[PR67828] don't unswitch on default defs of non-parms
[official-gcc.git] / libsanitizer / tsan / tsan_rtl.cc
blobbf971b62da4c52728150b187769061a00bb1e645
1 //===-- tsan_rtl.cc -------------------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
9 //
10 // Main file (entry points) for the TSan run-time.
11 //===----------------------------------------------------------------------===//
13 #include "sanitizer_common/sanitizer_atomic.h"
14 #include "sanitizer_common/sanitizer_common.h"
15 #include "sanitizer_common/sanitizer_libc.h"
16 #include "sanitizer_common/sanitizer_stackdepot.h"
17 #include "sanitizer_common/sanitizer_placement_new.h"
18 #include "sanitizer_common/sanitizer_symbolizer.h"
19 #include "tsan_defs.h"
20 #include "tsan_platform.h"
21 #include "tsan_rtl.h"
22 #include "tsan_mman.h"
23 #include "tsan_suppressions.h"
24 #include "tsan_symbolize.h"
26 #ifdef __SSE3__
27 // <emmintrin.h> transitively includes <stdlib.h>,
28 // and it's prohibited to include std headers into tsan runtime.
29 // So we do this dirty trick.
30 #define _MM_MALLOC_H_INCLUDED
31 #define __MM_MALLOC_H
32 #include <emmintrin.h>
33 typedef __m128i m128;
34 #endif
36 volatile int __tsan_resumed = 0;
38 extern "C" void __tsan_resume() {
39 __tsan_resumed = 1;
42 namespace __tsan {
44 #ifndef TSAN_GO
45 THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(64);
46 #endif
47 static char ctx_placeholder[sizeof(Context)] ALIGNED(64);
48 Context *ctx;
50 // Can be overriden by a front-end.
51 #ifdef TSAN_EXTERNAL_HOOKS
52 bool OnFinalize(bool failed);
53 void OnInitialize();
54 #else
55 SANITIZER_INTERFACE_ATTRIBUTE
56 bool WEAK OnFinalize(bool failed) {
57 return failed;
59 SANITIZER_INTERFACE_ATTRIBUTE
60 void WEAK OnInitialize() {}
61 #endif
63 static char thread_registry_placeholder[sizeof(ThreadRegistry)];
65 static ThreadContextBase *CreateThreadContext(u32 tid) {
66 // Map thread trace when context is created.
67 MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event));
68 MapThreadTrace(GetThreadTraceHeader(tid), sizeof(Trace));
69 new(ThreadTrace(tid)) Trace();
70 void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext));
71 return new(mem) ThreadContext(tid);
74 #ifndef TSAN_GO
75 static const u32 kThreadQuarantineSize = 16;
76 #else
77 static const u32 kThreadQuarantineSize = 64;
78 #endif
80 Context::Context()
81 : initialized()
82 , report_mtx(MutexTypeReport, StatMtxReport)
83 , nreported()
84 , nmissed_expected()
85 , thread_registry(new(thread_registry_placeholder) ThreadRegistry(
86 CreateThreadContext, kMaxTid, kThreadQuarantineSize, kMaxTidReuse))
87 , racy_stacks(MBlockRacyStacks)
88 , racy_addresses(MBlockRacyAddresses)
89 , fired_suppressions(8) {
92 // The objects are allocated in TLS, so one may rely on zero-initialization.
93 ThreadState::ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
94 unsigned reuse_count,
95 uptr stk_addr, uptr stk_size,
96 uptr tls_addr, uptr tls_size)
97 : fast_state(tid, epoch)
98 // Do not touch these, rely on zero initialization,
99 // they may be accessed before the ctor.
100 // , ignore_reads_and_writes()
101 // , ignore_interceptors()
102 , clock(tid, reuse_count)
103 #ifndef TSAN_GO
104 , jmp_bufs(MBlockJmpBuf)
105 #endif
106 , tid(tid)
107 , unique_id(unique_id)
108 , stk_addr(stk_addr)
109 , stk_size(stk_size)
110 , tls_addr(tls_addr)
111 , tls_size(tls_size)
112 #ifndef TSAN_GO
113 , last_sleep_clock(tid)
114 #endif
118 static void MemoryProfiler(Context *ctx, fd_t fd, int i) {
119 uptr n_threads;
120 uptr n_running_threads;
121 ctx->thread_registry->GetNumberOfThreads(&n_threads, &n_running_threads);
122 InternalScopedBuffer<char> buf(4096);
123 WriteMemoryProfile(buf.data(), buf.size(), n_threads, n_running_threads);
124 internal_write(fd, buf.data(), internal_strlen(buf.data()));
127 static void BackgroundThread(void *arg) {
128 #ifndef TSAN_GO
129 // This is a non-initialized non-user thread, nothing to see here.
