[PR67828] don't unswitch on default defs of non-parms
[official-gcc.git] / gcc / ira.c
blob28517c1c3bc60aa979be867f50e157737be9b591
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
31 Major IRA notions are:
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
144 IRA major passes are:
146 o Building IRA internal representation which consists of the
147 following subpasses:
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
156 * IRA creates live ranges of each allocno, calculates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
168 * IRA creates all caps (file ira-build.c).
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA can not assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloring we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
254 * After allocno assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is implemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
330 IRA uses a lot of data representing the target processors. These
331 data are initialized in file ira.c.
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
340 Literature is worth to read for better understanding the code:
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "backend.h"
370 #include "tree.h"
371 #include "rtl.h"
372 #include "df.h"
373 #include "regs.h"
374 #include "alias.h"
375 #include "tm_p.h"
376 #include "target.h"
377 #include "flags.h"
378 #include "cfgrtl.h"
379 #include "cfgbuild.h"
380 #include "cfgcleanup.h"
381 #include "insn-config.h"
382 #include "expmed.h"
383 #include "dojump.h"
384 #include "explow.h"
385 #include "calls.h"
386 #include "emit-rtl.h"
387 #include "varasm.h"
388 #include "stmt.h"
389 #include "expr.h"
390 #include "params.h"
391 #include "tree-pass.h"
392 #include "output.h"
393 #include "except.h"
394 #include "reload.h"
395 #include "diagnostic-core.h"
396 #include "cfgloop.h"
397 #include "ira.h"
398 #include "alloc-pool.h"
399 #include "ira-int.h"
400 #include "lra.h"
401 #include "dce.h"
402 #include "dbgcnt.h"
403 #include "rtl-iter.h"
404 #include "shrink-wrap.h"
406 struct target_ira default_target_ira;
407 struct target_ira_int default_target_ira_int;
408 #if SWITCHABLE_TARGET
409 struct target_ira *this_target_ira = &default_target_ira;
410 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
411 #endif
413 /* A modified value of flag `-fira-verbose' used internally. */
414 int internal_flag_ira_verbose;
416 /* Dump file of the allocator if it is not NULL. */
417 FILE *ira_dump_file;
419 /* The number of elements in the following array. */
420 int ira_spilled_reg_stack_slots_num;
422 /* The following array contains info about spilled pseudo-registers
423 stack slots used in current function so far. */
424 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
426 /* Correspondingly overall cost of the allocation, overall cost before
427 reload, cost of the allocnos assigned to hard-registers, cost of
428 the allocnos assigned to memory, cost of loads, stores and register
429 move insns generated for pseudo-register live range splitting (see
430 ira-emit.c). */
431 int64_t ira_overall_cost, overall_cost_before;
432 int64_t ira_reg_cost, ira_mem_cost;
433 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
434 int ira_move_loops_num, ira_additional_jumps_num;
436 /* All registers that can be eliminated. */
438 HARD_REG_SET eliminable_regset;
440 /* Value of max_reg_num () before IRA work start. This value helps
441 us to recognize a situation when new pseudos were created during
442 IRA work. */
443 static int max_regno_before_ira;
445 /* Temporary hard reg set used for a different calculation. */
446 static HARD_REG_SET temp_hard_regset;
448 #define last_mode_for_init_move_cost \
449 (this_target_ira_int->x_last_mode_for_init_move_cost)
452 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
453 static void
454 setup_reg_mode_hard_regset (void)
456 int i, m, hard_regno;
458 for (m = 0; m < NUM_MACHINE_MODES; m++)
459 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
461 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
462 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
463 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
464 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
465 hard_regno + i);
470 #define no_unit_alloc_regs \
471 (this_target_ira_int->x_no_unit_alloc_regs)
473 /* The function sets up the three arrays declared above. */
474 static void
475 setup_class_hard_regs (void)
477 int cl, i, hard_regno, n;
478 HARD_REG_SET processed_hard_reg_set;
480 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
481 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
483 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
484 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
485 CLEAR_HARD_REG_SET (processed_hard_reg_set);
486 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
488 ira_non_ordered_class_hard_regs[cl][i] = -1;
489 ira_class_hard_reg_index[cl][i] = -1;
491 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
493 #ifdef REG_ALLOC_ORDER
494 hard_regno = reg_alloc_order[i];
495 #else
496 hard_regno = i;
497 #endif
498 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
499 continue;
500 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
501 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
502 ira_class_hard_reg_index[cl][hard_regno] = -1;
503 else
505 ira_class_hard_reg_index[cl][hard_regno] = n;
506 ira_class_hard_regs[cl][n++] = hard_regno;
509 ira_class_hard_regs_num[cl] = n;
510 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
511 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
512 ira_non_ordered_class_hard_regs[cl][n++] = i;
513 ira_assert (ira_class_hard_regs_num[cl] == n);
517 /* Set up global variables defining info about hard registers for the
518 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
519 that we can use the hard frame pointer for the allocation. */
520 static void
521 setup_alloc_regs (bool use_hard_frame_p)
523 #ifdef ADJUST_REG_ALLOC_ORDER
524 ADJUST_REG_ALLOC_ORDER;
525 #endif
526 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
527 if (! use_hard_frame_p)
528 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
529 setup_class_hard_regs ();
534 #define alloc_reg_class_subclasses \
535 (this_target_ira_int->x_alloc_reg_class_subclasses)
537 /* Initialize the table of subclasses of each reg class. */
538 static void
539 setup_reg_subclasses (void)
541 int i, j;
542 HARD_REG_SET temp_hard_regset2;
544 for (i = 0; i < N_REG_CLASSES; i++)
545 for (j = 0; j < N_REG_CLASSES; j++)
546 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
548 for (i = 0; i < N_REG_CLASSES; i++)
550 if (i == (int) NO_REGS)
551 continue;
553 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
554 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
555 if (hard_reg_set_empty_p (temp_hard_regset))
556 continue;
557 for (j = 0; j < N_REG_CLASSES; j++)
558 if (i != j)
560 enum reg_class *p;
562 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
563 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
564 if (! hard_reg_set_subset_p (temp_hard_regset,
565 temp_hard_regset2))
566 continue;
567 p = &alloc_reg_class_subclasses[j][0];
568 while (*p != LIM_REG_CLASSES) p++;
569 *p = (enum reg_class) i;
576 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
577 static void
578 setup_class_subset_and_memory_move_costs (void)
580 int cl, cl2, mode, cost;
581 HARD_REG_SET temp_hard_regset2;
583 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
584 ira_memory_move_cost[mode][NO_REGS][0]
585 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
586 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
588 if (cl != (int) NO_REGS)
589 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
591 ira_max_memory_move_cost[mode][cl][0]
592 = ira_memory_move_cost[mode][cl][0]
593 = memory_move_cost ((machine_mode) mode,
594 (reg_class_t) cl, false);
595 ira_max_memory_move_cost[mode][cl][1]
596 = ira_memory_move_cost[mode][cl][1]
597 = memory_move_cost ((machine_mode) mode,
598 (reg_class_t) cl, true);
599 /* Costs for NO_REGS are used in cost calculation on the
600 1st pass when the preferred register classes are not
601 known yet. In this case we take the best scenario. */
602 if (ira_memory_move_cost[mode][NO_REGS][0]
603 > ira_memory_move_cost[mode][cl][0])
604 ira_max_memory_move_cost[mode][NO_REGS][0]
605 = ira_memory_move_cost[mode][NO_REGS][0]
606 = ira_memory_move_cost[mode][cl][0];
607 if (ira_memory_move_cost[mode][NO_REGS][1]
608 > ira_memory_move_cost[mode][cl][1])
609 ira_max_memory_move_cost[mode][NO_REGS][1]
610 = ira_memory_move_cost[mode][NO_REGS][1]
611 = ira_memory_move_cost[mode][cl][1];
614 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
615 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
617 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
618 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
619 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
620 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
621 ira_class_subset_p[cl][cl2]
622 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
623 if (! hard_reg_set_empty_p (temp_hard_regset2)
624 && hard_reg_set_subset_p (reg_class_contents[cl2],
625 reg_class_contents[cl]))
626 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
628 cost = ira_memory_move_cost[mode][cl2][0];
629 if (cost > ira_max_memory_move_cost[mode][cl][0])
630 ira_max_memory_move_cost[mode][cl][0] = cost;
631 cost = ira_memory_move_cost[mode][cl2][1];
632 if (cost > ira_max_memory_move_cost[mode][cl][1])
633 ira_max_memory_move_cost[mode][cl][1] = cost;
636 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
637 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
639 ira_memory_move_cost[mode][cl][0]
640 = ira_max_memory_move_cost[mode][cl][0];
641 ira_memory_move_cost[mode][cl][1]
642 = ira_max_memory_move_cost[mode][cl][1];
644 setup_reg_subclasses ();
649 /* Define the following macro if allocation through malloc if
650 preferable. */
651 #define IRA_NO_OBSTACK
653 #ifndef IRA_NO_OBSTACK
654 /* Obstack used for storing all dynamic data (except bitmaps) of the
655 IRA. */
656 static struct obstack ira_obstack;
657 #endif
659 /* Obstack used for storing all bitmaps of the IRA. */
660 static struct bitmap_obstack ira_bitmap_obstack;
662 /* Allocate memory of size LEN for IRA data. */
663 void *
664 ira_allocate (size_t len)
666 void *res;
668 #ifndef IRA_NO_OBSTACK
669 res = obstack_alloc (&ira_obstack, len);
670 #else
671 res = xmalloc (len);
672 #endif
673 return res;
676 /* Free memory ADDR allocated for IRA data. */
677 void
678 ira_free (void *addr ATTRIBUTE_UNUSED)
680 #ifndef IRA_NO_OBSTACK
681 /* do nothing */
682 #else
683 free (addr);
684 #endif
688 /* Allocate and returns bitmap for IRA. */
689 bitmap
690 ira_allocate_bitmap (void)
692 return BITMAP_ALLOC (&ira_bitmap_obstack);
695 /* Free bitmap B allocated for IRA. */
696 void
697 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
699 /* do nothing */
704 /* Output information about allocation of all allocnos (except for
705 caps) into file F. */
706 void
707 ira_print_disposition (FILE *f)
709 int i, n, max_regno;
710 ira_allocno_t a;
711 basic_block bb;
713 fprintf (f, "Disposition:");
714 max_regno = max_reg_num ();
715 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
716 for (a = ira_regno_allocno_map[i];
717 a != NULL;
718 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
720 if (n % 4 == 0)
721 fprintf (f, "\n");
722 n++;
723 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
724 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
725 fprintf (f, "b%-3d", bb->index);
726 else
727 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
728 if (ALLOCNO_HARD_REGNO (a) >= 0)
729 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
730 else
731 fprintf (f, " mem");
733 fprintf (f, "\n");
736 /* Outputs information about allocation of all allocnos into
737 stderr. */
738 void
739 ira_debug_disposition (void)
741 ira_print_disposition (stderr);
746 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
747 register class containing stack registers or NO_REGS if there are
748 no stack registers. To find this class, we iterate through all
749 register pressure classes and choose the first register pressure
750 class containing all the stack registers and having the biggest
751 size. */
752 static void
753 setup_stack_reg_pressure_class (void)
755 ira_stack_reg_pressure_class = NO_REGS;
756 #ifdef STACK_REGS
758 int i, best, size;
759 enum reg_class cl;
760 HARD_REG_SET temp_hard_regset2;
762 CLEAR_HARD_REG_SET (temp_hard_regset);
763 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
764 SET_HARD_REG_BIT (temp_hard_regset, i);
765 best = 0;
766 for (i = 0; i < ira_pressure_classes_num; i++)
768 cl = ira_pressure_classes[i];
769 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
770 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
771 size = hard_reg_set_size (temp_hard_regset2);
772 if (best < size)
774 best = size;
775 ira_stack_reg_pressure_class = cl;
779 #endif
782 /* Find pressure classes which are register classes for which we
783 calculate register pressure in IRA, register pressure sensitive
784 insn scheduling, and register pressure sensitive loop invariant
785 motion.
787 To make register pressure calculation easy, we always use
788 non-intersected register pressure classes. A move of hard
789 registers from one register pressure class is not more expensive
790 than load and store of the hard registers. Most likely an allocno
791 class will be a subset of a register pressure class and in many
792 cases a register pressure class. That makes usage of register
793 pressure classes a good approximation to find a high register
794 pressure. */
795 static void
796 setup_pressure_classes (void)
798 int cost, i, n, curr;
799 int cl, cl2;
800 enum reg_class pressure_classes[N_REG_CLASSES];
801 int m;
802 HARD_REG_SET temp_hard_regset2;
803 bool insert_p;
805 n = 0;
806 for (cl = 0; cl < N_REG_CLASSES; cl++)
808 if (ira_class_hard_regs_num[cl] == 0)
809 continue;
810 if (ira_class_hard_regs_num[cl] != 1
811 /* A register class without subclasses may contain a few
812 hard registers and movement between them is costly
813 (e.g. SPARC FPCC registers). We still should consider it
814 as a candidate for a pressure class. */
815 && alloc_reg_class_subclasses[cl][0] < cl)
817 /* Check that the moves between any hard registers of the
818 current class are not more expensive for a legal mode
819 than load/store of the hard registers of the current
820 class. Such class is a potential candidate to be a
821 register pressure class. */
822 for (m = 0; m < NUM_MACHINE_MODES; m++)
824 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
825 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
826 AND_COMPL_HARD_REG_SET (temp_hard_regset,
827 ira_prohibited_class_mode_regs[cl][m]);
828 if (hard_reg_set_empty_p (temp_hard_regset))
829 continue;
830 ira_init_register_move_cost_if_necessary ((machine_mode) m);
831 cost = ira_register_move_cost[m][cl][cl];
832 if (cost <= ira_max_memory_move_cost[m][cl][1]
833 || cost <= ira_max_memory_move_cost[m][cl][0])
834 break;
836 if (m >= NUM_MACHINE_MODES)
837 continue;
839 curr = 0;
840 insert_p = true;
841 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
842 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
843 /* Remove so far added pressure classes which are subset of the
844 current candidate class. Prefer GENERAL_REGS as a pressure
845 register class to another class containing the same
846 allocatable hard registers. We do this because machine
847 dependent cost hooks might give wrong costs for the latter
848 class but always give the right cost for the former class
849 (GENERAL_REGS). */
850 for (i = 0; i < n; i++)
852 cl2 = pressure_classes[i];
853 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
854 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
855 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
856 && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
857 || cl2 == (int) GENERAL_REGS))
859 pressure_classes[curr++] = (enum reg_class) cl2;
860 insert_p = false;
861 continue;
863 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
864 && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
865 || cl == (int) GENERAL_REGS))
866 continue;
867 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
868 insert_p = false;
869 pressure_classes[curr++] = (enum reg_class) cl2;
871 /* If the current candidate is a subset of a so far added
872 pressure class, don't add it to the list of the pressure
873 classes. */
874 if (insert_p)
875 pressure_classes[curr++] = (enum reg_class) cl;
876 n = curr;
878 #ifdef ENABLE_IRA_CHECKING
880 HARD_REG_SET ignore_hard_regs;
882 /* Check pressure classes correctness: here we check that hard
883 registers from all register pressure classes contains all hard
884 registers available for the allocation. */
885 CLEAR_HARD_REG_SET (temp_hard_regset);
886 CLEAR_HARD_REG_SET (temp_hard_regset2);
887 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
888 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
890 /* For some targets (like MIPS with MD_REGS), there are some
891 classes with hard registers available for allocation but
892 not able to hold value of any mode. */
893 for (m = 0; m < NUM_MACHINE_MODES; m++)
894 if (contains_reg_of_mode[cl][m])
895 break;
896 if (m >= NUM_MACHINE_MODES)
898 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
899 continue;
901 for (i = 0; i < n; i++)
902 if ((int) pressure_classes[i] == cl)
903 break;
904 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
905 if (i < n)
906 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
908 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
909 /* Some targets (like SPARC with ICC reg) have allocatable regs
910 for which no reg class is defined. */
911 if (REGNO_REG_CLASS (i) == NO_REGS)
912 SET_HARD_REG_BIT (ignore_hard_regs, i);
913 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
914 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
915 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
917 #endif
918 ira_pressure_classes_num = 0;
919 for (i = 0; i < n; i++)
921 cl = (int) pressure_classes[i];
922 ira_reg_pressure_class_p[cl] = true;
923 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
925 setup_stack_reg_pressure_class ();
928 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
929 whose register move cost between any registers of the class is the
930 same as for all its subclasses. We use the data to speed up the
931 2nd pass of calculations of allocno costs. */
932 static void
933 setup_uniform_class_p (void)
935 int i, cl, cl2, m;
937 for (cl = 0; cl < N_REG_CLASSES; cl++)
939 ira_uniform_class_p[cl] = false;
940 if (ira_class_hard_regs_num[cl] == 0)
941 continue;
942 /* We can not use alloc_reg_class_subclasses here because move
943 cost hooks does not take into account that some registers are
944 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
945 is element of alloc_reg_class_subclasses for GENERAL_REGS
946 because SSE regs are unavailable. */
947 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
949 if (ira_class_hard_regs_num[cl2] == 0)
950 continue;
951 for (m = 0; m < NUM_MACHINE_MODES; m++)
952 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
954 ira_init_register_move_cost_if_necessary ((machine_mode) m);
955 if (ira_register_move_cost[m][cl][cl]
956 != ira_register_move_cost[m][cl2][cl2])
957 break;
959 if (m < NUM_MACHINE_MODES)
960 break;
962 if (cl2 == LIM_REG_CLASSES)
963 ira_uniform_class_p[cl] = true;
967 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
968 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
970 Target may have many subtargets and not all target hard registers can
971 be used for allocation, e.g. x86 port in 32-bit mode can not use
972 hard registers introduced in x86-64 like r8-r15). Some classes
973 might have the same allocatable hard registers, e.g. INDEX_REGS
974 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
975 calculations efforts we introduce allocno classes which contain
976 unique non-empty sets of allocatable hard-registers.
