Daily bump.
[official-gcc.git] / gcc / modulo-sched.c
blobc59c16b0badde79d6dadd49b133f10abb0165988
1 /* Swing Modulo Scheduling implementation.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
3 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "diagnostic-core.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "regs.h"
31 #include "function.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "insn-attr.h"
35 #include "except.h"
36 #include "recog.h"
37 #include "sched-int.h"
38 #include "target.h"
39 #include "cfgloop.h"
40 #include "expr.h"
41 #include "params.h"
42 #include "gcov-io.h"
43 #include "ddg.h"
44 #include "tree-pass.h"
45 #include "dbgcnt.h"
46 #include "df.h"
48 #ifdef INSN_SCHEDULING
50 /* This file contains the implementation of the Swing Modulo Scheduler,
51 described in the following references:
52 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
53 Lifetime--sensitive modulo scheduling in a production environment.
54 IEEE Trans. on Comps., 50(3), March 2001
55 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
56 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
57 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
59 The basic structure is:
60 1. Build a data-dependence graph (DDG) for each loop.
61 2. Use the DDG to order the insns of a loop (not in topological order
62 necessarily, but rather) trying to place each insn after all its
63 predecessors _or_ after all its successors.
64 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
65 4. Use the ordering to perform list-scheduling of the loop:
66 1. Set II = MII. We will try to schedule the loop within II cycles.
67 2. Try to schedule the insns one by one according to the ordering.
68 For each insn compute an interval of cycles by considering already-
69 scheduled preds and succs (and associated latencies); try to place
70 the insn in the cycles of this window checking for potential
71 resource conflicts (using the DFA interface).
72 Note: this is different from the cycle-scheduling of schedule_insns;
73 here the insns are not scheduled monotonically top-down (nor bottom-
74 up).
75 3. If failed in scheduling all insns - bump II++ and try again, unless
76 II reaches an upper bound MaxII, in which case report failure.
77 5. If we succeeded in scheduling the loop within II cycles, we now
78 generate prolog and epilog, decrease the counter of the loop, and
79 perform modulo variable expansion for live ranges that span more than
80 II cycles (i.e. use register copies to prevent a def from overwriting
81 itself before reaching the use).
83 SMS works with countable loops (1) whose control part can be easily
84 decoupled from the rest of the loop and (2) whose loop count can
85 be easily adjusted. This is because we peel a constant number of
86 iterations into a prologue and epilogue for which we want to avoid
87 emitting the control part, and a kernel which is to iterate that
88 constant number of iterations less than the original loop. So the
89 control part should be a set of insns clearly identified and having
90 its own iv, not otherwise used in the loop (at-least for now), which
91 initializes a register before the loop to the number of iterations.
92 Currently SMS relies on the do-loop pattern to recognize such loops,
93 where (1) the control part comprises of all insns defining and/or
94 using a certain 'count' register and (2) the loop count can be
95 adjusted by modifying this register prior to the loop.
96 TODO: Rely on cfgloop analysis instead. */
98 /* This page defines partial-schedule structures and functions for
99 modulo scheduling. */
101 typedef struct partial_schedule *partial_schedule_ptr;
102 typedef struct ps_insn *ps_insn_ptr;
104 /* The minimum (absolute) cycle that a node of ps was scheduled in. */
105 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
107 /* The maximum (absolute) cycle that a node of ps was scheduled in. */
108 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
110 /* Perform signed modulo, always returning a non-negative value. */
111 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
113 /* The number of different iterations the nodes in ps span, assuming
114 the stage boundaries are placed efficiently. */
115 #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
116 + 1 + ii - 1) / ii)
117 /* The stage count of ps. */
118 #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
120 /* A single instruction in the partial schedule. */
121 struct ps_insn
123 /* Identifies the instruction to be scheduled. Values smaller than
124 the ddg's num_nodes refer directly to ddg nodes. A value of
125 X - num_nodes refers to register move X. */
126 int id;
128 /* The (absolute) cycle in which the PS instruction is scheduled.
129 Same as SCHED_TIME (node). */
130 int cycle;
132 /* The next/prev PS_INSN in the same row. */
133 ps_insn_ptr next_in_row,
134 prev_in_row;
138 /* Information about a register move that has been added to a partial
139 schedule. */
140 struct ps_reg_move_info
142 /* The source of the move is defined by the ps_insn with id DEF.
143 The destination is used by the ps_insns with the ids in USES. */
144 int def;
145 sbitmap uses;
147 /* The original form of USES' instructions used OLD_REG, but they
148 should now use NEW_REG. */
149 rtx old_reg;
150 rtx new_reg;
152 /* The number of consecutive stages that the move occupies. */
153 int num_consecutive_stages;
155 /* An instruction that sets NEW_REG to the correct value. The first
156 move associated with DEF will have an rhs of OLD_REG; later moves
157 use the result of the previous move. */
158 rtx_insn *insn;
161 typedef struct ps_reg_move_info ps_reg_move_info;
163 /* Holds the partial schedule as an array of II rows. Each entry of the
164 array points to a linked list of PS_INSNs, which represents the
165 instructions that are scheduled for that row. */
166 struct partial_schedule
168 int ii; /* Number of rows in the partial schedule. */
169 int history; /* Threshold for conflict checking using DFA. */
171 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
172 ps_insn_ptr *rows;
174 /* All the moves added for this partial schedule. Index X has
175 a ps_insn id of X + g->num_nodes. */
176 vec<ps_reg_move_info> reg_moves;
178 /* rows_length[i] holds the number of instructions in the row.
179 It is used only (as an optimization) to back off quickly from
180 trying to schedule a node in a full row; that is, to avoid running
181 through futile DFA state transitions. */
182 int *rows_length;
184 /* The earliest absolute cycle of an insn in the partial schedule. */
185 int min_cycle;
187 /* The latest absolute cycle of an insn in the partial schedule. */
188 int max_cycle;
190 ddg_ptr g; /* The DDG of the insns in the partial schedule. */
192 int stage_count; /* The stage count of the partial schedule. */
196 static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
197 static void free_partial_schedule (partial_schedule_ptr);
198 static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
199 void print_partial_schedule (partial_schedule_ptr, FILE *);
200 static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
201 static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
202 int, int, sbitmap, sbitmap);
203 static void rotate_partial_schedule (partial_schedule_ptr, int);
204 void set_row_column_for_ps (partial_schedule_ptr);
205 static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
206 static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
209 /* This page defines constants and structures for the modulo scheduling
210 driver. */
212 static int sms_order_nodes (ddg_ptr, int, int *, int *);
213 static void set_node_sched_params (ddg_ptr);
214 static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
215 static void permute_partial_schedule (partial_schedule_ptr, rtx_insn *);
216 static void generate_prolog_epilog (partial_schedule_ptr, struct loop *,
217 rtx, rtx);
218 static int calculate_stage_count (partial_schedule_ptr, int);
219 static void calculate_must_precede_follow (ddg_node_ptr, int, int,
220 int, int, sbitmap, sbitmap, sbitmap);
221 static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
222 sbitmap, int, int *, int *, int *);
223 static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
224 sbitmap, int *, sbitmap, sbitmap);
225 static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
227 #define NODE_ASAP(node) ((node)->aux.count)
229 #define SCHED_PARAMS(x) (&node_sched_param_vec[x])
230 #define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
231 #define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
232 #define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
233 #define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
235 /* The scheduling parameters held for each node. */
236 typedef struct node_sched_params
238 int time; /* The absolute scheduling cycle. */
240 int row; /* Holds time % ii. */
241 int stage; /* Holds time / ii. */
243 /* The column of a node inside the ps. If nodes u, v are on the same row,
244 u will precede v if column (u) < column (v). */
245 int column;
246 } *node_sched_params_ptr;
248 typedef struct node_sched_params node_sched_params;
250 /* The following three functions are copied from the current scheduler
251 code in order to use sched_analyze() for computing the dependencies.
252 They are used when initializing the sched_info structure. */
253 static const char *
254 sms_print_insn (const rtx_insn *insn, int aligned ATTRIBUTE_UNUSED)
256 static char tmp[80];
258 sprintf (tmp, "i%4d", INSN_UID (insn));
259 return tmp;
262 static void
263 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
264 regset used ATTRIBUTE_UNUSED)
268 static struct common_sched_info_def sms_common_sched_info;
270 static struct sched_deps_info_def sms_sched_deps_info =
272 compute_jump_reg_dependencies,
273 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
274 NULL,
275 0, 0, 0
278 static struct haifa_sched_info sms_sched_info =
280 NULL,
281 NULL,
282 NULL,
283 NULL,
284 NULL,
285 sms_print_insn,
286 NULL,
287 NULL, /* insn_finishes_block_p */
288 NULL, NULL,
289 NULL, NULL,
290 0, 0,
292 NULL, NULL, NULL, NULL,
293 NULL, NULL,
297 /* Partial schedule instruction ID in PS is a register move. Return
298 information about it. */
299 static struct ps_reg_move_info *
300 ps_reg_move (partial_schedule_ptr ps, int id)
302 gcc_checking_assert (id >= ps->g->num_nodes);
303 return &ps->reg_moves[id - ps->g->num_nodes];
306 /* Return the rtl instruction that is being scheduled by partial schedule
307 instruction ID, which belongs to schedule PS. */
308 static rtx_insn *
309 ps_rtl_insn (partial_schedule_ptr ps, int id)
311 if (id < ps->g->num_nodes)
312 return ps->g->nodes[id].insn;
313 else
314 return ps_reg_move (ps, id)->insn;
317 /* Partial schedule instruction ID, which belongs to PS, occurred in
318 the original (unscheduled) loop. Return the first instruction
319 in the loop that was associated with ps_rtl_insn (PS, ID).
320 If the instruction had some notes before it, this is the first
321 of those notes. */
322 static rtx_insn *
323 ps_first_note (partial_schedule_ptr ps, int id)
325 gcc_assert (id < ps->g->num_nodes);
326 return ps->g->nodes[id].first_note;
329 /* Return the number of consecutive stages that are occupied by
330 partial schedule instruction ID in PS. */
331 static int
332 ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
334 if (id < ps->g->num_nodes)
335 return 1;
336 else
337 return ps_reg_move (ps, id)->num_consecutive_stages;
340 /* Given HEAD and TAIL which are the first and last insns in a loop;
341 return the register which controls the loop. Return zero if it has
342 more than one occurrence in the loop besides the control part or the
343 do-loop pattern is not of the form we expect. */
344 static rtx
345 doloop_register_get (rtx_insn *head ATTRIBUTE_UNUSED, rtx_insn *tail ATTRIBUTE_UNUSED)
347 #ifdef HAVE_doloop_end
348 rtx reg, condition;
349 rtx_insn *insn, *first_insn_not_to_check;
351 if (!JUMP_P (tail))
352 return NULL_RTX;
354 /* TODO: Free SMS's dependence on doloop_condition_get. */
355 condition = doloop_condition_get (tail);
356 if (! condition)
357 return NULL_RTX;
359 if (REG_P (XEXP (condition, 0)))
360 reg = XEXP (condition, 0);
361 else if (GET_CODE (XEXP (condition, 0)) == PLUS
362 && REG_P (XEXP (XEXP (condition, 0), 0)))
363 reg = XEXP (XEXP (condition, 0), 0);
364 else
365 gcc_unreachable ();
367 /* Check that the COUNT_REG has no other occurrences in the loop
368 until the decrement. We assume the control part consists of
369 either a single (parallel) branch-on-count or a (non-parallel)
370 branch immediately preceded by a single (decrement) insn. */
371 first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
372 : prev_nondebug_insn (tail));
374 for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
375 if (!DEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
377 if (dump_file)
379 fprintf (dump_file, "SMS count_reg found ");
380 print_rtl_single (dump_file, reg);
381 fprintf (dump_file, " outside control in insn:\n");
382 print_rtl_single (dump_file, insn);
385 return NULL_RTX;
388 return reg;
389 #else
390 return NULL_RTX;
391 #endif
394 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
395 that the number of iterations is a compile-time constant. If so,
396 return the rtx_insn that sets COUNT_REG to a constant, and set COUNT to
397 this constant. Otherwise return 0. */
398 static rtx_insn *
399 const_iteration_count (rtx count_reg, basic_block pre_header,
400 int64_t * count)
402 rtx_insn *insn;
403 rtx_insn *head, *tail;
405 if (! pre_header)
406 return NULL;
408 get_ebb_head_tail (pre_header, pre_header, &head, &tail);
410 for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
411 if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
412 rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
414 rtx pat = single_set (insn);
416 if (CONST_INT_P (SET_SRC (pat)))
418 *count = INTVAL (SET_SRC (pat));
419 return insn;
422 return NULL;
425 return NULL;
428 /* A very simple resource-based lower bound on the initiation interval.