130 // We don't use ScopedIgnoreInterceptors, because we want ignores to be
131 // enabled even when the thread function exits (e.g. during pthread thread
132 // shutdown code).
133 cur_thread()->ignore_interceptors++;
134 #endif
135 const u64 kMs2Ns = 1000 * 1000;
137 fd_t mprof_fd = kInvalidFd;
138 if (flags()->profile_memory && flags()->profile_memory[0]) {
139 if (internal_strcmp(flags()->profile_memory, "stdout") == 0) {
140 mprof_fd = 1;
141 } else if (internal_strcmp(flags()->profile_memory, "stderr") == 0) {
142 mprof_fd = 2;
143 } else {
144 InternalScopedBuffer<char> filename(4096);
145 internal_snprintf(filename.data(), filename.size(), "%s.%d",
146 flags()->profile_memory, (int)internal_getpid());
147 uptr openrv = OpenFile(filename.data(), true);
148 if (internal_iserror(openrv)) {
149 Printf("ThreadSanitizer: failed to open memory profile file '%s'\n",
150 &filename[0]);
151 } else {
152 mprof_fd = openrv;
157 u64 last_flush = NanoTime();
158 uptr last_rss = 0;
159 for (int i = 0;
160 atomic_load(&ctx->stop_background_thread, memory_order_relaxed) == 0;
161 i++) {
162 SleepForMillis(100);
163 u64 now = NanoTime();
165 // Flush memory if requested.
166 if (flags()->flush_memory_ms > 0) {
167 if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) {
168 VPrintf(1, "ThreadSanitizer: periodic memory flush\n");
169 FlushShadowMemory();
170 last_flush = NanoTime();
173 // GetRSS can be expensive on huge programs, so don't do it every 100ms.
174 if (flags()->memory_limit_mb > 0) {
175 uptr rss = GetRSS();
176 uptr limit = uptr(flags()->memory_limit_mb) << 20;
177 VPrintf(1, "ThreadSanitizer: memory flush check"
178 " RSS=%llu LAST=%llu LIMIT=%llu\n",
179 (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20);
180 if (2 * rss > limit + last_rss) {
181 VPrintf(1, "ThreadSanitizer: flushing memory due to RSS\n");
182 FlushShadowMemory();
183 rss = GetRSS();
184 VPrintf(1, "ThreadSanitizer: memory flushed RSS=%llu\n", (u64)rss>>20);
186 last_rss = rss;
189 // Write memory profile if requested.
190 if (mprof_fd != kInvalidFd)
191 MemoryProfiler(ctx, mprof_fd, i);
193 #ifndef TSAN_GO
194 // Flush symbolizer cache if requested.
195 if (flags()->flush_symbolizer_ms > 0) {
196 u64 last = atomic_load(&ctx->last_symbolize_time_ns,
197 memory_order_relaxed);
198 if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) {
199 Lock l(&ctx->report_mtx);
200 SpinMutexLock l2(&CommonSanitizerReportMutex);
201 SymbolizeFlush();
202 atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed);
205 #endif
209 static void StartBackgroundThread() {
210 ctx->background_thread = internal_start_thread(&BackgroundThread, 0);
213 #ifndef TSAN_GO
214 static void StopBackgroundThread() {
215 atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed);
216 internal_join_thread(ctx->background_thread);
217 ctx->background_thread = 0;
219 #endif
221 void DontNeedShadowFor(uptr addr, uptr size) {
222 uptr shadow_beg = MemToShadow(addr);
223 uptr shadow_end = MemToShadow(addr + size);
224 FlushUnneededShadowMemory(shadow_beg, shadow_end - shadow_beg);
227 void MapShadow(uptr addr, uptr size) {
228 // Global data is not 64K aligned, but there are no adjacent mappings,
229 // so we can get away with unaligned mapping.
230 // CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment
231 MmapFixedNoReserve(MemToShadow(addr), size * kShadowMultiplier);
233 // Meta shadow is 2:1, so tread carefully.
234 static bool data_mapped = false;
235 static uptr mapped_meta_end = 0;
236 uptr meta_begin = (uptr)MemToMeta(addr);
237 uptr meta_end = (uptr)MemToMeta(addr + size);
238 meta_begin = RoundDownTo(meta_begin, 64 << 10);
239 meta_end = RoundUpTo(meta_end, 64 << 10);
240 if (!data_mapped) {
241 // First call maps data+bss.
242 data_mapped = true;
243 MmapFixedNoReserve(meta_begin, meta_end - meta_begin);
244 } else {
245 // Mapping continous heap.
