new tests
[official-gcc.git] / gcc / sel-sched.c
blobb176deaaef3b39c8272a383fc651a9e90afd1e2d
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl-error.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "insn-attr.h"
33 #include "except.h"
34 #include "recog.h"
35 #include "params.h"
36 #include "target.h"
37 #include "output.h"
38 #include "timevar.h"
39 #include "tree-pass.h"
40 #include "sched-int.h"
41 #include "ggc.h"
42 #include "tree.h"
43 #include "vec.h"
44 #include "langhooks.h"
45 #include "rtlhooks-def.h"
46 #include "output.h"
47 #include "emit-rtl.h"
49 #ifdef INSN_SCHEDULING
50 #include "sel-sched-ir.h"
51 #include "sel-sched-dump.h"
52 #include "sel-sched.h"
53 #include "dbgcnt.h"
55 /* Implementation of selective scheduling approach.
56 The below implementation follows the original approach with the following
57 changes:
59 o the scheduler works after register allocation (but can be also tuned
60 to work before RA);
61 o some instructions are not copied or register renamed;
62 o conditional jumps are not moved with code duplication;
63 o several jumps in one parallel group are not supported;
64 o when pipelining outer loops, code motion through inner loops
65 is not supported;
66 o control and data speculation are supported;
67 o some improvements for better compile time/performance were made.
69 Terminology
70 ===========
72 A vinsn, or virtual insn, is an insn with additional data characterizing
73 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
74 Vinsns also act as smart pointers to save memory by reusing them in
75 different expressions. A vinsn is described by vinsn_t type.
77 An expression is a vinsn with additional data characterizing its properties
78 at some point in the control flow graph. The data may be its usefulness,
79 priority, speculative status, whether it was renamed/subsituted, etc.
80 An expression is described by expr_t type.
82 Availability set (av_set) is a set of expressions at a given control flow
83 point. It is represented as av_set_t. The expressions in av sets are kept
84 sorted in the terms of expr_greater_p function. It allows to truncate
85 the set while leaving the best expressions.
87 A fence is a point through which code motion is prohibited. On each step,
88 we gather a parallel group of insns at a fence. It is possible to have
89 multiple fences. A fence is represented via fence_t.
91 A boundary is the border between the fence group and the rest of the code.
92 Currently, we never have more than one boundary per fence, as we finalize
93 the fence group when a jump is scheduled. A boundary is represented
94 via bnd_t.
96 High-level overview
97 ===================
99 The scheduler finds regions to schedule, schedules each one, and finalizes.
100 The regions are formed starting from innermost loops, so that when the inner
101 loop is pipelined, its prologue can be scheduled together with yet unprocessed
102 outer loop. The rest of acyclic regions are found using extend_rgns:
103 the blocks that are not yet allocated to any regions are traversed in top-down
104 order, and a block is added to a region to which all its predecessors belong;
105 otherwise, the block starts its own region.
107 The main scheduling loop (sel_sched_region_2) consists of just
108 scheduling on each fence and updating fences. For each fence,
109 we fill a parallel group of insns (fill_insns) until some insns can be added.
110 First, we compute available exprs (av-set) at the boundary of the current
111 group. Second, we choose the best expression from it. If the stall is
112 required to schedule any of the expressions, we advance the current cycle
113 appropriately. So, the final group does not exactly correspond to a VLIW
114 word. Third, we move the chosen expression to the boundary (move_op)
115 and update the intermediate av sets and liveness sets. We quit fill_insns
116 when either no insns left for scheduling or we have scheduled enough insns
117 so we feel like advancing a scheduling point.
119 Computing available expressions
120 ===============================
122 The computation (compute_av_set) is a bottom-up traversal. At each insn,
123 we're moving the union of its successors' sets through it via
124 moveup_expr_set. The dependent expressions are removed. Local
125 transformations (substitution, speculation) are applied to move more
126 exprs. Then the expr corresponding to the current insn is added.
127 The result is saved on each basic block header.
129 When traversing the CFG, we're moving down for no more than max_ws insns.
130 Also, we do not move down to ineligible successors (is_ineligible_successor),
131 which include moving along a back-edge, moving to already scheduled code,
132 and moving to another fence. The first two restrictions are lifted during
133 pipelining, which allows us to move insns along a back-edge. We always have
134 an acyclic region for scheduling because we forbid motion through fences.
136 Choosing the best expression
137 ============================
139 We sort the final availability set via sel_rank_for_schedule, then we remove
140 expressions which are not yet ready (tick_check_p) or which dest registers
141 cannot be used. For some of them, we choose another register via
142 find_best_reg. To do this, we run find_used_regs to calculate the set of
143 registers which cannot be used. The find_used_regs function performs
144 a traversal of code motion paths for an expr. We consider for renaming
145 only registers which are from the same regclass as the original one and
146 using which does not interfere with any live ranges. Finally, we convert
147 the resulting set to the ready list format and use max_issue and reorder*
148 hooks similarly to the Haifa scheduler.
150 Scheduling the best expression
151 ==============================
153 We run the move_op routine to perform the same type of code motion paths
154 traversal as in find_used_regs. (These are working via the same driver,
155 code_motion_path_driver.) When moving down the CFG, we look for original
156 instruction that gave birth to a chosen expression. We undo
157 the transformations performed on an expression via the history saved in it.
158 When found, we remove the instruction or leave a reg-reg copy/speculation
159 check if needed. On a way up, we insert bookkeeping copies at each join
160 point. If a copy is not needed, it will be removed later during this
161 traversal. We update the saved av sets and liveness sets on the way up, too.
163 Finalizing the schedule
164 =======================
166 When pipelining, we reschedule the blocks from which insns were pipelined
167 to get a tighter schedule. On Itanium, we also perform bundling via
168 the same routine from ia64.c.
170 Dependence analysis changes
171 ===========================
173 We augmented the sched-deps.c with hooks that get called when a particular
174 dependence is found in a particular part of an insn. Using these hooks, we
175 can do several actions such as: determine whether an insn can be moved through
176 another (has_dependence_p, moveup_expr); find out whether an insn can be
177 scheduled on the current cycle (tick_check_p); find out registers that
178 are set/used/clobbered by an insn and find out all the strange stuff that
179 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
180 init_global_and_expr_for_insn).
182 Initialization changes
183 ======================
185 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
186 reused in all of the schedulers. We have split up the initialization of data
187 of such parts into different functions prefixed with scheduler type and
188 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
189 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
190 The same splitting is done with current_sched_info structure:
191 dependence-related parts are in sched_deps_info, common part is in
192 common_sched_info, and haifa/sel/etc part is in current_sched_info.
194 Target contexts
195 ===============
197 As we now have multiple-point scheduling, this would not work with backends
198 which save some of the scheduler state to use it in the target hooks.
199 For this purpose, we introduce a concept of target contexts, which
200 encapsulate such information. The backend should implement simple routines
201 of allocating/freeing/setting such a context. The scheduler calls these
202 as target hooks and handles the target context as an opaque pointer (similar
203 to the DFA state type, state_t).
205 Various speedups
206 ================
208 As the correct data dependence graph is not supported during scheduling (which
209 is to be changed in mid-term), we cache as much of the dependence analysis
210 results as possible to avoid reanalyzing. This includes: bitmap caches on
211 each insn in stream of the region saying yes/no for a query with a pair of
212 UIDs; hashtables with the previously done transformations on each insn in
213 stream; a vector keeping a history of transformations on each expr.
215 Also, we try to minimize the dependence context used on each fence to check
216 whether the given expression is ready for scheduling by removing from it
217 insns that are definitely completed the execution. The results of
218 tick_check_p checks are also cached in a vector on each fence.
220 We keep a valid liveness set on each insn in a region to avoid the high
221 cost of recomputation on large basic blocks.
223 Finally, we try to minimize the number of needed updates to the availability
224 sets. The updates happen in two cases: when fill_insns terminates,
225 we advance all fences and increase the stage number to show that the region
226 has changed and the sets are to be recomputed; and when the next iteration
227 of a loop in fill_insns happens (but this one reuses the saved av sets
228 on bb headers.) Thus, we try to break the fill_insns loop only when
229 "significant" number of insns from the current scheduling window was
230 scheduled. This should be made a target param.
233 TODO: correctly support the data dependence graph at all stages and get rid
234 of all caches. This should speed up the scheduler.
235 TODO: implement moving cond jumps with bookkeeping copies on both targets.
236 TODO: tune the scheduler before RA so it does not create too much pseudos.
239 References:
240 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
241 selective scheduling and software pipelining.
242 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
244 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
245 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
246 for GCC. In Proceedings of GCC Developers' Summit 2006.
248 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
249 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
250 http://rogue.colorado.edu/EPIC7/.
254 /* True when pipelining is enabled. */
255 bool pipelining_p;
257 /* True if bookkeeping is enabled. */
258 bool bookkeeping_p;
260 /* Maximum number of insns that are eligible for renaming. */
261 int max_insns_to_rename;
264 /* Definitions of local types and macros. */
266 /* Represents possible outcomes of moving an expression through an insn. */
267 enum MOVEUP_EXPR_CODE
269 /* The expression is not changed. */
270 MOVEUP_EXPR_SAME,
272 /* Not changed, but requires a new destination register. */
273 MOVEUP_EXPR_AS_RHS,
275 /* Cannot be moved. */
276 MOVEUP_EXPR_NULL,
278 /* Changed (substituted or speculated). */
279 MOVEUP_EXPR_CHANGED
282 /* The container to be passed into rtx search & replace functions. */
283 struct rtx_search_arg
285 /* What we are searching for. */
286 rtx x;
288 /* The occurence counter. */
289 int n;
292 typedef struct rtx_search_arg *rtx_search_arg_p;
294 /* This struct contains precomputed hard reg sets that are needed when
295 computing registers available for renaming. */
296 struct hard_regs_data
298 /* For every mode, this stores registers available for use with
299 that mode. */
300 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
302 /* True when regs_for_mode[mode] is initialized. */
303 bool regs_for_mode_ok[NUM_MACHINE_MODES];
305 /* For every register, it has regs that are ok to rename into it.
306 The register in question is always set. If not, this means
307 that the whole set is not computed yet. */
308 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
310 /* For every mode, this stores registers not available due to
311 call clobbering. */
312 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
314 /* All registers that are used or call used. */
315 HARD_REG_SET regs_ever_used;
317 #ifdef STACK_REGS
318 /* Stack registers. */
319 HARD_REG_SET stack_regs;
320 #endif
323 /* Holds the results of computation of available for renaming and
324 unavailable hard registers. */
325 struct reg_rename
327 /* These are unavailable due to calls crossing, globalness, etc. */
328 HARD_REG_SET unavailable_hard_regs;
330 /* These are *available* for renaming. */
331 HARD_REG_SET available_for_renaming;
333 /* Whether this code motion path crosses a call. */
334 bool crosses_call;
337 /* A global structure that contains the needed information about harg
338 regs. */
339 static struct hard_regs_data sel_hrd;
342 /* This structure holds local data used in code_motion_path_driver hooks on
343 the same or adjacent levels of recursion. Here we keep those parameters
344 that are not used in code_motion_path_driver routine itself, but only in
345 its hooks. Moreover, all parameters that can be modified in hooks are
346 in this structure, so all other parameters passed explicitly to hooks are
347 read-only. */
348 struct cmpd_local_params
350 /* Local params used in move_op_* functions. */
352 /* Edges for bookkeeping generation. */
353 edge e1, e2;
355 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
356 expr_t c_expr_merged, c_expr_local;
358 /* Local params used in fur_* functions. */
359 /* Copy of the ORIGINAL_INSN list, stores the original insns already
360 found before entering the current level of code_motion_path_driver. */
361 def_list_t old_original_insns;
363 /* Local params used in move_op_* functions. */
364 /* True when we have removed last insn in the block which was
365 also a boundary. Do not update anything or create bookkeeping copies. */
366 BOOL_BITFIELD removed_last_insn : 1;
369 /* Stores the static parameters for move_op_* calls. */
370 struct moveop_static_params
372 /* Destination register. */
373 rtx dest;
375 /* Current C_EXPR. */
376 expr_t c_expr;
378 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
379 they are to be removed. */
380 int uid;
382 #ifdef ENABLE_CHECKING
383 /* This is initialized to the insn on which the driver stopped its traversal. */
384 insn_t failed_insn;
385 #endif
387 /* True if we scheduled an insn with different register. */
388 bool was_renamed;
391 /* Stores the static parameters for fur_* calls. */
392 struct fur_static_params
394 /* Set of registers unavailable on the code motion path. */
395 regset used_regs;
397 /* Pointer to the list of original insns definitions. */
398 def_list_t *original_insns;
400 /* True if a code motion path contains a CALL insn. */
401 bool crosses_call;
404 typedef struct fur_static_params *fur_static_params_p;
405 typedef struct cmpd_local_params *cmpd_local_params_p;
406 typedef struct moveop_static_params *moveop_static_params_p;
408 /* Set of hooks and parameters that determine behaviour specific to
409 move_op or find_used_regs functions. */
410 struct code_motion_path_driver_info_def
412 /* Called on enter to the basic block. */
413 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
415 /* Called when original expr is found. */
416 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
418 /* Called while descending current basic block if current insn is not
419 the original EXPR we're searching for. */
420 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
422 /* Function to merge C_EXPRes from different successors. */
423 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
425 /* Function to finalize merge from different successors and possibly
426 deallocate temporary data structures used for merging. */
427 void (*after_merge_succs) (cmpd_local_params_p, void *);
429 /* Called on the backward stage of recursion to do moveup_expr.
430 Used only with move_op_*. */
431 void (*ascend) (insn_t, void *);
433 /* Called on the ascending pass, before returning from the current basic
434 block or from the whole traversal. */
435 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
437 /* When processing successors in move_op we need only descend into
438 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
439 int succ_flags;
441 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
442 const char *routine_name;
445 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
446 FUR_HOOKS. */
447 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
449 /* Set of hooks for performing move_op and find_used_regs routines with
450 code_motion_path_driver. */
451 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
453 /* True if/when we want to emulate Haifa scheduler in the common code.
