new tests
[official-gcc.git] / gcc / tree-ssa-loop-niter.c
blobc14e13c7248b5ada735c478820df4e5197e5b76d
1 /* Functions to determine/estimate number of iterations of a loop.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "tm_p.h"
27 #include "basic-block.h"
28 #include "output.h"
29 #include "tree-pretty-print.h"
30 #include "gimple-pretty-print.h"
31 #include "intl.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "cfgloop.h"
35 #include "tree-pass.h"
36 #include "ggc.h"
37 #include "tree-chrec.h"
38 #include "tree-scalar-evolution.h"
39 #include "tree-data-ref.h"
40 #include "params.h"
41 #include "flags.h"
42 #include "diagnostic-core.h"
43 #include "tree-inline.h"
44 #include "gmp.h"
46 #define SWAP(X, Y) do { affine_iv *tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
48 /* The maximum number of dominator BBs we search for conditions
49 of loop header copies we use for simplifying a conditional
50 expression. */
51 #define MAX_DOMINATORS_TO_WALK 8
55 Analysis of number of iterations of an affine exit test.
59 /* Bounds on some value, BELOW <= X <= UP. */
61 typedef struct
63 mpz_t below, up;
64 } bounds;
67 /* Splits expression EXPR to a variable part VAR and constant OFFSET. */
69 static void
70 split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
72 tree type = TREE_TYPE (expr);
73 tree op0, op1;
74 double_int off;
75 bool negate = false;
77 *var = expr;
78 mpz_set_ui (offset, 0);
80 switch (TREE_CODE (expr))
82 case MINUS_EXPR:
83 negate = true;
84 /* Fallthru. */
86 case PLUS_EXPR:
87 case POINTER_PLUS_EXPR:
88 op0 = TREE_OPERAND (expr, 0);
89 op1 = TREE_OPERAND (expr, 1);
91 if (TREE_CODE (op1) != INTEGER_CST)
92 break;
94 *var = op0;
95 /* Always sign extend the offset. */
96 off = tree_to_double_int (op1);
97 off = double_int_sext (off, TYPE_PRECISION (type));
98 mpz_set_double_int (offset, off, false);
99 if (negate)
100 mpz_neg (offset, offset);
101 break;
103 case INTEGER_CST:
104 *var = build_int_cst_type (type, 0);
105 off = tree_to_double_int (expr);
106 mpz_set_double_int (offset, off, TYPE_UNSIGNED (type));
107 break;
109 default:
110 break;
114 /* Stores estimate on the minimum/maximum value of the expression VAR + OFF
115 in TYPE to MIN and MAX. */
117 static void
118 determine_value_range (tree type, tree var, mpz_t off,
119 mpz_t min, mpz_t max)
121 /* If the expression is a constant, we know its value exactly. */
122 if (integer_zerop (var))
124 mpz_set (min, off);
125 mpz_set (max, off);
126 return;
129 /* If the computation may wrap, we know nothing about the value, except for
130 the range of the type. */
131 get_type_static_bounds (type, min, max);
132 if (!nowrap_type_p (type))
133 return;
135 /* Since the addition of OFF does not wrap, if OFF is positive, then we may
136 add it to MIN, otherwise to MAX. */
137 if (mpz_sgn (off) < 0)
138 mpz_add (max, max, off);
139 else
140 mpz_add (min, min, off);
143 /* Stores the bounds on the difference of the values of the expressions
144 (var + X) and (var + Y), computed in TYPE, to BNDS. */
146 static void
147 bound_difference_of_offsetted_base (tree type, mpz_t x, mpz_t y,
148 bounds *bnds)
150 int rel = mpz_cmp (x, y);
151 bool may_wrap = !nowrap_type_p (type);
152 mpz_t m;
154 /* If X == Y, then the expressions are always equal.
155 If X > Y, there are the following possibilities:
156 a) neither of var + X and var + Y overflow or underflow, or both of
157 them do. Then their difference is X - Y.
158 b) var + X overflows, and var + Y does not. Then the values of the
159 expressions are var + X - M and var + Y, where M is the range of
160 the type, and their difference is X - Y - M.
161 c) var + Y underflows and var + X does not. Their difference again
162 is M - X + Y.
163 Therefore, if the arithmetics in type does not overflow, then the
164 bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
165 Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
166 (X - Y, X - Y + M). */
168 if (rel == 0)
170 mpz_set_ui (bnds->below, 0);
171 mpz_set_ui (bnds->up, 0);
172 return;
175 mpz_init (m);
176 mpz_set_double_int (m, double_int_mask (TYPE_PRECISION (type)), true);
177 mpz_add_ui (m, m, 1);
178 mpz_sub (bnds->up, x, y);
179 mpz_set (bnds->below, bnds->up);
181 if (may_wrap)
183 if (rel > 0)
184 mpz_sub (bnds->below, bnds->below, m);
185 else
186 mpz_add (bnds->up, bnds->up, m);
189 mpz_clear (m);
192 /* From condition C0 CMP C1 derives information regarding the
193 difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
194 and stores it to BNDS. */
196 static void
197 refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
198 tree vary, mpz_t offy,
199 tree c0, enum tree_code cmp, tree c1,
200 bounds *bnds)
202 tree varc0, varc1, tmp, ctype;
203 mpz_t offc0, offc1, loffx, loffy, bnd;
204 bool lbound = false;
205 bool no_wrap = nowrap_type_p (type);
206 bool x_ok, y_ok;
208 switch (cmp)
210 case LT_EXPR:
211 case LE_EXPR:
212 case GT_EXPR:
213 case GE_EXPR:
214 STRIP_SIGN_NOPS (c0);
215 STRIP_SIGN_NOPS (c1);
216 ctype = TREE_TYPE (c0);
217 if (!useless_type_conversion_p (ctype, type))
218 return;
220 break;
222 case EQ_EXPR:
223 /* We could derive quite precise information from EQ_EXPR, however, such
224 a guard is unlikely to appear, so we do not bother with handling
225 it. */
226 return;
228 case NE_EXPR:
229 /* NE_EXPR comparisons do not contain much of useful information, except for
230 special case of comparing with the bounds of the type. */
231 if (TREE_CODE (c1) != INTEGER_CST
232 || !INTEGRAL_TYPE_P (type))
233 return;
235 /* Ensure that the condition speaks about an expression in the same type
236 as X and Y. */
237 ctype = TREE_TYPE (c0);
238 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
239 return;
240 c0 = fold_convert (type, c0);
241 c1 = fold_convert (type, c1);
243 if (TYPE_MIN_VALUE (type)
244 && operand_equal_p (c1, TYPE_MIN_VALUE (type), 0))
246 cmp = GT_EXPR;
247 break;
249 if (TYPE_MAX_VALUE (type)
250 && operand_equal_p (c1, TYPE_MAX_VALUE (type), 0))
252 cmp = LT_EXPR;
253 break;
256 return;
257 default:
258 return;
261 mpz_init (offc0);
262 mpz_init (offc1);
263 split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
264 split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
266 /* We are only interested in comparisons of expressions based on VARX and
267 VARY. TODO -- we might also be able to derive some bounds from
268 expressions containing just one of the variables. */
270 if (operand_equal_p (varx, varc1, 0))
272 tmp = varc0; varc0 = varc1; varc1 = tmp;
273 mpz_swap (offc0, offc1);
274 cmp = swap_tree_comparison (cmp);
277 if (!operand_equal_p (varx, varc0, 0)
278 || !operand_equal_p (vary, varc1, 0))
279 goto end;
281 mpz_init_set (loffx, offx);
282 mpz_init_set (loffy, offy);
284 if (cmp == GT_EXPR || cmp == GE_EXPR)
286 tmp = varx; varx = vary; vary = tmp;
287 mpz_swap (offc0, offc1);
288 mpz_swap (loffx, loffy);
289 cmp = swap_tree_comparison (cmp);
290 lbound = true;
293 /* If there is no overflow, the condition implies that
295 (VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
297 The overflows and underflows may complicate things a bit; each
298 overflow decreases the appropriate offset by M, and underflow
299 increases it by M. The above inequality would not necessarily be
300 true if
302 -- VARX + OFFX underflows and VARX + OFFC0 does not, or
303 VARX + OFFC0 overflows, but VARX + OFFX does not.
304 This may only happen if OFFX < OFFC0.
305 -- VARY + OFFY overflows and VARY + OFFC1 does not, or
306 VARY + OFFC1 underflows and VARY + OFFY does not.
307 This may only happen if OFFY > OFFC1. */
309 if (no_wrap)
311 x_ok = true;
312 y_ok = true;
314 else
316 x_ok = (integer_zerop (varx)
317 || mpz_cmp (loffx, offc0) >= 0);
318 y_ok = (integer_zerop (vary)
319 || mpz_cmp (loffy, offc1) <= 0);
322 if (x_ok && y_ok)
324 mpz_init (bnd);
325 mpz_sub (bnd, loffx, loffy);
326 mpz_add (bnd, bnd, offc1);
327 mpz_sub (bnd, bnd, offc0);
329 if (cmp == LT_EXPR)
330 mpz_sub_ui (bnd, bnd, 1);
332 if (lbound)
334 mpz_neg (bnd, bnd);
335 if (mpz_cmp (bnds->below, bnd) < 0)
336 mpz_set (bnds->below, bnd);
338 else
340 if (mpz_cmp (bnd, bnds->up) < 0)
341 mpz_set (bnds->up, bnd);
343 mpz_clear (bnd);
346 mpz_clear (loffx);
347 mpz_clear (loffy);
348 end:
349 mpz_clear (offc0);
350 mpz_clear (offc1);
353 /* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
354 The subtraction is considered to be performed in arbitrary precision,
355 without overflows.
357 We do not attempt to be too clever regarding the value ranges of X and
358 Y; most of the time, they are just integers or ssa names offsetted by
359 integer. However, we try to use the information contained in the
360 comparisons before the loop (usually created by loop header copying). */
362 static void
363 bound_difference (struct loop *loop, tree x, tree y, bounds *bnds)
365 tree type = TREE_TYPE (x);
366 tree varx, vary;
367 mpz_t offx, offy;
368 mpz_t minx, maxx, miny, maxy;
369 int cnt = 0;
370 edge e;
371 basic_block bb;
372 tree c0, c1;
373 gimple cond;
374 enum tree_code cmp;
376 /* Get rid of unnecessary casts, but preserve the value of
377 the expressions. */
378 STRIP_SIGN_NOPS (x);
379 STRIP_SIGN_NOPS (y);
381 mpz_init (bnds->below);
382 mpz_init (bnds->up);
383 mpz_init (offx);
384 mpz_init (offy);
385 split_to_var_and_offset (x, &varx, offx);
386 split_to_var_and_offset (y, &vary, offy);
388 if (!integer_zerop (varx)
389 && operand_equal_p (varx, vary, 0))
391 /* Special case VARX == VARY -- we just need to compare the
392 offsets. The matters are a bit more complicated in the
393 case addition of offsets may wrap. */
394 bound_difference_of_offsetted_base (type, offx, offy, bnds);
396 else
398 /* Otherwise, use the value ranges to determine the initial
399 estimates on below and up. */
400 mpz_init (minx);
401 mpz_init (maxx);
402 mpz_init (miny);
403 mpz_init (maxy);
404 determine_value_range (type, varx, offx, minx, maxx);
405 determine_value_range (type, vary, offy, miny, maxy);
407 mpz_sub (bnds->below, minx, maxy);
408 mpz_sub (bnds->up, maxx, miny);
409 mpz_clear (minx);
410 mpz_clear (maxx);
411 mpz_clear (miny);
412 mpz_clear (maxy);
415 /* If both X and Y are constants, we cannot get any more precise. */
416 if (integer_zerop (varx) && integer_zerop (vary))
417 goto end;
419 /* Now walk the dominators of the loop header and use the entry
420 guards to refine the estimates. */
421 for (bb = loop->header;
422 bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
423 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
425 if (!single_pred_p (bb))
426 continue;
427 e = single_pred_edge (bb);
429 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
430 continue;
432 cond = last_stmt (e->src);
433 c0 = gimple_cond_lhs (cond);
434 cmp = gimple_cond_code (cond);
435 c1 = gimple_cond_rhs (cond);
437 if (e->flags & EDGE_FALSE_VALUE)
438 cmp = invert_tree_comparison (cmp, false);
440 refine_bounds_using_guard (type, varx, offx, vary, offy,
441 c0, cmp, c1, bnds);
442 ++cnt;
445 end:
446 mpz_clear (offx);
447 mpz_clear (offy);
450 /* Update the bounds in BNDS that restrict the value of X to the bounds
451 that restrict the value of X + DELTA. X can be obtained as a
452 difference of two values in TYPE. */
454 static void
455 bounds_add (bounds *bnds, double_int delta, tree type)
457 mpz_t mdelta, max;
459 mpz_init (mdelta);
460 mpz_set_double_int (mdelta, delta, false);
462 mpz_init (max);
463 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)), true);
465 mpz_add (bnds->up, bnds->up, mdelta);
466 mpz_add (bnds->below, bnds->below, mdelta);
468 if (mpz_cmp (bnds->up, max) > 0)
469 mpz_set (bnds->up, max);
471 mpz_neg (max, max);
472 if (mpz_cmp (bnds->below, max) < 0)
473 mpz_set (bnds->below, max);
475 mpz_clear (mdelta);
476 mpz_clear (max);
479 /* Update the bounds in BNDS that restrict the value of X to the bounds
480 that restrict the value of -X. */
482 static void
483 bounds_negate (bounds *bnds)
485 mpz_t tmp;
487 mpz_init_set (tmp, bnds->up);
488 mpz_neg (bnds->up, bnds->below);
489 mpz_neg (bnds->below, tmp);
490 mpz_clear (tmp);
493 /* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
495 static tree
496 inverse (tree x, tree mask)
498 tree type = TREE_TYPE (x);
499 tree rslt;
500 unsigned ctr = tree_floor_log2 (mask);
502 if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
504 unsigned HOST_WIDE_INT ix;
505 unsigned HOST_WIDE_INT imask;
506 unsigned HOST_WIDE_INT irslt = 1;
508 gcc_assert (cst_and_fits_in_hwi (x));
509 gcc_assert (cst_and_fits_in_hwi (mask));
511 ix = int_cst_value (x);
512 imask = int_cst_value (mask);
514 for (; ctr; ctr--)
516 irslt *= ix;
517 ix *= ix;
519 irslt &= imask;
521 rslt = build_int_cst_type (type, irslt);
523 else
525 rslt = build_int_cst (type, 1);
526 for (; ctr; ctr--)
528 rslt = int_const_binop (MULT_EXPR, rslt, x, 0);
529 x = int_const_binop (MULT_EXPR, x, x, 0);
531 rslt = int_const_binop (BIT_AND_EXPR, rslt, mask, 0);
534 return rslt;
537 /* Derives the upper bound BND on the number of executions of loop with exit
538 condition S * i <> C. If NO_OVERFLOW is true, then the control variable of
539 the loop does not overflow. EXIT_MUST_BE_TAKEN is true if we are guaranteed
540 that the loop ends through this exit, i.e., the induction variable ever
541 reaches the value of C.
