PR target/30825
[official-gcc.git] / gcc / predict.c
blobdf5d31059539598b55a23c23c73b7b4d5675c99a
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* References:
24 [1] "Branch Prediction for Free"
25 Ball and Larus; PLDI '93.
26 [2] "Static Branch Frequency and Program Profile Analysis"
27 Wu and Larus; MICRO-27.
28 [3] "Corpus-based Static Branch Prediction"
29 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "tree.h"
37 #include "rtl.h"
38 #include "tm_p.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
41 #include "insn-config.h"
42 #include "regs.h"
43 #include "flags.h"
44 #include "output.h"
45 #include "function.h"
46 #include "except.h"
47 #include "toplev.h"
48 #include "recog.h"
49 #include "expr.h"
50 #include "predict.h"
51 #include "coverage.h"
52 #include "sreal.h"
53 #include "params.h"
54 #include "target.h"
55 #include "cfgloop.h"
56 #include "tree-flow.h"
57 #include "ggc.h"
58 #include "tree-dump.h"
59 #include "tree-pass.h"
60 #include "timevar.h"
61 #include "tree-scalar-evolution.h"
62 #include "cfgloop.h"
64 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
65 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
66 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
67 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
69 /* Random guesstimation given names. */
70 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 100 - 1)
71 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
72 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
73 #define PROB_ALWAYS (REG_BR_PROB_BASE)
75 static void combine_predictions_for_insn (rtx, basic_block);
76 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
77 static void predict_paths_leading_to (basic_block, int *, enum br_predictor, enum prediction);
78 static bool last_basic_block_p (basic_block);
79 static void compute_function_frequency (void);
80 static void choose_function_section (void);
81 static bool can_predict_insn_p (rtx);
83 /* Information we hold about each branch predictor.
84 Filled using information from predict.def. */
86 struct predictor_info
88 const char *const name; /* Name used in the debugging dumps. */
89 const int hitrate; /* Expected hitrate used by
90 predict_insn_def call. */
91 const int flags;
94 /* Use given predictor without Dempster-Shaffer theory if it matches
95 using first_match heuristics. */
96 #define PRED_FLAG_FIRST_MATCH 1
98 /* Recompute hitrate in percent to our representation. */
100 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
102 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
103 static const struct predictor_info predictor_info[]= {
104 #include "predict.def"
106 /* Upper bound on predictors. */
107 {NULL, 0, 0}
109 #undef DEF_PREDICTOR
111 /* Return true in case BB can be CPU intensive and should be optimized
112 for maximal performance. */
114 bool
115 maybe_hot_bb_p (basic_block bb)
117 if (profile_info && flag_branch_probabilities
118 && (bb->count
119 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
120 return false;
121 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
122 return false;
123 return true;
126 /* Return true in case BB is cold and should be optimized for size. */
128 bool
129 probably_cold_bb_p (basic_block bb)
131 if (profile_info && flag_branch_probabilities
132 && (bb->count
133 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
134 return true;
135 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
136 return true;
137 return false;
140 /* Return true in case BB is probably never executed. */
141 bool
142 probably_never_executed_bb_p (basic_block bb)
144 if (profile_info && flag_branch_probabilities)
145 return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
146 return false;
149 /* Return true if the one of outgoing edges is already predicted by
150 PREDICTOR. */
152 bool
153 rtl_predicted_by_p (basic_block bb, enum br_predictor predictor)
155 rtx note;
156 if (!INSN_P (BB_END (bb)))
157 return false;
158 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
159 if (REG_NOTE_KIND (note) == REG_BR_PRED
160 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
161 return true;
162 return false;
165 /* Return true if the one of outgoing edges is already predicted by
166 PREDICTOR. */
168 bool
169 tree_predicted_by_p (basic_block bb, enum br_predictor predictor)
171 struct edge_prediction *i;
172 for (i = bb->predictions; i; i = i->ep_next)
173 if (i->ep_predictor == predictor)
174 return true;
175 return false;
178 /* Return true when the probability of edge is reliable.
180 The profile guessing code is good at predicting branch outcome (ie.
181 taken/not taken), that is predicted right slightly over 75% of time.
182 It is however notoriously poor on predicting the probability itself.
183 In general the profile appear a lot flatter (with probabilities closer
184 to 50%) than the reality so it is bad idea to use it to drive optimization
185 such as those disabling dynamic branch prediction for well predictable
186 branches.
188 There are two exceptions - edges leading to noreturn edges and edges
189 predicted by number of iterations heuristics are predicted well. This macro
190 should be able to distinguish those, but at the moment it simply check for
191 noreturn heuristic that is only one giving probability over 99% or bellow
192 1%. In future we might want to propagate reliability information across the
193 CFG if we find this information useful on multiple places. */
194 static bool
195 probability_reliable_p (int prob)
197 return (profile_status == PROFILE_READ
198 || (profile_status == PROFILE_GUESSED
199 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
202 /* Same predicate as above, working on edges. */
203 bool
204 edge_probability_reliable_p (edge e)
206 return probability_reliable_p (e->probability);
209 /* Same predicate as edge_probability_reliable_p, working on notes. */
210 bool
211 br_prob_note_reliable_p (rtx note)
213 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
214 return probability_reliable_p (INTVAL (XEXP (note, 0)));
217 static void
218 predict_insn (rtx insn, enum br_predictor predictor, int probability)
220 gcc_assert (any_condjump_p (insn));
221 if (!flag_guess_branch_prob)
222 return;
224 REG_NOTES (insn)
225 = gen_rtx_EXPR_LIST (REG_BR_PRED,
226 gen_rtx_CONCAT (VOIDmode,
227 GEN_INT ((int) predictor),
228 GEN_INT ((int) probability)),
229 REG_NOTES (insn));
232 /* Predict insn by given predictor. */
234 void
235 predict_insn_def (rtx insn, enum br_predictor predictor,
236 enum prediction taken)
238 int probability = predictor_info[(int) predictor].hitrate;
240 if (taken != TAKEN)
241 probability = REG_BR_PROB_BASE - probability;
243 predict_insn (insn, predictor, probability);
246 /* Predict edge E with given probability if possible. */
248 void
249 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
251 rtx last_insn;
252 last_insn = BB_END (e->src);
254 /* We can store the branch prediction information only about
255 conditional jumps. */
256 if (!any_condjump_p (last_insn))
257 return;
259 /* We always store probability of branching. */
260 if (e->flags & EDGE_FALLTHRU)
261 probability = REG_BR_PROB_BASE - probability;
263 predict_insn (last_insn, predictor, probability);
266 /* Predict edge E with the given PROBABILITY. */
267 void
268 tree_predict_edge (edge e, enum br_predictor predictor, int probability)
270 gcc_assert (profile_status != PROFILE_GUESSED);
271 if ((e->src != ENTRY_BLOCK_PTR && EDGE_COUNT (e->src->succs) > 1)
272 && flag_guess_branch_prob && optimize)
274 struct edge_prediction *i = ggc_alloc (sizeof (struct edge_prediction));
276 i->ep_next = e->src->predictions;
277 e->src->predictions = i;
278 i->ep_probability = probability;
279 i->ep_predictor = predictor;
280 i->ep_edge = e;
284 /* Remove all predictions on given basic block that are attached
285 to edge E. */
286 void
287 remove_predictions_associated_with_edge (edge e)
289 if (e->src->predictions)
291 struct edge_prediction **prediction = &e->src->predictions;
292 while (*prediction)
294 if ((*prediction)->ep_edge == e)
295 *prediction = (*prediction)->ep_next;
296 else
297 prediction = &((*prediction)->ep_next);
302 /* Return true when we can store prediction on insn INSN.
