[PR67828] don't unswitch on default defs of non-parms
[official-gcc.git] / gcc / tree-ssa-loop-im.c
blob603e6d49d51dbcea464dbf9b97fb421a7793f5c7
1 /* Loop invariant motion.
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "cfghooks.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "hard-reg-set.h"
28 #include "ssa.h"
29 #include "alias.h"
30 #include "fold-const.h"
31 #include "tm_p.h"
32 #include "cfganal.h"
33 #include "gimple-pretty-print.h"
34 #include "internal-fn.h"
35 #include "tree-eh.h"
36 #include "gimplify.h"
37 #include "gimple-iterator.h"
38 #include "tree-cfg.h"
39 #include "tree-ssa-loop-manip.h"
40 #include "tree-ssa-loop.h"
41 #include "tree-into-ssa.h"
42 #include "cfgloop.h"
43 #include "domwalk.h"
44 #include "params.h"
45 #include "tree-pass.h"
46 #include "flags.h"
47 #include "tree-affine.h"
48 #include "tree-ssa-propagate.h"
49 #include "trans-mem.h"
50 #include "gimple-fold.h"
52 /* TODO: Support for predicated code motion. I.e.
54 while (1)
56 if (cond)
58 a = inv;
59 something;
63 Where COND and INV are invariants, but evaluating INV may trap or be
64 invalid from some other reason if !COND. This may be transformed to
66 if (cond)
67 a = inv;
68 while (1)
70 if (cond)
71 something;
72 } */
74 /* The auxiliary data kept for each statement. */
76 struct lim_aux_data
78 struct loop *max_loop; /* The outermost loop in that the statement
79 is invariant. */
81 struct loop *tgt_loop; /* The loop out of that we want to move the
82 invariant. */
84 struct loop *always_executed_in;
85 /* The outermost loop for that we are sure
86 the statement is executed if the loop
87 is entered. */
89 unsigned cost; /* Cost of the computation performed by the
90 statement. */
92 vec<gimple *> depends; /* Vector of statements that must be also
93 hoisted out of the loop when this statement
94 is hoisted; i.e. those that define the
95 operands of the statement and are inside of
96 the MAX_LOOP loop. */
99 /* Maps statements to their lim_aux_data. */
101 static hash_map<gimple *, lim_aux_data *> *lim_aux_data_map;
103 /* Description of a memory reference location. */
105 struct mem_ref_loc
107 tree *ref; /* The reference itself. */
108 gimple *stmt; /* The statement in that it occurs. */
112 /* Description of a memory reference. */
114 struct im_mem_ref
116 unsigned id; /* ID assigned to the memory reference
117 (its index in memory_accesses.refs_list) */
118 hashval_t hash; /* Its hash value. */
120 /* The memory access itself and associated caching of alias-oracle
121 query meta-data. */
122 ao_ref mem;
124 bitmap stored; /* The set of loops in that this memory location
125 is stored to. */
126 vec<mem_ref_loc> accesses_in_loop;
127 /* The locations of the accesses. Vector
128 indexed by the loop number. */
130 /* The following sets are computed on demand. We keep both set and
131 its complement, so that we know whether the information was
132 already computed or not. */
133 bitmap_head indep_loop; /* The set of loops in that the memory
134 reference is independent, meaning:
135 If it is stored in the loop, this store
136 is independent on all other loads and
137 stores.
138 If it is only loaded, then it is independent
139 on all stores in the loop. */
140 bitmap_head dep_loop; /* The complement of INDEP_LOOP. */
143 /* We use two bits per loop in the ref->{in,}dep_loop bitmaps, the first
144 to record (in)dependence against stores in the loop and its subloops, the
145 second to record (in)dependence against all references in the loop
146 and its subloops. */
147 #define LOOP_DEP_BIT(loopnum, storedp) (2 * (loopnum) + (storedp ? 1 : 0))
149 /* Mem_ref hashtable helpers. */
151 struct mem_ref_hasher : nofree_ptr_hash <im_mem_ref>
153 typedef tree_node *compare_type;
154 static inline hashval_t hash (const im_mem_ref *);
155 static inline bool equal (const im_mem_ref *, const tree_node *);
158 /* A hash function for struct im_mem_ref object OBJ. */
160 inline hashval_t
161 mem_ref_hasher::hash (const im_mem_ref *mem)
163 return mem->hash;
166 /* An equality function for struct im_mem_ref object MEM1 with
167 memory reference OBJ2. */
169 inline bool
170 mem_ref_hasher::equal (const im_mem_ref *mem1, const tree_node *obj2)
172 return operand_equal_p (mem1->mem.ref, (const_tree) obj2, 0);
176 /* Description of memory accesses in loops. */
178 static struct
180 /* The hash table of memory references accessed in loops. */
181 hash_table<mem_ref_hasher> *refs;
183 /* The list of memory references. */
184 vec<im_mem_ref *> refs_list;
186 /* The set of memory references accessed in each loop. */
187 vec<bitmap_head> refs_in_loop;
189 /* The set of memory references stored in each loop. */
190 vec<bitmap_head> refs_stored_in_loop;
192 /* The set of memory references stored in each loop, including subloops . */
193 vec<bitmap_head> all_refs_stored_in_loop;
195 /* Cache for expanding memory addresses. */
196 hash_map<tree, name_expansion *> *ttae_cache;
197 } memory_accesses;
199 /* Obstack for the bitmaps in the above data structures. */
200 static bitmap_obstack lim_bitmap_obstack;
201 static obstack mem_ref_obstack;
203 static bool ref_indep_loop_p (struct loop *, im_mem_ref *);
205 /* Minimum cost of an expensive expression. */
206 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
208 /* The outermost loop for which execution of the header guarantees that the
209 block will be executed. */
210 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
211 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
213 /* ID of the shared unanalyzable mem. */
214 #define UNANALYZABLE_MEM_ID 0
216 /* Whether the reference was analyzable. */
217 #define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID)
219 static struct lim_aux_data *
220 init_lim_data (gimple *stmt)
222 lim_aux_data *p = XCNEW (struct lim_aux_data);
223 lim_aux_data_map->put (stmt, p);
225 return p;
228 static struct lim_aux_data *
229 get_lim_data (gimple *stmt)
231 lim_aux_data **p = lim_aux_data_map->get (stmt);
232 if (!p)
233 return NULL;
235 return *p;
238 /* Releases the memory occupied by DATA. */
240 static void
241 free_lim_aux_data (struct lim_aux_data *data)
243 data->depends.release ();
244 free (data);
247 static void
248 clear_lim_data (gimple *stmt)
250 lim_aux_data **p = lim_aux_data_map->get (stmt);
251 if (!p)
252 return;
254 free_lim_aux_data (*p);
255 *p = NULL;
259 /* The possibilities of statement movement. */
260 enum move_pos
262 MOVE_IMPOSSIBLE, /* No movement -- side effect expression. */
263 MOVE_PRESERVE_EXECUTION, /* Must not cause the non-executed statement
264 become executed -- memory accesses, ... */
265 MOVE_POSSIBLE /* Unlimited movement. */
269 /* If it is possible to hoist the statement STMT unconditionally,
270 returns MOVE_POSSIBLE.
271 If it is possible to hoist the statement STMT, but we must avoid making
272 it executed if it would not be executed in the original program (e.g.
273 because it may trap), return MOVE_PRESERVE_EXECUTION.
274 Otherwise return MOVE_IMPOSSIBLE. */
276 enum move_pos
277 movement_possibility (gimple *stmt)
279 tree lhs;
280 enum move_pos ret = MOVE_POSSIBLE;
282 if (flag_unswitch_loops
283 && gimple_code (stmt) == GIMPLE_COND)
285 /* If we perform unswitching, force the operands of the invariant
286 condition to be moved out of the loop. */
287 return MOVE_POSSIBLE;
290 if (gimple_code (stmt) == GIMPLE_PHI
291 && gimple_phi_num_args (stmt) <= 2
292 && !virtual_operand_p (gimple_phi_result (stmt))
293 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
294 return MOVE_POSSIBLE;
296 if (gimple_get_lhs (stmt) == NULL_TREE)
297 return MOVE_IMPOSSIBLE;
299 if (gimple_vdef (stmt))
300 return MOVE_IMPOSSIBLE;
302 if (stmt_ends_bb_p (stmt)
303 || gimple_has_volatile_ops (stmt)
304 || gimple_has_side_effects (stmt)
305 || stmt_could_throw_p (stmt))
306 return MOVE_IMPOSSIBLE;
308 if (is_gimple_call (stmt))
310 /* While pure or const call is guaranteed to have no side effects, we
311 cannot move it arbitrarily. Consider code like
313 char *s = something ();
315 while (1)
317 if (s)
318 t = strlen (s);
319 else
320 t = 0;
323 Here the strlen call cannot be moved out of the loop, even though
324 s is invariant. In addition to possibly creating a call with
325 invalid arguments, moving out a function call that is not executed
326 may cause performance regressions in case the call is costly and
327 not executed at all. */
328 ret = MOVE_PRESERVE_EXECUTION;
329 lhs = gimple_call_lhs (stmt);
331 else if (is_gimple_assign (stmt))
332 lhs = gimple_assign_lhs (stmt);
333 else
334 return MOVE_IMPOSSIBLE;
336 if (TREE_CODE (lhs) == SSA_NAME
337 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
338 return MOVE_IMPOSSIBLE;
340 if (TREE_CODE (lhs) != SSA_NAME
341 || gimple_could_trap_p (stmt))
342 return MOVE_PRESERVE_EXECUTION;
344 /* Non local loads in a transaction cannot be hoisted out. Well,
345 unless the load happens on every path out of the loop, but we
346 don't take this into account yet. */
347 if (flag_tm
348 && gimple_in_transaction (stmt)
349 && gimple_assign_single_p (stmt))
351 tree rhs = gimple_assign_rhs1 (stmt);
352 if (DECL_P (rhs) && is_global_var (rhs))
354 if (dump_file)
356 fprintf (dump_file, "Cannot hoist conditional load of ");
357 print_generic_expr (dump_file, rhs, TDF_SLIM);
358 fprintf (dump_file, " because it is in a transaction.\n");
360 return MOVE_IMPOSSIBLE;
364 return ret;
367 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
368 loop to that we could move the expression using DEF if it did not have
369 other operands, i.e. the outermost loop enclosing LOOP in that the value
370 of DEF is invariant. */
372 static struct loop *
373 outermost_invariant_loop (tree def, struct loop *loop)
375 gimple *def_stmt;
376 basic_block def_bb;
377 struct loop *max_loop;
378 struct lim_aux_data *lim_data;
380 if (!def)
381 return superloop_at_depth (loop, 1);
383 if (TREE_CODE (def) != SSA_NAME)
385 gcc_assert (is_gimple_min_invariant (def));
386 return superloop_at_depth (loop, 1);
389 def_stmt = SSA_NAME_DEF_STMT (def);
390 def_bb = gimple_bb (def_stmt);
391 if (!def_bb)
392 return superloop_at_depth (loop, 1);
394 max_loop = find_common_loop (loop, def_bb->loop_father);
396 lim_data = get_lim_data (def_stmt);
397 if (lim_data != NULL && lim_data->max_loop != NULL)
398 max_loop = find_common_loop (max_loop,
399 loop_outer (lim_data->max_loop));
400 if (max_loop == loop)
401 return NULL;
402 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
404 return max_loop;
407 /* DATA is a structure containing information associated with a statement
408 inside LOOP. DEF is one of the operands of this statement.
