2018-01-22 Sebastian Perta <sebastian.perta@renesas.com>
[official-gcc.git] / gcc / stor-layout.c
blob8c415ebb6ac8e04478c671385e2d4e70a27bfc5d
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "stringpool.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "cgraph.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "varasm.h"
38 #include "print-tree.h"
39 #include "langhooks.h"
40 #include "tree-inline.h"
41 #include "dumpfile.h"
42 #include "gimplify.h"
43 #include "attribs.h"
44 #include "debug.h"
46 /* Data type for the expressions representing sizes of data types.
47 It is the first integer type laid out. */
48 tree sizetype_tab[(int) stk_type_kind_last];
50 /* If nonzero, this is an upper limit on alignment of structure fields.
51 The value is measured in bits. */
52 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
54 static tree self_referential_size (tree);
55 static void finalize_record_size (record_layout_info);
56 static void finalize_type_size (tree);
57 static void place_union_field (record_layout_info, tree);
58 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
59 HOST_WIDE_INT, tree);
60 extern void debug_rli (record_layout_info);
62 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
63 to serve as the actual size-expression for a type or decl. */
65 tree
66 variable_size (tree size)
68 /* Obviously. */
69 if (TREE_CONSTANT (size))
70 return size;
72 /* If the size is self-referential, we can't make a SAVE_EXPR (see
73 save_expr for the rationale). But we can do something else. */
74 if (CONTAINS_PLACEHOLDER_P (size))
75 return self_referential_size (size);
77 /* If we are in the global binding level, we can't make a SAVE_EXPR
78 since it may end up being shared across functions, so it is up
79 to the front-end to deal with this case. */
80 if (lang_hooks.decls.global_bindings_p ())
81 return size;
83 return save_expr (size);
86 /* An array of functions used for self-referential size computation. */
87 static GTY(()) vec<tree, va_gc> *size_functions;
89 /* Return true if T is a self-referential component reference. */
91 static bool
92 self_referential_component_ref_p (tree t)
94 if (TREE_CODE (t) != COMPONENT_REF)
95 return false;
97 while (REFERENCE_CLASS_P (t))
98 t = TREE_OPERAND (t, 0);
100 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
103 /* Similar to copy_tree_r but do not copy component references involving
104 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
105 and substituted in substitute_in_expr. */
107 static tree
108 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
110 enum tree_code code = TREE_CODE (*tp);
112 /* Stop at types, decls, constants like copy_tree_r. */
113 if (TREE_CODE_CLASS (code) == tcc_type
114 || TREE_CODE_CLASS (code) == tcc_declaration
115 || TREE_CODE_CLASS (code) == tcc_constant)
117 *walk_subtrees = 0;
118 return NULL_TREE;
121 /* This is the pattern built in ada/make_aligning_type. */
122 else if (code == ADDR_EXPR
123 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
125 *walk_subtrees = 0;
126 return NULL_TREE;
129 /* Default case: the component reference. */
130 else if (self_referential_component_ref_p (*tp))
132 *walk_subtrees = 0;
133 return NULL_TREE;
136 /* We're not supposed to have them in self-referential size trees
137 because we wouldn't properly control when they are evaluated.
138 However, not creating superfluous SAVE_EXPRs requires accurate
139 tracking of readonly-ness all the way down to here, which we
140 cannot always guarantee in practice. So punt in this case. */
141 else if (code == SAVE_EXPR)
142 return error_mark_node;
144 else if (code == STATEMENT_LIST)
145 gcc_unreachable ();
147 return copy_tree_r (tp, walk_subtrees, data);
150 /* Given a SIZE expression that is self-referential, return an equivalent
151 expression to serve as the actual size expression for a type. */
153 static tree
154 self_referential_size (tree size)
156 static unsigned HOST_WIDE_INT fnno = 0;
157 vec<tree> self_refs = vNULL;
158 tree param_type_list = NULL, param_decl_list = NULL;
159 tree t, ref, return_type, fntype, fnname, fndecl;
160 unsigned int i;
161 char buf[128];
162 vec<tree, va_gc> *args = NULL;
164 /* Do not factor out simple operations. */
165 t = skip_simple_constant_arithmetic (size);
166 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
167 return size;
169 /* Collect the list of self-references in the expression. */
170 find_placeholder_in_expr (size, &self_refs);
171 gcc_assert (self_refs.length () > 0);
173 /* Obtain a private copy of the expression. */
174 t = size;
175 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
176 return size;
177 size = t;
179 /* Build the parameter and argument lists in parallel; also
180 substitute the former for the latter in the expression. */
181 vec_alloc (args, self_refs.length ());
182 FOR_EACH_VEC_ELT (self_refs, i, ref)
184 tree subst, param_name, param_type, param_decl;
186 if (DECL_P (ref))
188 /* We shouldn't have true variables here. */
189 gcc_assert (TREE_READONLY (ref));
190 subst = ref;
192 /* This is the pattern built in ada/make_aligning_type. */
193 else if (TREE_CODE (ref) == ADDR_EXPR)
194 subst = ref;
195 /* Default case: the component reference. */
196 else
197 subst = TREE_OPERAND (ref, 1);
199 sprintf (buf, "p%d", i);
200 param_name = get_identifier (buf);
201 param_type = TREE_TYPE (ref);
202 param_decl
203 = build_decl (input_location, PARM_DECL, param_name, param_type);
204 DECL_ARG_TYPE (param_decl) = param_type;
205 DECL_ARTIFICIAL (param_decl) = 1;
206 TREE_READONLY (param_decl) = 1;
208 size = substitute_in_expr (size, subst, param_decl);
210 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
211 param_decl_list = chainon (param_decl, param_decl_list);
212 args->quick_push (ref);
215 self_refs.release ();
217 /* Append 'void' to indicate that the number of parameters is fixed. */
218 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
220 /* The 3 lists have been created in reverse order. */
221 param_type_list = nreverse (param_type_list);
222 param_decl_list = nreverse (param_decl_list);
224 /* Build the function type. */
225 return_type = TREE_TYPE (size);
226 fntype = build_function_type (return_type, param_type_list);
228 /* Build the function declaration. */
229 sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
230 fnname = get_file_function_name (buf);
231 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
232 for (t = param_decl_list; t; t = DECL_CHAIN (t))
233 DECL_CONTEXT (t) = fndecl;
234 DECL_ARGUMENTS (fndecl) = param_decl_list;
235 DECL_RESULT (fndecl)
236 = build_decl (input_location, RESULT_DECL, 0, return_type);
237 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
239 /* The function has been created by the compiler and we don't
240 want to emit debug info for it. */
241 DECL_ARTIFICIAL (fndecl) = 1;
242 DECL_IGNORED_P (fndecl) = 1;
244 /* It is supposed to be "const" and never throw. */
245 TREE_READONLY (fndecl) = 1;
246 TREE_NOTHROW (fndecl) = 1;
248 /* We want it to be inlined when this is deemed profitable, as
249 well as discarded if every call has been integrated. */
250 DECL_DECLARED_INLINE_P (fndecl) = 1;
252 /* It is made up of a unique return statement. */
253 DECL_INITIAL (fndecl) = make_node (BLOCK);
254 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
255 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
256 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
257 TREE_STATIC (fndecl) = 1;
259 /* Put it onto the list of size functions. */
260 vec_safe_push (size_functions, fndecl);
262 /* Replace the original expression with a call to the size function. */
263 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
266 /* Take, queue and compile all the size functions. It is essential that
267 the size functions be gimplified at the very end of the compilation
268 in order to guarantee transparent handling of self-referential sizes.
269 Otherwise the GENERIC inliner would not be able to inline them back
270 at each of their call sites, thus creating artificial non-constant
271 size expressions which would trigger nasty problems later on. */
273 void
274 finalize_size_functions (void)
276 unsigned int i;
277 tree fndecl;
279 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
281 allocate_struct_function (fndecl, false);
282 set_cfun (NULL);
283 dump_function (TDI_original, fndecl);
285 /* As these functions are used to describe the layout of variable-length
286 structures, debug info generation needs their implementation. */
287 debug_hooks->size_function (fndecl);
288 gimplify_function_tree (fndecl);
289 cgraph_node::finalize_function (fndecl, false);
292 vec_free (size_functions);
295 /* Return a machine mode of class MCLASS with SIZE bits of precision,
296 if one exists. The mode may have padding bits as well the SIZE
297 value bits. If LIMIT is nonzero, disregard modes wider than
298 MAX_FIXED_MODE_SIZE. */
300 opt_machine_mode
301 mode_for_size (poly_uint64 size, enum mode_class mclass, int limit)
303 machine_mode mode;
304 int i;
306 if (limit && maybe_gt (size, (unsigned int) MAX_FIXED_MODE_SIZE))
307 return opt_machine_mode ();
309 /* Get the first mode which has this size, in the specified class. */
310 FOR_EACH_MODE_IN_CLASS (mode, mclass)
311 if (known_eq (GET_MODE_PRECISION (mode), size))
312 return mode;
314 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
315 for (i = 0; i < NUM_INT_N_ENTS; i ++)
316 if (known_eq (int_n_data[i].bitsize, size)
317 && int_n_enabled_p[i])
318 return int_n_data[i].m;
320 return opt_machine_mode ();
323 /* Similar, except passed a tree node. */
325 opt_machine_mode
326 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
328 unsigned HOST_WIDE_INT uhwi;
329 unsigned int ui;
331 if (!tree_fits_uhwi_p (size))
332 return opt_machine_mode ();
333 uhwi = tree_to_uhwi (size);
334 ui = uhwi;
335 if (uhwi != ui)
336 return opt_machine_mode ();
337 return mode_for_size (ui, mclass, limit);
340 /* Return the narrowest mode of class MCLASS that contains at least
341 SIZE bits. Abort if no such mode exists. */
343 machine_mode
344 smallest_mode_for_size (poly_uint64 size, enum mode_class mclass)
346 machine_mode mode = VOIDmode;
347 int i;
349 /* Get the first mode which has at least this size, in the
350 specified class. */
351 FOR_EACH_MODE_IN_CLASS (mode, mclass)
352 if (known_ge (GET_MODE_PRECISION (mode), size))
353 break;
355 gcc_assert (mode != VOIDmode);
357 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
358 for (i = 0; i < NUM_INT_N_ENTS; i ++)
359 if (known_ge (int_n_data[i].bitsize, size)
360 && known_lt (int_n_data[i].bitsize, GET_MODE_PRECISION (mode))
361 && int_n_enabled_p[i])
362 mode = int_n_data[i].m;
364 return mode;
367 /* Return an integer mode of exactly the same size as MODE, if one exists. */
369 opt_scalar_int_mode
370 int_mode_for_mode (machine_mode mode)
372 switch (GET_MODE_CLASS (mode))
374 case MODE_INT:
375 case MODE_PARTIAL_INT:
376 return as_a <scalar_int_mode> (mode);
378 case MODE_COMPLEX_INT:
379 case MODE_COMPLEX_FLOAT:
380 case MODE_FLOAT:
381 case MODE_DECIMAL_FLOAT:
382 case MODE_FRACT:
383 case MODE_ACCUM:
384 case MODE_UFRACT:
385 case MODE_UACCUM:
386 case MODE_VECTOR_BOOL:
387 case MODE_VECTOR_INT:
388 case MODE_VECTOR_FLOAT:
389 case MODE_VECTOR_FRACT:
390 case MODE_VECTOR_ACCUM:
391 case MODE_VECTOR_UFRACT:
392 case MODE_VECTOR_UACCUM:
393 case MODE_POINTER_BOUNDS:
394 return int_mode_for_size (GET_MODE_BITSIZE (mode), 0);
396 case MODE_RANDOM:
397 if (mode == BLKmode)
398 return opt_scalar_int_mode ();
400 /* fall through */
402 case MODE_CC:
403 default:
404 gcc_unreachable ();
408 /* Find a mode that can be used for efficient bitwise operations on MODE,
409 if one exists. */
411 opt_machine_mode
412 bitwise_mode_for_mode (machine_mode mode)
414 /* Quick exit if we already have a suitable mode. */
415 scalar_int_mode int_mode;
416 if (is_a <scalar_int_mode> (mode, &int_mode)
417 && GET_MODE_BITSIZE (int_mode) <= MAX_FIXED_MODE_SIZE)
418 return int_mode;
420 /* Reuse the sanity checks from int_mode_for_mode. */
421 gcc_checking_assert ((int_mode_for_mode (mode), true));
423 poly_int64 bitsize = GET_MODE_BITSIZE (mode);
425 /* Try to replace complex modes with complex modes. In general we
426 expect both components to be processed independently, so we only
427 care whether there is a register for the inner mode. */
428 if (COMPLEX_MODE_P (mode))
430 machine_mode trial = mode;
431 if ((GET_MODE_CLASS (trial) == MODE_COMPLEX_INT
432 || mode_for_size (bitsize, MODE_COMPLEX_INT, false).exists (&trial))
433 && have_regs_of_mode[GET_MODE_INNER (trial)])
434 return trial;
437 /* Try to replace vector modes with vector modes. Also try using vector
438 modes if an integer mode would be too big. */
439 if (VECTOR_MODE_P (mode)
440 || maybe_gt (bitsize, MAX_FIXED_MODE_SIZE))
442 machine_mode trial = mode;
443 if ((GET_MODE_CLASS (trial) == MODE_VECTOR_INT
444 || mode_for_size (bitsize, MODE_VECTOR_INT, 0).exists (&trial))
445 && have_regs_of_mode[trial]
446 && targetm.vector_mode_supported_p (trial))
447 return trial;
450 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
451 return mode_for_size (bitsize, MODE_INT, true);
454 /* Find a type that can be used for efficient bitwise operations on MODE.