543 The value C is equal to final - base, where final and base are the final and
544 initial value of the actual induction variable in the analysed loop. BNDS
545 bounds the value of this difference when computed in signed type with
546 unbounded range, while the computation of C is performed in an unsigned
547 type with the range matching the range of the type of the induction variable.
548 In particular, BNDS.up contains an upper bound on C in the following cases:
549 -- if the iv must reach its final value without overflow, i.e., if
550 NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
551 -- if final >= base, which we know to hold when BNDS.below >= 0. */
553 static void
554 number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
555 bounds *bnds, bool exit_must_be_taken)
557 double_int max;
558 mpz_t d;
559 bool bnds_u_valid = ((no_overflow && exit_must_be_taken)
560 || mpz_sgn (bnds->below) >= 0);
562 if (multiple_of_p (TREE_TYPE (c), c, s))
564 /* If C is an exact multiple of S, then its value will be reached before
565 the induction variable overflows (unless the loop is exited in some
566 other way before). Note that the actual induction variable in the
567 loop (which ranges from base to final instead of from 0 to C) may
568 overflow, in which case BNDS.up will not be giving a correct upper
569 bound on C; thus, BNDS_U_VALID had to be computed in advance. */
570 no_overflow = true;
571 exit_must_be_taken = true;
574 /* If the induction variable can overflow, the number of iterations is at
575 most the period of the control variable (or infinite, but in that case
576 the whole # of iterations analysis will fail). */
577 if (!no_overflow)
579 max = double_int_mask (TYPE_PRECISION (TREE_TYPE (c))
580 - tree_low_cst (num_ending_zeros (s), 1));
581 mpz_set_double_int (bnd, max, true);
582 return;
585 /* Now we know that the induction variable does not overflow, so the loop
586 iterates at most (range of type / S) times. */
587 mpz_set_double_int (bnd, double_int_mask (TYPE_PRECISION (TREE_TYPE (c))),
588 true);
590 /* If the induction variable is guaranteed to reach the value of C before
591 overflow, ... */
592 if (exit_must_be_taken)
594 /* ... then we can strenghten this to C / S, and possibly we can use
595 the upper bound on C given by BNDS. */
596 if (TREE_CODE (c) == INTEGER_CST)
597 mpz_set_double_int (bnd, tree_to_double_int (c), true);
598 else if (bnds_u_valid)
599 mpz_set (bnd, bnds->up);
602 mpz_init (d);
603 mpz_set_double_int (d, tree_to_double_int (s), true);
604 mpz_fdiv_q (bnd, bnd, d);
605 mpz_clear (d);
608 /* Determines number of iterations of loop whose ending condition
609 is IV <> FINAL. TYPE is the type of the iv. The number of
610 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
611 we know that the exit must be taken eventually, i.e., that the IV
612 ever reaches the value FINAL (we derived this earlier, and possibly set
613 NITER->assumptions to make sure this is the case). BNDS contains the
614 bounds on the difference FINAL - IV->base. */
616 static bool
617 number_of_iterations_ne (tree type, affine_iv *iv, tree final,
618 struct tree_niter_desc *niter, bool exit_must_be_taken,
619 bounds *bnds)
621 tree niter_type = unsigned_type_for (type);
622 tree s, c, d, bits, assumption, tmp, bound;
623 mpz_t max;
625 niter->control = *iv;
626 niter->bound = final;
627 niter->cmp = NE_EXPR;
629 /* Rearrange the terms so that we get inequality S * i <> C, with S
630 positive. Also cast everything to the unsigned type. If IV does
631 not overflow, BNDS bounds the value of C. Also, this is the
632 case if the computation |FINAL - IV->base| does not overflow, i.e.,
633 if BNDS->below in the result is nonnegative. */
634 if (tree_int_cst_sign_bit (iv->step))
636 s = fold_convert (niter_type,
637 fold_build1 (NEGATE_EXPR, type, iv->step));
638 c = fold_build2 (MINUS_EXPR, niter_type,
639 fold_convert (niter_type, iv->base),
640 fold_convert (niter_type, final));
641 bounds_negate (bnds);
643 else
645 s = fold_convert (niter_type, iv->step);
646 c = fold_build2 (MINUS_EXPR, niter_type,
647 fold_convert (niter_type, final),
648 fold_convert (niter_type, iv->base));
651 mpz_init (max);
652 number_of_iterations_ne_max (max, iv->no_overflow, c, s, bnds,
653 exit_must_be_taken);
654 niter->max = mpz_get_double_int (niter_type, max, false);
655 mpz_clear (max);
657 /* First the trivial cases -- when the step is 1. */
658 if (integer_onep (s))
660 niter->niter = c;
661 return true;
664 /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
665 is infinite. Otherwise, the number of iterations is
666 (inverse(s/d) * (c/d)) mod (size of mode/d). */
667 bits = num_ending_zeros (s);
668 bound = build_low_bits_mask (niter_type,
669 (TYPE_PRECISION (niter_type)
670 - tree_low_cst (bits, 1)));
672 d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
673 build_int_cst (niter_type, 1), bits);
674 s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
676 if (!exit_must_be_taken)
678 /* If we cannot assume that the exit is taken eventually, record the
679 assumptions for divisibility of c. */
680 assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
681 assumption = fold_build2 (EQ_EXPR, boolean_type_node,
682 assumption, build_int_cst (niter_type, 0));
683 if (!integer_nonzerop (assumption))
684 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
685 niter->assumptions, assumption);
688 c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
689 tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
690 niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
691 return true;
694 /* Checks whether we can determine the final value of the control variable
695 of the loop with ending condition IV0 < IV1 (computed in TYPE).
696 DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
697 of the step. The assumptions necessary to ensure that the computation
698 of the final value does not overflow are recorded in NITER. If we
699 find the final value, we adjust DELTA and return TRUE. Otherwise
700 we return false. BNDS bounds the value of IV1->base - IV0->base,
701 and will be updated by the same amount as DELTA. EXIT_MUST_BE_TAKEN is
702 true if we know that the exit must be taken eventually. */
704 static bool
705 number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
706 struct tree_niter_desc *niter,
707 tree *delta, tree step,
708 bool exit_must_be_taken, bounds *bnds)
710 tree niter_type = TREE_TYPE (step);
711 tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
712 tree tmod;
713 mpz_t mmod;
714 tree assumption = boolean_true_node, bound, noloop;
715 bool ret = false, fv_comp_no_overflow;
716 tree type1 = type;
717 if (POINTER_TYPE_P (type))
718 type1 = sizetype;
720 if (TREE_CODE (mod) != INTEGER_CST)
721 return false;
722 if (integer_nonzerop (mod))
723 mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
724 tmod = fold_convert (type1, mod);
726 mpz_init (mmod);
727 mpz_set_double_int (mmod, tree_to_double_int (mod), true);
728 mpz_neg (mmod, mmod);
730 /* If the induction variable does not overflow and the exit is taken,
731 then the computation of the final value does not overflow. This is
732 also obviously the case if the new final value is equal to the
733 current one. Finally, we postulate this for pointer type variables,
734 as the code cannot rely on the object to that the pointer points being
735 placed at the end of the address space (and more pragmatically,
736 TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
737 if (integer_zerop (mod) || POINTER_TYPE_P (type))
738 fv_comp_no_overflow = true;
739 else if (!exit_must_be_taken)
740 fv_comp_no_overflow = false;
741 else
742 fv_comp_no_overflow =
743 (iv0->no_overflow && integer_nonzerop (iv0->step))
744 || (iv1->no_overflow && integer_nonzerop (iv1->step));
746 if (integer_nonzerop (iv0->step))
748 /* The final value of the iv is iv1->base + MOD, assuming that this
749 computation does not overflow, and that
750 iv0->base <= iv1->base + MOD. */
751 if (!fv_comp_no_overflow)
753 bound = fold_build2 (MINUS_EXPR, type1,
754 TYPE_MAX_VALUE (type1), tmod);
755 assumption = fold_build2 (LE_EXPR, boolean_type_node,
756 iv1->base, bound);
757 if (integer_zerop (assumption))
758 goto end;
760 if (mpz_cmp (mmod, bnds->below) < 0)
761 noloop = boolean_false_node;
762 else if (POINTER_TYPE_P (type))
763 noloop = fold_build2 (GT_EXPR, boolean_type_node,
764 iv0->base,
765 fold_build2 (POINTER_PLUS_EXPR, type,
766 iv1->base, tmod));
767 else
768 noloop = fold_build2 (GT_EXPR, boolean_type_node,
769 iv0->base,
770 fold_build2 (PLUS_EXPR, type1,
771 iv1->base, tmod));
773 else
775 /* The final value of the iv is iv0->base - MOD, assuming that this
776 computation does not overflow, and that
777 iv0->base - MOD <= iv1->base. */
778 if (!fv_comp_no_overflow)
780 bound = fold_build2 (PLUS_EXPR, type1,
781 TYPE_MIN_VALUE (type1), tmod);
782 assumption = fold_build2 (GE_EXPR, boolean_type_node,
783 iv0->base, bound);
784 if (integer_zerop (assumption))
785 goto end;
787 if (mpz_cmp (mmod, bnds->below) < 0)
788 noloop = boolean_false_node;
789 else if (POINTER_TYPE_P (type))
790 noloop = fold_build2 (GT_EXPR, boolean_type_node,
791 fold_build2 (POINTER_PLUS_EXPR, type,
792 iv0->base,
793 fold_build1 (NEGATE_EXPR,
794 type1, tmod)),
795 iv1->base);
796 else
797 noloop = fold_build2 (GT_EXPR, boolean_type_node,
798 fold_build2 (MINUS_EXPR, type1,
799 iv0->base, tmod),
800 iv1->base);
803 if (!integer_nonzerop (assumption))
804 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
805 niter->assumptions,
806 assumption);
807 if (!integer_zerop (noloop))
808 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
809 niter->may_be_zero,
810 noloop);
811 bounds_add (bnds, tree_to_double_int (mod), type);
812 *delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
814 ret = true;
815 end:
816 mpz_clear (mmod);
817 return ret;
820 /* Add assertions to NITER that ensure that the control variable of the loop
821 with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
822 are TYPE. Returns false if we can prove that there is an overflow, true
823 otherwise. STEP is the absolute value of the step. */
825 static bool
826 assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
827 struct tree_niter_desc *niter, tree step)
829 tree bound, d, assumption, diff;
830 tree niter_type = TREE_TYPE (step);
832 if (integer_nonzerop (iv0->step))
834 /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
835 if (iv0->no_overflow)
836 return true;
838 /* If iv0->base is a constant, we can determine the last value before
839 overflow precisely; otherwise we conservatively assume
840 MAX - STEP + 1. */
842 if (TREE_CODE (iv0->base) == INTEGER_CST)
844 d = fold_build2 (MINUS_EXPR, niter_type,
845 fold_convert (niter_type, TYPE_MAX_VALUE (type)),
846 fold_convert (niter_type, iv0->base));
847 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
849 else
850 diff = fold_build2 (MINUS_EXPR, niter_type, step,
851 build_int_cst (niter_type, 1));
852 bound = fold_build2 (MINUS_EXPR, type,
853 TYPE_MAX_VALUE (type), fold_convert (type, diff));
854 assumption = fold_build2 (LE_EXPR, boolean_type_node,
855 iv1->base, bound);
857 else
859 /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
860 if (iv1->no_overflow)
861 return true;
863 if (TREE_CODE (iv1->base) == INTEGER_CST)
865 d = fold_build2 (MINUS_EXPR, niter_type,
866 fold_convert (niter_type, iv1->base),
867 fold_convert (niter_type, TYPE_MIN_VALUE (type)));
868 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
870 else
871 diff = fold_build2 (MINUS_EXPR, niter_type, step,
872 build_int_cst (niter_type, 1));
873 bound = fold_build2 (PLUS_EXPR, type,
874 TYPE_MIN_VALUE (type), fold_convert (type, diff));
875 assumption = fold_build2 (GE_EXPR, boolean_type_node,
876 iv0->base, bound);
879 if (integer_zerop (assumption))
880 return false;
881 if (!integer_nonzerop (assumption))
882 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
883 niter->assumptions, assumption);
885 iv0->no_overflow = true;
886 iv1->no_overflow = true;
887 return true;
890 /* Add an assumption to NITER that a loop whose ending condition
891 is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
892 bounds the value of IV1->base - IV0->base. */
894 static void
895 assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
896 struct tree_niter_desc *niter, bounds *bnds)
898 tree assumption = boolean_true_node, bound, diff;
899 tree mbz, mbzl, mbzr, type1;
900 bool rolls_p, no_overflow_p;
901 double_int dstep;
902 mpz_t mstep, max;
904 /* We are going to compute the number of iterations as
905 (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
906 variant of TYPE. This formula only works if
908 -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
910 (where MAX is the maximum value of the unsigned variant of TYPE, and
911 the computations in this formula are performed in full precision,
912 i.e., without overflows).
