[PR67828] don't unswitch on default defs of non-parms
[official-gcc.git] / gcc / reload.c
blobcc61d771efa0ec21a45d8b084bd087ec5481e5a1
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains subroutines used only from the file reload1.c.
21 It knows how to scan one insn for operands and values
22 that need to be copied into registers to make valid code.
23 It also finds other operands and values which are valid
24 but for which equivalent values in registers exist and
25 ought to be used instead.
27 Before processing the first insn of the function, call `init_reload'.
28 init_reload actually has to be called earlier anyway.
30 To scan an insn, call `find_reloads'. This does two things:
31 1. sets up tables describing which values must be reloaded
32 for this insn, and what kind of hard regs they must be reloaded into;
33 2. optionally record the locations where those values appear in
34 the data, so they can be replaced properly later.
35 This is done only if the second arg to `find_reloads' is nonzero.
37 The third arg to `find_reloads' specifies the number of levels
38 of indirect addressing supported by the machine. If it is zero,
39 indirect addressing is not valid. If it is one, (MEM (REG n))
40 is valid even if (REG n) did not get a hard register; if it is two,
41 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
42 hard register, and similarly for higher values.
44 Then you must choose the hard regs to reload those pseudo regs into,
45 and generate appropriate load insns before this insn and perhaps
46 also store insns after this insn. Set up the array `reload_reg_rtx'
47 to contain the REG rtx's for the registers you used. In some
48 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
49 for certain reloads. Then that tells you which register to use,
50 so you do not need to allocate one. But you still do need to add extra
51 instructions to copy the value into and out of that register.
53 Finally you must call `subst_reloads' to substitute the reload reg rtx's
54 into the locations already recorded.
56 NOTE SIDE EFFECTS:
58 find_reloads can alter the operands of the instruction it is called on.
60 1. Two operands of any sort may be interchanged, if they are in a
61 commutative instruction.
62 This happens only if find_reloads thinks the instruction will compile
63 better that way.
65 2. Pseudo-registers that are equivalent to constants are replaced
66 with those constants if they are not in hard registers.
68 1 happens every time find_reloads is called.
69 2 happens only when REPLACE is 1, which is only when
70 actually doing the reloads, not when just counting them.
72 Using a reload register for several reloads in one insn:
74 When an insn has reloads, it is considered as having three parts:
75 the input reloads, the insn itself after reloading, and the output reloads.
76 Reloads of values used in memory addresses are often needed for only one part.
78 When this is so, reload_when_needed records which part needs the reload.
79 Two reloads for different parts of the insn can share the same reload
80 register.
82 When a reload is used for addresses in multiple parts, or when it is
83 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
84 a register with any other reload. */
86 #define REG_OK_STRICT
88 /* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
89 #undef DEBUG_RELOAD
91 #include "config.h"
92 #include "system.h"
93 #include "coretypes.h"
94 #include "backend.h"
95 #include "tree.h"
96 #include "rtl.h"
97 #include "df.h"
98 #include "rtl-error.h"
99 #include "tm_p.h"
100 #include "insn-config.h"
101 #include "flags.h"
102 #include "alias.h"
103 #include "expmed.h"
104 #include "dojump.h"
105 #include "explow.h"
106 #include "calls.h"
107 #include "emit-rtl.h"
108 #include "varasm.h"
109 #include "stmt.h"
110 #include "expr.h"
111 #include "insn-codes.h"
112 #include "optabs.h"
113 #include "recog.h"
114 #include "reload.h"
115 #include "regs.h"
116 #include "addresses.h"
117 #include "params.h"
118 #include "target.h"
119 #include "ira.h"
121 /* True if X is a constant that can be forced into the constant pool.
122 MODE is the mode of the operand, or VOIDmode if not known. */
123 #define CONST_POOL_OK_P(MODE, X) \
124 ((MODE) != VOIDmode \
125 && CONSTANT_P (X) \
126 && GET_CODE (X) != HIGH \
127 && !targetm.cannot_force_const_mem (MODE, X))
129 /* True if C is a non-empty register class that has too few registers
130 to be safely used as a reload target class. */
132 static inline bool
133 small_register_class_p (reg_class_t rclass)
135 return (reg_class_size [(int) rclass] == 1
136 || (reg_class_size [(int) rclass] >= 1
137 && targetm.class_likely_spilled_p (rclass)));
141 /* All reloads of the current insn are recorded here. See reload.h for
142 comments. */
143 int n_reloads;
144 struct reload rld[MAX_RELOADS];
146 /* All the "earlyclobber" operands of the current insn
147 are recorded here. */
148 int n_earlyclobbers;
149 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
151 int reload_n_operands;
153 /* Replacing reloads.
155 If `replace_reloads' is nonzero, then as each reload is recorded
156 an entry is made for it in the table `replacements'.
157 Then later `subst_reloads' can look through that table and
158 perform all the replacements needed. */
160 /* Nonzero means record the places to replace. */
161 static int replace_reloads;
163 /* Each replacement is recorded with a structure like this. */
164 struct replacement
166 rtx *where; /* Location to store in */
167 int what; /* which reload this is for */
168 machine_mode mode; /* mode it must have */
171 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
173 /* Number of replacements currently recorded. */
174 static int n_replacements;
176 /* Used to track what is modified by an operand. */
177 struct decomposition
179 int reg_flag; /* Nonzero if referencing a register. */
180 int safe; /* Nonzero if this can't conflict with anything. */
181 rtx base; /* Base address for MEM. */
182 HOST_WIDE_INT start; /* Starting offset or register number. */
183 HOST_WIDE_INT end; /* Ending offset or register number. */
186 #ifdef SECONDARY_MEMORY_NEEDED
188 /* Save MEMs needed to copy from one class of registers to another. One MEM
189 is used per mode, but normally only one or two modes are ever used.
191 We keep two versions, before and after register elimination. The one
192 after register elimination is record separately for each operand. This
193 is done in case the address is not valid to be sure that we separately
194 reload each. */
196 static rtx secondary_memlocs[NUM_MACHINE_MODES];
197 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
198 static int secondary_memlocs_elim_used = 0;
199 #endif
201 /* The instruction we are doing reloads for;
202 so we can test whether a register dies in it. */
203 static rtx_insn *this_insn;
205 /* Nonzero if this instruction is a user-specified asm with operands. */
206 static int this_insn_is_asm;
208 /* If hard_regs_live_known is nonzero,
209 we can tell which hard regs are currently live,
210 at least enough to succeed in choosing dummy reloads. */
211 static int hard_regs_live_known;
213 /* Indexed by hard reg number,
214 element is nonnegative if hard reg has been spilled.
215 This vector is passed to `find_reloads' as an argument
216 and is not changed here. */
217 static short *static_reload_reg_p;
219 /* Set to 1 in subst_reg_equivs if it changes anything. */
220 static int subst_reg_equivs_changed;
222 /* On return from push_reload, holds the reload-number for the OUT
223 operand, which can be different for that from the input operand. */
224 static int output_reloadnum;
226 /* Compare two RTX's. */
227 #define MATCHES(x, y) \
228 (x == y || (x != 0 && (REG_P (x) \
229 ? REG_P (y) && REGNO (x) == REGNO (y) \
230 : rtx_equal_p (x, y) && ! side_effects_p (x))))
232 /* Indicates if two reloads purposes are for similar enough things that we
233 can merge their reloads. */
234 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
235 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
236 || ((when1) == (when2) && (op1) == (op2)) \
237 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
238 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
239 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
240 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
241 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
243 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
244 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
245 ((when1) != (when2) \
246 || ! ((op1) == (op2) \
247 || (when1) == RELOAD_FOR_INPUT \
248 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
249 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
251 /* If we are going to reload an address, compute the reload type to
252 use. */
253 #define ADDR_TYPE(type) \
254 ((type) == RELOAD_FOR_INPUT_ADDRESS \
255 ? RELOAD_FOR_INPADDR_ADDRESS \
256 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
257 ? RELOAD_FOR_OUTADDR_ADDRESS \
258 : (type)))
260 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
261 machine_mode, enum reload_type,
262 enum insn_code *, secondary_reload_info *);
263 static enum reg_class find_valid_class (machine_mode, machine_mode,
264 int, unsigned int);
265 static void push_replacement (rtx *, int, machine_mode);
266 static void dup_replacements (rtx *, rtx *);
267 static void combine_reloads (void);
268 static int find_reusable_reload (rtx *, rtx, enum reg_class,
269 enum reload_type, int, int);
270 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, machine_mode,
271 machine_mode, reg_class_t, int, int);
272 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
273 static struct decomposition decompose (rtx);
274 static int immune_p (rtx, rtx, struct decomposition);
275 static bool alternative_allows_const_pool_ref (rtx, const char *, int);
276 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int,
277 rtx_insn *, int *);
278 static rtx make_memloc (rtx, int);
279 static int maybe_memory_address_addr_space_p (machine_mode, rtx,
280 addr_space_t, rtx *);
281 static int find_reloads_address (machine_mode, rtx *, rtx, rtx *,
282 int, enum reload_type, int, rtx_insn *);
283 static rtx subst_reg_equivs (rtx, rtx_insn *);
284 static rtx subst_indexed_address (rtx);
285 static void update_auto_inc_notes (rtx_insn *, int, int);
286 static int find_reloads_address_1 (machine_mode, addr_space_t, rtx, int,
287 enum rtx_code, enum rtx_code, rtx *,
288 int, enum reload_type,int, rtx_insn *);
289 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
290 machine_mode, int,
291 enum reload_type, int);
292 static rtx find_reloads_subreg_address (rtx, int, enum reload_type,
293 int, rtx_insn *, int *);
294 static void copy_replacements_1 (rtx *, rtx *, int);
295 static int find_inc_amount (rtx, rtx);
296 static int refers_to_mem_for_reload_p (rtx);
297 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
298 rtx, rtx *);
300 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
301 list yet. */
303 static void
304 push_reg_equiv_alt_mem (int regno, rtx mem)
306 rtx it;
308 for (it = reg_equiv_alt_mem_list (regno); it; it = XEXP (it, 1))
309 if (rtx_equal_p (XEXP (it, 0), mem))
310 return;
312 reg_equiv_alt_mem_list (regno)
313 = alloc_EXPR_LIST (REG_EQUIV, mem,
314 reg_equiv_alt_mem_list (regno));
317 /* Determine if any secondary reloads are needed for loading (if IN_P is
318 nonzero) or storing (if IN_P is zero) X to or from a reload register of
319 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
320 are needed, push them.
322 Return the reload number of the secondary reload we made, or -1 if
323 we didn't need one. *PICODE is set to the insn_code to use if we do
324 need a secondary reload. */
326 static int
327 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
328 enum reg_class reload_class,
329 machine_mode reload_mode, enum reload_type type,
330 enum insn_code *picode, secondary_reload_info *prev_sri)
332 enum reg_class rclass = NO_REGS;
333 enum reg_class scratch_class;
334 machine_mode mode = reload_mode;
335 enum insn_code icode = CODE_FOR_nothing;
336 enum insn_code t_icode = CODE_FOR_nothing;
337 enum reload_type secondary_type;
338 int s_reload, t_reload = -1;
339 const char *scratch_constraint;
340 secondary_reload_info sri;
342 if (type == RELOAD_FOR_INPUT_ADDRESS
343 || type == RELOAD_FOR_OUTPUT_ADDRESS
344 || type == RELOAD_FOR_INPADDR_ADDRESS
345 || type == RELOAD_FOR_OUTADDR_ADDRESS)
346 secondary_type = type;
347 else
348 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
350 *picode = CODE_FOR_nothing;
352 /* If X is a paradoxical SUBREG, use the inner value to determine both the
353 mode and object being reloaded. */
354 if (paradoxical_subreg_p (x))
356 x = SUBREG_REG (x);
357 reload_mode = GET_MODE (x);
360 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
361 is still a pseudo-register by now, it *must* have an equivalent MEM
362 but we don't want to assume that), use that equivalent when seeing if
363 a secondary reload is needed since whether or not a reload is needed
364 might be sensitive to the form of the MEM. */
366 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
367 && reg_equiv_mem (REGNO (x)))
368 x = reg_equiv_mem (REGNO (x));
370 sri.icode = CODE_FOR_nothing;
371 sri.prev_sri = prev_sri;
372 rclass = (enum reg_class) targetm.secondary_reload (in_p, x, reload_class,
373 reload_mode, &sri);
374 icode = (enum insn_code) sri.icode;
376 /* If we don't need any secondary registers, done. */
377 if (rclass == NO_REGS && icode == CODE_FOR_nothing)
378 return -1;
380 if (rclass != NO_REGS)
381 t_reload = push_secondary_reload (in_p, x, opnum, optional, rclass,
382 reload_mode, type, &t_icode, &sri);
384 /* If we will be using an insn, the secondary reload is for a
385 scratch register. */
387 if (icode != CODE_FOR_nothing)
389 /* If IN_P is nonzero, the reload register will be the output in
390 operand 0. If IN_P is zero, the reload register will be the input
391 in operand 1. Outputs should have an initial "=", which we must
392 skip. */
394 /* ??? It would be useful to be able to handle only two, or more than
395 three, operands, but for now we can only handle the case of having
396 exactly three: output, input and one temp/scratch. */
397 gcc_assert (insn_data[(int) icode].n_operands == 3);
399 /* ??? We currently have no way to represent a reload that needs
400 an icode to reload from an intermediate tertiary reload register.
401 We should probably have a new field in struct reload to tag a
402 chain of scratch operand reloads onto. */
403 gcc_assert (rclass == NO_REGS);
405 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
406 gcc_assert (*scratch_constraint == '=');
407 scratch_constraint++;
408 if (*scratch_constraint == '&')
409 scratch_constraint++;
410 scratch_class = (reg_class_for_constraint
411 (lookup_constraint (scratch_constraint)));
413 rclass = scratch_class;
414 mode = insn_data[(int) icode].operand[2].mode;
417 /* This case isn't valid, so fail. Reload is allowed to use the same
418 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
419 in the case of a secondary register, we actually need two different
420 registers for correct code. We fail here to prevent the possibility of
421 silently generating incorrect code later.
423 The convention is that secondary input reloads are valid only if the
424 secondary_class is different from class. If you have such a case, you
425 can not use secondary reloads, you must work around the problem some
426 other way.
428 Allow this when a reload_in/out pattern is being used. I.e. assume
429 that the generated code handles this case. */
431 gcc_assert (!in_p || rclass != reload_class || icode != CODE_FOR_nothing
432 || t_icode != CODE_FOR_nothing);
434 /* See if we can reuse an existing secondary reload. */
435 for (s_reload = 0; s_reload < n_reloads; s_reload++)
436 if (rld[s_reload].secondary_p
437 && (reg_class_subset_p (rclass, rld[s_reload].rclass)
438 || reg_class_subset_p (rld[s_reload].rclass, rclass))
439 && ((in_p && rld[s_reload].inmode == mode)
440 || (! in_p && rld[s_reload].outmode == mode))
441 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
442 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
443 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
444 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
445 && (small_register_class_p (rclass)
446 || targetm.small_register_classes_for_mode_p (VOIDmode))
447 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
448 opnum, rld[s_reload].opnum))
450 if (in_p)
451 rld[s_reload].inmode = mode;
452 if (! in_p)
453 rld[s_reload].outmode = mode;
455 if (reg_class_subset_p (rclass, rld[s_reload].rclass))
456 rld[s_reload].rclass = rclass;
458 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
459 rld[s_reload].optional &= optional;
460 rld[s_reload].secondary_p = 1;
461 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
462 opnum, rld[s_reload].opnum))
463 rld[s_reload].when_needed = RELOAD_OTHER;
465 break;
468 if (s_reload == n_reloads)
470 #ifdef SECONDARY_MEMORY_NEEDED
471 /* If we need a memory location to copy between the two reload regs,
472 set it up now. Note that we do the input case before making
473 the reload and the output case after. This is due to the
474 way reloads are output. */
476 if (in_p && icode == CODE_FOR_nothing
477 && SECONDARY_MEMORY_NEEDED (rclass, reload_class, mode))
479 get_secondary_mem (x, reload_mode, opnum, type);
481 /* We may have just added new reloads. Make sure we add
482 the new reload at the end. */
483 s_reload = n_reloads;
485 #endif
487 /* We need to make a new secondary reload for this register class. */
488 rld[s_reload].in = rld[s_reload].out = 0;
489 rld[s_reload].rclass = rclass;
491 rld[s_reload].inmode = in_p ? mode : VOIDmode;
492 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
493 rld[s_reload].reg_rtx = 0;
494 rld[s_reload].optional = optional;
495 rld[s_reload].inc = 0;
496 /* Maybe we could combine these, but it seems too tricky. */
497 rld[s_reload].nocombine = 1;
498 rld[s_reload].in_reg = 0;
499 rld[s_reload].out_reg = 0;
500 rld[s_reload].opnum = opnum;
501 rld[s_reload].when_needed = secondary_type;
502 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
503 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
504 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
505 rld[s_reload].secondary_out_icode
506 = ! in_p ? t_icode : CODE_FOR_nothing;
507 rld[s_reload].secondary_p = 1;
509 n_reloads++;
511 #ifdef SECONDARY_MEMORY_NEEDED
512 if (! in_p && icode == CODE_FOR_nothing
513 && SECONDARY_MEMORY_NEEDED (reload_class, rclass, mode))
514 get_secondary_mem (x, mode, opnum, type);
515 #endif
518 *picode = icode;
519 return s_reload;
522 /* If a secondary reload is needed, return its class. If both an intermediate
523 register and a scratch register is needed, we return the class of the
524 intermediate register. */
525 reg_class_t
526 secondary_reload_class (bool in_p, reg_class_t rclass, machine_mode mode,
527 rtx x)
529 enum insn_code icode;
530 secondary_reload_info sri;
532 sri.icode = CODE_FOR_nothing;
533 sri.prev_sri = NULL;
534 rclass
535 = (enum reg_class) targetm.secondary_reload (in_p, x, rclass, mode, &sri);
536 icode = (enum insn_code) sri.icode;
538 /* If there are no secondary reloads at all, we return NO_REGS.
539 If an intermediate register is needed, we return its class. */
540 if (icode == CODE_FOR_nothing || rclass != NO_REGS)
541 return rclass;
543 /* No intermediate register is needed, but we have a special reload
544 pattern, which we assume for now needs a scratch register. */
545 return scratch_reload_class (icode);
548 /* ICODE is the insn_code of a reload pattern. Check that it has exactly
549 three operands, verify that operand 2 is an output operand, and return
550 its register class.
551 ??? We'd like to be able to handle any pattern with at least 2 operands,
552 for zero or more scratch registers, but that needs more infrastructure. */
553 enum reg_class
554 scratch_reload_class (enum insn_code icode)
556 const char *scratch_constraint;
557 enum reg_class rclass;
559 gcc_assert (insn_data[(int) icode].n_operands == 3);
560 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
561 gcc_assert (*scratch_constraint == '=');
562 scratch_constraint++;
563 if (*scratch_constraint == '&')
564 scratch_constraint++;
565 rclass = reg_class_for_constraint (lookup_constraint (scratch_constraint));
566 gcc_assert (rclass != NO_REGS);
567 return rclass;
570 #ifdef SECONDARY_MEMORY_NEEDED
572 /* Return a memory location that will be used to copy X in mode MODE.
573 If we haven't already made a location for this mode in this insn,
574 call find_reloads_address on the location being returned. */
577 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, machine_mode mode,
578 int opnum, enum reload_type type)
580 rtx loc;
581 int mem_valid;
583 /* By default, if MODE is narrower than a word, widen it to a word.
584 This is required because most machines that require these memory
585 locations do not support short load and stores from all registers
586 (e.g., FP registers). */
588 #ifdef SECONDARY_MEMORY_NEEDED_MODE
589 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
590 #else
591 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
592 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
593 #endif
595 /* If we already have made a MEM for this operand in MODE, return it. */
596 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
597 return secondary_memlocs_elim[(int) mode][opnum];
599 /* If this is the first time we've tried to get a MEM for this mode,
600 allocate a new one. `something_changed' in reload will get set
601 by noticing that the frame size has changed. */
603 if (secondary_memlocs[(int) mode] == 0)
605 #ifdef SECONDARY_MEMORY_NEEDED_RTX
606 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
607 #else
608 secondary_memlocs[(int) mode]
609 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
610 #endif
613 /* Get a version of the address doing any eliminations needed. If that
614 didn't give us a new MEM, make a new one if it isn't valid. */
616 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
617 mem_valid = strict_memory_address_addr_space_p (mode, XEXP (loc, 0),
618 MEM_ADDR_SPACE (loc));
620 if (! mem_valid && loc == secondary_memlocs[(int) mode])
621 loc = copy_rtx (loc);
623 /* The only time the call below will do anything is if the stack
624 offset is too large. In that case IND_LEVELS doesn't matter, so we
625 can just pass a zero. Adjust the type to be the address of the
626 corresponding object. If the address was valid, save the eliminated
627 address. If it wasn't valid, we need to make a reload each time, so
628 don't save it. */
630 if (! mem_valid)
632 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
633 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
634 : RELOAD_OTHER);
636 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
637 opnum, type, 0, 0);
640 secondary_memlocs_elim[(int) mode][opnum] = loc;
641 if (secondary_memlocs_elim_used <= (int)mode)
642 secondary_memlocs_elim_used = (int)mode + 1;
643 return loc;
646 /* Clear any secondary memory locations we've made. */
648 void
649 clear_secondary_mem (void)
651 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
653 #endif /* SECONDARY_MEMORY_NEEDED */
656 /* Find the largest class which has at least one register valid in
657 mode INNER, and which for every such register, that register number
658 plus N is also valid in OUTER (if in range) and is cheap to move
659 into REGNO. Such a class must exist. */
661 static enum reg_class
662 find_valid_class (machine_mode outer ATTRIBUTE_UNUSED,
663 machine_mode inner ATTRIBUTE_UNUSED, int n,
664 unsigned int dest_regno ATTRIBUTE_UNUSED)
666 int best_cost = -1;
667 int rclass;
668 int regno;
669 enum reg_class best_class = NO_REGS;
670 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
671 unsigned int best_size = 0;
672 int cost;
674 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
676 int bad = 0;
677 int good = 0;
678 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
679 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno))
681 if (HARD_REGNO_MODE_OK (regno, inner))
683 good = 1;
684 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno + n)
685 && ! HARD_REGNO_MODE_OK (regno + n, outer))
686 bad = 1;
690 if (bad || !good)
691 continue;
692 cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
694 if ((reg_class_size[rclass] > best_size
695 && (best_cost < 0 || best_cost >= cost))
696 || best_cost > cost)
698 best_class = (enum reg_class) rclass;
699 best_size = reg_class_size[rclass];
700 best_cost = register_move_cost (outer, (enum reg_class) rclass,
701 dest_class);
705 gcc_assert (best_size != 0);
707 return best_class;
710 /* We are trying to reload a subreg of something that is not a register.
711 Find the largest class which contains only registers valid in
712 mode MODE. OUTER is the mode of the subreg, DEST_CLASS the class in
713 which we would eventually like to obtain the object. */
715 static enum reg_class
716 find_valid_class_1 (machine_mode outer ATTRIBUTE_UNUSED,
717 machine_mode mode ATTRIBUTE_UNUSED,
718 enum reg_class dest_class ATTRIBUTE_UNUSED)
720 int best_cost = -1;
721 int rclass;
722 int regno;
723 enum reg_class best_class = NO_REGS;
724 unsigned int best_size = 0;
725 int cost;
727 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
729 int bad = 0;
730 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && !bad; regno++)
732 if (in_hard_reg_set_p (reg_class_contents[rclass], mode, regno)
733 && !HARD_REGNO_MODE_OK (regno, mode))
734 bad = 1;
737 if (bad)
738 continue;
740 cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
742 if ((reg_class_size[rclass] > best_size
743 && (best_cost < 0 || best_cost >= cost))
744 || best_cost > cost)
746 best_class = (enum reg_class) rclass;
747 best_size = reg_class_size[rclass];
748 best_cost = register_move_cost (outer, (enum reg_class) rclass,
749 dest_class);
753 gcc_assert (best_size != 0);
755 #ifdef LIMIT_RELOAD_CLASS
756 best_class = LIMIT_RELOAD_CLASS (mode, best_class);
757 #endif
758 return best_class;
761 /* Return the number of a previously made reload that can be combined with
762 a new one, or n_reloads if none of the existing reloads can be used.
763 OUT, RCLASS, TYPE and OPNUM are the same arguments as passed to
764 push_reload, they determine the kind of the new reload that we try to
765 combine. P_IN points to the corresponding value of IN, which can be
766 modified by this function.
767 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
769 static int
770 find_reusable_reload (rtx *p_in, rtx out, enum reg_class rclass,
771 enum reload_type type, int opnum, int dont_share)
773 rtx in = *p_in;
774 int i;
775 /* We can't merge two reloads if the output of either one is
776 earlyclobbered. */
778 if (earlyclobber_operand_p (out))
779 return n_reloads;
781 /* We can use an existing reload if the class is right
782 and at least one of IN and OUT is a match
783 and the other is at worst neutral.
784 (A zero compared against anything is neutral.)
786 For targets with small register classes, don't use existing reloads
787 unless they are for the same thing since that can cause us to need
788 more reload registers than we otherwise would. */
790 for (i = 0; i < n_reloads; i++)
791 if ((reg_class_subset_p (rclass, rld[i].rclass)
792 || reg_class_subset_p (rld[i].rclass, rclass))
793 /* If the existing reload has a register, it must fit our class. */
794 && (rld[i].reg_rtx == 0
795 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
796 true_regnum (rld[i].reg_rtx)))
797 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
798 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
799 || (out != 0 && MATCHES (rld[i].out, out)
800 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
801 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
802 && (small_register_class_p (rclass)
803 || targetm.small_register_classes_for_mode_p (VOIDmode))
804 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
805 return i;
807 /* Reloading a plain reg for input can match a reload to postincrement
808 that reg, since the postincrement's value is the right value.
809 Likewise, it can match a preincrement reload, since we regard
810 the preincrementation as happening before any ref in this insn
811 to that register. */
812 for (i = 0; i < n_reloads; i++)
813 if ((reg_class_subset_p (rclass, rld[i].rclass)
814 || reg_class_subset_p (rld[i].rclass, rclass))
815 /* If the existing reload has a register, it must fit our
816 class. */
817 && (rld[i].reg_rtx == 0
818 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
819 true_regnum (rld[i].reg_rtx)))
820 && out == 0 && rld[i].out == 0 && rld[i].in != 0
821 && ((REG_P (in)
822 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
823 && MATCHES (XEXP (rld[i].in, 0), in))
824 || (REG_P (rld[i].in)
825 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
826 && MATCHES (XEXP (in, 0), rld[i].in)))
827 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
828 && (small_register_class_p (rclass)
829 || targetm.small_register_classes_for_mode_p (VOIDmode))
830 && MERGABLE_RELOADS (type, rld[i].when_needed,
831 opnum, rld[i].opnum))
833 /* Make sure reload_in ultimately has the increment,
834 not the plain register. */
835 if (REG_P (in))
836 *p_in = rld[i].in;
837 return i;
839 return n_reloads;
842 /* Return true if X is a SUBREG that will need reloading of its SUBREG_REG
843 expression. MODE is the mode that X will be used in. OUTPUT is true if
844 the function is invoked for the output part of an enclosing reload. */
846 static bool
847 reload_inner_reg_of_subreg (rtx x, machine_mode mode, bool output)
849 rtx inner;
851 /* Only SUBREGs are problematical. */
852 if (GET_CODE (x) != SUBREG)
853 return false;
855 inner = SUBREG_REG (x);
857 /* If INNER is a constant or PLUS, then INNER will need reloading. */
858 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
859 return true;
861 /* If INNER is not a hard register, then INNER will not need reloading. */
862 if (!(REG_P (inner) && HARD_REGISTER_P (inner)))
863 return false;
865 /* If INNER is not ok for MODE, then INNER will need reloading. */
866 if (!HARD_REGNO_MODE_OK (subreg_regno (x), mode))
867 return true;
869 /* If this is for an output, and the outer part is a word or smaller,
870 INNER is larger than a word and the number of registers in INNER is
871 not the same as the number of words in INNER, then INNER will need
872 reloading (with an in-out reload). */
873 return (output
874 && GET_MODE_SIZE (mode) <= UNITS_PER_WORD
875 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
876 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
877 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
880 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
881 requiring an extra reload register. The caller has already found that
882 IN contains some reference to REGNO, so check that we can produce the
883 new value in a single step. E.g. if we have
884 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
885 instruction that adds one to a register, this should succeed.
886 However, if we have something like
887 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
888 needs to be loaded into a register first, we need a separate reload
889 register.
890 Such PLUS reloads are generated by find_reload_address_part.
891 The out-of-range PLUS expressions are usually introduced in the instruction
892 patterns by register elimination and substituting pseudos without a home
893 by their function-invariant equivalences. */
894 static int
895 can_reload_into (rtx in, int regno, machine_mode mode)
897 rtx dst;
898 rtx_insn *test_insn;
899 int r = 0;
900 struct recog_data_d save_recog_data;
902 /* For matching constraints, we often get notional input reloads where
903 we want to use the original register as the reload register. I.e.
904 technically this is a non-optional input-output reload, but IN is
905 already a valid register, and has been chosen as the reload register.
906 Speed this up, since it trivially works. */
907 if (REG_P (in))
908 return 1;
910 /* To test MEMs properly, we'd have to take into account all the reloads
911 that are already scheduled, which can become quite complicated.
