not (c1, mask) == 0)
10169 c3 = mask;
10170 break;
10174 if (c3 != c1)
10176 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10177 tem = fold_build2_loc (loc, BIT_AND_EXPR, type, tem,
10178 wide_int_to_tree (type, c3));
10179 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1);
10183 /* See if this can be simplified into a rotate first. If that
10184 is unsuccessful continue in the association code. */
10185 goto bit_rotate;
10187 case BIT_XOR_EXPR:
10188 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
10189 if (TREE_CODE (arg0) == BIT_AND_EXPR
10190 && INTEGRAL_TYPE_P (type)
10191 && integer_onep (TREE_OPERAND (arg0, 1))
10192 && integer_onep (arg1))
10193 return fold_build2_loc (loc, EQ_EXPR, type, arg0,
10194 build_zero_cst (TREE_TYPE (arg0)));
10196 /* See if this can be simplified into a rotate first. If that
10197 is unsuccessful continue in the association code. */
10198 goto bit_rotate;
10200 case BIT_AND_EXPR:
10201 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
10202 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10203 && INTEGRAL_TYPE_P (type)
10204 && integer_onep (TREE_OPERAND (arg0, 1))
10205 && integer_onep (arg1))
10207 tree tem2;
10208 tem = TREE_OPERAND (arg0, 0);
10209 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
10210 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
10211 tem, tem2);
10212 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
10213 build_zero_cst (TREE_TYPE (tem)));
10215 /* Fold ~X & 1 as (X & 1) == 0. */
10216 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10217 && INTEGRAL_TYPE_P (type)
10218 && integer_onep (arg1))
10220 tree tem2;
10221 tem = TREE_OPERAND (arg0, 0);
10222 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
10223 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
10224 tem, tem2);
10225 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
10226 build_zero_cst (TREE_TYPE (tem)));
10228 /* Fold !X & 1 as X == 0. */
10229 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10230 && integer_onep (arg1))
10232 tem = TREE_OPERAND (arg0, 0);
10233 return fold_build2_loc (loc, EQ_EXPR, type, tem,
10234 build_zero_cst (TREE_TYPE (tem)));
10237 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
10238 multiple of 1 << CST. */
10239 if (TREE_CODE (arg1) == INTEGER_CST)
10241 wi::tree_to_wide_ref cst1 = wi::to_wide (arg1);
10242 wide_int ncst1 = -cst1;
10243 if ((cst1 & ncst1) == ncst1
10244 && multiple_of_p (type, arg0,
10245 wide_int_to_tree (TREE_TYPE (arg1), ncst1)))
10246 return fold_convert_loc (loc, type, arg0);
10249 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
10250 bits from CST2. */
10251 if (TREE_CODE (arg1) == INTEGER_CST
10252 && TREE_CODE (arg0) == MULT_EXPR
10253 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10255 wi::tree_to_wide_ref warg1 = wi::to_wide (arg1);
10256 wide_int masked
10257 = mask_with_tz (type, warg1, wi::to_wide (TREE_OPERAND (arg0, 1)));
10259 if (masked == 0)
10260 return omit_two_operands_loc (loc, type, build_zero_cst (type),
10261 arg0, arg1);
10262 else if (masked != warg1)
10264 /* Avoid the transform if arg1 is a mask of some
10265 mode which allows further optimizations. */
10266 int pop = wi::popcount (warg1);
10267 if (!(pop >= BITS_PER_UNIT
10268 && pow2p_hwi (pop)
10269 && wi::mask (pop, false, warg1.get_precision ()) == warg1))
10270 return fold_build2_loc (loc, code, type, op0,
10271 wide_int_to_tree (type, masked));
10275 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10276 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
10277 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
10279 prec = element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)));
10281 wide_int mask = wide_int::from (wi::to_wide (arg1), prec, UNSIGNED);
10282 if (mask == -1)
10283 return
10284 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10287 goto associate;
10289 case RDIV_EXPR:
10290 /* Don't touch a floating-point divide by zero unless the mode
10291 of the constant can represent infinity. */
10292 if (TREE_CODE (arg1) == REAL_CST
10293 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
10294 && real_zerop (arg1))
10295 return NULL_TREE;
10297 /* (-A) / (-B) -> A / B */
10298 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10299 return fold_build2_loc (loc, RDIV_EXPR, type,
10300 TREE_OPERAND (arg0, 0),
10301 negate_expr (arg1));
10302 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10303 return fold_build2_loc (loc, RDIV_EXPR, type,
10304 negate_expr (arg0),
10305 TREE_OPERAND (arg1, 0));
10306 return NULL_TREE;
10308 case TRUNC_DIV_EXPR:
10309 /* Fall through */
10311 case FLOOR_DIV_EXPR:
10312 /* Simplify A / (B << N) where A and B are positive and B is
10313 a power of 2, to A >> (N + log2(B)). */
10314 strict_overflow_p = false;
10315 if (TREE_CODE (arg1) == LSHIFT_EXPR
10316 && (TYPE_UNSIGNED (type)
10317 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
10319 tree sval = TREE_OPERAND (arg1, 0);
10320 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
10322 tree sh_cnt = TREE_OPERAND (arg1, 1);
10323 tree pow2 = build_int_cst (TREE_TYPE (sh_cnt),
10324 wi::exact_log2 (wi::to_wide (sval)));
10326 if (strict_overflow_p)
10327 fold_overflow_warning (("assuming signed overflow does not "
10328 "occur when simplifying A / (B << N)"),
10329 WARN_STRICT_OVERFLOW_MISC);
10331 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt),
10332 sh_cnt, pow2);
10333 return fold_build2_loc (loc, RSHIFT_EXPR, type,
10334 fold_convert_loc (loc, type, arg0), sh_cnt);
10338 /* Fall through */
10340 case ROUND_DIV_EXPR:
10341 case CEIL_DIV_EXPR:
10342 case EXACT_DIV_EXPR:
10343 if (integer_zerop (arg1))
10344 return NULL_TREE;
10346 /* Convert -A / -B to A / B when the type is signed and overflow is
10347 undefined. */
10348 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10349 && TREE_CODE (op0) == NEGATE_EXPR
10350 && negate_expr_p (op1))
10352 if (INTEGRAL_TYPE_P (type))
10353 fold_overflow_warning (("assuming signed overflow does not occur "
10354 "when distributing negation across "
10355 "division"),
10356 WARN_STRICT_OVERFLOW_MISC);
10357 return fold_build2_loc (loc, code, type,
10358 fold_convert_loc (loc, type,
10359 TREE_OPERAND (arg0, 0)),
10360 negate_expr (op1));
10362 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10363 && TREE_CODE (arg1) == NEGATE_EXPR
10364 && negate_expr_p (op0))
10366 if (INTEGRAL_TYPE_P (type))
10367 fold_overflow_warning (("assuming signed overflow does not occur "
10368 "when distributing negation across "
10369 "division"),
10370 WARN_STRICT_OVERFLOW_MISC);
10371 return fold_build2_loc (loc, code, type,
10372 negate_expr (op0),
10373 fold_convert_loc (loc, type,
10374 TREE_OPERAND (arg1, 0)));
10377 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10378 operation, EXACT_DIV_EXPR.
10380 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10381 At one time others generated faster code, it's not clear if they do
10382 after the last round to changes to the DIV code in expmed.c. */
10383 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
10384 && multiple_of_p (type, arg0, arg1))
10385 return fold_build2_loc (loc, EXACT_DIV_EXPR, type,
10386 fold_convert (type, arg0),
10387 fold_convert (type, arg1));
10389 strict_overflow_p = false;
10390 if (TREE_CODE (arg1) == INTEGER_CST
10391 && (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10392 &strict_overflow_p)) != 0)
10394 if (strict_overflow_p)
10395 fold_overflow_warning (("assuming signed overflow does not occur "
10396 "when simplifying division"),
10397 WARN_STRICT_OVERFLOW_MISC);
10398 return fold_convert_loc (loc, type, tem);
10401 return NULL_TREE;
10403 case CEIL_MOD_EXPR:
10404 case FLOOR_MOD_EXPR:
10405 case ROUND_MOD_EXPR:
10406 case TRUNC_MOD_EXPR:
10407 strict_overflow_p = false;
10408 if (TREE_CODE (arg1) == INTEGER_CST
10409 && (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10410 &strict_overflow_p)) != 0)
10412 if (strict_overflow_p)
10413 fold_overflow_warning (("assuming signed overflow does not occur "
10414 "when simplifying modulus"),
10415 WARN_STRICT_OVERFLOW_MISC);
10416 return fold_convert_loc (loc, type, tem);
10419 return NULL_TREE;
10421 case LROTATE_EXPR:
10422 case RROTATE_EXPR:
10423 case RSHIFT_EXPR:
10424 case LSHIFT_EXPR:
10425 /* Since negative shift count is not well-defined,
10426 don't try to compute it in the compiler. */
10427 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
10428 return NULL_TREE;
10430 prec = element_precision (type);
10432 /* If we have a rotate of a bit operation with the rotate count and
10433 the second operand of the bit operation both constant,
10434 permute the two operations. */
10435 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10436 && (TREE_CODE (arg0) == BIT_AND_EXPR
10437 || TREE_CODE (arg0) == BIT_IOR_EXPR
10438 || TREE_CODE (arg0) == BIT_XOR_EXPR)
10439 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10441 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10442 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10443 return fold_build2_loc (loc, TREE_CODE (arg0), type,
10444 fold_build2_loc (loc, code, type,
10445 arg00, arg1),
10446 fold_build2_loc (loc, code, type,
10447 arg01, arg1));
10450 /* Two consecutive rotates adding up to the some integer
10451 multiple of the precision of the type can be ignored. */
10452 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10453 && TREE_CODE (arg0) == RROTATE_EXPR
10454 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10455 && wi::umod_trunc (wi::to_wide (arg1)
10456 + wi::to_wide (TREE_OPERAND (arg0, 1)),
10457 prec) == 0)
10458 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10460 return NULL_TREE;
10462 case MIN_EXPR:
10463 case MAX_EXPR:
10464 goto associate;
10466 case TRUTH_ANDIF_EXPR:
10467 /* Note that the operands of this must be ints
10468 and their values must be 0 or 1.
10469 ("true" is a fixed value perhaps depending on the language.) */
10470 /* If first arg is constant zero, return it. */
10471 if (integer_zerop (arg0))
10472 return fold_convert_loc (loc, type, arg0);
10473 /* FALLTHRU */
10474 case TRUTH_AND_EXPR:
10475 /* If either arg is constant true, drop it. */
10476 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10477 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10478 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
10479 /* Preserve sequence points. */
10480 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10481 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10482 /* If second arg is constant zero, result is zero, but first arg
10483 must be evaluated. */
10484 if (integer_zerop (arg1))
10485 return omit_one_operand_loc (loc, type, arg1, arg0);
10486 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10487 case will be handled here. */
10488 if (integer_zerop (arg0))
10489 return omit_one_operand_loc (loc, type, arg0, arg1);
10491 /* !X && X is always false. */
10492 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10493 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10494 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
10495 /* X && !X is always false. */
10496 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10497 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10498 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10500 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
10501 means A >= Y && A != MAX, but in this case we know that
10502 A < X <= MAX. */
10504 if (!TREE_SIDE_EFFECTS (arg0)
10505 && !TREE_SIDE_EFFECTS (arg1))
10507 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1);
10508 if (tem && !operand_equal_p (tem, arg0, 0))
10509 return fold_build2_loc (loc, code, type, tem, arg1);
10511 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0);
10512 if (tem && !operand_equal_p (tem, arg1, 0))
10513 return fold_build2_loc (loc, code, type, arg0, tem);
10516 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10517 != NULL_TREE)
10518 return tem;
10520 return NULL_TREE;
10522 case TRUTH_ORIF_EXPR:
10523 /* Note that the operands of this must be ints
10524 and their values must be 0 or true.
10525 ("true" is a fixed value perhaps depending on the language.) */
10526 /* If first arg is constant true, return it. */
10527 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10528 return fold_convert_loc (loc, type, arg0);
10529 /* FALLTHRU */
10530 case TRUTH_OR_EXPR:
10531 /* If either arg is constant zero, drop it. */
10532 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
10533 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10534 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
10535 /* Preserve sequence points. */
10536 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10537 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10538 /* If second arg is constant true, result is true, but we must
10539 evaluate first arg. */
10540 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
10541 return omit_one_operand_loc (loc, type, arg1, arg0);
10542 /* Likewise for first arg, but note this only occurs here for
10543 TRUTH_OR_EXPR. */
10544 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10545 return omit_one_operand_loc (loc, type, arg0, arg1);
10547 /* !X || X is always true. */
10548 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10549 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10550 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10551 /* X || !X is always true. */
10552 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10553 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10554 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10556 /* (X && !Y) || (!X && Y) is X ^ Y */
10557 if (TREE_CODE (arg0) == TRUTH_AND_EXPR
10558 && TREE_CODE (arg1) == TRUTH_AND_EXPR)
10560 tree a0, a1, l0, l1, n0, n1;
10562 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10563 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10565 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10566 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10568 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0);
10569 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1);
10571 if ((operand_equal_p (n0, a0, 0)
10572 && operand_equal_p (n1, a1, 0))
10573 || (operand_equal_p (n0, a1, 0)
10574 && operand_equal_p (n1, a0, 0)))
10575 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1);
10578 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10579 != NULL_TREE)
10580 return tem;
10582 return NULL_TREE;
10584 case TRUTH_XOR_EXPR:
10585 /* If the second arg is constant zero, drop it. */
10586 if (integer_zerop (arg1))
10587 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10588 /* If the second arg is constant true, this is a logical inversion. */
10589 if (integer_onep (arg1))
10591 tem = invert_truthvalue_loc (loc, arg0);
10592 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
10594 /* Identical arguments cancel to zero. */
10595 if (operand_equal_p (arg0, arg1, 0))
10596 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10598 /* !X ^ X is always true. */
10599 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10600 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10601 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10603 /* X ^ !X is always true. */
10604 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10605 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10606 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10608 return NULL_TREE;
10610 case EQ_EXPR:
10611 case NE_EXPR:
10612 STRIP_NOPS (arg0);
10613 STRIP_NOPS (arg1);
10615 tem = fold_comparison (loc, code, type, op0, op1);
10616 if (tem != NULL_TREE)
10617 return tem;
10619 /* bool_var != 1 becomes !bool_var. */
10620 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
10621 && code == NE_EXPR)
10622 return fold_convert_loc (loc, type,
10623 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10624 TREE_TYPE (arg0), arg0));
10626 /* bool_var == 0 becomes !bool_var. */
10627 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
10628 && code == EQ_EXPR)
10629 return fold_convert_loc (loc, type,
10630 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10631 TREE_TYPE (arg0), arg0));
10633 /* !exp != 0 becomes !exp */
10634 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1)
10635 && code == NE_EXPR)
10636 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10638 /* If this is an EQ or NE comparison with zero and ARG0 is
10639 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
10640 two operations, but the latter can be done in one less insn
10641 on machines that have only two-operand insns or on which a
10642 constant cannot be the first operand. */
10643 if (TREE_CODE (arg0) == BIT_AND_EXPR
10644 && integer_zerop (arg1))
10646 tree arg00 = TREE_OPERAND (arg0, 0);
10647 tree arg01 = TREE_OPERAND (arg0, 1);
10648 if (TREE_CODE (arg00) == LSHIFT_EXPR
10649 && integer_onep (TREE_OPERAND (arg00, 0)))
10651 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00),
10652 arg01, TREE_OPERAND (arg00, 1));
10653 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10654 build_int_cst (TREE_TYPE (arg0), 1));
10655 return fold_build2_loc (loc, code, type,
10656 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10657 arg1);
10659 else if (TREE_CODE (arg01) == LSHIFT_EXPR
10660 && integer_onep (TREE_OPERAND (arg01, 0)))
10662 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01),
10663 arg00, TREE_OPERAND (arg01, 1));
10664 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10665 build_int_cst (TREE_TYPE (arg0), 1));
10666 return fold_build2_loc (loc, code, type,
10667 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10668 arg1);
10672 /* If this is an NE or EQ comparison of zero against the result of a
10673 signed MOD operation whose second operand is a power of 2, make
10674 the MOD operation unsigned since it is simpler and equivalent. */
10675 if (integer_zerop (arg1)
10676 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
10677 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
10678 || TREE_CODE (arg0) == CEIL_MOD_EXPR
10679 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
10680 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
10681 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10683 tree newtype = unsigned_type_for (TREE_TYPE (arg0));
10684 tree newmod = fold_build2_loc (loc, TREE_CODE (arg0), newtype,
10685 fold_convert_loc (loc, newtype,
10686 TREE_OPERAND (arg0, 0)),
10687 fold_convert_loc (loc, newtype,
10688 TREE_OPERAND (arg0, 1)));
10690 return fold_build2_loc (loc, code, type, newmod,
10691 fold_convert_loc (loc, newtype, arg1));
