Move PREFERRED_DEBUGGING_TYPE define in pa64-hpux.h to pa.h
[official-gcc.git] / gcc / config / pa / pa.h
blob0fe3fd6796bd54ea084860972a0468b2b37a17f1
1 /* Definitions of target machine for GNU compiler, for the HP Spectrum.
2 Copyright (C) 1992-2021 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
4 and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
5 Software Science at the University of Utah.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* For long call handling. */
24 extern unsigned long total_code_bytes;
26 #define pa_cpu_attr ((enum attr_cpu)pa_cpu)
28 #define TARGET_PA_10 (!TARGET_PA_11 && !TARGET_PA_20)
30 /* Generate code for the HPPA 2.0 architecture in 64bit mode. */
31 #ifndef TARGET_64BIT
32 #define TARGET_64BIT 0
33 #endif
35 /* Generate code for ELF32 ABI. */
36 #ifndef TARGET_ELF32
37 #define TARGET_ELF32 0
38 #endif
40 /* Generate code for SOM 32bit ABI. */
41 #ifndef TARGET_SOM
42 #define TARGET_SOM 0
43 #endif
45 /* HP-UX UNIX features. */
46 #ifndef TARGET_HPUX
47 #define TARGET_HPUX 0
48 #endif
50 /* HP-UX 10.10 UNIX 95 features. */
51 #ifndef TARGET_HPUX_10_10
52 #define TARGET_HPUX_10_10 0
53 #endif
55 /* HP-UX 11.* features (11.00, 11.11, 11.23, etc.) */
56 #ifndef TARGET_HPUX_11
57 #define TARGET_HPUX_11 0
58 #endif
60 /* HP-UX 11i multibyte and UNIX 98 extensions. */
61 #ifndef TARGET_HPUX_11_11
62 #define TARGET_HPUX_11_11 0
63 #endif
65 /* HP-UX 11i multibyte and UNIX 2003 extensions. */
66 #ifndef TARGET_HPUX_11_31
67 #define TARGET_HPUX_11_31 0
68 #endif
70 /* HP-UX long double library. */
71 #ifndef HPUX_LONG_DOUBLE_LIBRARY
72 #define HPUX_LONG_DOUBLE_LIBRARY 0
73 #endif
75 /* Linux kernel atomic operation support. */
76 #ifndef TARGET_SYNC_LIBCALL
77 #define TARGET_SYNC_LIBCALL 0
78 #endif
80 /* The following three defines are potential target switches. The current
81 defines are optimal given the current capabilities of GAS and GNU ld. */
83 /* Define to a C expression evaluating to true to use long absolute calls.
84 Currently, only the HP assembler and SOM linker support long absolute
85 calls. They are used only in non-pic code. */
86 #define TARGET_LONG_ABS_CALL (TARGET_SOM && !TARGET_GAS)
88 /* Define to a C expression evaluating to true to use long PIC symbol
89 difference calls. Long PIC symbol difference calls are only used with
90 the HP assembler and linker. The HP assembler detects this instruction
91 sequence and treats it as long pc-relative call. Currently, GAS only
92 allows a difference of two symbols in the same subspace, and it doesn't
93 detect the sequence as a pc-relative call. */
94 #define TARGET_LONG_PIC_SDIFF_CALL (!TARGET_GAS && TARGET_HPUX)
96 /* Define to a C expression evaluating to true to use SOM secondary
97 definition symbols for weak support. Linker support for secondary
98 definition symbols is buggy prior to HP-UX 11.X. */
99 #define TARGET_SOM_SDEF 0
101 /* Define to a C expression evaluating to true to save the entry value
102 of SP in the current frame marker. This is normally unnecessary.
103 However, the HP-UX unwind library looks at the SAVE_SP callinfo flag.
104 HP compilers don't use this flag but it is supported by the assembler.
105 We set this flag to indicate that register %r3 has been saved at the
106 start of the frame. Thus, when the HP unwind library is used, we
107 need to generate additional code to save SP into the frame marker. */
108 #define TARGET_HPUX_UNWIND_LIBRARY 0
110 #ifndef TARGET_DEFAULT
111 #define TARGET_DEFAULT MASK_GAS
112 #endif
114 #ifndef TARGET_CPU_DEFAULT
115 #define TARGET_CPU_DEFAULT 0
116 #endif
118 #ifndef TARGET_SCHED_DEFAULT
119 #define TARGET_SCHED_DEFAULT PROCESSOR_8000
120 #endif
122 /* Support for a compile-time default CPU, et cetera. The rules are:
123 --with-schedule is ignored if -mschedule is specified.
124 --with-arch is ignored if -march is specified. */
125 #define OPTION_DEFAULT_SPECS \
126 {"arch", "%{!march=*:-march=%(VALUE)}" }, \
127 {"schedule", "%{!mschedule=*:-mschedule=%(VALUE)}" }
129 /* Specify the dialect of assembler to use. New mnemonics is dialect one
130 and the old mnemonics are dialect zero. */
131 #define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
133 /* Override some settings from dbxelf.h. */
135 /* We do not have to be compatible with dbx, so we enable gdb extensions
136 by default. */
137 #define DEFAULT_GDB_EXTENSIONS 1
139 /* Select dwarf2 as the preferred debug format. */
140 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
142 /* This used to be zero (no max length), but big enums and such can
143 cause huge strings which killed gas.
145 We also have to avoid lossage in dbxout.c -- it does not compute the
146 string size accurately, so we are real conservative here. */
147 #undef DBX_CONTIN_LENGTH
148 #define DBX_CONTIN_LENGTH 3000
150 /* GDB always assumes the current function's frame begins at the value
151 of the stack pointer upon entry to the current function. Accessing
152 local variables and parameters passed on the stack is done using the
153 base of the frame + an offset provided by GCC.
155 For functions which have frame pointers this method works fine;
156 the (frame pointer) == (stack pointer at function entry) and GCC provides
157 an offset relative to the frame pointer.