912 And since we've already handled address reloads for this MEM, it
913 should always succeed anyway. */
914 if (MEM_P (in))
915 return 1;
917 /* If we can make a simple SET insn that does the job, everything should
918 be fine. */
919 dst = gen_rtx_REG (mode, regno);
920 test_insn = make_insn_raw (gen_rtx_SET (dst, in));
921 save_recog_data = recog_data;
922 if (recog_memoized (test_insn) >= 0)
924 extract_insn (test_insn);
925 r = constrain_operands (1, get_enabled_alternatives (test_insn));
927 recog_data = save_recog_data;
928 return r;
931 /* Record one reload that needs to be performed.
932 IN is an rtx saying where the data are to be found before this instruction.
933 OUT says where they must be stored after the instruction.
934 (IN is zero for data not read, and OUT is zero for data not written.)
935 INLOC and OUTLOC point to the places in the instructions where
936 IN and OUT were found.
937 If IN and OUT are both nonzero, it means the same register must be used
938 to reload both IN and OUT.
940 RCLASS is a register class required for the reloaded data.
941 INMODE is the machine mode that the instruction requires
942 for the reg that replaces IN and OUTMODE is likewise for OUT.
944 If IN is zero, then OUT's location and mode should be passed as
945 INLOC and INMODE.
947 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
949 OPTIONAL nonzero means this reload does not need to be performed:
950 it can be discarded if that is more convenient.
952 OPNUM and TYPE say what the purpose of this reload is.
954 The return value is the reload-number for this reload.
956 If both IN and OUT are nonzero, in some rare cases we might
957 want to make two separate reloads. (Actually we never do this now.)
958 Therefore, the reload-number for OUT is stored in
959 output_reloadnum when we return; the return value applies to IN.
960 Usually (presently always), when IN and OUT are nonzero,
961 the two reload-numbers are equal, but the caller should be careful to
962 distinguish them. */
965 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
966 enum reg_class rclass, machine_mode inmode,
967 machine_mode outmode, int strict_low, int optional,
968 int opnum, enum reload_type type)
970 int i;
971 int dont_share = 0;
972 int dont_remove_subreg = 0;
973 #ifdef LIMIT_RELOAD_CLASS
974 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
975 #endif
976 int secondary_in_reload = -1, secondary_out_reload = -1;
977 enum insn_code secondary_in_icode = CODE_FOR_nothing;
978 enum insn_code secondary_out_icode = CODE_FOR_nothing;
979 enum reg_class subreg_in_class ATTRIBUTE_UNUSED;
980 subreg_in_class = NO_REGS;
982 /* INMODE and/or OUTMODE could be VOIDmode if no mode
983 has been specified for the operand. In that case,
984 use the operand's mode as the mode to reload. */
985 if (inmode == VOIDmode && in != 0)
986 inmode = GET_MODE (in);
987 if (outmode == VOIDmode && out != 0)
988 outmode = GET_MODE (out);
990 /* If find_reloads and friends until now missed to replace a pseudo
991 with a constant of reg_equiv_constant something went wrong
992 beforehand.
993 Note that it can't simply be done here if we missed it earlier
994 since the constant might need to be pushed into the literal pool
995 and the resulting memref would probably need further
996 reloading. */
997 if (in != 0 && REG_P (in))
999 int regno = REGNO (in);
1001 gcc_assert (regno < FIRST_PSEUDO_REGISTER
1002 || reg_renumber[regno] >= 0
1003 || reg_equiv_constant (regno) == NULL_RTX);
1006 /* reg_equiv_constant only contains constants which are obviously
1007 not appropriate as destination. So if we would need to replace
1008 the destination pseudo with a constant we are in real
1009 trouble. */
1010 if (out != 0 && REG_P (out))
1012 int regno = REGNO (out);
1014 gcc_assert (regno < FIRST_PSEUDO_REGISTER
1015 || reg_renumber[regno] >= 0
1016 || reg_equiv_constant (regno) == NULL_RTX);
1019 /* If we have a read-write operand with an address side-effect,
1020 change either IN or OUT so the side-effect happens only once. */
1021 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
1022 switch (GET_CODE (XEXP (in, 0)))
1024 case POST_INC: case POST_DEC: case POST_MODIFY:
1025 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
1026 break;
1028 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
1029 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
1030 break;
1032 default:
1033 break;
1036 /* If we are reloading a (SUBREG constant ...), really reload just the
1037 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
1038 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
1039 a pseudo and hence will become a MEM) with M1 wider than M2 and the
1040 register is a pseudo, also reload the inside expression.
1041 For machines that extend byte loads, do this for any SUBREG of a pseudo
1042 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
1043 M2 is an integral mode that gets extended when loaded.
1044 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1045 where either M1 is not valid for R or M2 is wider than a word but we
1046 only need one register to store an M2-sized quantity in R.
1047 (However, if OUT is nonzero, we need to reload the reg *and*
1048 the subreg, so do nothing here, and let following statement handle it.)
1050 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
1051 we can't handle it here because CONST_INT does not indicate a mode.
1053 Similarly, we must reload the inside expression if we have a
1054 STRICT_LOW_PART (presumably, in == out in this case).
1056 Also reload the inner expression if it does not require a secondary
1057 reload but the SUBREG does.
1059 Finally, reload the inner expression if it is a register that is in
1060 the class whose registers cannot be referenced in a different size
1061 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1062 cannot reload just the inside since we might end up with the wrong
1063 register class. But if it is inside a STRICT_LOW_PART, we have
1064 no choice, so we hope we do get the right register class there. */
1066 if (in != 0 && GET_CODE (in) == SUBREG
1067 && (subreg_lowpart_p (in) || strict_low)
1068 #ifdef CANNOT_CHANGE_MODE_CLASS
1069 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, rclass)
1070 #endif
1071 && contains_reg_of_mode[(int) rclass][(int) GET_MODE (SUBREG_REG (in))]
1072 && (CONSTANT_P (SUBREG_REG (in))
1073 || GET_CODE (SUBREG_REG (in)) == PLUS
1074 || strict_low
1075 || (((REG_P (SUBREG_REG (in))
1076 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1077 || MEM_P (SUBREG_REG (in)))
1078 && ((GET_MODE_PRECISION (inmode)
1079 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1080 #ifdef LOAD_EXTEND_OP
1081 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1082 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1083 <= UNITS_PER_WORD)
1084 && (GET_MODE_PRECISION (inmode)
1085 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1086 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1087 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1088 #endif
1089 #if WORD_REGISTER_OPERATIONS
1090 || ((GET_MODE_PRECISION (inmode)
1091 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1092 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1093 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1094 / UNITS_PER_WORD)))
1095 #endif
1097 || (REG_P (SUBREG_REG (in))
1098 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1099 /* The case where out is nonzero
1100 is handled differently in the following statement. */
1101 && (out == 0 || subreg_lowpart_p (in))
1102 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1103 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1104 > UNITS_PER_WORD)
1105 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1106 / UNITS_PER_WORD)
1107 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1108 [GET_MODE (SUBREG_REG (in))]))
1109 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1110 || (secondary_reload_class (1, rclass, inmode, in) != NO_REGS
1111 && (secondary_reload_class (1, rclass, GET_MODE (SUBREG_REG (in)),
1112 SUBREG_REG (in))
1113 == NO_REGS))
1114 #ifdef CANNOT_CHANGE_MODE_CLASS
1115 || (REG_P (SUBREG_REG (in))
1116 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1117 && REG_CANNOT_CHANGE_MODE_P
1118 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1119 #endif
1122 #ifdef LIMIT_RELOAD_CLASS
1123 in_subreg_loc = inloc;
1124 #endif
1125 inloc = &SUBREG_REG (in);
1126 in = *inloc;
1127 #if ! defined (LOAD_EXTEND_OP)
1128 if (!WORD_REGISTER_OPERATIONS
1129 && MEM_P (in))
1130 /* This is supposed to happen only for paradoxical subregs made by
1131 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1132 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1133 #endif
1134 inmode = GET_MODE (in);
1137 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1138 where M1 is not valid for R if it was not handled by the code above.
1140 Similar issue for (SUBREG constant ...) if it was not handled by the
1141 code above. This can happen if SUBREG_BYTE != 0.
1143 However, we must reload the inner reg *as well as* the subreg in
1144 that case. */
1146 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, false))
1148 if (REG_P (SUBREG_REG (in)))
1149 subreg_in_class
1150 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1151 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1152 GET_MODE (SUBREG_REG (in)),
1153 SUBREG_BYTE (in),
1154 GET_MODE (in)),
1155 REGNO (SUBREG_REG (in)));
1156 else if (GET_CODE (SUBREG_REG (in)) == SYMBOL_REF)
1157 subreg_in_class = find_valid_class_1 (inmode,
1158 GET_MODE (SUBREG_REG (in)),
1159 rclass);
1161 /* This relies on the fact that emit_reload_insns outputs the
1162 instructions for input reloads of type RELOAD_OTHER in the same
1163 order as the reloads. Thus if the outer reload is also of type
1164 RELOAD_OTHER, we are guaranteed that this inner reload will be
1165 output before the outer reload. */
1166 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1167 subreg_in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1168 dont_remove_subreg = 1;
1171 /* Similarly for paradoxical and problematical SUBREGs on the output.
1172 Note that there is no reason we need worry about the previous value
1173 of SUBREG_REG (out); even if wider than out, storing in a subreg is
1174 entitled to clobber it all (except in the case of a word mode subreg
1175 or of a STRICT_LOW_PART, in that latter case the constraint should
1176 label it input-output.) */
1177 if (out != 0 && GET_CODE (out) == SUBREG
1178 && (subreg_lowpart_p (out) || strict_low)
1179 #ifdef CANNOT_CHANGE_MODE_CLASS
1180 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, rclass)
1181 #endif
1182 && contains_reg_of_mode[(int) rclass][(int) GET_MODE (SUBREG_REG (out))]
1183 && (CONSTANT_P (SUBREG_REG (out))
1184 || strict_low
1185 || (((REG_P (SUBREG_REG (out))
1186 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1187 || MEM_P (SUBREG_REG (out)))
1188 && ((GET_MODE_PRECISION (outmode)
1189 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (out))))
1190 #if WORD_REGISTER_OPERATIONS
1191 || ((GET_MODE_PRECISION (outmode)
1192 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (out))))
1193 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1194 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1195 / UNITS_PER_WORD)))
1196 #endif
1198 || (REG_P (SUBREG_REG (out))
1199 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1200 /* The case of a word mode subreg
1201 is handled differently in the following statement. */
1202 && ! (GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1203 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1204 > UNITS_PER_WORD))
1205 && ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode))
1206 || (secondary_reload_class (0, rclass, outmode, out) != NO_REGS
1207 && (secondary_reload_class (0, rclass, GET_MODE (SUBREG_REG (out)),
1208 SUBREG_REG (out))
1209 == NO_REGS))
1210 #ifdef CANNOT_CHANGE_MODE_CLASS
1211 || (REG_P (SUBREG_REG (out))
1212 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1213 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1214 GET_MODE (SUBREG_REG (out)),
1215 outmode))
1216 #endif
1219 #ifdef LIMIT_RELOAD_CLASS
1220 out_subreg_loc = outloc;
1221 #endif
1222 outloc = &SUBREG_REG (out);
1223 out = *outloc;
1224 gcc_assert (WORD_REGISTER_OPERATIONS || !MEM_P (out)
1225 || GET_MODE_SIZE (GET_MODE (out))
1226 <= GET_MODE_SIZE (outmode));
1227 outmode = GET_MODE (out);
1230 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1231 where either M1 is not valid for R or M2 is wider than a word but we
1232 only need one register to store an M2-sized quantity in R.
1234 However, we must reload the inner reg *as well as* the subreg in
1235 that case and the inner reg is an in-out reload. */
1237 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, true))
1239 enum reg_class in_out_class
1240 = find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1241 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1242 GET_MODE (SUBREG_REG (out)),
1243 SUBREG_BYTE (out),
1244 GET_MODE (out)),
1245 REGNO (SUBREG_REG (out)));
1247 /* This relies on the fact that emit_reload_insns outputs the
1248 instructions for output reloads of type RELOAD_OTHER in reverse
1249 order of the reloads. Thus if the outer reload is also of type
1250 RELOAD_OTHER, we are guaranteed that this inner reload will be
1251 output after the outer reload. */
1252 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1253 &SUBREG_REG (out), in_out_class, VOIDmode, VOIDmode,
1254 0, 0, opnum, RELOAD_OTHER);
1255 dont_remove_subreg = 1;
1258 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1259 if (in != 0 && out != 0 && MEM_P (out)
1260 && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
1261 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1262 dont_share = 1;
1264 /* If IN is a SUBREG of a hard register, make a new REG. This
1265 simplifies some of the cases below. */
1267 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1268 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1269 && ! dont_remove_subreg)
1270 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1272 /* Similarly for OUT. */
1273 if (out != 0 && GET_CODE (out) == SUBREG
1274 && REG_P (SUBREG_REG (out))
1275 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1276 && ! dont_remove_subreg)
1277 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1279 /* Narrow down the class of register wanted if that is
1280 desirable on this machine for efficiency. */
1282 reg_class_t preferred_class = rclass;
1284 if (in != 0)
1285 preferred_class = targetm.preferred_reload_class (in, rclass);
1287 /* Output reloads may need analogous treatment, different in detail. */
1288 if (out != 0)
1289 preferred_class
1290 = targetm.preferred_output_reload_class (out, preferred_class);
1292 /* Discard what the target said if we cannot do it. */
1293 if (preferred_class != NO_REGS
1294 || (optional && type == RELOAD_FOR_OUTPUT))
1295 rclass = (enum reg_class) preferred_class;
1298 /* Make sure we use a class that can handle the actual pseudo
1299 inside any subreg. For example, on the 386, QImode regs
1300 can appear within SImode subregs. Although GENERAL_REGS
1301 can handle SImode, QImode needs a smaller class. */
1302 #ifdef LIMIT_RELOAD_CLASS
1303 if (in_subreg_loc)
1304 rclass = LIMIT_RELOAD_CLASS (inmode, rclass);
1305 else if (in != 0 && GET_CODE (in) == SUBREG)
1306 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), rclass);
1308 if (out_subreg_loc)
1309 rclass = LIMIT_RELOAD_CLASS (outmode, rclass);
1310 if (out != 0 && GET_CODE (out) == SUBREG)
1311 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), rclass);
1312 #endif
1314 /* Verify that this class is at least possible for the mode that
1315 is specified. */
1316 if (this_insn_is_asm)
1318 machine_mode mode;
1319 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1320 mode = inmode;
1321 else
1322 mode = outmode;
1323 if (mode == VOIDmode)
1325 error_for_asm (this_insn, "cannot reload integer constant "
1326 "operand in %<asm%>");
1327 mode = word_mode;
1328 if (in != 0)
1329 inmode = word_mode;
1330 if (out != 0)
1331 outmode = word_mode;
1333 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1334 if (HARD_REGNO_MODE_OK (i, mode)
1335 && in_hard_reg_set_p (reg_class_contents[(int) rclass], mode, i))
1336 break;
1337 if (i == FIRST_PSEUDO_REGISTER)
1339 error_for_asm (this_insn, "impossible register constraint "
1340 "in %<asm%>");
1341 /* Avoid further trouble with this insn. */
1342 PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1343 /* We used to continue here setting class to ALL_REGS, but it triggers
1344 sanity check on i386 for:
1345 void foo(long double d)
1347 asm("" :: "a" (d));
1349 Returning zero here ought to be safe as we take care in
1350 find_reloads to not process the reloads when instruction was
1351 replaced by USE. */
1353 return 0;
1357 /* Optional output reloads are always OK even if we have no register class,
1358 since the function of these reloads is only to have spill_reg_store etc.
1359 set, so that the storing insn can be deleted later. */
1360 gcc_assert (rclass != NO_REGS
1361 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1363 i = find_reusable_reload (&in, out, rclass, type, opnum, dont_share);
1365 if (i == n_reloads)
1367 /* See if we need a secondary reload register to move between CLASS
1368 and IN or CLASS and OUT. Get the icode and push any required reloads
1369 needed for each of them if so. */
1371 if (in != 0)
1372 secondary_in_reload
1373 = push_secondary_reload (1, in, opnum, optional, rclass, inmode, type,
1374 &secondary_in_icode, NULL);
1375 if (out != 0 && GET_CODE (out) != SCRATCH)
1376 secondary_out_reload
1377 = push_secondary_reload (0, out, opnum, optional, rclass, outmode,
1378 type, &secondary_out_icode, NULL);
1380 /* We found no existing reload suitable for re-use.
1381 So add an additional reload. */
1383 #ifdef SECONDARY_MEMORY_NEEDED
1384 if (subreg_in_class == NO_REGS
1385 && in != 0
1386 && (REG_P (in)
1387 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1388 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER)
1389 subreg_in_class = REGNO_REG_CLASS (reg_or_subregno (in));
1390 /* If a memory location is needed for the copy, make one. */
1391 if (subreg_in_class != NO_REGS
1392 && SECONDARY_MEMORY_NEEDED (subreg_in_class, rclass, inmode))
1393 get_secondary_mem (in, inmode, opnum, type);
1394 #endif
1396 i = n_reloads;
1397 rld[i].in = in;
1398 rld[i].out = out;
1399 rld[i].rclass = rclass;
1400 rld[i].inmode = inmode;
1401 rld[i].outmode = outmode;
1402 rld[i].reg_rtx = 0;
1403 rld[i].optional = optional;
1404 rld[i].inc = 0;
1405 rld[i].nocombine = 0;
1406 rld[i].in_reg = inloc ? *inloc : 0;
1407 rld[i].out_reg = outloc ? *outloc : 0;
1408 rld[i].opnum = opnum;
1409 rld[i].when_needed = type;
1410 rld[i].secondary_in_reload = secondary_in_reload;
1411 rld[i].secondary_out_reload = secondary_out_reload;
1412 rld[i].secondary_in_icode = secondary_in_icode;
1413 rld[i].secondary_out_icode = secondary_out_icode;
1414 rld[i].secondary_p = 0;
1416 n_reloads++;
1418 #ifdef SECONDARY_MEMORY_NEEDED
1419 if (out != 0
1420 && (REG_P (out)
1421 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1422 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1423 && SECONDARY_MEMORY_NEEDED (rclass,
1424 REGNO_REG_CLASS (reg_or_subregno (out)),
1425 outmode))
1426 get_secondary_mem (out, outmode, opnum, type);
1427 #endif
1429 else
1431 /* We are reusing an existing reload,
1432 but we may have additional information for it.
1433 For example, we may now have both IN and OUT
1434 while the old one may have just one of them. */
1436 /* The modes can be different. If they are, we want to reload in
1437 the larger mode, so that the value is valid for both modes. */
1438 if (inmode != VOIDmode
1439 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1440 rld[i].inmode = inmode;
1441 if (outmode != VOIDmode
1442 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1443 rld[i].outmode = outmode;
1444 if (in != 0)
1446 rtx in_reg = inloc ? *inloc : 0;
1447 /* If we merge reloads for two distinct rtl expressions that
1448 are identical in content, there might be duplicate address
1449 reloads. Remove the extra set now, so that if we later find
1450 that we can inherit this reload, we can get rid of the
1451 address reloads altogether.
1453 Do not do this if both reloads are optional since the result
1454 would be an optional reload which could potentially leave
1455 unresolved address replacements.
1457 It is not sufficient to call transfer_replacements since
1458 choose_reload_regs will remove the replacements for address
1459 reloads of inherited reloads which results in the same
1460 problem. */
1461 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1462 && ! (rld[i].optional && optional))
1464 /* We must keep the address reload with the lower operand
1465 number alive. */
1466 if (opnum > rld[i].opnum)
1468 remove_address_replacements (in);
1469 in = rld[i].in;
1470 in_reg = rld[i].in_reg;
1472 else
1473 remove_address_replacements (rld[i].in);
1475 /* When emitting reloads we don't necessarily look at the in-
1476 and outmode, but also directly at the operands (in and out).
1477 So we can't simply overwrite them with whatever we have found
1478 for this (to-be-merged) reload, we have to "merge" that too.
1479 Reusing another reload already verified that we deal with the
1480 same operands, just possibly in different modes. So we
1481 overwrite the operands only when the new mode is larger.
1482 See also PR33613. */
1483 if (!rld[i].in
1484 || GET_MODE_SIZE (GET_MODE (in))
1485 > GET_MODE_SIZE (GET_MODE (rld[i].in)))
1486 rld[i].in = in;
1487 if (!rld[i].in_reg
1488 || (in_reg
1489 && GET_MODE_SIZE (GET_MODE (in_reg))
1490 > GET_MODE_SIZE (GET_MODE (rld[i].in_reg))))
1491 rld[i].in_reg = in_reg;
1493 if (out != 0)
1495 if (!rld[i].out
1496 || (out
1497 && GET_MODE_SIZE (GET_MODE (out))
1498 > GET_MODE_SIZE (GET_MODE (rld[i].out))))
1499 rld[i].out = out;
1500 if (outloc
1501 && (!rld[i].out_reg
1502 || GET_MODE_SIZE (GET_MODE (*outloc))
1503 > GET_MODE_SIZE (GET_MODE (rld[i].out_reg))))
1504 rld[i].out_reg = *outloc;
1506 if (reg_class_subset_p (rclass, rld[i].rclass))
1507 rld[i].rclass = rclass;
1508 rld[i].optional &= optional;
1509 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1510 opnum, rld[i].opnum))
1511 rld[i].when_needed = RELOAD_OTHER;
1512 rld[i].opnum = MIN (rld[i].opnum, opnum);
1515 /* If the ostensible rtx being reloaded differs from the rtx found
1516 in the location to substitute, this reload is not safe to combine
1517 because we cannot reliably tell whether it appears in the insn. */
1519 if (in != 0 && in != *inloc)
1520 rld[i].nocombine = 1;
1522 #if 0
1523 /* This was replaced by changes in find_reloads_address_1 and the new
1524 function inc_for_reload, which go with a new meaning of reload_inc. */
1526 /* If this is an IN/OUT reload in an insn that sets the CC,
1527 it must be for an autoincrement. It doesn't work to store
1528 the incremented value after the insn because that would clobber the CC.
1529 So we must do the increment of the value reloaded from,
1530 increment it, store it back, then decrement again. */
1531 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1533 out = 0;
1534 rld[i].out = 0;
1535 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1536 /* If we did not find a nonzero amount-to-increment-by,
1537 that contradicts the belief that IN is being incremented
1538 in an address in this insn. */
1539 gcc_assert (rld[i].inc != 0);
1541 #endif
1543 /* If we will replace IN and OUT with the reload-reg,
1544 record where they are located so that substitution need
1545 not do a tree walk. */
1547 if (replace_reloads)
1549 if (inloc != 0)
1551 struct replacement *r = &replacements[n_replacements++];
1552 r->what = i;
1553 r->where = inloc;
1554 r->mode = inmode;
1556 if (outloc != 0 && outloc != inloc)
1558 struct replacement *r = &replacements[n_replacements++];
1559 r->what = i;
1560 r->where = outloc;
1561 r->mode = outmode;
1565 /* If this reload is just being introduced and it has both
1566 an incoming quantity and an outgoing quantity that are
1567 supposed to be made to match, see if either one of the two
1568 can serve as the place to reload into.
1570 If one of them is acceptable, set rld[i].reg_rtx
1571 to that one. */
1573 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1575 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1576 inmode, outmode,
1577 rld[i].rclass, i,
1578 earlyclobber_operand_p (out));
1580 /* If the outgoing register already contains the same value
1581 as the incoming one, we can dispense with loading it.
1582 The easiest way to tell the caller that is to give a phony
1583 value for the incoming operand (same as outgoing one). */
1584 if (rld[i].reg_rtx == out
1585 && (REG_P (in) || CONSTANT_P (in))
1586 && 0 != find_equiv_reg (in, this_insn, NO_REGS, REGNO (out),
1587 static_reload_reg_p, i, inmode))
1588 rld[i].in = out;
1591 /* If this is an input reload and the operand contains a register that
1592 dies in this insn and is used nowhere else, see if it is the right class
1593 to be used for this reload. Use it if so. (This occurs most commonly
1594 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1595 this if it is also an output reload that mentions the register unless
1596 the output is a SUBREG that clobbers an entire register.
1598 Note that the operand might be one of the spill regs, if it is a
1599 pseudo reg and we are in a block where spilling has not taken place.
1600 But if there is no spilling in this block, that is OK.
1601 An explicitly used hard reg cannot be a spill reg. */
1603 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1605 rtx note;
1606 int regno;
1607 machine_mode rel_mode = inmode;
1609 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1610 rel_mode = outmode;
1612 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1613 if (REG_NOTE_KIND (note) == REG_DEAD
1614 && REG_P (XEXP (note, 0))
1615 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1616 && reg_mentioned_p (XEXP (note, 0), in)
1617 /* Check that a former pseudo is valid; see find_dummy_reload. */
1618 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1619 || (! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1620 ORIGINAL_REGNO (XEXP (note, 0)))
1621 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1))
1622 && ! refers_to_regno_for_reload_p (regno,
1623 end_hard_regno (rel_mode,
1624 regno),
1625 PATTERN (this_insn), inloc)
1626 && ! find_reg_fusage (this_insn, USE, XEXP (note, 0))
1627 /* If this is also an output reload, IN cannot be used as
1628 the reload register if it is set in this insn unless IN
1629 is also OUT. */
1630 && (out == 0 || in == out
1631 || ! hard_reg_set_here_p (regno,
1632 end_hard_regno (rel_mode, regno),
1633 PATTERN (this_insn)))
1634 /* ??? Why is this code so different from the previous?
1635 Is there any simple coherent way to describe the two together?
1636 What's going on here. */
1637 && (in != out
1638 || (GET_CODE (in) == SUBREG
1639 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1640 / UNITS_PER_WORD)
1641 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1642 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1643 /* Make sure the operand fits in the reg that dies. */
1644 && (GET_MODE_SIZE (rel_mode)
1645 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1646 && HARD_REGNO_MODE_OK (regno, inmode)
1647 && HARD_REGNO_MODE_OK (regno, outmode))
1649 unsigned int offs;
1650 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1651 hard_regno_nregs[regno][outmode]);
1653 for (offs = 0; offs < nregs; offs++)
1654 if (fixed_regs[regno + offs]
1655 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1656 regno + offs))
1657 break;
1659 if (offs == nregs
1660 && (! (refers_to_regno_for_reload_p
1661 (regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
1662 || can_reload_into (in, regno, inmode)))
1664 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1665 break;
1670 if (out)
1671 output_reloadnum = i;
1673 return i;
1676 /* Record an additional place we must replace a value
1677 for which we have already recorded a reload.
1678 RELOADNUM is the value returned by push_reload
1679 when the reload was recorded.
1680 This is used in insn patterns that use match_dup. */
1682 static void
1683 push_replacement (rtx *loc, int reloadnum, machine_mode mode)
1685 if (replace_reloads)
1687 struct replacement *r = &replacements[n_replacements++];
1688 r->what = reloadnum;
1689 r->where = loc;
1690 r->mode = mode;
1694 /* Duplicate any replacement we have recorded to apply at
1695 location ORIG_LOC to also be performed at DUP_LOC.
1696 This is used in insn patterns that use match_dup. */
1698 static void
1699 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1701 int i, n = n_replacements;
1703 for (i = 0; i < n; i++)
1705 struct replacement *r = &replacements[i];
1706 if (r->where == orig_loc)
1707 push_replacement (dup_loc, r->what, r->mode);
1711 /* Transfer all replacements that used to be in reload FROM to be in
1712 reload TO. */
1714 void
1715 transfer_replacements (int to, int from)
1717 int i;
1719 for (i = 0; i < n_replacements; i++)
1720 if (replacements[i].what == from)
1721 replacements[i].what = to;
1724 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1725 or a subpart of it. If we have any replacements registered for IN_RTX,
1726 cancel the reloads that were supposed to load them.
1727 Return nonzero if we canceled any reloads. */
1729 remove_address_replacements (rtx in_rtx)
1731 int i, j;
1732 char reload_flags[MAX_RELOADS];
1733 int something_changed = 0;
1735 memset (reload_flags, 0, sizeof reload_flags);
1736 for (i = 0, j = 0; i < n_replacements; i++)
1738 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1739 reload_flags[replacements[i].what] |= 1;
1740 else
1742 replacements[j++] = replacements[i];
1743 reload_flags[replacements[i].what] |= 2;
1746 /* Note that the following store must be done before the recursive calls. */
1747 n_replacements = j;
1749 for (i = n_reloads - 1; i >= 0; i--)
1751 if (reload_flags[i] == 1)
1753 deallocate_reload_reg (i);
1754 remove_address_replacements (rld[i].in);
1755 rld[i].in = 0;
1756 something_changed = 1;
1759 return something_changed;
1762 /* If there is only one output reload, and it is not for an earlyclobber
1763 operand, try to combine it with a (logically unrelated) input reload
1764 to reduce the number of reload registers needed.
1766 This is safe if the input reload does not appear in
1767 the value being output-reloaded, because this implies
1768 it is not needed any more once the original insn completes.