454 This is used in sched_rgn_local_init and in various places in
455 sched-deps.c. */
456 int sched_emulate_haifa_p;
458 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
459 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
460 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
461 scheduling window. */
462 int global_level;
464 /* Current fences. */
465 flist_t fences;
467 /* True when separable insns should be scheduled as RHSes. */
468 static bool enable_schedule_as_rhs_p;
470 /* Used in verify_target_availability to assert that target reg is reported
471 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
472 we haven't scheduled anything on the previous fence.
473 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
474 have more conservative value than the one returned by the
475 find_used_regs, thus we shouldn't assert that these values are equal. */
476 static bool scheduled_something_on_previous_fence;
478 /* All newly emitted insns will have their uids greater than this value. */
479 static int first_emitted_uid;
481 /* Set of basic blocks that are forced to start new ebbs. This is a subset
482 of all the ebb heads. */
483 static bitmap_head _forced_ebb_heads;
484 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
486 /* Blocks that need to be rescheduled after pipelining. */
487 bitmap blocks_to_reschedule = NULL;
489 /* True when the first lv set should be ignored when updating liveness. */
490 static bool ignore_first = false;
492 /* Number of insns max_issue has initialized data structures for. */
493 static int max_issue_size = 0;
495 /* Whether we can issue more instructions. */
496 static int can_issue_more;
498 /* Maximum software lookahead window size, reduced when rescheduling after
499 pipelining. */
500 static int max_ws;
502 /* Number of insns scheduled in current region. */
503 static int num_insns_scheduled;
505 /* A vector of expressions is used to be able to sort them. */
506 DEF_VEC_P(expr_t);
507 DEF_VEC_ALLOC_P(expr_t,heap);
508 static VEC(expr_t, heap) *vec_av_set = NULL;
510 /* A vector of vinsns is used to hold temporary lists of vinsns. */
511 DEF_VEC_P(vinsn_t);
512 DEF_VEC_ALLOC_P(vinsn_t,heap);
513 typedef VEC(vinsn_t, heap) *vinsn_vec_t;
515 /* This vector has the exprs which may still present in av_sets, but actually
516 can't be moved up due to bookkeeping created during code motion to another
517 fence. See comment near the call to update_and_record_unavailable_insns
518 for the detailed explanations. */
519 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL;
521 /* This vector has vinsns which are scheduled with renaming on the first fence
522 and then seen on the second. For expressions with such vinsns, target
523 availability information may be wrong. */
524 static vinsn_vec_t vec_target_unavailable_vinsns = NULL;
526 /* Vector to store temporary nops inserted in move_op to prevent removal
527 of empty bbs. */
528 DEF_VEC_P(insn_t);
529 DEF_VEC_ALLOC_P(insn_t,heap);
530 static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL;
532 /* These bitmaps record original instructions scheduled on the current
533 iteration and bookkeeping copies created by them. */
534 static bitmap current_originators = NULL;
535 static bitmap current_copies = NULL;
537 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
538 visit them afterwards. */
539 static bitmap code_motion_visited_blocks = NULL;
541 /* Variables to accumulate different statistics. */
543 /* The number of bookkeeping copies created. */
544 static int stat_bookkeeping_copies;
546 /* The number of insns that required bookkeeiping for their scheduling. */
547 static int stat_insns_needed_bookkeeping;
549 /* The number of insns that got renamed. */
550 static int stat_renamed_scheduled;
552 /* The number of substitutions made during scheduling. */
553 static int stat_substitutions_total;
556 /* Forward declarations of static functions. */
557 static bool rtx_ok_for_substitution_p (rtx, rtx);
558 static int sel_rank_for_schedule (const void *, const void *);
559 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
560 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
562 static rtx get_dest_from_orig_ops (av_set_t);
563 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
564 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
565 def_list_t *);
566 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
567 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
568 cmpd_local_params_p, void *);
569 static void sel_sched_region_1 (void);
570 static void sel_sched_region_2 (int);
571 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
573 static void debug_state (state_t);
576 /* Functions that work with fences. */
578 /* Advance one cycle on FENCE. */
579 static void
580 advance_one_cycle (fence_t fence)
582 unsigned i;
583 int cycle;
584 rtx insn;
586 advance_state (FENCE_STATE (fence));
587 cycle = ++FENCE_CYCLE (fence);
588 FENCE_ISSUED_INSNS (fence) = 0;
589 FENCE_STARTS_CYCLE_P (fence) = 1;
590 can_issue_more = issue_rate;
591 FENCE_ISSUE_MORE (fence) = can_issue_more;
593 for (i = 0; VEC_iterate (rtx, FENCE_EXECUTING_INSNS (fence), i, insn); )
595 if (INSN_READY_CYCLE (insn) < cycle)
597 remove_from_deps (FENCE_DC (fence), insn);
598 VEC_unordered_remove (rtx, FENCE_EXECUTING_INSNS (fence), i);
599 continue;
601 i++;
603 if (sched_verbose >= 2)
605 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
606 debug_state (FENCE_STATE (fence));
610 /* Returns true when SUCC in a fallthru bb of INSN, possibly
611 skipping empty basic blocks. */
612 static bool
613 in_fallthru_bb_p (rtx insn, rtx succ)
615 basic_block bb = BLOCK_FOR_INSN (insn);
616 edge e;
618 if (bb == BLOCK_FOR_INSN (succ))
619 return true;
621 e = find_fallthru_edge_from (bb);
622 if (e)
623 bb = e->dest;
624 else
625 return false;
627 while (sel_bb_empty_p (bb))
628 bb = bb->next_bb;
630 return bb == BLOCK_FOR_INSN (succ);
633 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
634 When a successor will continue a ebb, transfer all parameters of a fence
635 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
636 of scheduling helping to distinguish between the old and the new code. */
637 static void
638 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
639 int orig_max_seqno)
641 bool was_here_p = false;
642 insn_t insn = NULL_RTX;
643 insn_t succ;
644 succ_iterator si;
645 ilist_iterator ii;
646 fence_t fence = FLIST_FENCE (old_fences);
647 basic_block bb;
649 /* Get the only element of FENCE_BNDS (fence). */
650 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
652 gcc_assert (!was_here_p);
653 was_here_p = true;
655 gcc_assert (was_here_p && insn != NULL_RTX);
657 /* When in the "middle" of the block, just move this fence
658 to the new list. */
659 bb = BLOCK_FOR_INSN (insn);
660 if (! sel_bb_end_p (insn)
661 || (single_succ_p (bb)
662 && single_pred_p (single_succ (bb))))
664 insn_t succ;
666 succ = (sel_bb_end_p (insn)
667 ? sel_bb_head (single_succ (bb))
668 : NEXT_INSN (insn));
670 if (INSN_SEQNO (succ) > 0
671 && INSN_SEQNO (succ) <= orig_max_seqno
672 && INSN_SCHED_TIMES (succ) <= 0)
674 FENCE_INSN (fence) = succ;
675 move_fence_to_fences (old_fences, new_fences);
677 if (sched_verbose >= 1)
678 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
679 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
681 return;
684 /* Otherwise copy fence's structures to (possibly) multiple successors. */
685 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
687 int seqno = INSN_SEQNO (succ);
689 if (0 < seqno && seqno <= orig_max_seqno
690 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
692 bool b = (in_same_ebb_p (insn, succ)
693 || in_fallthru_bb_p (insn, succ));
695 if (sched_verbose >= 1)
696 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
697 INSN_UID (insn), INSN_UID (succ),
698 BLOCK_NUM (succ), b ? "continue" : "reset");
700 if (b)
701 add_dirty_fence_to_fences (new_fences, succ, fence);
702 else
704 /* Mark block of the SUCC as head of the new ebb. */
705 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
706 add_clean_fence_to_fences (new_fences, succ, fence);
713 /* Functions to support substitution. */
715 /* Returns whether INSN with dependence status DS is eligible for
716 substitution, i.e. it's a copy operation x := y, and RHS that is
717 moved up through this insn should be substituted. */
718 static bool
719 can_substitute_through_p (insn_t insn, ds_t ds)
721 /* We can substitute only true dependencies. */
722 if ((ds & DEP_OUTPUT)
723 || (ds & DEP_ANTI)
724 || ! INSN_RHS (insn)
725 || ! INSN_LHS (insn))
726 return false;
728 /* Now we just need to make sure the INSN_RHS consists of only one
729 simple REG rtx. */
730 if (REG_P (INSN_LHS (insn))
731 && REG_P (INSN_RHS (insn)))
732 return true;
733 return false;
736 /* Substitute all occurences of INSN's destination in EXPR' vinsn with INSN's
737 source (if INSN is eligible for substitution). Returns TRUE if
738 substitution was actually performed, FALSE otherwise. Substitution might
739 be not performed because it's either EXPR' vinsn doesn't contain INSN's
740 destination or the resulting insn is invalid for the target machine.
741 When UNDO is true, perform unsubstitution instead (the difference is in
742 the part of rtx on which validate_replace_rtx is called). */
743 static bool
744 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
746 rtx *where;
747 bool new_insn_valid;
748 vinsn_t *vi = &EXPR_VINSN (expr);
749 bool has_rhs = VINSN_RHS (*vi) != NULL;
750 rtx old, new_rtx;
752 /* Do not try to replace in SET_DEST. Although we'll choose new
753 register for the RHS, we don't want to change RHS' original reg.
754 If the insn is not SET, we may still be able to substitute something
755 in it, and if we're here (don't have deps), it doesn't write INSN's
756 dest. */
757 where = (has_rhs
758 ? &VINSN_RHS (*vi)
759 : &PATTERN (VINSN_INSN_RTX (*vi)));
760 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
762 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
763 if (rtx_ok_for_substitution_p (old, *where))
765 rtx new_insn;
766 rtx *where_replace;
768 /* We should copy these rtxes before substitution. */
769 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
770 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
772 /* Where we'll replace.
773 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
774 used instead of SET_SRC. */
775 where_replace = (has_rhs
776 ? &SET_SRC (PATTERN (new_insn))
777 : &PATTERN (new_insn));
779 new_insn_valid
780 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
781 new_insn);
783 /* ??? Actually, constrain_operands result depends upon choice of
784 destination register. E.g. if we allow single register to be an rhs,
785 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
786 in invalid insn dx=dx, so we'll loose this rhs here.
787 Just can't come up with significant testcase for this, so just
788 leaving it for now. */
789 if (new_insn_valid)
791 change_vinsn_in_expr (expr,
792 create_vinsn_from_insn_rtx (new_insn, false));
794 /* Do not allow clobbering the address register of speculative
795 insns. */
796 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
797 && bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
798 expr_dest_regno (expr)))
799 EXPR_TARGET_AVAILABLE (expr) = false;
801 return true;
803 else
804 return false;
806 else
807 return false;
810 /* Helper function for count_occurences_equiv. */
811 static int
812 count_occurrences_1 (rtx *cur_rtx, void *arg)
814 rtx_search_arg_p p = (rtx_search_arg_p) arg;
816 /* The last param FOR_GCSE is true, because otherwise it performs excessive
817 substitutions like
818 r8 = r33
819 r16 = r33
820 for the last insn it presumes r33 equivalent to r8, so it changes it to
821 r33. Actually, there's no change, but it spoils debugging. */
822 if (exp_equiv_p (*cur_rtx, p->x, 0, true))
824 /* Bail out if we occupy more than one register. */
825 if (REG_P (*cur_rtx)
826 && HARD_REGISTER_P (*cur_rtx)
827 && hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1)
829 p->n = 0;
830 return 1;
833 p->n++;
835 /* Do not traverse subexprs. */
836 return -1;
839 if (GET_CODE (*cur_rtx) == SUBREG
840 && REG_P (p->x)
841 && (!REG_P (SUBREG_REG (*cur_rtx))
842 || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
844 /* ??? Do not support substituting regs inside subregs. In that case,
845 simplify_subreg will be called by validate_replace_rtx, and
846 unsubstitution will fail later. */
847 p->n = 0;
848 return 1;
851 /* Continue search. */
852 return 0;
855 /* Return the number of places WHAT appears within WHERE.
856 Bail out when we found a reference occupying several hard registers. */
857 static int
858 count_occurrences_equiv (rtx what, rtx where)
860 struct rtx_search_arg arg;
862 arg.x = what;
863 arg.n = 0;
865 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
867 return arg.n;
870 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
871 static bool
872 rtx_ok_for_substitution_p (rtx what, rtx where)
874 return (count_occurrences_equiv (what, where) > 0);
878 /* Functions to support register renaming. */
880 /* Substitute VI's set source with REGNO. Returns newly created pattern
881 that has REGNO as its source. */
882 static rtx
883 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
885 rtx lhs_rtx;
886 rtx pattern;
887 rtx insn_rtx;
889 lhs_rtx = copy_rtx (VINSN_LHS (vi));
891 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
892 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
894 return insn_rtx;
897 /* Returns whether INSN's src can be replaced with register number
898 NEW_SRC_REG. E.g. the following insn is valid for i386:
900 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
901 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
902 (reg:SI 0 ax [orig:770 c1 ] [770]))
903 (const_int 288 [0x120])) [0 str S1 A8])
904 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
905 (nil))
907 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
908 because of operand constraints:
910 (define_insn "*movqi_1"
911 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
912 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
915 So do constrain_operands here, before choosing NEW_SRC_REG as best
916 reg for rhs. */
918 static bool
919 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
921 vinsn_t vi = INSN_VINSN (insn);
922 enum machine_mode mode;
923 rtx dst_loc;
924 bool res;
926 gcc_assert (VINSN_SEPARABLE_P (vi));
928 get_dest_and_mode (insn, &dst_loc, &mode);
929 gcc_assert (mode == GET_MODE (new_src_reg));
931 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
932 return true;
934 /* See whether SET_SRC can be replaced with this register. */
935 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
936 res = verify_changes (0);
937 cancel_changes (0);
939 return res;
942 /* Returns whether INSN still be valid after replacing it's DEST with
943 register NEW_REG. */
944 static bool
945 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
947 vinsn_t vi = INSN_VINSN (insn);
948 bool res;
950 /* We should deal here only with separable insns. */
951 gcc_assert (VINSN_SEPARABLE_P (vi));
952 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
954 /* See whether SET_DEST can be replaced with this register. */
955 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
956 res = verify_changes (0);
957 cancel_changes (0);
959 return res;
962 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
963 static rtx
964 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
966 rtx rhs_rtx;
967 rtx pattern;
968 rtx insn_rtx;
970 rhs_rtx = copy_rtx (VINSN_RHS (vi));
972 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
973 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
975 return insn_rtx;
978 /* Substitute lhs in the given expression EXPR for the register with number
979 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
980 static void
981 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
983 rtx insn_rtx;
984 vinsn_t vinsn;
986 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
987 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
989 change_vinsn_in_expr (expr, vinsn);
990 EXPR_WAS_RENAMED (expr) = 1;
991 EXPR_TARGET_AVAILABLE (expr) = 1;
994 /* Returns whether VI writes either one of the USED_REGS registers or,
995 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
996 static bool
997 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
998 HARD_REG_SET unavailable_hard_regs)
1000 unsigned regno;
1001 reg_set_iterator rsi;
1003 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
1005 if (REGNO_REG_SET_P (used_regs, regno))
1006 return true;
1007 if (HARD_REGISTER_NUM_P (regno)
1008 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1009 return true;
1012 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
1014 if (REGNO_REG_SET_P (used_regs, regno))
1015 return true;
1016 if (HARD_REGISTER_NUM_P (regno)
1017 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1018 return true;
1021 return false;
1024 /* Returns register class of the output register in INSN.
