Fix warnings building linux-atomic.c and fptr.c on hppa64-linux
[official-gcc.git] / gcc / tree-switch-conversion.c
blob244cf4be010c638b79ef732982774a31fd9809a7
1 /* Lower GIMPLE_SWITCH expressions to something more efficient than
2 a jump table.
3 Copyright (C) 2006-2021 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This file handles the lowering of GIMPLE_SWITCH to an indexed
23 load, or a series of bit-test-and-branch expressions. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "backend.h"
29 #include "insn-codes.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "gimple.h"
33 #include "cfghooks.h"
34 #include "tree-pass.h"
35 #include "ssa.h"
36 #include "optabs-tree.h"
37 #include "cgraph.h"
38 #include "gimple-pretty-print.h"
39 #include "fold-const.h"
40 #include "varasm.h"
41 #include "stor-layout.h"
42 #include "cfganal.h"
43 #include "gimplify.h"
44 #include "gimple-iterator.h"
45 #include "gimplify-me.h"
46 #include "gimple-fold.h"
47 #include "tree-cfg.h"
48 #include "cfgloop.h"
49 #include "alloc-pool.h"
50 #include "target.h"
51 #include "tree-into-ssa.h"
52 #include "omp-general.h"
53 #include "gimple-range.h"
55 /* ??? For lang_hooks.types.type_for_mode, but is there a word_mode
56 type in the GIMPLE type system that is language-independent? */
57 #include "langhooks.h"
59 #include "tree-switch-conversion.h"
61 using namespace tree_switch_conversion;
63 /* Constructor. */
65 switch_conversion::switch_conversion (): m_final_bb (NULL),
66 m_constructors (NULL), m_default_values (NULL),
67 m_arr_ref_first (NULL), m_arr_ref_last (NULL),
68 m_reason (NULL), m_default_case_nonstandard (false), m_cfg_altered (false)
72 /* Collection information about SWTCH statement. */
74 void
75 switch_conversion::collect (gswitch *swtch)
77 unsigned int branch_num = gimple_switch_num_labels (swtch);
78 tree min_case, max_case;
79 unsigned int i;
80 edge e, e_default, e_first;
81 edge_iterator ei;
83 m_switch = swtch;
85 /* The gimplifier has already sorted the cases by CASE_LOW and ensured there
86 is a default label which is the first in the vector.
87 Collect the bits we can deduce from the CFG. */
88 m_index_expr = gimple_switch_index (swtch);
89 m_switch_bb = gimple_bb (swtch);
90 e_default = gimple_switch_default_edge (cfun, swtch);
91 m_default_bb = e_default->dest;
92 m_default_prob = e_default->probability;
94 /* Get upper and lower bounds of case values, and the covered range. */
95 min_case = gimple_switch_label (swtch, 1);
96 max_case = gimple_switch_label (swtch, branch_num - 1);
98 m_range_min = CASE_LOW (min_case);
99 if (CASE_HIGH (max_case) != NULL_TREE)
100 m_range_max = CASE_HIGH (max_case);
101 else
102 m_range_max = CASE_LOW (max_case);
104 m_contiguous_range = true;
105 tree last = CASE_HIGH (min_case) ? CASE_HIGH (min_case) : m_range_min;
106 for (i = 2; i < branch_num; i++)
108 tree elt = gimple_switch_label (swtch, i);
109 if (wi::to_wide (last) + 1 != wi::to_wide (CASE_LOW (elt)))
111 m_contiguous_range = false;
112 break;
114 last = CASE_HIGH (elt) ? CASE_HIGH (elt) : CASE_LOW (elt);
117 if (m_contiguous_range)
118 e_first = gimple_switch_edge (cfun, swtch, 1);
119 else
120 e_first = e_default;
122 /* See if there is one common successor block for all branch
123 targets. If it exists, record it in FINAL_BB.
124 Start with the destination of the first non-default case
125 if the range is contiguous and default case otherwise as
126 guess or its destination in case it is a forwarder block. */
127 if (! single_pred_p (e_first->dest))
128 m_final_bb = e_first->dest;
129 else if (single_succ_p (e_first->dest)
130 && ! single_pred_p (single_succ (e_first->dest)))
131 m_final_bb = single_succ (e_first->dest);
132 /* Require that all switch destinations are either that common
133 FINAL_BB or a forwarder to it, except for the default
134 case if contiguous range. */
135 if (m_final_bb)
136 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
138 if (e->dest == m_final_bb)
139 continue;
141 if (single_pred_p (e->dest)
142 && single_succ_p (e->dest)
143 && single_succ (e->dest) == m_final_bb)
144 continue;
146 if (e == e_default && m_contiguous_range)
148 m_default_case_nonstandard = true;
149 continue;
152 m_final_bb = NULL;
153 break;
156 m_range_size
157 = int_const_binop (MINUS_EXPR, m_range_max, m_range_min);
159 /* Get a count of the number of case labels. Single-valued case labels
160 simply count as one, but a case range counts double, since it may
161 require two compares if it gets lowered as a branching tree. */
162 m_count = 0;
163 for (i = 1; i < branch_num; i++)
165 tree elt = gimple_switch_label (swtch, i);
166 m_count++;
167 if (CASE_HIGH (elt)
168 && ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt)))
169 m_count++;
172 /* Get the number of unique non-default targets out of the GIMPLE_SWITCH
173 block. Assume a CFG cleanup would have already removed degenerate
174 switch statements, this allows us to just use EDGE_COUNT. */
175 m_uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1;
178 /* Checks whether the range given by individual case statements of the switch
179 switch statement isn't too big and whether the number of branches actually
180 satisfies the size of the new array. */
182 bool
183 switch_conversion::check_range ()
185 gcc_assert (m_range_size);
186 if (!tree_fits_uhwi_p (m_range_size))
188 m_reason = "index range way too large or otherwise unusable";
189 return false;
192 if (tree_to_uhwi (m_range_size)
193 > ((unsigned) m_count * param_switch_conversion_branch_ratio))
195 m_reason = "the maximum range-branch ratio exceeded";
196 return false;
199 return true;
202 /* Checks whether all but the final BB basic blocks are empty. */
204 bool
205 switch_conversion::check_all_empty_except_final ()
207 edge e, e_default = find_edge (m_switch_bb, m_default_bb);
208 edge_iterator ei;
210 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
212 if (e->dest == m_final_bb)
213 continue;
215 if (!empty_block_p (e->dest))
217 if (m_contiguous_range && e == e_default)
219 m_default_case_nonstandard = true;
220 continue;
223 m_reason = "bad case - a non-final BB not empty";
224 return false;
228 return true;
231 /* This function checks whether all required values in phi nodes in final_bb
232 are constants. Required values are those that correspond to a basic block
233 which is a part of the examined switch statement. It returns true if the
234 phi nodes are OK, otherwise false. */
236 bool
237 switch_conversion::check_final_bb ()
239 gphi_iterator gsi;
241 m_phi_count = 0;
242 for (gsi = gsi_start_phis (m_final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
244 gphi *phi = gsi.phi ();
245 unsigned int i;
247 if (virtual_operand_p (gimple_phi_result (phi)))
248 continue;
250 m_phi_count++;
252 for (i = 0; i < gimple_phi_num_args (phi); i++)
254 basic_block bb = gimple_phi_arg_edge (phi, i)->src;
256 if (bb == m_switch_bb
257 || (single_pred_p (bb)
258 && single_pred (bb) == m_switch_bb
259 && (!m_default_case_nonstandard
260 || empty_block_p (bb))))
262 tree reloc, val;
263 const char *reason = NULL;
265 val = gimple_phi_arg_def (phi, i);
266 if (!is_gimple_ip_invariant (val))
267 reason = "non-invariant value from a case";
268 else
270 reloc = initializer_constant_valid_p (val, TREE_TYPE (val));
271 if ((flag_pic && reloc != null_pointer_node)
272 || (!flag_pic && reloc == NULL_TREE))
274 if (reloc)
275 reason
276 = "value from a case would need runtime relocations";
277 else
278 reason
279 = "value from a case is not a valid initializer";
282 if (reason)
284 /* For contiguous range, we can allow non-constant
285 or one that needs relocation, as long as it is
286 only reachable from the default case. */
287 if (bb == m_switch_bb)
288 bb = m_final_bb;
289 if (!m_contiguous_range || bb != m_default_bb)
291 m_reason = reason;
292 return false;
295 unsigned int branch_num = gimple_switch_num_labels (m_switch);
296 for (unsigned int i = 1; i < branch_num; i++)
298 if (gimple_switch_label_bb (cfun, m_switch, i) == bb)
300 m_reason = reason;
301 return false;
304 m_default_case_nonstandard = true;
310 return true;
313 /* The following function allocates default_values, target_{in,out}_names and
314 constructors arrays. The last one is also populated with pointers to
315 vectors that will become constructors of new arrays. */
317 void
318 switch_conversion::create_temp_arrays ()
320 int i;
322 m_default_values = XCNEWVEC (tree, m_phi_count * 3);
323 /* ??? Macros do not support multi argument templates in their
324 argument list. We create a typedef to work around that problem. */
325 typedef vec<constructor_elt, va_gc> *vec_constructor_elt_gc;
326 m_constructors = XCNEWVEC (vec_constructor_elt_gc, m_phi_count);
327 m_target_inbound_names = m_default_values + m_phi_count;
328 m_target_outbound_names = m_target_inbound_names + m_phi_count;
329 for (i = 0; i < m_phi_count; i++)
330 vec_alloc (m_constructors[i], tree_to_uhwi (m_range_size) + 1);
333 /* Populate the array of default values in the order of phi nodes.