455 Return null if no such mode exists. */
457 tree
458 bitwise_type_for_mode (machine_mode mode)
460 if (!bitwise_mode_for_mode (mode).exists (&mode))
461 return NULL_TREE;
463 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
464 tree inner_type = build_nonstandard_integer_type (inner_size, true);
466 if (VECTOR_MODE_P (mode))
467 return build_vector_type_for_mode (inner_type, mode);
469 if (COMPLEX_MODE_P (mode))
470 return build_complex_type (inner_type);
472 gcc_checking_assert (GET_MODE_INNER (mode) == mode);
473 return inner_type;
476 /* Find a mode that is suitable for representing a vector with NUNITS
477 elements of mode INNERMODE, if one exists. The returned mode can be
478 either an integer mode or a vector mode. */
480 opt_machine_mode
481 mode_for_vector (scalar_mode innermode, poly_uint64 nunits)
483 machine_mode mode;
485 /* First, look for a supported vector type. */
486 if (SCALAR_FLOAT_MODE_P (innermode))
487 mode = MIN_MODE_VECTOR_FLOAT;
488 else if (SCALAR_FRACT_MODE_P (innermode))
489 mode = MIN_MODE_VECTOR_FRACT;
490 else if (SCALAR_UFRACT_MODE_P (innermode))
491 mode = MIN_MODE_VECTOR_UFRACT;
492 else if (SCALAR_ACCUM_MODE_P (innermode))
493 mode = MIN_MODE_VECTOR_ACCUM;
494 else if (SCALAR_UACCUM_MODE_P (innermode))
495 mode = MIN_MODE_VECTOR_UACCUM;
496 else
497 mode = MIN_MODE_VECTOR_INT;
499 /* Do not check vector_mode_supported_p here. We'll do that
500 later in vector_type_mode. */
501 FOR_EACH_MODE_FROM (mode, mode)
502 if (known_eq (GET_MODE_NUNITS (mode), nunits)
503 && GET_MODE_INNER (mode) == innermode)
504 return mode;
506 /* For integers, try mapping it to a same-sized scalar mode. */
507 if (GET_MODE_CLASS (innermode) == MODE_INT)
509 poly_uint64 nbits = nunits * GET_MODE_BITSIZE (innermode);
510 if (int_mode_for_size (nbits, 0).exists (&mode)
511 && have_regs_of_mode[mode])
512 return mode;
515 return opt_machine_mode ();
518 /* Return the mode for a vector that has NUNITS integer elements of
519 INT_BITS bits each, if such a mode exists. The mode can be either
520 an integer mode or a vector mode. */
522 opt_machine_mode
523 mode_for_int_vector (unsigned int int_bits, poly_uint64 nunits)
525 scalar_int_mode int_mode;
526 machine_mode vec_mode;
527 if (int_mode_for_size (int_bits, 0).exists (&int_mode)
528 && mode_for_vector (int_mode, nunits).exists (&vec_mode))
529 return vec_mode;
530 return opt_machine_mode ();
533 /* Return the alignment of MODE. This will be bounded by 1 and
534 BIGGEST_ALIGNMENT. */
536 unsigned int
537 get_mode_alignment (machine_mode mode)
539 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
542 /* Return the natural mode of an array, given that it is SIZE bytes in
543 total and has elements of type ELEM_TYPE. */
545 static machine_mode
546 mode_for_array (tree elem_type, tree size)
548 tree elem_size;
549 poly_uint64 int_size, int_elem_size;
550 unsigned HOST_WIDE_INT num_elems;
551 bool limit_p;
553 /* One-element arrays get the component type's mode. */
554 elem_size = TYPE_SIZE (elem_type);
555 if (simple_cst_equal (size, elem_size))
556 return TYPE_MODE (elem_type);
558 limit_p = true;
559 if (poly_int_tree_p (size, &int_size)
560 && poly_int_tree_p (elem_size, &int_elem_size)
561 && maybe_ne (int_elem_size, 0U)
562 && constant_multiple_p (int_size, int_elem_size, &num_elems))
564 machine_mode elem_mode = TYPE_MODE (elem_type);
565 machine_mode mode;
566 if (targetm.array_mode (elem_mode, num_elems).exists (&mode))
567 return mode;
568 if (targetm.array_mode_supported_p (elem_mode, num_elems))
569 limit_p = false;
571 return mode_for_size_tree (size, MODE_INT, limit_p).else_blk ();
574 /* Subroutine of layout_decl: Force alignment required for the data type.
575 But if the decl itself wants greater alignment, don't override that. */
577 static inline void
578 do_type_align (tree type, tree decl)
580 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
582 SET_DECL_ALIGN (decl, TYPE_ALIGN (type));
583 if (TREE_CODE (decl) == FIELD_DECL)
584 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
586 if (TYPE_WARN_IF_NOT_ALIGN (type) > DECL_WARN_IF_NOT_ALIGN (decl))
587 SET_DECL_WARN_IF_NOT_ALIGN (decl, TYPE_WARN_IF_NOT_ALIGN (type));
590 /* Set the size, mode and alignment of a ..._DECL node.
591 TYPE_DECL does need this for C++.
592 Note that LABEL_DECL and CONST_DECL nodes do not need this,
593 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
594 Don't call layout_decl for them.
596 KNOWN_ALIGN is the amount of alignment we can assume this
597 decl has with no special effort. It is relevant only for FIELD_DECLs
598 and depends on the previous fields.
599 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
600 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
601 the record will be aligned to suit. */
603 void
604 layout_decl (tree decl, unsigned int known_align)
606 tree type = TREE_TYPE (decl);
607 enum tree_code code = TREE_CODE (decl);
608 rtx rtl = NULL_RTX;
609 location_t loc = DECL_SOURCE_LOCATION (decl);
611 if (code == CONST_DECL)
612 return;
614 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
615 || code == TYPE_DECL || code == FIELD_DECL);
617 rtl = DECL_RTL_IF_SET (decl);
619 if (type == error_mark_node)
620 type = void_type_node;
622 /* Usually the size and mode come from the data type without change,
623 however, the front-end may set the explicit width of the field, so its
624 size may not be the same as the size of its type. This happens with
625 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
626 also happens with other fields. For example, the C++ front-end creates
627 zero-sized fields corresponding to empty base classes, and depends on
628 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
629 size in bytes from the size in bits. If we have already set the mode,
630 don't set it again since we can be called twice for FIELD_DECLs. */
632 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
633 if (DECL_MODE (decl) == VOIDmode)
634 SET_DECL_MODE (decl, TYPE_MODE (type));
636 if (DECL_SIZE (decl) == 0)
638 DECL_SIZE (decl) = TYPE_SIZE (type);
639 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
641 else if (DECL_SIZE_UNIT (decl) == 0)
642 DECL_SIZE_UNIT (decl)
643 = fold_convert_loc (loc, sizetype,
644 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
645 bitsize_unit_node));
647 if (code != FIELD_DECL)
648 /* For non-fields, update the alignment from the type. */
649 do_type_align (type, decl);
650 else
651 /* For fields, it's a bit more complicated... */
653 bool old_user_align = DECL_USER_ALIGN (decl);
654 bool zero_bitfield = false;
655 bool packed_p = DECL_PACKED (decl);
656 unsigned int mfa;
658 if (DECL_BIT_FIELD (decl))
660 DECL_BIT_FIELD_TYPE (decl) = type;
662 /* A zero-length bit-field affects the alignment of the next
663 field. In essence such bit-fields are not influenced by
664 any packing due to #pragma pack or attribute packed. */
665 if (integer_zerop (DECL_SIZE (decl))
666 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
668 zero_bitfield = true;
669 packed_p = false;
670 if (PCC_BITFIELD_TYPE_MATTERS)
671 do_type_align (type, decl);
672 else
674 #ifdef EMPTY_FIELD_BOUNDARY
675 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
677 SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY);
678 DECL_USER_ALIGN (decl) = 0;
680 #endif
684 /* See if we can use an ordinary integer mode for a bit-field.