10694 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
10695 C1 is a valid shift constant, and C2 is a power of two, i.e.
10696 a single bit. */
10697 if (TREE_CODE (arg0) == BIT_AND_EXPR
10698 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
10699 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
10700 == INTEGER_CST
10701 && integer_pow2p (TREE_OPERAND (arg0, 1))
10702 && integer_zerop (arg1))
10704 tree itype = TREE_TYPE (arg0);
10705 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
10706 prec = TYPE_PRECISION (itype);
10708 /* Check for a valid shift count. */
10709 if (wi::ltu_p (wi::to_wide (arg001), prec))
10711 tree arg01 = TREE_OPERAND (arg0, 1);
10712 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10713 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
10714 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
10715 can be rewritten as (X & (C2 << C1)) != 0. */
10716 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
10718 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, arg01, arg001);
10719 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, arg000, tem);
10720 return fold_build2_loc (loc, code, type, tem,
10721 fold_convert_loc (loc, itype, arg1));
10723 /* Otherwise, for signed (arithmetic) shifts,
10724 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
10725 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
10726 else if (!TYPE_UNSIGNED (itype))
10727 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
10728 arg000, build_int_cst (itype, 0));
10729 /* Otherwise, of unsigned (logical) shifts,
10730 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
10731 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
10732 else
10733 return omit_one_operand_loc (loc, type,
10734 code == EQ_EXPR ? integer_one_node
10735 : integer_zero_node,
10736 arg000);
10740 /* If this is a comparison of a field, we may be able to simplify it. */
10741 if ((TREE_CODE (arg0) == COMPONENT_REF
10742 || TREE_CODE (arg0) == BIT_FIELD_REF)
10743 /* Handle the constant case even without -O
10744 to make sure the warnings are given. */
10745 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
10747 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1);
10748 if (t1)
10749 return t1;
10752 /* Optimize comparisons of strlen vs zero to a compare of the
10753 first character of the string vs zero. To wit,
10754 strlen(ptr) == 0 => *ptr == 0
10755 strlen(ptr) != 0 => *ptr != 0
10756 Other cases should reduce to one of these two (or a constant)
10757 due to the return value of strlen being unsigned. */
10758 if (TREE_CODE (arg0) == CALL_EXPR
10759 && integer_zerop (arg1))
10761 tree fndecl = get_callee_fndecl (arg0);
10763 if (fndecl
10764 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
10765 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
10766 && call_expr_nargs (arg0) == 1
10767 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) == POINTER_TYPE)
10769 tree iref = build_fold_indirect_ref_loc (loc,
10770 CALL_EXPR_ARG (arg0, 0));
10771 return fold_build2_loc (loc, code, type, iref,
10772 build_int_cst (TREE_TYPE (iref), 0));
10776 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
10777 of X. Similarly fold (X >> C) == 0 into X >= 0. */
10778 if (TREE_CODE (arg0) == RSHIFT_EXPR
10779 && integer_zerop (arg1)
10780 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10782 tree arg00 = TREE_OPERAND (arg0, 0);
10783 tree arg01 = TREE_OPERAND (arg0, 1);
10784 tree itype = TREE_TYPE (arg00);
10785 if (wi::to_wide (arg01) == element_precision (itype) - 1)
10787 if (TYPE_UNSIGNED (itype))
10789 itype = signed_type_for (itype);
10790 arg00 = fold_convert_loc (loc, itype, arg00);
10792 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
10793 type, arg00, build_zero_cst (itype));
10797 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
10798 (X & C) == 0 when C is a single bit. */
10799 if (TREE_CODE (arg0) == BIT_AND_EXPR
10800 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
10801 && integer_zerop (arg1)
10802 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10804 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
10805 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
10806 TREE_OPERAND (arg0, 1));
10807 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
10808 type, tem,
10809 fold_convert_loc (loc, TREE_TYPE (arg0),
10810 arg1));
10813 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
10814 constant C is a power of two, i.e. a single bit. */
10815 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10816 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
10817 && integer_zerop (arg1)
10818 && integer_pow2p (TREE_OPERAND (arg0, 1))
10819 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10820 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10822 tree arg00 = TREE_OPERAND (arg0, 0);
10823 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10824 arg00, build_int_cst (TREE_TYPE (arg00), 0));
10827 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
10828 when is C is a power of two, i.e. a single bit. */
10829 if (TREE_CODE (arg0) == BIT_AND_EXPR
10830 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
10831 && integer_zerop (arg1)
10832 && integer_pow2p (TREE_OPERAND (arg0, 1))
10833 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10834 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10836 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10837 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000),
10838 arg000, TREE_OPERAND (arg0, 1));
10839 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10840 tem, build_int_cst (TREE_TYPE (tem), 0));
10843 if (integer_zerop (arg1)
10844 && tree_expr_nonzero_p (arg0))
10846 tree res = constant_boolean_node (code==NE_EXPR, type);
10847 return omit_one_operand_loc (loc, type, res, arg0);
10850 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
10851 if (TREE_CODE (arg0) == BIT_AND_EXPR
10852 && TREE_CODE (arg1) == BIT_AND_EXPR)
10854 tree arg00 = TREE_OPERAND (arg0, 0);
10855 tree arg01 = TREE_OPERAND (arg0, 1);
10856 tree arg10 = TREE_OPERAND (arg1, 0);
10857 tree arg11 = TREE_OPERAND (arg1, 1);
10858 tree itype = TREE_TYPE (arg0);
10860 if (operand_equal_p (arg01, arg11, 0))
10862 tem = fold_convert_loc (loc, itype, arg10);
10863 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10864 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg01);
10865 return fold_build2_loc (loc, code, type, tem,
10866 build_zero_cst (itype));
10868 if (operand_equal_p (arg01, arg10, 0))
10870 tem = fold_convert_loc (loc, itype, arg11);
10871 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10872 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg01);
10873 return fold_build2_loc (loc, code, type, tem,
10874 build_zero_cst (itype));
10876 if (operand_equal_p (arg00, arg11, 0))
10878 tem = fold_convert_loc (loc, itype, arg10);
10879 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, tem);
10880 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg00);
10881 return fold_build2_loc (loc, code, type, tem,
10882 build_zero_cst (itype));
10884 if (operand_equal_p (arg00, arg10, 0))
10886 tem = fold_convert_loc (loc, itype, arg11);
10887 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, tem);
10888 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg00);
10889 return fold_build2_loc (loc, code, type, tem,
10890 build_zero_cst (itype));
10894 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10895 && TREE_CODE (arg1) == BIT_XOR_EXPR)
10897 tree arg00 = TREE_OPERAND (arg0, 0);
10898 tree arg01 = TREE_OPERAND (arg0, 1);
10899 tree arg10 = TREE_OPERAND (arg1, 0);
10900 tree arg11 = TREE_OPERAND (arg1, 1);
10901 tree itype = TREE_TYPE (arg0);
10903 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
10904 operand_equal_p guarantees no side-effects so we don't need
10905 to use omit_one_operand on Z. */
10906 if (operand_equal_p (arg01, arg11, 0))
10907 return fold_build2_loc (loc, code, type, arg00,
10908 fold_convert_loc (loc, TREE_TYPE (arg00),
10909 arg10));
10910 if (operand_equal_p (arg01, arg10, 0))
10911 return fold_build2_loc (loc, code, type, arg00,
10912 fold_convert_loc (loc, TREE_TYPE (arg00),
10913 arg11));
10914 if (operand_equal_p (arg00, arg11, 0))
10915 return fold_build2_loc (loc, code, type, arg01,
10916 fold_convert_loc (loc, TREE_TYPE (arg01),
10917 arg10));
10918 if (operand_equal_p (arg00, arg10, 0))
10919 return fold_build2_loc (loc, code, type, arg01,
10920 fold_convert_loc (loc, TREE_TYPE (arg01),
10921 arg11));
10923 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
10924 if (TREE_CODE (arg01) == INTEGER_CST
10925 && TREE_CODE (arg11) == INTEGER_CST)
10927 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01,
10928 fold_convert_loc (loc, itype, arg11));
10929 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10930 return fold_build2_loc (loc, code, type, tem,
10931 fold_convert_loc (loc, itype, arg10));
10935 /* Attempt to simplify equality/inequality comparisons of complex
10936 values. Only lower the comparison if the result is known or
10937 can be simplified to a single scalar comparison. */
10938 if ((TREE_CODE (arg0) == COMPLEX_EXPR
10939 || TREE_CODE (arg0) == COMPLEX_CST)
10940 && (TREE_CODE (arg1) == COMPLEX_EXPR
10941 || TREE_CODE (arg1) == COMPLEX_CST))
10943 tree real0, imag0, real1, imag1;
10944 tree rcond, icond;
10946 if (TREE_CODE (arg0) == COMPLEX_EXPR)
10948 real0 = TREE_OPERAND (arg0, 0);
10949 imag0 = TREE_OPERAND (arg0, 1);
10951 else
10953 real0 = TREE_REALPART (arg0);
10954 imag0 = TREE_IMAGPART (arg0);
10957 if (TREE_CODE (arg1) == COMPLEX_EXPR)
10959 real1 = TREE_OPERAND (arg1, 0);
10960 imag1 = TREE_OPERAND (arg1, 1);
10962 else
10964 real1 = TREE_REALPART (arg1);
10965 imag1 = TREE_IMAGPART (arg1);
10968 rcond = fold_binary_loc (loc, code, type, real0, real1);
10969 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
10971 if (integer_zerop (rcond))
10973 if (code == EQ_EXPR)
10974 return omit_two_operands_loc (loc, type, boolean_false_node,
10975 imag0, imag1);
10976 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1);
10978 else
10980 if (code == NE_EXPR)
10981 return omit_two_operands_loc (loc, type, boolean_true_node,
10982 imag0, imag1);
10983 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1);
10987 icond = fold_binary_loc (loc, code, type, imag0, imag1);
10988 if (icond && TREE_CODE (icond) == INTEGER_CST)
10990 if (integer_zerop (icond))
10992 if (code == EQ_EXPR)
10993 return omit_two_operands_loc (loc, type, boolean_false_node,
10994 real0, real1);
10995 return fold_build2_loc (loc, NE_EXPR, type, real0, real1);
10997 else
10999 if (code == NE_EXPR)
11000 return omit_two_operands_loc (loc, type, boolean_true_node,
11001 real0, real1);
11002 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1);
11007 return NULL_TREE;
11009 case LT_EXPR:
11010 case GT_EXPR:
11011 case LE_EXPR:
11012 case GE_EXPR:
11013 tem = fold_comparison (loc, code, type, op0, op1);
11014 if (tem != NULL_TREE)
11015 return tem;
11017 /* Transform comparisons of the form X +- C CMP X. */
11018 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
11019 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11020 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
11021 && !HONOR_SNANS (arg0))
11023 tree arg01 = TREE_OPERAND (arg0, 1);
11024 enum tree_code code0 = TREE_CODE (arg0);
11025 int is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
11027 /* (X - c) > X becomes false. */
11028 if (code == GT_EXPR
11029 && ((code0 == MINUS_EXPR && is_positive >= 0)
11030 || (code0 == PLUS_EXPR && is_positive <= 0)))
11031 return constant_boolean_node (0, type);
11033 /* Likewise (X + c) < X becomes false. */
11034 if (code == LT_EXPR
11035 && ((code0 == PLUS_EXPR && is_positive >= 0)
11036 || (code0 == MINUS_EXPR && is_positive <= 0)))
11037 return constant_boolean_node (0, type);
11039 /* Convert (X - c) <= X to true. */
11040 if (!HONOR_NANS (arg1)
11041 && code == LE_EXPR
11042 && ((code0 == MINUS_EXPR && is_positive >= 0)
11043 || (code0 == PLUS_EXPR && is_positive <= 0)))
11044 return constant_boolean_node (1, type);
11046 /* Convert (X + c) >= X to true. */
11047 if (!HONOR_NANS (arg1)
11048 && code == GE_EXPR
11049 && ((code0 == PLUS_EXPR && is_positive >= 0)
11050 || (code0 == MINUS_EXPR && is_positive <= 0)))
11051 return constant_boolean_node (1, type);
11054 /* If we are comparing an ABS_EXPR with a constant, we can
11055 convert all the cases into explicit comparisons, but they may
11056 well not be faster than doing the ABS and one comparison.
11057 But ABS (X) <= C is a range comparison, which becomes a subtraction
11058 and a comparison, and is probably faster. */
11059 if (code == LE_EXPR
11060 && TREE_CODE (arg1) == INTEGER_CST
11061 && TREE_CODE (arg0) == ABS_EXPR
11062 && ! TREE_SIDE_EFFECTS (arg0)
11063 && (tem = negate_expr (arg1)) != 0
11064 && TREE_CODE (tem) == INTEGER_CST
11065 && !TREE_OVERFLOW (tem))
11066 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
11067 build2 (GE_EXPR, type,
11068 TREE_OPERAND (arg0, 0), tem),
11069 build2 (LE_EXPR, type,
11070 TREE_OPERAND (arg0, 0), arg1));
11072 /* Convert ABS_EXPR<x> >= 0 to true. */
11073 strict_overflow_p = false;
11074 if (code == GE_EXPR
11075 && (integer_zerop (arg1)
11076 || (! HONOR_NANS (arg0)
11077 && real_zerop (arg1)))
11078 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11080 if (strict_overflow_p)
11081 fold_overflow_warning (("assuming signed overflow does not occur "
11082 "when simplifying comparison of "
11083 "absolute value and zero"),
11084 WARN_STRICT_OVERFLOW_CONDITIONAL);
11085 return omit_one_operand_loc (loc, type,
11086 constant_boolean_node (true, type),
11087 arg0);
11090 /* Convert ABS_EXPR<x> < 0 to false. */
11091 strict_overflow_p = false;
11092 if (code == LT_EXPR
11093 && (integer_zerop (arg1) || real_zerop (arg1))
11094 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11096 if (strict_overflow_p)
11097 fold_overflow_warning (("assuming signed overflow does not occur "
11098 "when simplifying comparison of "
11099 "absolute value and zero"),
11100 WARN_STRICT_OVERFLOW_CONDITIONAL);
11101 return omit_one_operand_loc (loc, type,
11102 constant_boolean_node (false, type),
11103 arg0);
11106 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
11107 and similarly for >= into !=. */
11108 if ((code == LT_EXPR || code == GE_EXPR)
11109 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11110 && TREE_CODE (arg1) == LSHIFT_EXPR
11111 && integer_onep (TREE_OPERAND (arg1, 0)))
11112 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11113 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11114 TREE_OPERAND (arg1, 1)),
11115 build_zero_cst (TREE_TYPE (arg0)));
11117 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
11118 otherwise Y might be >= # of bits in X's type and thus e.g.
11119 (unsigned char) (1 << Y) for Y 15 might be 0.
11120 If the cast is widening, then 1 << Y should have unsigned type,
11121 otherwise if Y is number of bits in the signed shift type minus 1,
11122 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
11123 31 might be 0xffffffff80000000. */
11124 if ((code == LT_EXPR || code == GE_EXPR)
11125 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11126 && CONVERT_EXPR_P (arg1)
11127 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
11128 && (element_precision (TREE_TYPE (arg1))
11129 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0))))
11130 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0)))
11131 || (element_precision (TREE_TYPE (arg1))
11132 == element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0)))))
11133 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
11135 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11136 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1));
11137 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11138 fold_convert_loc (loc, TREE_TYPE (arg0), tem),
11139 build_zero_cst (TREE_TYPE (arg0)));
11142 return NULL_TREE;
11144 case UNORDERED_EXPR:
11145 case ORDERED_EXPR:
11146 case UNLT_EXPR:
11147 case UNLE_EXPR:
11148 case UNGT_EXPR:
11149 case UNGE_EXPR:
11150 case UNEQ_EXPR:
11151 case LTGT_EXPR:
11152 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
11154 tree targ0 = strip_float_extensions (arg0);
11155 tree targ1 = strip_float_extensions (arg1);
11156 tree newtype = TREE_TYPE (targ0);
11158 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
11159 newtype = TREE_TYPE (targ1);
11161 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
11162 return fold_build2_loc (loc, code, type,
11163 fold_convert_loc (loc, newtype, targ0),
11164 fold_convert_loc (loc, newtype, targ1));
11167 return NULL_TREE;
11169 case COMPOUND_EXPR:
11170 /* When pedantic, a compound expression can be neither an lvalue
11171 nor an integer constant expression. */
11172 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
11173 return NULL_TREE;
11174 /* Don't let (0, 0) be null pointer constant. */
11175 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
11176 : fold_convert_loc (loc, type, arg1);
11177 return pedantic_non_lvalue_loc (loc, tem);
11179 case ASSERT_EXPR:
11180 /* An ASSERT_EXPR should never be passed to fold_binary. */
11181 gcc_unreachable ();
11183 default:
11184 return NULL_TREE;
11185 } /* switch (code) */
11188 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
11189 ((A & N) + B) & M -> (A + B) & M
11190 Similarly if (N & M) == 0,
11191 ((A | N) + B) & M -> (A + B) & M
11192 and for - instead of + (or unary - instead of +)
11193 and/or ^ instead of |.
11194 If B is constant and (B & M) == 0, fold into A & M.
11196 This function is a helper for match.pd patterns. Return non-NULL
11197 type in which the simplified operation should be performed only
11198 if any optimization is possible.
11200 ARG1 is M above, ARG00 is left operand of +/-, if CODE00 is BIT_*_EXPR,
11201 then ARG00{0,1} are operands of that bitop, otherwise CODE00 is ERROR_MARK.
11202 Similarly for ARG01, CODE01 and ARG01{0,1}, just for the right operand of
11203 +/-. */
11204 tree
11205 fold_bit_and_mask (tree type, tree arg1, enum tree_code code,
11206 tree arg00, enum tree_code code00, tree arg000, tree arg001,
11207 tree arg01, enum tree_code code01, tree arg010, tree arg011,
11208 tree *pmop)
11210 gcc_assert (TREE_CODE (arg1) == INTEGER_CST);
11211 gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR || code == NEGATE_EXPR);
11212 wi::tree_to_wide_ref cst1 = wi::to_wide (arg1);
11213 if (~cst1 == 0
11214 || (cst1 & (cst1 + 1)) != 0
11215 || !INTEGRAL_TYPE_P (type)
11216 || (!TYPE_OVERFLOW_WRAPS (type)
11217 && TREE_CODE (type) != INTEGER_TYPE)
11218 || (wi::max_value (type) & cst1) != cst1)
11219 return NULL_TREE;
11221 enum tree_code codes[2] = { code00, code01 };
11222 tree arg0xx[4] = { arg000, arg001, arg010, arg011 };
11223 int which = 0;
11224 wide_int cst0;
11226 /* Now we know that arg0 is (C + D) or (C - D) or -C and
11227 arg1 (M) is == (1LL << cst) - 1.