303 At the moment we represent predictions only on conditional
304 jumps, not at computed jump or other complicated cases. */
305 static bool
306 can_predict_insn_p (rtx insn)
308 return (JUMP_P (insn)
309 && any_condjump_p (insn)
310 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
313 /* Predict edge E by given predictor if possible. */
315 void
316 predict_edge_def (edge e, enum br_predictor predictor,
317 enum prediction taken)
319 int probability = predictor_info[(int) predictor].hitrate;
321 if (taken != TAKEN)
322 probability = REG_BR_PROB_BASE - probability;
324 predict_edge (e, predictor, probability);
327 /* Invert all branch predictions or probability notes in the INSN. This needs
328 to be done each time we invert the condition used by the jump. */
330 void
331 invert_br_probabilities (rtx insn)
333 rtx note;
335 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
336 if (REG_NOTE_KIND (note) == REG_BR_PROB)
337 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
338 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
339 XEXP (XEXP (note, 0), 1)
340 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
343 /* Dump information about the branch prediction to the output file. */
345 static void
346 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
347 basic_block bb, int used)
349 edge e;
350 edge_iterator ei;
352 if (!file)
353 return;
355 FOR_EACH_EDGE (e, ei, bb->succs)
356 if (! (e->flags & EDGE_FALLTHRU))
357 break;
359 fprintf (file, " %s heuristics%s: %.1f%%",
360 predictor_info[predictor].name,
361 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
363 if (bb->count)
365 fprintf (file, " exec ");
366 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
367 if (e)
369 fprintf (file, " hit ");
370 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
371 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
375 fprintf (file, "\n");
378 /* We can not predict the probabilities of outgoing edges of bb. Set them
379 evenly and hope for the best. */
380 static void
381 set_even_probabilities (basic_block bb)
383 int nedges = 0;
384 edge e;
385 edge_iterator ei;
387 FOR_EACH_EDGE (e, ei, bb->succs)
388 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
389 nedges ++;
390 FOR_EACH_EDGE (e, ei, bb->succs)
391 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
392 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
393 else
394 e->probability = 0;
397 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
398 note if not already present. Remove now useless REG_BR_PRED notes. */
400 static void
401 combine_predictions_for_insn (rtx insn, basic_block bb)
403 rtx prob_note;
404 rtx *pnote;
405 rtx note;
406 int best_probability = PROB_EVEN;
407 int best_predictor = END_PREDICTORS;
408 int combined_probability = REG_BR_PROB_BASE / 2;
409 int d;
410 bool first_match = false;
411 bool found = false;
413 if (!can_predict_insn_p (insn))
415 set_even_probabilities (bb);
416 return;
419 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
420 pnote = &REG_NOTES (insn);
421 if (dump_file)
422 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
423 bb->index);
425 /* We implement "first match" heuristics and use probability guessed
426 by predictor with smallest index. */
427 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
428 if (REG_NOTE_KIND (note) == REG_BR_PRED)
430 int predictor = INTVAL (XEXP (XEXP (note, 0), 0));
431 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
433 found = true;
434 if (best_predictor > predictor)
435 best_probability = probability, best_predictor = predictor;
437 d = (combined_probability * probability
438 + (REG_BR_PROB_BASE - combined_probability)
439 * (REG_BR_PROB_BASE - probability));
441 /* Use FP math to avoid overflows of 32bit integers. */
442 if (d == 0)
443 /* If one probability is 0% and one 100%, avoid division by zero. */
444 combined_probability = REG_BR_PROB_BASE / 2;
445 else
446 combined_probability = (((double) combined_probability) * probability
447 * REG_BR_PROB_BASE / d + 0.5);
450 /* Decide which heuristic to use. In case we didn't match anything,
451 use no_prediction heuristic, in case we did match, use either
452 first match or Dempster-Shaffer theory depending on the flags. */
454 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
455 first_match = true;
457 if (!found)
458 dump_prediction (dump_file, PRED_NO_PREDICTION,
459 combined_probability, bb, true);
460 else
462 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
463 bb, !first_match);
464 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
465 bb, first_match);
468 if (first_match)
469 combined_probability = best_probability;
470 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
472 while (*pnote)
474 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
476 int predictor = INTVAL (XEXP (XEXP (*pnote, 0), 0));
477 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
479 dump_prediction (dump_file, predictor, probability, bb,
480 !first_match || best_predictor == predictor);
481 *pnote = XEXP (*pnote, 1);
483 else
484 pnote = &XEXP (*pnote, 1);
487 if (!prob_note)
489 REG_NOTES (insn)
490 = gen_rtx_EXPR_LIST (REG_BR_PROB,
491 GEN_INT (combined_probability), REG_NOTES (insn));
493 /* Save the prediction into CFG in case we are seeing non-degenerated
494 conditional jump. */
495 if (!single_succ_p (bb))
497 BRANCH_EDGE (bb)->probability = combined_probability;
498 FALLTHRU_EDGE (bb)->probability
499 = REG_BR_PROB_BASE - combined_probability;
502 else if (!single_succ_p (bb))
504 int prob = INTVAL (XEXP (prob_note, 0));
506 BRANCH_EDGE (bb)->probability = prob;
507 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
509 else
510 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
513 /* Combine predictions into single probability and store them into CFG.
