typeck.c (cp_build_function_call_vec): When mark_used fails unconditionally return...
[official-gcc.git] / gcc / tree-ssa-loop-niter.c
blob470b6a295be5b65e516e4794bbc8a5bbe588aa46
1 /* Functions to determine/estimate number of iterations of a loop.
2 Copyright (C) 2004-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "diagnostic-core.h"
31 #include "stor-layout.h"
32 #include "fold-const.h"
33 #include "calls.h"
34 #include "intl.h"
35 #include "gimplify.h"
36 #include "gimple-iterator.h"
37 #include "tree-cfg.h"
38 #include "tree-ssa-loop-ivopts.h"
39 #include "tree-ssa-loop-niter.h"
40 #include "tree-ssa-loop.h"
41 #include "cfgloop.h"
42 #include "tree-chrec.h"
43 #include "tree-scalar-evolution.h"
44 #include "params.h"
45 #include "tree-dfa.h"
48 /* The maximum number of dominator BBs we search for conditions
49 of loop header copies we use for simplifying a conditional
50 expression. */
51 #define MAX_DOMINATORS_TO_WALK 8
55 Analysis of number of iterations of an affine exit test.
59 /* Bounds on some value, BELOW <= X <= UP. */
61 struct bounds
63 mpz_t below, up;
66 static bool number_of_iterations_popcount (loop_p loop, edge exit,
67 enum tree_code code,
68 struct tree_niter_desc *niter);
71 /* Splits expression EXPR to a variable part VAR and constant OFFSET. */
73 static void
74 split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
76 tree type = TREE_TYPE (expr);
77 tree op0, op1;
78 bool negate = false;
80 *var = expr;
81 mpz_set_ui (offset, 0);
83 switch (TREE_CODE (expr))
85 case MINUS_EXPR:
86 negate = true;
87 /* Fallthru. */
89 case PLUS_EXPR:
90 case POINTER_PLUS_EXPR:
91 op0 = TREE_OPERAND (expr, 0);
92 op1 = TREE_OPERAND (expr, 1);
94 if (TREE_CODE (op1) != INTEGER_CST)
95 break;
97 *var = op0;
98 /* Always sign extend the offset. */
99 wi::to_mpz (wi::to_wide (op1), offset, SIGNED);
100 if (negate)
101 mpz_neg (offset, offset);
102 break;
104 case INTEGER_CST:
105 *var = build_int_cst_type (type, 0);
106 wi::to_mpz (wi::to_wide (expr), offset, TYPE_SIGN (type));
107 break;
109 default:
110 break;
114 /* From condition C0 CMP C1 derives information regarding the value range
115 of VAR, which is of TYPE. Results are stored in to BELOW and UP. */
117 static void
118 refine_value_range_using_guard (tree type, tree var,
119 tree c0, enum tree_code cmp, tree c1,
120 mpz_t below, mpz_t up)
122 tree varc0, varc1, ctype;
123 mpz_t offc0, offc1;
124 mpz_t mint, maxt, minc1, maxc1;
125 wide_int minv, maxv;
126 bool no_wrap = nowrap_type_p (type);
127 bool c0_ok, c1_ok;
128 signop sgn = TYPE_SIGN (type);
130 switch (cmp)
132 case LT_EXPR:
133 case LE_EXPR:
134 case GT_EXPR:
135 case GE_EXPR:
136 STRIP_SIGN_NOPS (c0);
137 STRIP_SIGN_NOPS (c1);
138 ctype = TREE_TYPE (c0);
139 if (!useless_type_conversion_p (ctype, type))
140 return;
142 break;
144 case EQ_EXPR:
145 /* We could derive quite precise information from EQ_EXPR, however,
146 such a guard is unlikely to appear, so we do not bother with
147 handling it. */
148 return;
150 case NE_EXPR:
151 /* NE_EXPR comparisons do not contain much of useful information,
152 except for cases of comparing with bounds. */
153 if (TREE_CODE (c1) != INTEGER_CST
154 || !INTEGRAL_TYPE_P (type))
155 return;
157 /* Ensure that the condition speaks about an expression in the same
158 type as X and Y. */
159 ctype = TREE_TYPE (c0);
160 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
161 return;
162 c0 = fold_convert (type, c0);
163 c1 = fold_convert (type, c1);
165 if (operand_equal_p (var, c0, 0))
167 mpz_t valc1;
169 /* Case of comparing VAR with its below/up bounds. */
170 mpz_init (valc1);
171 wi::to_mpz (wi::to_wide (c1), valc1, TYPE_SIGN (type));
172 if (mpz_cmp (valc1, below) == 0)
173 cmp = GT_EXPR;
174 if (mpz_cmp (valc1, up) == 0)
175 cmp = LT_EXPR;
177 mpz_clear (valc1);
179 else
181 /* Case of comparing with the bounds of the type. */
182 wide_int min = wi::min_value (type);
183 wide_int max = wi::max_value (type);
185 if (wi::to_wide (c1) == min)
186 cmp = GT_EXPR;
187 if (wi::to_wide (c1) == max)
188 cmp = LT_EXPR;
191 /* Quick return if no useful information. */
192 if (cmp == NE_EXPR)
193 return;
195 break;
197 default:
198 return;
201 mpz_init (offc0);
202 mpz_init (offc1);
203 split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
204 split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
206 /* We are only interested in comparisons of expressions based on VAR. */
207 if (operand_equal_p (var, varc1, 0))
209 std::swap (varc0, varc1);
210 mpz_swap (offc0, offc1);
211 cmp = swap_tree_comparison (cmp);
213 else if (!operand_equal_p (var, varc0, 0))
215 mpz_clear (offc0);
216 mpz_clear (offc1);
217 return;
220 mpz_init (mint);
221 mpz_init (maxt);
222 get_type_static_bounds (type, mint, maxt);
223 mpz_init (minc1);
224 mpz_init (maxc1);
225 /* Setup range information for varc1. */
226 if (integer_zerop (varc1))
228 wi::to_mpz (0, minc1, TYPE_SIGN (type));
229 wi::to_mpz (0, maxc1, TYPE_SIGN (type));
231 else if (TREE_CODE (varc1) == SSA_NAME
232 && INTEGRAL_TYPE_P (type)
233 && get_range_info (varc1, &minv, &maxv) == VR_RANGE)
235 gcc_assert (wi::le_p (minv, maxv, sgn));
236 wi::to_mpz (minv, minc1, sgn);
237 wi::to_mpz (maxv, maxc1, sgn);
239 else
241 mpz_set (minc1, mint);
242 mpz_set (maxc1, maxt);
245 /* Compute valid range information for varc1 + offc1. Note nothing
246 useful can be derived if it overflows or underflows. Overflow or
247 underflow could happen when:
249 offc1 > 0 && varc1 + offc1 > MAX_VAL (type)
250 offc1 < 0 && varc1 + offc1 < MIN_VAL (type). */
251 mpz_add (minc1, minc1, offc1);
252 mpz_add (maxc1, maxc1, offc1);
253 c1_ok = (no_wrap
254 || mpz_sgn (offc1) == 0
255 || (mpz_sgn (offc1) < 0 && mpz_cmp (minc1, mint) >= 0)
256 || (mpz_sgn (offc1) > 0 && mpz_cmp (maxc1, maxt) <= 0));
257 if (!c1_ok)
258 goto end;
260 if (mpz_cmp (minc1, mint) < 0)
261 mpz_set (minc1, mint);
262 if (mpz_cmp (maxc1, maxt) > 0)
263 mpz_set (maxc1, maxt);
265 if (cmp == LT_EXPR)
267 cmp = LE_EXPR;
268 mpz_sub_ui (maxc1, maxc1, 1);
270 if (cmp == GT_EXPR)
272 cmp = GE_EXPR;
273 mpz_add_ui (minc1, minc1, 1);
276 /* Compute range information for varc0. If there is no overflow,
277 the condition implied that
279 (varc0) cmp (varc1 + offc1 - offc0)
281 We can possibly improve the upper bound of varc0 if cmp is LE_EXPR,
282 or the below bound if cmp is GE_EXPR.
284 To prove there is no overflow/underflow, we need to check below
285 four cases:
286 1) cmp == LE_EXPR && offc0 > 0
288 (varc0 + offc0) doesn't overflow
289 && (varc1 + offc1 - offc0) doesn't underflow
291 2) cmp == LE_EXPR && offc0 < 0
293 (varc0 + offc0) doesn't underflow
294 && (varc1 + offc1 - offc0) doesn't overfloe
296 In this case, (varc0 + offc0) will never underflow if we can
297 prove (varc1 + offc1 - offc0) doesn't overflow.
299 3) cmp == GE_EXPR && offc0 < 0
301 (varc0 + offc0) doesn't underflow
302 && (varc1 + offc1 - offc0) doesn't overflow
304 4) cmp == GE_EXPR && offc0 > 0
306 (varc0 + offc0) doesn't overflow
307 && (varc1 + offc1 - offc0) doesn't underflow
309 In this case, (varc0 + offc0) will never overflow if we can
310 prove (varc1 + offc1 - offc0) doesn't underflow.
312 Note we only handle case 2 and 4 in below code. */
314 mpz_sub (minc1, minc1, offc0);
315 mpz_sub (maxc1, maxc1, offc0);
316 c0_ok = (no_wrap
317 || mpz_sgn (offc0) == 0
318 || (cmp == LE_EXPR
319 && mpz_sgn (offc0) < 0 && mpz_cmp (maxc1, maxt) <= 0)
320 || (cmp == GE_EXPR
321 && mpz_sgn (offc0) > 0 && mpz_cmp (minc1, mint) >= 0));
322 if (!c0_ok)
323 goto end;
325 if (cmp == LE_EXPR)
327 if (mpz_cmp (up, maxc1) > 0)
328 mpz_set (up, maxc1);
330 else
332 if (mpz_cmp (below, minc1) < 0)
333 mpz_set (below, minc1);
336 end:
337 mpz_clear (mint);
338 mpz_clear (maxt);
339 mpz_clear (minc1);
340 mpz_clear (maxc1);
341 mpz_clear (offc0);
342 mpz_clear (offc1);
345 /* Stores estimate on the minimum/maximum value of the expression VAR + OFF
346 in TYPE to MIN and MAX. */
348 static void
349 determine_value_range (struct loop *loop, tree type, tree var, mpz_t off,
350 mpz_t min, mpz_t max)
352 int cnt = 0;
353 mpz_t minm, maxm;
354 basic_block bb;
355 wide_int minv, maxv;
356 enum value_range_kind rtype = VR_VARYING;
358 /* If the expression is a constant, we know its value exactly. */
359 if (integer_zerop (var))
361 mpz_set (min, off);
362 mpz_set (max, off);
363 return;
366 get_type_static_bounds (type, min, max);
368 /* See if we have some range info from VRP. */
369 if (TREE_CODE (var) == SSA_NAME && INTEGRAL_TYPE_P (type))
371 edge e = loop_preheader_edge (loop);
372 signop sgn = TYPE_SIGN (type);
373 gphi_iterator gsi;
375 /* Either for VAR itself... */
376 rtype = get_range_info (var, &minv, &maxv);
377 /* Or for PHI results in loop->header where VAR is used as
378 PHI argument from the loop preheader edge. */
379 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
381 gphi *phi = gsi.phi ();
382 wide_int minc, maxc;
383 if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var
384 && (get_range_info (gimple_phi_result (phi), &minc, &maxc)
385 == VR_RANGE))
387 if (rtype != VR_RANGE)
389 rtype = VR_RANGE;
390 minv = minc;
391 maxv = maxc;
393 else
395 minv = wi::max (minv, minc, sgn);
396 maxv = wi::min (maxv, maxc, sgn);
397 /* If the PHI result range are inconsistent with
398 the VAR range, give up on looking at the PHI
399 results. This can happen if VR_UNDEFINED is
400 involved. */
401 if (wi::gt_p (minv, maxv, sgn))
403 rtype = get_range_info (var, &minv, &maxv);
404 break;
409 mpz_init (minm);
410 mpz_init (maxm);
411 if (rtype != VR_RANGE)
413 mpz_set (minm, min);
414 mpz_set (maxm, max);
416 else
418 gcc_assert (wi::le_p (minv, maxv, sgn));
419 wi::to_mpz (minv, minm, sgn);
420 wi::to_mpz (maxv, maxm, sgn);
422 /* Now walk the dominators of the loop header and use the entry
423 guards to refine the estimates. */
424 for (bb = loop->header;
425 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
426 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
428 edge e;
429 tree c0, c1;
430 gimple *cond;
431 enum tree_code cmp;
433 if (!single_pred_p (bb))
434 continue;
435 e = single_pred_edge (bb);
437 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
438 continue;
440 cond = last_stmt (e->src);
441 c0 = gimple_cond_lhs (cond);
442 cmp = gimple_cond_code (cond);
443 c1 = gimple_cond_rhs (cond);
445 if (e->flags & EDGE_FALSE_VALUE)
446 cmp = invert_tree_comparison (cmp, false);
448 refine_value_range_using_guard (type, var, c0, cmp, c1, minm, maxm);
449 ++cnt;
452 mpz_add (minm, minm, off);
453 mpz_add (maxm, maxm, off);
454 /* If the computation may not wrap or off is zero, then this
455 is always fine. If off is negative and minv + off isn't
456 smaller than type's minimum, or off is positive and
457 maxv + off isn't bigger than type's maximum, use the more
458 precise range too. */
459 if (nowrap_type_p (type)
460 || mpz_sgn (off) == 0
461 || (mpz_sgn (off) < 0 && mpz_cmp (minm, min) >= 0)
462 || (mpz_sgn (off) > 0 && mpz_cmp (maxm, max) <= 0))
464 mpz_set (min, minm);
465 mpz_set (max, maxm);
466 mpz_clear (minm);
467 mpz_clear (maxm);
468 return;
470 mpz_clear (minm);
471 mpz_clear (maxm);
474 /* If the computation may wrap, we know nothing about the value, except for
475 the range of the type. */
476 if (!nowrap_type_p (type))
477 return;
479 /* Since the addition of OFF does not wrap, if OFF is positive, then we may
480 add it to MIN, otherwise to MAX. */
481 if (mpz_sgn (off) < 0)
482 mpz_add (max, max, off);
483 else
484 mpz_add (min, min, off);
487 /* Stores the bounds on the difference of the values of the expressions
488 (var + X) and (var + Y), computed in TYPE, to BNDS. */
490 static void
491 bound_difference_of_offsetted_base (tree type, mpz_t x, mpz_t y,
492 bounds *bnds)
494 int rel = mpz_cmp (x, y);
495 bool may_wrap = !nowrap_type_p (type);
496 mpz_t m;
498 /* If X == Y, then the expressions are always equal.
499 If X > Y, there are the following possibilities:
500 a) neither of var + X and var + Y overflow or underflow, or both of
501 them do. Then their difference is X - Y.
502 b) var + X overflows, and var + Y does not. Then the values of the
503 expressions are var + X - M and var + Y, where M is the range of
504 the type, and their difference is X - Y - M.
505 c) var + Y underflows and var + X does not. Their difference again
506 is M - X + Y.
507 Therefore, if the arithmetics in type does not overflow, then the
508 bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
509 Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
510 (X - Y, X - Y + M). */
512 if (rel == 0)
514 mpz_set_ui (bnds->below, 0);
515 mpz_set_ui (bnds->up, 0);
516 return;
519 mpz_init (m);
520 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), m, UNSIGNED);
521 mpz_add_ui (m, m, 1);
522 mpz_sub (bnds->up, x, y);
523 mpz_set (bnds->below, bnds->up);
525 if (may_wrap)
527 if (rel > 0)
528 mpz_sub (bnds->below, bnds->below, m);
529 else
530 mpz_add (bnds->up, bnds->up, m);
533 mpz_clear (m);
536 /* From condition C0 CMP C1 derives information regarding the
537 difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
538 and stores it to BNDS. */
540 static void
541 refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
542 tree vary, mpz_t offy,
543 tree c0, enum tree_code cmp, tree c1,
544 bounds *bnds)
546 tree varc0, varc1, ctype;
547 mpz_t offc0, offc1, loffx, loffy, bnd;
548 bool lbound = false;
549 bool no_wrap = nowrap_type_p (type);
550 bool x_ok, y_ok;
552 switch (cmp)
554 case LT_EXPR:
555 case LE_EXPR:
556 case GT_EXPR:
557 case GE_EXPR:
558 STRIP_SIGN_NOPS (c0);
559 STRIP_SIGN_NOPS (c1);
560 ctype = TREE_TYPE (c0);
561 if (!useless_type_conversion_p (ctype, type))
562 return;
564 break;
566 case EQ_EXPR:
567 /* We could derive quite precise information from EQ_EXPR, however, such
568 a guard is unlikely to appear, so we do not bother with handling
569 it. */
570 return;
572 case NE_EXPR:
573 /* NE_EXPR comparisons do not contain much of useful information, except for
574 special case of comparing with the bounds of the type. */
575 if (TREE_CODE (c1) != INTEGER_CST
576 || !INTEGRAL_TYPE_P (type))
577 return;
579 /* Ensure that the condition speaks about an expression in the same type
580 as X and Y. */
581 ctype = TREE_TYPE (c0);
582 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
583 return;
584 c0 = fold_convert (type, c0);
585 c1 = fold_convert (type, c1);
587 if (TYPE_MIN_VALUE (type)
588 && operand_equal_p (c1, TYPE_MIN_VALUE (type), 0))
590 cmp = GT_EXPR;
591 break;
593 if (TYPE_MAX_VALUE (type)
594 && operand_equal_p (c1, TYPE_MAX_VALUE (type), 0))
596 cmp = LT_EXPR;
597 break;
600 return;
601 default:
602 return;
605 mpz_init (offc0);
606 mpz_init (offc1);
607 split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
608 split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
610 /* We are only interested in comparisons of expressions based on VARX and
611 VARY. TODO -- we might also be able to derive some bounds from
612 expressions containing just one of the variables. */
614 if (operand_equal_p (varx, varc1, 0))
616 std::swap (varc0, varc1);
617 mpz_swap (offc0, offc1);
618 cmp = swap_tree_comparison (cmp);
621 if (!operand_equal_p (varx, varc0, 0)
622 || !operand_equal_p (vary, varc1, 0))
623 goto end;
625 mpz_init_set (loffx, offx);
626 mpz_init_set (loffy, offy);
628 if (cmp == GT_EXPR || cmp == GE_EXPR)
630 std::swap (varx, vary);
631 mpz_swap (offc0, offc1);
632 mpz_swap (loffx, loffy);
633 cmp = swap_tree_comparison (cmp);
634 lbound = true;
637 /* If there is no overflow, the condition implies that
639 (VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
641 The overflows and underflows may complicate things a bit; each
642 overflow decreases the appropriate offset by M, and underflow
643 increases it by M. The above inequality would not necessarily be
644 true if
646 -- VARX + OFFX underflows and VARX + OFFC0 does not, or
647 VARX + OFFC0 overflows, but VARX + OFFX does not.
648 This may only happen if OFFX < OFFC0.
649 -- VARY + OFFY overflows and VARY + OFFC1 does not, or
650 VARY + OFFC1 underflows and VARY + OFFY does not.
651 This may only happen if OFFY > OFFC1. */
653 if (no_wrap)
655 x_ok = true;
656 y_ok = true;
658 else
660 x_ok = (integer_zerop (varx)
661 || mpz_cmp (loffx, offc0) >= 0);
662 y_ok = (integer_zerop (vary)
663 || mpz_cmp (loffy, offc1) <= 0);
666 if (x_ok && y_ok)
668 mpz_init (bnd);
669 mpz_sub (bnd, loffx, loffy);
670 mpz_add (bnd, bnd, offc1);
671 mpz_sub (bnd, bnd, offc0);
673 if (cmp == LT_EXPR)
674 mpz_sub_ui (bnd, bnd, 1);
676 if (lbound)
678 mpz_neg (bnd, bnd);
679 if (mpz_cmp (bnds->below, bnd) < 0)
680 mpz_set (bnds->below, bnd);
682 else
684 if (mpz_cmp (bnd, bnds->up) < 0)
685 mpz_set (bnds->up, bnd);
687 mpz_clear (bnd);
690 mpz_clear (loffx);
691 mpz_clear (loffy);
692 end:
693 mpz_clear (offc0);
694 mpz_clear (offc1);
697 /* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
698 The subtraction is considered to be performed in arbitrary precision,
699 without overflows.