978 Pseudo class cost calculation in ira-costs.c is very expensive.
979 Therefore we are trying to decrease number of classes involved in
980 such calculation. Register classes used in the cost calculation
981 are called important classes. They are allocno classes and other
982 non-empty classes whose allocatable hard register sets are inside
983 of an allocno class hard register set. From the first sight, it
984 looks like that they are just allocno classes. It is not true. In
985 example of x86-port in 32-bit mode, allocno classes will contain
986 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
987 registers are the same for the both classes). The important
988 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
989 because a machine description insn constraint may refers for
990 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
991 of the insn constraints. */
992 static void
993 setup_allocno_and_important_classes (void)
995 int i, j, n, cl;
996 bool set_p;
997 HARD_REG_SET temp_hard_regset2;
998 static enum reg_class classes[LIM_REG_CLASSES + 1];
1000 n = 0;
1001 /* Collect classes which contain unique sets of allocatable hard
1002 registers. Prefer GENERAL_REGS to other classes containing the
1003 same set of hard registers. */
1004 for (i = 0; i < LIM_REG_CLASSES; i++)
1006 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
1007 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1008 for (j = 0; j < n; j++)
1010 cl = classes[j];
1011 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1012 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1013 no_unit_alloc_regs);
1014 if (hard_reg_set_equal_p (temp_hard_regset,
1015 temp_hard_regset2))
1016 break;
1018 if (j >= n)
1019 classes[n++] = (enum reg_class) i;
1020 else if (i == GENERAL_REGS)
1021 /* Prefer general regs. For i386 example, it means that
1022 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1023 (all of them consists of the same available hard
1024 registers). */
1025 classes[j] = (enum reg_class) i;
1027 classes[n] = LIM_REG_CLASSES;
1029 /* Set up classes which can be used for allocnos as classes
1030 containing non-empty unique sets of allocatable hard
1031 registers. */
1032 ira_allocno_classes_num = 0;
1033 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1034 if (ira_class_hard_regs_num[cl] > 0)
1035 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1036 ira_important_classes_num = 0;
1037 /* Add non-allocno classes containing to non-empty set of
1038 allocatable hard regs. */
1039 for (cl = 0; cl < N_REG_CLASSES; cl++)
1040 if (ira_class_hard_regs_num[cl] > 0)
1042 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1043 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1044 set_p = false;
1045 for (j = 0; j < ira_allocno_classes_num; j++)
1047 COPY_HARD_REG_SET (temp_hard_regset2,
1048 reg_class_contents[ira_allocno_classes[j]]);
1049 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1050 if ((enum reg_class) cl == ira_allocno_classes[j])
1051 break;
1052 else if (hard_reg_set_subset_p (temp_hard_regset,
1053 temp_hard_regset2))
1054 set_p = true;
1056 if (set_p && j >= ira_allocno_classes_num)
1057 ira_important_classes[ira_important_classes_num++]
1058 = (enum reg_class) cl;
1060 /* Now add allocno classes to the important classes. */
1061 for (j = 0; j < ira_allocno_classes_num; j++)
1062 ira_important_classes[ira_important_classes_num++]
1063 = ira_allocno_classes[j];
1064 for (cl = 0; cl < N_REG_CLASSES; cl++)
1066 ira_reg_allocno_class_p[cl] = false;
1067 ira_reg_pressure_class_p[cl] = false;
1069 for (j = 0; j < ira_allocno_classes_num; j++)
1070 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1071 setup_pressure_classes ();
1072 setup_uniform_class_p ();
1075 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1076 given by array CLASSES of length CLASSES_NUM. The function is used
1077 make translation any reg class to an allocno class or to an
1078 pressure class. This translation is necessary for some
1079 calculations when we can use only allocno or pressure classes and
1080 such translation represents an approximate representation of all
1081 classes.
1083 The translation in case when allocatable hard register set of a
1084 given class is subset of allocatable hard register set of a class
1085 in CLASSES is pretty simple. We use smallest classes from CLASSES
1086 containing a given class. If allocatable hard register set of a
1087 given class is not a subset of any corresponding set of a class
1088 from CLASSES, we use the cheapest (with load/store point of view)
1089 class from CLASSES whose set intersects with given class set. */
1090 static void
1091 setup_class_translate_array (enum reg_class *class_translate,
1092 int classes_num, enum reg_class *classes)
1094 int cl, mode;
1095 enum reg_class aclass, best_class, *cl_ptr;
1096 int i, cost, min_cost, best_cost;
1098 for (cl = 0; cl < N_REG_CLASSES; cl++)
1099 class_translate[cl] = NO_REGS;
1101 for (i = 0; i < classes_num; i++)
1103 aclass = classes[i];
1104 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1105 (cl = *cl_ptr) != LIM_REG_CLASSES;
1106 cl_ptr++)
1107 if (class_translate[cl] == NO_REGS)
1108 class_translate[cl] = aclass;
1109 class_translate[aclass] = aclass;
1111 /* For classes which are not fully covered by one of given classes
1112 (in other words covered by more one given class), use the
1113 cheapest class. */
1114 for (cl = 0; cl < N_REG_CLASSES; cl++)
1116 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1117 continue;
1118 best_class = NO_REGS;
1119 best_cost = INT_MAX;
1120 for (i = 0; i < classes_num; i++)
1122 aclass = classes[i];
1123 COPY_HARD_REG_SET (temp_hard_regset,
1124 reg_class_contents[aclass]);
1125 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1126 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1127 if (! hard_reg_set_empty_p (temp_hard_regset))
1129 min_cost = INT_MAX;
1130 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1132 cost = (ira_memory_move_cost[mode][aclass][0]
1133 + ira_memory_move_cost[mode][aclass][1]);
1134 if (min_cost > cost)
1135 min_cost = cost;
1137 if (best_class == NO_REGS || best_cost > min_cost)
1139 best_class = aclass;
1140 best_cost = min_cost;
1144 class_translate[cl] = best_class;
1148 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1149 IRA_PRESSURE_CLASS_TRANSLATE. */
1150 static void
1151 setup_class_translate (void)
1153 setup_class_translate_array (ira_allocno_class_translate,
1154 ira_allocno_classes_num, ira_allocno_classes);
1155 setup_class_translate_array (ira_pressure_class_translate,
1156 ira_pressure_classes_num, ira_pressure_classes);
1159 /* Order numbers of allocno classes in original target allocno class
1160 array, -1 for non-allocno classes. */
1161 static int allocno_class_order[N_REG_CLASSES];
1163 /* The function used to sort the important classes. */
1164 static int
1165 comp_reg_classes_func (const void *v1p, const void *v2p)
1167 enum reg_class cl1 = *(const enum reg_class *) v1p;
1168 enum reg_class cl2 = *(const enum reg_class *) v2p;
1169 enum reg_class tcl1, tcl2;
1170 int diff;
1172 tcl1 = ira_allocno_class_translate[cl1];
1173 tcl2 = ira_allocno_class_translate[cl2];
1174 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1175 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1176 return diff;
1177 return (int) cl1 - (int) cl2;
1180 /* For correct work of function setup_reg_class_relation we need to
1181 reorder important classes according to the order of their allocno
1182 classes. It places important classes containing the same
1183 allocatable hard register set adjacent to each other and allocno
1184 class with the allocatable hard register set right after the other
1185 important classes with the same set.
1187 In example from comments of function
1188 setup_allocno_and_important_classes, it places LEGACY_REGS and
1189 GENERAL_REGS close to each other and GENERAL_REGS is after
1190 LEGACY_REGS. */
1191 static void
1192 reorder_important_classes (void)
1194 int i;
1196 for (i = 0; i < N_REG_CLASSES; i++)
1197 allocno_class_order[i] = -1;
1198 for (i = 0; i < ira_allocno_classes_num; i++)
1199 allocno_class_order[ira_allocno_classes[i]] = i;
1200 qsort (ira_important_classes, ira_important_classes_num,
1201 sizeof (enum reg_class), comp_reg_classes_func);
1202 for (i = 0; i < ira_important_classes_num; i++)
1203 ira_important_class_nums[ira_important_classes[i]] = i;
1206 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1207 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1208 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1209 please see corresponding comments in ira-int.h. */
1210 static void
1211 setup_reg_class_relations (void)
1213 int i, cl1, cl2, cl3;
1214 HARD_REG_SET intersection_set, union_set, temp_set2;
1215 bool important_class_p[N_REG_CLASSES];
1217 memset (important_class_p, 0, sizeof (important_class_p));
1218 for (i = 0; i < ira_important_classes_num; i++)
1219 important_class_p[ira_important_classes[i]] = true;
1220 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1222 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1223 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1225 ira_reg_classes_intersect_p[cl1][cl2] = false;
1226 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1227 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1228 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1229 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1230 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1231 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1232 if (hard_reg_set_empty_p (temp_hard_regset)
1233 && hard_reg_set_empty_p (temp_set2))
1235 /* The both classes have no allocatable hard registers
1236 -- take all class hard registers into account and use
1237 reg_class_subunion and reg_class_superunion. */
1238 for (i = 0;; i++)
1240 cl3 = reg_class_subclasses[cl1][i];
1241 if (cl3 == LIM_REG_CLASSES)
1242 break;
1243 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1244 (enum reg_class) cl3))
1245 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1247 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1248 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1249 continue;
1251 ira_reg_classes_intersect_p[cl1][cl2]
1252 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1253 if (important_class_p[cl1] && important_class_p[cl2]
1254 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1256 /* CL1 and CL2 are important classes and CL1 allocatable
1257 hard register set is inside of CL2 allocatable hard
1258 registers -- make CL1 a superset of CL2. */
1259 enum reg_class *p;
1261 p = &ira_reg_class_super_classes[cl1][0];
1262 while (*p != LIM_REG_CLASSES)
1263 p++;
1264 *p++ = (enum reg_class) cl2;
1265 *p = LIM_REG_CLASSES;
1267 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1268 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1269 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1270 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1271 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1272 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1273 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1274 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1275 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1277 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1278 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1279 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1281 /* CL3 allocatable hard register set is inside of
1282 intersection of allocatable hard register sets
1283 of CL1 and CL2. */
1284 if (important_class_p[cl3])
1286 COPY_HARD_REG_SET
1287 (temp_set2,
1288 reg_class_contents
1289 [(int) ira_reg_class_intersect[cl1][cl2]]);
1290 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1291 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1292 /* If the allocatable hard register sets are
1293 the same, prefer GENERAL_REGS or the
1294 smallest class for debugging
1295 purposes. */
1296 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1297 && (cl3 == GENERAL_REGS
1298 || ((ira_reg_class_intersect[cl1][cl2]
1299 != GENERAL_REGS)
1300 && hard_reg_set_subset_p
1301 (reg_class_contents[cl3],
1302 reg_class_contents
1303 [(int)
1304 ira_reg_class_intersect[cl1][cl2]])))))
1305 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1307 COPY_HARD_REG_SET
1308 (temp_set2,
1309 reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
1310 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1311 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1312 /* Ignore unavailable hard registers and prefer
1313 smallest class for debugging purposes. */
1314 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1315 && hard_reg_set_subset_p
1316 (reg_class_contents[cl3],
1317 reg_class_contents
1318 [(int) ira_reg_class_subset[cl1][cl2]])))
1319 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1321 if (important_class_p[cl3]
1322 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1324 /* CL3 allocatable hard register set is inside of
1325 union of allocatable hard register sets of CL1
1326 and CL2. */
1327 COPY_HARD_REG_SET
1328 (temp_set2,
1329 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1330 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1331 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1332 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1334 && (! hard_reg_set_equal_p (temp_set2,
1335 temp_hard_regset)
1336 || cl3 == GENERAL_REGS
1337 /* If the allocatable hard register sets are the
1338 same, prefer GENERAL_REGS or the smallest
1339 class for debugging purposes. */
1340 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1341 && hard_reg_set_subset_p
1342 (reg_class_contents[cl3],
1343 reg_class_contents
1344 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1345 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1347 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1349 /* CL3 allocatable hard register set contains union
1350 of allocatable hard register sets of CL1 and
1351 CL2. */
1352 COPY_HARD_REG_SET
1353 (temp_set2,
1354 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1355 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1356 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1357 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1359 && (! hard_reg_set_equal_p (temp_set2,
1360 temp_hard_regset)
1361 || cl3 == GENERAL_REGS
1362 /* If the allocatable hard register sets are the
1363 same, prefer GENERAL_REGS or the smallest
1364 class for debugging purposes. */
1365 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1366 && hard_reg_set_subset_p
1367 (reg_class_contents[cl3],
1368 reg_class_contents
1369 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1370 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1377 /* Output all uniform and important classes into file F. */
1378 static void
1379 print_uniform_and_important_classes (FILE *f)
1381 int i, cl;
1383 fprintf (f, "Uniform classes:\n");
1384 for (cl = 0; cl < N_REG_CLASSES; cl++)
1385 if (ira_uniform_class_p[cl])
1386 fprintf (f, " %s", reg_class_names[cl]);
1387 fprintf (f, "\nImportant classes:\n");
1388 for (i = 0; i < ira_important_classes_num; i++)
1389 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1390 fprintf (f, "\n");
1393 /* Output all possible allocno or pressure classes and their
1394 translation map into file F. */
1395 static void
1396 print_translated_classes (FILE *f, bool pressure_p)
1398 int classes_num = (pressure_p
1399 ? ira_pressure_classes_num : ira_allocno_classes_num);
1400 enum reg_class *classes = (pressure_p
1401 ? ira_pressure_classes : ira_allocno_classes);
1402 enum reg_class *class_translate = (pressure_p
1403 ? ira_pressure_class_translate
1404 : ira_allocno_class_translate);
1405 int i;
1407 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1408 for (i = 0; i < classes_num; i++)
1409 fprintf (f, " %s", reg_class_names[classes[i]]);
1410 fprintf (f, "\nClass translation:\n");
1411 for (i = 0; i < N_REG_CLASSES; i++)
1412 fprintf (f, " %s -> %s\n", reg_class_names[i],
1413 reg_class_names[class_translate[i]]);
1416 /* Output all possible allocno and translation classes and the
1417 translation maps into stderr. */
1418 void
1419 ira_debug_allocno_classes (void)
1421 print_uniform_and_important_classes (stderr);
1422 print_translated_classes (stderr, false);
1423 print_translated_classes (stderr, true);
1426 /* Set up different arrays concerning class subsets, allocno and
1427 important classes. */
1428 static void
1429 find_reg_classes (void)
1431 setup_allocno_and_important_classes ();
1432 setup_class_translate ();
1433 reorder_important_classes ();
1434 setup_reg_class_relations ();
1439 /* Set up the array above. */
1440 static void
1441 setup_hard_regno_aclass (void)
1443 int i;
1445 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1447 #if 1
1448 ira_hard_regno_allocno_class[i]
1449 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1450 ? NO_REGS
1451 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1452 #else
1453 int j;
1454 enum reg_class cl;
1455 ira_hard_regno_allocno_class[i] = NO_REGS;
1456 for (j = 0; j < ira_allocno_classes_num; j++)
1458 cl = ira_allocno_classes[j];
1459 if (ira_class_hard_reg_index[cl][i] >= 0)
1461 ira_hard_regno_allocno_class[i] = cl;
1462 break;
1465 #endif
1471 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1472 static void
1473 setup_reg_class_nregs (void)
1475 int i, cl, cl2, m;
1477 for (m = 0; m < MAX_MACHINE_MODE; m++)
1479 for (cl = 0; cl < N_REG_CLASSES; cl++)
1480 ira_reg_class_max_nregs[cl][m]
1481 = ira_reg_class_min_nregs[cl][m]
1482 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1483 for (cl = 0; cl < N_REG_CLASSES; cl++)
1484 for (i = 0;
1485 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1486 i++)
1487 if (ira_reg_class_min_nregs[cl2][m]
1488 < ira_reg_class_min_nregs[cl][m])
1489 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1495 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1496 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1497 static void
1498 setup_prohibited_class_mode_regs (void)
1500 int j, k, hard_regno, cl, last_hard_regno, count;
1502 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1504 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1505 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1506 for (j = 0; j < NUM_MACHINE_MODES; j++)
1508 count = 0;
1509 last_hard_regno = -1;
1510 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1511 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1513 hard_regno = ira_class_hard_regs[cl][k];
1514 if (! HARD_REGNO_MODE_OK (hard_regno, (machine_mode) j))
1515 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1516 hard_regno);
1517 else if (in_hard_reg_set_p (temp_hard_regset,
1518 (machine_mode) j, hard_regno))
1520 last_hard_regno = hard_regno;
1521 count++;
1524 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1529 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1530 spanning from one register pressure class to another one. It is
1531 called after defining the pressure classes. */
1532 static void
1533 clarify_prohibited_class_mode_regs (void)
1535 int j, k, hard_regno, cl, pclass, nregs;
1537 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1538 for (j = 0; j < NUM_MACHINE_MODES; j++)
1540 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1541 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1543 hard_regno = ira_class_hard_regs[cl][k];
1544 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1545 continue;
1546 nregs = hard_regno_nregs[hard_regno][j];
1547 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1549 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1550 hard_regno);
1551 continue;
1553 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1554 for (nregs-- ;nregs >= 0; nregs--)
1555 if (((enum reg_class) pclass
1556 != ira_pressure_class_translate[REGNO_REG_CLASS
1557 (hard_regno + nregs)]))
1559 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1560 hard_regno);
1561 break;
1563 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1564 hard_regno))
1565 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1566 (machine_mode) j, hard_regno);
1571 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1572 and IRA_MAY_MOVE_OUT_COST for MODE. */
1573 void
1574 ira_init_register_move_cost (machine_mode mode)
1576 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1577 bool all_match = true;
1578 unsigned int cl1, cl2;
1580 ira_assert (ira_register_move_cost[mode] == NULL
1581 && ira_may_move_in_cost[mode] == NULL
1582 && ira_may_move_out_cost[mode] == NULL);
1583 ira_assert (have_regs_of_mode[mode]);
1584 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1585 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1587 int cost;
1588 if (!contains_reg_of_mode[cl1][mode]
1589 || !contains_reg_of_mode[cl2][mode])
1591 if ((ira_reg_class_max_nregs[cl1][mode]
1592 > ira_class_hard_regs_num[cl1])
1593 || (ira_reg_class_max_nregs[cl2][mode]