410 Find the outermost loop enclosing LOOP in that value of DEF is invariant
411 and record this in DATA->max_loop field. If DEF itself is defined inside
412 this loop as well (i.e. we need to hoist it out of the loop if we want
413 to hoist the statement represented by DATA), record the statement in that
414 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
415 add the cost of the computation of DEF to the DATA->cost.
417 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
419 static bool
420 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
421 bool add_cost)
423 gimple *def_stmt = SSA_NAME_DEF_STMT (def);
424 basic_block def_bb = gimple_bb (def_stmt);
425 struct loop *max_loop;
426 struct lim_aux_data *def_data;
428 if (!def_bb)
429 return true;
431 max_loop = outermost_invariant_loop (def, loop);
432 if (!max_loop)
433 return false;
435 if (flow_loop_nested_p (data->max_loop, max_loop))
436 data->max_loop = max_loop;
438 def_data = get_lim_data (def_stmt);
439 if (!def_data)
440 return true;
442 if (add_cost
443 /* Only add the cost if the statement defining DEF is inside LOOP,
444 i.e. if it is likely that by moving the invariants dependent
445 on it, we will be able to avoid creating a new register for
446 it (since it will be only used in these dependent invariants). */
447 && def_bb->loop_father == loop)
448 data->cost += def_data->cost;
450 data->depends.safe_push (def_stmt);
452 return true;
455 /* Returns an estimate for a cost of statement STMT. The values here
456 are just ad-hoc constants, similar to costs for inlining. */
458 static unsigned
459 stmt_cost (gimple *stmt)
461 /* Always try to create possibilities for unswitching. */
462 if (gimple_code (stmt) == GIMPLE_COND
463 || gimple_code (stmt) == GIMPLE_PHI)
464 return LIM_EXPENSIVE;
466 /* We should be hoisting calls if possible. */
467 if (is_gimple_call (stmt))
469 tree fndecl;
471 /* Unless the call is a builtin_constant_p; this always folds to a
472 constant, so moving it is useless. */
473 fndecl = gimple_call_fndecl (stmt);
474 if (fndecl
475 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
476 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
477 return 0;
479 return LIM_EXPENSIVE;
482 /* Hoisting memory references out should almost surely be a win. */
483 if (gimple_references_memory_p (stmt))
484 return LIM_EXPENSIVE;
486 if (gimple_code (stmt) != GIMPLE_ASSIGN)
487 return 1;
489 switch (gimple_assign_rhs_code (stmt))
491 case MULT_EXPR:
492 case WIDEN_MULT_EXPR:
493 case WIDEN_MULT_PLUS_EXPR:
494 case WIDEN_MULT_MINUS_EXPR:
495 case DOT_PROD_EXPR:
496 case FMA_EXPR:
497 case TRUNC_DIV_EXPR:
498 case CEIL_DIV_EXPR:
499 case FLOOR_DIV_EXPR:
500 case ROUND_DIV_EXPR:
501 case EXACT_DIV_EXPR:
502 case CEIL_MOD_EXPR:
503 case FLOOR_MOD_EXPR:
504 case ROUND_MOD_EXPR:
505 case TRUNC_MOD_EXPR:
506 case RDIV_EXPR:
507 /* Division and multiplication are usually expensive. */
508 return LIM_EXPENSIVE;
510 case LSHIFT_EXPR:
511 case RSHIFT_EXPR:
512 case WIDEN_LSHIFT_EXPR:
513 case LROTATE_EXPR:
514 case RROTATE_EXPR:
515 /* Shifts and rotates are usually expensive. */
516 return LIM_EXPENSIVE;
518 case CONSTRUCTOR:
519 /* Make vector construction cost proportional to the number
520 of elements. */
521 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
523 case SSA_NAME:
524 case PAREN_EXPR:
525 /* Whether or not something is wrapped inside a PAREN_EXPR
526 should not change move cost. Nor should an intermediate
527 unpropagated SSA name copy. */
528 return 0;
530 default:
531 return 1;
535 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
536 REF is independent. If REF is not independent in LOOP, NULL is returned
537 instead. */
539 static struct loop *
540 outermost_indep_loop (struct loop *outer, struct loop *loop, im_mem_ref *ref)
542 struct loop *aloop;
544 if (ref->stored && bitmap_bit_p (ref->stored, loop->num))
545 return NULL;
547 for (aloop = outer;
548 aloop != loop;
549 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
550 if ((!ref->stored || !bitmap_bit_p (ref->stored, aloop->num))
551 && ref_indep_loop_p (aloop, ref))
552 return aloop;
554 if (ref_indep_loop_p (loop, ref))
555 return loop;
556 else
557 return NULL;
560 /* If there is a simple load or store to a memory reference in STMT, returns
561 the location of the memory reference, and sets IS_STORE according to whether
562 it is a store or load. Otherwise, returns NULL. */
564 static tree *
565 simple_mem_ref_in_stmt (gimple *stmt, bool *is_store)
567 tree *lhs, *rhs;
569 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
570 if (!gimple_assign_single_p (stmt))
571 return NULL;
573 lhs = gimple_assign_lhs_ptr (stmt);
574 rhs = gimple_assign_rhs1_ptr (stmt);
576 if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt))
578 *is_store = false;
579 return rhs;
581 else if (gimple_vdef (stmt)
582 && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs)))
584 *is_store = true;
585 return lhs;
587 else
588 return NULL;
591 /* Returns the memory reference contained in STMT. */
593 static im_mem_ref *
594 mem_ref_in_stmt (gimple *stmt)
596 bool store;
597 tree *mem = simple_mem_ref_in_stmt (stmt, &store);
598 hashval_t hash;
599 im_mem_ref *ref;
601 if (!mem)
602 return NULL;
603 gcc_assert (!store);
605 hash = iterative_hash_expr (*mem, 0);
606 ref = memory_accesses.refs->find_with_hash (*mem, hash);
608 gcc_assert (ref != NULL);
609 return ref;
612 /* From a controlling predicate in DOM determine the arguments from
613 the PHI node PHI that are chosen if the predicate evaluates to
614 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
615 they are non-NULL. Returns true if the arguments can be determined,
616 else return false. */
618 static bool
619 extract_true_false_args_from_phi (basic_block dom, gphi *phi,
620 tree *true_arg_p, tree *false_arg_p)
622 basic_block bb = gimple_bb (phi);
623 edge true_edge, false_edge, tem;
624 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
626 /* We have to verify that one edge into the PHI node is dominated
627 by the true edge of the predicate block and the other edge
628 dominated by the false edge. This ensures that the PHI argument
629 we are going to take is completely determined by the path we
630 take from the predicate block.
631 We can only use BB dominance checks below if the destination of
632 the true/false edges are dominated by their edge, thus only
633 have a single predecessor. */
634 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
635 tem = EDGE_PRED (bb, 0);
636 if (tem == true_edge
637 || (single_pred_p (true_edge->dest)
638 && (tem->src == true_edge->dest
639 || dominated_by_p (CDI_DOMINATORS,
640 tem->src, true_edge->dest))))
641 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
642 else if (tem == false_edge
643 || (single_pred_p (false_edge->dest)
644 && (tem->src == false_edge->dest
645 || dominated_by_p (CDI_DOMINATORS,
646 tem->src, false_edge->dest))))
647 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
648 else
649 return false;
650 tem = EDGE_PRED (bb, 1);
651 if (tem == true_edge
652 || (single_pred_p (true_edge->dest)
653 && (tem->src == true_edge->dest
654 || dominated_by_p (CDI_DOMINATORS,
655 tem->src, true_edge->dest))))
656 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
657 else if (tem == false_edge
658 || (single_pred_p (false_edge->dest)
659 && (tem->src == false_edge->dest
660 || dominated_by_p (CDI_DOMINATORS,
661 tem->src, false_edge->dest))))
662 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
663 else
664 return false;
665 if (!arg0 || !arg1)
666 return false;
668 if (true_arg_p)
669 *true_arg_p = arg0;
670 if (false_arg_p)
671 *false_arg_p = arg1;
673 return true;
676 /* Determine the outermost loop to that it is possible to hoist a statement
677 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
678 the outermost loop in that the value computed by STMT is invariant.