701 We do not attempt to be too clever regarding the value ranges of X and
702 Y; most of the time, they are just integers or ssa names offsetted by
703 integer. However, we try to use the information contained in the
704 comparisons before the loop (usually created by loop header copying). */
706 static void
707 bound_difference (struct loop *loop, tree x, tree y, bounds *bnds)
709 tree type = TREE_TYPE (x);
710 tree varx, vary;
711 mpz_t offx, offy;
712 mpz_t minx, maxx, miny, maxy;
713 int cnt = 0;
714 edge e;
715 basic_block bb;
716 tree c0, c1;
717 gimple *cond;
718 enum tree_code cmp;
720 /* Get rid of unnecessary casts, but preserve the value of
721 the expressions. */
722 STRIP_SIGN_NOPS (x);
723 STRIP_SIGN_NOPS (y);
725 mpz_init (bnds->below);
726 mpz_init (bnds->up);
727 mpz_init (offx);
728 mpz_init (offy);
729 split_to_var_and_offset (x, &varx, offx);
730 split_to_var_and_offset (y, &vary, offy);
732 if (!integer_zerop (varx)
733 && operand_equal_p (varx, vary, 0))
735 /* Special case VARX == VARY -- we just need to compare the
736 offsets. The matters are a bit more complicated in the
737 case addition of offsets may wrap. */
738 bound_difference_of_offsetted_base (type, offx, offy, bnds);
740 else
742 /* Otherwise, use the value ranges to determine the initial
743 estimates on below and up. */
744 mpz_init (minx);
745 mpz_init (maxx);
746 mpz_init (miny);
747 mpz_init (maxy);
748 determine_value_range (loop, type, varx, offx, minx, maxx);
749 determine_value_range (loop, type, vary, offy, miny, maxy);
751 mpz_sub (bnds->below, minx, maxy);
752 mpz_sub (bnds->up, maxx, miny);
753 mpz_clear (minx);
754 mpz_clear (maxx);
755 mpz_clear (miny);
756 mpz_clear (maxy);
759 /* If both X and Y are constants, we cannot get any more precise. */
760 if (integer_zerop (varx) && integer_zerop (vary))
761 goto end;
763 /* Now walk the dominators of the loop header and use the entry
764 guards to refine the estimates. */
765 for (bb = loop->header;
766 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
767 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
769 if (!single_pred_p (bb))
770 continue;
771 e = single_pred_edge (bb);
773 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
774 continue;
776 cond = last_stmt (e->src);
777 c0 = gimple_cond_lhs (cond);
778 cmp = gimple_cond_code (cond);
779 c1 = gimple_cond_rhs (cond);
781 if (e->flags & EDGE_FALSE_VALUE)
782 cmp = invert_tree_comparison (cmp, false);
784 refine_bounds_using_guard (type, varx, offx, vary, offy,
785 c0, cmp, c1, bnds);
786 ++cnt;
789 end:
790 mpz_clear (offx);
791 mpz_clear (offy);
794 /* Update the bounds in BNDS that restrict the value of X to the bounds
795 that restrict the value of X + DELTA. X can be obtained as a
796 difference of two values in TYPE. */
798 static void
799 bounds_add (bounds *bnds, const widest_int &delta, tree type)
801 mpz_t mdelta, max;
803 mpz_init (mdelta);
804 wi::to_mpz (delta, mdelta, SIGNED);
806 mpz_init (max);
807 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), max, UNSIGNED);
809 mpz_add (bnds->up, bnds->up, mdelta);
810 mpz_add (bnds->below, bnds->below, mdelta);
812 if (mpz_cmp (bnds->up, max) > 0)
813 mpz_set (bnds->up, max);
815 mpz_neg (max, max);
816 if (mpz_cmp (bnds->below, max) < 0)
817 mpz_set (bnds->below, max);
819 mpz_clear (mdelta);
820 mpz_clear (max);
823 /* Update the bounds in BNDS that restrict the value of X to the bounds
824 that restrict the value of -X. */
826 static void
827 bounds_negate (bounds *bnds)
829 mpz_t tmp;
831 mpz_init_set (tmp, bnds->up);
832 mpz_neg (bnds->up, bnds->below);
833 mpz_neg (bnds->below, tmp);
834 mpz_clear (tmp);
837 /* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
839 static tree
840 inverse (tree x, tree mask)
842 tree type = TREE_TYPE (x);
843 tree rslt;
844 unsigned ctr = tree_floor_log2 (mask);
846 if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
848 unsigned HOST_WIDE_INT ix;
849 unsigned HOST_WIDE_INT imask;
850 unsigned HOST_WIDE_INT irslt = 1;
852 gcc_assert (cst_and_fits_in_hwi (x));
853 gcc_assert (cst_and_fits_in_hwi (mask));
855 ix = int_cst_value (x);
856 imask = int_cst_value (mask);
858 for (; ctr; ctr--)
860 irslt *= ix;
861 ix *= ix;
863 irslt &= imask;
865 rslt = build_int_cst_type (type, irslt);
867 else
869 rslt = build_int_cst (type, 1);
870 for (; ctr; ctr--)
872 rslt = int_const_binop (MULT_EXPR, rslt, x);
873 x = int_const_binop (MULT_EXPR, x, x);
875 rslt = int_const_binop (BIT_AND_EXPR, rslt, mask);
878 return rslt;
881 /* Derives the upper bound BND on the number of executions of loop with exit
882 condition S * i <> C. If NO_OVERFLOW is true, then the control variable of
883 the loop does not overflow. EXIT_MUST_BE_TAKEN is true if we are guaranteed
884 that the loop ends through this exit, i.e., the induction variable ever
885 reaches the value of C.
887 The value C is equal to final - base, where final and base are the final and
888 initial value of the actual induction variable in the analysed loop. BNDS
889 bounds the value of this difference when computed in signed type with
890 unbounded range, while the computation of C is performed in an unsigned
891 type with the range matching the range of the type of the induction variable.
892 In particular, BNDS.up contains an upper bound on C in the following cases:
893 -- if the iv must reach its final value without overflow, i.e., if
894 NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
895 -- if final >= base, which we know to hold when BNDS.below >= 0. */
897 static void
898 number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
899 bounds *bnds, bool exit_must_be_taken)
901 widest_int max;
902 mpz_t d;
903 tree type = TREE_TYPE (c);
904 bool bnds_u_valid = ((no_overflow && exit_must_be_taken)
905 || mpz_sgn (bnds->below) >= 0);
907 if (integer_onep (s)
908 || (TREE_CODE (c) == INTEGER_CST
909 && TREE_CODE (s) == INTEGER_CST
910 && wi::mod_trunc (wi::to_wide (c), wi::to_wide (s),
911 TYPE_SIGN (type)) == 0)
912 || (TYPE_OVERFLOW_UNDEFINED (type)
913 && multiple_of_p (type, c, s)))
915 /* If C is an exact multiple of S, then its value will be reached before
916 the induction variable overflows (unless the loop is exited in some
917 other way before). Note that the actual induction variable in the
918 loop (which ranges from base to final instead of from 0 to C) may
919 overflow, in which case BNDS.up will not be giving a correct upper
920 bound on C; thus, BNDS_U_VALID had to be computed in advance. */
921 no_overflow = true;
922 exit_must_be_taken = true;
925 /* If the induction variable can overflow, the number of iterations is at
926 most the period of the control variable (or infinite, but in that case
927 the whole # of iterations analysis will fail). */
928 if (!no_overflow)
930 max = wi::mask <widest_int> (TYPE_PRECISION (type)
931 - wi::ctz (wi::to_wide (s)), false);
932 wi::to_mpz (max, bnd, UNSIGNED);
933 return;
936 /* Now we know that the induction variable does not overflow, so the loop
937 iterates at most (range of type / S) times. */
938 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), bnd, UNSIGNED);
940 /* If the induction variable is guaranteed to reach the value of C before
941 overflow, ... */
942 if (exit_must_be_taken)
944 /* ... then we can strengthen this to C / S, and possibly we can use
945 the upper bound on C given by BNDS. */
946 if (TREE_CODE (c) == INTEGER_CST)
947 wi::to_mpz (wi::to_wide (c), bnd, UNSIGNED);
948 else if (bnds_u_valid)
949 mpz_set (bnd, bnds->up);
952 mpz_init (d);
953 wi::to_mpz (wi::to_wide (s), d, UNSIGNED);
954 mpz_fdiv_q (bnd, bnd, d);
955 mpz_clear (d);
958 /* Determines number of iterations of loop whose ending condition
959 is IV <> FINAL. TYPE is the type of the iv. The number of
960 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
961 we know that the exit must be taken eventually, i.e., that the IV
962 ever reaches the value FINAL (we derived this earlier, and possibly set
963 NITER->assumptions to make sure this is the case). BNDS contains the
964 bounds on the difference FINAL - IV->base. */
966 static bool
967 number_of_iterations_ne (struct loop *loop, tree type, affine_iv *iv,
968 tree final, struct tree_niter_desc *niter,
969 bool exit_must_be_taken, bounds *bnds)
971 tree niter_type = unsigned_type_for (type);
972 tree s, c, d, bits, assumption, tmp, bound;
973 mpz_t max;
975 niter->control = *iv;
976 niter->bound = final;
977 niter->cmp = NE_EXPR;
979 /* Rearrange the terms so that we get inequality S * i <> C, with S
980 positive. Also cast everything to the unsigned type. If IV does
981 not overflow, BNDS bounds the value of C. Also, this is the
982 case if the computation |FINAL - IV->base| does not overflow, i.e.,
983 if BNDS->below in the result is nonnegative. */
984 if (tree_int_cst_sign_bit (iv->step))
986 s = fold_convert (niter_type,
987 fold_build1 (NEGATE_EXPR, type, iv->step));
988 c = fold_build2 (MINUS_EXPR, niter_type,
989 fold_convert (niter_type, iv->base),
990 fold_convert (niter_type, final));
991 bounds_negate (bnds);
993 else
995 s = fold_convert (niter_type, iv->step);
996 c = fold_build2 (MINUS_EXPR, niter_type,
997 fold_convert (niter_type, final),
998 fold_convert (niter_type, iv->base));
1001 mpz_init (max);
1002 number_of_iterations_ne_max (max, iv->no_overflow, c, s, bnds,
1003 exit_must_be_taken);
1004 niter->max = widest_int::from (wi::from_mpz (niter_type, max, false),
1005 TYPE_SIGN (niter_type));
1006 mpz_clear (max);
1008 /* Compute no-overflow information for the control iv. This can be
1009 proven when below two conditions are satisfied:
1011 1) IV evaluates toward FINAL at beginning, i.e:
1012 base <= FINAL ; step > 0
1013 base >= FINAL ; step < 0
1015 2) |FINAL - base| is an exact multiple of step.
1017 Unfortunately, it's hard to prove above conditions after pass loop-ch
1018 because loop with exit condition (IV != FINAL) usually will be guarded
1019 by initial-condition (IV.base - IV.step != FINAL). In this case, we
1020 can alternatively try to prove below conditions:
1022 1') IV evaluates toward FINAL at beginning, i.e:
1023 new_base = base - step < FINAL ; step > 0
1024 && base - step doesn't underflow
1025 new_base = base - step > FINAL ; step < 0
1026 && base - step doesn't overflow
1028 2') |FINAL - new_base| is an exact multiple of step.
1030 Please refer to PR34114 as an example of loop-ch's impact, also refer
1031 to PR72817 as an example why condition 2') is necessary.
1033 Note, for NE_EXPR, base equals to FINAL is a special case, in
1034 which the loop exits immediately, and the iv does not overflow. */
1035 if (!niter->control.no_overflow
1036 && (integer_onep (s) || multiple_of_p (type, c, s)))
1038 tree t, cond, new_c, relaxed_cond = boolean_false_node;
1040 if (tree_int_cst_sign_bit (iv->step))
1042 cond = fold_build2 (GE_EXPR, boolean_type_node, iv->base, final);
1043 if (TREE_CODE (type) == INTEGER_TYPE)
1045 /* Only when base - step doesn't overflow. */
1046 t = TYPE_MAX_VALUE (type);
1047 t = fold_build2 (PLUS_EXPR, type, t, iv->step);
1048 t = fold_build2 (GE_EXPR, boolean_type_node, t, iv->base);
1049 if (integer_nonzerop (t))
1051 t = fold_build2 (MINUS_EXPR, type, iv->base, iv->step);
1052 new_c = fold_build2 (MINUS_EXPR, niter_type,
1053 fold_convert (niter_type, t),
1054 fold_convert (niter_type, final));
1055 if (multiple_of_p (type, new_c, s))
1056 relaxed_cond = fold_build2 (GT_EXPR, boolean_type_node,
1057 t, final);
1061 else
1063 cond = fold_build2 (LE_EXPR, boolean_type_node, iv->base, final);
1064 if (TREE_CODE (type) == INTEGER_TYPE)
1066 /* Only when base - step doesn't underflow. */
1067 t = TYPE_MIN_VALUE (type);
1068 t = fold_build2 (PLUS_EXPR, type, t, iv->step);
1069 t = fold_build2 (LE_EXPR, boolean_type_node, t, iv->base);
1070 if (integer_nonzerop (t))
1072 t = fold_build2 (MINUS_EXPR, type, iv->base, iv->step);
1073 new_c = fold_build2 (MINUS_EXPR, niter_type,
1074 fold_convert (niter_type, final),
1075 fold_convert (niter_type, t));
1076 if (multiple_of_p (type, new_c, s))
1077 relaxed_cond = fold_build2 (LT_EXPR, boolean_type_node,
1078 t, final);
1083 t = simplify_using_initial_conditions (loop, cond);
1084 if (!t || !integer_onep (t))
1085 t = simplify_using_initial_conditions (loop, relaxed_cond);
1087 if (t && integer_onep (t))
1088 niter->control.no_overflow = true;
1091 /* First the trivial cases -- when the step is 1. */
1092 if (integer_onep (s))
1094 niter->niter = c;
1095 return true;
1097 if (niter->control.no_overflow && multiple_of_p (type, c, s))
1099 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, c, s);
1100 return true;
1103 /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
1104 is infinite. Otherwise, the number of iterations is
1105 (inverse(s/d) * (c/d)) mod (size of mode/d). */
1106 bits = num_ending_zeros (s);
1107 bound = build_low_bits_mask (niter_type,
1108 (TYPE_PRECISION (niter_type)
1109 - tree_to_uhwi (bits)));
1111 d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
1112 build_int_cst (niter_type, 1), bits);
1113 s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
1115 if (!exit_must_be_taken)
1117 /* If we cannot assume that the exit is taken eventually, record the
1118 assumptions for divisibility of c. */
1119 assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
1120 assumption = fold_build2 (EQ_EXPR, boolean_type_node,
1121 assumption, build_int_cst (niter_type, 0));
1122 if (!integer_nonzerop (assumption))
1123 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1124 niter->assumptions, assumption);
1127 c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
1128 tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
1129 niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
1130 return true;
1133 /* Checks whether we can determine the final value of the control variable
1134 of the loop with ending condition IV0 < IV1 (computed in TYPE).
1135 DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
1136 of the step. The assumptions necessary to ensure that the computation
1137 of the final value does not overflow are recorded in NITER. If we
1138 find the final value, we adjust DELTA and return TRUE. Otherwise
1139 we return false. BNDS bounds the value of IV1->base - IV0->base,
1140 and will be updated by the same amount as DELTA. EXIT_MUST_BE_TAKEN is
1141 true if we know that the exit must be taken eventually. */
1143 static bool
1144 number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
1145 struct tree_niter_desc *niter,
1146 tree *delta, tree step,
1147 bool exit_must_be_taken, bounds *bnds)
1149 tree niter_type = TREE_TYPE (step);
1150 tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
1151 tree tmod;
1152 mpz_t mmod;
1153 tree assumption = boolean_true_node, bound, noloop;
1154 bool ret = false, fv_comp_no_overflow;
1155 tree type1 = type;
1156 if (POINTER_TYPE_P (type))
1157 type1 = sizetype;
1159 if (TREE_CODE (mod) != INTEGER_CST)
1160 return false;
1161 if (integer_nonzerop (mod))
1162 mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
1163 tmod = fold_convert (type1, mod);
1165 mpz_init (mmod);
1166 wi::to_mpz (wi::to_wide (mod), mmod, UNSIGNED);
1167 mpz_neg (mmod, mmod);
1169 /* If the induction variable does not overflow and the exit is taken,
1170 then the computation of the final value does not overflow. This is
1171 also obviously the case if the new final value is equal to the
1172 current one. Finally, we postulate this for pointer type variables,
1173 as the code cannot rely on the object to that the pointer points being
1174 placed at the end of the address space (and more pragmatically,
1175 TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
1176 if (integer_zerop (mod) || POINTER_TYPE_P (type))
1177 fv_comp_no_overflow = true;
1178 else if (!exit_must_be_taken)
1179 fv_comp_no_overflow = false;
1180 else
1181 fv_comp_no_overflow =
1182 (iv0->no_overflow && integer_nonzerop (iv0->step))
1183 || (iv1->no_overflow && integer_nonzerop (iv1->step));
1185 if (integer_nonzerop (iv0->step))
1187 /* The final value of the iv is iv1->base + MOD, assuming that this
1188 computation does not overflow, and that
1189 iv0->base <= iv1->base + MOD. */
1190 if (!fv_comp_no_overflow)
1192 bound = fold_build2 (MINUS_EXPR, type1,
1193 TYPE_MAX_VALUE (type1), tmod);
1194 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1195 iv1->base, bound);
1196 if (integer_zerop (assumption))
1197 goto end;
1199 if (mpz_cmp (mmod, bnds->below) < 0)
1200 noloop = boolean_false_node;
1201 else if (POINTER_TYPE_P (type))
1202 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1203 iv0->base,
1204 fold_build_pointer_plus (iv1->base, tmod));
1205 else
1206 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1207 iv0->base,
1208 fold_build2 (PLUS_EXPR, type1,
1209 iv1->base, tmod));
1211 else
1213 /* The final value of the iv is iv0->base - MOD, assuming that this
1214 computation does not overflow, and that
1215 iv0->base - MOD <= iv1->base. */
1216 if (!fv_comp_no_overflow)
1218 bound = fold_build2 (PLUS_EXPR, type1,
1219 TYPE_MIN_VALUE (type1), tmod);
1220 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1221 iv0->base, bound);
1222 if (integer_zerop (assumption))
1223 goto end;
1225 if (mpz_cmp (mmod, bnds->below) < 0)
1226 noloop = boolean_false_node;
1227 else if (POINTER_TYPE_P (type))
1228 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1229 fold_build_pointer_plus (iv0->base,
1230 fold_build1 (NEGATE_EXPR,
1231 type1, tmod)),
1232 iv1->base);
1233 else
1234 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1235 fold_build2 (MINUS_EXPR, type1,
1236 iv0->base, tmod),
1237 iv1->base);
1240 if (!integer_nonzerop (assumption))
1241 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1242 niter->assumptions,
1243 assumption);
1244 if (!integer_zerop (noloop))
1245 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1246 niter->may_be_zero,
1247 noloop);
1248 bounds_add (bnds, wi::to_widest (mod), type);
1249 *delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
1251 ret = true;
1252 end:
1253 mpz_clear (mmod);
1254 return ret;
1257 /* Add assertions to NITER that ensure that the control variable of the loop
1258 with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
1259 are TYPE. Returns false if we can prove that there is an overflow, true
1260 otherwise. STEP is the absolute value of the step. */
1262 static bool
1263 assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1264 struct tree_niter_desc *niter, tree step)
1266 tree bound, d, assumption, diff;
1267 tree niter_type = TREE_TYPE (step);
1269 if (integer_nonzerop (iv0->step))
1271 /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
1272 if (iv0->no_overflow)
1273 return true;
1275 /* If iv0->base is a constant, we can determine the last value before
1276 overflow precisely; otherwise we conservatively assume
1277 MAX - STEP + 1. */
1279 if (TREE_CODE (iv0->base) == INTEGER_CST)
1281 d = fold_build2 (MINUS_EXPR, niter_type,
1282 fold_convert (niter_type, TYPE_MAX_VALUE (type)),
1283 fold_convert (niter_type, iv0->base));
1284 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
1286 else
1287 diff = fold_build2 (MINUS_EXPR, niter_type, step,
1288 build_int_cst (niter_type, 1));
1289 bound = fold_build2 (MINUS_EXPR, type,
1290 TYPE_MAX_VALUE (type), fold_convert (type, diff));
1291 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1292 iv1->base, bound);
1294 else
1296 /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
1297 if (iv1->no_overflow)
1298 return true;
1300 if (TREE_CODE (iv1->base) == INTEGER_CST)
1302 d = fold_build2 (MINUS_EXPR, niter_type,
1303 fold_convert (niter_type, iv1->base),
1304 fold_convert (niter_type, TYPE_MIN_VALUE (type)));
1305 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
1307 else
1308 diff = fold_build2 (MINUS_EXPR, niter_type, step,
1309 build_int_cst (niter_type, 1));
1310 bound = fold_build2 (PLUS_EXPR, type,
1311 TYPE_MIN_VALUE (type), fold_convert (type, diff));
1312 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1313 iv0->base, bound);
1316 if (integer_zerop (assumption))
1317 return false;
1318 if (!integer_nonzerop (assumption))
1319 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1320 niter->assumptions, assumption);
1322 iv0->no_overflow = true;
1323 iv1->no_overflow = true;
1324 return true;
1327 /* Add an assumption to NITER that a loop whose ending condition
1328 is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
1329 bounds the value of IV1->base - IV0->base. */
1331 static void
1332 assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1333 struct tree_niter_desc *niter, bounds *bnds)
1335 tree assumption = boolean_true_node, bound, diff;
1336 tree mbz, mbzl, mbzr, type1;
1337 bool rolls_p, no_overflow_p;
1338 widest_int dstep;
1339 mpz_t mstep, max;
1341 /* We are going to compute the number of iterations as
1342 (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
1343 variant of TYPE. This formula only works if
1345 -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
1347 (where MAX is the maximum value of the unsigned variant of TYPE, and
1348 the computations in this formula are performed in full precision,
1349 i.e., without overflows).