685 Conditions are: a fixed size that is correct for another mode,
686 occupying a complete byte or bytes on proper boundary. */
687 if (TYPE_SIZE (type) != 0
688 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
689 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
691 machine_mode xmode;
692 if (mode_for_size_tree (DECL_SIZE (decl),
693 MODE_INT, 1).exists (&xmode))
695 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
696 if (!(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
697 && (known_align == 0 || known_align >= xalign))
699 SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl)));
700 SET_DECL_MODE (decl, xmode);
701 DECL_BIT_FIELD (decl) = 0;
706 /* Turn off DECL_BIT_FIELD if we won't need it set. */
707 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
708 && known_align >= TYPE_ALIGN (type)
709 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
710 DECL_BIT_FIELD (decl) = 0;
712 else if (packed_p && DECL_USER_ALIGN (decl))
713 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
714 round up; we'll reduce it again below. We want packing to
715 supersede USER_ALIGN inherited from the type, but defer to
716 alignment explicitly specified on the field decl. */;
717 else
718 do_type_align (type, decl);
720 /* If the field is packed and not explicitly aligned, give it the
721 minimum alignment. Note that do_type_align may set
722 DECL_USER_ALIGN, so we need to check old_user_align instead. */
723 if (packed_p
724 && !old_user_align)
725 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT));
727 if (! packed_p && ! DECL_USER_ALIGN (decl))
729 /* Some targets (i.e. i386, VMS) limit struct field alignment
730 to a lower boundary than alignment of variables unless
731 it was overridden by attribute aligned. */
732 #ifdef BIGGEST_FIELD_ALIGNMENT
733 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl),
734 (unsigned) BIGGEST_FIELD_ALIGNMENT));
735 #endif
736 #ifdef ADJUST_FIELD_ALIGN
737 SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, TREE_TYPE (decl),
738 DECL_ALIGN (decl)));
739 #endif
742 if (zero_bitfield)
743 mfa = initial_max_fld_align * BITS_PER_UNIT;
744 else
745 mfa = maximum_field_alignment;
746 /* Should this be controlled by DECL_USER_ALIGN, too? */
747 if (mfa != 0)
748 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa));
751 /* Evaluate nonconstant size only once, either now or as soon as safe. */
752 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
753 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
754 if (DECL_SIZE_UNIT (decl) != 0
755 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
756 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
758 /* If requested, warn about definitions of large data objects. */
759 if (warn_larger_than
760 && (code == VAR_DECL || code == PARM_DECL)
761 && ! DECL_EXTERNAL (decl))
763 tree size = DECL_SIZE_UNIT (decl);
765 if (size != 0 && TREE_CODE (size) == INTEGER_CST
766 && compare_tree_int (size, larger_than_size) > 0)
768 int size_as_int = TREE_INT_CST_LOW (size);
770 if (compare_tree_int (size, size_as_int) == 0)
771 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
772 else
773 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
774 decl, larger_than_size);
778 /* If the RTL was already set, update its mode and mem attributes. */
779 if (rtl)
781 PUT_MODE (rtl, DECL_MODE (decl));
782 SET_DECL_RTL (decl, 0);
783 if (MEM_P (rtl))
784 set_mem_attributes (rtl, decl, 1);
785 SET_DECL_RTL (decl, rtl);
789 /* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
790 results of a previous call to layout_decl and calls it again. */
792 void
793 relayout_decl (tree decl)
795 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
796 SET_DECL_MODE (decl, VOIDmode);
797 if (!DECL_USER_ALIGN (decl))
798 SET_DECL_ALIGN (decl, 0);
799 if (DECL_RTL_SET_P (decl))
800 SET_DECL_RTL (decl, 0);
802 layout_decl (decl, 0);
805 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
806 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
807 is to be passed to all other layout functions for this record. It is the
808 responsibility of the caller to call `free' for the storage returned.
809 Note that garbage collection is not permitted until we finish laying
810 out the record. */
812 record_layout_info
813 start_record_layout (tree t)
815 record_layout_info rli = XNEW (struct record_layout_info_s);
817 rli->t = t;
819 /* If the type has a minimum specified alignment (via an attribute
820 declaration, for example) use it -- otherwise, start with a
821 one-byte alignment. */
822 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
823 rli->unpacked_align = rli->record_align;
824 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
826 #ifdef STRUCTURE_SIZE_BOUNDARY
827 /* Packed structures don't need to have minimum size. */
828 if (! TYPE_PACKED (t))
830 unsigned tmp;
832 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
833 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
834 if (maximum_field_alignment != 0)
835 tmp = MIN (tmp, maximum_field_alignment);
836 rli->record_align = MAX (rli->record_align, tmp);
838 #endif
840 rli->offset = size_zero_node;
841 rli->bitpos = bitsize_zero_node;
842 rli->prev_field = 0;
843 rli->pending_statics = 0;
844 rli->packed_maybe_necessary = 0;
845 rli->remaining_in_alignment = 0;
847 return rli;
850 /* Fold sizetype value X to bitsizetype, given that X represents a type
851 size or offset. */
853 static tree
854 bits_from_bytes (tree x)
856 if (POLY_INT_CST_P (x))
857 /* The runtime calculation isn't allowed to overflow sizetype;
858 increasing the runtime values must always increase the size
859 or offset of the object. This means that the object imposes
860 a maximum value on the runtime parameters, but we don't record
861 what that is. */
862 return build_poly_int_cst
863 (bitsizetype,
864 poly_wide_int::from (poly_int_cst_value (x),
865 TYPE_PRECISION (bitsizetype),
866 TYPE_SIGN (TREE_TYPE (x))));
867 x = fold_convert (bitsizetype, x);
868 gcc_checking_assert (x);
869 return x;
872 /* Return the combined bit position for the byte offset OFFSET and the
873 bit position BITPOS.
875 These functions operate on byte and bit positions present in FIELD_DECLs
876 and assume that these expressions result in no (intermediate) overflow.
877 This assumption is necessary to fold the expressions as much as possible,
878 so as to avoid creating artificially variable-sized types in languages
879 supporting variable-sized types like Ada. */
881 tree
882 bit_from_pos (tree offset, tree bitpos)
884 return size_binop (PLUS_EXPR, bitpos,
885 size_binop (MULT_EXPR, bits_from_bytes (offset),
886 bitsize_unit_node));
889 /* Return the combined truncated byte position for the byte offset OFFSET and
890 the bit position BITPOS. */
892 tree
893 byte_from_pos (tree offset, tree bitpos)
895 tree bytepos;
896 if (TREE_CODE (bitpos) == MULT_EXPR
897 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
898 bytepos = TREE_OPERAND (bitpos, 0);
899 else
900 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
901 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
904 /* Split the bit position POS into a byte offset *POFFSET and a bit
905 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
907 void
908 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
909 tree pos)
911 tree toff_align = bitsize_int (off_align);
912 if (TREE_CODE (pos) == MULT_EXPR
913 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
915 *poffset = size_binop (MULT_EXPR,
916 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
917 size_int (off_align / BITS_PER_UNIT));
918 *pbitpos = bitsize_zero_node;
920 else
922 *poffset = size_binop (MULT_EXPR,
923 fold_convert (sizetype,
924 size_binop (FLOOR_DIV_EXPR, pos,
925 toff_align)),
926 size_int (off_align / BITS_PER_UNIT));
927 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
931 /* Given a pointer to bit and byte offsets and an offset alignment,
932 normalize the offsets so they are within the alignment. */
934 void
935 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
937 /* If the bit position is now larger than it should be, adjust it
938 downwards. */
939 if (compare_tree_int (*pbitpos, off_align) >= 0)
941 tree offset, bitpos;
942 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
943 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
944 *pbitpos = bitpos;
948 /* Print debugging information about the information in RLI. */
950 DEBUG_FUNCTION void
951 debug_rli (record_layout_info rli)
953 print_node_brief (stderr, "type", rli->t, 0);
954 print_node_brief (stderr, "\noffset", rli->offset, 0);
955 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
957 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
958 rli->record_align, rli->unpacked_align,
959 rli->offset_align);
961 /* The ms_struct code is the only that uses this. */
962 if (targetm.ms_bitfield_layout_p (rli->t))
963 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
965 if (rli->packed_maybe_necessary)
966 fprintf (stderr, "packed may be necessary\n");
968 if (!vec_safe_is_empty (rli->pending_statics))
970 fprintf (stderr, "pending statics:\n");
971 debug (rli->pending_statics);
975 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
976 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
978 void
979 normalize_rli (record_layout_info rli)
981 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
984 /* Returns the size in bytes allocated so far. */
986 tree
987 rli_size_unit_so_far (record_layout_info rli)
989 return byte_from_pos (rli->offset, rli->bitpos);
992 /* Returns the size in bits allocated so far. */
994 tree
995 rli_size_so_far (record_layout_info rli)
997 return bit_from_pos (rli->offset, rli->bitpos);
1000 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
1001 the next available location within the record is given by KNOWN_ALIGN.
1002 Update the variable alignment fields in RLI, and return the alignment
1003 to give the FIELD. */
1005 unsigned int
1006 update_alignment_for_field (record_layout_info rli, tree field,
1007 unsigned int known_align)
1009 /* The alignment required for FIELD. */
1010 unsigned int desired_align;
1011 /* The type of this field. */
1012 tree type = TREE_TYPE (field);
1013 /* True if the field was explicitly aligned by the user. */
1014 bool user_align;
1015 bool is_bitfield;
1017 /* Do not attempt to align an ERROR_MARK node */
1018 if (TREE_CODE (type) == ERROR_MARK)
1019 return 0;
1021 /* Lay out the field so we know what alignment it needs. */
1022 layout_decl (field, known_align);
1023 desired_align = DECL_ALIGN (field);
1024 user_align = DECL_USER_ALIGN (field);
1026 is_bitfield = (type != error_mark_node
1027 && DECL_BIT_FIELD_TYPE (field)
1028 && ! integer_zerop (TYPE_SIZE (type)));
1030 /* Record must have at least as much alignment as any field.
