[PR67828] don't unswitch on default defs of non-parms
[official-gcc.git] / libgcc / libgcov-util.c
blobf59f4a2ef78711794d7e8cd92f0f483fd6978cba
1 /* Utility functions for reading gcda files into in-memory
2 gcov_info structures and offline profile processing. */
3 /* Copyright (C) 2014-2015 Free Software Foundation, Inc.
4 Contributed by Rong Xu <xur@google.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 Under Section 7 of GPL version 3, you are granted additional
19 permissions described in the GCC Runtime Library Exception, version
20 3.1, as published by the Free Software Foundation.
22 You should have received a copy of the GNU General Public License and
23 a copy of the GCC Runtime Library Exception along with this program;
24 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
25 <http://www.gnu.org/licenses/>. */
28 #define IN_GCOV_TOOL 1
30 #include "libgcov.h"
31 #include "intl.h"
32 #include "diagnostic.h"
33 #include "version.h"
34 #include "demangle.h"
36 /* Borrowed from basic-block.h. */
37 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
39 extern gcov_position_t gcov_position();
40 extern int gcov_is_error();
42 /* Verbose mode for debug. */
43 static int verbose;
45 /* Set verbose flag. */
46 void gcov_set_verbose (void)
48 verbose = 1;
51 /* The following part is to read Gcda and reconstruct GCOV_INFO. */
53 #include "obstack.h"
54 #include <unistd.h>
55 #ifdef HAVE_FTW_H
56 #include <ftw.h>
57 #endif
59 static void tag_function (unsigned, unsigned);
60 static void tag_blocks (unsigned, unsigned);
61 static void tag_arcs (unsigned, unsigned);
62 static void tag_lines (unsigned, unsigned);
63 static void tag_counters (unsigned, unsigned);
64 static void tag_summary (unsigned, unsigned);
66 /* The gcov_info for the first module. */
67 static struct gcov_info *curr_gcov_info;
68 /* The gcov_info being processed. */
69 static struct gcov_info *gcov_info_head;
70 /* This variable contains all the functions in current module. */
71 static struct obstack fn_info;
72 /* The function being processed. */
73 static struct gcov_fn_info *curr_fn_info;
74 /* The number of functions seen so far. */
75 static unsigned num_fn_info;
76 /* This variable contains all the counters for current module. */
77 static int k_ctrs_mask[GCOV_COUNTERS];
78 /* The kind of counters that have been seen. */
79 static struct gcov_ctr_info k_ctrs[GCOV_COUNTERS];
80 /* Number of kind of counters that have been seen. */
81 static int k_ctrs_types;
83 /* Merge functions for counters. */
84 #define DEF_GCOV_COUNTER(COUNTER, NAME, FN_TYPE) __gcov_merge ## FN_TYPE,
85 static gcov_merge_fn ctr_merge_functions[GCOV_COUNTERS] = {
86 #include "gcov-counter.def"
88 #undef DEF_GCOV_COUNTER
90 /* Set the ctrs field in gcov_fn_info object FN_INFO. */
92 static void
93 set_fn_ctrs (struct gcov_fn_info *fn_info)
95 int j = 0, i;
97 for (i = 0; i < GCOV_COUNTERS; i++)
99 if (k_ctrs_mask[i] == 0)
100 continue;
101 fn_info->ctrs[j].num = k_ctrs[i].num;
102 fn_info->ctrs[j].values = k_ctrs[i].values;
103 j++;
105 if (k_ctrs_types == 0)
106 k_ctrs_types = j;
107 else
108 gcc_assert (j == k_ctrs_types);
111 /* For each tag in gcda file, we have an entry here.
112 TAG is the tag value; NAME is the tag name; and
113 PROC is the handler function. */
115 typedef struct tag_format
117 unsigned tag;
118 char const *name;
119 void (*proc) (unsigned, unsigned);
120 } tag_format_t;
122 /* Handler table for various Tags. */
124 static const tag_format_t tag_table[] =
126 {0, "NOP", NULL},
127 {0, "UNKNOWN", NULL},
128 {0, "COUNTERS", tag_counters},
129 {GCOV_TAG_FUNCTION, "FUNCTION", tag_function},
130 {GCOV_TAG_BLOCKS, "BLOCKS", tag_blocks},
131 {GCOV_TAG_ARCS, "ARCS", tag_arcs},
132 {GCOV_TAG_LINES, "LINES", tag_lines},
133 {GCOV_TAG_OBJECT_SUMMARY, "OBJECT_SUMMARY", tag_summary},
134 {GCOV_TAG_PROGRAM_SUMMARY, "PROGRAM_SUMMARY", tag_summary},
135 {0, NULL, NULL}
138 /* Handler for reading function tag. */
140 static void
141 tag_function (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED)
143 int i;
145 /* write out previous fn_info. */
146 if (num_fn_info)
148 set_fn_ctrs (curr_fn_info);
149 obstack_ptr_grow (&fn_info, curr_fn_info);
152 /* Here we over allocate a bit, using GCOV_COUNTERS instead of the actual active
153 counter types. */
154 curr_fn_info = (struct gcov_fn_info *) xcalloc (sizeof (struct gcov_fn_info)
155 + GCOV_COUNTERS * sizeof (struct gcov_ctr_info), 1);
157 for (i = 0; i < GCOV_COUNTERS; i++)
158 k_ctrs[i].num = 0;
159 k_ctrs_types = 0;
161 curr_fn_info->key = curr_gcov_info;
162 curr_fn_info->ident = gcov_read_unsigned ();
163 curr_fn_info->lineno_checksum = gcov_read_unsigned ();
164 curr_fn_info->cfg_checksum = gcov_read_unsigned ();
165 num_fn_info++;
167 if (verbose)
168 fnotice (stdout, "tag one function id=%d\n", curr_fn_info->ident);
171 /* Handler for reading block tag. */
173 static void
174 tag_blocks (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED)
176 /* TBD: gcov-tool currently does not handle gcno files. Assert here. */
177 gcc_unreachable ();
180 /* Handler for reading flow arc tag. */
182 static void
183 tag_arcs (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED)
185 /* TBD: gcov-tool currently does not handle gcno files. Assert here. */
186 gcc_unreachable ();
189 /* Handler for reading line tag. */
191 static void
192 tag_lines (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED)
194 /* TBD: gcov-tool currently does not handle gcno files. Assert here. */
195 gcc_unreachable ();
198 /* Handler for reading counters array tag with value as TAG and length of LENGTH. */
200 static void
201 tag_counters (unsigned tag, unsigned length)
203 unsigned n_counts = GCOV_TAG_COUNTER_NUM (length);
204 gcov_type *values;
205 unsigned ix;
206 unsigned tag_ix;
208 tag_ix = GCOV_COUNTER_FOR_TAG (tag);
209 gcc_assert (tag_ix < GCOV_COUNTERS);
210 k_ctrs_mask [tag_ix] = 1;
211 gcc_assert (k_ctrs[tag_ix].num == 0);
212 k_ctrs[tag_ix].num = n_counts;
214 k_ctrs[tag_ix].values = values = (gcov_type *) xmalloc (n_counts * sizeof (gcov_type));
215 gcc_assert (values);
217 for (ix = 0; ix != n_counts; ix++)
218 values[ix] = gcov_read_counter ();
221 /* Handler for reading summary tag. */
223 static void
224 tag_summary (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED)
226 struct gcov_summary summary;
228 gcov_read_summary (&summary);
231 /* This function is called at the end of reading a gcda file.