1770 If that doesn't work, see we can use any of the registers that
1771 die in this insn as a reload register. We can if it is of the right
1772 class and does not appear in the value being output-reloaded. */
1774 static void
1775 combine_reloads (void)
1777 int i, regno;
1778 int output_reload = -1;
1779 int secondary_out = -1;
1780 rtx note;
1782 /* Find the output reload; return unless there is exactly one
1783 and that one is mandatory. */
1785 for (i = 0; i < n_reloads; i++)
1786 if (rld[i].out != 0)
1788 if (output_reload >= 0)
1789 return;
1790 output_reload = i;
1793 if (output_reload < 0 || rld[output_reload].optional)
1794 return;
1796 /* An input-output reload isn't combinable. */
1798 if (rld[output_reload].in != 0)
1799 return;
1801 /* If this reload is for an earlyclobber operand, we can't do anything. */
1802 if (earlyclobber_operand_p (rld[output_reload].out))
1803 return;
1805 /* If there is a reload for part of the address of this operand, we would
1806 need to change it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1807 its life to the point where doing this combine would not lower the
1808 number of spill registers needed. */
1809 for (i = 0; i < n_reloads; i++)
1810 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1811 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1812 && rld[i].opnum == rld[output_reload].opnum)
1813 return;
1815 /* Check each input reload; can we combine it? */
1817 for (i = 0; i < n_reloads; i++)
1818 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1819 /* Life span of this reload must not extend past main insn. */
1820 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1821 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1822 && rld[i].when_needed != RELOAD_OTHER
1823 && (ira_reg_class_max_nregs [(int)rld[i].rclass][(int) rld[i].inmode]
1824 == ira_reg_class_max_nregs [(int) rld[output_reload].rclass]
1825 [(int) rld[output_reload].outmode])
1826 && rld[i].inc == 0
1827 && rld[i].reg_rtx == 0
1828 #ifdef SECONDARY_MEMORY_NEEDED
1829 /* Don't combine two reloads with different secondary
1830 memory locations. */
1831 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1832 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1833 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1834 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1835 #endif
1836 && (targetm.small_register_classes_for_mode_p (VOIDmode)
1837 ? (rld[i].rclass == rld[output_reload].rclass)
1838 : (reg_class_subset_p (rld[i].rclass,
1839 rld[output_reload].rclass)
1840 || reg_class_subset_p (rld[output_reload].rclass,
1841 rld[i].rclass)))
1842 && (MATCHES (rld[i].in, rld[output_reload].out)
1843 /* Args reversed because the first arg seems to be
1844 the one that we imagine being modified
1845 while the second is the one that might be affected. */
1846 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1847 rld[i].in)
1848 /* However, if the input is a register that appears inside
1849 the output, then we also can't share.
1850 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1851 If the same reload reg is used for both reg 69 and the
1852 result to be stored in memory, then that result
1853 will clobber the address of the memory ref. */
1854 && ! (REG_P (rld[i].in)
1855 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1856 rld[output_reload].out))))
1857 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1858 rld[i].when_needed != RELOAD_FOR_INPUT)
1859 && (reg_class_size[(int) rld[i].rclass]
1860 || targetm.small_register_classes_for_mode_p (VOIDmode))
1861 /* We will allow making things slightly worse by combining an
1862 input and an output, but no worse than that. */
1863 && (rld[i].when_needed == RELOAD_FOR_INPUT
1864 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1866 int j;
1868 /* We have found a reload to combine with! */
1869 rld[i].out = rld[output_reload].out;
1870 rld[i].out_reg = rld[output_reload].out_reg;
1871 rld[i].outmode = rld[output_reload].outmode;
1872 /* Mark the old output reload as inoperative. */
1873 rld[output_reload].out = 0;
1874 /* The combined reload is needed for the entire insn. */
1875 rld[i].when_needed = RELOAD_OTHER;
1876 /* If the output reload had a secondary reload, copy it. */
1877 if (rld[output_reload].secondary_out_reload != -1)
1879 rld[i].secondary_out_reload
1880 = rld[output_reload].secondary_out_reload;
1881 rld[i].secondary_out_icode
1882 = rld[output_reload].secondary_out_icode;
1885 #ifdef SECONDARY_MEMORY_NEEDED
1886 /* Copy any secondary MEM. */
1887 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1888 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1889 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1890 #endif
1891 /* If required, minimize the register class. */
1892 if (reg_class_subset_p (rld[output_reload].rclass,
1893 rld[i].rclass))
1894 rld[i].rclass = rld[output_reload].rclass;
1896 /* Transfer all replacements from the old reload to the combined. */
1897 for (j = 0; j < n_replacements; j++)
1898 if (replacements[j].what == output_reload)
1899 replacements[j].what = i;
1901 return;
1904 /* If this insn has only one operand that is modified or written (assumed
1905 to be the first), it must be the one corresponding to this reload. It
1906 is safe to use anything that dies in this insn for that output provided
1907 that it does not occur in the output (we already know it isn't an
1908 earlyclobber. If this is an asm insn, give up. */
1910 if (INSN_CODE (this_insn) == -1)
1911 return;
1913 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1914 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1915 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1916 return;
1918 /* See if some hard register that dies in this insn and is not used in
1919 the output is the right class. Only works if the register we pick
1920 up can fully hold our output reload. */
1921 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1922 if (REG_NOTE_KIND (note) == REG_DEAD
1923 && REG_P (XEXP (note, 0))
1924 && !reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1925 rld[output_reload].out)
1926 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1927 && HARD_REGNO_MODE_OK (regno, rld[output_reload].outmode)
1928 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].rclass],
1929 regno)
1930 && (hard_regno_nregs[regno][rld[output_reload].outmode]
1931 <= hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))])
1932 /* Ensure that a secondary or tertiary reload for this output
1933 won't want this register. */
1934 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1935 || (!(TEST_HARD_REG_BIT
1936 (reg_class_contents[(int) rld[secondary_out].rclass], regno))
1937 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1938 || !(TEST_HARD_REG_BIT
1939 (reg_class_contents[(int) rld[secondary_out].rclass],
1940 regno)))))
1941 && !fixed_regs[regno]
1942 /* Check that a former pseudo is valid; see find_dummy_reload. */
1943 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1944 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1945 ORIGINAL_REGNO (XEXP (note, 0)))
1946 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1)))
1948 rld[output_reload].reg_rtx
1949 = gen_rtx_REG (rld[output_reload].outmode, regno);
1950 return;
1954 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1955 See if one of IN and OUT is a register that may be used;
1956 this is desirable since a spill-register won't be needed.
1957 If so, return the register rtx that proves acceptable.
1959 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1960 RCLASS is the register class required for the reload.
1962 If FOR_REAL is >= 0, it is the number of the reload,
1963 and in some cases when it can be discovered that OUT doesn't need
1964 to be computed, clear out rld[FOR_REAL].out.
1966 If FOR_REAL is -1, this should not be done, because this call
1967 is just to see if a register can be found, not to find and install it.
1969 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1970 puts an additional constraint on being able to use IN for OUT since
1971 IN must not appear elsewhere in the insn (it is assumed that IN itself
1972 is safe from the earlyclobber). */
1974 static rtx
1975 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1976 machine_mode inmode, machine_mode outmode,
1977 reg_class_t rclass, int for_real, int earlyclobber)
1979 rtx in = real_in;
1980 rtx out = real_out;
1981 int in_offset = 0;
1982 int out_offset = 0;
1983 rtx value = 0;
1985 /* If operands exceed a word, we can't use either of them
1986 unless they have the same size. */
1987 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1988 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1989 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1990 return 0;
1992 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1993 respectively refers to a hard register. */
1995 /* Find the inside of any subregs. */
1996 while (GET_CODE (out) == SUBREG)
1998 if (REG_P (SUBREG_REG (out))
1999 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
2000 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
2001 GET_MODE (SUBREG_REG (out)),
2002 SUBREG_BYTE (out),
2003 GET_MODE (out));
2004 out = SUBREG_REG (out);
2006 while (GET_CODE (in) == SUBREG)
2008 if (REG_P (SUBREG_REG (in))
2009 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
2010 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
2011 GET_MODE (SUBREG_REG (in)),
2012 SUBREG_BYTE (in),
2013 GET_MODE (in));
2014 in = SUBREG_REG (in);
2017 /* Narrow down the reg class, the same way push_reload will;
2018 otherwise we might find a dummy now, but push_reload won't. */
2020 reg_class_t preferred_class = targetm.preferred_reload_class (in, rclass);
2021 if (preferred_class != NO_REGS)
2022 rclass = (enum reg_class) preferred_class;
2025 /* See if OUT will do. */
2026 if (REG_P (out)
2027 && REGNO (out) < FIRST_PSEUDO_REGISTER)
2029 unsigned int regno = REGNO (out) + out_offset;
2030 unsigned int nwords = hard_regno_nregs[regno][outmode];
2031 rtx saved_rtx;
2033 /* When we consider whether the insn uses OUT,
2034 ignore references within IN. They don't prevent us
2035 from copying IN into OUT, because those refs would
2036 move into the insn that reloads IN.
2038 However, we only ignore IN in its role as this reload.
2039 If the insn uses IN elsewhere and it contains OUT,
2040 that counts. We can't be sure it's the "same" operand
2041 so it might not go through this reload.
2043 We also need to avoid using OUT if it, or part of it, is a
2044 fixed register. Modifying such registers, even transiently,
2045 may have undefined effects on the machine, such as modifying
2046 the stack pointer. */
2047 saved_rtx = *inloc;
2048 *inloc = const0_rtx;
2050 if (regno < FIRST_PSEUDO_REGISTER
2051 && HARD_REGNO_MODE_OK (regno, outmode)
2052 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
2053 PATTERN (this_insn), outloc))
2055 unsigned int i;
2057 for (i = 0; i < nwords; i++)
2058 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2059 regno + i)
2060 || fixed_regs[regno + i])
2061 break;
2063 if (i == nwords)
2065 if (REG_P (real_out))
2066 value = real_out;
2067 else
2068 value = gen_rtx_REG (outmode, regno);
2072 *inloc = saved_rtx;
2075 /* Consider using IN if OUT was not acceptable
2076 or if OUT dies in this insn (like the quotient in a divmod insn).
2077 We can't use IN unless it is dies in this insn,
2078 which means we must know accurately which hard regs are live.
2079 Also, the result can't go in IN if IN is used within OUT,
2080 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
2081 if (hard_regs_live_known
2082 && REG_P (in)
2083 && REGNO (in) < FIRST_PSEUDO_REGISTER
2084 && (value == 0
2085 || find_reg_note (this_insn, REG_UNUSED, real_out))
2086 && find_reg_note (this_insn, REG_DEAD, real_in)
2087 && !fixed_regs[REGNO (in)]
2088 && HARD_REGNO_MODE_OK (REGNO (in),
2089 /* The only case where out and real_out might
2090 have different modes is where real_out
2091 is a subreg, and in that case, out
2092 has a real mode. */
2093 (GET_MODE (out) != VOIDmode
2094 ? GET_MODE (out) : outmode))
2095 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2096 /* However only do this if we can be sure that this input
2097 operand doesn't correspond with an uninitialized pseudo.
2098 global can assign some hardreg to it that is the same as
2099 the one assigned to a different, also live pseudo (as it
2100 can ignore the conflict). We must never introduce writes
2101 to such hardregs, as they would clobber the other live
2102 pseudo. See PR 20973. */
2103 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
2104 ORIGINAL_REGNO (in))
2105 /* Similarly, only do this if we can be sure that the death
2106 note is still valid. global can assign some hardreg to
2107 the pseudo referenced in the note and simultaneously a
2108 subword of this hardreg to a different, also live pseudo,
2109 because only another subword of the hardreg is actually
2110 used in the insn. This cannot happen if the pseudo has
2111 been assigned exactly one hardreg. See PR 33732. */
2112 && hard_regno_nregs[REGNO (in)][GET_MODE (in)] == 1)))
2114 unsigned int regno = REGNO (in) + in_offset;
2115 unsigned int nwords = hard_regno_nregs[regno][inmode];
2117 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2118 && ! hard_reg_set_here_p (regno, regno + nwords,
2119 PATTERN (this_insn))
2120 && (! earlyclobber
2121 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2122 PATTERN (this_insn), inloc)))
2124 unsigned int i;
2126 for (i = 0; i < nwords; i++)
2127 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2128 regno + i))
2129 break;
2131 if (i == nwords)
2133 /* If we were going to use OUT as the reload reg
2134 and changed our mind, it means OUT is a dummy that
2135 dies here. So don't bother copying value to it. */
2136 if (for_real >= 0 && value == real_out)
2137 rld[for_real].out = 0;
2138 if (REG_P (real_in))
2139 value = real_in;
2140 else
2141 value = gen_rtx_REG (inmode, regno);
2146 return value;
2149 /* This page contains subroutines used mainly for determining
2150 whether the IN or an OUT of a reload can serve as the
2151 reload register. */
2153 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2156 earlyclobber_operand_p (rtx x)
2158 int i;
2160 for (i = 0; i < n_earlyclobbers; i++)
2161 if (reload_earlyclobbers[i] == x)
2162 return 1;
2164 return 0;
2167 /* Return 1 if expression X alters a hard reg in the range
2168 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2169 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2170 X should be the body of an instruction. */
2172 static int
2173 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2175 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2177 rtx op0 = SET_DEST (x);
2179 while (GET_CODE (op0) == SUBREG)
2180 op0 = SUBREG_REG (op0);
2181 if (REG_P (op0))
2183 unsigned int r = REGNO (op0);
2185 /* See if this reg overlaps range under consideration. */
2186 if (r < end_regno
2187 && end_hard_regno (GET_MODE (op0), r) > beg_regno)
2188 return 1;
2191 else if (GET_CODE (x) == PARALLEL)
2193 int i = XVECLEN (x, 0) - 1;
2195 for (; i >= 0; i--)
2196 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2197 return 1;
2200 return 0;
2203 /* Return 1 if ADDR is a valid memory address for mode MODE
2204 in address space AS, and check that each pseudo reg has the
2205 proper kind of hard reg. */
2208 strict_memory_address_addr_space_p (machine_mode mode ATTRIBUTE_UNUSED,
2209 rtx addr, addr_space_t as)
2211 #ifdef GO_IF_LEGITIMATE_ADDRESS
2212 gcc_assert (ADDR_SPACE_GENERIC_P (as));
2213 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2214 return 0;
2216 win:
2217 return 1;
2218 #else
2219 return targetm.addr_space.legitimate_address_p (mode, addr, 1, as);
2220 #endif
2223 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2224 if they are the same hard reg, and has special hacks for
2225 autoincrement and autodecrement.
2226 This is specifically intended for find_reloads to use
2227 in determining whether two operands match.
2228 X is the operand whose number is the lower of the two.
2230 The value is 2 if Y contains a pre-increment that matches
2231 a non-incrementing address in X. */
2233 /* ??? To be completely correct, we should arrange to pass
2234 for X the output operand and for Y the input operand.
2235 For now, we assume that the output operand has the lower number
2236 because that is natural in (SET output (... input ...)). */
2239 operands_match_p (rtx x, rtx y)
2241 int i;
2242 RTX_CODE code = GET_CODE (x);
2243 const char *fmt;
2244 int success_2;
2246 if (x == y)
2247 return 1;
2248 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2249 && (REG_P (y) || (GET_CODE (y) == SUBREG
2250 && REG_P (SUBREG_REG (y)))))
2252 int j;
2254 if (code == SUBREG)
2256 i = REGNO (SUBREG_REG (x));
2257 if (i >= FIRST_PSEUDO_REGISTER)
2258 goto slow;
2259 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2260 GET_MODE (SUBREG_REG (x)),
2261 SUBREG_BYTE (x),
2262 GET_MODE (x));
2264 else
2265 i = REGNO (x);
2267 if (GET_CODE (y) == SUBREG)
2269 j = REGNO (SUBREG_REG (y));
2270 if (j >= FIRST_PSEUDO_REGISTER)
2271 goto slow;
2272 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2273 GET_MODE (SUBREG_REG (y)),
2274 SUBREG_BYTE (y),
2275 GET_MODE (y));
2277 else
2278 j = REGNO (y);
2280 /* On a REG_WORDS_BIG_ENDIAN machine, point to the last register of a
2281 multiple hard register group of scalar integer registers, so that
2282 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2283 register. */
2284 if (REG_WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2285 && SCALAR_INT_MODE_P (GET_MODE (x))
2286 && i < FIRST_PSEUDO_REGISTER)
2287 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2288 if (REG_WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2289 && SCALAR_INT_MODE_P (GET_MODE (y))
2290 && j < FIRST_PSEUDO_REGISTER)
2291 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2293 return i == j;
2295 /* If two operands must match, because they are really a single
2296 operand of an assembler insn, then two postincrements are invalid
2297 because the assembler insn would increment only once.
2298 On the other hand, a postincrement matches ordinary indexing
2299 if the postincrement is the output operand. */
2300 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2301 return operands_match_p (XEXP (x, 0), y);
2302 /* Two preincrements are invalid
2303 because the assembler insn would increment only once.
2304 On the other hand, a preincrement matches ordinary indexing
2305 if the preincrement is the input operand.
2306 In this case, return 2, since some callers need to do special
2307 things when this happens. */
2308 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2309 || GET_CODE (y) == PRE_MODIFY)
2310 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2312 slow:
2314 /* Now we have disposed of all the cases in which different rtx codes
2315 can match. */
2316 if (code != GET_CODE (y))
2317 return 0;
2319 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2320 if (GET_MODE (x) != GET_MODE (y))
2321 return 0;
2323 /* MEMs referring to different address space are not equivalent. */
2324 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2325 return 0;
2327 switch (code)
2329 CASE_CONST_UNIQUE:
2330 return 0;
2332 case LABEL_REF:
2333 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
2334 case SYMBOL_REF:
2335 return XSTR (x, 0) == XSTR (y, 0);
2337 default:
2338 break;
2341 /* Compare the elements. If any pair of corresponding elements
2342 fail to match, return 0 for the whole things. */
2344 success_2 = 0;
2345 fmt = GET_RTX_FORMAT (code);
2346 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2348 int val, j;
2349 switch (fmt[i])
2351 case 'w':
2352 if (XWINT (x, i) != XWINT (y, i))
2353 return 0;
2354 break;
2356 case 'i':
2357 if (XINT (x, i) != XINT (y, i))
2358 return 0;
2359 break;
2361 case 'e':
2362 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2363 if (val == 0)
2364 return 0;
2365 /* If any subexpression returns 2,
2366 we should return 2 if we are successful. */
2367 if (val == 2)
2368 success_2 = 1;
2369 break;
2371 case '0':
2372 break;
2374 case 'E':
2375 if (XVECLEN (x, i) != XVECLEN (y, i))
2376 return 0;
2377 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2379 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2380 if (val == 0)
2381 return 0;
2382 if (val == 2)
2383 success_2 = 1;
2385 break;
2387 /* It is believed that rtx's at this level will never
2388 contain anything but integers and other rtx's,
2389 except for within LABEL_REFs and SYMBOL_REFs. */
2390 default:
2391 gcc_unreachable ();
2394 return 1 + success_2;
2397 /* Describe the range of registers or memory referenced by X.
2398 If X is a register, set REG_FLAG and put the first register
2399 number into START and the last plus one into END.
2400 If X is a memory reference, put a base address into BASE
2401 and a range of integer offsets into START and END.
2402 If X is pushing on the stack, we can assume it causes no trouble,
2403 so we set the SAFE field. */
2405 static struct decomposition
2406 decompose (rtx x)
2408 struct decomposition val;
2409 int all_const = 0;
2411 memset (&val, 0, sizeof (val));
2413 switch (GET_CODE (x))
2415 case MEM:
2417 rtx base = NULL_RTX, offset = 0;
2418 rtx addr = XEXP (x, 0);
2420 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2421 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2423 val.base = XEXP (addr, 0);
2424 val.start = -GET_MODE_SIZE (GET_MODE (x));
2425 val.end = GET_MODE_SIZE (GET_MODE (x));
2426 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2427 return val;
2430 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2432 if (GET_CODE (XEXP (addr, 1)) == PLUS
2433 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2434 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2436 val.base = XEXP (addr, 0);
2437 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2438 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2439 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2440 return val;
2444 if (GET_CODE (addr) == CONST)
2446 addr = XEXP (addr, 0);
2447 all_const = 1;
2449 if (GET_CODE (addr) == PLUS)
2451 if (CONSTANT_P (XEXP (addr, 0)))
2453 base = XEXP (addr, 1);
2454 offset = XEXP (addr, 0);
2456 else if (CONSTANT_P (XEXP (addr, 1)))
2458 base = XEXP (addr, 0);
2459 offset = XEXP (addr, 1);
2463 if (offset == 0)
2465 base = addr;
2466 offset = const0_rtx;
2468 if (GET_CODE (offset) == CONST)
2469 offset = XEXP (offset, 0);
2470 if (GET_CODE (offset) == PLUS)
2472 if (CONST_INT_P (XEXP (offset, 0)))
2474 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2475 offset = XEXP (offset, 0);
2477 else if (CONST_INT_P (XEXP (offset, 1)))
2479 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2480 offset = XEXP (offset, 1);
2482 else
2484 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2485 offset = const0_rtx;
2488 else if (!CONST_INT_P (offset))
2490 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2491 offset = const0_rtx;
2494 if (all_const && GET_CODE (base) == PLUS)
2495 base = gen_rtx_CONST (GET_MODE (base), base);
2497 gcc_assert (CONST_INT_P (offset));
2499 val.start = INTVAL (offset);
2500 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2501 val.base = base;
2503 break;
2505 case REG:
2506 val.reg_flag = 1;
2507 val.start = true_regnum (x);
2508 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2510 /* A pseudo with no hard reg. */
2511 val.start = REGNO (x);
2512 val.end = val.start + 1;
2514 else
2515 /* A hard reg. */
2516 val.end = end_hard_regno (GET_MODE (x), val.start);
2517 break;
2519 case SUBREG:
2520 if (!REG_P (SUBREG_REG (x)))
2521 /* This could be more precise, but it's good enough. */
2522 return decompose (SUBREG_REG (x));
2523 val.reg_flag = 1;
2524 val.start = true_regnum (x);
2525 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2526 return decompose (SUBREG_REG (x));
2527 else
2528 /* A hard reg. */
2529 val.end = val.start + subreg_nregs (x);
2530 break;
2532 case SCRATCH:
2533 /* This hasn't been assigned yet, so it can't conflict yet. */
2534 val.safe = 1;
2535 break;
2537 default:
2538 gcc_assert (CONSTANT_P (x));
2539 val.safe = 1;
2540 break;
2542 return val;
2545 /* Return 1 if altering Y will not modify the value of X.
2546 Y is also described by YDATA, which should be decompose (Y). */
2548 static int
2549 immune_p (rtx x, rtx y, struct decomposition ydata)
2551 struct decomposition xdata;
2553 if (ydata.reg_flag)
2554 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2555 if (ydata.safe)
2556 return 1;
2558 gcc_assert (MEM_P (y));
2559 /* If Y is memory and X is not, Y can't affect X. */
2560 if (!MEM_P (x))
2561 return 1;
2563 xdata = decompose (x);
2565 if (! rtx_equal_p (xdata.base, ydata.base))
2567 /* If bases are distinct symbolic constants, there is no overlap. */
2568 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2569 return 1;
2570 /* Constants and stack slots never overlap. */
2571 if (CONSTANT_P (xdata.base)
2572 && (ydata.base == frame_pointer_rtx
2573 || ydata.base == hard_frame_pointer_rtx
2574 || ydata.base == stack_pointer_rtx))
2575 return 1;
2576 if (CONSTANT_P (ydata.base)
2577 && (xdata.base == frame_pointer_rtx
2578 || xdata.base == hard_frame_pointer_rtx
2579 || xdata.base == stack_pointer_rtx))
2580 return 1;
2581 /* If either base is variable, we don't know anything. */
2582 return 0;
2585 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2588 /* Similar, but calls decompose. */
2591 safe_from_earlyclobber (rtx op, rtx clobber)
2593 struct decomposition early_data;
2595 early_data = decompose (clobber);
2596 return immune_p (op, clobber, early_data);
2599 /* Main entry point of this file: search the body of INSN
2600 for values that need reloading and record them with push_reload.
2601 REPLACE nonzero means record also where the values occur
2602 so that subst_reloads can be used.
2604 IND_LEVELS says how many levels of indirection are supported by this
2605 machine; a value of zero means that a memory reference is not a valid
2606 memory address.
2608 LIVE_KNOWN says we have valid information about which hard
2609 regs are live at each point in the program; this is true when
2610 we are called from global_alloc but false when stupid register
2611 allocation has been done.
2613 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2614 which is nonnegative if the reg has been commandeered for reloading into.
2615 It is copied into STATIC_RELOAD_REG_P and referenced from there
2616 by various subroutines.
2618 Return TRUE if some operands need to be changed, because of swapping
2619 commutative operands, reg_equiv_address substitution, or whatever. */
2622 find_reloads (rtx_insn *insn, int replace, int ind_levels, int live_known,
2623 short *reload_reg_p)
2625 int insn_code_number;
2626 int i, j;
2627 int noperands;
2628 /* These start out as the constraints for the insn
2629 and they are chewed up as we consider alternatives. */
2630 const char *constraints[MAX_RECOG_OPERANDS];
2631 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2632 a register. */
2633 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2634 char pref_or_nothing[MAX_RECOG_OPERANDS];
2635 /* Nonzero for a MEM operand whose entire address needs a reload.
2636 May be -1 to indicate the entire address may or may not need a reload. */
2637 int address_reloaded[MAX_RECOG_OPERANDS];
2638 /* Nonzero for an address operand that needs to be completely reloaded.
2639 May be -1 to indicate the entire operand may or may not need a reload. */
2640 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2641 /* Value of enum reload_type to use for operand. */
2642 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2643 /* Value of enum reload_type to use within address of operand. */
2644 enum reload_type address_type[MAX_RECOG_OPERANDS];
2645 /* Save the usage of each operand. */
2646 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2647 int no_input_reloads = 0, no_output_reloads = 0;
2648 int n_alternatives;
2649 reg_class_t this_alternative[MAX_RECOG_OPERANDS];
2650 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2651 char this_alternative_win[MAX_RECOG_OPERANDS];
2652 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2653 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2654 int this_alternative_matches[MAX_RECOG_OPERANDS];
2655 reg_class_t goal_alternative[MAX_RECOG_OPERANDS];
2656 int this_alternative_number;
2657 int goal_alternative_number = 0;
2658 int operand_reloadnum[MAX_RECOG_OPERANDS];
2659 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2660 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2661 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2662 char goal_alternative_win[MAX_RECOG_OPERANDS];
2663 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2664 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2665 int goal_alternative_swapped;
2666 int best;
2667 int commutative;
2668 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2669 rtx substed_operand[MAX_RECOG_OPERANDS];
2670 rtx body = PATTERN (insn);
2671 rtx set = single_set (insn);
2672 int goal_earlyclobber = 0, this_earlyclobber;
2673 machine_mode operand_mode[MAX_RECOG_OPERANDS];
2674 int retval = 0;
2676 this_insn = insn;
2677 n_reloads = 0;
2678 n_replacements = 0;
2679 n_earlyclobbers = 0;
2680 replace_reloads = replace;
2681 hard_regs_live_known = live_known;
2682 static_reload_reg_p = reload_reg_p;
2684 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2685 neither are insns that SET cc0. Insns that use CC0 are not allowed
2686 to have any input reloads. */
2687 if (JUMP_P (insn) || CALL_P (insn))
2688 no_output_reloads = 1;
2690 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (insn)))
2691 no_input_reloads = 1;
2692 if (HAVE_cc0 && reg_set_p (cc0_rtx, PATTERN (insn)))
2693 no_output_reloads = 1;
2695 #ifdef SECONDARY_MEMORY_NEEDED
2696 /* The eliminated forms of any secondary memory locations are per-insn, so
2697 clear them out here. */
2699 if (secondary_memlocs_elim_used)
2701 memset (secondary_memlocs_elim, 0,
2702 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2703 secondary_memlocs_elim_used = 0;
2705 #endif
2707 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2708 is cheap to move between them. If it is not, there may not be an insn
2709 to do the copy, so we may need a reload. */
2710 if (GET_CODE (body) == SET
2711 && REG_P (SET_DEST (body))
2712 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2713 && REG_P (SET_SRC (body))
2714 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2715 && register_move_cost (GET_MODE (SET_SRC (body)),
2716 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2717 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2718 return 0;
2720 extract_insn (insn);
2722 noperands = reload_n_operands = recog_data.n_operands;
2723 n_alternatives = recog_data.n_alternatives;
2725 /* Just return "no reloads" if insn has no operands with constraints. */
2726 if (noperands == 0 || n_alternatives == 0)
2727 return 0;
2729 insn_code_number = INSN_CODE (insn);
2730 this_insn_is_asm = insn_code_number < 0;
2732 memcpy (operand_mode, recog_data.operand_mode,
2733 noperands * sizeof (machine_mode));
2734 memcpy (constraints, recog_data.constraints,
2735 noperands * sizeof (const char *));
2737 commutative = -1;
2739 /* If we will need to know, later, whether some pair of operands
2740 are the same, we must compare them now and save the result.