1025 Returns NO_REGS for call insns because some targets have constraints on
1026 destination register of a call insn.
1028 Code adopted from regrename.c::build_def_use. */
1029 static enum reg_class
1030 get_reg_class (rtx insn)
1032 int alt, i, n_ops;
1034 extract_insn (insn);
1035 if (! constrain_operands (1))
1036 fatal_insn_not_found (insn);
1037 preprocess_constraints ();
1038 alt = which_alternative;
1039 n_ops = recog_data.n_operands;
1041 for (i = 0; i < n_ops; ++i)
1043 int matches = recog_op_alt[i][alt].matches;
1044 if (matches >= 0)
1045 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1048 if (asm_noperands (PATTERN (insn)) > 0)
1050 for (i = 0; i < n_ops; i++)
1051 if (recog_data.operand_type[i] == OP_OUT)
1053 rtx *loc = recog_data.operand_loc[i];
1054 rtx op = *loc;
1055 enum reg_class cl = recog_op_alt[i][alt].cl;
1057 if (REG_P (op)
1058 && REGNO (op) == ORIGINAL_REGNO (op))
1059 continue;
1061 return cl;
1064 else if (!CALL_P (insn))
1066 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1068 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1069 enum reg_class cl = recog_op_alt[opn][alt].cl;
1071 if (recog_data.operand_type[opn] == OP_OUT ||
1072 recog_data.operand_type[opn] == OP_INOUT)
1073 return cl;
1077 /* Insns like
1078 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1079 may result in returning NO_REGS, cause flags is written implicitly through
1080 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1081 return NO_REGS;
1084 #ifdef HARD_REGNO_RENAME_OK
1085 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1086 static void
1087 init_hard_regno_rename (int regno)
1089 int cur_reg;
1091 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1093 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1095 /* We are not interested in renaming in other regs. */
1096 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1097 continue;
1099 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1100 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1103 #endif
1105 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1106 data first. */
1107 static inline bool
1108 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1110 #ifdef HARD_REGNO_RENAME_OK
1111 /* Check whether this is all calculated. */
1112 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1113 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1115 init_hard_regno_rename (from);
1117 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1118 #else
1119 return true;
1120 #endif
1123 /* Calculate set of registers that are capable of holding MODE. */
1124 static void
1125 init_regs_for_mode (enum machine_mode mode)
1127 int cur_reg;
1129 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1130 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1132 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1134 int nregs = hard_regno_nregs[cur_reg][mode];
1135 int i;
1137 for (i = nregs - 1; i >= 0; --i)
1138 if (fixed_regs[cur_reg + i]
1139 || global_regs[cur_reg + i]
1140 /* Can't use regs which aren't saved by
1141 the prologue. */
1142 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1143 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1144 it affects aliasing globally and invalidates all AV sets. */
1145 || get_reg_base_value (cur_reg + i)
1146 #ifdef LEAF_REGISTERS
1147 /* We can't use a non-leaf register if we're in a
1148 leaf function. */
1149 || (current_function_is_leaf
1150 && !LEAF_REGISTERS[cur_reg + i])
1151 #endif
1153 break;
1155 if (i >= 0)
1156 continue;
1158 /* See whether it accepts all modes that occur in
1159 original insns. */
1160 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1161 continue;
1163 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1164 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1165 cur_reg);
1167 /* If the CUR_REG passed all the checks above,
1168 then it's ok. */
1169 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1172 sel_hrd.regs_for_mode_ok[mode] = true;
1175 /* Init all register sets gathered in HRD. */
1176 static void
1177 init_hard_regs_data (void)
1179 int cur_reg = 0;
1180 int cur_mode = 0;
1182 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1183 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1184 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1185 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1187 /* Initialize registers that are valid based on mode when this is
1188 really needed. */
1189 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1190 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1192 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1193 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1194 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1196 #ifdef STACK_REGS
1197 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1199 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1200 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1201 #endif
1204 /* Mark hardware regs in REG_RENAME_P that are not suitable
1205 for renaming rhs in INSN due to hardware restrictions (register class,
1206 modes compatibility etc). This doesn't affect original insn's dest reg,
1207 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1208 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1209 Registers that are in used_regs are always marked in
1210 unavailable_hard_regs as well. */
1212 static void
1213 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1214 regset used_regs ATTRIBUTE_UNUSED)
1216 enum machine_mode mode;
1217 enum reg_class cl = NO_REGS;
1218 rtx orig_dest;
1219 unsigned cur_reg, regno;
1220 hard_reg_set_iterator hrsi;
1222 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1223 gcc_assert (reg_rename_p);
1225 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1227 /* We have decided not to rename 'mem = something;' insns, as 'something'
1228 is usually a register. */
1229 if (!REG_P (orig_dest))
1230 return;
1232 regno = REGNO (orig_dest);
1234 /* If before reload, don't try to work with pseudos. */
1235 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1236 return;
1238 if (reload_completed)
1239 cl = get_reg_class (def->orig_insn);
1241 /* Stop if the original register is one of the fixed_regs, global_regs or
1242 frame pointer, or we could not discover its class. */
1243 if (fixed_regs[regno]
1244 || global_regs[regno]
1245 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1246 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1247 #else
1248 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1249 #endif
1250 || (reload_completed && cl == NO_REGS))
1252 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1254 /* Give a chance for original register, if it isn't in used_regs. */
1255 if (!def->crosses_call)
1256 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1258 return;
1261 /* If something allocated on stack in this function, mark frame pointer
1262 register unavailable, considering also modes.
1263 FIXME: it is enough to do this once per all original defs. */
1264 if (frame_pointer_needed)
1266 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1267 Pmode, FRAME_POINTER_REGNUM);
1269 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1270 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1271 Pmode, HARD_FRAME_POINTER_IS_FRAME_POINTER);
1274 #ifdef STACK_REGS
1275 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1276 is equivalent to as if all stack regs were in this set.
1277 I.e. no stack register can be renamed, and even if it's an original
1278 register here we make sure it won't be lifted over it's previous def
1279 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1280 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1281 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1282 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1283 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1284 sel_hrd.stack_regs);
1285 #endif
1287 /* If there's a call on this path, make regs from call_used_reg_set
1288 unavailable. */
1289 if (def->crosses_call)
1290 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1291 call_used_reg_set);
1293 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1294 but not register classes. */
1295 if (!reload_completed)
1296 return;
1298 /* Leave regs as 'available' only from the current
1299 register class. */
1300 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1301 reg_class_contents[cl]);
1303 mode = GET_MODE (orig_dest);
1305 /* Leave only registers available for this mode. */
1306 if (!sel_hrd.regs_for_mode_ok[mode])
1307 init_regs_for_mode (mode);
1308 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1309 sel_hrd.regs_for_mode[mode]);
1311 /* Exclude registers that are partially call clobbered. */
1312 if (def->crosses_call
1313 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1314 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1315 sel_hrd.regs_for_call_clobbered[mode]);
1317 /* Leave only those that are ok to rename. */
1318 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1319 0, cur_reg, hrsi)
1321 int nregs;
1322 int i;
1324 nregs = hard_regno_nregs[cur_reg][mode];
1325 gcc_assert (nregs > 0);
1327 for (i = nregs - 1; i >= 0; --i)
1328 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1329 break;
1331 if (i >= 0)
1332 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1333 cur_reg);
1336 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1337 reg_rename_p->unavailable_hard_regs);
1339 /* Regno is always ok from the renaming part of view, but it really
1340 could be in *unavailable_hard_regs already, so set it here instead
1341 of there. */
1342 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1345 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1346 best register more recently than REG2. */
1347 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1349 /* Indicates the number of times renaming happened before the current one. */
1350 static int reg_rename_this_tick;
1352 /* Choose the register among free, that is suitable for storing
1353 the rhs value.
1355 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1356 originally appears. There could be multiple original operations
1357 for single rhs since we moving it up and merging along different
1358 paths.
1360 Some code is adapted from regrename.c (regrename_optimize).
1361 If original register is available, function returns it.
1362 Otherwise it performs the checks, so the new register should
1363 comply with the following:
1364 - it should not violate any live ranges (such registers are in
1365 REG_RENAME_P->available_for_renaming set);
1366 - it should not be in the HARD_REGS_USED regset;
1367 - it should be in the class compatible with original uses;
1368 - it should not be clobbered through reference with different mode;
1369 - if we're in the leaf function, then the new register should
1370 not be in the LEAF_REGISTERS;
1371 - etc.
1373 If several registers meet the conditions, the register with smallest
1374 tick is returned to achieve more even register allocation.
1376 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1378 If no register satisfies the above conditions, NULL_RTX is returned. */
1379 static rtx
1380 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1381 struct reg_rename *reg_rename_p,
1382 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1384 int best_new_reg;
1385 unsigned cur_reg;
1386 enum machine_mode mode = VOIDmode;
1387 unsigned regno, i, n;
1388 hard_reg_set_iterator hrsi;
1389 def_list_iterator di;
1390 def_t def;
1392 /* If original register is available, return it. */
1393 *is_orig_reg_p_ptr = true;
1395 FOR_EACH_DEF (def, di, original_insns)
1397 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1399 gcc_assert (REG_P (orig_dest));
1401 /* Check that all original operations have the same mode.
1402 This is done for the next loop; if we'd return from this
1403 loop, we'd check only part of them, but in this case
1404 it doesn't matter. */
1405 if (mode == VOIDmode)
1406 mode = GET_MODE (orig_dest);
1407 gcc_assert (mode == GET_MODE (orig_dest));
1409 regno = REGNO (orig_dest);
1410 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1411 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1412 break;
1414 /* All hard registers are available. */
1415 if (i == n)
1417 gcc_assert (mode != VOIDmode);
1419 /* Hard registers should not be shared. */
1420 return gen_rtx_REG (mode, regno);
1424 *is_orig_reg_p_ptr = false;
1425 best_new_reg = -1;
1427 /* Among all available regs choose the register that was
1428 allocated earliest. */
1429 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1430 0, cur_reg, hrsi)
1431 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1433 /* Check that all hard regs for mode are available. */
1434 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1435 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1436 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1437 cur_reg + i))
1438 break;
1440 if (i < n)
1441 continue;
1443 /* All hard registers are available. */
1444 if (best_new_reg < 0
1445 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1447 best_new_reg = cur_reg;
1449 /* Return immediately when we know there's no better reg. */
1450 if (! reg_rename_tick[best_new_reg])
1451 break;
1455 if (best_new_reg >= 0)
1457 /* Use the check from the above loop. */
1458 gcc_assert (mode != VOIDmode);
1459 return gen_rtx_REG (mode, best_new_reg);
1462 return NULL_RTX;
1465 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1466 assumptions about available registers in the function. */
1467 static rtx
1468 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1469 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1471 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1472 original_insns, is_orig_reg_p_ptr);
1474 /* FIXME loop over hard_regno_nregs here. */
1475 gcc_assert (best_reg == NULL_RTX
1476 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1478 return best_reg;
1481 /* Choose the pseudo register for storing rhs value. As this is supposed
1482 to work before reload, we return either the original register or make
1483 the new one. The parameters are the same that in choose_nest_reg_1
1484 functions, except that USED_REGS may contain pseudos.
1485 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1487 TODO: take into account register pressure while doing this. Up to this
1488 moment, this function would never return NULL for pseudos, but we should
1489 not rely on this. */
1490 static rtx
1491 choose_best_pseudo_reg (regset used_regs,
1492 struct reg_rename *reg_rename_p,
1493 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1495 def_list_iterator i;
1496 def_t def;
1497 enum machine_mode mode = VOIDmode;
1498 bool bad_hard_regs = false;
1500 /* We should not use this after reload. */
1501 gcc_assert (!reload_completed);
1503 /* If original register is available, return it. */
1504 *is_orig_reg_p_ptr = true;
1506 FOR_EACH_DEF (def, i, original_insns)
1508 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1509 int orig_regno;
1511 gcc_assert (REG_P (dest));
1513 /* Check that all original operations have the same mode. */
1514 if (mode == VOIDmode)
1515 mode = GET_MODE (dest);
1516 else
1517 gcc_assert (mode == GET_MODE (dest));
1518 orig_regno = REGNO (dest);
1520 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1522 if (orig_regno < FIRST_PSEUDO_REGISTER)
1524 gcc_assert (df_regs_ever_live_p (orig_regno));
1526 /* For hard registers, we have to check hardware imposed
1527 limitations (frame/stack registers, calls crossed). */
1528 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1529 orig_regno))
1531 /* Don't let register cross a call if it doesn't already
1532 cross one. This condition is written in accordance with
1533 that in sched-deps.c sched_analyze_reg(). */
1534 if (!reg_rename_p->crosses_call
1535 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1536 return gen_rtx_REG (mode, orig_regno);
1539 bad_hard_regs = true;
1541 else
1542 return dest;
1546 *is_orig_reg_p_ptr = false;
1548 /* We had some original hard registers that couldn't be used.