679 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
680 we preserve the fact whether STMT is executed. It also fills other related
681 information to LIM_DATA (STMT).
683 The function returns false if STMT cannot be hoisted outside of the loop it
684 is defined in, and true otherwise. */
686 static bool
687 determine_max_movement (gimple *stmt, bool must_preserve_exec)
689 basic_block bb = gimple_bb (stmt);
690 struct loop *loop = bb->loop_father;
691 struct loop *level;
692 struct lim_aux_data *lim_data = get_lim_data (stmt);
693 tree val;
694 ssa_op_iter iter;
696 if (must_preserve_exec)
697 level = ALWAYS_EXECUTED_IN (bb);
698 else
699 level = superloop_at_depth (loop, 1);
700 lim_data->max_loop = level;
702 if (gphi *phi = dyn_cast <gphi *> (stmt))
704 use_operand_p use_p;
705 unsigned min_cost = UINT_MAX;
706 unsigned total_cost = 0;
707 struct lim_aux_data *def_data;
709 /* We will end up promoting dependencies to be unconditionally
710 evaluated. For this reason the PHI cost (and thus the
711 cost we remove from the loop by doing the invariant motion)
712 is that of the cheapest PHI argument dependency chain. */
713 FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE)
715 val = USE_FROM_PTR (use_p);
717 if (TREE_CODE (val) != SSA_NAME)
719 /* Assign const 1 to constants. */
720 min_cost = MIN (min_cost, 1);
721 total_cost += 1;
722 continue;
724 if (!add_dependency (val, lim_data, loop, false))
725 return false;
727 gimple *def_stmt = SSA_NAME_DEF_STMT (val);
728 if (gimple_bb (def_stmt)
729 && gimple_bb (def_stmt)->loop_father == loop)
731 def_data = get_lim_data (def_stmt);
732 if (def_data)
734 min_cost = MIN (min_cost, def_data->cost);
735 total_cost += def_data->cost;
740 min_cost = MIN (min_cost, total_cost);
741 lim_data->cost += min_cost;
743 if (gimple_phi_num_args (phi) > 1)
745 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
746 gimple *cond;
747 if (gsi_end_p (gsi_last_bb (dom)))
748 return false;
749 cond = gsi_stmt (gsi_last_bb (dom));
750 if (gimple_code (cond) != GIMPLE_COND)
751 return false;
752 /* Verify that this is an extended form of a diamond and
753 the PHI arguments are completely controlled by the
754 predicate in DOM. */
755 if (!extract_true_false_args_from_phi (dom, phi, NULL, NULL))
756 return false;
758 /* Fold in dependencies and cost of the condition. */
759 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
761 if (!add_dependency (val, lim_data, loop, false))
762 return false;
763 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
764 if (def_data)
765 total_cost += def_data->cost;
768 /* We want to avoid unconditionally executing very expensive
769 operations. As costs for our dependencies cannot be
770 negative just claim we are not invariand for this case.
771 We also are not sure whether the control-flow inside the
772 loop will vanish. */
773 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
774 && !(min_cost != 0
775 && total_cost / min_cost <= 2))
776 return false;
778 /* Assume that the control-flow in the loop will vanish.
779 ??? We should verify this and not artificially increase
780 the cost if that is not the case. */
781 lim_data->cost += stmt_cost (stmt);
784 return true;
786 else
787 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
788 if (!add_dependency (val, lim_data, loop, true))
789 return false;
791 if (gimple_vuse (stmt))
793 im_mem_ref *ref = mem_ref_in_stmt (stmt);
795 if (ref)
797 lim_data->max_loop
798 = outermost_indep_loop (lim_data->max_loop, loop, ref);
799 if (!lim_data->max_loop)
800 return false;
802 else
804 if ((val = gimple_vuse (stmt)) != NULL_TREE)
806 if (!add_dependency (val, lim_data, loop, false))
807 return false;
812 lim_data->cost += stmt_cost (stmt);
814 return true;
817 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
818 and that one of the operands of this statement is computed by STMT.
819 Ensure that STMT (together with all the statements that define its
820 operands) is hoisted at least out of the loop LEVEL. */
822 static void
823 set_level (gimple *stmt, struct loop *orig_loop, struct loop *level)
825 struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
826 struct lim_aux_data *lim_data;
827 gimple *dep_stmt;
828 unsigned i;
830 stmt_loop = find_common_loop (orig_loop, stmt_loop);
831 lim_data = get_lim_data (stmt);
832 if (lim_data != NULL && lim_data->tgt_loop != NULL)
833 stmt_loop = find_common_loop (stmt_loop,
834 loop_outer (lim_data->tgt_loop));
835 if (flow_loop_nested_p (stmt_loop, level))
836 return;
838 gcc_assert (level == lim_data->max_loop
839 || flow_loop_nested_p (lim_data->max_loop, level));
841 lim_data->tgt_loop = level;
842 FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt)
843 set_level (dep_stmt, orig_loop, level);
846 /* Determines an outermost loop from that we want to hoist the statement STMT.
847 For now we chose the outermost possible loop. TODO -- use profiling
848 information to set it more sanely. */
850 static void
851 set_profitable_level (gimple *stmt)
853 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
856 /* Returns true if STMT is a call that has side effects. */
858 static bool
859 nonpure_call_p (gimple *stmt)
861 if (gimple_code (stmt) != GIMPLE_CALL)
862 return false;
864 return gimple_has_side_effects (stmt);
867 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
869 static gimple *
870 rewrite_reciprocal (gimple_stmt_iterator *bsi)
872 gassign *stmt, *stmt1, *stmt2;
873 tree name, lhs, type;
874 tree real_one;
875 gimple_stmt_iterator gsi;
877 stmt = as_a <gassign *> (gsi_stmt (*bsi));
878 lhs = gimple_assign_lhs (stmt);
879 type = TREE_TYPE (lhs);
881 real_one = build_one_cst (type);
883 name = make_temp_ssa_name (type, NULL, "reciptmp");
884 stmt1 = gimple_build_assign (name, RDIV_EXPR, real_one,
885 gimple_assign_rhs2 (stmt));
886 stmt2 = gimple_build_assign (lhs, MULT_EXPR, name,
887 gimple_assign_rhs1 (stmt));
889 /* Replace division stmt with reciprocal and multiply stmts.
890 The multiply stmt is not invariant, so update iterator
891 and avoid rescanning. */
892 gsi = *bsi;
893 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
894 gsi_replace (&gsi, stmt2, true);
896 /* Continue processing with invariant reciprocal statement. */
897 return stmt1;
900 /* Check if the pattern at *BSI is a bittest of the form
901 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
903 static gimple *
904 rewrite_bittest (gimple_stmt_iterator *bsi)
906 gassign *stmt;
907 gimple *stmt1;
908 gassign *stmt2;
909 gimple *use_stmt;
910 gcond *cond_stmt;
911 tree lhs, name, t, a, b;
912 use_operand_p use;
914 stmt = as_a <gassign *> (gsi_stmt (*bsi));
915 lhs = gimple_assign_lhs (stmt);
917 /* Verify that the single use of lhs is a comparison against zero. */
918 if (TREE_CODE (lhs) != SSA_NAME
919 || !single_imm_use (lhs, &use, &use_stmt))
920 return stmt;
921 cond_stmt = dyn_cast <gcond *> (use_stmt);
922 if (!cond_stmt)
923 return stmt;
924 if (gimple_cond_lhs (cond_stmt) != lhs
925 || (gimple_cond_code (cond_stmt) != NE_EXPR
926 && gimple_cond_code (cond_stmt) != EQ_EXPR)
927 || !integer_zerop (gimple_cond_rhs (cond_stmt)))
928 return stmt;
930 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
931 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
932 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
933 return stmt;
935 /* There is a conversion in between possibly inserted by fold. */
936 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
938 t = gimple_assign_rhs1 (stmt1);
939 if (TREE_CODE (t) != SSA_NAME
940 || !has_single_use (t))
941 return stmt;
942 stmt1 = SSA_NAME_DEF_STMT (t);
943 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
944 return stmt;
947 /* Verify that B is loop invariant but A is not. Verify that with
948 all the stmt walking we are still in the same loop. */
949 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
950 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
951 return stmt;
953 a = gimple_assign_rhs1 (stmt1);
954 b = gimple_assign_rhs2 (stmt1);
956 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
957 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
959 gimple_stmt_iterator rsi;
961 /* 1 << B */
962 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
963 build_int_cst (TREE_TYPE (a), 1), b);
964 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
965 stmt1 = gimple_build_assign (name, t);
967 /* A & (1 << B) */
968 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
969 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
970 stmt2 = gimple_build_assign (name, t);
972 /* Replace the SSA_NAME we compare against zero. Adjust
973 the type of zero accordingly. */
974 SET_USE (use, name);
975 gimple_cond_set_rhs (cond_stmt,
976 build_int_cst_type (TREE_TYPE (name),
977 0));
979 /* Don't use gsi_replace here, none of the new assignments sets
980 the variable originally set in stmt. Move bsi to stmt1, and
981 then remove the original stmt, so that we get a chance to
982 retain debug info for it. */
983 rsi = *bsi;
984 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
985 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
986 gimple *to_release = gsi_stmt (rsi);
987 gsi_remove (&rsi, true);
988 release_defs (to_release);
990 return stmt1;
993 return stmt;
996 /* For each statement determines the outermost loop in that it is invariant,
997 - statements on whose motion it depends and the cost of the computation.