246 // Windows wants 64K alignment.
247 meta_begin = RoundDownTo(meta_begin, 64 << 10);
248 meta_end = RoundUpTo(meta_end, 64 << 10);
249 if (meta_end <= mapped_meta_end)
250 return;
251 if (meta_begin < mapped_meta_end)
252 meta_begin = mapped_meta_end;
253 MmapFixedNoReserve(meta_begin, meta_end - meta_begin);
254 mapped_meta_end = meta_end;
256 VPrintf(2, "mapped meta shadow for (%p-%p) at (%p-%p)\n",
257 addr, addr+size, meta_begin, meta_end);
260 void MapThreadTrace(uptr addr, uptr size) {
261 DPrintf("#0: Mapping trace at %p-%p(0x%zx)\n", addr, addr + size, size);
262 CHECK_GE(addr, kTraceMemBeg);
263 CHECK_LE(addr + size, kTraceMemEnd);
264 CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment
265 uptr addr1 = (uptr)MmapFixedNoReserve(addr, size);
266 if (addr1 != addr) {
267 Printf("FATAL: ThreadSanitizer can not mmap thread trace (%p/%p->%p)\n",
268 addr, size, addr1);
269 Die();
273 static void CheckShadowMapping() {
274 for (uptr i = 0; i < ARRAY_SIZE(UserRegions); i += 2) {
275 const uptr beg = UserRegions[i];
276 const uptr end = UserRegions[i + 1];
277 VPrintf(3, "checking shadow region %p-%p\n", beg, end);
278 for (uptr p0 = beg; p0 <= end; p0 += (end - beg) / 4) {
279 for (int x = -1; x <= 1; x++) {
280 const uptr p = p0 + x;
281 if (p < beg || p >= end)
282 continue;
283 const uptr s = MemToShadow(p);
284 VPrintf(3, " checking pointer %p -> %p\n", p, s);
285 CHECK(IsAppMem(p));
286 CHECK(IsShadowMem(s));
287 CHECK_EQ(p & ~(kShadowCell - 1), ShadowToMem(s));
288 const uptr m = (uptr)MemToMeta(p);
289 CHECK(IsMetaMem(m));
295 void Initialize(ThreadState *thr) {
296 // Thread safe because done before all threads exist.
297 static bool is_initialized = false;
298 if (is_initialized)
299 return;
300 is_initialized = true;
301 // We are not ready to handle interceptors yet.
302 ScopedIgnoreInterceptors ignore;
303 SanitizerToolName = "ThreadSanitizer";
304 // Install tool-specific callbacks in sanitizer_common.
305 SetCheckFailedCallback(TsanCheckFailed);
307 ctx = new(ctx_placeholder) Context;
308 const char *options = GetEnv(kTsanOptionsEnv);
309 InitializeFlags(&ctx->flags, options);
310 #ifndef TSAN_GO
311 InitializeAllocator();
312 #endif
313 InitializeInterceptors();
314 CheckShadowMapping();
315 InitializePlatform();
316 InitializeMutex();
317 InitializeDynamicAnnotations();
318 #ifndef TSAN_GO
319 InitializeShadowMemory();
320 #endif
321 // Setup correct file descriptor for error reports.
322 __sanitizer_set_report_path(common_flags()->log_path);
323 InitializeSuppressions();
324 #ifndef TSAN_GO
325 InitializeLibIgnore();
326 Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer);
327 #endif
328 StartBackgroundThread();
329 #ifndef TSAN_GO
330 SetSandboxingCallback(StopBackgroundThread);
331 #endif
332 if (common_flags()->detect_deadlocks)
333 ctx->dd = DDetector::Create(flags());
335 VPrintf(1, "***** Running under ThreadSanitizer v2 (pid %d) *****\n",
336 (int)internal_getpid());
338 // Initialize thread 0.
339 int tid = ThreadCreate(thr, 0, 0, true);
340 CHECK_EQ(tid, 0);
341 ThreadStart(thr, tid, internal_getpid());
342 ctx->initialized = true;
344 if (flags()->stop_on_start) {
345 Printf("ThreadSanitizer is suspended at startup (pid %d)."
346 " Call __tsan_resume().\n",
347 (int)internal_getpid());
348 while (__tsan_resumed == 0) {}
351 OnInitialize();
354 int Finalize(ThreadState *thr) {
355 bool failed = false;
357 if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1)
358 SleepForMillis(flags()->atexit_sleep_ms);
360 // Wait for pending reports.