1549 Those were likely special. Don't try to create a pseudo. */
1550 if (bad_hard_regs)
1551 return NULL_RTX;
1553 /* We haven't found a register from original operations. Get a new one.
1554 FIXME: control register pressure somehow. */
1556 rtx new_reg = gen_reg_rtx (mode);
1558 gcc_assert (mode != VOIDmode);
1560 max_regno = max_reg_num ();
1561 maybe_extend_reg_info_p ();
1562 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1564 return new_reg;
1568 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1569 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1570 static void
1571 verify_target_availability (expr_t expr, regset used_regs,
1572 struct reg_rename *reg_rename_p)
1574 unsigned n, i, regno;
1575 enum machine_mode mode;
1576 bool target_available, live_available, hard_available;
1578 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1579 return;
1581 regno = expr_dest_regno (expr);
1582 mode = GET_MODE (EXPR_LHS (expr));
1583 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1584 n = reload_completed ? hard_regno_nregs[regno][mode] : 1;
1586 live_available = hard_available = true;
1587 for (i = 0; i < n; i++)
1589 if (bitmap_bit_p (used_regs, regno + i))
1590 live_available = false;
1591 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1592 hard_available = false;
1595 /* When target is not available, it may be due to hard register
1596 restrictions, e.g. crosses calls, so we check hard_available too. */
1597 if (target_available)
1598 gcc_assert (live_available);
1599 else
1600 /* Check only if we haven't scheduled something on the previous fence,
1601 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1602 and having more than one fence, we may end having targ_un in a block
1603 in which successors target register is actually available.
1605 The last condition handles the case when a dependence from a call insn
1606 was created in sched-deps.c for insns with destination registers that
1607 never crossed a call before, but do cross one after our code motion.
1609 FIXME: in the latter case, we just uselessly called find_used_regs,
1610 because we can't move this expression with any other register
1611 as well. */
1612 gcc_assert (scheduled_something_on_previous_fence || !live_available
1613 || !hard_available
1614 || (!reload_completed && reg_rename_p->crosses_call
1615 && REG_N_CALLS_CROSSED (regno) == 0));
1618 /* Collect unavailable registers due to liveness for EXPR from BNDS
1619 into USED_REGS. Save additional information about available
1620 registers and unavailable due to hardware restriction registers
1621 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1622 list. */
1623 static void
1624 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1625 struct reg_rename *reg_rename_p,
1626 def_list_t *original_insns)
1628 for (; bnds; bnds = BLIST_NEXT (bnds))
1630 bool res;
1631 av_set_t orig_ops = NULL;
1632 bnd_t bnd = BLIST_BND (bnds);
1634 /* If the chosen best expr doesn't belong to current boundary,
1635 skip it. */
1636 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1637 continue;
1639 /* Put in ORIG_OPS all exprs from this boundary that became
1640 RES on top. */
1641 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1643 /* Compute used regs and OR it into the USED_REGS. */
1644 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1645 reg_rename_p, original_insns);
1647 /* FIXME: the assert is true until we'd have several boundaries. */
1648 gcc_assert (res);
1649 av_set_clear (&orig_ops);
1653 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1654 If BEST_REG is valid, replace LHS of EXPR with it. */
1655 static bool
1656 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1658 /* Try whether we'll be able to generate the insn
1659 'dest := best_reg' at the place of the original operation. */
1660 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1662 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1664 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1666 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1667 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1668 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1669 return false;
1672 /* Make sure that EXPR has the right destination
1673 register. */
1674 if (expr_dest_regno (expr) != REGNO (best_reg))
1675 replace_dest_with_reg_in_expr (expr, best_reg);
1676 else
1677 EXPR_TARGET_AVAILABLE (expr) = 1;
1679 return true;
1682 /* Select and assign best register to EXPR searching from BNDS.
1683 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1684 Return FALSE if no register can be chosen, which could happen when:
1685 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1686 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1687 that are used on the moving path. */
1688 static bool
1689 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1691 static struct reg_rename reg_rename_data;
1693 regset used_regs;
1694 def_list_t original_insns = NULL;
1695 bool reg_ok;
1697 *is_orig_reg_p = false;
1699 /* Don't bother to do anything if this insn doesn't set any registers. */
1700 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1701 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1702 return true;
1704 used_regs = get_clear_regset_from_pool ();
1705 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1707 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1708 &original_insns);
1710 #ifdef ENABLE_CHECKING
1711 /* If after reload, make sure we're working with hard regs here. */
1712 if (reload_completed)
1714 reg_set_iterator rsi;
1715 unsigned i;
1717 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1718 gcc_unreachable ();
1720 #endif
1722 if (EXPR_SEPARABLE_P (expr))
1724 rtx best_reg = NULL_RTX;
1725 /* Check that we have computed availability of a target register
1726 correctly. */
1727 verify_target_availability (expr, used_regs, &reg_rename_data);
1729 /* Turn everything in hard regs after reload. */
1730 if (reload_completed)
1732 HARD_REG_SET hard_regs_used;
1733 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1735 /* Join hard registers unavailable due to register class
1736 restrictions and live range intersection. */
1737 IOR_HARD_REG_SET (hard_regs_used,
1738 reg_rename_data.unavailable_hard_regs);
1740 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1741 original_insns, is_orig_reg_p);
1743 else
1744 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1745 original_insns, is_orig_reg_p);
1747 if (!best_reg)
1748 reg_ok = false;
1749 else if (*is_orig_reg_p)
1751 /* In case of unification BEST_REG may be different from EXPR's LHS
1752 when EXPR's LHS is unavailable, and there is another LHS among
1753 ORIGINAL_INSNS. */
1754 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1756 else
1758 /* Forbid renaming of low-cost insns. */
1759 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1760 reg_ok = false;
1761 else
1762 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1765 else
1767 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1768 any of the HARD_REGS_USED set. */
1769 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1770 reg_rename_data.unavailable_hard_regs))
1772 reg_ok = false;
1773 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1775 else
1777 reg_ok = true;
1778 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1782 ilist_clear (&original_insns);
1783 return_regset_to_pool (used_regs);
1785 return reg_ok;
1789 /* Return true if dependence described by DS can be overcomed. */
1790 static bool
1791 can_speculate_dep_p (ds_t ds)
1793 if (spec_info == NULL)
1794 return false;
1796 /* Leave only speculative data. */
1797 ds &= SPECULATIVE;
1799 if (ds == 0)
1800 return false;
1803 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1804 that we can overcome. */
1805 ds_t spec_mask = spec_info->mask;
1807 if ((ds & spec_mask) != ds)
1808 return false;
1811 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1812 return false;
1814 return true;
1817 /* Get a speculation check instruction.
1818 C_EXPR is a speculative expression,
1819 CHECK_DS describes speculations that should be checked,
1820 ORIG_INSN is the original non-speculative insn in the stream. */
1821 static insn_t
1822 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1824 rtx check_pattern;
1825 rtx insn_rtx;
1826 insn_t insn;
1827 basic_block recovery_block;
1828 rtx label;
1830 /* Create a recovery block if target is going to emit branchy check, or if
1831 ORIG_INSN was speculative already. */
1832 if (targetm.sched.needs_block_p (check_ds)
1833 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1835 recovery_block = sel_create_recovery_block (orig_insn);
1836 label = BB_HEAD (recovery_block);
1838 else
1840 recovery_block = NULL;
1841 label = NULL_RTX;
1844 /* Get pattern of the check. */
1845 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1846 check_ds);
1848 gcc_assert (check_pattern != NULL);
1850 /* Emit check. */
1851 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1853 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1854 INSN_SEQNO (orig_insn), orig_insn);
1856 /* Make check to be non-speculative. */
1857 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1858 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1860 /* Decrease priority of check by difference of load/check instruction
1861 latencies. */
1862 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1863 - sel_vinsn_cost (INSN_VINSN (insn)));
1865 /* Emit copy of original insn (though with replaced target register,
1866 if needed) to the recovery block. */
1867 if (recovery_block != NULL)
1869 rtx twin_rtx;
1871 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1872 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1873 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1874 INSN_EXPR (orig_insn),
1875 INSN_SEQNO (insn),
1876 bb_note (recovery_block));
1879 /* If we've generated a data speculation check, make sure
1880 that all the bookkeeping instruction we'll create during
1881 this move_op () will allocate an ALAT entry so that the
1882 check won't fail.
1883 In case of control speculation we must convert C_EXPR to control
1884 speculative mode, because failing to do so will bring us an exception
1885 thrown by the non-control-speculative load. */
1886 check_ds = ds_get_max_dep_weak (check_ds);
1887 speculate_expr (c_expr, check_ds);
1889 return insn;
1892 /* True when INSN is a "regN = regN" copy. */
1893 static bool
1894 identical_copy_p (rtx insn)
1896 rtx lhs, rhs, pat;
1898 pat = PATTERN (insn);
1900 if (GET_CODE (pat) != SET)
1901 return false;
1903 lhs = SET_DEST (pat);
1904 if (!REG_P (lhs))
1905 return false;
1907 rhs = SET_SRC (pat);
1908 if (!REG_P (rhs))
1909 return false;
1911 return REGNO (lhs) == REGNO (rhs);
1914 /* Undo all transformations on *AV_PTR that were done when
1915 moving through INSN. */
1916 static void
1917 undo_transformations (av_set_t *av_ptr, rtx insn)
1919 av_set_iterator av_iter;
1920 expr_t expr;
1921 av_set_t new_set = NULL;
1923 /* First, kill any EXPR that uses registers set by an insn. This is
1924 required for correctness. */
1925 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1926 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1927 && bitmap_intersect_p (INSN_REG_SETS (insn),
1928 VINSN_REG_USES (EXPR_VINSN (expr)))
1929 /* When an insn looks like 'r1 = r1', we could substitute through
1930 it, but the above condition will still hold. This happened with
1931 gcc.c-torture/execute/961125-1.c. */
1932 && !identical_copy_p (insn))
1934 if (sched_verbose >= 6)
1935 sel_print ("Expr %d removed due to use/set conflict\n",
1936 INSN_UID (EXPR_INSN_RTX (expr)));
1937 av_set_iter_remove (&av_iter);
1940 /* Undo transformations looking at the history vector. */
1941 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1943 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1944 insn, EXPR_VINSN (expr), true);
1946 if (index >= 0)
1948 expr_history_def *phist;
1950 phist = VEC_index (expr_history_def,
1951 EXPR_HISTORY_OF_CHANGES (expr),
1952 index);
1954 switch (phist->type)
1956 case TRANS_SPECULATION:
1958 ds_t old_ds, new_ds;
1960 /* Compute the difference between old and new speculative
1961 statuses: that's what we need to check.
1962 Earlier we used to assert that the status will really
1963 change. This no longer works because only the probability
1964 bits in the status may have changed during compute_av_set,
1965 and in the case of merging different probabilities of the
1966 same speculative status along different paths we do not
1967 record this in the history vector. */
1968 old_ds = phist->spec_ds;
1969 new_ds = EXPR_SPEC_DONE_DS (expr);
1971 old_ds &= SPECULATIVE;
1972 new_ds &= SPECULATIVE;
1973 new_ds &= ~old_ds;
1975 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1976 break;
1978 case TRANS_SUBSTITUTION:
1980 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1981 vinsn_t new_vi;
1982 bool add = true;
1984 new_vi = phist->old_expr_vinsn;
1986 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1987 == EXPR_SEPARABLE_P (expr));
1988 copy_expr (tmp_expr, expr);
1990 if (vinsn_equal_p (phist->new_expr_vinsn,
1991 EXPR_VINSN (tmp_expr)))
1992 change_vinsn_in_expr (tmp_expr, new_vi);
1993 else
1994 /* This happens when we're unsubstituting on a bookkeeping
1995 copy, which was in turn substituted. The history is wrong
1996 in this case. Do it the hard way. */
1997 add = substitute_reg_in_expr (tmp_expr, insn, true);
1998 if (add)
1999 av_set_add (&new_set, tmp_expr);
2000 clear_expr (tmp_expr);
2001 break;
2003 default:
2004 gcc_unreachable ();
2010 av_set_union_and_clear (av_ptr, &new_set, NULL);
2014 /* Moveup_* helpers for code motion and computing av sets. */
2016 /* Propagates EXPR inside an insn group through THROUGH_INSN.