998 - This information is stored to the LIM_DATA structure associated with
999 - each statement. */
1000 class invariantness_dom_walker : public dom_walker
1002 public:
1003 invariantness_dom_walker (cdi_direction direction)
1004 : dom_walker (direction) {}
1006 virtual void before_dom_children (basic_block);
1009 /* Determine the outermost loops in that statements in basic block BB are
1010 invariant, and record them to the LIM_DATA associated with the statements.
1011 Callback for dom_walker. */
1013 void
1014 invariantness_dom_walker::before_dom_children (basic_block bb)
1016 enum move_pos pos;
1017 gimple_stmt_iterator bsi;
1018 gimple *stmt;
1019 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
1020 struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
1021 struct lim_aux_data *lim_data;
1023 if (!loop_outer (bb->loop_father))
1024 return;
1026 if (dump_file && (dump_flags & TDF_DETAILS))
1027 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
1028 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
1030 /* Look at PHI nodes, but only if there is at most two.
1031 ??? We could relax this further by post-processing the inserted
1032 code and transforming adjacent cond-exprs with the same predicate
1033 to control flow again. */
1034 bsi = gsi_start_phis (bb);
1035 if (!gsi_end_p (bsi)
1036 && ((gsi_next (&bsi), gsi_end_p (bsi))
1037 || (gsi_next (&bsi), gsi_end_p (bsi))))
1038 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1040 stmt = gsi_stmt (bsi);
1042 pos = movement_possibility (stmt);
1043 if (pos == MOVE_IMPOSSIBLE)
1044 continue;
1046 lim_data = init_lim_data (stmt);
1047 lim_data->always_executed_in = outermost;
1049 if (!determine_max_movement (stmt, false))
1051 lim_data->max_loop = NULL;
1052 continue;
1055 if (dump_file && (dump_flags & TDF_DETAILS))
1057 print_gimple_stmt (dump_file, stmt, 2, 0);
1058 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1059 loop_depth (lim_data->max_loop),
1060 lim_data->cost);
1063 if (lim_data->cost >= LIM_EXPENSIVE)
1064 set_profitable_level (stmt);
1067 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1069 stmt = gsi_stmt (bsi);
1071 pos = movement_possibility (stmt);
1072 if (pos == MOVE_IMPOSSIBLE)
1074 if (nonpure_call_p (stmt))
1076 maybe_never = true;
1077 outermost = NULL;
1079 /* Make sure to note always_executed_in for stores to make
1080 store-motion work. */
1081 else if (stmt_makes_single_store (stmt))
1083 struct lim_aux_data *lim_data = init_lim_data (stmt);
1084 lim_data->always_executed_in = outermost;
1086 continue;
1089 if (is_gimple_assign (stmt)
1090 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1091 == GIMPLE_BINARY_RHS))
1093 tree op0 = gimple_assign_rhs1 (stmt);
1094 tree op1 = gimple_assign_rhs2 (stmt);
1095 struct loop *ol1 = outermost_invariant_loop (op1,
1096 loop_containing_stmt (stmt));
1098 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1099 to be hoisted out of loop, saving expensive divide. */
1100 if (pos == MOVE_POSSIBLE
1101 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1102 && flag_unsafe_math_optimizations
1103 && !flag_trapping_math
1104 && ol1 != NULL
1105 && outermost_invariant_loop (op0, ol1) == NULL)
1106 stmt = rewrite_reciprocal (&bsi);
1108 /* If the shift count is invariant, convert (A >> B) & 1 to
1109 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1110 saving an expensive shift. */
1111 if (pos == MOVE_POSSIBLE
1112 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1113 && integer_onep (op1)
1114 && TREE_CODE (op0) == SSA_NAME
1115 && has_single_use (op0))
1116 stmt = rewrite_bittest (&bsi);
1119 lim_data = init_lim_data (stmt);
1120 lim_data->always_executed_in = outermost;
1122 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1123 continue;
1125 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1127 lim_data->max_loop = NULL;
1128 continue;
1131 if (dump_file && (dump_flags & TDF_DETAILS))
1133 print_gimple_stmt (dump_file, stmt, 2, 0);
1134 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1135 loop_depth (lim_data->max_loop),
1136 lim_data->cost);
1139 if (lim_data->cost >= LIM_EXPENSIVE)
1140 set_profitable_level (stmt);
1144 class move_computations_dom_walker : public dom_walker
1146 public:
1147 move_computations_dom_walker (cdi_direction direction)
1148 : dom_walker (direction), todo_ (0) {}
1150 virtual void before_dom_children (basic_block);
1152 unsigned int todo_;
1155 /* Hoist the statements in basic block BB out of the loops prescribed by
1156 data stored in LIM_DATA structures associated with each statement. Callback
1157 for walk_dominator_tree. */
1159 void
1160 move_computations_dom_walker::before_dom_children (basic_block bb)
1162 struct loop *level;
1163 unsigned cost = 0;
1164 struct lim_aux_data *lim_data;
1166 if (!loop_outer (bb->loop_father))
1167 return;
1169 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1171 gassign *new_stmt;
1172 gphi *stmt = bsi.phi ();
1174 lim_data = get_lim_data (stmt);
1175 if (lim_data == NULL)
1177 gsi_next (&bsi);
1178 continue;
1181 cost = lim_data->cost;
1182 level = lim_data->tgt_loop;
1183 clear_lim_data (stmt);
1185 if (!level)
1187 gsi_next (&bsi);
1188 continue;
1191 if (dump_file && (dump_flags & TDF_DETAILS))
1193 fprintf (dump_file, "Moving PHI node\n");
1194 print_gimple_stmt (dump_file, stmt, 0, 0);
1195 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1196 cost, level->num);
1199 if (gimple_phi_num_args (stmt) == 1)
1201 tree arg = PHI_ARG_DEF (stmt, 0);
1202 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1203 TREE_CODE (arg), arg);
1205 else
1207 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1208 gimple *cond = gsi_stmt (gsi_last_bb (dom));
1209 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1210 /* Get the PHI arguments corresponding to the true and false
1211 edges of COND. */
1212 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1213 gcc_assert (arg0 && arg1);
1214 t = build2 (gimple_cond_code (cond), boolean_type_node,
1215 gimple_cond_lhs (cond), gimple_cond_rhs (cond));
1216 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1217 COND_EXPR, t, arg0, arg1);
1218 todo_ |= TODO_cleanup_cfg;
1220 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (new_stmt)))
1221 && (!ALWAYS_EXECUTED_IN (bb)
1222 || (ALWAYS_EXECUTED_IN (bb) != level
1223 && !flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1225 tree lhs = gimple_assign_lhs (new_stmt);
1226 SSA_NAME_RANGE_INFO (lhs) = NULL;
1228 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1229 remove_phi_node (&bsi, false);
1232 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1234 edge e;
1236 gimple *stmt = gsi_stmt (bsi);
1238 lim_data = get_lim_data (stmt);
1239 if (lim_data == NULL)
1241 gsi_next (&bsi);
1242 continue;
1245 cost = lim_data->cost;
1246 level = lim_data->tgt_loop;
1247 clear_lim_data (stmt);
1249 if (!level)
1251 gsi_next (&bsi);
1252 continue;
1255 /* We do not really want to move conditionals out of the loop; we just
1256 placed it here to force its operands to be moved if necessary. */
1257 if (gimple_code (stmt) == GIMPLE_COND)
1258 continue;
1260 if (dump_file && (dump_flags & TDF_DETAILS))
1262 fprintf (dump_file, "Moving statement\n");
1263 print_gimple_stmt (dump_file, stmt, 0, 0);
1264 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1265 cost, level->num);
1268 e = loop_preheader_edge (level);
1269 gcc_assert (!gimple_vdef (stmt));
1270 if (gimple_vuse (stmt))
1272 /* The new VUSE is the one from the virtual PHI in the loop
1273 header or the one already present. */
1274 gphi_iterator gsi2;
1275 for (gsi2 = gsi_start_phis (e->dest);
1276 !gsi_end_p (gsi2); gsi_next (&gsi2))
1278 gphi *phi = gsi2.phi ();
1279 if (virtual_operand_p (gimple_phi_result (phi)))
1281 gimple_set_vuse (stmt, PHI_ARG_DEF_FROM_EDGE (phi, e));
1282 break;
1286 gsi_remove (&bsi, false);
1287 if (gimple_has_lhs (stmt)
1288 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME
1289 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_get_lhs (stmt)))
1290 && (!ALWAYS_EXECUTED_IN (bb)
1291 || !(ALWAYS_EXECUTED_IN (bb) == level
1292 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1294 tree lhs = gimple_get_lhs (stmt);
1295 SSA_NAME_RANGE_INFO (lhs) = NULL;
1297 /* In case this is a stmt that is not unconditionally executed
1298 when the target loop header is executed and the stmt may
1299 invoke undefined integer or pointer overflow rewrite it to
1300 unsigned arithmetic. */
1301 if (is_gimple_assign (stmt)
1302 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt)))
1303 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (gimple_assign_lhs (stmt)))
1304 && arith_code_with_undefined_signed_overflow
1305 (gimple_assign_rhs_code (stmt))
1306 && (!ALWAYS_EXECUTED_IN (bb)
1307 || !(ALWAYS_EXECUTED_IN (bb) == level
1308 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1309 gsi_insert_seq_on_edge (e, rewrite_to_defined_overflow (stmt));
1310 else
1311 gsi_insert_on_edge (e, stmt);
1315 /* Hoist the statements out of the loops prescribed by data stored in
1316 LIM_DATA structures associated with each statement.*/
1318 static unsigned int
1319 move_computations (void)
1321 move_computations_dom_walker walker (CDI_DOMINATORS);
1322 walker.walk (cfun->cfg->x_entry_block_ptr);
1324 gsi_commit_edge_inserts ();
1325 if (need_ssa_update_p (cfun))
1326 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1328 return walker.todo_;
1331 /* Checks whether the statement defining variable *INDEX can be hoisted
1332 out of the loop passed in DATA. Callback for for_each_index. */
1334 static bool
1335 may_move_till (tree ref, tree *index, void *data)
1337 struct loop *loop = (struct loop *) data, *max_loop;
1339 /* If REF is an array reference, check also that the step and the lower