159 This loses for functions without a frame pointer; GCC provides an offset
160 which is relative to the stack pointer after adjusting for the function's
161 frame size. GDB would prefer the offset to be relative to the value of
162 the stack pointer at the function's entry. Yuk! */
163 #define DEBUGGER_AUTO_OFFSET(X) \
164 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
165 + (frame_pointer_needed ? 0 : pa_compute_frame_size (get_frame_size (), 0)))
167 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
168 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
169 + (frame_pointer_needed ? 0 : pa_compute_frame_size (get_frame_size (), 0)))
171 #define TARGET_CPU_CPP_BUILTINS() \
172 do { \
173 builtin_assert("cpu=hppa"); \
174 builtin_assert("machine=hppa"); \
175 builtin_define("__hppa"); \
176 builtin_define("__hppa__"); \
177 builtin_define("__BIG_ENDIAN__"); \
178 if (TARGET_PA_20) \
179 builtin_define("_PA_RISC2_0"); \
180 else if (TARGET_PA_11) \
181 builtin_define("_PA_RISC1_1"); \
182 else \
183 builtin_define("_PA_RISC1_0"); \
184 if (HPUX_LONG_DOUBLE_LIBRARY) \
185 builtin_define("__SIZEOF_FLOAT128__=16"); \
186 } while (0)
188 /* An old set of OS defines for various BSD-like systems. */
189 #define TARGET_OS_CPP_BUILTINS() \
190 do \
192 builtin_define_std ("REVARGV"); \
193 builtin_define_std ("hp800"); \
194 builtin_define_std ("hp9000"); \
195 builtin_define_std ("hp9k8"); \
196 if (!c_dialect_cxx () && !flag_iso) \
197 builtin_define ("hppa"); \
198 builtin_define_std ("spectrum"); \
199 builtin_define_std ("unix"); \
200 builtin_assert ("system=bsd"); \
201 builtin_assert ("system=unix"); \
203 while (0)
205 #define CC1_SPEC "%{pg:} %{p:}"
207 #define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
209 /* We don't want -lg. */
210 #ifndef LIB_SPEC
211 #define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
212 #endif
214 /* Make gcc agree with <machine/ansi.h> */
216 #define SIZE_TYPE "unsigned int"
217 #define PTRDIFF_TYPE "int"
218 #define WCHAR_TYPE "unsigned int"
219 #define WCHAR_TYPE_SIZE 32
221 /* target machine storage layout */
222 typedef struct GTY(()) machine_function
224 /* Flag indicating that a .NSUBSPA directive has been output for
225 this function. */
226 int in_nsubspa;
227 } machine_function;
229 /* Define this macro if it is advisable to hold scalars in registers
230 in a wider mode than that declared by the program. In such cases,
231 the value is constrained to be within the bounds of the declared
232 type, but kept valid in the wider mode. The signedness of the
233 extension may differ from that of the type. */
235 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
236 if (GET_MODE_CLASS (MODE) == MODE_INT \
237 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
238 (MODE) = word_mode;
240 /* Define this if most significant bit is lowest numbered
241 in instructions that operate on numbered bit-fields. */
242 #define BITS_BIG_ENDIAN 1
244 /* Define this if most significant byte of a word is the lowest numbered. */
245 /* That is true on the HP-PA. */
246 #define BYTES_BIG_ENDIAN 1
248 /* Define this if most significant word of a multiword number is lowest
249 numbered. */
250 #define WORDS_BIG_ENDIAN 1
252 #define MAX_BITS_PER_WORD 64
254 /* Width of a word, in units (bytes). */
255 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
257 /* Minimum number of units in a word. If this is undefined, the default
258 is UNITS_PER_WORD. Otherwise, it is the constant value that is the
259 smallest value that UNITS_PER_WORD can have at run-time.
261 FIXME: This needs to be 4 when TARGET_64BIT is true to suppress the
262 building of various TImode routines in libgcc. The HP runtime
263 specification doesn't provide the alignment requirements and calling
264 conventions for TImode variables. */
265 #define MIN_UNITS_PER_WORD 4
267 /* The widest floating point format supported by the hardware. Note that
268 setting this influences some Ada floating point type sizes, currently
269 required for GNAT to operate properly. */
270 #define WIDEST_HARDWARE_FP_SIZE 64
272 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
273 #define PARM_BOUNDARY BITS_PER_WORD
275 /* Largest alignment required for any stack parameter, in bits.
276 Don't define this if it is equal to PARM_BOUNDARY */
277 #define MAX_PARM_BOUNDARY BIGGEST_ALIGNMENT
279 /* Boundary (in *bits*) on which stack pointer is always aligned;
280 certain optimizations in combine depend on this.
282 The HP-UX runtime documents mandate 64-byte and 16-byte alignment for
283 the stack on the 32 and 64-bit ports, respectively. However, we
284 are only guaranteed that the stack is aligned to BIGGEST_ALIGNMENT
285 in main. Thus, we treat the former as the preferred alignment. */
286 #define STACK_BOUNDARY BIGGEST_ALIGNMENT
287 #define PREFERRED_STACK_BOUNDARY (TARGET_64BIT ? 128 : 512)
289 /* Allocation boundary (in *bits*) for the code of a function. */
290 #define FUNCTION_BOUNDARY BITS_PER_WORD
292 /* Alignment of field after `int : 0' in a structure. */
293 #define EMPTY_FIELD_BOUNDARY 32
295 /* Every structure's size must be a multiple of this. */
296 #define STRUCTURE_SIZE_BOUNDARY 8
298 /* A bit-field declared as `int' forces `int' alignment for the struct. */
299 #define PCC_BITFIELD_TYPE_MATTERS 1
301 /* No data type wants to be aligned rounder than this. The long double
302 type has 16-byte alignment on the 64-bit target even though it was never
303 implemented in hardware. The software implementation only needs 8-byte
304 alignment. This matches the biggest alignment of the HP compilers. */
305 #define BIGGEST_ALIGNMENT (2 * BITS_PER_WORD)
307 /* Alignment, in bits, a C conformant malloc implementation has to provide.
308 The HP-UX malloc implementation provides a default alignment of 8 bytes.
309 It should be 16 bytes on the 64-bit target since long double has 16-byte
310 alignment. It can be increased with mallopt but it's non critical since
311 long double was never implemented in hardware. The glibc implementation
312 currently provides 8-byte alignment. It should be 16 bytes since various
313 POSIX types such as pthread_mutex_t require 16-byte alignment. Again,
314 this is non critical since 16-byte alignment is no longer needed for
315 atomic operations. */
316 #define MALLOC_ABI_ALIGNMENT (TARGET_64BIT ? 128 : 64)
318 /* Make arrays of chars word-aligned for the same reasons. */
319 #define DATA_ALIGNMENT(TYPE, ALIGN) \
320 (TREE_CODE (TYPE) == ARRAY_TYPE \
321 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
322 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
324 /* Set this nonzero if move instructions will actually fail to work
325 when given unaligned data. */
326 #define STRICT_ALIGNMENT 1
328 /* Specify the registers used for certain standard purposes.