1594 > ira_class_hard_regs_num[cl2]))
1595 cost = 65535;
1596 else
1597 cost = (ira_memory_move_cost[mode][cl1][0]
1598 + ira_memory_move_cost[mode][cl2][1]) * 2;
1600 else
1602 cost = register_move_cost (mode, (enum reg_class) cl1,
1603 (enum reg_class) cl2);
1604 ira_assert (cost < 65535);
1606 all_match &= (last_move_cost[cl1][cl2] == cost);
1607 last_move_cost[cl1][cl2] = cost;
1609 if (all_match && last_mode_for_init_move_cost != -1)
1611 ira_register_move_cost[mode]
1612 = ira_register_move_cost[last_mode_for_init_move_cost];
1613 ira_may_move_in_cost[mode]
1614 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1615 ira_may_move_out_cost[mode]
1616 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1617 return;
1619 last_mode_for_init_move_cost = mode;
1620 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1621 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1622 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1623 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1624 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1626 int cost;
1627 enum reg_class *p1, *p2;
1629 if (last_move_cost[cl1][cl2] == 65535)
1631 ira_register_move_cost[mode][cl1][cl2] = 65535;
1632 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1633 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1635 else
1637 cost = last_move_cost[cl1][cl2];
1639 for (p2 = &reg_class_subclasses[cl2][0];
1640 *p2 != LIM_REG_CLASSES; p2++)
1641 if (ira_class_hard_regs_num[*p2] > 0
1642 && (ira_reg_class_max_nregs[*p2][mode]
1643 <= ira_class_hard_regs_num[*p2]))
1644 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1646 for (p1 = &reg_class_subclasses[cl1][0];
1647 *p1 != LIM_REG_CLASSES; p1++)
1648 if (ira_class_hard_regs_num[*p1] > 0
1649 && (ira_reg_class_max_nregs[*p1][mode]
1650 <= ira_class_hard_regs_num[*p1]))
1651 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1653 ira_assert (cost <= 65535);
1654 ira_register_move_cost[mode][cl1][cl2] = cost;
1656 if (ira_class_subset_p[cl1][cl2])
1657 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1658 else
1659 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1661 if (ira_class_subset_p[cl2][cl1])
1662 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1663 else
1664 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1671 /* This is called once during compiler work. It sets up
1672 different arrays whose values don't depend on the compiled
1673 function. */
1674 void
1675 ira_init_once (void)
1677 ira_init_costs_once ();
1678 lra_init_once ();
1681 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1682 ira_may_move_out_cost for each mode. */
1683 void
1684 target_ira_int::free_register_move_costs (void)
1686 int mode, i;
1688 /* Reset move_cost and friends, making sure we only free shared
1689 table entries once. */
1690 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1691 if (x_ira_register_move_cost[mode])
1693 for (i = 0;
1694 i < mode && (x_ira_register_move_cost[i]
1695 != x_ira_register_move_cost[mode]);
1696 i++)
1698 if (i == mode)
1700 free (x_ira_register_move_cost[mode]);
1701 free (x_ira_may_move_in_cost[mode]);
1702 free (x_ira_may_move_out_cost[mode]);
1705 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1706 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1707 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1708 last_mode_for_init_move_cost = -1;
1711 target_ira_int::~target_ira_int ()
1713 free_ira_costs ();
1714 free_register_move_costs ();
1717 /* This is called every time when register related information is
1718 changed. */
1719 void
1720 ira_init (void)
1722 this_target_ira_int->free_register_move_costs ();
1723 setup_reg_mode_hard_regset ();
1724 setup_alloc_regs (flag_omit_frame_pointer != 0);
1725 setup_class_subset_and_memory_move_costs ();
1726 setup_reg_class_nregs ();
1727 setup_prohibited_class_mode_regs ();
1728 find_reg_classes ();
1729 clarify_prohibited_class_mode_regs ();
1730 setup_hard_regno_aclass ();
1731 ira_init_costs ();
1735 #define ira_prohibited_mode_move_regs_initialized_p \
1736 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1738 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1739 static void
1740 setup_prohibited_mode_move_regs (void)
1742 int i, j;
1743 rtx test_reg1, test_reg2, move_pat;
1744 rtx_insn *move_insn;
1746 if (ira_prohibited_mode_move_regs_initialized_p)
1747 return;
1748 ira_prohibited_mode_move_regs_initialized_p = true;
1749 test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1750 test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
1751 move_pat = gen_rtx_SET (test_reg1, test_reg2);
1752 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1753 for (i = 0; i < NUM_MACHINE_MODES; i++)
1755 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1756 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1758 if (! HARD_REGNO_MODE_OK (j, (machine_mode) i))
1759 continue;
1760 set_mode_and_regno (test_reg1, (machine_mode) i, j);
1761 set_mode_and_regno (test_reg2, (machine_mode) i, j);
1762 INSN_CODE (move_insn) = -1;
1763 recog_memoized (move_insn);
1764 if (INSN_CODE (move_insn) < 0)
1765 continue;
1766 extract_insn (move_insn);
1767 /* We don't know whether the move will be in code that is optimized
1768 for size or speed, so consider all enabled alternatives. */
1769 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1770 continue;
1771 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1778 /* Setup possible alternatives in ALTS for INSN. */
1779 void
1780 ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts)
1782 /* MAP nalt * nop -> start of constraints for given operand and
1783 alternative. */
1784 static vec<const char *> insn_constraints;
1785 int nop, nalt;
1786 bool curr_swapped;
1787 const char *p;
1788 int commutative = -1;
1790 extract_insn (insn);
1791 alternative_mask preferred = get_preferred_alternatives (insn);
1792 CLEAR_HARD_REG_SET (alts);
1793 insn_constraints.release ();
1794 insn_constraints.safe_grow_cleared (recog_data.n_operands
1795 * recog_data.n_alternatives + 1);
1796 /* Check that the hard reg set is enough for holding all
1797 alternatives. It is hard to imagine the situation when the
1798 assertion is wrong. */
1799 ira_assert (recog_data.n_alternatives
1800 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1801 FIRST_PSEUDO_REGISTER));
1802 for (curr_swapped = false;; curr_swapped = true)
1804 /* Calculate some data common for all alternatives to speed up the
1805 function. */
1806 for (nop = 0; nop < recog_data.n_operands; nop++)
1808 for (nalt = 0, p = recog_data.constraints[nop];
1809 nalt < recog_data.n_alternatives;
1810 nalt++)
1812 insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1813 while (*p && *p != ',')
1814 p++;
1815 if (*p)
1816 p++;
1819 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1821 if (!TEST_BIT (preferred, nalt)
1822 || TEST_HARD_REG_BIT (alts, nalt))
1823 continue;
1825 for (nop = 0; nop < recog_data.n_operands; nop++)
1827 int c, len;
1829 rtx op = recog_data.operand[nop];
1830 p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1831 if (*p == 0 || *p == ',')
1832 continue;
1835 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1837 case '#':
1838 case ',':
1839 c = '\0';
1840 case '\0':
1841 len = 0;
1842 break;
1844 case '%':
1845 /* We only support one commutative marker, the
1846 first one. We already set commutative
1847 above. */
1848 if (commutative < 0)
1849 commutative = nop;
1850 break;
1852 case '0': case '1': case '2': case '3': case '4':
1853 case '5': case '6': case '7': case '8': case '9':
1854 goto op_success;
1855 break;
1857 case 'g':
1858 goto op_success;
1859 break;
1861 default:
1863 enum constraint_num cn = lookup_constraint (p);
1864 switch (get_constraint_type (cn))
1866 case CT_REGISTER:
1867 if (reg_class_for_constraint (cn) != NO_REGS)
1868 goto op_success;
1869 break;
1871 case CT_CONST_INT:
1872 if (CONST_INT_P (op)
1873 && (insn_const_int_ok_for_constraint
1874 (INTVAL (op), cn)))
1875 goto op_success;
1876 break;
1878 case CT_ADDRESS:
1879 case CT_MEMORY:
1880 goto op_success;
1882 case CT_FIXED_FORM:
1883 if (constraint_satisfied_p (op, cn))
1884 goto op_success;
1885 break;
1887 break;
1890 while (p += len, c);
1891 break;
1892 op_success:
1895 if (nop >= recog_data.n_operands)
1896 SET_HARD_REG_BIT (alts, nalt);
1898 if (commutative < 0)
1899 break;
1900 if (curr_swapped)
1901 break;
1902 std::swap (recog_data.operand[commutative],
1903 recog_data.operand[commutative + 1]);
1907 /* Return the number of the output non-early clobber operand which
1908 should be the same in any case as operand with number OP_NUM (or
1909 negative value if there is no such operand). The function takes
1910 only really possible alternatives into consideration. */
1912 ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
1914 int curr_alt, c, original, dup;
1915 bool ignore_p, use_commut_op_p;
1916 const char *str;
1918 if (op_num < 0 || recog_data.n_alternatives == 0)
1919 return -1;
1920 /* We should find duplications only for input operands. */
1921 if (recog_data.operand_type[op_num] != OP_IN)
1922 return -1;
1923 str = recog_data.constraints[op_num];
1924 use_commut_op_p = false;
1925 for (;;)
1927 rtx op = recog_data.operand[op_num];
1929 for (curr_alt = 0, ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt),
1930 original = -1;;)
1932 c = *str;
1933 if (c == '\0')
1934 break;
1935 if (c == '#')
1936 ignore_p = true;
1937 else if (c == ',')
1939 curr_alt++;
1940 ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt);
1942 else if (! ignore_p)
1943 switch (c)
1945 case 'g':
1946 goto fail;
1947 default:
1949 enum constraint_num cn = lookup_constraint (str);
1950 enum reg_class cl = reg_class_for_constraint (cn);
1951 if (cl != NO_REGS
1952 && !targetm.class_likely_spilled_p (cl))
1953 goto fail;
1954 if (constraint_satisfied_p (op, cn))
1955 goto fail;
1956 break;
1959 case '0': case '1': case '2': case '3': case '4':
1960 case '5': case '6': case '7': case '8': case '9':
1961 if (original != -1 && original != c)
1962 goto fail;
1963 original = c;
1964 break;
1966 str += CONSTRAINT_LEN (c, str);
1968 if (original == -1)
1969 goto fail;
1970 dup = -1;
1971 for (ignore_p = false, str = recog_data.constraints[original - '0'];
1972 *str != 0;
1973 str++)
1974 if (ignore_p)
1976 if (*str == ',')
1977 ignore_p = false;
1979 else if (*str == '#')
1980 ignore_p = true;
1981 else if (! ignore_p)
1983 if (*str == '=')
1984 dup = original - '0';
1985 /* It is better ignore an alternative with early clobber. */
1986 else if (*str == '&')
1987 goto fail;
1989 if (dup >= 0)
1990 return dup;
1991 fail:
1992 if (use_commut_op_p)
1993 break;
1994 use_commut_op_p = true;
1995 if (recog_data.constraints[op_num][0] == '%')
1996 str = recog_data.constraints[op_num + 1];
1997 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
1998 str = recog_data.constraints[op_num - 1];
1999 else
2000 break;
2002 return -1;
2007 /* Search forward to see if the source register of a copy insn dies
2008 before either it or the destination register is modified, but don't
2009 scan past the end of the basic block. If so, we can replace the
2010 source with the destination and let the source die in the copy
2011 insn.
2013 This will reduce the number of registers live in that range and may
2014 enable the destination and the source coalescing, thus often saving
2015 one register in addition to a register-register copy. */
2017 static void
2018 decrease_live_ranges_number (void)
2020 basic_block bb;
2021 rtx_insn *insn;
2022 rtx set, src, dest, dest_death, note;
2023 rtx_insn *p, *q;
2024 int sregno, dregno;
2026 if (! flag_expensive_optimizations)
2027 return;
2029 if (ira_dump_file)
2030 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2032 FOR_EACH_BB_FN (bb, cfun)
2033 FOR_BB_INSNS (bb, insn)
2035 set = single_set (insn);
2036 if (! set)
2037 continue;
2038 src = SET_SRC (set);
2039 dest = SET_DEST (set);
2040 if (! REG_P (src) || ! REG_P (dest)
2041 || find_reg_note (insn, REG_DEAD, src))
2042 continue;
2043 sregno = REGNO (src);
2044 dregno = REGNO (dest);
2046 /* We don't want to mess with hard regs if register classes
2047 are small. */
2048 if (sregno == dregno
2049 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2050 && (sregno < FIRST_PSEUDO_REGISTER
2051 || dregno < FIRST_PSEUDO_REGISTER))
2052 /* We don't see all updates to SP if they are in an
2053 auto-inc memory reference, so we must disallow this
2054 optimization on them. */
2055 || sregno == STACK_POINTER_REGNUM
2056 || dregno == STACK_POINTER_REGNUM)
2057 continue;
2059 dest_death = NULL_RTX;
2061 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2063 if (! INSN_P (p))
2064 continue;
2065 if (BLOCK_FOR_INSN (p) != bb)
2066 break;
2068 if (reg_set_p (src, p) || reg_set_p (dest, p)
2069 /* If SRC is an asm-declared register, it must not be
2070 replaced in any asm. Unfortunately, the REG_EXPR
2071 tree for the asm variable may be absent in the SRC
2072 rtx, so we can't check the actual register
2073 declaration easily (the asm operand will have it,
2074 though). To avoid complicating the test for a rare
2075 case, we just don't perform register replacement
2076 for a hard reg mentioned in an asm. */
2077 || (sregno < FIRST_PSEUDO_REGISTER
2078 && asm_noperands (PATTERN (p)) >= 0
2079 && reg_overlap_mentioned_p (src, PATTERN (p)))
2080 /* Don't change hard registers used by a call. */
2081 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2082 && find_reg_fusage (p, USE, src))
2083 /* Don't change a USE of a register. */
2084 || (GET_CODE (PATTERN (p)) == USE
2085 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2086 break;
2088 /* See if all of SRC dies in P. This test is slightly
2089 more conservative than it needs to be. */
2090 if ((note = find_regno_note (p, REG_DEAD, sregno))
2091 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2093 int failed = 0;
2095 /* We can do the optimization. Scan forward from INSN
2096 again, replacing regs as we go. Set FAILED if a
2097 replacement can't be done. In that case, we can't
2098 move the death note for SRC. This should be
2099 rare. */
2101 /* Set to stop at next insn. */
2102 for (q = next_real_insn (insn);
2103 q != next_real_insn (p);
2104 q = next_real_insn (q))
2106 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2108 /* If SRC is a hard register, we might miss
2109 some overlapping registers with
2110 validate_replace_rtx, so we would have to
2111 undo it. We can't if DEST is present in
2112 the insn, so fail in that combination of
2113 cases. */
2114 if (sregno < FIRST_PSEUDO_REGISTER
2115 && reg_mentioned_p (dest, PATTERN (q)))
2116 failed = 1;
2118 /* Attempt to replace all uses. */
2119 else if (!validate_replace_rtx (src, dest, q))
2120 failed = 1;
2122 /* If this succeeded, but some part of the
2123 register is still present, undo the
2124 replacement. */
2125 else if (sregno < FIRST_PSEUDO_REGISTER
2126 && reg_overlap_mentioned_p (src, PATTERN (q)))
2128 validate_replace_rtx (dest, src, q);
2129 failed = 1;
2133 /* If DEST dies here, remove the death note and
2134 save it for later. Make sure ALL of DEST dies
2135 here; again, this is overly conservative. */
2136 if (! dest_death
2137 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2139 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2140 remove_note (q, dest_death);
2141 else
2143 failed = 1;
2144 dest_death = 0;
2149 if (! failed)
2151 /* Move death note of SRC from P to INSN. */
2152 remove_note (p, note);
2153 XEXP (note, 1) = REG_NOTES (insn);
2154 REG_NOTES (insn) = note;
2157 /* DEST is also dead if INSN has a REG_UNUSED note for
2158 DEST. */
2159 if (! dest_death
2160 && (dest_death
2161 = find_regno_note (insn, REG_UNUSED, dregno)))
2163 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2164 remove_note (insn, dest_death);
2167 /* Put death note of DEST on P if we saw it die. */
2168 if (dest_death)
2170 XEXP (dest_death, 1) = REG_NOTES (p);
2171 REG_NOTES (p) = dest_death;
2173 break;
2176 /* If SRC is a hard register which is set or killed in
2177 some other way, we can't do this optimization. */
2178 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2179 break;
2186 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2187 static bool
2188 ira_bad_reload_regno_1 (int regno, rtx x)
2190 int x_regno, n, i;
2191 ira_allocno_t a;
2192 enum reg_class pref;
2194 /* We only deal with pseudo regs. */
2195 if (! x || GET_CODE (x) != REG)
2196 return false;
2198 x_regno = REGNO (x);
2199 if (x_regno < FIRST_PSEUDO_REGISTER)
2200 return false;
2202 /* If the pseudo prefers REGNO explicitly, then do not consider
2203 REGNO a bad spill choice. */
2204 pref = reg_preferred_class (x_regno);
2205 if (reg_class_size[pref] == 1)
2206 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2208 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2209 poor choice for a reload regno. */
2210 a = ira_regno_allocno_map[x_regno];
2211 n = ALLOCNO_NUM_OBJECTS (a);
2212 for (i = 0; i < n; i++)
2214 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2215 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2216 return true;
2218 return false;
2221 /* Return nonzero if REGNO is a particularly bad choice for reloading
2222 IN or OUT. */
2223 bool
2224 ira_bad_reload_regno (int regno, rtx in, rtx out)
2226 return (ira_bad_reload_regno_1 (regno, in)
2227 || ira_bad_reload_regno_1 (regno, out));
2230 /* Add register clobbers from asm statements. */
2231 static void
2232 compute_regs_asm_clobbered (void)
2234 basic_block bb;
2236 FOR_EACH_BB_FN (bb, cfun)
2238 rtx_insn *insn;
2239 FOR_BB_INSNS_REVERSE (bb, insn)
2241 df_ref def;
2243 if (NONDEBUG_INSN_P (insn) && extract_asm_operands (PATTERN (insn)))
2244 FOR_EACH_INSN_DEF (def, insn)
2246 unsigned int dregno = DF_REF_REGNO (def);
2247 if (HARD_REGISTER_NUM_P (dregno))
2248 add_to_hard_reg_set (&crtl->asm_clobbers,
2249 GET_MODE (DF_REF_REAL_REG (def)),
2250 dregno);
2257 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2258 REGS_EVER_LIVE. */
2259 void
2260 ira_setup_eliminable_regset (void)
2262 #ifdef ELIMINABLE_REGS
2263 int i;
2264 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2265 #endif
2266 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2267 sp for alloca. So we can't eliminate the frame pointer in that
2268 case. At some point, we should improve this by emitting the
2269 sp-adjusting insns for this case. */
2270 frame_pointer_needed
2271 = (! flag_omit_frame_pointer
2272 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2273 /* We need the frame pointer to catch stack overflow exceptions
2274 if the stack pointer is moving. */
2275 || (flag_stack_check && STACK_CHECK_MOVING_SP)
2276 || crtl->accesses_prior_frames
2277 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2278 /* We need a frame pointer for all Cilk Plus functions that use
2279 Cilk keywords. */
2280 || (flag_cilkplus && cfun->is_cilk_function)
2281 || targetm.frame_pointer_required ());
2283 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2284 RTL is very small. So if we use frame pointer for RA and RTL
2285 actually prevents this, we will spill pseudos assigned to the
2286 frame pointer in LRA. */
2288 if (frame_pointer_needed)
2289 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2291 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2292 CLEAR_HARD_REG_SET (eliminable_regset);
2294 compute_regs_asm_clobbered ();
2296 /* Build the regset of all eliminable registers and show we can't
2297 use those that we already know won't be eliminated. */
2298 #ifdef ELIMINABLE_REGS
2299 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2301 bool cannot_elim
2302 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2303 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2305 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2307 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2309 if (cannot_elim)
2310 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2312 else if (cannot_elim)
2313 error ("%s cannot be used in asm here",
2314 reg_names[eliminables[i].from]);
2315 else
2316 df_set_regs_ever_live (eliminables[i].from, true);
2318 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2320 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2322 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2323 if (frame_pointer_needed)
2324 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2326 else if (frame_pointer_needed)
2327 error ("%s cannot be used in asm here",
2328 reg_names[HARD_FRAME_POINTER_REGNUM]);
2329 else
2330 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2333 #else
2334 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2336 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
2337 if (frame_pointer_needed)
2338 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
2340 else if (frame_pointer_needed)
2341 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
2342 else
2343 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
2344 #endif
2349 /* Vector of substitutions of register numbers,
2350 used to map pseudo regs into hardware regs.