514 Remove now useless prediction entries. */
516 static void
517 combine_predictions_for_bb (basic_block bb)
519 int best_probability = PROB_EVEN;
520 int best_predictor = END_PREDICTORS;
521 int combined_probability = REG_BR_PROB_BASE / 2;
522 int d;
523 bool first_match = false;
524 bool found = false;
525 struct edge_prediction *pred;
526 int nedges = 0;
527 edge e, first = NULL, second = NULL;
528 edge_iterator ei;
530 FOR_EACH_EDGE (e, ei, bb->succs)
531 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
533 nedges ++;
534 if (first && !second)
535 second = e;
536 if (!first)
537 first = e;
540 /* When there is no successor or only one choice, prediction is easy.
542 We are lazy for now and predict only basic blocks with two outgoing
543 edges. It is possible to predict generic case too, but we have to
544 ignore first match heuristics and do more involved combining. Implement
545 this later. */
546 if (nedges != 2)
548 if (!bb->count)
549 set_even_probabilities (bb);
550 bb->predictions = NULL;
551 if (dump_file)
552 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
553 nedges, bb->index);
554 return;
557 if (dump_file)
558 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
560 /* We implement "first match" heuristics and use probability guessed
561 by predictor with smallest index. */
562 for (pred = bb->predictions; pred; pred = pred->ep_next)
564 int predictor = pred->ep_predictor;
565 int probability = pred->ep_probability;
567 if (pred->ep_edge != first)
568 probability = REG_BR_PROB_BASE - probability;
570 found = true;
571 if (best_predictor > predictor)
572 best_probability = probability, best_predictor = predictor;
574 d = (combined_probability * probability
575 + (REG_BR_PROB_BASE - combined_probability)
576 * (REG_BR_PROB_BASE - probability));
578 /* Use FP math to avoid overflows of 32bit integers. */
579 if (d == 0)
580 /* If one probability is 0% and one 100%, avoid division by zero. */
581 combined_probability = REG_BR_PROB_BASE / 2;
582 else
583 combined_probability = (((double) combined_probability) * probability
584 * REG_BR_PROB_BASE / d + 0.5);
587 /* Decide which heuristic to use. In case we didn't match anything,
588 use no_prediction heuristic, in case we did match, use either
589 first match or Dempster-Shaffer theory depending on the flags. */
591 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
592 first_match = true;
594 if (!found)
595 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
596 else
598 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
599 !first_match);
600 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
601 first_match);
604 if (first_match)
605 combined_probability = best_probability;
606 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
608 for (pred = bb->predictions; pred; pred = pred->ep_next)
610 int predictor = pred->ep_predictor;
611 int probability = pred->ep_probability;
613 if (pred->ep_edge != EDGE_SUCC (bb, 0))
614 probability = REG_BR_PROB_BASE - probability;
615 dump_prediction (dump_file, predictor, probability, bb,
616 !first_match || best_predictor == predictor);
618 bb->predictions = NULL;
620 if (!bb->count)
622 first->probability = combined_probability;
623 second->probability = REG_BR_PROB_BASE - combined_probability;
627 /* Predict edge probabilities by exploiting loop structure. */
629 static void
630 predict_loops (void)
632 loop_iterator li;
633 struct loop *loop;
635 scev_initialize ();
637 /* Try to predict out blocks in a loop that are not part of a
638 natural loop. */
639 FOR_EACH_LOOP (li, loop, 0)
641 basic_block bb, *bbs;
642 unsigned j, n_exits;
643 VEC (edge, heap) *exits;
644 struct tree_niter_desc niter_desc;
645 edge ex;
647 exits = get_loop_exit_edges (loop);
648 n_exits = VEC_length (edge, exits);
650 for (j = 0; VEC_iterate (edge, exits, j, ex); j++)
652 tree niter = NULL;
654 if (number_of_iterations_exit (loop, ex, &niter_desc, false))
655 niter = niter_desc.niter;
656 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
657 niter = loop_niter_by_eval (loop, ex);
659 if (TREE_CODE (niter) == INTEGER_CST)
661 int probability;
662 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
663 if (host_integerp (niter, 1)
664 && compare_tree_int (niter, max-1) == -1)
666 HOST_WIDE_INT nitercst = tree_low_cst (niter, 1) + 1;
667 probability = ((REG_BR_PROB_BASE + nitercst / 2)
668 / nitercst);
670 else
671 probability = ((REG_BR_PROB_BASE + max / 2) / max);
673 predict_edge (ex, PRED_LOOP_ITERATIONS, probability);
676 VEC_free (edge, heap, exits);
678 bbs = get_loop_body (loop);
680 for (j = 0; j < loop->num_nodes; j++)
682 int header_found = 0;
683 edge e;
684 edge_iterator ei;
686 bb = bbs[j];
688 /* Bypass loop heuristics on continue statement. These
689 statements construct loops via "non-loop" constructs
690 in the source language and are better to be handled
691 separately. */
692 if (predicted_by_p (bb, PRED_CONTINUE))
693 continue;
695 /* Loop branch heuristics - predict an edge back to a
696 loop's head as taken. */
697 if (bb == loop->latch)
699 e = find_edge (loop->latch, loop->header);
700 if (e)
702 header_found = 1;
703 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
707 /* Loop exit heuristics - predict an edge exiting the loop if the
708 conditional has no loop header successors as not taken. */
709 if (!header_found)
711 /* For loop with many exits we don't want to predict all exits
712 with the pretty large probability, because if all exits are
713 considered in row, the loop would be predicted to iterate
714 almost never. The code to divide probability by number of
715 exits is very rough. It should compute the number of exits
716 taken in each patch through function (not the overall number
717 of exits that might be a lot higher for loops with wide switch
718 statements in them) and compute n-th square root.
720 We limit the minimal probability by 2% to avoid
721 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
722 as this was causing regression in perl benchmark containing such
723 a wide loop. */
725 int probability = ((REG_BR_PROB_BASE
726 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
727 / n_exits);
728 if (probability < HITRATE (2))
729 probability = HITRATE (2);
730 FOR_EACH_EDGE (e, ei, bb->succs)
731 if (e->dest->index < NUM_FIXED_BLOCKS
732 || !flow_bb_inside_loop_p (loop, e->dest))
733 predict_edge (e, PRED_LOOP_EXIT, probability);
737 /* Free basic blocks from get_loop_body. */
738 free (bbs);
741 scev_finalize ();
744 /* Attempt to predict probabilities of BB outgoing edges using local
745 properties. */
746 static void
747 bb_estimate_probability_locally (basic_block bb)
749 rtx last_insn = BB_END (bb);
750 rtx cond;
752 if (! can_predict_insn_p (last_insn))
753 return;
754 cond = get_condition (last_insn, NULL, false, false);
755 if (! cond)
756 return;
758 /* Try "pointer heuristic."