361 ctx->report_mtx.Lock();
362 CommonSanitizerReportMutex.Lock();
363 CommonSanitizerReportMutex.Unlock();
364 ctx->report_mtx.Unlock();
366 #ifndef TSAN_GO
367 if (common_flags()->verbosity)
368 AllocatorPrintStats();
369 #endif
371 ThreadFinalize(thr);
373 if (ctx->nreported) {
374 failed = true;
375 #ifndef TSAN_GO
376 Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported);
377 #else
378 Printf("Found %d data race(s)\n", ctx->nreported);
379 #endif
382 if (ctx->nmissed_expected) {
383 failed = true;
384 Printf("ThreadSanitizer: missed %d expected races\n",
385 ctx->nmissed_expected);
388 if (common_flags()->print_suppressions)
389 PrintMatchedSuppressions();
390 #ifndef TSAN_GO
391 if (flags()->print_benign)
392 PrintMatchedBenignRaces();
393 #endif
395 failed = OnFinalize(failed);
397 StatAggregate(ctx->stat, thr->stat);
398 StatOutput(ctx->stat);
399 return failed ? flags()->exitcode : 0;
402 #ifndef TSAN_GO
403 void ForkBefore(ThreadState *thr, uptr pc) {
404 ctx->thread_registry->Lock();
405 ctx->report_mtx.Lock();
408 void ForkParentAfter(ThreadState *thr, uptr pc) {
409 ctx->report_mtx.Unlock();
410 ctx->thread_registry->Unlock();
413 void ForkChildAfter(ThreadState *thr, uptr pc) {
414 ctx->report_mtx.Unlock();
415 ctx->thread_registry->Unlock();
417 uptr nthread = 0;
418 ctx->thread_registry->GetNumberOfThreads(0, 0, &nthread /* alive threads */);
419 VPrintf(1, "ThreadSanitizer: forked new process with pid %d,"
420 " parent had %d threads\n", (int)internal_getpid(), (int)nthread);
421 if (nthread == 1) {
422 internal_start_thread(&BackgroundThread, 0);
423 } else {
424 // We've just forked a multi-threaded process. We cannot reasonably function
425 // after that (some mutexes may be locked before fork). So just enable
426 // ignores for everything in the hope that we will exec soon.
427 ctx->after_multithreaded_fork = true;
428 thr->ignore_interceptors++;
429 ThreadIgnoreBegin(thr, pc);
430 ThreadIgnoreSyncBegin(thr, pc);
433 #endif
435 #ifdef TSAN_GO
436 NOINLINE
437 void GrowShadowStack(ThreadState *thr) {
438 const int sz = thr->shadow_stack_end - thr->shadow_stack;
439 const int newsz = 2 * sz;
440 uptr *newstack = (uptr*)internal_alloc(MBlockShadowStack,
441 newsz * sizeof(uptr));
442 internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr));
443 internal_free(thr->shadow_stack);
444 thr->shadow_stack = newstack;
445 thr->shadow_stack_pos = newstack + sz;
446 thr->shadow_stack_end = newstack + newsz;
448 #endif
450 u32 CurrentStackId(ThreadState *thr, uptr pc) {
451 if (thr->shadow_stack_pos == 0) // May happen during bootstrap.
452 return 0;
453 if (pc != 0) {
454 #ifndef TSAN_GO
455 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
456 #else
457 if (thr->shadow_stack_pos == thr->shadow_stack_end)
458 GrowShadowStack(thr);
459 #endif
460 thr->shadow_stack_pos[0] = pc;
461 thr->shadow_stack_pos++;
463 u32 id = StackDepotPut(
464 StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack));
465 if (pc != 0)
466 thr->shadow_stack_pos--;
467 return id;
470 void TraceSwitch(ThreadState *thr) {
471 thr->nomalloc++;
472 Trace *thr_trace = ThreadTrace(thr->tid);
473 Lock l(&thr_trace->mtx);
474 unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % TraceParts();
475 TraceHeader *hdr = &thr_trace->headers[trace];
476 hdr->epoch0 = thr->fast_state.epoch();
477 ObtainCurrentStack(thr, 0, &hdr->stack0);
478 hdr->mset0 = thr->mset;
479 thr->nomalloc--;
482 Trace *ThreadTrace(int tid) {
483 return (Trace*)GetThreadTraceHeader(tid);
486 uptr TraceTopPC(ThreadState *thr) {
487 Event *events = (Event*)GetThreadTrace(thr->tid);
488 uptr pc = events[thr->fast_state.GetTracePos()];
489 return pc;
492 uptr TraceSize() {
493 return (uptr)(1ull << (kTracePartSizeBits + flags()->history_size + 1));
496 uptr TraceParts() {
497 return TraceSize() / kTracePartSize;
500 #ifndef TSAN_GO
501 extern "C" void __tsan_trace_switch() {
502 TraceSwitch(cur_thread());
505 extern "C" void __tsan_report_race() {
506 ReportRace(cur_thread());
508 #endif
510 ALWAYS_INLINE
511 Shadow LoadShadow(u64 *p) {
512 u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed);
513 return Shadow(raw);
516 ALWAYS_INLINE
517 void StoreShadow(u64 *sp, u64 s) {
518 atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed);
521 ALWAYS_INLINE
522 void StoreIfNotYetStored(u64 *sp, u64 *s) {