2741 Reloading the base and index registers will clobber them
2742 and afterward they will fail to match. */
2744 for (i = 0; i < noperands; i++)
2746 const char *p;
2747 int c;
2748 char *end;
2750 substed_operand[i] = recog_data.operand[i];
2751 p = constraints[i];
2753 modified[i] = RELOAD_READ;
2755 /* Scan this operand's constraint to see if it is an output operand,
2756 an in-out operand, is commutative, or should match another. */
2758 while ((c = *p))
2760 p += CONSTRAINT_LEN (c, p);
2761 switch (c)
2763 case '=':
2764 modified[i] = RELOAD_WRITE;
2765 break;
2766 case '+':
2767 modified[i] = RELOAD_READ_WRITE;
2768 break;
2769 case '%':
2771 /* The last operand should not be marked commutative. */
2772 gcc_assert (i != noperands - 1);
2774 /* We currently only support one commutative pair of
2775 operands. Some existing asm code currently uses more
2776 than one pair. Previously, that would usually work,
2777 but sometimes it would crash the compiler. We
2778 continue supporting that case as well as we can by
2779 silently ignoring all but the first pair. In the
2780 future we may handle it correctly. */
2781 if (commutative < 0)
2782 commutative = i;
2783 else
2784 gcc_assert (this_insn_is_asm);
2786 break;
2787 /* Use of ISDIGIT is tempting here, but it may get expensive because
2788 of locale support we don't want. */
2789 case '0': case '1': case '2': case '3': case '4':
2790 case '5': case '6': case '7': case '8': case '9':
2792 c = strtoul (p - 1, &end, 10);
2793 p = end;
2795 operands_match[c][i]
2796 = operands_match_p (recog_data.operand[c],
2797 recog_data.operand[i]);
2799 /* An operand may not match itself. */
2800 gcc_assert (c != i);
2802 /* If C can be commuted with C+1, and C might need to match I,
2803 then C+1 might also need to match I. */
2804 if (commutative >= 0)
2806 if (c == commutative || c == commutative + 1)
2808 int other = c + (c == commutative ? 1 : -1);
2809 operands_match[other][i]
2810 = operands_match_p (recog_data.operand[other],
2811 recog_data.operand[i]);
2813 if (i == commutative || i == commutative + 1)
2815 int other = i + (i == commutative ? 1 : -1);
2816 operands_match[c][other]
2817 = operands_match_p (recog_data.operand[c],
2818 recog_data.operand[other]);
2820 /* Note that C is supposed to be less than I.
2821 No need to consider altering both C and I because in
2822 that case we would alter one into the other. */
2829 /* Examine each operand that is a memory reference or memory address
2830 and reload parts of the addresses into index registers.
2831 Also here any references to pseudo regs that didn't get hard regs
2832 but are equivalent to constants get replaced in the insn itself
2833 with those constants. Nobody will ever see them again.
2835 Finally, set up the preferred classes of each operand. */
2837 for (i = 0; i < noperands; i++)
2839 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2841 address_reloaded[i] = 0;
2842 address_operand_reloaded[i] = 0;
2843 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2844 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2845 : RELOAD_OTHER);
2846 address_type[i]
2847 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2848 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2849 : RELOAD_OTHER);
2851 if (*constraints[i] == 0)
2852 /* Ignore things like match_operator operands. */
2854 else if (insn_extra_address_constraint
2855 (lookup_constraint (constraints[i])))
2857 address_operand_reloaded[i]
2858 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2859 recog_data.operand[i],
2860 recog_data.operand_loc[i],
2861 i, operand_type[i], ind_levels, insn);
2863 /* If we now have a simple operand where we used to have a
2864 PLUS or MULT, re-recognize and try again. */
2865 if ((OBJECT_P (*recog_data.operand_loc[i])
2866 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2867 && (GET_CODE (recog_data.operand[i]) == MULT
2868 || GET_CODE (recog_data.operand[i]) == PLUS))
2870 INSN_CODE (insn) = -1;
2871 retval = find_reloads (insn, replace, ind_levels, live_known,
2872 reload_reg_p);
2873 return retval;
2876 recog_data.operand[i] = *recog_data.operand_loc[i];
2877 substed_operand[i] = recog_data.operand[i];
2879 /* Address operands are reloaded in their existing mode,
2880 no matter what is specified in the machine description. */
2881 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2883 /* If the address is a single CONST_INT pick address mode
2884 instead otherwise we will later not know in which mode
2885 the reload should be performed. */
2886 if (operand_mode[i] == VOIDmode)
2887 operand_mode[i] = Pmode;
2890 else if (code == MEM)
2892 address_reloaded[i]
2893 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2894 recog_data.operand_loc[i],
2895 XEXP (recog_data.operand[i], 0),
2896 &XEXP (recog_data.operand[i], 0),
2897 i, address_type[i], ind_levels, insn);
2898 recog_data.operand[i] = *recog_data.operand_loc[i];
2899 substed_operand[i] = recog_data.operand[i];
2901 else if (code == SUBREG)
2903 rtx reg = SUBREG_REG (recog_data.operand[i]);
2904 rtx op
2905 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2906 ind_levels,
2907 set != 0
2908 && &SET_DEST (set) == recog_data.operand_loc[i],
2909 insn,
2910 &address_reloaded[i]);
2912 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2913 that didn't get a hard register, emit a USE with a REG_EQUAL
2914 note in front so that we might inherit a previous, possibly
2915 wider reload. */
2917 if (replace
2918 && MEM_P (op)
2919 && REG_P (reg)
2920 && (GET_MODE_SIZE (GET_MODE (reg))
2921 >= GET_MODE_SIZE (GET_MODE (op)))
2922 && reg_equiv_constant (REGNO (reg)) == 0)
2923 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2924 insn),
2925 REG_EQUAL, reg_equiv_memory_loc (REGNO (reg)));
2927 substed_operand[i] = recog_data.operand[i] = op;
2929 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2930 /* We can get a PLUS as an "operand" as a result of register
2931 elimination. See eliminate_regs and gen_reload. We handle
2932 a unary operator by reloading the operand. */
2933 substed_operand[i] = recog_data.operand[i]
2934 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2935 ind_levels, 0, insn,
2936 &address_reloaded[i]);
2937 else if (code == REG)
2939 /* This is equivalent to calling find_reloads_toplev.
2940 The code is duplicated for speed.
2941 When we find a pseudo always equivalent to a constant,
2942 we replace it by the constant. We must be sure, however,
2943 that we don't try to replace it in the insn in which it
2944 is being set. */
2945 int regno = REGNO (recog_data.operand[i]);
2946 if (reg_equiv_constant (regno) != 0
2947 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2949 /* Record the existing mode so that the check if constants are
2950 allowed will work when operand_mode isn't specified. */
2952 if (operand_mode[i] == VOIDmode)
2953 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2955 substed_operand[i] = recog_data.operand[i]
2956 = reg_equiv_constant (regno);
2958 if (reg_equiv_memory_loc (regno) != 0
2959 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
2960 /* We need not give a valid is_set_dest argument since the case
2961 of a constant equivalence was checked above. */
2962 substed_operand[i] = recog_data.operand[i]
2963 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2964 ind_levels, 0, insn,
2965 &address_reloaded[i]);
2967 /* If the operand is still a register (we didn't replace it with an
2968 equivalent), get the preferred class to reload it into. */
2969 code = GET_CODE (recog_data.operand[i]);
2970 preferred_class[i]
2971 = ((code == REG && REGNO (recog_data.operand[i])
2972 >= FIRST_PSEUDO_REGISTER)
2973 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2974 : NO_REGS);
2975 pref_or_nothing[i]
2976 = (code == REG
2977 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2978 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2981 /* If this is simply a copy from operand 1 to operand 0, merge the
2982 preferred classes for the operands. */
2983 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2984 && recog_data.operand[1] == SET_SRC (set))
2986 preferred_class[0] = preferred_class[1]
2987 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2988 pref_or_nothing[0] |= pref_or_nothing[1];
2989 pref_or_nothing[1] |= pref_or_nothing[0];
2992 /* Now see what we need for pseudo-regs that didn't get hard regs
2993 or got the wrong kind of hard reg. For this, we must consider
2994 all the operands together against the register constraints. */
2996 best = MAX_RECOG_OPERANDS * 2 + 600;
2998 goal_alternative_swapped = 0;
3000 /* The constraints are made of several alternatives.
3001 Each operand's constraint looks like foo,bar,... with commas
3002 separating the alternatives. The first alternatives for all
3003 operands go together, the second alternatives go together, etc.
3005 First loop over alternatives. */
3007 alternative_mask enabled = get_enabled_alternatives (insn);
3008 for (this_alternative_number = 0;
3009 this_alternative_number < n_alternatives;
3010 this_alternative_number++)
3012 int swapped;
3014 if (!TEST_BIT (enabled, this_alternative_number))
3016 int i;
3018 for (i = 0; i < recog_data.n_operands; i++)
3019 constraints[i] = skip_alternative (constraints[i]);
3021 continue;
3024 /* If insn is commutative (it's safe to exchange a certain pair
3025 of operands) then we need to try each alternative twice, the
3026 second time matching those two operands as if we had
3027 exchanged them. To do this, really exchange them in
3028 operands. */
3029 for (swapped = 0; swapped < (commutative >= 0 ? 2 : 1); swapped++)
3031 /* Loop over operands for one constraint alternative. */
3032 /* LOSERS counts those that don't fit this alternative
3033 and would require loading. */
3034 int losers = 0;
3035 /* BAD is set to 1 if it some operand can't fit this alternative
3036 even after reloading. */
3037 int bad = 0;
3038 /* REJECT is a count of how undesirable this alternative says it is
3039 if any reloading is required. If the alternative matches exactly
3040 then REJECT is ignored, but otherwise it gets this much
3041 counted against it in addition to the reloading needed. Each
3042 ? counts three times here since we want the disparaging caused by
3043 a bad register class to only count 1/3 as much. */
3044 int reject = 0;
3046 if (swapped)
3048 recog_data.operand[commutative] = substed_operand[commutative + 1];
3049 recog_data.operand[commutative + 1] = substed_operand[commutative];
3050 /* Swap the duplicates too. */
3051 for (i = 0; i < recog_data.n_dups; i++)
3052 if (recog_data.dup_num[i] == commutative
3053 || recog_data.dup_num[i] == commutative + 1)
3054 *recog_data.dup_loc[i]
3055 = recog_data.operand[(int) recog_data.dup_num[i]];
3057 std::swap (preferred_class[commutative],
3058 preferred_class[commutative + 1]);
3059 std::swap (pref_or_nothing[commutative],
3060 pref_or_nothing[commutative + 1]);
3061 std::swap (address_reloaded[commutative],
3062 address_reloaded[commutative + 1]);
3065 this_earlyclobber = 0;
3067 for (i = 0; i < noperands; i++)
3069 const char *p = constraints[i];
3070 char *end;
3071 int len;
3072 int win = 0;
3073 int did_match = 0;
3074 /* 0 => this operand can be reloaded somehow for this alternative. */
3075 int badop = 1;
3076 /* 0 => this operand can be reloaded if the alternative allows regs. */
3077 int winreg = 0;
3078 int c;
3079 int m;
3080 rtx operand = recog_data.operand[i];
3081 int offset = 0;
3082 /* Nonzero means this is a MEM that must be reloaded into a reg
3083 regardless of what the constraint says. */
3084 int force_reload = 0;
3085 int offmemok = 0;
3086 /* Nonzero if a constant forced into memory would be OK for this
3087 operand. */
3088 int constmemok = 0;
3089 int earlyclobber = 0;
3090 enum constraint_num cn;
3091 enum reg_class cl;
3093 /* If the predicate accepts a unary operator, it means that
3094 we need to reload the operand, but do not do this for
3095 match_operator and friends. */
3096 if (UNARY_P (operand) && *p != 0)
3097 operand = XEXP (operand, 0);
3099 /* If the operand is a SUBREG, extract
3100 the REG or MEM (or maybe even a constant) within.
3101 (Constants can occur as a result of reg_equiv_constant.) */
3103 while (GET_CODE (operand) == SUBREG)
3105 /* Offset only matters when operand is a REG and
3106 it is a hard reg. This is because it is passed
3107 to reg_fits_class_p if it is a REG and all pseudos
3108 return 0 from that function. */
3109 if (REG_P (SUBREG_REG (operand))
3110 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
3112 if (simplify_subreg_regno (REGNO (SUBREG_REG (operand)),
3113 GET_MODE (SUBREG_REG (operand)),
3114 SUBREG_BYTE (operand),
3115 GET_MODE (operand)) < 0)
3116 force_reload = 1;
3117 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
3118 GET_MODE (SUBREG_REG (operand)),
3119 SUBREG_BYTE (operand),
3120 GET_MODE (operand));
3122 operand = SUBREG_REG (operand);
3123 /* Force reload if this is a constant or PLUS or if there may
3124 be a problem accessing OPERAND in the outer mode. */
3125 if (CONSTANT_P (operand)
3126 || GET_CODE (operand) == PLUS
3127 /* We must force a reload of paradoxical SUBREGs
3128 of a MEM because the alignment of the inner value
3129 may not be enough to do the outer reference. On
3130 big-endian machines, it may also reference outside
3131 the object.
3133 On machines that extend byte operations and we have a
3134 SUBREG where both the inner and outer modes are no wider
3135 than a word and the inner mode is narrower, is integral,
3136 and gets extended when loaded from memory, combine.c has
3137 made assumptions about the behavior of the machine in such
3138 register access. If the data is, in fact, in memory we
3139 must always load using the size assumed to be in the
3140 register and let the insn do the different-sized
3141 accesses.
3143 This is doubly true if WORD_REGISTER_OPERATIONS. In
3144 this case eliminate_regs has left non-paradoxical
3145 subregs for push_reload to see. Make sure it does
3146 by forcing the reload.
3148 ??? When is it right at this stage to have a subreg
3149 of a mem that is _not_ to be handled specially? IMO
3150 those should have been reduced to just a mem. */
3151 || ((MEM_P (operand)
3152 || (REG_P (operand)
3153 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3154 #if !WORD_REGISTER_OPERATIONS
3155 && (((GET_MODE_BITSIZE (GET_MODE (operand))
3156 < BIGGEST_ALIGNMENT)
3157 && (GET_MODE_SIZE (operand_mode[i])
3158 > GET_MODE_SIZE (GET_MODE (operand))))
3159 || BYTES_BIG_ENDIAN
3160 #ifdef LOAD_EXTEND_OP
3161 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3162 && (GET_MODE_SIZE (GET_MODE (operand))
3163 <= UNITS_PER_WORD)
3164 && (GET_MODE_SIZE (operand_mode[i])
3165 > GET_MODE_SIZE (GET_MODE (operand)))
3166 && INTEGRAL_MODE_P (GET_MODE (operand))
3167 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
3168 #endif
3170 #endif
3173 force_reload = 1;
3176 this_alternative[i] = NO_REGS;
3177 this_alternative_win[i] = 0;
3178 this_alternative_match_win[i] = 0;
3179 this_alternative_offmemok[i] = 0;
3180 this_alternative_earlyclobber[i] = 0;
3181 this_alternative_matches[i] = -1;
3183 /* An empty constraint or empty alternative
3184 allows anything which matched the pattern. */
3185 if (*p == 0 || *p == ',')
3186 win = 1, badop = 0;
3188 /* Scan this alternative's specs for this operand;
3189 set WIN if the operand fits any letter in this alternative.
3190 Otherwise, clear BADOP if this operand could
3191 fit some letter after reloads,
3192 or set WINREG if this operand could fit after reloads
3193 provided the constraint allows some registers. */
3196 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3198 case '\0':
3199 len = 0;
3200 break;
3201 case ',':
3202 c = '\0';
3203 break;
3205 case '?':
3206 reject += 6;
3207 break;
3209 case '!':
3210 reject = 600;
3211 break;
3213 case '#':
3214 /* Ignore rest of this alternative as far as
3215 reloading is concerned. */
3217 p++;
3218 while (*p && *p != ',');
3219 len = 0;
3220 break;
3222 case '0': case '1': case '2': case '3': case '4':
3223 case '5': case '6': case '7': case '8': case '9':
3224 m = strtoul (p, &end, 10);
3225 p = end;
3226 len = 0;
3228 this_alternative_matches[i] = m;
3229 /* We are supposed to match a previous operand.
3230 If we do, we win if that one did.
3231 If we do not, count both of the operands as losers.
3232 (This is too conservative, since most of the time
3233 only a single reload insn will be needed to make
3234 the two operands win. As a result, this alternative
3235 may be rejected when it is actually desirable.) */
3236 if ((swapped && (m != commutative || i != commutative + 1))
3237 /* If we are matching as if two operands were swapped,
3238 also pretend that operands_match had been computed
3239 with swapped.
3240 But if I is the second of those and C is the first,
3241 don't exchange them, because operands_match is valid
3242 only on one side of its diagonal. */
3243 ? (operands_match
3244 [(m == commutative || m == commutative + 1)
3245 ? 2 * commutative + 1 - m : m]
3246 [(i == commutative || i == commutative + 1)
3247 ? 2 * commutative + 1 - i : i])
3248 : operands_match[m][i])
3250 /* If we are matching a non-offsettable address where an
3251 offsettable address was expected, then we must reject
3252 this combination, because we can't reload it. */
3253 if (this_alternative_offmemok[m]
3254 && MEM_P (recog_data.operand[m])
3255 && this_alternative[m] == NO_REGS
3256 && ! this_alternative_win[m])
3257 bad = 1;
3259 did_match = this_alternative_win[m];
3261 else
3263 /* Operands don't match. */
3264 rtx value;
3265 int loc1, loc2;
3266 /* Retroactively mark the operand we had to match
3267 as a loser, if it wasn't already. */
3268 if (this_alternative_win[m])
3269 losers++;
3270 this_alternative_win[m] = 0;
3271 if (this_alternative[m] == NO_REGS)
3272 bad = 1;
3273 /* But count the pair only once in the total badness of
3274 this alternative, if the pair can be a dummy reload.
3275 The pointers in operand_loc are not swapped; swap
3276 them by hand if necessary. */
3277 if (swapped && i == commutative)
3278 loc1 = commutative + 1;
3279 else if (swapped && i == commutative + 1)
3280 loc1 = commutative;
3281 else
3282 loc1 = i;
3283 if (swapped && m == commutative)
3284 loc2 = commutative + 1;
3285 else if (swapped && m == commutative + 1)
3286 loc2 = commutative;
3287 else
3288 loc2 = m;
3289 value
3290 = find_dummy_reload (recog_data.operand[i],
3291 recog_data.operand[m],
3292 recog_data.operand_loc[loc1],
3293 recog_data.operand_loc[loc2],
3294 operand_mode[i], operand_mode[m],
3295 this_alternative[m], -1,
3296 this_alternative_earlyclobber[m]);
3298 if (value != 0)
3299 losers--;
3301 /* This can be fixed with reloads if the operand
3302 we are supposed to match can be fixed with reloads. */
3303 badop = 0;
3304 this_alternative[i] = this_alternative[m];
3306 /* If we have to reload this operand and some previous
3307 operand also had to match the same thing as this
3308 operand, we don't know how to do that. So reject this
3309 alternative. */
3310 if (! did_match || force_reload)
3311 for (j = 0; j < i; j++)
3312 if (this_alternative_matches[j]
3313 == this_alternative_matches[i])
3315 badop = 1;
3316 break;
3318 break;
3320 case 'p':
3321 /* All necessary reloads for an address_operand
3322 were handled in find_reloads_address. */
3323 this_alternative[i]
3324 = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3325 ADDRESS, SCRATCH);
3326 win = 1;
3327 badop = 0;
3328 break;
3330 case TARGET_MEM_CONSTRAINT:
3331 if (force_reload)
3332 break;
3333 if (MEM_P (operand)
3334 || (REG_P (operand)
3335 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3336 && reg_renumber[REGNO (operand)] < 0))
3337 win = 1;
3338 if (CONST_POOL_OK_P (operand_mode[i], operand))
3339 badop = 0;
3340 constmemok = 1;
3341 break;
3343 case '<':
3344 if (MEM_P (operand)
3345 && ! address_reloaded[i]
3346 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3347 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3348 win = 1;
3349 break;
3351 case '>':
3352 if (MEM_P (operand)
3353 && ! address_reloaded[i]
3354 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3355 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3356 win = 1;
3357 break;
3359 /* Memory operand whose address is not offsettable. */
3360 case 'V':
3361 if (force_reload)
3362 break;
3363 if (MEM_P (operand)
3364 && ! (ind_levels ? offsettable_memref_p (operand)
3365 : offsettable_nonstrict_memref_p (operand))
3366 /* Certain mem addresses will become offsettable
3367 after they themselves are reloaded. This is important;
3368 we don't want our own handling of unoffsettables
3369 to override the handling of reg_equiv_address. */
3370 && !(REG_P (XEXP (operand, 0))
3371 && (ind_levels == 0
3372 || reg_equiv_address (REGNO (XEXP (operand, 0))) != 0)))
3373 win = 1;
3374 break;
3376 /* Memory operand whose address is offsettable. */
3377 case 'o':
3378 if (force_reload)
3379 break;
3380 if ((MEM_P (operand)
3381 /* If IND_LEVELS, find_reloads_address won't reload a
3382 pseudo that didn't get a hard reg, so we have to
3383 reject that case. */
3384 && ((ind_levels ? offsettable_memref_p (operand)
3385 : offsettable_nonstrict_memref_p (operand))
3386 /* A reloaded address is offsettable because it is now
3387 just a simple register indirect. */
3388 || address_reloaded[i] == 1))
3389 || (REG_P (operand)
3390 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3391 && reg_renumber[REGNO (operand)] < 0
3392 /* If reg_equiv_address is nonzero, we will be
3393 loading it into a register; hence it will be
3394 offsettable, but we cannot say that reg_equiv_mem
3395 is offsettable without checking. */
3396 && ((reg_equiv_mem (REGNO (operand)) != 0
3397 && offsettable_memref_p (reg_equiv_mem (REGNO (operand))))
3398 || (reg_equiv_address (REGNO (operand)) != 0))))
3399 win = 1;
3400 if (CONST_POOL_OK_P (operand_mode[i], operand)
3401 || MEM_P (operand))
3402 badop = 0;
3403 constmemok = 1;
3404 offmemok = 1;
3405 break;
3407 case '&':
3408 /* Output operand that is stored before the need for the
3409 input operands (and their index registers) is over. */
3410 earlyclobber = 1, this_earlyclobber = 1;
3411 break;
3413 case 'X':
3414 force_reload = 0;
3415 win = 1;
3416 break;
3418 case 'g':
3419 if (! force_reload
3420 /* A PLUS is never a valid operand, but reload can make
3421 it from a register when eliminating registers. */
3422 && GET_CODE (operand) != PLUS
3423 /* A SCRATCH is not a valid operand. */
3424 && GET_CODE (operand) != SCRATCH
3425 && (! CONSTANT_P (operand)
3426 || ! flag_pic
3427 || LEGITIMATE_PIC_OPERAND_P (operand))
3428 && (GENERAL_REGS == ALL_REGS
3429 || !REG_P (operand)
3430 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3431 && reg_renumber[REGNO (operand)] < 0)))
3432 win = 1;
3433 cl = GENERAL_REGS;
3434 goto reg;
3436 default:
3437 cn = lookup_constraint (p);
3438 switch (get_constraint_type (cn))
3440 case CT_REGISTER:
3441 cl = reg_class_for_constraint (cn);
3442 if (cl != NO_REGS)
3443 goto reg;
3444 break;
3446 case CT_CONST_INT:
3447 if (CONST_INT_P (operand)
3448 && (insn_const_int_ok_for_constraint
3449 (INTVAL (operand), cn)))
3450 win = true;
3451 break;
3453 case CT_MEMORY:
3454 if (force_reload)
3455 break;
3456 if (constraint_satisfied_p (operand, cn))
3457 win = 1;
3458 /* If the address was already reloaded,
3459 we win as well. */
3460 else if (MEM_P (operand) && address_reloaded[i] == 1)
3461 win = 1;
3462 /* Likewise if the address will be reloaded because
3463 reg_equiv_address is nonzero. For reg_equiv_mem
3464 we have to check. */
3465 else if (REG_P (operand)
3466 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3467 && reg_renumber[REGNO (operand)] < 0
3468 && ((reg_equiv_mem (REGNO (operand)) != 0
3469 && (constraint_satisfied_p
3470 (reg_equiv_mem (REGNO (operand)),
3471 cn)))
3472 || (reg_equiv_address (REGNO (operand))
3473 != 0)))
3474 win = 1;
3476 /* If we didn't already win, we can reload
3477 constants via force_const_mem, and other
3478 MEMs by reloading the address like for 'o'. */
3479 if (CONST_POOL_OK_P (operand_mode[i], operand)
3480 || MEM_P (operand))
3481 badop = 0;
3482 constmemok = 1;
3483 offmemok = 1;
3484 break;
3486 case CT_ADDRESS:
3487 if (constraint_satisfied_p (operand, cn))
3488 win = 1;
3490 /* If we didn't already win, we can reload
3491 the address into a base register. */
3492 this_alternative[i]
3493 = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3494 ADDRESS, SCRATCH);
3495 badop = 0;
3496 break;
3498 case CT_FIXED_FORM:
3499 if (constraint_satisfied_p (operand, cn))
3500 win = 1;
3501 break;
3503 break;
3505 reg:
3506 this_alternative[i]
3507 = reg_class_subunion[this_alternative[i]][cl];
3508 if (GET_MODE (operand) == BLKmode)
3509 break;
3510 winreg = 1;
3511 if (REG_P (operand)
3512 && reg_fits_class_p (operand, this_alternative[i],
3513 offset, GET_MODE (recog_data.operand[i])))
3514 win = 1;
3515 break;
3517 while ((p += len), c);
3519 if (swapped == (commutative >= 0 ? 1 : 0))
3520 constraints[i] = p;
3522 /* If this operand could be handled with a reg,
3523 and some reg is allowed, then this operand can be handled. */
3524 if (winreg && this_alternative[i] != NO_REGS
3525 && (win || !class_only_fixed_regs[this_alternative[i]]))
3526 badop = 0;
3528 /* Record which operands fit this alternative. */
3529 this_alternative_earlyclobber[i] = earlyclobber;
3530 if (win && ! force_reload)
3531 this_alternative_win[i] = 1;
3532 else if (did_match && ! force_reload)
3533 this_alternative_match_win[i] = 1;
3534 else
3536 int const_to_mem = 0;
3538 this_alternative_offmemok[i] = offmemok;
3539 losers++;
3540 if (badop)
3541 bad = 1;
3542 /* Alternative loses if it has no regs for a reg operand. */
3543 if (REG_P (operand)
3544 && this_alternative[i] == NO_REGS
3545 && this_alternative_matches[i] < 0)
3546 bad = 1;
3548 /* If this is a constant that is reloaded into the desired
3549 class by copying it to memory first, count that as another
3550 reload. This is consistent with other code and is
3551 required to avoid choosing another alternative when
3552 the constant is moved into memory by this function on
3553 an early reload pass. Note that the test here is
3554 precisely the same as in the code below that calls
3555 force_const_mem. */
3556 if (CONST_POOL_OK_P (operand_mode[i], operand)
3557 && ((targetm.preferred_reload_class (operand,
3558 this_alternative[i])
3559 == NO_REGS)
3560 || no_input_reloads))
3562 const_to_mem = 1;
3563 if (this_alternative[i] != NO_REGS)
3564 losers++;
3567 /* Alternative loses if it requires a type of reload not
3568 permitted for this insn. We can always reload SCRATCH
3569 and objects with a REG_UNUSED note. */
3570 if (GET_CODE (operand) != SCRATCH
3571 && modified[i] != RELOAD_READ && no_output_reloads
3572 && ! find_reg_note (insn, REG_UNUSED, operand))
3573 bad = 1;
3574 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3575 && ! const_to_mem)
3576 bad = 1;
3578 /* If we can't reload this value at all, reject this
3579 alternative. Note that we could also lose due to
3580 LIMIT_RELOAD_CLASS, but we don't check that
3581 here. */
3583 if (! CONSTANT_P (operand) && this_alternative[i] != NO_REGS)
3585 if (targetm.preferred_reload_class (operand,
3586 this_alternative[i])
3587 == NO_REGS)
3588 reject = 600;
3590 if (operand_type[i] == RELOAD_FOR_OUTPUT
3591 && (targetm.preferred_output_reload_class (operand,
3592 this_alternative[i])
3593 == NO_REGS))
3594 reject = 600;
3597 /* We prefer to reload pseudos over reloading other things,
3598 since such reloads may be able to be eliminated later.
3599 If we are reloading a SCRATCH, we won't be generating any
3600 insns, just using a register, so it is also preferred.
3601 So bump REJECT in other cases. Don't do this in the
3602 case where we are forcing a constant into memory and
3603 it will then win since we don't want to have a different
3604 alternative match then. */
3605 if (! (REG_P (operand)
3606 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3607 && GET_CODE (operand) != SCRATCH
3608 && ! (const_to_mem && constmemok))
3609 reject += 2;
3611 /* Input reloads can be inherited more often than output
3612 reloads can be removed, so penalize output reloads. */
3613 if (operand_type[i] != RELOAD_FOR_INPUT
3614 && GET_CODE (operand) != SCRATCH)
3615 reject++;
3618 /* If this operand is a pseudo register that didn't get
3619 a hard reg and this alternative accepts some
3620 register, see if the class that we want is a subset
3621 of the preferred class for this register. If not,
3622 but it intersects that class, use the preferred class
3623 instead. If it does not intersect the preferred
3624 class, show that usage of this alternative should be
3625 discouraged; it will be discouraged more still if the
3626 register is `preferred or nothing'. We do this
3627 because it increases the chance of reusing our spill
3628 register in a later insn and avoiding a pair of
3629 memory stores and loads.
3631 Don't bother with this if this alternative will
3632 accept this operand.