232 It flushes the contents in curr_fn_info to gcov_info object OBJ_INFO. */
234 static void
235 read_gcda_finalize (struct gcov_info *obj_info)
237 int i;
239 set_fn_ctrs (curr_fn_info);
240 obstack_ptr_grow (&fn_info, curr_fn_info);
242 /* We set the following fields: merge, n_functions, and functions. */
243 obj_info->n_functions = num_fn_info;
244 obj_info->functions = (const struct gcov_fn_info**) obstack_finish (&fn_info);
246 /* wrap all the counter array. */
247 for (i=0; i< GCOV_COUNTERS; i++)
249 if (k_ctrs_mask[i])
250 obj_info->merge[i] = ctr_merge_functions[i];
254 /* Read the content of a gcda file FILENAME, and return a gcov_info data structure.
255 Program level summary CURRENT_SUMMARY will also be updated. */
257 static struct gcov_info *
258 read_gcda_file (const char *filename)
260 unsigned tags[4];
261 unsigned depth = 0;
262 unsigned magic, version;
263 struct gcov_info *obj_info;
264 int i;
266 for (i=0; i< GCOV_COUNTERS; i++)
267 k_ctrs_mask[i] = 0;
268 k_ctrs_types = 0;
270 if (!gcov_open (filename))
272 fnotice (stderr, "%s:cannot open\n", filename);
273 return NULL;
276 /* Read magic. */
277 magic = gcov_read_unsigned ();
278 if (magic != GCOV_DATA_MAGIC)
280 fnotice (stderr, "%s:not a gcov data file\n", filename);
281 gcov_close ();
282 return NULL;
285 /* Read version. */
286 version = gcov_read_unsigned ();
287 if (version != GCOV_VERSION)
289 fnotice (stderr, "%s:incorrect gcov version %d vs %d \n", filename, version, GCOV_VERSION);
290 gcov_close ();
291 return NULL;
294 /* Instantiate a gcov_info object. */
295 curr_gcov_info = obj_info = (struct gcov_info *) xcalloc (sizeof (struct gcov_info) +
296 sizeof (struct gcov_ctr_info) * GCOV_COUNTERS, 1);
298 obj_info->version = version;
299 obstack_init (&fn_info);
300 num_fn_info = 0;
301 curr_fn_info = 0;
303 size_t len = strlen (filename) + 1;
304 char *str_dup = (char*) xmalloc (len);
306 memcpy (str_dup, filename, len);
307 obj_info->filename = str_dup;
310 /* Read stamp. */
311 obj_info->stamp = gcov_read_unsigned ();
313 while (1)
315 gcov_position_t base;
316 unsigned tag, length;
317 tag_format_t const *format;
318 unsigned tag_depth;
319 int error;
320 unsigned mask;
322 tag = gcov_read_unsigned ();
323 if (!tag)
324 break;
325 length = gcov_read_unsigned ();
326 base = gcov_position ();
327 mask = GCOV_TAG_MASK (tag) >> 1;
328 for (tag_depth = 4; mask; mask >>= 8)
330 if (((mask & 0xff) != 0xff))
332 warning (0, "%s:tag `%x' is invalid\n", filename, tag);
333 break;
335 tag_depth--;
337 for (format = tag_table; format->name; format++)
338 if (format->tag == tag)
339 goto found;
340 format = &tag_table[GCOV_TAG_IS_COUNTER (tag) ? 2 : 1];
341 found:;
342 if (tag)
344 if (depth && depth < tag_depth)
346 if (!GCOV_TAG_IS_SUBTAG (tags[depth - 1], tag))
347 warning (0, "%s:tag `%x' is incorrectly nested\n",
348 filename, tag);
350 depth = tag_depth;
351 tags[depth - 1] = tag;
354 if (format->proc)
356 unsigned long actual_length;
358 (*format->proc) (tag, length);
360 actual_length = gcov_position () - base;
361 if (actual_length > length)
362 warning (0, "%s:record size mismatch %lu bytes overread\n",
363 filename, actual_length - length);
364 else if (length > actual_length)
365 warning (0, "%s:record size mismatch %lu bytes unread\n",
366 filename, length - actual_length);
369 gcov_sync (base, length);
370 if ((error = gcov_is_error ()))
372 warning (0, error < 0 ? "%s:counter overflow at %lu\n" :
373 "%s:read error at %lu\n", filename,
374 (long unsigned) gcov_position ());
375 break;
379 read_gcda_finalize (obj_info);
380 gcov_close ();
382 return obj_info;
385 #ifdef HAVE_FTW_H
386 /* This will be called by ftw(). It opens and read a gcda file FILENAME.