1351 Usually, for loops with exit condition iv0->base + step * i < iv1->base,
1352 we have a condition of the form iv0->base - step < iv1->base before the loop,
1353 and for loops iv0->base < iv1->base - step * i the condition
1354 iv0->base < iv1->base + step, due to loop header copying, which enable us
1355 to prove the lower bound.
1357 The upper bound is more complicated. Unless the expressions for initial
1358 and final value themselves contain enough information, we usually cannot
1359 derive it from the context. */
1361 /* First check whether the answer does not follow from the bounds we gathered
1362 before. */
1363 if (integer_nonzerop (iv0->step))
1364 dstep = wi::to_widest (iv0->step);
1365 else
1367 dstep = wi::sext (wi::to_widest (iv1->step), TYPE_PRECISION (type));
1368 dstep = -dstep;
1371 mpz_init (mstep);
1372 wi::to_mpz (dstep, mstep, UNSIGNED);
1373 mpz_neg (mstep, mstep);
1374 mpz_add_ui (mstep, mstep, 1);
1376 rolls_p = mpz_cmp (mstep, bnds->below) <= 0;
1378 mpz_init (max);
1379 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), max, UNSIGNED);
1380 mpz_add (max, max, mstep);
1381 no_overflow_p = (mpz_cmp (bnds->up, max) <= 0
1382 /* For pointers, only values lying inside a single object
1383 can be compared or manipulated by pointer arithmetics.
1384 Gcc in general does not allow or handle objects larger
1385 than half of the address space, hence the upper bound
1386 is satisfied for pointers. */
1387 || POINTER_TYPE_P (type));
1388 mpz_clear (mstep);
1389 mpz_clear (max);
1391 if (rolls_p && no_overflow_p)
1392 return;
1394 type1 = type;
1395 if (POINTER_TYPE_P (type))
1396 type1 = sizetype;
1398 /* Now the hard part; we must formulate the assumption(s) as expressions, and
1399 we must be careful not to introduce overflow. */
1401 if (integer_nonzerop (iv0->step))
1403 diff = fold_build2 (MINUS_EXPR, type1,
1404 iv0->step, build_int_cst (type1, 1));
1406 /* We need to know that iv0->base >= MIN + iv0->step - 1. Since
1407 0 address never belongs to any object, we can assume this for
1408 pointers. */
1409 if (!POINTER_TYPE_P (type))
1411 bound = fold_build2 (PLUS_EXPR, type1,
1412 TYPE_MIN_VALUE (type), diff);
1413 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1414 iv0->base, bound);
1417 /* And then we can compute iv0->base - diff, and compare it with
1418 iv1->base. */
1419 mbzl = fold_build2 (MINUS_EXPR, type1,
1420 fold_convert (type1, iv0->base), diff);
1421 mbzr = fold_convert (type1, iv1->base);
1423 else
1425 diff = fold_build2 (PLUS_EXPR, type1,
1426 iv1->step, build_int_cst (type1, 1));
1428 if (!POINTER_TYPE_P (type))
1430 bound = fold_build2 (PLUS_EXPR, type1,
1431 TYPE_MAX_VALUE (type), diff);
1432 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1433 iv1->base, bound);
1436 mbzl = fold_convert (type1, iv0->base);
1437 mbzr = fold_build2 (MINUS_EXPR, type1,
1438 fold_convert (type1, iv1->base), diff);
1441 if (!integer_nonzerop (assumption))
1442 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1443 niter->assumptions, assumption);
1444 if (!rolls_p)
1446 mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
1447 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1448 niter->may_be_zero, mbz);
1452 /* Determines number of iterations of loop whose ending condition
1453 is IV0 < IV1. TYPE is the type of the iv. The number of
1454 iterations is stored to NITER. BNDS bounds the difference
1455 IV1->base - IV0->base. EXIT_MUST_BE_TAKEN is true if we know
1456 that the exit must be taken eventually. */
1458 static bool
1459 number_of_iterations_lt (struct loop *loop, tree type, affine_iv *iv0,
1460 affine_iv *iv1, struct tree_niter_desc *niter,
1461 bool exit_must_be_taken, bounds *bnds)
1463 tree niter_type = unsigned_type_for (type);
1464 tree delta, step, s;
1465 mpz_t mstep, tmp;
1467 if (integer_nonzerop (iv0->step))
1469 niter->control = *iv0;
1470 niter->cmp = LT_EXPR;
1471 niter->bound = iv1->base;
1473 else
1475 niter->control = *iv1;
1476 niter->cmp = GT_EXPR;
1477 niter->bound = iv0->base;
1480 delta = fold_build2 (MINUS_EXPR, niter_type,
1481 fold_convert (niter_type, iv1->base),
1482 fold_convert (niter_type, iv0->base));
1484 /* First handle the special case that the step is +-1. */
1485 if ((integer_onep (iv0->step) && integer_zerop (iv1->step))
1486 || (integer_all_onesp (iv1->step) && integer_zerop (iv0->step)))
1488 /* for (i = iv0->base; i < iv1->base; i++)
1492 for (i = iv1->base; i > iv0->base; i--).
1494 In both cases # of iterations is iv1->base - iv0->base, assuming that
1495 iv1->base >= iv0->base.
1497 First try to derive a lower bound on the value of
1498 iv1->base - iv0->base, computed in full precision. If the difference
1499 is nonnegative, we are done, otherwise we must record the
1500 condition. */
1502 if (mpz_sgn (bnds->below) < 0)
1503 niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
1504 iv1->base, iv0->base);
1505 niter->niter = delta;
1506 niter->max = widest_int::from (wi::from_mpz (niter_type, bnds->up, false),
1507 TYPE_SIGN (niter_type));
1508 niter->control.no_overflow = true;
1509 return true;
1512 if (integer_nonzerop (iv0->step))
1513 step = fold_convert (niter_type, iv0->step);
1514 else
1515 step = fold_convert (niter_type,
1516 fold_build1 (NEGATE_EXPR, type, iv1->step));
1518 /* If we can determine the final value of the control iv exactly, we can
1519 transform the condition to != comparison. In particular, this will be
1520 the case if DELTA is constant. */
1521 if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step,
1522 exit_must_be_taken, bnds))
1524 affine_iv zps;
1526 zps.base = build_int_cst (niter_type, 0);
1527 zps.step = step;
1528 /* number_of_iterations_lt_to_ne will add assumptions that ensure that
1529 zps does not overflow. */
1530 zps.no_overflow = true;
1532 return number_of_iterations_ne (loop, type, &zps,
1533 delta, niter, true, bnds);
1536 /* Make sure that the control iv does not overflow. */
1537 if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
1538 return false;
1540 /* We determine the number of iterations as (delta + step - 1) / step. For
1541 this to work, we must know that iv1->base >= iv0->base - step + 1,
1542 otherwise the loop does not roll. */
1543 assert_loop_rolls_lt (type, iv0, iv1, niter, bnds);
1545 s = fold_build2 (MINUS_EXPR, niter_type,
1546 step, build_int_cst (niter_type, 1));
1547 delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
1548 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
1550 mpz_init (mstep);
1551 mpz_init (tmp);
1552 wi::to_mpz (wi::to_wide (step), mstep, UNSIGNED);
1553 mpz_add (tmp, bnds->up, mstep);
1554 mpz_sub_ui (tmp, tmp, 1);
1555 mpz_fdiv_q (tmp, tmp, mstep);
1556 niter->max = widest_int::from (wi::from_mpz (niter_type, tmp, false),
1557 TYPE_SIGN (niter_type));
1558 mpz_clear (mstep);
1559 mpz_clear (tmp);
1561 return true;
1564 /* Determines number of iterations of loop whose ending condition
1565 is IV0 <= IV1. TYPE is the type of the iv. The number of
1566 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
1567 we know that this condition must eventually become false (we derived this
1568 earlier, and possibly set NITER->assumptions to make sure this
1569 is the case). BNDS bounds the difference IV1->base - IV0->base. */
1571 static bool
1572 number_of_iterations_le (struct loop *loop, tree type, affine_iv *iv0,
1573 affine_iv *iv1, struct tree_niter_desc *niter,
1574 bool exit_must_be_taken, bounds *bnds)
1576 tree assumption;
1577 tree type1 = type;
1578 if (POINTER_TYPE_P (type))
1579 type1 = sizetype;
1581 /* Say that IV0 is the control variable. Then IV0 <= IV1 iff
1582 IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
1583 value of the type. This we must know anyway, since if it is
1584 equal to this value, the loop rolls forever. We do not check
1585 this condition for pointer type ivs, as the code cannot rely on
1586 the object to that the pointer points being placed at the end of
1587 the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
1588 not defined for pointers). */
1590 if (!exit_must_be_taken && !POINTER_TYPE_P (type))
1592 if (integer_nonzerop (iv0->step))
1593 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1594 iv1->base, TYPE_MAX_VALUE (type));
1595 else
1596 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1597 iv0->base, TYPE_MIN_VALUE (type));
1599 if (integer_zerop (assumption))
1600 return false;
1601 if (!integer_nonzerop (assumption))
1602 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1603 niter->assumptions, assumption);
1606 if (integer_nonzerop (iv0->step))
1608 if (POINTER_TYPE_P (type))
1609 iv1->base = fold_build_pointer_plus_hwi (iv1->base, 1);
1610 else
1611 iv1->base = fold_build2 (PLUS_EXPR, type1, iv1->base,
1612 build_int_cst (type1, 1));
1614 else if (POINTER_TYPE_P (type))
1615 iv0->base = fold_build_pointer_plus_hwi (iv0->base, -1);
1616 else
1617 iv0->base = fold_build2 (MINUS_EXPR, type1,
1618 iv0->base, build_int_cst (type1, 1));
1620 bounds_add (bnds, 1, type1);
1622 return number_of_iterations_lt (loop, type, iv0, iv1, niter, exit_must_be_taken,
1623 bnds);
1626 /* Dumps description of affine induction variable IV to FILE. */
1628 static void
1629 dump_affine_iv (FILE *file, affine_iv *iv)
1631 if (!integer_zerop (iv->step))
1632 fprintf (file, "[");
1634 print_generic_expr (dump_file, iv->base, TDF_SLIM);
1636 if (!integer_zerop (iv->step))
1638 fprintf (file, ", + , ");
1639 print_generic_expr (dump_file, iv->step, TDF_SLIM);
1640 fprintf (file, "]%s", iv->no_overflow ? "(no_overflow)" : "");
1644 /* Given exit condition IV0 CODE IV1 in TYPE, this function adjusts
1645 the condition for loop-until-wrap cases. For example:
1646 (unsigned){8, -1}_loop < 10 => {0, 1} != 9
1647 10 < (unsigned){0, max - 7}_loop => {0, 1} != 8
1648 Return true if condition is successfully adjusted. */
1650 static bool
1651 adjust_cond_for_loop_until_wrap (tree type, affine_iv *iv0, tree_code *code,
1652 affine_iv *iv1)
1654 /* Only support simple cases for the moment. */
1655 if (TREE_CODE (iv0->base) != INTEGER_CST
1656 || TREE_CODE (iv1->base) != INTEGER_CST)
1657 return false;
1659 tree niter_type = unsigned_type_for (type), high, low;
1660 /* Case: i-- < 10. */
1661 if (integer_zerop (iv1->step))
1663 /* TODO: Should handle case in which abs(step) != 1. */
1664 if (!integer_minus_onep (iv0->step))
1665 return false;
1666 /* Give up on infinite loop. */
1667 if (*code == LE_EXPR
1668 && tree_int_cst_equal (iv1->base, TYPE_MAX_VALUE (type)))
1669 return false;
1670 high = fold_build2 (PLUS_EXPR, niter_type,
1671 fold_convert (niter_type, iv0->base),
1672 build_int_cst (niter_type, 1));
1673 low = fold_convert (niter_type, TYPE_MIN_VALUE (type));
1675 else if (integer_zerop (iv0->step))
1677 /* TODO: Should handle case in which abs(step) != 1. */
1678 if (!integer_onep (iv1->step))
1679 return false;
1680 /* Give up on infinite loop. */
1681 if (*code == LE_EXPR
1682 && tree_int_cst_equal (iv0->base, TYPE_MIN_VALUE (type)))
1683 return false;
1684 high = fold_convert (niter_type, TYPE_MAX_VALUE (type));
1685 low = fold_build2 (MINUS_EXPR, niter_type,
1686 fold_convert (niter_type, iv1->base),
1687 build_int_cst (niter_type, 1));
1689 else
1690 gcc_unreachable ();
1692 iv0->base = low;
1693 iv0->step = fold_convert (niter_type, integer_one_node);
1694 iv1->base = high;
1695 iv1->step = build_int_cst (niter_type, 0);
1696 *code = NE_EXPR;
1697 return true;
1700 /* Determine the number of iterations according to condition (for staying
1701 inside loop) which compares two induction variables using comparison
1702 operator CODE. The induction variable on left side of the comparison
1703 is IV0, the right-hand side is IV1. Both induction variables must have
1704 type TYPE, which must be an integer or pointer type. The steps of the
1705 ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
1707 LOOP is the loop whose number of iterations we are determining.
1709 ONLY_EXIT is true if we are sure this is the only way the loop could be
1710 exited (including possibly non-returning function calls, exceptions, etc.)
1711 -- in this case we can use the information whether the control induction
1712 variables can overflow or not in a more efficient way.
1714 if EVERY_ITERATION is true, we know the test is executed on every iteration.
1716 The results (number of iterations and assumptions as described in
1717 comments at struct tree_niter_desc in tree-ssa-loop.h) are stored to NITER.
1718 Returns false if it fails to determine number of iterations, true if it
1719 was determined (possibly with some assumptions). */
1721 static bool
1722 number_of_iterations_cond (struct loop *loop,
1723 tree type, affine_iv *iv0, enum tree_code code,
1724 affine_iv *iv1, struct tree_niter_desc *niter,
1725 bool only_exit, bool every_iteration)
1727 bool exit_must_be_taken = false, ret;
1728 bounds bnds;
1730 /* If the test is not executed every iteration, wrapping may make the test
1731 to pass again.
1732 TODO: the overflow case can be still used as unreliable estimate of upper
1733 bound. But we have no API to pass it down to number of iterations code
1734 and, at present, it will not use it anyway. */
1735 if (!every_iteration
1736 && (!iv0->no_overflow || !iv1->no_overflow
1737 || code == NE_EXPR || code == EQ_EXPR))
1738 return false;
1740 /* The meaning of these assumptions is this:
1741 if !assumptions
1742 then the rest of information does not have to be valid
1743 if may_be_zero then the loop does not roll, even if
1744 niter != 0. */
1745 niter->assumptions = boolean_true_node;
1746 niter->may_be_zero = boolean_false_node;
1747 niter->niter = NULL_TREE;
1748 niter->max = 0;
1749 niter->bound = NULL_TREE;
1750 niter->cmp = ERROR_MARK;
1752 /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
1753 the control variable is on lhs. */
1754 if (code == GE_EXPR || code == GT_EXPR
1755 || (code == NE_EXPR && integer_zerop (iv0->step)))
1757 std::swap (iv0, iv1);
1758 code = swap_tree_comparison (code);
1761 if (POINTER_TYPE_P (type))
1763 /* Comparison of pointers is undefined unless both iv0 and iv1 point
1764 to the same object. If they do, the control variable cannot wrap
1765 (as wrap around the bounds of memory will never return a pointer
1766 that would be guaranteed to point to the same object, even if we
1767 avoid undefined behavior by casting to size_t and back). */
1768 iv0->no_overflow = true;
1769 iv1->no_overflow = true;
1772 /* If the control induction variable does not overflow and the only exit
1773 from the loop is the one that we analyze, we know it must be taken
1774 eventually. */
1775 if (only_exit)
1777 if (!integer_zerop (iv0->step) && iv0->no_overflow)
1778 exit_must_be_taken = true;
1779 else if (!integer_zerop (iv1->step) && iv1->no_overflow)
1780 exit_must_be_taken = true;
1783 /* We can handle cases which neither of the sides of the comparison is
1784 invariant:
1786 {iv0.base, iv0.step} cmp_code {iv1.base, iv1.step}
1787 as if:
1788 {iv0.base, iv0.step - iv1.step} cmp_code {iv1.base, 0}
1790 provided that either below condition is satisfied:
1792 a) the test is NE_EXPR;
1793 b) iv0.step - iv1.step is integer and iv0/iv1 don't overflow.