11228 Store C into PMOP[0] and D into PMOP[1]. */
11229 pmop[0] = arg00;
11230 pmop[1] = arg01;
11231 which = code != NEGATE_EXPR;
11233 for (; which >= 0; which--)
11234 switch (codes[which])
11236 case BIT_AND_EXPR:
11237 case BIT_IOR_EXPR:
11238 case BIT_XOR_EXPR:
11239 gcc_assert (TREE_CODE (arg0xx[2 * which + 1]) == INTEGER_CST);
11240 cst0 = wi::to_wide (arg0xx[2 * which + 1]) & cst1;
11241 if (codes[which] == BIT_AND_EXPR)
11243 if (cst0 != cst1)
11244 break;
11246 else if (cst0 != 0)
11247 break;
11248 /* If C or D is of the form (A & N) where
11249 (N & M) == M, or of the form (A | N) or
11250 (A ^ N) where (N & M) == 0, replace it with A. */
11251 pmop[which] = arg0xx[2 * which];
11252 break;
11253 case ERROR_MARK:
11254 if (TREE_CODE (pmop[which]) != INTEGER_CST)
11255 break;
11256 /* If C or D is a N where (N & M) == 0, it can be
11257 omitted (replaced with 0). */
11258 if ((code == PLUS_EXPR
11259 || (code == MINUS_EXPR && which == 0))
11260 && (cst1 & wi::to_wide (pmop[which])) == 0)
11261 pmop[which] = build_int_cst (type, 0);
11262 /* Similarly, with C - N where (-N & M) == 0. */
11263 if (code == MINUS_EXPR
11264 && which == 1
11265 && (cst1 & -wi::to_wide (pmop[which])) == 0)
11266 pmop[which] = build_int_cst (type, 0);
11267 break;
11268 default:
11269 gcc_unreachable ();
11272 /* Only build anything new if we optimized one or both arguments above. */
11273 if (pmop[0] == arg00 && pmop[1] == arg01)
11274 return NULL_TREE;
11276 if (TYPE_OVERFLOW_WRAPS (type))
11277 return type;
11278 else
11279 return unsigned_type_for (type);
11282 /* Used by contains_label_[p1]. */
11284 struct contains_label_data
11286 hash_set<tree> *pset;
11287 bool inside_switch_p;
11290 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
11291 a LABEL_EXPR or CASE_LABEL_EXPR not inside of another SWITCH_EXPR; otherwise
11292 return NULL_TREE. Do not check the subtrees of GOTO_EXPR. */
11294 static tree
11295 contains_label_1 (tree *tp, int *walk_subtrees, void *data)
11297 contains_label_data *d = (contains_label_data *) data;
11298 switch (TREE_CODE (*tp))
11300 case LABEL_EXPR:
11301 return *tp;
11303 case CASE_LABEL_EXPR:
11304 if (!d->inside_switch_p)
11305 return *tp;
11306 return NULL_TREE;
11308 case SWITCH_EXPR:
11309 if (!d->inside_switch_p)
11311 if (walk_tree (&SWITCH_COND (*tp), contains_label_1, data, d->pset))
11312 return *tp;
11313 d->inside_switch_p = true;
11314 if (walk_tree (&SWITCH_BODY (*tp), contains_label_1, data, d->pset))
11315 return *tp;
11316 d->inside_switch_p = false;
11317 *walk_subtrees = 0;
11319 return NULL_TREE;
11321 case GOTO_EXPR:
11322 *walk_subtrees = 0;
11323 return NULL_TREE;
11325 default:
11326 return NULL_TREE;
11330 /* Return whether the sub-tree ST contains a label which is accessible from
11331 outside the sub-tree. */
11333 static bool
11334 contains_label_p (tree st)
11336 hash_set<tree> pset;
11337 contains_label_data data = { &pset, false };
11338 return walk_tree (&st, contains_label_1, &data, &pset) != NULL_TREE;
11341 /* Fold a ternary expression of code CODE and type TYPE with operands
11342 OP0, OP1, and OP2. Return the folded expression if folding is
11343 successful. Otherwise, return NULL_TREE. */
11345 tree
11346 fold_ternary_loc (location_t loc, enum tree_code code, tree type,
11347 tree op0, tree op1, tree op2)
11349 tree tem;
11350 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE;
11351 enum tree_code_class kind = TREE_CODE_CLASS (code);
11353 gcc_assert (IS_EXPR_CODE_CLASS (kind)
11354 && TREE_CODE_LENGTH (code) == 3);
11356 /* If this is a commutative operation, and OP0 is a constant, move it
11357 to OP1 to reduce the number of tests below. */
11358 if (commutative_ternary_tree_code (code)
11359 && tree_swap_operands_p (op0, op1))
11360 return fold_build3_loc (loc, code, type, op1, op0, op2);
11362 tem = generic_simplify (loc, code, type, op0, op1, op2);
11363 if (tem)
11364 return tem;
11366 /* Strip any conversions that don't change the mode. This is safe
11367 for every expression, except for a comparison expression because
11368 its signedness is derived from its operands. So, in the latter
11369 case, only strip conversions that don't change the signedness.
11371 Note that this is done as an internal manipulation within the
11372 constant folder, in order to find the simplest representation of
11373 the arguments so that their form can be studied. In any cases,
11374 the appropriate type conversions should be put back in the tree
11375 that will get out of the constant folder. */
11376 if (op0)
11378 arg0 = op0;
11379 STRIP_NOPS (arg0);
11382 if (op1)
11384 arg1 = op1;
11385 STRIP_NOPS (arg1);
11388 if (op2)
11390 arg2 = op2;
11391 STRIP_NOPS (arg2);
11394 switch (code)
11396 case COMPONENT_REF:
11397 if (TREE_CODE (arg0) == CONSTRUCTOR
11398 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
11400 unsigned HOST_WIDE_INT idx;
11401 tree field, value;
11402 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
11403 if (field == arg1)
11404 return value;
11406 return NULL_TREE;
11408 case COND_EXPR:
11409 case VEC_COND_EXPR:
11410 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
11411 so all simple results must be passed through pedantic_non_lvalue. */
11412 if (TREE_CODE (arg0) == INTEGER_CST)
11414 tree unused_op = integer_zerop (arg0) ? op1 : op2;
11415 tem = integer_zerop (arg0) ? op2 : op1;
11416 /* Only optimize constant conditions when the selected branch
11417 has the same type as the COND_EXPR. This avoids optimizing
11418 away "c ? x : throw", where the throw has a void type.
11419 Avoid throwing away that operand which contains label. */
11420 if ((!TREE_SIDE_EFFECTS (unused_op)
11421 || !contains_label_p (unused_op))
11422 && (! VOID_TYPE_P (TREE_TYPE (tem))
11423 || VOID_TYPE_P (type)))
11424 return pedantic_non_lvalue_loc (loc, tem);
11425 return NULL_TREE;
11427 else if (TREE_CODE (arg0) == VECTOR_CST)
11429 unsigned HOST_WIDE_INT nelts;
11430 if ((TREE_CODE (arg1) == VECTOR_CST
11431 || TREE_CODE (arg1) == CONSTRUCTOR)
11432 && (TREE_CODE (arg2) == VECTOR_CST
11433 || TREE_CODE (arg2) == CONSTRUCTOR)
11434 && TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts))
11436 vec_perm_builder sel (nelts, nelts, 1);
11437 for (unsigned int i = 0; i < nelts; i++)
11439 tree val = VECTOR_CST_ELT (arg0, i);
11440 if (integer_all_onesp (val))
11441 sel.quick_push (i);
11442 else if (integer_zerop (val))
11443 sel.quick_push (nelts + i);
11444 else /* Currently unreachable. */
11445 return NULL_TREE;
11447 vec_perm_indices indices (sel, 2, nelts);
11448 tree t = fold_vec_perm (type, arg1, arg2, indices);
11449 if (t != NULL_TREE)
11450 return t;
11454 /* If we have A op B ? A : C, we may be able to convert this to a
11455 simpler expression, depending on the operation and the values
11456 of B and C. Signed zeros prevent all of these transformations,
11457 for reasons given above each one.
11459 Also try swapping the arguments and inverting the conditional. */
11460 if (COMPARISON_CLASS_P (arg0)
11461 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), op1)
11462 && !HONOR_SIGNED_ZEROS (element_mode (op1)))
11464 tem = fold_cond_expr_with_comparison (loc, type, arg0, op1, op2);
11465 if (tem)
11466 return tem;
11469 if (COMPARISON_CLASS_P (arg0)
11470 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), op2)
11471 && !HONOR_SIGNED_ZEROS (element_mode (op2)))
11473 location_t loc0 = expr_location_or (arg0, loc);
11474 tem = fold_invert_truthvalue (loc0, arg0);
11475 if (tem && COMPARISON_CLASS_P (tem))
11477 tem = fold_cond_expr_with_comparison (loc, type, tem, op2, op1);
11478 if (tem)
11479 return tem;
11483 /* If the second operand is simpler than the third, swap them
11484 since that produces better jump optimization results. */
11485 if (truth_value_p (TREE_CODE (arg0))
11486 && tree_swap_operands_p (op1, op2))
11488 location_t loc0 = expr_location_or (arg0, loc);
11489 /* See if this can be inverted. If it can't, possibly because
11490 it was a floating-point inequality comparison, don't do
11491 anything. */
11492 tem = fold_invert_truthvalue (loc0, arg0);
11493 if (tem)
11494 return fold_build3_loc (loc, code, type, tem, op2, op1);
11497 /* Convert A ? 1 : 0 to simply A. */
11498 if ((code == VEC_COND_EXPR ? integer_all_onesp (op1)
11499 : (integer_onep (op1)
11500 && !VECTOR_TYPE_P (type)))
11501 && integer_zerop (op2)
11502 /* If we try to convert OP0 to our type, the
11503 call to fold will try to move the conversion inside
11504 a COND, which will recurse. In that case, the COND_EXPR
11505 is probably the best choice, so leave it alone. */
11506 && type == TREE_TYPE (arg0))
11507 return pedantic_non_lvalue_loc (loc, arg0);
11509 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
11510 over COND_EXPR in cases such as floating point comparisons. */
11511 if (integer_zerop (op1)
11512 && code == COND_EXPR
11513 && integer_onep (op2)
11514 && !VECTOR_TYPE_P (type)
11515 && truth_value_p (TREE_CODE (arg0)))
11516 return pedantic_non_lvalue_loc (loc,
11517 fold_convert_loc (loc, type,
11518 invert_truthvalue_loc (loc,
11519 arg0)));
11521 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
11522 if (TREE_CODE (arg0) == LT_EXPR
11523 && integer_zerop (TREE_OPERAND (arg0, 1))
11524 && integer_zerop (op2)
11525 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
11527 /* sign_bit_p looks through both zero and sign extensions,
11528 but for this optimization only sign extensions are
11529 usable. */
11530 tree tem2 = TREE_OPERAND (arg0, 0);
11531 while (tem != tem2)
11533 if (TREE_CODE (tem2) != NOP_EXPR
11534 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0))))
11536 tem = NULL_TREE;
11537 break;
11539 tem2 = TREE_OPERAND (tem2, 0);
11541 /* sign_bit_p only checks ARG1 bits within A's precision.
11542 If <sign bit of A> has wider type than A, bits outside
11543 of A's precision in <sign bit of A> need to be checked.
11544 If they are all 0, this optimization needs to be done
11545 in unsigned A's type, if they are all 1 in signed A's type,
11546 otherwise this can't be done. */
11547 if (tem
11548 && TYPE_PRECISION (TREE_TYPE (tem))
11549 < TYPE_PRECISION (TREE_TYPE (arg1))
11550 && TYPE_PRECISION (TREE_TYPE (tem))
11551 < TYPE_PRECISION (type))
11553 int inner_width, outer_width;
11554 tree tem_type;
11556 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
11557 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
11558 if (outer_width > TYPE_PRECISION (type))
11559 outer_width = TYPE_PRECISION (type);
11561 wide_int mask = wi::shifted_mask
11562 (inner_width, outer_width - inner_width, false,
11563 TYPE_PRECISION (TREE_TYPE (arg1)));
11565 wide_int common = mask & wi::to_wide (arg1);
11566 if (common == mask)
11568 tem_type = signed_type_for (TREE_TYPE (tem));
11569 tem = fold_convert_loc (loc, tem_type, tem);
11571 else if (common == 0)
11573 tem_type = unsigned_type_for (TREE_TYPE (tem));
11574 tem = fold_convert_loc (loc, tem_type, tem);
11576 else
11577 tem = NULL;
11580 if (tem)
11581 return
11582 fold_convert_loc (loc, type,
11583 fold_build2_loc (loc, BIT_AND_EXPR,
11584 TREE_TYPE (tem), tem,
11585 fold_convert_loc (loc,
11586 TREE_TYPE (tem),
11587 arg1)));
11590 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
11591 already handled above. */
11592 if (TREE_CODE (arg0) == BIT_AND_EXPR
11593 && integer_onep (TREE_OPERAND (arg0, 1))
11594 && integer_zerop (op2)
11595 && integer_pow2p (arg1))
11597 tree tem = TREE_OPERAND (arg0, 0);
11598 STRIP_NOPS (tem);
11599 if (TREE_CODE (tem) == RSHIFT_EXPR
11600 && tree_fits_uhwi_p (TREE_OPERAND (tem, 1))
11601 && (unsigned HOST_WIDE_INT) tree_log2 (arg1)
11602 == tree_to_uhwi (TREE_OPERAND (tem, 1)))
11603 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11604 fold_convert_loc (loc, type,
11605 TREE_OPERAND (tem, 0)),
11606 op1);
11609 /* A & N ? N : 0 is simply A & N if N is a power of two. This
11610 is probably obsolete because the first operand should be a
11611 truth value (that's why we have the two cases above), but let's
11612 leave it in until we can confirm this for all front-ends. */
11613 if (integer_zerop (op2)
11614 && TREE_CODE (arg0) == NE_EXPR
11615 && integer_zerop (TREE_OPERAND (arg0, 1))
11616 && integer_pow2p (arg1)
11617 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
11618 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11619 arg1, OEP_ONLY_CONST))
11620 return pedantic_non_lvalue_loc (loc,
11621 fold_convert_loc (loc, type,
11622 TREE_OPERAND (arg0, 0)));
11624 /* Disable the transformations below for vectors, since
11625 fold_binary_op_with_conditional_arg may undo them immediately,
11626 yielding an infinite loop. */
11627 if (code == VEC_COND_EXPR)
11628 return NULL_TREE;
11630 /* Convert A ? B : 0 into A && B if A and B are truth values. */
11631 if (integer_zerop (op2)
11632 && truth_value_p (TREE_CODE (arg0))
11633 && truth_value_p (TREE_CODE (arg1))
11634 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11635 return fold_build2_loc (loc, code == VEC_COND_EXPR ? BIT_AND_EXPR
11636 : TRUTH_ANDIF_EXPR,
11637 type, fold_convert_loc (loc, type, arg0), op1);
11639 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
11640 if (code == VEC_COND_EXPR ? integer_all_onesp (op2) : integer_onep (op2)
11641 && truth_value_p (TREE_CODE (arg0))
11642 && truth_value_p (TREE_CODE (arg1))
11643 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11645 location_t loc0 = expr_location_or (arg0, loc);
11646 /* Only perform transformation if ARG0 is easily inverted. */
11647 tem = fold_invert_truthvalue (loc0, arg0);
11648 if (tem)
11649 return fold_build2_loc (loc, code == VEC_COND_EXPR
11650 ? BIT_IOR_EXPR
11651 : TRUTH_ORIF_EXPR,
11652 type, fold_convert_loc (loc, type, tem),
11653 op1);
11656 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
11657 if (integer_zerop (arg1)
11658 && truth_value_p (TREE_CODE (arg0))
11659 && truth_value_p (TREE_CODE (op2))
11660 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11662 location_t loc0 = expr_location_or (arg0, loc);
11663 /* Only perform transformation if ARG0 is easily inverted. */
11664 tem = fold_invert_truthvalue (loc0, arg0);
11665 if (tem)
11666 return fold_build2_loc (loc, code == VEC_COND_EXPR
11667 ? BIT_AND_EXPR : TRUTH_ANDIF_EXPR,
11668 type, fold_convert_loc (loc, type, tem),
11669 op2);
11672 /* Convert A ? 1 : B into A || B if A and B are truth values. */
11673 if (code == VEC_COND_EXPR ? integer_all_onesp (arg1) : integer_onep (arg1)
11674 && truth_value_p (TREE_CODE (arg0))
11675 && truth_value_p (TREE_CODE (op2))
11676 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11677 return fold_build2_loc (loc, code == VEC_COND_EXPR
11678 ? BIT_IOR_EXPR : TRUTH_ORIF_EXPR,
11679 type, fold_convert_loc (loc, type, arg0), op2);
11681 return NULL_TREE;
11683 case CALL_EXPR:
11684 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
11685 of fold_ternary on them. */
11686 gcc_unreachable ();
11688 case BIT_FIELD_REF:
11689 if (TREE_CODE (arg0) == VECTOR_CST
11690 && (type == TREE_TYPE (TREE_TYPE (arg0))
11691 || (VECTOR_TYPE_P (type)
11692 && TREE_TYPE (type) == TREE_TYPE (TREE_TYPE (arg0))))
11693 && tree_fits_uhwi_p (op1)
11694 && tree_fits_uhwi_p (op2))
11696 tree eltype = TREE_TYPE (TREE_TYPE (arg0));
11697 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
11698 unsigned HOST_WIDE_INT n = tree_to_uhwi (arg1);
11699 unsigned HOST_WIDE_INT idx = tree_to_uhwi (op2);
11701 if (n != 0
11702 && (idx % width) == 0
11703 && (n % width) == 0
11704 && known_le ((idx + n) / width,
11705 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0))))
11707 idx = idx / width;
11708 n = n / width;
11710 if (TREE_CODE (arg0) == VECTOR_CST)
11712 if (n == 1)
11714 tem = VECTOR_CST_ELT (arg0, idx);
11715 if (VECTOR_TYPE_P (type))
11716 tem = fold_build1 (VIEW_CONVERT_EXPR, type, tem);
11717 return tem;
11720 tree_vector_builder vals (type, n, 1);
11721 for (unsigned i = 0; i < n; ++i)
11722 vals.quick_push (VECTOR_CST_ELT (arg0, idx + i));
11723 return vals.build ();
11728 /* On constants we can use native encode/interpret to constant
11729 fold (nearly) all BIT_FIELD_REFs. */
11730 if (CONSTANT_CLASS_P (arg0)
11731 && can_native_interpret_type_p (type)
11732 && BITS_PER_UNIT == 8
11733 && tree_fits_uhwi_p (op1)
11734 && tree_fits_uhwi_p (op2))
11736 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11737 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (op1);
11738 /* Limit us to a reasonable amount of work. To relax the
11739 other limitations we need bit-shifting of the buffer
11740 and rounding up the size. */
11741 if (bitpos % BITS_PER_UNIT == 0
11742 && bitsize % BITS_PER_UNIT == 0
11743 && bitsize <= MAX_BITSIZE_MODE_ANY_MODE)
11745 unsigned char b[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
11746 unsigned HOST_WIDE_INT len
11747 = native_encode_expr (arg0, b, bitsize / BITS_PER_UNIT,
11748 bitpos / BITS_PER_UNIT);
11749 if (len > 0
11750 && len * BITS_PER_UNIT >= bitsize)
11752 tree v = native_interpret_expr (type, b,
11753 bitsize / BITS_PER_UNIT);
11754 if (v)
11755 return v;
11760 return NULL_TREE;
11762 case VEC_PERM_EXPR:
11763 if (TREE_CODE (arg2) == VECTOR_CST)
11765 /* Build a vector of integers from the tree mask. */
11766 vec_perm_builder builder;
11767 if (!tree_to_vec_perm_builder (&builder, arg2))
11768 return NULL_TREE;
11770 /* Create a vec_perm_indices for the integer vector. */
11771 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
11772 bool single_arg = (op0 == op1);
11773 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
11775 /* Check for cases that fold to OP0 or OP1 in their original
11776 element order. */
11777 if (sel.series_p (0, 1, 0, 1))
11778 return op0;
11779 if (sel.series_p (0, 1, nelts, 1))
11780 return op1;
11782 if (!single_arg)
11784 if (sel.all_from_input_p (0))
11785 op1 = op0;
11786 else if (sel.all_from_input_p (1))
11788 op0 = op1;
11789 sel.rotate_inputs (1);
11793 if ((TREE_CODE (op0) == VECTOR_CST
11794 || TREE_CODE (op0) == CONSTRUCTOR)
11795 && (TREE_CODE (op1) == VECTOR_CST
11796 || TREE_CODE (op1) == CONSTRUCTOR))
11798 tree t = fold_vec_perm (type, op0, op1, sel);
11799 if (t != NULL_TREE)
11800 return t;
11803 bool changed = (op0 == op1 && !single_arg);
11805 /* Generate a canonical form of the selector. */
11806 if (arg2 == op2 && sel.encoding () != builder)
11808 /* Some targets are deficient and fail to expand a single
11809 argument permutation while still allowing an equivalent
11810 2-argument version. */
11811 if (sel.ninputs () == 2
11812 || can_vec_perm_const_p (TYPE_MODE (type), sel, false))
11813 op2 = vec_perm_indices_to_tree (TREE_TYPE (arg2), sel);
11814 else
11816 vec_perm_indices sel2 (builder, 2, nelts);
11817 if (can_vec_perm_const_p (TYPE_MODE (type), sel2, false))
11818 op2 = vec_perm_indices_to_tree (TREE_TYPE (arg2), sel2);
11819 else
11820 /* Not directly supported with either encoding,
11821 so use the preferred form. */
11822 op2 = vec_perm_indices_to_tree (TREE_TYPE (arg2), sel);
11824 changed = true;
11827 if (changed)
11828 return build3_loc (loc, VEC_PERM_EXPR, type, op0, op1, op2);
11830 return NULL_TREE;
11832 case BIT_INSERT_EXPR:
11833 /* Perform (partial) constant folding of BIT_INSERT_EXPR. */
11834 if (TREE_CODE (arg0) == INTEGER_CST
11835 && TREE_CODE (arg1) == INTEGER_CST)
11837 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11838 unsigned bitsize = TYPE_PRECISION (TREE_TYPE (arg1));
11839 wide_int tem = (wi::to_wide (arg0)
11840 & wi::shifted_mask (bitpos, bitsize, true,
11841 TYPE_PRECISION (type)));
11842 wide_int tem2
11843 = wi::lshift (wi::zext (wi::to_wide (arg1, TYPE_PRECISION (type)),
11844 bitsize), bitpos);
11845 return wide_int_to_tree (type, wi::bit_or (tem, tem2));
11847 else if (TREE_CODE (arg0) == VECTOR_CST
11848 && CONSTANT_CLASS_P (arg1)
11849 && types_compatible_p (TREE_TYPE (TREE_TYPE (arg0)),
11850 TREE_TYPE (arg1)))
11852 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11853 unsigned HOST_WIDE_INT elsize
11854 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg1)));
11855 if (bitpos % elsize == 0)
11857 unsigned k = bitpos / elsize;
11858 unsigned HOST_WIDE_INT nelts;
11859 if (operand_equal_p (VECTOR_CST_ELT (arg0, k), arg1, 0))
11860 return arg0;
11861 else if (VECTOR_CST_NELTS (arg0).is_constant (&nelts))
11863 tree_vector_builder elts (type, nelts, 1);
11864 elts.quick_grow (nelts);
11865 for (unsigned HOST_WIDE_INT i = 0; i < nelts; ++i)
11866 elts[i] = (i == k ? arg1 : VECTOR_CST_ELT (arg0, i));
11867 return elts.build ();
11871 return NULL_TREE;
11873 default:
11874 return NULL_TREE;
11875 } /* switch (code) */
11878 /* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR
11879 of an array (or vector). */
11881 tree
11882 get_array_ctor_element_at_index (tree ctor, offset_int access_index)
11884 tree index_type = NULL_TREE;
11885 offset_int low_bound = 0;
11887 if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)
11889 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ctor));
11890 if (domain_type && TYPE_MIN_VALUE (domain_type))
11892 /* Static constructors for variably sized objects makes no sense. */
11893 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST);
11894 index_type = TREE_TYPE (TYPE_MIN_VALUE (domain_type));
11895 low_bound = wi::to_offset (TYPE_MIN_VALUE (domain_type));
11899 if (index_type)
11900 access_index = wi::ext (access_index, TYPE_PRECISION (index_type),
11901 TYPE_SIGN (index_type));
11903 offset_int index = low_bound - 1;
11904 if (index_type)
11905 index = wi::ext (index, TYPE_PRECISION (index_type),
11906 TYPE_SIGN (index_type));
11908 offset_int max_index;
11909 unsigned HOST_WIDE_INT cnt;
11910 tree cfield, cval;
11912 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
11914 /* Array constructor might explicitly set index, or specify a range,
11915 or leave index NULL meaning that it is next index after previous
11916 one. */
11917 if (cfield)
11919 if (TREE_CODE (cfield) == INTEGER_CST)
11920 max_index = index = wi::to_offset (cfield);
11921 else
11923 gcc_assert (TREE_CODE (cfield) == RANGE_EXPR);
11924 index = wi::to_offset (TREE_OPERAND (cfield, 0));
11925 max_index = wi::to_offset (TREE_OPERAND (cfield, 1));
11928 else
11930 index += 1;
11931 if (index_type)
11932 index = wi::ext (index, TYPE_PRECISION (index_type),
11933 TYPE_SIGN (index_type));
11934 max_index = index;
11937 /* Do we have match? */
11938 if (wi::cmpu (access_index, index) >= 0
11939 && wi::cmpu (access_index, max_index) <= 0)
11940 return cval;
11942 return NULL_TREE;
11945 /* Perform constant folding and related simplification of EXPR.