387 Return a non-zero value to stop the tree walk. */
389 static int
390 ftw_read_file (const char *filename,
391 const struct stat *status ATTRIBUTE_UNUSED,
392 int type)
394 int filename_len;
395 int suffix_len;
396 struct gcov_info *obj_info;
398 /* Only read regular files. */
399 if (type != FTW_F)
400 return 0;
402 filename_len = strlen (filename);
403 suffix_len = strlen (GCOV_DATA_SUFFIX);
405 if (filename_len <= suffix_len)
406 return 0;
408 if (strcmp(filename + filename_len - suffix_len, GCOV_DATA_SUFFIX))
409 return 0;
411 if (verbose)
412 fnotice (stderr, "reading file: %s\n", filename);
414 obj_info = read_gcda_file (filename);
415 if (!obj_info)
416 return 0;
418 obj_info->next = gcov_info_head;
419 gcov_info_head = obj_info;
421 return 0;
423 #endif
425 /* Initializer for reading a profile dir. */
427 static inline void
428 read_profile_dir_init (void)
430 gcov_info_head = 0;
433 /* Driver for read a profile directory and convert into gcov_info list in memory.
434 Return NULL on error,
435 Return the head of gcov_info list on success. */
437 struct gcov_info *
438 gcov_read_profile_dir (const char* dir_name, int recompute_summary ATTRIBUTE_UNUSED)
440 char *pwd;
441 int ret;
443 read_profile_dir_init ();
445 if (access (dir_name, R_OK) != 0)
447 fnotice (stderr, "cannot access directory %s\n", dir_name);
448 return NULL;
450 pwd = getcwd (NULL, 0);
451 gcc_assert (pwd);
452 ret = chdir (dir_name);
453 if (ret !=0)
455 fnotice (stderr, "%s is not a directory\n", dir_name);
456 return NULL;
458 #ifdef HAVE_FTW_H
459 ftw (".", ftw_read_file, 50);
460 #endif
461 ret = chdir (pwd);
462 free (pwd);
465 return gcov_info_head;;
468 /* This part of the code is to merge profile counters. These
469 variables are set in merge_wrapper and to be used by
470 global function gcov_read_counter_mem() and gcov_get_merge_weight. */
472 /* We save the counter value address to this variable. */
473 static gcov_type *gcov_value_buf;
475 /* The number of counter values to be read by current merging. */
476 static gcov_unsigned_t gcov_value_buf_size;
478 /* The index of counter values being read. */
479 static gcov_unsigned_t gcov_value_buf_pos;
481 /* The weight of current merging. */
482 static unsigned gcov_merge_weight;
484 /* Read a counter value from gcov_value_buf array. */
486 gcov_type
487 gcov_read_counter_mem (void)
489 gcov_type ret;
490 gcc_assert (gcov_value_buf_pos < gcov_value_buf_size);
491 ret = *(gcov_value_buf + gcov_value_buf_pos);
492 ++gcov_value_buf_pos;
493 return ret;
496 /* Return the recorded merge weight. */
498 unsigned
499 gcov_get_merge_weight (void)
501 return gcov_merge_weight;
504 /* A wrapper function for merge functions. It sets up the
505 value buffer and weights and then calls the merge function. */
507 static void
508 merge_wrapper (gcov_merge_fn f, gcov_type *v1, gcov_unsigned_t n,
509 gcov_type *v2, unsigned w)
511 gcov_value_buf = v2;
512 gcov_value_buf_pos = 0;
513 gcov_value_buf_size = n;
514 gcov_merge_weight = w;
515 (*f) (v1, n);
518 /* Offline tool to manipulate profile data.
519 This tool targets on matched profiles. But it has some tolerance on
520 unmatched profiles.
521 When merging p1 to p2 (p2 is the dst),
522 * m.gcda in p1 but not in p2: append m.gcda to p2 with specified weight;
523 emit warning
524 * m.gcda in p2 but not in p1: keep m.gcda in p2 and multiply by
525 specified weight; emit warning.
526 * m.gcda in both p1 and p2:
527 ** p1->m.gcda->f checksum matches p2->m.gcda->f: simple merge.
528 ** p1->m.gcda->f checksum does not matches p2->m.gcda->f: keep
529 p2->m.gcda->f and
530 drop p1->m.gcda->f. A warning is emitted. */
532 /* Add INFO2's counter to INFO1, multiplying by weight W. */
534 static int
535 gcov_merge (struct gcov_info *info1, struct gcov_info *info2, int w)
537 unsigned f_ix;
538 unsigned n_functions = info1->n_functions;
539 int has_mismatch = 0;
541 gcc_assert (info2->n_functions == n_functions);
542 for (f_ix = 0; f_ix < n_functions; f_ix++)
544 unsigned t_ix;
545 const struct gcov_fn_info *gfi_ptr1 = info1->functions[f_ix];
546 const struct gcov_fn_info *gfi_ptr2 = info2->functions[f_ix];
547 const struct gcov_ctr_info *ci_ptr1, *ci_ptr2;
549 if (!gfi_ptr1 || gfi_ptr1->key != info1)
550 continue;
551 if (!gfi_ptr2 || gfi_ptr2->key != info2)
552 continue;
554 if (gfi_ptr1->cfg_checksum != gfi_ptr2->cfg_checksum)
556 fnotice (stderr, "in %s, cfg_checksum mismatch, skipping\n",
557 info1->filename);
558 has_mismatch = 1;
559 continue;
561 ci_ptr1 = gfi_ptr1->ctrs;
562 ci_ptr2 = gfi_ptr2->ctrs;
563 for (t_ix = 0; t_ix != GCOV_COUNTERS; t_ix++)
565 gcov_merge_fn merge1 = info1->merge[t_ix];
566 gcov_merge_fn merge2 = info2->merge[t_ix];
568 gcc_assert (merge1 == merge2);
569 if (!merge1)
570 continue;
571 gcc_assert (ci_ptr1->num == ci_ptr2->num);
572 merge_wrapper (merge1, ci_ptr1->values, ci_ptr1->num, ci_ptr2->values, w);
573 ci_ptr1++;
574 ci_ptr2++;
578 return has_mismatch;
581 /* Find and return the match gcov_info object for INFO from ARRAY.