759 A comparison ptr == 0 is predicted as false.
760 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
761 if (COMPARISON_P (cond)
762 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
763 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
765 if (GET_CODE (cond) == EQ)
766 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
767 else if (GET_CODE (cond) == NE)
768 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
770 else
772 /* Try "opcode heuristic."
773 EQ tests are usually false and NE tests are usually true. Also,
774 most quantities are positive, so we can make the appropriate guesses
775 about signed comparisons against zero. */
776 switch (GET_CODE (cond))
778 case CONST_INT:
779 /* Unconditional branch. */
780 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
781 cond == const0_rtx ? NOT_TAKEN : TAKEN);
782 break;
784 case EQ:
785 case UNEQ:
786 /* Floating point comparisons appears to behave in a very
787 unpredictable way because of special role of = tests in
788 FP code. */
789 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
791 /* Comparisons with 0 are often used for booleans and there is
792 nothing useful to predict about them. */
793 else if (XEXP (cond, 1) == const0_rtx
794 || XEXP (cond, 0) == const0_rtx)
796 else
797 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
798 break;
800 case NE:
801 case LTGT:
802 /* Floating point comparisons appears to behave in a very
803 unpredictable way because of special role of = tests in
804 FP code. */
805 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
807 /* Comparisons with 0 are often used for booleans and there is
808 nothing useful to predict about them. */
809 else if (XEXP (cond, 1) == const0_rtx
810 || XEXP (cond, 0) == const0_rtx)
812 else
813 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
814 break;
816 case ORDERED:
817 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
818 break;
820 case UNORDERED:
821 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
822 break;
824 case LE:
825 case LT:
826 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
827 || XEXP (cond, 1) == constm1_rtx)
828 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
829 break;
831 case GE:
832 case GT:
833 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
834 || XEXP (cond, 1) == constm1_rtx)
835 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
836 break;
838 default:
839 break;
843 /* Set edge->probability for each successor edge of BB. */
844 void
845 guess_outgoing_edge_probabilities (basic_block bb)
847 bb_estimate_probability_locally (bb);
848 combine_predictions_for_insn (BB_END (bb), bb);
851 /* Return constant EXPR will likely have at execution time, NULL if unknown.
852 The function is used by builtin_expect branch predictor so the evidence
853 must come from this construct and additional possible constant folding.
855 We may want to implement more involved value guess (such as value range
856 propagation based prediction), but such tricks shall go to new
857 implementation. */
859 static tree
860 expr_expected_value (tree expr, bitmap visited)
862 if (TREE_CONSTANT (expr))
863 return expr;
864 else if (TREE_CODE (expr) == SSA_NAME)
866 tree def = SSA_NAME_DEF_STMT (expr);
868 /* If we were already here, break the infinite cycle. */
869 if (bitmap_bit_p (visited, SSA_NAME_VERSION (expr)))
870 return NULL;
871 bitmap_set_bit (visited, SSA_NAME_VERSION (expr));
873 if (TREE_CODE (def) == PHI_NODE)
875 /* All the arguments of the PHI node must have the same constant
876 length. */
877 int i;
878 tree val = NULL, new_val;
880 for (i = 0; i < PHI_NUM_ARGS (def); i++)
882 tree arg = PHI_ARG_DEF (def, i);
884 /* If this PHI has itself as an argument, we cannot
885 determine the string length of this argument. However,
886 if we can find an expected constant value for the other
887 PHI args then we can still be sure that this is
888 likely a constant. So be optimistic and just
889 continue with the next argument. */
890 if (arg == PHI_RESULT (def))
891 continue;
893 new_val = expr_expected_value (arg, visited);
894 if (!new_val)
895 return NULL;
896 if (!val)
897 val = new_val;
898 else if (!operand_equal_p (val, new_val, false))
899 return NULL;
901 return val;
903 if (TREE_CODE (def) != GIMPLE_MODIFY_STMT
904 || GIMPLE_STMT_OPERAND (def, 0) != expr)
905 return NULL;
906 return expr_expected_value (GIMPLE_STMT_OPERAND (def, 1), visited);
908 else if (TREE_CODE (expr) == CALL_EXPR)
910 tree decl = get_callee_fndecl (expr);
911 if (!decl)
912 return NULL;
913 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
914 && DECL_FUNCTION_CODE (decl) == BUILT_IN_EXPECT)
916 tree val;
918 if (call_expr_nargs (expr) != 2)
919 return NULL;
920 val = CALL_EXPR_ARG (expr, 0);
921 if (TREE_CONSTANT (val))
922 return val;
923 return CALL_EXPR_ARG (expr, 1);
926 if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
928 tree op0, op1, res;
929 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
930 if (!op0)
931 return NULL;
932 op1 = expr_expected_value (TREE_OPERAND (expr, 1), visited);
933 if (!op1)
934 return NULL;
935 res = fold_build2 (TREE_CODE (expr), TREE_TYPE (expr), op0, op1);
936 if (TREE_CONSTANT (res))
937 return res;
938 return NULL;
940 if (UNARY_CLASS_P (expr))
942 tree op0, res;
943 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
944 if (!op0)
945 return NULL;
946 res = fold_build1 (TREE_CODE (expr), TREE_TYPE (expr), op0);
947 if (TREE_CONSTANT (res))
948 return res;
949 return NULL;
951 return NULL;
954 /* Get rid of all builtin_expect calls we no longer need. */
955 static void
956 strip_builtin_expect (void)
958 basic_block bb;
959 FOR_EACH_BB (bb)
961 block_stmt_iterator bi;
962 for (bi = bsi_start (bb); !bsi_end_p (bi); bsi_next (&bi))
964 tree stmt = bsi_stmt (bi);
965 tree fndecl;
966 tree call;
968 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
969 && (call = GIMPLE_STMT_OPERAND (stmt, 1))
970 && TREE_CODE (call) == CALL_EXPR
971 && (fndecl = get_callee_fndecl (call))
972 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
973 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
974 && call_expr_nargs (call) == 2)
976 GIMPLE_STMT_OPERAND (stmt, 1) = CALL_EXPR_ARG (call, 0);
977 update_stmt (stmt);
983 /* Predict using opcode of the last statement in basic block. */
984 static void
985 tree_predict_by_opcode (basic_block bb)
987 tree stmt = last_stmt (bb);
988 edge then_edge;
989 tree cond;
990 tree op0;
991 tree type;
992 tree val;
993 bitmap visited;
994 edge_iterator ei;
996 if (!stmt || TREE_CODE (stmt) != COND_EXPR)
997 return;
998 FOR_EACH_EDGE (then_edge, ei, bb->succs)
999 if (then_edge->flags & EDGE_TRUE_VALUE)
1000 break;
1001 cond = TREE_OPERAND (stmt, 0);
1002 if (!COMPARISON_CLASS_P (cond))
1003 return;
1004 op0 = TREE_OPERAND (cond, 0);
1005 type = TREE_TYPE (op0);
1006 visited = BITMAP_ALLOC (NULL);
1007 val = expr_expected_value (cond, visited);
1008 BITMAP_FREE (visited);
1009 if (val)
1011 if (integer_zerop (val))
1012 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1013 else
1014 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1015 return;
1017 /* Try "pointer heuristic."