523 StoreShadow(sp, *s);
524 *s = 0;
527 ALWAYS_INLINE
528 void HandleRace(ThreadState *thr, u64 *shadow_mem,
529 Shadow cur, Shadow old) {
530 thr->racy_state[0] = cur.raw();
531 thr->racy_state[1] = old.raw();
532 thr->racy_shadow_addr = shadow_mem;
533 #ifndef TSAN_GO
534 HACKY_CALL(__tsan_report_race);
535 #else
536 ReportRace(thr);
537 #endif
540 static inline bool HappensBefore(Shadow old, ThreadState *thr) {
541 return thr->clock.get(old.TidWithIgnore()) >= old.epoch();
544 ALWAYS_INLINE
545 void MemoryAccessImpl1(ThreadState *thr, uptr addr,
546 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
547 u64 *shadow_mem, Shadow cur) {
548 StatInc(thr, StatMop);
549 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
550 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
552 // This potentially can live in an MMX/SSE scratch register.
553 // The required intrinsics are:
554 // __m128i _mm_move_epi64(__m128i*);
555 // _mm_storel_epi64(u64*, __m128i);
556 u64 store_word = cur.raw();
558 // scan all the shadow values and dispatch to 4 categories:
559 // same, replace, candidate and race (see comments below).
560 // we consider only 3 cases regarding access sizes:
561 // equal, intersect and not intersect. initially I considered
562 // larger and smaller as well, it allowed to replace some
563 // 'candidates' with 'same' or 'replace', but I think
564 // it's just not worth it (performance- and complexity-wise).
566 Shadow old(0);
567 if (kShadowCnt == 1) {
568 int idx = 0;
569 #include "tsan_update_shadow_word_inl.h"
570 } else if (kShadowCnt == 2) {
571 int idx = 0;
572 #include "tsan_update_shadow_word_inl.h"
573 idx = 1;
574 #include "tsan_update_shadow_word_inl.h"
575 } else if (kShadowCnt == 4) {
576 int idx = 0;
577 #include "tsan_update_shadow_word_inl.h"
578 idx = 1;
579 #include "tsan_update_shadow_word_inl.h"
580 idx = 2;
581 #include "tsan_update_shadow_word_inl.h"
582 idx = 3;
583 #include "tsan_update_shadow_word_inl.h"
584 } else if (kShadowCnt == 8) {
585 int idx = 0;
586 #include "tsan_update_shadow_word_inl.h"
587 idx = 1;
588 #include "tsan_update_shadow_word_inl.h"
589 idx = 2;
590 #include "tsan_update_shadow_word_inl.h"
591 idx = 3;
592 #include "tsan_update_shadow_word_inl.h"
593 idx = 4;
594 #include "tsan_update_shadow_word_inl.h"
595 idx = 5;
596 #include "tsan_update_shadow_word_inl.h"
597 idx = 6;
598 #include "tsan_update_shadow_word_inl.h"
599 idx = 7;
600 #include "tsan_update_shadow_word_inl.h"
601 } else {
602 CHECK(false);
605 // we did not find any races and had already stored
606 // the current access info, so we are done
607 if (LIKELY(store_word == 0))
608 return;
609 // choose a random candidate slot and replace it
610 StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word);
611 StatInc(thr, StatShadowReplace);
612 return;
613 RACE:
614 HandleRace(thr, shadow_mem, cur, old);
615 return;
618 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
619 int size, bool kAccessIsWrite, bool kIsAtomic) {
620 while (size) {
621 int size1 = 1;
622 int kAccessSizeLog = kSizeLog1;
623 if (size >= 8 && (addr & ~7) == ((addr + 7) & ~7)) {
624 size1 = 8;
625 kAccessSizeLog = kSizeLog8;
626 } else if (size >= 4 && (addr & ~7) == ((addr + 3) & ~7)) {
627 size1 = 4;
628 kAccessSizeLog = kSizeLog4;
629 } else if (size >= 2 && (addr & ~7) == ((addr + 1) & ~7)) {
630 size1 = 2;
631 kAccessSizeLog = kSizeLog2;
633 MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic);
634 addr += size1;
635 size -= size1;
639 ALWAYS_INLINE
640 bool ContainsSameAccessSlow(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
641 Shadow cur(a);
642 for (uptr i = 0; i < kShadowCnt; i++) {
643 Shadow old(LoadShadow(&s[i]));
644 if (Shadow::Addr0AndSizeAreEqual(cur, old) &&
645 old.TidWithIgnore() == cur.TidWithIgnore() &&
646 old.epoch() > sync_epoch &&
647 old.IsAtomic() == cur.IsAtomic() &&
648 old.IsRead() <= cur.IsRead())
649 return true;
651 return false;
654 #if defined(__SSE3__) && TSAN_SHADOW_COUNT == 4
655 #define SHUF(v0, v1, i0, i1, i2, i3) _mm_castps_si128(_mm_shuffle_ps( \
656 _mm_castsi128_ps(v0), _mm_castsi128_ps(v1), \
657 (i0)*1 + (i1)*4 + (i2)*16 + (i3)*64))
658 ALWAYS_INLINE
659 bool ContainsSameAccessFast(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
660 // This is an optimized version of ContainsSameAccessSlow.