582 SIZE is the length of ARRAY.
583 Return NULL if there is no match. */
585 static struct gcov_info *
586 find_match_gcov_info (struct gcov_info **array, int size,
587 struct gcov_info *info)
589 struct gcov_info *gi_ptr;
590 struct gcov_info *ret = NULL;
591 int i;
593 for (i = 0; i < size; i++)
595 gi_ptr = array[i];
596 if (gi_ptr == 0)
597 continue;
598 if (!strcmp (gi_ptr->filename, info->filename))
600 ret = gi_ptr;
601 array[i] = 0;
602 break;
606 if (ret && ret->n_functions != info->n_functions)
608 fnotice (stderr, "mismatched profiles in %s (%d functions"
609 " vs %d functions)\n",
610 ret->filename,
611 ret->n_functions,
612 info->n_functions);
613 ret = NULL;
615 return ret;
618 /* Merge the list of gcov_info objects from SRC_PROFILE to TGT_PROFILE.
619 Return 0 on success: without mismatch.
620 Reutrn 1 on error. */
623 gcov_profile_merge (struct gcov_info *tgt_profile, struct gcov_info *src_profile,
624 int w1, int w2)
626 struct gcov_info *gi_ptr;
627 struct gcov_info **tgt_infos;
628 struct gcov_info *tgt_tail;
629 struct gcov_info **in_src_not_tgt;
630 unsigned tgt_cnt = 0, src_cnt = 0;
631 unsigned unmatch_info_cnt = 0;
632 unsigned int i;
634 for (gi_ptr = tgt_profile; gi_ptr; gi_ptr = gi_ptr->next)
635 tgt_cnt++;
636 for (gi_ptr = src_profile; gi_ptr; gi_ptr = gi_ptr->next)
637 src_cnt++;
638 tgt_infos = (struct gcov_info **) xmalloc (sizeof (struct gcov_info *)
639 * tgt_cnt);
640 gcc_assert (tgt_infos);
641 in_src_not_tgt = (struct gcov_info **) xmalloc (sizeof (struct gcov_info *)
642 * src_cnt);
643 gcc_assert (in_src_not_tgt);
645 for (gi_ptr = tgt_profile, i = 0; gi_ptr; gi_ptr = gi_ptr->next, i++)
646 tgt_infos[i] = gi_ptr;
648 tgt_tail = tgt_infos[tgt_cnt - 1];
650 /* First pass on tgt_profile, we multiply w1 to all counters. */
651 if (w1 > 1)
653 for (i = 0; i < tgt_cnt; i++)
654 gcov_merge (tgt_infos[i], tgt_infos[i], w1-1);
657 /* Second pass, add src_profile to the tgt_profile. */
658 for (gi_ptr = src_profile; gi_ptr; gi_ptr = gi_ptr->next)
660 struct gcov_info *gi_ptr1;
662 gi_ptr1 = find_match_gcov_info (tgt_infos, tgt_cnt, gi_ptr);
663 if (gi_ptr1 == NULL)
665 in_src_not_tgt[unmatch_info_cnt++] = gi_ptr;
666 continue;
668 gcov_merge (gi_ptr1, gi_ptr, w2);
671 /* For modules in src but not in tgt. We adjust the counter and append. */
672 for (i = 0; i < unmatch_info_cnt; i++)
674 gi_ptr = in_src_not_tgt[i];
675 gcov_merge (gi_ptr, gi_ptr, w2 - 1);
676 tgt_tail->next = gi_ptr;
677 tgt_tail = gi_ptr;
680 return 0;
683 typedef gcov_type (*counter_op_fn) (gcov_type, void*, void*);
685 /* Performing FN upon arc counters. */
687 static void
688 __gcov_add_counter_op (gcov_type *counters, unsigned n_counters,
689 counter_op_fn fn, void *data1, void *data2)
691 for (; n_counters; counters++, n_counters--)
693 gcov_type val = *counters;
694 *counters = fn(val, data1, data2);
698 /* Performing FN upon ior counters. */
700 static void
701 __gcov_ior_counter_op (gcov_type *counters ATTRIBUTE_UNUSED,
702 unsigned n_counters ATTRIBUTE_UNUSED,
703 counter_op_fn fn ATTRIBUTE_UNUSED,
704 void *data1 ATTRIBUTE_UNUSED,
705 void *data2 ATTRIBUTE_UNUSED)
707 /* Do nothing. */
710 /* Performing FN upon time-profile counters. */
712 static void
713 __gcov_time_profile_counter_op (gcov_type *counters ATTRIBUTE_UNUSED,
714 unsigned n_counters ATTRIBUTE_UNUSED,
715 counter_op_fn fn ATTRIBUTE_UNUSED,
716 void *data1 ATTRIBUTE_UNUSED,
717 void *data2 ATTRIBUTE_UNUSED)
719 /* Do nothing. */
722 /* Performaing FN upon delta counters. */
724 static void
725 __gcov_delta_counter_op (gcov_type *counters, unsigned n_counters,
726 counter_op_fn fn, void *data1, void *data2)
728 unsigned i, n_measures;
730 gcc_assert (!(n_counters % 4));
731 n_measures = n_counters / 4;
732 for (i = 0; i < n_measures; i++, counters += 4)
734 counters[2] = fn (counters[2], data1, data2);
735 counters[3] = fn (counters[3], data1, data2);
739 /* Performing FN upon single counters. */
741 static void
742 __gcov_single_counter_op (gcov_type *counters, unsigned n_counters,
743 counter_op_fn fn, void *data1, void *data2)
745 unsigned i, n_measures;
747 gcc_assert (!(n_counters % 3));
748 n_measures = n_counters / 3;
749 for (i = 0; i < n_measures; i++, counters += 3)