329 The values of these macros are register numbers. */
331 /* The HP-PA pc isn't overloaded on a register that the compiler knows about. */
332 /* #define PC_REGNUM */
334 /* Register to use for pushing function arguments. */
335 #define STACK_POINTER_REGNUM 30
337 /* Fixed register for local variable access. Always eliminated. */
338 #define FRAME_POINTER_REGNUM (TARGET_64BIT ? 61 : 89)
340 /* Base register for access to local variables of the function. */
341 #define HARD_FRAME_POINTER_REGNUM 3
343 /* Don't allow hard registers to be renamed into r2 unless r2
344 is already live or already being saved (due to eh). */
346 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
347 ((NEW_REG) != 2 || df_regs_ever_live_p (2) || crtl->calls_eh_return)
349 /* Base register for access to arguments of the function. */
350 #define ARG_POINTER_REGNUM (TARGET_64BIT ? 29 : 3)
352 /* Register in which static-chain is passed to a function. */
353 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? 31 : 29)
355 /* Register used to address the offset table for position-independent
356 data references. */
357 #define PIC_OFFSET_TABLE_REGNUM \
358 (flag_pic ? (TARGET_64BIT ? 27 : 19) : INVALID_REGNUM)
360 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
362 /* Function to return the rtx used to save the pic offset table register
363 across function calls. */
364 extern rtx hppa_pic_save_rtx (void);
366 #define DEFAULT_PCC_STRUCT_RETURN 0
368 /* Register in which address to store a structure value
369 is passed to a function. */
370 #define PA_STRUCT_VALUE_REGNUM 28
372 /* Definitions for register eliminations.
374 We have two registers that can be eliminated. First, the frame pointer
375 register can often be eliminated in favor of the stack pointer register.
376 Secondly, the argument pointer register can always be eliminated in the
377 32-bit runtimes. */
379 /* This is an array of structures. Each structure initializes one pair
380 of eliminable registers. The "from" register number is given first,
381 followed by "to". Eliminations of the same "from" register are listed
382 in order of preference.
384 The argument pointer cannot be eliminated in the 64-bit runtime. It
385 is the same register as the hard frame pointer in the 32-bit runtime.
386 So, it does not need to be listed. */
387 #define ELIMINABLE_REGS \
388 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
389 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
390 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
392 /* Define the offset between two registers, one to be eliminated,
393 and the other its replacement, at the start of a routine. */
394 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
395 ((OFFSET) = pa_initial_elimination_offset(FROM, TO))
397 /* Describe how we implement __builtin_eh_return. */
398 #define EH_RETURN_DATA_REGNO(N) \
399 ((N) < 3 ? (N) + 20 : (N) == 3 ? 31 : INVALID_REGNUM)
400 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 29)
401 #define EH_RETURN_HANDLER_RTX pa_eh_return_handler_rtx ()
403 /* Offset from the frame pointer register value to the top of stack. */
404 #define FRAME_POINTER_CFA_OFFSET(FNDECL) 0
406 /* The maximum number of hard registers that can be saved in the call
407 frame. The soft frame pointer is not included. */
408 #define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 1)
410 /* A C expression whose value is RTL representing the location of the
411 incoming return address at the beginning of any function, before the
412 prologue. You only need to define this macro if you want to support
413 call frame debugging information like that provided by DWARF 2. */
414 #define INCOMING_RETURN_ADDR_RTX (gen_rtx_REG (word_mode, 2))
415 #define DWARF_FRAME_RETURN_COLUMN (DWARF_FRAME_REGNUM (2))
417 /* A C expression whose value is an integer giving a DWARF 2 column
418 number that may be used as an alternate return column. This should
419 be defined only if DWARF_FRAME_RETURN_COLUMN is set to a general
420 register, but an alternate column needs to be used for signal frames.
422 Column 0 is not used but unfortunately its register size is set to
423 4 bytes (sizeof CCmode) so it can't be used on 64-bit targets. */
424 #define DWARF_ALT_FRAME_RETURN_COLUMN (FIRST_PSEUDO_REGISTER - 1)
426 /* This macro chooses the encoding of pointers embedded in the exception
427 handling sections. If at all possible, this should be defined such
428 that the exception handling section will not require dynamic relocations,
429 and so may be read-only.
431 Because the HP assembler auto aligns, it is necessary to use
432 DW_EH_PE_aligned. It's not possible to make the data read-only
433 on the HP-UX SOM port since the linker requires fixups for label
434 differences in different sections to be word aligned. However,
435 the SOM linker can do unaligned fixups for absolute pointers.
436 We also need aligned pointers for global and function pointers.
438 Although the HP-UX 64-bit ELF linker can handle unaligned pc-relative
439 fixups, the runtime doesn't have a consistent relationship between
440 text and data for dynamically loaded objects. Thus, it's not possible
441 to use pc-relative encoding for pointers on this target. It may be
442 possible to use segment relative encodings but GAS doesn't currently
443 have a mechanism to generate these encodings. For other targets, we
444 use pc-relative encoding for pointers. If the pointer might require
445 dynamic relocation, we make it indirect. */
446 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
447 (TARGET_GAS && !TARGET_HPUX \
448 ? (DW_EH_PE_pcrel \
449 | ((GLOBAL) || (CODE) == 2 ? DW_EH_PE_indirect : 0) \
450 | (TARGET_64BIT ? DW_EH_PE_sdata8 : DW_EH_PE_sdata4)) \
451 : (!TARGET_GAS || (GLOBAL) || (CODE) == 2 \
452 ? DW_EH_PE_aligned : DW_EH_PE_absptr))
454 /* Handle special EH pointer encodings. Absolute, pc-relative, and
455 indirect are handled automatically. We output pc-relative, and
456 indirect pc-relative ourself since we need some special magic to
457 generate pc-relative relocations, and to handle indirect function
458 pointers. */
459 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
460 do { \
461 if (((ENCODING) & 0x70) == DW_EH_PE_pcrel) \
463 fputs (integer_asm_op (SIZE, FALSE), FILE); \
464 if ((ENCODING) & DW_EH_PE_indirect) \
465 output_addr_const (FILE, pa_get_deferred_plabel (ADDR)); \
466 else \
467 assemble_name (FILE, XSTR ((ADDR), 0)); \
468 fputs ("+8-$PIC_pcrel$0", FILE); \
469 goto DONE; \
471 } while (0)
474 /* The class value for index registers, and the one for base regs. */
475 #define INDEX_REG_CLASS GENERAL_REGS
476 #define BASE_REG_CLASS GENERAL_REGS
478 #define FP_REG_CLASS_P(CLASS) \
479 ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
481 /* True if register is floating-point. */
482 #define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST)
484 #define MAYBE_FP_REG_CLASS_P(CLASS) \
485 reg_classes_intersect_p ((CLASS), FP_REGS)
488 /* Stack layout; function entry, exit and calling. */
490 /* Define this if pushing a word on the stack
491 makes the stack pointer a smaller address. */
492 /* #define STACK_GROWS_DOWNWARD */
494 /* Believe it or not. */
495 #define ARGS_GROW_DOWNWARD 1
497 /* Define this to nonzero if the nominal address of the stack frame
498 is at the high-address end of the local variables;
499 that is, each additional local variable allocated
500 goes at a more negative offset in the frame. */
501 #define FRAME_GROWS_DOWNWARD 0
503 /* Define STACK_ALIGNMENT_NEEDED to zero to disable final alignment
504 of the stack. The default is to align it to STACK_BOUNDARY. */
505 #define STACK_ALIGNMENT_NEEDED 0
507 /* If we generate an insn to push BYTES bytes,
508 this says how many the stack pointer really advances by.