914 Usually, for loops with exit condition iv0->base + step * i < iv1->base,
915 we have a condition of the form iv0->base - step < iv1->base before the loop,
916 and for loops iv0->base < iv1->base - step * i the condition
917 iv0->base < iv1->base + step, due to loop header copying, which enable us
918 to prove the lower bound.
920 The upper bound is more complicated. Unless the expressions for initial
921 and final value themselves contain enough information, we usually cannot
922 derive it from the context. */
924 /* First check whether the answer does not follow from the bounds we gathered
925 before. */
926 if (integer_nonzerop (iv0->step))
927 dstep = tree_to_double_int (iv0->step);
928 else
930 dstep = double_int_sext (tree_to_double_int (iv1->step),
931 TYPE_PRECISION (type));
932 dstep = double_int_neg (dstep);
935 mpz_init (mstep);
936 mpz_set_double_int (mstep, dstep, true);
937 mpz_neg (mstep, mstep);
938 mpz_add_ui (mstep, mstep, 1);
940 rolls_p = mpz_cmp (mstep, bnds->below) <= 0;
942 mpz_init (max);
943 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)), true);
944 mpz_add (max, max, mstep);
945 no_overflow_p = (mpz_cmp (bnds->up, max) <= 0
946 /* For pointers, only values lying inside a single object
947 can be compared or manipulated by pointer arithmetics.
948 Gcc in general does not allow or handle objects larger
949 than half of the address space, hence the upper bound
950 is satisfied for pointers. */
951 || POINTER_TYPE_P (type));
952 mpz_clear (mstep);
953 mpz_clear (max);
955 if (rolls_p && no_overflow_p)
956 return;
958 type1 = type;
959 if (POINTER_TYPE_P (type))
960 type1 = sizetype;
962 /* Now the hard part; we must formulate the assumption(s) as expressions, and
963 we must be careful not to introduce overflow. */
965 if (integer_nonzerop (iv0->step))
967 diff = fold_build2 (MINUS_EXPR, type1,
968 iv0->step, build_int_cst (type1, 1));
970 /* We need to know that iv0->base >= MIN + iv0->step - 1. Since
971 0 address never belongs to any object, we can assume this for
972 pointers. */
973 if (!POINTER_TYPE_P (type))
975 bound = fold_build2 (PLUS_EXPR, type1,
976 TYPE_MIN_VALUE (type), diff);
977 assumption = fold_build2 (GE_EXPR, boolean_type_node,
978 iv0->base, bound);
981 /* And then we can compute iv0->base - diff, and compare it with
982 iv1->base. */
983 mbzl = fold_build2 (MINUS_EXPR, type1,
984 fold_convert (type1, iv0->base), diff);
985 mbzr = fold_convert (type1, iv1->base);
987 else
989 diff = fold_build2 (PLUS_EXPR, type1,
990 iv1->step, build_int_cst (type1, 1));
992 if (!POINTER_TYPE_P (type))
994 bound = fold_build2 (PLUS_EXPR, type1,
995 TYPE_MAX_VALUE (type), diff);
996 assumption = fold_build2 (LE_EXPR, boolean_type_node,
997 iv1->base, bound);
1000 mbzl = fold_convert (type1, iv0->base);
1001 mbzr = fold_build2 (MINUS_EXPR, type1,
1002 fold_convert (type1, iv1->base), diff);
1005 if (!integer_nonzerop (assumption))
1006 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1007 niter->assumptions, assumption);
1008 if (!rolls_p)
1010 mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
1011 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1012 niter->may_be_zero, mbz);
1016 /* Determines number of iterations of loop whose ending condition
1017 is IV0 < IV1. TYPE is the type of the iv. The number of
1018 iterations is stored to NITER. BNDS bounds the difference
1019 IV1->base - IV0->base. EXIT_MUST_BE_TAKEN is true if we know
1020 that the exit must be taken eventually. */
1022 static bool
1023 number_of_iterations_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1024 struct tree_niter_desc *niter,
1025 bool exit_must_be_taken, bounds *bnds)
1027 tree niter_type = unsigned_type_for (type);
1028 tree delta, step, s;
1029 mpz_t mstep, tmp;
1031 if (integer_nonzerop (iv0->step))
1033 niter->control = *iv0;
1034 niter->cmp = LT_EXPR;
1035 niter->bound = iv1->base;
1037 else
1039 niter->control = *iv1;
1040 niter->cmp = GT_EXPR;
1041 niter->bound = iv0->base;
1044 delta = fold_build2 (MINUS_EXPR, niter_type,
1045 fold_convert (niter_type, iv1->base),
1046 fold_convert (niter_type, iv0->base));
1048 /* First handle the special case that the step is +-1. */
1049 if ((integer_onep (iv0->step) && integer_zerop (iv1->step))
1050 || (integer_all_onesp (iv1->step) && integer_zerop (iv0->step)))
1052 /* for (i = iv0->base; i < iv1->base; i++)
1056 for (i = iv1->base; i > iv0->base; i--).
1058 In both cases # of iterations is iv1->base - iv0->base, assuming that
1059 iv1->base >= iv0->base.
1061 First try to derive a lower bound on the value of
1062 iv1->base - iv0->base, computed in full precision. If the difference
1063 is nonnegative, we are done, otherwise we must record the
1064 condition. */
1066 if (mpz_sgn (bnds->below) < 0)
1067 niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
1068 iv1->base, iv0->base);
1069 niter->niter = delta;
1070 niter->max = mpz_get_double_int (niter_type, bnds->up, false);
1071 return true;
1074 if (integer_nonzerop (iv0->step))
1075 step = fold_convert (niter_type, iv0->step);
1076 else
1077 step = fold_convert (niter_type,
1078 fold_build1 (NEGATE_EXPR, type, iv1->step));
1080 /* If we can determine the final value of the control iv exactly, we can
1081 transform the condition to != comparison. In particular, this will be
1082 the case if DELTA is constant. */
1083 if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step,
1084 exit_must_be_taken, bnds))
1086 affine_iv zps;
1088 zps.base = build_int_cst (niter_type, 0);
1089 zps.step = step;
1090 /* number_of_iterations_lt_to_ne will add assumptions that ensure that
1091 zps does not overflow. */
1092 zps.no_overflow = true;
1094 return number_of_iterations_ne (type, &zps, delta, niter, true, bnds);
1097 /* Make sure that the control iv does not overflow. */
1098 if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
1099 return false;
1101 /* We determine the number of iterations as (delta + step - 1) / step. For
1102 this to work, we must know that iv1->base >= iv0->base - step + 1,
1103 otherwise the loop does not roll. */
1104 assert_loop_rolls_lt (type, iv0, iv1, niter, bnds);
1106 s = fold_build2 (MINUS_EXPR, niter_type,
1107 step, build_int_cst (niter_type, 1));
1108 delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
1109 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
1111 mpz_init (mstep);
1112 mpz_init (tmp);
1113 mpz_set_double_int (mstep, tree_to_double_int (step), true);
1114 mpz_add (tmp, bnds->up, mstep);
1115 mpz_sub_ui (tmp, tmp, 1);
1116 mpz_fdiv_q (tmp, tmp, mstep);
1117 niter->max = mpz_get_double_int (niter_type, tmp, false);
1118 mpz_clear (mstep);
1119 mpz_clear (tmp);
1121 return true;
1124 /* Determines number of iterations of loop whose ending condition
1125 is IV0 <= IV1. TYPE is the type of the iv. The number of
1126 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
1127 we know that this condition must eventually become false (we derived this
1128 earlier, and possibly set NITER->assumptions to make sure this
1129 is the case). BNDS bounds the difference IV1->base - IV0->base. */
1131 static bool
1132 number_of_iterations_le (tree type, affine_iv *iv0, affine_iv *iv1,
1133 struct tree_niter_desc *niter, bool exit_must_be_taken,
1134 bounds *bnds)
1136 tree assumption;
1137 tree type1 = type;
1138 if (POINTER_TYPE_P (type))
1139 type1 = sizetype;
1141 /* Say that IV0 is the control variable. Then IV0 <= IV1 iff
1142 IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
1143 value of the type. This we must know anyway, since if it is
1144 equal to this value, the loop rolls forever. We do not check
1145 this condition for pointer type ivs, as the code cannot rely on
1146 the object to that the pointer points being placed at the end of
1147 the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
1148 not defined for pointers). */
1150 if (!exit_must_be_taken && !POINTER_TYPE_P (type))
1152 if (integer_nonzerop (iv0->step))
1153 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1154 iv1->base, TYPE_MAX_VALUE (type));
1155 else
1156 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1157 iv0->base, TYPE_MIN_VALUE (type));
1159 if (integer_zerop (assumption))
1160 return false;
1161 if (!integer_nonzerop (assumption))
1162 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1163 niter->assumptions, assumption);
1166 if (integer_nonzerop (iv0->step))
1168 if (POINTER_TYPE_P (type))
1169 iv1->base = fold_build2 (POINTER_PLUS_EXPR, type, iv1->base,
1170 build_int_cst (type1, 1));
1171 else
1172 iv1->base = fold_build2 (PLUS_EXPR, type1, iv1->base,
1173 build_int_cst (type1, 1));
1175 else if (POINTER_TYPE_P (type))
1176 iv0->base = fold_build2 (POINTER_PLUS_EXPR, type, iv0->base,
1177 fold_build1 (NEGATE_EXPR, type1,
1178 build_int_cst (type1, 1)));
1179 else
1180 iv0->base = fold_build2 (MINUS_EXPR, type1,
1181 iv0->base, build_int_cst (type1, 1));
1183 bounds_add (bnds, double_int_one, type1);
1185 return number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
1186 bnds);
1189 /* Dumps description of affine induction variable IV to FILE. */
1191 static void
1192 dump_affine_iv (FILE *file, affine_iv *iv)
1194 if (!integer_zerop (iv->step))
1195 fprintf (file, "[");
1197 print_generic_expr (dump_file, iv->base, TDF_SLIM);
1199 if (!integer_zerop (iv->step))
1201 fprintf (file, ", + , ");
1202 print_generic_expr (dump_file, iv->step, TDF_SLIM);
1203 fprintf (file, "]%s", iv->no_overflow ? "(no_overflow)" : "");
1207 /* Determine the number of iterations according to condition (for staying
1208 inside loop) which compares two induction variables using comparison
1209 operator CODE. The induction variable on left side of the comparison
1210 is IV0, the right-hand side is IV1. Both induction variables must have
1211 type TYPE, which must be an integer or pointer type. The steps of the
1212 ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
1214 LOOP is the loop whose number of iterations we are determining.
1216 ONLY_EXIT is true if we are sure this is the only way the loop could be
1217 exited (including possibly non-returning function calls, exceptions, etc.)