661 // load current access into access[0:63]
662 const m128 access = _mm_cvtsi64_si128(a);
663 // duplicate high part of access in addr0:
664 // addr0[0:31] = access[32:63]
665 // addr0[32:63] = access[32:63]
666 // addr0[64:95] = access[32:63]
667 // addr0[96:127] = access[32:63]
668 const m128 addr0 = SHUF(access, access, 1, 1, 1, 1);
669 // load 4 shadow slots
670 const m128 shadow0 = _mm_load_si128((__m128i*)s);
671 const m128 shadow1 = _mm_load_si128((__m128i*)s + 1);
672 // load high parts of 4 shadow slots into addr_vect:
673 // addr_vect[0:31] = shadow0[32:63]
674 // addr_vect[32:63] = shadow0[96:127]
675 // addr_vect[64:95] = shadow1[32:63]
676 // addr_vect[96:127] = shadow1[96:127]
677 m128 addr_vect = SHUF(shadow0, shadow1, 1, 3, 1, 3);
678 if (!is_write) {
679 // set IsRead bit in addr_vect
680 const m128 rw_mask1 = _mm_cvtsi64_si128(1<<15);
681 const m128 rw_mask = SHUF(rw_mask1, rw_mask1, 0, 0, 0, 0);
682 addr_vect = _mm_or_si128(addr_vect, rw_mask);
684 // addr0 == addr_vect?
685 const m128 addr_res = _mm_cmpeq_epi32(addr0, addr_vect);
686 // epoch1[0:63] = sync_epoch
687 const m128 epoch1 = _mm_cvtsi64_si128(sync_epoch);
688 // epoch[0:31] = sync_epoch[0:31]
689 // epoch[32:63] = sync_epoch[0:31]
690 // epoch[64:95] = sync_epoch[0:31]
691 // epoch[96:127] = sync_epoch[0:31]
692 const m128 epoch = SHUF(epoch1, epoch1, 0, 0, 0, 0);
693 // load low parts of shadow cell epochs into epoch_vect:
694 // epoch_vect[0:31] = shadow0[0:31]
695 // epoch_vect[32:63] = shadow0[64:95]
696 // epoch_vect[64:95] = shadow1[0:31]
697 // epoch_vect[96:127] = shadow1[64:95]
698 const m128 epoch_vect = SHUF(shadow0, shadow1, 0, 2, 0, 2);
699 // epoch_vect >= sync_epoch?
700 const m128 epoch_res = _mm_cmpgt_epi32(epoch_vect, epoch);
701 // addr_res & epoch_res
702 const m128 res = _mm_and_si128(addr_res, epoch_res);
703 // mask[0] = res[7]
704 // mask[1] = res[15]
705 // ...
706 // mask[15] = res[127]
707 const int mask = _mm_movemask_epi8(res);
708 return mask != 0;
710 #endif
712 ALWAYS_INLINE
713 bool ContainsSameAccess(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
714 #if defined(__SSE3__) && TSAN_SHADOW_COUNT == 4
715 bool res = ContainsSameAccessFast(s, a, sync_epoch, is_write);
716 // NOTE: this check can fail if the shadow is concurrently mutated
717 // by other threads.