2017 The difference from the below function is that only substitution is
2018 performed. */
2019 static enum MOVEUP_EXPR_CODE
2020 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2022 vinsn_t vi = EXPR_VINSN (expr);
2023 ds_t *has_dep_p;
2024 ds_t full_ds;
2026 /* Do this only inside insn group. */
2027 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2029 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2030 if (full_ds == 0)
2031 return MOVEUP_EXPR_SAME;
2033 /* Substitution is the possible choice in this case. */
2034 if (has_dep_p[DEPS_IN_RHS])
2036 /* Can't substitute UNIQUE VINSNs. */
2037 gcc_assert (!VINSN_UNIQUE_P (vi));
2039 if (can_substitute_through_p (through_insn,
2040 has_dep_p[DEPS_IN_RHS])
2041 && substitute_reg_in_expr (expr, through_insn, false))
2043 EXPR_WAS_SUBSTITUTED (expr) = true;
2044 return MOVEUP_EXPR_CHANGED;
2047 /* Don't care about this, as even true dependencies may be allowed
2048 in an insn group. */
2049 return MOVEUP_EXPR_SAME;
2052 /* This can catch output dependencies in COND_EXECs. */
2053 if (has_dep_p[DEPS_IN_INSN])
2054 return MOVEUP_EXPR_NULL;
2056 /* This is either an output or an anti dependence, which usually have
2057 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2058 will fix this. */
2059 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2060 return MOVEUP_EXPR_AS_RHS;
2063 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2064 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2065 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2066 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2067 && !sel_insn_is_speculation_check (through_insn))
2069 /* True when a conflict on a target register was found during moveup_expr. */
2070 static bool was_target_conflict = false;
2072 /* Return true when moving a debug INSN across THROUGH_INSN will
2073 create a bookkeeping block. We don't want to create such blocks,
2074 for they would cause codegen differences between compilations with
2075 and without debug info. */
2077 static bool
2078 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2079 insn_t through_insn)
2081 basic_block bbi, bbt;
2082 edge e1, e2;
2083 edge_iterator ei1, ei2;
2085 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2087 if (sched_verbose >= 9)
2088 sel_print ("no bookkeeping required: ");
2089 return FALSE;
2092 bbi = BLOCK_FOR_INSN (insn);
2094 if (EDGE_COUNT (bbi->preds) == 1)
2096 if (sched_verbose >= 9)
2097 sel_print ("only one pred edge: ");
2098 return TRUE;
2101 bbt = BLOCK_FOR_INSN (through_insn);
2103 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2105 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2107 if (find_block_for_bookkeeping (e1, e2, TRUE))
2109 if (sched_verbose >= 9)
2110 sel_print ("found existing block: ");
2111 return FALSE;
2116 if (sched_verbose >= 9)
2117 sel_print ("would create bookkeeping block: ");
2119 return TRUE;
2122 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2123 performing necessary transformations. Record the type of transformation
2124 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2125 permit all dependencies except true ones, and try to remove those
2126 too via forward substitution. All cases when a non-eliminable
2127 non-zero cost dependency exists inside an insn group will be fixed
2128 in tick_check_p instead. */
2129 static enum MOVEUP_EXPR_CODE
2130 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2131 enum local_trans_type *ptrans_type)
2133 vinsn_t vi = EXPR_VINSN (expr);
2134 insn_t insn = VINSN_INSN_RTX (vi);
2135 bool was_changed = false;
2136 bool as_rhs = false;
2137 ds_t *has_dep_p;
2138 ds_t full_ds;
2140 /* ??? We use dependencies of non-debug insns on debug insns to
2141 indicate that the debug insns need to be reset if the non-debug
2142 insn is pulled ahead of it. It's hard to figure out how to
2143 introduce such a notion in sel-sched, but it already fails to
2144 support debug insns in other ways, so we just go ahead and
2145 let the deug insns go corrupt for now. */
2146 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2147 return MOVEUP_EXPR_SAME;
2149 /* When inside_insn_group, delegate to the helper. */
2150 if (inside_insn_group)
2151 return moveup_expr_inside_insn_group (expr, through_insn);
2153 /* Deal with unique insns and control dependencies. */
2154 if (VINSN_UNIQUE_P (vi))
2156 /* We can move jumps without side-effects or jumps that are
2157 mutually exclusive with instruction THROUGH_INSN (all in cases
2158 dependencies allow to do so and jump is not speculative). */
2159 if (control_flow_insn_p (insn))
2161 basic_block fallthru_bb;
2163 /* Do not move checks and do not move jumps through other
2164 jumps. */
2165 if (control_flow_insn_p (through_insn)
2166 || sel_insn_is_speculation_check (insn))
2167 return MOVEUP_EXPR_NULL;
2169 /* Don't move jumps through CFG joins. */
2170 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2171 return MOVEUP_EXPR_NULL;
2173 /* The jump should have a clear fallthru block, and
2174 this block should be in the current region. */
2175 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2176 || ! in_current_region_p (fallthru_bb))
2177 return MOVEUP_EXPR_NULL;
2179 /* And it should be mutually exclusive with through_insn. */
2180 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2181 && ! DEBUG_INSN_P (through_insn))
2182 return MOVEUP_EXPR_NULL;
2185 /* Don't move what we can't move. */
2186 if (EXPR_CANT_MOVE (expr)
2187 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2188 return MOVEUP_EXPR_NULL;
2190 /* Don't move SCHED_GROUP instruction through anything.
2191 If we don't force this, then it will be possible to start
2192 scheduling a sched_group before all its dependencies are
2193 resolved.
2194 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2195 as late as possible through rank_for_schedule. */
2196 if (SCHED_GROUP_P (insn))
2197 return MOVEUP_EXPR_NULL;
2199 else
2200 gcc_assert (!control_flow_insn_p (insn));
2202 /* Don't move debug insns if this would require bookkeeping. */
2203 if (DEBUG_INSN_P (insn)
2204 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2205 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2206 return MOVEUP_EXPR_NULL;
2208 /* Deal with data dependencies. */
2209 was_target_conflict = false;
2210 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2211 if (full_ds == 0)
2213 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2214 return MOVEUP_EXPR_SAME;
2216 else
2218 /* We can move UNIQUE insn up only as a whole and unchanged,
2219 so it shouldn't have any dependencies. */
2220 if (VINSN_UNIQUE_P (vi))
2221 return MOVEUP_EXPR_NULL;
2224 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2226 int res;
2228 res = speculate_expr (expr, full_ds);
2229 if (res >= 0)
2231 /* Speculation was successful. */
2232 full_ds = 0;
2233 was_changed = (res > 0);
2234 if (res == 2)
2235 was_target_conflict = true;
2236 if (ptrans_type)
2237 *ptrans_type = TRANS_SPECULATION;
2238 sel_clear_has_dependence ();
2242 if (has_dep_p[DEPS_IN_INSN])
2243 /* We have some dependency that cannot be discarded. */
2244 return MOVEUP_EXPR_NULL;
2246 if (has_dep_p[DEPS_IN_LHS])
2248 /* Only separable insns can be moved up with the new register.
2249 Anyways, we should mark that the original register is
2250 unavailable. */
2251 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2252 return MOVEUP_EXPR_NULL;
2254 EXPR_TARGET_AVAILABLE (expr) = false;
2255 was_target_conflict = true;
2256 as_rhs = true;
2259 /* At this point we have either separable insns, that will be lifted
2260 up only as RHSes, or non-separable insns with no dependency in lhs.
2261 If dependency is in RHS, then try to perform substitution and move up
2262 substituted RHS:
2264 Ex. 1: Ex.2
2265 y = x; y = x;
2266 z = y*2; y = y*2;
2268 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2269 moved above y=x assignment as z=x*2.
2271 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2272 side can be moved because of the output dependency. The operation was
2273 cropped to its rhs above. */
2274 if (has_dep_p[DEPS_IN_RHS])
2276 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2278 /* Can't substitute UNIQUE VINSNs. */
2279 gcc_assert (!VINSN_UNIQUE_P (vi));
2281 if (can_speculate_dep_p (*rhs_dsp))
2283 int res;
2285 res = speculate_expr (expr, *rhs_dsp);
2286 if (res >= 0)
2288 /* Speculation was successful. */
2289 *rhs_dsp = 0;
2290 was_changed = (res > 0);
2291 if (res == 2)
2292 was_target_conflict = true;
2293 if (ptrans_type)
2294 *ptrans_type = TRANS_SPECULATION;
2296 else
2297 return MOVEUP_EXPR_NULL;
2299 else if (can_substitute_through_p (through_insn,
2300 *rhs_dsp)
2301 && substitute_reg_in_expr (expr, through_insn, false))
2303 /* ??? We cannot perform substitution AND speculation on the same
2304 insn. */
2305 gcc_assert (!was_changed);
2306 was_changed = true;
2307 if (ptrans_type)
2308 *ptrans_type = TRANS_SUBSTITUTION;
2309 EXPR_WAS_SUBSTITUTED (expr) = true;
2311 else
2312 return MOVEUP_EXPR_NULL;
2315 /* Don't move trapping insns through jumps.
2316 This check should be at the end to give a chance to control speculation
2317 to perform its duties. */
2318 if (CANT_MOVE_TRAPPING (expr, through_insn))
2319 return MOVEUP_EXPR_NULL;
2321 return (was_changed
2322 ? MOVEUP_EXPR_CHANGED
2323 : (as_rhs
2324 ? MOVEUP_EXPR_AS_RHS
2325 : MOVEUP_EXPR_SAME));
2328 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2329 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2330 that can exist within a parallel group. Write to RES the resulting
2331 code for moveup_expr. */
2332 static bool
2333 try_bitmap_cache (expr_t expr, insn_t insn,
2334 bool inside_insn_group,
2335 enum MOVEUP_EXPR_CODE *res)
2337 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2339 /* First check whether we've analyzed this situation already. */
2340 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2342 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2344 if (sched_verbose >= 6)
2345 sel_print ("removed (cached)\n");
2346 *res = MOVEUP_EXPR_NULL;
2347 return true;
2349 else
2351 if (sched_verbose >= 6)
2352 sel_print ("unchanged (cached)\n");
2353 *res = MOVEUP_EXPR_SAME;
2354 return true;
2357 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2359 if (inside_insn_group)
2361 if (sched_verbose >= 6)
2362 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2363 *res = MOVEUP_EXPR_SAME;
2364 return true;
2367 else
2368 EXPR_TARGET_AVAILABLE (expr) = false;
2370 /* This is the only case when propagation result can change over time,
2371 as we can dynamically switch off scheduling as RHS. In this case,
2372 just check the flag to reach the correct decision. */
2373 if (enable_schedule_as_rhs_p)
2375 if (sched_verbose >= 6)
2376 sel_print ("unchanged (as RHS, cached)\n");
2377 *res = MOVEUP_EXPR_AS_RHS;
2378 return true;
2380 else
2382 if (sched_verbose >= 6)
2383 sel_print ("removed (cached as RHS, but renaming"
2384 " is now disabled)\n");
2385 *res = MOVEUP_EXPR_NULL;
2386 return true;
2390 return false;
2393 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2394 if successful. Write to RES the resulting code for moveup_expr. */
2395 static bool
2396 try_transformation_cache (expr_t expr, insn_t insn,
2397 enum MOVEUP_EXPR_CODE *res)
2399 struct transformed_insns *pti
2400 = (struct transformed_insns *)
2401 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2402 &EXPR_VINSN (expr),
2403 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2404 if (pti)
2406 /* This EXPR was already moved through this insn and was
2407 changed as a result. Fetch the proper data from
2408 the hashtable. */
2409 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2410 INSN_UID (insn), pti->type,
2411 pti->vinsn_old, pti->vinsn_new,
2412 EXPR_SPEC_DONE_DS (expr));
2414 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2415 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2416 change_vinsn_in_expr (expr, pti->vinsn_new);
2417 if (pti->was_target_conflict)
2418 EXPR_TARGET_AVAILABLE (expr) = false;
2419 if (pti->type == TRANS_SPECULATION)
2421 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2422 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2425 if (sched_verbose >= 6)
2427 sel_print ("changed (cached): ");
2428 dump_expr (expr);
2429 sel_print ("\n");
2432 *res = MOVEUP_EXPR_CHANGED;
2433 return true;
2436 return false;
2439 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2440 static void
2441 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2442 enum MOVEUP_EXPR_CODE res)
2444 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2446 /* Do not cache result of propagating jumps through an insn group,
2447 as it is always true, which is not useful outside the group. */
2448 if (inside_insn_group)
2449 return;
2451 if (res == MOVEUP_EXPR_NULL)
2453 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2454 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2456 else if (res == MOVEUP_EXPR_SAME)
2458 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2459 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2461 else if (res == MOVEUP_EXPR_AS_RHS)
2463 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2464 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2466 else
2467 gcc_unreachable ();
2470 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2471 and transformation type TRANS_TYPE. */
2472 static void
2473 update_transformation_cache (expr_t expr, insn_t insn,
2474 bool inside_insn_group,
2475 enum local_trans_type trans_type,
2476 vinsn_t expr_old_vinsn)
2478 struct transformed_insns *pti;
2480 if (inside_insn_group)
2481 return;
2483 pti = XNEW (struct transformed_insns);
2484 pti->vinsn_old = expr_old_vinsn;
2485 pti->vinsn_new = EXPR_VINSN (expr);
2486 pti->type = trans_type;
2487 pti->was_target_conflict = was_target_conflict;
2488 pti->ds = EXPR_SPEC_DONE_DS (expr);
2489 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2490 vinsn_attach (pti->vinsn_old);
2491 vinsn_attach (pti->vinsn_new);
2492 *((struct transformed_insns **)
2493 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2494 pti, VINSN_HASH_RTX (expr_old_vinsn),
2495 INSERT)) = pti;
2498 /* Same as moveup_expr, but first looks up the result of
2499 transformation in caches. */
2500 static enum MOVEUP_EXPR_CODE
2501 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2503 enum MOVEUP_EXPR_CODE res;
2504 bool got_answer = false;
2506 if (sched_verbose >= 6)
2508 sel_print ("Moving ");
2509 dump_expr (expr);
2510 sel_print (" through %d: ", INSN_UID (insn));
2513 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2514 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2515 == EXPR_INSN_RTX (expr)))
2516 /* Don't use cached information for debug insns that are heads of
2517 basic blocks. */;
2518 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2519 /* When inside insn group, we do not want remove stores conflicting
2520 with previosly issued loads. */
2521 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2522 else if (try_transformation_cache (expr, insn, &res))
2523 got_answer = true;
2525 if (! got_answer)
2527 /* Invoke moveup_expr and record the results. */
2528 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2529 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2530 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2531 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2532 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2534 /* ??? Invent something better than this. We can't allow old_vinsn
2535 to go, we need it for the history vector. */
2536 vinsn_attach (expr_old_vinsn);
2538 res = moveup_expr (expr, insn, inside_insn_group,
2539 &trans_type);
2540 switch (res)
2542 case MOVEUP_EXPR_NULL:
2543 update_bitmap_cache (expr, insn, inside_insn_group, res);
2544 if (sched_verbose >= 6)
2545 sel_print ("removed\n");
2546 break;
2548 case MOVEUP_EXPR_SAME:
2549 update_bitmap_cache (expr, insn, inside_insn_group, res);
2550 if (sched_verbose >= 6)
2551 sel_print ("unchanged\n");
2552 break;
2554 case MOVEUP_EXPR_AS_RHS:
2555 gcc_assert (!unique_p || inside_insn_group);
2556 update_bitmap_cache (expr, insn, inside_insn_group, res);
2557 if (sched_verbose >= 6)
2558 sel_print ("unchanged (as RHS)\n");
2559 break;
2561 case MOVEUP_EXPR_CHANGED:
2562 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2563 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2564 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2565 INSN_UID (insn), trans_type,
2566 expr_old_vinsn, EXPR_VINSN (expr),
2567 expr_old_spec_ds);
2568 update_transformation_cache (expr, insn, inside_insn_group,
2569 trans_type, expr_old_vinsn);
2570 if (sched_verbose >= 6)
2572 sel_print ("changed: ");
2573 dump_expr (expr);
2574 sel_print ("\n");
2576 break;
2577 default:
2578 gcc_unreachable ();
2581 vinsn_detach (expr_old_vinsn);
2584 return res;
2587 /* Moves an av set AVP up through INSN, performing necessary
2588 transformations. */
2589 static void
2590 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2592 av_set_iterator i;
2593 expr_t expr;
2595 FOR_EACH_EXPR_1 (expr, i, avp)
2598 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2600 case MOVEUP_EXPR_SAME:
2601 case MOVEUP_EXPR_AS_RHS:
2602 break;
2604 case MOVEUP_EXPR_NULL:
2605 av_set_iter_remove (&i);
2606 break;
2608 case MOVEUP_EXPR_CHANGED:
2609 expr = merge_with_other_exprs (avp, &i, expr);
2610 break;
2612 default:
2613 gcc_unreachable ();
2618 /* Moves AVP set along PATH. */
2619 static void
2620 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2622 int last_cycle;
2624 if (sched_verbose >= 6)
2625 sel_print ("Moving expressions up in the insn group...\n");
2626 if (! path)
2627 return;
2628 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2629 while (path
2630 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2632 moveup_set_expr (avp, ILIST_INSN (path), true);
2633 path = ILIST_NEXT (path);
2637 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2638 static bool
2639 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2641 expr_def _tmp, *tmp = &_tmp;
2642 int last_cycle;
2643 bool res = true;
2645 copy_expr_onside (tmp, expr);
2646 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2647 while (path
2648 && res
2649 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2651 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2652 != MOVEUP_EXPR_NULL);
2653 path = ILIST_NEXT (path);
2656 if (res)
2658 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2659 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2661 if (tmp_vinsn != expr_vliw_vinsn)
2662 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2665 clear_expr (tmp);
2666 return res;
2670 /* Functions that compute av and lv sets. */
2672 /* Returns true if INSN is not a downward continuation of the given path P in
2673 the current stage. */
2674 static bool
2675 is_ineligible_successor (insn_t insn, ilist_t p)
2677 insn_t prev_insn;
2679 /* Check if insn is not deleted. */
2680 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2681 gcc_unreachable ();
2682 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2683 gcc_unreachable ();
2685 /* If it's the first insn visited, then the successor is ok. */
2686 if (!p)
2687 return false;
2689 prev_insn = ILIST_INSN (p);
2691 if (/* a backward edge. */
2692 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2693 /* is already visited. */
2694 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2695 && (ilist_is_in_p (p, insn)
2696 /* We can reach another fence here and still seqno of insn
2697 would be equal to seqno of prev_insn. This is possible
2698 when prev_insn is a previously created bookkeeping copy.