334 DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch
335 if the range is non-contiguous or the default case has standard
336 structure, otherwise it is the first non-default case instead. */
338 void
339 switch_conversion::gather_default_values (tree default_case)
341 gphi_iterator gsi;
342 basic_block bb = label_to_block (cfun, CASE_LABEL (default_case));
343 edge e;
344 int i = 0;
346 gcc_assert (CASE_LOW (default_case) == NULL_TREE
347 || m_default_case_nonstandard);
349 if (bb == m_final_bb)
350 e = find_edge (m_switch_bb, bb);
351 else
352 e = single_succ_edge (bb);
354 for (gsi = gsi_start_phis (m_final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
356 gphi *phi = gsi.phi ();
357 if (virtual_operand_p (gimple_phi_result (phi)))
358 continue;
359 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
360 gcc_assert (val);
361 m_default_values[i++] = val;
365 /* The following function populates the vectors in the constructors array with
366 future contents of the static arrays. The vectors are populated in the
367 order of phi nodes. */
369 void
370 switch_conversion::build_constructors ()
372 unsigned i, branch_num = gimple_switch_num_labels (m_switch);
373 tree pos = m_range_min;
374 tree pos_one = build_int_cst (TREE_TYPE (pos), 1);
376 for (i = 1; i < branch_num; i++)
378 tree cs = gimple_switch_label (m_switch, i);
379 basic_block bb = label_to_block (cfun, CASE_LABEL (cs));
380 edge e;
381 tree high;
382 gphi_iterator gsi;
383 int j;
385 if (bb == m_final_bb)
386 e = find_edge (m_switch_bb, bb);
387 else
388 e = single_succ_edge (bb);
389 gcc_assert (e);
391 while (tree_int_cst_lt (pos, CASE_LOW (cs)))
393 int k;
394 for (k = 0; k < m_phi_count; k++)
396 constructor_elt elt;
398 elt.index = int_const_binop (MINUS_EXPR, pos, m_range_min);
399 elt.value
400 = unshare_expr_without_location (m_default_values[k]);
401 m_constructors[k]->quick_push (elt);
404 pos = int_const_binop (PLUS_EXPR, pos, pos_one);
406 gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs)));
408 j = 0;
409 if (CASE_HIGH (cs))
410 high = CASE_HIGH (cs);
411 else
412 high = CASE_LOW (cs);
413 for (gsi = gsi_start_phis (m_final_bb);
414 !gsi_end_p (gsi); gsi_next (&gsi))
416 gphi *phi = gsi.phi ();
417 if (virtual_operand_p (gimple_phi_result (phi)))
418 continue;
419 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
420 tree low = CASE_LOW (cs);
421 pos = CASE_LOW (cs);
425 constructor_elt elt;
427 elt.index = int_const_binop (MINUS_EXPR, pos, m_range_min);
428 elt.value = unshare_expr_without_location (val);
429 m_constructors[j]->quick_push (elt);
431 pos = int_const_binop (PLUS_EXPR, pos, pos_one);
432 } while (!tree_int_cst_lt (high, pos)
433 && tree_int_cst_lt (low, pos));
434 j++;
439 /* If all values in the constructor vector are products of a linear function
440 a * x + b, then return true. When true, COEFF_A and COEFF_B and
441 coefficients of the linear function. Note that equal values are special
442 case of a linear function with a and b equal to zero. */
444 bool
445 switch_conversion::contains_linear_function_p (vec<constructor_elt, va_gc> *vec,
446 wide_int *coeff_a,
447 wide_int *coeff_b)
449 unsigned int i;
450 constructor_elt *elt;
452 gcc_assert (vec->length () >= 2);
454 /* Let's try to find any linear function a * x + y that can apply to
455 given values. 'a' can be calculated as follows:
457 a = (y2 - y1) / (x2 - x1) where x2 - x1 = 1 (consecutive case indices)
458 a = y2 - y1
462 b = y2 - a * x2
466 tree elt0 = (*vec)[0].value;
467 tree elt1 = (*vec)[1].value;
469 if (TREE_CODE (elt0) != INTEGER_CST || TREE_CODE (elt1) != INTEGER_CST)
470 return false;
472 wide_int range_min
473 = wide_int::from (wi::to_wide (m_range_min),
474 TYPE_PRECISION (TREE_TYPE (elt0)),
475 TYPE_SIGN (TREE_TYPE (m_range_min)));
476 wide_int y1 = wi::to_wide (elt0);
477 wide_int y2 = wi::to_wide (elt1);
478 wide_int a = y2 - y1;
479 wide_int b = y2 - a * (range_min + 1);
481 /* Verify that all values fulfill the linear function. */
482 FOR_EACH_VEC_SAFE_ELT (vec, i, elt)
484 if (TREE_CODE (elt->value) != INTEGER_CST)
485 return false;
487 wide_int value = wi::to_wide (elt->value);
488 if (a * range_min + b != value)
489 return false;
491 ++range_min;
494 *coeff_a = a;
495 *coeff_b = b;
497 return true;
500 /* Return type which should be used for array elements, either TYPE's
501 main variant or, for integral types, some smaller integral type
502 that can still hold all the constants. */
504 tree
505 switch_conversion::array_value_type (tree type, int num)
507 unsigned int i, len = vec_safe_length (m_constructors[num]);
508 constructor_elt *elt;
509 int sign = 0;
510 tree smaller_type;
512 /* Types with alignments greater than their size can reach here, e.g. out of
513 SRA. We couldn't use these as an array component type so get back to the
514 main variant first, which, for our purposes, is fine for other types as
515 well. */
517 type = TYPE_MAIN_VARIANT (type);
519 if (!INTEGRAL_TYPE_P (type))
520 return type;
522 scalar_int_mode type_mode = SCALAR_INT_TYPE_MODE (type);
523 scalar_int_mode mode = get_narrowest_mode (type_mode);
524 if (GET_MODE_SIZE (type_mode) <= GET_MODE_SIZE (mode))
525 return type;
527 if (len < (optimize_bb_for_size_p (gimple_bb (m_switch)) ? 2 : 32))
528 return type;
530 FOR_EACH_VEC_SAFE_ELT (m_constructors[num], i, elt)
532 wide_int cst;
534 if (TREE_CODE (elt->value) != INTEGER_CST)
535 return type;
537 cst = wi::to_wide (elt->value);
538 while (1)
540 unsigned int prec = GET_MODE_BITSIZE (mode);
541 if (prec > HOST_BITS_PER_WIDE_INT)
542 return type;
544 if (sign >= 0 && cst == wi::zext (cst, prec))
546 if (sign == 0 && cst == wi::sext (cst, prec))
547 break;
548 sign = 1;
549 break;
551 if (sign <= 0 && cst == wi::sext (cst, prec))
553 sign = -1;
554 break;
557 if (sign == 1)
558 sign = 0;
560 if (!GET_MODE_WIDER_MODE (mode).exists (&mode)
561 || GET_MODE_SIZE (mode) >= GET_MODE_SIZE (type_mode))
562 return type;
566 if (sign == 0)
567 sign = TYPE_UNSIGNED (type) ? 1 : -1;
568 smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0);
569 if (GET_MODE_SIZE (type_mode)
570 <= GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (smaller_type)))
571 return type;
573 return smaller_type;
576 /* Create an appropriate array type and declaration and assemble a static
577 array variable. Also create a load statement that initializes
578 the variable in question with a value from the static array. SWTCH is
579 the switch statement being converted, NUM is the index to
580 arrays of constructors, default values and target SSA names
581 for this particular array. ARR_INDEX_TYPE is the type of the index
582 of the new array, PHI is the phi node of the final BB that corresponds
583 to the value that will be loaded from the created array. TIDX
584 is an ssa name of a temporary variable holding the index for loads from the
585 new array. */
587 void
588 switch_conversion::build_one_array (int num, tree arr_index_type,
589 gphi *phi, tree tidx)
591 tree name;
592 gimple *load;
593 gimple_stmt_iterator gsi = gsi_for_stmt (m_switch);
594 location_t loc = gimple_location (m_switch);
596 gcc_assert (m_default_values[num]);
598 name = copy_ssa_name (PHI_RESULT (phi));
599 m_target_inbound_names[num] = name;
601 vec<constructor_elt, va_gc> *constructor = m_constructors[num];
602 wide_int coeff_a, coeff_b;
603 bool linear_p = contains_linear_function_p (constructor, &coeff_a, &coeff_b);
604 tree type;
605 if (linear_p
606 && (type = range_check_type (TREE_TYPE ((*constructor)[0].value))))
608 if (dump_file && coeff_a.to_uhwi () > 0)
609 fprintf (dump_file, "Linear transformation with A = %" PRId64
610 " and B = %" PRId64 "\n", coeff_a.to_shwi (),
611 coeff_b.to_shwi ());
613 /* We must use type of constructor values. */
614 gimple_seq seq = NULL;
615 tree tmp = gimple_convert (&seq, type, m_index_expr);
616 tree tmp2 = gimple_build (&seq, MULT_EXPR, type,
617 wide_int_to_tree (type, coeff_a), tmp);
618 tree tmp3 = gimple_build (&seq, PLUS_EXPR, type, tmp2,
619 wide_int_to_tree (type, coeff_b));
620 tree tmp4 = gimple_convert (&seq, TREE_TYPE (name), tmp3);
621 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
622 load = gimple_build_assign (name, tmp4);
624 else
626 tree array_type, ctor, decl, value_type, fetch, default_type;
628 default_type = TREE_TYPE (m_default_values[num]);
629 value_type = array_value_type (default_type, num);
630 array_type = build_array_type (value_type, arr_index_type);
631 if (default_type != value_type)
633 unsigned int i;
634 constructor_elt *elt;
636 FOR_EACH_VEC_SAFE_ELT (constructor, i, elt)
637 elt->value = fold_convert (value_type, elt->value);
639 ctor = build_constructor (array_type, constructor);
640 TREE_CONSTANT (ctor) = true;
641 TREE_STATIC (ctor) = true;
643 decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type);
644 TREE_STATIC (decl) = 1;
645 DECL_INITIAL (decl) = ctor;
647 DECL_NAME (decl) = create_tmp_var_name ("CSWTCH");
648 DECL_ARTIFICIAL (decl) = 1;
649 DECL_IGNORED_P (decl) = 1;
650 TREE_CONSTANT (decl) = 1;
651 TREE_READONLY (decl) = 1;
652 DECL_IGNORED_P (decl) = 1;
653 if (offloading_function_p (cfun->decl))