3634 Don't do this for a multiword operand, since it is
3635 only a small win and has the risk of requiring more
3636 spill registers, which could cause a large loss.
3638 Don't do this if the preferred class has only one
3639 register because we might otherwise exhaust the
3640 class. */
3642 if (! win && ! did_match
3643 && this_alternative[i] != NO_REGS
3644 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3645 && reg_class_size [(int) preferred_class[i]] > 0
3646 && ! small_register_class_p (preferred_class[i]))
3648 if (! reg_class_subset_p (this_alternative[i],
3649 preferred_class[i]))
3651 /* Since we don't have a way of forming the intersection,
3652 we just do something special if the preferred class
3653 is a subset of the class we have; that's the most
3654 common case anyway. */
3655 if (reg_class_subset_p (preferred_class[i],
3656 this_alternative[i]))
3657 this_alternative[i] = preferred_class[i];
3658 else
3659 reject += (2 + 2 * pref_or_nothing[i]);
3664 /* Now see if any output operands that are marked "earlyclobber"
3665 in this alternative conflict with any input operands
3666 or any memory addresses. */
3668 for (i = 0; i < noperands; i++)
3669 if (this_alternative_earlyclobber[i]
3670 && (this_alternative_win[i] || this_alternative_match_win[i]))
3672 struct decomposition early_data;
3674 early_data = decompose (recog_data.operand[i]);
3676 gcc_assert (modified[i] != RELOAD_READ);
3678 if (this_alternative[i] == NO_REGS)
3680 this_alternative_earlyclobber[i] = 0;
3681 gcc_assert (this_insn_is_asm);
3682 error_for_asm (this_insn,
3683 "%<&%> constraint used with no register class");
3686 for (j = 0; j < noperands; j++)
3687 /* Is this an input operand or a memory ref? */
3688 if ((MEM_P (recog_data.operand[j])
3689 || modified[j] != RELOAD_WRITE)
3690 && j != i
3691 /* Ignore things like match_operator operands. */
3692 && !recog_data.is_operator[j]
3693 /* Don't count an input operand that is constrained to match
3694 the early clobber operand. */
3695 && ! (this_alternative_matches[j] == i
3696 && rtx_equal_p (recog_data.operand[i],
3697 recog_data.operand[j]))
3698 /* Is it altered by storing the earlyclobber operand? */
3699 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3700 early_data))
3702 /* If the output is in a non-empty few-regs class,
3703 it's costly to reload it, so reload the input instead. */
3704 if (small_register_class_p (this_alternative[i])
3705 && (REG_P (recog_data.operand[j])
3706 || GET_CODE (recog_data.operand[j]) == SUBREG))
3708 losers++;
3709 this_alternative_win[j] = 0;
3710 this_alternative_match_win[j] = 0;
3712 else
3713 break;
3715 /* If an earlyclobber operand conflicts with something,
3716 it must be reloaded, so request this and count the cost. */
3717 if (j != noperands)
3719 losers++;
3720 this_alternative_win[i] = 0;
3721 this_alternative_match_win[j] = 0;
3722 for (j = 0; j < noperands; j++)
3723 if (this_alternative_matches[j] == i
3724 && this_alternative_match_win[j])
3726 this_alternative_win[j] = 0;
3727 this_alternative_match_win[j] = 0;
3728 losers++;
3733 /* If one alternative accepts all the operands, no reload required,
3734 choose that alternative; don't consider the remaining ones. */
3735 if (losers == 0)
3737 /* Unswap these so that they are never swapped at `finish'. */
3738 if (swapped)
3740 recog_data.operand[commutative] = substed_operand[commutative];
3741 recog_data.operand[commutative + 1]
3742 = substed_operand[commutative + 1];
3744 for (i = 0; i < noperands; i++)
3746 goal_alternative_win[i] = this_alternative_win[i];
3747 goal_alternative_match_win[i] = this_alternative_match_win[i];
3748 goal_alternative[i] = this_alternative[i];
3749 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3750 goal_alternative_matches[i] = this_alternative_matches[i];
3751 goal_alternative_earlyclobber[i]
3752 = this_alternative_earlyclobber[i];
3754 goal_alternative_number = this_alternative_number;
3755 goal_alternative_swapped = swapped;
3756 goal_earlyclobber = this_earlyclobber;
3757 goto finish;
3760 /* REJECT, set by the ! and ? constraint characters and when a register
3761 would be reloaded into a non-preferred class, discourages the use of
3762 this alternative for a reload goal. REJECT is incremented by six
3763 for each ? and two for each non-preferred class. */
3764 losers = losers * 6 + reject;
3766 /* If this alternative can be made to work by reloading,
3767 and it needs less reloading than the others checked so far,
3768 record it as the chosen goal for reloading. */
3769 if (! bad)
3771 if (best > losers)
3773 for (i = 0; i < noperands; i++)
3775 goal_alternative[i] = this_alternative[i];
3776 goal_alternative_win[i] = this_alternative_win[i];
3777 goal_alternative_match_win[i]
3778 = this_alternative_match_win[i];
3779 goal_alternative_offmemok[i]
3780 = this_alternative_offmemok[i];
3781 goal_alternative_matches[i] = this_alternative_matches[i];
3782 goal_alternative_earlyclobber[i]
3783 = this_alternative_earlyclobber[i];
3785 goal_alternative_swapped = swapped;
3786 best = losers;
3787 goal_alternative_number = this_alternative_number;
3788 goal_earlyclobber = this_earlyclobber;
3792 if (swapped)
3794 /* If the commutative operands have been swapped, swap
3795 them back in order to check the next alternative. */
3796 recog_data.operand[commutative] = substed_operand[commutative];
3797 recog_data.operand[commutative + 1] = substed_operand[commutative + 1];
3798 /* Unswap the duplicates too. */
3799 for (i = 0; i < recog_data.n_dups; i++)
3800 if (recog_data.dup_num[i] == commutative
3801 || recog_data.dup_num[i] == commutative + 1)
3802 *recog_data.dup_loc[i]
3803 = recog_data.operand[(int) recog_data.dup_num[i]];
3805 /* Unswap the operand related information as well. */
3806 std::swap (preferred_class[commutative],
3807 preferred_class[commutative + 1]);
3808 std::swap (pref_or_nothing[commutative],
3809 pref_or_nothing[commutative + 1]);
3810 std::swap (address_reloaded[commutative],
3811 address_reloaded[commutative + 1]);
3816 /* The operands don't meet the constraints.
3817 goal_alternative describes the alternative
3818 that we could reach by reloading the fewest operands.
3819 Reload so as to fit it. */
3821 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3823 /* No alternative works with reloads?? */
3824 if (insn_code_number >= 0)
3825 fatal_insn ("unable to generate reloads for:", insn);
3826 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3827 /* Avoid further trouble with this insn. */
3828 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3829 n_reloads = 0;
3830 return 0;
3833 /* Jump to `finish' from above if all operands are valid already.
3834 In that case, goal_alternative_win is all 1. */
3835 finish:
3837 /* Right now, for any pair of operands I and J that are required to match,
3838 with I < J,
3839 goal_alternative_matches[J] is I.
3840 Set up goal_alternative_matched as the inverse function:
3841 goal_alternative_matched[I] = J. */
3843 for (i = 0; i < noperands; i++)
3844 goal_alternative_matched[i] = -1;
3846 for (i = 0; i < noperands; i++)
3847 if (! goal_alternative_win[i]
3848 && goal_alternative_matches[i] >= 0)
3849 goal_alternative_matched[goal_alternative_matches[i]] = i;
3851 for (i = 0; i < noperands; i++)
3852 goal_alternative_win[i] |= goal_alternative_match_win[i];
3854 /* If the best alternative is with operands 1 and 2 swapped,
3855 consider them swapped before reporting the reloads. Update the
3856 operand numbers of any reloads already pushed. */
3858 if (goal_alternative_swapped)
3860 std::swap (substed_operand[commutative],
3861 substed_operand[commutative + 1]);
3862 std::swap (recog_data.operand[commutative],
3863 recog_data.operand[commutative + 1]);
3864 std::swap (*recog_data.operand_loc[commutative],
3865 *recog_data.operand_loc[commutative + 1]);
3867 for (i = 0; i < recog_data.n_dups; i++)
3868 if (recog_data.dup_num[i] == commutative
3869 || recog_data.dup_num[i] == commutative + 1)
3870 *recog_data.dup_loc[i]
3871 = recog_data.operand[(int) recog_data.dup_num[i]];
3873 for (i = 0; i < n_reloads; i++)
3875 if (rld[i].opnum == commutative)
3876 rld[i].opnum = commutative + 1;
3877 else if (rld[i].opnum == commutative + 1)
3878 rld[i].opnum = commutative;
3882 for (i = 0; i < noperands; i++)
3884 operand_reloadnum[i] = -1;
3886 /* If this is an earlyclobber operand, we need to widen the scope.
3887 The reload must remain valid from the start of the insn being
3888 reloaded until after the operand is stored into its destination.
3889 We approximate this with RELOAD_OTHER even though we know that we
3890 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3892 One special case that is worth checking is when we have an
3893 output that is earlyclobber but isn't used past the insn (typically
3894 a SCRATCH). In this case, we only need have the reload live
3895 through the insn itself, but not for any of our input or output
3896 reloads.
3897 But we must not accidentally narrow the scope of an existing
3898 RELOAD_OTHER reload - leave these alone.
3900 In any case, anything needed to address this operand can remain
3901 however they were previously categorized. */
3903 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3904 operand_type[i]
3905 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3906 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3909 /* Any constants that aren't allowed and can't be reloaded
3910 into registers are here changed into memory references. */
3911 for (i = 0; i < noperands; i++)
3912 if (! goal_alternative_win[i])
3914 rtx op = recog_data.operand[i];
3915 rtx subreg = NULL_RTX;
3916 rtx plus = NULL_RTX;
3917 machine_mode mode = operand_mode[i];
3919 /* Reloads of SUBREGs of CONSTANT RTXs are handled later in
3920 push_reload so we have to let them pass here. */
3921 if (GET_CODE (op) == SUBREG)
3923 subreg = op;
3924 op = SUBREG_REG (op);
3925 mode = GET_MODE (op);
3928 if (GET_CODE (op) == PLUS)
3930 plus = op;
3931 op = XEXP (op, 1);
3934 if (CONST_POOL_OK_P (mode, op)
3935 && ((targetm.preferred_reload_class (op, goal_alternative[i])
3936 == NO_REGS)
3937 || no_input_reloads))
3939 int this_address_reloaded;
3940 rtx tem = force_const_mem (mode, op);
3942 /* If we stripped a SUBREG or a PLUS above add it back. */
3943 if (plus != NULL_RTX)
3944 tem = gen_rtx_PLUS (mode, XEXP (plus, 0), tem);
3946 if (subreg != NULL_RTX)
3947 tem = gen_rtx_SUBREG (operand_mode[i], tem, SUBREG_BYTE (subreg));
3949 this_address_reloaded = 0;
3950 substed_operand[i] = recog_data.operand[i]
3951 = find_reloads_toplev (tem, i, address_type[i], ind_levels,
3952 0, insn, &this_address_reloaded);
3954 /* If the alternative accepts constant pool refs directly
3955 there will be no reload needed at all. */
3956 if (plus == NULL_RTX
3957 && subreg == NULL_RTX
3958 && alternative_allows_const_pool_ref (this_address_reloaded == 0
3959 ? substed_operand[i]
3960 : NULL,
3961 recog_data.constraints[i],
3962 goal_alternative_number))
3963 goal_alternative_win[i] = 1;
3967 /* Record the values of the earlyclobber operands for the caller. */
3968 if (goal_earlyclobber)
3969 for (i = 0; i < noperands; i++)
3970 if (goal_alternative_earlyclobber[i])
3971 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3973 /* Now record reloads for all the operands that need them. */
3974 for (i = 0; i < noperands; i++)
3975 if (! goal_alternative_win[i])
3977 /* Operands that match previous ones have already been handled. */
3978 if (goal_alternative_matches[i] >= 0)
3980 /* Handle an operand with a nonoffsettable address
3981 appearing where an offsettable address will do
3982 by reloading the address into a base register.
3984 ??? We can also do this when the operand is a register and
3985 reg_equiv_mem is not offsettable, but this is a bit tricky,
3986 so we don't bother with it. It may not be worth doing. */
3987 else if (goal_alternative_matched[i] == -1
3988 && goal_alternative_offmemok[i]
3989 && MEM_P (recog_data.operand[i]))
3991 /* If the address to be reloaded is a VOIDmode constant,
3992 use the default address mode as mode of the reload register,
3993 as would have been done by find_reloads_address. */
3994 addr_space_t as = MEM_ADDR_SPACE (recog_data.operand[i]);
3995 machine_mode address_mode;
3997 address_mode = get_address_mode (recog_data.operand[i]);
3998 operand_reloadnum[i]
3999 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
4000 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
4001 base_reg_class (VOIDmode, as, MEM, SCRATCH),
4002 address_mode,
4003 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
4004 rld[operand_reloadnum[i]].inc
4005 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
4007 /* If this operand is an output, we will have made any
4008 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
4009 now we are treating part of the operand as an input, so
4010 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
4012 if (modified[i] == RELOAD_WRITE)
4014 for (j = 0; j < n_reloads; j++)
4016 if (rld[j].opnum == i)
4018 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
4019 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
4020 else if (rld[j].when_needed
4021 == RELOAD_FOR_OUTADDR_ADDRESS)
4022 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
4027 else if (goal_alternative_matched[i] == -1)
4029 operand_reloadnum[i]
4030 = push_reload ((modified[i] != RELOAD_WRITE
4031 ? recog_data.operand[i] : 0),
4032 (modified[i] != RELOAD_READ
4033 ? recog_data.operand[i] : 0),
4034 (modified[i] != RELOAD_WRITE
4035 ? recog_data.operand_loc[i] : 0),
4036 (modified[i] != RELOAD_READ
4037 ? recog_data.operand_loc[i] : 0),
4038 (enum reg_class) goal_alternative[i],
4039 (modified[i] == RELOAD_WRITE
4040 ? VOIDmode : operand_mode[i]),
4041 (modified[i] == RELOAD_READ
4042 ? VOIDmode : operand_mode[i]),
4043 (insn_code_number < 0 ? 0
4044 : insn_data[insn_code_number].operand[i].strict_low),
4045 0, i, operand_type[i]);
4047 /* In a matching pair of operands, one must be input only
4048 and the other must be output only.
4049 Pass the input operand as IN and the other as OUT. */
4050 else if (modified[i] == RELOAD_READ
4051 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
4053 operand_reloadnum[i]
4054 = push_reload (recog_data.operand[i],
4055 recog_data.operand[goal_alternative_matched[i]],
4056 recog_data.operand_loc[i],
4057 recog_data.operand_loc[goal_alternative_matched[i]],
4058 (enum reg_class) goal_alternative[i],
4059 operand_mode[i],
4060 operand_mode[goal_alternative_matched[i]],
4061 0, 0, i, RELOAD_OTHER);
4062 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
4064 else if (modified[i] == RELOAD_WRITE
4065 && modified[goal_alternative_matched[i]] == RELOAD_READ)
4067 operand_reloadnum[goal_alternative_matched[i]]
4068 = push_reload (recog_data.operand[goal_alternative_matched[i]],
4069 recog_data.operand[i],
4070 recog_data.operand_loc[goal_alternative_matched[i]],
4071 recog_data.operand_loc[i],
4072 (enum reg_class) goal_alternative[i],
4073 operand_mode[goal_alternative_matched[i]],
4074 operand_mode[i],
4075 0, 0, i, RELOAD_OTHER);
4076 operand_reloadnum[i] = output_reloadnum;
4078 else
4080 gcc_assert (insn_code_number < 0);
4081 error_for_asm (insn, "inconsistent operand constraints "
4082 "in an %<asm%>");
4083 /* Avoid further trouble with this insn. */
4084 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
4085 n_reloads = 0;
4086 return 0;
4089 else if (goal_alternative_matched[i] < 0
4090 && goal_alternative_matches[i] < 0
4091 && address_operand_reloaded[i] != 1
4092 && optimize)
4094 /* For each non-matching operand that's a MEM or a pseudo-register
4095 that didn't get a hard register, make an optional reload.
4096 This may get done even if the insn needs no reloads otherwise. */
4098 rtx operand = recog_data.operand[i];
4100 while (GET_CODE (operand) == SUBREG)
4101 operand = SUBREG_REG (operand);
4102 if ((MEM_P (operand)
4103 || (REG_P (operand)
4104 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4105 /* If this is only for an output, the optional reload would not
4106 actually cause us to use a register now, just note that
4107 something is stored here. */
4108 && (goal_alternative[i] != NO_REGS
4109 || modified[i] == RELOAD_WRITE)
4110 && ! no_input_reloads
4111 /* An optional output reload might allow to delete INSN later.
4112 We mustn't make in-out reloads on insns that are not permitted
4113 output reloads.
4114 If this is an asm, we can't delete it; we must not even call
4115 push_reload for an optional output reload in this case,
4116 because we can't be sure that the constraint allows a register,
4117 and push_reload verifies the constraints for asms. */
4118 && (modified[i] == RELOAD_READ
4119 || (! no_output_reloads && ! this_insn_is_asm)))
4120 operand_reloadnum[i]
4121 = push_reload ((modified[i] != RELOAD_WRITE
4122 ? recog_data.operand[i] : 0),
4123 (modified[i] != RELOAD_READ
4124 ? recog_data.operand[i] : 0),
4125 (modified[i] != RELOAD_WRITE
4126 ? recog_data.operand_loc[i] : 0),
4127 (modified[i] != RELOAD_READ
4128 ? recog_data.operand_loc[i] : 0),
4129 (enum reg_class) goal_alternative[i],
4130 (modified[i] == RELOAD_WRITE
4131 ? VOIDmode : operand_mode[i]),
4132 (modified[i] == RELOAD_READ
4133 ? VOIDmode : operand_mode[i]),
4134 (insn_code_number < 0 ? 0
4135 : insn_data[insn_code_number].operand[i].strict_low),
4136 1, i, operand_type[i]);
4137 /* If a memory reference remains (either as a MEM or a pseudo that
4138 did not get a hard register), yet we can't make an optional
4139 reload, check if this is actually a pseudo register reference;
4140 we then need to emit a USE and/or a CLOBBER so that reload
4141 inheritance will do the right thing. */
4142 else if (replace
4143 && (MEM_P (operand)
4144 || (REG_P (operand)
4145 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4146 && reg_renumber [REGNO (operand)] < 0)))
4148 operand = *recog_data.operand_loc[i];
4150 while (GET_CODE (operand) == SUBREG)
4151 operand = SUBREG_REG (operand);
4152 if (REG_P (operand))
4154 if (modified[i] != RELOAD_WRITE)
4155 /* We mark the USE with QImode so that we recognize
4156 it as one that can be safely deleted at the end
4157 of reload. */
4158 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4159 insn), QImode);
4160 if (modified[i] != RELOAD_READ)
4161 emit_insn_after (gen_clobber (operand), insn);
4165 else if (goal_alternative_matches[i] >= 0
4166 && goal_alternative_win[goal_alternative_matches[i]]
4167 && modified[i] == RELOAD_READ
4168 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4169 && ! no_input_reloads && ! no_output_reloads
4170 && optimize)
4172 /* Similarly, make an optional reload for a pair of matching
4173 objects that are in MEM or a pseudo that didn't get a hard reg. */
4175 rtx operand = recog_data.operand[i];
4177 while (GET_CODE (operand) == SUBREG)
4178 operand = SUBREG_REG (operand);
4179 if ((MEM_P (operand)
4180 || (REG_P (operand)
4181 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4182 && (goal_alternative[goal_alternative_matches[i]] != NO_REGS))
4183 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4184 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4185 recog_data.operand[i],
4186 recog_data.operand_loc[goal_alternative_matches[i]],
4187 recog_data.operand_loc[i],
4188 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4189 operand_mode[goal_alternative_matches[i]],
4190 operand_mode[i],
4191 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4194 /* Perform whatever substitutions on the operands we are supposed
4195 to make due to commutativity or replacement of registers
4196 with equivalent constants or memory slots. */
4198 for (i = 0; i < noperands; i++)
4200 /* We only do this on the last pass through reload, because it is
4201 possible for some data (like reg_equiv_address) to be changed during
4202 later passes. Moreover, we lose the opportunity to get a useful
4203 reload_{in,out}_reg when we do these replacements. */
4205 if (replace)
4207 rtx substitution = substed_operand[i];
4209 *recog_data.operand_loc[i] = substitution;
4211 /* If we're replacing an operand with a LABEL_REF, we need to
4212 make sure that there's a REG_LABEL_OPERAND note attached to
4213 this instruction. */
4214 if (GET_CODE (substitution) == LABEL_REF
4215 && !find_reg_note (insn, REG_LABEL_OPERAND,
4216 LABEL_REF_LABEL (substitution))
4217 /* For a JUMP_P, if it was a branch target it must have
4218 already been recorded as such. */
4219 && (!JUMP_P (insn)
4220 || !label_is_jump_target_p (LABEL_REF_LABEL (substitution),
4221 insn)))
4223 add_reg_note (insn, REG_LABEL_OPERAND,
4224 LABEL_REF_LABEL (substitution));
4225 if (LABEL_P (LABEL_REF_LABEL (substitution)))
4226 ++LABEL_NUSES (LABEL_REF_LABEL (substitution));
4230 else
4231 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4234 /* If this insn pattern contains any MATCH_DUP's, make sure that
4235 they will be substituted if the operands they match are substituted.
4236 Also do now any substitutions we already did on the operands.
4238 Don't do this if we aren't making replacements because we might be
4239 propagating things allocated by frame pointer elimination into places
4240 it doesn't expect. */
4242 if (insn_code_number >= 0 && replace)
4243 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4245 int opno = recog_data.dup_num[i];
4246 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4247 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4250 #if 0
4251 /* This loses because reloading of prior insns can invalidate the equivalence
4252 (or at least find_equiv_reg isn't smart enough to find it any more),
4253 causing this insn to need more reload regs than it needed before.
4254 It may be too late to make the reload regs available.
4255 Now this optimization is done safely in choose_reload_regs. */
4257 /* For each reload of a reg into some other class of reg,
4258 search for an existing equivalent reg (same value now) in the right class.
4259 We can use it as long as we don't need to change its contents. */
4260 for (i = 0; i < n_reloads; i++)
4261 if (rld[i].reg_rtx == 0
4262 && rld[i].in != 0
4263 && REG_P (rld[i].in)
4264 && rld[i].out == 0)
4266 rld[i].reg_rtx
4267 = find_equiv_reg (rld[i].in, insn, rld[i].rclass, -1,
4268 static_reload_reg_p, 0, rld[i].inmode);
4269 /* Prevent generation of insn to load the value
4270 because the one we found already has the value. */
4271 if (rld[i].reg_rtx)
4272 rld[i].in = rld[i].reg_rtx;
4274 #endif
4276 /* If we detected error and replaced asm instruction by USE, forget about the
4277 reloads. */
4278 if (GET_CODE (PATTERN (insn)) == USE
4279 && CONST_INT_P (XEXP (PATTERN (insn), 0)))
4280 n_reloads = 0;
4282 /* Perhaps an output reload can be combined with another
4283 to reduce needs by one. */
4284 if (!goal_earlyclobber)
4285 combine_reloads ();
4287 /* If we have a pair of reloads for parts of an address, they are reloading
4288 the same object, the operands themselves were not reloaded, and they
4289 are for two operands that are supposed to match, merge the reloads and
4290 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4292 for (i = 0; i < n_reloads; i++)
4294 int k;
4296 for (j = i + 1; j < n_reloads; j++)
4297 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4298 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4299 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4300 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4301 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4302 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4303 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4304 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4305 && rtx_equal_p (rld[i].in, rld[j].in)
4306 && (operand_reloadnum[rld[i].opnum] < 0
4307 || rld[operand_reloadnum[rld[i].opnum]].optional)
4308 && (operand_reloadnum[rld[j].opnum] < 0
4309 || rld[operand_reloadnum[rld[j].opnum]].optional)
4310 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4311 || (goal_alternative_matches[rld[j].opnum]
4312 == rld[i].opnum)))
4314 for (k = 0; k < n_replacements; k++)
4315 if (replacements[k].what == j)
4316 replacements[k].what = i;
4318 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4319 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4320 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4321 else
4322 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4323 rld[j].in = 0;
4327 /* Scan all the reloads and update their type.
4328 If a reload is for the address of an operand and we didn't reload
4329 that operand, change the type. Similarly, change the operand number
4330 of a reload when two operands match. If a reload is optional, treat it
4331 as though the operand isn't reloaded.
4333 ??? This latter case is somewhat odd because if we do the optional
4334 reload, it means the object is hanging around. Thus we need only
4335 do the address reload if the optional reload was NOT done.
4337 Change secondary reloads to be the address type of their operand, not
4338 the normal type.
4340 If an operand's reload is now RELOAD_OTHER, change any
4341 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4342 RELOAD_FOR_OTHER_ADDRESS. */
4344 for (i = 0; i < n_reloads; i++)
4346 if (rld[i].secondary_p
4347 && rld[i].when_needed == operand_type[rld[i].opnum])
4348 rld[i].when_needed = address_type[rld[i].opnum];
4350 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4351 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4352 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4353 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4354 && (operand_reloadnum[rld[i].opnum] < 0
4355 || rld[operand_reloadnum[rld[i].opnum]].optional))
4357 /* If we have a secondary reload to go along with this reload,
4358 change its type to RELOAD_FOR_OPADDR_ADDR. */
4360 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4361 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4362 && rld[i].secondary_in_reload != -1)
4364 int secondary_in_reload = rld[i].secondary_in_reload;
4366 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4368 /* If there's a tertiary reload we have to change it also. */
4369 if (secondary_in_reload > 0
4370 && rld[secondary_in_reload].secondary_in_reload != -1)
4371 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4372 = RELOAD_FOR_OPADDR_ADDR;
4375 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4376 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4377 && rld[i].secondary_out_reload != -1)
4379 int secondary_out_reload = rld[i].secondary_out_reload;
4381 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4383 /* If there's a tertiary reload we have to change it also. */
4384 if (secondary_out_reload
4385 && rld[secondary_out_reload].secondary_out_reload != -1)
4386 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4387 = RELOAD_FOR_OPADDR_ADDR;
4390 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4391 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4392 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4393 else
4394 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4397 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4398 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4399 && operand_reloadnum[rld[i].opnum] >= 0
4400 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4401 == RELOAD_OTHER))
4402 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4404 if (goal_alternative_matches[rld[i].opnum] >= 0)
4405 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4408 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4409 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4410 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4412 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4413 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4414 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4415 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4416 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4417 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4418 This is complicated by the fact that a single operand can have more
4419 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4420 choose_reload_regs without affecting code quality, and cases that
4421 actually fail are extremely rare, so it turns out to be better to fix
4422 the problem here by not generating cases that choose_reload_regs will
4423 fail for. */
4424 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4425 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4426 a single operand.
4427 We can reduce the register pressure by exploiting that a
4428 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4429 does not conflict with any of them, if it is only used for the first of
4430 the RELOAD_FOR_X_ADDRESS reloads. */
4432 int first_op_addr_num = -2;
4433 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4434 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4435 int need_change = 0;
4436 /* We use last_op_addr_reload and the contents of the above arrays
4437 first as flags - -2 means no instance encountered, -1 means exactly
4438 one instance encountered.