1031 Otherwise, the alignment of the field within the record is
1032 meaningless. */
1033 if (targetm.ms_bitfield_layout_p (rli->t))
1035 /* Here, the alignment of the underlying type of a bitfield can
1036 affect the alignment of a record; even a zero-sized field
1037 can do this. The alignment should be to the alignment of
1038 the type, except that for zero-size bitfields this only
1039 applies if there was an immediately prior, nonzero-size
1040 bitfield. (That's the way it is, experimentally.) */
1041 if ((!is_bitfield && !DECL_PACKED (field))
1042 || ((DECL_SIZE (field) == NULL_TREE
1043 || !integer_zerop (DECL_SIZE (field)))
1044 ? !DECL_PACKED (field)
1045 : (rli->prev_field
1046 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1047 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1049 unsigned int type_align = TYPE_ALIGN (type);
1050 type_align = MAX (type_align, desired_align);
1051 if (maximum_field_alignment != 0)
1052 type_align = MIN (type_align, maximum_field_alignment);
1053 rli->record_align = MAX (rli->record_align, type_align);
1054 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1057 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1059 /* Named bit-fields cause the entire structure to have the
1060 alignment implied by their type. Some targets also apply the same
1061 rules to unnamed bitfields. */
1062 if (DECL_NAME (field) != 0
1063 || targetm.align_anon_bitfield ())
1065 unsigned int type_align = TYPE_ALIGN (type);
1067 #ifdef ADJUST_FIELD_ALIGN
1068 if (! TYPE_USER_ALIGN (type))
1069 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1070 #endif
1072 /* Targets might chose to handle unnamed and hence possibly
1073 zero-width bitfield. Those are not influenced by #pragmas
1074 or packed attributes. */
1075 if (integer_zerop (DECL_SIZE (field)))
1077 if (initial_max_fld_align)
1078 type_align = MIN (type_align,
1079 initial_max_fld_align * BITS_PER_UNIT);
1081 else if (maximum_field_alignment != 0)
1082 type_align = MIN (type_align, maximum_field_alignment);
1083 else if (DECL_PACKED (field))
1084 type_align = MIN (type_align, BITS_PER_UNIT);
1086 /* The alignment of the record is increased to the maximum
1087 of the current alignment, the alignment indicated on the
1088 field (i.e., the alignment specified by an __aligned__
1089 attribute), and the alignment indicated by the type of
1090 the field. */
1091 rli->record_align = MAX (rli->record_align, desired_align);
1092 rli->record_align = MAX (rli->record_align, type_align);
1094 if (warn_packed)
1095 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1096 user_align |= TYPE_USER_ALIGN (type);
1099 else
1101 rli->record_align = MAX (rli->record_align, desired_align);
1102 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1105 TYPE_USER_ALIGN (rli->t) |= user_align;
1107 return desired_align;
1110 /* Issue a warning if the record alignment, RECORD_ALIGN, is less than
1111 the field alignment of FIELD or FIELD isn't aligned. */
1113 static void
1114 handle_warn_if_not_align (tree field, unsigned int record_align)
1116 tree type = TREE_TYPE (field);
1118 if (type == error_mark_node)
1119 return;
1121 unsigned int warn_if_not_align = 0;
1123 int opt_w = 0;
1125 if (warn_if_not_aligned)
1127 warn_if_not_align = DECL_WARN_IF_NOT_ALIGN (field);
1128 if (!warn_if_not_align)
1129 warn_if_not_align = TYPE_WARN_IF_NOT_ALIGN (type);
1130 if (warn_if_not_align)
1131 opt_w = OPT_Wif_not_aligned;
1134 if (!warn_if_not_align
1135 && warn_packed_not_aligned
1136 && lookup_attribute ("aligned", TYPE_ATTRIBUTES (type)))
1138 warn_if_not_align = TYPE_ALIGN (type);
1139 opt_w = OPT_Wpacked_not_aligned;
1142 if (!warn_if_not_align)
1143 return;
1145 tree context = DECL_CONTEXT (field);
1147 warn_if_not_align /= BITS_PER_UNIT;
1148 record_align /= BITS_PER_UNIT;
1149 if ((record_align % warn_if_not_align) != 0)
1150 warning (opt_w, "alignment %u of %qT is less than %u",
1151 record_align, context, warn_if_not_align);
1153 tree off = byte_position (field);
1154 if (!multiple_of_p (TREE_TYPE (off), off, size_int (warn_if_not_align)))
1156 if (TREE_CODE (off) == INTEGER_CST)
1157 warning (opt_w, "%q+D offset %E in %qT isn%'t aligned to %u",
1158 field, off, context, warn_if_not_align);
1159 else
1160 warning (opt_w, "%q+D offset %E in %qT may not be aligned to %u",
1161 field, off, context, warn_if_not_align);
1165 /* Called from place_field to handle unions. */
1167 static void
1168 place_union_field (record_layout_info rli, tree field)
1170 update_alignment_for_field (rli, field, /*known_align=*/0);
1172 DECL_FIELD_OFFSET (field) = size_zero_node;
1173 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1174 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1175 handle_warn_if_not_align (field, rli->record_align);
1177 /* If this is an ERROR_MARK return *after* having set the
1178 field at the start of the union. This helps when parsing
1179 invalid fields. */
1180 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1181 return;
1183 if (AGGREGATE_TYPE_P (TREE_TYPE (field))
1184 && TYPE_TYPELESS_STORAGE (TREE_TYPE (field)))
1185 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1187 /* We assume the union's size will be a multiple of a byte so we don't
1188 bother with BITPOS. */
1189 if (TREE_CODE (rli->t) == UNION_TYPE)
1190 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1191 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1192 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1193 DECL_SIZE_UNIT (field), rli->offset);
1196 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1197 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1198 units of alignment than the underlying TYPE. */
1199 static int
1200 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1201 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1203 /* Note that the calculation of OFFSET might overflow; we calculate it so
1204 that we still get the right result as long as ALIGN is a power of two. */
1205 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1207 offset = offset % align;
1208 return ((offset + size + align - 1) / align
1209 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1212 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1213 is a FIELD_DECL to be added after those fields already present in
1214 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1215 callers that desire that behavior must manually perform that step.) */
1217 void
1218 place_field (record_layout_info rli, tree field)
1220 /* The alignment required for FIELD. */
1221 unsigned int desired_align;
1222 /* The alignment FIELD would have if we just dropped it into the
1223 record as it presently stands. */
1224 unsigned int known_align;
1225 unsigned int actual_align;
1226 /* The type of this field. */
1227 tree type = TREE_TYPE (field);
1229 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1231 /* If FIELD is static, then treat it like a separate variable, not
1232 really like a structure field. If it is a FUNCTION_DECL, it's a
1233 method. In both cases, all we do is lay out the decl, and we do
1234 it *after* the record is laid out. */
1235 if (VAR_P (field))
1237 vec_safe_push (rli->pending_statics, field);
1238 return;
1241 /* Enumerators and enum types which are local to this class need not
1242 be laid out. Likewise for initialized constant fields. */
1243 else if (TREE_CODE (field) != FIELD_DECL)
1244 return;
1246 /* Unions are laid out very differently than records, so split
1247 that code off to another function. */
1248 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1250 place_union_field (rli, field);
1251 return;
1254 else if (TREE_CODE (type) == ERROR_MARK)
1256 /* Place this field at the current allocation position, so we
1257 maintain monotonicity. */
1258 DECL_FIELD_OFFSET (field) = rli->offset;
1259 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1260 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1261 handle_warn_if_not_align (field, rli->record_align);
1262 return;
1265 if (AGGREGATE_TYPE_P (type)
1266 && TYPE_TYPELESS_STORAGE (type))
1267 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1269 /* Work out the known alignment so far. Note that A & (-A) is the
1270 value of the least-significant bit in A that is one. */
1271 if (! integer_zerop (rli->bitpos))
1272 known_align = least_bit_hwi (tree_to_uhwi (rli->bitpos));
1273 else if (integer_zerop (rli->offset))
1274 known_align = 0;
1275 else if (tree_fits_uhwi_p (rli->offset))
1276 known_align = (BITS_PER_UNIT
1277 * least_bit_hwi (tree_to_uhwi (rli->offset)));
1278 else
1279 known_align = rli->offset_align;
1281 desired_align = update_alignment_for_field (rli, field, known_align);
1282 if (known_align == 0)
1283 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1285 if (warn_packed && DECL_PACKED (field))
1287 if (known_align >= TYPE_ALIGN (type))
1289 if (TYPE_ALIGN (type) > desired_align)
1291 if (STRICT_ALIGNMENT)
1292 warning (OPT_Wattributes, "packed attribute causes "
1293 "inefficient alignment for %q+D", field);
1294 /* Don't warn if DECL_PACKED was set by the type. */
1295 else if (!TYPE_PACKED (rli->t))
1296 warning (OPT_Wattributes, "packed attribute is "
1297 "unnecessary for %q+D", field);
1300 else
1301 rli->packed_maybe_necessary = 1;
1304 /* Does this field automatically have alignment it needs by virtue
1305 of the fields that precede it and the record's own alignment? */
1306 if (known_align < desired_align)
1308 /* No, we need to skip space before this field.
1309 Bump the cumulative size to multiple of field alignment. */
1311 if (!targetm.ms_bitfield_layout_p (rli->t)
1312 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1313 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1315 /* If the alignment is still within offset_align, just align
1316 the bit position. */
1317 if (desired_align < rli->offset_align)
1318 rli->bitpos = round_up (rli->bitpos, desired_align);
1319 else
1321 /* First adjust OFFSET by the partial bits, then align. */
1322 rli->offset
1323 = size_binop (PLUS_EXPR, rli->offset,
1324 fold_convert (sizetype,
1325 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1326 bitsize_unit_node)));
1327 rli->bitpos = bitsize_zero_node;
1329 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1332 if (! TREE_CONSTANT (rli->offset))
1333 rli->offset_align = desired_align;
1334 if (targetm.ms_bitfield_layout_p (rli->t))
1335 rli->prev_field = NULL;
1338 /* Handle compatibility with PCC. Note that if the record has any
1339 variable-sized fields, we need not worry about compatibility. */
1340 if (PCC_BITFIELD_TYPE_MATTERS
1341 && ! targetm.ms_bitfield_layout_p (rli->t)
1342 && TREE_CODE (field) == FIELD_DECL
1343 && type != error_mark_node
1344 && DECL_BIT_FIELD (field)
1345 && (! DECL_PACKED (field)
1346 /* Enter for these packed fields only to issue a warning. */
1347 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1348 && maximum_field_alignment == 0
1349 && ! integer_zerop (DECL_SIZE (field))
1350 && tree_fits_uhwi_p (DECL_SIZE (field))
1351 && tree_fits_uhwi_p (rli->offset)
1352 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1354 unsigned int type_align = TYPE_ALIGN (type);
1355 tree dsize = DECL_SIZE (field);
1356 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1357 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1358 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1360 #ifdef ADJUST_FIELD_ALIGN
1361 if (! TYPE_USER_ALIGN (type))
1362 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1363 #endif
1365 /* A bit field may not span more units of alignment of its type
1366 than its type itself. Advance to next boundary if necessary. */
1367 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1369 if (DECL_PACKED (field))
1371 if (warn_packed_bitfield_compat == 1)
1372 inform
1373 (input_location,
1374 "offset of packed bit-field %qD has changed in GCC 4.4",
1375 field);
1377 else
1378 rli->bitpos = round_up (rli->bitpos, type_align);
1381 if (! DECL_PACKED (field))
1382 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1384 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1385 TYPE_WARN_IF_NOT_ALIGN (type));
1388 #ifdef BITFIELD_NBYTES_LIMITED
1389 if (BITFIELD_NBYTES_LIMITED
1390 && ! targetm.ms_bitfield_layout_p (rli->t)
1391 && TREE_CODE (field) == FIELD_DECL
1392 && type != error_mark_node
1393 && DECL_BIT_FIELD_TYPE (field)
1394 && ! DECL_PACKED (field)
1395 && ! integer_zerop (DECL_SIZE (field))
1396 && tree_fits_uhwi_p (DECL_SIZE (field))
1397 && tree_fits_uhwi_p (rli->offset)
1398 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1400 unsigned int type_align = TYPE_ALIGN (type);
1401 tree dsize = DECL_SIZE (field);
1402 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1403 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1404 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1406 #ifdef ADJUST_FIELD_ALIGN
1407 if (! TYPE_USER_ALIGN (type))
1408 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1409 #endif
1411 if (maximum_field_alignment != 0)
1412 type_align = MIN (type_align, maximum_field_alignment);
1413 /* ??? This test is opposite the test in the containing if
1414 statement, so this code is unreachable currently. */
1415 else if (DECL_PACKED (field))
1416 type_align = MIN (type_align, BITS_PER_UNIT);
1418 /* A bit field may not span the unit of alignment of its type.
1419 Advance to next boundary if necessary. */
1420 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1421 rli->bitpos = round_up (rli->bitpos, type_align);
1423 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1424 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1425 TYPE_WARN_IF_NOT_ALIGN (type));
1427 #endif
1429 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1430 A subtlety:
1431 When a bit field is inserted into a packed record, the whole
1432 size of the underlying type is used by one or more same-size
1433 adjacent bitfields. (That is, if its long:3, 32 bits is
1434 used in the record, and any additional adjacent long bitfields are
1435 packed into the same chunk of 32 bits. However, if the size
1436 changes, a new field of that size is allocated.) In an unpacked
1437 record, this is the same as using alignment, but not equivalent
1438 when packing.
1440 Note: for compatibility, we use the type size, not the type alignment
1441 to determine alignment, since that matches the documentation */
1443 if (targetm.ms_bitfield_layout_p (rli->t))
1445 tree prev_saved = rli->prev_field;
1446 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1448 /* This is a bitfield if it exists. */
1449 if (rli->prev_field)
1451 /* If both are bitfields, nonzero, and the same size, this is
1452 the middle of a run. Zero declared size fields are special
1453 and handled as "end of run". (Note: it's nonzero declared
1454 size, but equal type sizes!) (Since we know that both
1455 the current and previous fields are bitfields by the
1456 time we check it, DECL_SIZE must be present for both.) */
1457 if (DECL_BIT_FIELD_TYPE (field)
1458 && !integer_zerop (DECL_SIZE (field))
1459 && !integer_zerop (DECL_SIZE (rli->prev_field))
1460 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1461 && tree_fits_uhwi_p (TYPE_SIZE (type))
1462 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1464 /* We're in the middle of a run of equal type size fields; make
1465 sure we realign if we run out of bits. (Not decl size,
1466 type size!) */
1467 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1469 if (rli->remaining_in_alignment < bitsize)
1471 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1473 /* out of bits; bump up to next 'word'. */
1474 rli->bitpos
1475 = size_binop (PLUS_EXPR, rli->bitpos,
1476 bitsize_int (rli->remaining_in_alignment));
1477 rli->prev_field = field;
1478 if (typesize < bitsize)
1479 rli->remaining_in_alignment = 0;
1480 else
1481 rli->remaining_in_alignment = typesize - bitsize;
1483 else
1484 rli->remaining_in_alignment -= bitsize;
1486 else
1488 /* End of a run: if leaving a run of bitfields of the same type
1489 size, we have to "use up" the rest of the bits of the type
1490 size.