1218 -- in this case we can use the information whether the control induction
1219 variables can overflow or not in a more efficient way.
1221 The results (number of iterations and assumptions as described in
1222 comments at struct tree_niter_desc in tree-flow.h) are stored to NITER.
1223 Returns false if it fails to determine number of iterations, true if it
1224 was determined (possibly with some assumptions). */
1226 static bool
1227 number_of_iterations_cond (struct loop *loop,
1228 tree type, affine_iv *iv0, enum tree_code code,
1229 affine_iv *iv1, struct tree_niter_desc *niter,
1230 bool only_exit)
1232 bool exit_must_be_taken = false, ret;
1233 bounds bnds;
1235 /* The meaning of these assumptions is this:
1236 if !assumptions
1237 then the rest of information does not have to be valid
1238 if may_be_zero then the loop does not roll, even if
1239 niter != 0. */
1240 niter->assumptions = boolean_true_node;
1241 niter->may_be_zero = boolean_false_node;
1242 niter->niter = NULL_TREE;
1243 niter->max = double_int_zero;
1245 niter->bound = NULL_TREE;
1246 niter->cmp = ERROR_MARK;
1248 /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
1249 the control variable is on lhs. */
1250 if (code == GE_EXPR || code == GT_EXPR
1251 || (code == NE_EXPR && integer_zerop (iv0->step)))
1253 SWAP (iv0, iv1);
1254 code = swap_tree_comparison (code);
1257 if (POINTER_TYPE_P (type))
1259 /* Comparison of pointers is undefined unless both iv0 and iv1 point
1260 to the same object. If they do, the control variable cannot wrap
1261 (as wrap around the bounds of memory will never return a pointer
1262 that would be guaranteed to point to the same object, even if we
1263 avoid undefined behavior by casting to size_t and back). */
1264 iv0->no_overflow = true;
1265 iv1->no_overflow = true;
1268 /* If the control induction variable does not overflow and the only exit
1269 from the loop is the one that we analyze, we know it must be taken
1270 eventually. */
1271 if (only_exit)
1273 if (!integer_zerop (iv0->step) && iv0->no_overflow)
1274 exit_must_be_taken = true;
1275 else if (!integer_zerop (iv1->step) && iv1->no_overflow)
1276 exit_must_be_taken = true;
1279 /* We can handle the case when neither of the sides of the comparison is
1280 invariant, provided that the test is NE_EXPR. This rarely occurs in
1281 practice, but it is simple enough to manage. */
1282 if (!integer_zerop (iv0->step) && !integer_zerop (iv1->step))
1284 if (code != NE_EXPR)
1285 return false;
1287 iv0->step = fold_binary_to_constant (MINUS_EXPR, type,
1288 iv0->step, iv1->step);
1289 iv0->no_overflow = false;
1290 iv1->step = build_int_cst (type, 0);
1291 iv1->no_overflow = true;
1294 /* If the result of the comparison is a constant, the loop is weird. More
1295 precise handling would be possible, but the situation is not common enough
1296 to waste time on it. */
1297 if (integer_zerop (iv0->step) && integer_zerop (iv1->step))
1298 return false;
1300 /* Ignore loops of while (i-- < 10) type. */
1301 if (code != NE_EXPR)
1303 if (iv0->step && tree_int_cst_sign_bit (iv0->step))
1304 return false;
1306 if (!integer_zerop (iv1->step) && !tree_int_cst_sign_bit (iv1->step))
1307 return false;
1310 /* If the loop exits immediately, there is nothing to do. */
1311 if (integer_zerop (fold_build2 (code, boolean_type_node, iv0->base, iv1->base)))
1313 niter->niter = build_int_cst (unsigned_type_for (type), 0);
1314 niter->max = double_int_zero;
1315 return true;
1318 /* OK, now we know we have a senseful loop. Handle several cases, depending
1319 on what comparison operator is used. */
1320 bound_difference (loop, iv1->base, iv0->base, &bnds);
1322 if (dump_file && (dump_flags & TDF_DETAILS))
1324 fprintf (dump_file,
1325 "Analyzing # of iterations of loop %d\n", loop->num);
1327 fprintf (dump_file, " exit condition ");
1328 dump_affine_iv (dump_file, iv0);
1329 fprintf (dump_file, " %s ",
1330 code == NE_EXPR ? "!="
1331 : code == LT_EXPR ? "<"
1332 : "<=");
1333 dump_affine_iv (dump_file, iv1);
1334 fprintf (dump_file, "\n");
1336 fprintf (dump_file, " bounds on difference of bases: ");
1337 mpz_out_str (dump_file, 10, bnds.below);
1338 fprintf (dump_file, " ... ");
1339 mpz_out_str (dump_file, 10, bnds.up);
1340 fprintf (dump_file, "\n");
1343 switch (code)
1345 case NE_EXPR:
1346 gcc_assert (integer_zerop (iv1->step));
1347 ret = number_of_iterations_ne (type, iv0, iv1->base, niter,
1348 exit_must_be_taken, &bnds);
1349 break;
1351 case LT_EXPR:
1352 ret = number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
1353 &bnds);
1354 break;
1356 case LE_EXPR:
1357 ret = number_of_iterations_le (type, iv0, iv1, niter, exit_must_be_taken,
1358 &bnds);
1359 break;
1361 default:
1362 gcc_unreachable ();
1365 mpz_clear (bnds.up);
1366 mpz_clear (bnds.below);
1368 if (dump_file && (dump_flags & TDF_DETAILS))
1370 if (ret)
1372 fprintf (dump_file, " result:\n");
1373 if (!integer_nonzerop (niter->assumptions))
1375 fprintf (dump_file, " under assumptions ");
1376 print_generic_expr (dump_file, niter->assumptions, TDF_SLIM);
1377 fprintf (dump_file, "\n");
1380 if (!integer_zerop (niter->may_be_zero))
1382 fprintf (dump_file, " zero if ");
1383 print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
1384 fprintf (dump_file, "\n");
1387 fprintf (dump_file, " # of iterations ");
1388 print_generic_expr (dump_file, niter->niter, TDF_SLIM);
1389 fprintf (dump_file, ", bounded by ");
1390 dump_double_int (dump_file, niter->max, true);
1391 fprintf (dump_file, "\n");
1393 else
1394 fprintf (dump_file, " failed\n\n");
1396 return ret;
1399 /* Substitute NEW for OLD in EXPR and fold the result. */
1401 static tree
1402 simplify_replace_tree (tree expr, tree old, tree new_tree)
1404 unsigned i, n;
1405 tree ret = NULL_TREE, e, se;
1407 if (!expr)
1408 return NULL_TREE;
1410 /* Do not bother to replace constants. */
1411 if (CONSTANT_CLASS_P (old))
1412 return expr;
1414 if (expr == old
1415 || operand_equal_p (expr, old, 0))
1416 return unshare_expr (new_tree);
1418 if (!EXPR_P (expr))
1419 return expr;
1421 n = TREE_OPERAND_LENGTH (expr);
1422 for (i = 0; i < n; i++)
1424 e = TREE_OPERAND (expr, i);
1425 se = simplify_replace_tree (e, old, new_tree);
1426 if (e == se)
1427 continue;
1429 if (!ret)
1430 ret = copy_node (expr);
1432 TREE_OPERAND (ret, i) = se;
1435 return (ret ? fold (ret) : expr);
1438 /* Expand definitions of ssa names in EXPR as long as they are simple
1439 enough, and return the new expression. */
1441 tree
1442 expand_simple_operations (tree expr)
1444 unsigned i, n;
1445 tree ret = NULL_TREE, e, ee, e1;
1446 enum tree_code code;
1447 gimple stmt;
1449 if (expr == NULL_TREE)
1450 return expr;
1452 if (is_gimple_min_invariant (expr))
1453 return expr;
1455 code = TREE_CODE (expr);
1456 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
1458 n = TREE_OPERAND_LENGTH (expr);
1459 for (i = 0; i < n; i++)
1461 e = TREE_OPERAND (expr, i);
1462 ee = expand_simple_operations (e);
1463 if (e == ee)
1464 continue;
1466 if (!ret)
1467 ret = copy_node (expr);
1469 TREE_OPERAND (ret, i) = ee;
1472 if (!ret)
1473 return expr;
1475 fold_defer_overflow_warnings ();
1476 ret = fold (ret);
1477 fold_undefer_and_ignore_overflow_warnings ();
1478 return ret;
1481 if (TREE_CODE (expr) != SSA_NAME)
1482 return expr;
1484 stmt = SSA_NAME_DEF_STMT (expr);
1485 if (gimple_code (stmt) == GIMPLE_PHI)
1487 basic_block src, dest;
1489 if (gimple_phi_num_args (stmt) != 1)
1490 return expr;
1491 e = PHI_ARG_DEF (stmt, 0);
1493 /* Avoid propagating through loop exit phi nodes, which
1494 could break loop-closed SSA form restrictions. */
1495 dest = gimple_bb (stmt);
1496 src = single_pred (dest);
1497 if (TREE_CODE (e) == SSA_NAME
1498 && src->loop_father != dest->loop_father)
1499 return expr;
1501 return expand_simple_operations (e);
1503 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1504 return expr;
1506 e = gimple_assign_rhs1 (stmt);
1507 code = gimple_assign_rhs_code (stmt);
1508 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1510 if (is_gimple_min_invariant (e))
1511 return e;
1513 if (code == SSA_NAME)
1514 return expand_simple_operations (e);
1516 return expr;
1519 switch (code)
1521 CASE_CONVERT:
1522 /* Casts are simple. */
1523 ee = expand_simple_operations (e);
1524 return fold_build1 (code, TREE_TYPE (expr), ee);
1526 case PLUS_EXPR:
1527 case MINUS_EXPR:
1528 case POINTER_PLUS_EXPR:
1529 /* And increments and decrements by a constant are simple. */
1530 e1 = gimple_assign_rhs2 (stmt);
1531 if (!is_gimple_min_invariant (e1))
1532 return expr;
1534 ee = expand_simple_operations (e);
1535 return fold_build2 (code, TREE_TYPE (expr), ee, e1);
1537 default:
1538 return expr;
1542 /* Tries to simplify EXPR using the condition COND. Returns the simplified
1543 expression (or EXPR unchanged, if no simplification was possible). */
1545 static tree
1546 tree_simplify_using_condition_1 (tree cond, tree expr)
1548 bool changed;
1549 tree e, te, e0, e1, e2, notcond;
1550 enum tree_code code = TREE_CODE (expr);
1552 if (code == INTEGER_CST)
1553 return expr;
1555 if (code == TRUTH_OR_EXPR
1556 || code == TRUTH_AND_EXPR
1557 || code == COND_EXPR)
1559 changed = false;
1561 e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
1562 if (TREE_OPERAND (expr, 0) != e0)
1563 changed = true;
1565 e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
1566 if (TREE_OPERAND (expr, 1) != e1)
1567 changed = true;
1569 if (code == COND_EXPR)
1571 e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
1572 if (TREE_OPERAND (expr, 2) != e2)
1573 changed = true;
1575 else
1576 e2 = NULL_TREE;
1578 if (changed)
1580 if (code == COND_EXPR)
1581 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
1582 else
1583 expr = fold_build2 (code, boolean_type_node, e0, e1);
1586 return expr;
1589 /* In case COND is equality, we may be able to simplify EXPR by copy/constant
1590 propagation, and vice versa. Fold does not handle this, since it is
1591 considered too expensive. */
1592 if (TREE_CODE (cond) == EQ_EXPR)
1594 e0 = TREE_OPERAND (cond, 0);
1595 e1 = TREE_OPERAND (cond, 1);
1597 /* We know that e0 == e1. Check whether we cannot simplify expr
1598 using this fact. */
1599 e = simplify_replace_tree (expr, e0, e1);
1600 if (integer_zerop (e) || integer_nonzerop (e))
1601 return e;
1603 e = simplify_replace_tree (expr, e1, e0);
1604 if (integer_zerop (e) || integer_nonzerop (e))
1605 return e;
1607 if (TREE_CODE (expr) == EQ_EXPR)
1609 e0 = TREE_OPERAND (expr, 0);
1610 e1 = TREE_OPERAND (expr, 1);
1612 /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
1613 e = simplify_replace_tree (cond, e0, e1);
1614 if (integer_zerop (e))
1615 return e;
1616 e = simplify_replace_tree (cond, e1, e0);
1617 if (integer_zerop (e))
1618 return e;
1620 if (TREE_CODE (expr) == NE_EXPR)
1622 e0 = TREE_OPERAND (expr, 0);
1623 e1 = TREE_OPERAND (expr, 1);
1625 /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
1626 e = simplify_replace_tree (cond, e0, e1);
1627 if (integer_zerop (e))
1628 return boolean_true_node;
1629 e = simplify_replace_tree (cond, e1, e0);
1630 if (integer_zerop (e))
1631 return boolean_true_node;
1634 te = expand_simple_operations (expr);
1636 /* Check whether COND ==> EXPR. */
1637 notcond = invert_truthvalue (cond);
1638 e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, te);
1639 if (e && integer_nonzerop (e))
1640 return e;
1642 /* Check whether COND ==> not EXPR. */
1643 e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, te);
1644 if (e && integer_zerop (e))
1645 return e;
1647 return expr;
1650 /* Tries to simplify EXPR using the condition COND. Returns the simplified
1651 expression (or EXPR unchanged, if no simplification was possible).