1795 This rarely occurs in practice, but it is simple enough to manage. */
1796 if (!integer_zerop (iv0->step) && !integer_zerop (iv1->step))
1798 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1799 tree step = fold_binary_to_constant (MINUS_EXPR, step_type,
1800 iv0->step, iv1->step);
1802 /* No need to check sign of the new step since below code takes care
1803 of this well. */
1804 if (code != NE_EXPR
1805 && (TREE_CODE (step) != INTEGER_CST
1806 || !iv0->no_overflow || !iv1->no_overflow))
1807 return false;
1809 iv0->step = step;
1810 if (!POINTER_TYPE_P (type))
1811 iv0->no_overflow = false;
1813 iv1->step = build_int_cst (step_type, 0);
1814 iv1->no_overflow = true;
1817 /* If the result of the comparison is a constant, the loop is weird. More
1818 precise handling would be possible, but the situation is not common enough
1819 to waste time on it. */
1820 if (integer_zerop (iv0->step) && integer_zerop (iv1->step))
1821 return false;
1823 /* If the loop exits immediately, there is nothing to do. */
1824 tree tem = fold_binary (code, boolean_type_node, iv0->base, iv1->base);
1825 if (tem && integer_zerop (tem))
1827 if (!every_iteration)
1828 return false;
1829 niter->niter = build_int_cst (unsigned_type_for (type), 0);
1830 niter->max = 0;
1831 return true;
1834 /* Handle special case loops: while (i-- < 10) and while (10 < i++) by
1835 adjusting iv0, iv1 and code. */
1836 if (code != NE_EXPR
1837 && (tree_int_cst_sign_bit (iv0->step)
1838 || (!integer_zerop (iv1->step)
1839 && !tree_int_cst_sign_bit (iv1->step)))
1840 && !adjust_cond_for_loop_until_wrap (type, iv0, &code, iv1))
1841 return false;
1843 /* OK, now we know we have a senseful loop. Handle several cases, depending
1844 on what comparison operator is used. */
1845 bound_difference (loop, iv1->base, iv0->base, &bnds);
1847 if (dump_file && (dump_flags & TDF_DETAILS))
1849 fprintf (dump_file,
1850 "Analyzing # of iterations of loop %d\n", loop->num);
1852 fprintf (dump_file, " exit condition ");
1853 dump_affine_iv (dump_file, iv0);
1854 fprintf (dump_file, " %s ",
1855 code == NE_EXPR ? "!="
1856 : code == LT_EXPR ? "<"
1857 : "<=");
1858 dump_affine_iv (dump_file, iv1);
1859 fprintf (dump_file, "\n");
1861 fprintf (dump_file, " bounds on difference of bases: ");
1862 mpz_out_str (dump_file, 10, bnds.below);
1863 fprintf (dump_file, " ... ");
1864 mpz_out_str (dump_file, 10, bnds.up);
1865 fprintf (dump_file, "\n");
1868 switch (code)
1870 case NE_EXPR:
1871 gcc_assert (integer_zerop (iv1->step));
1872 ret = number_of_iterations_ne (loop, type, iv0, iv1->base, niter,
1873 exit_must_be_taken, &bnds);
1874 break;
1876 case LT_EXPR:
1877 ret = number_of_iterations_lt (loop, type, iv0, iv1, niter,
1878 exit_must_be_taken, &bnds);
1879 break;
1881 case LE_EXPR:
1882 ret = number_of_iterations_le (loop, type, iv0, iv1, niter,
1883 exit_must_be_taken, &bnds);
1884 break;
1886 default:
1887 gcc_unreachable ();
1890 mpz_clear (bnds.up);
1891 mpz_clear (bnds.below);
1893 if (dump_file && (dump_flags & TDF_DETAILS))
1895 if (ret)
1897 fprintf (dump_file, " result:\n");
1898 if (!integer_nonzerop (niter->assumptions))
1900 fprintf (dump_file, " under assumptions ");
1901 print_generic_expr (dump_file, niter->assumptions, TDF_SLIM);
1902 fprintf (dump_file, "\n");
1905 if (!integer_zerop (niter->may_be_zero))
1907 fprintf (dump_file, " zero if ");
1908 print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
1909 fprintf (dump_file, "\n");
1912 fprintf (dump_file, " # of iterations ");
1913 print_generic_expr (dump_file, niter->niter, TDF_SLIM);
1914 fprintf (dump_file, ", bounded by ");
1915 print_decu (niter->max, dump_file);
1916 fprintf (dump_file, "\n");
1918 else
1919 fprintf (dump_file, " failed\n\n");
1921 return ret;
1924 /* Substitute NEW_TREE for OLD in EXPR and fold the result.
1925 If VALUEIZE is non-NULL then OLD and NEW_TREE are ignored and instead
1926 all SSA names are replaced with the result of calling the VALUEIZE
1927 function with the SSA name as argument. */
1929 tree
1930 simplify_replace_tree (tree expr, tree old, tree new_tree,
1931 tree (*valueize) (tree))
1933 unsigned i, n;
1934 tree ret = NULL_TREE, e, se;
1936 if (!expr)
1937 return NULL_TREE;
1939 /* Do not bother to replace constants. */
1940 if (CONSTANT_CLASS_P (expr))
1941 return expr;
1943 if (valueize)
1945 if (TREE_CODE (expr) == SSA_NAME)
1947 new_tree = valueize (expr);
1948 if (new_tree != expr)
1949 return new_tree;
1952 else if (expr == old
1953 || operand_equal_p (expr, old, 0))
1954 return unshare_expr (new_tree);
1956 if (!EXPR_P (expr))
1957 return expr;
1959 n = TREE_OPERAND_LENGTH (expr);
1960 for (i = 0; i < n; i++)
1962 e = TREE_OPERAND (expr, i);
1963 se = simplify_replace_tree (e, old, new_tree, valueize);
1964 if (e == se)
1965 continue;
1967 if (!ret)
1968 ret = copy_node (expr);
1970 TREE_OPERAND (ret, i) = se;
1973 return (ret ? fold (ret) : expr);
1976 /* Expand definitions of ssa names in EXPR as long as they are simple
1977 enough, and return the new expression. If STOP is specified, stop
1978 expanding if EXPR equals to it. */
1980 tree
1981 expand_simple_operations (tree expr, tree stop)
1983 unsigned i, n;
1984 tree ret = NULL_TREE, e, ee, e1;
1985 enum tree_code code;
1986 gimple *stmt;
1988 if (expr == NULL_TREE)
1989 return expr;
1991 if (is_gimple_min_invariant (expr))
1992 return expr;
1994 code = TREE_CODE (expr);
1995 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
1997 n = TREE_OPERAND_LENGTH (expr);
1998 for (i = 0; i < n; i++)
2000 e = TREE_OPERAND (expr, i);
2001 ee = expand_simple_operations (e, stop);
2002 if (e == ee)
2003 continue;
2005 if (!ret)
2006 ret = copy_node (expr);
2008 TREE_OPERAND (ret, i) = ee;
2011 if (!ret)
2012 return expr;
2014 fold_defer_overflow_warnings ();
2015 ret = fold (ret);
2016 fold_undefer_and_ignore_overflow_warnings ();
2017 return ret;
2020 /* Stop if it's not ssa name or the one we don't want to expand. */
2021 if (TREE_CODE (expr) != SSA_NAME || expr == stop)
2022 return expr;
2024 stmt = SSA_NAME_DEF_STMT (expr);
2025 if (gimple_code (stmt) == GIMPLE_PHI)
2027 basic_block src, dest;
2029 if (gimple_phi_num_args (stmt) != 1)
2030 return expr;
2031 e = PHI_ARG_DEF (stmt, 0);
2033 /* Avoid propagating through loop exit phi nodes, which
2034 could break loop-closed SSA form restrictions. */
2035 dest = gimple_bb (stmt);
2036 src = single_pred (dest);
2037 if (TREE_CODE (e) == SSA_NAME
2038 && src->loop_father != dest->loop_father)
2039 return expr;
2041 return expand_simple_operations (e, stop);
2043 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2044 return expr;
2046 /* Avoid expanding to expressions that contain SSA names that need
2047 to take part in abnormal coalescing. */
2048 ssa_op_iter iter;
2049 FOR_EACH_SSA_TREE_OPERAND (e, stmt, iter, SSA_OP_USE)
2050 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (e))
2051 return expr;
2053 e = gimple_assign_rhs1 (stmt);
2054 code = gimple_assign_rhs_code (stmt);
2055 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
2057 if (is_gimple_min_invariant (e))
2058 return e;
2060 if (code == SSA_NAME)
2061 return expand_simple_operations (e, stop);
2062 else if (code == ADDR_EXPR)
2064 poly_int64 offset;
2065 tree base = get_addr_base_and_unit_offset (TREE_OPERAND (e, 0),
2066 &offset);
2067 if (base
2068 && TREE_CODE (base) == MEM_REF)
2070 ee = expand_simple_operations (TREE_OPERAND (base, 0), stop);
2071 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (expr), ee,
2072 wide_int_to_tree (sizetype,
2073 mem_ref_offset (base)
2074 + offset));
2078 return expr;
2081 switch (code)
2083 CASE_CONVERT:
2084 /* Casts are simple. */
2085 ee = expand_simple_operations (e, stop);
2086 return fold_build1 (code, TREE_TYPE (expr), ee);
2088 case PLUS_EXPR:
2089 case MINUS_EXPR:
2090 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (expr))
2091 && TYPE_OVERFLOW_TRAPS (TREE_TYPE (expr)))
2092 return expr;
2093 /* Fallthru. */
2094 case POINTER_PLUS_EXPR:
2095 /* And increments and decrements by a constant are simple. */
2096 e1 = gimple_assign_rhs2 (stmt);
2097 if (!is_gimple_min_invariant (e1))
2098 return expr;
2100 ee = expand_simple_operations (e, stop);
2101 return fold_build2 (code, TREE_TYPE (expr), ee, e1);
2103 default:
2104 return expr;
2108 /* Tries to simplify EXPR using the condition COND. Returns the simplified
2109 expression (or EXPR unchanged, if no simplification was possible). */
2111 static tree
2112 tree_simplify_using_condition_1 (tree cond, tree expr)
2114 bool changed;
2115 tree e, e0, e1, e2, notcond;
2116 enum tree_code code = TREE_CODE (expr);
2118 if (code == INTEGER_CST)
2119 return expr;
2121 if (code == TRUTH_OR_EXPR
2122 || code == TRUTH_AND_EXPR
2123 || code == COND_EXPR)
2125 changed = false;
2127 e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
2128 if (TREE_OPERAND (expr, 0) != e0)
2129 changed = true;
2131 e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
2132 if (TREE_OPERAND (expr, 1) != e1)
2133 changed = true;
2135 if (code == COND_EXPR)
2137 e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
2138 if (TREE_OPERAND (expr, 2) != e2)
2139 changed = true;
2141 else
2142 e2 = NULL_TREE;
2144 if (changed)
2146 if (code == COND_EXPR)
2147 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
2148 else
2149 expr = fold_build2 (code, boolean_type_node, e0, e1);
2152 return expr;
2155 /* In case COND is equality, we may be able to simplify EXPR by copy/constant
2156 propagation, and vice versa. Fold does not handle this, since it is
2157 considered too expensive. */
2158 if (TREE_CODE (cond) == EQ_EXPR)
2160 e0 = TREE_OPERAND (cond, 0);
2161 e1 = TREE_OPERAND (cond, 1);
2163 /* We know that e0 == e1. Check whether we cannot simplify expr
2164 using this fact. */
2165 e = simplify_replace_tree (expr, e0, e1);
2166 if (integer_zerop (e) || integer_nonzerop (e))
2167 return e;
2169 e = simplify_replace_tree (expr, e1, e0);
2170 if (integer_zerop (e) || integer_nonzerop (e))
2171 return e;
2173 if (TREE_CODE (expr) == EQ_EXPR)
2175 e0 = TREE_OPERAND (expr, 0);
2176 e1 = TREE_OPERAND (expr, 1);
2178 /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
2179 e = simplify_replace_tree (cond, e0, e1);
2180 if (integer_zerop (e))
2181 return e;
2182 e = simplify_replace_tree (cond, e1, e0);
2183 if (integer_zerop (e))
2184 return e;
2186 if (TREE_CODE (expr) == NE_EXPR)
2188 e0 = TREE_OPERAND (expr, 0);
2189 e1 = TREE_OPERAND (expr, 1);
2191 /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
2192 e = simplify_replace_tree (cond, e0, e1);
2193 if (integer_zerop (e))
2194 return boolean_true_node;
2195 e = simplify_replace_tree (cond, e1, e0);
2196 if (integer_zerop (e))
2197 return boolean_true_node;
2200 /* Check whether COND ==> EXPR. */
2201 notcond = invert_truthvalue (cond);
2202 e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, expr);
2203 if (e && integer_nonzerop (e))
2204 return e;
2206 /* Check whether COND ==> not EXPR. */
2207 e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, expr);
2208 if (e && integer_zerop (e))
2209 return e;
2211 return expr;
2214 /* Tries to simplify EXPR using the condition COND. Returns the simplified
2215 expression (or EXPR unchanged, if no simplification was possible).
2216 Wrapper around tree_simplify_using_condition_1 that ensures that chains
2217 of simple operations in definitions of ssa names in COND are expanded,
2218 so that things like casts or incrementing the value of the bound before
2219 the loop do not cause us to fail. */
2221 static tree
2222 tree_simplify_using_condition (tree cond, tree expr)
2224 cond = expand_simple_operations (cond);
2226 return tree_simplify_using_condition_1 (cond, expr);
2229 /* Tries to simplify EXPR using the conditions on entry to LOOP.
2230 Returns the simplified expression (or EXPR unchanged, if no
2231 simplification was possible). */
2233 tree
2234 simplify_using_initial_conditions (struct loop *loop, tree expr)
2236 edge e;
2237 basic_block bb;
2238 gimple *stmt;
2239 tree cond, expanded, backup;
2240 int cnt = 0;
2242 if (TREE_CODE (expr) == INTEGER_CST)
2243 return expr;
2245 backup = expanded = expand_simple_operations (expr);
2247 /* Limit walking the dominators to avoid quadraticness in
2248 the number of BBs times the number of loops in degenerate
2249 cases. */
2250 for (bb = loop->header;
2251 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
2252 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
2254 if (!single_pred_p (bb))
2255 continue;
2256 e = single_pred_edge (bb);
2258 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
2259 continue;
2261 stmt = last_stmt (e->src);
2262 cond = fold_build2 (gimple_cond_code (stmt),
2263 boolean_type_node,
2264 gimple_cond_lhs (stmt),
2265 gimple_cond_rhs (stmt));
2266 if (e->flags & EDGE_FALSE_VALUE)
2267 cond = invert_truthvalue (cond);
2268 expanded = tree_simplify_using_condition (cond, expanded);
2269 /* Break if EXPR is simplified to const values. */
2270 if (expanded
2271 && (integer_zerop (expanded) || integer_nonzerop (expanded)))
2272 return expanded;
2274 ++cnt;
2277 /* Return the original expression if no simplification is done. */
2278 return operand_equal_p (backup, expanded, 0) ? expr : expanded;
2281 /* Tries to simplify EXPR using the evolutions of the loop invariants
2282 in the superloops of LOOP. Returns the simplified expression
2283 (or EXPR unchanged, if no simplification was possible). */
2285 static tree
2286 simplify_using_outer_evolutions (struct loop *loop, tree expr)
2288 enum tree_code code = TREE_CODE (expr);
2289 bool changed;
2290 tree e, e0, e1, e2;
2292 if (is_gimple_min_invariant (expr))
2293 return expr;
2295 if (code == TRUTH_OR_EXPR
2296 || code == TRUTH_AND_EXPR
2297 || code == COND_EXPR)
2299 changed = false;
2301 e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
2302 if (TREE_OPERAND (expr, 0) != e0)
2303 changed = true;
2305 e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
2306 if (TREE_OPERAND (expr, 1) != e1)
2307 changed = true;
2309 if (code == COND_EXPR)
2311 e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
2312 if (TREE_OPERAND (expr, 2) != e2)
2313 changed = true;
2315 else
2316 e2 = NULL_TREE;
2318 if (changed)
2320 if (code == COND_EXPR)
2321 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
2322 else
2323 expr = fold_build2 (code, boolean_type_node, e0, e1);
2326 return expr;
2329 e = instantiate_parameters (loop, expr);
2330 if (is_gimple_min_invariant (e))
2331 return e;
2333 return expr;
2336 /* Returns true if EXIT is the only possible exit from LOOP. */
2338 bool
2339 loop_only_exit_p (const struct loop *loop, const_edge exit)
2341 basic_block *body;
2342 gimple_stmt_iterator bsi;
2343 unsigned i;
2345 if (exit != single_exit (loop))
2346 return false;
2348 body = get_loop_body (loop);
2349 for (i = 0; i < loop->num_nodes; i++)
2351 for (bsi = gsi_start_bb (body[i]); !gsi_end_p (bsi); gsi_next (&bsi))
2352 if (stmt_can_terminate_bb_p (gsi_stmt (bsi)))
2354 free (body);
2355 return true;
2359 free (body);
2360 return true;
2363 /* Stores description of number of iterations of LOOP derived from
2364 EXIT (an exit edge of the LOOP) in NITER. Returns true if some useful
2365 information could be derived (and fields of NITER have meaning described
2366 in comments at struct tree_niter_desc declaration), false otherwise.
2367 When EVERY_ITERATION is true, only tests that are known to be executed
2368 every iteration are considered (i.e. only test that alone bounds the loop).
2369 If AT_STMT is not NULL, this function stores LOOP's condition statement in
2370 it when returning true. */
2372 bool
2373 number_of_iterations_exit_assumptions (struct loop *loop, edge exit,
2374 struct tree_niter_desc *niter,
2375 gcond **at_stmt, bool every_iteration)
2377 gimple *last;
2378 gcond *stmt;
2379 tree type;
2380 tree op0, op1;
2381 enum tree_code code;
2382 affine_iv iv0, iv1;
2383 bool safe;
2385 /* Nothing to analyze if the loop is known to be infinite. */
2386 if (loop_constraint_set_p (loop, LOOP_C_INFINITE))
2387 return false;
2389 safe = dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src);
2391 if (every_iteration && !safe)
2392 return false;
2394 niter->assumptions = boolean_false_node;
2395 niter->control.base = NULL_TREE;
2396 niter->control.step = NULL_TREE;
2397 niter->control.no_overflow = false;
2398 last = last_stmt (exit->src);
2399 if (!last)
2400 return false;
2401 stmt = dyn_cast <gcond *> (last);
2402 if (!stmt)
2403 return false;
2405 /* We want the condition for staying inside loop. */
2406 code = gimple_cond_code (stmt);
2407 if (exit->flags & EDGE_TRUE_VALUE)
2408 code = invert_tree_comparison (code, false);
2410 switch (code)
2412 case GT_EXPR:
2413 case GE_EXPR:
2414 case LT_EXPR:
2415 case LE_EXPR:
2416 case NE_EXPR:
2417 break;
2419 default:
2420 return false;
2423 op0 = gimple_cond_lhs (stmt);
2424 op1 = gimple_cond_rhs (stmt);
2425 type = TREE_TYPE (op0);
2427 if (TREE_CODE (type) != INTEGER_TYPE
2428 && !POINTER_TYPE_P (type))
2429 return false;
2431 tree iv0_niters = NULL_TREE;
2432 if (!simple_iv_with_niters (loop, loop_containing_stmt (stmt),
2433 op0, &iv0, safe ? &iv0_niters : NULL, false))
2434 return number_of_iterations_popcount (loop, exit, code, niter);
2435 tree iv1_niters = NULL_TREE;
2436 if (!simple_iv_with_niters (loop, loop_containing_stmt (stmt),
2437 op1, &iv1, safe ? &iv1_niters : NULL, false))
2438 return false;
2439 /* Give up on complicated case. */
2440 if (iv0_niters && iv1_niters)
2441 return false;
2443 /* We don't want to see undefined signed overflow warnings while
2444 computing the number of iterations. */
2445 fold_defer_overflow_warnings ();
2447 iv0.base = expand_simple_operations (iv0.base);
2448 iv1.base = expand_simple_operations (iv1.base);
2449 if (!number_of_iterations_cond (loop, type, &iv0, code, &iv1, niter,
2450 loop_only_exit_p (loop, exit), safe))
2452 fold_undefer_and_ignore_overflow_warnings ();
2453 return false;
2456 /* Incorporate additional assumption implied by control iv. */
2457 tree iv_niters = iv0_niters ? iv0_niters : iv1_niters;
2458 if (iv_niters)
2460 tree assumption = fold_build2 (LE_EXPR, boolean_type_node, niter->niter,
2461 fold_convert (TREE_TYPE (niter->niter),
2462 iv_niters));
2464 if (!integer_nonzerop (assumption))
2465 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2466 niter->assumptions, assumption);
2468 /* Refine upper bound if possible. */
2469 if (TREE_CODE (iv_niters) == INTEGER_CST
2470 && niter->max > wi::to_widest (iv_niters))
2471 niter->max = wi::to_widest (iv_niters);
2474 /* There is no assumptions if the loop is known to be finite. */
2475 if (!integer_zerop (niter->assumptions)
2476 && loop_constraint_set_p (loop, LOOP_C_FINITE))
2477 niter->assumptions = boolean_true_node;
2479 if (optimize >= 3)
2481 niter->assumptions = simplify_using_outer_evolutions (loop,
2482 niter->assumptions);
2483 niter->may_be_zero = simplify_using_outer_evolutions (loop,
2484 niter->may_be_zero);
2485 niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
2488 niter->assumptions
2489 = simplify_using_initial_conditions (loop,
2490 niter->assumptions);
2491 niter->may_be_zero
2492 = simplify_using_initial_conditions (loop,
2493 niter->may_be_zero);
2495 fold_undefer_and_ignore_overflow_warnings ();
2497 /* If NITER has simplified into a constant, update MAX. */
2498 if (TREE_CODE (niter->niter) == INTEGER_CST)
2499 niter->max = wi::to_widest (niter->niter);
2501 if (at_stmt)
2502 *at_stmt = stmt;
2504 return (!integer_zerop (niter->assumptions));
2508 /* Utility function to check if OP is defined by a stmt
2509 that is a val - 1. */
2511 static bool
2512 ssa_defined_by_minus_one_stmt_p (tree op, tree val)
2514 gimple *stmt;
2515 return (TREE_CODE (op) == SSA_NAME
2516 && (stmt = SSA_NAME_DEF_STMT (op))
2517 && is_gimple_assign (stmt)
2518 && (gimple_assign_rhs_code (stmt) == PLUS_EXPR)
2519 && val == gimple_assign_rhs1 (stmt)
2520 && integer_minus_onep (gimple_assign_rhs2 (stmt)));
2524 /* See if LOOP is a popcout implementation, determine NITER for the loop
2526 We match:
2527 <bb 2>
2528 goto <bb 4>
2530 <bb 3>
2531 _1 = b_11 + -1
2532 b_6 = _1 & b_11
2534 <bb 4>
2535 b_11 = PHI <b_5(D)(2), b_6(3)>
2537 exit block
2538 if (b_11 != 0)
2539 goto <bb 3>
2540 else
2541 goto <bb 5>
2543 OR we match copy-header version:
2544 if (b_5 != 0)
2545 goto <bb 3>
2546 else
2547 goto <bb 4>
2549 <bb 3>
2550 b_11 = PHI <b_5(2), b_6(3)>
2551 _1 = b_11 + -1
2552 b_6 = _1 & b_11
2554 exit block
2555 if (b_6 != 0)
2556 goto <bb 3>
2557 else
2558 goto <bb 4>
2560 If popcount pattern, update NITER accordingly.
2561 i.e., set NITER to __builtin_popcount (b)
2562 return true if we did, false otherwise.