2351 This is set up as a result of register allocation.
2352 Element N is the hard reg assigned to pseudo reg N,
2353 or is -1 if no hard reg was assigned.
2354 If N is a hard reg number, element N is N. */
2355 short *reg_renumber;
2357 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2358 the allocation found by IRA. */
2359 static void
2360 setup_reg_renumber (void)
2362 int regno, hard_regno;
2363 ira_allocno_t a;
2364 ira_allocno_iterator ai;
2366 caller_save_needed = 0;
2367 FOR_EACH_ALLOCNO (a, ai)
2369 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2370 continue;
2371 /* There are no caps at this point. */
2372 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2373 if (! ALLOCNO_ASSIGNED_P (a))
2374 /* It can happen if A is not referenced but partially anticipated
2375 somewhere in a region. */
2376 ALLOCNO_ASSIGNED_P (a) = true;
2377 ira_free_allocno_updated_costs (a);
2378 hard_regno = ALLOCNO_HARD_REGNO (a);
2379 regno = ALLOCNO_REGNO (a);
2380 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2381 if (hard_regno >= 0)
2383 int i, nwords;
2384 enum reg_class pclass;
2385 ira_object_t obj;
2387 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2388 nwords = ALLOCNO_NUM_OBJECTS (a);
2389 for (i = 0; i < nwords; i++)
2391 obj = ALLOCNO_OBJECT (a, i);
2392 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2393 reg_class_contents[pclass]);
2395 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
2396 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2397 call_used_reg_set))
2399 ira_assert (!optimize || flag_caller_saves
2400 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2401 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2402 || regno >= ira_reg_equiv_len
2403 || ira_equiv_no_lvalue_p (regno));
2404 caller_save_needed = 1;
2410 /* Set up allocno assignment flags for further allocation
2411 improvements. */
2412 static void
2413 setup_allocno_assignment_flags (void)
2415 int hard_regno;
2416 ira_allocno_t a;
2417 ira_allocno_iterator ai;
2419 FOR_EACH_ALLOCNO (a, ai)
2421 if (! ALLOCNO_ASSIGNED_P (a))
2422 /* It can happen if A is not referenced but partially anticipated
2423 somewhere in a region. */
2424 ira_free_allocno_updated_costs (a);
2425 hard_regno = ALLOCNO_HARD_REGNO (a);
2426 /* Don't assign hard registers to allocnos which are destination
2427 of removed store at the end of loop. It has no sense to keep
2428 the same value in different hard registers. It is also
2429 impossible to assign hard registers correctly to such
2430 allocnos because the cost info and info about intersected
2431 calls are incorrect for them. */
2432 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2433 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2434 || (ALLOCNO_MEMORY_COST (a)
2435 - ALLOCNO_CLASS_COST (a)) < 0);
2436 ira_assert
2437 (hard_regno < 0
2438 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2439 reg_class_contents[ALLOCNO_CLASS (a)]));
2443 /* Evaluate overall allocation cost and the costs for using hard
2444 registers and memory for allocnos. */
2445 static void
2446 calculate_allocation_cost (void)
2448 int hard_regno, cost;
2449 ira_allocno_t a;
2450 ira_allocno_iterator ai;
2452 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2453 FOR_EACH_ALLOCNO (a, ai)
2455 hard_regno = ALLOCNO_HARD_REGNO (a);
2456 ira_assert (hard_regno < 0
2457 || (ira_hard_reg_in_set_p
2458 (hard_regno, ALLOCNO_MODE (a),
2459 reg_class_contents[ALLOCNO_CLASS (a)])));
2460 if (hard_regno < 0)
2462 cost = ALLOCNO_MEMORY_COST (a);
2463 ira_mem_cost += cost;
2465 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2467 cost = (ALLOCNO_HARD_REG_COSTS (a)
2468 [ira_class_hard_reg_index
2469 [ALLOCNO_CLASS (a)][hard_regno]]);
2470 ira_reg_cost += cost;
2472 else
2474 cost = ALLOCNO_CLASS_COST (a);
2475 ira_reg_cost += cost;
2477 ira_overall_cost += cost;
2480 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2482 fprintf (ira_dump_file,
2483 "+++Costs: overall %" PRId64
2484 ", reg %" PRId64
2485 ", mem %" PRId64
2486 ", ld %" PRId64
2487 ", st %" PRId64
2488 ", move %" PRId64,
2489 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2490 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2491 fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
2492 ira_move_loops_num, ira_additional_jumps_num);
2497 #ifdef ENABLE_IRA_CHECKING
2498 /* Check the correctness of the allocation. We do need this because
2499 of complicated code to transform more one region internal
2500 representation into one region representation. */
2501 static void
2502 check_allocation (void)
2504 ira_allocno_t a;
2505 int hard_regno, nregs, conflict_nregs;
2506 ira_allocno_iterator ai;
2508 FOR_EACH_ALLOCNO (a, ai)
2510 int n = ALLOCNO_NUM_OBJECTS (a);
2511 int i;
2513 if (ALLOCNO_CAP_MEMBER (a) != NULL
2514 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2515 continue;
2516 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2517 if (nregs == 1)
2518 /* We allocated a single hard register. */
2519 n = 1;
2520 else if (n > 1)
2521 /* We allocated multiple hard registers, and we will test
2522 conflicts in a granularity of single hard regs. */
2523 nregs = 1;
2525 for (i = 0; i < n; i++)
2527 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2528 ira_object_t conflict_obj;
2529 ira_object_conflict_iterator oci;
2530 int this_regno = hard_regno;
2531 if (n > 1)
2533 if (REG_WORDS_BIG_ENDIAN)
2534 this_regno += n - i - 1;
2535 else
2536 this_regno += i;
2538 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2540 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2541 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2542 if (conflict_hard_regno < 0)
2543 continue;
2545 conflict_nregs
2546 = (hard_regno_nregs
2547 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2549 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2550 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2552 if (REG_WORDS_BIG_ENDIAN)
2553 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2554 - OBJECT_SUBWORD (conflict_obj) - 1);
2555 else
2556 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2557 conflict_nregs = 1;
2560 if ((conflict_hard_regno <= this_regno
2561 && this_regno < conflict_hard_regno + conflict_nregs)
2562 || (this_regno <= conflict_hard_regno
2563 && conflict_hard_regno < this_regno + nregs))
2565 fprintf (stderr, "bad allocation for %d and %d\n",
2566 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2567 gcc_unreachable ();
2573 #endif
2575 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2576 be already calculated. */
2577 static void
2578 setup_reg_equiv_init (void)
2580 int i;
2581 int max_regno = max_reg_num ();
2583 for (i = 0; i < max_regno; i++)
2584 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2587 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2588 are insns which were generated for such movement. It is assumed
2589 that FROM_REGNO and TO_REGNO always have the same value at the
2590 point of any move containing such registers. This function is used
2591 to update equiv info for register shuffles on the region borders
2592 and for caller save/restore insns. */
2593 void
2594 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2596 rtx_insn *insn;
2597 rtx x, note;
2599 if (! ira_reg_equiv[from_regno].defined_p
2600 && (! ira_reg_equiv[to_regno].defined_p
2601 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2602 && ! MEM_READONLY_P (x))))
2603 return;
2604 insn = insns;
2605 if (NEXT_INSN (insn) != NULL_RTX)
2607 if (! ira_reg_equiv[to_regno].defined_p)
2609 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2610 return;
2612 ira_reg_equiv[to_regno].defined_p = false;
2613 ira_reg_equiv[to_regno].memory
2614 = ira_reg_equiv[to_regno].constant
2615 = ira_reg_equiv[to_regno].invariant
2616 = ira_reg_equiv[to_regno].init_insns = NULL;
2617 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2618 fprintf (ira_dump_file,
2619 " Invalidating equiv info for reg %d\n", to_regno);
2620 return;
2622 /* It is possible that FROM_REGNO still has no equivalence because
2623 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2624 insn was not processed yet. */
2625 if (ira_reg_equiv[from_regno].defined_p)
2627 ira_reg_equiv[to_regno].defined_p = true;
2628 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2630 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2631 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2632 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2633 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2634 ira_reg_equiv[to_regno].memory = x;
2635 if (! MEM_READONLY_P (x))
2636 /* We don't add the insn to insn init list because memory
2637 equivalence is just to say what memory is better to use
2638 when the pseudo is spilled. */
2639 return;
2641 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2643 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2644 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2645 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2646 ira_reg_equiv[to_regno].constant = x;
2648 else
2650 x = ira_reg_equiv[from_regno].invariant;
2651 ira_assert (x != NULL_RTX);
2652 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2653 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2654 ira_reg_equiv[to_regno].invariant = x;
2656 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2658 note = set_unique_reg_note (insn, REG_EQUIV, x);
2659 gcc_assert (note != NULL_RTX);
2660 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2662 fprintf (ira_dump_file,
2663 " Adding equiv note to insn %u for reg %d ",
2664 INSN_UID (insn), to_regno);
2665 dump_value_slim (ira_dump_file, x, 1);
2666 fprintf (ira_dump_file, "\n");
2670 ira_reg_equiv[to_regno].init_insns
2671 = gen_rtx_INSN_LIST (VOIDmode, insn,
2672 ira_reg_equiv[to_regno].init_insns);
2673 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2674 fprintf (ira_dump_file,
2675 " Adding equiv init move insn %u to reg %d\n",
2676 INSN_UID (insn), to_regno);
2679 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2680 by IRA. */
2681 static void
2682 fix_reg_equiv_init (void)
2684 int max_regno = max_reg_num ();
2685 int i, new_regno, max;
2686 rtx set;
2687 rtx_insn_list *x, *next, *prev;
2688 rtx_insn *insn;
2690 if (max_regno_before_ira < max_regno)
2692 max = vec_safe_length (reg_equivs);
2693 grow_reg_equivs ();
2694 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2695 for (prev = NULL, x = reg_equiv_init (i);
2696 x != NULL_RTX;
2697 x = next)
2699 next = x->next ();
2700 insn = x->insn ();
2701 set = single_set (insn);
2702 ira_assert (set != NULL_RTX
2703 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2704 if (REG_P (SET_DEST (set))
2705 && ((int) REGNO (SET_DEST (set)) == i
2706 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2707 new_regno = REGNO (SET_DEST (set));
2708 else if (REG_P (SET_SRC (set))
2709 && ((int) REGNO (SET_SRC (set)) == i
2710 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2711 new_regno = REGNO (SET_SRC (set));
2712 else
2713 gcc_unreachable ();
2714 if (new_regno == i)
2715 prev = x;
2716 else
2718 /* Remove the wrong list element. */
2719 if (prev == NULL_RTX)
2720 reg_equiv_init (i) = next;
2721 else
2722 XEXP (prev, 1) = next;
2723 XEXP (x, 1) = reg_equiv_init (new_regno);
2724 reg_equiv_init (new_regno) = x;
2730 #ifdef ENABLE_IRA_CHECKING
2731 /* Print redundant memory-memory copies. */
2732 static void
2733 print_redundant_copies (void)
2735 int hard_regno;
2736 ira_allocno_t a;
2737 ira_copy_t cp, next_cp;
2738 ira_allocno_iterator ai;
2740 FOR_EACH_ALLOCNO (a, ai)
2742 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2743 /* It is a cap. */
2744 continue;
2745 hard_regno = ALLOCNO_HARD_REGNO (a);
2746 if (hard_regno >= 0)
2747 continue;
2748 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2749 if (cp->first == a)
2750 next_cp = cp->next_first_allocno_copy;
2751 else
2753 next_cp = cp->next_second_allocno_copy;
2754 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2755 && cp->insn != NULL_RTX
2756 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2757 fprintf (ira_dump_file,
2758 " Redundant move from %d(freq %d):%d\n",
2759 INSN_UID (cp->insn), cp->freq, hard_regno);
2763 #endif
2765 /* Setup preferred and alternative classes for new pseudo-registers
2766 created by IRA starting with START. */
2767 static void
2768 setup_preferred_alternate_classes_for_new_pseudos (int start)
2770 int i, old_regno;
2771 int max_regno = max_reg_num ();
2773 for (i = start; i < max_regno; i++)
2775 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2776 ira_assert (i != old_regno);
2777 setup_reg_classes (i, reg_preferred_class (old_regno),
2778 reg_alternate_class (old_regno),
2779 reg_allocno_class (old_regno));
2780 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2781 fprintf (ira_dump_file,
2782 " New r%d: setting preferred %s, alternative %s\n",
2783 i, reg_class_names[reg_preferred_class (old_regno)],
2784 reg_class_names[reg_alternate_class (old_regno)]);
2789 /* The number of entries allocated in reg_info. */
2790 static int allocated_reg_info_size;
2792 /* Regional allocation can create new pseudo-registers. This function
2793 expands some arrays for pseudo-registers. */
2794 static void
2795 expand_reg_info (void)
2797 int i;
2798 int size = max_reg_num ();
2800 resize_reg_info ();
2801 for (i = allocated_reg_info_size; i < size; i++)
2802 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2803 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2804 allocated_reg_info_size = size;
2807 /* Return TRUE if there is too high register pressure in the function.
2808 It is used to decide when stack slot sharing is worth to do. */
2809 static bool
2810 too_high_register_pressure_p (void)
2812 int i;
2813 enum reg_class pclass;
2815 for (i = 0; i < ira_pressure_classes_num; i++)
2817 pclass = ira_pressure_classes[i];
2818 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2819 return true;
2821 return false;
2826 /* Indicate that hard register number FROM was eliminated and replaced with
2827 an offset from hard register number TO. The status of hard registers live
2828 at the start of a basic block is updated by replacing a use of FROM with
2829 a use of TO. */
2831 void
2832 mark_elimination (int from, int to)
2834 basic_block bb;
2835 bitmap r;
2837 FOR_EACH_BB_FN (bb, cfun)
2839 r = DF_LR_IN (bb);
2840 if (bitmap_bit_p (r, from))
2842 bitmap_clear_bit (r, from);
2843 bitmap_set_bit (r, to);
2845 if (! df_live)
2846 continue;
2847 r = DF_LIVE_IN (bb);
2848 if (bitmap_bit_p (r, from))
2850 bitmap_clear_bit (r, from);
2851 bitmap_set_bit (r, to);
2858 /* The length of the following array. */
2859 int ira_reg_equiv_len;
2861 /* Info about equiv. info for each register. */
2862 struct ira_reg_equiv_s *ira_reg_equiv;
2864 /* Expand ira_reg_equiv if necessary. */
2865 void
2866 ira_expand_reg_equiv (void)
2868 int old = ira_reg_equiv_len;
2870 if (ira_reg_equiv_len > max_reg_num ())
2871 return;
2872 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2873 ira_reg_equiv
2874 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2875 ira_reg_equiv_len
2876 * sizeof (struct ira_reg_equiv_s));
2877 gcc_assert (old < ira_reg_equiv_len);
2878 memset (ira_reg_equiv + old, 0,
2879 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2882 static void
2883 init_reg_equiv (void)
2885 ira_reg_equiv_len = 0;
2886 ira_reg_equiv = NULL;
2887 ira_expand_reg_equiv ();
2890 static void
2891 finish_reg_equiv (void)
2893 free (ira_reg_equiv);
2898 struct equivalence
2900 /* Set when a REG_EQUIV note is found or created. Use to
2901 keep track of what memory accesses might be created later,
2902 e.g. by reload. */
2903 rtx replacement;
2904 rtx *src_p;
2906 /* The list of each instruction which initializes this register.
2908 NULL indicates we know nothing about this register's equivalence
2909 properties.