1652 Wrapper around tree_simplify_using_condition_1 that ensures that chains
1653 of simple operations in definitions of ssa names in COND are expanded,
1654 so that things like casts or incrementing the value of the bound before
1655 the loop do not cause us to fail. */
1657 static tree
1658 tree_simplify_using_condition (tree cond, tree expr)
1660 cond = expand_simple_operations (cond);
1662 return tree_simplify_using_condition_1 (cond, expr);
1665 /* Tries to simplify EXPR using the conditions on entry to LOOP.
1666 Returns the simplified expression (or EXPR unchanged, if no
1667 simplification was possible).*/
1669 static tree
1670 simplify_using_initial_conditions (struct loop *loop, tree expr)
1672 edge e;
1673 basic_block bb;
1674 gimple stmt;
1675 tree cond;
1676 int cnt = 0;
1678 if (TREE_CODE (expr) == INTEGER_CST)
1679 return expr;
1681 /* Limit walking the dominators to avoid quadraticness in
1682 the number of BBs times the number of loops in degenerate
1683 cases. */
1684 for (bb = loop->header;
1685 bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
1686 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
1688 if (!single_pred_p (bb))
1689 continue;
1690 e = single_pred_edge (bb);
1692 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
1693 continue;
1695 stmt = last_stmt (e->src);
1696 cond = fold_build2 (gimple_cond_code (stmt),
1697 boolean_type_node,
1698 gimple_cond_lhs (stmt),
1699 gimple_cond_rhs (stmt));
1700 if (e->flags & EDGE_FALSE_VALUE)
1701 cond = invert_truthvalue (cond);
1702 expr = tree_simplify_using_condition (cond, expr);
1703 ++cnt;
1706 return expr;
1709 /* Tries to simplify EXPR using the evolutions of the loop invariants
1710 in the superloops of LOOP. Returns the simplified expression
1711 (or EXPR unchanged, if no simplification was possible). */
1713 static tree
1714 simplify_using_outer_evolutions (struct loop *loop, tree expr)
1716 enum tree_code code = TREE_CODE (expr);
1717 bool changed;
1718 tree e, e0, e1, e2;
1720 if (is_gimple_min_invariant (expr))
1721 return expr;
1723 if (code == TRUTH_OR_EXPR
1724 || code == TRUTH_AND_EXPR
1725 || code == COND_EXPR)
1727 changed = false;
1729 e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
1730 if (TREE_OPERAND (expr, 0) != e0)
1731 changed = true;
1733 e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
1734 if (TREE_OPERAND (expr, 1) != e1)
1735 changed = true;
1737 if (code == COND_EXPR)
1739 e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
1740 if (TREE_OPERAND (expr, 2) != e2)
1741 changed = true;
1743 else
1744 e2 = NULL_TREE;
1746 if (changed)
1748 if (code == COND_EXPR)
1749 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
1750 else
1751 expr = fold_build2 (code, boolean_type_node, e0, e1);
1754 return expr;
1757 e = instantiate_parameters (loop, expr);
1758 if (is_gimple_min_invariant (e))
1759 return e;
1761 return expr;
1764 /* Returns true if EXIT is the only possible exit from LOOP. */
1766 bool
1767 loop_only_exit_p (const struct loop *loop, const_edge exit)
1769 basic_block *body;
1770 gimple_stmt_iterator bsi;
1771 unsigned i;
1772 gimple call;
1774 if (exit != single_exit (loop))
1775 return false;
1777 body = get_loop_body (loop);
1778 for (i = 0; i < loop->num_nodes; i++)
1780 for (bsi = gsi_start_bb (body[i]); !gsi_end_p (bsi); gsi_next (&bsi))
1782 call = gsi_stmt (bsi);
1783 if (gimple_code (call) != GIMPLE_CALL)
1784 continue;
1786 if (gimple_has_side_effects (call))
1788 free (body);
1789 return false;
1794 free (body);
1795 return true;
1798 /* Stores description of number of iterations of LOOP derived from
1799 EXIT (an exit edge of the LOOP) in NITER. Returns true if some
1800 useful information could be derived (and fields of NITER has
1801 meaning described in comments at struct tree_niter_desc
1802 declaration), false otherwise. If WARN is true and
1803 -Wunsafe-loop-optimizations was given, warn if the optimizer is going to use
1804 potentially unsafe assumptions. */
1806 bool
1807 number_of_iterations_exit (struct loop *loop, edge exit,
1808 struct tree_niter_desc *niter,
1809 bool warn)
1811 gimple stmt;
1812 tree type;
1813 tree op0, op1;
1814 enum tree_code code;
1815 affine_iv iv0, iv1;
1817 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
1818 return false;
1820 niter->assumptions = boolean_false_node;
1821 stmt = last_stmt (exit->src);
1822 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1823 return false;
1825 /* We want the condition for staying inside loop. */
1826 code = gimple_cond_code (stmt);
1827 if (exit->flags & EDGE_TRUE_VALUE)
1828 code = invert_tree_comparison (code, false);
1830 switch (code)
1832 case GT_EXPR:
1833 case GE_EXPR:
1834 case NE_EXPR:
1835 case LT_EXPR:
1836 case LE_EXPR:
1837 break;
1839 default:
1840 return false;
1843 op0 = gimple_cond_lhs (stmt);
1844 op1 = gimple_cond_rhs (stmt);
1845 type = TREE_TYPE (op0);
1847 if (TREE_CODE (type) != INTEGER_TYPE
1848 && !POINTER_TYPE_P (type))
1849 return false;
1851 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, false))
1852 return false;
1853 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, false))
1854 return false;
1856 /* We don't want to see undefined signed overflow warnings while
1857 computing the number of iterations. */
1858 fold_defer_overflow_warnings ();
1860 iv0.base = expand_simple_operations (iv0.base);
1861 iv1.base = expand_simple_operations (iv1.base);
1862 if (!number_of_iterations_cond (loop, type, &iv0, code, &iv1, niter,
1863 loop_only_exit_p (loop, exit)))
1865 fold_undefer_and_ignore_overflow_warnings ();
1866 return false;
1869 if (optimize >= 3)
1871 niter->assumptions = simplify_using_outer_evolutions (loop,
1872 niter->assumptions);
1873 niter->may_be_zero = simplify_using_outer_evolutions (loop,
1874 niter->may_be_zero);
1875 niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
1878 niter->assumptions
1879 = simplify_using_initial_conditions (loop,
1880 niter->assumptions);
1881 niter->may_be_zero
1882 = simplify_using_initial_conditions (loop,
1883 niter->may_be_zero);
1885 fold_undefer_and_ignore_overflow_warnings ();
1887 if (integer_onep (niter->assumptions))
1888 return true;
1890 /* With -funsafe-loop-optimizations we assume that nothing bad can happen.
1891 But if we can prove that there is overflow or some other source of weird
1892 behavior, ignore the loop even with -funsafe-loop-optimizations. */
1893 if (integer_zerop (niter->assumptions) || !single_exit (loop))
1894 return false;
1896 if (flag_unsafe_loop_optimizations)
1897 niter->assumptions = boolean_true_node;
1899 if (warn)
1901 const char *wording;
1902 location_t loc = gimple_location (stmt);
1904 /* We can provide a more specific warning if one of the operator is
1905 constant and the other advances by +1 or -1. */
1906 if (!integer_zerop (iv1.step)
1907 ? (integer_zerop (iv0.step)
1908 && (integer_onep (iv1.step) || integer_all_onesp (iv1.step)))
1909 : (integer_onep (iv0.step) || integer_all_onesp (iv0.step)))
1910 wording =
1911 flag_unsafe_loop_optimizations
1912 ? N_("assuming that the loop is not infinite")
1913 : N_("cannot optimize possibly infinite loops");
1914 else
1915 wording =
1916 flag_unsafe_loop_optimizations
1917 ? N_("assuming that the loop counter does not overflow")
1918 : N_("cannot optimize loop, the loop counter may overflow");
1920 warning_at ((LOCATION_LINE (loc) > 0) ? loc : input_location,
1921 OPT_Wunsafe_loop_optimizations, "%s", gettext (wording));
1924 return flag_unsafe_loop_optimizations;
1927 /* Try to determine the number of iterations of LOOP. If we succeed,
1928 expression giving number of iterations is returned and *EXIT is
1929 set to the edge from that the information is obtained. Otherwise
1930 chrec_dont_know is returned. */
1932 tree
1933 find_loop_niter (struct loop *loop, edge *exit)
1935 unsigned i;
1936 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1937 edge ex;
1938 tree niter = NULL_TREE, aniter;
1939 struct tree_niter_desc desc;
1941 *exit = NULL;
1942 FOR_EACH_VEC_ELT (edge, exits, i, ex)
1944 if (!just_once_each_iteration_p (loop, ex->src))
1945 continue;
1947 if (!number_of_iterations_exit (loop, ex, &desc, false))
1948 continue;
1950 if (integer_nonzerop (desc.may_be_zero))
1952 /* We exit in the first iteration through this exit.
1953 We won't find anything better. */
1954 niter = build_int_cst (unsigned_type_node, 0);
1955 *exit = ex;
1956 break;
1959 if (!integer_zerop (desc.may_be_zero))
1960 continue;
1962 aniter = desc.niter;
1964 if (!niter)
1966 /* Nothing recorded yet. */
1967 niter = aniter;
1968 *exit = ex;
1969 continue;
1972 /* Prefer constants, the lower the better. */
1973 if (TREE_CODE (aniter) != INTEGER_CST)
1974 continue;
1976 if (TREE_CODE (niter) != INTEGER_CST)
1978 niter = aniter;
1979 *exit = ex;
1980 continue;
1983 if (tree_int_cst_lt (aniter, niter))
1985 niter = aniter;
1986 *exit = ex;
1987 continue;
1990 VEC_free (edge, heap, exits);
1992 return niter ? niter : chrec_dont_know;
1995 /* Return true if loop is known to have bounded number of iterations. */
1997 bool
1998 finite_loop_p (struct loop *loop)
2000 unsigned i;
2001 VEC (edge, heap) *exits;
2002 edge ex;
2003 struct tree_niter_desc desc;
2004 bool finite = false;
2005 int flags;
2007 if (flag_unsafe_loop_optimizations)
2008 return true;
2009 flags = flags_from_decl_or_type (current_function_decl);
2010 if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
2012 if (dump_file && (dump_flags & TDF_DETAILS))
2013 fprintf (dump_file, "Found loop %i to be finite: it is within pure or const function.\n",
2014 loop->num);
2015 return true;
2018 exits = get_loop_exit_edges (loop);
2019 FOR_EACH_VEC_ELT (edge, exits, i, ex)
2021 if (!just_once_each_iteration_p (loop, ex->src))
2022 continue;
2024 if (number_of_iterations_exit (loop, ex, &desc, false))
2026 if (dump_file && (dump_flags & TDF_DETAILS))
2028 fprintf (dump_file, "Found loop %i to be finite: iterating ", loop->num);
2029 print_generic_expr (dump_file, desc.niter, TDF_SLIM);
2030 fprintf (dump_file, " times\n");
2032 finite = true;
2033 break;
2036 VEC_free (edge, heap, exits);
2037 return finite;
2042 Analysis of a number of iterations of a loop by a brute-force evaluation.
2046 /* Bound on the number of iterations we try to evaluate. */
2048 #define MAX_ITERATIONS_TO_TRACK \
2049 ((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
2051 /* Returns the loop phi node of LOOP such that ssa name X is derived from its
2052 result by a chain of operations such that all but exactly one of their
2053 operands are constants. */
2055 static gimple
2056 chain_of_csts_start (struct loop *loop, tree x)
2058 gimple stmt = SSA_NAME_DEF_STMT (x);
2059 tree use;
2060 basic_block bb = gimple_bb (stmt);
2061 enum tree_code code;
2063 if (!bb
2064 || !flow_bb_inside_loop_p (loop, bb))
2065 return NULL;
2067 if (gimple_code (stmt) == GIMPLE_PHI)
2069 if (bb == loop->header)
2070 return stmt;
2072 return NULL;
2075 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2076 return NULL;
2078 code = gimple_assign_rhs_code (stmt);
2079 if (gimple_references_memory_p (stmt)
2080 || TREE_CODE_CLASS (code) == tcc_reference
2081 || (code == ADDR_EXPR
2082 && !is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
2083 return NULL;
2085 use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
2086 if (use == NULL_TREE)
2087 return NULL;
2089 return chain_of_csts_start (loop, use);
2092 /* Determines whether the expression X is derived from a result of a phi node
2093 in header of LOOP such that
2095 * the derivation of X consists only from operations with constants
2096 * the initial value of the phi node is constant
2097 * the value of the phi node in the next iteration can be derived from the
2098 value in the current iteration by a chain of operations with constants.