429 ??? Improve the accuracy of this bound by considering the
430 utilization of various units. */
431 static int
432 res_MII (ddg_ptr g)
434 if (targetm.sched.sms_res_mii)
435 return targetm.sched.sms_res_mii (g);
437 return ((g->num_nodes - g->num_debug) / issue_rate);
441 /* A vector that contains the sched data for each ps_insn. */
442 static vec<node_sched_params> node_sched_param_vec;
444 /* Allocate sched_params for each node and initialize it. */
445 static void
446 set_node_sched_params (ddg_ptr g)
448 node_sched_param_vec.truncate (0);
449 node_sched_param_vec.safe_grow_cleared (g->num_nodes);
452 /* Make sure that node_sched_param_vec has an entry for every move in PS. */
453 static void
454 extend_node_sched_params (partial_schedule_ptr ps)
456 node_sched_param_vec.safe_grow_cleared (ps->g->num_nodes
457 + ps->reg_moves.length ());
460 /* Update the sched_params (time, row and stage) for node U using the II,
461 the CYCLE of U and MIN_CYCLE.
462 We're not simply taking the following
463 SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
464 because the stages may not be aligned on cycle 0. */
465 static void
466 update_node_sched_params (int u, int ii, int cycle, int min_cycle)
468 int sc_until_cycle_zero;
469 int stage;
471 SCHED_TIME (u) = cycle;
472 SCHED_ROW (u) = SMODULO (cycle, ii);
474 /* The calculation of stage count is done adding the number
475 of stages before cycle zero and after cycle zero. */
476 sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
478 if (SCHED_TIME (u) < 0)
480 stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
481 SCHED_STAGE (u) = sc_until_cycle_zero - stage;
483 else
485 stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
486 SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
490 static void
491 print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
493 int i;
495 if (! file)
496 return;
497 for (i = 0; i < num_nodes; i++)
499 node_sched_params_ptr nsp = SCHED_PARAMS (i);
501 fprintf (file, "Node = %d; INSN = %d\n", i,
502 INSN_UID (ps_rtl_insn (ps, i)));
503 fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
504 fprintf (file, " time = %d:\n", nsp->time);
505 fprintf (file, " stage = %d:\n", nsp->stage);
509 /* Set SCHED_COLUMN for each instruction in row ROW of PS. */
510 static void
511 set_columns_for_row (partial_schedule_ptr ps, int row)
513 ps_insn_ptr cur_insn;
514 int column;
516 column = 0;
517 for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
518 SCHED_COLUMN (cur_insn->id) = column++;
521 /* Set SCHED_COLUMN for each instruction in PS. */
522 static void
523 set_columns_for_ps (partial_schedule_ptr ps)
525 int row;
527 for (row = 0; row < ps->ii; row++)
528 set_columns_for_row (ps, row);
531 /* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
532 Its single predecessor has already been scheduled, as has its
533 ddg node successors. (The move may have also another move as its
534 successor, in which case that successor will be scheduled later.)
536 The move is part of a chain that satisfies register dependencies
537 between a producing ddg node and various consuming ddg nodes.
538 If some of these dependencies have a distance of 1 (meaning that
539 the use is upward-exposed) then DISTANCE1_USES is nonnull and
540 contains the set of uses with distance-1 dependencies.
541 DISTANCE1_USES is null otherwise.
543 MUST_FOLLOW is a scratch bitmap that is big enough to hold
544 all current ps_insn ids.
546 Return true on success. */
547 static bool
548 schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
549 sbitmap distance1_uses, sbitmap must_follow)
551 unsigned int u;
552 int this_time, this_distance, this_start, this_end, this_latency;
553 int start, end, c, ii;
554 sbitmap_iterator sbi;
555 ps_reg_move_info *move;
556 rtx_insn *this_insn;
557 ps_insn_ptr psi;
559 move = ps_reg_move (ps, i_reg_move);
560 ii = ps->ii;
561 if (dump_file)
563 fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
564 ", min cycle = %d\n\n", INSN_UID (move->insn), ii,
565 PS_MIN_CYCLE (ps));
566 print_rtl_single (dump_file, move->insn);
567 fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
568 fprintf (dump_file, "=========== =========== =====\n");
571 start = INT_MIN;
572 end = INT_MAX;
574 /* For dependencies of distance 1 between a producer ddg node A
575 and consumer ddg node B, we have a chain of dependencies:
577 A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
579 where Mi is the ith move. For dependencies of distance 0 between
580 a producer ddg node A and consumer ddg node C, we have a chain of
581 dependencies:
583 A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
585 where Mi' occupies the same position as Mi but occurs a stage later.
586 We can only schedule each move once, so if we have both types of
587 chain, we model the second as:
589 A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
591 First handle the dependencies between the previously-scheduled
592 predecessor and the move. */
593 this_insn = ps_rtl_insn (ps, move->def);
594 this_latency = insn_latency (this_insn, move->insn);
595 this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
596 this_time = SCHED_TIME (move->def) - this_distance * ii;
597 this_start = this_time + this_latency;
598 this_end = this_time + ii;
599 if (dump_file)
600 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
601 this_start, this_end, SCHED_TIME (move->def),
602 INSN_UID (this_insn), this_latency, this_distance,
603 INSN_UID (move->insn));
605 if (start < this_start)
606 start = this_start;
607 if (end > this_end)
608 end = this_end;
610 /* Handle the dependencies between the move and previously-scheduled
611 successors. */
612 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, u, sbi)
614 this_insn = ps_rtl_insn (ps, u);
615 this_latency = insn_latency (move->insn, this_insn);
616 if (distance1_uses && !bitmap_bit_p (distance1_uses, u))
617 this_distance = -1;
618 else
619 this_distance = 0;
620 this_time = SCHED_TIME (u) + this_distance * ii;
621 this_start = this_time - ii;
622 this_end = this_time - this_latency;
623 if (dump_file)
624 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
625 this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
626 this_latency, this_distance, INSN_UID (this_insn));
628 if (start < this_start)
629 start = this_start;
630 if (end > this_end)
631 end = this_end;
634 if (dump_file)
636 fprintf (dump_file, "----------- ----------- -----\n");
637 fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
640 bitmap_clear (must_follow);
641 bitmap_set_bit (must_follow, move->def);
643 start = MAX (start, end - (ii - 1));
644 for (c = end; c >= start; c--)
646 psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
647 move->uses, must_follow);
648 if (psi)
650 update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
651 if (dump_file)
652 fprintf (dump_file, "\nScheduled register move INSN %d at"
653 " time %d, row %d\n\n", INSN_UID (move->insn), c,
654 SCHED_ROW (i_reg_move));
655 return true;
659 if (dump_file)
660 fprintf (dump_file, "\nNo available slot\n\n");
662 return false;
666 Breaking intra-loop register anti-dependences:
667 Each intra-loop register anti-dependence implies a cross-iteration true
668 dependence of distance 1. Therefore, we can remove such false dependencies
669 and figure out if the partial schedule broke them by checking if (for a
670 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
671 if so generate a register move. The number of such moves is equal to:
672 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
673 nreg_moves = ----------------------------------- + 1 - { dependence.
674 ii { 1 if not.
676 static bool
677 schedule_reg_moves (partial_schedule_ptr ps)
679 ddg_ptr g = ps->g;
680 int ii = ps->ii;
681 int i;
683 for (i = 0; i < g->num_nodes; i++)
685 ddg_node_ptr u = &g->nodes[i];
686 ddg_edge_ptr e;
687 int nreg_moves = 0, i_reg_move;
688 rtx prev_reg, old_reg;
689 int first_move;
690 int distances[2];
691 sbitmap must_follow;
692 sbitmap distance1_uses;
693 rtx set = single_set (u->insn);
695 /* Skip instructions that do not set a register. */
696 if ((set && !REG_P (SET_DEST (set))))
697 continue;
699 /* Compute the number of reg_moves needed for u, by looking at life
700 ranges started at u (excluding self-loops). */
701 distances[0] = distances[1] = false;
702 for (e = u->out; e; e = e->next_out)
703 if (e->type == TRUE_DEP && e->dest != e->src)
705 int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
706 - SCHED_TIME (e->src->cuid)) / ii;
708 if (e->distance == 1)
709 nreg_moves4e = (SCHED_TIME (e->dest->cuid)
710 - SCHED_TIME (e->src->cuid) + ii) / ii;
712 /* If dest precedes src in the schedule of the kernel, then dest
713 will read before src writes and we can save one reg_copy. */
714 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
715 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
716 nreg_moves4e--;
718 if (nreg_moves4e >= 1)
720 /* !single_set instructions are not supported yet and
721 thus we do not except to encounter them in the loop
722 except from the doloop part. For the latter case
723 we assume no regmoves are generated as the doloop
724 instructions are tied to the branch with an edge. */
725 gcc_assert (set);
726 /* If the instruction contains auto-inc register then
727 validate that the regmov is being generated for the
728 target regsiter rather then the inc'ed register. */
729 gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
732 if (nreg_moves4e)
734 gcc_assert (e->distance < 2);
735 distances[e->distance] = true;
737 nreg_moves = MAX (nreg_moves, nreg_moves4e);
740 if (nreg_moves == 0)
741 continue;
743 /* Create NREG_MOVES register moves. */
744 first_move = ps->reg_moves.length ();
745 ps->reg_moves.safe_grow_cleared (first_move + nreg_moves);
746 extend_node_sched_params (ps);
748 /* Record the moves associated with this node. */
749 first_move += ps->g->num_nodes;
751 /* Generate each move. */
752 old_reg = prev_reg = SET_DEST (single_set (u->insn));
753 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
755 ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
757 move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
758 move->uses = sbitmap_alloc (first_move + nreg_moves);
759 move->old_reg = old_reg;
760 move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
761 move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
762 move->insn = as_a <rtx_insn *> (gen_move_insn (move->new_reg,
763 copy_rtx (prev_reg)));
764 bitmap_clear (move->uses);
766 prev_reg = move->new_reg;
769 distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
771 if (distance1_uses)
772 bitmap_clear (distance1_uses);
774 /* Every use of the register defined by node may require a different
775 copy of this register, depending on the time the use is scheduled.