1492 Compute the new position as the sum of the size for the prior
1493 type and where we first started working on that type.
1494 Note: since the beginning of the field was aligned then
1495 of course the end will be too. No round needed. */
1497 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1499 rli->bitpos
1500 = size_binop (PLUS_EXPR, rli->bitpos,
1501 bitsize_int (rli->remaining_in_alignment));
1503 else
1504 /* We "use up" size zero fields; the code below should behave
1505 as if the prior field was not a bitfield. */
1506 prev_saved = NULL;
1508 /* Cause a new bitfield to be captured, either this time (if
1509 currently a bitfield) or next time we see one. */
1510 if (!DECL_BIT_FIELD_TYPE (field)
1511 || integer_zerop (DECL_SIZE (field)))
1512 rli->prev_field = NULL;
1515 normalize_rli (rli);
1518 /* If we're starting a new run of same type size bitfields
1519 (or a run of non-bitfields), set up the "first of the run"
1520 fields.
1522 That is, if the current field is not a bitfield, or if there
1523 was a prior bitfield the type sizes differ, or if there wasn't
1524 a prior bitfield the size of the current field is nonzero.
1526 Note: we must be sure to test ONLY the type size if there was
1527 a prior bitfield and ONLY for the current field being zero if
1528 there wasn't. */
1530 if (!DECL_BIT_FIELD_TYPE (field)
1531 || (prev_saved != NULL
1532 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1533 : !integer_zerop (DECL_SIZE (field)) ))
1535 /* Never smaller than a byte for compatibility. */
1536 unsigned int type_align = BITS_PER_UNIT;
1538 /* (When not a bitfield), we could be seeing a flex array (with
1539 no DECL_SIZE). Since we won't be using remaining_in_alignment
1540 until we see a bitfield (and come by here again) we just skip
1541 calculating it. */
1542 if (DECL_SIZE (field) != NULL
1543 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1544 && tree_fits_uhwi_p (DECL_SIZE (field)))
1546 unsigned HOST_WIDE_INT bitsize
1547 = tree_to_uhwi (DECL_SIZE (field));
1548 unsigned HOST_WIDE_INT typesize
1549 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1551 if (typesize < bitsize)
1552 rli->remaining_in_alignment = 0;
1553 else
1554 rli->remaining_in_alignment = typesize - bitsize;
1557 /* Now align (conventionally) for the new type. */
1558 type_align = TYPE_ALIGN (TREE_TYPE (field));
1560 if (maximum_field_alignment != 0)
1561 type_align = MIN (type_align, maximum_field_alignment);
1563 rli->bitpos = round_up (rli->bitpos, type_align);
1565 /* If we really aligned, don't allow subsequent bitfields
1566 to undo that. */
1567 rli->prev_field = NULL;
1571 /* Offset so far becomes the position of this field after normalizing. */
1572 normalize_rli (rli);
1573 DECL_FIELD_OFFSET (field) = rli->offset;
1574 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1575 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1576 handle_warn_if_not_align (field, rli->record_align);
1578 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1579 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1580 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1582 /* If this field ended up more aligned than we thought it would be (we
1583 approximate this by seeing if its position changed), lay out the field
1584 again; perhaps we can use an integral mode for it now. */
1585 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1586 actual_align = least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1587 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1588 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1589 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1590 actual_align = (BITS_PER_UNIT
1591 * least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1592 else
1593 actual_align = DECL_OFFSET_ALIGN (field);
1594 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1595 store / extract bit field operations will check the alignment of the
1596 record against the mode of bit fields. */
1598 if (known_align != actual_align)
1599 layout_decl (field, actual_align);
1601 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1602 rli->prev_field = field;
1604 /* Now add size of this field to the size of the record. If the size is
1605 not constant, treat the field as being a multiple of bytes and just
1606 adjust the offset, resetting the bit position. Otherwise, apportion the
1607 size amongst the bit position and offset. First handle the case of an
1608 unspecified size, which can happen when we have an invalid nested struct
1609 definition, such as struct j { struct j { int i; } }. The error message
1610 is printed in finish_struct. */
1611 if (DECL_SIZE (field) == 0)
1612 /* Do nothing. */;
1613 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1614 || TREE_OVERFLOW (DECL_SIZE (field)))
1616 rli->offset
1617 = size_binop (PLUS_EXPR, rli->offset,
1618 fold_convert (sizetype,
1619 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1620 bitsize_unit_node)));
1621 rli->offset
1622 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1623 rli->bitpos = bitsize_zero_node;
1624 rli->offset_align = MIN (rli->offset_align, desired_align);
1626 else if (targetm.ms_bitfield_layout_p (rli->t))
1628 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1630 /* If we ended a bitfield before the full length of the type then
1631 pad the struct out to the full length of the last type. */
1632 if ((DECL_CHAIN (field) == NULL
1633 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1634 && DECL_BIT_FIELD_TYPE (field)
1635 && !integer_zerop (DECL_SIZE (field)))
1636 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1637 bitsize_int (rli->remaining_in_alignment));
1639 normalize_rli (rli);
1641 else
1643 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1644 normalize_rli (rli);
1648 /* Assuming that all the fields have been laid out, this function uses
1649 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1650 indicated by RLI. */
1652 static void
1653 finalize_record_size (record_layout_info rli)
1655 tree unpadded_size, unpadded_size_unit;
1657 /* Now we want just byte and bit offsets, so set the offset alignment
1658 to be a byte and then normalize. */
1659 rli->offset_align = BITS_PER_UNIT;
1660 normalize_rli (rli);
1662 /* Determine the desired alignment. */
1663 #ifdef ROUND_TYPE_ALIGN
1664 SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1665 rli->record_align));
1666 #else
1667 SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align));
1668 #endif
1670 /* Compute the size so far. Be sure to allow for extra bits in the
1671 size in bytes. We have guaranteed above that it will be no more
1672 than a single byte. */
1673 unpadded_size = rli_size_so_far (rli);
1674 unpadded_size_unit = rli_size_unit_so_far (rli);
1675 if (! integer_zerop (rli->bitpos))
1676 unpadded_size_unit
1677 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1679 /* Round the size up to be a multiple of the required alignment. */
1680 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1681 TYPE_SIZE_UNIT (rli->t)
1682 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1684 if (TREE_CONSTANT (unpadded_size)
1685 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1686 && input_location != BUILTINS_LOCATION)
1687 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1689 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1690 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1691 && TREE_CONSTANT (unpadded_size))
1693 tree unpacked_size;
1695 #ifdef ROUND_TYPE_ALIGN
1696 rli->unpacked_align
1697 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1698 #else
1699 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1700 #endif
1702 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1703 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1705 if (TYPE_NAME (rli->t))
1707 tree name;
1709 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1710 name = TYPE_NAME (rli->t);
1711 else
1712 name = DECL_NAME (TYPE_NAME (rli->t));
1714 if (STRICT_ALIGNMENT)
1715 warning (OPT_Wpacked, "packed attribute causes inefficient "
1716 "alignment for %qE", name);
1717 else
1718 warning (OPT_Wpacked,
1719 "packed attribute is unnecessary for %qE", name);
1721 else
1723 if (STRICT_ALIGNMENT)
1724 warning (OPT_Wpacked,
1725 "packed attribute causes inefficient alignment");
1726 else
1727 warning (OPT_Wpacked, "packed attribute is unnecessary");
1733 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1735 void
1736 compute_record_mode (tree type)
1738 tree field;
1739 machine_mode mode = VOIDmode;
1741 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1742 However, if possible, we use a mode that fits in a register
1743 instead, in order to allow for better optimization down the
1744 line. */
1745 SET_TYPE_MODE (type, BLKmode);
1747 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1748 return;
1750 /* A record which has any BLKmode members must itself be
1751 BLKmode; it can't go in a register. Unless the member is
1752 BLKmode only because it isn't aligned. */
1753 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1755 if (TREE_CODE (field) != FIELD_DECL)
1756 continue;
1758 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1759 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1760 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1761 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1762 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1763 || ! tree_fits_uhwi_p (bit_position (field))
1764 || DECL_SIZE (field) == 0
1765 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1766 return;
1768 /* If this field is the whole struct, remember its mode so
1769 that, say, we can put a double in a class into a DF
1770 register instead of forcing it to live in the stack. */
1771 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1772 mode = DECL_MODE (field);
1774 /* With some targets, it is sub-optimal to access an aligned
1775 BLKmode structure as a scalar. */
1776 if (targetm.member_type_forces_blk (field, mode))
1777 return;
1780 /* If we only have one real field; use its mode if that mode's size
1781 matches the type's size. This only applies to RECORD_TYPE. This
1782 does not apply to unions. */
1783 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1784 && tree_fits_uhwi_p (TYPE_SIZE (type))
1785 && known_eq (GET_MODE_BITSIZE (mode), tree_to_uhwi (TYPE_SIZE (type))))
1787 else
1788 mode = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1).else_blk ();
1790 /* If structure's known alignment is less than what the scalar
1791 mode would need, and it matters, then stick with BLKmode. */
1792 if (mode != BLKmode
1793 && STRICT_ALIGNMENT
1794 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1795 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (mode)))
1797 /* If this is the only reason this type is BLKmode, then
1798 don't force containing types to be BLKmode. */
1799 TYPE_NO_FORCE_BLK (type) = 1;
1800 mode = BLKmode;
1803 SET_TYPE_MODE (type, mode);
1806 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1807 out. */
1809 static void
1810 finalize_type_size (tree type)
1812 /* Normally, use the alignment corresponding to the mode chosen.