1340 bound is invariant in LOOP. */
1341 if (TREE_CODE (ref) == ARRAY_REF)
1343 tree step = TREE_OPERAND (ref, 3);
1344 tree lbound = TREE_OPERAND (ref, 2);
1346 max_loop = outermost_invariant_loop (step, loop);
1347 if (!max_loop)
1348 return false;
1350 max_loop = outermost_invariant_loop (lbound, loop);
1351 if (!max_loop)
1352 return false;
1355 max_loop = outermost_invariant_loop (*index, loop);
1356 if (!max_loop)
1357 return false;
1359 return true;
1362 /* If OP is SSA NAME, force the statement that defines it to be
1363 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1365 static void
1366 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
1368 gimple *stmt;
1370 if (!op
1371 || is_gimple_min_invariant (op))
1372 return;
1374 gcc_assert (TREE_CODE (op) == SSA_NAME);
1376 stmt = SSA_NAME_DEF_STMT (op);
1377 if (gimple_nop_p (stmt))
1378 return;
1380 set_level (stmt, orig_loop, loop);
1383 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1384 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1385 for_each_index. */
1387 struct fmt_data
1389 struct loop *loop;
1390 struct loop *orig_loop;
1393 static bool
1394 force_move_till (tree ref, tree *index, void *data)
1396 struct fmt_data *fmt_data = (struct fmt_data *) data;
1398 if (TREE_CODE (ref) == ARRAY_REF)
1400 tree step = TREE_OPERAND (ref, 3);
1401 tree lbound = TREE_OPERAND (ref, 2);
1403 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1404 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1407 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1409 return true;
1412 /* A function to free the mem_ref object OBJ. */
1414 static void
1415 memref_free (struct im_mem_ref *mem)
1417 mem->accesses_in_loop.release ();
1420 /* Allocates and returns a memory reference description for MEM whose hash
1421 value is HASH and id is ID. */
1423 static im_mem_ref *
1424 mem_ref_alloc (tree mem, unsigned hash, unsigned id)
1426 im_mem_ref *ref = XOBNEW (&mem_ref_obstack, struct im_mem_ref);
1427 ao_ref_init (&ref->mem, mem);
1428 ref->id = id;
1429 ref->hash = hash;
1430 ref->stored = NULL;
1431 bitmap_initialize (&ref->indep_loop, &lim_bitmap_obstack);
1432 bitmap_initialize (&ref->dep_loop, &lim_bitmap_obstack);
1433 ref->accesses_in_loop.create (1);
1435 return ref;
1438 /* Records memory reference location *LOC in LOOP to the memory reference
1439 description REF. The reference occurs in statement STMT. */
1441 static void
1442 record_mem_ref_loc (im_mem_ref *ref, gimple *stmt, tree *loc)
1444 mem_ref_loc aref;
1445 aref.stmt = stmt;
1446 aref.ref = loc;
1447 ref->accesses_in_loop.safe_push (aref);
1450 /* Set the LOOP bit in REF stored bitmap and allocate that if
1451 necessary. Return whether a bit was changed. */
1453 static bool
1454 set_ref_stored_in_loop (im_mem_ref *ref, struct loop *loop)
1456 if (!ref->stored)
1457 ref->stored = BITMAP_ALLOC (&lim_bitmap_obstack);
1458 return bitmap_set_bit (ref->stored, loop->num);
1461 /* Marks reference REF as stored in LOOP. */
1463 static void
1464 mark_ref_stored (im_mem_ref *ref, struct loop *loop)
1466 while (loop != current_loops->tree_root
1467 && set_ref_stored_in_loop (ref, loop))
1468 loop = loop_outer (loop);
1471 /* Gathers memory references in statement STMT in LOOP, storing the
1472 information about them in the memory_accesses structure. Marks
1473 the vops accessed through unrecognized statements there as
1474 well. */
1476 static void
1477 gather_mem_refs_stmt (struct loop *loop, gimple *stmt)
1479 tree *mem = NULL;
1480 hashval_t hash;
1481 im_mem_ref **slot;
1482 im_mem_ref *ref;
1483 bool is_stored;
1484 unsigned id;
1486 if (!gimple_vuse (stmt))
1487 return;
1489 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1490 if (!mem)
1492 /* We use the shared mem_ref for all unanalyzable refs. */
1493 id = UNANALYZABLE_MEM_ID;
1494 ref = memory_accesses.refs_list[id];
1495 if (dump_file && (dump_flags & TDF_DETAILS))
1497 fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
1498 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1500 is_stored = gimple_vdef (stmt);
1502 else
1504 hash = iterative_hash_expr (*mem, 0);
1505 slot = memory_accesses.refs->find_slot_with_hash (*mem, hash, INSERT);
1506 if (*slot)
1508 ref = *slot;
1509 id = ref->id;
1511 else
1513 id = memory_accesses.refs_list.length ();
1514 ref = mem_ref_alloc (*mem, hash, id);
1515 memory_accesses.refs_list.safe_push (ref);
1516 *slot = ref;
1518 if (dump_file && (dump_flags & TDF_DETAILS))
1520 fprintf (dump_file, "Memory reference %u: ", id);
1521 print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
1522 fprintf (dump_file, "\n");
1526 record_mem_ref_loc (ref, stmt, mem);
1528 bitmap_set_bit (&memory_accesses.refs_in_loop[loop->num], ref->id);
1529 if (is_stored)
1531 bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id);
1532 mark_ref_stored (ref, loop);
1534 return;
1537 static unsigned *bb_loop_postorder;
1539 /* qsort sort function to sort blocks after their loop fathers postorder. */
1541 static int
1542 sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_)
1544 basic_block bb1 = *(basic_block *)const_cast<void *>(bb1_);
1545 basic_block bb2 = *(basic_block *)const_cast<void *>(bb2_);
1546 struct loop *loop1 = bb1->loop_father;
1547 struct loop *loop2 = bb2->loop_father;
1548 if (loop1->num == loop2->num)
1549 return 0;
1550 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1553 /* qsort sort function to sort ref locs after their loop fathers postorder. */
1555 static int
1556 sort_locs_in_loop_postorder_cmp (const void *loc1_, const void *loc2_)
1558 mem_ref_loc *loc1 = (mem_ref_loc *)const_cast<void *>(loc1_);
1559 mem_ref_loc *loc2 = (mem_ref_loc *)const_cast<void *>(loc2_);
1560 struct loop *loop1 = gimple_bb (loc1->stmt)->loop_father;
1561 struct loop *loop2 = gimple_bb (loc2->stmt)->loop_father;
1562 if (loop1->num == loop2->num)
1563 return 0;
1564 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1567 /* Gathers memory references in loops. */
1569 static void
1570 analyze_memory_references (void)
1572 gimple_stmt_iterator bsi;
1573 basic_block bb, *bbs;
1574 struct loop *loop, *outer;
1575 unsigned i, n;
1577 /* Collect all basic-blocks in loops and sort them after their
1578 loops postorder. */
1579 i = 0;
1580 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
1581 FOR_EACH_BB_FN (bb, cfun)
1582 if (bb->loop_father != current_loops->tree_root)
1583 bbs[i++] = bb;
1584 n = i;
1585 qsort (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp);
1587 /* Visit blocks in loop postorder and assign mem-ref IDs in that order.
1588 That results in better locality for all the bitmaps. */
1589 for (i = 0; i < n; ++i)
1591 basic_block bb = bbs[i];
1592 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1593 gather_mem_refs_stmt (bb->loop_father, gsi_stmt (bsi));
1596 /* Sort the location list of gathered memory references after their
1597 loop postorder number. */
1598 im_mem_ref *ref;
1599 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
1600 ref->accesses_in_loop.qsort (sort_locs_in_loop_postorder_cmp);
1602 free (bbs);
1603 // free (bb_loop_postorder);
1605 /* Propagate the information about accessed memory references up
1606 the loop hierarchy. */
1607 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1609 /* Finalize the overall touched references (including subloops). */
1610 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num],
1611 &memory_accesses.refs_stored_in_loop[loop->num]);
1613 /* Propagate the information about accessed memory references up
1614 the loop hierarchy. */
1615 outer = loop_outer (loop);
1616 if (outer == current_loops->tree_root)
1617 continue;
1619 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num],
1620 &memory_accesses.all_refs_stored_in_loop[loop->num]);
1624 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1625 tree_to_aff_combination_expand. */
1627 static bool
1628 mem_refs_may_alias_p (im_mem_ref *mem1, im_mem_ref *mem2,
1629 hash_map<tree, name_expansion *> **ttae_cache)
1631 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1632 object and their offset differ in such a way that the locations cannot
1633 overlap, then they cannot alias. */
1634 widest_int size1, size2;
1635 aff_tree off1, off2;
1637 /* Perform basic offset and type-based disambiguation. */
1638 if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, true))
1639 return false;
1641 /* The expansion of addresses may be a bit expensive, thus we only do
1642 the check at -O2 and higher optimization levels. */
1643 if (optimize < 2)
1644 return true;
1646 get_inner_reference_aff (mem1->mem.ref, &off1, &size1);
1647 get_inner_reference_aff (mem2->mem.ref, &off2, &size2);
1648 aff_combination_expand (&off1, ttae_cache);
1649 aff_combination_expand (&off2, ttae_cache);
1650 aff_combination_scale (&off1, -1);
1651 aff_combination_add (&off2, &off1);
1653 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1654 return false;
1656 return true;
1659 /* Compare function for bsearch searching for reference locations
1660 in a loop. */
1662 static int
1663 find_ref_loc_in_loop_cmp (const void *loop_, const void *loc_)
1665 struct loop *loop = (struct loop *)const_cast<void *>(loop_);
1666 mem_ref_loc *loc = (mem_ref_loc *)const_cast<void *>(loc_);
1667 struct loop *loc_loop = gimple_bb (loc->stmt)->loop_father;
1668 if (loop->num == loc_loop->num
1669 || flow_loop_nested_p (loop, loc_loop))
1670 return 0;
1671 return (bb_loop_postorder[loop->num] < bb_loop_postorder[loc_loop->num]
1672 ? -1 : 1);
1675 /* Iterates over all locations of REF in LOOP and its subloops calling
1676 fn.operator() with the location as argument. When that operator
1677 returns true the iteration is stopped and true is returned.