1018 A comparison ptr == 0 is predicted as false.
1019 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1020 if (POINTER_TYPE_P (type))
1022 if (TREE_CODE (cond) == EQ_EXPR)
1023 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1024 else if (TREE_CODE (cond) == NE_EXPR)
1025 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1027 else
1029 /* Try "opcode heuristic."
1030 EQ tests are usually false and NE tests are usually true. Also,
1031 most quantities are positive, so we can make the appropriate guesses
1032 about signed comparisons against zero. */
1033 switch (TREE_CODE (cond))
1035 case EQ_EXPR:
1036 case UNEQ_EXPR:
1037 /* Floating point comparisons appears to behave in a very
1038 unpredictable way because of special role of = tests in
1039 FP code. */
1040 if (FLOAT_TYPE_P (type))
1042 /* Comparisons with 0 are often used for booleans and there is
1043 nothing useful to predict about them. */
1044 else if (integer_zerop (op0)
1045 || integer_zerop (TREE_OPERAND (cond, 1)))
1047 else
1048 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1049 break;
1051 case NE_EXPR:
1052 case LTGT_EXPR:
1053 /* Floating point comparisons appears to behave in a very
1054 unpredictable way because of special role of = tests in
1055 FP code. */
1056 if (FLOAT_TYPE_P (type))
1058 /* Comparisons with 0 are often used for booleans and there is
1059 nothing useful to predict about them. */
1060 else if (integer_zerop (op0)
1061 || integer_zerop (TREE_OPERAND (cond, 1)))
1063 else
1064 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1065 break;
1067 case ORDERED_EXPR:
1068 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1069 break;
1071 case UNORDERED_EXPR:
1072 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1073 break;
1075 case LE_EXPR:
1076 case LT_EXPR:
1077 if (integer_zerop (TREE_OPERAND (cond, 1))
1078 || integer_onep (TREE_OPERAND (cond, 1))
1079 || integer_all_onesp (TREE_OPERAND (cond, 1))
1080 || real_zerop (TREE_OPERAND (cond, 1))
1081 || real_onep (TREE_OPERAND (cond, 1))
1082 || real_minus_onep (TREE_OPERAND (cond, 1)))
1083 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1084 break;
1086 case GE_EXPR:
1087 case GT_EXPR:
1088 if (integer_zerop (TREE_OPERAND (cond, 1))
1089 || integer_onep (TREE_OPERAND (cond, 1))
1090 || integer_all_onesp (TREE_OPERAND (cond, 1))
1091 || real_zerop (TREE_OPERAND (cond, 1))
1092 || real_onep (TREE_OPERAND (cond, 1))
1093 || real_minus_onep (TREE_OPERAND (cond, 1)))
1094 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1095 break;
1097 default:
1098 break;
1102 /* Try to guess whether the value of return means error code. */
1103 static enum br_predictor
1104 return_prediction (tree val, enum prediction *prediction)
1106 /* VOID. */
1107 if (!val)
1108 return PRED_NO_PREDICTION;
1109 /* Different heuristics for pointers and scalars. */
1110 if (POINTER_TYPE_P (TREE_TYPE (val)))
1112 /* NULL is usually not returned. */
1113 if (integer_zerop (val))
1115 *prediction = NOT_TAKEN;
1116 return PRED_NULL_RETURN;
1119 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
1121 /* Negative return values are often used to indicate
1122 errors. */
1123 if (TREE_CODE (val) == INTEGER_CST
1124 && tree_int_cst_sgn (val) < 0)
1126 *prediction = NOT_TAKEN;
1127 return PRED_NEGATIVE_RETURN;
1129 /* Constant return values seems to be commonly taken.