4439 If more than one instance has been encountered, we store the reload
4440 number of the first reload of the kind in question; reload numbers
4441 are known to be non-negative. */
4442 for (i = 0; i < noperands; i++)
4443 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4444 for (i = n_reloads - 1; i >= 0; i--)
4446 switch (rld[i].when_needed)
4448 case RELOAD_FOR_OPERAND_ADDRESS:
4449 if (++first_op_addr_num >= 0)
4451 first_op_addr_num = i;
4452 need_change = 1;
4454 break;
4455 case RELOAD_FOR_INPUT_ADDRESS:
4456 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4458 first_inpaddr_num[rld[i].opnum] = i;
4459 need_change = 1;
4461 break;
4462 case RELOAD_FOR_OUTPUT_ADDRESS:
4463 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4465 first_outpaddr_num[rld[i].opnum] = i;
4466 need_change = 1;
4468 break;
4469 default:
4470 break;
4474 if (need_change)
4476 for (i = 0; i < n_reloads; i++)
4478 int first_num;
4479 enum reload_type type;
4481 switch (rld[i].when_needed)
4483 case RELOAD_FOR_OPADDR_ADDR:
4484 first_num = first_op_addr_num;
4485 type = RELOAD_FOR_OPERAND_ADDRESS;
4486 break;
4487 case RELOAD_FOR_INPADDR_ADDRESS:
4488 first_num = first_inpaddr_num[rld[i].opnum];
4489 type = RELOAD_FOR_INPUT_ADDRESS;
4490 break;
4491 case RELOAD_FOR_OUTADDR_ADDRESS:
4492 first_num = first_outpaddr_num[rld[i].opnum];
4493 type = RELOAD_FOR_OUTPUT_ADDRESS;
4494 break;
4495 default:
4496 continue;
4498 if (first_num < 0)
4499 continue;
4500 else if (i > first_num)
4501 rld[i].when_needed = type;
4502 else
4504 /* Check if the only TYPE reload that uses reload I is
4505 reload FIRST_NUM. */
4506 for (j = n_reloads - 1; j > first_num; j--)
4508 if (rld[j].when_needed == type
4509 && (rld[i].secondary_p
4510 ? rld[j].secondary_in_reload == i
4511 : reg_mentioned_p (rld[i].in, rld[j].in)))
4513 rld[i].when_needed = type;
4514 break;
4522 /* See if we have any reloads that are now allowed to be merged
4523 because we've changed when the reload is needed to
4524 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4525 check for the most common cases. */
4527 for (i = 0; i < n_reloads; i++)
4528 if (rld[i].in != 0 && rld[i].out == 0
4529 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4530 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4531 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4532 for (j = 0; j < n_reloads; j++)
4533 if (i != j && rld[j].in != 0 && rld[j].out == 0
4534 && rld[j].when_needed == rld[i].when_needed
4535 && MATCHES (rld[i].in, rld[j].in)
4536 && rld[i].rclass == rld[j].rclass
4537 && !rld[i].nocombine && !rld[j].nocombine
4538 && rld[i].reg_rtx == rld[j].reg_rtx)
4540 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4541 transfer_replacements (i, j);
4542 rld[j].in = 0;
4545 /* If we made any reloads for addresses, see if they violate a
4546 "no input reloads" requirement for this insn. But loads that we
4547 do after the insn (such as for output addresses) are fine. */
4548 if (HAVE_cc0 && no_input_reloads)
4549 for (i = 0; i < n_reloads; i++)
4550 gcc_assert (rld[i].in == 0
4551 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4552 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4554 /* Compute reload_mode and reload_nregs. */
4555 for (i = 0; i < n_reloads; i++)
4557 rld[i].mode
4558 = (rld[i].inmode == VOIDmode
4559 || (GET_MODE_SIZE (rld[i].outmode)
4560 > GET_MODE_SIZE (rld[i].inmode)))
4561 ? rld[i].outmode : rld[i].inmode;
4563 rld[i].nregs = ira_reg_class_max_nregs [rld[i].rclass][rld[i].mode];
4566 /* Special case a simple move with an input reload and a
4567 destination of a hard reg, if the hard reg is ok, use it. */
4568 for (i = 0; i < n_reloads; i++)
4569 if (rld[i].when_needed == RELOAD_FOR_INPUT
4570 && GET_CODE (PATTERN (insn)) == SET
4571 && REG_P (SET_DEST (PATTERN (insn)))
4572 && (SET_SRC (PATTERN (insn)) == rld[i].in
4573 || SET_SRC (PATTERN (insn)) == rld[i].in_reg)
4574 && !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
4576 rtx dest = SET_DEST (PATTERN (insn));
4577 unsigned int regno = REGNO (dest);
4579 if (regno < FIRST_PSEUDO_REGISTER
4580 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno)
4581 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4583 int nr = hard_regno_nregs[regno][rld[i].mode];
4584 int ok = 1, nri;
4586 for (nri = 1; nri < nr; nri ++)
4587 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno + nri))
4589 ok = 0;
4590 break;
4593 if (ok)
4594 rld[i].reg_rtx = dest;
4598 return retval;
4601 /* Return true if alternative number ALTNUM in constraint-string
4602 CONSTRAINT is guaranteed to accept a reloaded constant-pool reference.
4603 MEM gives the reference if it didn't need any reloads, otherwise it
4604 is null. */
4606 static bool
4607 alternative_allows_const_pool_ref (rtx mem ATTRIBUTE_UNUSED,
4608 const char *constraint, int altnum)
4610 int c;
4612 /* Skip alternatives before the one requested. */
4613 while (altnum > 0)
4615 while (*constraint++ != ',')
4617 altnum--;
4619 /* Scan the requested alternative for TARGET_MEM_CONSTRAINT or 'o'.
4620 If one of them is present, this alternative accepts the result of
4621 passing a constant-pool reference through find_reloads_toplev.
4623 The same is true of extra memory constraints if the address
4624 was reloaded into a register. However, the target may elect
4625 to disallow the original constant address, forcing it to be
4626 reloaded into a register instead. */
4627 for (; (c = *constraint) && c != ',' && c != '#';
4628 constraint += CONSTRAINT_LEN (c, constraint))
4630 enum constraint_num cn = lookup_constraint (constraint);
4631 if (insn_extra_memory_constraint (cn)
4632 && (mem == NULL || constraint_satisfied_p (mem, cn)))
4633 return true;
4635 return false;
4638 /* Scan X for memory references and scan the addresses for reloading.
4639 Also checks for references to "constant" regs that we want to eliminate
4640 and replaces them with the values they stand for.
4641 We may alter X destructively if it contains a reference to such.
4642 If X is just a constant reg, we return the equivalent value
4643 instead of X.
4645 IND_LEVELS says how many levels of indirect addressing this machine
4646 supports.
4648 OPNUM and TYPE identify the purpose of the reload.
4650 IS_SET_DEST is true if X is the destination of a SET, which is not
4651 appropriate to be replaced by a constant.
4653 INSN, if nonzero, is the insn in which we do the reload. It is used
4654 to determine if we may generate output reloads, and where to put USEs
4655 for pseudos that we have to replace with stack slots.
4657 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4658 result of find_reloads_address. */
4660 static rtx
4661 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4662 int ind_levels, int is_set_dest, rtx_insn *insn,
4663 int *address_reloaded)
4665 RTX_CODE code = GET_CODE (x);
4667 const char *fmt = GET_RTX_FORMAT (code);
4668 int i;
4669 int copied;
4671 if (code == REG)
4673 /* This code is duplicated for speed in find_reloads. */
4674 int regno = REGNO (x);
4675 if (reg_equiv_constant (regno) != 0 && !is_set_dest)
4676 x = reg_equiv_constant (regno);
4677 #if 0
4678 /* This creates (subreg (mem...)) which would cause an unnecessary
4679 reload of the mem. */
4680 else if (reg_equiv_mem (regno) != 0)
4681 x = reg_equiv_mem (regno);
4682 #endif
4683 else if (reg_equiv_memory_loc (regno)
4684 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
4686 rtx mem = make_memloc (x, regno);
4687 if (reg_equiv_address (regno)
4688 || ! rtx_equal_p (mem, reg_equiv_mem (regno)))
4690 /* If this is not a toplevel operand, find_reloads doesn't see
4691 this substitution. We have to emit a USE of the pseudo so
4692 that delete_output_reload can see it. */
4693 if (replace_reloads && recog_data.operand[opnum] != x)
4694 /* We mark the USE with QImode so that we recognize it
4695 as one that can be safely deleted at the end of
4696 reload. */
4697 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4698 QImode);
4699 x = mem;
4700 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4701 opnum, type, ind_levels, insn);
4702 if (!rtx_equal_p (x, mem))
4703 push_reg_equiv_alt_mem (regno, x);
4704 if (address_reloaded)
4705 *address_reloaded = i;
4708 return x;
4710 if (code == MEM)
4712 rtx tem = x;
4714 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4715 opnum, type, ind_levels, insn);
4716 if (address_reloaded)
4717 *address_reloaded = i;
4719 return tem;
4722 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4724 /* Check for SUBREG containing a REG that's equivalent to a
4725 constant. If the constant has a known value, truncate it
4726 right now. Similarly if we are extracting a single-word of a
4727 multi-word constant. If the constant is symbolic, allow it
4728 to be substituted normally. push_reload will strip the
4729 subreg later. The constant must not be VOIDmode, because we
4730 will lose the mode of the register (this should never happen
4731 because one of the cases above should handle it). */
4733 int regno = REGNO (SUBREG_REG (x));
4734 rtx tem;
4736 if (regno >= FIRST_PSEUDO_REGISTER
4737 && reg_renumber[regno] < 0
4738 && reg_equiv_constant (regno) != 0)
4740 tem =
4741 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant (regno),
4742 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4743 gcc_assert (tem);
4744 if (CONSTANT_P (tem)
4745 && !targetm.legitimate_constant_p (GET_MODE (x), tem))
4747 tem = force_const_mem (GET_MODE (x), tem);
4748 i = find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4749 &XEXP (tem, 0), opnum, type,
4750 ind_levels, insn);
4751 if (address_reloaded)
4752 *address_reloaded = i;
4754 return tem;
4757 /* If the subreg contains a reg that will be converted to a mem,
4758 attempt to convert the whole subreg to a (narrower or wider)
4759 memory reference instead. If this succeeds, we're done --
4760 otherwise fall through to check whether the inner reg still
4761 needs address reloads anyway. */
4763 if (regno >= FIRST_PSEUDO_REGISTER
4764 && reg_equiv_memory_loc (regno) != 0)
4766 tem = find_reloads_subreg_address (x, opnum, type, ind_levels,
4767 insn, address_reloaded);
4768 if (tem)
4769 return tem;
4773 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4775 if (fmt[i] == 'e')
4777 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4778 ind_levels, is_set_dest, insn,
4779 address_reloaded);
4780 /* If we have replaced a reg with it's equivalent memory loc -
4781 that can still be handled here e.g. if it's in a paradoxical
4782 subreg - we must make the change in a copy, rather than using
4783 a destructive change. This way, find_reloads can still elect
4784 not to do the change. */
4785 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4787 x = shallow_copy_rtx (x);
4788 copied = 1;
4790 XEXP (x, i) = new_part;
4793 return x;
4796 /* Return a mem ref for the memory equivalent of reg REGNO.
4797 This mem ref is not shared with anything. */
4799 static rtx
4800 make_memloc (rtx ad, int regno)
4802 /* We must rerun eliminate_regs, in case the elimination
4803 offsets have changed. */
4804 rtx tem
4805 = XEXP (eliminate_regs (reg_equiv_memory_loc (regno), VOIDmode, NULL_RTX),
4808 /* If TEM might contain a pseudo, we must copy it to avoid
4809 modifying it when we do the substitution for the reload. */
4810 if (rtx_varies_p (tem, 0))
4811 tem = copy_rtx (tem);
4813 tem = replace_equiv_address_nv (reg_equiv_memory_loc (regno), tem);
4814 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4816 /* Copy the result if it's still the same as the equivalence, to avoid
4817 modifying it when we do the substitution for the reload. */
4818 if (tem == reg_equiv_memory_loc (regno))
4819 tem = copy_rtx (tem);
4820 return tem;
4823 /* Returns true if AD could be turned into a valid memory reference
4824 to mode MODE in address space AS by reloading the part pointed to
4825 by PART into a register. */
4827 static int
4828 maybe_memory_address_addr_space_p (machine_mode mode, rtx ad,
4829 addr_space_t as, rtx *part)
4831 int retv;
4832 rtx tem = *part;
4833 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4835 *part = reg;
4836 retv = memory_address_addr_space_p (mode, ad, as);
4837 *part = tem;
4839 return retv;
4842 /* Record all reloads needed for handling memory address AD
4843 which appears in *LOC in a memory reference to mode MODE
4844 which itself is found in location *MEMREFLOC.
4845 Note that we take shortcuts assuming that no multi-reg machine mode
4846 occurs as part of an address.
4848 OPNUM and TYPE specify the purpose of this reload.
4850 IND_LEVELS says how many levels of indirect addressing this machine
4851 supports.
4853 INSN, if nonzero, is the insn in which we do the reload. It is used
4854 to determine if we may generate output reloads, and where to put USEs
4855 for pseudos that we have to replace with stack slots.
4857 Value is one if this address is reloaded or replaced as a whole; it is
4858 zero if the top level of this address was not reloaded or replaced, and
4859 it is -1 if it may or may not have been reloaded or replaced.
4861 Note that there is no verification that the address will be valid after
4862 this routine does its work. Instead, we rely on the fact that the address
4863 was valid when reload started. So we need only undo things that reload
4864 could have broken. These are wrong register types, pseudos not allocated
4865 to a hard register, and frame pointer elimination. */
4867 static int
4868 find_reloads_address (machine_mode mode, rtx *memrefloc, rtx ad,
4869 rtx *loc, int opnum, enum reload_type type,
4870 int ind_levels, rtx_insn *insn)
4872 addr_space_t as = memrefloc? MEM_ADDR_SPACE (*memrefloc)
4873 : ADDR_SPACE_GENERIC;
4874 int regno;
4875 int removed_and = 0;
4876 int op_index;
4877 rtx tem;
4879 /* If the address is a register, see if it is a legitimate address and
4880 reload if not. We first handle the cases where we need not reload
4881 or where we must reload in a non-standard way. */
4883 if (REG_P (ad))
4885 regno = REGNO (ad);
4887 if (reg_equiv_constant (regno) != 0)
4889 find_reloads_address_part (reg_equiv_constant (regno), loc,
4890 base_reg_class (mode, as, MEM, SCRATCH),
4891 GET_MODE (ad), opnum, type, ind_levels);
4892 return 1;
4895 tem = reg_equiv_memory_loc (regno);
4896 if (tem != 0)
4898 if (reg_equiv_address (regno) != 0 || num_not_at_initial_offset)
4900 tem = make_memloc (ad, regno);
4901 if (! strict_memory_address_addr_space_p (GET_MODE (tem),
4902 XEXP (tem, 0),
4903 MEM_ADDR_SPACE (tem)))
4905 rtx orig = tem;
4907 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4908 &XEXP (tem, 0), opnum,
4909 ADDR_TYPE (type), ind_levels, insn);
4910 if (!rtx_equal_p (tem, orig))
4911 push_reg_equiv_alt_mem (regno, tem);
4913 /* We can avoid a reload if the register's equivalent memory
4914 expression is valid as an indirect memory address.
4915 But not all addresses are valid in a mem used as an indirect
4916 address: only reg or reg+constant. */
4918 if (ind_levels > 0
4919 && strict_memory_address_addr_space_p (mode, tem, as)
4920 && (REG_P (XEXP (tem, 0))
4921 || (GET_CODE (XEXP (tem, 0)) == PLUS
4922 && REG_P (XEXP (XEXP (tem, 0), 0))
4923 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4925 /* TEM is not the same as what we'll be replacing the
4926 pseudo with after reload, put a USE in front of INSN
4927 in the final reload pass. */
4928 if (replace_reloads
4929 && num_not_at_initial_offset
4930 && ! rtx_equal_p (tem, reg_equiv_mem (regno)))
4932 *loc = tem;
4933 /* We mark the USE with QImode so that we
4934 recognize it as one that can be safely
4935 deleted at the end of reload. */
4936 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4937 insn), QImode);
4939 /* This doesn't really count as replacing the address
4940 as a whole, since it is still a memory access. */
4942 return 0;
4944 ad = tem;
4948 /* The only remaining case where we can avoid a reload is if this is a
4949 hard register that is valid as a base register and which is not the
4950 subject of a CLOBBER in this insn. */
4952 else if (regno < FIRST_PSEUDO_REGISTER
4953 && regno_ok_for_base_p (regno, mode, as, MEM, SCRATCH)
4954 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4955 return 0;
4957 /* If we do not have one of the cases above, we must do the reload. */
4958 push_reload (ad, NULL_RTX, loc, (rtx*) 0,
4959 base_reg_class (mode, as, MEM, SCRATCH),
4960 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4961 return 1;
4964 if (strict_memory_address_addr_space_p (mode, ad, as))
4966 /* The address appears valid, so reloads are not needed.
4967 But the address may contain an eliminable register.
4968 This can happen because a machine with indirect addressing
4969 may consider a pseudo register by itself a valid address even when
4970 it has failed to get a hard reg.
4971 So do a tree-walk to find and eliminate all such regs. */
4973 /* But first quickly dispose of a common case. */
4974 if (GET_CODE (ad) == PLUS
4975 && CONST_INT_P (XEXP (ad, 1))
4976 && REG_P (XEXP (ad, 0))
4977 && reg_equiv_constant (REGNO (XEXP (ad, 0))) == 0)
4978 return 0;
4980 subst_reg_equivs_changed = 0;
4981 *loc = subst_reg_equivs (ad, insn);
4983 if (! subst_reg_equivs_changed)
4984 return 0;
4986 /* Check result for validity after substitution. */
4987 if (strict_memory_address_addr_space_p (mode, ad, as))
4988 return 0;
4991 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4994 if (memrefloc && ADDR_SPACE_GENERIC_P (as))
4996 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4997 ind_levels, win);
4999 break;
5000 win:
5001 *memrefloc = copy_rtx (*memrefloc);
5002 XEXP (*memrefloc, 0) = ad;
5003 move_replacements (&ad, &XEXP (*memrefloc, 0));
5004 return -1;
5006 while (0);
5007 #endif
5009 /* The address is not valid. We have to figure out why. First see if
5010 we have an outer AND and remove it if so. Then analyze what's inside. */
5012 if (GET_CODE (ad) == AND)
5014 removed_and = 1;
5015 loc = &XEXP (ad, 0);
5016 ad = *loc;
5019 /* One possibility for why the address is invalid is that it is itself
5020 a MEM. This can happen when the frame pointer is being eliminated, a
5021 pseudo is not allocated to a hard register, and the offset between the
5022 frame and stack pointers is not its initial value. In that case the
5023 pseudo will have been replaced by a MEM referring to the
5024 stack pointer. */
5025 if (MEM_P (ad))
5027 /* First ensure that the address in this MEM is valid. Then, unless
5028 indirect addresses are valid, reload the MEM into a register. */
5029 tem = ad;
5030 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
5031 opnum, ADDR_TYPE (type),
5032 ind_levels == 0 ? 0 : ind_levels - 1, insn);
5034 /* If tem was changed, then we must create a new memory reference to
5035 hold it and store it back into memrefloc. */
5036 if (tem != ad && memrefloc)
5038 *memrefloc = copy_rtx (*memrefloc);
5039 copy_replacements (tem, XEXP (*memrefloc, 0));
5040 loc = &XEXP (*memrefloc, 0);
5041 if (removed_and)
5042 loc = &XEXP (*loc, 0);
5045 /* Check similar cases as for indirect addresses as above except
5046 that we can allow pseudos and a MEM since they should have been
5047 taken care of above. */
5049 if (ind_levels == 0
5050 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
5051 || MEM_P (XEXP (tem, 0))
5052 || ! (REG_P (XEXP (tem, 0))
5053 || (GET_CODE (XEXP (tem, 0)) == PLUS
5054 && REG_P (XEXP (XEXP (tem, 0), 0))
5055 && CONST_INT_P (XEXP (XEXP (tem, 0), 1)))))
5057 /* Must use TEM here, not AD, since it is the one that will
5058 have any subexpressions reloaded, if needed. */
5059 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
5060 base_reg_class (mode, as, MEM, SCRATCH), GET_MODE (tem),
5061 VOIDmode, 0,
5062 0, opnum, type);
5063 return ! removed_and;
5065 else
5066 return 0;
5069 /* If we have address of a stack slot but it's not valid because the
5070 displacement is too large, compute the sum in a register.
5071 Handle all base registers here, not just fp/ap/sp, because on some
5072 targets (namely SH) we can also get too large displacements from
5073 big-endian corrections. */
5074 else if (GET_CODE (ad) == PLUS
5075 && REG_P (XEXP (ad, 0))
5076 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
5077 && CONST_INT_P (XEXP (ad, 1))
5078 && (regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as, PLUS,
5079 CONST_INT)
5080 /* Similarly, if we were to reload the base register and the
5081 mem+offset address is still invalid, then we want to reload
5082 the whole address, not just the base register. */
5083 || ! maybe_memory_address_addr_space_p
5084 (mode, ad, as, &(XEXP (ad, 0)))))
5087 /* Unshare the MEM rtx so we can safely alter it. */
5088 if (memrefloc)
5090 *memrefloc = copy_rtx (*memrefloc);
5091 loc = &XEXP (*memrefloc, 0);
5092 if (removed_and)
5093 loc = &XEXP (*loc, 0);
5096 if (double_reg_address_ok
5097 && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as,
5098 PLUS, CONST_INT))
5100 /* Unshare the sum as well. */
5101 *loc = ad = copy_rtx (ad);
5103 /* Reload the displacement into an index reg.
5104 We assume the frame pointer or arg pointer is a base reg. */
5105 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
5106 INDEX_REG_CLASS, GET_MODE (ad), opnum,
5107 type, ind_levels);
5108 return 0;
5110 else
5112 /* If the sum of two regs is not necessarily valid,
5113 reload the sum into a base reg.
5114 That will at least work. */
5115 find_reloads_address_part (ad, loc,
5116 base_reg_class (mode, as, MEM, SCRATCH),
5117 GET_MODE (ad), opnum, type, ind_levels);
5119 return ! removed_and;
5122 /* If we have an indexed stack slot, there are three possible reasons why
5123 it might be invalid: The index might need to be reloaded, the address
5124 might have been made by frame pointer elimination and hence have a
5125 constant out of range, or both reasons might apply.
5127 We can easily check for an index needing reload, but even if that is the
5128 case, we might also have an invalid constant. To avoid making the
5129 conservative assumption and requiring two reloads, we see if this address
5130 is valid when not interpreted strictly. If it is, the only problem is
5131 that the index needs a reload and find_reloads_address_1 will take care
5132 of it.
5134 Handle all base registers here, not just fp/ap/sp, because on some
5135 targets (namely SPARC) we can also get invalid addresses from preventive
5136 subreg big-endian corrections made by find_reloads_toplev. We
5137 can also get expressions involving LO_SUM (rather than PLUS) from
5138 find_reloads_subreg_address.
5140 If we decide to do something, it must be that `double_reg_address_ok'
5141 is true. We generate a reload of the base register + constant and
5142 rework the sum so that the reload register will be added to the index.
5143 This is safe because we know the address isn't shared.
5145 We check for the base register as both the first and second operand of
5146 the innermost PLUS and/or LO_SUM. */
5148 for (op_index = 0; op_index < 2; ++op_index)
5150 rtx operand, addend;
5151 enum rtx_code inner_code;
5153 if (GET_CODE (ad) != PLUS)
5154 continue;
5156 inner_code = GET_CODE (XEXP (ad, 0));
5157 if (!(GET_CODE (ad) == PLUS
5158 && CONST_INT_P (XEXP (ad, 1))
5159 && (inner_code == PLUS || inner_code == LO_SUM)))
5160 continue;
5162 operand = XEXP (XEXP (ad, 0), op_index);
5163 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5164 continue;
5166 addend = XEXP (XEXP (ad, 0), 1 - op_index);
5168 if ((regno_ok_for_base_p (REGNO (operand), mode, as, inner_code,
5169 GET_CODE (addend))
5170 || operand == frame_pointer_rtx
5171 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
5172 && operand == hard_frame_pointer_rtx)
5173 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5174 && operand == arg_pointer_rtx)
5175 || operand == stack_pointer_rtx)
5176 && ! maybe_memory_address_addr_space_p
5177 (mode, ad, as, &XEXP (XEXP (ad, 0), 1 - op_index)))
5179 rtx offset_reg;
5180 enum reg_class cls;
5182 offset_reg = plus_constant (GET_MODE (ad), operand,
5183 INTVAL (XEXP (ad, 1)));
5185 /* Form the adjusted address. */
5186 if (GET_CODE (XEXP (ad, 0)) == PLUS)
5187 ad = gen_rtx_PLUS (GET_MODE (ad),
5188 op_index == 0 ? offset_reg : addend,
5189 op_index == 0 ? addend : offset_reg);
5190 else
5191 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5192 op_index == 0 ? offset_reg : addend,
5193 op_index == 0 ? addend : offset_reg);
5194 *loc = ad;
5196 cls = base_reg_class (mode, as, MEM, GET_CODE (addend));
5197 find_reloads_address_part (XEXP (ad, op_index),
5198 &XEXP (ad, op_index), cls,
5199 GET_MODE (ad), opnum, type, ind_levels);
5200 find_reloads_address_1 (mode, as,
5201 XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5202 GET_CODE (XEXP (ad, op_index)),
5203 &XEXP (ad, 1 - op_index), opnum,
5204 type, 0, insn);
5206 return 0;
5210 /* See if address becomes valid when an eliminable register
5211 in a sum is replaced. */
5213 tem = ad;
5214 if (GET_CODE (ad) == PLUS)
5215 tem = subst_indexed_address (ad);
5216 if (tem != ad && strict_memory_address_addr_space_p (mode, tem, as))
5218 /* Ok, we win that way. Replace any additional eliminable
5219 registers. */
5221 subst_reg_equivs_changed = 0;
5222 tem = subst_reg_equivs (tem, insn);
5224 /* Make sure that didn't make the address invalid again. */
5226 if (! subst_reg_equivs_changed
5227 || strict_memory_address_addr_space_p (mode, tem, as))
5229 *loc = tem;
5230 return 0;
5234 /* If constants aren't valid addresses, reload the constant address
5235 into a register. */
5236 if (CONSTANT_P (ad) && ! strict_memory_address_addr_space_p (mode, ad, as))
5238 machine_mode address_mode = GET_MODE (ad);
5239 if (address_mode == VOIDmode)
5240 address_mode = targetm.addr_space.address_mode (as);
5242 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5243 Unshare it so we can safely alter it. */
5244 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5245 && CONSTANT_POOL_ADDRESS_P (ad))
5247 *memrefloc = copy_rtx (*memrefloc);
5248 loc = &XEXP (*memrefloc, 0);
5249 if (removed_and)
5250 loc = &XEXP (*loc, 0);
5253 find_reloads_address_part (ad, loc,
5254 base_reg_class (mode, as, MEM, SCRATCH),
5255 address_mode, opnum, type, ind_levels);
5256 return ! removed_and;
5259 return find_reloads_address_1 (mode, as, ad, 0, MEM, SCRATCH, loc,
5260 opnum, type, ind_levels, insn);
5263 /* Find all pseudo regs appearing in AD
5264 that are eliminable in favor of equivalent values
5265 and do not have hard regs; replace them by their equivalents.
5266 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5267 front of it for pseudos that we have to replace with stack slots. */
5269 static rtx
5270 subst_reg_equivs (rtx ad, rtx_insn *insn)
5272 RTX_CODE code = GET_CODE (ad);
5273 int i;
5274 const char *fmt;
5276 switch (code)
5278 case HIGH:
5279 case CONST:
5280 CASE_CONST_ANY:
5281 case SYMBOL_REF:
5282 case LABEL_REF:
5283 case PC:
5284 case CC0:
5285 return ad;
5287 case REG:
5289 int regno = REGNO (ad);
5291 if (reg_equiv_constant (regno) != 0)
5293 subst_reg_equivs_changed = 1;
5294 return reg_equiv_constant (regno);
5296 if (reg_equiv_memory_loc (regno) && num_not_at_initial_offset)
5298 rtx mem = make_memloc (ad, regno);
5299 if (! rtx_equal_p (mem, reg_equiv_mem (regno)))
5301 subst_reg_equivs_changed = 1;
5302 /* We mark the USE with QImode so that we recognize it
5303 as one that can be safely deleted at the end of
5304 reload. */
5305 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5306 QImode);
5307 return mem;
5311 return ad;
5313 case PLUS:
5314 /* Quickly dispose of a common case. */
5315 if (XEXP (ad, 0) == frame_pointer_rtx
5316 && CONST_INT_P (XEXP (ad, 1)))
5317 return ad;
5318 break;
5320 default:
5321 break;
5324 fmt = GET_RTX_FORMAT (code);
5325 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5326 if (fmt[i] == 'e')
5327 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5328 return ad;
5331 /* Compute the sum of X and Y, making canonicalizations assumed in an
5332 address, namely: sum constant integers, surround the sum of two
5333 constants with a CONST, put the constant as the second operand, and
5334 group the constant on the outermost sum.
5336 This routine assumes both inputs are already in canonical form. */
5339 form_sum (machine_mode mode, rtx x, rtx y)
5341 rtx tem;
5343 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
5344 gcc_assert (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode);
5346 if (CONST_INT_P (x))
5347 return plus_constant (mode, y, INTVAL (x));
5348 else if (CONST_INT_P (y))
5349 return plus_constant (mode, x, INTVAL (y));
5350 else if (CONSTANT_P (x))
5351 tem = x, x = y, y = tem;
5353 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5354 return form_sum (mode, XEXP (x, 0), form_sum (mode, XEXP (x, 1), y));
5356 /* Note that if the operands of Y are specified in the opposite
5357 order in the recursive calls below, infinite recursion will occur. */
5358 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5359 return form_sum (mode, form_sum (mode, x, XEXP (y, 0)), XEXP (y, 1));
5361 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5362 constant will have been placed second. */
5363 if (CONSTANT_P (x) && CONSTANT_P (y))
5365 if (GET_CODE (x) == CONST)
5366 x = XEXP (x, 0);
5367 if (GET_CODE (y) == CONST)
5368 y = XEXP (y, 0);
5370 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5373 return gen_rtx_PLUS (mode, x, y);
5376 /* If ADDR is a sum containing a pseudo register that should be
5377 replaced with a constant (from reg_equiv_constant),
5378 return the result of doing so, and also apply the associative
5379 law so that the result is more likely to be a valid address.
5380 (But it is not guaranteed to be one.)
5382 Note that at most one register is replaced, even if more are
5383 replaceable. Also, we try to put the result into a canonical form
5384 so it is more likely to be a valid address.