2699 In that case it'd get a seqno of insn. Thus, check here
2700 whether insn is in current fence too. */
2701 || IN_CURRENT_FENCE_P (insn)))
2702 /* Was already scheduled on this round. */
2703 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2704 && IN_CURRENT_FENCE_P (insn))
2705 /* An insn from another fence could also be
2706 scheduled earlier even if this insn is not in
2707 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2708 || (!pipelining_p
2709 && INSN_SCHED_TIMES (insn) > 0))
2710 return true;
2711 else
2712 return false;
2715 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2716 of handling multiple successors and properly merging its av_sets. P is
2717 the current path traversed. WS is the size of lookahead window.
2718 Return the av set computed. */
2719 static av_set_t
2720 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2722 struct succs_info *sinfo;
2723 av_set_t expr_in_all_succ_branches = NULL;
2724 int is;
2725 insn_t succ, zero_succ = NULL;
2726 av_set_t av1 = NULL;
2728 gcc_assert (sel_bb_end_p (insn));
2730 /* Find different kind of successors needed for correct computing of
2731 SPEC and TARGET_AVAILABLE attributes. */
2732 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2734 /* Debug output. */
2735 if (sched_verbose >= 6)
2737 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2738 dump_insn_vector (sinfo->succs_ok);
2739 sel_print ("\n");
2740 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2741 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2744 /* Add insn to the tail of current path. */
2745 ilist_add (&p, insn);
2747 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2749 av_set_t succ_set;
2751 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2752 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2754 av_set_split_usefulness (succ_set,
2755 VEC_index (int, sinfo->probs_ok, is),
2756 sinfo->all_prob);
2758 if (sinfo->all_succs_n > 1)
2760 /* Find EXPR'es that came from *all* successors and save them
2761 into expr_in_all_succ_branches. This set will be used later
2762 for calculating speculation attributes of EXPR'es. */
2763 if (is == 0)
2765 expr_in_all_succ_branches = av_set_copy (succ_set);
2767 /* Remember the first successor for later. */
2768 zero_succ = succ;
2770 else
2772 av_set_iterator i;
2773 expr_t expr;
2775 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2776 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2777 av_set_iter_remove (&i);
2781 /* Union the av_sets. Check liveness restrictions on target registers
2782 in special case of two successors. */
2783 if (sinfo->succs_ok_n == 2 && is == 1)
2785 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2786 basic_block bb1 = BLOCK_FOR_INSN (succ);
2788 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2789 av_set_union_and_live (&av1, &succ_set,
2790 BB_LV_SET (bb0),
2791 BB_LV_SET (bb1),
2792 insn);
2794 else
2795 av_set_union_and_clear (&av1, &succ_set, insn);
2798 /* Check liveness restrictions via hard way when there are more than
2799 two successors. */
2800 if (sinfo->succs_ok_n > 2)
2801 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2803 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2805 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2806 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2807 BB_LV_SET (succ_bb));
2810 /* Finally, check liveness restrictions on paths leaving the region. */
2811 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2812 FOR_EACH_VEC_ELT (rtx, sinfo->succs_other, is, succ)
2813 mark_unavailable_targets
2814 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2816 if (sinfo->all_succs_n > 1)
2818 av_set_iterator i;
2819 expr_t expr;
2821 /* Increase the spec attribute of all EXPR'es that didn't come
2822 from all successors. */
2823 FOR_EACH_EXPR (expr, i, av1)
2824 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2825 EXPR_SPEC (expr)++;
2827 av_set_clear (&expr_in_all_succ_branches);
2829 /* Do not move conditional branches through other
2830 conditional branches. So, remove all conditional
2831 branches from av_set if current operator is a conditional
2832 branch. */
2833 av_set_substract_cond_branches (&av1);
2836 ilist_remove (&p);
2837 free_succs_info (sinfo);
2839 if (sched_verbose >= 6)
2841 sel_print ("av_succs (%d): ", INSN_UID (insn));
2842 dump_av_set (av1);
2843 sel_print ("\n");
2846 return av1;
2849 /* This function computes av_set for the FIRST_INSN by dragging valid
2850 av_set through all basic block insns either from the end of basic block
2851 (computed using compute_av_set_at_bb_end) or from the insn on which
2852 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2853 below the basic block and handling conditional branches.
2854 FIRST_INSN - the basic block head, P - path consisting of the insns
2855 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2856 and bb ends are added to the path), WS - current window size,
2857 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2858 static av_set_t
2859 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2860 bool need_copy_p)
2862 insn_t cur_insn;
2863 int end_ws = ws;
2864 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2865 insn_t after_bb_end = NEXT_INSN (bb_end);
2866 insn_t last_insn;
2867 av_set_t av = NULL;
2868 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2870 /* Return NULL if insn is not on the legitimate downward path. */
2871 if (is_ineligible_successor (first_insn, p))
2873 if (sched_verbose >= 6)
2874 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2876 return NULL;
2879 /* If insn already has valid av(insn) computed, just return it. */
2880 if (AV_SET_VALID_P (first_insn))
2882 av_set_t av_set;
2884 if (sel_bb_head_p (first_insn))
2885 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2886 else
2887 av_set = NULL;
2889 if (sched_verbose >= 6)
2891 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2892 dump_av_set (av_set);
2893 sel_print ("\n");
2896 return need_copy_p ? av_set_copy (av_set) : av_set;
2899 ilist_add (&p, first_insn);
2901 /* As the result after this loop have completed, in LAST_INSN we'll
2902 have the insn which has valid av_set to start backward computation
2903 from: it either will be NULL because on it the window size was exceeded
2904 or other valid av_set as returned by compute_av_set for the last insn
2905 of the basic block. */
2906 for (last_insn = first_insn; last_insn != after_bb_end;
2907 last_insn = NEXT_INSN (last_insn))
2909 /* We may encounter valid av_set not only on bb_head, but also on
2910 those insns on which previously MAX_WS was exceeded. */
2911 if (AV_SET_VALID_P (last_insn))
2913 if (sched_verbose >= 6)
2914 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2915 break;
2918 /* The special case: the last insn of the BB may be an
2919 ineligible_successor due to its SEQ_NO that was set on
2920 it as a bookkeeping. */
2921 if (last_insn != first_insn
2922 && is_ineligible_successor (last_insn, p))
2924 if (sched_verbose >= 6)
2925 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2926 break;
2929 if (DEBUG_INSN_P (last_insn))
2930 continue;
2932 if (end_ws > max_ws)
2934 /* We can reach max lookahead size at bb_header, so clean av_set
2935 first. */
2936 INSN_WS_LEVEL (last_insn) = global_level;
2938 if (sched_verbose >= 6)
2939 sel_print ("Insn %d is beyond the software lookahead window size\n",
2940 INSN_UID (last_insn));
2941 break;
2944 end_ws++;
2947 /* Get the valid av_set into AV above the LAST_INSN to start backward
2948 computation from. It either will be empty av_set or av_set computed from
2949 the successors on the last insn of the current bb. */
2950 if (last_insn != after_bb_end)
2952 av = NULL;
2954 /* This is needed only to obtain av_sets that are identical to
2955 those computed by the old compute_av_set version. */
2956 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2957 av_set_add (&av, INSN_EXPR (last_insn));
2959 else
2960 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2961 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2963 /* Compute av_set in AV starting from below the LAST_INSN up to
2964 location above the FIRST_INSN. */
2965 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2966 cur_insn = PREV_INSN (cur_insn))
2967 if (!INSN_NOP_P (cur_insn))
2969 expr_t expr;
2971 moveup_set_expr (&av, cur_insn, false);
2973 /* If the expression for CUR_INSN is already in the set,
2974 replace it by the new one. */
2975 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2976 if (expr != NULL)
2978 clear_expr (expr);
2979 copy_expr (expr, INSN_EXPR (cur_insn));
2981 else
2982 av_set_add (&av, INSN_EXPR (cur_insn));
2985 /* Clear stale bb_av_set. */
2986 if (sel_bb_head_p (first_insn))
2988 av_set_clear (&BB_AV_SET (cur_bb));
2989 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2990 BB_AV_LEVEL (cur_bb) = global_level;
2993 if (sched_verbose >= 6)
2995 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
2996 dump_av_set (av);
2997 sel_print ("\n");
3000 ilist_remove (&p);
3001 return av;
3004 /* Compute av set before INSN.
3005 INSN - the current operation (actual rtx INSN)
3006 P - the current path, which is list of insns visited so far
3007 WS - software lookahead window size.
3008 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3009 if we want to save computed av_set in s_i_d, we should make a copy of it.
3011 In the resulting set we will have only expressions that don't have delay
3012 stalls and nonsubstitutable dependences. */
3013 static av_set_t
3014 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3016 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3019 /* Propagate a liveness set LV through INSN. */
3020 static void
3021 propagate_lv_set (regset lv, insn_t insn)
3023 gcc_assert (INSN_P (insn));
3025 if (INSN_NOP_P (insn))
3026 return;
3028 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3031 /* Return livness set at the end of BB. */
3032 static regset
3033 compute_live_after_bb (basic_block bb)
3035 edge e;
3036 edge_iterator ei;
3037 regset lv = get_clear_regset_from_pool ();
3039 gcc_assert (!ignore_first);
3041 FOR_EACH_EDGE (e, ei, bb->succs)
3042 if (sel_bb_empty_p (e->dest))
3044 if (! BB_LV_SET_VALID_P (e->dest))
3046 gcc_unreachable ();
3047 gcc_assert (BB_LV_SET (e->dest) == NULL);
3048 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3049 BB_LV_SET_VALID_P (e->dest) = true;
3051 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3053 else
3054 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3056 return lv;
3059 /* Compute the set of all live registers at the point before INSN and save
3060 it at INSN if INSN is bb header. */
3061 regset
3062 compute_live (insn_t insn)
3064 basic_block bb = BLOCK_FOR_INSN (insn);
3065 insn_t final, temp;
3066 regset lv;
3068 /* Return the valid set if we're already on it. */
3069 if (!ignore_first)
3071 regset src = NULL;
3073 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3074 src = BB_LV_SET (bb);
3075 else
3077 gcc_assert (in_current_region_p (bb));
3078 if (INSN_LIVE_VALID_P (insn))
3079 src = INSN_LIVE (insn);
3082 if (src)
3084 lv = get_regset_from_pool ();
3085 COPY_REG_SET (lv, src);
3087 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3089 COPY_REG_SET (BB_LV_SET (bb), lv);
3090 BB_LV_SET_VALID_P (bb) = true;
3093 return_regset_to_pool (lv);
3094 return lv;
3098 /* We've skipped the wrong lv_set. Don't skip the right one. */
3099 ignore_first = false;
3100 gcc_assert (in_current_region_p (bb));
3102 /* Find a valid LV set in this block or below, if needed.