2566 static bool
2567 number_of_iterations_popcount (loop_p loop, edge exit,
2568 enum tree_code code,
2569 struct tree_niter_desc *niter)
2571 bool adjust = true;
2572 tree iter;
2573 HOST_WIDE_INT max;
2574 adjust = true;
2575 tree fn = NULL_TREE;
2577 /* Check loop terminating branch is like
2578 if (b != 0). */
2579 gimple *stmt = last_stmt (exit->src);
2580 if (!stmt
2581 || gimple_code (stmt) != GIMPLE_COND
2582 || code != NE_EXPR
2583 || !integer_zerop (gimple_cond_rhs (stmt))
2584 || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME)
2585 return false;
2587 gimple *and_stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
2589 /* Depending on copy-header is performed, feeding PHI stmts might be in
2590 the loop header or loop latch, handle this. */
2591 if (gimple_code (and_stmt) == GIMPLE_PHI
2592 && gimple_bb (and_stmt) == loop->header
2593 && gimple_phi_num_args (and_stmt) == 2
2594 && (TREE_CODE (gimple_phi_arg_def (and_stmt,
2595 loop_latch_edge (loop)->dest_idx))
2596 == SSA_NAME))
2598 /* SSA used in exit condition is defined by PHI stmt
2599 b_11 = PHI <b_5(D)(2), b_6(3)>
2600 from the PHI stmt, get the and_stmt
2601 b_6 = _1 & b_11. */
2602 tree t = gimple_phi_arg_def (and_stmt, loop_latch_edge (loop)->dest_idx);
2603 and_stmt = SSA_NAME_DEF_STMT (t);
2604 adjust = false;
2607 /* Make sure it is indeed an and stmt (b_6 = _1 & b_11). */
2608 if (!is_gimple_assign (and_stmt)
2609 || gimple_assign_rhs_code (and_stmt) != BIT_AND_EXPR)
2610 return false;
2612 tree b_11 = gimple_assign_rhs1 (and_stmt);
2613 tree _1 = gimple_assign_rhs2 (and_stmt);
2615 /* Check that _1 is defined by _b11 + -1 (_1 = b_11 + -1).
2616 Also make sure that b_11 is the same in and_stmt and _1 defining stmt.
2617 Also canonicalize if _1 and _b11 are revrsed. */
2618 if (ssa_defined_by_minus_one_stmt_p (b_11, _1))
2619 std::swap (b_11, _1);
2620 else if (ssa_defined_by_minus_one_stmt_p (_1, b_11))
2622 else
2623 return false;
2624 /* Check the recurrence:
2625 ... = PHI <b_5(2), b_6(3)>. */
2626 gimple *phi = SSA_NAME_DEF_STMT (b_11);
2627 if (gimple_code (phi) != GIMPLE_PHI
2628 || (gimple_bb (phi) != loop_latch_edge (loop)->dest)
2629 || (gimple_assign_lhs (and_stmt)
2630 != gimple_phi_arg_def (phi, loop_latch_edge (loop)->dest_idx)))
2631 return false;
2633 /* We found a match. Get the corresponding popcount builtin. */
2634 tree src = gimple_phi_arg_def (phi, loop_preheader_edge (loop)->dest_idx);
2635 if (TYPE_PRECISION (TREE_TYPE (src)) == TYPE_PRECISION (integer_type_node))
2636 fn = builtin_decl_implicit (BUILT_IN_POPCOUNT);
2637 else if (TYPE_PRECISION (TREE_TYPE (src)) == TYPE_PRECISION
2638 (long_integer_type_node))
2639 fn = builtin_decl_implicit (BUILT_IN_POPCOUNTL);
2640 else if (TYPE_PRECISION (TREE_TYPE (src)) == TYPE_PRECISION
2641 (long_long_integer_type_node))
2642 fn = builtin_decl_implicit (BUILT_IN_POPCOUNTLL);
2644 /* ??? Support promoting char/short to int. */
2645 if (!fn)
2646 return false;
2648 /* Update NITER params accordingly */
2649 tree utype = unsigned_type_for (TREE_TYPE (src));
2650 src = fold_convert (utype, src);
2651 tree call = fold_convert (utype, build_call_expr (fn, 1, src));
2652 if (adjust)
2653 iter = fold_build2 (MINUS_EXPR, utype,
2654 call,
2655 build_int_cst (utype, 1));
2656 else
2657 iter = call;
2659 if (TREE_CODE (call) == INTEGER_CST)
2660 max = tree_to_uhwi (call);
2661 else
2662 max = TYPE_PRECISION (TREE_TYPE (src));
2663 if (adjust)
2664 max = max - 1;
2666 niter->niter = iter;
2667 niter->assumptions = boolean_true_node;
2669 if (adjust)
2671 tree may_be_zero = fold_build2 (EQ_EXPR, boolean_type_node, src,
2672 build_zero_cst
2673 (TREE_TYPE (src)));
2674 niter->may_be_zero =
2675 simplify_using_initial_conditions (loop, may_be_zero);
2677 else
2678 niter->may_be_zero = boolean_false_node;
2680 niter->max = max;
2681 niter->bound = NULL_TREE;
2682 niter->cmp = ERROR_MARK;
2683 return true;
2687 /* Like number_of_iterations_exit_assumptions, but return TRUE only if
2688 the niter information holds unconditionally. */
2690 bool
2691 number_of_iterations_exit (struct loop *loop, edge exit,
2692 struct tree_niter_desc *niter,
2693 bool warn, bool every_iteration)
2695 gcond *stmt;
2696 if (!number_of_iterations_exit_assumptions (loop, exit, niter,
2697 &stmt, every_iteration))
2698 return false;
2700 if (integer_nonzerop (niter->assumptions))
2701 return true;
2703 if (warn && dump_enabled_p ())
2704 dump_printf_loc (MSG_MISSED_OPTIMIZATION, stmt,
2705 "missed loop optimization: niters analysis ends up "
2706 "with assumptions.\n");
2708 return false;
2711 /* Try to determine the number of iterations of LOOP. If we succeed,
2712 expression giving number of iterations is returned and *EXIT is
2713 set to the edge from that the information is obtained. Otherwise
2714 chrec_dont_know is returned. */
2716 tree
2717 find_loop_niter (struct loop *loop, edge *exit)
2719 unsigned i;
2720 vec<edge> exits = get_loop_exit_edges (loop);
2721 edge ex;
2722 tree niter = NULL_TREE, aniter;
2723 struct tree_niter_desc desc;
2725 *exit = NULL;
2726 FOR_EACH_VEC_ELT (exits, i, ex)
2728 if (!number_of_iterations_exit (loop, ex, &desc, false))
2729 continue;
2731 if (integer_nonzerop (desc.may_be_zero))
2733 /* We exit in the first iteration through this exit.
2734 We won't find anything better. */
2735 niter = build_int_cst (unsigned_type_node, 0);
2736 *exit = ex;
2737 break;
2740 if (!integer_zerop (desc.may_be_zero))
2741 continue;
2743 aniter = desc.niter;
2745 if (!niter)
2747 /* Nothing recorded yet. */
2748 niter = aniter;
2749 *exit = ex;
2750 continue;
2753 /* Prefer constants, the lower the better. */
2754 if (TREE_CODE (aniter) != INTEGER_CST)
2755 continue;
2757 if (TREE_CODE (niter) != INTEGER_CST)
2759 niter = aniter;
2760 *exit = ex;
2761 continue;
2764 if (tree_int_cst_lt (aniter, niter))
2766 niter = aniter;
2767 *exit = ex;
2768 continue;
2771 exits.release ();
2773 return niter ? niter : chrec_dont_know;
2776 /* Return true if loop is known to have bounded number of iterations. */
2778 bool
2779 finite_loop_p (struct loop *loop)
2781 widest_int nit;
2782 int flags;
2784 flags = flags_from_decl_or_type (current_function_decl);
2785 if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
2787 if (dump_file && (dump_flags & TDF_DETAILS))
2788 fprintf (dump_file, "Found loop %i to be finite: it is within pure or const function.\n",
2789 loop->num);
2790 return true;
2793 if (loop->any_upper_bound
2794 || max_loop_iterations (loop, &nit))
2796 if (dump_file && (dump_flags & TDF_DETAILS))
2797 fprintf (dump_file, "Found loop %i to be finite: upper bound found.\n",
2798 loop->num);
2799 return true;
2801 return false;
2806 Analysis of a number of iterations of a loop by a brute-force evaluation.
2810 /* Bound on the number of iterations we try to evaluate. */
2812 #define MAX_ITERATIONS_TO_TRACK \
2813 ((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
2815 /* Returns the loop phi node of LOOP such that ssa name X is derived from its
2816 result by a chain of operations such that all but exactly one of their
2817 operands are constants. */
2819 static gphi *
2820 chain_of_csts_start (struct loop *loop, tree x)
2822 gimple *stmt = SSA_NAME_DEF_STMT (x);
2823 tree use;
2824 basic_block bb = gimple_bb (stmt);
2825 enum tree_code code;
2827 if (!bb
2828 || !flow_bb_inside_loop_p (loop, bb))
2829 return NULL;
2831 if (gimple_code (stmt) == GIMPLE_PHI)
2833 if (bb == loop->header)
2834 return as_a <gphi *> (stmt);
2836 return NULL;
2839 if (gimple_code (stmt) != GIMPLE_ASSIGN
2840 || gimple_assign_rhs_class (stmt) == GIMPLE_TERNARY_RHS)
2841 return NULL;
2843 code = gimple_assign_rhs_code (stmt);
2844 if (gimple_references_memory_p (stmt)
2845 || TREE_CODE_CLASS (code) == tcc_reference
2846 || (code == ADDR_EXPR
2847 && !is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
2848 return NULL;
2850 use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
2851 if (use == NULL_TREE)
2852 return NULL;
2854 return chain_of_csts_start (loop, use);
2857 /* Determines whether the expression X is derived from a result of a phi node
2858 in header of LOOP such that
2860 * the derivation of X consists only from operations with constants
2861 * the initial value of the phi node is constant
2862 * the value of the phi node in the next iteration can be derived from the
2863 value in the current iteration by a chain of operations with constants,
2864 or is also a constant
2866 If such phi node exists, it is returned, otherwise NULL is returned. */
2868 static gphi *
2869 get_base_for (struct loop *loop, tree x)
2871 gphi *phi;
2872 tree init, next;
2874 if (is_gimple_min_invariant (x))
2875 return NULL;
2877 phi = chain_of_csts_start (loop, x);
2878 if (!phi)
2879 return NULL;
2881 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2882 next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2884 if (!is_gimple_min_invariant (init))
2885 return NULL;
2887 if (TREE_CODE (next) == SSA_NAME
2888 && chain_of_csts_start (loop, next) != phi)
2889 return NULL;
2891 return phi;
2894 /* Given an expression X, then
2896 * if X is NULL_TREE, we return the constant BASE.
2897 * if X is a constant, we return the constant X.
2898 * otherwise X is a SSA name, whose value in the considered loop is derived
2899 by a chain of operations with constant from a result of a phi node in
2900 the header of the loop. Then we return value of X when the value of the
2901 result of this phi node is given by the constant BASE. */
2903 static tree
2904 get_val_for (tree x, tree base)
2906 gimple *stmt;
2908 gcc_checking_assert (is_gimple_min_invariant (base));
2910 if (!x)
2911 return base;
2912 else if (is_gimple_min_invariant (x))
2913 return x;
2915 stmt = SSA_NAME_DEF_STMT (x);
2916 if (gimple_code (stmt) == GIMPLE_PHI)
2917 return base;
2919 gcc_checking_assert (is_gimple_assign (stmt));
2921 /* STMT must be either an assignment of a single SSA name or an
2922 expression involving an SSA name and a constant. Try to fold that
2923 expression using the value for the SSA name. */
2924 if (gimple_assign_ssa_name_copy_p (stmt))
2925 return get_val_for (gimple_assign_rhs1 (stmt), base);
2926 else if (gimple_assign_rhs_class (stmt) == GIMPLE_UNARY_RHS
2927 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
2928 return fold_build1 (gimple_assign_rhs_code (stmt),
2929 gimple_expr_type (stmt),
2930 get_val_for (gimple_assign_rhs1 (stmt), base));
2931 else if (gimple_assign_rhs_class (stmt) == GIMPLE_BINARY_RHS)
2933 tree rhs1 = gimple_assign_rhs1 (stmt);
2934 tree rhs2 = gimple_assign_rhs2 (stmt);
2935 if (TREE_CODE (rhs1) == SSA_NAME)
2936 rhs1 = get_val_for (rhs1, base);
2937 else if (TREE_CODE (rhs2) == SSA_NAME)
2938 rhs2 = get_val_for (rhs2, base);
2939 else
2940 gcc_unreachable ();
2941 return fold_build2 (gimple_assign_rhs_code (stmt),
2942 gimple_expr_type (stmt), rhs1, rhs2);
2944 else
2945 gcc_unreachable ();
2949 /* Tries to count the number of iterations of LOOP till it exits by EXIT
2950 by brute force -- i.e. by determining the value of the operands of the
2951 condition at EXIT in first few iterations of the loop (assuming that
2952 these values are constant) and determining the first one in that the
2953 condition is not satisfied. Returns the constant giving the number
2954 of the iterations of LOOP if successful, chrec_dont_know otherwise. */
2956 tree
2957 loop_niter_by_eval (struct loop *loop, edge exit)
2959 tree acnd;
2960 tree op[2], val[2], next[2], aval[2];
2961 gphi *phi;
2962 gimple *cond;
2963 unsigned i, j;
2964 enum tree_code cmp;
2966 cond = last_stmt (exit->src);
2967 if (!cond || gimple_code (cond) != GIMPLE_COND)
2968 return chrec_dont_know;
2970 cmp = gimple_cond_code (cond);
2971 if (exit->flags & EDGE_TRUE_VALUE)
2972 cmp = invert_tree_comparison (cmp, false);
2974 switch (cmp)
2976 case EQ_EXPR:
2977 case NE_EXPR:
2978 case GT_EXPR:
2979 case GE_EXPR:
2980 case LT_EXPR:
2981 case LE_EXPR:
2982 op[0] = gimple_cond_lhs (cond);
2983 op[1] = gimple_cond_rhs (cond);
2984 break;
2986 default:
2987 return chrec_dont_know;
2990 for (j = 0; j < 2; j++)
2992 if (is_gimple_min_invariant (op[j]))
2994 val[j] = op[j];
2995 next[j] = NULL_TREE;
2996 op[j] = NULL_TREE;
2998 else
3000 phi = get_base_for (loop, op[j]);
3001 if (!phi)
3002 return chrec_dont_know;
3003 val[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
3004 next[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
3008 /* Don't issue signed overflow warnings. */
3009 fold_defer_overflow_warnings ();
3011 for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
3013 for (j = 0; j < 2; j++)
3014 aval[j] = get_val_for (op[j], val[j]);
3016 acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
3017 if (acnd && integer_zerop (acnd))
3019 fold_undefer_and_ignore_overflow_warnings ();
3020 if (dump_file && (dump_flags & TDF_DETAILS))
3021 fprintf (dump_file,
3022 "Proved that loop %d iterates %d times using brute force.\n",
3023 loop->num, i);
3024 return build_int_cst (unsigned_type_node, i);
3027 for (j = 0; j < 2; j++)
3029 aval[j] = val[j];
3030 val[j] = get_val_for (next[j], val[j]);
3031 if (!is_gimple_min_invariant (val[j]))
3033 fold_undefer_and_ignore_overflow_warnings ();
3034 return chrec_dont_know;
3038 /* If the next iteration would use the same base values
3039 as the current one, there is no point looping further,
3040 all following iterations will be the same as this one. */
3041 if (val[0] == aval[0] && val[1] == aval[1])
3042 break;
3045 fold_undefer_and_ignore_overflow_warnings ();
3047 return chrec_dont_know;
3050 /* Finds the exit of the LOOP by that the loop exits after a constant
3051 number of iterations and stores the exit edge to *EXIT. The constant
3052 giving the number of iterations of LOOP is returned. The number of
3053 iterations is determined using loop_niter_by_eval (i.e. by brute force
3054 evaluation). If we are unable to find the exit for that loop_niter_by_eval
3055 determines the number of iterations, chrec_dont_know is returned. */
3057 tree
3058 find_loop_niter_by_eval (struct loop *loop, edge *exit)
3060 unsigned i;
3061 vec<edge> exits = get_loop_exit_edges (loop);
3062 edge ex;
3063 tree niter = NULL_TREE, aniter;
3065 *exit = NULL;
3067 /* Loops with multiple exits are expensive to handle and less important. */
3068 if (!flag_expensive_optimizations
3069 && exits.length () > 1)
3071 exits.release ();
3072 return chrec_dont_know;
3075 FOR_EACH_VEC_ELT (exits, i, ex)
3077 if (!just_once_each_iteration_p (loop, ex->src))
3078 continue;
3080 aniter = loop_niter_by_eval (loop, ex);
3081 if (chrec_contains_undetermined (aniter))
3082 continue;
3084 if (niter
3085 && !tree_int_cst_lt (aniter, niter))
3086 continue;
3088 niter = aniter;
3089 *exit = ex;
3091 exits.release ();
3093 return niter ? niter : chrec_dont_know;