751 counters[1] = fn (counters[1], data1, data2);
752 counters[2] = fn (counters[2], data1, data2);
756 /* Performing FN upon indirect-call profile counters. */
758 static void
759 __gcov_icall_topn_counter_op (gcov_type *counters, unsigned n_counters,
760 counter_op_fn fn, void *data1, void *data2)
762 unsigned i;
764 gcc_assert (!(n_counters % GCOV_ICALL_TOPN_NCOUNTS));
765 for (i = 0; i < n_counters; i += GCOV_ICALL_TOPN_NCOUNTS)
767 unsigned j;
768 gcov_type *value_array = &counters[i + 1];
770 for (j = 0; j < GCOV_ICALL_TOPN_NCOUNTS - 1; j += 2)
771 value_array[j + 1] = fn (value_array[j + 1], data1, data2);
775 /* Scaling the counter value V by multiplying *(float*) DATA1. */
777 static gcov_type
778 fp_scale (gcov_type v, void *data1, void *data2 ATTRIBUTE_UNUSED)
780 float f = *(float *) data1;
781 return (gcov_type) (v * f);
784 /* Scaling the counter value V by multiplying DATA2/DATA1. */
786 static gcov_type
787 int_scale (gcov_type v, void *data1, void *data2)
789 int n = *(int *) data1;
790 int d = *(int *) data2;
791 return (gcov_type) ( RDIV (v,d) * n);
794 /* Type of function used to process counters. */
795 typedef void (*gcov_counter_fn) (gcov_type *, gcov_unsigned_t,
796 counter_op_fn, void *, void *);
798 /* Function array to process profile counters. */
799 #define DEF_GCOV_COUNTER(COUNTER, NAME, FN_TYPE) \
800 __gcov ## FN_TYPE ## _counter_op,
801 static gcov_counter_fn ctr_functions[GCOV_COUNTERS] = {
802 #include "gcov-counter.def"
804 #undef DEF_GCOV_COUNTER
806 /* Driver for scaling profile counters. */
809 gcov_profile_scale (struct gcov_info *profile, float scale_factor, int n, int d)
811 struct gcov_info *gi_ptr;
812 unsigned f_ix;
814 if (verbose)
815 fnotice (stdout, "scale_factor is %f or %d/%d\n", scale_factor, n, d);
817 /* Scaling the counters. */
818 for (gi_ptr = profile; gi_ptr; gi_ptr = gi_ptr->next)
819 for (f_ix = 0; f_ix < gi_ptr->n_functions; f_ix++)
821 unsigned t_ix;
822 const struct gcov_fn_info *gfi_ptr = gi_ptr->functions[f_ix];
823 const struct gcov_ctr_info *ci_ptr;
825 if (!gfi_ptr || gfi_ptr->key != gi_ptr)
826 continue;
828 ci_ptr = gfi_ptr->ctrs;
829 for (t_ix = 0; t_ix != GCOV_COUNTERS; t_ix++)
831 gcov_merge_fn merge = gi_ptr->merge[t_ix];
833 if (!merge)
834 continue;
835 if (d == 0)
836 (*ctr_functions[t_ix]) (ci_ptr->values, ci_ptr->num,
837 fp_scale, &scale_factor, NULL);
838 else
839 (*ctr_functions[t_ix]) (ci_ptr->values, ci_ptr->num,
840 int_scale, &n, &d);
841 ci_ptr++;
845 return 0;
848 /* Driver to normalize profile counters. */
851 gcov_profile_normalize (struct gcov_info *profile, gcov_type max_val)
853 struct gcov_info *gi_ptr;
854 gcov_type curr_max_val = 0;
855 unsigned f_ix;
856 unsigned int i;
857 float scale_factor;
859 /* Find the largest count value. */
860 for (gi_ptr = profile; gi_ptr; gi_ptr = gi_ptr->next)
861 for (f_ix = 0; f_ix < gi_ptr->n_functions; f_ix++)
863 unsigned t_ix;
864 const struct gcov_fn_info *gfi_ptr = gi_ptr->functions[f_ix];
865 const struct gcov_ctr_info *ci_ptr;
867 if (!gfi_ptr || gfi_ptr->key != gi_ptr)
868 continue;
870 ci_ptr = gfi_ptr->ctrs;
871 for (t_ix = 0; t_ix < 1; t_ix++)
873 for (i = 0; i < ci_ptr->num; i++)
874 if (ci_ptr->values[i] > curr_max_val)
875 curr_max_val = ci_ptr->values[i];
876 ci_ptr++;
880 scale_factor = (float)max_val / curr_max_val;
881 if (verbose)
882 fnotice (stdout, "max_val is %" PRId64 "\n", curr_max_val);
884 return gcov_profile_scale (profile, scale_factor, 0, 0);
887 /* The following variables are defined in gcc/gcov-tool.c. */
888 extern int overlap_func_level;
889 extern int overlap_obj_level;
890 extern int overlap_hot_only;
891 extern int overlap_use_fullname;
892 extern double overlap_hot_threshold;
894 /* Compute the overlap score of two values. The score is defined as:
895 min (V1/SUM_1, V2/SUM_2) */
897 static double
898 calculate_2_entries (const unsigned long v1, const unsigned long v2,
899 const double sum_1, const double sum_2)
901 double val1 = (sum_1 == 0.0 ? 0.0 : v1/sum_1);
902 double val2 = (sum_2 == 0.0 ? 0.0 : v2/sum_2);
904 if (val2 < val1)
905 val1 = val2;
907 return val1;
910 /* Compute the overlap score between GCOV_INFO1 and GCOV_INFO2.