5386 In all other cases, return ADDR. */
5388 static rtx
5389 subst_indexed_address (rtx addr)
5391 rtx op0 = 0, op1 = 0, op2 = 0;
5392 rtx tem;
5393 int regno;
5395 if (GET_CODE (addr) == PLUS)
5397 /* Try to find a register to replace. */
5398 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5399 if (REG_P (op0)
5400 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5401 && reg_renumber[regno] < 0
5402 && reg_equiv_constant (regno) != 0)
5403 op0 = reg_equiv_constant (regno);
5404 else if (REG_P (op1)
5405 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5406 && reg_renumber[regno] < 0
5407 && reg_equiv_constant (regno) != 0)
5408 op1 = reg_equiv_constant (regno);
5409 else if (GET_CODE (op0) == PLUS
5410 && (tem = subst_indexed_address (op0)) != op0)
5411 op0 = tem;
5412 else if (GET_CODE (op1) == PLUS
5413 && (tem = subst_indexed_address (op1)) != op1)
5414 op1 = tem;
5415 else
5416 return addr;
5418 /* Pick out up to three things to add. */
5419 if (GET_CODE (op1) == PLUS)
5420 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5421 else if (GET_CODE (op0) == PLUS)
5422 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5424 /* Compute the sum. */
5425 if (op2 != 0)
5426 op1 = form_sum (GET_MODE (addr), op1, op2);
5427 if (op1 != 0)
5428 op0 = form_sum (GET_MODE (addr), op0, op1);
5430 return op0;
5432 return addr;
5435 /* Update the REG_INC notes for an insn. It updates all REG_INC
5436 notes for the instruction which refer to REGNO the to refer
5437 to the reload number.
5439 INSN is the insn for which any REG_INC notes need updating.
5441 REGNO is the register number which has been reloaded.
5443 RELOADNUM is the reload number. */
5445 static void
5446 update_auto_inc_notes (rtx_insn *insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5447 int reloadnum ATTRIBUTE_UNUSED)
5449 if (!AUTO_INC_DEC)
5450 return;
5452 for (rtx link = REG_NOTES (insn); link; link = XEXP (link, 1))
5453 if (REG_NOTE_KIND (link) == REG_INC
5454 && (int) REGNO (XEXP (link, 0)) == regno)
5455 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5458 /* Record the pseudo registers we must reload into hard registers in a
5459 subexpression of a would-be memory address, X referring to a value
5460 in mode MODE. (This function is not called if the address we find
5461 is strictly valid.)
5463 CONTEXT = 1 means we are considering regs as index regs,
5464 = 0 means we are considering them as base regs.
5465 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5466 or an autoinc code.
5467 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5468 is the code of the index part of the address. Otherwise, pass SCRATCH
5469 for this argument.
5470 OPNUM and TYPE specify the purpose of any reloads made.
5472 IND_LEVELS says how many levels of indirect addressing are
5473 supported at this point in the address.
5475 INSN, if nonzero, is the insn in which we do the reload. It is used
5476 to determine if we may generate output reloads.
5478 We return nonzero if X, as a whole, is reloaded or replaced. */
5480 /* Note that we take shortcuts assuming that no multi-reg machine mode
5481 occurs as part of an address.
5482 Also, this is not fully machine-customizable; it works for machines
5483 such as VAXen and 68000's and 32000's, but other possible machines
5484 could have addressing modes that this does not handle right.
5485 If you add push_reload calls here, you need to make sure gen_reload
5486 handles those cases gracefully. */
5488 static int
5489 find_reloads_address_1 (machine_mode mode, addr_space_t as,
5490 rtx x, int context,
5491 enum rtx_code outer_code, enum rtx_code index_code,
5492 rtx *loc, int opnum, enum reload_type type,
5493 int ind_levels, rtx_insn *insn)
5495 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, AS, OUTER, INDEX) \
5496 ((CONTEXT) == 0 \
5497 ? regno_ok_for_base_p (REGNO, MODE, AS, OUTER, INDEX) \
5498 : REGNO_OK_FOR_INDEX_P (REGNO))
5500 enum reg_class context_reg_class;
5501 RTX_CODE code = GET_CODE (x);
5502 bool reloaded_inner_of_autoinc = false;
5504 if (context == 1)
5505 context_reg_class = INDEX_REG_CLASS;
5506 else
5507 context_reg_class = base_reg_class (mode, as, outer_code, index_code);
5509 switch (code)
5511 case PLUS:
5513 rtx orig_op0 = XEXP (x, 0);
5514 rtx orig_op1 = XEXP (x, 1);
5515 RTX_CODE code0 = GET_CODE (orig_op0);
5516 RTX_CODE code1 = GET_CODE (orig_op1);
5517 rtx op0 = orig_op0;
5518 rtx op1 = orig_op1;
5520 if (GET_CODE (op0) == SUBREG)
5522 op0 = SUBREG_REG (op0);
5523 code0 = GET_CODE (op0);
5524 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5525 op0 = gen_rtx_REG (word_mode,
5526 (REGNO (op0) +
5527 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5528 GET_MODE (SUBREG_REG (orig_op0)),
5529 SUBREG_BYTE (orig_op0),
5530 GET_MODE (orig_op0))));
5533 if (GET_CODE (op1) == SUBREG)
5535 op1 = SUBREG_REG (op1);
5536 code1 = GET_CODE (op1);
5537 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5538 /* ??? Why is this given op1's mode and above for
5539 ??? op0 SUBREGs we use word_mode? */
5540 op1 = gen_rtx_REG (GET_MODE (op1),
5541 (REGNO (op1) +
5542 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5543 GET_MODE (SUBREG_REG (orig_op1)),
5544 SUBREG_BYTE (orig_op1),
5545 GET_MODE (orig_op1))));
5547 /* Plus in the index register may be created only as a result of
5548 register rematerialization for expression like &localvar*4. Reload it.
5549 It may be possible to combine the displacement on the outer level,
5550 but it is probably not worthwhile to do so. */
5551 if (context == 1)
5553 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5554 opnum, ADDR_TYPE (type), ind_levels, insn);
5555 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5556 context_reg_class,
5557 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5558 return 1;
5561 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5562 || code0 == ZERO_EXTEND || code1 == MEM)
5564 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5565 &XEXP (x, 0), opnum, type, ind_levels,
5566 insn);
5567 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5568 &XEXP (x, 1), opnum, type, ind_levels,
5569 insn);
5572 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5573 || code1 == ZERO_EXTEND || code0 == MEM)
5575 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5576 &XEXP (x, 0), opnum, type, ind_levels,
5577 insn);
5578 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5579 &XEXP (x, 1), opnum, type, ind_levels,
5580 insn);
5583 else if (code0 == CONST_INT || code0 == CONST
5584 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5585 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5586 &XEXP (x, 1), opnum, type, ind_levels,
5587 insn);
5589 else if (code1 == CONST_INT || code1 == CONST
5590 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5591 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5592 &XEXP (x, 0), opnum, type, ind_levels,
5593 insn);
5595 else if (code0 == REG && code1 == REG)
5597 if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5598 && regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5599 return 0;
5600 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5601 && regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5602 return 0;
5603 else if (regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5604 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5605 &XEXP (x, 1), opnum, type, ind_levels,
5606 insn);
5607 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5608 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5609 &XEXP (x, 0), opnum, type, ind_levels,
5610 insn);
5611 else if (regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5612 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5613 &XEXP (x, 0), opnum, type, ind_levels,
5614 insn);
5615 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5616 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5617 &XEXP (x, 1), opnum, type, ind_levels,
5618 insn);
5619 else
5621 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5622 &XEXP (x, 0), opnum, type, ind_levels,
5623 insn);
5624 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5625 &XEXP (x, 1), opnum, type, ind_levels,
5626 insn);
5630 else if (code0 == REG)
5632 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5633 &XEXP (x, 0), opnum, type, ind_levels,
5634 insn);
5635 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5636 &XEXP (x, 1), opnum, type, ind_levels,
5637 insn);
5640 else if (code1 == REG)
5642 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5643 &XEXP (x, 1), opnum, type, ind_levels,
5644 insn);
5645 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5646 &XEXP (x, 0), opnum, type, ind_levels,
5647 insn);
5651 return 0;
5653 case POST_MODIFY:
5654 case PRE_MODIFY:
5656 rtx op0 = XEXP (x, 0);
5657 rtx op1 = XEXP (x, 1);
5658 enum rtx_code index_code;
5659 int regno;
5660 int reloadnum;
5662 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5663 return 0;
5665 /* Currently, we only support {PRE,POST}_MODIFY constructs
5666 where a base register is {inc,dec}remented by the contents
5667 of another register or by a constant value. Thus, these
5668 operands must match. */
5669 gcc_assert (op0 == XEXP (op1, 0));
5671 /* Require index register (or constant). Let's just handle the
5672 register case in the meantime... If the target allows
5673 auto-modify by a constant then we could try replacing a pseudo
5674 register with its equivalent constant where applicable.
5676 We also handle the case where the register was eliminated
5677 resulting in a PLUS subexpression.
5679 If we later decide to reload the whole PRE_MODIFY or
5680 POST_MODIFY, inc_for_reload might clobber the reload register
5681 before reading the index. The index register might therefore
5682 need to live longer than a TYPE reload normally would, so be
5683 conservative and class it as RELOAD_OTHER. */
5684 if ((REG_P (XEXP (op1, 1))
5685 && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5686 || GET_CODE (XEXP (op1, 1)) == PLUS)
5687 find_reloads_address_1 (mode, as, XEXP (op1, 1), 1, code, SCRATCH,
5688 &XEXP (op1, 1), opnum, RELOAD_OTHER,
5689 ind_levels, insn);
5691 gcc_assert (REG_P (XEXP (op1, 0)));
5693 regno = REGNO (XEXP (op1, 0));
5694 index_code = GET_CODE (XEXP (op1, 1));
5696 /* A register that is incremented cannot be constant! */
5697 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5698 || reg_equiv_constant (regno) == 0);
5700 /* Handle a register that is equivalent to a memory location
5701 which cannot be addressed directly. */
5702 if (reg_equiv_memory_loc (regno) != 0
5703 && (reg_equiv_address (regno) != 0
5704 || num_not_at_initial_offset))
5706 rtx tem = make_memloc (XEXP (x, 0), regno);
5708 if (reg_equiv_address (regno)
5709 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5711 rtx orig = tem;
5713 /* First reload the memory location's address.
5714 We can't use ADDR_TYPE (type) here, because we need to
5715 write back the value after reading it, hence we actually
5716 need two registers. */
5717 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5718 &XEXP (tem, 0), opnum,
5719 RELOAD_OTHER,
5720 ind_levels, insn);
5722 if (!rtx_equal_p (tem, orig))
5723 push_reg_equiv_alt_mem (regno, tem);
5725 /* Then reload the memory location into a base
5726 register. */
5727 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5728 &XEXP (op1, 0),
5729 base_reg_class (mode, as,
5730 code, index_code),
5731 GET_MODE (x), GET_MODE (x), 0,
5732 0, opnum, RELOAD_OTHER);
5734 update_auto_inc_notes (this_insn, regno, reloadnum);
5735 return 0;
5739 if (reg_renumber[regno] >= 0)
5740 regno = reg_renumber[regno];
5742 /* We require a base register here... */
5743 if (!regno_ok_for_base_p (regno, GET_MODE (x), as, code, index_code))
5745 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5746 &XEXP (op1, 0), &XEXP (x, 0),
5747 base_reg_class (mode, as,
5748 code, index_code),
5749 GET_MODE (x), GET_MODE (x), 0, 0,
5750 opnum, RELOAD_OTHER);
5752 update_auto_inc_notes (this_insn, regno, reloadnum);
5753 return 0;
5756 return 0;
5758 case POST_INC:
5759 case POST_DEC:
5760 case PRE_INC:
5761 case PRE_DEC:
5762 if (REG_P (XEXP (x, 0)))
5764 int regno = REGNO (XEXP (x, 0));
5765 int value = 0;
5766 rtx x_orig = x;
5768 /* A register that is incremented cannot be constant! */
5769 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5770 || reg_equiv_constant (regno) == 0);
5772 /* Handle a register that is equivalent to a memory location
5773 which cannot be addressed directly. */
5774 if (reg_equiv_memory_loc (regno) != 0
5775 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
5777 rtx tem = make_memloc (XEXP (x, 0), regno);
5778 if (reg_equiv_address (regno)
5779 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5781 rtx orig = tem;
5783 /* First reload the memory location's address.
5784 We can't use ADDR_TYPE (type) here, because we need to
5785 write back the value after reading it, hence we actually
5786 need two registers. */
5787 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5788 &XEXP (tem, 0), opnum, type,
5789 ind_levels, insn);
5790 reloaded_inner_of_autoinc = true;
5791 if (!rtx_equal_p (tem, orig))
5792 push_reg_equiv_alt_mem (regno, tem);
5793 /* Put this inside a new increment-expression. */
5794 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5795 /* Proceed to reload that, as if it contained a register. */
5799 /* If we have a hard register that is ok in this incdec context,
5800 don't make a reload. If the register isn't nice enough for
5801 autoincdec, we can reload it. But, if an autoincrement of a
5802 register that we here verified as playing nice, still outside
5803 isn't "valid", it must be that no autoincrement is "valid".
5804 If that is true and something made an autoincrement anyway,
5805 this must be a special context where one is allowed.
5806 (For example, a "push" instruction.)
5807 We can't improve this address, so leave it alone. */
5809 /* Otherwise, reload the autoincrement into a suitable hard reg
5810 and record how much to increment by. */
5812 if (reg_renumber[regno] >= 0)
5813 regno = reg_renumber[regno];
5814 if (regno >= FIRST_PSEUDO_REGISTER
5815 || !REG_OK_FOR_CONTEXT (context, regno, mode, as, code,
5816 index_code))
5818 int reloadnum;
5820 /* If we can output the register afterwards, do so, this
5821 saves the extra update.
5822 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5823 CALL_INSN - and it does not set CC0.
5824 But don't do this if we cannot directly address the
5825 memory location, since this will make it harder to
5826 reuse address reloads, and increases register pressure.
5827 Also don't do this if we can probably update x directly. */
5828 rtx equiv = (MEM_P (XEXP (x, 0))
5829 ? XEXP (x, 0)
5830 : reg_equiv_mem (regno));
5831 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
5832 if (insn && NONJUMP_INSN_P (insn) && equiv
5833 && memory_operand (equiv, GET_MODE (equiv))
5834 #if HAVE_cc0
5835 && ! sets_cc0_p (PATTERN (insn))
5836 #endif
5837 && ! (icode != CODE_FOR_nothing
5838 && insn_operand_matches (icode, 0, equiv)
5839 && insn_operand_matches (icode, 1, equiv))
5840 /* Using RELOAD_OTHER means we emit this and the reload we
5841 made earlier in the wrong order. */
5842 && !reloaded_inner_of_autoinc)
5844 /* We use the original pseudo for loc, so that
5845 emit_reload_insns() knows which pseudo this
5846 reload refers to and updates the pseudo rtx, not
5847 its equivalent memory location, as well as the
5848 corresponding entry in reg_last_reload_reg. */
5849 loc = &XEXP (x_orig, 0);
5850 x = XEXP (x, 0);
5851 reloadnum
5852 = push_reload (x, x, loc, loc,
5853 context_reg_class,
5854 GET_MODE (x), GET_MODE (x), 0, 0,
5855 opnum, RELOAD_OTHER);
5857 else
5859 reloadnum
5860 = push_reload (x, x, loc, (rtx*) 0,
5861 context_reg_class,
5862 GET_MODE (x), GET_MODE (x), 0, 0,
5863 opnum, type);
5864 rld[reloadnum].inc
5865 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5867 value = 1;
5870 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5871 reloadnum);
5873 return value;
5875 return 0;
5877 case TRUNCATE:
5878 case SIGN_EXTEND:
5879 case ZERO_EXTEND:
5880 /* Look for parts to reload in the inner expression and reload them
5881 too, in addition to this operation. Reloading all inner parts in
5882 addition to this one shouldn't be necessary, but at this point,
5883 we don't know if we can possibly omit any part that *can* be
5884 reloaded. Targets that are better off reloading just either part
5885 (or perhaps even a different part of an outer expression), should
5886 define LEGITIMIZE_RELOAD_ADDRESS. */
5887 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), as, XEXP (x, 0),
5888 context, code, SCRATCH, &XEXP (x, 0), opnum,
5889 type, ind_levels, insn);
5890 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5891 context_reg_class,
5892 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5893 return 1;
5895 case MEM:
5896 /* This is probably the result of a substitution, by eliminate_regs, of
5897 an equivalent address for a pseudo that was not allocated to a hard
5898 register. Verify that the specified address is valid and reload it
5899 into a register.
5901 Since we know we are going to reload this item, don't decrement for
5902 the indirection level.
5904 Note that this is actually conservative: it would be slightly more
5905 efficient to use the value of SPILL_INDIRECT_LEVELS from
5906 reload1.c here. */
5908 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5909 opnum, ADDR_TYPE (type), ind_levels, insn);
5910 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5911 context_reg_class,
5912 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5913 return 1;
5915 case REG:
5917 int regno = REGNO (x);
5919 if (reg_equiv_constant (regno) != 0)
5921 find_reloads_address_part (reg_equiv_constant (regno), loc,
5922 context_reg_class,
5923 GET_MODE (x), opnum, type, ind_levels);
5924 return 1;
5927 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5928 that feeds this insn. */
5929 if (reg_equiv_mem (regno) != 0)
5931 push_reload (reg_equiv_mem (regno), NULL_RTX, loc, (rtx*) 0,
5932 context_reg_class,
5933 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5934 return 1;
5936 #endif
5938 if (reg_equiv_memory_loc (regno)
5939 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
5941 rtx tem = make_memloc (x, regno);
5942 if (reg_equiv_address (regno) != 0
5943 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5945 x = tem;
5946 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5947 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5948 ind_levels, insn);
5949 if (!rtx_equal_p (x, tem))
5950 push_reg_equiv_alt_mem (regno, x);
5954 if (reg_renumber[regno] >= 0)
5955 regno = reg_renumber[regno];
5957 if (regno >= FIRST_PSEUDO_REGISTER
5958 || !REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
5959 index_code))
5961 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5962 context_reg_class,
5963 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5964 return 1;
5967 /* If a register appearing in an address is the subject of a CLOBBER
5968 in this insn, reload it into some other register to be safe.
5969 The CLOBBER is supposed to make the register unavailable
5970 from before this insn to after it. */
5971 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5973 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5974 context_reg_class,
5975 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5976 return 1;
5979 return 0;
5981 case SUBREG:
5982 if (REG_P (SUBREG_REG (x)))
5984 /* If this is a SUBREG of a hard register and the resulting register
5985 is of the wrong class, reload the whole SUBREG. This avoids
5986 needless copies if SUBREG_REG is multi-word. */
5987 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5989 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5991 if (!REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
5992 index_code))
5994 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5995 context_reg_class,
5996 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5997 return 1;
6000 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
6001 is larger than the class size, then reload the whole SUBREG. */
6002 else
6004 enum reg_class rclass = context_reg_class;
6005 if (ira_reg_class_max_nregs [rclass][GET_MODE (SUBREG_REG (x))]
6006 > reg_class_size[(int) rclass])
6008 /* If the inner register will be replaced by a memory
6009 reference, we can do this only if we can replace the
6010 whole subreg by a (narrower) memory reference. If
6011 this is not possible, fall through and reload just
6012 the inner register (including address reloads). */
6013 if (reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
6015 rtx tem = find_reloads_subreg_address (x, opnum,
6016 ADDR_TYPE (type),
6017 ind_levels, insn,
6018 NULL);
6019 if (tem)
6021 push_reload (tem, NULL_RTX, loc, (rtx*) 0, rclass,
6022 GET_MODE (tem), VOIDmode, 0, 0,
6023 opnum, type);
6024 return 1;
6027 else
6029 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6030 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6031 return 1;
6036 break;
6038 default:
6039 break;
6043 const char *fmt = GET_RTX_FORMAT (code);
6044 int i;
6046 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6048 if (fmt[i] == 'e')
6049 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
6050 we get here. */
6051 find_reloads_address_1 (mode, as, XEXP (x, i), context,
6052 code, SCRATCH, &XEXP (x, i),
6053 opnum, type, ind_levels, insn);
6057 #undef REG_OK_FOR_CONTEXT
6058 return 0;
6061 /* X, which is found at *LOC, is a part of an address that needs to be
6062 reloaded into a register of class RCLASS. If X is a constant, or if
6063 X is a PLUS that contains a constant, check that the constant is a
6064 legitimate operand and that we are supposed to be able to load
6065 it into the register.
6067 If not, force the constant into memory and reload the MEM instead.
6069 MODE is the mode to use, in case X is an integer constant.
6071 OPNUM and TYPE describe the purpose of any reloads made.
6073 IND_LEVELS says how many levels of indirect addressing this machine
6074 supports. */
6076 static void
6077 find_reloads_address_part (rtx x, rtx *loc, enum reg_class rclass,
6078 machine_mode mode, int opnum,
6079 enum reload_type type, int ind_levels)
6081 if (CONSTANT_P (x)
6082 && (!targetm.legitimate_constant_p (mode, x)
6083 || targetm.preferred_reload_class (x, rclass) == NO_REGS))
6085 x = force_const_mem (mode, x);
6086 find_reloads_address (mode, &x, XEXP (x, 0), &XEXP (x, 0),
6087 opnum, type, ind_levels, 0);
6090 else if (GET_CODE (x) == PLUS
6091 && CONSTANT_P (XEXP (x, 1))
6092 && (!targetm.legitimate_constant_p (GET_MODE (x), XEXP (x, 1))
6093 || targetm.preferred_reload_class (XEXP (x, 1), rclass)
6094 == NO_REGS))
6096 rtx tem;
6098 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
6099 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
6100 find_reloads_address (mode, &XEXP (x, 1), XEXP (tem, 0), &XEXP (tem, 0),
6101 opnum, type, ind_levels, 0);
6104 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6105 mode, VOIDmode, 0, 0, opnum, type);
6108 /* X, a subreg of a pseudo, is a part of an address that needs to be
6109 reloaded, and the pseusdo is equivalent to a memory location.
6111 Attempt to replace the whole subreg by a (possibly narrower or wider)
6112 memory reference. If this is possible, return this new memory
6113 reference, and push all required address reloads. Otherwise,
6114 return NULL.
6116 OPNUM and TYPE identify the purpose of the reload.
6118 IND_LEVELS says how many levels of indirect addressing are
6119 supported at this point in the address.
6121 INSN, if nonzero, is the insn in which we do the reload. It is used
6122 to determine where to put USEs for pseudos that we have to replace with
6123 stack slots. */
6125 static rtx
6126 find_reloads_subreg_address (rtx x, int opnum, enum reload_type type,
6127 int ind_levels, rtx_insn *insn,
6128 int *address_reloaded)
6130 machine_mode outer_mode = GET_MODE (x);
6131 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
6132 int regno = REGNO (SUBREG_REG (x));
6133 int reloaded = 0;
6134 rtx tem, orig;
6135 int offset;
6137 gcc_assert (reg_equiv_memory_loc (regno) != 0);
6139 /* We cannot replace the subreg with a modified memory reference if:
6141 - we have a paradoxical subreg that implicitly acts as a zero or
6142 sign extension operation due to LOAD_EXTEND_OP;
6144 - we have a subreg that is implicitly supposed to act on the full
6145 register due to WORD_REGISTER_OPERATIONS (see also eliminate_regs);
6147 - the address of the equivalent memory location is mode-dependent; or
6149 - we have a paradoxical subreg and the resulting memory is not
6150 sufficiently aligned to allow access in the wider mode.
6152 In addition, we choose not to perform the replacement for *any*
6153 paradoxical subreg, even if it were possible in principle. This
6154 is to avoid generating wider memory references than necessary.
6156 This corresponds to how previous versions of reload used to handle
6157 paradoxical subregs where no address reload was required. */
6159 if (paradoxical_subreg_p (x))
6160 return NULL;
6162 if (WORD_REGISTER_OPERATIONS
6163 && GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode)
6164 && ((GET_MODE_SIZE (outer_mode) - 1) / UNITS_PER_WORD
6165 == (GET_MODE_SIZE (inner_mode) - 1) / UNITS_PER_WORD))
6166 return NULL;
6168 /* Since we don't attempt to handle paradoxical subregs, we can just
6169 call into simplify_subreg, which will handle all remaining checks
6170 for us. */
6171 orig = make_memloc (SUBREG_REG (x), regno);
6172 offset = SUBREG_BYTE (x);
6173 tem = simplify_subreg (outer_mode, orig, inner_mode, offset);
6174 if (!tem || !MEM_P (tem))
6175 return NULL;
6177 /* Now push all required address reloads, if any. */
6178 reloaded = find_reloads_address (GET_MODE (tem), &tem,
6179 XEXP (tem, 0), &XEXP (tem, 0),
6180 opnum, type, ind_levels, insn);
6181 /* ??? Do we need to handle nonzero offsets somehow? */
6182 if (!offset && !rtx_equal_p (tem, orig))
6183 push_reg_equiv_alt_mem (regno, tem);
6185 /* For some processors an address may be valid in the original mode but
6186 not in a smaller mode. For example, ARM accepts a scaled index register
6187 in SImode but not in HImode. Note that this is only a problem if the
6188 address in reg_equiv_mem is already invalid in the new mode; other
6189 cases would be fixed by find_reloads_address as usual.
6191 ??? We attempt to handle such cases here by doing an additional reload
6192 of the full address after the usual processing by find_reloads_address.
6193 Note that this may not work in the general case, but it seems to cover
6194 the cases where this situation currently occurs. A more general fix
6195 might be to reload the *value* instead of the address, but this would
6196 not be expected by the callers of this routine as-is.
6198 If find_reloads_address already completed replaced the address, there
6199 is nothing further to do. */
6200 if (reloaded == 0
6201 && reg_equiv_mem (regno) != 0
6202 && !strict_memory_address_addr_space_p
6203 (GET_MODE (x), XEXP (reg_equiv_mem (regno), 0),
6204 MEM_ADDR_SPACE (reg_equiv_mem (regno))))
6206 push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6207 base_reg_class (GET_MODE (tem), MEM_ADDR_SPACE (tem),
6208 MEM, SCRATCH),
6209 GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0, opnum, type);
6210 reloaded = 1;
6213 /* If this is not a toplevel operand, find_reloads doesn't see this
6214 substitution. We have to emit a USE of the pseudo so that
6215 delete_output_reload can see it. */
6216 if (replace_reloads && recog_data.operand[opnum] != x)
6217 /* We mark the USE with QImode so that we recognize it as one that
6218 can be safely deleted at the end of reload. */
6219 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, SUBREG_REG (x)), insn),
6220 QImode);
6222 if (address_reloaded)
6223 *address_reloaded = reloaded;
6225 return tem;
6228 /* Substitute into the current INSN the registers into which we have reloaded
6229 the things that need reloading. The array `replacements'
6230 contains the locations of all pointers that must be changed
6231 and says what to replace them with.
6233 Return the rtx that X translates into; usually X, but modified. */
6235 void
6236 subst_reloads (rtx_insn *insn)
6238 int i;
6240 for (i = 0; i < n_replacements; i++)
6242 struct replacement *r = &replacements[i];
6243 rtx reloadreg = rld[r->what].reg_rtx;
6244 if (reloadreg)
6246 #ifdef DEBUG_RELOAD
6247 /* This checking takes a very long time on some platforms
6248 causing the gcc.c-torture/compile/limits-fnargs.c test
6249 to time out during testing. See PR 31850.
6251 Internal consistency test. Check that we don't modify
6252 anything in the equivalence arrays. Whenever something from
6253 those arrays needs to be reloaded, it must be unshared before
6254 being substituted into; the equivalence must not be modified.
6255 Otherwise, if the equivalence is used after that, it will
6256 have been modified, and the thing substituted (probably a
6257 register) is likely overwritten and not a usable equivalence. */
6258 int check_regno;
6260 for (check_regno = 0; check_regno < max_regno; check_regno++)
6262 #define CHECK_MODF(ARRAY) \
6263 gcc_assert (!(*reg_equivs)[check_regno].ARRAY \
6264 || !loc_mentioned_in_p (r->where, \
6265 (*reg_equivs)[check_regno].ARRAY))
6267 CHECK_MODF (constant);
6268 CHECK_MODF (memory_loc);
6269 CHECK_MODF (address);
6270 CHECK_MODF (mem);
6271 #undef CHECK_MODF
6273 #endif /* DEBUG_RELOAD */
6275 /* If we're replacing a LABEL_REF with a register, there must
6276 already be an indication (to e.g. flow) which label this
6277 register refers to. */
6278 gcc_assert (GET_CODE (*r->where) != LABEL_REF
6279 || !JUMP_P (insn)
6280 || find_reg_note (insn,
6281 REG_LABEL_OPERAND,
6282 XEXP (*r->where, 0))
6283 || label_is_jump_target_p (XEXP (*r->where, 0), insn));
6285 /* Encapsulate RELOADREG so its machine mode matches what
6286 used to be there. Note that gen_lowpart_common will
6287 do the wrong thing if RELOADREG is multi-word. RELOADREG
6288 will always be a REG here. */
6289 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6290 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6292 *r->where = reloadreg;
6294 /* If reload got no reg and isn't optional, something's wrong. */
6295 else
6296 gcc_assert (rld[r->what].optional);
6300 /* Make a copy of any replacements being done into X and move those
6301 copies to locations in Y, a copy of X. */
6303 void
6304 copy_replacements (rtx x, rtx y)
6306 copy_replacements_1 (&x, &y, n_replacements);
6309 static void
6310 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6312 int i, j;
6313 rtx x, y;
6314 struct replacement *r;
6315 enum rtx_code code;
6316 const char *fmt;
6318 for (j = 0; j < orig_replacements; j++)
6319 if (replacements[j].where == px)
6321 r = &replacements[n_replacements++];
6322 r->where = py;
6323 r->what = replacements[j].what;
6324 r->mode = replacements[j].mode;
6327 x = *px;
6328 y = *py;
6329 code = GET_CODE (x);
6330 fmt = GET_RTX_FORMAT (code);
6332 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6334 if (fmt[i] == 'e')
6335 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6336 else if (fmt[i] == 'E')
6337 for (j = XVECLEN (x, i); --j >= 0; )
6338 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6339 orig_replacements);
6343 /* Change any replacements being done to *X to be done to *Y. */
6345 void
6346 move_replacements (rtx *x, rtx *y)
6348 int i;
6350 for (i = 0; i < n_replacements; i++)
6351 if (replacements[i].where == x)
6352 replacements[i].where = y;
6355 /* If LOC was scheduled to be replaced by something, return the replacement.