776 Record which uses require which move results. */
777 for (e = u->out; e; e = e->next_out)
778 if (e->type == TRUE_DEP && e->dest != e->src)
780 int dest_copy = (SCHED_TIME (e->dest->cuid)
781 - SCHED_TIME (e->src->cuid)) / ii;
783 if (e->distance == 1)
784 dest_copy = (SCHED_TIME (e->dest->cuid)
785 - SCHED_TIME (e->src->cuid) + ii) / ii;
787 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
788 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
789 dest_copy--;
791 if (dest_copy)
793 ps_reg_move_info *move;
795 move = ps_reg_move (ps, first_move + dest_copy - 1);
796 bitmap_set_bit (move->uses, e->dest->cuid);
797 if (e->distance == 1)
798 bitmap_set_bit (distance1_uses, e->dest->cuid);
802 must_follow = sbitmap_alloc (first_move + nreg_moves);
803 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
804 if (!schedule_reg_move (ps, first_move + i_reg_move,
805 distance1_uses, must_follow))
806 break;
807 sbitmap_free (must_follow);
808 if (distance1_uses)
809 sbitmap_free (distance1_uses);
810 if (i_reg_move < nreg_moves)
811 return false;
813 return true;
816 /* Emit the moves associatied with PS. Apply the substitutions
817 associated with them. */
818 static void
819 apply_reg_moves (partial_schedule_ptr ps)
821 ps_reg_move_info *move;
822 int i;
824 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
826 unsigned int i_use;
827 sbitmap_iterator sbi;
829 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, i_use, sbi)
831 replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
832 df_insn_rescan (ps->g->nodes[i_use].insn);
837 /* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
838 SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
839 will move to cycle zero. */
840 static void
841 reset_sched_times (partial_schedule_ptr ps, int amount)
843 int row;
844 int ii = ps->ii;
845 ps_insn_ptr crr_insn;
847 for (row = 0; row < ii; row++)
848 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
850 int u = crr_insn->id;
851 int normalized_time = SCHED_TIME (u) - amount;
852 int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
854 if (dump_file)
856 /* Print the scheduling times after the rotation. */
857 rtx_insn *insn = ps_rtl_insn (ps, u);
859 fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
860 "crr_insn->cycle=%d, min_cycle=%d", u,
861 INSN_UID (insn), normalized_time, new_min_cycle);
862 if (JUMP_P (insn))
863 fprintf (dump_file, " (branch)");
864 fprintf (dump_file, "\n");
867 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
868 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
870 crr_insn->cycle = normalized_time;
871 update_node_sched_params (u, ii, normalized_time, new_min_cycle);
875 /* Permute the insns according to their order in PS, from row 0 to
876 row ii-1, and position them right before LAST. This schedules
877 the insns of the loop kernel. */
878 static void
879 permute_partial_schedule (partial_schedule_ptr ps, rtx_insn *last)
881 int ii = ps->ii;
882 int row;
883 ps_insn_ptr ps_ij;
885 for (row = 0; row < ii ; row++)
886 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
888 rtx_insn *insn = ps_rtl_insn (ps, ps_ij->id);
890 if (PREV_INSN (last) != insn)
892 if (ps_ij->id < ps->g->num_nodes)
893 reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
894 PREV_INSN (last));
895 else
896 add_insn_before (insn, last, NULL);
901 /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
902 respectively only if cycle C falls on the border of the scheduling
903 window boundaries marked by START and END cycles. STEP is the
904 direction of the window. */
905 static inline void
906 set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
907 sbitmap *tmp_precede, sbitmap must_precede, int c,
908 int start, int end, int step)
910 *tmp_precede = NULL;
911 *tmp_follow = NULL;
913 if (c == start)
915 if (step == 1)
916 *tmp_precede = must_precede;
917 else /* step == -1. */
918 *tmp_follow = must_follow;
920 if (c == end - step)
922 if (step == 1)
923 *tmp_follow = must_follow;
924 else /* step == -1. */
925 *tmp_precede = must_precede;
930 /* Return True if the branch can be moved to row ii-1 while
931 normalizing the partial schedule PS to start from cycle zero and thus
932 optimize the SC. Otherwise return False. */
933 static bool
934 optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
936 int amount = PS_MIN_CYCLE (ps);
937 sbitmap sched_nodes = sbitmap_alloc (g->num_nodes);
938 int start, end, step;
939 int ii = ps->ii;
940 bool ok = false;
941 int stage_count, stage_count_curr;
943 /* Compare the SC after normalization and SC after bringing the branch
944 to row ii-1. If they are equal just bail out. */
945 stage_count = calculate_stage_count (ps, amount);
946 stage_count_curr =
947 calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
949 if (stage_count == stage_count_curr)
951 if (dump_file)
952 fprintf (dump_file, "SMS SC already optimized.\n");
954 ok = false;
955 goto clear;
958 if (dump_file)
960 fprintf (dump_file, "SMS Trying to optimize branch location\n");
961 fprintf (dump_file, "SMS partial schedule before trial:\n");
962 print_partial_schedule (ps, dump_file);
965 /* First, normalize the partial scheduling. */
966 reset_sched_times (ps, amount);
967 rotate_partial_schedule (ps, amount);
968 if (dump_file)
970 fprintf (dump_file,
971 "SMS partial schedule after normalization (ii, %d, SC %d):\n",
972 ii, stage_count);
973 print_partial_schedule (ps, dump_file);
976 if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
978 ok = true;
979 goto clear;
982 bitmap_ones (sched_nodes);
984 /* Calculate the new placement of the branch. It should be in row
985 ii-1 and fall into it's scheduling window. */
986 if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
987 &step, &end) == 0)
989 bool success;
990 ps_insn_ptr next_ps_i;
991 int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
992 int row = SMODULO (branch_cycle, ps->ii);
993 int num_splits = 0;
994 sbitmap must_precede, must_follow, tmp_precede, tmp_follow;
995 int c;
997 if (dump_file)
998 fprintf (dump_file, "\nTrying to schedule node %d "
999 "INSN = %d in (%d .. %d) step %d\n",
1000 g->closing_branch->cuid,
1001 (INSN_UID (g->closing_branch->insn)), start, end, step);
1003 gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
1004 if (step == 1)
1006 c = start + ii - SMODULO (start, ii) - 1;
1007 gcc_assert (c >= start);
1008 if (c >= end)
1010 ok = false;
1011 if (dump_file)
1012 fprintf (dump_file,
1013 "SMS failed to schedule branch at cycle: %d\n", c);
1014 goto clear;
1017 else
1019 c = start - SMODULO (start, ii) - 1;
1020 gcc_assert (c <= start);
1022 if (c <= end)
1024 if (dump_file)
1025 fprintf (dump_file,
1026 "SMS failed to schedule branch at cycle: %d\n", c);
1027 ok = false;
1028 goto clear;
1032 must_precede = sbitmap_alloc (g->num_nodes);
1033 must_follow = sbitmap_alloc (g->num_nodes);
1035 /* Try to schedule the branch is it's new cycle. */
1036 calculate_must_precede_follow (g->closing_branch, start, end,
1037 step, ii, sched_nodes,
1038 must_precede, must_follow);
1040 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1041 must_precede, c, start, end, step);
1043 /* Find the element in the partial schedule related to the closing
1044 branch so we can remove it from it's current cycle. */
1045 for (next_ps_i = ps->rows[row];
1046 next_ps_i; next_ps_i = next_ps_i->next_in_row)
1047 if (next_ps_i->id == g->closing_branch->cuid)
1048 break;
1050 remove_node_from_ps (ps, next_ps_i);
1051 success =
1052 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
1053 sched_nodes, &num_splits,
1054 tmp_precede, tmp_follow);
1055 gcc_assert (num_splits == 0);
1056 if (!success)
1058 if (dump_file)
1059 fprintf (dump_file,
1060 "SMS failed to schedule branch at cycle: %d, "
1061 "bringing it back to cycle %d\n", c, branch_cycle);
1063 /* The branch was failed to be placed in row ii - 1.
1064 Put it back in it's original place in the partial
1065 schedualing. */
1066 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1067 must_precede, branch_cycle, start, end,
1068 step);
1069 success =
1070 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
1071 branch_cycle, sched_nodes,
1072 &num_splits, tmp_precede,
1073 tmp_follow);
1074 gcc_assert (success && (num_splits == 0));
1075 ok = false;
1077 else
1079 /* The branch is placed in row ii - 1. */
1080 if (dump_file)
1081 fprintf (dump_file,
1082 "SMS success in moving branch to cycle %d\n", c);
1084 update_node_sched_params (g->closing_branch->cuid, ii, c,
1085 PS_MIN_CYCLE (ps));
1086 ok = true;
1089 free (must_precede);
1090 free (must_follow);
1093 clear:
1094 free (sched_nodes);
1095 return ok;
1098 static void
1099 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
1100 int to_stage, rtx count_reg)
1102 int row;
1103 ps_insn_ptr ps_ij;
1105 for (row = 0; row < ps->ii; row++)
1106 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
1108 int u = ps_ij->id;
1109 int first_u, last_u;
1110 rtx_insn *u_insn;
1112 /* Do not duplicate any insn which refers to count_reg as it
1113 belongs to the control part.
1114 The closing branch is scheduled as well and thus should
1115 be ignored.
1116 TODO: This should be done by analyzing the control part of
1117 the loop. */
1118 u_insn = ps_rtl_insn (ps, u);
1119 if (reg_mentioned_p (count_reg, u_insn)
1120 || JUMP_P (u_insn))
1121 continue;
1123 first_u = SCHED_STAGE (u);
1124 last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
1125 if (from_stage <= last_u && to_stage >= first_u)
1127 if (u < ps->g->num_nodes)
1128 duplicate_insn_chain (ps_first_note (ps, u), u_insn);
1129 else
1130 emit_insn (copy_rtx (PATTERN (u_insn)));
1136 /* Generate the instructions (including reg_moves) for prolog & epilog. */
1137 static void
1138 generate_prolog_epilog (partial_schedule_ptr ps, struct loop *loop,
1139 rtx count_reg, rtx count_init)
1141 int i;
1142 int last_stage = PS_STAGE_COUNT (ps) - 1;
1143 edge e;
1145 /* Generate the prolog, inserting its insns on the loop-entry edge. */
1146 start_sequence ();
1148 if (!count_init)
1150 /* Generate instructions at the beginning of the prolog to
1151 adjust the loop count by STAGE_COUNT. If loop count is constant
1152 (count_init), this constant is adjusted by STAGE_COUNT in
1153 generate_prolog_epilog function. */
1154 rtx sub_reg = NULL_RTX;
1156 sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS, count_reg,
1157 gen_int_mode (last_stage,
1158 GET_MODE (count_reg)),
1159 count_reg, 1, OPTAB_DIRECT);
1160 gcc_assert (REG_P (sub_reg));
1161 if (REGNO (sub_reg) != REGNO (count_reg))
1162 emit_move_insn (count_reg, sub_reg);
1165 for (i = 0; i < last_stage; i++)
1166 duplicate_insns_of_cycles (ps, 0, i, count_reg);
1168 /* Put the prolog on the entry edge. */
1169 e = loop_preheader_edge (loop);
1170 split_edge_and_insert (e, get_insns ());
1171 if (!flag_resched_modulo_sched)
1172 e->dest->flags |= BB_DISABLE_SCHEDULE;
1174 end_sequence ();
1176 /* Generate the epilog, inserting its insns on the loop-exit edge. */
1177 start_sequence ();
1179 for (i = 0; i < last_stage; i++)
1180 duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg);
1182 /* Put the epilogue on the exit edge. */
1183 gcc_assert (single_exit (loop));
1184 e = single_exit (loop);
1185 split_edge_and_insert (e, get_insns ());
1186 if (!flag_resched_modulo_sched)
1187 e->dest->flags |= BB_DISABLE_SCHEDULE;
1189 end_sequence ();
1192 /* Mark LOOP as software pipelined so the later
1193 scheduling passes don't touch it. */
1194 static void
1195 mark_loop_unsched (struct loop *loop)
1197 unsigned i;
1198 basic_block *bbs = get_loop_body (loop);
1200 for (i = 0; i < loop->num_nodes; i++)
1201 bbs[i]->flags |= BB_DISABLE_SCHEDULE;
1203 free (bbs);
1206 /* Return true if all the BBs of the loop are empty except the
1207 loop header. */
1208 static bool
1209 loop_single_full_bb_p (struct loop *loop)
1211 unsigned i;
1212 basic_block *bbs = get_loop_body (loop);
1214 for (i = 0; i < loop->num_nodes ; i++)
1216 rtx_insn *head, *tail;
1217 bool empty_bb = true;
1219 if (bbs[i] == loop->header)
1220 continue;
1222 /* Make sure that basic blocks other than the header
1223 have only notes labels or jumps. */
1224 get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
1225 for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
1227 if (NOTE_P (head) || LABEL_P (head)
1228 || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
1229 continue;
1230 empty_bb = false;
1231 break;
1234 if (! empty_bb)
1236 free (bbs);
1237 return false;
1240 free (bbs);
1241 return true;
1244 /* Dump file:line from INSN's location info to dump_file. */
1246 static void
1247 dump_insn_location (rtx_insn *insn)
1249 if (dump_file && INSN_HAS_LOCATION (insn))
1251 expanded_location xloc = insn_location (insn);
1252 fprintf (dump_file, " %s:%i", xloc.file, xloc.line);
1256 /* A simple loop from SMS point of view; it is a loop that is composed of
1257 either a single basic block or two BBs - a header and a latch. */
1258 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
1259 && (EDGE_COUNT (loop->latch->preds) == 1) \
1260 && (EDGE_COUNT (loop->latch->succs) == 1))
1262 /* Return true if the loop is in its canonical form and false if not.