911 SUM_1 is the sum_all for profile1 where GCOV_INFO1 belongs.
912 SUM_2 is the sum_all for profile2 where GCOV_INFO2 belongs.
913 This function also updates cumulative score CUM_1_RESULT and
914 CUM_2_RESULT. */
916 static double
917 compute_one_gcov (const struct gcov_info *gcov_info1,
918 const struct gcov_info *gcov_info2,
919 const double sum_1, const double sum_2,
920 double *cum_1_result, double *cum_2_result)
922 unsigned f_ix;
923 double ret = 0;
924 double cum_1 = 0, cum_2 = 0;
925 const struct gcov_info *gcov_info = 0;
926 double *cum_p;
927 double sum;
929 gcc_assert (gcov_info1 || gcov_info2);
930 if (!gcov_info1)
932 gcov_info = gcov_info2;
933 cum_p = cum_2_result;
934 sum = sum_2;
935 *cum_1_result = 0;
936 } else
937 if (!gcov_info2)
939 gcov_info = gcov_info1;
940 cum_p = cum_1_result;
941 sum = sum_1;
942 *cum_2_result = 0;
945 if (gcov_info)
947 for (f_ix = 0; f_ix < gcov_info->n_functions; f_ix++)
949 unsigned t_ix;
950 const struct gcov_fn_info *gfi_ptr = gcov_info->functions[f_ix];
951 if (!gfi_ptr || gfi_ptr->key != gcov_info)
952 continue;
953 const struct gcov_ctr_info *ci_ptr = gfi_ptr->ctrs;
954 for (t_ix = 0; t_ix < GCOV_COUNTERS_SUMMABLE; t_ix++)
956 unsigned c_num;
958 if (!gcov_info->merge[t_ix])
959 continue;
961 for (c_num = 0; c_num < ci_ptr->num; c_num++)
963 cum_1 += ci_ptr->values[c_num] / sum;
965 ci_ptr++;
968 *cum_p = cum_1;
969 return 0.0;
972 for (f_ix = 0; f_ix < gcov_info1->n_functions; f_ix++)
974 unsigned t_ix;
975 double func_cum_1 = 0.0;
976 double func_cum_2 = 0.0;
977 double func_val = 0.0;
978 int nonzero = 0;
979 int hot = 0;
980 const struct gcov_fn_info *gfi_ptr1 = gcov_info1->functions[f_ix];
981 const struct gcov_fn_info *gfi_ptr2 = gcov_info2->functions[f_ix];
983 if (!gfi_ptr1 || gfi_ptr1->key != gcov_info1)
984 continue;
985 if (!gfi_ptr2 || gfi_ptr2->key != gcov_info2)
986 continue;
988 const struct gcov_ctr_info *ci_ptr1 = gfi_ptr1->ctrs;
989 const struct gcov_ctr_info *ci_ptr2 = gfi_ptr2->ctrs;
990 for (t_ix = 0; t_ix < GCOV_COUNTERS_SUMMABLE; t_ix++)
992 unsigned c_num;
994 if (!gcov_info1->merge[t_ix])
995 continue;
997 for (c_num = 0; c_num < ci_ptr1->num; c_num++)
999 if (ci_ptr1->values[c_num] | ci_ptr2->values[c_num])
1001 func_val += calculate_2_entries (ci_ptr1->values[c_num],
1002 ci_ptr2->values[c_num],
1003 sum_1, sum_2);
1005 func_cum_1 += ci_ptr1->values[c_num] / sum_1;
1006 func_cum_2 += ci_ptr2->values[c_num] / sum_2;
1007 nonzero = 1;
1008 if (ci_ptr1->values[c_num] / sum_1 >= overlap_hot_threshold ||
1009 ci_ptr2->values[c_num] / sum_2 >= overlap_hot_threshold)
1010 hot = 1;
1013 ci_ptr1++;
1014 ci_ptr2++;
1016 ret += func_val;
1017 cum_1 += func_cum_1;
1018 cum_2 += func_cum_2;
1019 if (overlap_func_level && nonzero && (!overlap_hot_only || hot))
1021 printf(" \tfunc_id=%10d \toverlap =%6.5f%% (%5.5f%% %5.5f%%)\n",
1022 gfi_ptr1->ident, func_val*100, func_cum_1*100, func_cum_2*100);
1025 *cum_1_result = cum_1;
1026 *cum_2_result = cum_2;
1027 return ret;
1030 /* Test if all counter values in this GCOV_INFO are cold.
1031 "Cold" is defined as the counter value being less than
1032 or equal to THRESHOLD. */
1034 static bool
1035 gcov_info_count_all_cold (const struct gcov_info *gcov_info,
1036 gcov_type threshold)
1038 unsigned f_ix;
1040 for (f_ix = 0; f_ix < gcov_info->n_functions; f_ix++)
1042 unsigned t_ix;
1043 const struct gcov_fn_info *gfi_ptr = gcov_info->functions[f_ix];
1045 if (!gfi_ptr || gfi_ptr->key != gcov_info)
1046 continue;
1047 const struct gcov_ctr_info *ci_ptr = gfi_ptr->ctrs;
1048 for (t_ix = 0; t_ix < GCOV_COUNTERS_SUMMABLE; t_ix++)
1050 unsigned c_num;
1052 if (!gcov_info->merge[t_ix])
1053 continue;
1055 for (c_num = 0; c_num < ci_ptr->num; c_num++)
1057 if (ci_ptr->values[c_num] > threshold)
1058 return false;
1060 ci_ptr++;
1064 return true;
1067 /* Test if all counter values in this GCOV_INFO are 0. */
1069 static bool
1070 gcov_info_count_all_zero (const struct gcov_info *gcov_info)
1072 return gcov_info_count_all_cold (gcov_info, 0);
1075 /* A pair of matched GCOV_INFO.