1130 Zero/one often represent booleans so exclude them from the
1131 heuristics. */
1132 if (TREE_CONSTANT (val)
1133 && (!integer_zerop (val) && !integer_onep (val)))
1135 *prediction = TAKEN;
1136 return PRED_NEGATIVE_RETURN;
1139 return PRED_NO_PREDICTION;
1142 /* Find the basic block with return expression and look up for possible
1143 return value trying to apply RETURN_PREDICTION heuristics. */
1144 static void
1145 apply_return_prediction (int *heads)
1147 tree return_stmt = NULL;
1148 tree return_val;
1149 edge e;
1150 tree phi;
1151 int phi_num_args, i;
1152 enum br_predictor pred;
1153 enum prediction direction;
1154 edge_iterator ei;
1156 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1158 return_stmt = last_stmt (e->src);
1159 if (TREE_CODE (return_stmt) == RETURN_EXPR)
1160 break;
1162 if (!e)
1163 return;
1164 return_val = TREE_OPERAND (return_stmt, 0);
1165 if (!return_val)
1166 return;
1167 if (TREE_CODE (return_val) == GIMPLE_MODIFY_STMT)
1168 return_val = GIMPLE_STMT_OPERAND (return_val, 1);
1169 if (TREE_CODE (return_val) != SSA_NAME
1170 || !SSA_NAME_DEF_STMT (return_val)
1171 || TREE_CODE (SSA_NAME_DEF_STMT (return_val)) != PHI_NODE)
1172 return;
1173 for (phi = SSA_NAME_DEF_STMT (return_val); phi; phi = PHI_CHAIN (phi))
1174 if (PHI_RESULT (phi) == return_val)
1175 break;
1176 if (!phi)
1177 return;
1178 phi_num_args = PHI_NUM_ARGS (phi);
1179 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
1181 /* Avoid the degenerate case where all return values form the function
1182 belongs to same category (ie they are all positive constants)
1183 so we can hardly say something about them. */
1184 for (i = 1; i < phi_num_args; i++)
1185 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
1186 break;
1187 if (i != phi_num_args)
1188 for (i = 0; i < phi_num_args; i++)
1190 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
1191 if (pred != PRED_NO_PREDICTION)
1192 predict_paths_leading_to (PHI_ARG_EDGE (phi, i)->src, heads, pred,
1193 direction);
1197 /* Look for basic block that contains unlikely to happen events
1198 (such as noreturn calls) and mark all paths leading to execution
1199 of this basic blocks as unlikely. */
1201 static void
1202 tree_bb_level_predictions (void)
1204 basic_block bb;
1205 int *heads;
1207 heads = XCNEWVEC (int, last_basic_block);
1208 heads[ENTRY_BLOCK_PTR->next_bb->index] = last_basic_block;
1210 apply_return_prediction (heads);
1212 FOR_EACH_BB (bb)
1214 block_stmt_iterator bsi = bsi_last (bb);
1216 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1218 tree stmt = bsi_stmt (bsi);
1219 switch (TREE_CODE (stmt))
1221 case GIMPLE_MODIFY_STMT:
1222 if (TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == CALL_EXPR)
1224 stmt = GIMPLE_STMT_OPERAND (stmt, 1);
1225 goto call_expr;
1227 break;
1228 case CALL_EXPR:
1229 call_expr:;
1230 if (call_expr_flags (stmt) & ECF_NORETURN)
1231 predict_paths_leading_to (bb, heads, PRED_NORETURN,
1232 NOT_TAKEN);
1233 break;
1234 default:
1235 break;
1240 free (heads);
1243 /* Predict branch probabilities and estimate profile of the tree CFG. */
1244 static unsigned int
1245 tree_estimate_probability (void)
1247 basic_block bb;
1249 loop_optimizer_init (0);
1250 if (current_loops && dump_file && (dump_flags & TDF_DETAILS))
1251 flow_loops_dump (dump_file, NULL, 0);
1253 add_noreturn_fake_exit_edges ();
1254 connect_infinite_loops_to_exit ();
1255 calculate_dominance_info (CDI_DOMINATORS);
1256 calculate_dominance_info (CDI_POST_DOMINATORS);
1258 tree_bb_level_predictions ();
1260 mark_irreducible_loops ();
1261 if (current_loops)
1262 predict_loops ();
1264 FOR_EACH_BB (bb)
1266 edge e;
1267 edge_iterator ei;
1269 FOR_EACH_EDGE (e, ei, bb->succs)
1271 /* Predict early returns to be probable, as we've already taken
1272 care for error returns and other cases are often used for
1273 fast paths through function. */
1274 if (e->dest == EXIT_BLOCK_PTR
1275 && TREE_CODE (last_stmt (bb)) == RETURN_EXPR
1276 && !single_pred_p (bb))
1278 edge e1;
1279 edge_iterator ei1;
1281 FOR_EACH_EDGE (e1, ei1, bb->preds)
1282 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
1283 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
1284 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN)
1285 && !last_basic_block_p (e1->src))
1286 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1289 /* Look for block we are guarding (ie we dominate it,
1290 but it doesn't postdominate us). */
1291 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
1292 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
1293 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
1295 block_stmt_iterator bi;
1297 /* The call heuristic claims that a guarded function call
1298 is improbable. This is because such calls are often used
1299 to signal exceptional situations such as printing error
1300 messages. */
1301 for (bi = bsi_start (e->dest); !bsi_end_p (bi);
1302 bsi_next (&bi))
1304 tree stmt = bsi_stmt (bi);
1305 if ((TREE_CODE (stmt) == CALL_EXPR
1306 || (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
1307 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1))
1308 == CALL_EXPR))
1309 /* Constant and pure calls are hardly used to signalize
1310 something exceptional. */
1311 && TREE_SIDE_EFFECTS (stmt))
1313 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
1314 break;
1319 tree_predict_by_opcode (bb);
1321 FOR_EACH_BB (bb)
1322 combine_predictions_for_bb (bb);
1324 strip_builtin_expect ();
1325 estimate_bb_frequencies ();
1326 free_dominance_info (CDI_POST_DOMINATORS);
1327 remove_fake_exit_edges ();
1328 loop_optimizer_finalize ();
1329 if (dump_file && (dump_flags & TDF_DETAILS))
1330 dump_tree_cfg (dump_file, dump_flags);
1331 if (profile_status == PROFILE_ABSENT)
1332 profile_status = PROFILE_GUESSED;
1333 return 0;
1336 /* Check whether this is the last basic block of function. Commonly
1337 there is one extra common cleanup block. */
1338 static bool
1339 last_basic_block_p (basic_block bb)
1341 if (bb == EXIT_BLOCK_PTR)
1342 return false;
1344 return (bb->next_bb == EXIT_BLOCK_PTR
1345 || (bb->next_bb->next_bb == EXIT_BLOCK_PTR
1346 && single_succ_p (bb)
1347 && single_succ (bb)->next_bb == EXIT_BLOCK_PTR));
1350 /* Sets branch probabilities according to PREDiction and
1351 FLAGS. HEADS[bb->index] should be index of basic block in that we
1352 need to alter branch predictions (i.e. the first of our dominators
1353 such that we do not post-dominate it) (but we fill this information
1354 on demand, so -1 may be there in case this was not needed yet). */
1356 static void
1357 predict_paths_leading_to (basic_block bb, int *heads, enum br_predictor pred,
1358 enum prediction taken)
1360 edge e;
1361 edge_iterator ei;
1362 int y;
1364 if (heads[bb->index] == ENTRY_BLOCK)
1366 /* This is first time we need this field in heads array; so
1367 find first dominator that we do not post-dominate (we are
1368 using already known members of heads array). */
1369 basic_block ai = bb;
1370 basic_block next_ai = get_immediate_dominator (CDI_DOMINATORS, bb);
1371 int head;
1373 while (heads[next_ai->index] == ENTRY_BLOCK)
1375 if (!dominated_by_p (CDI_POST_DOMINATORS, next_ai, bb))
1376 break;
1377 heads[next_ai->index] = ai->index;
1378 ai = next_ai;
1379 next_ai = get_immediate_dominator (CDI_DOMINATORS, next_ai);
1381 if (!dominated_by_p (CDI_POST_DOMINATORS, next_ai, bb))
1382 head = next_ai->index;
1383 else
1384 head = heads[next_ai->index];
1385 while (next_ai != bb)
1387 next_ai = ai;
1388 ai = BASIC_BLOCK (heads[ai->index]);
1389 heads[next_ai->index] = head;
1392 y = heads[bb->index];
1394 /* Now find the edge that leads to our branch and aply the prediction. */
1396 if (y == last_basic_block)
1397 return;
1398 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (y)->succs)
1399 if (e->dest->index >= NUM_FIXED_BLOCKS
1400 && dominated_by_p (CDI_POST_DOMINATORS, e->dest, bb))
1401 predict_edge_def (e, pred, taken);
1404 /* This is used to carry information about basic blocks. It is
1405 attached to the AUX field of the standard CFG block. */
1407 typedef struct block_info_def
1409 /* Estimated frequency of execution of basic_block. */
1410 sreal frequency;
1412 /* To keep queue of basic blocks to process. */
1413 basic_block next;
1415 /* Number of predecessors we need to visit first. */
1416 int npredecessors;
1417 } *block_info;
1419 /* Similar information for edges. */
1420 typedef struct edge_info_def
1422 /* In case edge is a loopback edge, the probability edge will be reached
1423 in case header is. Estimated number of iterations of the loop can be
1424 then computed as 1 / (1 - back_edge_prob). */
1425 sreal back_edge_prob;
1426 /* True if the edge is a loopback edge in the natural loop. */
1427 unsigned int back_edge:1;
1428 } *edge_info;
1430 #define BLOCK_INFO(B) ((block_info) (B)->aux)
1431 #define EDGE_INFO(E) ((edge_info) (E)->aux)
1433 /* Helper function for estimate_bb_frequencies.