1678 Otherwise false is returned. */
1680 template <typename FN>
1681 static bool
1682 for_all_locs_in_loop (struct loop *loop, im_mem_ref *ref, FN fn)
1684 unsigned i;
1685 mem_ref_loc *loc;
1687 /* Search for the cluster of locs in the accesses_in_loop vector
1688 which is sorted after postorder index of the loop father. */
1689 loc = ref->accesses_in_loop.bsearch (loop, find_ref_loc_in_loop_cmp);
1690 if (!loc)
1691 return false;
1693 /* We have found one location inside loop or its sub-loops. Iterate
1694 both forward and backward to cover the whole cluster. */
1695 i = loc - ref->accesses_in_loop.address ();
1696 while (i > 0)
1698 --i;
1699 mem_ref_loc *l = &ref->accesses_in_loop[i];
1700 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1701 break;
1702 if (fn (l))
1703 return true;
1705 for (i = loc - ref->accesses_in_loop.address ();
1706 i < ref->accesses_in_loop.length (); ++i)
1708 mem_ref_loc *l = &ref->accesses_in_loop[i];
1709 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1710 break;
1711 if (fn (l))
1712 return true;
1715 return false;
1718 /* Rewrites location LOC by TMP_VAR. */
1720 struct rewrite_mem_ref_loc
1722 rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {}
1723 bool operator () (mem_ref_loc *loc);
1724 tree tmp_var;
1727 bool
1728 rewrite_mem_ref_loc::operator () (mem_ref_loc *loc)
1730 *loc->ref = tmp_var;
1731 update_stmt (loc->stmt);
1732 return false;
1735 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1737 static void
1738 rewrite_mem_refs (struct loop *loop, im_mem_ref *ref, tree tmp_var)
1740 for_all_locs_in_loop (loop, ref, rewrite_mem_ref_loc (tmp_var));
1743 /* Stores the first reference location in LOCP. */
1745 struct first_mem_ref_loc_1
1747 first_mem_ref_loc_1 (mem_ref_loc **locp_) : locp (locp_) {}
1748 bool operator () (mem_ref_loc *loc);
1749 mem_ref_loc **locp;
1752 bool
1753 first_mem_ref_loc_1::operator () (mem_ref_loc *loc)
1755 *locp = loc;
1756 return true;
1759 /* Returns the first reference location to REF in LOOP. */
1761 static mem_ref_loc *
1762 first_mem_ref_loc (struct loop *loop, im_mem_ref *ref)
1764 mem_ref_loc *locp = NULL;
1765 for_all_locs_in_loop (loop, ref, first_mem_ref_loc_1 (&locp));
1766 return locp;
1769 struct prev_flag_edges {
1770 /* Edge to insert new flag comparison code. */
1771 edge append_cond_position;
1773 /* Edge for fall through from previous flag comparison. */
1774 edge last_cond_fallthru;
1777 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1778 MEM along edge EX.
1780 The store is only done if MEM has changed. We do this so no
1781 changes to MEM occur on code paths that did not originally store
1782 into it.
1784 The common case for execute_sm will transform:
1786 for (...) {
1787 if (foo)
1788 stuff;
1789 else
1790 MEM = TMP_VAR;
1793 into:
1795 lsm = MEM;
1796 for (...) {
1797 if (foo)
1798 stuff;
1799 else
1800 lsm = TMP_VAR;
1802 MEM = lsm;
1804 This function will generate:
1806 lsm = MEM;
1808 lsm_flag = false;
1810 for (...) {
1811 if (foo)
1812 stuff;
1813 else {
1814 lsm = TMP_VAR;
1815 lsm_flag = true;
1818 if (lsm_flag) <--
1819 MEM = lsm; <--
1822 static void
1823 execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag)
1825 basic_block new_bb, then_bb, old_dest;
1826 bool loop_has_only_one_exit;
1827 edge then_old_edge, orig_ex = ex;
1828 gimple_stmt_iterator gsi;
1829 gimple *stmt;
1830 struct prev_flag_edges *prev_edges = (struct prev_flag_edges *) ex->aux;
1831 bool irr = ex->flags & EDGE_IRREDUCIBLE_LOOP;
1833 /* ?? Insert store after previous store if applicable. See note
1834 below. */
1835 if (prev_edges)
1836 ex = prev_edges->append_cond_position;
1838 loop_has_only_one_exit = single_pred_p (ex->dest);
1840 if (loop_has_only_one_exit)
1841 ex = split_block_after_labels (ex->dest);
1842 else
1844 for (gphi_iterator gpi = gsi_start_phis (ex->dest);
1845 !gsi_end_p (gpi); gsi_next (&gpi))
1847 gphi *phi = gpi.phi ();
1848 if (virtual_operand_p (gimple_phi_result (phi)))
1849 continue;
1851 /* When the destination has a non-virtual PHI node with multiple
1852 predecessors make sure we preserve the PHI structure by
1853 forcing a forwarder block so that hoisting of that PHI will
1854 still work. */
1855 split_edge (ex);
1856 break;
1860 old_dest = ex->dest;
1861 new_bb = split_edge (ex);
1862 then_bb = create_empty_bb (new_bb);
1863 if (irr)
1864 then_bb->flags = BB_IRREDUCIBLE_LOOP;
1865 add_bb_to_loop (then_bb, new_bb->loop_father);
1867 gsi = gsi_start_bb (new_bb);
1868 stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
1869 NULL_TREE, NULL_TREE);
1870 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1872 gsi = gsi_start_bb (then_bb);
1873 /* Insert actual store. */
1874 stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
1875 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1877 make_edge (new_bb, then_bb,
1878 EDGE_TRUE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1879 make_edge (new_bb, old_dest,
1880 EDGE_FALSE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1881 then_old_edge = make_edge (then_bb, old_dest,
1882 EDGE_FALLTHRU | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1884 set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
1886 if (prev_edges)
1888 basic_block prevbb = prev_edges->last_cond_fallthru->src;
1889 redirect_edge_succ (prev_edges->last_cond_fallthru, new_bb);
1890 set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
1891 set_immediate_dominator (CDI_DOMINATORS, old_dest,
1892 recompute_dominator (CDI_DOMINATORS, old_dest));
1895 /* ?? Because stores may alias, they must happen in the exact
1896 sequence they originally happened. Save the position right after
1897 the (_lsm) store we just created so we can continue appending after
1898 it and maintain the original order. */
1900 struct prev_flag_edges *p;
1902 if (orig_ex->aux)
1903 orig_ex->aux = NULL;
1904 alloc_aux_for_edge (orig_ex, sizeof (struct prev_flag_edges));
1905 p = (struct prev_flag_edges *) orig_ex->aux;
1906 p->append_cond_position = then_old_edge;
1907 p->last_cond_fallthru = find_edge (new_bb, old_dest);
1908 orig_ex->aux = (void *) p;
1911 if (!loop_has_only_one_exit)
1912 for (gphi_iterator gpi = gsi_start_phis (old_dest);
1913 !gsi_end_p (gpi); gsi_next (&gpi))
1915 gphi *phi = gpi.phi ();
1916 unsigned i;
1918 for (i = 0; i < gimple_phi_num_args (phi); i++)
1919 if (gimple_phi_arg_edge (phi, i)->src == new_bb)
1921 tree arg = gimple_phi_arg_def (phi, i);
1922 add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
1923 update_stmt (phi);
1926 /* Remove the original fall through edge. This was the
1927 single_succ_edge (new_bb). */
1928 EDGE_SUCC (new_bb, 0)->flags &= ~EDGE_FALLTHRU;
1931 /* When REF is set on the location, set flag indicating the store. */
1933 struct sm_set_flag_if_changed
1935 sm_set_flag_if_changed (tree flag_) : flag (flag_) {}
1936 bool operator () (mem_ref_loc *loc);
1937 tree flag;
1940 bool
1941 sm_set_flag_if_changed::operator () (mem_ref_loc *loc)
1943 /* Only set the flag for writes. */
1944 if (is_gimple_assign (loc->stmt)
1945 && gimple_assign_lhs_ptr (loc->stmt) == loc->ref)
1947 gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt);
1948 gimple *stmt = gimple_build_assign (flag, boolean_true_node);
1949 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1951 return false;
1954 /* Helper function for execute_sm. On every location where REF is
1955 set, set an appropriate flag indicating the store. */
1957 static tree
1958 execute_sm_if_changed_flag_set (struct loop *loop, im_mem_ref *ref)
1960 tree flag;
1961 char *str = get_lsm_tmp_name (ref->mem.ref, ~0, "_flag");
1962 flag = create_tmp_reg (boolean_type_node, str);
1963 for_all_locs_in_loop (loop, ref, sm_set_flag_if_changed (flag));
1964 return flag;
1967 /* Executes store motion of memory reference REF from LOOP.