1263 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
1264 static bool
1265 loop_canon_p (struct loop *loop)
1268 if (loop->inner || !loop_outer (loop))
1270 if (dump_file)
1271 fprintf (dump_file, "SMS loop inner or !loop_outer\n");
1272 return false;
1275 if (!single_exit (loop))
1277 if (dump_file)
1279 rtx_insn *insn = BB_END (loop->header);
1281 fprintf (dump_file, "SMS loop many exits");
1282 dump_insn_location (insn);
1283 fprintf (dump_file, "\n");
1285 return false;
1288 if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
1290 if (dump_file)
1292 rtx_insn *insn = BB_END (loop->header);
1294 fprintf (dump_file, "SMS loop many BBs.");
1295 dump_insn_location (insn);
1296 fprintf (dump_file, "\n");
1298 return false;
1301 return true;
1304 /* If there are more than one entry for the loop,
1305 make it one by splitting the first entry edge and
1306 redirecting the others to the new BB. */
1307 static void
1308 canon_loop (struct loop *loop)
1310 edge e;
1311 edge_iterator i;
1313 /* Avoid annoying special cases of edges going to exit
1314 block. */
1315 FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1316 if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
1317 split_edge (e);
1319 if (loop->latch == loop->header
1320 || EDGE_COUNT (loop->latch->succs) > 1)
1322 FOR_EACH_EDGE (e, i, loop->header->preds)
1323 if (e->src == loop->latch)
1324 break;
1325 split_edge (e);
1329 /* Setup infos. */
1330 static void
1331 setup_sched_infos (void)
1333 memcpy (&sms_common_sched_info, &haifa_common_sched_info,
1334 sizeof (sms_common_sched_info));
1335 sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
1336 common_sched_info = &sms_common_sched_info;
1338 sched_deps_info = &sms_sched_deps_info;
1339 current_sched_info = &sms_sched_info;
1342 /* Probability in % that the sms-ed loop rolls enough so that optimized
1343 version may be entered. Just a guess. */
1344 #define PROB_SMS_ENOUGH_ITERATIONS 80
1346 /* Used to calculate the upper bound of ii. */
1347 #define MAXII_FACTOR 2
1349 /* Main entry point, perform SMS scheduling on the loops of the function
1350 that consist of single basic blocks. */
1351 static void
1352 sms_schedule (void)
1354 rtx_insn *insn;
1355 ddg_ptr *g_arr, g;
1356 int * node_order;
1357 int maxii, max_asap;
1358 partial_schedule_ptr ps;
1359 basic_block bb = NULL;
1360 struct loop *loop;
1361 basic_block condition_bb = NULL;
1362 edge latch_edge;
1363 gcov_type trip_count = 0;
1365 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
1366 | LOOPS_HAVE_RECORDED_EXITS);
1367 if (number_of_loops (cfun) <= 1)
1369 loop_optimizer_finalize ();
1370 return; /* There are no loops to schedule. */
1373 /* Initialize issue_rate. */
1374 if (targetm.sched.issue_rate)
1376 int temp = reload_completed;
1378 reload_completed = 1;
1379 issue_rate = targetm.sched.issue_rate ();
1380 reload_completed = temp;
1382 else
1383 issue_rate = 1;
1385 /* Initialize the scheduler. */
1386 setup_sched_infos ();
1387 haifa_sched_init ();
1389 /* Allocate memory to hold the DDG array one entry for each loop.
1390 We use loop->num as index into this array. */
1391 g_arr = XCNEWVEC (ddg_ptr, number_of_loops (cfun));
1393 if (dump_file)
1395 fprintf (dump_file, "\n\nSMS analysis phase\n");
1396 fprintf (dump_file, "===================\n\n");
1399 /* Build DDGs for all the relevant loops and hold them in G_ARR
1400 indexed by the loop index. */
1401 FOR_EACH_LOOP (loop, 0)
1403 rtx_insn *head, *tail;
1404 rtx count_reg;
1406 /* For debugging. */
1407 if (dbg_cnt (sms_sched_loop) == false)
1409 if (dump_file)
1410 fprintf (dump_file, "SMS reached max limit... \n");
1412 break;
1415 if (dump_file)
1417 rtx_insn *insn = BB_END (loop->header);
1419 fprintf (dump_file, "SMS loop num: %d", loop->num);
1420 dump_insn_location (insn);
1421 fprintf (dump_file, "\n");
1424 if (! loop_canon_p (loop))
1425 continue;
1427 if (! loop_single_full_bb_p (loop))
1429 if (dump_file)
1430 fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
1431 continue;
1434 bb = loop->header;
1436 get_ebb_head_tail (bb, bb, &head, &tail);
1437 latch_edge = loop_latch_edge (loop);
1438 gcc_assert (single_exit (loop));
1439 if (single_exit (loop)->count)
1440 trip_count = latch_edge->count / single_exit (loop)->count;
1442 /* Perform SMS only on loops that their average count is above threshold. */
1444 if ( latch_edge->count
1445 && (latch_edge->count < single_exit (loop)->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD))
1447 if (dump_file)
1449 dump_insn_location (tail);
1450 fprintf (dump_file, "\nSMS single-bb-loop\n");
1451 if (profile_info && flag_branch_probabilities)
1453 fprintf (dump_file, "SMS loop-count ");
1454 fprintf (dump_file, "%"PRId64,
1455 (int64_t) bb->count);
1456 fprintf (dump_file, "\n");
1457 fprintf (dump_file, "SMS trip-count ");
1458 fprintf (dump_file, "%"PRId64,
1459 (int64_t) trip_count);
1460 fprintf (dump_file, "\n");
1461 fprintf (dump_file, "SMS profile-sum-max ");
1462 fprintf (dump_file, "%"PRId64,
1463 (int64_t) profile_info->sum_max);
1464 fprintf (dump_file, "\n");
1467 continue;
1470 /* Make sure this is a doloop. */
1471 if ( !(count_reg = doloop_register_get (head, tail)))
1473 if (dump_file)
1474 fprintf (dump_file, "SMS doloop_register_get failed\n");
1475 continue;
1478 /* Don't handle BBs with calls or barriers
1479 or !single_set with the exception of instructions that include
1480 count_reg---these instructions are part of the control part
1481 that do-loop recognizes.
1482 ??? Should handle insns defining subregs. */
1483 for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
1485 rtx set;
1487 if (CALL_P (insn)
1488 || BARRIER_P (insn)
1489 || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1490 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
1491 && !reg_mentioned_p (count_reg, insn))
1492 || (INSN_P (insn) && (set = single_set (insn))
1493 && GET_CODE (SET_DEST (set)) == SUBREG))
1494 break;
1497 if (insn != NEXT_INSN (tail))
1499 if (dump_file)
1501 if (CALL_P (insn))
1502 fprintf (dump_file, "SMS loop-with-call\n");
1503 else if (BARRIER_P (insn))
1504 fprintf (dump_file, "SMS loop-with-barrier\n");
1505 else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1506 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
1507 fprintf (dump_file, "SMS loop-with-not-single-set\n");
1508 else
1509 fprintf (dump_file, "SMS loop with subreg in lhs\n");
1510 print_rtl_single (dump_file, insn);
1513 continue;
1516 /* Always schedule the closing branch with the rest of the
1517 instructions. The branch is rotated to be in row ii-1 at the
1518 end of the scheduling procedure to make sure it's the last
1519 instruction in the iteration. */
1520 if (! (g = create_ddg (bb, 1)))
1522 if (dump_file)
1523 fprintf (dump_file, "SMS create_ddg failed\n");
1524 continue;
1527 g_arr[loop->num] = g;
1528 if (dump_file)
1529 fprintf (dump_file, "...OK\n");
1532 if (dump_file)
1534 fprintf (dump_file, "\nSMS transformation phase\n");
1535 fprintf (dump_file, "=========================\n\n");
1538 /* We don't want to perform SMS on new loops - created by versioning. */
1539 FOR_EACH_LOOP (loop, 0)
1541 rtx_insn *head, *tail;
1542 rtx count_reg;
1543 rtx_insn *count_init;
1544 int mii, rec_mii, stage_count, min_cycle;
1545 int64_t loop_count = 0;
1546 bool opt_sc_p;
1548 if (! (g = g_arr[loop->num]))
1549 continue;
1551 if (dump_file)
1553 rtx_insn *insn = BB_END (loop->header);
1555 fprintf (dump_file, "SMS loop num: %d", loop->num);
1556 dump_insn_location (insn);
1557 fprintf (dump_file, "\n");
1559 print_ddg (dump_file, g);
1562 get_ebb_head_tail (loop->header, loop->header, &head, &tail);
1564 latch_edge = loop_latch_edge (loop);
1565 gcc_assert (single_exit (loop));
1566 if (single_exit (loop)->count)
1567 trip_count = latch_edge->count / single_exit (loop)->count;
1569 if (dump_file)
1571 dump_insn_location (tail);
1572 fprintf (dump_file, "\nSMS single-bb-loop\n");
1573 if (profile_info && flag_branch_probabilities)
1575 fprintf (dump_file, "SMS loop-count ");
1576 fprintf (dump_file, "%"PRId64,
1577 (int64_t) bb->count);
1578 fprintf (dump_file, "\n");
1579 fprintf (dump_file, "SMS profile-sum-max ");
1580 fprintf (dump_file, "%"PRId64,
1581 (int64_t) profile_info->sum_max);
1582 fprintf (dump_file, "\n");
1584 fprintf (dump_file, "SMS doloop\n");
1585 fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
1586 fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
1587 fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
1591 /* In case of th loop have doloop register it gets special
1592 handling. */
1593 count_init = NULL;
1594 if ((count_reg = doloop_register_get (head, tail)))
1596 basic_block pre_header;
1598 pre_header = loop_preheader_edge (loop)->src;
1599 count_init = const_iteration_count (count_reg, pre_header,
1600 &loop_count);
1602 gcc_assert (count_reg);
1604 if (dump_file && count_init)
1606 fprintf (dump_file, "SMS const-doloop ");
1607 fprintf (dump_file, "%"PRId64,
1608 loop_count);
1609 fprintf (dump_file, "\n");
1612 node_order = XNEWVEC (int, g->num_nodes);
1614 mii = 1; /* Need to pass some estimate of mii. */
1615 rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
1616 mii = MAX (res_MII (g), rec_mii);
1617 maxii = MAX (max_asap, MAXII_FACTOR * mii);
1619 if (dump_file)
1620 fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1621 rec_mii, mii, maxii);
1623 for (;;)
1625 set_node_sched_params (g);
1627 stage_count = 0;
1628 opt_sc_p = false;
1629 ps = sms_schedule_by_order (g, mii, maxii, node_order);
1631 if (ps)
1633 /* Try to achieve optimized SC by normalizing the partial
1634 schedule (having the cycles start from cycle zero).
1635 The branch location must be placed in row ii-1 in the
1636 final scheduling. If failed, shift all instructions to
1637 position the branch in row ii-1. */
1638 opt_sc_p = optimize_sc (ps, g);
1639 if (opt_sc_p)
1640 stage_count = calculate_stage_count (ps, 0);
1641 else
1643 /* Bring the branch to cycle ii-1. */
1644 int amount = (SCHED_TIME (g->closing_branch->cuid)
1645 - (ps->ii - 1));
1647 if (dump_file)
1648 fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
1650 stage_count = calculate_stage_count (ps, amount);
1653 gcc_assert (stage_count >= 1);
1656 /* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
1657 1 means that there is no interleaving between iterations thus
1658 we let the scheduling passes do the job in this case. */
1659 if (stage_count < PARAM_VALUE (PARAM_SMS_MIN_SC)
1660 || (count_init && (loop_count <= stage_count))
1661 || (flag_branch_probabilities && (trip_count <= stage_count)))
1663 if (dump_file)
1665 fprintf (dump_file, "SMS failed... \n");
1666 fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
1667 " loop-count=", stage_count);
1668 fprintf (dump_file, "%"PRId64, loop_count);
1669 fprintf (dump_file, ", trip-count=");
1670 fprintf (dump_file, "%"PRId64, trip_count);
1671 fprintf (dump_file, ")\n");
1673 break;
1676 if (!opt_sc_p)
1678 /* Rotate the partial schedule to have the branch in row ii-1. */
1679 int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
1681 reset_sched_times (ps, amount);
1682 rotate_partial_schedule (ps, amount);
1685 set_columns_for_ps (ps);
1687 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1688 if (!schedule_reg_moves (ps))
1690 mii = ps->ii + 1;
1691 free_partial_schedule (ps);
1692 continue;
1695 /* Moves that handle incoming values might have been added
1696 to a new first stage. Bump the stage count if so.