1813 However, where strict alignment is not required, avoid
1814 over-aligning structures, since most compilers do not do this
1815 alignment. */
1816 if (TYPE_MODE (type) != BLKmode
1817 && TYPE_MODE (type) != VOIDmode
1818 && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1820 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1822 /* Don't override a larger alignment requirement coming from a user
1823 alignment of one of the fields. */
1824 if (mode_align >= TYPE_ALIGN (type))
1826 SET_TYPE_ALIGN (type, mode_align);
1827 TYPE_USER_ALIGN (type) = 0;
1831 /* Do machine-dependent extra alignment. */
1832 #ifdef ROUND_TYPE_ALIGN
1833 SET_TYPE_ALIGN (type,
1834 ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT));
1835 #endif
1837 /* If we failed to find a simple way to calculate the unit size
1838 of the type, find it by division. */
1839 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1840 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1841 result will fit in sizetype. We will get more efficient code using
1842 sizetype, so we force a conversion. */
1843 TYPE_SIZE_UNIT (type)
1844 = fold_convert (sizetype,
1845 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1846 bitsize_unit_node));
1848 if (TYPE_SIZE (type) != 0)
1850 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1851 TYPE_SIZE_UNIT (type)
1852 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1855 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1856 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1857 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1858 if (TYPE_SIZE_UNIT (type) != 0
1859 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1860 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1862 /* Also layout any other variants of the type. */
1863 if (TYPE_NEXT_VARIANT (type)
1864 || type != TYPE_MAIN_VARIANT (type))
1866 tree variant;
1867 /* Record layout info of this variant. */
1868 tree size = TYPE_SIZE (type);
1869 tree size_unit = TYPE_SIZE_UNIT (type);
1870 unsigned int align = TYPE_ALIGN (type);
1871 unsigned int precision = TYPE_PRECISION (type);
1872 unsigned int user_align = TYPE_USER_ALIGN (type);
1873 machine_mode mode = TYPE_MODE (type);
1875 /* Copy it into all variants. */
1876 for (variant = TYPE_MAIN_VARIANT (type);
1877 variant != 0;
1878 variant = TYPE_NEXT_VARIANT (variant))
1880 TYPE_SIZE (variant) = size;
1881 TYPE_SIZE_UNIT (variant) = size_unit;
1882 unsigned valign = align;
1883 if (TYPE_USER_ALIGN (variant))
1884 valign = MAX (valign, TYPE_ALIGN (variant));
1885 else
1886 TYPE_USER_ALIGN (variant) = user_align;
1887 SET_TYPE_ALIGN (variant, valign);
1888 TYPE_PRECISION (variant) = precision;
1889 SET_TYPE_MODE (variant, mode);
1893 /* Handle empty records as per the x86-64 psABI. */
1894 TYPE_EMPTY_P (type) = targetm.calls.empty_record_p (type);
1897 /* Return a new underlying object for a bitfield started with FIELD. */
1899 static tree
1900 start_bitfield_representative (tree field)
1902 tree repr = make_node (FIELD_DECL);
1903 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1904 /* Force the representative to begin at a BITS_PER_UNIT aligned
1905 boundary - C++ may use tail-padding of a base object to
1906 continue packing bits so the bitfield region does not start
1907 at bit zero (see g++.dg/abi/bitfield5.C for example).
1908 Unallocated bits may happen for other reasons as well,
1909 for example Ada which allows explicit bit-granular structure layout. */
1910 DECL_FIELD_BIT_OFFSET (repr)
1911 = size_binop (BIT_AND_EXPR,
1912 DECL_FIELD_BIT_OFFSET (field),
1913 bitsize_int (~(BITS_PER_UNIT - 1)));
1914 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1915 DECL_SIZE (repr) = DECL_SIZE (field);
1916 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1917 DECL_PACKED (repr) = DECL_PACKED (field);
1918 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1919 /* There are no indirect accesses to this field. If we introduce
1920 some then they have to use the record alias set. This makes
1921 sure to properly conflict with [indirect] accesses to addressable
1922 fields of the bitfield group. */
1923 DECL_NONADDRESSABLE_P (repr) = 1;
1924 return repr;
1927 /* Finish up a bitfield group that was started by creating the underlying
1928 object REPR with the last field in the bitfield group FIELD. */
1930 static void
1931 finish_bitfield_representative (tree repr, tree field)
1933 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1934 tree nextf, size;
1936 size = size_diffop (DECL_FIELD_OFFSET (field),
1937 DECL_FIELD_OFFSET (repr));
1938 while (TREE_CODE (size) == COMPOUND_EXPR)
1939 size = TREE_OPERAND (size, 1);
1940 gcc_assert (tree_fits_uhwi_p (size));
1941 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1942 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1943 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1944 + tree_to_uhwi (DECL_SIZE (field)));
1946 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1947 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1949 /* Now nothing tells us how to pad out bitsize ... */
1950 nextf = DECL_CHAIN (field);
1951 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1952 nextf = DECL_CHAIN (nextf);
1953 if (nextf)
1955 tree maxsize;
1956 /* If there was an error, the field may be not laid out
1957 correctly. Don't bother to do anything. */
1958 if (TREE_TYPE (nextf) == error_mark_node)
1959 return;
1960 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1961 DECL_FIELD_OFFSET (repr));
1962 if (tree_fits_uhwi_p (maxsize))
1964 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1965 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1966 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1967 /* If the group ends within a bitfield nextf does not need to be
1968 aligned to BITS_PER_UNIT. Thus round up. */
1969 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1971 else
1972 maxbitsize = bitsize;
1974 else
1976 /* Note that if the C++ FE sets up tail-padding to be re-used it
1977 creates a as-base variant of the type with TYPE_SIZE adjusted
1978 accordingly. So it is safe to include tail-padding here. */
1979 tree aggsize = lang_hooks.types.unit_size_without_reusable_padding
1980 (DECL_CONTEXT (field));
1981 tree maxsize = size_diffop (aggsize, DECL_FIELD_OFFSET (repr));
1982 /* We cannot generally rely on maxsize to fold to an integer constant,
1983 so use bitsize as fallback for this case. */
1984 if (tree_fits_uhwi_p (maxsize))
1985 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1986 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1987 else
1988 maxbitsize = bitsize;
1991 /* Only if we don't artificially break up the representative in
1992 the middle of a large bitfield with different possibly
1993 overlapping representatives. And all representatives start
1994 at byte offset. */
1995 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1997 /* Find the smallest nice mode to use. */
1998 opt_scalar_int_mode mode_iter;
1999 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2000 if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize)
2001 break;
2003 scalar_int_mode mode;
2004 if (!mode_iter.exists (&mode)
2005 || GET_MODE_BITSIZE (mode) > maxbitsize
2006 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE)
2008 /* We really want a BLKmode representative only as a last resort,
2009 considering the member b in
2010 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
2011 Otherwise we simply want to split the representative up
2012 allowing for overlaps within the bitfield region as required for
2013 struct { int a : 7; int b : 7;
2014 int c : 10; int d; } __attribute__((packed));
2015 [0, 15] HImode for a and b, [8, 23] HImode for c. */
2016 DECL_SIZE (repr) = bitsize_int (bitsize);
2017 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
2018 SET_DECL_MODE (repr, BLKmode);
2019 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
2020 bitsize / BITS_PER_UNIT);
2022 else
2024 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
2025 DECL_SIZE (repr) = bitsize_int (modesize);
2026 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
2027 SET_DECL_MODE (repr, mode);
2028 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
2031 /* Remember whether the bitfield group is at the end of the
2032 structure or not. */
2033 DECL_CHAIN (repr) = nextf;
2036 /* Compute and set FIELD_DECLs for the underlying objects we should
2037 use for bitfield access for the structure T. */
2039 void
2040 finish_bitfield_layout (tree t)
2042 tree field, prev;
2043 tree repr = NULL_TREE;
2045 /* Unions would be special, for the ease of type-punning optimizations
2046 we could use the underlying type as hint for the representative
2047 if the bitfield would fit and the representative would not exceed
2048 the union in size. */
2049 if (TREE_CODE (t) != RECORD_TYPE)
2050 return;
2052 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
2053 field; field = DECL_CHAIN (field))
2055 if (TREE_CODE (field) != FIELD_DECL)
2056 continue;
2058 /* In the C++ memory model, consecutive bit fields in a structure are
2059 considered one memory location and updating a memory location
2060 may not store into adjacent memory locations. */
2061 if (!repr
2062 && DECL_BIT_FIELD_TYPE (field))
2064 /* Start new representative. */
2065 repr = start_bitfield_representative (field);
2067 else if (repr
2068 && ! DECL_BIT_FIELD_TYPE (field))
2070 /* Finish off new representative. */
2071 finish_bitfield_representative (repr, prev);
2072 repr = NULL_TREE;
2074 else if (DECL_BIT_FIELD_TYPE (field))
2076 gcc_assert (repr != NULL_TREE);
2078 /* Zero-size bitfields finish off a representative and
2079 do not have a representative themselves. This is
2080 required by the C++ memory model. */
2081 if (integer_zerop (DECL_SIZE (field)))
2083 finish_bitfield_representative (repr, prev);
2084 repr = NULL_TREE;
2087 /* We assume that either DECL_FIELD_OFFSET of the representative
2088 and each bitfield member is a constant or they are equal.
2089 This is because we need to be able to compute the bit-offset
2090 of each field relative to the representative in get_bit_range
2091 during RTL expansion.
2092 If these constraints are not met, simply force a new
2093 representative to be generated. That will at most
2094 generate worse code but still maintain correctness with
2095 respect to the C++ memory model. */
2096 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2097 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2098 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2099 DECL_FIELD_OFFSET (field), 0)))
2101 finish_bitfield_representative (repr, prev);
2102 repr = start_bitfield_representative (field);
2105 else
2106 continue;
2108 if (repr)
2109 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2111 prev = field;
2114 if (repr)
2115 finish_bitfield_representative (repr, prev);
2118 /* Do all of the work required to layout the type indicated by RLI,
2119 once the fields have been laid out. This function will call `free'
2120 for RLI, unless FREE_P is false. Passing a value other than false
2121 for FREE_P is bad practice; this option only exists to support the
2122 G++ 3.2 ABI. */
2124 void
2125 finish_record_layout (record_layout_info rli, int free_p)
2127 tree variant;
2129 /* Compute the final size. */
2130 finalize_record_size (rli);
2132 /* Compute the TYPE_MODE for the record. */
2133 compute_record_mode (rli->t);
2135 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2136 finalize_type_size (rli->t);
2138 /* Compute bitfield representatives. */
2139 finish_bitfield_layout (rli->t);
2141 /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2142 With C++ templates, it is too early to do this when the attribute
2143 is being parsed. */
2144 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2145 variant = TYPE_NEXT_VARIANT (variant))
2147 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2148 TYPE_REVERSE_STORAGE_ORDER (variant)
2149 = TYPE_REVERSE_STORAGE_ORDER (rli->t);
2152 /* Lay out any static members. This is done now because their type
2153 may use the record's type. */
2154 while (!vec_safe_is_empty (rli->pending_statics))
2155 layout_decl (rli->pending_statics->pop (), 0);
2157 /* Clean up. */
2158 if (free_p)
2160 vec_free (rli->pending_statics);
2161 free (rli);
2166 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2167 NAME, its fields are chained in reverse on FIELDS.
2169 If ALIGN_TYPE is non-null, it is given the same alignment as
2170 ALIGN_TYPE. */
2172 void
2173 finish_builtin_struct (tree type, const char *name, tree fields,
2174 tree align_type)
2176 tree tail, next;
2178 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2180 DECL_FIELD_CONTEXT (fields) = type;
2181 next = DECL_CHAIN (fields);
2182 DECL_CHAIN (fields) = tail;
2184 TYPE_FIELDS (type) = tail;
2186 if (align_type)
2188 SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type));
2189 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2190 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2191 TYPE_WARN_IF_NOT_ALIGN (align_type));
2194 layout_type (type);
2195 #if 0 /* not yet, should get fixed properly later */
2196 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2197 #else
2198 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2199 TYPE_DECL, get_identifier (name), type);
2200 #endif
2201 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2202 layout_decl (TYPE_NAME (type), 0);
2205 /* Calculate the mode, size, and alignment for TYPE.
2206 For an array type, calculate the element separation as well.
2207 Record TYPE on the chain of permanent or temporary types
2208 so that dbxout will find out about it.
2210 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2211 layout_type does nothing on such a type.