2100 If such phi node exists, it is returned, otherwise NULL is returned. */
2102 static gimple
2103 get_base_for (struct loop *loop, tree x)
2105 gimple phi;
2106 tree init, next;
2108 if (is_gimple_min_invariant (x))
2109 return NULL;
2111 phi = chain_of_csts_start (loop, x);
2112 if (!phi)
2113 return NULL;
2115 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2116 next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2118 if (TREE_CODE (next) != SSA_NAME)
2119 return NULL;
2121 if (!is_gimple_min_invariant (init))
2122 return NULL;
2124 if (chain_of_csts_start (loop, next) != phi)
2125 return NULL;
2127 return phi;
2130 /* Given an expression X, then
2132 * if X is NULL_TREE, we return the constant BASE.
2133 * otherwise X is a SSA name, whose value in the considered loop is derived
2134 by a chain of operations with constant from a result of a phi node in
2135 the header of the loop. Then we return value of X when the value of the
2136 result of this phi node is given by the constant BASE. */
2138 static tree
2139 get_val_for (tree x, tree base)
2141 gimple stmt;
2143 gcc_assert (is_gimple_min_invariant (base));
2145 if (!x)
2146 return base;
2148 stmt = SSA_NAME_DEF_STMT (x);
2149 if (gimple_code (stmt) == GIMPLE_PHI)
2150 return base;
2152 gcc_assert (is_gimple_assign (stmt));
2154 /* STMT must be either an assignment of a single SSA name or an
2155 expression involving an SSA name and a constant. Try to fold that
2156 expression using the value for the SSA name. */
2157 if (gimple_assign_ssa_name_copy_p (stmt))
2158 return get_val_for (gimple_assign_rhs1 (stmt), base);
2159 else if (gimple_assign_rhs_class (stmt) == GIMPLE_UNARY_RHS
2160 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
2162 return fold_build1 (gimple_assign_rhs_code (stmt),
2163 gimple_expr_type (stmt),
2164 get_val_for (gimple_assign_rhs1 (stmt), base));
2166 else if (gimple_assign_rhs_class (stmt) == GIMPLE_BINARY_RHS)
2168 tree rhs1 = gimple_assign_rhs1 (stmt);
2169 tree rhs2 = gimple_assign_rhs2 (stmt);
2170 if (TREE_CODE (rhs1) == SSA_NAME)
2171 rhs1 = get_val_for (rhs1, base);
2172 else if (TREE_CODE (rhs2) == SSA_NAME)
2173 rhs2 = get_val_for (rhs2, base);
2174 else
2175 gcc_unreachable ();
2176 return fold_build2 (gimple_assign_rhs_code (stmt),
2177 gimple_expr_type (stmt), rhs1, rhs2);
2179 else
2180 gcc_unreachable ();
2184 /* Tries to count the number of iterations of LOOP till it exits by EXIT
2185 by brute force -- i.e. by determining the value of the operands of the
2186 condition at EXIT in first few iterations of the loop (assuming that
2187 these values are constant) and determining the first one in that the
2188 condition is not satisfied. Returns the constant giving the number
2189 of the iterations of LOOP if successful, chrec_dont_know otherwise. */
2191 tree
2192 loop_niter_by_eval (struct loop *loop, edge exit)
2194 tree acnd;
2195 tree op[2], val[2], next[2], aval[2];
2196 gimple phi, cond;
2197 unsigned i, j;
2198 enum tree_code cmp;
2200 cond = last_stmt (exit->src);
2201 if (!cond || gimple_code (cond) != GIMPLE_COND)
2202 return chrec_dont_know;
2204 cmp = gimple_cond_code (cond);
2205 if (exit->flags & EDGE_TRUE_VALUE)
2206 cmp = invert_tree_comparison (cmp, false);
2208 switch (cmp)
2210 case EQ_EXPR:
2211 case NE_EXPR:
2212 case GT_EXPR:
2213 case GE_EXPR:
2214 case LT_EXPR:
2215 case LE_EXPR:
2216 op[0] = gimple_cond_lhs (cond);
2217 op[1] = gimple_cond_rhs (cond);
2218 break;
2220 default:
2221 return chrec_dont_know;
2224 for (j = 0; j < 2; j++)
2226 if (is_gimple_min_invariant (op[j]))
2228 val[j] = op[j];
2229 next[j] = NULL_TREE;
2230 op[j] = NULL_TREE;
2232 else
2234 phi = get_base_for (loop, op[j]);
2235 if (!phi)
2236 return chrec_dont_know;
2237 val[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2238 next[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2242 /* Don't issue signed overflow warnings. */
2243 fold_defer_overflow_warnings ();
2245 for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
2247 for (j = 0; j < 2; j++)
2248 aval[j] = get_val_for (op[j], val[j]);
2250 acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
2251 if (acnd && integer_zerop (acnd))
2253 fold_undefer_and_ignore_overflow_warnings ();
2254 if (dump_file && (dump_flags & TDF_DETAILS))
2255 fprintf (dump_file,
2256 "Proved that loop %d iterates %d times using brute force.\n",
2257 loop->num, i);
2258 return build_int_cst (unsigned_type_node, i);
2261 for (j = 0; j < 2; j++)
2263 val[j] = get_val_for (next[j], val[j]);
2264 if (!is_gimple_min_invariant (val[j]))
2266 fold_undefer_and_ignore_overflow_warnings ();
2267 return chrec_dont_know;
2272 fold_undefer_and_ignore_overflow_warnings ();
2274 return chrec_dont_know;
2277 /* Finds the exit of the LOOP by that the loop exits after a constant
2278 number of iterations and stores the exit edge to *EXIT. The constant
2279 giving the number of iterations of LOOP is returned. The number of
2280 iterations is determined using loop_niter_by_eval (i.e. by brute force
2281 evaluation). If we are unable to find the exit for that loop_niter_by_eval
2282 determines the number of iterations, chrec_dont_know is returned. */
2284 tree
2285 find_loop_niter_by_eval (struct loop *loop, edge *exit)
2287 unsigned i;
2288 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
2289 edge ex;
2290 tree niter = NULL_TREE, aniter;
2292 *exit = NULL;
2294 /* Loops with multiple exits are expensive to handle and less important. */
2295 if (!flag_expensive_optimizations
2296 && VEC_length (edge, exits) > 1)
2297 return chrec_dont_know;
2299 FOR_EACH_VEC_ELT (edge, exits, i, ex)
2301 if (!just_once_each_iteration_p (loop, ex->src))
2302 continue;
2304 aniter = loop_niter_by_eval (loop, ex);
2305 if (chrec_contains_undetermined (aniter))
2306 continue;
2308 if (niter
2309 && !tree_int_cst_lt (aniter, niter))
2310 continue;
2312 niter = aniter;
2313 *exit = ex;
2315 VEC_free (edge, heap, exits);
2317 return niter ? niter : chrec_dont_know;
2322 Analysis of upper bounds on number of iterations of a loop.
2326 static double_int derive_constant_upper_bound_ops (tree, tree,
2327 enum tree_code, tree);
2329 /* Returns a constant upper bound on the value of the right-hand side of
2330 an assignment statement STMT. */
2332 static double_int
2333 derive_constant_upper_bound_assign (gimple stmt)
2335 enum tree_code code = gimple_assign_rhs_code (stmt);
2336 tree op0 = gimple_assign_rhs1 (stmt);
2337 tree op1 = gimple_assign_rhs2 (stmt);
2339 return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt)),
2340 op0, code, op1);
2343 /* Returns a constant upper bound on the value of expression VAL. VAL
2344 is considered to be unsigned. If its type is signed, its value must
2345 be nonnegative. */
2347 static double_int
2348 derive_constant_upper_bound (tree val)
2350 enum tree_code code;
2351 tree op0, op1;
2353 extract_ops_from_tree (val, &code, &op0, &op1);
2354 return derive_constant_upper_bound_ops (TREE_TYPE (val), op0, code, op1);
2357 /* Returns a constant upper bound on the value of expression OP0 CODE OP1,
2358 whose type is TYPE. The expression is considered to be unsigned. If
2359 its type is signed, its value must be nonnegative. */
2361 static double_int
2362 derive_constant_upper_bound_ops (tree type, tree op0,
2363 enum tree_code code, tree op1)
2365 tree subtype, maxt;
2366 double_int bnd, max, mmax, cst;
2367 gimple stmt;
2369 if (INTEGRAL_TYPE_P (type))
2370 maxt = TYPE_MAX_VALUE (type);
2371 else
2372 maxt = upper_bound_in_type (type, type);
2374 max = tree_to_double_int (maxt);
2376 switch (code)
2378 case INTEGER_CST:
2379 return tree_to_double_int (op0);
2381 CASE_CONVERT:
2382 subtype = TREE_TYPE (op0);
2383 if (!TYPE_UNSIGNED (subtype)
2384 /* If TYPE is also signed, the fact that VAL is nonnegative implies
2385 that OP0 is nonnegative. */
2386 && TYPE_UNSIGNED (type)
2387 && !tree_expr_nonnegative_p (op0))
2389 /* If we cannot prove that the casted expression is nonnegative,
2390 we cannot establish more useful upper bound than the precision
2391 of the type gives us. */
2392 return max;
2395 /* We now know that op0 is an nonnegative value. Try deriving an upper
2396 bound for it. */
2397 bnd = derive_constant_upper_bound (op0);
2399 /* If the bound does not fit in TYPE, max. value of TYPE could be
2400 attained. */
2401 if (double_int_ucmp (max, bnd) < 0)
2402 return max;
2404 return bnd;
2406 case PLUS_EXPR:
2407 case POINTER_PLUS_EXPR:
2408 case MINUS_EXPR:
2409 if (TREE_CODE (op1) != INTEGER_CST
2410 || !tree_expr_nonnegative_p (op0))
2411 return max;
2413 /* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
2414 choose the most logical way how to treat this constant regardless
2415 of the signedness of the type. */
2416 cst = tree_to_double_int (op1);
2417 cst = double_int_sext (cst, TYPE_PRECISION (type));
2418 if (code != MINUS_EXPR)
2419 cst = double_int_neg (cst);
2421 bnd = derive_constant_upper_bound (op0);
2423 if (double_int_negative_p (cst))
2425 cst = double_int_neg (cst);
2426 /* Avoid CST == 0x80000... */
2427 if (double_int_negative_p (cst))
2428 return max;;
2430 /* OP0 + CST. We need to check that
2431 BND <= MAX (type) - CST. */
2433 mmax = double_int_sub (max, cst);
2434 if (double_int_ucmp (bnd, mmax) > 0)
2435 return max;
2437 return double_int_add (bnd, cst);
2439 else
2441 /* OP0 - CST, where CST >= 0.
2443 If TYPE is signed, we have already verified that OP0 >= 0, and we
2444 know that the result is nonnegative. This implies that
2445 VAL <= BND - CST.
2447 If TYPE is unsigned, we must additionally know that OP0 >= CST,
2448 otherwise the operation underflows.
2451 /* This should only happen if the type is unsigned; however, for
2452 buggy programs that use overflowing signed arithmetics even with
2453 -fno-wrapv, this condition may also be true for signed values. */
2454 if (double_int_ucmp (bnd, cst) < 0)
2455 return max;
2457 if (TYPE_UNSIGNED (type))
2459 tree tem = fold_binary (GE_EXPR, boolean_type_node, op0,
2460 double_int_to_tree (type, cst));
2461 if (!tem || integer_nonzerop (tem))
2462 return max;
2465 bnd = double_int_sub (bnd, cst);
2468 return bnd;
2470 case FLOOR_DIV_EXPR:
2471 case EXACT_DIV_EXPR:
2472 if (TREE_CODE (op1) != INTEGER_CST
2473 || tree_int_cst_sign_bit (op1))
2474 return max;
2476 bnd = derive_constant_upper_bound (op0);
2477 return double_int_udiv (bnd, tree_to_double_int (op1), FLOOR_DIV_EXPR);
2479 case BIT_AND_EXPR:
2480 if (TREE_CODE (op1) != INTEGER_CST
2481 || tree_int_cst_sign_bit (op1))
2482 return max;
2483 return tree_to_double_int (op1);
2485 case SSA_NAME:
2486 stmt = SSA_NAME_DEF_STMT (op0);
2487 if (gimple_code (stmt) != GIMPLE_ASSIGN
2488 || gimple_assign_lhs (stmt) != op0)
2489 return max;
2490 return derive_constant_upper_bound_assign (stmt);
2492 default:
2493 return max;
2497 /* Records that every statement in LOOP is executed I_BOUND times.