11946 The related simplifications include x*1 => x, x*0 => 0, etc.,
11947 and application of the associative law.
11948 NOP_EXPR conversions may be removed freely (as long as we
11949 are careful not to change the type of the overall expression).
11950 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
11951 but we can constant-fold them if they have constant operands. */
11953 #ifdef ENABLE_FOLD_CHECKING
11954 # define fold(x) fold_1 (x)
11955 static tree fold_1 (tree);
11956 static
11957 #endif
11958 tree
11959 fold (tree expr)
11961 const tree t = expr;
11962 enum tree_code code = TREE_CODE (t);
11963 enum tree_code_class kind = TREE_CODE_CLASS (code);
11964 tree tem;
11965 location_t loc = EXPR_LOCATION (expr);
11967 /* Return right away if a constant. */
11968 if (kind == tcc_constant)
11969 return t;
11971 /* CALL_EXPR-like objects with variable numbers of operands are
11972 treated specially. */
11973 if (kind == tcc_vl_exp)
11975 if (code == CALL_EXPR)
11977 tem = fold_call_expr (loc, expr, false);
11978 return tem ? tem : expr;
11980 return expr;
11983 if (IS_EXPR_CODE_CLASS (kind))
11985 tree type = TREE_TYPE (t);
11986 tree op0, op1, op2;
11988 switch (TREE_CODE_LENGTH (code))
11990 case 1:
11991 op0 = TREE_OPERAND (t, 0);
11992 tem = fold_unary_loc (loc, code, type, op0);
11993 return tem ? tem : expr;
11994 case 2:
11995 op0 = TREE_OPERAND (t, 0);
11996 op1 = TREE_OPERAND (t, 1);
11997 tem = fold_binary_loc (loc, code, type, op0, op1);
11998 return tem ? tem : expr;
11999 case 3:
12000 op0 = TREE_OPERAND (t, 0);
12001 op1 = TREE_OPERAND (t, 1);
12002 op2 = TREE_OPERAND (t, 2);
12003 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
12004 return tem ? tem : expr;
12005 default:
12006 break;
12010 switch (code)
12012 case ARRAY_REF:
12014 tree op0 = TREE_OPERAND (t, 0);
12015 tree op1 = TREE_OPERAND (t, 1);
12017 if (TREE_CODE (op1) == INTEGER_CST
12018 && TREE_CODE (op0) == CONSTRUCTOR
12019 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
12021 tree val = get_array_ctor_element_at_index (op0,
12022 wi::to_offset (op1));
12023 if (val)
12024 return val;
12027 return t;
12030 /* Return a VECTOR_CST if possible. */
12031 case CONSTRUCTOR:
12033 tree type = TREE_TYPE (t);
12034 if (TREE_CODE (type) != VECTOR_TYPE)
12035 return t;
12037 unsigned i;
12038 tree val;
12039 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
12040 if (! CONSTANT_CLASS_P (val))
12041 return t;
12043 return build_vector_from_ctor (type, CONSTRUCTOR_ELTS (t));
12046 case CONST_DECL:
12047 return fold (DECL_INITIAL (t));
12049 default:
12050 return t;
12051 } /* switch (code) */
12054 #ifdef ENABLE_FOLD_CHECKING
12055 #undef fold
12057 static void fold_checksum_tree (const_tree, struct md5_ctx *,
12058 hash_table<nofree_ptr_hash<const tree_node> > *);
12059 static void fold_check_failed (const_tree, const_tree);
12060 void print_fold_checksum (const_tree);
12062 /* When --enable-checking=fold, compute a digest of expr before
12063 and after actual fold call to see if fold did not accidentally
12064 change original expr. */
12066 tree
12067 fold (tree expr)
12069 tree ret;
12070 struct md5_ctx ctx;
12071 unsigned char checksum_before[16], checksum_after[16];
12072 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12074 md5_init_ctx (&ctx);
12075 fold_checksum_tree (expr, &ctx, &ht);
12076 md5_finish_ctx (&ctx, checksum_before);
12077 ht.empty ();
12079 ret = fold_1 (expr);
12081 md5_init_ctx (&ctx);
12082 fold_checksum_tree (expr, &ctx, &ht);
12083 md5_finish_ctx (&ctx, checksum_after);
12085 if (memcmp (checksum_before, checksum_after, 16))
12086 fold_check_failed (expr, ret);
12088 return ret;
12091 void
12092 print_fold_checksum (const_tree expr)
12094 struct md5_ctx ctx;
12095 unsigned char checksum[16], cnt;
12096 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12098 md5_init_ctx (&ctx);
12099 fold_checksum_tree (expr, &ctx, &ht);
12100 md5_finish_ctx (&ctx, checksum);
12101 for (cnt = 0; cnt < 16; ++cnt)
12102 fprintf (stderr, "%02x", checksum[cnt]);
12103 putc ('\n', stderr);
12106 static void
12107 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
12109 internal_error ("fold check: original tree changed by fold");
12112 static void
12113 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx,
12114 hash_table<nofree_ptr_hash <const tree_node> > *ht)
12116 const tree_node **slot;
12117 enum tree_code code;
12118 union tree_node buf;
12119 int i, len;
12121 recursive_label:
12122 if (expr == NULL)
12123 return;
12124 slot = ht->find_slot (expr, INSERT);
12125 if (*slot != NULL)
12126 return;
12127 *slot = expr;
12128 code = TREE_CODE (expr);
12129 if (TREE_CODE_CLASS (code) == tcc_declaration
12130 && HAS_DECL_ASSEMBLER_NAME_P (expr))
12132 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
12133 memcpy ((char *) &buf, expr, tree_size (expr));
12134 SET_DECL_ASSEMBLER_NAME ((tree)&buf, NULL);
12135 buf.decl_with_vis.symtab_node = NULL;
12136 expr = (tree) &buf;
12138 else if (TREE_CODE_CLASS (code) == tcc_type
12139 && (TYPE_POINTER_TO (expr)
12140 || TYPE_REFERENCE_TO (expr)
12141 || TYPE_CACHED_VALUES_P (expr)
12142 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
12143 || TYPE_NEXT_VARIANT (expr)
12144 || TYPE_ALIAS_SET_KNOWN_P (expr)))
12146 /* Allow these fields to be modified. */
12147 tree tmp;
12148 memcpy ((char *) &buf, expr, tree_size (expr));
12149 expr = tmp = (tree) &buf;
12150 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
12151 TYPE_POINTER_TO (tmp) = NULL;
12152 TYPE_REFERENCE_TO (tmp) = NULL;
12153 TYPE_NEXT_VARIANT (tmp) = NULL;
12154 TYPE_ALIAS_SET (tmp) = -1;
12155 if (TYPE_CACHED_VALUES_P (tmp))
12157 TYPE_CACHED_VALUES_P (tmp) = 0;
12158 TYPE_CACHED_VALUES (tmp) = NULL;
12161 md5_process_bytes (expr, tree_size (expr), ctx);
12162 if (CODE_CONTAINS_STRUCT (code, TS_TYPED))
12163 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
12164 if (TREE_CODE_CLASS (code) != tcc_type
12165 && TREE_CODE_CLASS (code) != tcc_declaration
12166 && code != TREE_LIST
12167 && code != SSA_NAME
12168 && CODE_CONTAINS_STRUCT (code, TS_COMMON))
12169 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
12170 switch (TREE_CODE_CLASS (code))
12172 case tcc_constant:
12173 switch (code)
12175 case STRING_CST:
12176 md5_process_bytes (TREE_STRING_POINTER (expr),
12177 TREE_STRING_LENGTH (expr), ctx);
12178 break;
12179 case COMPLEX_CST:
12180 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
12181 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
12182 break;
12183 case VECTOR_CST:
12184 len = vector_cst_encoded_nelts (expr);
12185 for (i = 0; i < len; ++i)
12186 fold_checksum_tree (VECTOR_CST_ENCODED_ELT (expr, i), ctx, ht);
12187 break;
12188 default:
12189 break;
12191 break;
12192 case tcc_exceptional:
12193 switch (code)
12195 case TREE_LIST:
12196 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
12197 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
12198 expr = TREE_CHAIN (expr);
12199 goto recursive_label;
12200 break;
12201 case TREE_VEC:
12202 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
12203 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
12204 break;
12205 default:
12206 break;
12208 break;
12209 case tcc_expression:
12210 case tcc_reference:
12211 case tcc_comparison:
12212 case tcc_unary:
12213 case tcc_binary:
12214 case tcc_statement:
12215 case tcc_vl_exp:
12216 len = TREE_OPERAND_LENGTH (expr);
12217 for (i = 0; i < len; ++i)
12218 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
12219 break;
12220 case tcc_declaration:
12221 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
12222 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
12223 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
12225 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
12226 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
12227 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
12228 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
12229 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
12232 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
12234 if (TREE_CODE (expr) == FUNCTION_DECL)
12236 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
12237 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht);
12239 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
12241 break;
12242 case tcc_type:
12243 if (TREE_CODE (expr) == ENUMERAL_TYPE)
12244 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
12245 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
12246 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
12247 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
12248 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
12249 if (INTEGRAL_TYPE_P (expr)
12250 || SCALAR_FLOAT_TYPE_P (expr))
12252 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
12253 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
12255 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
12256 if (TREE_CODE (expr) == RECORD_TYPE
12257 || TREE_CODE (expr) == UNION_TYPE
12258 || TREE_CODE (expr) == QUAL_UNION_TYPE)
12259 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
12260 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
12261 break;
12262 default:
12263 break;
12267 /* Helper function for outputting the checksum of a tree T. When
12268 debugging with gdb, you can "define mynext" to be "next" followed
12269 by "call debug_fold_checksum (op0)", then just trace down till the
12270 outputs differ. */
12272 DEBUG_FUNCTION void
12273 debug_fold_checksum (const_tree t)
12275 int i;
12276 unsigned char checksum[16];
12277 struct md5_ctx ctx;
12278 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12280 md5_init_ctx (&ctx);
12281 fold_checksum_tree (t, &ctx, &ht);
12282 md5_finish_ctx (&ctx, checksum);
12283 ht.empty ();
12285 for (i = 0; i < 16; i++)
12286 fprintf (stderr, "%d ", checksum[i]);
12288 fprintf (stderr, "\n");
12291 #endif
12293 /* Fold a unary tree expression with code CODE of type TYPE with an
12294 operand OP0. LOC is the location of the resulting expression.
12295 Return a folded expression if successful. Otherwise, return a tree
12296 expression with code CODE of type TYPE with an operand OP0. */
12298 tree
12299 fold_build1_loc (location_t loc,
12300 enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
12302 tree tem;
12303 #ifdef ENABLE_FOLD_CHECKING
12304 unsigned char checksum_before[16], checksum_after[16];
12305 struct md5_ctx ctx;
12306 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12308 md5_init_ctx (&ctx);
12309 fold_checksum_tree (op0, &ctx, &ht);
12310 md5_finish_ctx (&ctx, checksum_before);
12311 ht.empty ();
12312 #endif
12314 tem = fold_unary_loc (loc, code, type, op0);
12315 if (!tem)
12316 tem = build1_loc (loc, code, type, op0 PASS_MEM_STAT);
12318 #ifdef ENABLE_FOLD_CHECKING
12319 md5_init_ctx (&ctx);
12320 fold_checksum_tree (op0, &ctx, &ht);
12321 md5_finish_ctx (&ctx, checksum_after);
12323 if (memcmp (checksum_before, checksum_after, 16))
12324 fold_check_failed (op0, tem);
12325 #endif
12326 return tem;
12329 /* Fold a binary tree expression with code CODE of type TYPE with
12330 operands OP0 and OP1. LOC is the location of the resulting
12331 expression. Return a folded expression if successful. Otherwise,
12332 return a tree expression with code CODE of type TYPE with operands
12333 OP0 and OP1. */
12335 tree
12336 fold_build2_loc (location_t loc,
12337 enum tree_code code, tree type, tree op0, tree op1
12338 MEM_STAT_DECL)
12340 tree tem;
12341 #ifdef ENABLE_FOLD_CHECKING
12342 unsigned char checksum_before_op0[16],
12343 checksum_before_op1[16],
12344 checksum_after_op0[16],
12345 checksum_after_op1[16];
12346 struct md5_ctx ctx;
12347 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12349 md5_init_ctx (&ctx);
12350 fold_checksum_tree (op0, &ctx, &ht);
12351 md5_finish_ctx (&ctx, checksum_before_op0);
12352 ht.empty ();
12354 md5_init_ctx (&ctx);
12355 fold_checksum_tree (op1, &ctx, &ht);
12356 md5_finish_ctx (&ctx, checksum_before_op1);
12357 ht.empty ();
12358 #endif
12360 tem = fold_binary_loc (loc, code, type, op0, op1);
12361 if (!tem)
12362 tem = build2_loc (loc, code, type, op0, op1 PASS_MEM_STAT);
12364 #ifdef ENABLE_FOLD_CHECKING
12365 md5_init_ctx (&ctx);
12366 fold_checksum_tree (op0, &ctx, &ht);
12367 md5_finish_ctx (&ctx, checksum_after_op0);
12368 ht.empty ();
12370 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12371 fold_check_failed (op0, tem);
12373 md5_init_ctx (&ctx);
12374 fold_checksum_tree (op1, &ctx, &ht);
12375 md5_finish_ctx (&ctx, checksum_after_op1);
12377 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12378 fold_check_failed (op1, tem);
12379 #endif
12380 return tem;
12383 /* Fold a ternary tree expression with code CODE of type TYPE with
12384 operands OP0, OP1, and OP2. Return a folded expression if
12385 successful. Otherwise, return a tree expression with code CODE of
12386 type TYPE with operands OP0, OP1, and OP2. */
12388 tree
12389 fold_build3_loc (location_t loc, enum tree_code code, tree type,
12390 tree op0, tree op1, tree op2 MEM_STAT_DECL)
12392 tree tem;
12393 #ifdef ENABLE_FOLD_CHECKING
12394 unsigned char checksum_before_op0[16],
12395 checksum_before_op1[16],
12396 checksum_before_op2[16],
12397 checksum_after_op0[16],
12398 checksum_after_op1[16],
12399 checksum_after_op2[16];
12400 struct md5_ctx ctx;
12401 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12403 md5_init_ctx (&ctx);
12404 fold_checksum_tree (op0, &ctx, &ht);
12405 md5_finish_ctx (&ctx, checksum_before_op0);
12406 ht.empty ();
12408 md5_init_ctx (&ctx);
12409 fold_checksum_tree (op1, &ctx, &ht);
12410 md5_finish_ctx (&ctx, checksum_before_op1);
12411 ht.empty ();
12413 md5_init_ctx (&ctx);
12414 fold_checksum_tree (op2, &ctx, &ht);
12415 md5_finish_ctx (&ctx, checksum_before_op2);
12416 ht.empty ();
12417 #endif
12419 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
12420 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
12421 if (!tem)
12422 tem = build3_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT);
12424 #ifdef ENABLE_FOLD_CHECKING
12425 md5_init_ctx (&ctx);
12426 fold_checksum_tree (op0, &ctx, &ht);
12427 md5_finish_ctx (&ctx, checksum_after_op0);
12428 ht.empty ();
12430 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12431 fold_check_failed (op0, tem);
12433 md5_init_ctx (&ctx);
12434 fold_checksum_tree (op1, &ctx, &ht);
12435 md5_finish_ctx (&ctx, checksum_after_op1);
12436 ht.empty ();
12438 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12439 fold_check_failed (op1, tem);
12441 md5_init_ctx (&ctx);
12442 fold_checksum_tree (op2, &ctx, &ht);
12443 md5_finish_ctx (&ctx, checksum_after_op2);
12445 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
12446 fold_check_failed (op2, tem);
12447 #endif
12448 return tem;
12451 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
12452 arguments in ARGARRAY, and a null static chain.