2213 If the type is incomplete, its TYPE_SIZE remains zero. */
2215 void
2216 layout_type (tree type)
2218 gcc_assert (type);
2220 if (type == error_mark_node)
2221 return;
2223 /* We don't want finalize_type_size to copy an alignment attribute to
2224 variants that don't have it. */
2225 type = TYPE_MAIN_VARIANT (type);
2227 /* Do nothing if type has been laid out before. */
2228 if (TYPE_SIZE (type))
2229 return;
2231 switch (TREE_CODE (type))
2233 case LANG_TYPE:
2234 /* This kind of type is the responsibility
2235 of the language-specific code. */
2236 gcc_unreachable ();
2238 case BOOLEAN_TYPE:
2239 case INTEGER_TYPE:
2240 case ENUMERAL_TYPE:
2242 scalar_int_mode mode
2243 = smallest_int_mode_for_size (TYPE_PRECISION (type));
2244 SET_TYPE_MODE (type, mode);
2245 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2246 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2247 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2248 break;
2251 case REAL_TYPE:
2253 /* Allow the caller to choose the type mode, which is how decimal
2254 floats are distinguished from binary ones. */
2255 if (TYPE_MODE (type) == VOIDmode)
2256 SET_TYPE_MODE
2257 (type, float_mode_for_size (TYPE_PRECISION (type)).require ());
2258 scalar_float_mode mode = as_a <scalar_float_mode> (TYPE_MODE (type));
2259 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2260 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2261 break;
2264 case FIXED_POINT_TYPE:
2266 /* TYPE_MODE (type) has been set already. */
2267 scalar_mode mode = SCALAR_TYPE_MODE (type);
2268 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2269 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2270 break;
2273 case COMPLEX_TYPE:
2274 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2275 SET_TYPE_MODE (type,
2276 GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));
2278 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2279 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2280 break;
2282 case VECTOR_TYPE:
2284 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (type);
2285 tree innertype = TREE_TYPE (type);
2287 /* Find an appropriate mode for the vector type. */
2288 if (TYPE_MODE (type) == VOIDmode)
2289 SET_TYPE_MODE (type,
2290 mode_for_vector (SCALAR_TYPE_MODE (innertype),
2291 nunits).else_blk ());
2293 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2294 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2295 /* Several boolean vector elements may fit in a single unit. */
2296 if (VECTOR_BOOLEAN_TYPE_P (type)
2297 && type->type_common.mode != BLKmode)
2298 TYPE_SIZE_UNIT (type)
2299 = size_int (GET_MODE_SIZE (type->type_common.mode));
2300 else
2301 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2302 TYPE_SIZE_UNIT (innertype),
2303 size_int (nunits));
2304 TYPE_SIZE (type) = int_const_binop
2305 (MULT_EXPR,
2306 bits_from_bytes (TYPE_SIZE_UNIT (type)),
2307 bitsize_int (BITS_PER_UNIT));
2309 /* For vector types, we do not default to the mode's alignment.
2310 Instead, query a target hook, defaulting to natural alignment.
2311 This prevents ABI changes depending on whether or not native
2312 vector modes are supported. */
2313 SET_TYPE_ALIGN (type, targetm.vector_alignment (type));
2315 /* However, if the underlying mode requires a bigger alignment than
2316 what the target hook provides, we cannot use the mode. For now,
2317 simply reject that case. */
2318 gcc_assert (TYPE_ALIGN (type)
2319 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2320 break;
2323 case VOID_TYPE:
2324 /* This is an incomplete type and so doesn't have a size. */
2325 SET_TYPE_ALIGN (type, 1);
2326 TYPE_USER_ALIGN (type) = 0;
2327 SET_TYPE_MODE (type, VOIDmode);
2328 break;
2330 case POINTER_BOUNDS_TYPE:
2331 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2332 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2333 break;
2335 case OFFSET_TYPE:
2336 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2337 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2338 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2339 integral, which may be an __intN. */
2340 SET_TYPE_MODE (type, int_mode_for_size (POINTER_SIZE, 0).require ());
2341 TYPE_PRECISION (type) = POINTER_SIZE;
2342 break;
2344 case FUNCTION_TYPE:
2345 case METHOD_TYPE:
2346 /* It's hard to see what the mode and size of a function ought to
2347 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2348 make it consistent with that. */
2349 SET_TYPE_MODE (type,
2350 int_mode_for_size (FUNCTION_BOUNDARY, 0).else_blk ());
2351 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2352 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2353 break;
2355 case POINTER_TYPE:
2356 case REFERENCE_TYPE:
2358 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
2359 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2360 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2361 TYPE_UNSIGNED (type) = 1;
2362 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2364 break;
2366 case ARRAY_TYPE:
2368 tree index = TYPE_DOMAIN (type);
2369 tree element = TREE_TYPE (type);
2371 /* We need to know both bounds in order to compute the size. */
2372 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2373 && TYPE_SIZE (element))
2375 tree ub = TYPE_MAX_VALUE (index);
2376 tree lb = TYPE_MIN_VALUE (index);
2377 tree element_size = TYPE_SIZE (element);
2378 tree length;
2380 /* Make sure that an array of zero-sized element is zero-sized
2381 regardless of its extent. */
2382 if (integer_zerop (element_size))
2383 length = size_zero_node;
2385 /* The computation should happen in the original signedness so
2386 that (possible) negative values are handled appropriately
2387 when determining overflow. */
2388 else
2390 /* ??? When it is obvious that the range is signed
2391 represent it using ssizetype. */
2392 if (TREE_CODE (lb) == INTEGER_CST
2393 && TREE_CODE (ub) == INTEGER_CST
2394 && TYPE_UNSIGNED (TREE_TYPE (lb))
2395 && tree_int_cst_lt (ub, lb))
2397 lb = wide_int_to_tree (ssizetype,
2398 offset_int::from (wi::to_wide (lb),
2399 SIGNED));
2400 ub = wide_int_to_tree (ssizetype,
2401 offset_int::from (wi::to_wide (ub),
2402 SIGNED));
2404 length
2405 = fold_convert (sizetype,
2406 size_binop (PLUS_EXPR,
2407 build_int_cst (TREE_TYPE (lb), 1),
2408 size_binop (MINUS_EXPR, ub, lb)));
2411 /* ??? We have no way to distinguish a null-sized array from an
2412 array spanning the whole sizetype range, so we arbitrarily
2413 decide that [0, -1] is the only valid representation. */
2414 if (integer_zerop (length)
2415 && TREE_OVERFLOW (length)
2416 && integer_zerop (lb))
2417 length = size_zero_node;
2419 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2420 bits_from_bytes (length));
2422 /* If we know the size of the element, calculate the total size
2423 directly, rather than do some division thing below. This
2424 optimization helps Fortran assumed-size arrays (where the
2425 size of the array is determined at runtime) substantially. */
2426 if (TYPE_SIZE_UNIT (element))
2427 TYPE_SIZE_UNIT (type)
2428 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2431 /* Now round the alignment and size,
2432 using machine-dependent criteria if any. */
2434 unsigned align = TYPE_ALIGN (element);
2435 if (TYPE_USER_ALIGN (type))
2436 align = MAX (align, TYPE_ALIGN (type));
2437 else
2438 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2439 if (!TYPE_WARN_IF_NOT_ALIGN (type))
2440 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2441 TYPE_WARN_IF_NOT_ALIGN (element));
2442 #ifdef ROUND_TYPE_ALIGN
2443 align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2444 #else
2445 align = MAX (align, BITS_PER_UNIT);
2446 #endif
2447 SET_TYPE_ALIGN (type, align);
2448 SET_TYPE_MODE (type, BLKmode);
2449 if (TYPE_SIZE (type) != 0
2450 && ! targetm.member_type_forces_blk (type, VOIDmode)
2451 /* BLKmode elements force BLKmode aggregate;
2452 else extract/store fields may lose. */
2453 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2454 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2456 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2457 TYPE_SIZE (type)));
2458 if (TYPE_MODE (type) != BLKmode
2459 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2460 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2462 TYPE_NO_FORCE_BLK (type) = 1;
2463 SET_TYPE_MODE (type, BLKmode);
2466 if (AGGREGATE_TYPE_P (element))
2467 TYPE_TYPELESS_STORAGE (type) = TYPE_TYPELESS_STORAGE (element);
2468 /* When the element size is constant, check that it is at least as
2469 large as the element alignment. */
2470 if (TYPE_SIZE_UNIT (element)
2471 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2472 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2473 TYPE_ALIGN_UNIT. */
2474 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2475 && !integer_zerop (TYPE_SIZE_UNIT (element))
2476 && compare_tree_int (TYPE_SIZE_UNIT (element),
2477 TYPE_ALIGN_UNIT (element)) < 0)
2478 error ("alignment of array elements is greater than element size");
2479 break;
2482 case RECORD_TYPE:
2483 case UNION_TYPE:
2484 case QUAL_UNION_TYPE:
2486 tree field;
2487 record_layout_info rli;
2489 /* Initialize the layout information. */
2490 rli = start_record_layout (type);
2492 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2493 in the reverse order in building the COND_EXPR that denotes
2494 its size. We reverse them again later. */
2495 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2496 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2498 /* Place all the fields. */
2499 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2500 place_field (rli, field);
2502 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2503 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2505 /* Finish laying out the record. */
2506 finish_record_layout (rli, /*free_p=*/true);
2508 break;
2510 default:
2511 gcc_unreachable ();
2514 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2515 records and unions, finish_record_layout already called this
2516 function. */
2517 if (!RECORD_OR_UNION_TYPE_P (type))
2518 finalize_type_size (type);
2520 /* We should never see alias sets on incomplete aggregates. And we
2521 should not call layout_type on not incomplete aggregates. */
2522 if (AGGREGATE_TYPE_P (type))
2523 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2526 /* Return the least alignment required for type TYPE. */
2528 unsigned int
2529 min_align_of_type (tree type)
2531 unsigned int align = TYPE_ALIGN (type);
2532 if (!TYPE_USER_ALIGN (type))
2534 align = MIN (align, BIGGEST_ALIGNMENT);
2535 #ifdef BIGGEST_FIELD_ALIGNMENT
2536 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2537 #endif
2538 unsigned int field_align = align;
2539 #ifdef ADJUST_FIELD_ALIGN
2540 field_align = ADJUST_FIELD_ALIGN (NULL_TREE, type, field_align);
2541 #endif
2542 align = MIN (align, field_align);
2544 return align / BITS_PER_UNIT;
2547 /* Create and return a type for signed integers of PRECISION bits. */
2549 tree
2550 make_signed_type (int precision)
2552 tree type = make_node (INTEGER_TYPE);
2554 TYPE_PRECISION (type) = precision;
2556 fixup_signed_type (type);
2557 return type;
2560 /* Create and return a type for unsigned integers of PRECISION bits. */
2562 tree
2563 make_unsigned_type (int precision)
2565 tree type = make_node (INTEGER_TYPE);
2567 TYPE_PRECISION (type) = precision;
2569 fixup_unsigned_type (type);
2570 return type;
2573 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2574 and SATP. */
2576 tree
2577 make_fract_type (int precision, int unsignedp, int satp)
2579 tree type = make_node (FIXED_POINT_TYPE);
2581 TYPE_PRECISION (type) = precision;
2583 if (satp)
2584 TYPE_SATURATING (type) = 1;
2586 /* Lay out the type: set its alignment, size, etc. */
2587 TYPE_UNSIGNED (type) = unsignedp;
2588 enum mode_class mclass = unsignedp ? MODE_UFRACT : MODE_FRACT;
2589 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2590 layout_type (type);
2592 return type;
2595 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2596 and SATP. */
2598 tree
2599 make_accum_type (int precision, int unsignedp, int satp)
2601 tree type = make_node (FIXED_POINT_TYPE);
2603 TYPE_PRECISION (type) = precision;
2605 if (satp)
2606 TYPE_SATURATING (type) = 1;
2608 /* Lay out the type: set its alignment, size, etc. */
2609 TYPE_UNSIGNED (type) = unsignedp;
2610 enum mode_class mclass = unsignedp ? MODE_UACCUM : MODE_ACCUM;
2611 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2612 layout_type (type);