3098 Analysis of upper bounds on number of iterations of a loop.
3102 static widest_int derive_constant_upper_bound_ops (tree, tree,
3103 enum tree_code, tree);
3105 /* Returns a constant upper bound on the value of the right-hand side of
3106 an assignment statement STMT. */
3108 static widest_int
3109 derive_constant_upper_bound_assign (gimple *stmt)
3111 enum tree_code code = gimple_assign_rhs_code (stmt);
3112 tree op0 = gimple_assign_rhs1 (stmt);
3113 tree op1 = gimple_assign_rhs2 (stmt);
3115 return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt)),
3116 op0, code, op1);
3119 /* Returns a constant upper bound on the value of expression VAL. VAL
3120 is considered to be unsigned. If its type is signed, its value must
3121 be nonnegative. */
3123 static widest_int
3124 derive_constant_upper_bound (tree val)
3126 enum tree_code code;
3127 tree op0, op1, op2;
3129 extract_ops_from_tree (val, &code, &op0, &op1, &op2);
3130 return derive_constant_upper_bound_ops (TREE_TYPE (val), op0, code, op1);
3133 /* Returns a constant upper bound on the value of expression OP0 CODE OP1,
3134 whose type is TYPE. The expression is considered to be unsigned. If
3135 its type is signed, its value must be nonnegative. */
3137 static widest_int
3138 derive_constant_upper_bound_ops (tree type, tree op0,
3139 enum tree_code code, tree op1)
3141 tree subtype, maxt;
3142 widest_int bnd, max, cst;
3143 gimple *stmt;
3145 if (INTEGRAL_TYPE_P (type))
3146 maxt = TYPE_MAX_VALUE (type);
3147 else
3148 maxt = upper_bound_in_type (type, type);
3150 max = wi::to_widest (maxt);
3152 switch (code)
3154 case INTEGER_CST:
3155 return wi::to_widest (op0);
3157 CASE_CONVERT:
3158 subtype = TREE_TYPE (op0);
3159 if (!TYPE_UNSIGNED (subtype)
3160 /* If TYPE is also signed, the fact that VAL is nonnegative implies
3161 that OP0 is nonnegative. */
3162 && TYPE_UNSIGNED (type)
3163 && !tree_expr_nonnegative_p (op0))
3165 /* If we cannot prove that the casted expression is nonnegative,
3166 we cannot establish more useful upper bound than the precision
3167 of the type gives us. */
3168 return max;
3171 /* We now know that op0 is an nonnegative value. Try deriving an upper
3172 bound for it. */
3173 bnd = derive_constant_upper_bound (op0);
3175 /* If the bound does not fit in TYPE, max. value of TYPE could be
3176 attained. */
3177 if (wi::ltu_p (max, bnd))
3178 return max;
3180 return bnd;
3182 case PLUS_EXPR:
3183 case POINTER_PLUS_EXPR:
3184 case MINUS_EXPR:
3185 if (TREE_CODE (op1) != INTEGER_CST
3186 || !tree_expr_nonnegative_p (op0))
3187 return max;
3189 /* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
3190 choose the most logical way how to treat this constant regardless
3191 of the signedness of the type. */
3192 cst = wi::sext (wi::to_widest (op1), TYPE_PRECISION (type));
3193 if (code != MINUS_EXPR)
3194 cst = -cst;
3196 bnd = derive_constant_upper_bound (op0);
3198 if (wi::neg_p (cst))
3200 cst = -cst;
3201 /* Avoid CST == 0x80000... */
3202 if (wi::neg_p (cst))
3203 return max;
3205 /* OP0 + CST. We need to check that
3206 BND <= MAX (type) - CST. */
3208 widest_int mmax = max - cst;
3209 if (wi::leu_p (bnd, mmax))
3210 return max;
3212 return bnd + cst;
3214 else
3216 /* OP0 - CST, where CST >= 0.
3218 If TYPE is signed, we have already verified that OP0 >= 0, and we
3219 know that the result is nonnegative. This implies that
3220 VAL <= BND - CST.
3222 If TYPE is unsigned, we must additionally know that OP0 >= CST,
3223 otherwise the operation underflows.
3226 /* This should only happen if the type is unsigned; however, for
3227 buggy programs that use overflowing signed arithmetics even with
3228 -fno-wrapv, this condition may also be true for signed values. */
3229 if (wi::ltu_p (bnd, cst))
3230 return max;
3232 if (TYPE_UNSIGNED (type))
3234 tree tem = fold_binary (GE_EXPR, boolean_type_node, op0,
3235 wide_int_to_tree (type, cst));
3236 if (!tem || integer_nonzerop (tem))
3237 return max;
3240 bnd -= cst;
3243 return bnd;
3245 case FLOOR_DIV_EXPR:
3246 case EXACT_DIV_EXPR:
3247 if (TREE_CODE (op1) != INTEGER_CST
3248 || tree_int_cst_sign_bit (op1))
3249 return max;
3251 bnd = derive_constant_upper_bound (op0);
3252 return wi::udiv_floor (bnd, wi::to_widest (op1));
3254 case BIT_AND_EXPR:
3255 if (TREE_CODE (op1) != INTEGER_CST
3256 || tree_int_cst_sign_bit (op1))
3257 return max;
3258 return wi::to_widest (op1);
3260 case SSA_NAME:
3261 stmt = SSA_NAME_DEF_STMT (op0);
3262 if (gimple_code (stmt) != GIMPLE_ASSIGN
3263 || gimple_assign_lhs (stmt) != op0)
3264 return max;
3265 return derive_constant_upper_bound_assign (stmt);
3267 default:
3268 return max;
3272 /* Emit a -Waggressive-loop-optimizations warning if needed. */
3274 static void
3275 do_warn_aggressive_loop_optimizations (struct loop *loop,
3276 widest_int i_bound, gimple *stmt)
3278 /* Don't warn if the loop doesn't have known constant bound. */
3279 if (!loop->nb_iterations
3280 || TREE_CODE (loop->nb_iterations) != INTEGER_CST
3281 || !warn_aggressive_loop_optimizations
3282 /* To avoid warning multiple times for the same loop,
3283 only start warning when we preserve loops. */
3284 || (cfun->curr_properties & PROP_loops) == 0
3285 /* Only warn once per loop. */
3286 || loop->warned_aggressive_loop_optimizations
3287 /* Only warn if undefined behavior gives us lower estimate than the
3288 known constant bound. */
3289 || wi::cmpu (i_bound, wi::to_widest (loop->nb_iterations)) >= 0
3290 /* And undefined behavior happens unconditionally. */
3291 || !dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (stmt)))
3292 return;
3294 edge e = single_exit (loop);
3295 if (e == NULL)
3296 return;
3298 gimple *estmt = last_stmt (e->src);
3299 char buf[WIDE_INT_PRINT_BUFFER_SIZE];
3300 print_dec (i_bound, buf, TYPE_UNSIGNED (TREE_TYPE (loop->nb_iterations))
3301 ? UNSIGNED : SIGNED);
3302 auto_diagnostic_group d;
3303 if (warning_at (gimple_location (stmt), OPT_Waggressive_loop_optimizations,
3304 "iteration %s invokes undefined behavior", buf))
3305 inform (gimple_location (estmt), "within this loop");
3306 loop->warned_aggressive_loop_optimizations = true;
3309 /* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. IS_EXIT
3310 is true if the loop is exited immediately after STMT, and this exit
3311 is taken at last when the STMT is executed BOUND + 1 times.
3312 REALISTIC is true if BOUND is expected to be close to the real number
3313 of iterations. UPPER is true if we are sure the loop iterates at most
3314 BOUND times. I_BOUND is a widest_int upper estimate on BOUND. */
3316 static void
3317 record_estimate (struct loop *loop, tree bound, const widest_int &i_bound,
3318 gimple *at_stmt, bool is_exit, bool realistic, bool upper)
3320 widest_int delta;
3322 if (dump_file && (dump_flags & TDF_DETAILS))
3324 fprintf (dump_file, "Statement %s", is_exit ? "(exit)" : "");
3325 print_gimple_stmt (dump_file, at_stmt, 0, TDF_SLIM);
3326 fprintf (dump_file, " is %sexecuted at most ",
3327 upper ? "" : "probably ");
3328 print_generic_expr (dump_file, bound, TDF_SLIM);
3329 fprintf (dump_file, " (bounded by ");
3330 print_decu (i_bound, dump_file);
3331 fprintf (dump_file, ") + 1 times in loop %d.\n", loop->num);
3334 /* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
3335 real number of iterations. */
3336 if (TREE_CODE (bound) != INTEGER_CST)
3337 realistic = false;
3338 else
3339 gcc_checking_assert (i_bound == wi::to_widest (bound));
3341 /* If we have a guaranteed upper bound, record it in the appropriate
3342 list, unless this is an !is_exit bound (i.e. undefined behavior in
3343 at_stmt) in a loop with known constant number of iterations. */
3344 if (upper
3345 && (is_exit
3346 || loop->nb_iterations == NULL_TREE
3347 || TREE_CODE (loop->nb_iterations) != INTEGER_CST))
3349 struct nb_iter_bound *elt = ggc_alloc<nb_iter_bound> ();
3351 elt->bound = i_bound;
3352 elt->stmt = at_stmt;
3353 elt->is_exit = is_exit;
3354 elt->next = loop->bounds;
3355 loop->bounds = elt;
3358 /* If statement is executed on every path to the loop latch, we can directly
3359 infer the upper bound on the # of iterations of the loop. */
3360 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (at_stmt)))
3361 upper = false;
3363 /* Update the number of iteration estimates according to the bound.
3364 If at_stmt is an exit then the loop latch is executed at most BOUND times,
3365 otherwise it can be executed BOUND + 1 times. We will lower the estimate
3366 later if such statement must be executed on last iteration */
3367 if (is_exit)
3368 delta = 0;
3369 else
3370 delta = 1;
3371 widest_int new_i_bound = i_bound + delta;
3373 /* If an overflow occurred, ignore the result. */
3374 if (wi::ltu_p (new_i_bound, delta))
3375 return;
3377 if (upper && !is_exit)
3378 do_warn_aggressive_loop_optimizations (loop, new_i_bound, at_stmt);
3379 record_niter_bound (loop, new_i_bound, realistic, upper);
3382 /* Records the control iv analyzed in NITER for LOOP if the iv is valid
3383 and doesn't overflow. */
3385 static void
3386 record_control_iv (struct loop *loop, struct tree_niter_desc *niter)
3388 struct control_iv *iv;
3390 if (!niter->control.base || !niter->control.step)
3391 return;
3393 if (!integer_onep (niter->assumptions) || !niter->control.no_overflow)
3394 return;
3396 iv = ggc_alloc<control_iv> ();
3397 iv->base = niter->control.base;
3398 iv->step = niter->control.step;
3399 iv->next = loop->control_ivs;
3400 loop->control_ivs = iv;
3402 return;
3405 /* This function returns TRUE if below conditions are satisfied:
3406 1) VAR is SSA variable.
3407 2) VAR is an IV:{base, step} in its defining loop.
3408 3) IV doesn't overflow.
3409 4) Both base and step are integer constants.
3410 5) Base is the MIN/MAX value depends on IS_MIN.
3411 Store value of base to INIT correspondingly. */
3413 static bool
3414 get_cst_init_from_scev (tree var, wide_int *init, bool is_min)
3416 if (TREE_CODE (var) != SSA_NAME)
3417 return false;
3419 gimple *def_stmt = SSA_NAME_DEF_STMT (var);
3420 struct loop *loop = loop_containing_stmt (def_stmt);
3422 if (loop == NULL)
3423 return false;
3425 affine_iv iv;
3426 if (!simple_iv (loop, loop, var, &iv, false))
3427 return false;
3429 if (!iv.no_overflow)
3430 return false;
3432 if (TREE_CODE (iv.base) != INTEGER_CST || TREE_CODE (iv.step) != INTEGER_CST)
3433 return false;
3435 if (is_min == tree_int_cst_sign_bit (iv.step))
3436 return false;
3438 *init = wi::to_wide (iv.base);
3439 return true;
3442 /* Record the estimate on number of iterations of LOOP based on the fact that
3443 the induction variable BASE + STEP * i evaluated in STMT does not wrap and
3444 its values belong to the range <LOW, HIGH>. REALISTIC is true if the
3445 estimated number of iterations is expected to be close to the real one.
3446 UPPER is true if we are sure the induction variable does not wrap. */
3448 static void
3449 record_nonwrapping_iv (struct loop *loop, tree base, tree step, gimple *stmt,
3450 tree low, tree high, bool realistic, bool upper)
3452 tree niter_bound, extreme, delta;
3453 tree type = TREE_TYPE (base), unsigned_type;
3454 tree orig_base = base;
3456 if (TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
3457 return;
3459 if (dump_file && (dump_flags & TDF_DETAILS))
3461 fprintf (dump_file, "Induction variable (");
3462 print_generic_expr (dump_file, TREE_TYPE (base), TDF_SLIM);
3463 fprintf (dump_file, ") ");
3464 print_generic_expr (dump_file, base, TDF_SLIM);
3465 fprintf (dump_file, " + ");
3466 print_generic_expr (dump_file, step, TDF_SLIM);
3467 fprintf (dump_file, " * iteration does not wrap in statement ");
3468 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
3469 fprintf (dump_file, " in loop %d.\n", loop->num);
3472 unsigned_type = unsigned_type_for (type);
3473 base = fold_convert (unsigned_type, base);
3474 step = fold_convert (unsigned_type, step);
3476 if (tree_int_cst_sign_bit (step))
3478 wide_int min, max;
3479 extreme = fold_convert (unsigned_type, low);
3480 if (TREE_CODE (orig_base) == SSA_NAME
3481 && TREE_CODE (high) == INTEGER_CST
3482 && INTEGRAL_TYPE_P (TREE_TYPE (orig_base))
3483 && (get_range_info (orig_base, &min, &max) == VR_RANGE
3484 || get_cst_init_from_scev (orig_base, &max, false))
3485 && wi::gts_p (wi::to_wide (high), max))
3486 base = wide_int_to_tree (unsigned_type, max);
3487 else if (TREE_CODE (base) != INTEGER_CST
3488 && dominated_by_p (CDI_DOMINATORS,
3489 loop->latch, gimple_bb (stmt)))
3490 base = fold_convert (unsigned_type, high);
3491 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
3492 step = fold_build1 (NEGATE_EXPR, unsigned_type, step);
3494 else
3496 wide_int min, max;
3497 extreme = fold_convert (unsigned_type, high);
3498 if (TREE_CODE (orig_base) == SSA_NAME
3499 && TREE_CODE (low) == INTEGER_CST
3500 && INTEGRAL_TYPE_P (TREE_TYPE (orig_base))
3501 && (get_range_info (orig_base, &min, &max) == VR_RANGE
3502 || get_cst_init_from_scev (orig_base, &min, true))
3503 && wi::gts_p (min, wi::to_wide (low)))
3504 base = wide_int_to_tree (unsigned_type, min);
3505 else if (TREE_CODE (base) != INTEGER_CST
3506 && dominated_by_p (CDI_DOMINATORS,
3507 loop->latch, gimple_bb (stmt)))
3508 base = fold_convert (unsigned_type, low);
3509 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
3512 /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
3513 would get out of the range. */
3514 niter_bound = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step);
3515 widest_int max = derive_constant_upper_bound (niter_bound);
3516 record_estimate (loop, niter_bound, max, stmt, false, realistic, upper);
3519 /* Determine information about number of iterations a LOOP from the index
3520 IDX of a data reference accessed in STMT. RELIABLE is true if STMT is
3521 guaranteed to be executed in every iteration of LOOP. Callback for
3522 for_each_index. */
3524 struct ilb_data
3526 struct loop *loop;
3527 gimple *stmt;
3530 static bool
3531 idx_infer_loop_bounds (tree base, tree *idx, void *dta)
3533 struct ilb_data *data = (struct ilb_data *) dta;
3534 tree ev, init, step;
3535 tree low, high, type, next;
3536 bool sign, upper = true, at_end = false;
3537 struct loop *loop = data->loop;
3539 if (TREE_CODE (base) != ARRAY_REF)
3540 return true;
3542 /* For arrays at the end of the structure, we are not guaranteed that they
3543 do not really extend over their declared size. However, for arrays of
3544 size greater than one, this is unlikely to be intended. */
3545 if (array_at_struct_end_p (base))
3547 at_end = true;
3548 upper = false;
3551 struct loop *dloop = loop_containing_stmt (data->stmt);
3552 if (!dloop)
3553 return true;
3555 ev = analyze_scalar_evolution (dloop, *idx);
3556 ev = instantiate_parameters (loop, ev);
3557 init = initial_condition (ev);
3558 step = evolution_part_in_loop_num (ev, loop->num);
3560 if (!init
3561 || !step
3562 || TREE_CODE (step) != INTEGER_CST
3563 || integer_zerop (step)
3564 || tree_contains_chrecs (init, NULL)
3565 || chrec_contains_symbols_defined_in_loop (init, loop->num))
3566 return true;
3568 low = array_ref_low_bound (base);
3569 high = array_ref_up_bound (base);
3571 /* The case of nonconstant bounds could be handled, but it would be
3572 complicated. */
3573 if (TREE_CODE (low) != INTEGER_CST
3574 || !high
3575 || TREE_CODE (high) != INTEGER_CST)
3576 return true;
3577 sign = tree_int_cst_sign_bit (step);
3578 type = TREE_TYPE (step);
3580 /* The array of length 1 at the end of a structure most likely extends
3581 beyond its bounds. */
3582 if (at_end
3583 && operand_equal_p (low, high, 0))
3584 return true;
3586 /* In case the relevant bound of the array does not fit in type, or
3587 it does, but bound + step (in type) still belongs into the range of the
3588 array, the index may wrap and still stay within the range of the array
3589 (consider e.g. if the array is indexed by the full range of
3590 unsigned char).