1968 Exits from the LOOP are stored in EXITS. The initialization of the
1969 temporary variable is put to the preheader of the loop, and assignments
1970 to the reference from the temporary variable are emitted to exits. */
1972 static void
1973 execute_sm (struct loop *loop, vec<edge> exits, im_mem_ref *ref)
1975 tree tmp_var, store_flag = NULL_TREE;
1976 unsigned i;
1977 gassign *load;
1978 struct fmt_data fmt_data;
1979 edge ex;
1980 struct lim_aux_data *lim_data;
1981 bool multi_threaded_model_p = false;
1982 gimple_stmt_iterator gsi;
1984 if (dump_file && (dump_flags & TDF_DETAILS))
1986 fprintf (dump_file, "Executing store motion of ");
1987 print_generic_expr (dump_file, ref->mem.ref, 0);
1988 fprintf (dump_file, " from loop %d\n", loop->num);
1991 tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref),
1992 get_lsm_tmp_name (ref->mem.ref, ~0));
1994 fmt_data.loop = loop;
1995 fmt_data.orig_loop = loop;
1996 for_each_index (&ref->mem.ref, force_move_till, &fmt_data);
1998 if (bb_in_transaction (loop_preheader_edge (loop)->src)
1999 || !PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES))
2000 multi_threaded_model_p = true;
2002 if (multi_threaded_model_p)
2003 store_flag = execute_sm_if_changed_flag_set (loop, ref);
2005 rewrite_mem_refs (loop, ref, tmp_var);
2007 /* Emit the load code on a random exit edge or into the latch if
2008 the loop does not exit, so that we are sure it will be processed
2009 by move_computations after all dependencies. */
2010 gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt);
2012 /* FIXME/TODO: For the multi-threaded variant, we could avoid this
2013 load altogether, since the store is predicated by a flag. We
2014 could, do the load only if it was originally in the loop. */
2015 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem.ref));
2016 lim_data = init_lim_data (load);
2017 lim_data->max_loop = loop;
2018 lim_data->tgt_loop = loop;
2019 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2021 if (multi_threaded_model_p)
2023 load = gimple_build_assign (store_flag, boolean_false_node);
2024 lim_data = init_lim_data (load);
2025 lim_data->max_loop = loop;
2026 lim_data->tgt_loop = loop;
2027 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2030 /* Sink the store to every exit from the loop. */
2031 FOR_EACH_VEC_ELT (exits, i, ex)
2032 if (!multi_threaded_model_p)
2034 gassign *store;
2035 store = gimple_build_assign (unshare_expr (ref->mem.ref), tmp_var);
2036 gsi_insert_on_edge (ex, store);
2038 else
2039 execute_sm_if_changed (ex, ref->mem.ref, tmp_var, store_flag);
2042 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2043 edges of the LOOP. */
2045 static void
2046 hoist_memory_references (struct loop *loop, bitmap mem_refs,
2047 vec<edge> exits)
2049 im_mem_ref *ref;
2050 unsigned i;
2051 bitmap_iterator bi;
2053 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2055 ref = memory_accesses.refs_list[i];
2056 execute_sm (loop, exits, ref);
2060 struct ref_always_accessed
2062 ref_always_accessed (struct loop *loop_, bool stored_p_)
2063 : loop (loop_), stored_p (stored_p_) {}
2064 bool operator () (mem_ref_loc *loc);
2065 struct loop *loop;
2066 bool stored_p;
2069 bool
2070 ref_always_accessed::operator () (mem_ref_loc *loc)
2072 struct loop *must_exec;
2074 if (!get_lim_data (loc->stmt))
2075 return false;
2077 /* If we require an always executed store make sure the statement
2078 stores to the reference. */
2079 if (stored_p)
2081 tree lhs = gimple_get_lhs (loc->stmt);
2082 if (!lhs
2083 || lhs != *loc->ref)
2084 return false;
2087 must_exec = get_lim_data (loc->stmt)->always_executed_in;
2088 if (!must_exec)
2089 return false;
2091 if (must_exec == loop
2092 || flow_loop_nested_p (must_exec, loop))
2093 return true;
2095 return false;
2098 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2099 make sure REF is always stored to in LOOP. */
2101 static bool
2102 ref_always_accessed_p (struct loop *loop, im_mem_ref *ref, bool stored_p)
2104 return for_all_locs_in_loop (loop, ref,
2105 ref_always_accessed (loop, stored_p));
2108 /* Returns true if REF1 and REF2 are independent. */
2110 static bool
2111 refs_independent_p (im_mem_ref *ref1, im_mem_ref *ref2)
2113 if (ref1 == ref2)
2114 return true;
2116 if (dump_file && (dump_flags & TDF_DETAILS))
2117 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
2118 ref1->id, ref2->id);
2120 if (mem_refs_may_alias_p (ref1, ref2, &memory_accesses.ttae_cache))
2122 if (dump_file && (dump_flags & TDF_DETAILS))
2123 fprintf (dump_file, "dependent.\n");
2124 return false;
2126 else
2128 if (dump_file && (dump_flags & TDF_DETAILS))
2129 fprintf (dump_file, "independent.\n");
2130 return true;
2134 /* Mark REF dependent on stores or loads (according to STORED_P) in LOOP
2135 and its super-loops. */
2137 static void
2138 record_dep_loop (struct loop *loop, im_mem_ref *ref, bool stored_p)
2140 /* We can propagate dependent-in-loop bits up the loop
2141 hierarchy to all outer loops. */
2142 while (loop != current_loops->tree_root
2143 && bitmap_set_bit (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2144 loop = loop_outer (loop);
2147 /* Returns true if REF is independent on all other memory references in
2148 LOOP. */
2150 static bool
2151 ref_indep_loop_p_1 (struct loop *loop, im_mem_ref *ref, bool stored_p)
2153 bitmap refs_to_check;
2154 unsigned i;
2155 bitmap_iterator bi;
2156 im_mem_ref *aref;
2158 if (stored_p)
2159 refs_to_check = &memory_accesses.refs_in_loop[loop->num];
2160 else
2161 refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num];
2163 if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID))
2164 return false;
2166 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2168 aref = memory_accesses.refs_list[i];
2169 if (!refs_independent_p (ref, aref))
2170 return false;
2173 return true;
2176 /* Returns true if REF is independent on all other memory references in
2177 LOOP. Wrapper over ref_indep_loop_p_1, caching its results. */
2179 static bool
2180 ref_indep_loop_p_2 (struct loop *loop, im_mem_ref *ref, bool stored_p)
2182 stored_p |= (ref->stored && bitmap_bit_p (ref->stored, loop->num));
2184 if (bitmap_bit_p (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2185 return true;
2186 if (bitmap_bit_p (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2187 return false;
2189 struct loop *inner = loop->inner;
2190 while (inner)
2192 if (!ref_indep_loop_p_2 (inner, ref, stored_p))
2193 return false;
2194 inner = inner->next;
2197 bool indep_p = ref_indep_loop_p_1 (loop, ref, stored_p);
2199 if (dump_file && (dump_flags & TDF_DETAILS))
2200 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
2201 ref->id, loop->num, indep_p ? "independent" : "dependent");
2203 /* Record the computed result in the cache. */
2204 if (indep_p)
2206 if (bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p))
2207 && stored_p)
2209 /* If it's independend against all refs then it's independent
2210 against stores, too. */
2211 bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, false));
2214 else
2216 record_dep_loop (loop, ref, stored_p);
2217 if (!stored_p)
2219 /* If it's dependent against stores it's dependent against
2220 all refs, too. */
2221 record_dep_loop (loop, ref, true);
2225 return indep_p;
2228 /* Returns true if REF is independent on all other memory references in
2229 LOOP. */
2231 static bool
2232 ref_indep_loop_p (struct loop *loop, im_mem_ref *ref)
2234 gcc_checking_assert (MEM_ANALYZABLE (ref));
2236 return ref_indep_loop_p_2 (loop, ref, false);
2239 /* Returns true if we can perform store motion of REF from LOOP. */
2241 static bool
2242 can_sm_ref_p (struct loop *loop, im_mem_ref *ref)
2244 tree base;
2246 /* Can't hoist unanalyzable refs. */
2247 if (!MEM_ANALYZABLE (ref))
2248 return false;
2250 /* It should be movable. */
2251 if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref))
2252 || TREE_THIS_VOLATILE (ref->mem.ref)
2253 || !for_each_index (&ref->mem.ref, may_move_till, loop))
2254 return false;
2256 /* If it can throw fail, we do not properly update EH info. */
2257 if (tree_could_throw_p (ref->mem.ref))
2258 return false;
2260 /* If it can trap, it must be always executed in LOOP.