2498 REALISTIC is true if I_BOUND is expected to be close to the real number
2499 of iterations. UPPER is true if we are sure the loop iterates at most
2500 I_BOUND times. */
2502 static void
2503 record_niter_bound (struct loop *loop, double_int i_bound, bool realistic,
2504 bool upper)
2506 /* Update the bounds only when there is no previous estimation, or when the current
2507 estimation is smaller. */
2508 if (upper
2509 && (!loop->any_upper_bound
2510 || double_int_ucmp (i_bound, loop->nb_iterations_upper_bound) < 0))
2512 loop->any_upper_bound = true;
2513 loop->nb_iterations_upper_bound = i_bound;
2515 if (realistic
2516 && (!loop->any_estimate
2517 || double_int_ucmp (i_bound, loop->nb_iterations_estimate) < 0))
2519 loop->any_estimate = true;
2520 loop->nb_iterations_estimate = i_bound;
2524 /* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. IS_EXIT
2525 is true if the loop is exited immediately after STMT, and this exit
2526 is taken at last when the STMT is executed BOUND + 1 times.
2527 REALISTIC is true if BOUND is expected to be close to the real number
2528 of iterations. UPPER is true if we are sure the loop iterates at most
2529 BOUND times. I_BOUND is an unsigned double_int upper estimate on BOUND. */
2531 static void
2532 record_estimate (struct loop *loop, tree bound, double_int i_bound,
2533 gimple at_stmt, bool is_exit, bool realistic, bool upper)
2535 double_int delta;
2536 edge exit;
2538 if (dump_file && (dump_flags & TDF_DETAILS))
2540 fprintf (dump_file, "Statement %s", is_exit ? "(exit)" : "");
2541 print_gimple_stmt (dump_file, at_stmt, 0, TDF_SLIM);
2542 fprintf (dump_file, " is %sexecuted at most ",
2543 upper ? "" : "probably ");
2544 print_generic_expr (dump_file, bound, TDF_SLIM);
2545 fprintf (dump_file, " (bounded by ");
2546 dump_double_int (dump_file, i_bound, true);
2547 fprintf (dump_file, ") + 1 times in loop %d.\n", loop->num);
2550 /* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
2551 real number of iterations. */
2552 if (TREE_CODE (bound) != INTEGER_CST)
2553 realistic = false;
2554 if (!upper && !realistic)
2555 return;
2557 /* If we have a guaranteed upper bound, record it in the appropriate
2558 list. */
2559 if (upper)
2561 struct nb_iter_bound *elt = ggc_alloc_nb_iter_bound ();
2563 elt->bound = i_bound;
2564 elt->stmt = at_stmt;
2565 elt->is_exit = is_exit;
2566 elt->next = loop->bounds;
2567 loop->bounds = elt;
2570 /* Update the number of iteration estimates according to the bound.
2571 If at_stmt is an exit, then every statement in the loop is
2572 executed at most BOUND + 1 times. If it is not an exit, then
2573 some of the statements before it could be executed BOUND + 2
2574 times, if an exit of LOOP is before stmt. */
2575 exit = single_exit (loop);
2576 if (is_exit
2577 || (exit != NULL
2578 && dominated_by_p (CDI_DOMINATORS,
2579 exit->src, gimple_bb (at_stmt))))
2580 delta = double_int_one;
2581 else
2582 delta = double_int_two;
2583 i_bound = double_int_add (i_bound, delta);
2585 /* If an overflow occurred, ignore the result. */
2586 if (double_int_ucmp (i_bound, delta) < 0)
2587 return;
2589 record_niter_bound (loop, i_bound, realistic, upper);
2592 /* Record the estimate on number of iterations of LOOP based on the fact that
2593 the induction variable BASE + STEP * i evaluated in STMT does not wrap and
2594 its values belong to the range <LOW, HIGH>. REALISTIC is true if the
2595 estimated number of iterations is expected to be close to the real one.
2596 UPPER is true if we are sure the induction variable does not wrap. */
2598 static void
2599 record_nonwrapping_iv (struct loop *loop, tree base, tree step, gimple stmt,
2600 tree low, tree high, bool realistic, bool upper)
2602 tree niter_bound, extreme, delta;
2603 tree type = TREE_TYPE (base), unsigned_type;
2604 double_int max;
2606 if (TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
2607 return;
2609 if (dump_file && (dump_flags & TDF_DETAILS))
2611 fprintf (dump_file, "Induction variable (");
2612 print_generic_expr (dump_file, TREE_TYPE (base), TDF_SLIM);
2613 fprintf (dump_file, ") ");
2614 print_generic_expr (dump_file, base, TDF_SLIM);
2615 fprintf (dump_file, " + ");
2616 print_generic_expr (dump_file, step, TDF_SLIM);
2617 fprintf (dump_file, " * iteration does not wrap in statement ");
2618 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2619 fprintf (dump_file, " in loop %d.\n", loop->num);
2622 unsigned_type = unsigned_type_for (type);
2623 base = fold_convert (unsigned_type, base);
2624 step = fold_convert (unsigned_type, step);
2626 if (tree_int_cst_sign_bit (step))
2628 extreme = fold_convert (unsigned_type, low);
2629 if (TREE_CODE (base) != INTEGER_CST)
2630 base = fold_convert (unsigned_type, high);
2631 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
2632 step = fold_build1 (NEGATE_EXPR, unsigned_type, step);
2634 else
2636 extreme = fold_convert (unsigned_type, high);
2637 if (TREE_CODE (base) != INTEGER_CST)
2638 base = fold_convert (unsigned_type, low);
2639 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
2642 /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
2643 would get out of the range. */
2644 niter_bound = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step);
2645 max = derive_constant_upper_bound (niter_bound);
2646 record_estimate (loop, niter_bound, max, stmt, false, realistic, upper);
2649 /* Returns true if REF is a reference to an array at the end of a dynamically
2650 allocated structure. If this is the case, the array may be allocated larger
2651 than its upper bound implies. */
2653 bool
2654 array_at_struct_end_p (tree ref)
2656 tree base = get_base_address (ref);
2657 tree parent, field;
2659 /* Unless the reference is through a pointer, the size of the array matches
2660 its declaration. */
2661 if (!base || (!INDIRECT_REF_P (base) && TREE_CODE (base) != MEM_REF))
2662 return false;
2664 for (;handled_component_p (ref); ref = parent)
2666 parent = TREE_OPERAND (ref, 0);
2668 if (TREE_CODE (ref) == COMPONENT_REF)
2670 /* All fields of a union are at its end. */
2671 if (TREE_CODE (TREE_TYPE (parent)) == UNION_TYPE)
2672 continue;
2674 /* Unless the field is at the end of the struct, we are done. */
2675 field = TREE_OPERAND (ref, 1);
2676 if (DECL_CHAIN (field))
2677 return false;
2680 /* The other options are ARRAY_REF, ARRAY_RANGE_REF, VIEW_CONVERT_EXPR.
2681 In all these cases, we might be accessing the last element, and
2682 although in practice this will probably never happen, it is legal for
2683 the indices of this last element to exceed the bounds of the array.
2684 Therefore, continue checking. */
2687 return true;
2690 /* Determine information about number of iterations a LOOP from the index
2691 IDX of a data reference accessed in STMT. RELIABLE is true if STMT is
2692 guaranteed to be executed in every iteration of LOOP. Callback for
2693 for_each_index. */
2695 struct ilb_data
2697 struct loop *loop;
2698 gimple stmt;
2699 bool reliable;
2702 static bool
2703 idx_infer_loop_bounds (tree base, tree *idx, void *dta)
2705 struct ilb_data *data = (struct ilb_data *) dta;
2706 tree ev, init, step;
2707 tree low, high, type, next;
2708 bool sign, upper = data->reliable, at_end = false;
2709 struct loop *loop = data->loop;
2711 if (TREE_CODE (base) != ARRAY_REF)
2712 return true;
2714 /* For arrays at the end of the structure, we are not guaranteed that they
2715 do not really extend over their declared size. However, for arrays of
2716 size greater than one, this is unlikely to be intended. */
2717 if (array_at_struct_end_p (base))
2719 at_end = true;
2720 upper = false;
2723 ev = instantiate_parameters (loop, analyze_scalar_evolution (loop, *idx));
2724 init = initial_condition (ev);
2725 step = evolution_part_in_loop_num (ev, loop->num);
2727 if (!init
2728 || !step
2729 || TREE_CODE (step) != INTEGER_CST
2730 || integer_zerop (step)
2731 || tree_contains_chrecs (init, NULL)
2732 || chrec_contains_symbols_defined_in_loop (init, loop->num))
2733 return true;
2735 low = array_ref_low_bound (base);
2736 high = array_ref_up_bound (base);
2738 /* The case of nonconstant bounds could be handled, but it would be
2739 complicated. */
2740 if (TREE_CODE (low) != INTEGER_CST
2741 || !high
2742 || TREE_CODE (high) != INTEGER_CST)
2743 return true;
2744 sign = tree_int_cst_sign_bit (step);
2745 type = TREE_TYPE (step);
2747 /* The array of length 1 at the end of a structure most likely extends
2748 beyond its bounds. */
2749 if (at_end
2750 && operand_equal_p (low, high, 0))
2751 return true;
2753 /* In case the relevant bound of the array does not fit in type, or
2754 it does, but bound + step (in type) still belongs into the range of the
2755 array, the index may wrap and still stay within the range of the array
2756 (consider e.g. if the array is indexed by the full range of
2757 unsigned char).
2759 To make things simpler, we require both bounds to fit into type, although
2760 there are cases where this would not be strictly necessary. */
2761 if (!int_fits_type_p (high, type)
2762 || !int_fits_type_p (low, type))
2763 return true;
2764 low = fold_convert (type, low);
2765 high = fold_convert (type, high);
2767 if (sign)
2768 next = fold_binary (PLUS_EXPR, type, low, step);
2769 else
2770 next = fold_binary (PLUS_EXPR, type, high, step);
2772 if (tree_int_cst_compare (low, next) <= 0
2773 && tree_int_cst_compare (next, high) <= 0)
2774 return true;
2776 record_nonwrapping_iv (loop, init, step, data->stmt, low, high, true, upper);
2777 return true;
2780 /* Determine information about number of iterations a LOOP from the bounds
2781 of arrays in the data reference REF accessed in STMT. RELIABLE is true if
2782 STMT is guaranteed to be executed in every iteration of LOOP.*/
2784 static void
2785 infer_loop_bounds_from_ref (struct loop *loop, gimple stmt, tree ref,
2786 bool reliable)
2788 struct ilb_data data;
2790 data.loop = loop;
2791 data.stmt = stmt;
2792 data.reliable = reliable;
2793 for_each_index (&ref, idx_infer_loop_bounds, &data);
2796 /* Determine information about number of iterations of a LOOP from the way
2797 arrays are used in STMT. RELIABLE is true if STMT is guaranteed to be
2798 executed in every iteration of LOOP. */
2800 static void
2801 infer_loop_bounds_from_array (struct loop *loop, gimple stmt, bool reliable)
2803 if (is_gimple_assign (stmt))
2805 tree op0 = gimple_assign_lhs (stmt);
2806 tree op1 = gimple_assign_rhs1 (stmt);
2808 /* For each memory access, analyze its access function
2809 and record a bound on the loop iteration domain. */
2810 if (REFERENCE_CLASS_P (op0))
2811 infer_loop_bounds_from_ref (loop, stmt, op0, reliable);
2813 if (REFERENCE_CLASS_P (op1))
2814 infer_loop_bounds_from_ref (loop, stmt, op1, reliable);
2816 else if (is_gimple_call (stmt))
2818 tree arg, lhs;
2819 unsigned i, n = gimple_call_num_args (stmt);
2821 lhs = gimple_call_lhs (stmt);
2822 if (lhs && REFERENCE_CLASS_P (lhs))
2823 infer_loop_bounds_from_ref (loop, stmt, lhs, reliable);
2825 for (i = 0; i < n; i++)
2827 arg = gimple_call_arg (stmt, i);
2828 if (REFERENCE_CLASS_P (arg))
2829 infer_loop_bounds_from_ref (loop, stmt, arg, reliable);
2834 /* Determine information about number of iterations of a LOOP from the fact
2835 that signed arithmetics in STMT does not overflow. */
2837 static void
2838 infer_loop_bounds_from_signedness (struct loop *loop, gimple stmt)
2840 tree def, base, step, scev, type, low, high;
2842 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2843 return;
2845 def = gimple_assign_lhs (stmt);
2847 if (TREE_CODE (def) != SSA_NAME)
2848 return;
2850 type = TREE_TYPE (def);
2851 if (!INTEGRAL_TYPE_P (type)
2852 || !TYPE_OVERFLOW_UNDEFINED (type))
2853 return;
2855 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
2856 if (chrec_contains_undetermined (scev))
2857 return;
2859 base = initial_condition_in_loop_num (scev, loop->num);
2860 step = evolution_part_in_loop_num (scev, loop->num);
2862 if (!base || !step
2863 || TREE_CODE (step) != INTEGER_CST
2864 || tree_contains_chrecs (base, NULL)
2865 || chrec_contains_symbols_defined_in_loop (base, loop->num))
2866 return;
2868 low = lower_bound_in_type (type, type);
2869 high = upper_bound_in_type (type, type);
2871 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
2874 /* The following analyzers are extracting informations on the bounds
2875 of LOOP from the following undefined behaviors:
2877 - data references should not access elements over the statically
2878 allocated size,
2880 - signed variables should not overflow when flag_wrapv is not set.