654 DECL_ATTRIBUTES (decl)
655 = tree_cons (get_identifier ("omp declare target"), NULL_TREE,
656 NULL_TREE);
657 varpool_node::finalize_decl (decl);
659 fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE,
660 NULL_TREE);
661 if (default_type != value_type)
663 fetch = fold_convert (default_type, fetch);
664 fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE,
665 true, GSI_SAME_STMT);
667 load = gimple_build_assign (name, fetch);
670 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
671 update_stmt (load);
672 m_arr_ref_last = load;
675 /* Builds and initializes static arrays initialized with values gathered from
676 the switch statement. Also creates statements that load values from
677 them. */
679 void
680 switch_conversion::build_arrays ()
682 tree arr_index_type;
683 tree tidx, sub, utype;
684 gimple *stmt;
685 gimple_stmt_iterator gsi;
686 gphi_iterator gpi;
687 int i;
688 location_t loc = gimple_location (m_switch);
690 gsi = gsi_for_stmt (m_switch);
692 /* Make sure we do not generate arithmetics in a subrange. */
693 utype = TREE_TYPE (m_index_expr);
694 if (TREE_TYPE (utype))
695 utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1);
696 else
697 utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1);
699 arr_index_type = build_index_type (m_range_size);
700 tidx = make_ssa_name (utype);
701 sub = fold_build2_loc (loc, MINUS_EXPR, utype,
702 fold_convert_loc (loc, utype, m_index_expr),
703 fold_convert_loc (loc, utype, m_range_min));
704 sub = force_gimple_operand_gsi (&gsi, sub,
705 false, NULL, true, GSI_SAME_STMT);
706 stmt = gimple_build_assign (tidx, sub);
708 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
709 update_stmt (stmt);
710 m_arr_ref_first = stmt;
712 for (gpi = gsi_start_phis (m_final_bb), i = 0;
713 !gsi_end_p (gpi); gsi_next (&gpi))
715 gphi *phi = gpi.phi ();
716 if (!virtual_operand_p (gimple_phi_result (phi)))
717 build_one_array (i++, arr_index_type, phi, tidx);
718 else
720 edge e;
721 edge_iterator ei;
722 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
724 if (e->dest == m_final_bb)
725 break;
726 if (!m_default_case_nonstandard
727 || e->dest != m_default_bb)
729 e = single_succ_edge (e->dest);
730 break;
733 gcc_assert (e && e->dest == m_final_bb);
734 m_target_vop = PHI_ARG_DEF_FROM_EDGE (phi, e);
739 /* Generates and appropriately inserts loads of default values at the position
740 given by GSI. Returns the last inserted statement. */
742 gassign *
743 switch_conversion::gen_def_assigns (gimple_stmt_iterator *gsi)
745 int i;
746 gassign *assign = NULL;
748 for (i = 0; i < m_phi_count; i++)
750 tree name = copy_ssa_name (m_target_inbound_names[i]);
751 m_target_outbound_names[i] = name;
752 assign = gimple_build_assign (name, m_default_values[i]);
753 gsi_insert_before (gsi, assign, GSI_SAME_STMT);
754 update_stmt (assign);
756 return assign;
759 /* Deletes the unused bbs and edges that now contain the switch statement and
760 its empty branch bbs. BBD is the now dead BB containing
761 the original switch statement, FINAL is the last BB of the converted
762 switch statement (in terms of succession). */
764 void
765 switch_conversion::prune_bbs (basic_block bbd, basic_block final,
766 basic_block default_bb)
768 edge_iterator ei;
769 edge e;
771 for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); )
773 basic_block bb;
774 bb = e->dest;
775 remove_edge (e);
776 if (bb != final && bb != default_bb)
777 delete_basic_block (bb);
779 delete_basic_block (bbd);
782 /* Add values to phi nodes in final_bb for the two new edges. E1F is the edge
783 from the basic block loading values from an array and E2F from the basic
784 block loading default values. BBF is the last switch basic block (see the
785 bbf description in the comment below). */
787 void
788 switch_conversion::fix_phi_nodes (edge e1f, edge e2f, basic_block bbf)
790 gphi_iterator gsi;
791 int i;
793 for (gsi = gsi_start_phis (bbf), i = 0;
794 !gsi_end_p (gsi); gsi_next (&gsi))
796 gphi *phi = gsi.phi ();
797 tree inbound, outbound;
798 if (virtual_operand_p (gimple_phi_result (phi)))
799 inbound = outbound = m_target_vop;
800 else
802 inbound = m_target_inbound_names[i];
803 outbound = m_target_outbound_names[i++];
805 add_phi_arg (phi, inbound, e1f, UNKNOWN_LOCATION);
806 if (!m_default_case_nonstandard)
807 add_phi_arg (phi, outbound, e2f, UNKNOWN_LOCATION);
811 /* Creates a check whether the switch expression value actually falls into the
812 range given by all the cases. If it does not, the temporaries are loaded
813 with default values instead. */
815 void
816 switch_conversion::gen_inbound_check ()
818 tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION);
819 tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION);
820 tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION);
821 glabel *label1, *label2, *label3;
822 tree utype, tidx;
823 tree bound;
825 gcond *cond_stmt;
827 gassign *last_assign = NULL;
828 gimple_stmt_iterator gsi;
829 basic_block bb0, bb1, bb2, bbf, bbd;
830 edge e01 = NULL, e02, e21, e1d, e1f, e2f;
831 location_t loc = gimple_location (m_switch);
833 gcc_assert (m_default_values);
835 bb0 = gimple_bb (m_switch);
837 tidx = gimple_assign_lhs (m_arr_ref_first);
838 utype = TREE_TYPE (tidx);
840 /* (end of) block 0 */
841 gsi = gsi_for_stmt (m_arr_ref_first);
842 gsi_next (&gsi);
844 bound = fold_convert_loc (loc, utype, m_range_size);
845 cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE);
846 gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
847 update_stmt (cond_stmt);
849 /* block 2 */
850 if (!m_default_case_nonstandard)
852 label2 = gimple_build_label (label_decl2);
853 gsi_insert_before (&gsi, label2, GSI_SAME_STMT);
854 last_assign = gen_def_assigns (&gsi);
857 /* block 1 */
858 label1 = gimple_build_label (label_decl1);
859 gsi_insert_before (&gsi, label1, GSI_SAME_STMT);
861 /* block F */
862 gsi = gsi_start_bb (m_final_bb);
863 label3 = gimple_build_label (label_decl3);
864 gsi_insert_before (&gsi, label3, GSI_SAME_STMT);
866 /* cfg fix */
867 e02 = split_block (bb0, cond_stmt);
868 bb2 = e02->dest;
870 if (m_default_case_nonstandard)
872 bb1 = bb2;
873 bb2 = m_default_bb;
874 e01 = e02;
875 e01->flags = EDGE_TRUE_VALUE;
876 e02 = make_edge (bb0, bb2, EDGE_FALSE_VALUE);
877 edge e_default = find_edge (bb1, bb2);
878 for (gphi_iterator gsi = gsi_start_phis (bb2);
879 !gsi_end_p (gsi); gsi_next (&gsi))
881 gphi *phi = gsi.phi ();
882 tree arg = PHI_ARG_DEF_FROM_EDGE (phi, e_default);
883 add_phi_arg (phi, arg, e02,
884 gimple_phi_arg_location_from_edge (phi, e_default));
886 /* Partially fix the dominator tree, if it is available. */
887 if (dom_info_available_p (CDI_DOMINATORS))
888 redirect_immediate_dominators (CDI_DOMINATORS, bb1, bb0);
890 else
892 e21 = split_block (bb2, last_assign);
893 bb1 = e21->dest;
894 remove_edge (e21);
897 e1d = split_block (bb1, m_arr_ref_last);
898 bbd = e1d->dest;
899 remove_edge (e1d);
901 /* Flags and profiles of the edge for in-range values. */
902 if (!m_default_case_nonstandard)
903 e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE);
904 e01->probability = m_default_prob.invert ();
906 /* Flags and profiles of the edge taking care of out-of-range values. */
907 e02->flags &= ~EDGE_FALLTHRU;
908 e02->flags |= EDGE_FALSE_VALUE;
909 e02->probability = m_default_prob;
911 bbf = m_final_bb;
913 e1f = make_edge (bb1, bbf, EDGE_FALLTHRU);
914 e1f->probability = profile_probability::always ();
916 if (m_default_case_nonstandard)
917 e2f = NULL;
918 else
920 e2f = make_edge (bb2, bbf, EDGE_FALLTHRU);
921 e2f->probability = profile_probability::always ();
924 /* frequencies of the new BBs */
925 bb1->count = e01->count ();
926 bb2->count = e02->count ();
927 if (!m_default_case_nonstandard)
928 bbf->count = e1f->count () + e2f->count ();
930 /* Tidy blocks that have become unreachable. */
931 prune_bbs (bbd, m_final_bb,
932 m_default_case_nonstandard ? m_default_bb : NULL);
934 /* Fixup the PHI nodes in bbF. */
935 fix_phi_nodes (e1f, e2f, bbf);
937 /* Fix the dominator tree, if it is available. */
938 if (dom_info_available_p (CDI_DOMINATORS))
940 vec<basic_block> bbs_to_fix_dom;
942 set_immediate_dominator (CDI_DOMINATORS, bb1, bb0);
943 if (!m_default_case_nonstandard)
944 set_immediate_dominator (CDI_DOMINATORS, bb2, bb0);
945 if (! get_immediate_dominator (CDI_DOMINATORS, bbf))
946 /* If bbD was the immediate dominator ... */
947 set_immediate_dominator (CDI_DOMINATORS, bbf, bb0);
949 bbs_to_fix_dom.create (3 + (bb2 != bbf));
950 bbs_to_fix_dom.quick_push (bb0);
951 bbs_to_fix_dom.quick_push (bb1);
952 if (bb2 != bbf)
953 bbs_to_fix_dom.quick_push (bb2);
954 bbs_to_fix_dom.quick_push (bbf);
956 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
957 bbs_to_fix_dom.release ();
961 /* The following function is invoked on every switch statement (the current
962 one is given in SWTCH) and runs the individual phases of switch
963 conversion on it one after another until one fails or the conversion
964 is completed. On success, NULL is in m_reason, otherwise points
965 to a string with the reason why the conversion failed. */
967 void