3103 Start searching from the next insn: either ignore_first is true, or
3104 INSN doesn't have a correct live set. */
3105 temp = NEXT_INSN (insn);
3106 final = NEXT_INSN (BB_END (bb));
3107 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3108 temp = NEXT_INSN (temp);
3109 if (temp == final)
3111 lv = compute_live_after_bb (bb);
3112 temp = PREV_INSN (temp);
3114 else
3116 lv = get_regset_from_pool ();
3117 COPY_REG_SET (lv, INSN_LIVE (temp));
3120 /* Put correct lv sets on the insns which have bad sets. */
3121 final = PREV_INSN (insn);
3122 while (temp != final)
3124 propagate_lv_set (lv, temp);
3125 COPY_REG_SET (INSN_LIVE (temp), lv);
3126 INSN_LIVE_VALID_P (temp) = true;
3127 temp = PREV_INSN (temp);
3130 /* Also put it in a BB. */
3131 if (sel_bb_head_p (insn))
3133 basic_block bb = BLOCK_FOR_INSN (insn);
3135 COPY_REG_SET (BB_LV_SET (bb), lv);
3136 BB_LV_SET_VALID_P (bb) = true;
3139 /* We return LV to the pool, but will not clear it there. Thus we can
3140 legimatelly use LV till the next use of regset_pool_get (). */
3141 return_regset_to_pool (lv);
3142 return lv;
3145 /* Update liveness sets for INSN. */
3146 static inline void
3147 update_liveness_on_insn (rtx insn)
3149 ignore_first = true;
3150 compute_live (insn);
3153 /* Compute liveness below INSN and write it into REGS. */
3154 static inline void
3155 compute_live_below_insn (rtx insn, regset regs)
3157 rtx succ;
3158 succ_iterator si;
3160 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3161 IOR_REG_SET (regs, compute_live (succ));
3164 /* Update the data gathered in av and lv sets starting from INSN. */
3165 static void
3166 update_data_sets (rtx insn)
3168 update_liveness_on_insn (insn);
3169 if (sel_bb_head_p (insn))
3171 gcc_assert (AV_LEVEL (insn) != 0);
3172 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3173 compute_av_set (insn, NULL, 0, 0);
3178 /* Helper for move_op () and find_used_regs ().
3179 Return speculation type for which a check should be created on the place
3180 of INSN. EXPR is one of the original ops we are searching for. */
3181 static ds_t
3182 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3184 ds_t to_check_ds;
3185 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3187 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3189 if (targetm.sched.get_insn_checked_ds)
3190 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3192 if (spec_info != NULL
3193 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3194 already_checked_ds |= BEGIN_CONTROL;
3196 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3198 to_check_ds &= ~already_checked_ds;
3200 return to_check_ds;
3203 /* Find the set of registers that are unavailable for storing expres
3204 while moving ORIG_OPS up on the path starting from INSN due to
3205 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3207 All the original operations found during the traversal are saved in the
3208 ORIGINAL_INSNS list.
3210 REG_RENAME_P denotes the set of hardware registers that
3211 can not be used with renaming due to the register class restrictions,
3212 mode restrictions and other (the register we'll choose should be
3213 compatible class with the original uses, shouldn't be in call_used_regs,
3214 should be HARD_REGNO_RENAME_OK etc).
3216 Returns TRUE if we've found all original insns, FALSE otherwise.
3218 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3219 to traverse the code motion paths. This helper function finds registers
3220 that are not available for storing expres while moving ORIG_OPS up on the
3221 path starting from INSN. A register considered as used on the moving path,
3222 if one of the following conditions is not satisfied:
3224 (1) a register not set or read on any path from xi to an instance of
3225 the original operation,
3226 (2) not among the live registers of the point immediately following the
3227 first original operation on a given downward path, except for the
3228 original target register of the operation,
3229 (3) not live on the other path of any conditional branch that is passed
3230 by the operation, in case original operations are not present on
3231 both paths of the conditional branch.
3233 All the original operations found during the traversal are saved in the
3234 ORIGINAL_INSNS list.
3236 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3237 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3238 to unavailable hard regs at the point original operation is found. */
3240 static bool
3241 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3242 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3244 def_list_iterator i;
3245 def_t def;
3246 int res;
3247 bool needs_spec_check_p = false;
3248 expr_t expr;
3249 av_set_iterator expr_iter;
3250 struct fur_static_params sparams;
3251 struct cmpd_local_params lparams;
3253 /* We haven't visited any blocks yet. */
3254 bitmap_clear (code_motion_visited_blocks);
3256 /* Init parameters for code_motion_path_driver. */
3257 sparams.crosses_call = false;
3258 sparams.original_insns = original_insns;
3259 sparams.used_regs = used_regs;
3261 /* Set the appropriate hooks and data. */
3262 code_motion_path_driver_info = &fur_hooks;
3264 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3266 reg_rename_p->crosses_call |= sparams.crosses_call;
3268 gcc_assert (res == 1);
3269 gcc_assert (original_insns && *original_insns);
3271 /* ??? We calculate whether an expression needs a check when computing
3272 av sets. This information is not as precise as it could be due to
3273 merging this bit in merge_expr. We can do better in find_used_regs,
3274 but we want to avoid multiple traversals of the same code motion
3275 paths. */
3276 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3277 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3279 /* Mark hardware regs in REG_RENAME_P that are not suitable
3280 for renaming expr in INSN due to hardware restrictions (register class,
3281 modes compatibility etc). */
3282 FOR_EACH_DEF (def, i, *original_insns)
3284 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3286 if (VINSN_SEPARABLE_P (vinsn))
3287 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3289 /* Do not allow clobbering of ld.[sa] address in case some of the
3290 original operations need a check. */
3291 if (needs_spec_check_p)
3292 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3295 return true;
3299 /* Functions to choose the best insn from available ones. */
3301 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3302 static int
3303 sel_target_adjust_priority (expr_t expr)
3305 int priority = EXPR_PRIORITY (expr);
3306 int new_priority;
3308 if (targetm.sched.adjust_priority)
3309 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3310 else
3311 new_priority = priority;
3313 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3314 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3316 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3318 if (sched_verbose >= 4)
3319 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3320 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3321 EXPR_PRIORITY_ADJ (expr), new_priority);
3323 return new_priority;
3326 /* Rank two available exprs for schedule. Never return 0 here. */
3327 static int
3328 sel_rank_for_schedule (const void *x, const void *y)
3330 expr_t tmp = *(const expr_t *) y;
3331 expr_t tmp2 = *(const expr_t *) x;
3332 insn_t tmp_insn, tmp2_insn;
3333 vinsn_t tmp_vinsn, tmp2_vinsn;
3334 int val;
3336 tmp_vinsn = EXPR_VINSN (tmp);
3337 tmp2_vinsn = EXPR_VINSN (tmp2);
3338 tmp_insn = EXPR_INSN_RTX (tmp);
3339 tmp2_insn = EXPR_INSN_RTX (tmp2);
3341 /* Schedule debug insns as early as possible. */
3342 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3343 return -1;
3344 else if (DEBUG_INSN_P (tmp2_insn))
3345 return 1;
3347 /* Prefer SCHED_GROUP_P insns to any others. */
3348 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3350 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3351 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3353 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3354 cannot be cloned. */
3355 if (VINSN_UNIQUE_P (tmp2_vinsn))
3356 return 1;
3357 return -1;
3360 /* Discourage scheduling of speculative checks. */
3361 val = (sel_insn_is_speculation_check (tmp_insn)
3362 - sel_insn_is_speculation_check (tmp2_insn));
3363 if (val)
3364 return val;
3366 /* Prefer not scheduled insn over scheduled one. */
3367 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3369 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3370 if (val)
3371 return val;
3374 /* Prefer jump over non-jump instruction. */
3375 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3376 return -1;
3377 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3378 return 1;
3380 /* Prefer an expr with greater priority. */
3381 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3383 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3384 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3386 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3388 else
3389 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3390 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3391 if (val)
3392 return val;
3394 if (spec_info != NULL && spec_info->mask != 0)
3395 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3397 ds_t ds1, ds2;
3398 dw_t dw1, dw2;
3399 int dw;
3401 ds1 = EXPR_SPEC_DONE_DS (tmp);
3402 if (ds1)
3403 dw1 = ds_weak (ds1);
3404 else
3405 dw1 = NO_DEP_WEAK;
3407 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3408 if (ds2)
3409 dw2 = ds_weak (ds2);
3410 else
3411 dw2 = NO_DEP_WEAK;
3413 dw = dw2 - dw1;
3414 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3415 return dw;
3418 /* Prefer an old insn to a bookkeeping insn. */
3419 if (INSN_UID (tmp_insn) < first_emitted_uid
3420 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3421 return -1;
3422 if (INSN_UID (tmp_insn) >= first_emitted_uid
3423 && INSN_UID (tmp2_insn) < first_emitted_uid)
3424 return 1;
3426 /* Prefer an insn with smaller UID, as a last resort.
3427 We can't safely use INSN_LUID as it is defined only for those insns
3428 that are in the stream. */
3429 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3432 /* Filter out expressions from av set pointed to by AV_PTR
3433 that are pipelined too many times. */
3434 static void
3435 process_pipelined_exprs (av_set_t *av_ptr)
3437 expr_t expr;
3438 av_set_iterator si;
3440 /* Don't pipeline already pipelined code as that would increase
3441 number of unnecessary register moves. */
3442 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3444 if (EXPR_SCHED_TIMES (expr)
3445 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3446 av_set_iter_remove (&si);
3450 /* Filter speculative insns from AV_PTR if we don't want them. */
3451 static void
3452 process_spec_exprs (av_set_t *av_ptr)
3454 bool try_data_p = true;
3455 bool try_control_p = true;
3456 expr_t expr;
3457 av_set_iterator si;
3459 if (spec_info == NULL)
3460 return;
3462 /* Scan *AV_PTR to find out if we want to consider speculative
3463 instructions for scheduling. */
3464 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3466 ds_t ds;
3468 ds = EXPR_SPEC_DONE_DS (expr);
3470 /* The probability of a success is too low - don't speculate. */
3471 if ((ds & SPECULATIVE)
3472 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3473 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3474 || (pipelining_p && false
3475 && (ds & DATA_SPEC)
3476 && (ds & CONTROL_SPEC))))
3478 av_set_iter_remove (&si);
3479 continue;
3482 if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3483 && !(ds & BEGIN_DATA))
3484 try_data_p = false;
3486 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3487 && !(ds & BEGIN_CONTROL))
3488 try_control_p = false;
3491 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3493 ds_t ds;
3495 ds = EXPR_SPEC_DONE_DS (expr);
3497 if (ds & SPECULATIVE)
3499 if ((ds & BEGIN_DATA) && !try_data_p)
3500 /* We don't want any data speculative instructions right
3501 now. */
3502 av_set_iter_remove (&si);
3504 if ((ds & BEGIN_CONTROL) && !try_control_p)
3505 /* We don't want any control speculative instructions right
3506 now. */
3507 av_set_iter_remove (&si);
3512 /* Search for any use-like insns in AV_PTR and decide on scheduling
3513 them. Return one when found, and NULL otherwise.
3514 Note that we check here whether a USE could be scheduled to avoid
3515 an infinite loop later. */
3516 static expr_t
3517 process_use_exprs (av_set_t *av_ptr)
3519 expr_t expr;
3520 av_set_iterator si;
3521 bool uses_present_p = false;
3522 bool try_uses_p = true;
3524 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3526 /* This will also initialize INSN_CODE for later use. */
3527 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3529 /* If we have a USE in *AV_PTR that was not scheduled yet,
3530 do so because it will do good only. */
3531 if (EXPR_SCHED_TIMES (expr) <= 0)
3533 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3534 return expr;
3536 av_set_iter_remove (&si);
3538 else
3540 gcc_assert (pipelining_p);
3542 uses_present_p = true;
3545 else
3546 try_uses_p = false;
3549 if (uses_present_p)
3551 /* If we don't want to schedule any USEs right now and we have some
3552 in *AV_PTR, remove them, else just return the first one found. */
3553 if (!try_uses_p)
3555 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3556 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3557 av_set_iter_remove (&si);
3559 else
3561 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3563 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3565 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3566 return expr;
3568 av_set_iter_remove (&si);
3573 return NULL;
3576 /* Lookup EXPR in VINSN_VEC and return TRUE if found. */
3577 static bool
3578 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3580 vinsn_t vinsn;
3581 int n;
3583 FOR_EACH_VEC_ELT (vinsn_t, vinsn_vec, n, vinsn)
3584 if (VINSN_SEPARABLE_P (vinsn))
3586 if (vinsn_equal_p (vinsn, EXPR_VINSN (expr)))
3587 return true;
3589 else
3591 /* For non-separable instructions, the blocking insn can have
3592 another pattern due to substitution, and we can't choose
3593 different register as in the above case. Check all registers
3594 being written instead. */
3595 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3596 VINSN_REG_SETS (EXPR_VINSN (expr))))
3597 return true;
3600 return false;
3603 #ifdef ENABLE_CHECKING
3604 /* Return true if either of expressions from ORIG_OPS can be blocked
3605 by previously created bookkeeping code. STATIC_PARAMS points to static
3606 parameters of move_op. */
3607 static bool
3608 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3610 expr_t expr;
3611 av_set_iterator iter;
3612 moveop_static_params_p sparams;
3614 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3615 created while scheduling on another fence. */
3616 FOR_EACH_EXPR (expr, iter, orig_ops)
3617 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3618 return true;
3620 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3621 sparams = (moveop_static_params_p) static_params;
3623 /* Expressions can be also blocked by bookkeeping created during current
3624 move_op. */
3625 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3626 FOR_EACH_EXPR (expr, iter, orig_ops)
3627 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3628 return true;
3630 /* Expressions in ORIG_OPS may have wrong destination register due to
3631 renaming. Check with the right register instead. */
3632 if (sparams->dest && REG_P (sparams->dest))
3634 unsigned regno = REGNO (sparams->dest);
3635 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3637 if (bitmap_bit_p (VINSN_REG_SETS (failed_vinsn), regno)
3638 || bitmap_bit_p (VINSN_REG_USES (failed_vinsn), regno)
3639 || bitmap_bit_p (VINSN_REG_CLOBBERS (failed_vinsn), regno))
3640 return true;
3643 return false;
3645 #endif
3647 /* Clear VINSN_VEC and detach vinsns. */
3648 static void
3649 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3651 unsigned len = VEC_length (vinsn_t, *vinsn_vec);
3652 if (len > 0)
3654 vinsn_t vinsn;
3655 int n;
3657 FOR_EACH_VEC_ELT (vinsn_t, *vinsn_vec, n, vinsn)
3658 vinsn_detach (vinsn);
3659 VEC_block_remove (vinsn_t, *vinsn_vec, 0, len);
3663 /* Add the vinsn of EXPR to the VINSN_VEC. */
3664 static void
3665 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3667 vinsn_attach (EXPR_VINSN (expr));
3668 VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr));
3671 /* Free the vector representing blocked expressions. */
3672 static void
3673 vinsn_vec_free (vinsn_vec_t *vinsn_vec)
3675 if (*vinsn_vec)
3676 VEC_free (vinsn_t, heap, *vinsn_vec);
3679 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3681 void sel_add_to_insn_priority (rtx insn, int amount)
3683 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3685 if (sched_verbose >= 2)
3686 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3687 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3688 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3691 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3692 true if there is something to schedule. BNDS and FENCE are current
3693 boundaries and fence, respectively. If we need to stall for some cycles
3694 before an expr from AV would become available, write this number to
3695 *PNEED_STALL. */
3696 static bool
3697 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3698 int *pneed_stall)
3700 av_set_iterator si;
3701 expr_t expr;
3702 int sched_next_worked = 0, stalled, n;
3703 static int av_max_prio, est_ticks_till_branch;
3704 int min_need_stall = -1;
3705 deps_t dc = BND_DC (BLIST_BND (bnds));
3707 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3708 already scheduled. */
3709 if (av == NULL)
3710 return false;
3712 /* Empty vector from the previous stuff. */
3713 if (VEC_length (expr_t, vec_av_set) > 0)
3714 VEC_block_remove (expr_t, vec_av_set, 0, VEC_length (expr_t, vec_av_set));
3716 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3717 for each insn. */
3718 gcc_assert (VEC_empty (expr_t, vec_av_set));
3719 FOR_EACH_EXPR (expr, si, av)
3721 VEC_safe_push (expr_t, heap, vec_av_set, expr);
3723 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3725 /* Adjust priority using target backend hook. */
3726 sel_target_adjust_priority (expr);
3729 /* Sort the vector. */
3730 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
3732 /* We record maximal priority of insns in av set for current instruction
3733 group. */
3734 if (FENCE_STARTS_CYCLE_P (fence))
3735 av_max_prio = est_ticks_till_branch = INT_MIN;
3737 /* Filter out inappropriate expressions. Loop's direction is reversed to
3738 visit "best" instructions first. We assume that VEC_unordered_remove
3739 moves last element in place of one being deleted. */
3740 for (n = VEC_length (expr_t, vec_av_set) - 1, stalled = 0; n >= 0; n--)
3742 expr_t expr = VEC_index (expr_t, vec_av_set, n);
3743 insn_t insn = EXPR_INSN_RTX (expr);
3744 signed char target_available;
3745 bool is_orig_reg_p = true;
3746 int need_cycles, new_prio;
3748 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3749 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3751 VEC_unordered_remove (expr_t, vec_av_set, n);
3752 continue;
3755 /* Set number of sched_next insns (just in case there
3756 could be several). */
3757 if (FENCE_SCHED_NEXT (fence))
3758 sched_next_worked++;
3760 /* Check all liveness requirements and try renaming.