2911 An INSN_LIST with a NULL insn indicates this pseudo is already
2912 known to not have a valid equivalence. */
2913 rtx_insn_list *init_insns;
2915 /* Loop depth is used to recognize equivalences which appear
2916 to be present within the same loop (or in an inner loop). */
2917 short loop_depth;
2918 /* Nonzero if this had a preexisting REG_EQUIV note. */
2919 unsigned char is_arg_equivalence : 1;
2920 /* Set when an attempt should be made to replace a register
2921 with the associated src_p entry. */
2922 unsigned char replace : 1;
2923 /* Set if this register has no known equivalence. */
2924 unsigned char no_equiv : 1;
2927 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2928 structure for that register. */
2929 static struct equivalence *reg_equiv;
2931 /* Used for communication between the following two functions: contains
2932 a MEM that we wish to ensure remains unchanged. */
2933 static rtx equiv_mem;
2935 /* Set nonzero if EQUIV_MEM is modified. */
2936 static int equiv_mem_modified;
2938 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2939 Called via note_stores. */
2940 static void
2941 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2942 void *data ATTRIBUTE_UNUSED)
2944 if ((REG_P (dest)
2945 && reg_overlap_mentioned_p (dest, equiv_mem))
2946 || (MEM_P (dest)
2947 && anti_dependence (equiv_mem, dest)))
2948 equiv_mem_modified = 1;
2951 /* Verify that no store between START and the death of REG invalidates
2952 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2953 by storing into an overlapping memory location, or with a non-const
2954 CALL_INSN.
2956 Return 1 if MEMREF remains valid. */
2957 static int
2958 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2960 rtx_insn *insn;
2961 rtx note;
2963 equiv_mem = memref;
2964 equiv_mem_modified = 0;
2966 /* If the memory reference has side effects or is volatile, it isn't a
2967 valid equivalence. */
2968 if (side_effects_p (memref))
2969 return 0;
2971 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
2973 if (! INSN_P (insn))
2974 continue;
2976 if (find_reg_note (insn, REG_DEAD, reg))
2977 return 1;
2979 /* This used to ignore readonly memory and const/pure calls. The problem
2980 is the equivalent form may reference a pseudo which gets assigned a
2981 call clobbered hard reg. When we later replace REG with its
2982 equivalent form, the value in the call-clobbered reg has been
2983 changed and all hell breaks loose. */
2984 if (CALL_P (insn))
2985 return 0;
2987 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
2989 /* If a register mentioned in MEMREF is modified via an
2990 auto-increment, we lose the equivalence. Do the same if one
2991 dies; although we could extend the life, it doesn't seem worth
2992 the trouble. */
2994 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2995 if ((REG_NOTE_KIND (note) == REG_INC
2996 || REG_NOTE_KIND (note) == REG_DEAD)
2997 && REG_P (XEXP (note, 0))
2998 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
2999 return 0;
3002 return 0;
3005 /* Returns zero if X is known to be invariant. */
3006 static int
3007 equiv_init_varies_p (rtx x)
3009 RTX_CODE code = GET_CODE (x);
3010 int i;
3011 const char *fmt;
3013 switch (code)
3015 case MEM:
3016 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3018 case CONST:
3019 CASE_CONST_ANY:
3020 case SYMBOL_REF:
3021 case LABEL_REF:
3022 return 0;
3024 case REG:
3025 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3027 case ASM_OPERANDS:
3028 if (MEM_VOLATILE_P (x))
3029 return 1;
3031 /* Fall through. */
3033 default:
3034 break;
3037 fmt = GET_RTX_FORMAT (code);
3038 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3039 if (fmt[i] == 'e')
3041 if (equiv_init_varies_p (XEXP (x, i)))
3042 return 1;
3044 else if (fmt[i] == 'E')
3046 int j;
3047 for (j = 0; j < XVECLEN (x, i); j++)
3048 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3049 return 1;
3052 return 0;
3055 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3056 X is only movable if the registers it uses have equivalent initializations
3057 which appear to be within the same loop (or in an inner loop) and movable
3058 or if they are not candidates for local_alloc and don't vary. */
3059 static int
3060 equiv_init_movable_p (rtx x, int regno)
3062 int i, j;
3063 const char *fmt;
3064 enum rtx_code code = GET_CODE (x);
3066 switch (code)
3068 case SET:
3069 return equiv_init_movable_p (SET_SRC (x), regno);
3071 case CC0:
3072 case CLOBBER:
3073 return 0;
3075 case PRE_INC:
3076 case PRE_DEC:
3077 case POST_INC:
3078 case POST_DEC:
3079 case PRE_MODIFY:
3080 case POST_MODIFY:
3081 return 0;
3083 case REG:
3084 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3085 && reg_equiv[REGNO (x)].replace)
3086 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3087 && ! rtx_varies_p (x, 0)));
3089 case UNSPEC_VOLATILE:
3090 return 0;
3092 case ASM_OPERANDS:
3093 if (MEM_VOLATILE_P (x))
3094 return 0;
3096 /* Fall through. */
3098 default:
3099 break;
3102 fmt = GET_RTX_FORMAT (code);
3103 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3104 switch (fmt[i])
3106 case 'e':
3107 if (! equiv_init_movable_p (XEXP (x, i), regno))
3108 return 0;
3109 break;
3110 case 'E':
3111 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3112 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3113 return 0;
3114 break;
3117 return 1;
3120 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
3121 true. */
3122 static int
3123 contains_replace_regs (rtx x)
3125 int i, j;
3126 const char *fmt;
3127 enum rtx_code code = GET_CODE (x);
3129 switch (code)
3131 case CONST:
3132 case LABEL_REF:
3133 case SYMBOL_REF:
3134 CASE_CONST_ANY:
3135 case PC:
3136 case CC0:
3137 case HIGH:
3138 return 0;
3140 case REG:
3141 return reg_equiv[REGNO (x)].replace;
3143 default:
3144 break;
3147 fmt = GET_RTX_FORMAT (code);
3148 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3149 switch (fmt[i])
3151 case 'e':
3152 if (contains_replace_regs (XEXP (x, i)))
3153 return 1;
3154 break;
3155 case 'E':
3156 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3157 if (contains_replace_regs (XVECEXP (x, i, j)))
3158 return 1;
3159 break;
3162 return 0;
3165 /* TRUE if X references a memory location that would be affected by a store
3166 to MEMREF. */
3167 static int
3168 memref_referenced_p (rtx memref, rtx x)
3170 int i, j;
3171 const char *fmt;
3172 enum rtx_code code = GET_CODE (x);
3174 switch (code)
3176 case CONST:
3177 case LABEL_REF:
3178 case SYMBOL_REF:
3179 CASE_CONST_ANY:
3180 case PC:
3181 case CC0:
3182 case HIGH:
3183 case LO_SUM:
3184 return 0;
3186 case REG:
3187 return (reg_equiv[REGNO (x)].replacement
3188 && memref_referenced_p (memref,
3189 reg_equiv[REGNO (x)].replacement));
3191 case MEM:
3192 if (true_dependence (memref, VOIDmode, x))
3193 return 1;
3194 break;
3196 case SET:
3197 /* If we are setting a MEM, it doesn't count (its address does), but any
3198 other SET_DEST that has a MEM in it is referencing the MEM. */
3199 if (MEM_P (SET_DEST (x)))
3201 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3202 return 1;
3204 else if (memref_referenced_p (memref, SET_DEST (x)))
3205 return 1;
3207 return memref_referenced_p (memref, SET_SRC (x));
3209 default:
3210 break;
3213 fmt = GET_RTX_FORMAT (code);
3214 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3215 switch (fmt[i])
3217 case 'e':
3218 if (memref_referenced_p (memref, XEXP (x, i)))
3219 return 1;
3220 break;
3221 case 'E':
3222 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3223 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3224 return 1;
3225 break;
3228 return 0;
3231 /* TRUE if some insn in the range (START, END] references a memory location
3232 that would be affected by a store to MEMREF. */
3233 static int
3234 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3236 rtx_insn *insn;
3238 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
3239 insn = NEXT_INSN (insn))
3241 if (!NONDEBUG_INSN_P (insn))
3242 continue;
3244 if (memref_referenced_p (memref, PATTERN (insn)))
3245 return 1;
3247 /* Nonconst functions may access memory. */
3248 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3249 return 1;
3252 return 0;
3255 /* Mark REG as having no known equivalence.
3256 Some instructions might have been processed before and furnished
3257 with REG_EQUIV notes for this register; these notes will have to be
3258 removed.
3259 STORE is the piece of RTL that does the non-constant / conflicting
3260 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3261 but needs to be there because this function is called from note_stores. */
3262 static void
3263 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3264 void *data ATTRIBUTE_UNUSED)
3266 int regno;
3267 rtx_insn_list *list;
3269 if (!REG_P (reg))
3270 return;
3271 regno = REGNO (reg);
3272 reg_equiv[regno].no_equiv = 1;
3273 list = reg_equiv[regno].init_insns;
3274 if (list && list->insn () == NULL)
3275 return;
3276 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3277 reg_equiv[regno].replacement = NULL_RTX;
3278 /* This doesn't matter for equivalences made for argument registers, we
3279 should keep their initialization insns. */
3280 if (reg_equiv[regno].is_arg_equivalence)
3281 return;
3282 ira_reg_equiv[regno].defined_p = false;
3283 ira_reg_equiv[regno].init_insns = NULL;
3284 for (; list; list = list->next ())
3286 rtx_insn *insn = list->insn ();
3287 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3291 /* Check whether the SUBREG is a paradoxical subreg and set the result
3292 in PDX_SUBREGS. */
3294 static void
3295 set_paradoxical_subreg (rtx_insn *insn, bool *pdx_subregs)
3297 subrtx_iterator::array_type array;
3298 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3300 const_rtx subreg = *iter;
3301 if (GET_CODE (subreg) == SUBREG)
3303 const_rtx reg = SUBREG_REG (subreg);
3304 if (REG_P (reg) && paradoxical_subreg_p (subreg))
3305 pdx_subregs[REGNO (reg)] = true;
3310 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3311 equivalent replacement. */
3313 static rtx
3314 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3316 if (REG_P (loc))
3318 bitmap cleared_regs = (bitmap) data;
3319 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3320 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3321 NULL_RTX, adjust_cleared_regs, data);
3323 return NULL_RTX;
3326 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
3327 static int recorded_label_ref;
3329 /* Find registers that are equivalent to a single value throughout the
3330 compilation (either because they can be referenced in memory or are
3331 set once from a single constant). Lower their priority for a
3332 register.
3334 If such a register is only referenced once, try substituting its
3335 value into the using insn. If it succeeds, we can eliminate the
3336 register completely.
3338 Initialize init_insns in ira_reg_equiv array.
3340 Return non-zero if jump label rebuilding should be done. */
3341 static int
3342 update_equiv_regs (void)
3344 rtx_insn *insn;
3345 basic_block bb;
3346 int loop_depth;
3347 bitmap cleared_regs;
3348 bool *pdx_subregs;
3350 /* We need to keep track of whether or not we recorded a LABEL_REF so
3351 that we know if the jump optimizer needs to be rerun. */
3352 recorded_label_ref = 0;
3354 /* Use pdx_subregs to show whether a reg is used in a paradoxical
3355 subreg. */
3356 pdx_subregs = XCNEWVEC (bool, max_regno);
3358 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
3359 grow_reg_equivs ();
3361 init_alias_analysis ();
3363 /* Scan insns and set pdx_subregs[regno] if the reg is used in a
3364 paradoxical subreg. Don't set such reg equivalent to a mem,
3365 because lra will not substitute such equiv memory in order to
3366 prevent access beyond allocated memory for paradoxical memory subreg. */
3367 FOR_EACH_BB_FN (bb, cfun)
3368 FOR_BB_INSNS (bb, insn)
3369 if (NONDEBUG_INSN_P (insn))
3370 set_paradoxical_subreg (insn, pdx_subregs);
3372 /* Scan the insns and find which registers have equivalences. Do this
3373 in a separate scan of the insns because (due to -fcse-follow-jumps)
3374 a register can be set below its use. */
3375 FOR_EACH_BB_FN (bb, cfun)
3377 loop_depth = bb_loop_depth (bb);
3379 for (insn = BB_HEAD (bb);
3380 insn != NEXT_INSN (BB_END (bb));
3381 insn = NEXT_INSN (insn))
3383 rtx note;
3384 rtx set;
3385 rtx dest, src;
3386 int regno;
3388 if (! INSN_P (insn))
3389 continue;
3391 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3392 if (REG_NOTE_KIND (note) == REG_INC)
3393 no_equiv (XEXP (note, 0), note, NULL);
3395 set = single_set (insn);
3397 /* If this insn contains more (or less) than a single SET,
3398 only mark all destinations as having no known equivalence. */
3399 if (set == NULL_RTX)
3401 note_stores (PATTERN (insn), no_equiv, NULL);
3402 continue;
3404 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3406 int i;
3408 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3410 rtx part = XVECEXP (PATTERN (insn), 0, i);
3411 if (part != set)
3412 note_stores (part, no_equiv, NULL);
3416 dest = SET_DEST (set);
3417 src = SET_SRC (set);
3419 /* See if this is setting up the equivalence between an argument
3420 register and its stack slot. */
3421 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3422 if (note)
3424 gcc_assert (REG_P (dest));
3425 regno = REGNO (dest);
3427 /* Note that we don't want to clear init_insns in
3428 ira_reg_equiv even if there are multiple sets of this
3429 register. */
3430 reg_equiv[regno].is_arg_equivalence = 1;
3432 /* The insn result can have equivalence memory although
3433 the equivalence is not set up by the insn. We add
3434 this insn to init insns as it is a flag for now that
3435 regno has an equivalence. We will remove the insn
3436 from init insn list later. */
3437 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3438 ira_reg_equiv[regno].init_insns
3439 = gen_rtx_INSN_LIST (VOIDmode, insn,
3440 ira_reg_equiv[regno].init_insns);
3442 /* Continue normally in case this is a candidate for
3443 replacements. */
3446 if (!optimize)
3447 continue;
3449 /* We only handle the case of a pseudo register being set
3450 once, or always to the same value. */
3451 /* ??? The mn10200 port breaks if we add equivalences for
3452 values that need an ADDRESS_REGS register and set them equivalent
3453 to a MEM of a pseudo. The actual problem is in the over-conservative
3454 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3455 calculate_needs, but we traditionally work around this problem
3456 here by rejecting equivalences when the destination is in a register
3457 that's likely spilled. This is fragile, of course, since the
3458 preferred class of a pseudo depends on all instructions that set
3459 or use it. */
3461 if (!REG_P (dest)
3462 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3463 || (reg_equiv[regno].init_insns
3464 && reg_equiv[regno].init_insns->insn () == NULL)
3465 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3466 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3468 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3469 also set somewhere else to a constant. */
3470 note_stores (set, no_equiv, NULL);
3471 continue;
3474 /* Don't set reg (if pdx_subregs[regno] == true) equivalent to a mem. */
3475 if (MEM_P (src) && pdx_subregs[regno])
3477 note_stores (set, no_equiv, NULL);
3478 continue;
3481 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3483 /* cse sometimes generates function invariants, but doesn't put a
3484 REG_EQUAL note on the insn. Since this note would be redundant,
3485 there's no point creating it earlier than here. */
3486 if (! note && ! rtx_varies_p (src, 0))
3487 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3489 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3490 since it represents a function call. */
3491 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3492 note = NULL_RTX;
3494 if (DF_REG_DEF_COUNT (regno) != 1)
3496 bool equal_p = true;
3497 rtx_insn_list *list;
3499 /* If we have already processed this pseudo and determined it
3500 can not have an equivalence, then honor that decision. */
3501 if (reg_equiv[regno].no_equiv)
3502 continue;
3504 if (! note
3505 || rtx_varies_p (XEXP (note, 0), 0)
3506 || (reg_equiv[regno].replacement
3507 && ! rtx_equal_p (XEXP (note, 0),
3508 reg_equiv[regno].replacement)))
3510 no_equiv (dest, set, NULL);
3511 continue;
3514 list = reg_equiv[regno].init_insns;
3515 for (; list; list = list->next ())
3517 rtx note_tmp;
3518 rtx_insn *insn_tmp;
3520 insn_tmp = list->insn ();
3521 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3522 gcc_assert (note_tmp);
3523 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3525 equal_p = false;
3526 break;
3530 if (! equal_p)
3532 no_equiv (dest, set, NULL);
3533 continue;
3537 /* Record this insn as initializing this register. */
3538 reg_equiv[regno].init_insns
3539 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3541 /* If this register is known to be equal to a constant, record that
3542 it is always equivalent to the constant. */
3543 if (DF_REG_DEF_COUNT (regno) == 1
3544 && note && ! rtx_varies_p (XEXP (note, 0), 0))
3546 rtx note_value = XEXP (note, 0);
3547 remove_note (insn, note);
3548 set_unique_reg_note (insn, REG_EQUIV, note_value);
3551 /* If this insn introduces a "constant" register, decrease the priority
3552 of that register. Record this insn if the register is only used once
3553 more and the equivalence value is the same as our source.
3555 The latter condition is checked for two reasons: First, it is an
3556 indication that it may be more efficient to actually emit the insn
3557 as written (if no registers are available, reload will substitute
3558 the equivalence). Secondly, it avoids problems with any registers
3559 dying in this insn whose death notes would be missed.
3561 If we don't have a REG_EQUIV note, see if this insn is loading
3562 a register used only in one basic block from a MEM. If so, and the
3563 MEM remains unchanged for the life of the register, add a REG_EQUIV
3564 note. */
3565 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3567 if (note == NULL_RTX && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3568 && MEM_P (SET_SRC (set))
3569 && validate_equiv_mem (insn, dest, SET_SRC (set)))
3570 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
3572 if (note)
3574 int regno = REGNO (dest);
3575 rtx x = XEXP (note, 0);
3577 /* If we haven't done so, record for reload that this is an
3578 equivalencing insn. */
3579 if (!reg_equiv[regno].is_arg_equivalence)
3580 ira_reg_equiv[regno].init_insns
3581 = gen_rtx_INSN_LIST (VOIDmode, insn,
3582 ira_reg_equiv[regno].init_insns);
3584 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
3585 We might end up substituting the LABEL_REF for uses of the
3586 pseudo here or later. That kind of transformation may turn an
3587 indirect jump into a direct jump, in which case we must rerun the
3588 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
3589 if (GET_CODE (x) == LABEL_REF
3590 || (GET_CODE (x) == CONST
3591 && GET_CODE (XEXP (x, 0)) == PLUS
3592 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
3593 recorded_label_ref = 1;
3595 reg_equiv[regno].replacement = x;
3596 reg_equiv[regno].src_p = &SET_SRC (set);
3597 reg_equiv[regno].loop_depth = (short) loop_depth;
3599 /* Don't mess with things live during setjmp. */
3600 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
3602 /* Note that the statement below does not affect the priority
3603 in local-alloc! */
3604 REG_LIVE_LENGTH (regno) *= 2;
3606 /* If the register is referenced exactly twice, meaning it is
3607 set once and used once, indicate that the reference may be
3608 replaced by the equivalence we computed above. Do this
3609 even if the register is only used in one block so that
3610 dependencies can be handled where the last register is
3611 used in a different block (i.e. HIGH / LO_SUM sequences)
3612 and to reduce the number of registers alive across
3613 calls. */
3615 if (REG_N_REFS (regno) == 2
3616 && (rtx_equal_p (x, src)
3617 || ! equiv_init_varies_p (src))
3618 && NONJUMP_INSN_P (insn)
3619 && equiv_init_movable_p (PATTERN (insn), regno))
3620 reg_equiv[regno].replace = 1;
3626 if (!optimize)
3627 goto out;
3629 /* A second pass, to gather additional equivalences with memory. This needs
3630 to be done after we know which registers we are going to replace. */
3632 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3634 rtx set, src, dest;
3635 unsigned regno;
3637 if (! INSN_P (insn))
3638 continue;
3640 set = single_set (insn);
3641 if (! set)
3642 continue;
3644 dest = SET_DEST (set);
3645 src = SET_SRC (set);
3647 /* If this sets a MEM to the contents of a REG that is only used
3648 in a single basic block, see if the register is always equivalent
3649 to that memory location and if moving the store from INSN to the
3650 insn that set REG is safe. If so, put a REG_EQUIV note on the
3651 initializing insn.