968 switch_conversion::expand (gswitch *swtch)
970 /* Group case labels so that we get the right results from the heuristics
971 that decide on the code generation approach for this switch. */
972 m_cfg_altered |= group_case_labels_stmt (swtch);
974 /* If this switch is now a degenerate case with only a default label,
975 there is nothing left for us to do. */
976 if (gimple_switch_num_labels (swtch) < 2)
978 m_reason = "switch is a degenerate case";
979 return;
982 collect (swtch);
984 /* No error markers should reach here (they should be filtered out
985 during gimplification). */
986 gcc_checking_assert (TREE_TYPE (m_index_expr) != error_mark_node);
988 /* Prefer bit test if possible. */
989 if (tree_fits_uhwi_p (m_range_size)
990 && bit_test_cluster::can_be_handled (tree_to_uhwi (m_range_size), m_uniq)
991 && bit_test_cluster::is_beneficial (m_count, m_uniq))
993 m_reason = "expanding as bit test is preferable";
994 return;
997 if (m_uniq <= 2)
999 /* This will be expanded as a decision tree . */
1000 m_reason = "expanding as jumps is preferable";
1001 return;
1004 /* If there is no common successor, we cannot do the transformation. */
1005 if (!m_final_bb)
1007 m_reason = "no common successor to all case label target blocks found";
1008 return;
1011 /* Check the case label values are within reasonable range: */
1012 if (!check_range ())
1014 gcc_assert (m_reason);
1015 return;
1018 /* For all the cases, see whether they are empty, the assignments they
1019 represent constant and so on... */
1020 if (!check_all_empty_except_final ())
1022 gcc_assert (m_reason);
1023 return;
1025 if (!check_final_bb ())
1027 gcc_assert (m_reason);
1028 return;
1031 /* At this point all checks have passed and we can proceed with the
1032 transformation. */
1034 create_temp_arrays ();
1035 gather_default_values (m_default_case_nonstandard
1036 ? gimple_switch_label (swtch, 1)
1037 : gimple_switch_default_label (swtch));
1038 build_constructors ();
1040 build_arrays (); /* Build the static arrays and assignments. */
1041 gen_inbound_check (); /* Build the bounds check. */
1043 m_cfg_altered = true;
1046 /* Destructor. */
1048 switch_conversion::~switch_conversion ()
1050 XDELETEVEC (m_constructors);
1051 XDELETEVEC (m_default_values);
1054 /* Constructor. */
1056 group_cluster::group_cluster (vec<cluster *> &clusters,
1057 unsigned start, unsigned end)
1059 gcc_checking_assert (end - start + 1 >= 1);
1060 m_prob = profile_probability::never ();
1061 m_cases.create (end - start + 1);
1062 for (unsigned i = start; i <= end; i++)
1064 m_cases.quick_push (static_cast<simple_cluster *> (clusters[i]));
1065 m_prob += clusters[i]->m_prob;
1067 m_subtree_prob = m_prob;
1070 /* Destructor. */
1072 group_cluster::~group_cluster ()
1074 for (unsigned i = 0; i < m_cases.length (); i++)
1075 delete m_cases[i];
1077 m_cases.release ();
1080 /* Dump content of a cluster. */
1082 void
1083 group_cluster::dump (FILE *f, bool details)
1085 unsigned total_values = 0;
1086 for (unsigned i = 0; i < m_cases.length (); i++)
1087 total_values += m_cases[i]->get_range (m_cases[i]->get_low (),
1088 m_cases[i]->get_high ());
1090 unsigned comparison_count = 0;
1091 for (unsigned i = 0; i < m_cases.length (); i++)
1093 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
1094 comparison_count += sc->get_comparison_count ();
1097 unsigned HOST_WIDE_INT range = get_range (get_low (), get_high ());
1098 fprintf (f, "%s", get_type () == JUMP_TABLE ? "JT" : "BT");
1100 if (details)
1101 fprintf (f, "(values:%d comparisons:%d range:" HOST_WIDE_INT_PRINT_DEC
1102 " density: %.2f%%)", total_values, comparison_count, range,
1103 100.0f * comparison_count / range);
1105 fprintf (f, ":");
1106 PRINT_CASE (f, get_low ());
1107 fprintf (f, "-");
1108 PRINT_CASE (f, get_high ());
1109 fprintf (f, " ");
1112 /* Emit GIMPLE code to handle the cluster. */
1114 void
1115 jump_table_cluster::emit (tree index_expr, tree,
1116 tree default_label_expr, basic_block default_bb,
1117 location_t loc)
1119 unsigned HOST_WIDE_INT range = get_range (get_low (), get_high ());
1120 unsigned HOST_WIDE_INT nondefault_range = 0;
1122 /* For jump table we just emit a new gswitch statement that will
1123 be latter lowered to jump table. */
1124 auto_vec <tree> labels;
1125 labels.create (m_cases.length ());
1127 make_edge (m_case_bb, default_bb, 0);
1128 for (unsigned i = 0; i < m_cases.length (); i++)
1130 labels.quick_push (unshare_expr (m_cases[i]->m_case_label_expr));
1131 make_edge (m_case_bb, m_cases[i]->m_case_bb, 0);
1134 gswitch *s = gimple_build_switch (index_expr,
1135 unshare_expr (default_label_expr), labels);
1136 gimple_set_location (s, loc);
1137 gimple_stmt_iterator gsi = gsi_start_bb (m_case_bb);
1138 gsi_insert_after (&gsi, s, GSI_NEW_STMT);
1140 /* Set up even probabilities for all cases. */
1141 for (unsigned i = 0; i < m_cases.length (); i++)
1143 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
1144 edge case_edge = find_edge (m_case_bb, sc->m_case_bb);
1145 unsigned HOST_WIDE_INT case_range
1146 = sc->get_range (sc->get_low (), sc->get_high ());
1147 nondefault_range += case_range;
1149 /* case_edge->aux is number of values in a jump-table that are covered
1150 by the case_edge. */
1151 case_edge->aux = (void *) ((intptr_t) (case_edge->aux) + case_range);
1154 edge default_edge = gimple_switch_default_edge (cfun, s);
1155 default_edge->probability = profile_probability::never ();
1157 for (unsigned i = 0; i < m_cases.length (); i++)
1159 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
1160 edge case_edge = find_edge (m_case_bb, sc->m_case_bb);
1161 case_edge->probability
1162 = profile_probability::always ().apply_scale ((intptr_t)case_edge->aux,
1163 range);
1166 /* Number of non-default values is probability of default edge. */
1167 default_edge->probability
1168 += profile_probability::always ().apply_scale (nondefault_range,
1169 range).invert ();
1171 switch_decision_tree::reset_out_edges_aux (s);
1174 /* Find jump tables of given CLUSTERS, where all members of the vector
1175 are of type simple_cluster. New clusters are returned. */
1177 vec<cluster *>
1178 jump_table_cluster::find_jump_tables (vec<cluster *> &clusters)
1180 if (!is_enabled ())
1181 return clusters.copy ();
1183 unsigned l = clusters.length ();
1184 auto_vec<min_cluster_item> min;
1185 min.reserve (l + 1);
1187 min.quick_push (min_cluster_item (0, 0, 0));
1189 unsigned HOST_WIDE_INT max_ratio
1190 = (optimize_insn_for_size_p ()
1191 ? param_jump_table_max_growth_ratio_for_size
1192 : param_jump_table_max_growth_ratio_for_speed);
1194 for (unsigned i = 1; i <= l; i++)
1196 /* Set minimal # of clusters with i-th item to infinite. */
1197 min.quick_push (min_cluster_item (INT_MAX, INT_MAX, INT_MAX));
1199 /* Pre-calculate number of comparisons for the clusters. */
1200 HOST_WIDE_INT comparison_count = 0;
1201 for (unsigned k = 0; k <= i - 1; k++)
1203 simple_cluster *sc = static_cast<simple_cluster *> (clusters[k]);
1204 comparison_count += sc->get_comparison_count ();
1207 for (unsigned j = 0; j < i; j++)
1209 unsigned HOST_WIDE_INT s = min[j].m_non_jt_cases;
1210 if (i - j < case_values_threshold ())
1211 s += i - j;
1213 /* Prefer clusters with smaller number of numbers covered. */
1214 if ((min[j].m_count + 1 < min[i].m_count
1215 || (min[j].m_count + 1 == min[i].m_count
1216 && s < min[i].m_non_jt_cases))
1217 && can_be_handled (clusters, j, i - 1, max_ratio,
1218 comparison_count))
1219 min[i] = min_cluster_item (min[j].m_count + 1, j, s);
1221 simple_cluster *sc = static_cast<simple_cluster *> (clusters[j]);
1222 comparison_count -= sc->get_comparison_count ();
1225 gcc_checking_assert (comparison_count == 0);
1226 gcc_checking_assert (min[i].m_count != INT_MAX);
1229 /* No result. */
1230 if (min[l].m_count == l)
1231 return clusters.copy ();
1233 vec<cluster *> output;
1234 output.create (4);
1236 /* Find and build the clusters. */
1237 for (unsigned int end = l;;)
1239 int start = min[end].m_start;
1241 /* Do not allow clusters with small number of cases. */
1242 if (is_beneficial (clusters, start, end - 1))
1243 output.safe_push (new jump_table_cluster (clusters, start, end - 1));
1244 else
1245 for (int i = end - 1; i >= start; i--)
1246 output.safe_push (clusters[i]);
1248 end = start;
1250 if (start <= 0)
1251 break;
1254 output.reverse ();
1255 return output;
1258 /* Return true when cluster starting at START and ending at END (inclusive)
1259 can build a jump-table. */
1261 bool
1262 jump_table_cluster::can_be_handled (const vec<cluster *> &clusters,
1263 unsigned start, unsigned end,
1264 unsigned HOST_WIDE_INT max_ratio,
1265 unsigned HOST_WIDE_INT comparison_count)
1267 /* If the switch is relatively small such that the cost of one
1268 indirect jump on the target are higher than the cost of a
1269 decision tree, go with the decision tree.
1271 If range of values is much bigger than number of values,
1272 or if it is too large to represent in a HOST_WIDE_INT,
1273 make a sequence of conditional branches instead of a dispatch.
1275 The definition of "much bigger" depends on whether we are
1276 optimizing for size or for speed.