509 On the HP-PA, don't define this because there are no push insns. */
510 /* #define PUSH_ROUNDING(BYTES) */
512 /* Offset of first parameter from the argument pointer register value.
513 This value will be negated because the arguments grow down.
514 Also note that on STACK_GROWS_UPWARD machines (such as this one)
515 this is the distance from the frame pointer to the end of the first
516 argument, not it's beginning. To get the real offset of the first
517 argument, the size of the argument must be added. */
519 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32)
521 /* When a parameter is passed in a register, stack space is still
522 allocated for it. */
523 #define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16)
525 /* Define this if the above stack space is to be considered part of the
526 space allocated by the caller. */
527 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
529 /* Keep the stack pointer constant throughout the function.
530 This is both an optimization and a necessity: longjmp
531 doesn't behave itself when the stack pointer moves within
532 the function! */
533 #define ACCUMULATE_OUTGOING_ARGS 1
535 /* The weird HPPA calling conventions require a minimum of 48 bytes on
536 the stack: 16 bytes for register saves, and 32 bytes for magic.
537 This is the difference between the logical top of stack and the
538 actual sp.
540 On the 64-bit port, the HP C compiler allocates a 48-byte frame
541 marker, although the runtime documentation only describes a 16
542 byte marker. For compatibility, we allocate 48 bytes. */
543 #define STACK_POINTER_OFFSET \
544 (TARGET_64BIT ? -(crtl->outgoing_args_size + 48) : poly_int64 (-32))
546 #define STACK_DYNAMIC_OFFSET(FNDECL) \
547 (TARGET_64BIT \
548 ? (STACK_POINTER_OFFSET) \
549 : ((STACK_POINTER_OFFSET) - crtl->outgoing_args_size))
552 /* Define a data type for recording info about an argument list
553 during the scan of that argument list. This data type should
554 hold all necessary information about the function itself
555 and about the args processed so far, enough to enable macros
556 such as FUNCTION_ARG to determine where the next arg should go.
558 On the HP-PA, the WORDS field holds the number of words
559 of arguments scanned so far (including the invisible argument,
560 if any, which holds the structure-value-address). Thus, 4 or
561 more means all following args should go on the stack.
563 The INCOMING field tracks whether this is an "incoming" or
564 "outgoing" argument.
566 The INDIRECT field indicates whether this is an indirect
567 call or not.
569 The NARGS_PROTOTYPE field indicates that an argument does not
570 have a prototype when it less than or equal to 0. */
572 struct hppa_args {int words, nargs_prototype, incoming, indirect; };
574 #define CUMULATIVE_ARGS struct hppa_args
576 /* Initialize a variable CUM of type CUMULATIVE_ARGS
577 for a call to a function whose data type is FNTYPE.
578 For a library call, FNTYPE is 0. */
580 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
581 (CUM).words = 0, \
582 (CUM).incoming = 0, \
583 (CUM).indirect = (FNTYPE) && !(FNDECL), \
584 (CUM).nargs_prototype = (FNTYPE && prototype_p (FNTYPE) \
585 ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \
586 + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
587 || pa_return_in_memory (TREE_TYPE (FNTYPE), 0))) \
588 : 0)
592 /* Similar, but when scanning the definition of a procedure. We always
593 set NARGS_PROTOTYPE large so we never return a PARALLEL. */
595 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
596 (CUM).words = 0, \
597 (CUM).incoming = 1, \
598 (CUM).indirect = 0, \
599 (CUM).nargs_prototype = 1000
601 /* Determine where to put an argument to a function.
602 Value is zero to push the argument on the stack,
603 or a hard register in which to store the argument.
605 MODE is the argument's machine mode.
606 TYPE is the data type of the argument (as a tree).
607 This is null for libcalls where that information may
608 not be available.
609 CUM is a variable of type CUMULATIVE_ARGS which gives info about
610 the preceding args and about the function being called.
611 NAMED is nonzero if this argument is a named parameter
612 (otherwise it is an extra parameter matching an ellipsis).
614 On the HP-PA the first four words of args are normally in registers
615 and the rest are pushed. But any arg that won't entirely fit in regs
616 is pushed.
618 Arguments passed in registers are either 1 or 2 words long.
620 The caller must make a distinction between calls to explicitly named
621 functions and calls through pointers to functions -- the conventions
622 are different! Calls through pointers to functions only use general
623 registers for the first four argument words.
625 Of course all this is different for the portable runtime model
626 HP wants everyone to use for ELF. Ugh. Here's a quick description
627 of how it's supposed to work.
629 1) callee side remains unchanged. It expects integer args to be
630 in the integer registers, float args in the float registers and
631 unnamed args in integer registers.
633 2) caller side now depends on if the function being called has
634 a prototype in scope (rather than if it's being called indirectly).
636 2a) If there is a prototype in scope, then arguments are passed
637 according to their type (ints in integer registers, floats in float
638 registers, unnamed args in integer registers.
640 2b) If there is no prototype in scope, then floating point arguments
641 are passed in both integer and float registers. egad.
643 FYI: The portable parameter passing conventions are almost exactly like
644 the standard parameter passing conventions on the RS6000. That's why
645 you'll see lots of similar code in rs6000.h. */
647 /* Specify padding for the last element of a block move between registers
648 and memory.