12453 Return a folded expression if successful. Otherwise, return a CALL_EXPR
12454 of type TYPE from the given operands as constructed by build_call_array. */
12456 tree
12457 fold_build_call_array_loc (location_t loc, tree type, tree fn,
12458 int nargs, tree *argarray)
12460 tree tem;
12461 #ifdef ENABLE_FOLD_CHECKING
12462 unsigned char checksum_before_fn[16],
12463 checksum_before_arglist[16],
12464 checksum_after_fn[16],
12465 checksum_after_arglist[16];
12466 struct md5_ctx ctx;
12467 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12468 int i;
12470 md5_init_ctx (&ctx);
12471 fold_checksum_tree (fn, &ctx, &ht);
12472 md5_finish_ctx (&ctx, checksum_before_fn);
12473 ht.empty ();
12475 md5_init_ctx (&ctx);
12476 for (i = 0; i < nargs; i++)
12477 fold_checksum_tree (argarray[i], &ctx, &ht);
12478 md5_finish_ctx (&ctx, checksum_before_arglist);
12479 ht.empty ();
12480 #endif
12482 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray);
12483 if (!tem)
12484 tem = build_call_array_loc (loc, type, fn, nargs, argarray);
12486 #ifdef ENABLE_FOLD_CHECKING
12487 md5_init_ctx (&ctx);
12488 fold_checksum_tree (fn, &ctx, &ht);
12489 md5_finish_ctx (&ctx, checksum_after_fn);
12490 ht.empty ();
12492 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
12493 fold_check_failed (fn, tem);
12495 md5_init_ctx (&ctx);
12496 for (i = 0; i < nargs; i++)
12497 fold_checksum_tree (argarray[i], &ctx, &ht);
12498 md5_finish_ctx (&ctx, checksum_after_arglist);
12500 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
12501 fold_check_failed (NULL_TREE, tem);
12502 #endif
12503 return tem;
12506 /* Perform constant folding and related simplification of initializer
12507 expression EXPR. These behave identically to "fold_buildN" but ignore
12508 potential run-time traps and exceptions that fold must preserve. */
12510 #define START_FOLD_INIT \
12511 int saved_signaling_nans = flag_signaling_nans;\
12512 int saved_trapping_math = flag_trapping_math;\
12513 int saved_rounding_math = flag_rounding_math;\
12514 int saved_trapv = flag_trapv;\
12515 int saved_folding_initializer = folding_initializer;\
12516 flag_signaling_nans = 0;\
12517 flag_trapping_math = 0;\
12518 flag_rounding_math = 0;\
12519 flag_trapv = 0;\
12520 folding_initializer = 1;
12522 #define END_FOLD_INIT \
12523 flag_signaling_nans = saved_signaling_nans;\
12524 flag_trapping_math = saved_trapping_math;\
12525 flag_rounding_math = saved_rounding_math;\
12526 flag_trapv = saved_trapv;\
12527 folding_initializer = saved_folding_initializer;
12529 tree
12530 fold_build1_initializer_loc (location_t loc, enum tree_code code,
12531 tree type, tree op)
12533 tree result;
12534 START_FOLD_INIT;
12536 result = fold_build1_loc (loc, code, type, op);
12538 END_FOLD_INIT;
12539 return result;
12542 tree
12543 fold_build2_initializer_loc (location_t loc, enum tree_code code,
12544 tree type, tree op0, tree op1)
12546 tree result;
12547 START_FOLD_INIT;
12549 result = fold_build2_loc (loc, code, type, op0, op1);
12551 END_FOLD_INIT;
12552 return result;
12555 tree
12556 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn,
12557 int nargs, tree *argarray)
12559 tree result;
12560 START_FOLD_INIT;
12562 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray);
12564 END_FOLD_INIT;
12565 return result;
12568 #undef START_FOLD_INIT
12569 #undef END_FOLD_INIT
12571 /* Determine if first argument is a multiple of second argument. Return 0 if
12572 it is not, or we cannot easily determined it to be.
12574 An example of the sort of thing we care about (at this point; this routine
12575 could surely be made more general, and expanded to do what the *_DIV_EXPR's
12576 fold cases do now) is discovering that
12578 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12580 is a multiple of
12582 SAVE_EXPR (J * 8)
12584 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
12586 This code also handles discovering that
12588 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12590 is a multiple of 8 so we don't have to worry about dealing with a
12591 possible remainder.
12593 Note that we *look* inside a SAVE_EXPR only to determine how it was
12594 calculated; it is not safe for fold to do much of anything else with the
12595 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
12596 at run time. For example, the latter example above *cannot* be implemented
12597 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
12598 evaluation time of the original SAVE_EXPR is not necessarily the same at
12599 the time the new expression is evaluated. The only optimization of this
12600 sort that would be valid is changing
12602 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
12604 divided by 8 to
12606 SAVE_EXPR (I) * SAVE_EXPR (J)
12608 (where the same SAVE_EXPR (J) is used in the original and the
12609 transformed version). */
12612 multiple_of_p (tree type, const_tree top, const_tree bottom)
12614 gimple *stmt;
12615 tree t1, op1, op2;
12617 if (operand_equal_p (top, bottom, 0))
12618 return 1;
12620 if (TREE_CODE (type) != INTEGER_TYPE)
12621 return 0;
12623 switch (TREE_CODE (top))
12625 case BIT_AND_EXPR:
12626 /* Bitwise and provides a power of two multiple. If the mask is
12627 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
12628 if (!integer_pow2p (bottom))
12629 return 0;
12630 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12631 || multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12633 case MULT_EXPR:
12634 if (TREE_CODE (bottom) == INTEGER_CST)
12636 op1 = TREE_OPERAND (top, 0);
12637 op2 = TREE_OPERAND (top, 1);
12638 if (TREE_CODE (op1) == INTEGER_CST)
12639 std::swap (op1, op2);
12640 if (TREE_CODE (op2) == INTEGER_CST)
12642 if (multiple_of_p (type, op2, bottom))
12643 return 1;
12644 /* Handle multiple_of_p ((x * 2 + 2) * 4, 8). */
12645 if (multiple_of_p (type, bottom, op2))
12647 widest_int w = wi::sdiv_trunc (wi::to_widest (bottom),
12648 wi::to_widest (op2));
12649 if (wi::fits_to_tree_p (w, TREE_TYPE (bottom)))
12651 op2 = wide_int_to_tree (TREE_TYPE (bottom), w);
12652 return multiple_of_p (type, op1, op2);
12655 return multiple_of_p (type, op1, bottom);
12658 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12659 || multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12661 case MINUS_EXPR:
12662 /* It is impossible to prove if op0 - op1 is multiple of bottom
12663 precisely, so be conservative here checking if both op0 and op1
12664 are multiple of bottom. Note we check the second operand first
12665 since it's usually simpler. */
12666 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12667 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12669 case PLUS_EXPR:
12670 /* The same as MINUS_EXPR, but handle cases like op0 + 0xfffffffd
12671 as op0 - 3 if the expression has unsigned type. For example,
12672 (X / 3) + 0xfffffffd is multiple of 3, but 0xfffffffd is not. */
12673 op1 = TREE_OPERAND (top, 1);
12674 if (TYPE_UNSIGNED (type)
12675 && TREE_CODE (op1) == INTEGER_CST && tree_int_cst_sign_bit (op1))
12676 op1 = fold_build1 (NEGATE_EXPR, type, op1);
12677 return (multiple_of_p (type, op1, bottom)
12678 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12680 case LSHIFT_EXPR:
12681 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
12683 op1 = TREE_OPERAND (top, 1);
12684 /* const_binop may not detect overflow correctly,
12685 so check for it explicitly here. */
12686 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)),
12687 wi::to_wide (op1))
12688 && (t1 = fold_convert (type,
12689 const_binop (LSHIFT_EXPR, size_one_node,
12690 op1))) != 0
12691 && !TREE_OVERFLOW (t1))
12692 return multiple_of_p (type, t1, bottom);
12694 return 0;
12696 case NOP_EXPR:
12697 /* Can't handle conversions from non-integral or wider integral type. */
12698 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
12699 || (TYPE_PRECISION (type)
12700 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
12701 return 0;
12703 /* fall through */
12705 case SAVE_EXPR:
12706 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
12708 case COND_EXPR:
12709 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12710 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom));
12712 case INTEGER_CST:
12713 if (TREE_CODE (bottom) != INTEGER_CST
12714 || integer_zerop (bottom)
12715 || (TYPE_UNSIGNED (type)
12716 && (tree_int_cst_sgn (top) < 0
12717 || tree_int_cst_sgn (bottom) < 0)))
12718 return 0;
12719 return wi::multiple_of_p (wi::to_widest (top), wi::to_widest (bottom),
12720 SIGNED);
12722 case SSA_NAME:
12723 if (TREE_CODE (bottom) == INTEGER_CST
12724 && (stmt = SSA_NAME_DEF_STMT (top)) != NULL
12725 && gimple_code (stmt) == GIMPLE_ASSIGN)
12727 enum tree_code code = gimple_assign_rhs_code (stmt);
12729 /* Check for special cases to see if top is defined as multiple
12730 of bottom:
12732 top = (X & ~(bottom - 1) ; bottom is power of 2
12736 Y = X % bottom
12737 top = X - Y. */
12738 if (code == BIT_AND_EXPR
12739 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
12740 && TREE_CODE (op2) == INTEGER_CST
12741 && integer_pow2p (bottom)
12742 && wi::multiple_of_p (wi::to_widest (op2),
12743 wi::to_widest (bottom), UNSIGNED))
12744 return 1;
12746 op1 = gimple_assign_rhs1 (stmt);
12747 if (code == MINUS_EXPR
12748 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
12749 && TREE_CODE (op2) == SSA_NAME
12750 && (stmt = SSA_NAME_DEF_STMT (op2)) != NULL
12751 && gimple_code (stmt) == GIMPLE_ASSIGN
12752 && (code = gimple_assign_rhs_code (stmt)) == TRUNC_MOD_EXPR
12753 && operand_equal_p (op1, gimple_assign_rhs1 (stmt), 0)
12754 && operand_equal_p (bottom, gimple_assign_rhs2 (stmt), 0))
12755 return 1;
12758 /* fall through */
12760 default:
12761 if (POLY_INT_CST_P (top) && poly_int_tree_p (bottom))
12762 return multiple_p (wi::to_poly_widest (top),
12763 wi::to_poly_widest (bottom));
12765 return 0;
12769 #define tree_expr_nonnegative_warnv_p(X, Y) \
12770 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
12772 #define RECURSE(X) \
12773 ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1))
12775 /* Return true if CODE or TYPE is known to be non-negative. */
12777 static bool
12778 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
12780 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
12781 && truth_value_p (code))
12782 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
12783 have a signed:1 type (where the value is -1 and 0). */
12784 return true;
12785 return false;
12788 /* Return true if (CODE OP0) is known to be non-negative. If the return
12789 value is based on the assumption that signed overflow is undefined,
12790 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12791 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12793 bool
12794 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12795 bool *strict_overflow_p, int depth)
12797 if (TYPE_UNSIGNED (type))
12798 return true;
12800 switch (code)
12802 case ABS_EXPR:
12803 /* We can't return 1 if flag_wrapv is set because
12804 ABS_EXPR<INT_MIN> = INT_MIN. */
12805 if (!ANY_INTEGRAL_TYPE_P (type))
12806 return true;
12807 if (TYPE_OVERFLOW_UNDEFINED (type))
12809 *strict_overflow_p = true;
12810 return true;
12812 break;
12814 case NON_LVALUE_EXPR:
12815 case FLOAT_EXPR:
12816 case FIX_TRUNC_EXPR:
12817 return RECURSE (op0);
12819 CASE_CONVERT:
12821 tree inner_type = TREE_TYPE (op0);
12822 tree outer_type = type;
12824 if (TREE_CODE (outer_type) == REAL_TYPE)
12826 if (TREE_CODE (inner_type) == REAL_TYPE)
12827 return RECURSE (op0);
12828 if (INTEGRAL_TYPE_P (inner_type))
12830 if (TYPE_UNSIGNED (inner_type))
12831 return true;
12832 return RECURSE (op0);
12835 else if (INTEGRAL_TYPE_P (outer_type))
12837 if (TREE_CODE (inner_type) == REAL_TYPE)
12838 return RECURSE (op0);
12839 if (INTEGRAL_TYPE_P (inner_type))
12840 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
12841 && TYPE_UNSIGNED (inner_type);
12844 break;
12846 default:
12847 return tree_simple_nonnegative_warnv_p (code, type);
12850 /* We don't know sign of `t', so be conservative and return false. */
12851 return false;
12854 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
12855 value is based on the assumption that signed overflow is undefined,
12856 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12857 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12859 bool
12860 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12861 tree op1, bool *strict_overflow_p,
12862 int depth)
12864 if (TYPE_UNSIGNED (type))
12865 return true;
12867 switch (code)
12869 case POINTER_PLUS_EXPR:
12870 case PLUS_EXPR:
12871 if (FLOAT_TYPE_P (type))
12872 return RECURSE (op0) && RECURSE (op1);
12874 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
12875 both unsigned and at least 2 bits shorter than the result. */
12876 if (TREE_CODE (type) == INTEGER_TYPE
12877 && TREE_CODE (op0) == NOP_EXPR
12878 && TREE_CODE (op1) == NOP_EXPR)
12880 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
12881 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
12882 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
12883 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
12885 unsigned int prec = MAX (TYPE_PRECISION (inner1),
12886 TYPE_PRECISION (inner2)) + 1;
12887 return prec < TYPE_PRECISION (type);
12890 break;
12892 case MULT_EXPR:
12893 if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
12895 /* x * x is always non-negative for floating point x
12896 or without overflow. */
12897 if (operand_equal_p (op0, op1, 0)
12898 || (RECURSE (op0) && RECURSE (op1)))
12900 if (ANY_INTEGRAL_TYPE_P (type)
12901 && TYPE_OVERFLOW_UNDEFINED (type))
12902 *strict_overflow_p = true;
12903 return true;
12907 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
12908 both unsigned and their total bits is shorter than the result. */
12909 if (TREE_CODE (type) == INTEGER_TYPE
12910 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
12911 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
12913 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
12914 ? TREE_TYPE (TREE_OPERAND (op0, 0))
12915 : TREE_TYPE (op0);
12916 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
12917 ? TREE_TYPE (TREE_OPERAND (op1, 0))
12918 : TREE_TYPE (op1);
12920 bool unsigned0 = TYPE_UNSIGNED (inner0);
12921 bool unsigned1 = TYPE_UNSIGNED (inner1);
12923 if (TREE_CODE (op0) == INTEGER_CST)
12924 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
12926 if (TREE_CODE (op1) == INTEGER_CST)
12927 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
12929 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
12930 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
12932 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
12933 ? tree_int_cst_min_precision (op0, UNSIGNED)
12934 : TYPE_PRECISION (inner0);
12936 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
12937 ? tree_int_cst_min_precision (op1, UNSIGNED)
12938 : TYPE_PRECISION (inner1);
12940 return precision0 + precision1 < TYPE_PRECISION (type);
12943 return false;
12945 case BIT_AND_EXPR:
12946 case MAX_EXPR:
12947 return RECURSE (op0) || RECURSE (op1);
12949 case BIT_IOR_EXPR:
12950 case BIT_XOR_EXPR:
12951 case MIN_EXPR:
12952 case RDIV_EXPR:
12953 case TRUNC_DIV_EXPR:
12954 case CEIL_DIV_EXPR:
12955 case FLOOR_DIV_EXPR:
12956 case ROUND_DIV_EXPR:
12957 return RECURSE (op0) && RECURSE (op1);
12959 case TRUNC_MOD_EXPR:
12960 return RECURSE (op0);
12962 case FLOOR_MOD_EXPR:
12963 return RECURSE (op1);
12965 case CEIL_MOD_EXPR:
12966 case ROUND_MOD_EXPR:
12967 default:
12968 return tree_simple_nonnegative_warnv_p (code, type);
12971 /* We don't know sign of `t', so be conservative and return false. */
12972 return false;
12975 /* Return true if T is known to be non-negative. If the return
12976 value is based on the assumption that signed overflow is undefined,
12977 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12978 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12980 bool
12981 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
12983 if (TYPE_UNSIGNED (TREE_TYPE (t)))
12984 return true;
12986 switch (TREE_CODE (t))
12988 case INTEGER_CST:
12989 return tree_int_cst_sgn (t) >= 0;
12991 case REAL_CST:
12992 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
12994 case FIXED_CST:
12995 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
12997 case COND_EXPR:
12998 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
13000 case SSA_NAME:
13001 /* Limit the depth of recursion to avoid quadratic behavior.