1278 For algorithm correctness, jump table for a single case must return
1279 true. We bail out in is_beneficial if it's called just for
1280 a single case. */
1281 if (start == end)
1282 return true;
1284 unsigned HOST_WIDE_INT range = get_range (clusters[start]->get_low (),
1285 clusters[end]->get_high ());
1286 /* Check overflow. */
1287 if (range == 0)
1288 return false;
1290 if (range > HOST_WIDE_INT_M1U / 100)
1291 return false;
1293 unsigned HOST_WIDE_INT lhs = 100 * range;
1294 if (lhs < range)
1295 return false;
1297 return lhs <= max_ratio * comparison_count;
1300 /* Return true if cluster starting at START and ending at END (inclusive)
1301 is profitable transformation. */
1303 bool
1304 jump_table_cluster::is_beneficial (const vec<cluster *> &,
1305 unsigned start, unsigned end)
1307 /* Single case bail out. */
1308 if (start == end)
1309 return false;
1311 return end - start + 1 >= case_values_threshold ();
1314 /* Find bit tests of given CLUSTERS, where all members of the vector
1315 are of type simple_cluster. New clusters are returned. */
1317 vec<cluster *>
1318 bit_test_cluster::find_bit_tests (vec<cluster *> &clusters)
1320 if (!is_enabled ())
1321 return clusters.copy ();
1323 unsigned l = clusters.length ();
1324 auto_vec<min_cluster_item> min;
1325 min.reserve (l + 1);
1327 min.quick_push (min_cluster_item (0, 0, 0));
1329 for (unsigned i = 1; i <= l; i++)
1331 /* Set minimal # of clusters with i-th item to infinite. */
1332 min.quick_push (min_cluster_item (INT_MAX, INT_MAX, INT_MAX));
1334 for (unsigned j = 0; j < i; j++)
1336 if (min[j].m_count + 1 < min[i].m_count
1337 && can_be_handled (clusters, j, i - 1))
1338 min[i] = min_cluster_item (min[j].m_count + 1, j, INT_MAX);
1341 gcc_checking_assert (min[i].m_count != INT_MAX);
1344 /* No result. */
1345 if (min[l].m_count == l)
1346 return clusters.copy ();
1348 vec<cluster *> output;
1349 output.create (4);
1351 /* Find and build the clusters. */
1352 for (unsigned end = l;;)
1354 int start = min[end].m_start;
1356 if (is_beneficial (clusters, start, end - 1))
1358 bool entire = start == 0 && end == clusters.length ();
1359 output.safe_push (new bit_test_cluster (clusters, start, end - 1,
1360 entire));
1362 else
1363 for (int i = end - 1; i >= start; i--)
1364 output.safe_push (clusters[i]);
1366 end = start;
1368 if (start <= 0)
1369 break;
1372 output.reverse ();
1373 return output;
1376 /* Return true when RANGE of case values with UNIQ labels
1377 can build a bit test. */
1379 bool
1380 bit_test_cluster::can_be_handled (unsigned HOST_WIDE_INT range,
1381 unsigned int uniq)
1383 /* Check overflow. */
1384 if (range == 0)
1385 return false;
1387 if (range >= GET_MODE_BITSIZE (word_mode))
1388 return false;
1390 return uniq <= m_max_case_bit_tests;
1393 /* Return true when cluster starting at START and ending at END (inclusive)
1394 can build a bit test. */
1396 bool
1397 bit_test_cluster::can_be_handled (const vec<cluster *> &clusters,
1398 unsigned start, unsigned end)
1400 auto_vec<int, m_max_case_bit_tests> dest_bbs;
1401 /* For algorithm correctness, bit test for a single case must return
1402 true. We bail out in is_beneficial if it's called just for
1403 a single case. */
1404 if (start == end)
1405 return true;
1407 unsigned HOST_WIDE_INT range = get_range (clusters[start]->get_low (),
1408 clusters[end]->get_high ());
1410 /* Make a guess first. */
1411 if (!can_be_handled (range, m_max_case_bit_tests))
1412 return false;
1414 for (unsigned i = start; i <= end; i++)
1416 simple_cluster *sc = static_cast<simple_cluster *> (clusters[i]);
1417 /* m_max_case_bit_tests is very small integer, thus the operation
1418 is constant. */
1419 if (!dest_bbs.contains (sc->m_case_bb->index))
1421 if (dest_bbs.length () >= m_max_case_bit_tests)
1422 return false;
1423 dest_bbs.quick_push (sc->m_case_bb->index);
1427 return true;
1430 /* Return true when COUNT of cases of UNIQ labels is beneficial for bit test
1431 transformation. */
1433 bool
1434 bit_test_cluster::is_beneficial (unsigned count, unsigned uniq)
1436 return (((uniq == 1 && count >= 3)
1437 || (uniq == 2 && count >= 5)
1438 || (uniq == 3 && count >= 6)));
1441 /* Return true if cluster starting at START and ending at END (inclusive)
1442 is profitable transformation. */
1444 bool
1445 bit_test_cluster::is_beneficial (const vec<cluster *> &clusters,
1446 unsigned start, unsigned end)
1448 /* Single case bail out. */
1449 if (start == end)
1450 return false;
1452 auto_bitmap dest_bbs;
1454 for (unsigned i = start; i <= end; i++)
1456 simple_cluster *sc = static_cast<simple_cluster *> (clusters[i]);
1457 bitmap_set_bit (dest_bbs, sc->m_case_bb->index);
1460 unsigned uniq = bitmap_count_bits (dest_bbs);
1461 unsigned count = end - start + 1;
1462 return is_beneficial (count, uniq);
1465 /* Comparison function for qsort to order bit tests by decreasing
1466 probability of execution. */
1469 case_bit_test::cmp (const void *p1, const void *p2)
1471 const case_bit_test *const d1 = (const case_bit_test *) p1;
1472 const case_bit_test *const d2 = (const case_bit_test *) p2;
1474 if (d2->bits != d1->bits)
1475 return d2->bits - d1->bits;
1477 /* Stabilize the sort. */
1478 return (LABEL_DECL_UID (CASE_LABEL (d2->label))
1479 - LABEL_DECL_UID (CASE_LABEL (d1->label)));
1482 /* Expand a switch statement by a short sequence of bit-wise
1483 comparisons. "switch(x)" is effectively converted into
1484 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
1485 integer constants.
1487 INDEX_EXPR is the value being switched on.
1489 MINVAL is the lowest case value of in the case nodes,
1490 and RANGE is highest value minus MINVAL. MINVAL and RANGE
1491 are not guaranteed to be of the same type as INDEX_EXPR
1492 (the gimplifier doesn't change the type of case label values,
1493 and MINVAL and RANGE are derived from those values).
1494 MAXVAL is MINVAL + RANGE.
1496 There *MUST* be max_case_bit_tests or less unique case
1497 node targets. */
1499 void
1500 bit_test_cluster::emit (tree index_expr, tree index_type,
1501 tree, basic_block default_bb, location_t)
1503 case_bit_test test[m_max_case_bit_tests] = { {} };
1504 unsigned int i, j, k;
1505 unsigned int count;
1507 tree unsigned_index_type = range_check_type (index_type);
1509 gimple_stmt_iterator gsi;
1510 gassign *shift_stmt;
1512 tree idx, tmp, csui;
1513 tree word_type_node = lang_hooks.types.type_for_mode (word_mode, 1);
1514 tree word_mode_zero = fold_convert (word_type_node, integer_zero_node);
1515 tree word_mode_one = fold_convert (word_type_node, integer_one_node);
1516 int prec = TYPE_PRECISION (word_type_node);
1517 wide_int wone = wi::one (prec);
1519 tree minval = get_low ();
1520 tree maxval = get_high ();
1521 unsigned HOST_WIDE_INT bt_range = get_range (minval, maxval);
1523 /* Go through all case labels, and collect the case labels, profile
1524 counts, and other information we need to build the branch tests. */
1525 count = 0;
1526 for (i = 0; i < m_cases.length (); i++)
1528 unsigned int lo, hi;
1529 simple_cluster *n = static_cast<simple_cluster *> (m_cases[i]);
1530 for (k = 0; k < count; k++)
1531 if (n->m_case_bb == test[k].target_bb)
1532 break;
1534 if (k == count)
1536 gcc_checking_assert (count < m_max_case_bit_tests);
1537 test[k].mask = wi::zero (prec);
1538 test[k].target_bb = n->m_case_bb;
1539 test[k].label = n->m_case_label_expr;
1540 test[k].bits = 0;
1541 count++;
1544 test[k].bits += n->get_range (n->get_low (), n->get_high ());
1546 lo = tree_to_uhwi (int_const_binop (MINUS_EXPR, n->get_low (), minval));
1547 if (n->get_high () == NULL_TREE)
1548 hi = lo;
1549 else
1550 hi = tree_to_uhwi (int_const_binop (MINUS_EXPR, n->get_high (),
1551 minval));
1553 for (j = lo; j <= hi; j++)
1554 test[k].mask |= wi::lshift (wone, j);
1557 qsort (test, count, sizeof (*test), case_bit_test::cmp);
1559 /* If every possible relative value of the index expression is a valid shift
1560 amount, then we can merge the entry test in the bit test. */
1561 bool entry_test_needed;
1562 value_range r;
1563 if (TREE_CODE (index_expr) == SSA_NAME
1564 && get_range_query (cfun)->range_of_expr (r, index_expr)
1565 && r.kind () == VR_RANGE
1566 && wi::leu_p (r.upper_bound () - r.lower_bound (), prec - 1))
1568 wide_int min = r.lower_bound ();
1569 wide_int max = r.upper_bound ();
1570 tree index_type = TREE_TYPE (index_expr);
1571 minval = fold_convert (index_type, minval);
1572 wide_int iminval = wi::to_wide (minval);
1573 if (wi::lt_p (min, iminval, TYPE_SIGN (index_type)))
1575 minval = wide_int_to_tree (index_type, min);
1576 for (i = 0; i < count; i++)
1577 test[i].mask = wi::lshift (test[i].mask, iminval - min);
1579 else if (wi::gt_p (min, iminval, TYPE_SIGN (index_type)))
1581 minval = wide_int_to_tree (index_type, min);
1582 for (i = 0; i < count; i++)
1583 test[i].mask = wi::lrshift (test[i].mask, min - iminval);
1585 maxval = wide_int_to_tree (index_type, max);
1586 entry_test_needed = false;
1588 else
1589 entry_test_needed = true;
1591 /* If all values are in the 0 .. BITS_PER_WORD-1 range, we can get rid of
1592 the minval subtractions, but it might make the mask constants more
1593 expensive. So, compare the costs. */
1594 if (compare_tree_int (minval, 0) > 0 && compare_tree_int (maxval, prec) < 0)
1596 int cost_diff;
1597 HOST_WIDE_INT m = tree_to_uhwi (minval);
1598 rtx reg = gen_raw_REG (word_mode, 10000);
1599 bool speed_p = optimize_insn_for_speed_p ();
1600 cost_diff = set_src_cost (gen_rtx_PLUS (word_mode, reg,
1601 GEN_INT (-m)),
1602 word_mode, speed_p);
1603 for (i = 0; i < count; i++)
1605 rtx r = immed_wide_int_const (test[i].mask, word_mode);
1606 cost_diff += set_src_cost (gen_rtx_AND (word_mode, reg, r),
1607 word_mode, speed_p);
1608 r = immed_wide_int_const (wi::lshift (test[i].mask, m), word_mode);
1609 cost_diff -= set_src_cost (gen_rtx_AND (word_mode, reg, r),
1610 word_mode, speed_p);
1612 if (cost_diff > 0)
1614 for (i = 0; i < count; i++)
1615 test[i].mask = wi::lshift (test[i].mask, m);
1616 minval = build_zero_cst (TREE_TYPE (minval));
1620 /* Now build the test-and-branch code. */
1622 gsi = gsi_last_bb (m_case_bb);
1624 /* idx = (unsigned)x - minval. */
1625 idx = fold_convert (unsigned_index_type, index_expr);
1626 idx = fold_build2 (MINUS_EXPR, unsigned_index_type, idx,
1627 fold_convert (unsigned_index_type, minval));
1628 idx = force_gimple_operand_gsi (&gsi, idx,
1629 /*simple=*/true, NULL_TREE,
1630 /*before=*/true, GSI_SAME_STMT);
1632 if (m_handles_entire_switch && entry_test_needed)
1634 tree range = int_const_binop (MINUS_EXPR, maxval, minval);
1635 /* if (idx > range) goto default */
1636 range
1637 = force_gimple_operand_gsi (&gsi,
1638 fold_convert (unsigned_index_type, range),
1639 /*simple=*/true, NULL_TREE,
1640 /*before=*/true, GSI_SAME_STMT);
1641 tmp = fold_build2 (GT_EXPR, boolean_type_node, idx, range);
1642 basic_block new_bb
1643 = hoist_edge_and_branch_if_true (&gsi, tmp, default_bb,
1644 profile_probability::unlikely ());
1645 gsi = gsi_last_bb (new_bb);
1648 tmp = fold_build2 (LSHIFT_EXPR, word_type_node, word_mode_one,
1649 fold_convert (word_type_node, idx));
1651 /* csui = (1 << (word_mode) idx) */
1652 if (count > 1)
1654 csui = make_ssa_name (word_type_node);
1655 tmp = force_gimple_operand_gsi (&gsi, tmp,
1656 /*simple=*/false, NULL_TREE,
1657 /*before=*/true, GSI_SAME_STMT);
1658 shift_stmt = gimple_build_assign (csui, tmp);
1659 gsi_insert_before (&gsi, shift_stmt, GSI_SAME_STMT);
1660 update_stmt (shift_stmt);
1662 else
1663 csui = tmp;
1665 profile_probability prob = profile_probability::always ();
1667 /* for each unique set of cases:
1668 if (const & csui) goto target */
1669 for (k = 0; k < count; k++)
1671 prob = profile_probability::always ().apply_scale (test[k].bits,
1672 bt_range);
1673 bt_range -= test[k].bits;
1674 tmp = wide_int_to_tree (word_type_node, test[k].mask);
1675 tmp = fold_build2 (BIT_AND_EXPR, word_type_node, csui, tmp);
1676 tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp, word_mode_zero);
1677 tmp = force_gimple_operand_gsi (&gsi, tmp,
1678 /*simple=*/true, NULL_TREE,
1679 /*before=*/true, GSI_SAME_STMT);
1680 basic_block new_bb
1681 = hoist_edge_and_branch_if_true (&gsi, tmp, test[k].target_bb, prob);
1682 gsi = gsi_last_bb (new_bb);
1685 /* We should have removed all edges now. */
1686 gcc_assert (EDGE_COUNT (gsi_bb (gsi)->succs) == 0);
1688 /* If nothing matched, go to the default label. */
1689 edge e = make_edge (gsi_bb (gsi), default_bb, EDGE_FALLTHRU);
1690 e->probability = profile_probability::always ();
1693 /* Split the basic block at the statement pointed to by GSIP, and insert
1694 a branch to the target basic block of E_TRUE conditional on tree
1695 expression COND.