2614 return type;
2617 /* Initialize sizetypes so layout_type can use them. */
2619 void
2620 initialize_sizetypes (void)
2622 int precision, bprecision;
2624 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2625 if (strcmp (SIZETYPE, "unsigned int") == 0)
2626 precision = INT_TYPE_SIZE;
2627 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2628 precision = LONG_TYPE_SIZE;
2629 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2630 precision = LONG_LONG_TYPE_SIZE;
2631 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2632 precision = SHORT_TYPE_SIZE;
2633 else
2635 int i;
2637 precision = -1;
2638 for (i = 0; i < NUM_INT_N_ENTS; i++)
2639 if (int_n_enabled_p[i])
2641 char name[50];
2642 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2644 if (strcmp (name, SIZETYPE) == 0)
2646 precision = int_n_data[i].bitsize;
2649 if (precision == -1)
2650 gcc_unreachable ();
2653 bprecision
2654 = MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE);
2655 bprecision = GET_MODE_PRECISION (smallest_int_mode_for_size (bprecision));
2656 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2657 bprecision = HOST_BITS_PER_DOUBLE_INT;
2659 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2660 sizetype = make_node (INTEGER_TYPE);
2661 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2662 TYPE_PRECISION (sizetype) = precision;
2663 TYPE_UNSIGNED (sizetype) = 1;
2664 bitsizetype = make_node (INTEGER_TYPE);
2665 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2666 TYPE_PRECISION (bitsizetype) = bprecision;
2667 TYPE_UNSIGNED (bitsizetype) = 1;
2669 /* Now layout both types manually. */
2670 scalar_int_mode mode = smallest_int_mode_for_size (precision);
2671 SET_TYPE_MODE (sizetype, mode);
2672 SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype)));
2673 TYPE_SIZE (sizetype) = bitsize_int (precision);
2674 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (mode));
2675 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2677 mode = smallest_int_mode_for_size (bprecision);
2678 SET_TYPE_MODE (bitsizetype, mode);
2679 SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype)));
2680 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2681 TYPE_SIZE_UNIT (bitsizetype) = size_int (GET_MODE_SIZE (mode));
2682 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2684 /* Create the signed variants of *sizetype. */
2685 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2686 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2687 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2688 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2691 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2692 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2693 for TYPE, based on the PRECISION and whether or not the TYPE
2694 IS_UNSIGNED. PRECISION need not correspond to a width supported
2695 natively by the hardware; for example, on a machine with 8-bit,
2696 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2697 61. */
2699 void
2700 set_min_and_max_values_for_integral_type (tree type,
2701 int precision,
2702 signop sgn)
2704 /* For bitfields with zero width we end up creating integer types
2705 with zero precision. Don't assign any minimum/maximum values
2706 to those types, they don't have any valid value. */
2707 if (precision < 1)
2708 return;
2710 TYPE_MIN_VALUE (type)
2711 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2712 TYPE_MAX_VALUE (type)
2713 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2716 /* Set the extreme values of TYPE based on its precision in bits,
2717 then lay it out. Used when make_signed_type won't do
2718 because the tree code is not INTEGER_TYPE. */
2720 void
2721 fixup_signed_type (tree type)
2723 int precision = TYPE_PRECISION (type);
2725 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2727 /* Lay out the type: set its alignment, size, etc. */
2728 layout_type (type);
2731 /* Set the extreme values of TYPE based on its precision in bits,
2732 then lay it out. This is used both in `make_unsigned_type'
2733 and for enumeral types. */
2735 void
2736 fixup_unsigned_type (tree type)
2738 int precision = TYPE_PRECISION (type);
2740 TYPE_UNSIGNED (type) = 1;
2742 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2744 /* Lay out the type: set its alignment, size, etc. */
2745 layout_type (type);
2748 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2749 starting at BITPOS.
2751 BITREGION_START is the bit position of the first bit in this
2752 sequence of bit fields. BITREGION_END is the last bit in this
2753 sequence. If these two fields are non-zero, we should restrict the
2754 memory access to that range. Otherwise, we are allowed to touch
2755 any adjacent non bit-fields.
2757 ALIGN is the alignment of the underlying object in bits.
2758 VOLATILEP says whether the bitfield is volatile. */
2760 bit_field_mode_iterator
2761 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2762 poly_int64 bitregion_start,
2763 poly_int64 bitregion_end,
2764 unsigned int align, bool volatilep)
2765 : m_mode (NARROWEST_INT_MODE), m_bitsize (bitsize),
2766 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2767 m_bitregion_end (bitregion_end), m_align (align),
2768 m_volatilep (volatilep), m_count (0)
2770 if (known_eq (m_bitregion_end, 0))
2772 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2773 the bitfield is mapped and won't trap, provided that ALIGN isn't
2774 too large. The cap is the biggest required alignment for data,
2775 or at least the word size. And force one such chunk at least. */
2776 unsigned HOST_WIDE_INT units
2777 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2778 if (bitsize <= 0)
2779 bitsize = 1;
2780 HOST_WIDE_INT end = bitpos + bitsize + units - 1;
2781 m_bitregion_end = end - end % units - 1;
2785 /* Calls to this function return successively larger modes that can be used
2786 to represent the bitfield. Return true if another bitfield mode is
2787 available, storing it in *OUT_MODE if so. */
2789 bool
2790 bit_field_mode_iterator::next_mode (scalar_int_mode *out_mode)
2792 scalar_int_mode mode;
2793 for (; m_mode.exists (&mode); m_mode = GET_MODE_WIDER_MODE (mode))
2795 unsigned int unit = GET_MODE_BITSIZE (mode);
2797 /* Skip modes that don't have full precision. */
2798 if (unit != GET_MODE_PRECISION (mode))
2799 continue;
2801 /* Stop if the mode is too wide to handle efficiently. */
2802 if (unit > MAX_FIXED_MODE_SIZE)
2803 break;
2805 /* Don't deliver more than one multiword mode; the smallest one
2806 should be used. */
2807 if (m_count > 0 && unit > BITS_PER_WORD)
2808 break;
2810 /* Skip modes that are too small. */
2811 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2812 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2813 if (subend > unit)
2814 continue;
2816 /* Stop if the mode goes outside the bitregion. */
2817 HOST_WIDE_INT start = m_bitpos - substart;
2818 if (maybe_ne (m_bitregion_start, 0)
2819 && maybe_lt (start, m_bitregion_start))
2820 break;
2821 HOST_WIDE_INT end = start + unit;
2822 if (maybe_gt (end, m_bitregion_end + 1))
2823 break;
2825 /* Stop if the mode requires too much alignment. */
2826 if (GET_MODE_ALIGNMENT (mode) > m_align
2827 && targetm.slow_unaligned_access (mode, m_align))
2828 break;
2830 *out_mode = mode;
2831 m_mode = GET_MODE_WIDER_MODE (mode);
2832 m_count++;
2833 return true;
2835 return false;
2838 /* Return true if smaller modes are generally preferred for this kind
2839 of bitfield. */
2841 bool
2842 bit_field_mode_iterator::prefer_smaller_modes ()
2844 return (m_volatilep
2845 ? targetm.narrow_volatile_bitfield ()
2846 : !SLOW_BYTE_ACCESS);
2849 /* Find the best machine mode to use when referencing a bit field of length
2850 BITSIZE bits starting at BITPOS.
2852 BITREGION_START is the bit position of the first bit in this
2853 sequence of bit fields. BITREGION_END is the last bit in this
2854 sequence. If these two fields are non-zero, we should restrict the
2855 memory access to that range. Otherwise, we are allowed to touch
2856 any adjacent non bit-fields.
2858 The chosen mode must have no more than LARGEST_MODE_BITSIZE bits.
2859 INT_MAX is a suitable value for LARGEST_MODE_BITSIZE if the caller
2860 doesn't want to apply a specific limit.
2862 If no mode meets all these conditions, we return VOIDmode.
2864 The underlying object is known to be aligned to a boundary of ALIGN bits.
2866 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2867 smallest mode meeting these conditions.
2869 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2870 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2871 all the conditions.
2873 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2874 decide which of the above modes should be used. */
2876 bool
2877 get_best_mode (int bitsize, int bitpos,
2878 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
2879 unsigned int align,
2880 unsigned HOST_WIDE_INT largest_mode_bitsize, bool volatilep,
2881 scalar_int_mode *best_mode)
2883 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2884 bitregion_end, align, volatilep);
2885 scalar_int_mode mode;
2886 bool found = false;
2887 while (iter.next_mode (&mode)
2888 /* ??? For historical reasons, reject modes that would normally
2889 receive greater alignment, even if unaligned accesses are
2890 acceptable. This has both advantages and disadvantages.
2891 Removing this check means that something like:
2893 struct s { unsigned int x; unsigned int y; };
2894 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2896 can be implemented using a single load and compare on
2897 64-bit machines that have no alignment restrictions.
2898 For example, on powerpc64-linux-gnu, we would generate:
2900 ld 3,0(3)
2901 cntlzd 3,3
2902 srdi 3,3,6
2905 rather than:
2907 lwz 9,0(3)
2908 cmpwi 7,9,0
2909 bne 7,.L3
2910 lwz 3,4(3)
2911 cntlzw 3,3
2912 srwi 3,3,5
2913 extsw 3,3
2915 .p2align 4,,15
2916 .L3:
2917 li 3,0
2920 However, accessing more than one field can make life harder
2921 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2922 has a series of unsigned short copies followed by a series of
2923 unsigned short comparisons. With this check, both the copies
2924 and comparisons remain 16-bit accesses and FRE is able
2925 to eliminate the latter. Without the check, the comparisons
2926 can be done using 2 64-bit operations, which FRE isn't able
2927 to handle in the same way.
2929 Either way, it would probably be worth disabling this check
2930 during expand. One particular example where removing the
2931 check would help is the get_best_mode call in store_bit_field.
2932 If we are given a memory bitregion of 128 bits that is aligned
2933 to a 64-bit boundary, and the bitfield we want to modify is
2934 in the second half of the bitregion, this check causes
2935 store_bitfield to turn the memory into a 64-bit reference
2936 to the _first_ half of the region. We later use
2937 adjust_bitfield_address to get a reference to the correct half,
2938 but doing so looks to adjust_bitfield_address as though we are
2939 moving past the end of the original object, so it drops the
2940 associated MEM_EXPR and MEM_OFFSET. Removing the check
2941 causes store_bit_field to keep a 128-bit memory reference,
2942 so that the final bitfield reference still has a MEM_EXPR
2943 and MEM_OFFSET. */
2944 && GET_MODE_ALIGNMENT (mode) <= align
2945 && GET_MODE_BITSIZE (mode) <= largest_mode_bitsize)
2947 *best_mode = mode;
2948 found = true;
2949 if (iter.prefer_smaller_modes ())
2950 break;
2953 return found;
2956 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2957 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2959 void
2960 get_mode_bounds (scalar_int_mode mode, int sign,
2961 scalar_int_mode target_mode,
2962 rtx *mmin, rtx *mmax)
2964 unsigned size = GET_MODE_PRECISION (mode);
2965 unsigned HOST_WIDE_INT min_val, max_val;
2967 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2969 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2970 if (mode == BImode)
2972 if (STORE_FLAG_VALUE < 0)
2974 min_val = STORE_FLAG_VALUE;
2975 max_val = 0;
2977 else
2979 min_val = 0;
2980 max_val = STORE_FLAG_VALUE;
2983 else if (sign)
2985 min_val = -(HOST_WIDE_INT_1U << (size - 1));
2986 max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1;
2988 else
2990 min_val = 0;
2991 max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1;
2994 *mmin = gen_int_mode (min_val, target_mode);
2995 *mmax = gen_int_mode (max_val, target_mode);
2998 #include "gt-stor-layout.h"