6356 Otherwise, return *LOC. */
6359 find_replacement (rtx *loc)
6361 struct replacement *r;
6363 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6365 rtx reloadreg = rld[r->what].reg_rtx;
6367 if (reloadreg && r->where == loc)
6369 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6370 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6372 return reloadreg;
6374 else if (reloadreg && GET_CODE (*loc) == SUBREG
6375 && r->where == &SUBREG_REG (*loc))
6377 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6378 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6380 return simplify_gen_subreg (GET_MODE (*loc), reloadreg,
6381 GET_MODE (SUBREG_REG (*loc)),
6382 SUBREG_BYTE (*loc));
6386 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6387 what's inside and make a new rtl if so. */
6388 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6389 || GET_CODE (*loc) == MULT)
6391 rtx x = find_replacement (&XEXP (*loc, 0));
6392 rtx y = find_replacement (&XEXP (*loc, 1));
6394 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6395 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6398 return *loc;
6401 /* Return nonzero if register in range [REGNO, ENDREGNO)
6402 appears either explicitly or implicitly in X
6403 other than being stored into (except for earlyclobber operands).
6405 References contained within the substructure at LOC do not count.
6406 LOC may be zero, meaning don't ignore anything.
6408 This is similar to refers_to_regno_p in rtlanal.c except that we
6409 look at equivalences for pseudos that didn't get hard registers. */
6411 static int
6412 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6413 rtx x, rtx *loc)
6415 int i;
6416 unsigned int r;
6417 RTX_CODE code;
6418 const char *fmt;
6420 if (x == 0)
6421 return 0;
6423 repeat:
6424 code = GET_CODE (x);
6426 switch (code)
6428 case REG:
6429 r = REGNO (x);
6431 /* If this is a pseudo, a hard register must not have been allocated.
6432 X must therefore either be a constant or be in memory. */
6433 if (r >= FIRST_PSEUDO_REGISTER)
6435 if (reg_equiv_memory_loc (r))
6436 return refers_to_regno_for_reload_p (regno, endregno,
6437 reg_equiv_memory_loc (r),
6438 (rtx*) 0);
6440 gcc_assert (reg_equiv_constant (r) || reg_equiv_invariant (r));
6441 return 0;
6444 return (endregno > r
6445 && regno < r + (r < FIRST_PSEUDO_REGISTER
6446 ? hard_regno_nregs[r][GET_MODE (x)]
6447 : 1));
6449 case SUBREG:
6450 /* If this is a SUBREG of a hard reg, we can see exactly which
6451 registers are being modified. Otherwise, handle normally. */
6452 if (REG_P (SUBREG_REG (x))
6453 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6455 unsigned int inner_regno = subreg_regno (x);
6456 unsigned int inner_endregno
6457 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6458 ? subreg_nregs (x) : 1);
6460 return endregno > inner_regno && regno < inner_endregno;
6462 break;
6464 case CLOBBER:
6465 case SET:
6466 if (&SET_DEST (x) != loc
6467 /* Note setting a SUBREG counts as referring to the REG it is in for
6468 a pseudo but not for hard registers since we can
6469 treat each word individually. */
6470 && ((GET_CODE (SET_DEST (x)) == SUBREG
6471 && loc != &SUBREG_REG (SET_DEST (x))
6472 && REG_P (SUBREG_REG (SET_DEST (x)))
6473 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6474 && refers_to_regno_for_reload_p (regno, endregno,
6475 SUBREG_REG (SET_DEST (x)),
6476 loc))
6477 /* If the output is an earlyclobber operand, this is
6478 a conflict. */
6479 || ((!REG_P (SET_DEST (x))
6480 || earlyclobber_operand_p (SET_DEST (x)))
6481 && refers_to_regno_for_reload_p (regno, endregno,
6482 SET_DEST (x), loc))))
6483 return 1;
6485 if (code == CLOBBER || loc == &SET_SRC (x))
6486 return 0;
6487 x = SET_SRC (x);
6488 goto repeat;
6490 default:
6491 break;
6494 /* X does not match, so try its subexpressions. */
6496 fmt = GET_RTX_FORMAT (code);
6497 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6499 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6501 if (i == 0)
6503 x = XEXP (x, 0);
6504 goto repeat;
6506 else
6507 if (refers_to_regno_for_reload_p (regno, endregno,
6508 XEXP (x, i), loc))
6509 return 1;
6511 else if (fmt[i] == 'E')
6513 int j;
6514 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6515 if (loc != &XVECEXP (x, i, j)
6516 && refers_to_regno_for_reload_p (regno, endregno,
6517 XVECEXP (x, i, j), loc))
6518 return 1;
6521 return 0;
6524 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6525 we check if any register number in X conflicts with the relevant register
6526 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6527 contains a MEM (we don't bother checking for memory addresses that can't
6528 conflict because we expect this to be a rare case.
6530 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6531 that we look at equivalences for pseudos that didn't get hard registers. */
6534 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6536 int regno, endregno;
6538 /* Overly conservative. */
6539 if (GET_CODE (x) == STRICT_LOW_PART
6540 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6541 x = XEXP (x, 0);
6543 /* If either argument is a constant, then modifying X can not affect IN. */
6544 if (CONSTANT_P (x) || CONSTANT_P (in))
6545 return 0;
6546 else if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
6547 return refers_to_mem_for_reload_p (in);
6548 else if (GET_CODE (x) == SUBREG)
6550 regno = REGNO (SUBREG_REG (x));
6551 if (regno < FIRST_PSEUDO_REGISTER)
6552 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6553 GET_MODE (SUBREG_REG (x)),
6554 SUBREG_BYTE (x),
6555 GET_MODE (x));
6556 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6557 ? subreg_nregs (x) : 1);
6559 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6561 else if (REG_P (x))
6563 regno = REGNO (x);
6565 /* If this is a pseudo, it must not have been assigned a hard register.
6566 Therefore, it must either be in memory or be a constant. */
6568 if (regno >= FIRST_PSEUDO_REGISTER)
6570 if (reg_equiv_memory_loc (regno))
6571 return refers_to_mem_for_reload_p (in);
6572 gcc_assert (reg_equiv_constant (regno));
6573 return 0;
6576 endregno = END_REGNO (x);
6578 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6580 else if (MEM_P (x))
6581 return refers_to_mem_for_reload_p (in);
6582 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6583 || GET_CODE (x) == CC0)
6584 return reg_mentioned_p (x, in);
6585 else
6587 gcc_assert (GET_CODE (x) == PLUS);
6589 /* We actually want to know if X is mentioned somewhere inside IN.
6590 We must not say that (plus (sp) (const_int 124)) is in
6591 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6592 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6593 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6594 while (MEM_P (in))
6595 in = XEXP (in, 0);
6596 if (REG_P (in))
6597 return 0;
6598 else if (GET_CODE (in) == PLUS)
6599 return (rtx_equal_p (x, in)
6600 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6601 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6602 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6603 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6606 gcc_unreachable ();
6609 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6610 registers. */
6612 static int
6613 refers_to_mem_for_reload_p (rtx x)
6615 const char *fmt;
6616 int i;
6618 if (MEM_P (x))
6619 return 1;
6621 if (REG_P (x))
6622 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6623 && reg_equiv_memory_loc (REGNO (x)));
6625 fmt = GET_RTX_FORMAT (GET_CODE (x));
6626 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6627 if (fmt[i] == 'e'
6628 && (MEM_P (XEXP (x, i))
6629 || refers_to_mem_for_reload_p (XEXP (x, i))))
6630 return 1;
6632 return 0;
6635 /* Check the insns before INSN to see if there is a suitable register
6636 containing the same value as GOAL.
6637 If OTHER is -1, look for a register in class RCLASS.
6638 Otherwise, just see if register number OTHER shares GOAL's value.
6640 Return an rtx for the register found, or zero if none is found.
6642 If RELOAD_REG_P is (short *)1,
6643 we reject any hard reg that appears in reload_reg_rtx
6644 because such a hard reg is also needed coming into this insn.
6646 If RELOAD_REG_P is any other nonzero value,
6647 it is a vector indexed by hard reg number
6648 and we reject any hard reg whose element in the vector is nonnegative
6649 as well as any that appears in reload_reg_rtx.
6651 If GOAL is zero, then GOALREG is a register number; we look
6652 for an equivalent for that register.
6654 MODE is the machine mode of the value we want an equivalence for.
6655 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6657 This function is used by jump.c as well as in the reload pass.
6659 If GOAL is the sum of the stack pointer and a constant, we treat it
6660 as if it were a constant except that sp is required to be unchanging. */
6663 find_equiv_reg (rtx goal, rtx_insn *insn, enum reg_class rclass, int other,
6664 short *reload_reg_p, int goalreg, machine_mode mode)
6666 rtx_insn *p = insn;
6667 rtx goaltry, valtry, value;
6668 rtx_insn *where;
6669 rtx pat;
6670 int regno = -1;
6671 int valueno;
6672 int goal_mem = 0;
6673 int goal_const = 0;
6674 int goal_mem_addr_varies = 0;
6675 int need_stable_sp = 0;
6676 int nregs;
6677 int valuenregs;
6678 int num = 0;
6680 if (goal == 0)
6681 regno = goalreg;
6682 else if (REG_P (goal))
6683 regno = REGNO (goal);
6684 else if (MEM_P (goal))
6686 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6687 if (MEM_VOLATILE_P (goal))
6688 return 0;
6689 if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6690 return 0;
6691 /* An address with side effects must be reexecuted. */
6692 switch (code)
6694 case POST_INC:
6695 case PRE_INC:
6696 case POST_DEC:
6697 case PRE_DEC:
6698 case POST_MODIFY:
6699 case PRE_MODIFY:
6700 return 0;
6701 default:
6702 break;
6704 goal_mem = 1;
6706 else if (CONSTANT_P (goal))
6707 goal_const = 1;
6708 else if (GET_CODE (goal) == PLUS
6709 && XEXP (goal, 0) == stack_pointer_rtx
6710 && CONSTANT_P (XEXP (goal, 1)))
6711 goal_const = need_stable_sp = 1;
6712 else if (GET_CODE (goal) == PLUS
6713 && XEXP (goal, 0) == frame_pointer_rtx
6714 && CONSTANT_P (XEXP (goal, 1)))
6715 goal_const = 1;
6716 else
6717 return 0;
6719 num = 0;
6720 /* Scan insns back from INSN, looking for one that copies
6721 a value into or out of GOAL.
6722 Stop and give up if we reach a label. */
6724 while (1)
6726 p = PREV_INSN (p);
6727 if (p && DEBUG_INSN_P (p))
6728 continue;
6729 num++;
6730 if (p == 0 || LABEL_P (p)
6731 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6732 return 0;
6734 /* Don't reuse register contents from before a setjmp-type
6735 function call; on the second return (from the longjmp) it
6736 might have been clobbered by a later reuse. It doesn't
6737 seem worthwhile to actually go and see if it is actually
6738 reused even if that information would be readily available;
6739 just don't reuse it across the setjmp call. */
6740 if (CALL_P (p) && find_reg_note (p, REG_SETJMP, NULL_RTX))
6741 return 0;
6743 if (NONJUMP_INSN_P (p)
6744 /* If we don't want spill regs ... */
6745 && (! (reload_reg_p != 0
6746 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6747 /* ... then ignore insns introduced by reload; they aren't
6748 useful and can cause results in reload_as_needed to be
6749 different from what they were when calculating the need for
6750 spills. If we notice an input-reload insn here, we will
6751 reject it below, but it might hide a usable equivalent.
6752 That makes bad code. It may even fail: perhaps no reg was
6753 spilled for this insn because it was assumed we would find
6754 that equivalent. */
6755 || INSN_UID (p) < reload_first_uid))
6757 rtx tem;
6758 pat = single_set (p);
6760 /* First check for something that sets some reg equal to GOAL. */
6761 if (pat != 0
6762 && ((regno >= 0
6763 && true_regnum (SET_SRC (pat)) == regno
6764 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6766 (regno >= 0
6767 && true_regnum (SET_DEST (pat)) == regno
6768 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6770 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6771 /* When looking for stack pointer + const,
6772 make sure we don't use a stack adjust. */
6773 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6774 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6775 || (goal_mem
6776 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6777 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6778 || (goal_mem
6779 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6780 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6781 /* If we are looking for a constant,
6782 and something equivalent to that constant was copied
6783 into a reg, we can use that reg. */
6784 || (goal_const && REG_NOTES (p) != 0
6785 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6786 && ((rtx_equal_p (XEXP (tem, 0), goal)
6787 && (valueno
6788 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6789 || (REG_P (SET_DEST (pat))
6790 && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem, 0))
6791 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6792 && CONST_INT_P (goal)
6793 && 0 != (goaltry
6794 = operand_subword (XEXP (tem, 0), 0, 0,
6795 VOIDmode))
6796 && rtx_equal_p (goal, goaltry)
6797 && (valtry
6798 = operand_subword (SET_DEST (pat), 0, 0,
6799 VOIDmode))
6800 && (valueno = true_regnum (valtry)) >= 0)))
6801 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6802 NULL_RTX))
6803 && REG_P (SET_DEST (pat))
6804 && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem, 0))
6805 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6806 && CONST_INT_P (goal)
6807 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6808 VOIDmode))
6809 && rtx_equal_p (goal, goaltry)
6810 && (valtry
6811 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6812 && (valueno = true_regnum (valtry)) >= 0)))
6814 if (other >= 0)
6816 if (valueno != other)
6817 continue;
6819 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6820 continue;
6821 else if (!in_hard_reg_set_p (reg_class_contents[(int) rclass],
6822 mode, valueno))
6823 continue;
6824 value = valtry;
6825 where = p;
6826 break;
6831 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6832 (or copying VALUE into GOAL, if GOAL is also a register).
6833 Now verify that VALUE is really valid. */
6835 /* VALUENO is the register number of VALUE; a hard register. */
6837 /* Don't try to re-use something that is killed in this insn. We want
6838 to be able to trust REG_UNUSED notes. */
6839 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6840 return 0;
6842 /* If we propose to get the value from the stack pointer or if GOAL is
6843 a MEM based on the stack pointer, we need a stable SP. */
6844 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6845 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6846 goal)))
6847 need_stable_sp = 1;
6849 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6850 if (GET_MODE (value) != mode)
6851 return 0;
6853 /* Reject VALUE if it was loaded from GOAL
6854 and is also a register that appears in the address of GOAL. */
6856 if (goal_mem && value == SET_DEST (single_set (where))
6857 && refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
6858 goal, (rtx*) 0))
6859 return 0;
6861 /* Reject registers that overlap GOAL. */
6863 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6864 nregs = hard_regno_nregs[regno][mode];
6865 else
6866 nregs = 1;
6867 valuenregs = hard_regno_nregs[valueno][mode];
6869 if (!goal_mem && !goal_const
6870 && regno + nregs > valueno && regno < valueno + valuenregs)
6871 return 0;
6873 /* Reject VALUE if it is one of the regs reserved for reloads.
6874 Reload1 knows how to reuse them anyway, and it would get
6875 confused if we allocated one without its knowledge.
6876 (Now that insns introduced by reload are ignored above,
6877 this case shouldn't happen, but I'm not positive.) */
6879 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6881 int i;
6882 for (i = 0; i < valuenregs; ++i)
6883 if (reload_reg_p[valueno + i] >= 0)
6884 return 0;
6887 /* Reject VALUE if it is a register being used for an input reload
6888 even if it is not one of those reserved. */
6890 if (reload_reg_p != 0)
6892 int i;
6893 for (i = 0; i < n_reloads; i++)
6894 if (rld[i].reg_rtx != 0 && rld[i].in)
6896 int regno1 = REGNO (rld[i].reg_rtx);
6897 int nregs1 = hard_regno_nregs[regno1]
6898 [GET_MODE (rld[i].reg_rtx)];
6899 if (regno1 < valueno + valuenregs
6900 && regno1 + nregs1 > valueno)
6901 return 0;
6905 if (goal_mem)
6906 /* We must treat frame pointer as varying here,
6907 since it can vary--in a nonlocal goto as generated by expand_goto. */
6908 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6910 /* Now verify that the values of GOAL and VALUE remain unaltered
6911 until INSN is reached. */
6913 p = insn;
6914 while (1)
6916 p = PREV_INSN (p);
6917 if (p == where)
6918 return value;
6920 /* Don't trust the conversion past a function call
6921 if either of the two is in a call-clobbered register, or memory. */
6922 if (CALL_P (p))
6924 int i;
6926 if (goal_mem || need_stable_sp)
6927 return 0;
6929 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6930 for (i = 0; i < nregs; ++i)
6931 if (call_used_regs[regno + i]
6932 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
6933 return 0;
6935 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6936 for (i = 0; i < valuenregs; ++i)
6937 if (call_used_regs[valueno + i]
6938 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
6939 return 0;
6942 if (INSN_P (p))
6944 pat = PATTERN (p);
6946 /* Watch out for unspec_volatile, and volatile asms. */
6947 if (volatile_insn_p (pat))
6948 return 0;
6950 /* If this insn P stores in either GOAL or VALUE, return 0.
6951 If GOAL is a memory ref and this insn writes memory, return 0.
6952 If GOAL is a memory ref and its address is not constant,
6953 and this insn P changes a register used in GOAL, return 0. */
6955 if (GET_CODE (pat) == COND_EXEC)
6956 pat = COND_EXEC_CODE (pat);
6957 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6959 rtx dest = SET_DEST (pat);
6960 while (GET_CODE (dest) == SUBREG
6961 || GET_CODE (dest) == ZERO_EXTRACT
6962 || GET_CODE (dest) == STRICT_LOW_PART)
6963 dest = XEXP (dest, 0);
6964 if (REG_P (dest))
6966 int xregno = REGNO (dest);
6967 int xnregs;
6968 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6969 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6970 else
6971 xnregs = 1;
6972 if (xregno < regno + nregs && xregno + xnregs > regno)
6973 return 0;
6974 if (xregno < valueno + valuenregs
6975 && xregno + xnregs > valueno)
6976 return 0;
6977 if (goal_mem_addr_varies
6978 && reg_overlap_mentioned_for_reload_p (dest, goal))
6979 return 0;
6980 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6981 return 0;
6983 else if (goal_mem && MEM_P (dest)
6984 && ! push_operand (dest, GET_MODE (dest)))
6985 return 0;
6986 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6987 && reg_equiv_memory_loc (regno) != 0)
6988 return 0;
6989 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6990 return 0;
6992 else if (GET_CODE (pat) == PARALLEL)
6994 int i;
6995 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6997 rtx v1 = XVECEXP (pat, 0, i);
6998 if (GET_CODE (v1) == COND_EXEC)
6999 v1 = COND_EXEC_CODE (v1);
7000 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
7002 rtx dest = SET_DEST (v1);
7003 while (GET_CODE (dest) == SUBREG
7004 || GET_CODE (dest) == ZERO_EXTRACT
7005 || GET_CODE (dest) == STRICT_LOW_PART)
7006 dest = XEXP (dest, 0);
7007 if (REG_P (dest))
7009 int xregno = REGNO (dest);
7010 int xnregs;
7011 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7012 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7013 else
7014 xnregs = 1;
7015 if (xregno < regno + nregs
7016 && xregno + xnregs > regno)
7017 return 0;
7018 if (xregno < valueno + valuenregs
7019 && xregno + xnregs > valueno)
7020 return 0;
7021 if (goal_mem_addr_varies
7022 && reg_overlap_mentioned_for_reload_p (dest,
7023 goal))
7024 return 0;
7025 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7026 return 0;
7028 else if (goal_mem && MEM_P (dest)
7029 && ! push_operand (dest, GET_MODE (dest)))
7030 return 0;
7031 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7032 && reg_equiv_memory_loc (regno) != 0)
7033 return 0;
7034 else if (need_stable_sp
7035 && push_operand (dest, GET_MODE (dest)))
7036 return 0;
7041 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
7043 rtx link;
7045 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
7046 link = XEXP (link, 1))
7048 pat = XEXP (link, 0);
7049 if (GET_CODE (pat) == CLOBBER)
7051 rtx dest = SET_DEST (pat);
7053 if (REG_P (dest))
7055 int xregno = REGNO (dest);
7056 int xnregs
7057 = hard_regno_nregs[xregno][GET_MODE (dest)];
7059 if (xregno < regno + nregs
7060 && xregno + xnregs > regno)
7061 return 0;
7062 else if (xregno < valueno + valuenregs
7063 && xregno + xnregs > valueno)
7064 return 0;
7065 else if (goal_mem_addr_varies
7066 && reg_overlap_mentioned_for_reload_p (dest,
7067 goal))
7068 return 0;
7071 else if (goal_mem && MEM_P (dest)
7072 && ! push_operand (dest, GET_MODE (dest)))
7073 return 0;
7074 else if (need_stable_sp
7075 && push_operand (dest, GET_MODE (dest)))
7076 return 0;
7081 #if AUTO_INC_DEC
7082 /* If this insn auto-increments or auto-decrements
7083 either regno or valueno, return 0 now.
7084 If GOAL is a memory ref and its address is not constant,
7085 and this insn P increments a register used in GOAL, return 0. */
7087 rtx link;
7089 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7090 if (REG_NOTE_KIND (link) == REG_INC
7091 && REG_P (XEXP (link, 0)))
7093 int incno = REGNO (XEXP (link, 0));
7094 if (incno < regno + nregs && incno >= regno)
7095 return 0;
7096 if (incno < valueno + valuenregs && incno >= valueno)
7097 return 0;
7098 if (goal_mem_addr_varies
7099 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7100 goal))
7101 return 0;
7104 #endif
7109 /* Find a place where INCED appears in an increment or decrement operator
7110 within X, and return the amount INCED is incremented or decremented by.
7111 The value is always positive. */
7113 static int
7114 find_inc_amount (rtx x, rtx inced)
7116 enum rtx_code code = GET_CODE (x);
7117 const char *fmt;
7118 int i;
7120 if (code == MEM)
7122 rtx addr = XEXP (x, 0);
7123 if ((GET_CODE (addr) == PRE_DEC
7124 || GET_CODE (addr) == POST_DEC
7125 || GET_CODE (addr) == PRE_INC
7126 || GET_CODE (addr) == POST_INC)
7127 && XEXP (addr, 0) == inced)
7128 return GET_MODE_SIZE (GET_MODE (x));
7129 else if ((GET_CODE (addr) == PRE_MODIFY
7130 || GET_CODE (addr) == POST_MODIFY)
7131 && GET_CODE (XEXP (addr, 1)) == PLUS
7132 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7133 && XEXP (addr, 0) == inced
7134 && CONST_INT_P (XEXP (XEXP (addr, 1), 1)))
7136 i = INTVAL (XEXP (XEXP (addr, 1), 1));
7137 return i < 0 ? -i : i;
7141 fmt = GET_RTX_FORMAT (code);
7142 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7144 if (fmt[i] == 'e')
7146 int tem = find_inc_amount (XEXP (x, i), inced);
7147 if (tem != 0)
7148 return tem;
7150 if (fmt[i] == 'E')
7152 int j;
7153 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7155 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
7156 if (tem != 0)
7157 return tem;
7162 return 0;
7165 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7166 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7168 static int
7169 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7170 rtx insn)
7172 rtx link;
7174 if (!AUTO_INC_DEC)
7175 return 0;
7177 gcc_assert (insn);
7179 if (! INSN_P (insn))
7180 return 0;
7182 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7183 if (REG_NOTE_KIND (link) == REG_INC)
7185 unsigned int test = (int) REGNO (XEXP (link, 0));
7186 if (test >= regno && test < endregno)
7187 return 1;
7189 return 0;
7192 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7193 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7194 REG_INC. REGNO must refer to a hard register. */
7197 regno_clobbered_p (unsigned int regno, rtx_insn *insn, machine_mode mode,
7198 int sets)
7200 unsigned int nregs, endregno;
7202 /* regno must be a hard register. */
7203 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7205 nregs = hard_regno_nregs[regno][mode];
7206 endregno = regno + nregs;
7208 if ((GET_CODE (PATTERN (insn)) == CLOBBER
7209 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7210 && REG_P (XEXP (PATTERN (insn), 0)))
7212 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7214 return test >= regno && test < endregno;
7217 if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7218 return 1;
7220 if (GET_CODE (PATTERN (insn)) == PARALLEL)
7222 int i = XVECLEN (PATTERN (insn), 0) - 1;
7224 for (; i >= 0; i--)
7226 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7227 if ((GET_CODE (elt) == CLOBBER
7228 || (sets == 1 && GET_CODE (elt) == SET))
7229 && REG_P (XEXP (elt, 0)))
7231 unsigned int test = REGNO (XEXP (elt, 0));
7233 if (test >= regno && test < endregno)
7234 return 1;
7236 if (sets == 2
7237 && reg_inc_found_and_valid_p (regno, endregno, elt))
7238 return 1;
7242 return 0;
7245 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7247 reload_adjust_reg_for_mode (rtx reloadreg, machine_mode mode)
7249 int regno;
7251 if (GET_MODE (reloadreg) == mode)
7252 return reloadreg;
7254 regno = REGNO (reloadreg);
7256 if (REG_WORDS_BIG_ENDIAN)
7257 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7258 - (int) hard_regno_nregs[regno][mode];
7260 return gen_rtx_REG (mode, regno);
7263 static const char *const reload_when_needed_name[] =
7265 "RELOAD_FOR_INPUT",
7266 "RELOAD_FOR_OUTPUT",
7267 "RELOAD_FOR_INSN",
7268 "RELOAD_FOR_INPUT_ADDRESS",
7269 "RELOAD_FOR_INPADDR_ADDRESS",
7270 "RELOAD_FOR_OUTPUT_ADDRESS",
7271 "RELOAD_FOR_OUTADDR_ADDRESS",
7272 "RELOAD_FOR_OPERAND_ADDRESS",
7273 "RELOAD_FOR_OPADDR_ADDR",
7274 "RELOAD_OTHER",
7275 "RELOAD_FOR_OTHER_ADDRESS"
7278 /* These functions are used to print the variables set by 'find_reloads' */
7280 DEBUG_FUNCTION void
7281 debug_reload_to_stream (FILE *f)
7283 int r;
7284 const char *prefix;
7286 if (! f)
7287 f = stderr;
7288 for (r = 0; r < n_reloads; r++)
7290 fprintf (f, "Reload %d: ", r);
7292 if (rld[r].in != 0)
7294 fprintf (f, "reload_in (%s) = ",
7295 GET_MODE_NAME (rld[r].inmode));
7296 print_inline_rtx (f, rld[r].in, 24);
7297 fprintf (f, "\n\t");
7300 if (rld[r].out != 0)
7302 fprintf (f, "reload_out (%s) = ",
7303 GET_MODE_NAME (rld[r].outmode));
7304 print_inline_rtx (f, rld[r].out, 24);
7305 fprintf (f, "\n\t");
7308 fprintf (f, "%s, ", reg_class_names[(int) rld[r].rclass]);
7310 fprintf (f, "%s (opnum = %d)",
7311 reload_when_needed_name[(int) rld[r].when_needed],
7312 rld[r].opnum);
7314 if (rld[r].optional)
7315 fprintf (f, ", optional");
7317 if (rld[r].nongroup)
7318 fprintf (f, ", nongroup");
7320 if (rld[r].inc != 0)
7321 fprintf (f, ", inc by %d", rld[r].inc);
7323 if (rld[r].nocombine)
7324 fprintf (f, ", can't combine");
7326 if (rld[r].secondary_p)
7327 fprintf (f, ", secondary_reload_p");
7329 if (rld[r].in_reg != 0)
7331 fprintf (f, "\n\treload_in_reg: ");
7332 print_inline_rtx (f, rld[r].in_reg, 24);
7335 if (rld[r].out_reg != 0)
7337 fprintf (f, "\n\treload_out_reg: ");
7338 print_inline_rtx (f, rld[r].out_reg, 24);
7341 if (rld[r].reg_rtx != 0)
7343 fprintf (f, "\n\treload_reg_rtx: ");
7344 print_inline_rtx (f, rld[r].reg_rtx, 24);
7347 prefix = "\n\t";
7348 if (rld[r].secondary_in_reload != -1)
7350 fprintf (f, "%ssecondary_in_reload = %d",
7351 prefix, rld[r].secondary_in_reload);
7352 prefix = ", ";
7355 if (rld[r].secondary_out_reload != -1)
7356 fprintf (f, "%ssecondary_out_reload = %d\n",
7357 prefix, rld[r].secondary_out_reload);
7359 prefix = "\n\t";
7360 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7362 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7363 insn_data[rld[r].secondary_in_icode].name);
7364 prefix = ", ";
7367 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7368 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7369 insn_data[rld[r].secondary_out_icode].name);
7371 fprintf (f, "\n");
7375 DEBUG_FUNCTION void
7376 debug_reload (void)
7378 debug_reload_to_stream (stderr);