1697 It is assumed that there is already an edge from the to-be-split
1698 basic block to E_TRUE->dest block. This edge is removed, and the
1699 profile information on the edge is re-used for the new conditional
1700 jump.
1702 The CFG is updated. The dominator tree will not be valid after
1703 this transformation, but the immediate dominators are updated if
1704 UPDATE_DOMINATORS is true.
1706 Returns the newly created basic block. */
1708 basic_block
1709 bit_test_cluster::hoist_edge_and_branch_if_true (gimple_stmt_iterator *gsip,
1710 tree cond, basic_block case_bb,
1711 profile_probability prob)
1713 tree tmp;
1714 gcond *cond_stmt;
1715 edge e_false;
1716 basic_block new_bb, split_bb = gsi_bb (*gsip);
1718 edge e_true = make_edge (split_bb, case_bb, EDGE_TRUE_VALUE);
1719 e_true->probability = prob;
1720 gcc_assert (e_true->src == split_bb);
1722 tmp = force_gimple_operand_gsi (gsip, cond, /*simple=*/true, NULL,
1723 /*before=*/true, GSI_SAME_STMT);
1724 cond_stmt = gimple_build_cond_from_tree (tmp, NULL_TREE, NULL_TREE);
1725 gsi_insert_before (gsip, cond_stmt, GSI_SAME_STMT);
1727 e_false = split_block (split_bb, cond_stmt);
1728 new_bb = e_false->dest;
1729 redirect_edge_pred (e_true, split_bb);
1731 e_false->flags &= ~EDGE_FALLTHRU;
1732 e_false->flags |= EDGE_FALSE_VALUE;
1733 e_false->probability = e_true->probability.invert ();
1734 new_bb->count = e_false->count ();
1736 return new_bb;
1739 /* Compute the number of case labels that correspond to each outgoing edge of
1740 switch statement. Record this information in the aux field of the edge. */
1742 void
1743 switch_decision_tree::compute_cases_per_edge ()
1745 reset_out_edges_aux (m_switch);
1746 int ncases = gimple_switch_num_labels (m_switch);
1747 for (int i = ncases - 1; i >= 1; --i)
1749 edge case_edge = gimple_switch_edge (cfun, m_switch, i);
1750 case_edge->aux = (void *) ((intptr_t) (case_edge->aux) + 1);
1754 /* Analyze switch statement and return true when the statement is expanded
1755 as decision tree. */
1757 bool
1758 switch_decision_tree::analyze_switch_statement ()
1760 unsigned l = gimple_switch_num_labels (m_switch);
1761 basic_block bb = gimple_bb (m_switch);
1762 auto_vec<cluster *> clusters;
1763 clusters.create (l - 1);
1765 basic_block default_bb = gimple_switch_default_bb (cfun, m_switch);
1766 m_case_bbs.reserve (l);
1767 m_case_bbs.quick_push (default_bb);
1769 compute_cases_per_edge ();
1771 for (unsigned i = 1; i < l; i++)
1773 tree elt = gimple_switch_label (m_switch, i);
1774 tree lab = CASE_LABEL (elt);
1775 basic_block case_bb = label_to_block (cfun, lab);
1776 edge case_edge = find_edge (bb, case_bb);
1777 tree low = CASE_LOW (elt);
1778 tree high = CASE_HIGH (elt);
1780 profile_probability p
1781 = case_edge->probability.apply_scale (1, (intptr_t) (case_edge->aux));
1782 clusters.quick_push (new simple_cluster (low, high, elt, case_edge->dest,
1783 p));
1784 m_case_bbs.quick_push (case_edge->dest);
1787 reset_out_edges_aux (m_switch);
1789 /* Find bit-test clusters. */
1790 vec<cluster *> output = bit_test_cluster::find_bit_tests (clusters);
1792 /* Find jump table clusters. */
1793 vec<cluster *> output2;
1794 auto_vec<cluster *> tmp;
1795 output2.create (1);
1796 tmp.create (1);
1798 for (unsigned i = 0; i < output.length (); i++)
1800 cluster *c = output[i];
1801 if (c->get_type () != SIMPLE_CASE)
1803 if (!tmp.is_empty ())
1805 vec<cluster *> n = jump_table_cluster::find_jump_tables (tmp);
1806 output2.safe_splice (n);
1807 n.release ();
1808 tmp.truncate (0);
1810 output2.safe_push (c);
1812 else
1813 tmp.safe_push (c);
1816 /* We still can have a temporary vector to test. */
1817 if (!tmp.is_empty ())
1819 vec<cluster *> n = jump_table_cluster::find_jump_tables (tmp);
1820 output2.safe_splice (n);
1821 n.release ();
1824 if (dump_file)
1826 fprintf (dump_file, ";; GIMPLE switch case clusters: ");
1827 for (unsigned i = 0; i < output2.length (); i++)
1828 output2[i]->dump (dump_file, dump_flags & TDF_DETAILS);
1829 fprintf (dump_file, "\n");
1832 output.release ();
1834 bool expanded = try_switch_expansion (output2);
1835 release_clusters (output2);
1836 return expanded;
1839 /* Attempt to expand CLUSTERS as a decision tree. Return true when
1840 expanded. */
1842 bool
1843 switch_decision_tree::try_switch_expansion (vec<cluster *> &clusters)
1845 tree index_expr = gimple_switch_index (m_switch);
1846 tree index_type = TREE_TYPE (index_expr);
1847 basic_block bb = gimple_bb (m_switch);
1849 if (gimple_switch_num_labels (m_switch) == 1
1850 || range_check_type (index_type) == NULL_TREE)
1851 return false;
1853 /* Find the default case target label. */
1854 edge default_edge = gimple_switch_default_edge (cfun, m_switch);
1855 m_default_bb = default_edge->dest;
1857 /* Do the insertion of a case label into m_case_list. The labels are
1858 fed to us in descending order from the sorted vector of case labels used
1859 in the tree part of the middle end. So the list we construct is
1860 sorted in ascending order. */
1862 for (int i = clusters.length () - 1; i >= 0; i--)
1864 case_tree_node *r = m_case_list;
1865 m_case_list = m_case_node_pool.allocate ();
1866 m_case_list->m_right = r;
1867 m_case_list->m_c = clusters[i];
1870 record_phi_operand_mapping ();
1872 /* Split basic block that contains the gswitch statement. */
1873 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1874 edge e;
1875 if (gsi_end_p (gsi))
1876 e = split_block_after_labels (bb);
1877 else
1879 gsi_prev (&gsi);
1880 e = split_block (bb, gsi_stmt (gsi));
1882 bb = split_edge (e);
1884 /* Create new basic blocks for non-case clusters where specific expansion
1885 needs to happen. */
1886 for (unsigned i = 0; i < clusters.length (); i++)
1887 if (clusters[i]->get_type () != SIMPLE_CASE)
1889 clusters[i]->m_case_bb = create_empty_bb (bb);
1890 clusters[i]->m_case_bb->count = bb->count;
1891 clusters[i]->m_case_bb->loop_father = bb->loop_father;
1894 /* Do not do an extra work for a single cluster. */
1895 if (clusters.length () == 1
1896 && clusters[0]->get_type () != SIMPLE_CASE)
1898 cluster *c = clusters[0];
1899 c->emit (index_expr, index_type,
1900 gimple_switch_default_label (m_switch), m_default_bb,
1901 gimple_location (m_switch));
1902 redirect_edge_succ (single_succ_edge (bb), c->m_case_bb);
1904 else
1906 emit (bb, index_expr, default_edge->probability, index_type);
1908 /* Emit cluster-specific switch handling. */
1909 for (unsigned i = 0; i < clusters.length (); i++)
1910 if (clusters[i]->get_type () != SIMPLE_CASE)
1911 clusters[i]->emit (index_expr, index_type,
1912 gimple_switch_default_label (m_switch),
1913 m_default_bb, gimple_location (m_switch));
1916 fix_phi_operands_for_edges ();
1918 return true;
1921 /* Before switch transformation, record all SSA_NAMEs defined in switch BB
1922 and used in a label basic block. */
1924 void
1925 switch_decision_tree::record_phi_operand_mapping ()
1927 basic_block switch_bb = gimple_bb (m_switch);
1928 /* Record all PHI nodes that have to be fixed after conversion. */
1929 for (unsigned i = 0; i < m_case_bbs.length (); i++)
1931 gphi_iterator gsi;
1932 basic_block bb = m_case_bbs[i];
1933 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1935 gphi *phi = gsi.phi ();
1937 for (unsigned i = 0; i < gimple_phi_num_args (phi); i++)
1939 basic_block phi_src_bb = gimple_phi_arg_edge (phi, i)->src;
1940 if (phi_src_bb == switch_bb)
1942 tree def = gimple_phi_arg_def (phi, i);
1943 tree result = gimple_phi_result (phi);
1944 m_phi_mapping.put (result, def);
1945 break;
1952 /* Append new operands to PHI statements that were introduced due to
1953 addition of new edges to case labels. */
1955 void
1956 switch_decision_tree::fix_phi_operands_for_edges ()
1958 gphi_iterator gsi;
1960 for (unsigned i = 0; i < m_case_bbs.length (); i++)
1962 basic_block bb = m_case_bbs[i];
1963 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1965 gphi *phi = gsi.phi ();
1966 for (unsigned j = 0; j < gimple_phi_num_args (phi); j++)
1968 tree def = gimple_phi_arg_def (phi, j);
1969 if (def == NULL_TREE)
1971 edge e = gimple_phi_arg_edge (phi, j);
1972 tree *definition
1973 = m_phi_mapping.get (gimple_phi_result (phi));
1974 gcc_assert (definition);
1975 add_phi_arg (phi, *definition, e, UNKNOWN_LOCATION);
1982 /* Generate a decision tree, switching on INDEX_EXPR and jumping to
1983 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
1985 We generate a binary decision tree to select the appropriate target
1986 code. */
1988 void
1989 switch_decision_tree::emit (basic_block bb, tree index_expr,
1990 profile_probability default_prob, tree index_type)
1992 balance_case_nodes (&m_case_list, NULL);
1994 if (dump_file)
1995 dump_function_to_file (current_function_decl, dump_file, dump_flags);
1996 if (dump_file && (dump_flags & TDF_DETAILS))
1998 int indent_step = ceil_log2 (TYPE_PRECISION (index_type)) + 2;
1999 fprintf (dump_file, ";; Expanding GIMPLE switch as decision tree:\n");
2000 gcc_assert (m_case_list != NULL);
2001 dump_case_nodes (dump_file, m_case_list, indent_step, 0);
2004 bb = emit_case_nodes (bb, index_expr, m_case_list, default_prob, index_type,
2005 gimple_location (m_switch));
2007 if (bb)
2008 emit_jump (bb, m_default_bb);
2010 /* Remove all edges and do just an edge that will reach default_bb. */
2011 bb = gimple_bb (m_switch);
2012 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2013 gsi_remove (&gsi, true);
2015 delete_basic_block (bb);
2018 /* Take an ordered list of case nodes
2019 and transform them into a near optimal binary tree,
2020 on the assumption that any target code selection value is as
2021 likely as any other.