2883 static void
2884 infer_loop_bounds_from_undefined (struct loop *loop)
2886 unsigned i;
2887 basic_block *bbs;
2888 gimple_stmt_iterator bsi;
2889 basic_block bb;
2890 bool reliable;
2892 bbs = get_loop_body (loop);
2894 for (i = 0; i < loop->num_nodes; i++)
2896 bb = bbs[i];
2898 /* If BB is not executed in each iteration of the loop, we cannot
2899 use the operations in it to infer reliable upper bound on the
2900 # of iterations of the loop. However, we can use it as a guess. */
2901 reliable = dominated_by_p (CDI_DOMINATORS, loop->latch, bb);
2903 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2905 gimple stmt = gsi_stmt (bsi);
2907 infer_loop_bounds_from_array (loop, stmt, reliable);
2909 if (reliable)
2910 infer_loop_bounds_from_signedness (loop, stmt);
2915 free (bbs);
2918 /* Converts VAL to double_int. */
2920 static double_int
2921 gcov_type_to_double_int (gcov_type val)
2923 double_int ret;
2925 ret.low = (unsigned HOST_WIDE_INT) val;
2926 /* If HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_WIDEST_INT, avoid shifting by
2927 the size of type. */
2928 val >>= HOST_BITS_PER_WIDE_INT - 1;
2929 val >>= 1;
2930 ret.high = (unsigned HOST_WIDE_INT) val;
2932 return ret;
2935 /* Records estimates on numbers of iterations of LOOP. If USE_UNDEFINED_P
2936 is true also use estimates derived from undefined behavior. */
2938 void
2939 estimate_numbers_of_iterations_loop (struct loop *loop, bool use_undefined_p)
2941 VEC (edge, heap) *exits;
2942 tree niter, type;
2943 unsigned i;
2944 struct tree_niter_desc niter_desc;
2945 edge ex;
2946 double_int bound;
2948 /* Give up if we already have tried to compute an estimation. */
2949 if (loop->estimate_state != EST_NOT_COMPUTED)
2950 return;
2951 loop->estimate_state = EST_AVAILABLE;
2952 loop->any_upper_bound = false;
2953 loop->any_estimate = false;
2955 exits = get_loop_exit_edges (loop);
2956 FOR_EACH_VEC_ELT (edge, exits, i, ex)
2958 if (!number_of_iterations_exit (loop, ex, &niter_desc, false))
2959 continue;
2961 niter = niter_desc.niter;
2962 type = TREE_TYPE (niter);
2963 if (TREE_CODE (niter_desc.may_be_zero) != INTEGER_CST)
2964 niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
2965 build_int_cst (type, 0),
2966 niter);
2967 record_estimate (loop, niter, niter_desc.max,
2968 last_stmt (ex->src),
2969 true, true, true);
2971 VEC_free (edge, heap, exits);
2973 if (use_undefined_p)
2974 infer_loop_bounds_from_undefined (loop);
2976 /* If we have a measured profile, use it to estimate the number of
2977 iterations. */
2978 if (loop->header->count != 0)
2980 gcov_type nit = expected_loop_iterations_unbounded (loop) + 1;
2981 bound = gcov_type_to_double_int (nit);
2982 record_niter_bound (loop, bound, true, false);
2985 /* If an upper bound is smaller than the realistic estimate of the
2986 number of iterations, use the upper bound instead. */
2987 if (loop->any_upper_bound
2988 && loop->any_estimate
2989 && double_int_ucmp (loop->nb_iterations_upper_bound,
2990 loop->nb_iterations_estimate) < 0)
2991 loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
2994 /* Records estimates on numbers of iterations of loops. */
2996 void
2997 estimate_numbers_of_iterations (bool use_undefined_p)
2999 loop_iterator li;
3000 struct loop *loop;
3002 /* We don't want to issue signed overflow warnings while getting
3003 loop iteration estimates. */
3004 fold_defer_overflow_warnings ();
3006 FOR_EACH_LOOP (li, loop, 0)
3008 estimate_numbers_of_iterations_loop (loop, use_undefined_p);
3011 fold_undefer_and_ignore_overflow_warnings ();
3014 /* Returns true if statement S1 dominates statement S2. */
3016 bool
3017 stmt_dominates_stmt_p (gimple s1, gimple s2)
3019 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
3021 if (!bb1
3022 || s1 == s2)
3023 return true;
3025 if (bb1 == bb2)
3027 gimple_stmt_iterator bsi;
3029 if (gimple_code (s2) == GIMPLE_PHI)
3030 return false;
3032 if (gimple_code (s1) == GIMPLE_PHI)
3033 return true;
3035 for (bsi = gsi_start_bb (bb1); gsi_stmt (bsi) != s2; gsi_next (&bsi))
3036 if (gsi_stmt (bsi) == s1)
3037 return true;
3039 return false;
3042 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
3045 /* Returns true when we can prove that the number of executions of
3046 STMT in the loop is at most NITER, according to the bound on
3047 the number of executions of the statement NITER_BOUND->stmt recorded in
3048 NITER_BOUND. If STMT is NULL, we must prove this bound for all
3049 statements in the loop. */
3051 static bool
3052 n_of_executions_at_most (gimple stmt,
3053 struct nb_iter_bound *niter_bound,
3054 tree niter)
3056 double_int bound = niter_bound->bound;
3057 tree nit_type = TREE_TYPE (niter), e;
3058 enum tree_code cmp;
3060 gcc_assert (TYPE_UNSIGNED (nit_type));
3062 /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
3063 the number of iterations is small. */
3064 if (!double_int_fits_to_tree_p (nit_type, bound))
3065 return false;
3067 /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
3068 times. This means that:
3070 -- if NITER_BOUND->is_exit is true, then everything before
3071 NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
3072 times, and everything after it at most NITER_BOUND->bound times.
3074 -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
3075 is executed, then NITER_BOUND->stmt is executed as well in the same
3076 iteration (we conclude that if both statements belong to the same
3077 basic block, or if STMT is after NITER_BOUND->stmt), then STMT
3078 is executed at most NITER_BOUND->bound + 1 times. Otherwise STMT is
3079 executed at most NITER_BOUND->bound + 2 times. */
3081 if (niter_bound->is_exit)
3083 if (stmt
3084 && stmt != niter_bound->stmt
3085 && stmt_dominates_stmt_p (niter_bound->stmt, stmt))
3086 cmp = GE_EXPR;
3087 else
3088 cmp = GT_EXPR;
3090 else
3092 if (!stmt
3093 || (gimple_bb (stmt) != gimple_bb (niter_bound->stmt)
3094 && !stmt_dominates_stmt_p (niter_bound->stmt, stmt)))
3096 bound = double_int_add (bound, double_int_one);
3097 if (double_int_zero_p (bound)
3098 || !double_int_fits_to_tree_p (nit_type, bound))
3099 return false;
3101 cmp = GT_EXPR;
3104 e = fold_binary (cmp, boolean_type_node,
3105 niter, double_int_to_tree (nit_type, bound));
3106 return e && integer_nonzerop (e);
3109 /* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
3111 bool
3112 nowrap_type_p (tree type)
3114 if (INTEGRAL_TYPE_P (type)
3115 && TYPE_OVERFLOW_UNDEFINED (type))
3116 return true;
3118 if (POINTER_TYPE_P (type))
3119 return true;
3121 return false;
3124 /* Return false only when the induction variable BASE + STEP * I is
3125 known to not overflow: i.e. when the number of iterations is small
3126 enough with respect to the step and initial condition in order to
3127 keep the evolution confined in TYPEs bounds. Return true when the
3128 iv is known to overflow or when the property is not computable.
3130 USE_OVERFLOW_SEMANTICS is true if this function should assume that
3131 the rules for overflow of the given language apply (e.g., that signed
3132 arithmetics in C does not overflow). */
3134 bool
3135 scev_probably_wraps_p (tree base, tree step,
3136 gimple at_stmt, struct loop *loop,
3137 bool use_overflow_semantics)
3139 struct nb_iter_bound *bound;
3140 tree delta, step_abs;
3141 tree unsigned_type, valid_niter;
3142 tree type = TREE_TYPE (step);
3144 /* FIXME: We really need something like
3145 http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
3147 We used to test for the following situation that frequently appears
3148 during address arithmetics:
3150 D.1621_13 = (long unsigned intD.4) D.1620_12;
3151 D.1622_14 = D.1621_13 * 8;
3152 D.1623_15 = (doubleD.29 *) D.1622_14;
3154 And derived that the sequence corresponding to D_14
3155 can be proved to not wrap because it is used for computing a
3156 memory access; however, this is not really the case -- for example,
3157 if D_12 = (unsigned char) [254,+,1], then D_14 has values
3158 2032, 2040, 0, 8, ..., but the code is still legal. */
3160 if (chrec_contains_undetermined (base)
3161 || chrec_contains_undetermined (step))
3162 return true;
3164 if (integer_zerop (step))
3165 return false;
3167 /* If we can use the fact that signed and pointer arithmetics does not
3168 wrap, we are done. */
3169 if (use_overflow_semantics && nowrap_type_p (TREE_TYPE (base)))
3170 return false;
3172 /* To be able to use estimates on number of iterations of the loop,
3173 we must have an upper bound on the absolute value of the step. */
3174 if (TREE_CODE (step) != INTEGER_CST)
3175 return true;
3177 /* Don't issue signed overflow warnings. */
3178 fold_defer_overflow_warnings ();
3180 /* Otherwise, compute the number of iterations before we reach the
3181 bound of the type, and verify that the loop is exited before this
3182 occurs. */
3183 unsigned_type = unsigned_type_for (type);
3184 base = fold_convert (unsigned_type, base);
3186 if (tree_int_cst_sign_bit (step))
3188 tree extreme = fold_convert (unsigned_type,
3189 lower_bound_in_type (type, type));
3190 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
3191 step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
3192 fold_convert (unsigned_type, step));
3194 else
3196 tree extreme = fold_convert (unsigned_type,
3197 upper_bound_in_type (type, type));
3198 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
3199 step_abs = fold_convert (unsigned_type, step);
3202 valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
3204 estimate_numbers_of_iterations_loop (loop, true);
3205 for (bound = loop->bounds; bound; bound = bound->next)
3207 if (n_of_executions_at_most (at_stmt, bound, valid_niter))
3209 fold_undefer_and_ignore_overflow_warnings ();
3210 return false;
3214 fold_undefer_and_ignore_overflow_warnings ();
3216 /* At this point we still don't have a proof that the iv does not
3217 overflow: give up. */
3218 return true;
3221 /* Frees the information on upper bounds on numbers of iterations of LOOP. */
3223 void
3224 free_numbers_of_iterations_estimates_loop (struct loop *loop)
3226 struct nb_iter_bound *bound, *next;
3228 loop->nb_iterations = NULL;
3229 loop->estimate_state = EST_NOT_COMPUTED;
3230 for (bound = loop->bounds; bound; bound = next)
3232 next = bound->next;
3233 ggc_free (bound);
3236 loop->bounds = NULL;
3239 /* Frees the information on upper bounds on numbers of iterations of loops. */
3241 void
3242 free_numbers_of_iterations_estimates (void)
3244 loop_iterator li;
3245 struct loop *loop;
3247 FOR_EACH_LOOP (li, loop, 0)
3249 free_numbers_of_iterations_estimates_loop (loop);
3253 /* Substitute value VAL for ssa name NAME inside expressions held
3254 at LOOP. */
3256 void
3257 substitute_in_loop_info (struct loop *loop, tree name, tree val)
3259 loop->nb_iterations = simplify_replace_tree (loop->nb_iterations, name, val);