1434 Propagate the frequencies in blocks marked in
1435 TOVISIT, starting in HEAD. */
1437 static void
1438 propagate_freq (basic_block head, bitmap tovisit)
1440 basic_block bb;
1441 basic_block last;
1442 unsigned i;
1443 edge e;
1444 basic_block nextbb;
1445 bitmap_iterator bi;
1447 /* For each basic block we need to visit count number of his predecessors
1448 we need to visit first. */
1449 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
1451 edge_iterator ei;
1452 int count = 0;
1454 /* The outermost "loop" includes the exit block, which we can not
1455 look up via BASIC_BLOCK. Detect this and use EXIT_BLOCK_PTR
1456 directly. Do the same for the entry block. */
1457 bb = BASIC_BLOCK (i);
1459 FOR_EACH_EDGE (e, ei, bb->preds)
1461 bool visit = bitmap_bit_p (tovisit, e->src->index);
1463 if (visit && !(e->flags & EDGE_DFS_BACK))
1464 count++;
1465 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
1466 fprintf (dump_file,
1467 "Irreducible region hit, ignoring edge to %i->%i\n",
1468 e->src->index, bb->index);
1470 BLOCK_INFO (bb)->npredecessors = count;
1473 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
1474 last = head;
1475 for (bb = head; bb; bb = nextbb)
1477 edge_iterator ei;
1478 sreal cyclic_probability, frequency;
1480 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
1481 memcpy (&frequency, &real_zero, sizeof (real_zero));
1483 nextbb = BLOCK_INFO (bb)->next;
1484 BLOCK_INFO (bb)->next = NULL;
1486 /* Compute frequency of basic block. */
1487 if (bb != head)
1489 #ifdef ENABLE_CHECKING
1490 FOR_EACH_EDGE (e, ei, bb->preds)
1491 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
1492 || (e->flags & EDGE_DFS_BACK));
1493 #endif
1495 FOR_EACH_EDGE (e, ei, bb->preds)
1496 if (EDGE_INFO (e)->back_edge)
1498 sreal_add (&cyclic_probability, &cyclic_probability,
1499 &EDGE_INFO (e)->back_edge_prob);
1501 else if (!(e->flags & EDGE_DFS_BACK))
1503 sreal tmp;
1505 /* frequency += (e->probability
1506 * BLOCK_INFO (e->src)->frequency /
1507 REG_BR_PROB_BASE); */
1509 sreal_init (&tmp, e->probability, 0);
1510 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
1511 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
1512 sreal_add (&frequency, &frequency, &tmp);
1515 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
1517 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
1518 sizeof (frequency));
1520 else
1522 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
1524 memcpy (&cyclic_probability, &real_almost_one,
1525 sizeof (real_almost_one));
1528 /* BLOCK_INFO (bb)->frequency = frequency
1529 / (1 - cyclic_probability) */
1531 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
1532 sreal_div (&BLOCK_INFO (bb)->frequency,
1533 &frequency, &cyclic_probability);
1537 bitmap_clear_bit (tovisit, bb->index);
1539 e = find_edge (bb, head);
1540 if (e)
1542 sreal tmp;
1544 /* EDGE_INFO (e)->back_edge_prob
1545 = ((e->probability * BLOCK_INFO (bb)->frequency)
1546 / REG_BR_PROB_BASE); */
1548 sreal_init (&tmp, e->probability, 0);
1549 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
1550 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1551 &tmp, &real_inv_br_prob_base);
1554 /* Propagate to successor blocks. */
1555 FOR_EACH_EDGE (e, ei, bb->succs)
1556 if (!(e->flags & EDGE_DFS_BACK)
1557 && BLOCK_INFO (e->dest)->npredecessors)
1559 BLOCK_INFO (e->dest)->npredecessors--;
1560 if (!BLOCK_INFO (e->dest)->npredecessors)
1562 if (!nextbb)
1563 nextbb = e->dest;
1564 else
1565 BLOCK_INFO (last)->next = e->dest;
1567 last = e->dest;
1573 /* Estimate probabilities of loopback edges in loops at same nest level. */
1575 static void
1576 estimate_loops_at_level (struct loop *first_loop)
1578 struct loop *loop;
1580 for (loop = first_loop; loop; loop = loop->next)
1582 edge e;
1583 basic_block *bbs;
1584 unsigned i;
1585 bitmap tovisit = BITMAP_ALLOC (NULL);
1587 estimate_loops_at_level (loop->inner);
1589 /* Find current loop back edge and mark it. */
1590 e = loop_latch_edge (loop);
1591 EDGE_INFO (e)->back_edge = 1;
1593 bbs = get_loop_body (loop);
1594 for (i = 0; i < loop->num_nodes; i++)
1595 bitmap_set_bit (tovisit, bbs[i]->index);
1596 free (bbs);
1597 propagate_freq (loop->header, tovisit);
1598 BITMAP_FREE (tovisit);
1602 /* Propagates frequencies through structure of loops. */
1604 static void
1605 estimate_loops (void)
1607 bitmap tovisit = BITMAP_ALLOC (NULL);
1608 basic_block bb;
1610 /* Start by estimating the frequencies in the loops. */
1611 if (current_loops)
1612 estimate_loops_at_level (current_loops->tree_root->inner);
1614 /* Now propagate the frequencies through all the blocks. */
1615 FOR_ALL_BB (bb)
1617 bitmap_set_bit (tovisit, bb->index);
1619 propagate_freq (ENTRY_BLOCK_PTR, tovisit);
1620 BITMAP_FREE (tovisit);
1623 /* Convert counts measured by profile driven feedback to frequencies.