2023 The transformation is performed by splitting the ordered
2024 list into two equal sections plus a pivot. The parts are
2025 then attached to the pivot as left and right branches. Each
2026 branch is then transformed recursively. */
2028 void
2029 switch_decision_tree::balance_case_nodes (case_tree_node **head,
2030 case_tree_node *parent)
2032 case_tree_node *np;
2034 np = *head;
2035 if (np)
2037 int i = 0;
2038 int ranges = 0;
2039 case_tree_node **npp;
2040 case_tree_node *left;
2041 profile_probability prob = profile_probability::never ();
2043 /* Count the number of entries on branch. Also count the ranges. */
2045 while (np)
2047 if (!tree_int_cst_equal (np->m_c->get_low (), np->m_c->get_high ()))
2048 ranges++;
2050 i++;
2051 prob += np->m_c->m_prob;
2052 np = np->m_right;
2055 if (i > 2)
2057 /* Split this list if it is long enough for that to help. */
2058 npp = head;
2059 left = *npp;
2060 profile_probability pivot_prob = prob.apply_scale (1, 2);
2062 /* Find the place in the list that bisects the list's total cost,
2063 where ranges count as 2. */
2064 while (1)
2066 /* Skip nodes while their probability does not reach
2067 that amount. */
2068 prob -= (*npp)->m_c->m_prob;
2069 if ((prob.initialized_p () && prob < pivot_prob)
2070 || ! (*npp)->m_right)
2071 break;
2072 npp = &(*npp)->m_right;
2075 np = *npp;
2076 *npp = 0;
2077 *head = np;
2078 np->m_parent = parent;
2079 np->m_left = left == np ? NULL : left;
2081 /* Optimize each of the two split parts. */
2082 balance_case_nodes (&np->m_left, np);
2083 balance_case_nodes (&np->m_right, np);
2084 np->m_c->m_subtree_prob = np->m_c->m_prob;
2085 if (np->m_left)
2086 np->m_c->m_subtree_prob += np->m_left->m_c->m_subtree_prob;
2087 if (np->m_right)
2088 np->m_c->m_subtree_prob += np->m_right->m_c->m_subtree_prob;
2090 else
2092 /* Else leave this branch as one level,
2093 but fill in `parent' fields. */
2094 np = *head;
2095 np->m_parent = parent;
2096 np->m_c->m_subtree_prob = np->m_c->m_prob;
2097 for (; np->m_right; np = np->m_right)
2099 np->m_right->m_parent = np;
2100 (*head)->m_c->m_subtree_prob += np->m_right->m_c->m_subtree_prob;
2106 /* Dump ROOT, a list or tree of case nodes, to file. */
2108 void
2109 switch_decision_tree::dump_case_nodes (FILE *f, case_tree_node *root,
2110 int indent_step, int indent_level)
2112 if (root == 0)
2113 return;
2114 indent_level++;
2116 dump_case_nodes (f, root->m_left, indent_step, indent_level);
2118 fputs (";; ", f);
2119 fprintf (f, "%*s", indent_step * indent_level, "");
2120 root->m_c->dump (f);
2121 root->m_c->m_prob.dump (f);
2122 fputs (" subtree: ", f);
2123 root->m_c->m_subtree_prob.dump (f);
2124 fputs (")\n", f);
2126 dump_case_nodes (f, root->m_right, indent_step, indent_level);
2130 /* Add an unconditional jump to CASE_BB that happens in basic block BB. */
2132 void
2133 switch_decision_tree::emit_jump (basic_block bb, basic_block case_bb)
2135 edge e = single_succ_edge (bb);
2136 redirect_edge_succ (e, case_bb);
2139 /* Generate code to compare OP0 with OP1 so that the condition codes are
2140 set and to jump to LABEL_BB if the condition is true.
2141 COMPARISON is the GIMPLE comparison (EQ, NE, GT, etc.).
2142 PROB is the probability of jumping to LABEL_BB. */
2144 basic_block
2145 switch_decision_tree::emit_cmp_and_jump_insns (basic_block bb, tree op0,
2146 tree op1, tree_code comparison,
2147 basic_block label_bb,
2148 profile_probability prob,
2149 location_t loc)
2151 // TODO: it's once called with lhs != index.
2152 op1 = fold_convert (TREE_TYPE (op0), op1);
2154 gcond *cond = gimple_build_cond (comparison, op0, op1, NULL_TREE, NULL_TREE);
2155 gimple_set_location (cond, loc);
2156 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2157 gsi_insert_after (&gsi, cond, GSI_NEW_STMT);
2159 gcc_assert (single_succ_p (bb));
2161 /* Make a new basic block where false branch will take place. */
2162 edge false_edge = split_block (bb, cond);
2163 false_edge->flags = EDGE_FALSE_VALUE;
2164 false_edge->probability = prob.invert ();
2166 edge true_edge = make_edge (bb, label_bb, EDGE_TRUE_VALUE);
2167 true_edge->probability = prob;
2169 return false_edge->dest;
2172 /* Generate code to jump to LABEL if OP0 and OP1 are equal.
2173 PROB is the probability of jumping to LABEL_BB.
2174 BB is a basic block where the new condition will be placed. */
2176 basic_block
2177 switch_decision_tree::do_jump_if_equal (basic_block bb, tree op0, tree op1,
2178 basic_block label_bb,
2179 profile_probability prob,
2180 location_t loc)
2182 op1 = fold_convert (TREE_TYPE (op0), op1);
2184 gcond *cond = gimple_build_cond (EQ_EXPR, op0, op1, NULL_TREE, NULL_TREE);
2185 gimple_set_location (cond, loc);
2186 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2187 gsi_insert_before (&gsi, cond, GSI_SAME_STMT);
2189 gcc_assert (single_succ_p (bb));
2191 /* Make a new basic block where false branch will take place. */
2192 edge false_edge = split_block (bb, cond);
2193 false_edge->flags = EDGE_FALSE_VALUE;
2194 false_edge->probability = prob.invert ();
2196 edge true_edge = make_edge (bb, label_bb, EDGE_TRUE_VALUE);
2197 true_edge->probability = prob;
2199 return false_edge->dest;
2202 /* Emit step-by-step code to select a case for the value of INDEX.
2203 The thus generated decision tree follows the form of the
2204 case-node binary tree NODE, whose nodes represent test conditions.
2205 DEFAULT_PROB is probability of cases leading to default BB.
2206 INDEX_TYPE is the type of the index of the switch. */
2208 basic_block
2209 switch_decision_tree::emit_case_nodes (basic_block bb, tree index,
2210 case_tree_node *node,
2211 profile_probability default_prob,
2212 tree index_type, location_t loc)
2214 profile_probability p;
2216 /* If node is null, we are done. */
2217 if (node == NULL)
2218 return bb;
2220 /* Single value case. */
2221 if (node->m_c->is_single_value_p ())
2223 /* Node is single valued. First see if the index expression matches
2224 this node and then check our children, if any. */
2225 p = node->m_c->m_prob / (node->m_c->m_subtree_prob + default_prob);
2226 bb = do_jump_if_equal (bb, index, node->m_c->get_low (),
2227 node->m_c->m_case_bb, p, loc);
2228 /* Since this case is taken at this point, reduce its weight from
2229 subtree_weight. */
2230 node->m_c->m_subtree_prob -= p;
2232 if (node->m_left != NULL && node->m_right != NULL)
2234 /* 1) the node has both children
2236 If both children are single-valued cases with no
2237 children, finish up all the work. This way, we can save
2238 one ordered comparison. */
2240 if (!node->m_left->has_child ()
2241 && node->m_left->m_c->is_single_value_p ()
2242 && !node->m_right->has_child ()
2243 && node->m_right->m_c->is_single_value_p ())
2245 p = (node->m_right->m_c->m_prob
2246 / (node->m_c->m_subtree_prob + default_prob));
2247 bb = do_jump_if_equal (bb, index, node->m_right->m_c->get_low (),
2248 node->m_right->m_c->m_case_bb, p, loc);
2250 p = (node->m_left->m_c->m_prob
2251 / (node->m_c->m_subtree_prob + default_prob));
2252 bb = do_jump_if_equal (bb, index, node->m_left->m_c->get_low (),
2253 node->m_left->m_c->m_case_bb, p, loc);
2255 else
2257 /* Branch to a label where we will handle it later. */
2258 basic_block test_bb = split_edge (single_succ_edge (bb));
2259 redirect_edge_succ (single_pred_edge (test_bb),
2260 single_succ_edge (bb)->dest);
2262 p = ((node->m_right->m_c->m_subtree_prob
2263 + default_prob.apply_scale (1, 2))
2264 / (node->m_c->m_subtree_prob + default_prob));
2265 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
2266 GT_EXPR, test_bb, p, loc);
2267 default_prob = default_prob.apply_scale (1, 2);
2269 /* Handle the left-hand subtree. */
2270 bb = emit_case_nodes (bb, index, node->m_left,
2271 default_prob, index_type, loc);
2273 /* If the left-hand subtree fell through,
2274 don't let it fall into the right-hand subtree. */
2275 if (bb && m_default_bb)
2276 emit_jump (bb, m_default_bb);
2278 bb = emit_case_nodes (test_bb, index, node->m_right,
2279 default_prob, index_type, loc);
2282 else if (node->m_left == NULL && node->m_right != NULL)
2284 /* 2) the node has only right child. */
2286 /* Here we have a right child but no left so we issue a conditional
2287 branch to default and process the right child.