1698 ??? Perhaps we could consider rotating the schedule here
1699 instead? */
1700 if (PS_MIN_CYCLE (ps) < min_cycle)
1702 reset_sched_times (ps, 0);
1703 stage_count++;
1706 /* The stage count should now be correct without rotation. */
1707 gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
1708 PS_STAGE_COUNT (ps) = stage_count;
1710 canon_loop (loop);
1712 if (dump_file)
1714 dump_insn_location (tail);
1715 fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n",
1716 ps->ii, stage_count);
1717 print_partial_schedule (ps, dump_file);
1720 /* case the BCT count is not known , Do loop-versioning */
1721 if (count_reg && ! count_init)
1723 rtx comp_rtx = gen_rtx_GT (VOIDmode, count_reg,
1724 gen_int_mode (stage_count,
1725 GET_MODE (count_reg)));
1726 unsigned prob = (PROB_SMS_ENOUGH_ITERATIONS
1727 * REG_BR_PROB_BASE) / 100;
1729 loop_version (loop, comp_rtx, &condition_bb,
1730 prob, prob, REG_BR_PROB_BASE - prob,
1731 true);
1734 /* Set new iteration count of loop kernel. */
1735 if (count_reg && count_init)
1736 SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1737 - stage_count + 1);
1739 /* Now apply the scheduled kernel to the RTL of the loop. */
1740 permute_partial_schedule (ps, g->closing_branch->first_note);
1742 /* Mark this loop as software pipelined so the later
1743 scheduling passes don't touch it. */
1744 if (! flag_resched_modulo_sched)
1745 mark_loop_unsched (loop);
1747 /* The life-info is not valid any more. */
1748 df_set_bb_dirty (g->bb);
1750 apply_reg_moves (ps);
1751 if (dump_file)
1752 print_node_sched_params (dump_file, g->num_nodes, ps);
1753 /* Generate prolog and epilog. */
1754 generate_prolog_epilog (ps, loop, count_reg, count_init);
1755 break;
1758 free_partial_schedule (ps);
1759 node_sched_param_vec.release ();
1760 free (node_order);
1761 free_ddg (g);
1764 free (g_arr);
1766 /* Release scheduler data, needed until now because of DFA. */
1767 haifa_sched_finish ();
1768 loop_optimizer_finalize ();
1771 /* The SMS scheduling algorithm itself
1772 -----------------------------------
1773 Input: 'O' an ordered list of insns of a loop.
1774 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1776 'Q' is the empty Set
1777 'PS' is the partial schedule; it holds the currently scheduled nodes with
1778 their cycle/slot.
1779 'PSP' previously scheduled predecessors.
1780 'PSS' previously scheduled successors.
1781 't(u)' the cycle where u is scheduled.
1782 'l(u)' is the latency of u.
1783 'd(v,u)' is the dependence distance from v to u.
1784 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1785 the node ordering phase.
1786 'check_hardware_resources_conflicts(u, PS, c)'
1787 run a trace around cycle/slot through DFA model
1788 to check resource conflicts involving instruction u
1789 at cycle c given the partial schedule PS.
1790 'add_to_partial_schedule_at_time(u, PS, c)'
1791 Add the node/instruction u to the partial schedule
1792 PS at time c.
1793 'calculate_register_pressure(PS)'
1794 Given a schedule of instructions, calculate the register
1795 pressure it implies. One implementation could be the
1796 maximum number of overlapping live ranges.
1797 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1798 registers available in the hardware.
1800 1. II = MII.
1801 2. PS = empty list
1802 3. for each node u in O in pre-computed order
1803 4. if (PSP(u) != Q && PSS(u) == Q) then
1804 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1805 6. start = Early_start; end = Early_start + II - 1; step = 1
1806 11. else if (PSP(u) == Q && PSS(u) != Q) then
1807 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1808 13. start = Late_start; end = Late_start - II + 1; step = -1
1809 14. else if (PSP(u) != Q && PSS(u) != Q) then
1810 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1811 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1812 17. start = Early_start;
1813 18. end = min(Early_start + II - 1 , Late_start);
1814 19. step = 1
1815 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1816 21. start = ASAP(u); end = start + II - 1; step = 1
1817 22. endif
1819 23. success = false
1820 24. for (c = start ; c != end ; c += step)
1821 25. if check_hardware_resources_conflicts(u, PS, c) then
1822 26. add_to_partial_schedule_at_time(u, PS, c)
1823 27. success = true
1824 28. break
1825 29. endif
1826 30. endfor
1827 31. if (success == false) then
1828 32. II = II + 1
1829 33. if (II > maxII) then
1830 34. finish - failed to schedule
1831 35. endif
1832 36. goto 2.
1833 37. endif
1834 38. endfor
1835 39. if (calculate_register_pressure(PS) > maxRP) then
1836 40. goto 32.
1837 41. endif
1838 42. compute epilogue & prologue
1839 43. finish - succeeded to schedule
1841 ??? The algorithm restricts the scheduling window to II cycles.
1842 In rare cases, it may be better to allow windows of II+1 cycles.
1843 The window would then start and end on the same row, but with
1844 different "must precede" and "must follow" requirements. */
1846 /* A limit on the number of cycles that resource conflicts can span. ??? Should
1847 be provided by DFA, and be dependent on the type of insn scheduled. Currently
1848 set to 0 to save compile time. */
1849 #define DFA_HISTORY SMS_DFA_HISTORY
1851 /* A threshold for the number of repeated unsuccessful attempts to insert
1852 an empty row, before we flush the partial schedule and start over. */
1853 #define MAX_SPLIT_NUM 10
1854 /* Given the partial schedule PS, this function calculates and returns the
1855 cycles in which we can schedule the node with the given index I.
1856 NOTE: Here we do the backtracking in SMS, in some special cases. We have
1857 noticed that there are several cases in which we fail to SMS the loop
1858 because the sched window of a node is empty due to tight data-deps. In
1859 such cases we want to unschedule some of the predecessors/successors
1860 until we get non-empty scheduling window. It returns -1 if the
1861 scheduling window is empty and zero otherwise. */
1863 static int
1864 get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
1865 sbitmap sched_nodes, int ii, int *start_p, int *step_p,
1866 int *end_p)
1868 int start, step, end;
1869 int early_start, late_start;
1870 ddg_edge_ptr e;
1871 sbitmap psp = sbitmap_alloc (ps->g->num_nodes);
1872 sbitmap pss = sbitmap_alloc (ps->g->num_nodes);
1873 sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1874 sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1875 int psp_not_empty;
1876 int pss_not_empty;
1877 int count_preds;
1878 int count_succs;
1880 /* 1. compute sched window for u (start, end, step). */
1881 bitmap_clear (psp);
1882 bitmap_clear (pss);
1883 psp_not_empty = bitmap_and (psp, u_node_preds, sched_nodes);
1884 pss_not_empty = bitmap_and (pss, u_node_succs, sched_nodes);
1886 /* We first compute a forward range (start <= end), then decide whether
1887 to reverse it. */
1888 early_start = INT_MIN;
1889 late_start = INT_MAX;
1890 start = INT_MIN;
1891 end = INT_MAX;
1892 step = 1;
1894 count_preds = 0;
1895 count_succs = 0;
1897 if (dump_file && (psp_not_empty || pss_not_empty))
1899 fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
1900 "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
1901 fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
1902 "start", "early start", "late start", "end", "time");
1903 fprintf (dump_file, "=========== =========== =========== ==========="
1904 " =====\n");
1906 /* Calculate early_start and limit end. Both bounds are inclusive. */
1907 if (psp_not_empty)
1908 for (e = u_node->in; e != 0; e = e->next_in)
1910 int v = e->src->cuid;
1912 if (bitmap_bit_p (sched_nodes, v))
1914 int p_st = SCHED_TIME (v);
1915 int earliest = p_st + e->latency - (e->distance * ii);
1916 int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
1918 if (dump_file)
1920 fprintf (dump_file, "%11s %11d %11s %11d %5d",
1921 "", earliest, "", latest, p_st);
1922 print_ddg_edge (dump_file, e);
1923 fprintf (dump_file, "\n");
1926 early_start = MAX (early_start, earliest);
1927 end = MIN (end, latest);
1929 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1930 count_preds++;
1934 /* Calculate late_start and limit start. Both bounds are inclusive. */
1935 if (pss_not_empty)
1936 for (e = u_node->out; e != 0; e = e->next_out)
1938 int v = e->dest->cuid;
1940 if (bitmap_bit_p (sched_nodes, v))
1942 int s_st = SCHED_TIME (v);
1943 int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
1944 int latest = s_st - e->latency + (e->distance * ii);
1946 if (dump_file)
1948 fprintf (dump_file, "%11d %11s %11d %11s %5d",
1949 earliest, "", latest, "", s_st);
1950 print_ddg_edge (dump_file, e);
1951 fprintf (dump_file, "\n");
1954 start = MAX (start, earliest);
1955 late_start = MIN (late_start, latest);
1957 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1958 count_succs++;
1962 if (dump_file && (psp_not_empty || pss_not_empty))
1964 fprintf (dump_file, "----------- ----------- ----------- -----------"
1965 " -----\n");
1966 fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
1967 start, early_start, late_start, end, "",
1968 "(max, max, min, min)");
1971 /* Get a target scheduling window no bigger than ii. */
1972 if (early_start == INT_MIN && late_start == INT_MAX)
1973 early_start = NODE_ASAP (u_node);
1974 else if (early_start == INT_MIN)
1975 early_start = late_start - (ii - 1);
1976 late_start = MIN (late_start, early_start + (ii - 1));
1978 /* Apply memory dependence limits. */
1979 start = MAX (start, early_start);
1980 end = MIN (end, late_start);
1982 if (dump_file && (psp_not_empty || pss_not_empty))
1983 fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
1984 "", start, end, "", "");
1986 /* If there are at least as many successors as predecessors, schedule the
1987 node close to its successors. */
1988 if (pss_not_empty && count_succs >= count_preds)
1990 int tmp = end;
1991 end = start;
1992 start = tmp;
1993 step = -1;
1996 /* Now that we've finalized the window, make END an exclusive rather
1997 than an inclusive bound. */
1998 end += step;
2000 *start_p = start;
2001 *step_p = step;
2002 *end_p = end;
2003 sbitmap_free (psp);
2004 sbitmap_free (pss);
2006 if ((start >= end && step == 1) || (start <= end && step == -1))
2008 if (dump_file)
2009 fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
2010 start, end, step);
2011 return -1;
2014 return 0;
2017 /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
2018 node currently been scheduled. At the end of the calculation
2019 MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
2020 U_NODE which are (1) already scheduled in the first/last row of
2021 U_NODE's scheduling window, (2) whose dependence inequality with U
2022 becomes an equality when U is scheduled in this same row, and (3)
2023 whose dependence latency is zero.
2025 The first and last rows are calculated using the following parameters:
2026 START/END rows - The cycles that begins/ends the traversal on the window;
2027 searching for an empty cycle to schedule U_NODE.
2028 STEP - The direction in which we traverse the window.
2029 II - The initiation interval. */
2031 static void
2032 calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
2033 int step, int ii, sbitmap sched_nodes,
2034 sbitmap must_precede, sbitmap must_follow)
2036 ddg_edge_ptr e;
2037 int first_cycle_in_window, last_cycle_in_window;
2039 gcc_assert (must_precede && must_follow);
2041 /* Consider the following scheduling window:
2042 {first_cycle_in_window, first_cycle_in_window+1, ...,
2043 last_cycle_in_window}. If step is 1 then the following will be
2044 the order we traverse the window: {start=first_cycle_in_window,
2045 first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
2046 or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
2047 end=first_cycle_in_window-1} if step is -1. */
2048 first_cycle_in_window = (step == 1) ? start : end - step;
2049 last_cycle_in_window = (step == 1) ? end - step : start;
2051 bitmap_clear (must_precede);
2052 bitmap_clear (must_follow);
2054 if (dump_file)
2055 fprintf (dump_file, "\nmust_precede: ");
2057 /* Instead of checking if:
2058 (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
2059 && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
2060 first_cycle_in_window)
2061 && e->latency == 0
2062 we use the fact that latency is non-negative:
2063 SCHED_TIME (e->src) - (e->distance * ii) <=
2064 SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
2065 first_cycle_in_window
2066 and check only if
2067 SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
2068 for (e = u_node->in; e != 0; e = e->next_in)
2069 if (bitmap_bit_p (sched_nodes, e->src->cuid)
2070 && ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
2071 first_cycle_in_window))
2073 if (dump_file)
2074 fprintf (dump_file, "%d ", e->src->cuid);
2076 bitmap_set_bit (must_precede, e->src->cuid);
2079 if (dump_file)
2080 fprintf (dump_file, "\nmust_follow: ");
2082 /* Instead of checking if:
2083 (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
2084 && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
2085 last_cycle_in_window)
2086 && e->latency == 0
2087 we use the fact that latency is non-negative:
2088 SCHED_TIME (e->dest) + (e->distance * ii) >=
2089 SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
2090 last_cycle_in_window
2091 and check only if
2092 SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
2093 for (e = u_node->out; e != 0; e = e->next_out)
2094 if (bitmap_bit_p (sched_nodes, e->dest->cuid)
2095 && ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
2096 last_cycle_in_window))
2098 if (dump_file)
2099 fprintf (dump_file, "%d ", e->dest->cuid);
2101 bitmap_set_bit (must_follow, e->dest->cuid);
2104 if (dump_file)
2105 fprintf (dump_file, "\n");
2108 /* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
2109 parameters to decide if that's possible:
2110 PS - The partial schedule.
2111 U - The serial number of U_NODE.
2112 NUM_SPLITS - The number of row splits made so far.
2113 MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
2114 the first row of the scheduling window)
2115 MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
2116 last row of the scheduling window) */
2118 static bool
2119 try_scheduling_node_in_cycle (partial_schedule_ptr ps,
2120 int u, int cycle, sbitmap sched_nodes,
2121 int *num_splits, sbitmap must_precede,
2122 sbitmap must_follow)
2124 ps_insn_ptr psi;
2125 bool success = 0;
2127 verify_partial_schedule (ps, sched_nodes);
2128 psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
2129 if (psi)
2131 SCHED_TIME (u) = cycle;
2132 bitmap_set_bit (sched_nodes, u);
2133 success = 1;
2134 *num_splits = 0;
2135 if (dump_file)
2136 fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
2140 return success;
2143 /* This function implements the scheduling algorithm for SMS according to the
2144 above algorithm. */
2145 static partial_schedule_ptr
2146 sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
2148 int ii = mii;
2149 int i, c, success, num_splits = 0;
2150 int flush_and_start_over = true;
2151 int num_nodes = g->num_nodes;
2152 int start, end, step; /* Place together into one struct? */
2153 sbitmap sched_nodes = sbitmap_alloc (num_nodes);
2154 sbitmap must_precede = sbitmap_alloc (num_nodes);
2155 sbitmap must_follow = sbitmap_alloc (num_nodes);
2156 sbitmap tobe_scheduled = sbitmap_alloc (num_nodes);
2158 partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
2160 bitmap_ones (tobe_scheduled);
2161 bitmap_clear (sched_nodes);
2163 while (flush_and_start_over && (ii < maxii))
2166 if (dump_file)
2167 fprintf (dump_file, "Starting with ii=%d\n", ii);
2168 flush_and_start_over = false;
2169 bitmap_clear (sched_nodes);
2171 for (i = 0; i < num_nodes; i++)
2173 int u = nodes_order[i];
2174 ddg_node_ptr u_node = &ps->g->nodes[u];
2175 rtx insn = u_node->insn;
2177 if (!NONDEBUG_INSN_P (insn))
2179 bitmap_clear_bit (tobe_scheduled, u);
2180 continue;
2183 if (bitmap_bit_p (sched_nodes, u))
2184 continue;
2186 /* Try to get non-empty scheduling window. */
2187 success = 0;
2188 if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
2189 &step, &end) == 0)
2191 if (dump_file)
2192 fprintf (dump_file, "\nTrying to schedule node %d "
2193 "INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID
2194 (g->nodes[u].insn)), start, end, step);
2196 gcc_assert ((step > 0 && start < end)
2197 || (step < 0 && start > end));
2199 calculate_must_precede_follow (u_node, start, end, step, ii,
2200 sched_nodes, must_precede,
2201 must_follow);
2203 for (c = start; c != end; c += step)
2205 sbitmap tmp_precede, tmp_follow;
2207 set_must_precede_follow (&tmp_follow, must_follow,
2208 &tmp_precede, must_precede,
2209 c, start, end, step);
2210 success =
2211 try_scheduling_node_in_cycle (ps, u, c,
2212 sched_nodes,
2213 &num_splits, tmp_precede,
2214 tmp_follow);
2215 if (success)
2216 break;
2219 verify_partial_schedule (ps, sched_nodes);
2221 if (!success)
2223 int split_row;
2225 if (ii++ == maxii)
2226 break;
2228 if (num_splits >= MAX_SPLIT_NUM)
2230 num_splits = 0;
2231 flush_and_start_over = true;
2232 verify_partial_schedule (ps, sched_nodes);
2233 reset_partial_schedule (ps, ii);
2234 verify_partial_schedule (ps, sched_nodes);
2235 break;
2238 num_splits++;
2239 /* The scheduling window is exclusive of 'end'
2240 whereas compute_split_window() expects an inclusive,
2241 ordered range. */
2242 if (step == 1)
2243 split_row = compute_split_row (sched_nodes, start, end - 1,
2244 ps->ii, u_node);
2245 else
2246 split_row = compute_split_row (sched_nodes, end + 1, start,
2247 ps->ii, u_node);
2249 ps_insert_empty_row (ps, split_row, sched_nodes);
2250 i--; /* Go back and retry node i. */
2252 if (dump_file)
2253 fprintf (dump_file, "num_splits=%d\n", num_splits);
2256 /* ??? If (success), check register pressure estimates. */
2257 } /* Continue with next node. */
2258 } /* While flush_and_start_over. */
2259 if (ii >= maxii)
2261 free_partial_schedule (ps);
2262 ps = NULL;
2264 else
2265 gcc_assert (bitmap_equal_p (tobe_scheduled, sched_nodes));
2267 sbitmap_free (sched_nodes);
2268 sbitmap_free (must_precede);
2269 sbitmap_free (must_follow);
2270 sbitmap_free (tobe_scheduled);
2272 return ps;
2275 /* This function inserts a new empty row into PS at the position
2276 according to SPLITROW, keeping all already scheduled instructions
2277 intact and updating their SCHED_TIME and cycle accordingly. */
2278 static void
2279 ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
2280 sbitmap sched_nodes)
2282 ps_insn_ptr crr_insn;
2283 ps_insn_ptr *rows_new;
2284 int ii = ps->ii;
2285 int new_ii = ii + 1;
2286 int row;
2287 int *rows_length_new;
2289 verify_partial_schedule (ps, sched_nodes);
2291 /* We normalize sched_time and rotate ps to have only non-negative sched
2292 times, for simplicity of updating cycles after inserting new row. */
2293 split_row -= ps->min_cycle;
2294 split_row = SMODULO (split_row, ii);
2295 if (dump_file)
2296 fprintf (dump_file, "split_row=%d\n", split_row);
2298 reset_sched_times (ps, PS_MIN_CYCLE (ps));
2299 rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
2301 rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
2302 rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
2303 for (row = 0; row < split_row; row++)
2305 rows_new[row] = ps->rows[row];
2306 rows_length_new[row] = ps->rows_length[row];
2307 ps->rows[row] = NULL;
2308 for (crr_insn = rows_new[row];
2309 crr_insn; crr_insn = crr_insn->next_in_row)
2311 int u = crr_insn->id;
2312 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
2314 SCHED_TIME (u) = new_time;
2315 crr_insn->cycle = new_time;
2316 SCHED_ROW (u) = new_time % new_ii;
2317 SCHED_STAGE (u) = new_time / new_ii;
2322 rows_new[split_row] = NULL;
2324 for (row = split_row; row < ii; row++)
2326 rows_new[row + 1] = ps->rows[row];
2327 rows_length_new[row + 1] = ps->rows_length[row];
2328 ps->rows[row] = NULL;
2329 for (crr_insn = rows_new[row + 1];
2330 crr_insn; crr_insn = crr_insn->next_in_row)
2332 int u = crr_insn->id;
2333 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
2335 SCHED_TIME (u) = new_time;
2336 crr_insn->cycle = new_time;
2337 SCHED_ROW (u) = new_time % new_ii;
2338 SCHED_STAGE (u) = new_time / new_ii;
2342 /* Updating ps. */
2343 ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
2344 + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
2345 ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
2346 + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
2347 free (ps->rows);
2348 ps->rows = rows_new;
2349 free (ps->rows_length);
2350 ps->rows_length = rows_length_new;
2351 ps->ii = new_ii;
2352 gcc_assert (ps->min_cycle >= 0);
2354 verify_partial_schedule (ps, sched_nodes);
2356 if (dump_file)
2357 fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
2358 ps->max_cycle);
2361 /* Given U_NODE which is the node that failed to be scheduled; LOW and
2362 UP which are the boundaries of it's scheduling window; compute using
2363 SCHED_NODES and II a row in the partial schedule that can be split
2364 which will separate a critical predecessor from a critical successor
2365 thereby expanding the window, and return it. */
2366 static int
2367 compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
2368 ddg_node_ptr u_node)
2370 ddg_edge_ptr e;
2371 int lower = INT_MIN, upper = INT_MAX;
2372 int crit_pred = -1;
2373 int crit_succ = -1;
2374 int crit_cycle;
2376 for (e = u_node->in; e != 0; e = e->next_in)
2378 int v = e->src->cuid;
2380 if (bitmap_bit_p (sched_nodes, v)
2381 && (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
2382 if (SCHED_TIME (v) > lower)
2384 crit_pred = v;
2385 lower = SCHED_TIME (v);
2389 if (crit_pred >= 0)
2391 crit_cycle = SCHED_TIME (crit_pred) + 1;
2392 return SMODULO (crit_cycle, ii);
2395 for (e = u_node->out; e != 0; e = e->next_out)
2397 int v = e->dest->cuid;
2399 if (bitmap_bit_p (sched_nodes, v)
2400 && (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
2401 if (SCHED_TIME (v) < upper)
2403 crit_succ = v;
2404 upper = SCHED_TIME (v);
2408 if (crit_succ >= 0)
2410 crit_cycle = SCHED_TIME (crit_succ);
2411 return SMODULO (crit_cycle, ii);
2414 if (dump_file)
2415 fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
2417 return SMODULO ((low + up + 1) / 2, ii);
2420 static void
2421 verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
2423 int row;
2424 ps_insn_ptr crr_insn;
2426 for (row = 0; row < ps->ii; row++)
2428 int length = 0;
2430 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
2432 int u = crr_insn->id;
2434 length++;
2435 gcc_assert (bitmap_bit_p (sched_nodes, u));
2436 /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2437 popcount (sched_nodes) == number of insns in ps. */
2438 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
2439 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
2442 gcc_assert (ps->rows_length[row] == length);
2447 /* This page implements the algorithm for ordering the nodes of a DDG
2448 for modulo scheduling, activated through the
2449 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
2451 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2452 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
2453 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
2454 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2455 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
2456 #define DEPTH(x) (ASAP ((x)))
2458 typedef struct node_order_params * nopa;
2460 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
2461 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
2462 static nopa calculate_order_params (ddg_ptr, int, int *);
2463 static int find_max_asap (ddg_ptr, sbitmap);
2464 static int find_max_hv_min_mob (ddg_ptr, sbitmap);
2465 static int find_max_dv_min_mob (ddg_ptr, sbitmap);
2467 enum sms_direction {BOTTOMUP, TOPDOWN};
2469 struct node_order_params
2471 int asap;
2472 int alap;
2473 int height;
2476 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
2477 static void
2478 check_nodes_order (int *node_order, int num_nodes)
2480 int i;
2481 sbitmap tmp = sbitmap_alloc (num_nodes);
2483 bitmap_clear (tmp);
2485 if (dump_file)
2486 fprintf (dump_file, "SMS final nodes order: \n");
2488 for (i = 0; i < num_nodes; i++)
2490 int u = node_order[i];
2492 if (dump_file)
2493 fprintf (dump_file, "%d ", u);
2494 gcc_assert (u < num_nodes && u >= 0 && !bitmap_bit_p (tmp, u));
2496 bitmap_set_bit (tmp, u);
2499 if (dump_file)
2500 fprintf (dump_file, "\n");
2502 sbitmap_free (tmp);
2505 /* Order the nodes of G for scheduling and pass the result in
2506 NODE_ORDER. Also set aux.count of each node to ASAP.
2507 Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
2508 static int
2509 sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
2511 int i;
2512 int rec_mii = 0;
2513 ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
2515 nopa nops = calculate_order_params (g, mii, pmax_asap);
2517 if (dump_file)
2518 print_sccs (dump_file, sccs, g);
2520 order_nodes_of_sccs (sccs, node_order);
2522 if (sccs->num_sccs > 0)
2523 /* First SCC has the largest recurrence_length. */
2524 rec_mii = sccs->sccs[0]->recurrence_length;
2526 /* Save ASAP before destroying node_order_params. */
2527 for (i = 0; i < g->num_nodes; i++)
2529 ddg_node_ptr v = &g->nodes[i];
2530 v->aux.count = ASAP (v);
2533 free (nops);
2534 free_ddg_all_sccs (sccs);
2535 check_nodes_order (node_order, g->num_nodes);
2537 return rec_mii;
2540 static void
2541 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
2543 int i, pos = 0;
2544 ddg_ptr g = all_sccs->ddg;
2545 int num_nodes = g->num_nodes;
2546 sbitmap prev_sccs = sbitmap_alloc (num_nodes);
2547 sbitmap on_path = sbitmap_alloc (num_nodes);
2548 sbitmap tmp = sbitmap_alloc (num_nodes);
2549 sbitmap ones = sbitmap_alloc (num_nodes);
2551 bitmap_clear (prev_sccs);
2552 bitmap_ones (ones);
2554 /* Perform the node ordering starting from the SCC with the highest recMII.