1624 Return nonzero iff there was any nonzero execution count. */
1627 counts_to_freqs (void)
1629 gcov_type count_max, true_count_max = 0;
1630 basic_block bb;
1632 FOR_EACH_BB (bb)
1633 true_count_max = MAX (bb->count, true_count_max);
1635 count_max = MAX (true_count_max, 1);
1636 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1637 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
1639 return true_count_max;
1642 /* Return true if function is likely to be expensive, so there is no point to
1643 optimize performance of prologue, epilogue or do inlining at the expense
1644 of code size growth. THRESHOLD is the limit of number of instructions
1645 function can execute at average to be still considered not expensive. */
1647 bool
1648 expensive_function_p (int threshold)
1650 unsigned int sum = 0;
1651 basic_block bb;
1652 unsigned int limit;
1654 /* We can not compute accurately for large thresholds due to scaled
1655 frequencies. */
1656 gcc_assert (threshold <= BB_FREQ_MAX);
1658 /* Frequencies are out of range. This either means that function contains
1659 internal loop executing more than BB_FREQ_MAX times or profile feedback
1660 is available and function has not been executed at all. */
1661 if (ENTRY_BLOCK_PTR->frequency == 0)
1662 return true;
1664 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
1665 limit = ENTRY_BLOCK_PTR->frequency * threshold;
1666 FOR_EACH_BB (bb)
1668 rtx insn;
1670 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
1671 insn = NEXT_INSN (insn))
1672 if (active_insn_p (insn))
1674 sum += bb->frequency;
1675 if (sum > limit)
1676 return true;
1680 return false;
1683 /* Estimate basic blocks frequency by given branch probabilities. */
1685 void
1686 estimate_bb_frequencies (void)
1688 basic_block bb;
1689 sreal freq_max;
1691 if (!flag_branch_probabilities || !counts_to_freqs ())
1693 static int real_values_initialized = 0;
1695 if (!real_values_initialized)
1697 real_values_initialized = 1;
1698 sreal_init (&real_zero, 0, 0);
1699 sreal_init (&real_one, 1, 0);
1700 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
1701 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
1702 sreal_init (&real_one_half, 1, -1);
1703 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
1704 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
1707 mark_dfs_back_edges ();
1709 single_succ_edge (ENTRY_BLOCK_PTR)->probability = REG_BR_PROB_BASE;
1711 /* Set up block info for each basic block. */
1712 alloc_aux_for_blocks (sizeof (struct block_info_def));
1713 alloc_aux_for_edges (sizeof (struct edge_info_def));
1714 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1716 edge e;
1717 edge_iterator ei;
1719 FOR_EACH_EDGE (e, ei, bb->succs)
1721 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
1722 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1723 &EDGE_INFO (e)->back_edge_prob,
1724 &real_inv_br_prob_base);
1728 /* First compute probabilities locally for each loop from innermost
1729 to outermost to examine probabilities for back edges. */
1730 estimate_loops ();
1732 memcpy (&freq_max, &real_zero, sizeof (real_zero));
1733 FOR_EACH_BB (bb)
1734 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
1735 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
1737 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
1738 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1740 sreal tmp;
1742 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
1743 sreal_add (&tmp, &tmp, &real_one_half);
1744 bb->frequency = sreal_to_int (&tmp);
1747 free_aux_for_blocks ();
1748 free_aux_for_edges ();
1750 compute_function_frequency ();
1751 if (flag_reorder_functions)
1752 choose_function_section ();
1755 /* Decide whether function is hot, cold or unlikely executed. */
1756 static void
1757 compute_function_frequency (void)
1759 basic_block bb;
1761 if (!profile_info || !flag_branch_probabilities)
1762 return;
1763 cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED;
1764 FOR_EACH_BB (bb)
1766 if (maybe_hot_bb_p (bb))
1768 cfun->function_frequency = FUNCTION_FREQUENCY_HOT;
1769 return;
1771 if (!probably_never_executed_bb_p (bb))
1772 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
1776 /* Choose appropriate section for the function. */
1777 static void
1778 choose_function_section (void)
1780 if (DECL_SECTION_NAME (current_function_decl)
1781 || !targetm.have_named_sections
1782 /* Theoretically we can split the gnu.linkonce text section too,
1783 but this requires more work as the frequency needs to match
1784 for all generated objects so we need to merge the frequency
1785 of all instances. For now just never set frequency for these. */
1786 || DECL_ONE_ONLY (current_function_decl))
1787 return;
1789 /* If we are doing the partitioning optimization, let the optimization
1790 choose the correct section into which to put things. */
1792 if (flag_reorder_blocks_and_partition)
1793 return;
1795 if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT)
1796 DECL_SECTION_NAME (current_function_decl) =
1797 build_string (strlen (HOT_TEXT_SECTION_NAME), HOT_TEXT_SECTION_NAME);
1798 if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
1799 DECL_SECTION_NAME (current_function_decl) =
1800 build_string (strlen (UNLIKELY_EXECUTED_TEXT_SECTION_NAME),
1801 UNLIKELY_EXECUTED_TEXT_SECTION_NAME);
1804 static bool
1805 gate_estimate_probability (void)
1807 return flag_guess_branch_prob;
1810 struct tree_opt_pass pass_profile =
1812 "profile", /* name */
1813 gate_estimate_probability, /* gate */
1814 tree_estimate_probability, /* execute */
1815 NULL, /* sub */
1816 NULL, /* next */
1817 0, /* static_pass_number */
1818 TV_BRANCH_PROB, /* tv_id */
1819 PROP_cfg, /* properties_required */
1820 0, /* properties_provided */
1821 0, /* properties_destroyed */
1822 0, /* todo_flags_start */
1823 TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */
1824 0 /* letter */