13002 This is expected to catch almost all occurrences in practice.
13003 If this code misses important cases that unbounded recursion
13004 would not, passes that need this information could be revised
13005 to provide it through dataflow propagation. */
13006 return (!name_registered_for_update_p (t)
13007 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH)
13008 && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t),
13009 strict_overflow_p, depth));
13011 default:
13012 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
13016 /* Return true if T is known to be non-negative. If the return
13017 value is based on the assumption that signed overflow is undefined,
13018 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13019 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13021 bool
13022 tree_call_nonnegative_warnv_p (tree type, combined_fn fn, tree arg0, tree arg1,
13023 bool *strict_overflow_p, int depth)
13025 switch (fn)
13027 CASE_CFN_ACOS:
13028 CASE_CFN_ACOSH:
13029 CASE_CFN_CABS:
13030 CASE_CFN_COSH:
13031 CASE_CFN_ERFC:
13032 CASE_CFN_EXP:
13033 CASE_CFN_EXP10:
13034 CASE_CFN_EXP2:
13035 CASE_CFN_FABS:
13036 CASE_CFN_FDIM:
13037 CASE_CFN_HYPOT:
13038 CASE_CFN_POW10:
13039 CASE_CFN_FFS:
13040 CASE_CFN_PARITY:
13041 CASE_CFN_POPCOUNT:
13042 CASE_CFN_CLZ:
13043 CASE_CFN_CLRSB:
13044 case CFN_BUILT_IN_BSWAP32:
13045 case CFN_BUILT_IN_BSWAP64:
13046 /* Always true. */
13047 return true;
13049 CASE_CFN_SQRT:
13050 CASE_CFN_SQRT_FN:
13051 /* sqrt(-0.0) is -0.0. */
13052 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
13053 return true;
13054 return RECURSE (arg0);
13056 CASE_CFN_ASINH:
13057 CASE_CFN_ATAN:
13058 CASE_CFN_ATANH:
13059 CASE_CFN_CBRT:
13060 CASE_CFN_CEIL:
13061 CASE_CFN_CEIL_FN:
13062 CASE_CFN_ERF:
13063 CASE_CFN_EXPM1:
13064 CASE_CFN_FLOOR:
13065 CASE_CFN_FLOOR_FN:
13066 CASE_CFN_FMOD:
13067 CASE_CFN_FREXP:
13068 CASE_CFN_ICEIL:
13069 CASE_CFN_IFLOOR:
13070 CASE_CFN_IRINT:
13071 CASE_CFN_IROUND:
13072 CASE_CFN_LCEIL:
13073 CASE_CFN_LDEXP:
13074 CASE_CFN_LFLOOR:
13075 CASE_CFN_LLCEIL:
13076 CASE_CFN_LLFLOOR:
13077 CASE_CFN_LLRINT:
13078 CASE_CFN_LLROUND:
13079 CASE_CFN_LRINT:
13080 CASE_CFN_LROUND:
13081 CASE_CFN_MODF:
13082 CASE_CFN_NEARBYINT:
13083 CASE_CFN_NEARBYINT_FN:
13084 CASE_CFN_RINT:
13085 CASE_CFN_RINT_FN:
13086 CASE_CFN_ROUND:
13087 CASE_CFN_ROUND_FN:
13088 CASE_CFN_SCALB:
13089 CASE_CFN_SCALBLN:
13090 CASE_CFN_SCALBN:
13091 CASE_CFN_SIGNBIT:
13092 CASE_CFN_SIGNIFICAND:
13093 CASE_CFN_SINH:
13094 CASE_CFN_TANH:
13095 CASE_CFN_TRUNC:
13096 CASE_CFN_TRUNC_FN:
13097 /* True if the 1st argument is nonnegative. */
13098 return RECURSE (arg0);
13100 CASE_CFN_FMAX:
13101 CASE_CFN_FMAX_FN:
13102 /* True if the 1st OR 2nd arguments are nonnegative. */
13103 return RECURSE (arg0) || RECURSE (arg1);
13105 CASE_CFN_FMIN:
13106 CASE_CFN_FMIN_FN:
13107 /* True if the 1st AND 2nd arguments are nonnegative. */
13108 return RECURSE (arg0) && RECURSE (arg1);
13110 CASE_CFN_COPYSIGN:
13111 CASE_CFN_COPYSIGN_FN:
13112 /* True if the 2nd argument is nonnegative. */
13113 return RECURSE (arg1);
13115 CASE_CFN_POWI:
13116 /* True if the 1st argument is nonnegative or the second
13117 argument is an even integer. */
13118 if (TREE_CODE (arg1) == INTEGER_CST
13119 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
13120 return true;
13121 return RECURSE (arg0);
13123 CASE_CFN_POW:
13124 /* True if the 1st argument is nonnegative or the second
13125 argument is an even integer valued real. */
13126 if (TREE_CODE (arg1) == REAL_CST)
13128 REAL_VALUE_TYPE c;
13129 HOST_WIDE_INT n;
13131 c = TREE_REAL_CST (arg1);
13132 n = real_to_integer (&c);
13133 if ((n & 1) == 0)
13135 REAL_VALUE_TYPE cint;
13136 real_from_integer (&cint, VOIDmode, n, SIGNED);
13137 if (real_identical (&c, &cint))
13138 return true;
13141 return RECURSE (arg0);
13143 default:
13144 break;
13146 return tree_simple_nonnegative_warnv_p (CALL_EXPR, type);
13149 /* Return true if T is known to be non-negative. If the return
13150 value is based on the assumption that signed overflow is undefined,
13151 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13152 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13154 static bool
13155 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
13157 enum tree_code code = TREE_CODE (t);
13158 if (TYPE_UNSIGNED (TREE_TYPE (t)))
13159 return true;
13161 switch (code)
13163 case TARGET_EXPR:
13165 tree temp = TARGET_EXPR_SLOT (t);
13166 t = TARGET_EXPR_INITIAL (t);
13168 /* If the initializer is non-void, then it's a normal expression
13169 that will be assigned to the slot. */
13170 if (!VOID_TYPE_P (t))
13171 return RECURSE (t);
13173 /* Otherwise, the initializer sets the slot in some way. One common
13174 way is an assignment statement at the end of the initializer. */
13175 while (1)
13177 if (TREE_CODE (t) == BIND_EXPR)
13178 t = expr_last (BIND_EXPR_BODY (t));
13179 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
13180 || TREE_CODE (t) == TRY_CATCH_EXPR)
13181 t = expr_last (TREE_OPERAND (t, 0));
13182 else if (TREE_CODE (t) == STATEMENT_LIST)
13183 t = expr_last (t);
13184 else
13185 break;
13187 if (TREE_CODE (t) == MODIFY_EXPR
13188 && TREE_OPERAND (t, 0) == temp)
13189 return RECURSE (TREE_OPERAND (t, 1));
13191 return false;
13194 case CALL_EXPR:
13196 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
13197 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
13199 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
13200 get_call_combined_fn (t),
13201 arg0,
13202 arg1,
13203 strict_overflow_p, depth);
13205 case COMPOUND_EXPR:
13206 case MODIFY_EXPR:
13207 return RECURSE (TREE_OPERAND (t, 1));
13209 case BIND_EXPR:
13210 return RECURSE (expr_last (TREE_OPERAND (t, 1)));
13212 case SAVE_EXPR:
13213 return RECURSE (TREE_OPERAND (t, 0));
13215 default:
13216 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
13220 #undef RECURSE
13221 #undef tree_expr_nonnegative_warnv_p
13223 /* Return true if T is known to be non-negative. If the return
13224 value is based on the assumption that signed overflow is undefined,
13225 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13226 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13228 bool
13229 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
13231 enum tree_code code;
13232 if (t == error_mark_node)
13233 return false;
13235 code = TREE_CODE (t);
13236 switch (TREE_CODE_CLASS (code))
13238 case tcc_binary:
13239 case tcc_comparison:
13240 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13241 TREE_TYPE (t),
13242 TREE_OPERAND (t, 0),
13243 TREE_OPERAND (t, 1),
13244 strict_overflow_p, depth);
13246 case tcc_unary:
13247 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13248 TREE_TYPE (t),
13249 TREE_OPERAND (t, 0),
13250 strict_overflow_p, depth);
13252 case tcc_constant:
13253 case tcc_declaration:
13254 case tcc_reference:
13255 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
13257 default:
13258 break;
13261 switch (code)
13263 case TRUTH_AND_EXPR:
13264 case TRUTH_OR_EXPR:
13265 case TRUTH_XOR_EXPR:
13266 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13267 TREE_TYPE (t),
13268 TREE_OPERAND (t, 0),
13269 TREE_OPERAND (t, 1),
13270 strict_overflow_p, depth);
13271 case TRUTH_NOT_EXPR:
13272 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13273 TREE_TYPE (t),
13274 TREE_OPERAND (t, 0),
13275 strict_overflow_p, depth);
13277 case COND_EXPR:
13278 case CONSTRUCTOR:
13279 case OBJ_TYPE_REF:
13280 case ASSERT_EXPR:
13281 case ADDR_EXPR:
13282 case WITH_SIZE_EXPR:
13283 case SSA_NAME:
13284 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
13286 default:
13287 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p, depth);
13291 /* Return true if `t' is known to be non-negative. Handle warnings
13292 about undefined signed overflow. */
13294 bool
13295 tree_expr_nonnegative_p (tree t)
13297 bool ret, strict_overflow_p;
13299 strict_overflow_p = false;
13300 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
13301 if (strict_overflow_p)
13302 fold_overflow_warning (("assuming signed overflow does not occur when "
13303 "determining that expression is always "
13304 "non-negative"),
13305 WARN_STRICT_OVERFLOW_MISC);
13306 return ret;
13310 /* Return true when (CODE OP0) is an address and is known to be nonzero.
13311 For floating point we further ensure that T is not denormal.
13312 Similar logic is present in nonzero_address in rtlanal.h.
13314 If the return value is based on the assumption that signed overflow
13315 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13316 change *STRICT_OVERFLOW_P. */
13318 bool
13319 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
13320 bool *strict_overflow_p)
13322 switch (code)
13324 case ABS_EXPR:
13325 return tree_expr_nonzero_warnv_p (op0,
13326 strict_overflow_p);
13328 case NOP_EXPR:
13330 tree inner_type = TREE_TYPE (op0);
13331 tree outer_type = type;
13333 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
13334 && tree_expr_nonzero_warnv_p (op0,
13335 strict_overflow_p));
13337 break;
13339 case NON_LVALUE_EXPR:
13340 return tree_expr_nonzero_warnv_p (op0,
13341 strict_overflow_p);
13343 default:
13344 break;
13347 return false;
13350 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
13351 For floating point we further ensure that T is not denormal.
13352 Similar logic is present in nonzero_address in rtlanal.h.
13354 If the return value is based on the assumption that signed overflow
13355 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13356 change *STRICT_OVERFLOW_P. */
13358 bool
13359 tree_binary_nonzero_warnv_p (enum tree_code code,
13360 tree type,
13361 tree op0,
13362 tree op1, bool *strict_overflow_p)
13364 bool sub_strict_overflow_p;
13365 switch (code)
13367 case POINTER_PLUS_EXPR:
13368 case PLUS_EXPR:
13369 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type))
13371 /* With the presence of negative values it is hard
13372 to say something. */
13373 sub_strict_overflow_p = false;
13374 if (!tree_expr_nonnegative_warnv_p (op0,
13375 &sub_strict_overflow_p)
13376 || !tree_expr_nonnegative_warnv_p (op1,
13377 &sub_strict_overflow_p))
13378 return false;
13379 /* One of operands must be positive and the other non-negative. */
13380 /* We don't set *STRICT_OVERFLOW_P here: even if this value
13381 overflows, on a twos-complement machine the sum of two
13382 nonnegative numbers can never be zero. */
13383 return (tree_expr_nonzero_warnv_p (op0,
13384 strict_overflow_p)
13385 || tree_expr_nonzero_warnv_p (op1,
13386 strict_overflow_p));
13388 break;
13390 case MULT_EXPR:
13391 if (TYPE_OVERFLOW_UNDEFINED (type))
13393 if (tree_expr_nonzero_warnv_p (op0,
13394 strict_overflow_p)
13395 && tree_expr_nonzero_warnv_p (op1,
13396 strict_overflow_p))
13398 *strict_overflow_p = true;
13399 return true;
13402 break;
13404 case MIN_EXPR:
13405 sub_strict_overflow_p = false;
13406 if (tree_expr_nonzero_warnv_p (op0,
13407 &sub_strict_overflow_p)
13408 && tree_expr_nonzero_warnv_p (op1,
13409 &sub_strict_overflow_p))
13411 if (sub_strict_overflow_p)
13412 *strict_overflow_p = true;
13414 break;
13416 case MAX_EXPR:
13417 sub_strict_overflow_p = false;
13418 if (tree_expr_nonzero_warnv_p (op0,
13419 &sub_strict_overflow_p))
13421 if (sub_strict_overflow_p)
13422 *strict_overflow_p = true;
13424 /* When both operands are nonzero, then MAX must be too. */
13425 if (tree_expr_nonzero_warnv_p (op1,
13426 strict_overflow_p))
13427 return true;
13429 /* MAX where operand 0 is positive is positive. */
13430 return tree_expr_nonnegative_warnv_p (op0,
13431 strict_overflow_p);
13433 /* MAX where operand 1 is positive is positive. */
13434 else if (tree_expr_nonzero_warnv_p (op1,
13435 &sub_strict_overflow_p)
13436 && tree_expr_nonnegative_warnv_p (op1,
13437 &sub_strict_overflow_p))
13439 if (sub_strict_overflow_p)
13440 *strict_overflow_p = true;
13441 return true;
13443 break;
13445 case BIT_IOR_EXPR:
13446 return (tree_expr_nonzero_warnv_p (op1,
13447 strict_overflow_p)
13448 || tree_expr_nonzero_warnv_p (op0,
13449 strict_overflow_p));
13451 default:
13452 break;
13455 return false;
13458 /* Return true when T is an address and is known to be nonzero.
13459 For floating point we further ensure that T is not denormal.
13460 Similar logic is present in nonzero_address in rtlanal.h.
13462 If the return value is based on the assumption that signed overflow
13463 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13464 change *STRICT_OVERFLOW_P. */
13466 bool
13467 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
13469 bool sub_strict_overflow_p;
13470 switch (TREE_CODE (t))
13472 case INTEGER_CST:
13473 return !integer_zerop (t);
13475 case ADDR_EXPR:
13477 tree base = TREE_OPERAND (t, 0);
13479 if (!DECL_P (base))
13480 base = get_base_address (base);
13482 if (base && TREE_CODE (base) == TARGET_EXPR)
13483 base = TARGET_EXPR_SLOT (base);
13485 if (!base)
13486 return false;
13488 /* For objects in symbol table check if we know they are non-zero.
13489 Don't do anything for variables and functions before symtab is built;
13490 it is quite possible that they will be declared weak later. */
13491 int nonzero_addr = maybe_nonzero_address (base);
13492 if (nonzero_addr >= 0)
13493 return nonzero_addr;
13495 /* Constants are never weak. */
13496 if (CONSTANT_CLASS_P (base))
13497 return true;
13499 return false;
13502 case COND_EXPR:
13503 sub_strict_overflow_p = false;
13504 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
13505 &sub_strict_overflow_p)
13506 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
13507 &sub_strict_overflow_p))
13509 if (sub_strict_overflow_p)
13510 *strict_overflow_p = true;
13511 return true;
13513 break;
13515 case SSA_NAME:
13516 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
13517 break;
13518 return expr_not_equal_to (t, wi::zero (TYPE_PRECISION (TREE_TYPE (t))));
13520 default:
13521 break;
13523 return false;
13526 #define integer_valued_real_p(X) \
13527 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
13529 #define RECURSE(X) \
13530 ((integer_valued_real_p) (X, depth + 1))
13532 /* Return true if the floating point result of (CODE OP0) has an
13533 integer value. We also allow +Inf, -Inf and NaN to be considered
13534 integer values. Return false for signaling NaN.
13536 DEPTH is the current nesting depth of the query. */
13538 bool
13539 integer_valued_real_unary_p (tree_code code, tree op0, int depth)
13541 switch (code)
13543 case FLOAT_EXPR:
13544 return true;
13546 case ABS_EXPR:
13547 return RECURSE (op0);
13549 CASE_CONVERT:
13551 tree type = TREE_TYPE (op0);
13552 if (TREE_CODE (type) == INTEGER_TYPE)
13553 return true;
13554 if (TREE_CODE (type) == REAL_TYPE)
13555 return RECURSE (op0);
13556 break;
13559 default:
13560 break;
13562 return false;
13565 /* Return true if the floating point result of (CODE OP0 OP1) has an
13566 integer value. We also allow +Inf, -Inf and NaN to be considered
13567 integer values. Return false for signaling NaN.
13569 DEPTH is the current nesting depth of the query. */
13571 bool
13572 integer_valued_real_binary_p (tree_code code, tree op0, tree op1, int depth)
13574 switch (code)
13576 case PLUS_EXPR:
13577 case MINUS_EXPR:
13578 case MULT_EXPR:
13579 case MIN_EXPR:
13580 case MAX_EXPR:
13581 return RECURSE (op0) && RECURSE (op1);
13583 default:
13584 break;
13586 return false;
13589 /* Return true if the floating point result of calling FNDECL with arguments
13590 ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be
13591 considered integer values. Return false for signaling NaN. If FNDECL
13592 takes fewer than 2 arguments, the remaining ARGn are null.
13594 DEPTH is the current nesting depth of the query. */
13596 bool
13597 integer_valued_real_call_p (combined_fn fn, tree arg0, tree arg1, int depth)
13599 switch (fn)
13601 CASE_CFN_CEIL:
13602 CASE_CFN_CEIL_FN:
13603 CASE_CFN_FLOOR:
13604 CASE_CFN_FLOOR_FN:
13605 CASE_CFN_NEARBYINT:
13606 CASE_CFN_NEARBYINT_FN:
13607 CASE_CFN_RINT:
13608 CASE_CFN_RINT_FN:
13609 CASE_CFN_ROUND:
13610 CASE_CFN_ROUND_FN:
13611 CASE_CFN_TRUNC:
13612 CASE_CFN_TRUNC_FN:
13613 return true;
13615 CASE_CFN_FMIN:
13616 CASE_CFN_FMIN_FN:
13617 CASE_CFN_FMAX:
13618 CASE_CFN_FMAX_FN:
13619 return RECURSE (arg0) && RECURSE (arg1);
13621 default:
13622 break;
13624 return false;
13627 /* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS)
13628 has an integer value. We also allow +Inf, -Inf and NaN to be
13629 considered integer values. Return false for signaling NaN.