650 The 64-bit runtime specifies that objects need to be left justified
651 (i.e., the normal justification for a big endian target). The 32-bit
652 runtime specifies right justification for objects smaller than 64 bits.
653 We use a DImode register in the parallel for 5 to 7 byte structures
654 so that there is only one element. This allows the object to be
655 correctly padded. */
656 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
657 targetm.calls.function_arg_padding ((MODE), (TYPE))
660 /* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than
661 as assembly via FUNCTION_PROFILER. Just output a local label.
662 We can't use the function label because the GAS SOM target can't
663 handle the difference of a global symbol and a local symbol. */
665 #ifndef FUNC_BEGIN_PROLOG_LABEL
666 #define FUNC_BEGIN_PROLOG_LABEL "LFBP"
667 #endif
669 #define FUNCTION_PROFILER(FILE, LABEL) \
670 (*targetm.asm_out.internal_label) (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL)
672 #define PROFILE_HOOK(label_no) hppa_profile_hook (label_no)
674 /* The profile counter if emitted must come before the prologue. */
675 #define PROFILE_BEFORE_PROLOGUE 1
677 /* We never want final.c to emit profile counters. When profile
678 counters are required, we have to defer emitting them to the end
679 of the current file. */
680 #define NO_PROFILE_COUNTERS 1
682 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
683 the stack pointer does not matter. The value is tested only in
684 functions that have frame pointers.
685 No definition is equivalent to always zero. */
687 extern int may_call_alloca;
689 #define EXIT_IGNORE_STACK \
690 (maybe_ne (get_frame_size (), 0) \
691 || cfun->calls_alloca || maybe_ne (crtl->outgoing_args_size, 0))
693 /* Length in units of the trampoline for entering a nested function. */
695 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 64)
697 /* Alignment required by the trampoline. */
699 #define TRAMPOLINE_ALIGNMENT BITS_PER_WORD
701 /* Minimum length of a cache line. A length of 16 will work on all
702 PA-RISC processors. All PA 1.1 processors have a cache line of
703 32 bytes. Most but not all PA 2.0 processors have a cache line
704 of 64 bytes. As cache flushes are expensive and we don't support
705 PA 1.0, we use a minimum length of 32. */
707 #define MIN_CACHELINE_SIZE 32
710 /* Addressing modes, and classification of registers for them.
712 Using autoincrement addressing modes on PA8000 class machines is
713 not profitable. */
715 #define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
716 #define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
718 #define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
719 #define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
721 /* Macros to check register numbers against specific register classes. */
723 /* The following macros assume that X is a hard or pseudo reg number.
724 They give nonzero only if X is a hard reg of the suitable class
725 or a pseudo reg currently allocated to a suitable hard reg.
726 Since they use reg_renumber, they are safe only once reg_renumber
727 has been allocated, which happens in reginfo.c during register
728 allocation. */
730 #define REGNO_OK_FOR_INDEX_P(X) \
731 ((X) && ((X) < 32 \
732 || ((X) == FRAME_POINTER_REGNUM) \
733 || ((X) >= FIRST_PSEUDO_REGISTER \
734 && reg_renumber \
735 && (unsigned) reg_renumber[X] < 32)))
736 #define REGNO_OK_FOR_BASE_P(X) \
737 ((X) && ((X) < 32 \
738 || ((X) == FRAME_POINTER_REGNUM) \
739 || ((X) >= FIRST_PSEUDO_REGISTER \
740 && reg_renumber \
741 && (unsigned) reg_renumber[X] < 32)))
742 #define REGNO_OK_FOR_FP_P(X) \
743 (FP_REGNO_P (X) \
744 || (X >= FIRST_PSEUDO_REGISTER \
745 && reg_renumber \
746 && FP_REGNO_P (reg_renumber[X])))
748 /* Now macros that check whether X is a register and also,
749 strictly, whether it is in a specified class.
751 These macros are specific to the HP-PA, and may be used only
752 in code for printing assembler insns and in conditions for
753 define_optimization. */
755 /* 1 if X is an fp register. */
757 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
759 /* Maximum number of registers that can appear in a valid memory address. */
761 #define MAX_REGS_PER_ADDRESS 2
763 /* TLS symbolic reference. */
764 #define PA_SYMBOL_REF_TLS_P(X) \
765 (GET_CODE (X) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (X) != 0)
767 /* Recognize any constant value that is a valid address except
768 for symbolic addresses. We get better CSE by rejecting them
769 here and allowing hppa_legitimize_address to break them up. We
770 use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE. */
772 #define CONSTANT_ADDRESS_P(X) \
773 ((GET_CODE (X) == LABEL_REF \
774 || (GET_CODE (X) == SYMBOL_REF && !SYMBOL_REF_TLS_MODEL (X)) \
775 || GET_CODE (X) == CONST_INT \
776 || (GET_CODE (X) == CONST && !tls_referenced_p (X)) \
777 || GET_CODE (X) == HIGH) \
778 && (reload_in_progress || reload_completed \
779 || ! pa_symbolic_expression_p (X)))
781 /* A C expression that is nonzero if we are using the new HP assembler. */
783 #ifndef NEW_HP_ASSEMBLER
784 #define NEW_HP_ASSEMBLER 0
785 #endif
787 /* The macros below define the immediate range for CONST_INTS on
788 the 64-bit port. Constants in this range can be loaded in three
789 instructions using a ldil/ldo/depdi sequence. Constants outside
790 this range are forced to the constant pool prior to reload. */
792 #define MAX_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) 32 << 31)
793 #define MIN_LEGIT_64BIT_CONST_INT \
794 ((HOST_WIDE_INT)((unsigned HOST_WIDE_INT) -32 << 31))
795 #define LEGITIMATE_64BIT_CONST_INT_P(X) \
796 ((X) >= MIN_LEGIT_64BIT_CONST_INT && (X) < MAX_LEGIT_64BIT_CONST_INT)
798 /* Target flags set on a symbol_ref. */
800 /* Set by ASM_OUTPUT_SYMBOL_REF when a symbol_ref is output. */
801 #define SYMBOL_FLAG_REFERENCED (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
802 #define SYMBOL_REF_REFERENCED_P(RTX) \
803 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_REFERENCED) != 0)
805 /* Defines for constraints.md. */
807 /* Return 1 iff OP is a scaled or unscaled index address. */
808 #define IS_INDEX_ADDR_P(OP) \
809 (GET_CODE (OP) == PLUS \
810 && GET_MODE (OP) == Pmode \
811 && (GET_CODE (XEXP (OP, 0)) == MULT \
812 || GET_CODE (XEXP (OP, 1)) == MULT \
813 || (REG_P (XEXP (OP, 0)) \
814 && REG_P (XEXP (OP, 1)))))
816 /* Return 1 iff OP is a LO_SUM DLT address. */
817 #define IS_LO_SUM_DLT_ADDR_P(OP) \
818 (GET_CODE (OP) == LO_SUM \
819 && GET_MODE (OP) == Pmode \
820 && REG_P (XEXP (OP, 0)) \
821 && REG_OK_FOR_BASE_P (XEXP (OP, 0)) \
822 && GET_CODE (XEXP (OP, 1)) == UNSPEC)
824 /* Nonzero if 14-bit offsets can be used for all loads and stores.