3592 To make things simpler, we require both bounds to fit into type, although
3593 there are cases where this would not be strictly necessary. */
3594 if (!int_fits_type_p (high, type)
3595 || !int_fits_type_p (low, type))
3596 return true;
3597 low = fold_convert (type, low);
3598 high = fold_convert (type, high);
3600 if (sign)
3601 next = fold_binary (PLUS_EXPR, type, low, step);
3602 else
3603 next = fold_binary (PLUS_EXPR, type, high, step);
3605 if (tree_int_cst_compare (low, next) <= 0
3606 && tree_int_cst_compare (next, high) <= 0)
3607 return true;
3609 /* If access is not executed on every iteration, we must ensure that overlow
3610 may not make the access valid later. */
3611 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (data->stmt))
3612 && scev_probably_wraps_p (NULL_TREE,
3613 initial_condition_in_loop_num (ev, loop->num),
3614 step, data->stmt, loop, true))
3615 upper = false;
3617 record_nonwrapping_iv (loop, init, step, data->stmt, low, high, false, upper);
3618 return true;
3621 /* Determine information about number of iterations a LOOP from the bounds
3622 of arrays in the data reference REF accessed in STMT. RELIABLE is true if
3623 STMT is guaranteed to be executed in every iteration of LOOP.*/
3625 static void
3626 infer_loop_bounds_from_ref (struct loop *loop, gimple *stmt, tree ref)
3628 struct ilb_data data;
3630 data.loop = loop;
3631 data.stmt = stmt;
3632 for_each_index (&ref, idx_infer_loop_bounds, &data);
3635 /* Determine information about number of iterations of a LOOP from the way
3636 arrays are used in STMT. RELIABLE is true if STMT is guaranteed to be
3637 executed in every iteration of LOOP. */
3639 static void
3640 infer_loop_bounds_from_array (struct loop *loop, gimple *stmt)
3642 if (is_gimple_assign (stmt))
3644 tree op0 = gimple_assign_lhs (stmt);
3645 tree op1 = gimple_assign_rhs1 (stmt);
3647 /* For each memory access, analyze its access function
3648 and record a bound on the loop iteration domain. */
3649 if (REFERENCE_CLASS_P (op0))
3650 infer_loop_bounds_from_ref (loop, stmt, op0);
3652 if (REFERENCE_CLASS_P (op1))
3653 infer_loop_bounds_from_ref (loop, stmt, op1);
3655 else if (is_gimple_call (stmt))
3657 tree arg, lhs;
3658 unsigned i, n = gimple_call_num_args (stmt);
3660 lhs = gimple_call_lhs (stmt);
3661 if (lhs && REFERENCE_CLASS_P (lhs))
3662 infer_loop_bounds_from_ref (loop, stmt, lhs);
3664 for (i = 0; i < n; i++)
3666 arg = gimple_call_arg (stmt, i);
3667 if (REFERENCE_CLASS_P (arg))
3668 infer_loop_bounds_from_ref (loop, stmt, arg);
3673 /* Determine information about number of iterations of a LOOP from the fact
3674 that pointer arithmetics in STMT does not overflow. */
3676 static void
3677 infer_loop_bounds_from_pointer_arith (struct loop *loop, gimple *stmt)
3679 tree def, base, step, scev, type, low, high;
3680 tree var, ptr;
3682 if (!is_gimple_assign (stmt)
3683 || gimple_assign_rhs_code (stmt) != POINTER_PLUS_EXPR)
3684 return;
3686 def = gimple_assign_lhs (stmt);
3687 if (TREE_CODE (def) != SSA_NAME)
3688 return;
3690 type = TREE_TYPE (def);
3691 if (!nowrap_type_p (type))
3692 return;
3694 ptr = gimple_assign_rhs1 (stmt);
3695 if (!expr_invariant_in_loop_p (loop, ptr))
3696 return;
3698 var = gimple_assign_rhs2 (stmt);
3699 if (TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (var)))
3700 return;
3702 struct loop *uloop = loop_containing_stmt (stmt);
3703 scev = instantiate_parameters (loop, analyze_scalar_evolution (uloop, def));
3704 if (chrec_contains_undetermined (scev))
3705 return;
3707 base = initial_condition_in_loop_num (scev, loop->num);
3708 step = evolution_part_in_loop_num (scev, loop->num);
3710 if (!base || !step
3711 || TREE_CODE (step) != INTEGER_CST
3712 || tree_contains_chrecs (base, NULL)
3713 || chrec_contains_symbols_defined_in_loop (base, loop->num))
3714 return;
3716 low = lower_bound_in_type (type, type);
3717 high = upper_bound_in_type (type, type);
3719 /* In C, pointer arithmetic p + 1 cannot use a NULL pointer, and p - 1 cannot
3720 produce a NULL pointer. The contrary would mean NULL points to an object,
3721 while NULL is supposed to compare unequal with the address of all objects.
3722 Furthermore, p + 1 cannot produce a NULL pointer and p - 1 cannot use a
3723 NULL pointer since that would mean wrapping, which we assume here not to
3724 happen. So, we can exclude NULL from the valid range of pointer
3725 arithmetic. */
3726 if (flag_delete_null_pointer_checks && int_cst_value (low) == 0)
3727 low = build_int_cstu (TREE_TYPE (low), TYPE_ALIGN_UNIT (TREE_TYPE (type)));
3729 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
3732 /* Determine information about number of iterations of a LOOP from the fact
3733 that signed arithmetics in STMT does not overflow. */
3735 static void
3736 infer_loop_bounds_from_signedness (struct loop *loop, gimple *stmt)
3738 tree def, base, step, scev, type, low, high;
3740 if (gimple_code (stmt) != GIMPLE_ASSIGN)
3741 return;
3743 def = gimple_assign_lhs (stmt);
3745 if (TREE_CODE (def) != SSA_NAME)
3746 return;
3748 type = TREE_TYPE (def);
3749 if (!INTEGRAL_TYPE_P (type)
3750 || !TYPE_OVERFLOW_UNDEFINED (type))
3751 return;
3753 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
3754 if (chrec_contains_undetermined (scev))
3755 return;
3757 base = initial_condition_in_loop_num (scev, loop->num);
3758 step = evolution_part_in_loop_num (scev, loop->num);
3760 if (!base || !step
3761 || TREE_CODE (step) != INTEGER_CST
3762 || tree_contains_chrecs (base, NULL)
3763 || chrec_contains_symbols_defined_in_loop (base, loop->num))
3764 return;
3766 low = lower_bound_in_type (type, type);
3767 high = upper_bound_in_type (type, type);
3768 wide_int minv, maxv;
3769 if (get_range_info (def, &minv, &maxv) == VR_RANGE)
3771 low = wide_int_to_tree (type, minv);
3772 high = wide_int_to_tree (type, maxv);
3775 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
3778 /* The following analyzers are extracting informations on the bounds
3779 of LOOP from the following undefined behaviors:
3781 - data references should not access elements over the statically
3782 allocated size,
3784 - signed variables should not overflow when flag_wrapv is not set.
3787 static void
3788 infer_loop_bounds_from_undefined (struct loop *loop)
3790 unsigned i;
3791 basic_block *bbs;
3792 gimple_stmt_iterator bsi;
3793 basic_block bb;
3794 bool reliable;
3796 bbs = get_loop_body (loop);
3798 for (i = 0; i < loop->num_nodes; i++)
3800 bb = bbs[i];
3802 /* If BB is not executed in each iteration of the loop, we cannot
3803 use the operations in it to infer reliable upper bound on the
3804 # of iterations of the loop. However, we can use it as a guess.
3805 Reliable guesses come only from array bounds. */
3806 reliable = dominated_by_p (CDI_DOMINATORS, loop->latch, bb);
3808 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
3810 gimple *stmt = gsi_stmt (bsi);
3812 infer_loop_bounds_from_array (loop, stmt);
3814 if (reliable)
3816 infer_loop_bounds_from_signedness (loop, stmt);
3817 infer_loop_bounds_from_pointer_arith (loop, stmt);
3823 free (bbs);
3826 /* Compare wide ints, callback for qsort. */
3828 static int
3829 wide_int_cmp (const void *p1, const void *p2)
3831 const widest_int *d1 = (const widest_int *) p1;
3832 const widest_int *d2 = (const widest_int *) p2;
3833 return wi::cmpu (*d1, *d2);
3836 /* Return index of BOUND in BOUNDS array sorted in increasing order.
3837 Lookup by binary search. */
3839 static int
3840 bound_index (vec<widest_int> bounds, const widest_int &bound)
3842 unsigned int end = bounds.length ();
3843 unsigned int begin = 0;
3845 /* Find a matching index by means of a binary search. */
3846 while (begin != end)
3848 unsigned int middle = (begin + end) / 2;
3849 widest_int index = bounds[middle];
3851 if (index == bound)
3852 return middle;
3853 else if (wi::ltu_p (index, bound))
3854 begin = middle + 1;
3855 else
3856 end = middle;
3858 gcc_unreachable ();
3861 /* We recorded loop bounds only for statements dominating loop latch (and thus
3862 executed each loop iteration). If there are any bounds on statements not
3863 dominating the loop latch we can improve the estimate by walking the loop
3864 body and seeing if every path from loop header to loop latch contains
3865 some bounded statement. */
3867 static void
3868 discover_iteration_bound_by_body_walk (struct loop *loop)
3870 struct nb_iter_bound *elt;
3871 auto_vec<widest_int> bounds;
3872 vec<vec<basic_block> > queues = vNULL;
3873 vec<basic_block> queue = vNULL;
3874 ptrdiff_t queue_index;
3875 ptrdiff_t latch_index = 0;
3877 /* Discover what bounds may interest us. */
3878 for (elt = loop->bounds; elt; elt = elt->next)
3880 widest_int bound = elt->bound;
3882 /* Exit terminates loop at given iteration, while non-exits produce undefined
3883 effect on the next iteration. */
3884 if (!elt->is_exit)
3886 bound += 1;
3887 /* If an overflow occurred, ignore the result. */
3888 if (bound == 0)
3889 continue;
3892 if (!loop->any_upper_bound
3893 || wi::ltu_p (bound, loop->nb_iterations_upper_bound))
3894 bounds.safe_push (bound);
3897 /* Exit early if there is nothing to do. */
3898 if (!bounds.exists ())
3899 return;
3901 if (dump_file && (dump_flags & TDF_DETAILS))
3902 fprintf (dump_file, " Trying to walk loop body to reduce the bound.\n");
3904 /* Sort the bounds in decreasing order. */
3905 bounds.qsort (wide_int_cmp);
3907 /* For every basic block record the lowest bound that is guaranteed to
3908 terminate the loop. */
3910 hash_map<basic_block, ptrdiff_t> bb_bounds;
3911 for (elt = loop->bounds; elt; elt = elt->next)
3913 widest_int bound = elt->bound;
3914 if (!elt->is_exit)
3916 bound += 1;
3917 /* If an overflow occurred, ignore the result. */
3918 if (bound == 0)
3919 continue;
3922 if (!loop->any_upper_bound
3923 || wi::ltu_p (bound, loop->nb_iterations_upper_bound))
3925 ptrdiff_t index = bound_index (bounds, bound);
3926 ptrdiff_t *entry = bb_bounds.get (gimple_bb (elt->stmt));
3927 if (!entry)
3928 bb_bounds.put (gimple_bb (elt->stmt), index);
3929 else if ((ptrdiff_t)*entry > index)
3930 *entry = index;
3934 hash_map<basic_block, ptrdiff_t> block_priority;
3936 /* Perform shortest path discovery loop->header ... loop->latch.
3938 The "distance" is given by the smallest loop bound of basic block
3939 present in the path and we look for path with largest smallest bound
3940 on it.
3942 To avoid the need for fibonacci heap on double ints we simply compress
3943 double ints into indexes to BOUNDS array and then represent the queue
3944 as arrays of queues for every index.
3945 Index of BOUNDS.length() means that the execution of given BB has
3946 no bounds determined.
3948 VISITED is a pointer map translating basic block into smallest index
3949 it was inserted into the priority queue with. */
3950 latch_index = -1;
3952 /* Start walk in loop header with index set to infinite bound. */
3953 queue_index = bounds.length ();
3954 queues.safe_grow_cleared (queue_index + 1);
3955 queue.safe_push (loop->header);
3956 queues[queue_index] = queue;
3957 block_priority.put (loop->header, queue_index);
3959 for (; queue_index >= 0; queue_index--)
3961 if (latch_index < queue_index)
3963 while (queues[queue_index].length ())
3965 basic_block bb;
3966 ptrdiff_t bound_index = queue_index;
3967 edge e;
3968 edge_iterator ei;
3970 queue = queues[queue_index];
3971 bb = queue.pop ();
3973 /* OK, we later inserted the BB with lower priority, skip it. */
3974 if (*block_priority.get (bb) > queue_index)
3975 continue;
3977 /* See if we can improve the bound. */
3978 ptrdiff_t *entry = bb_bounds.get (bb);
3979 if (entry && *entry < bound_index)
3980 bound_index = *entry;
3982 /* Insert succesors into the queue, watch for latch edge
3983 and record greatest index we saw. */
3984 FOR_EACH_EDGE (e, ei, bb->succs)
3986 bool insert = false;
3988 if (loop_exit_edge_p (loop, e))
3989 continue;
3991 if (e == loop_latch_edge (loop)
3992 && latch_index < bound_index)
3993 latch_index = bound_index;
3994 else if (!(entry = block_priority.get (e->dest)))
3996 insert = true;
3997 block_priority.put (e->dest, bound_index);
3999 else if (*entry < bound_index)
4001 insert = true;
4002 *entry = bound_index;
4005 if (insert)
4006 queues[bound_index].safe_push (e->dest);
4010 queues[queue_index].release ();
4013 gcc_assert (latch_index >= 0);
4014 if ((unsigned)latch_index < bounds.length ())
4016 if (dump_file && (dump_flags & TDF_DETAILS))
4018 fprintf (dump_file, "Found better loop bound ");
4019 print_decu (bounds[latch_index], dump_file);
4020 fprintf (dump_file, "\n");
4022 record_niter_bound (loop, bounds[latch_index], false, true);
4025 queues.release ();
4028 /* See if every path cross the loop goes through a statement that is known
4029 to not execute at the last iteration. In that case we can decrese iteration
4030 count by 1. */
4032 static void
4033 maybe_lower_iteration_bound (struct loop *loop)
4035 hash_set<gimple *> *not_executed_last_iteration = NULL;
4036 struct nb_iter_bound *elt;
4037 bool found_exit = false;
4038 auto_vec<basic_block> queue;
4039 bitmap visited;
4041 /* Collect all statements with interesting (i.e. lower than
4042 nb_iterations_upper_bound) bound on them.
4044 TODO: Due to the way record_estimate choose estimates to store, the bounds
4045 will be always nb_iterations_upper_bound-1. We can change this to record
4046 also statements not dominating the loop latch and update the walk bellow
4047 to the shortest path algorithm. */
4048 for (elt = loop->bounds; elt; elt = elt->next)
4050 if (!elt->is_exit
4051 && wi::ltu_p (elt->bound, loop->nb_iterations_upper_bound))
4053 if (!not_executed_last_iteration)
4054 not_executed_last_iteration = new hash_set<gimple *>;
4055 not_executed_last_iteration->add (elt->stmt);
4058 if (!not_executed_last_iteration)
4059 return;
4061 /* Start DFS walk in the loop header and see if we can reach the
4062 loop latch or any of the exits (including statements with side
4063 effects that may terminate the loop otherwise) without visiting
4064 any of the statements known to have undefined effect on the last
4065 iteration. */
4066 queue.safe_push (loop->header);
4067 visited = BITMAP_ALLOC (NULL);
4068 bitmap_set_bit (visited, loop->header->index);
4069 found_exit = false;
4073 basic_block bb = queue.pop ();
4074 gimple_stmt_iterator gsi;
4075 bool stmt_found = false;
4077 /* Loop for possible exits and statements bounding the execution. */
4078 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4080 gimple *stmt = gsi_stmt (gsi);
4081 if (not_executed_last_iteration->contains (stmt))
4083 stmt_found = true;
4084 break;
4086 if (gimple_has_side_effects (stmt))
4088 found_exit = true;
4089 break;
4092 if (found_exit)
4093 break;
4095 /* If no bounding statement is found, continue the walk. */
4096 if (!stmt_found)
4098 edge e;
4099 edge_iterator ei;
4101 FOR_EACH_EDGE (e, ei, bb->succs)
4103 if (loop_exit_edge_p (loop, e)
4104 || e == loop_latch_edge (loop))
4106 found_exit = true;
4107 break;
4109 if (bitmap_set_bit (visited, e->dest->index))
4110 queue.safe_push (e->dest);
4114 while (queue.length () && !found_exit);
4116 /* If every path through the loop reach bounding statement before exit,
4117 then we know the last iteration of the loop will have undefined effect
4118 and we can decrease number of iterations. */
4120 if (!found_exit)
4122 if (dump_file && (dump_flags & TDF_DETAILS))
4123 fprintf (dump_file, "Reducing loop iteration estimate by 1; "
4124 "undefined statement must be executed at the last iteration.\n");
4125 record_niter_bound (loop, loop->nb_iterations_upper_bound - 1,
4126 false, true);
4129 BITMAP_FREE (visited);
4130 delete not_executed_last_iteration;
4133 /* Records estimates on numbers of iterations of LOOP. If USE_UNDEFINED_P
4134 is true also use estimates derived from undefined behavior. */
4136 void
4137 estimate_numbers_of_iterations (struct loop *loop)
4139 vec<edge> exits;
4140 tree niter, type;
4141 unsigned i;
4142 struct tree_niter_desc niter_desc;
4143 edge ex;
4144 widest_int bound;
4145 edge likely_exit;
4147 /* Give up if we already have tried to compute an estimation. */
4148 if (loop->estimate_state != EST_NOT_COMPUTED)
4149 return;
4151 loop->estimate_state = EST_AVAILABLE;
4153 /* If we have a measured profile, use it to estimate the number of
4154 iterations. Normally this is recorded by branch_prob right after
4155 reading the profile. In case we however found a new loop, record the
4156 information here.
4158 Explicitly check for profile status so we do not report
4159 wrong prediction hitrates for guessed loop iterations heuristics.