1076 The flag is a bitvector:
1077 b0: obj1's all counts are 0;
1078 b1: obj1's all counts are cold (but no 0);
1079 b2: obj1 is hot;
1080 b3: no obj1 to match obj2;
1081 b4: obj2's all counts are 0;
1082 b5: obj2's all counts are cold (but no 0);
1083 b6: obj2 is hot;
1084 b7: no obj2 to match obj1;
1086 struct overlap_t {
1087 const struct gcov_info *obj1;
1088 const struct gcov_info *obj2;
1089 char flag;
1092 #define FLAG_BOTH_ZERO(flag) ((flag & 0x1) && (flag & 0x10))
1093 #define FLAG_BOTH_COLD(flag) ((flag & 0x2) && (flag & 0x20))
1094 #define FLAG_ONE_HOT(flag) ((flag & 0x4) || (flag & 0x40))
1096 /* Cumlative overlap dscore for profile1 and profile2. */
1097 static double overlap_sum_1, overlap_sum_2;
1099 /* sum_all for profile1 and profile2. */
1100 static gcov_type p1_sum_all, p2_sum_all;
1102 /* run_max for profile1 and profile2. */
1103 static gcov_type p1_run_max, p2_run_max;
1105 /* The number of gcda files in the profiles. */
1106 static unsigned gcda_files[2];
1108 /* The number of unique gcda files in the profiles
1109 (not existing in the other profile). */
1110 static unsigned unique_gcda_files[2];
1112 /* The number of gcda files that all counter values are 0. */
1113 static unsigned zero_gcda_files[2];
1115 /* The number of gcda files that all counter values are cold (but not 0). */
1116 static unsigned cold_gcda_files[2];
1118 /* The number of gcda files that includes hot counter values. */
1119 static unsigned hot_gcda_files[2];
1121 /* The number of gcda files with hot count value in either profiles. */
1122 static unsigned both_hot_cnt;
1124 /* The number of gcda files with all counts cold (but not 0) in
1125 both profiles. */
1126 static unsigned both_cold_cnt;
1128 /* The number of gcda files with all counts 0 in both profiles. */
1129 static unsigned both_zero_cnt;
1131 /* Extract the basename of the filename NAME. */
1133 static char *
1134 extract_file_basename (const char *name)
1136 char *str;
1137 int len = 0;
1138 char *path = xstrdup (name);
1139 char sep_str[2];
1141 sep_str[0] = DIR_SEPARATOR;
1142 sep_str[1] = 0;
1143 str = strstr(path, sep_str);
1145 len = strlen(str) + 1;
1146 path = &path[strlen(path) - len + 2];
1147 str = strstr(path, sep_str);
1148 } while(str);
1150 return path;
1153 /* Utility function to get the filename. */
1155 static const char *
1156 get_file_basename (const char *name)
1158 if (overlap_use_fullname)
1159 return name;
1160 return extract_file_basename (name);
1163 /* A utility function to set the flag for the gcda files. */
1165 static void
1166 set_flag (struct overlap_t *e)
1168 char flag = 0;
1170 if (!e->obj1)
1172 unique_gcda_files[1]++;
1173 flag = 0x8;
1175 else
1177 gcda_files[0]++;
1178 if (gcov_info_count_all_zero (e->obj1))
1180 zero_gcda_files[0]++;
1181 flag = 0x1;
1183 else
1184 if (gcov_info_count_all_cold (e->obj1, overlap_sum_1
1185 * overlap_hot_threshold))
1187 cold_gcda_files[0]++;
1188 flag = 0x2;
1190 else
1192 hot_gcda_files[0]++;
1193 flag = 0x4;
1197 if (!e->obj2)
1199 unique_gcda_files[0]++;
1200 flag |= (0x8 << 4);
1202 else
1204 gcda_files[1]++;
1205 if (gcov_info_count_all_zero (e->obj2))
1207 zero_gcda_files[1]++;
1208 flag |= (0x1 << 4);
1210 else
1211 if (gcov_info_count_all_cold (e->obj2, overlap_sum_2
1212 * overlap_hot_threshold))
1214 cold_gcda_files[1]++;
1215 flag |= (0x2 << 4);
1217 else
1219 hot_gcda_files[1]++;
1220 flag |= (0x4 << 4);
1224 gcc_assert (flag);
1225 e->flag = flag;
1228 /* Test if INFO1 and INFO2 are from the matched source file.
1229 Return 1 if they match; return 0 otherwise. */
1231 static int
1232 matched_gcov_info (const struct gcov_info *info1, const struct gcov_info *info2)
1234 /* For FDO, we have to match the name. This can be expensive.