825 This is not possible when generating PA 1.x code as floating point
826 loads and stores only support 5-bit offsets. Note that we do not
827 forbid the use of 14-bit offsets for integer modes. Instead, we
828 use secondary reloads to fix REG+D memory addresses for integer
829 mode floating-point loads and stores.
831 FIXME: the ELF32 linker clobbers the LSB of the FP register number
832 in PA 2.0 floating-point insns with long displacements. This is
833 because R_PARISC_DPREL14WR and other relocations like it are not
834 yet supported by GNU ld. For now, we reject long displacements
835 on this target. */
837 #define INT14_OK_STRICT \
838 (TARGET_SOFT_FLOAT \
839 || (TARGET_PA_20 && !TARGET_ELF32))
841 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
842 and check its validity for a certain class.
843 We have two alternate definitions for each of them.
844 The usual definition accepts all pseudo regs; the other rejects
845 them unless they have been allocated suitable hard regs.
847 Most source files want to accept pseudo regs in the hope that
848 they will get allocated to the class that the insn wants them to be in.
849 Source files for reload pass need to be strict.
850 After reload, it makes no difference, since pseudo regs have
851 been eliminated by then. */
853 /* Nonzero if X is a hard reg that can be used as an index
854 or if it is a pseudo reg. */
855 #define REG_OK_FOR_INDEX_P(X) \
856 (REGNO (X) && (REGNO (X) < 32 \
857 || REGNO (X) == FRAME_POINTER_REGNUM \
858 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
860 /* Nonzero if X is a hard reg that can be used as a base reg
861 or if it is a pseudo reg. */
862 #define REG_OK_FOR_BASE_P(X) \
863 (REGNO (X) && (REGNO (X) < 32 \
864 || REGNO (X) == FRAME_POINTER_REGNUM \
865 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
867 /* Nonzero if X is a hard reg that can be used as an index. */
868 #define STRICT_REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
870 /* Nonzero if X is a hard reg that can be used as a base reg. */
871 #define STRICT_REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
873 #define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20)
874 #define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
876 #define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20)
877 #define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
879 #define VAL_U6_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x40)
880 #define INT_U6_BITS(X) VAL_U6_BITS_P (INTVAL (X))
882 #define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800)
883 #define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
885 #define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000)
886 #define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
888 #if HOST_BITS_PER_WIDE_INT > 32
889 #define VAL_32_BITS_P(X) \
890 ((unsigned HOST_WIDE_INT)(X) + ((unsigned HOST_WIDE_INT) 1 << 31) \
891 < (unsigned HOST_WIDE_INT) 2 << 31)
892 #else
893 #define VAL_32_BITS_P(X) 1
894 #endif
895 #define INT_32_BITS(X) VAL_32_BITS_P (INTVAL (X))
897 /* These are the modes that we allow for scaled indexing. */
898 #define MODE_OK_FOR_SCALED_INDEXING_P(MODE) \
899 ((TARGET_64BIT && (MODE) == DImode) \
900 || (MODE) == SImode \
901 || (MODE) == HImode \
902 || (MODE) == SFmode \
903 || (MODE) == DFmode)
905 /* These are the modes that we allow for unscaled indexing. */
906 #define MODE_OK_FOR_UNSCALED_INDEXING_P(MODE) \
907 ((TARGET_64BIT && (MODE) == DImode) \
908 || (MODE) == SImode \
909 || (MODE) == HImode \
910 || (MODE) == QImode \
911 || (MODE) == SFmode \
912 || (MODE) == DFmode)
914 /* Try a machine-dependent way of reloading an illegitimate address
915 operand. If we find one, push the reload and jump to WIN. This
916 macro is used in only one place: `find_reloads_address' in reload.c. */
918 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND_L, WIN) \
919 do { \
920 rtx new_ad = pa_legitimize_reload_address (AD, MODE, OPNUM, TYPE, IND_L); \
921 if (new_ad) \
923 AD = new_ad; \
924 goto WIN; \
926 } while (0)
929 #define TARGET_ASM_SELECT_SECTION pa_select_section
931 /* Return a nonzero value if DECL has a section attribute. */
932 #define IN_NAMED_SECTION_P(DECL) \
933 ((TREE_CODE (DECL) == FUNCTION_DECL || TREE_CODE (DECL) == VAR_DECL) \
934 && DECL_SECTION_NAME (DECL) != NULL)
936 /* Define this macro if references to a symbol must be treated
937 differently depending on something about the variable or
938 function named by the symbol (such as what section it is in).
940 The macro definition, if any, is executed immediately after the
941 rtl for DECL or other node is created.
942 The value of the rtl will be a `mem' whose address is a
943 `symbol_ref'.
945 The usual thing for this macro to do is to a flag in the
946 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
947 name string in the `symbol_ref' (if one bit is not enough
948 information).
950 On the HP-PA we use this to indicate if a symbol is in text or
951 data space. Also, function labels need special treatment. */
953 #define TEXT_SPACE_P(DECL)\
954 (TREE_CODE (DECL) == FUNCTION_DECL \
955 || (TREE_CODE (DECL) == VAR_DECL \
956 && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL) \
957 && (! DECL_INITIAL (DECL) || ! pa_reloc_needed (DECL_INITIAL (DECL))) \
958 && !flag_pic) \
959 || CONSTANT_CLASS_P (DECL))
961 #define FUNCTION_NAME_P(NAME) (*(NAME) == '@')
963 /* Specify the machine mode that this machine uses for the index in the
964 tablejump instruction. We use a 32-bit absolute address for non-pic code,
965 and a 32-bit offset for 32 and 64-bit pic code. */
966 #define CASE_VECTOR_MODE SImode
968 /* Jump tables must be 32-bit aligned, no matter the size of the element. */
969 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
971 /* Define this as 1 if `char' should by default be signed; else as 0. */
972 #define DEFAULT_SIGNED_CHAR 1
974 /* Max number of bytes we can move from memory to memory
975 in one reasonably fast instruction. */
976 #define MOVE_MAX 8
978 /* Higher than the default as we prefer to use simple move insns
979 (better scheduling and delay slot filling) and because our
980 built-in block move is really a 2X unrolled loop.