2555 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
2556 for (i = 0; i < all_sccs->num_sccs; i++)
2558 ddg_scc_ptr scc = all_sccs->sccs[i];
2560 /* Add nodes on paths from previous SCCs to the current SCC. */
2561 find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
2562 bitmap_ior (tmp, scc->nodes, on_path);
2564 /* Add nodes on paths from the current SCC to previous SCCs. */
2565 find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
2566 bitmap_ior (tmp, tmp, on_path);
2568 /* Remove nodes of previous SCCs from current extended SCC. */
2569 bitmap_and_compl (tmp, tmp, prev_sccs);
2571 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2572 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
2575 /* Handle the remaining nodes that do not belong to any scc. Each call
2576 to order_nodes_in_scc handles a single connected component. */
2577 while (pos < g->num_nodes)
2579 bitmap_and_compl (tmp, ones, prev_sccs);
2580 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2582 sbitmap_free (prev_sccs);
2583 sbitmap_free (on_path);
2584 sbitmap_free (tmp);
2585 sbitmap_free (ones);
2588 /* MII is needed if we consider backarcs (that do not close recursive cycles). */
2589 static struct node_order_params *
2590 calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
2592 int u;
2593 int max_asap;
2594 int num_nodes = g->num_nodes;
2595 ddg_edge_ptr e;
2596 /* Allocate a place to hold ordering params for each node in the DDG. */
2597 nopa node_order_params_arr;
2599 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
2600 node_order_params_arr = (nopa) xcalloc (num_nodes,
2601 sizeof (struct node_order_params));
2603 /* Set the aux pointer of each node to point to its order_params structure. */
2604 for (u = 0; u < num_nodes; u++)
2605 g->nodes[u].aux.info = &node_order_params_arr[u];
2607 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2608 calculate ASAP, ALAP, mobility, distance, and height for each node
2609 in the dependence (direct acyclic) graph. */
2611 /* We assume that the nodes in the array are in topological order. */
2613 max_asap = 0;
2614 for (u = 0; u < num_nodes; u++)
2616 ddg_node_ptr u_node = &g->nodes[u];
2618 ASAP (u_node) = 0;
2619 for (e = u_node->in; e; e = e->next_in)
2620 if (e->distance == 0)
2621 ASAP (u_node) = MAX (ASAP (u_node),
2622 ASAP (e->src) + e->latency);
2623 max_asap = MAX (max_asap, ASAP (u_node));
2626 for (u = num_nodes - 1; u > -1; u--)
2628 ddg_node_ptr u_node = &g->nodes[u];
2630 ALAP (u_node) = max_asap;
2631 HEIGHT (u_node) = 0;
2632 for (e = u_node->out; e; e = e->next_out)
2633 if (e->distance == 0)
2635 ALAP (u_node) = MIN (ALAP (u_node),
2636 ALAP (e->dest) - e->latency);
2637 HEIGHT (u_node) = MAX (HEIGHT (u_node),
2638 HEIGHT (e->dest) + e->latency);
2641 if (dump_file)
2643 fprintf (dump_file, "\nOrder params\n");
2644 for (u = 0; u < num_nodes; u++)
2646 ddg_node_ptr u_node = &g->nodes[u];
2648 fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
2649 ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
2653 *pmax_asap = max_asap;
2654 return node_order_params_arr;
2657 static int
2658 find_max_asap (ddg_ptr g, sbitmap nodes)
2660 unsigned int u = 0;
2661 int max_asap = -1;
2662 int result = -1;
2663 sbitmap_iterator sbi;
2665 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2667 ddg_node_ptr u_node = &g->nodes[u];
2669 if (max_asap < ASAP (u_node))
2671 max_asap = ASAP (u_node);
2672 result = u;
2675 return result;
2678 static int
2679 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
2681 unsigned int u = 0;
2682 int max_hv = -1;
2683 int min_mob = INT_MAX;
2684 int result = -1;
2685 sbitmap_iterator sbi;
2687 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2689 ddg_node_ptr u_node = &g->nodes[u];
2691 if (max_hv < HEIGHT (u_node))
2693 max_hv = HEIGHT (u_node);
2694 min_mob = MOB (u_node);
2695 result = u;
2697 else if ((max_hv == HEIGHT (u_node))
2698 && (min_mob > MOB (u_node)))
2700 min_mob = MOB (u_node);
2701 result = u;
2704 return result;
2707 static int
2708 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
2710 unsigned int u = 0;
2711 int max_dv = -1;
2712 int min_mob = INT_MAX;
2713 int result = -1;
2714 sbitmap_iterator sbi;
2716 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2718 ddg_node_ptr u_node = &g->nodes[u];
2720 if (max_dv < DEPTH (u_node))
2722 max_dv = DEPTH (u_node);
2723 min_mob = MOB (u_node);
2724 result = u;
2726 else if ((max_dv == DEPTH (u_node))
2727 && (min_mob > MOB (u_node)))
2729 min_mob = MOB (u_node);
2730 result = u;
2733 return result;
2736 /* Places the nodes of SCC into the NODE_ORDER array starting
2737 at position POS, according to the SMS ordering algorithm.
2738 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2739 the NODE_ORDER array, starting from position zero. */
2740 static int
2741 order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
2742 int * node_order, int pos)
2744 enum sms_direction dir;
2745 int num_nodes = g->num_nodes;
2746 sbitmap workset = sbitmap_alloc (num_nodes);
2747 sbitmap tmp = sbitmap_alloc (num_nodes);
2748 sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
2749 sbitmap predecessors = sbitmap_alloc (num_nodes);
2750 sbitmap successors = sbitmap_alloc (num_nodes);
2752 bitmap_clear (predecessors);
2753 find_predecessors (predecessors, g, nodes_ordered);
2755 bitmap_clear (successors);
2756 find_successors (successors, g, nodes_ordered);
2758 bitmap_clear (tmp);
2759 if (bitmap_and (tmp, predecessors, scc))
2761 bitmap_copy (workset, tmp);
2762 dir = BOTTOMUP;
2764 else if (bitmap_and (tmp, successors, scc))
2766 bitmap_copy (workset, tmp);
2767 dir = TOPDOWN;
2769 else
2771 int u;
2773 bitmap_clear (workset);
2774 if ((u = find_max_asap (g, scc)) >= 0)
2775 bitmap_set_bit (workset, u);
2776 dir = BOTTOMUP;
2779 bitmap_clear (zero_bitmap);
2780 while (!bitmap_equal_p (workset, zero_bitmap))
2782 int v;
2783 ddg_node_ptr v_node;
2784 sbitmap v_node_preds;
2785 sbitmap v_node_succs;
2787 if (dir == TOPDOWN)
2789 while (!bitmap_equal_p (workset, zero_bitmap))
2791 v = find_max_hv_min_mob (g, workset);
2792 v_node = &g->nodes[v];
2793 node_order[pos++] = v;
2794 v_node_succs = NODE_SUCCESSORS (v_node);
2795 bitmap_and (tmp, v_node_succs, scc);
2797 /* Don't consider the already ordered successors again. */
2798 bitmap_and_compl (tmp, tmp, nodes_ordered);
2799 bitmap_ior (workset, workset, tmp);
2800 bitmap_clear_bit (workset, v);
2801 bitmap_set_bit (nodes_ordered, v);
2803 dir = BOTTOMUP;
2804 bitmap_clear (predecessors);
2805 find_predecessors (predecessors, g, nodes_ordered);
2806 bitmap_and (workset, predecessors, scc);
2808 else
2810 while (!bitmap_equal_p (workset, zero_bitmap))
2812 v = find_max_dv_min_mob (g, workset);
2813 v_node = &g->nodes[v];
2814 node_order[pos++] = v;
2815 v_node_preds = NODE_PREDECESSORS (v_node);
2816 bitmap_and (tmp, v_node_preds, scc);
2818 /* Don't consider the already ordered predecessors again. */
2819 bitmap_and_compl (tmp, tmp, nodes_ordered);
2820 bitmap_ior (workset, workset, tmp);
2821 bitmap_clear_bit (workset, v);
2822 bitmap_set_bit (nodes_ordered, v);
2824 dir = TOPDOWN;
2825 bitmap_clear (successors);
2826 find_successors (successors, g, nodes_ordered);
2827 bitmap_and (workset, successors, scc);
2830 sbitmap_free (tmp);
2831 sbitmap_free (workset);
2832 sbitmap_free (zero_bitmap);
2833 sbitmap_free (predecessors);
2834 sbitmap_free (successors);
2835 return pos;
2839 /* This page contains functions for manipulating partial-schedules during
2840 modulo scheduling. */
2842 /* Create a partial schedule and allocate a memory to hold II rows. */
2844 static partial_schedule_ptr
2845 create_partial_schedule (int ii, ddg_ptr g, int history)
2847 partial_schedule_ptr ps = XNEW (struct partial_schedule);
2848 ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
2849 ps->rows_length = (int *) xcalloc (ii, sizeof (int));
2850 ps->reg_moves.create (0);
2851 ps->ii = ii;
2852 ps->history = history;
2853 ps->min_cycle = INT_MAX;
2854 ps->max_cycle = INT_MIN;
2855 ps->g = g;
2857 return ps;
2860 /* Free the PS_INSNs in rows array of the given partial schedule.