1235 Maybe we should use hash here. */
1236 if (strcmp (info1->filename, info2->filename))
1237 return 0;
1239 if (info1->n_functions != info2->n_functions)
1241 fnotice (stderr, "mismatched profiles in %s (%d functions"
1242 " vs %d functions)\n",
1243 info1->filename,
1244 info1->n_functions,
1245 info2->n_functions);
1246 return 0;
1248 return 1;
1251 /* Defined in libgcov-driver.c. */
1252 extern gcov_unsigned_t compute_summary (struct gcov_info *,
1253 struct gcov_summary *, size_t *);
1255 /* Compute the overlap score of two profiles with the head of GCOV_LIST1 and
1256 GCOV_LIST1. Return a number ranging from [0.0, 1.0], with 0.0 meaning no
1257 match and 1.0 meaning a perfect match. */
1259 static double
1260 calculate_overlap (struct gcov_info *gcov_list1,
1261 struct gcov_info *gcov_list2)
1263 struct gcov_summary this_prg;
1264 unsigned list1_cnt = 0, list2_cnt= 0, all_cnt;
1265 unsigned int i, j;
1266 size_t max_length;
1267 const struct gcov_info *gi_ptr;
1268 struct overlap_t *all_infos;
1270 compute_summary (gcov_list1, &this_prg, &max_length);
1271 overlap_sum_1 = (double) (this_prg.ctrs[0].sum_all);
1272 p1_sum_all = this_prg.ctrs[0].sum_all;
1273 p1_run_max = this_prg.ctrs[0].run_max;
1274 compute_summary (gcov_list2, &this_prg, &max_length);
1275 overlap_sum_2 = (double) (this_prg.ctrs[0].sum_all);
1276 p2_sum_all = this_prg.ctrs[0].sum_all;
1277 p2_run_max = this_prg.ctrs[0].run_max;
1279 for (gi_ptr = gcov_list1; gi_ptr; gi_ptr = gi_ptr->next)
1280 list1_cnt++;
1281 for (gi_ptr = gcov_list2; gi_ptr; gi_ptr = gi_ptr->next)
1282 list2_cnt++;
1283 all_cnt = list1_cnt + list2_cnt;
1284 all_infos = (struct overlap_t *) xmalloc (sizeof (struct overlap_t)
1285 * all_cnt * 2);
1286 gcc_assert (all_infos);
1288 i = 0;
1289 for (gi_ptr = gcov_list1; gi_ptr; gi_ptr = gi_ptr->next, i++)
1291 all_infos[i].obj1 = gi_ptr;
1292 all_infos[i].obj2 = 0;
1295 for (gi_ptr = gcov_list2; gi_ptr; gi_ptr = gi_ptr->next, i++)
1297 all_infos[i].obj1 = 0;
1298 all_infos[i].obj2 = gi_ptr;
1301 for (i = list1_cnt; i < all_cnt; i++)
1303 if (all_infos[i].obj2 == 0)
1304 continue;
1305 for (j = 0; j < list1_cnt; j++)
1307 if (all_infos[j].obj2 != 0)
1308 continue;
1309 if (matched_gcov_info (all_infos[i].obj2, all_infos[j].obj1))
1311 all_infos[j].obj2 = all_infos[i].obj2;
1312 all_infos[i].obj2 = 0;
1313 break;
1318 for (i = 0; i < all_cnt; i++)
1319 if (all_infos[i].obj1 || all_infos[i].obj2)
1321 set_flag (all_infos + i);
1322 if (FLAG_ONE_HOT (all_infos[i].flag))
1323 both_hot_cnt++;
1324 if (FLAG_BOTH_COLD(all_infos[i].flag))
1325 both_cold_cnt++;
1326 if (FLAG_BOTH_ZERO(all_infos[i].flag))
1327 both_zero_cnt++;
1330 double prg_val = 0;
1331 double sum_val = 0;
1332 double sum_cum_1 = 0;
1333 double sum_cum_2 = 0;
1335 for (i = 0; i < all_cnt; i++)
1337 double val;
1338 double cum_1, cum_2;
1339 const char *filename;
1341 if (all_infos[i].obj1 == 0 && all_infos[i].obj2 == 0)
1342 continue;
1343 if (FLAG_BOTH_ZERO (all_infos[i].flag))
1344 continue;
1346 if (all_infos[i].obj1)
1347 filename = get_file_basename (all_infos[i].obj1->filename);
1348 else
1349 filename = get_file_basename (all_infos[i].obj2->filename);
1351 if (overlap_func_level)
1352 printf("\n processing %36s:\n", filename);
1354 val = compute_one_gcov (all_infos[i].obj1, all_infos[i].obj2,
1355 overlap_sum_1, overlap_sum_2, &cum_1, &cum_2);
1357 if (overlap_obj_level && (!overlap_hot_only || FLAG_ONE_HOT (all_infos[i].flag)))
1359 printf(" obj=%36s overlap = %6.2f%% (%5.2f%% %5.2f%%)\n",
1360 filename, val*100, cum_1*100, cum_2*100);
1361 sum_val += val;
1362 sum_cum_1 += cum_1;
1363 sum_cum_2 += cum_2;
1366 prg_val += val;
1370 if (overlap_obj_level)
1371 printf(" SUM:%36s overlap = %6.2f%% (%5.2f%% %5.2f%%)\n",
1372 "", sum_val*100, sum_cum_1*100, sum_cum_2*100);
1374 printf (" Statistics:\n"
1375 " profile1_# profile2_# overlap_#\n");
1376 printf (" gcda files: %12u\t%12u\t%12u\n", gcda_files[0], gcda_files[1],
1377 gcda_files[0]-unique_gcda_files[0]);
1378 printf (" unique files: %12u\t%12u\n", unique_gcda_files[0],
1379 unique_gcda_files[1]);
1380 printf (" hot files: %12u\t%12u\t%12u\n", hot_gcda_files[0],
1381 hot_gcda_files[1], both_hot_cnt);
1382 printf (" cold files: %12u\t%12u\t%12u\n", cold_gcda_files[0],
1383 cold_gcda_files[1], both_cold_cnt);
1384 printf (" zero files: %12u\t%12u\t%12u\n", zero_gcda_files[0],
1385 zero_gcda_files[1], both_zero_cnt);
1386 printf (" sum_all: %12" PRId64 "\t%12" PRId64 "\n",
1387 p1_sum_all, p2_sum_all);
1388 printf (" run_max: %12" PRId64 "\t%12" PRId64 "\n",
1389 p1_run_max, p2_run_max);
1391 return prg_val;
1394 /* Computer the overlap score of two lists of gcov_info objects PROFILE1 and PROFILE2.
1395 Return 0 on success: without mismatch. Reutrn 1 on error. */
1398 gcov_profile_overlap (struct gcov_info *profile1, struct gcov_info *profile2)
1400 double result;
1402 result = calculate_overlap (profile1, profile2);
1404 if (result > 0)
1406 printf("\nProgram level overlap result is %3.2f%%\n\n", result*100);
1407 return 0;
1409 return 1;