982 Believe it or not, this has to be big enough to allow for copying all
983 arguments passed in registers to avoid infinite recursion during argument
984 setup for a function call. Why? Consider how we copy the stack slots
985 reserved for parameters when they may be trashed by a call. */
986 #define MOVE_RATIO(speed) (TARGET_64BIT ? 8 : 4)
988 /* Define if operations between registers always perform the operation
989 on the full register even if a narrower mode is specified. */
990 #define WORD_REGISTER_OPERATIONS 1
992 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
993 will either zero-extend or sign-extend. The value of this macro should
994 be the code that says which one of the two operations is implicitly
995 done, UNKNOWN if none. */
996 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
998 /* Nonzero if access to memory by bytes is slow and undesirable. */
999 #define SLOW_BYTE_ACCESS 1
1001 /* Specify the machine mode that pointers have.
1002 After generation of rtl, the compiler makes no further distinction
1003 between pointers and any other objects of this machine mode. */
1004 #define Pmode word_mode
1006 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1007 return the mode to be used for the comparison. For floating-point, CCFPmode
1008 should be used. CC_NOOVmode should be used when the first operand is a
1009 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1010 needed. */
1011 #define SELECT_CC_MODE(OP,X,Y) \
1012 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode) \
1014 /* A function address in a call instruction
1015 is a byte address (for indexing purposes)
1016 so give the MEM rtx a byte's mode. */
1017 #define FUNCTION_MODE SImode
1019 /* Define this if addresses of constant functions
1020 shouldn't be put through pseudo regs where they can be cse'd.
1021 Desirable on machines where ordinary constants are expensive
1022 but a CALL with constant address is cheap. */
1023 #define NO_FUNCTION_CSE 1
1025 /* Define this to be nonzero if shift instructions ignore all but the low-order
1026 few bits. */
1027 #define SHIFT_COUNT_TRUNCATED 1
1029 /* Adjust the cost of branches. */
1030 #define BRANCH_COST(speed_p, predictable_p) (pa_cpu == PROCESSOR_8000 ? 2 : 1)
1032 /* Handling the special cases is going to get too complicated for a macro,
1033 just call `pa_adjust_insn_length' to do the real work. */
1034 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1035 ((LENGTH) = pa_adjust_insn_length ((INSN), (LENGTH)))
1037 /* Millicode insns are actually function calls with some special
1038 constraints on arguments and register usage.
1040 Millicode calls always expect their arguments in the integer argument
1041 registers, and always return their result in %r29 (ret1). They
1042 are expected to clobber their arguments, %r1, %r29, and the return
1043 pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
1045 This macro tells reorg that the references to arguments and
1046 millicode calls do not appear to happen until after the millicode call.
1047 This allows reorg to put insns which set the argument registers into the
1048 delay slot of the millicode call -- thus they act more like traditional
1049 CALL_INSNs.
1051 Note we cannot consider side effects of the insn to be delayed because
1052 the branch and link insn will clobber the return pointer. If we happened
1053 to use the return pointer in the delay slot of the call, then we lose.
1055 get_attr_type will try to recognize the given insn, so make sure to
1056 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1057 in particular. */
1058 #define INSN_REFERENCES_ARE_DELAYED(X) (pa_insn_refs_are_delayed (X))
1061 /* Control the assembler format that we output. */
1063 /* A C string constant describing how to begin a comment in the target
1064 assembler language. The compiler assumes that the comment will end at
1065 the end of the line. */
1067 #define ASM_COMMENT_START ";"
1069 /* Output to assembler file text saying following lines
1070 may contain character constants, extra white space, comments, etc. */
1072 #define ASM_APP_ON ""
1074 /* Output to assembler file text saying following lines
1075 no longer contain unusual constructs. */
1077 #define ASM_APP_OFF ""
1079 /* This is how to output the definition of a user-level label named NAME,
1080 such as the label on a static function or variable NAME. */
1082 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1083 do { \
1084 assemble_name ((FILE), (NAME)); \
1085 if (TARGET_GAS) \
1086 fputs (":\n", (FILE)); \
1087 else \
1088 fputc ('\n', (FILE)); \
1089 } while (0)
1091 /* This is how to output a reference to a user-level label named NAME.
1092 `assemble_name' uses this. */
1094 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1095 do { \
1096 const char *xname = (NAME); \
1097 if (FUNCTION_NAME_P (NAME)) \
1098 xname += 1; \
1099 if (xname[0] == '*') \
1100 xname += 1; \
1101 else \
1102 fputs (user_label_prefix, FILE); \
1103 fputs (xname, FILE); \
1104 } while (0)
1106 /* This how we output the symbol_ref X. */
1108 #define ASM_OUTPUT_SYMBOL_REF(FILE,X) \
1109 do { \
1110 SYMBOL_REF_FLAGS (X) |= SYMBOL_FLAG_REFERENCED; \
1111 assemble_name (FILE, XSTR (X, 0)); \
1112 } while (0)
1114 /* This is how to store into the string LABEL
1115 the symbol_ref name of an internal numbered label where
1116 PREFIX is the class of label and NUM is the number within the class.
1117 This is suitable for output with `assemble_name'. */
1119 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1120 do \
1122 char *__p; \
1123 (LABEL)[0] = '*'; \
1124 (LABEL)[1] = (PREFIX)[0]; \
1125 (LABEL)[2] = '$'; \
1126 __p = stpcpy (&(LABEL)[3], &(PREFIX)[1]); \
1127 sprint_ul (__p, (unsigned long) (NUM)); \
1129 while (0)
1132 /* Output the definition of a compiler-generated label named NAME. */
1134 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,NAME) \
1135 do { \
1136 assemble_name_raw ((FILE), (NAME)); \
1137 if (TARGET_GAS) \
1138 fputs (":\n", (FILE)); \
1139 else \
1140 fputc ('\n', (FILE)); \
1141 } while (0)
1143 #define TARGET_ASM_GLOBALIZE_LABEL pa_globalize_label
1145 #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
1146 pa_output_ascii ((FILE), (P), (SIZE))
1148 /* Jump tables are always placed in the text section. We have to do
1149 this for the HP-UX SOM target as we can't switch sections in the
1150 middle of a function.