718 DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write));
719 return res;
720 #else
721 return ContainsSameAccessSlow(s, a, sync_epoch, is_write);
722 #endif
725 ALWAYS_INLINE USED
726 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
727 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic) {
728 u64 *shadow_mem = (u64*)MemToShadow(addr);
729 DPrintf2("#%d: MemoryAccess: @%p %p size=%d"
730 " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n",
731 (int)thr->fast_state.tid(), (void*)pc, (void*)addr,
732 (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem,
733 (uptr)shadow_mem[0], (uptr)shadow_mem[1],
734 (uptr)shadow_mem[2], (uptr)shadow_mem[3]);
735 #if TSAN_DEBUG
736 if (!IsAppMem(addr)) {
737 Printf("Access to non app mem %zx\n", addr);
738 DCHECK(IsAppMem(addr));
740 if (!IsShadowMem((uptr)shadow_mem)) {
741 Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
742 DCHECK(IsShadowMem((uptr)shadow_mem));
744 #endif
746 if (kCppMode && *shadow_mem == kShadowRodata) {
747 // Access to .rodata section, no races here.
748 // Measurements show that it can be 10-20% of all memory accesses.
749 StatInc(thr, StatMop);
750 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
751 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
752 StatInc(thr, StatMopRodata);
753 return;
756 FastState fast_state = thr->fast_state;
757 if (fast_state.GetIgnoreBit()) {
758 StatInc(thr, StatMop);
759 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
760 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
761 StatInc(thr, StatMopIgnored);
762 return;
765 Shadow cur(fast_state);
766 cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog);
767 cur.SetWrite(kAccessIsWrite);
768 cur.SetAtomic(kIsAtomic);
770 if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
771 thr->fast_synch_epoch, kAccessIsWrite))) {
772 StatInc(thr, StatMop);
773 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
774 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
775 StatInc(thr, StatMopSame);
776 return;
779 if (kCollectHistory) {
780 fast_state.IncrementEpoch();
781 thr->fast_state = fast_state;
782 TraceAddEvent(thr, fast_state, EventTypeMop, pc);
783 cur.IncrementEpoch();
786 MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
787 shadow_mem, cur);
790 // Called by MemoryAccessRange in tsan_rtl_thread.cc
791 ALWAYS_INLINE USED
792 void MemoryAccessImpl(ThreadState *thr, uptr addr,
793 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
794 u64 *shadow_mem, Shadow cur) {
795 if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
796 thr->fast_synch_epoch, kAccessIsWrite))) {
797 StatInc(thr, StatMop);
798 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
799 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
800 StatInc(thr, StatMopSame);
801 return;
804 MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
805 shadow_mem, cur);
808 static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size,
809 u64 val) {
810 (void)thr;
811 (void)pc;
812 if (size == 0)
813 return;
814 // FIXME: fix me.
815 uptr offset = addr % kShadowCell;
816 if (offset) {
817 offset = kShadowCell - offset;
818 if (size <= offset)
819 return;
820 addr += offset;
821 size -= offset;
823 DCHECK_EQ(addr % 8, 0);
824 // If a user passes some insane arguments (memset(0)),
825 // let it just crash as usual.
826 if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
827 return;
828 // Don't want to touch lots of shadow memory.
829 // If a program maps 10MB stack, there is no need reset the whole range.
830 size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1);
831 // UnmapOrDie/MmapFixedNoReserve does not work on Windows,
832 // so we do it only for C/C++.
833 if (kGoMode || size < common_flags()->clear_shadow_mmap_threshold) {
834 u64 *p = (u64*)MemToShadow(addr);
835 CHECK(IsShadowMem((uptr)p));
836 CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1)));
837 // FIXME: may overwrite a part outside the region
838 for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) {
839 p[i++] = val;
840 for (uptr j = 1; j < kShadowCnt; j++)
841 p[i++] = 0;
843 } else {
844 // The region is big, reset only beginning and end.
845 const uptr kPageSize = 4096;
846 u64 *begin = (u64*)MemToShadow(addr);
847 u64 *end = begin + size / kShadowCell * kShadowCnt;
848 u64 *p = begin;
849 // Set at least first kPageSize/2 to page boundary.
850 while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) {
851 *p++ = val;
852 for (uptr j = 1; j < kShadowCnt; j++)
853 *p++ = 0;
855 // Reset middle part.
856 u64 *p1 = p;
857 p = RoundDown(end, kPageSize);
858 UnmapOrDie((void*)p1, (uptr)p - (uptr)p1);
859 MmapFixedNoReserve((uptr)p1, (uptr)p - (uptr)p1);
860 // Set the ending.
861 while (p < end) {
862 *p++ = val;
863 for (uptr j = 1; j < kShadowCnt; j++)
864 *p++ = 0;
869 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) {
870 MemoryRangeSet(thr, pc, addr, size, 0);
873 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) {
874 // Processing more than 1k (4k of shadow) is expensive,
875 // can cause excessive memory consumption (user does not necessary touch
876 // the whole range) and most likely unnecessary.