13631 DEPTH is the current nesting depth of the query. */
13633 bool
13634 integer_valued_real_single_p (tree t, int depth)
13636 switch (TREE_CODE (t))
13638 case REAL_CST:
13639 return real_isinteger (TREE_REAL_CST_PTR (t), TYPE_MODE (TREE_TYPE (t)));
13641 case COND_EXPR:
13642 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
13644 case SSA_NAME:
13645 /* Limit the depth of recursion to avoid quadratic behavior.
13646 This is expected to catch almost all occurrences in practice.
13647 If this code misses important cases that unbounded recursion
13648 would not, passes that need this information could be revised
13649 to provide it through dataflow propagation. */
13650 return (!name_registered_for_update_p (t)
13651 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH)
13652 && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t),
13653 depth));
13655 default:
13656 break;
13658 return false;
13661 /* Return true if the floating point expression T (a GIMPLE_INVALID_RHS)
13662 has an integer value. We also allow +Inf, -Inf and NaN to be
13663 considered integer values. Return false for signaling NaN.
13665 DEPTH is the current nesting depth of the query. */
13667 static bool
13668 integer_valued_real_invalid_p (tree t, int depth)
13670 switch (TREE_CODE (t))
13672 case COMPOUND_EXPR:
13673 case MODIFY_EXPR:
13674 case BIND_EXPR:
13675 return RECURSE (TREE_OPERAND (t, 1));
13677 case SAVE_EXPR:
13678 return RECURSE (TREE_OPERAND (t, 0));
13680 default:
13681 break;
13683 return false;
13686 #undef RECURSE
13687 #undef integer_valued_real_p
13689 /* Return true if the floating point expression T has an integer value.
13690 We also allow +Inf, -Inf and NaN to be considered integer values.
13691 Return false for signaling NaN.
13693 DEPTH is the current nesting depth of the query. */
13695 bool
13696 integer_valued_real_p (tree t, int depth)
13698 if (t == error_mark_node)
13699 return false;
13701 tree_code code = TREE_CODE (t);
13702 switch (TREE_CODE_CLASS (code))
13704 case tcc_binary:
13705 case tcc_comparison:
13706 return integer_valued_real_binary_p (code, TREE_OPERAND (t, 0),
13707 TREE_OPERAND (t, 1), depth);
13709 case tcc_unary:
13710 return integer_valued_real_unary_p (code, TREE_OPERAND (t, 0), depth);
13712 case tcc_constant:
13713 case tcc_declaration:
13714 case tcc_reference:
13715 return integer_valued_real_single_p (t, depth);
13717 default:
13718 break;
13721 switch (code)
13723 case COND_EXPR:
13724 case SSA_NAME:
13725 return integer_valued_real_single_p (t, depth);
13727 case CALL_EXPR:
13729 tree arg0 = (call_expr_nargs (t) > 0
13730 ? CALL_EXPR_ARG (t, 0)
13731 : NULL_TREE);
13732 tree arg1 = (call_expr_nargs (t) > 1
13733 ? CALL_EXPR_ARG (t, 1)
13734 : NULL_TREE);
13735 return integer_valued_real_call_p (get_call_combined_fn (t),
13736 arg0, arg1, depth);
13739 default:
13740 return integer_valued_real_invalid_p (t, depth);
13744 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
13745 attempt to fold the expression to a constant without modifying TYPE,
13746 OP0 or OP1.
13748 If the expression could be simplified to a constant, then return
13749 the constant. If the expression would not be simplified to a
13750 constant, then return NULL_TREE. */
13752 tree
13753 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
13755 tree tem = fold_binary (code, type, op0, op1);
13756 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13759 /* Given the components of a unary expression CODE, TYPE and OP0,
13760 attempt to fold the expression to a constant without modifying
13761 TYPE or OP0.
13763 If the expression could be simplified to a constant, then return
13764 the constant. If the expression would not be simplified to a
13765 constant, then return NULL_TREE. */
13767 tree
13768 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
13770 tree tem = fold_unary (code, type, op0);
13771 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13774 /* If EXP represents referencing an element in a constant string
13775 (either via pointer arithmetic or array indexing), return the
13776 tree representing the value accessed, otherwise return NULL. */
13778 tree
13779 fold_read_from_constant_string (tree exp)
13781 if ((TREE_CODE (exp) == INDIRECT_REF
13782 || TREE_CODE (exp) == ARRAY_REF)
13783 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
13785 tree exp1 = TREE_OPERAND (exp, 0);
13786 tree index;
13787 tree string;
13788 location_t loc = EXPR_LOCATION (exp);
13790 if (TREE_CODE (exp) == INDIRECT_REF)
13791 string = string_constant (exp1, &index);
13792 else
13794 tree low_bound = array_ref_low_bound (exp);
13795 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1));
13797 /* Optimize the special-case of a zero lower bound.
13799 We convert the low_bound to sizetype to avoid some problems
13800 with constant folding. (E.g. suppose the lower bound is 1,
13801 and its mode is QI. Without the conversion,l (ARRAY
13802 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
13803 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
13804 if (! integer_zerop (low_bound))
13805 index = size_diffop_loc (loc, index,
13806 fold_convert_loc (loc, sizetype, low_bound));
13808 string = exp1;
13811 scalar_int_mode char_mode;
13812 if (string
13813 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
13814 && TREE_CODE (string) == STRING_CST
13815 && TREE_CODE (index) == INTEGER_CST
13816 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
13817 && is_int_mode (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))),
13818 &char_mode)
13819 && GET_MODE_SIZE (char_mode) == 1)
13820 return build_int_cst_type (TREE_TYPE (exp),
13821 (TREE_STRING_POINTER (string)
13822 [TREE_INT_CST_LOW (index)]));
13824 return NULL;
13827 /* Return the tree for neg (ARG0) when ARG0 is known to be either
13828 an integer constant, real, or fixed-point constant.
13830 TYPE is the type of the result. */
13832 static tree
13833 fold_negate_const (tree arg0, tree type)
13835 tree t = NULL_TREE;
13837 switch (TREE_CODE (arg0))
13839 case REAL_CST:
13840 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13841 break;
13843 case FIXED_CST:
13845 FIXED_VALUE_TYPE f;
13846 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
13847 &(TREE_FIXED_CST (arg0)), NULL,
13848 TYPE_SATURATING (type));
13849 t = build_fixed (type, f);
13850 /* Propagate overflow flags. */
13851 if (overflow_p | TREE_OVERFLOW (arg0))
13852 TREE_OVERFLOW (t) = 1;
13853 break;
13856 default:
13857 if (poly_int_tree_p (arg0))
13859 wi::overflow_type overflow;
13860 poly_wide_int res = wi::neg (wi::to_poly_wide (arg0), &overflow);
13861 t = force_fit_type (type, res, 1,
13862 (overflow && ! TYPE_UNSIGNED (type))
13863 || TREE_OVERFLOW (arg0));
13864 break;
13867 gcc_unreachable ();
13870 return t;
13873 /* Return the tree for abs (ARG0) when ARG0 is known to be either
13874 an integer constant or real constant.
13876 TYPE is the type of the result. */
13878 tree
13879 fold_abs_const (tree arg0, tree type)
13881 tree t = NULL_TREE;
13883 switch (TREE_CODE (arg0))
13885 case INTEGER_CST:
13887 /* If the value is unsigned or non-negative, then the absolute value
13888 is the same as the ordinary value. */
13889 wide_int val = wi::to_wide (arg0);
13890 wi::overflow_type overflow = wi::OVF_NONE;
13891 if (!wi::neg_p (val, TYPE_SIGN (TREE_TYPE (arg0))))
13894 /* If the value is negative, then the absolute value is
13895 its negation. */
13896 else
13897 val = wi::neg (val, &overflow);
13899 /* Force to the destination type, set TREE_OVERFLOW for signed
13900 TYPE only. */
13901 t = force_fit_type (type, val, 1, overflow | TREE_OVERFLOW (arg0));
13903 break;
13905 case REAL_CST:
13906 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
13907 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13908 else
13909 t = arg0;
13910 break;
13912 default:
13913 gcc_unreachable ();
13916 return t;
13919 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
13920 constant. TYPE is the type of the result. */
13922 static tree
13923 fold_not_const (const_tree arg0, tree type)
13925 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
13927 return force_fit_type (type, ~wi::to_wide (arg0), 0, TREE_OVERFLOW (arg0));
13930 /* Given CODE, a relational operator, the target type, TYPE and two
13931 constant operands OP0 and OP1, return the result of the
13932 relational operation. If the result is not a compile time
13933 constant, then return NULL_TREE. */
13935 static tree
13936 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
13938 int result, invert;
13940 /* From here on, the only cases we handle are when the result is
13941 known to be a constant. */
13943 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
13945 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
13946 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
13948 /* Handle the cases where either operand is a NaN. */
13949 if (real_isnan (c0) || real_isnan (c1))
13951 switch (code)
13953 case EQ_EXPR:
13954 case ORDERED_EXPR:
13955 result = 0;
13956 break;
13958 case NE_EXPR:
13959 case UNORDERED_EXPR:
13960 case UNLT_EXPR:
13961 case UNLE_EXPR:
13962 case UNGT_EXPR:
13963 case UNGE_EXPR:
13964 case UNEQ_EXPR:
13965 result = 1;
13966 break;
13968 case LT_EXPR:
13969 case LE_EXPR:
13970 case GT_EXPR:
13971 case GE_EXPR:
13972 case LTGT_EXPR:
13973 if (flag_trapping_math)
13974 return NULL_TREE;
13975 result = 0;
13976 break;
13978 default:
13979 gcc_unreachable ();
13982 return constant_boolean_node (result, type);
13985 return constant_boolean_node (real_compare (code, c0, c1), type);
13988 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
13990 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
13991 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
13992 return constant_boolean_node (fixed_compare (code, c0, c1), type);
13995 /* Handle equality/inequality of complex constants. */
13996 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
13998 tree rcond = fold_relational_const (code, type,
13999 TREE_REALPART (op0),
14000 TREE_REALPART (op1));
14001 tree icond = fold_relational_const (code, type,
14002 TREE_IMAGPART (op0),
14003 TREE_IMAGPART (op1));
14004 if (code == EQ_EXPR)
14005 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
14006 else if (code == NE_EXPR)
14007 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
14008 else
14009 return NULL_TREE;
14012 if (TREE_CODE (op0) == VECTOR_CST && TREE_CODE (op1) == VECTOR_CST)
14014 if (!VECTOR_TYPE_P (type))
14016 /* Have vector comparison with scalar boolean result. */
14017 gcc_assert ((code == EQ_EXPR || code == NE_EXPR)
14018 && known_eq (VECTOR_CST_NELTS (op0),
14019 VECTOR_CST_NELTS (op1)));
14020 unsigned HOST_WIDE_INT nunits;
14021 if (!VECTOR_CST_NELTS (op0).is_constant (&nunits))
14022 return NULL_TREE;
14023 for (unsigned i = 0; i < nunits; i++)
14025 tree elem0 = VECTOR_CST_ELT (op0, i);
14026 tree elem1 = VECTOR_CST_ELT (op1, i);
14027 tree tmp = fold_relational_const (code, type, elem0, elem1);
14028 if (tmp == NULL_TREE)
14029 return NULL_TREE;
14030 if (integer_zerop (tmp))
14031 return constant_boolean_node (false, type);
14033 return constant_boolean_node (true, type);
14035 tree_vector_builder elts;
14036 if (!elts.new_binary_operation (type, op0, op1, false))
14037 return NULL_TREE;
14038 unsigned int count = elts.encoded_nelts ();
14039 for (unsigned i = 0; i < count; i++)
14041 tree elem_type = TREE_TYPE (type);
14042 tree elem0 = VECTOR_CST_ELT (op0, i);
14043 tree elem1 = VECTOR_CST_ELT (op1, i);
14045 tree tem = fold_relational_const (code, elem_type,
14046 elem0, elem1);
14048 if (tem == NULL_TREE)
14049 return NULL_TREE;
14051 elts.quick_push (build_int_cst (elem_type,
14052 integer_zerop (tem) ? 0 : -1));
14055 return elts.build ();
14058 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
14060 To compute GT, swap the arguments and do LT.
14061 To compute GE, do LT and invert the result.
14062 To compute LE, swap the arguments, do LT and invert the result.
14063 To compute NE, do EQ and invert the result.
14065 Therefore, the code below must handle only EQ and LT. */
14067 if (code == LE_EXPR || code == GT_EXPR)
14069 std::swap (op0, op1);
14070 code = swap_tree_comparison (code);
14073 /* Note that it is safe to invert for real values here because we
14074 have already handled the one case that it matters. */
14076 invert = 0;
14077 if (code == NE_EXPR || code == GE_EXPR)
14079 invert = 1;
14080 code = invert_tree_comparison (code, false);
14083 /* Compute a result for LT or EQ if args permit;
14084 Otherwise return T. */
14085 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
14087 if (code == EQ_EXPR)
14088 result = tree_int_cst_equal (op0, op1);
14089 else
14090 result = tree_int_cst_lt (op0, op1);
14092 else
14093 return NULL_TREE;
14095 if (invert)
14096 result ^= 1;
14097 return constant_boolean_node (result, type);
14100 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
14101 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
14102 itself. */
14104 tree
14105 fold_build_cleanup_point_expr (tree type, tree expr)
14107 /* If the expression does not have side effects then we don't have to wrap
14108 it with a cleanup point expression. */
14109 if (!TREE_SIDE_EFFECTS (expr))
14110 return expr;
14112 /* If the expression is a return, check to see if the expression inside the
14113 return has no side effects or the right hand side of the modify expression
14114 inside the return. If either don't have side effects set we don't need to
14115 wrap the expression in a cleanup point expression. Note we don't check the
14116 left hand side of the modify because it should always be a return decl. */
14117 if (TREE_CODE (expr) == RETURN_EXPR)
14119 tree op = TREE_OPERAND (expr, 0);
14120 if (!op || !TREE_SIDE_EFFECTS (op))
14121 return expr;
14122 op = TREE_OPERAND (op, 1);
14123 if (!TREE_SIDE_EFFECTS (op))
14124 return expr;
14127 return build1_loc (EXPR_LOCATION (expr), CLEANUP_POINT_EXPR, type, expr);
14130 /* Given a pointer value OP0 and a type TYPE, return a simplified version
14131 of an indirection through OP0, or NULL_TREE if no simplification is
14132 possible. */
14134 tree
14135 fold_indirect_ref_1 (location_t loc, tree type, tree op0)
14137 tree sub = op0;
14138 tree subtype;
14139 poly_uint64 const_op01;
14141 STRIP_NOPS (sub);
14142 subtype = TREE_TYPE (sub);
14143 if (!POINTER_TYPE_P (subtype)
14144 || TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (op0)))
14145 return NULL_TREE;
14147 if (TREE_CODE (sub) == ADDR_EXPR)
14149 tree op = TREE_OPERAND (sub, 0);
14150 tree optype = TREE_TYPE (op);
14152 /* *&CONST_DECL -> to the value of the const decl. */
14153 if (TREE_CODE (op) == CONST_DECL)
14154 return DECL_INITIAL (op);
14155 /* *&p => p; make sure to handle *&"str"[cst] here. */
14156 if (type == optype)
14158 tree fop = fold_read_from_constant_string (op);
14159 if (fop)
14160 return fop;
14161 else
14162 return op;
14164 /* *(foo *)&fooarray => fooarray[0] */
14165 else if (TREE_CODE (optype) == ARRAY_TYPE
14166 && type == TREE_TYPE (optype)
14167 && (!in_gimple_form
14168 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14170 tree type_domain = TYPE_DOMAIN (optype);
14171 tree min_val = size_zero_node;
14172 if (type_domain && TYPE_MIN_VALUE (type_domain))
14173 min_val = TYPE_MIN_VALUE (type_domain);
14174 if (in_gimple_form
14175 && TREE_CODE (min_val) != INTEGER_CST)
14176 return NULL_TREE;
14177 return build4_loc (loc, ARRAY_REF, type, op, min_val,
14178 NULL_TREE, NULL_TREE);
14180 /* *(foo *)&complexfoo => __real__ complexfoo */
14181 else if (TREE_CODE (optype) == COMPLEX_TYPE
14182 && type == TREE_TYPE (optype))
14183 return fold_build1_loc (loc, REALPART_EXPR, type, op);
14184 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
14185 else if (VECTOR_TYPE_P (optype)
14186 && type == TREE_TYPE (optype))
14188 tree part_width = TYPE_SIZE (type);
14189 tree index = bitsize_int (0);
14190 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width,
14191 index);
14195 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
14196 && poly_int_tree_p (TREE_OPERAND (sub, 1), &const_op01))
14198 tree op00 = TREE_OPERAND (sub, 0);
14199 tree op01 = TREE_OPERAND (sub, 1);
14201 STRIP_NOPS (op00);
14202 if (TREE_CODE (op00) == ADDR_EXPR)
14204 tree op00type;
14205 op00 = TREE_OPERAND (op00, 0);
14206 op00type = TREE_TYPE (op00);
14208 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
14209 if (VECTOR_TYPE_P (op00type)
14210 && type == TREE_TYPE (op00type)
14211 /* POINTER_PLUS_EXPR second operand is sizetype, unsigned,
14212 but we want to treat offsets with MSB set as negative.