4160 Do not recompute already recorded bounds - we ought to be better on
4161 updating iteration bounds than updating profile in general and thus
4162 recomputing iteration bounds later in the compilation process will just
4163 introduce random roundoff errors. */
4164 if (!loop->any_estimate
4165 && loop->header->count.reliable_p ())
4167 gcov_type nit = expected_loop_iterations_unbounded (loop);
4168 bound = gcov_type_to_wide_int (nit);
4169 record_niter_bound (loop, bound, true, false);
4172 /* Ensure that loop->nb_iterations is computed if possible. If it turns out
4173 to be constant, we avoid undefined behavior implied bounds and instead
4174 diagnose those loops with -Waggressive-loop-optimizations. */
4175 number_of_latch_executions (loop);
4177 exits = get_loop_exit_edges (loop);
4178 likely_exit = single_likely_exit (loop);
4179 FOR_EACH_VEC_ELT (exits, i, ex)
4181 if (!number_of_iterations_exit (loop, ex, &niter_desc, false, false))
4182 continue;
4184 niter = niter_desc.niter;
4185 type = TREE_TYPE (niter);
4186 if (TREE_CODE (niter_desc.may_be_zero) != INTEGER_CST)
4187 niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
4188 build_int_cst (type, 0),
4189 niter);
4190 record_estimate (loop, niter, niter_desc.max,
4191 last_stmt (ex->src),
4192 true, ex == likely_exit, true);
4193 record_control_iv (loop, &niter_desc);
4195 exits.release ();
4197 if (flag_aggressive_loop_optimizations)
4198 infer_loop_bounds_from_undefined (loop);
4200 discover_iteration_bound_by_body_walk (loop);
4202 maybe_lower_iteration_bound (loop);
4204 /* If we know the exact number of iterations of this loop, try to
4205 not break code with undefined behavior by not recording smaller
4206 maximum number of iterations. */
4207 if (loop->nb_iterations
4208 && TREE_CODE (loop->nb_iterations) == INTEGER_CST)
4210 loop->any_upper_bound = true;
4211 loop->nb_iterations_upper_bound = wi::to_widest (loop->nb_iterations);
4215 /* Sets NIT to the estimated number of executions of the latch of the
4216 LOOP. If CONSERVATIVE is true, we must be sure that NIT is at least as
4217 large as the number of iterations. If we have no reliable estimate,
4218 the function returns false, otherwise returns true. */
4220 bool
4221 estimated_loop_iterations (struct loop *loop, widest_int *nit)
4223 /* When SCEV information is available, try to update loop iterations
4224 estimate. Otherwise just return whatever we recorded earlier. */
4225 if (scev_initialized_p ())
4226 estimate_numbers_of_iterations (loop);
4228 return (get_estimated_loop_iterations (loop, nit));
4231 /* Similar to estimated_loop_iterations, but returns the estimate only
4232 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
4233 on the number of iterations of LOOP could not be derived, returns -1. */
4235 HOST_WIDE_INT
4236 estimated_loop_iterations_int (struct loop *loop)
4238 widest_int nit;
4239 HOST_WIDE_INT hwi_nit;
4241 if (!estimated_loop_iterations (loop, &nit))
4242 return -1;
4244 if (!wi::fits_shwi_p (nit))
4245 return -1;
4246 hwi_nit = nit.to_shwi ();
4248 return hwi_nit < 0 ? -1 : hwi_nit;
4252 /* Sets NIT to an upper bound for the maximum number of executions of the
4253 latch of the LOOP. If we have no reliable estimate, the function returns
4254 false, otherwise returns true. */
4256 bool
4257 max_loop_iterations (struct loop *loop, widest_int *nit)
4259 /* When SCEV information is available, try to update loop iterations
4260 estimate. Otherwise just return whatever we recorded earlier. */
4261 if (scev_initialized_p ())
4262 estimate_numbers_of_iterations (loop);
4264 return get_max_loop_iterations (loop, nit);
4267 /* Similar to max_loop_iterations, but returns the estimate only
4268 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
4269 on the number of iterations of LOOP could not be derived, returns -1. */
4271 HOST_WIDE_INT
4272 max_loop_iterations_int (struct loop *loop)
4274 widest_int nit;
4275 HOST_WIDE_INT hwi_nit;
4277 if (!max_loop_iterations (loop, &nit))
4278 return -1;
4280 if (!wi::fits_shwi_p (nit))
4281 return -1;
4282 hwi_nit = nit.to_shwi ();
4284 return hwi_nit < 0 ? -1 : hwi_nit;
4287 /* Sets NIT to an likely upper bound for the maximum number of executions of the
4288 latch of the LOOP. If we have no reliable estimate, the function returns
4289 false, otherwise returns true. */
4291 bool
4292 likely_max_loop_iterations (struct loop *loop, widest_int *nit)
4294 /* When SCEV information is available, try to update loop iterations
4295 estimate. Otherwise just return whatever we recorded earlier. */
4296 if (scev_initialized_p ())
4297 estimate_numbers_of_iterations (loop);
4299 return get_likely_max_loop_iterations (loop, nit);
4302 /* Similar to max_loop_iterations, but returns the estimate only
4303 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
4304 on the number of iterations of LOOP could not be derived, returns -1. */
4306 HOST_WIDE_INT
4307 likely_max_loop_iterations_int (struct loop *loop)
4309 widest_int nit;
4310 HOST_WIDE_INT hwi_nit;
4312 if (!likely_max_loop_iterations (loop, &nit))
4313 return -1;
4315 if (!wi::fits_shwi_p (nit))
4316 return -1;
4317 hwi_nit = nit.to_shwi ();
4319 return hwi_nit < 0 ? -1 : hwi_nit;
4322 /* Returns an estimate for the number of executions of statements
4323 in the LOOP. For statements before the loop exit, this exceeds
4324 the number of execution of the latch by one. */
4326 HOST_WIDE_INT
4327 estimated_stmt_executions_int (struct loop *loop)
4329 HOST_WIDE_INT nit = estimated_loop_iterations_int (loop);
4330 HOST_WIDE_INT snit;
4332 if (nit == -1)
4333 return -1;
4335 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
4337 /* If the computation overflows, return -1. */
4338 return snit < 0 ? -1 : snit;
4341 /* Sets NIT to the maximum number of executions of the latch of the
4342 LOOP, plus one. If we have no reliable estimate, the function returns
4343 false, otherwise returns true. */
4345 bool
4346 max_stmt_executions (struct loop *loop, widest_int *nit)
4348 widest_int nit_minus_one;
4350 if (!max_loop_iterations (loop, nit))
4351 return false;
4353 nit_minus_one = *nit;
4355 *nit += 1;
4357 return wi::gtu_p (*nit, nit_minus_one);
4360 /* Sets NIT to the estimated maximum number of executions of the latch of the
4361 LOOP, plus one. If we have no likely estimate, the function returns
4362 false, otherwise returns true. */
4364 bool
4365 likely_max_stmt_executions (struct loop *loop, widest_int *nit)
4367 widest_int nit_minus_one;
4369 if (!likely_max_loop_iterations (loop, nit))
4370 return false;
4372 nit_minus_one = *nit;
4374 *nit += 1;
4376 return wi::gtu_p (*nit, nit_minus_one);
4379 /* Sets NIT to the estimated number of executions of the latch of the
4380 LOOP, plus one. If we have no reliable estimate, the function returns
4381 false, otherwise returns true. */
4383 bool
4384 estimated_stmt_executions (struct loop *loop, widest_int *nit)
4386 widest_int nit_minus_one;
4388 if (!estimated_loop_iterations (loop, nit))
4389 return false;
4391 nit_minus_one = *nit;
4393 *nit += 1;
4395 return wi::gtu_p (*nit, nit_minus_one);
4398 /* Records estimates on numbers of iterations of loops. */
4400 void
4401 estimate_numbers_of_iterations (function *fn)
4403 struct loop *loop;
4405 /* We don't want to issue signed overflow warnings while getting
4406 loop iteration estimates. */
4407 fold_defer_overflow_warnings ();
4409 FOR_EACH_LOOP_FN (fn, loop, 0)
4410 estimate_numbers_of_iterations (loop);
4412 fold_undefer_and_ignore_overflow_warnings ();
4415 /* Returns true if statement S1 dominates statement S2. */
4417 bool
4418 stmt_dominates_stmt_p (gimple *s1, gimple *s2)
4420 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
4422 if (!bb1
4423 || s1 == s2)
4424 return true;
4426 if (bb1 == bb2)
4428 gimple_stmt_iterator bsi;
4430 if (gimple_code (s2) == GIMPLE_PHI)
4431 return false;
4433 if (gimple_code (s1) == GIMPLE_PHI)
4434 return true;
4436 for (bsi = gsi_start_bb (bb1); gsi_stmt (bsi) != s2; gsi_next (&bsi))
4437 if (gsi_stmt (bsi) == s1)
4438 return true;
4440 return false;
4443 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
4446 /* Returns true when we can prove that the number of executions of
4447 STMT in the loop is at most NITER, according to the bound on
4448 the number of executions of the statement NITER_BOUND->stmt recorded in
4449 NITER_BOUND and fact that NITER_BOUND->stmt dominate STMT.
4451 ??? This code can become quite a CPU hog - we can have many bounds,
4452 and large basic block forcing stmt_dominates_stmt_p to be queried
4453 many times on a large basic blocks, so the whole thing is O(n^2)
4454 for scev_probably_wraps_p invocation (that can be done n times).
4456 It would make more sense (and give better answers) to remember BB
4457 bounds computed by discover_iteration_bound_by_body_walk. */
4459 static bool
4460 n_of_executions_at_most (gimple *stmt,
4461 struct nb_iter_bound *niter_bound,
4462 tree niter)
4464 widest_int bound = niter_bound->bound;
4465 tree nit_type = TREE_TYPE (niter), e;
4466 enum tree_code cmp;
4468 gcc_assert (TYPE_UNSIGNED (nit_type));
4470 /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
4471 the number of iterations is small. */
4472 if (!wi::fits_to_tree_p (bound, nit_type))
4473 return false;
4475 /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
4476 times. This means that:
4478 -- if NITER_BOUND->is_exit is true, then everything after
4479 it at most NITER_BOUND->bound times.
4481 -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
4482 is executed, then NITER_BOUND->stmt is executed as well in the same
4483 iteration then STMT is executed at most NITER_BOUND->bound + 1 times.
4485 If we can determine that NITER_BOUND->stmt is always executed
4486 after STMT, then STMT is executed at most NITER_BOUND->bound + 2 times.
4487 We conclude that if both statements belong to the same
4488 basic block and STMT is before NITER_BOUND->stmt and there are no
4489 statements with side effects in between. */
4491 if (niter_bound->is_exit)
4493 if (stmt == niter_bound->stmt
4494 || !stmt_dominates_stmt_p (niter_bound->stmt, stmt))
4495 return false;
4496 cmp = GE_EXPR;
4498 else
4500 if (!stmt_dominates_stmt_p (niter_bound->stmt, stmt))
4502 gimple_stmt_iterator bsi;
4503 if (gimple_bb (stmt) != gimple_bb (niter_bound->stmt)
4504 || gimple_code (stmt) == GIMPLE_PHI
4505 || gimple_code (niter_bound->stmt) == GIMPLE_PHI)
4506 return false;
4508 /* By stmt_dominates_stmt_p we already know that STMT appears
4509 before NITER_BOUND->STMT. Still need to test that the loop
4510 cannot be terinated by a side effect in between. */
4511 for (bsi = gsi_for_stmt (stmt); gsi_stmt (bsi) != niter_bound->stmt;
4512 gsi_next (&bsi))
4513 if (gimple_has_side_effects (gsi_stmt (bsi)))
4514 return false;
4515 bound += 1;
4516 if (bound == 0
4517 || !wi::fits_to_tree_p (bound, nit_type))
4518 return false;
4520 cmp = GT_EXPR;
4523 e = fold_binary (cmp, boolean_type_node,
4524 niter, wide_int_to_tree (nit_type, bound));
4525 return e && integer_nonzerop (e);
4528 /* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
4530 bool
4531 nowrap_type_p (tree type)
4533 if (ANY_INTEGRAL_TYPE_P (type)
4534 && TYPE_OVERFLOW_UNDEFINED (type))
4535 return true;
4537 if (POINTER_TYPE_P (type))
4538 return true;
4540 return false;
4543 /* Return true if we can prove LOOP is exited before evolution of induction
4544 variable {BASE, STEP} overflows with respect to its type bound. */
4546 static bool
4547 loop_exits_before_overflow (tree base, tree step,
4548 gimple *at_stmt, struct loop *loop)
4550 widest_int niter;
4551 struct control_iv *civ;
4552 struct nb_iter_bound *bound;
4553 tree e, delta, step_abs, unsigned_base;
4554 tree type = TREE_TYPE (step);
4555 tree unsigned_type, valid_niter;
4557 /* Don't issue signed overflow warnings. */
4558 fold_defer_overflow_warnings ();
4560 /* Compute the number of iterations before we reach the bound of the
4561 type, and verify that the loop is exited before this occurs. */
4562 unsigned_type = unsigned_type_for (type);
4563 unsigned_base = fold_convert (unsigned_type, base);
4565 if (tree_int_cst_sign_bit (step))
4567 tree extreme = fold_convert (unsigned_type,
4568 lower_bound_in_type (type, type));
4569 delta = fold_build2 (MINUS_EXPR, unsigned_type, unsigned_base, extreme);
4570 step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
4571 fold_convert (unsigned_type, step));
4573 else
4575 tree extreme = fold_convert (unsigned_type,
4576 upper_bound_in_type (type, type));
4577 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, unsigned_base);
4578 step_abs = fold_convert (unsigned_type, step);
4581 valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
4583 estimate_numbers_of_iterations (loop);
4585 if (max_loop_iterations (loop, &niter)
4586 && wi::fits_to_tree_p (niter, TREE_TYPE (valid_niter))
4587 && (e = fold_binary (GT_EXPR, boolean_type_node, valid_niter,
4588 wide_int_to_tree (TREE_TYPE (valid_niter),
4589 niter))) != NULL
4590 && integer_nonzerop (e))
4592 fold_undefer_and_ignore_overflow_warnings ();
4593 return true;
4595 if (at_stmt)
4596 for (bound = loop->bounds; bound; bound = bound->next)
4598 if (n_of_executions_at_most (at_stmt, bound, valid_niter))
4600 fold_undefer_and_ignore_overflow_warnings ();
4601 return true;
4604 fold_undefer_and_ignore_overflow_warnings ();
4606 /* Try to prove loop is exited before {base, step} overflows with the
4607 help of analyzed loop control IV. This is done only for IVs with
4608 constant step because otherwise we don't have the information. */
4609 if (TREE_CODE (step) == INTEGER_CST)
4611 for (civ = loop->control_ivs; civ; civ = civ->next)
4613 enum tree_code code;
4614 tree civ_type = TREE_TYPE (civ->step);
4616 /* Have to consider type difference because operand_equal_p ignores
4617 that for constants. */
4618 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (civ_type)
4619 || element_precision (type) != element_precision (civ_type))
4620 continue;
4622 /* Only consider control IV with same step. */
4623 if (!operand_equal_p (step, civ->step, 0))
4624 continue;
4626 /* Done proving if this is a no-overflow control IV. */
4627 if (operand_equal_p (base, civ->base, 0))
4628 return true;
4630 /* Control IV is recorded after expanding simple operations,
4631 Here we expand base and compare it too. */
4632 tree expanded_base = expand_simple_operations (base);
4633 if (operand_equal_p (expanded_base, civ->base, 0))
4634 return true;
4636 /* If this is a before stepping control IV, in other words, we have
4638 {civ_base, step} = {base + step, step}
4640 Because civ {base + step, step} doesn't overflow during loop
4641 iterations, {base, step} will not overflow if we can prove the
4642 operation "base + step" does not overflow. Specifically, we try
4643 to prove below conditions are satisfied:
4645 base <= UPPER_BOUND (type) - step ;;step > 0
4646 base >= LOWER_BOUND (type) - step ;;step < 0
4648 by proving the reverse conditions are false using loop's initial
4649 condition. */
4650 if (POINTER_TYPE_P (TREE_TYPE (base)))
4651 code = POINTER_PLUS_EXPR;
4652 else
4653 code = PLUS_EXPR;
4655 tree stepped = fold_build2 (code, TREE_TYPE (base), base, step);
4656 tree expanded_stepped = fold_build2 (code, TREE_TYPE (base),
4657 expanded_base, step);
4658 if (operand_equal_p (stepped, civ->base, 0)
4659 || operand_equal_p (expanded_stepped, civ->base, 0))
4661 tree extreme;
4663 if (tree_int_cst_sign_bit (step))
4665 code = LT_EXPR;
4666 extreme = lower_bound_in_type (type, type);
4668 else
4670 code = GT_EXPR;
4671 extreme = upper_bound_in_type (type, type);
4673 extreme = fold_build2 (MINUS_EXPR, type, extreme, step);
4674 e = fold_build2 (code, boolean_type_node, base, extreme);
4675 e = simplify_using_initial_conditions (loop, e);
4676 if (integer_zerop (e))
4677 return true;
4682 return false;
4685 /* VAR is scev variable whose evolution part is constant STEP, this function
4686 proves that VAR can't overflow by using value range info. If VAR's value
4687 range is [MIN, MAX], it can be proven by:
4688 MAX + step doesn't overflow ; if step > 0
4690 MIN + step doesn't underflow ; if step < 0.
4692 We can only do this if var is computed in every loop iteration, i.e, var's
4693 definition has to dominate loop latch. Consider below example:
4696 unsigned int i;
4698 <bb 3>:
4700 <bb 4>:
4701 # RANGE [0, 4294967294] NONZERO 65535
4702 # i_21 = PHI <0(3), i_18(9)>
4703 if (i_21 != 0)
4704 goto <bb 6>;
4705 else
4706 goto <bb 8>;
4708 <bb 6>:
4709 # RANGE [0, 65533] NONZERO 65535
4710 _6 = i_21 + 4294967295;
4711 # RANGE [0, 65533] NONZERO 65535
4712 _7 = (long unsigned int) _6;
4713 # RANGE [0, 524264] NONZERO 524280
4714 _8 = _7 * 8;
4715 # PT = nonlocal escaped
4716 _9 = a_14 + _8;
4717 *_9 = 0;
4719 <bb 8>:
4720 # RANGE [1, 65535] NONZERO 65535
4721 i_18 = i_21 + 1;
4722 if (i_18 >= 65535)
4723 goto <bb 10>;
4724 else
4725 goto <bb 9>;
4727 <bb 9>:
4728 goto <bb 4>;
4730 <bb 10>:
4731 return;
4734 VAR _6 doesn't overflow only with pre-condition (i_21 != 0), here we
4735 can't use _6 to prove no-overlfow for _7. In fact, var _7 takes value
4736 sequence (4294967295, 0, 1, ..., 65533) in loop life time, rather than
4737 (4294967295, 4294967296, ...). */
4739 static bool
4740 scev_var_range_cant_overflow (tree var, tree step, struct loop *loop)
4742 tree type;
4743 wide_int minv, maxv, diff, step_wi;
4744 enum value_range_kind rtype;
4746 if (TREE_CODE (step) != INTEGER_CST || !INTEGRAL_TYPE_P (TREE_TYPE (var)))
4747 return false;
4749 /* Check if VAR evaluates in every loop iteration. It's not the case
4750 if VAR is default definition or does not dominate loop's latch. */
4751 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (var));
4752 if (!def_bb || !dominated_by_p (CDI_DOMINATORS, loop->latch, def_bb))
4753 return false;
4755 rtype = get_range_info (var, &minv, &maxv);
4756 if (rtype != VR_RANGE)
4757 return false;
4759 /* VAR is a scev whose evolution part is STEP and value range info
4760 is [MIN, MAX], we can prove its no-overflowness by conditions:
4762 type_MAX - MAX >= step ; if step > 0
4763 MIN - type_MIN >= |step| ; if step < 0.
4765 Or VAR must take value outside of value range, which is not true. */
4766 step_wi = wi::to_wide (step);
4767 type = TREE_TYPE (var);
4768 if (tree_int_cst_sign_bit (step))
4770 diff = minv - wi::to_wide (lower_bound_in_type (type, type));
4771 step_wi = - step_wi;
4773 else
4774 diff = wi::to_wide (upper_bound_in_type (type, type)) - maxv;
4776 return (wi::geu_p (diff, step_wi));
4779 /* Return false only when the induction variable BASE + STEP * I is
4780 known to not overflow: i.e. when the number of iterations is small
4781 enough with respect to the step and initial condition in order to
4782 keep the evolution confined in TYPEs bounds. Return true when the
4783 iv is known to overflow or when the property is not computable.
4785 USE_OVERFLOW_SEMANTICS is true if this function should assume that
4786 the rules for overflow of the given language apply (e.g., that signed
4787 arithmetics in C does not overflow).
4789 If VAR is a ssa variable, this function also returns false if VAR can
4790 be proven not overflow with value range info. */
4792 bool
4793 scev_probably_wraps_p (tree var, tree base, tree step,
4794 gimple *at_stmt, struct loop *loop,
4795 bool use_overflow_semantics)
4797 /* FIXME: We really need something like
4798 http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
4800 We used to test for the following situation that frequently appears
4801 during address arithmetics:
4803 D.1621_13 = (long unsigned intD.4) D.1620_12;
4804 D.1622_14 = D.1621_13 * 8;
4805 D.1623_15 = (doubleD.29 *) D.1622_14;
4807 And derived that the sequence corresponding to D_14
4808 can be proved to not wrap because it is used for computing a
4809 memory access; however, this is not really the case -- for example,
4810 if D_12 = (unsigned char) [254,+,1], then D_14 has values
4811 2032, 2040, 0, 8, ..., but the code is still legal. */
4813 if (chrec_contains_undetermined (base)
4814 || chrec_contains_undetermined (step))
4815 return true;
4817 if (integer_zerop (step))
4818 return false;
4820 /* If we can use the fact that signed and pointer arithmetics does not
4821 wrap, we are done. */
4822 if (use_overflow_semantics && nowrap_type_p (TREE_TYPE (base)))
4823 return false;
4825 /* To be able to use estimates on number of iterations of the loop,
4826 we must have an upper bound on the absolute value of the step. */
4827 if (TREE_CODE (step) != INTEGER_CST)
4828 return true;
4830 /* Check if var can be proven not overflow with value range info. */
4831 if (var && TREE_CODE (var) == SSA_NAME
4832 && scev_var_range_cant_overflow (var, step, loop))
4833 return false;
4835 if (loop_exits_before_overflow (base, step, at_stmt, loop))
4836 return false;
4838 /* At this point we still don't have a proof that the iv does not
4839 overflow: give up. */
4840 return true;
4843 /* Frees the information on upper bounds on numbers of iterations of LOOP. */
4845 void
4846 free_numbers_of_iterations_estimates (struct loop *loop)
4848 struct control_iv *civ;
4849 struct nb_iter_bound *bound;
4851 loop->nb_iterations = NULL;
4852 loop->estimate_state = EST_NOT_COMPUTED;
4853 for (bound = loop->bounds; bound;)
4855 struct nb_iter_bound *next = bound->next;
4856 ggc_free (bound);
4857 bound = next;
4859 loop->bounds = NULL;
4861 for (civ = loop->control_ivs; civ;)
4863 struct control_iv *next = civ->next;
4864 ggc_free (civ);
4865 civ = next;
4867 loop->control_ivs = NULL;
4870 /* Frees the information on upper bounds on numbers of iterations of loops. */
4872 void
4873 free_numbers_of_iterations_estimates (function *fn)
4875 struct loop *loop;
4877 FOR_EACH_LOOP_FN (fn, loop, 0)
4878 free_numbers_of_iterations_estimates (loop);
4881 /* Substitute value VAL for ssa name NAME inside expressions held
4882 at LOOP. */
4884 void
4885 substitute_in_loop_info (struct loop *loop, tree name, tree val)
4887 loop->nb_iterations = simplify_replace_tree (loop->nb_iterations, name, val);