3653 Don't add a REG_EQUIV note if the insn already has one. The existing
3654 REG_EQUIV is likely more useful than the one we are adding.
3656 If one of the regs in the address has reg_equiv[REGNO].replace set,
3657 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
3658 optimization may move the set of this register immediately before
3659 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
3660 the mention in the REG_EQUIV note would be to an uninitialized
3661 pseudo. */
3663 if (MEM_P (dest) && REG_P (src)
3664 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3665 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3666 && DF_REG_DEF_COUNT (regno) == 1
3667 && reg_equiv[regno].init_insns != NULL
3668 && reg_equiv[regno].init_insns->insn () != NULL
3669 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
3670 REG_EQUIV, NULL_RTX)
3671 && ! contains_replace_regs (XEXP (dest, 0))
3672 && ! pdx_subregs[regno])
3674 rtx_insn *init_insn =
3675 as_a <rtx_insn *> (XEXP (reg_equiv[regno].init_insns, 0));
3676 if (validate_equiv_mem (init_insn, src, dest)
3677 && ! memref_used_between_p (dest, init_insn, insn)
3678 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3679 multiple sets. */
3680 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3682 /* This insn makes the equivalence, not the one initializing
3683 the register. */
3684 ira_reg_equiv[regno].init_insns
3685 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3686 df_notes_rescan (init_insn);
3691 cleared_regs = BITMAP_ALLOC (NULL);
3692 /* Now scan all regs killed in an insn to see if any of them are
3693 registers only used that once. If so, see if we can replace the
3694 reference with the equivalent form. If we can, delete the
3695 initializing reference and this register will go away. If we
3696 can't replace the reference, and the initializing reference is
3697 within the same loop (or in an inner loop), then move the register
3698 initialization just before the use, so that they are in the same
3699 basic block. */
3700 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3702 loop_depth = bb_loop_depth (bb);
3703 for (insn = BB_END (bb);
3704 insn != PREV_INSN (BB_HEAD (bb));
3705 insn = PREV_INSN (insn))
3707 rtx link;
3709 if (! INSN_P (insn))
3710 continue;
3712 /* Don't substitute into a non-local goto, this confuses CFG. */
3713 if (JUMP_P (insn)
3714 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3715 continue;
3717 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
3719 if (REG_NOTE_KIND (link) == REG_DEAD
3720 /* Make sure this insn still refers to the register. */
3721 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
3723 int regno = REGNO (XEXP (link, 0));
3724 rtx equiv_insn;
3726 if (! reg_equiv[regno].replace
3727 || reg_equiv[regno].loop_depth < (short) loop_depth
3728 /* There is no sense to move insns if live range
3729 shrinkage or register pressure-sensitive
3730 scheduling were done because it will not
3731 improve allocation but worsen insn schedule
3732 with a big probability. */
3733 || flag_live_range_shrinkage
3734 || (flag_sched_pressure && flag_schedule_insns))
3735 continue;
3737 /* reg_equiv[REGNO].replace gets set only when
3738 REG_N_REFS[REGNO] is 2, i.e. the register is set
3739 once and used once. (If it were only set, but
3740 not used, flow would have deleted the setting
3741 insns.) Hence there can only be one insn in
3742 reg_equiv[REGNO].init_insns. */
3743 gcc_assert (reg_equiv[regno].init_insns
3744 && !XEXP (reg_equiv[regno].init_insns, 1));
3745 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
3747 /* We may not move instructions that can throw, since
3748 that changes basic block boundaries and we are not
3749 prepared to adjust the CFG to match. */
3750 if (can_throw_internal (equiv_insn))
3751 continue;
3753 if (asm_noperands (PATTERN (equiv_insn)) < 0
3754 && validate_replace_rtx (regno_reg_rtx[regno],
3755 *(reg_equiv[regno].src_p), insn))
3757 rtx equiv_link;
3758 rtx last_link;
3759 rtx note;
3761 /* Find the last note. */
3762 for (last_link = link; XEXP (last_link, 1);
3763 last_link = XEXP (last_link, 1))
3766 /* Append the REG_DEAD notes from equiv_insn. */
3767 equiv_link = REG_NOTES (equiv_insn);
3768 while (equiv_link)
3770 note = equiv_link;
3771 equiv_link = XEXP (equiv_link, 1);
3772 if (REG_NOTE_KIND (note) == REG_DEAD)
3774 remove_note (equiv_insn, note);
3775 XEXP (last_link, 1) = note;
3776 XEXP (note, 1) = NULL_RTX;
3777 last_link = note;
3781 remove_death (regno, insn);
3782 SET_REG_N_REFS (regno, 0);
3783 REG_FREQ (regno) = 0;
3784 delete_insn (equiv_insn);
3786 reg_equiv[regno].init_insns
3787 = reg_equiv[regno].init_insns->next ();
3789 ira_reg_equiv[regno].init_insns = NULL;
3790 bitmap_set_bit (cleared_regs, regno);
3792 /* Move the initialization of the register to just before
3793 INSN. Update the flow information. */
3794 else if (prev_nondebug_insn (insn) != equiv_insn)
3796 rtx_insn *new_insn;
3798 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
3799 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
3800 REG_NOTES (equiv_insn) = 0;
3801 /* Rescan it to process the notes. */
3802 df_insn_rescan (new_insn);
3804 /* Make sure this insn is recognized before
3805 reload begins, otherwise
3806 eliminate_regs_in_insn will die. */
3807 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
3809 delete_insn (equiv_insn);
3811 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3813 REG_BASIC_BLOCK (regno) = bb->index;
3814 REG_N_CALLS_CROSSED (regno) = 0;
3815 REG_FREQ_CALLS_CROSSED (regno) = 0;
3816 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
3817 REG_LIVE_LENGTH (regno) = 2;
3819 if (insn == BB_HEAD (bb))
3820 BB_HEAD (bb) = PREV_INSN (insn);
3822 ira_reg_equiv[regno].init_insns
3823 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3824 bitmap_set_bit (cleared_regs, regno);
3831 if (!bitmap_empty_p (cleared_regs))
3833 FOR_EACH_BB_FN (bb, cfun)
3835 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3836 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3837 if (! df_live)
3838 continue;
3839 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3840 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3843 /* Last pass - adjust debug insns referencing cleared regs. */
3844 if (MAY_HAVE_DEBUG_INSNS)
3845 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3846 if (DEBUG_INSN_P (insn))
3848 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3849 INSN_VAR_LOCATION_LOC (insn)
3850 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3851 adjust_cleared_regs,
3852 (void *) cleared_regs);
3853 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3854 df_insn_rescan (insn);
3858 BITMAP_FREE (cleared_regs);
3860 out:
3861 /* Clean up. */
3863 end_alias_analysis ();
3864 free (reg_equiv);
3865 free (pdx_subregs);
3866 return recorded_label_ref;
3871 /* Set up fields memory, constant, and invariant from init_insns in
3872 the structures of array ira_reg_equiv. */
3873 static void
3874 setup_reg_equiv (void)
3876 int i;
3877 rtx_insn_list *elem, *prev_elem, *next_elem;
3878 rtx_insn *insn;
3879 rtx set, x;
3881 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3882 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3883 elem;
3884 prev_elem = elem, elem = next_elem)
3886 next_elem = elem->next ();
3887 insn = elem->insn ();
3888 set = single_set (insn);
3890 /* Init insns can set up equivalence when the reg is a destination or
3891 a source (in this case the destination is memory). */
3892 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3894 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3896 x = XEXP (x, 0);
3897 if (REG_P (SET_DEST (set))
3898 && REGNO (SET_DEST (set)) == (unsigned int) i
3899 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3901 /* This insn reporting the equivalence but
3902 actually not setting it. Remove it from the
3903 list. */
3904 if (prev_elem == NULL)
3905 ira_reg_equiv[i].init_insns = next_elem;
3906 else
3907 XEXP (prev_elem, 1) = next_elem;
3908 elem = prev_elem;
3911 else if (REG_P (SET_DEST (set))
3912 && REGNO (SET_DEST (set)) == (unsigned int) i)
3913 x = SET_SRC (set);
3914 else
3916 gcc_assert (REG_P (SET_SRC (set))
3917 && REGNO (SET_SRC (set)) == (unsigned int) i);
3918 x = SET_DEST (set);
3920 if (! function_invariant_p (x)
3921 || ! flag_pic
3922 /* A function invariant is often CONSTANT_P but may
3923 include a register. We promise to only pass
3924 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3925 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3927 /* It can happen that a REG_EQUIV note contains a MEM
3928 that is not a legitimate memory operand. As later
3929 stages of reload assume that all addresses found in
3930 the lra_regno_equiv_* arrays were originally
3931 legitimate, we ignore such REG_EQUIV notes. */
3932 if (memory_operand (x, VOIDmode))
3934 ira_reg_equiv[i].defined_p = true;
3935 ira_reg_equiv[i].memory = x;
3936 continue;
3938 else if (function_invariant_p (x))
3940 machine_mode mode;
3942 mode = GET_MODE (SET_DEST (set));
3943 if (GET_CODE (x) == PLUS
3944 || x == frame_pointer_rtx || x == arg_pointer_rtx)
3945 /* This is PLUS of frame pointer and a constant,
3946 or fp, or argp. */
3947 ira_reg_equiv[i].invariant = x;
3948 else if (targetm.legitimate_constant_p (mode, x))
3949 ira_reg_equiv[i].constant = x;
3950 else
3952 ira_reg_equiv[i].memory = force_const_mem (mode, x);
3953 if (ira_reg_equiv[i].memory == NULL_RTX)
3955 ira_reg_equiv[i].defined_p = false;
3956 ira_reg_equiv[i].init_insns = NULL;
3957 break;
3960 ira_reg_equiv[i].defined_p = true;
3961 continue;
3965 ira_reg_equiv[i].defined_p = false;
3966 ira_reg_equiv[i].init_insns = NULL;
3967 break;
3973 /* Print chain C to FILE. */
3974 static void
3975 print_insn_chain (FILE *file, struct insn_chain *c)
3977 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
3978 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
3979 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
3983 /* Print all reload_insn_chains to FILE. */
3984 static void
3985 print_insn_chains (FILE *file)
3987 struct insn_chain *c;
3988 for (c = reload_insn_chain; c ; c = c->next)
3989 print_insn_chain (file, c);
3992 /* Return true if pseudo REGNO should be added to set live_throughout
3993 or dead_or_set of the insn chains for reload consideration. */
3994 static bool
3995 pseudo_for_reload_consideration_p (int regno)
3997 /* Consider spilled pseudos too for IRA because they still have a
3998 chance to get hard-registers in the reload when IRA is used. */
3999 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
4002 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
4003 REG to the number of nregs, and INIT_VALUE to get the
4004 initialization. ALLOCNUM need not be the regno of REG. */
4005 static void
4006 init_live_subregs (bool init_value, sbitmap *live_subregs,
4007 bitmap live_subregs_used, int allocnum, rtx reg)
4009 unsigned int regno = REGNO (SUBREG_REG (reg));
4010 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
4012 gcc_assert (size > 0);
4014 /* Been there, done that. */
4015 if (bitmap_bit_p (live_subregs_used, allocnum))
4016 return;
4018 /* Create a new one. */
4019 if (live_subregs[allocnum] == NULL)
4020 live_subregs[allocnum] = sbitmap_alloc (size);
4022 /* If the entire reg was live before blasting into subregs, we need
4023 to init all of the subregs to ones else init to 0. */
4024 if (init_value)
4025 bitmap_ones (live_subregs[allocnum]);
4026 else
4027 bitmap_clear (live_subregs[allocnum]);
4029 bitmap_set_bit (live_subregs_used, allocnum);
4032 /* Walk the insns of the current function and build reload_insn_chain,
4033 and record register life information. */
4034 static void
4035 build_insn_chain (void)
4037 unsigned int i;
4038 struct insn_chain **p = &reload_insn_chain;
4039 basic_block bb;
4040 struct insn_chain *c = NULL;
4041 struct insn_chain *next = NULL;
4042 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
4043 bitmap elim_regset = BITMAP_ALLOC (NULL);
4044 /* live_subregs is a vector used to keep accurate information about
4045 which hardregs are live in multiword pseudos. live_subregs and
4046 live_subregs_used are indexed by pseudo number. The live_subreg
4047 entry for a particular pseudo is only used if the corresponding
4048 element is non zero in live_subregs_used. The sbitmap size of
4049 live_subreg[allocno] is number of bytes that the pseudo can
4050 occupy. */
4051 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4052 bitmap live_subregs_used = BITMAP_ALLOC (NULL);
4054 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4055 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4056 bitmap_set_bit (elim_regset, i);
4057 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4059 bitmap_iterator bi;
4060 rtx_insn *insn;
4062 CLEAR_REG_SET (live_relevant_regs);
4063 bitmap_clear (live_subregs_used);
4065 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4067 if (i >= FIRST_PSEUDO_REGISTER)
4068 break;
4069 bitmap_set_bit (live_relevant_regs, i);
4072 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4073 FIRST_PSEUDO_REGISTER, i, bi)
4075 if (pseudo_for_reload_consideration_p (i))
4076 bitmap_set_bit (live_relevant_regs, i);
4079 FOR_BB_INSNS_REVERSE (bb, insn)
4081 if (!NOTE_P (insn) && !BARRIER_P (insn))
4083 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4084 df_ref def, use;
4086 c = new_insn_chain ();
4087 c->next = next;
4088 next = c;
4089 *p = c;
4090 p = &c->prev;
4092 c->insn = insn;
4093 c->block = bb->index;
4095 if (NONDEBUG_INSN_P (insn))
4096 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4098 unsigned int regno = DF_REF_REGNO (def);
4100 /* Ignore may clobbers because these are generated
4101 from calls. However, every other kind of def is
4102 added to dead_or_set. */
4103 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4105 if (regno < FIRST_PSEUDO_REGISTER)
4107 if (!fixed_regs[regno])
4108 bitmap_set_bit (&c->dead_or_set, regno);
4110 else if (pseudo_for_reload_consideration_p (regno))
4111 bitmap_set_bit (&c->dead_or_set, regno);
4114 if ((regno < FIRST_PSEUDO_REGISTER
4115 || reg_renumber[regno] >= 0
4116 || ira_conflicts_p)
4117 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4119 rtx reg = DF_REF_REG (def);
4121 /* We can model subregs, but not if they are
4122 wrapped in ZERO_EXTRACTS. */
4123 if (GET_CODE (reg) == SUBREG
4124 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
4126 unsigned int start = SUBREG_BYTE (reg);
4127 unsigned int last = start
4128 + GET_MODE_SIZE (GET_MODE (reg));
4130 init_live_subregs
4131 (bitmap_bit_p (live_relevant_regs, regno),
4132 live_subregs, live_subregs_used, regno, reg);
4134 if (!DF_REF_FLAGS_IS_SET
4135 (def, DF_REF_STRICT_LOW_PART))
4137 /* Expand the range to cover entire words.