1152 On ELF targets, it is possible to put them in the readonly-data section.
1153 This would get the table out of .text and reduce branch lengths.
1155 A downside is that an additional insn (addil) is needed to access
1156 the table when generating PIC code. The address difference table
1157 also has to use 32-bit pc-relative relocations.
1159 The table entries need to look like "$L1+(.+8-$L0)-$PIC_pcrel$0"
1160 when using ELF GAS. A simple difference can be used when using
1161 the HP assembler.
1163 The final downside is GDB complains about the nesting of the label
1164 for the table. */
1166 #define JUMP_TABLES_IN_TEXT_SECTION 1
1168 /* This is how to output an element of a case-vector that is absolute. */
1170 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1171 fprintf (FILE, "\t.word L$%d\n", VALUE)
1173 /* This is how to output an element of a case-vector that is relative.
1174 Since we always place jump tables in the text section, the difference
1175 is absolute and requires no relocation. */
1177 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1178 fprintf (FILE, "\t.word L$%d-L$%d\n", VALUE, REL)
1180 /* This is how to output an absolute case-vector. */
1182 #define ASM_OUTPUT_ADDR_VEC(LAB,BODY) \
1183 pa_output_addr_vec ((LAB),(BODY))
1185 /* This is how to output a relative case-vector. */
1187 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,BODY) \
1188 pa_output_addr_diff_vec ((LAB),(BODY))
1190 /* This is how to output an assembler line that says to advance the
1191 location counter to a multiple of 2**LOG bytes. */
1193 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1194 fprintf (FILE, "\t.align %d\n", (1 << (LOG)))
1196 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1197 fprintf (FILE, "\t.blockz " HOST_WIDE_INT_PRINT_UNSIGNED"\n", \
1198 (unsigned HOST_WIDE_INT)(SIZE))
1200 /* This says how to output an assembler line to define an uninitialized
1201 global variable with size SIZE (in bytes) and alignment ALIGN (in bits).
1202 This macro exists to properly support languages like C++ which do not
1203 have common data. */
1205 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1206 pa_asm_output_aligned_bss (FILE, NAME, SIZE, ALIGN)
1208 /* This says how to output an assembler line to define a global common symbol
1209 with size SIZE (in bytes) and alignment ALIGN (in bits). */
1211 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN) \
1212 pa_asm_output_aligned_common (FILE, NAME, SIZE, ALIGN)
1214 /* This says how to output an assembler line to define a local common symbol
1215 with size SIZE (in bytes) and alignment ALIGN (in bits). This macro
1216 controls how the assembler definitions of uninitialized static variables
1217 are output. */
1219 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
1220 pa_asm_output_aligned_local (FILE, NAME, SIZE, ALIGN)
1222 /* All HP assemblers use "!" to separate logical lines. */
1223 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == '!')
1225 /* Print operand X (an rtx) in assembler syntax to file FILE.
1226 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1227 For `%' followed by punctuation, CODE is the punctuation and X is null.
1229 On the HP-PA, the CODE can be `r', meaning this is a register-only operand
1230 and an immediate zero should be represented as `r0'.
1232 Several % codes are defined:
1233 O an operation
1234 C compare conditions
1235 N extract conditions
1236 M modifier to handle preincrement addressing for memory refs.
1237 F modifier to handle preincrement addressing for fp memory refs */
1239 #define PRINT_OPERAND(FILE, X, CODE) pa_print_operand (FILE, X, CODE)
1242 /* Print a memory address as an operand to reference that memory location. */
1244 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1245 { rtx addr = ADDR; \
1246 switch (GET_CODE (addr)) \
1248 case REG: \
1249 fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]); \
1250 break; \
1251 case PLUS: \
1252 gcc_assert (GET_CODE (XEXP (addr, 1)) == CONST_INT); \
1253 fprintf (FILE, "%d(%s)", (int)INTVAL (XEXP (addr, 1)), \
1254 reg_names [REGNO (XEXP (addr, 0))]); \
1255 break; \
1256 case LO_SUM: \
1257 if (!symbolic_operand (XEXP (addr, 1), VOIDmode)) \
1258 fputs ("R'", FILE); \
1259 else if (flag_pic == 0) \
1260 fputs ("RR'", FILE); \
1261 else \
1262 fputs ("RT'", FILE); \
1263 pa_output_global_address (FILE, XEXP (addr, 1), 0); \
1264 fputs ("(", FILE); \
1265 output_operand (XEXP (addr, 0), 0); \
1266 fputs (")", FILE); \
1267 break; \
1268 case CONST_INT: \
1269 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC "(%%r0)", INTVAL (addr)); \
1270 break; \
1271 default: \
1272 output_addr_const (FILE, addr); \
1276 /* Find the return address associated with the frame given by
1277 FRAMEADDR. */
1278 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) \
1279 (pa_return_addr_rtx (COUNT, FRAMEADDR))
1281 /* Used to mask out junk bits from the return address, such as
1282 processor state, interrupt status, condition codes and the like. */
1283 #define MASK_RETURN_ADDR \
1284 /* The privilege level is in the two low order bits, mask em out \
1285 of the return address. */ \
1286 (GEN_INT (-4))
1288 /* We need a libcall to canonicalize function pointers on TARGET_ELF32. */
1289 #define CANONICALIZE_FUNCPTR_FOR_COMPARE_LIBCALL \
1290 "__canonicalize_funcptr_for_compare"
1292 #ifdef HAVE_AS_TLS
1293 #undef TARGET_HAVE_TLS
1294 #define TARGET_HAVE_TLS true
1295 #endif
1297 /* The maximum offset in bytes for a PA 1.X pc-relative call to the
1298 head of the preceding stub table. A long branch stub is two or three
1299 instructions for non-PIC and PIC, respectively. Import stubs are
1300 seven and five instructions for HP-UX and ELF targets, respectively.
1301 The default stub group size for ELF targets is 217856 bytes.
1302 FIXME: We need an option to set the maximum offset. */
1303 #define MAX_PCREL17F_OFFSET (TARGET_HPUX ? 198164 : 217856)
1305 #define NEED_INDICATE_EXEC_STACK 0
1307 /* Target hooks for D language. */
1308 #define TARGET_D_CPU_VERSIONS pa_d_target_versions
1309 #define TARGET_D_REGISTER_CPU_TARGET_INFO pa_d_register_target_info
1311 /* Output default function prologue for hpux. */
1312 #define TARGET_ASM_FUNCTION_PROLOGUE pa_output_function_prologue