2261 Readonly memory locations may trap when storing to them, but
2262 tree_could_trap_p is a predicate for rvalues, so check that
2263 explicitly. */
2264 base = get_base_address (ref->mem.ref);
2265 if ((tree_could_trap_p (ref->mem.ref)
2266 || (DECL_P (base) && TREE_READONLY (base)))
2267 && !ref_always_accessed_p (loop, ref, true))
2268 return false;
2270 /* And it must be independent on all other memory references
2271 in LOOP. */
2272 if (!ref_indep_loop_p (loop, ref))
2273 return false;
2275 return true;
2278 /* Marks the references in LOOP for that store motion should be performed
2279 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2280 motion was performed in one of the outer loops. */
2282 static void
2283 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2285 bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num];
2286 unsigned i;
2287 bitmap_iterator bi;
2288 im_mem_ref *ref;
2290 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2292 ref = memory_accesses.refs_list[i];
2293 if (can_sm_ref_p (loop, ref))
2294 bitmap_set_bit (refs_to_sm, i);
2298 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2299 for a store motion optimization (i.e. whether we can insert statement
2300 on its exits). */
2302 static bool
2303 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
2304 vec<edge> exits)
2306 unsigned i;
2307 edge ex;
2309 FOR_EACH_VEC_ELT (exits, i, ex)
2310 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
2311 return false;
2313 return true;
2316 /* Try to perform store motion for all memory references modified inside
2317 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2318 store motion was executed in one of the outer loops. */
2320 static void
2321 store_motion_loop (struct loop *loop, bitmap sm_executed)
2323 vec<edge> exits = get_loop_exit_edges (loop);
2324 struct loop *subloop;
2325 bitmap sm_in_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
2327 if (loop_suitable_for_sm (loop, exits))
2329 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2330 hoist_memory_references (loop, sm_in_loop, exits);
2332 exits.release ();
2334 bitmap_ior_into (sm_executed, sm_in_loop);
2335 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2336 store_motion_loop (subloop, sm_executed);
2337 bitmap_and_compl_into (sm_executed, sm_in_loop);
2338 BITMAP_FREE (sm_in_loop);
2341 /* Try to perform store motion for all memory references modified inside
2342 loops. */
2344 static void
2345 store_motion (void)
2347 struct loop *loop;
2348 bitmap sm_executed = BITMAP_ALLOC (&lim_bitmap_obstack);
2350 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2351 store_motion_loop (loop, sm_executed);
2353 BITMAP_FREE (sm_executed);
2354 gsi_commit_edge_inserts ();
2357 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2358 for each such basic block bb records the outermost loop for that execution
2359 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2360 blocks that contain a nonpure call. */
2362 static void
2363 fill_always_executed_in_1 (struct loop *loop, sbitmap contains_call)
2365 basic_block bb = NULL, *bbs, last = NULL;
2366 unsigned i;
2367 edge e;
2368 struct loop *inn_loop = loop;
2370 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
2372 bbs = get_loop_body_in_dom_order (loop);
2374 for (i = 0; i < loop->num_nodes; i++)
2376 edge_iterator ei;
2377 bb = bbs[i];
2379 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2380 last = bb;
2382 if (bitmap_bit_p (contains_call, bb->index))
2383 break;
2385 FOR_EACH_EDGE (e, ei, bb->succs)
2386 if (!flow_bb_inside_loop_p (loop, e->dest))
2387 break;
2388 if (e)
2389 break;
2391 /* A loop might be infinite (TODO use simple loop analysis
2392 to disprove this if possible). */
2393 if (bb->flags & BB_IRREDUCIBLE_LOOP)
2394 break;
2396 if (!flow_bb_inside_loop_p (inn_loop, bb))
2397 break;
2399 if (bb->loop_father->header == bb)
2401 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2402 break;
2404 /* In a loop that is always entered we may proceed anyway.
2405 But record that we entered it and stop once we leave it. */
2406 inn_loop = bb->loop_father;
2410 while (1)
2412 SET_ALWAYS_EXECUTED_IN (last, loop);
2413 if (last == loop->header)
2414 break;
2415 last = get_immediate_dominator (CDI_DOMINATORS, last);
2418 free (bbs);
2421 for (loop = loop->inner; loop; loop = loop->next)
2422 fill_always_executed_in_1 (loop, contains_call);
2425 /* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e.
2426 for each such basic block bb records the outermost loop for that execution
2427 of its header implies execution of bb. */
2429 static void
2430 fill_always_executed_in (void)
2432 sbitmap contains_call = sbitmap_alloc (last_basic_block_for_fn (cfun));
2433 basic_block bb;
2434 struct loop *loop;
2436 bitmap_clear (contains_call);
2437 FOR_EACH_BB_FN (bb, cfun)
2439 gimple_stmt_iterator gsi;
2440 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2442 if (nonpure_call_p (gsi_stmt (gsi)))
2443 break;
2446 if (!gsi_end_p (gsi))
2447 bitmap_set_bit (contains_call, bb->index);
2450 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
2451 fill_always_executed_in_1 (loop, contains_call);
2453 sbitmap_free (contains_call);
2457 /* Compute the global information needed by the loop invariant motion pass. */
2459 static void
2460 tree_ssa_lim_initialize (void)
2462 struct loop *loop;
2463 unsigned i;
2465 bitmap_obstack_initialize (&lim_bitmap_obstack);
2466 gcc_obstack_init (&mem_ref_obstack);
2467 lim_aux_data_map = new hash_map<gimple *, lim_aux_data *>;
2469 if (flag_tm)
2470 compute_transaction_bits ();
2472 alloc_aux_for_edges (0);
2474 memory_accesses.refs = new hash_table<mem_ref_hasher> (100);
2475 memory_accesses.refs_list.create (100);
2476 /* Allocate a special, unanalyzable mem-ref with ID zero. */
2477 memory_accesses.refs_list.quick_push
2478 (mem_ref_alloc (error_mark_node, 0, UNANALYZABLE_MEM_ID));
2480 memory_accesses.refs_in_loop.create (number_of_loops (cfun));
2481 memory_accesses.refs_in_loop.quick_grow (number_of_loops (cfun));
2482 memory_accesses.refs_stored_in_loop.create (number_of_loops (cfun));
2483 memory_accesses.refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2484 memory_accesses.all_refs_stored_in_loop.create (number_of_loops (cfun));
2485 memory_accesses.all_refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2487 for (i = 0; i < number_of_loops (cfun); i++)
2489 bitmap_initialize (&memory_accesses.refs_in_loop[i],
2490 &lim_bitmap_obstack);
2491 bitmap_initialize (&memory_accesses.refs_stored_in_loop[i],
2492 &lim_bitmap_obstack);
2493 bitmap_initialize (&memory_accesses.all_refs_stored_in_loop[i],
2494 &lim_bitmap_obstack);
2497 memory_accesses.ttae_cache = NULL;
2499 /* Initialize bb_loop_postorder with a mapping from loop->num to
2500 its postorder index. */
2501 i = 0;
2502 bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun));
2503 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
2504 bb_loop_postorder[loop->num] = i++;
2507 /* Cleans up after the invariant motion pass. */
2509 static void
2510 tree_ssa_lim_finalize (void)
2512 basic_block bb;
2513 unsigned i;
2514 im_mem_ref *ref;
2516 free_aux_for_edges ();
2518 FOR_EACH_BB_FN (bb, cfun)
2519 SET_ALWAYS_EXECUTED_IN (bb, NULL);
2521 bitmap_obstack_release (&lim_bitmap_obstack);
2522 delete lim_aux_data_map;
2524 delete memory_accesses.refs;
2525 memory_accesses.refs = NULL;
2527 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
2528 memref_free (ref);
2529 memory_accesses.refs_list.release ();
2530 obstack_free (&mem_ref_obstack, NULL);
2532 memory_accesses.refs_in_loop.release ();
2533 memory_accesses.refs_stored_in_loop.release ();
2534 memory_accesses.all_refs_stored_in_loop.release ();
2536 if (memory_accesses.ttae_cache)
2537 free_affine_expand_cache (&memory_accesses.ttae_cache);
2539 free (bb_loop_postorder);
2542 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2543 i.e. those that are likely to be win regardless of the register pressure. */
2545 unsigned int
2546 tree_ssa_lim (void)
2548 unsigned int todo;
2550 tree_ssa_lim_initialize ();
2552 /* Gathers information about memory accesses in the loops. */
2553 analyze_memory_references ();
2555 /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */
2556 fill_always_executed_in ();
2558 /* For each statement determine the outermost loop in that it is
2559 invariant and cost for computing the invariant. */
2560 invariantness_dom_walker (CDI_DOMINATORS)
2561 .walk (cfun->cfg->x_entry_block_ptr);
2563 /* Execute store motion. Force the necessary invariants to be moved
2564 out of the loops as well. */
2565 store_motion ();
2567 /* Move the expressions that are expensive enough. */
2568 todo = move_computations ();
2570 tree_ssa_lim_finalize ();
2572 return todo;
2575 /* Loop invariant motion pass. */
2577 namespace {
2579 const pass_data pass_data_lim =
2581 GIMPLE_PASS, /* type */
2582 "lim", /* name */
2583 OPTGROUP_LOOP, /* optinfo_flags */
2584 TV_LIM, /* tv_id */
2585 PROP_cfg, /* properties_required */
2586 0, /* properties_provided */
2587 0, /* properties_destroyed */
2588 0, /* todo_flags_start */
2589 0, /* todo_flags_finish */
2592 class pass_lim : public gimple_opt_pass
2594 public:
2595 pass_lim (gcc::context *ctxt)
2596 : gimple_opt_pass (pass_data_lim, ctxt)
2599 /* opt_pass methods: */
2600 opt_pass * clone () { return new pass_lim (m_ctxt); }
2601 virtual bool gate (function *) { return flag_tree_loop_im != 0; }
2602 virtual unsigned int execute (function *);
2604 }; // class pass_lim
2606 unsigned int
2607 pass_lim::execute (function *fun)
2609 if (number_of_loops (fun) <= 1)
2610 return 0;
2612 return tree_ssa_lim ();
2615 } // anon namespace
2617 gimple_opt_pass *
2618 make_pass_lim (gcc::context *ctxt)
2620 return new pass_lim (ctxt);