877 if (size > 1024)
878 size = 1024;
879 CHECK_EQ(thr->is_freeing, false);
880 thr->is_freeing = true;
881 MemoryAccessRange(thr, pc, addr, size, true);
882 thr->is_freeing = false;
883 if (kCollectHistory) {
884 thr->fast_state.IncrementEpoch();
885 TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
887 Shadow s(thr->fast_state);
888 s.ClearIgnoreBit();
889 s.MarkAsFreed();
890 s.SetWrite(true);
891 s.SetAddr0AndSizeLog(0, 3);
892 MemoryRangeSet(thr, pc, addr, size, s.raw());
895 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) {
896 if (kCollectHistory) {
897 thr->fast_state.IncrementEpoch();
898 TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
900 Shadow s(thr->fast_state);
901 s.ClearIgnoreBit();
902 s.SetWrite(true);
903 s.SetAddr0AndSizeLog(0, 3);
904 MemoryRangeSet(thr, pc, addr, size, s.raw());
907 ALWAYS_INLINE USED
908 void FuncEntry(ThreadState *thr, uptr pc) {
909 StatInc(thr, StatFuncEnter);
910 DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc);
911 if (kCollectHistory) {
912 thr->fast_state.IncrementEpoch();
913 TraceAddEvent(thr, thr->fast_state, EventTypeFuncEnter, pc);
916 // Shadow stack maintenance can be replaced with
917 // stack unwinding during trace switch (which presumably must be faster).
918 DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack);
919 #ifndef TSAN_GO
920 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
921 #else
922 if (thr->shadow_stack_pos == thr->shadow_stack_end)
923 GrowShadowStack(thr);
924 #endif
925 thr->shadow_stack_pos[0] = pc;
926 thr->shadow_stack_pos++;
929 ALWAYS_INLINE USED
930 void FuncExit(ThreadState *thr) {
931 StatInc(thr, StatFuncExit);
932 DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.tid());
933 if (kCollectHistory) {
934 thr->fast_state.IncrementEpoch();
935 TraceAddEvent(thr, thr->fast_state, EventTypeFuncExit, 0);
938 DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack);
939 #ifndef TSAN_GO
940 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
941 #endif
942 thr->shadow_stack_pos--;
945 void ThreadIgnoreBegin(ThreadState *thr, uptr pc) {
946 DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid);
947 thr->ignore_reads_and_writes++;
948 CHECK_GT(thr->ignore_reads_and_writes, 0);
949 thr->fast_state.SetIgnoreBit();
950 #ifndef TSAN_GO
951 if (!ctx->after_multithreaded_fork)
952 thr->mop_ignore_set.Add(CurrentStackId(thr, pc));
953 #endif
956 void ThreadIgnoreEnd(ThreadState *thr, uptr pc) {
957 DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid);
958 thr->ignore_reads_and_writes--;
959 CHECK_GE(thr->ignore_reads_and_writes, 0);
960 if (thr->ignore_reads_and_writes == 0) {
961 thr->fast_state.ClearIgnoreBit();
962 #ifndef TSAN_GO
963 thr->mop_ignore_set.Reset();
964 #endif
968 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc) {
969 DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid);
970 thr->ignore_sync++;
971 CHECK_GT(thr->ignore_sync, 0);
972 #ifndef TSAN_GO
973 if (!ctx->after_multithreaded_fork)
974 thr->sync_ignore_set.Add(CurrentStackId(thr, pc));
975 #endif
978 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc) {
979 DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid);
980 thr->ignore_sync--;
981 CHECK_GE(thr->ignore_sync, 0);
982 #ifndef TSAN_GO
983 if (thr->ignore_sync == 0)
984 thr->sync_ignore_set.Reset();
985 #endif
988 bool MD5Hash::operator==(const MD5Hash &other) const {
989 return hash[0] == other.hash[0] && hash[1] == other.hash[1];
992 #if TSAN_DEBUG
993 void build_consistency_debug() {}
994 #else
995 void build_consistency_release() {}
996 #endif
998 #if TSAN_COLLECT_STATS
999 void build_consistency_stats() {}
1000 #else
1001 void build_consistency_nostats() {}
1002 #endif
1004 #if TSAN_SHADOW_COUNT == 1
1005 void build_consistency_shadow1() {}
1006 #elif TSAN_SHADOW_COUNT == 2
1007 void build_consistency_shadow2() {}
1008 #elif TSAN_SHADOW_COUNT == 4
1009 void build_consistency_shadow4() {}
1010 #else
1011 void build_consistency_shadow8() {}
1012 #endif
1014 } // namespace __tsan
1016 #ifndef TSAN_GO
1017 // Must be included in this file to make sure everything is inlined.
1018 #include "tsan_interface_inl.h"
1019 #endif