2289 Omit the conditional branch to default if the right child
2290 does not have any children and is single valued; it would
2291 cost too much space to save so little time. */
2293 if (node->m_right->has_child ()
2294 || !node->m_right->m_c->is_single_value_p ())
2296 p = (default_prob.apply_scale (1, 2)
2297 / (node->m_c->m_subtree_prob + default_prob));
2298 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_low (),
2299 LT_EXPR, m_default_bb, p, loc);
2300 default_prob = default_prob.apply_scale (1, 2);
2302 bb = emit_case_nodes (bb, index, node->m_right, default_prob,
2303 index_type, loc);
2305 else
2307 /* We cannot process node->right normally
2308 since we haven't ruled out the numbers less than
2309 this node's value. So handle node->right explicitly. */
2310 p = (node->m_right->m_c->m_subtree_prob
2311 / (node->m_c->m_subtree_prob + default_prob));
2312 bb = do_jump_if_equal (bb, index, node->m_right->m_c->get_low (),
2313 node->m_right->m_c->m_case_bb, p, loc);
2316 else if (node->m_left != NULL && node->m_right == NULL)
2318 /* 3) just one subtree, on the left. Similar case as previous. */
2320 if (node->m_left->has_child ()
2321 || !node->m_left->m_c->is_single_value_p ())
2323 p = (default_prob.apply_scale (1, 2)
2324 / (node->m_c->m_subtree_prob + default_prob));
2325 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
2326 GT_EXPR, m_default_bb, p, loc);
2327 default_prob = default_prob.apply_scale (1, 2);
2329 bb = emit_case_nodes (bb, index, node->m_left, default_prob,
2330 index_type, loc);
2332 else
2334 /* We cannot process node->left normally
2335 since we haven't ruled out the numbers less than
2336 this node's value. So handle node->left explicitly. */
2337 p = (node->m_left->m_c->m_subtree_prob
2338 / (node->m_c->m_subtree_prob + default_prob));
2339 bb = do_jump_if_equal (bb, index, node->m_left->m_c->get_low (),
2340 node->m_left->m_c->m_case_bb, p, loc);
2344 else
2346 /* Node is a range. These cases are very similar to those for a single
2347 value, except that we do not start by testing whether this node
2348 is the one to branch to. */
2349 if (node->has_child () || node->m_c->get_type () != SIMPLE_CASE)
2351 /* Branch to a label where we will handle it later. */
2352 basic_block test_bb = split_edge (single_succ_edge (bb));
2353 redirect_edge_succ (single_pred_edge (test_bb),
2354 single_succ_edge (bb)->dest);
2357 profile_probability right_prob = profile_probability::never ();
2358 if (node->m_right)
2359 right_prob = node->m_right->m_c->m_subtree_prob;
2360 p = ((right_prob + default_prob.apply_scale (1, 2))
2361 / (node->m_c->m_subtree_prob + default_prob));
2363 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
2364 GT_EXPR, test_bb, p, loc);
2365 default_prob = default_prob.apply_scale (1, 2);
2367 /* Value belongs to this node or to the left-hand subtree. */
2368 p = node->m_c->m_prob / (node->m_c->m_subtree_prob + default_prob);
2369 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_low (),
2370 GE_EXPR, node->m_c->m_case_bb, p, loc);
2372 /* Handle the left-hand subtree. */
2373 bb = emit_case_nodes (bb, index, node->m_left,
2374 default_prob, index_type, loc);
2376 /* If the left-hand subtree fell through,
2377 don't let it fall into the right-hand subtree. */
2378 if (bb && m_default_bb)
2379 emit_jump (bb, m_default_bb);
2381 bb = emit_case_nodes (test_bb, index, node->m_right,
2382 default_prob, index_type, loc);
2384 else
2386 /* Node has no children so we check low and high bounds to remove
2387 redundant tests. Only one of the bounds can exist,
2388 since otherwise this node is bounded--a case tested already. */
2389 tree lhs, rhs;
2390 generate_range_test (bb, index, node->m_c->get_low (),
2391 node->m_c->get_high (), &lhs, &rhs);
2392 p = default_prob / (node->m_c->m_subtree_prob + default_prob);
2394 bb = emit_cmp_and_jump_insns (bb, lhs, rhs, GT_EXPR,
2395 m_default_bb, p, loc);
2397 emit_jump (bb, node->m_c->m_case_bb);
2398 return NULL;
2402 return bb;
2405 /* The main function of the pass scans statements for switches and invokes
2406 process_switch on them. */
2408 namespace {
2410 const pass_data pass_data_convert_switch =
2412 GIMPLE_PASS, /* type */
2413 "switchconv", /* name */
2414 OPTGROUP_NONE, /* optinfo_flags */
2415 TV_TREE_SWITCH_CONVERSION, /* tv_id */
2416 ( PROP_cfg | PROP_ssa ), /* properties_required */
2417 0, /* properties_provided */
2418 0, /* properties_destroyed */
2419 0, /* todo_flags_start */
2420 TODO_update_ssa, /* todo_flags_finish */
2423 class pass_convert_switch : public gimple_opt_pass
2425 public:
2426 pass_convert_switch (gcc::context *ctxt)
2427 : gimple_opt_pass (pass_data_convert_switch, ctxt)
2430 /* opt_pass methods: */
2431 virtual bool gate (function *) { return flag_tree_switch_conversion != 0; }
2432 virtual unsigned int execute (function *);
2434 }; // class pass_convert_switch
2436 unsigned int
2437 pass_convert_switch::execute (function *fun)
2439 basic_block bb;
2440 bool cfg_altered = false;
2442 FOR_EACH_BB_FN (bb, fun)
2444 gimple *stmt = last_stmt (bb);
2445 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
2447 if (dump_file)
2449 expanded_location loc = expand_location (gimple_location (stmt));
2451 fprintf (dump_file, "beginning to process the following "
2452 "SWITCH statement (%s:%d) : ------- \n",
2453 loc.file, loc.line);
2454 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2455 putc ('\n', dump_file);
2458 switch_conversion sconv;
2459 sconv.expand (as_a <gswitch *> (stmt));
2460 cfg_altered |= sconv.m_cfg_altered;
2461 if (!sconv.m_reason)
2463 if (dump_file)
2465 fputs ("Switch converted\n", dump_file);
2466 fputs ("--------------------------------\n", dump_file);
2469 /* Make no effort to update the post-dominator tree.
2470 It is actually not that hard for the transformations
2471 we have performed, but it is not supported
2472 by iterate_fix_dominators. */
2473 free_dominance_info (CDI_POST_DOMINATORS);
2475 else
2477 if (dump_file)
2479 fputs ("Bailing out - ", dump_file);
2480 fputs (sconv.m_reason, dump_file);
2481 fputs ("\n--------------------------------\n", dump_file);
2487 return cfg_altered ? TODO_cleanup_cfg : 0;;
2490 } // anon namespace
2492 gimple_opt_pass *
2493 make_pass_convert_switch (gcc::context *ctxt)
2495 return new pass_convert_switch (ctxt);
2498 /* The main function of the pass scans statements for switches and invokes
2499 process_switch on them. */
2501 namespace {
2503 template <bool O0> class pass_lower_switch: public gimple_opt_pass
2505 public:
2506 pass_lower_switch (gcc::context *ctxt) : gimple_opt_pass (data, ctxt) {}
2508 static const pass_data data;
2509 opt_pass *
2510 clone ()
2512 return new pass_lower_switch<O0> (m_ctxt);
2515 virtual bool
2516 gate (function *)
2518 return !O0 || !optimize;
2521 virtual unsigned int execute (function *fun);
2522 }; // class pass_lower_switch
2524 template <bool O0>
2525 const pass_data pass_lower_switch<O0>::data = {
2526 GIMPLE_PASS, /* type */
2527 O0 ? "switchlower_O0" : "switchlower", /* name */
2528 OPTGROUP_NONE, /* optinfo_flags */
2529 TV_TREE_SWITCH_LOWERING, /* tv_id */
2530 ( PROP_cfg | PROP_ssa ), /* properties_required */
2531 0, /* properties_provided */
2532 0, /* properties_destroyed */
2533 0, /* todo_flags_start */
2534 TODO_update_ssa | TODO_cleanup_cfg, /* todo_flags_finish */
2537 template <bool O0>
2538 unsigned int
2539 pass_lower_switch<O0>::execute (function *fun)
2541 basic_block bb;
2542 bool expanded = false;
2544 auto_vec<gimple *> switch_statements;
2545 switch_statements.create (1);
2547 FOR_EACH_BB_FN (bb, fun)
2549 gimple *stmt = last_stmt (bb);
2550 gswitch *swtch;
2551 if (stmt && (swtch = dyn_cast<gswitch *> (stmt)))
2553 if (!O0)
2554 group_case_labels_stmt (swtch);
2555 switch_statements.safe_push (swtch);
2559 for (unsigned i = 0; i < switch_statements.length (); i++)
2561 gimple *stmt = switch_statements[i];
2562 if (dump_file)
2564 expanded_location loc = expand_location (gimple_location (stmt));
2566 fprintf (dump_file, "beginning to process the following "
2567 "SWITCH statement (%s:%d) : ------- \n",
2568 loc.file, loc.line);
2569 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2570 putc ('\n', dump_file);
2573 gswitch *swtch = dyn_cast<gswitch *> (stmt);
2574 if (swtch)
2576 switch_decision_tree dt (swtch);
2577 expanded |= dt.analyze_switch_statement ();
2581 if (expanded)
2583 free_dominance_info (CDI_DOMINATORS);
2584 free_dominance_info (CDI_POST_DOMINATORS);
2585 mark_virtual_operands_for_renaming (cfun);
2588 return 0;
2591 } // anon namespace
2593 gimple_opt_pass *
2594 make_pass_lower_switch_O0 (gcc::context *ctxt)
2596 return new pass_lower_switch<true> (ctxt);
2598 gimple_opt_pass *
2599 make_pass_lower_switch (gcc::context *ctxt)
2601 return new pass_lower_switch<false> (ctxt);