2861 ??? Consider caching the PS_INSN's. */
2862 static void
2863 free_ps_insns (partial_schedule_ptr ps)
2865 int i;
2867 for (i = 0; i < ps->ii; i++)
2869 while (ps->rows[i])
2871 ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
2873 free (ps->rows[i]);
2874 ps->rows[i] = ps_insn;
2876 ps->rows[i] = NULL;
2880 /* Free all the memory allocated to the partial schedule. */
2882 static void
2883 free_partial_schedule (partial_schedule_ptr ps)
2885 ps_reg_move_info *move;
2886 unsigned int i;
2888 if (!ps)
2889 return;
2891 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
2892 sbitmap_free (move->uses);
2893 ps->reg_moves.release ();
2895 free_ps_insns (ps);
2896 free (ps->rows);
2897 free (ps->rows_length);
2898 free (ps);
2901 /* Clear the rows array with its PS_INSNs, and create a new one with
2902 NEW_II rows. */
2904 static void
2905 reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
2907 if (!ps)
2908 return;
2909 free_ps_insns (ps);
2910 if (new_ii == ps->ii)
2911 return;
2912 ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
2913 * sizeof (ps_insn_ptr));
2914 memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
2915 ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
2916 memset (ps->rows_length, 0, new_ii * sizeof (int));
2917 ps->ii = new_ii;
2918 ps->min_cycle = INT_MAX;
2919 ps->max_cycle = INT_MIN;
2922 /* Prints the partial schedule as an ii rows array, for each rows
2923 print the ids of the insns in it. */
2924 void
2925 print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
2927 int i;
2929 for (i = 0; i < ps->ii; i++)
2931 ps_insn_ptr ps_i = ps->rows[i];
2933 fprintf (dump, "\n[ROW %d ]: ", i);
2934 while (ps_i)
2936 rtx_insn *insn = ps_rtl_insn (ps, ps_i->id);
2938 if (JUMP_P (insn))
2939 fprintf (dump, "%d (branch), ", INSN_UID (insn));
2940 else
2941 fprintf (dump, "%d, ", INSN_UID (insn));
2943 ps_i = ps_i->next_in_row;
2948 /* Creates an object of PS_INSN and initializes it to the given parameters. */
2949 static ps_insn_ptr
2950 create_ps_insn (int id, int cycle)
2952 ps_insn_ptr ps_i = XNEW (struct ps_insn);
2954 ps_i->id = id;
2955 ps_i->next_in_row = NULL;
2956 ps_i->prev_in_row = NULL;
2957 ps_i->cycle = cycle;
2959 return ps_i;
2963 /* Removes the given PS_INSN from the partial schedule. */
2964 static void
2965 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
2967 int row;
2969 gcc_assert (ps && ps_i);
2971 row = SMODULO (ps_i->cycle, ps->ii);
2972 if (! ps_i->prev_in_row)
2974 gcc_assert (ps_i == ps->rows[row]);
2975 ps->rows[row] = ps_i->next_in_row;
2976 if (ps->rows[row])
2977 ps->rows[row]->prev_in_row = NULL;
2979 else
2981 ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
2982 if (ps_i->next_in_row)
2983 ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
2986 ps->rows_length[row] -= 1;
2987 free (ps_i);
2988 return;
2991 /* Unlike what literature describes for modulo scheduling (which focuses
2992 on VLIW machines) the order of the instructions inside a cycle is
2993 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
2994 where the current instruction should go relative to the already
2995 scheduled instructions in the given cycle. Go over these
2996 instructions and find the first possible column to put it in. */
2997 static bool
2998 ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2999 sbitmap must_precede, sbitmap must_follow)
3001 ps_insn_ptr next_ps_i;
3002 ps_insn_ptr first_must_follow = NULL;
3003 ps_insn_ptr last_must_precede = NULL;
3004 ps_insn_ptr last_in_row = NULL;
3005 int row;
3007 if (! ps_i)
3008 return false;
3010 row = SMODULO (ps_i->cycle, ps->ii);
3012 /* Find the first must follow and the last must precede
3013 and insert the node immediately after the must precede
3014 but make sure that it there is no must follow after it. */
3015 for (next_ps_i = ps->rows[row];
3016 next_ps_i;
3017 next_ps_i = next_ps_i->next_in_row)
3019 if (must_follow
3020 && bitmap_bit_p (must_follow, next_ps_i->id)
3021 && ! first_must_follow)
3022 first_must_follow = next_ps_i;
3023 if (must_precede && bitmap_bit_p (must_precede, next_ps_i->id))
3025 /* If we have already met a node that must follow, then
3026 there is no possible column. */
3027 if (first_must_follow)
3028 return false;
3029 else
3030 last_must_precede = next_ps_i;
3032 /* The closing branch must be the last in the row. */
3033 if (must_precede
3034 && bitmap_bit_p (must_precede, next_ps_i->id)
3035 && JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
3036 return false;
3038 last_in_row = next_ps_i;
3041 /* The closing branch is scheduled as well. Make sure there is no
3042 dependent instruction after it as the branch should be the last
3043 instruction in the row. */
3044 if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
3046 if (first_must_follow)
3047 return false;
3048 if (last_in_row)
3050 /* Make the branch the last in the row. New instructions
3051 will be inserted at the beginning of the row or after the
3052 last must_precede instruction thus the branch is guaranteed
3053 to remain the last instruction in the row. */
3054 last_in_row->next_in_row = ps_i;
3055 ps_i->prev_in_row = last_in_row;
3056 ps_i->next_in_row = NULL;
3058 else
3059 ps->rows[row] = ps_i;
3060 return true;
3063 /* Now insert the node after INSERT_AFTER_PSI. */
3065 if (! last_must_precede)
3067 ps_i->next_in_row = ps->rows[row];
3068 ps_i->prev_in_row = NULL;
3069 if (ps_i->next_in_row)
3070 ps_i->next_in_row->prev_in_row = ps_i;
3071 ps->rows[row] = ps_i;
3073 else
3075 ps_i->next_in_row = last_must_precede->next_in_row;
3076 last_must_precede->next_in_row = ps_i;
3077 ps_i->prev_in_row = last_must_precede;
3078 if (ps_i->next_in_row)
3079 ps_i->next_in_row->prev_in_row = ps_i;
3082 return true;
3085 /* Advances the PS_INSN one column in its current row; returns false
3086 in failure and true in success. Bit N is set in MUST_FOLLOW if
3087 the node with cuid N must be come after the node pointed to by
3088 PS_I when scheduled in the same cycle. */
3089 static int
3090 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
3091 sbitmap must_follow)
3093 ps_insn_ptr prev, next;
3094 int row;
3096 if (!ps || !ps_i)
3097 return false;
3099 row = SMODULO (ps_i->cycle, ps->ii);
3101 if (! ps_i->next_in_row)
3102 return false;
3104 /* Check if next_in_row is dependent on ps_i, both having same sched
3105 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
3106 if (must_follow && bitmap_bit_p (must_follow, ps_i->next_in_row->id))
3107 return false;
3109 /* Advance PS_I over its next_in_row in the doubly linked list. */
3110 prev = ps_i->prev_in_row;
3111 next = ps_i->next_in_row;
3113 if (ps_i == ps->rows[row])
3114 ps->rows[row] = next;
3116 ps_i->next_in_row = next->next_in_row;
3118 if (next->next_in_row)
3119 next->next_in_row->prev_in_row = ps_i;
3121 next->next_in_row = ps_i;
3122 ps_i->prev_in_row = next;
3124 next->prev_in_row = prev;
3125 if (prev)
3126 prev->next_in_row = next;
3128 return true;
3131 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
3132 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
3133 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
3134 before/after (respectively) the node pointed to by PS_I when scheduled
3135 in the same cycle. */
3136 static ps_insn_ptr
3137 add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
3138 sbitmap must_precede, sbitmap must_follow)
3140 ps_insn_ptr ps_i;
3141 int row = SMODULO (cycle, ps->ii);
3143 if (ps->rows_length[row] >= issue_rate)
3144 return NULL;
3146 ps_i = create_ps_insn (id, cycle);
3148 /* Finds and inserts PS_I according to MUST_FOLLOW and
3149 MUST_PRECEDE. */
3150 if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
3152 free (ps_i);
3153 return NULL;
3156 ps->rows_length[row] += 1;
3157 return ps_i;
3160 /* Advance time one cycle. Assumes DFA is being used. */
3161 static void
3162 advance_one_cycle (void)
3164 if (targetm.sched.dfa_pre_cycle_insn)
3165 state_transition (curr_state,
3166 targetm.sched.dfa_pre_cycle_insn ());
3168 state_transition (curr_state, NULL);
3170 if (targetm.sched.dfa_post_cycle_insn)
3171 state_transition (curr_state,
3172 targetm.sched.dfa_post_cycle_insn ());
3177 /* Checks if PS has resource conflicts according to DFA, starting from
3178 FROM cycle to TO cycle; returns true if there are conflicts and false
3179 if there are no conflicts. Assumes DFA is being used. */
3180 static int
3181 ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
3183 int cycle;
3185 state_reset (curr_state);
3187 for (cycle = from; cycle <= to; cycle++)
3189 ps_insn_ptr crr_insn;
3190 /* Holds the remaining issue slots in the current row. */
3191 int can_issue_more = issue_rate;
3193 /* Walk through the DFA for the current row. */
3194 for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
3195 crr_insn;
3196 crr_insn = crr_insn->next_in_row)
3198 rtx_insn *insn = ps_rtl_insn (ps, crr_insn->id);
3200 if (!NONDEBUG_INSN_P (insn))
3201 continue;
3203 /* Check if there is room for the current insn. */
3204 if (!can_issue_more || state_dead_lock_p (curr_state))
3205 return true;
3207 /* Update the DFA state and return with failure if the DFA found
3208 resource conflicts. */
3209 if (state_transition (curr_state, insn) >= 0)
3210 return true;
3212 if (targetm.sched.variable_issue)
3213 can_issue_more =
3214 targetm.sched.variable_issue (sched_dump, sched_verbose,
3215 insn, can_issue_more);
3216 /* A naked CLOBBER or USE generates no instruction, so don't
3217 let them consume issue slots. */
3218 else if (GET_CODE (PATTERN (insn)) != USE
3219 && GET_CODE (PATTERN (insn)) != CLOBBER)
3220 can_issue_more--;
3223 /* Advance the DFA to the next cycle. */
3224 advance_one_cycle ();
3226 return false;
3229 /* Checks if the given node causes resource conflicts when added to PS at
3230 cycle C. If not the node is added to PS and returned; otherwise zero
3231 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
3232 cuid N must be come before/after (respectively) the node pointed to by
3233 PS_I when scheduled in the same cycle. */
3234 ps_insn_ptr
3235 ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
3236 int c, sbitmap must_precede,
3237 sbitmap must_follow)
3239 int has_conflicts = 0;
3240 ps_insn_ptr ps_i;
3242 /* First add the node to the PS, if this succeeds check for
3243 conflicts, trying different issue slots in the same row. */
3244 if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
3245 return NULL; /* Failed to insert the node at the given cycle. */
3247 has_conflicts = ps_has_conflicts (ps, c, c)
3248 || (ps->history > 0
3249 && ps_has_conflicts (ps,
3250 c - ps->history,
3251 c + ps->history));
3253 /* Try different issue slots to find one that the given node can be
3254 scheduled in without conflicts. */
3255 while (has_conflicts)
3257 if (! ps_insn_advance_column (ps, ps_i, must_follow))
3258 break;
3259 has_conflicts = ps_has_conflicts (ps, c, c)
3260 || (ps->history > 0
3261 && ps_has_conflicts (ps,
3262 c - ps->history,
3263 c + ps->history));
3266 if (has_conflicts)
3268 remove_node_from_ps (ps, ps_i);
3269 return NULL;
3272 ps->min_cycle = MIN (ps->min_cycle, c);
3273 ps->max_cycle = MAX (ps->max_cycle, c);
3274 return ps_i;
3277 /* Calculate the stage count of the partial schedule PS. The calculation
3278 takes into account the rotation amount passed in ROTATION_AMOUNT. */
3280 calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
3282 int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
3283 int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
3284 int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
3286 /* The calculation of stage count is done adding the number of stages
3287 before cycle zero and after cycle zero. */
3288 stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
3290 return stage_count;
3293 /* Rotate the rows of PS such that insns scheduled at time
3294 START_CYCLE will appear in row 0. Updates max/min_cycles. */
3295 void
3296 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
3298 int i, row, backward_rotates;
3299 int last_row = ps->ii - 1;
3301 if (start_cycle == 0)
3302 return;
3304 backward_rotates = SMODULO (start_cycle, ps->ii);
3306 /* Revisit later and optimize this into a single loop. */
3307 for (i = 0; i < backward_rotates; i++)
3309 ps_insn_ptr first_row = ps->rows[0];
3310 int first_row_length = ps->rows_length[0];
3312 for (row = 0; row < last_row; row++)
3314 ps->rows[row] = ps->rows[row + 1];
3315 ps->rows_length[row] = ps->rows_length[row + 1];
3318 ps->rows[last_row] = first_row;
3319 ps->rows_length[last_row] = first_row_length;
3322 ps->max_cycle -= start_cycle;
3323 ps->min_cycle -= start_cycle;
3326 #endif /* INSN_SCHEDULING */
3328 /* Run instruction scheduler. */
3329 /* Perform SMS module scheduling. */
3331 namespace {
3333 const pass_data pass_data_sms =
3335 RTL_PASS, /* type */
3336 "sms", /* name */
3337 OPTGROUP_NONE, /* optinfo_flags */
3338 TV_SMS, /* tv_id */
3339 0, /* properties_required */
3340 0, /* properties_provided */
3341 0, /* properties_destroyed */
3342 0, /* todo_flags_start */
3343 TODO_df_finish, /* todo_flags_finish */
3346 class pass_sms : public rtl_opt_pass
3348 public:
3349 pass_sms (gcc::context *ctxt)
3350 : rtl_opt_pass (pass_data_sms, ctxt)
3353 /* opt_pass methods: */
3354 virtual bool gate (function *)
3356 return (optimize > 0 && flag_modulo_sched);
3359 virtual unsigned int execute (function *);
3361 }; // class pass_sms
3363 unsigned int
3364 pass_sms::execute (function *fun ATTRIBUTE_UNUSED)
3366 #ifdef INSN_SCHEDULING
3367 basic_block bb;
3369 /* Collect loop information to be used in SMS. */
3370 cfg_layout_initialize (0);
3371 sms_schedule ();
3373 /* Update the life information, because we add pseudos. */
3374 max_regno = max_reg_num ();
3376 /* Finalize layout changes. */
3377 FOR_EACH_BB_FN (bb, fun)
3378 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3379 bb->aux = bb->next_bb;
3380 free_dominance_info (CDI_DOMINATORS);
3381 cfg_layout_finalize ();
3382 #endif /* INSN_SCHEDULING */
3383 return 0;
3386 } // anon namespace
3388 rtl_opt_pass *
3389 make_pass_sms (gcc::context *ctxt)
3391 return new pass_sms (ctxt);