14213 For the code below negative offsets are invalid and
14214 TYPE_SIZE of the element is something unsigned, so
14215 check whether op01 fits into poly_int64, which implies
14216 it is from 0 to INTTYPE_MAXIMUM (HOST_WIDE_INT), and
14217 then just use poly_uint64 because we want to treat the
14218 value as unsigned. */
14219 && tree_fits_poly_int64_p (op01))
14221 tree part_width = TYPE_SIZE (type);
14222 poly_uint64 max_offset
14223 = (tree_to_uhwi (part_width) / BITS_PER_UNIT
14224 * TYPE_VECTOR_SUBPARTS (op00type));
14225 if (known_lt (const_op01, max_offset))
14227 tree index = bitsize_int (const_op01 * BITS_PER_UNIT);
14228 return fold_build3_loc (loc,
14229 BIT_FIELD_REF, type, op00,
14230 part_width, index);
14233 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
14234 else if (TREE_CODE (op00type) == COMPLEX_TYPE
14235 && type == TREE_TYPE (op00type))
14237 if (known_eq (wi::to_poly_offset (TYPE_SIZE_UNIT (type)),
14238 const_op01))
14239 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00);
14241 /* ((foo *)&fooarray)[1] => fooarray[1] */
14242 else if (TREE_CODE (op00type) == ARRAY_TYPE
14243 && type == TREE_TYPE (op00type))
14245 tree type_domain = TYPE_DOMAIN (op00type);
14246 tree min_val = size_zero_node;
14247 if (type_domain && TYPE_MIN_VALUE (type_domain))
14248 min_val = TYPE_MIN_VALUE (type_domain);
14249 poly_uint64 type_size, index;
14250 if (poly_int_tree_p (min_val)
14251 && poly_int_tree_p (TYPE_SIZE_UNIT (type), &type_size)
14252 && multiple_p (const_op01, type_size, &index))
14254 poly_offset_int off = index + wi::to_poly_offset (min_val);
14255 op01 = wide_int_to_tree (sizetype, off);
14256 return build4_loc (loc, ARRAY_REF, type, op00, op01,
14257 NULL_TREE, NULL_TREE);
14263 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
14264 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
14265 && type == TREE_TYPE (TREE_TYPE (subtype))
14266 && (!in_gimple_form
14267 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14269 tree type_domain;
14270 tree min_val = size_zero_node;
14271 sub = build_fold_indirect_ref_loc (loc, sub);
14272 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
14273 if (type_domain && TYPE_MIN_VALUE (type_domain))
14274 min_val = TYPE_MIN_VALUE (type_domain);
14275 if (in_gimple_form
14276 && TREE_CODE (min_val) != INTEGER_CST)
14277 return NULL_TREE;
14278 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE,
14279 NULL_TREE);
14282 return NULL_TREE;
14285 /* Builds an expression for an indirection through T, simplifying some
14286 cases. */
14288 tree
14289 build_fold_indirect_ref_loc (location_t loc, tree t)
14291 tree type = TREE_TYPE (TREE_TYPE (t));
14292 tree sub = fold_indirect_ref_1 (loc, type, t);
14294 if (sub)
14295 return sub;
14297 return build1_loc (loc, INDIRECT_REF, type, t);
14300 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14302 tree
14303 fold_indirect_ref_loc (location_t loc, tree t)
14305 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0));
14307 if (sub)
14308 return sub;
14309 else
14310 return t;
14313 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14314 whose result is ignored. The type of the returned tree need not be
14315 the same as the original expression. */
14317 tree
14318 fold_ignored_result (tree t)
14320 if (!TREE_SIDE_EFFECTS (t))
14321 return integer_zero_node;
14323 for (;;)
14324 switch (TREE_CODE_CLASS (TREE_CODE (t)))
14326 case tcc_unary:
14327 t = TREE_OPERAND (t, 0);
14328 break;
14330 case tcc_binary:
14331 case tcc_comparison:
14332 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14333 t = TREE_OPERAND (t, 0);
14334 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
14335 t = TREE_OPERAND (t, 1);
14336 else
14337 return t;
14338 break;
14340 case tcc_expression:
14341 switch (TREE_CODE (t))
14343 case COMPOUND_EXPR:
14344 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14345 return t;
14346 t = TREE_OPERAND (t, 0);
14347 break;
14349 case COND_EXPR:
14350 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
14351 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
14352 return t;
14353 t = TREE_OPERAND (t, 0);
14354 break;
14356 default:
14357 return t;
14359 break;
14361 default:
14362 return t;
14366 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
14368 tree
14369 round_up_loc (location_t loc, tree value, unsigned int divisor)
14371 tree div = NULL_TREE;
14373 if (divisor == 1)
14374 return value;
14376 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14377 have to do anything. Only do this when we are not given a const,
14378 because in that case, this check is more expensive than just
14379 doing it. */
14380 if (TREE_CODE (value) != INTEGER_CST)
14382 div = build_int_cst (TREE_TYPE (value), divisor);
14384 if (multiple_of_p (TREE_TYPE (value), value, div))
14385 return value;
14388 /* If divisor is a power of two, simplify this to bit manipulation. */
14389 if (pow2_or_zerop (divisor))
14391 if (TREE_CODE (value) == INTEGER_CST)
14393 wide_int val = wi::to_wide (value);
14394 bool overflow_p;
14396 if ((val & (divisor - 1)) == 0)
14397 return value;
14399 overflow_p = TREE_OVERFLOW (value);
14400 val += divisor - 1;
14401 val &= (int) -divisor;
14402 if (val == 0)
14403 overflow_p = true;
14405 return force_fit_type (TREE_TYPE (value), val, -1, overflow_p);
14407 else
14409 tree t;
14411 t = build_int_cst (TREE_TYPE (value), divisor - 1);
14412 value = size_binop_loc (loc, PLUS_EXPR, value, t);
14413 t = build_int_cst (TREE_TYPE (value), - (int) divisor);
14414 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14417 else
14419 if (!div)
14420 div = build_int_cst (TREE_TYPE (value), divisor);
14421 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div);
14422 value = size_binop_loc (loc, MULT_EXPR, value, div);
14425 return value;
14428 /* Likewise, but round down. */
14430 tree
14431 round_down_loc (location_t loc, tree value, int divisor)
14433 tree div = NULL_TREE;
14435 gcc_assert (divisor > 0);
14436 if (divisor == 1)
14437 return value;
14439 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14440 have to do anything. Only do this when we are not given a const,
14441 because in that case, this check is more expensive than just
14442 doing it. */
14443 if (TREE_CODE (value) != INTEGER_CST)
14445 div = build_int_cst (TREE_TYPE (value), divisor);
14447 if (multiple_of_p (TREE_TYPE (value), value, div))
14448 return value;
14451 /* If divisor is a power of two, simplify this to bit manipulation. */
14452 if (pow2_or_zerop (divisor))
14454 tree t;
14456 t = build_int_cst (TREE_TYPE (value), -divisor);
14457 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14459 else
14461 if (!div)
14462 div = build_int_cst (TREE_TYPE (value), divisor);
14463 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div);
14464 value = size_binop_loc (loc, MULT_EXPR, value, div);
14467 return value;
14470 /* Returns the pointer to the base of the object addressed by EXP and
14471 extracts the information about the offset of the access, storing it
14472 to PBITPOS and POFFSET. */
14474 static tree
14475 split_address_to_core_and_offset (tree exp,
14476 poly_int64_pod *pbitpos, tree *poffset)
14478 tree core;
14479 machine_mode mode;
14480 int unsignedp, reversep, volatilep;
14481 poly_int64 bitsize;
14482 location_t loc = EXPR_LOCATION (exp);
14484 if (TREE_CODE (exp) == ADDR_EXPR)
14486 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
14487 poffset, &mode, &unsignedp, &reversep,
14488 &volatilep);
14489 core = build_fold_addr_expr_loc (loc, core);
14491 else if (TREE_CODE (exp) == POINTER_PLUS_EXPR)
14493 core = TREE_OPERAND (exp, 0);
14494 STRIP_NOPS (core);
14495 *pbitpos = 0;
14496 *poffset = TREE_OPERAND (exp, 1);
14497 if (poly_int_tree_p (*poffset))
14499 poly_offset_int tem
14500 = wi::sext (wi::to_poly_offset (*poffset),
14501 TYPE_PRECISION (TREE_TYPE (*poffset)));
14502 tem <<= LOG2_BITS_PER_UNIT;
14503 if (tem.to_shwi (pbitpos))
14504 *poffset = NULL_TREE;
14507 else
14509 core = exp;
14510 *pbitpos = 0;
14511 *poffset = NULL_TREE;
14514 return core;
14517 /* Returns true if addresses of E1 and E2 differ by a constant, false
14518 otherwise. If they do, E1 - E2 is stored in *DIFF. */
14520 bool
14521 ptr_difference_const (tree e1, tree e2, poly_int64_pod *diff)
14523 tree core1, core2;
14524 poly_int64 bitpos1, bitpos2;
14525 tree toffset1, toffset2, tdiff, type;
14527 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
14528 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
14530 poly_int64 bytepos1, bytepos2;
14531 if (!multiple_p (bitpos1, BITS_PER_UNIT, &bytepos1)
14532 || !multiple_p (bitpos2, BITS_PER_UNIT, &bytepos2)
14533 || !operand_equal_p (core1, core2, 0))
14534 return false;
14536 if (toffset1 && toffset2)
14538 type = TREE_TYPE (toffset1);
14539 if (type != TREE_TYPE (toffset2))
14540 toffset2 = fold_convert (type, toffset2);
14542 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
14543 if (!cst_and_fits_in_hwi (tdiff))
14544 return false;
14546 *diff = int_cst_value (tdiff);
14548 else if (toffset1 || toffset2)
14550 /* If only one of the offsets is non-constant, the difference cannot
14551 be a constant. */
14552 return false;
14554 else
14555 *diff = 0;
14557 *diff += bytepos1 - bytepos2;
14558 return true;
14561 /* Return OFF converted to a pointer offset type suitable as offset for
14562 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
14563 tree
14564 convert_to_ptrofftype_loc (location_t loc, tree off)
14566 return fold_convert_loc (loc, sizetype, off);
14569 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14570 tree
14571 fold_build_pointer_plus_loc (location_t loc, tree ptr, tree off)
14573 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14574 ptr, convert_to_ptrofftype_loc (loc, off));
14577 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14578 tree
14579 fold_build_pointer_plus_hwi_loc (location_t loc, tree ptr, HOST_WIDE_INT off)
14581 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14582 ptr, size_int (off));
14585 /* Return a pointer P to a NUL-terminated string representing the sequence
14586 of constant characters referred to by SRC (or a subsequence of such
14587 characters within it if SRC is a reference to a string plus some
14588 constant offset). If STRLEN is non-null, store stgrlen(P) in *STRLEN.
14589 If STRSIZE is non-null, store in *STRSIZE the size of the array
14590 the string is stored in; in that case, even though P points to a NUL
14591 terminated string, SRC need not refer to one. This can happen when
14592 SRC refers to a constant character array initialized to all non-NUL
14593 values, as in the C declaration: char a[4] = "1234"; */
14595 const char *
14596 c_getstr (tree src, unsigned HOST_WIDE_INT *strlen /* = NULL */,
14597 unsigned HOST_WIDE_INT *strsize /* = NULL */)
14599 tree offset_node;
14601 if (strlen)
14602 *strlen = 0;
14604 src = string_constant (src, &offset_node);
14605 if (src == 0)
14606 return NULL;
14608 unsigned HOST_WIDE_INT offset = 0;
14609 if (offset_node != NULL_TREE)
14611 if (!tree_fits_uhwi_p (offset_node))
14612 return NULL;
14613 else
14614 offset = tree_to_uhwi (offset_node);
14617 /* STRING_LENGTH is the size of the string literal, including any
14618 embedded NULs. STRING_SIZE is the size of the array the string
14619 literal is stored in. */
14620 unsigned HOST_WIDE_INT string_length = TREE_STRING_LENGTH (src);
14621 unsigned HOST_WIDE_INT string_size = string_length;
14622 tree type = TREE_TYPE (src);
14623 if (tree size = TYPE_SIZE_UNIT (type))
14624 if (tree_fits_shwi_p (size))
14625 string_size = tree_to_uhwi (size);
14627 if (strlen)
14629 /* Compute and store the length of the substring at OFFSET.
14630 All offsets past the initial length refer to null strings. */
14631 if (offset <= string_length)
14632 *strlen = string_length - offset;
14633 else
14634 *strlen = 0;
14637 const char *string = TREE_STRING_POINTER (src);
14639 if (string_length == 0
14640 || offset >= string_size)
14641 return NULL;
14643 if (strsize)
14645 /* Support even constant character arrays that aren't proper
14646 NUL-terminated strings. */
14647 *strsize = string_size;
14649 else if (string[string_length - 1] != '\0')
14651 /* Support only properly NUL-terminated strings but handle
14652 consecutive strings within the same array, such as the six
14653 substrings in "1\0002\0003". */
14654 return NULL;
14657 return offset <= string_length ? string + offset : "";
14660 /* Given a tree T, compute which bits in T may be nonzero. */
14662 wide_int
14663 tree_nonzero_bits (const_tree t)
14665 switch (TREE_CODE (t))
14667 case INTEGER_CST:
14668 return wi::to_wide (t);
14669 case SSA_NAME:
14670 return get_nonzero_bits (t);
14671 case NON_LVALUE_EXPR:
14672 case SAVE_EXPR:
14673 return tree_nonzero_bits (TREE_OPERAND (t, 0));
14674 case BIT_AND_EXPR:
14675 return wi::bit_and (tree_nonzero_bits (TREE_OPERAND (t, 0)),
14676 tree_nonzero_bits (TREE_OPERAND (t, 1)));
14677 case BIT_IOR_EXPR:
14678 case BIT_XOR_EXPR:
14679 return wi::bit_or (tree_nonzero_bits (TREE_OPERAND (t, 0)),
14680 tree_nonzero_bits (TREE_OPERAND (t, 1)));
14681 case COND_EXPR:
14682 return wi::bit_or (tree_nonzero_bits (TREE_OPERAND (t, 1)),
14683 tree_nonzero_bits (TREE_OPERAND (t, 2)));
14684 CASE_CONVERT:
14685 return wide_int::from (tree_nonzero_bits (TREE_OPERAND (t, 0)),
14686 TYPE_PRECISION (TREE_TYPE (t)),
14687 TYPE_SIGN (TREE_TYPE (TREE_OPERAND (t, 0))));
14688 case PLUS_EXPR:
14689 if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
14691 wide_int nzbits1 = tree_nonzero_bits (TREE_OPERAND (t, 0));
14692 wide_int nzbits2 = tree_nonzero_bits (TREE_OPERAND (t, 1));
14693 if (wi::bit_and (nzbits1, nzbits2) == 0)
14694 return wi::bit_or (nzbits1, nzbits2);
14696 break;
14697 case LSHIFT_EXPR:
14698 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
14700 tree type = TREE_TYPE (t);
14701 wide_int nzbits = tree_nonzero_bits (TREE_OPERAND (t, 0));
14702 wide_int arg1 = wi::to_wide (TREE_OPERAND (t, 1),
14703 TYPE_PRECISION (type));
14704 return wi::neg_p (arg1)
14705 ? wi::rshift (nzbits, -arg1, TYPE_SIGN (type))
14706 : wi::lshift (nzbits, arg1);
14708 break;
14709 case RSHIFT_EXPR:
14710 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
14712 tree type = TREE_TYPE (t);
14713 wide_int nzbits = tree_nonzero_bits (TREE_OPERAND (t, 0));
14714 wide_int arg1 = wi::to_wide (TREE_OPERAND (t, 1),
14715 TYPE_PRECISION (type));
14716 return wi::neg_p (arg1)
14717 ? wi::lshift (nzbits, -arg1)
14718 : wi::rshift (nzbits, arg1, TYPE_SIGN (type));
14720 break;
14721 default:
14722 break;
14725 return wi::shwi (-1, TYPE_PRECISION (TREE_TYPE (t)));
14728 #if CHECKING_P
14730 namespace selftest {
14732 /* Helper functions for writing tests of folding trees. */
14734 /* Verify that the binary op (LHS CODE RHS) folds to CONSTANT. */
14736 static void
14737 assert_binop_folds_to_const (tree lhs, enum tree_code code, tree rhs,
14738 tree constant)
14740 ASSERT_EQ (constant, fold_build2 (code, TREE_TYPE (lhs), lhs, rhs));
14743 /* Verify that the binary op (LHS CODE RHS) folds to an NON_LVALUE_EXPR
14744 wrapping WRAPPED_EXPR. */
14746 static void
14747 assert_binop_folds_to_nonlvalue (tree lhs, enum tree_code code, tree rhs,
14748 tree wrapped_expr)
14750 tree result = fold_build2 (code, TREE_TYPE (lhs), lhs, rhs);
14751 ASSERT_NE (wrapped_expr, result);
14752 ASSERT_EQ (NON_LVALUE_EXPR, TREE_CODE (result));
14753 ASSERT_EQ (wrapped_expr, TREE_OPERAND (result, 0));
14756 /* Verify that various arithmetic binary operations are folded
14757 correctly. */
14759 static void
14760 test_arithmetic_folding ()
14762 tree type = integer_type_node;
14763 tree x = create_tmp_var_raw (type, "x");
14764 tree zero = build_zero_cst (type);
14765 tree one = build_int_cst (type, 1);
14767 /* Addition. */
14768 /* 1 <-- (0 + 1) */
14769 assert_binop_folds_to_const (zero, PLUS_EXPR, one,
14770 one);
14771 assert_binop_folds_to_const (one, PLUS_EXPR, zero,
14772 one);
14774 /* (nonlvalue)x <-- (x + 0) */
14775 assert_binop_folds_to_nonlvalue (x, PLUS_EXPR, zero,
14778 /* Subtraction. */
14779 /* 0 <-- (x - x) */
14780 assert_binop_folds_to_const (x, MINUS_EXPR, x,
14781 zero);
14782 assert_binop_folds_to_nonlvalue (x, MINUS_EXPR, zero,
14785 /* Multiplication. */
14786 /* 0 <-- (x * 0) */
14787 assert_binop_folds_to_const (x, MULT_EXPR, zero,
14788 zero);
14790 /* (nonlvalue)x <-- (x * 1) */
14791 assert_binop_folds_to_nonlvalue (x, MULT_EXPR, one,
14795 /* Verify that various binary operations on vectors are folded
14796 correctly. */
14798 static void
14799 test_vector_folding ()
14801 tree inner_type = integer_type_node;
14802 tree type = build_vector_type (inner_type, 4);
14803 tree zero = build_zero_cst (type);
14804 tree one = build_one_cst (type);
14806 /* Verify equality tests that return a scalar boolean result. */
14807 tree res_type = boolean_type_node;
14808 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, one)));
14809 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, zero)));
14810 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, zero, one)));
14811 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, one, one)));
14814 /* Verify folding of VEC_DUPLICATE_EXPRs. */
14816 static void
14817 test_vec_duplicate_folding ()
14819 scalar_int_mode int_mode = SCALAR_INT_TYPE_MODE (ssizetype);
14820 machine_mode vec_mode = targetm.vectorize.preferred_simd_mode (int_mode);
14821 /* This will be 1 if VEC_MODE isn't a vector mode. */
14822 poly_uint64 nunits = GET_MODE_NUNITS (vec_mode);
14824 tree type = build_vector_type (ssizetype, nunits);
14825 tree dup5_expr = fold_unary (VEC_DUPLICATE_EXPR, type, ssize_int (5));
14826 tree dup5_cst = build_vector_from_val (type, ssize_int (5));
14827 ASSERT_TRUE (operand_equal_p (dup5_expr, dup5_cst, 0));
14830 /* Run all of the selftests within this file. */
14832 void
14833 fold_const_c_tests ()
14835 test_arithmetic_folding ();
14836 test_vector_folding ();
14837 test_vec_duplicate_folding ();
14840 } // namespace selftest
14842 #endif /* CHECKING_P */