4138 Bytes added here are "don't care". */
4139 start
4140 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4141 last = ((last + UNITS_PER_WORD - 1)
4142 / UNITS_PER_WORD * UNITS_PER_WORD);
4145 /* Ignore the paradoxical bits. */
4146 if (last > SBITMAP_SIZE (live_subregs[regno]))
4147 last = SBITMAP_SIZE (live_subregs[regno]);
4149 while (start < last)
4151 bitmap_clear_bit (live_subregs[regno], start);
4152 start++;
4155 if (bitmap_empty_p (live_subregs[regno]))
4157 bitmap_clear_bit (live_subregs_used, regno);
4158 bitmap_clear_bit (live_relevant_regs, regno);
4160 else
4161 /* Set live_relevant_regs here because
4162 that bit has to be true to get us to
4163 look at the live_subregs fields. */
4164 bitmap_set_bit (live_relevant_regs, regno);
4166 else
4168 /* DF_REF_PARTIAL is generated for
4169 subregs, STRICT_LOW_PART, and
4170 ZERO_EXTRACT. We handle the subreg
4171 case above so here we have to keep from
4172 modeling the def as a killing def. */
4173 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4175 bitmap_clear_bit (live_subregs_used, regno);
4176 bitmap_clear_bit (live_relevant_regs, regno);
4182 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4183 bitmap_copy (&c->live_throughout, live_relevant_regs);
4185 if (NONDEBUG_INSN_P (insn))
4186 FOR_EACH_INSN_INFO_USE (use, insn_info)
4188 unsigned int regno = DF_REF_REGNO (use);
4189 rtx reg = DF_REF_REG (use);
4191 /* DF_REF_READ_WRITE on a use means that this use
4192 is fabricated from a def that is a partial set
4193 to a multiword reg. Here, we only model the
4194 subreg case that is not wrapped in ZERO_EXTRACT
4195 precisely so we do not need to look at the
4196 fabricated use. */
4197 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4198 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4199 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4200 continue;
4202 /* Add the last use of each var to dead_or_set. */
4203 if (!bitmap_bit_p (live_relevant_regs, regno))
4205 if (regno < FIRST_PSEUDO_REGISTER)
4207 if (!fixed_regs[regno])
4208 bitmap_set_bit (&c->dead_or_set, regno);
4210 else if (pseudo_for_reload_consideration_p (regno))
4211 bitmap_set_bit (&c->dead_or_set, regno);
4214 if (regno < FIRST_PSEUDO_REGISTER
4215 || pseudo_for_reload_consideration_p (regno))
4217 if (GET_CODE (reg) == SUBREG
4218 && !DF_REF_FLAGS_IS_SET (use,
4219 DF_REF_SIGN_EXTRACT
4220 | DF_REF_ZERO_EXTRACT))
4222 unsigned int start = SUBREG_BYTE (reg);
4223 unsigned int last = start
4224 + GET_MODE_SIZE (GET_MODE (reg));
4226 init_live_subregs
4227 (bitmap_bit_p (live_relevant_regs, regno),
4228 live_subregs, live_subregs_used, regno, reg);
4230 /* Ignore the paradoxical bits. */
4231 if (last > SBITMAP_SIZE (live_subregs[regno]))
4232 last = SBITMAP_SIZE (live_subregs[regno]);
4234 while (start < last)
4236 bitmap_set_bit (live_subregs[regno], start);
4237 start++;
4240 else
4241 /* Resetting the live_subregs_used is
4242 effectively saying do not use the subregs
4243 because we are reading the whole
4244 pseudo. */
4245 bitmap_clear_bit (live_subregs_used, regno);
4246 bitmap_set_bit (live_relevant_regs, regno);
4252 /* FIXME!! The following code is a disaster. Reload needs to see the
4253 labels and jump tables that are just hanging out in between
4254 the basic blocks. See pr33676. */
4255 insn = BB_HEAD (bb);
4257 /* Skip over the barriers and cruft. */
4258 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4259 || BLOCK_FOR_INSN (insn) == bb))
4260 insn = PREV_INSN (insn);
4262 /* While we add anything except barriers and notes, the focus is
4263 to get the labels and jump tables into the
4264 reload_insn_chain. */
4265 while (insn)
4267 if (!NOTE_P (insn) && !BARRIER_P (insn))
4269 if (BLOCK_FOR_INSN (insn))
4270 break;
4272 c = new_insn_chain ();
4273 c->next = next;
4274 next = c;
4275 *p = c;
4276 p = &c->prev;
4278 /* The block makes no sense here, but it is what the old
4279 code did. */
4280 c->block = bb->index;
4281 c->insn = insn;
4282 bitmap_copy (&c->live_throughout, live_relevant_regs);
4284 insn = PREV_INSN (insn);
4288 reload_insn_chain = c;
4289 *p = NULL;
4291 for (i = 0; i < (unsigned int) max_regno; i++)
4292 if (live_subregs[i] != NULL)
4293 sbitmap_free (live_subregs[i]);
4294 free (live_subregs);
4295 BITMAP_FREE (live_subregs_used);
4296 BITMAP_FREE (live_relevant_regs);
4297 BITMAP_FREE (elim_regset);
4299 if (dump_file)
4300 print_insn_chains (dump_file);
4303 /* Examine the rtx found in *LOC, which is read or written to as determined
4304 by TYPE. Return false if we find a reason why an insn containing this
4305 rtx should not be moved (such as accesses to non-constant memory), true
4306 otherwise. */
4307 static bool
4308 rtx_moveable_p (rtx *loc, enum op_type type)
4310 const char *fmt;
4311 rtx x = *loc;
4312 enum rtx_code code = GET_CODE (x);
4313 int i, j;
4315 code = GET_CODE (x);
4316 switch (code)
4318 case CONST:
4319 CASE_CONST_ANY:
4320 case SYMBOL_REF:
4321 case LABEL_REF:
4322 return true;
4324 case PC:
4325 return type == OP_IN;
4327 case CC0:
4328 return false;
4330 case REG:
4331 if (x == frame_pointer_rtx)
4332 return true;
4333 if (HARD_REGISTER_P (x))
4334 return false;
4336 return true;
4338 case MEM:
4339 if (type == OP_IN && MEM_READONLY_P (x))
4340 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4341 return false;
4343 case SET:
4344 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4345 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4347 case STRICT_LOW_PART:
4348 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4350 case ZERO_EXTRACT:
4351 case SIGN_EXTRACT:
4352 return (rtx_moveable_p (&XEXP (x, 0), type)
4353 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4354 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4356 case CLOBBER:
4357 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4359 case UNSPEC_VOLATILE:
4360 /* It is a bad idea to consider insns with such rtl
4361 as moveable ones. The insn scheduler also considers them as barrier
4362 for a reason. */
4363 return false;
4365 default:
4366 break;
4369 fmt = GET_RTX_FORMAT (code);
4370 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4372 if (fmt[i] == 'e')
4374 if (!rtx_moveable_p (&XEXP (x, i), type))
4375 return false;
4377 else if (fmt[i] == 'E')
4378 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4380 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4381 return false;
4384 return true;
4387 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4388 to give dominance relationships between two insns I1 and I2. */
4389 static bool
4390 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4392 basic_block bb1 = BLOCK_FOR_INSN (i1);
4393 basic_block bb2 = BLOCK_FOR_INSN (i2);
4395 if (bb1 == bb2)
4396 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4397 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4400 /* Record the range of register numbers added by find_moveable_pseudos. */
4401 int first_moveable_pseudo, last_moveable_pseudo;
4403 /* These two vectors hold data for every register added by
4404 find_movable_pseudos, with index 0 holding data for the
4405 first_moveable_pseudo. */
4406 /* The original home register. */
4407 static vec<rtx> pseudo_replaced_reg;
4409 /* Look for instances where we have an instruction that is known to increase
4410 register pressure, and whose result is not used immediately. If it is
4411 possible to move the instruction downwards to just before its first use,
4412 split its lifetime into two ranges. We create a new pseudo to compute the
4413 value, and emit a move instruction just before the first use. If, after
4414 register allocation, the new pseudo remains unallocated, the function
4415 move_unallocated_pseudos then deletes the move instruction and places
4416 the computation just before the first use.
4418 Such a move is safe and profitable if all the input registers remain live
4419 and unchanged between the original computation and its first use. In such
4420 a situation, the computation is known to increase register pressure, and
4421 moving it is known to at least not worsen it.
4423 We restrict moves to only those cases where a register remains unallocated,
4424 in order to avoid interfering too much with the instruction schedule. As
4425 an exception, we may move insns which only modify their input register
4426 (typically induction variables), as this increases the freedom for our
4427 intended transformation, and does not limit the second instruction
4428 scheduler pass. */
4430 static void
4431 find_moveable_pseudos (void)
4433 unsigned i;
4434 int max_regs = max_reg_num ();
4435 int max_uid = get_max_uid ();
4436 basic_block bb;
4437 int *uid_luid = XNEWVEC (int, max_uid);
4438 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4439 /* A set of registers which are live but not modified throughout a block. */
4440 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4441 last_basic_block_for_fn (cfun));
4442 /* A set of registers which only exist in a given basic block. */
4443 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4444 last_basic_block_for_fn (cfun));
4445 /* A set of registers which are set once, in an instruction that can be
4446 moved freely downwards, but are otherwise transparent to a block. */
4447 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4448 last_basic_block_for_fn (cfun));
4449 bitmap_head live, used, set, interesting, unusable_as_input;
4450 bitmap_iterator bi;
4451 bitmap_initialize (&interesting, 0);
4453 first_moveable_pseudo = max_regs;
4454 pseudo_replaced_reg.release ();
4455 pseudo_replaced_reg.safe_grow_cleared (max_regs);
4457 df_analyze ();
4458 calculate_dominance_info (CDI_DOMINATORS);
4460 i = 0;
4461 bitmap_initialize (&live, 0);
4462 bitmap_initialize (&used, 0);
4463 bitmap_initialize (&set, 0);
4464 bitmap_initialize (&unusable_as_input, 0);
4465 FOR_EACH_BB_FN (bb, cfun)
4467 rtx_insn *insn;
4468 bitmap transp = bb_transp_live + bb->index;
4469 bitmap moveable = bb_moveable_reg_sets + bb->index;
4470 bitmap local = bb_local + bb->index;
4472 bitmap_initialize (local, 0);
4473 bitmap_initialize (transp, 0);
4474 bitmap_initialize (moveable, 0);
4475 bitmap_copy (&live, df_get_live_out (bb));
4476 bitmap_and_into (&live, df_get_live_in (bb));
4477 bitmap_copy (transp, &live);
4478 bitmap_clear (moveable);
4479 bitmap_clear (&live);
4480 bitmap_clear (&used);
4481 bitmap_clear (&set);
4482 FOR_BB_INSNS (bb, insn)
4483 if (NONDEBUG_INSN_P (insn))
4485 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4486 df_ref def, use;
4488 uid_luid[INSN_UID (insn)] = i++;
4490 def = df_single_def (insn_info);
4491 use = df_single_use (insn_info);
4492 if (use
4493 && def
4494 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
4495 && !bitmap_bit_p (&set, DF_REF_REGNO (use))
4496 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4498 unsigned regno = DF_REF_REGNO (use);
4499 bitmap_set_bit (moveable, regno);
4500 bitmap_set_bit (&set, regno);
4501 bitmap_set_bit (&used, regno);
4502 bitmap_clear_bit (transp, regno);
4503 continue;
4505 FOR_EACH_INSN_INFO_USE (use, insn_info)
4507 unsigned regno = DF_REF_REGNO (use);
4508 bitmap_set_bit (&used, regno);
4509 if (bitmap_clear_bit (moveable, regno))
4510 bitmap_clear_bit (transp, regno);
4513 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4515 unsigned regno = DF_REF_REGNO (def);
4516 bitmap_set_bit (&set, regno);
4517 bitmap_clear_bit (transp, regno);
4518 bitmap_clear_bit (moveable, regno);
4523 bitmap_clear (&live);
4524 bitmap_clear (&used);
4525 bitmap_clear (&set);
4527 FOR_EACH_BB_FN (bb, cfun)
4529 bitmap local = bb_local + bb->index;
4530 rtx_insn *insn;
4532 FOR_BB_INSNS (bb, insn)
4533 if (NONDEBUG_INSN_P (insn))
4535 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4536 rtx_insn *def_insn;
4537 rtx closest_use, note;
4538 df_ref def, use;
4539 unsigned regno;
4540 bool all_dominated, all_local;
4541 machine_mode mode;
4543 def = df_single_def (insn_info);
4544 /* There must be exactly one def in this insn. */
4545 if (!def || !single_set (insn))
4546 continue;
4547 /* This must be the only definition of the reg. We also limit
4548 which modes we deal with so that we can assume we can generate
4549 move instructions. */
4550 regno = DF_REF_REGNO (def);
4551 mode = GET_MODE (DF_REF_REG (def));
4552 if (DF_REG_DEF_COUNT (regno) != 1
4553 || !DF_REF_INSN_INFO (def)
4554 || HARD_REGISTER_NUM_P (regno)
4555 || DF_REG_EQ_USE_COUNT (regno) > 0
4556 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4557 continue;
4558 def_insn = DF_REF_INSN (def);
4560 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4561 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4562 break;
4564 if (note)
4566 if (dump_file)
4567 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4568 regno);
4569 bitmap_set_bit (&unusable_as_input, regno);
4570 continue;
4573 use = DF_REG_USE_CHAIN (regno);
4574 all_dominated = true;
4575 all_local = true;
4576 closest_use = NULL_RTX;
4577 for (; use; use = DF_REF_NEXT_REG (use))
4579 rtx_insn *insn;
4580 if (!DF_REF_INSN_INFO (use))
4582 all_dominated = false;
4583 all_local = false;
4584 break;
4586 insn = DF_REF_INSN (use);
4587 if (DEBUG_INSN_P (insn))
4588 continue;
4589 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4590 all_local = false;
4591 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4592 all_dominated = false;
4593 if (closest_use != insn && closest_use != const0_rtx)
4595 if (closest_use == NULL_RTX)
4596 closest_use = insn;
4597 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4598 closest_use = insn;
4599 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4600 closest_use = const0_rtx;
4603 if (!all_dominated)
4605 if (dump_file)
4606 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4607 regno);
4608 continue;
4610 if (all_local)
4611 bitmap_set_bit (local, regno);
4612 if (closest_use == const0_rtx || closest_use == NULL
4613 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4615 if (dump_file)
4616 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4617 closest_use == const0_rtx || closest_use == NULL
4618 ? " (no unique first use)" : "");
4619 continue;
4621 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4623 if (dump_file)
4624 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4625 regno);
4626 continue;
4629 bitmap_set_bit (&interesting, regno);
4630 /* If we get here, we know closest_use is a non-NULL insn
4631 (as opposed to const_0_rtx). */
4632 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4634 if (dump_file && (all_local || all_dominated))
4636 fprintf (dump_file, "Reg %u:", regno);
4637 if (all_local)
4638 fprintf (dump_file, " local to bb %d", bb->index);
4639 if (all_dominated)
4640 fprintf (dump_file, " def dominates all uses");
4641 if (closest_use != const0_rtx)
4642 fprintf (dump_file, " has unique first use");
4643 fputs ("\n", dump_file);
4648 EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
4650 df_ref def = DF_REG_DEF_CHAIN (i);
4651 rtx_insn *def_insn = DF_REF_INSN (def);
4652 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4653 bitmap def_bb_local = bb_local + def_block->index;
4654 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4655 bitmap def_bb_transp = bb_transp_live + def_block->index;
4656 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4657 rtx_insn *use_insn = closest_uses[i];
4658 df_ref use;
4659 bool all_ok = true;
4660 bool all_transp = true;
4662 if (!REG_P (DF_REF_REG (def)))
4663 continue;
4665 if (!local_to_bb_p)
4667 if (dump_file)
4668 fprintf (dump_file, "Reg %u not local to one basic block\n",
4670 continue;
4672 if (reg_equiv_init (i) != NULL_RTX)
4674 if (dump_file)
4675 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4677 continue;
4679 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4681 if (dump_file)
4682 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4683 INSN_UID (def_insn), i);
4684 continue;
4686 if (dump_file)
4687 fprintf (dump_file, "Examining insn %d, def for %d\n",
4688 INSN_UID (def_insn), i);
4689 FOR_EACH_INSN_USE (use, def_insn)
4691 unsigned regno = DF_REF_REGNO (use);
4692 if (bitmap_bit_p (&unusable_as_input, regno))
4694 all_ok = false;
4695 if (dump_file)
4696 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4697 break;
4699 if (!bitmap_bit_p (def_bb_transp, regno))
4701 if (bitmap_bit_p (def_bb_moveable, regno)
4702 && !control_flow_insn_p (use_insn)
4703 && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
4705 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4707 rtx_insn *x = NEXT_INSN (def_insn);
4708 while (!modified_in_p (DF_REF_REG (use), x))
4710 gcc_assert (x != use_insn);
4711 x = NEXT_INSN (x);
4713 if (dump_file)
4714 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4715 regno, INSN_UID (x));
4716 emit_insn_after (PATTERN (x), use_insn);
4717 set_insn_deleted (x);
4719 else
4721 if (dump_file)
4722 fprintf (dump_file, " input reg %u modified between def and use\n",
4723 regno);
4724 all_transp = false;
4727 else
4728 all_transp = false;
4731 if (!all_ok)
4732 continue;
4733 if (!dbg_cnt (ira_move))
4734 break;
4735 if (dump_file)
4736 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4738 if (all_transp)
4740 rtx def_reg = DF_REF_REG (def);
4741 rtx newreg = ira_create_new_reg (def_reg);
4742 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4744 unsigned nregno = REGNO (newreg);
4745 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4746 nregno -= max_regs;
4747 pseudo_replaced_reg[nregno] = def_reg;
4752 FOR_EACH_BB_FN (bb, cfun)
4754 bitmap_clear (bb_local + bb->index);
4755 bitmap_clear (bb_transp_live + bb->index);
4756 bitmap_clear (bb_moveable_reg_sets + bb->index);
4758 bitmap_clear (&interesting);
4759 bitmap_clear (&unusable_as_input);
4760 free (uid_luid);
4761 free (closest_uses);
4762 free (bb_local);
4763 free (bb_transp_live);
4764 free (bb_moveable_reg_sets);
4766 last_moveable_pseudo = max_reg_num ();
4768 fix_reg_equiv_init ();
4769 expand_reg_info ();
4770 regstat_free_n_sets_and_refs ();
4771 regstat_free_ri ();
4772 regstat_init_n_sets_and_refs ();
4773 regstat_compute_ri ();
4774 free_dominance_info (CDI_DOMINATORS);
4777 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4778 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4779 the destination. Otherwise return NULL. */
4781 static rtx
4782 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4784 rtx src = SET_SRC (set);
4785 rtx dest = SET_DEST (set);
4786 if (!REG_P (src) || !HARD_REGISTER_P (src)
4787 || !REG_P (dest) || HARD_REGISTER_P (dest)
4788 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4789 return NULL;
4790 return dest;
4793 /* If insn is interesting for parameter range-splitting shrink-wrapping
4794 preparation, i.e. it is a single set from a hard register to a pseudo, which
4795 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4796 parallel statement with only one such statement, return the destination.
4797 Otherwise return NULL. */
4799 static rtx
4800 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4802 if (!INSN_P (insn))
4803 return NULL;
4804 rtx pat = PATTERN (insn);
4805 if (GET_CODE (pat) == SET)
4806 return interesting_dest_for_shprep_1 (pat, call_dom);
4808 if (GET_CODE (pat) != PARALLEL)
4809 return NULL;
4810 rtx ret = NULL;
4811 for (int i = 0; i < XVECLEN (pat, 0); i++)
4813 rtx sub = XVECEXP (pat, 0, i);
4814 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4815 continue;
4816 if (GET_CODE (sub) != SET
4817 || side_effects_p (sub))
4818 return NULL;
4819 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4820 if (dest && ret)
4821 return NULL;
4822 if (dest)
4823 ret = dest;
4825 return ret;
4828 /* Split live ranges of pseudos that are loaded from hard registers in the
4829 first BB in a BB that dominates all non-sibling call if such a BB can be
4830 found and is not in a loop. Return true if the function has made any
4831 changes. */
4833 static bool
4834 split_live_ranges_for_shrink_wrap (void)
4836 basic_block bb, call_dom = NULL;
4837 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4838 rtx_insn *insn, *last_interesting_insn = NULL;
4839 bitmap_head need_new, reachable;
4840 vec<basic_block> queue;
4842 if (!SHRINK_WRAPPING_ENABLED)
4843 return false;
4845 bitmap_initialize (&need_new, 0);
4846 bitmap_initialize (&reachable, 0);
4847 queue.create (n_basic_blocks_for_fn (cfun));
4849 FOR_EACH_BB_FN (bb, cfun)
4850 FOR_BB_INSNS (bb, insn)
4851 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4853 if (bb == first)
4855 bitmap_clear (&need_new);
4856 bitmap_clear (&reachable);
4857 queue.release ();
4858 return false;
4861 bitmap_set_bit (&need_new, bb->index);
4862 bitmap_set_bit (&reachable, bb->index);
4863 queue.quick_push (bb);
4864 break;
4867 if (queue.is_empty ())
4869 bitmap_clear (&need_new);
4870 bitmap_clear (&reachable);
4871 queue.release ();
4872 return false;
4875 while (!queue.is_empty ())
4877 edge e;
4878 edge_iterator ei;
4880 bb = queue.pop ();
4881 FOR_EACH_EDGE (e, ei, bb->succs)
4882 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4883 && bitmap_set_bit (&reachable, e->dest->index))
4884 queue.quick_push (e->dest);
4886 queue.release ();
4888 FOR_BB_INSNS (first, insn)
4890 rtx dest = interesting_dest_for_shprep (insn, NULL);
4891 if (!dest)
4892 continue;
4894 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4896 bitmap_clear (&need_new);
4897 bitmap_clear (&reachable);
4898 return false;
4901 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4902 use;
4903 use = DF_REF_NEXT_REG (use))
4905 int ubbi = DF_REF_BB (use)->index;
4906 if (bitmap_bit_p (&reachable, ubbi))
4907 bitmap_set_bit (&need_new, ubbi);
4909 last_interesting_insn = insn;
4912 bitmap_clear (&reachable);
4913 if (!last_interesting_insn)
4915 bitmap_clear (&need_new);
4916 return false;
4919 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, &need_new);
4920 bitmap_clear (&need_new);
4921 if (call_dom == first)
4922 return false;
4924 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4925 while (bb_loop_depth (call_dom) > 0)
4926 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4927 loop_optimizer_finalize ();
4929 if (call_dom == first)
4930 return false;
4932 calculate_dominance_info (CDI_POST_DOMINATORS);
4933 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4935 free_dominance_info (CDI_POST_DOMINATORS);
4936 return false;
4938 free_dominance_info (CDI_POST_DOMINATORS);
4940 if (dump_file)
4941 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
4942 call_dom->index);
4944 bool ret = false;
4945 FOR_BB_INSNS (first, insn)
4947 rtx dest = interesting_dest_for_shprep (insn, call_dom);
4948 if (!dest || dest == pic_offset_table_rtx)
4949 continue;
4951 rtx newreg = NULL_RTX;
4952 df_ref use, next;
4953 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
4955 rtx_insn *uin = DF_REF_INSN (use);
4956 next = DF_REF_NEXT_REG (use);
4958 basic_block ubb = BLOCK_FOR_INSN (uin);
4959 if (ubb == call_dom
4960 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
4962 if (!newreg)
4963 newreg = ira_create_new_reg (dest);
4964 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
4968 if (newreg)
4970 rtx_insn *new_move = gen_move_insn (newreg, dest);
4971 emit_insn_after (new_move, bb_note (call_dom));
4972 if (dump_file)
4974 fprintf (dump_file, "Split live-range of register ");
4975 print_rtl_single (dump_file, dest);
4977 ret = true;
4980 if (insn == last_interesting_insn)
4981 break;
4983 apply_change_group ();
4984 return ret;
4987 /* Perform the second half of the transformation started in
4988 find_moveable_pseudos. We look for instances where the newly introduced
4989 pseudo remains unallocated, and remove it by moving the definition to
4990 just before its use, replacing the move instruction generated by
4991 find_moveable_pseudos. */
4992 static void
4993 move_unallocated_pseudos (void)
4995 int i;
4996 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
4997 if (reg_renumber[i] < 0)
4999 int idx = i - first_moveable_pseudo;
5000 rtx other_reg = pseudo_replaced_reg[idx];
5001 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
5002 /* The use must follow all definitions of OTHER_REG, so we can
5003 insert the new definition immediately after any of them. */
5004 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
5005 rtx_insn *move_insn = DF_REF_INSN (other_def);
5006 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
5007 rtx set;
5008 int success;
5010 if (dump_file)
5011 fprintf (dump_file, "moving def of %d (insn %d now) ",
5012 REGNO (other_reg), INSN_UID (def_insn));
5014 delete_insn (move_insn);
5015 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5016 delete_insn (DF_REF_INSN (other_def));
5017 delete_insn (def_insn);
5019 set = single_set (newinsn);
5020 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5021 gcc_assert (success);
5022 if (dump_file)
5023 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5024 INSN_UID (newinsn), i);
5025 SET_REG_N_REFS (i, 0);
5029 /* If the backend knows where to allocate pseudos for hard
5030 register initial values, register these allocations now. */
5031 static void
5032 allocate_initial_values (void)
5034 if (targetm.allocate_initial_value)
5036 rtx hreg, preg, x;
5037 int i, regno;
5039 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5041 if (! initial_value_entry (i, &hreg, &preg))
5042 break;
5044 x = targetm.allocate_initial_value (hreg);
5045 regno = REGNO (preg);
5046 if (x && REG_N_SETS (regno) <= 1)
5048 if (MEM_P (x))
5049 reg_equiv_memory_loc (regno) = x;
5050 else
5052 basic_block bb;
5053 int new_regno;
5055 gcc_assert (REG_P (x));
5056 new_regno = REGNO (x);
5057 reg_renumber[regno] = new_regno;
5058 /* Poke the regno right into regno_reg_rtx so that even
5059 fixed regs are accepted. */
5060 SET_REGNO (preg, new_regno);
5061 /* Update global register liveness information. */
5062 FOR_EACH_BB_FN (bb, cfun)
5064 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5065 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5066 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5067 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5073 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5074 &hreg, &preg));
5079 /* True when we use LRA instead of reload pass for the current
5080 function. */
5081 bool ira_use_lra_p;
5083 /* True if we have allocno conflicts. It is false for non-optimized
5084 mode or when the conflict table is too big. */
5085 bool ira_conflicts_p;
5087 /* Saved between IRA and reload. */
5088 static int saved_flag_ira_share_spill_slots;
5090 /* This is the main entry of IRA. */
5091 static void
5092 ira (FILE *f)
5094 bool loops_p;
5095 int ira_max_point_before_emit;
5096 int rebuild_p;
5097 bool saved_flag_caller_saves = flag_caller_saves;
5098 enum ira_region saved_flag_ira_region = flag_ira_region;
5100 /* Perform target specific PIC register initialization. */
5101 targetm.init_pic_reg ();
5103 ira_conflicts_p = optimize > 0;
5105 ira_use_lra_p = targetm.lra_p ();
5106 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5107 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5108 use simplified and faster algorithms in LRA. */
5109 lra_simple_p
5110 = (ira_use_lra_p
5111 && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun));
5112 if (lra_simple_p)
5114 /* It permits to skip live range splitting in LRA. */
5115 flag_caller_saves = false;
5116 /* There is no sense to do regional allocation when we use
5117 simplified LRA. */
5118 flag_ira_region = IRA_REGION_ONE;
5119 ira_conflicts_p = false;
5122 #ifndef IRA_NO_OBSTACK
5123 gcc_obstack_init (&ira_obstack);
5124 #endif
5125 bitmap_obstack_initialize (&ira_bitmap_obstack);
5127 /* LRA uses its own infrastructure to handle caller save registers. */
5128 if (flag_caller_saves && !ira_use_lra_p)
5129 init_caller_save ();
5131 if (flag_ira_verbose < 10)
5133 internal_flag_ira_verbose = flag_ira_verbose;
5134 ira_dump_file = f;
5136 else
5138 internal_flag_ira_verbose = flag_ira_verbose - 10;
5139 ira_dump_file = stderr;
5142 setup_prohibited_mode_move_regs ();
5143 decrease_live_ranges_number ();
5144 df_note_add_problem ();
5146 /* DF_LIVE can't be used in the register allocator, too many other
5147 parts of the compiler depend on using the "classic" liveness
5148 interpretation of the DF_LR problem. See PR38711.
5149 Remove the problem, so that we don't spend time updating it in
5150 any of the df_analyze() calls during IRA/LRA. */
5151 if (optimize > 1)
5152 df_remove_problem (df_live);
5153 gcc_checking_assert (df_live == NULL);
5155 #ifdef ENABLE_CHECKING
5156 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5157 #endif
5158 df_analyze ();
5160 init_reg_equiv ();
5161 if (ira_conflicts_p)
5163 calculate_dominance_info (CDI_DOMINATORS);
5165 if (split_live_ranges_for_shrink_wrap ())
5166 df_analyze ();
5168 free_dominance_info (CDI_DOMINATORS);
5171 df_clear_flags (DF_NO_INSN_RESCAN);
5173 regstat_init_n_sets_and_refs ();
5174 regstat_compute_ri ();
5176 /* If we are not optimizing, then this is the only place before
5177 register allocation where dataflow is done. And that is needed
5178 to generate these warnings. */
5179 if (warn_clobbered)
5180 generate_setjmp_warnings ();
5182 /* Determine if the current function is a leaf before running IRA
5183 since this can impact optimizations done by the prologue and
5184 epilogue thus changing register elimination offsets. */
5185 crtl->is_leaf = leaf_function_p ();
5187 if (resize_reg_info () && flag_ira_loop_pressure)
5188 ira_set_pseudo_classes (true, ira_dump_file);
5190 rebuild_p = update_equiv_regs ();
5191 setup_reg_equiv ();
5192 setup_reg_equiv_init ();
5194 if (optimize && rebuild_p)
5196 timevar_push (TV_JUMP);
5197 rebuild_jump_labels (get_insns ());
5198 if (purge_all_dead_edges ())
5199 delete_unreachable_blocks ();
5200 timevar_pop (TV_JUMP);
5203 allocated_reg_info_size = max_reg_num ();
5205 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5206 df_analyze ();
5208 /* It is not worth to do such improvement when we use a simple
5209 allocation because of -O0 usage or because the function is too
5210 big. */
5211 if (ira_conflicts_p)
5212 find_moveable_pseudos ();
5214 max_regno_before_ira = max_reg_num ();
5215 ira_setup_eliminable_regset ();
5217 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5218 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5219 ira_move_loops_num = ira_additional_jumps_num = 0;
5221 ira_assert (current_loops == NULL);
5222 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5223 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5225 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5226 fprintf (ira_dump_file, "Building IRA IR\n");
5227 loops_p = ira_build ();
5229 ira_assert (ira_conflicts_p || !loops_p);
5231 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5232 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5233 /* It is just wasting compiler's time to pack spilled pseudos into
5234 stack slots in this case -- prohibit it. We also do this if
5235 there is setjmp call because a variable not modified between
5236 setjmp and longjmp the compiler is required to preserve its
5237 value and sharing slots does not guarantee it. */
5238 flag_ira_share_spill_slots = FALSE;
5240 ira_color ();
5242 ira_max_point_before_emit = ira_max_point;
5244 ira_initiate_emit_data ();
5246 ira_emit (loops_p);
5248 max_regno = max_reg_num ();
5249 if (ira_conflicts_p)
5251 if (! loops_p)
5253 if (! ira_use_lra_p)
5254 ira_initiate_assign ();
5256 else
5258 expand_reg_info ();
5260 if (ira_use_lra_p)
5262 ira_allocno_t a;
5263 ira_allocno_iterator ai;
5265 FOR_EACH_ALLOCNO (a, ai)
5267 int old_regno = ALLOCNO_REGNO (a);
5268 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5270 ALLOCNO_REGNO (a) = new_regno;
5272 if (old_regno != new_regno)
5273 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5274 reg_alternate_class (old_regno),
5275 reg_allocno_class (old_regno));
5279 else
5281 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5282 fprintf (ira_dump_file, "Flattening IR\n");
5283 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5285 /* New insns were generated: add notes and recalculate live
5286 info. */
5287 df_analyze ();
5289 /* ??? Rebuild the loop tree, but why? Does the loop tree
5290 change if new insns were generated? Can that be handled
5291 by updating the loop tree incrementally? */
5292 loop_optimizer_finalize ();
5293 free_dominance_info (CDI_DOMINATORS);
5294 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5295 | LOOPS_HAVE_RECORDED_EXITS);
5297 if (! ira_use_lra_p)
5299 setup_allocno_assignment_flags ();
5300 ira_initiate_assign ();
5301 ira_reassign_conflict_allocnos (max_regno);
5306 ira_finish_emit_data ();
5308 setup_reg_renumber ();
5310 calculate_allocation_cost ();
5312 #ifdef ENABLE_IRA_CHECKING
5313 if (ira_conflicts_p)
5314 check_allocation ();
5315 #endif
5317 if (max_regno != max_regno_before_ira)
5319 regstat_free_n_sets_and_refs ();
5320 regstat_free_ri ();
5321 regstat_init_n_sets_and_refs ();
5322 regstat_compute_ri ();
5325 overall_cost_before = ira_overall_cost;
5326 if (! ira_conflicts_p)
5327 grow_reg_equivs ();
5328 else
5330 fix_reg_equiv_init ();
5332 #ifdef ENABLE_IRA_CHECKING
5333 print_redundant_copies ();
5334 #endif
5335 if (! ira_use_lra_p)
5337 ira_spilled_reg_stack_slots_num = 0;
5338 ira_spilled_reg_stack_slots
5339 = ((struct ira_spilled_reg_stack_slot *)
5340 ira_allocate (max_regno
5341 * sizeof (struct ira_spilled_reg_stack_slot)));
5342 memset (ira_spilled_reg_stack_slots, 0,
5343 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5346 allocate_initial_values ();
5348 /* See comment for find_moveable_pseudos call. */
5349 if (ira_conflicts_p)
5350 move_unallocated_pseudos ();
5352 /* Restore original values. */
5353 if (lra_simple_p)
5355 flag_caller_saves = saved_flag_caller_saves;
5356 flag_ira_region = saved_flag_ira_region;
5360 static void
5361 do_reload (void)
5363 basic_block bb;
5364 bool need_dce;
5365 unsigned pic_offset_table_regno = INVALID_REGNUM;
5367 if (flag_ira_verbose < 10)
5368 ira_dump_file = dump_file;
5370 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5371 after reload to avoid possible wrong usages of hard reg assigned
5372 to it. */
5373 if (pic_offset_table_rtx
5374 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5375 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5377 timevar_push (TV_RELOAD);
5378 if (ira_use_lra_p)
5380 if (current_loops != NULL)
5382 loop_optimizer_finalize ();
5383 free_dominance_info (CDI_DOMINATORS);
5385 FOR_ALL_BB_FN (bb, cfun)
5386 bb->loop_father = NULL;
5387 current_loops = NULL;
5389 ira_destroy ();
5391 lra (ira_dump_file);
5392 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5393 LRA. */
5394 vec_free (reg_equivs);
5395 reg_equivs = NULL;
5396 need_dce = false;
5398 else
5400 df_set_flags (DF_NO_INSN_RESCAN);
5401 build_insn_chain ();
5403 need_dce = reload (get_insns (), ira_conflicts_p);
5407 timevar_pop (TV_RELOAD);
5409 timevar_push (TV_IRA);
5411 if (ira_conflicts_p && ! ira_use_lra_p)
5413 ira_free (ira_spilled_reg_stack_slots);
5414 ira_finish_assign ();
5417 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5418 && overall_cost_before != ira_overall_cost)
5419 fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
5420 ira_overall_cost);
5422 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5424 if (! ira_use_lra_p)
5426 ira_destroy ();
5427 if (current_loops != NULL)
5429 loop_optimizer_finalize ();
5430 free_dominance_info (CDI_DOMINATORS);
5432 FOR_ALL_BB_FN (bb, cfun)
5433 bb->loop_father = NULL;
5434 current_loops = NULL;
5436 regstat_free_ri ();
5437 regstat_free_n_sets_and_refs ();
5440 if (optimize)
5441 cleanup_cfg (CLEANUP_EXPENSIVE);
5443 finish_reg_equiv ();
5445 bitmap_obstack_release (&ira_bitmap_obstack);
5446 #ifndef IRA_NO_OBSTACK
5447 obstack_free (&ira_obstack, NULL);
5448 #endif
5450 /* The code after the reload has changed so much that at this point
5451 we might as well just rescan everything. Note that
5452 df_rescan_all_insns is not going to help here because it does not
5453 touch the artificial uses and defs. */
5454 df_finish_pass (true);
5455 df_scan_alloc (NULL);
5456 df_scan_blocks ();
5458 if (optimize > 1)
5460 df_live_add_problem ();
5461 df_live_set_all_dirty ();
5464 if (optimize)
5465 df_analyze ();
5467 if (need_dce && optimize)
5468 run_fast_dce ();
5470 /* Diagnose uses of the hard frame pointer when it is used as a global
5471 register. Often we can get away with letting the user appropriate
5472 the frame pointer, but we should let them know when code generation
5473 makes that impossible. */
5474 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5476 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5477 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5478 "frame pointer required, but reserved");
5479 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5482 if (pic_offset_table_regno != INVALID_REGNUM)
5483 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5485 timevar_pop (TV_IRA);
5488 /* Run the integrated register allocator. */
5490 namespace {
5492 const pass_data pass_data_ira =
5494 RTL_PASS, /* type */
5495 "ira", /* name */
5496 OPTGROUP_NONE, /* optinfo_flags */
5497 TV_IRA, /* tv_id */
5498 0, /* properties_required */
5499 0, /* properties_provided */
5500 0, /* properties_destroyed */
5501 0, /* todo_flags_start */
5502 TODO_do_not_ggc_collect, /* todo_flags_finish */
5505 class pass_ira : public rtl_opt_pass
5507 public:
5508 pass_ira (gcc::context *ctxt)
5509 : rtl_opt_pass (pass_data_ira, ctxt)
5512 /* opt_pass methods: */
5513 virtual bool gate (function *)
5515 return !targetm.no_register_allocation;
5517 virtual unsigned int execute (function *)
5519 ira (dump_file);
5520 return 0;
5523 }; // class pass_ira
5525 } // anon namespace
5527 rtl_opt_pass *
5528 make_pass_ira (gcc::context *ctxt)
5530 return new pass_ira (ctxt);
5533 namespace {
5535 const pass_data pass_data_reload =
5537 RTL_PASS, /* type */
5538 "reload", /* name */
5539 OPTGROUP_NONE, /* optinfo_flags */
5540 TV_RELOAD, /* tv_id */
5541 0, /* properties_required */
5542 0, /* properties_provided */
5543 0, /* properties_destroyed */
5544 0, /* todo_flags_start */
5545 0, /* todo_flags_finish */
5548 class pass_reload : public rtl_opt_pass
5550 public:
5551 pass_reload (gcc::context *ctxt)
5552 : rtl_opt_pass (pass_data_reload, ctxt)
5555 /* opt_pass methods: */
5556 virtual bool gate (function *)
5558 return !targetm.no_register_allocation;
5560 virtual unsigned int execute (function *)
5562 do_reload ();
5563 return 0;
5566 }; // class pass_reload
5568 } // anon namespace
5570 rtl_opt_pass *
5571 make_pass_reload (gcc::context *ctxt)
5573 return new pass_reload (ctxt);