3761 FIXME: try to minimize calls to this. */
3762 target_available = EXPR_TARGET_AVAILABLE (expr);
3764 /* If insn was already scheduled on the current fence,
3765 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3766 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3767 target_available = -1;
3769 /* If the availability of the EXPR is invalidated by the insertion of
3770 bookkeeping earlier, make sure that we won't choose this expr for
3771 scheduling if it's not separable, and if it is separable, then
3772 we have to recompute the set of available registers for it. */
3773 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3775 VEC_unordered_remove (expr_t, vec_av_set, n);
3776 if (sched_verbose >= 4)
3777 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3778 INSN_UID (insn));
3779 continue;
3782 if (target_available == true)
3784 /* Do nothing -- we can use an existing register. */
3785 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3787 else if (/* Non-separable instruction will never
3788 get another register. */
3789 (target_available == false
3790 && !EXPR_SEPARABLE_P (expr))
3791 /* Don't try to find a register for low-priority expression. */
3792 || (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename
3793 /* ??? FIXME: Don't try to rename data speculation. */
3794 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3795 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3797 VEC_unordered_remove (expr_t, vec_av_set, n);
3798 if (sched_verbose >= 4)
3799 sel_print ("Expr %d has no suitable target register\n",
3800 INSN_UID (insn));
3801 continue;
3804 /* Filter expressions that need to be renamed or speculated when
3805 pipelining, because compensating register copies or speculation
3806 checks are likely to be placed near the beginning of the loop,
3807 causing a stall. */
3808 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3809 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3811 /* Estimation of number of cycles until loop branch for
3812 renaming/speculation to be successful. */
3813 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3815 if ((int) current_loop_nest->ninsns < 9)
3817 VEC_unordered_remove (expr_t, vec_av_set, n);
3818 if (sched_verbose >= 4)
3819 sel_print ("Pipelining expr %d will likely cause stall\n",
3820 INSN_UID (insn));
3821 continue;
3824 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3825 < need_n_ticks_till_branch * issue_rate / 2
3826 && est_ticks_till_branch < need_n_ticks_till_branch)
3828 VEC_unordered_remove (expr_t, vec_av_set, n);
3829 if (sched_verbose >= 4)
3830 sel_print ("Pipelining expr %d will likely cause stall\n",
3831 INSN_UID (insn));
3832 continue;
3836 /* We want to schedule speculation checks as late as possible. Discard
3837 them from av set if there are instructions with higher priority. */
3838 if (sel_insn_is_speculation_check (insn)
3839 && EXPR_PRIORITY (expr) < av_max_prio)
3841 stalled++;
3842 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3843 VEC_unordered_remove (expr_t, vec_av_set, n);
3844 if (sched_verbose >= 4)
3845 sel_print ("Delaying speculation check %d until its first use\n",
3846 INSN_UID (insn));
3847 continue;
3850 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3851 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3852 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3854 /* Don't allow any insns whose data is not yet ready.
3855 Check first whether we've already tried them and failed. */
3856 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3858 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3859 - FENCE_CYCLE (fence));
3860 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3861 est_ticks_till_branch = MAX (est_ticks_till_branch,
3862 EXPR_PRIORITY (expr) + need_cycles);
3864 if (need_cycles > 0)
3866 stalled++;
3867 min_need_stall = (min_need_stall < 0
3868 ? need_cycles
3869 : MIN (min_need_stall, need_cycles));
3870 VEC_unordered_remove (expr_t, vec_av_set, n);
3872 if (sched_verbose >= 4)
3873 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3874 INSN_UID (insn),
3875 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3876 continue;
3880 /* Now resort to dependence analysis to find whether EXPR might be
3881 stalled due to dependencies from FENCE's context. */
3882 need_cycles = tick_check_p (expr, dc, fence);
3883 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3885 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3886 est_ticks_till_branch = MAX (est_ticks_till_branch,
3887 new_prio);
3889 if (need_cycles > 0)
3891 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3893 int new_size = INSN_UID (insn) * 3 / 2;
3895 FENCE_READY_TICKS (fence)
3896 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3897 new_size, FENCE_READY_TICKS_SIZE (fence),
3898 sizeof (int));
3900 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3901 = FENCE_CYCLE (fence) + need_cycles;
3903 stalled++;
3904 min_need_stall = (min_need_stall < 0
3905 ? need_cycles
3906 : MIN (min_need_stall, need_cycles));
3908 VEC_unordered_remove (expr_t, vec_av_set, n);
3910 if (sched_verbose >= 4)
3911 sel_print ("Expr %d is not ready yet until cycle %d\n",
3912 INSN_UID (insn),
3913 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3914 continue;
3917 if (sched_verbose >= 4)
3918 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3919 min_need_stall = 0;
3922 /* Clear SCHED_NEXT. */
3923 if (FENCE_SCHED_NEXT (fence))
3925 gcc_assert (sched_next_worked == 1);
3926 FENCE_SCHED_NEXT (fence) = NULL_RTX;
3929 /* No need to stall if this variable was not initialized. */
3930 if (min_need_stall < 0)
3931 min_need_stall = 0;
3933 if (VEC_empty (expr_t, vec_av_set))
3935 /* We need to set *pneed_stall here, because later we skip this code
3936 when ready list is empty. */
3937 *pneed_stall = min_need_stall;
3938 return false;
3940 else
3941 gcc_assert (min_need_stall == 0);
3943 /* Sort the vector. */
3944 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
3946 if (sched_verbose >= 4)
3948 sel_print ("Total ready exprs: %d, stalled: %d\n",
3949 VEC_length (expr_t, vec_av_set), stalled);
3950 sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set));
3951 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3952 dump_expr (expr);
3953 sel_print ("\n");
3956 *pneed_stall = 0;
3957 return true;
3960 /* Convert a vectored and sorted av set to the ready list that
3961 the rest of the backend wants to see. */
3962 static void
3963 convert_vec_av_set_to_ready (void)
3965 int n;
3966 expr_t expr;
3968 /* Allocate and fill the ready list from the sorted vector. */
3969 ready.n_ready = VEC_length (expr_t, vec_av_set);
3970 ready.first = ready.n_ready - 1;
3972 gcc_assert (ready.n_ready > 0);
3974 if (ready.n_ready > max_issue_size)
3976 max_issue_size = ready.n_ready;
3977 sched_extend_ready_list (ready.n_ready);
3980 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3982 vinsn_t vi = EXPR_VINSN (expr);
3983 insn_t insn = VINSN_INSN_RTX (vi);
3985 ready_try[n] = 0;
3986 ready.vec[n] = insn;
3990 /* Initialize ready list from *AV_PTR for the max_issue () call.
3991 If any unrecognizable insn found in *AV_PTR, return it (and skip
3992 max_issue). BND and FENCE are current boundary and fence,
3993 respectively. If we need to stall for some cycles before an expr
3994 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3995 static expr_t
3996 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3997 int *pneed_stall)
3999 expr_t expr;
4001 /* We do not support multiple boundaries per fence. */
4002 gcc_assert (BLIST_NEXT (bnds) == NULL);
4004 /* Process expressions required special handling, i.e. pipelined,
4005 speculative and recog() < 0 expressions first. */
4006 process_pipelined_exprs (av_ptr);
4007 process_spec_exprs (av_ptr);
4009 /* A USE could be scheduled immediately. */
4010 expr = process_use_exprs (av_ptr);
4011 if (expr)
4013 *pneed_stall = 0;
4014 return expr;
4017 /* Turn the av set to a vector for sorting. */
4018 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4020 ready.n_ready = 0;
4021 return NULL;
4024 /* Build the final ready list. */
4025 convert_vec_av_set_to_ready ();
4026 return NULL;
4029 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4030 static bool
4031 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4033 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4034 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4035 : FENCE_CYCLE (fence) - 1;
4036 bool res = false;
4037 int sort_p = 0;
4039 if (!targetm.sched.dfa_new_cycle)
4040 return false;
4042 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4044 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4045 insn, last_scheduled_cycle,
4046 FENCE_CYCLE (fence), &sort_p))
4048 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4049 advance_one_cycle (fence);
4050 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4051 res = true;
4054 return res;
4057 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4058 we can issue. FENCE is the current fence. */
4059 static int
4060 invoke_reorder_hooks (fence_t fence)
4062 int issue_more;
4063 bool ran_hook = false;
4065 /* Call the reorder hook at the beginning of the cycle, and call
4066 the reorder2 hook in the middle of the cycle. */
4067 if (FENCE_ISSUED_INSNS (fence) == 0)
4069 if (targetm.sched.reorder
4070 && !SCHED_GROUP_P (ready_element (&ready, 0))
4071 && ready.n_ready > 1)
4073 /* Don't give reorder the most prioritized insn as it can break
4074 pipelining. */
4075 if (pipelining_p)
4076 --ready.n_ready;
4078 issue_more
4079 = targetm.sched.reorder (sched_dump, sched_verbose,
4080 ready_lastpos (&ready),
4081 &ready.n_ready, FENCE_CYCLE (fence));
4083 if (pipelining_p)
4084 ++ready.n_ready;
4086 ran_hook = true;
4088 else
4089 /* Initialize can_issue_more for variable_issue. */
4090 issue_more = issue_rate;
4092 else if (targetm.sched.reorder2
4093 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4095 if (ready.n_ready == 1)
4096 issue_more =
4097 targetm.sched.reorder2 (sched_dump, sched_verbose,
4098 ready_lastpos (&ready),
4099 &ready.n_ready, FENCE_CYCLE (fence));
4100 else
4102 if (pipelining_p)
4103 --ready.n_ready;
4105 issue_more =
4106 targetm.sched.reorder2 (sched_dump, sched_verbose,
4107 ready.n_ready
4108 ? ready_lastpos (&ready) : NULL,
4109 &ready.n_ready, FENCE_CYCLE (fence));
4111 if (pipelining_p)
4112 ++ready.n_ready;
4115 ran_hook = true;
4117 else
4118 issue_more = FENCE_ISSUE_MORE (fence);
4120 /* Ensure that ready list and vec_av_set are in line with each other,
4121 i.e. vec_av_set[i] == ready_element (&ready, i). */
4122 if (issue_more && ran_hook)
4124 int i, j, n;
4125 rtx *arr = ready.vec;
4126 expr_t *vec = VEC_address (expr_t, vec_av_set);
4128 for (i = 0, n = ready.n_ready; i < n; i++)
4129 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4131 expr_t tmp;
4133 for (j = i; j < n; j++)
4134 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4135 break;
4136 gcc_assert (j < n);
4138 tmp = vec[i];
4139 vec[i] = vec[j];
4140 vec[j] = tmp;
4144 return issue_more;
4147 /* Return an EXPR correponding to INDEX element of ready list, if
4148 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4149 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4150 ready.vec otherwise. */
4151 static inline expr_t
4152 find_expr_for_ready (int index, bool follow_ready_element)
4154 expr_t expr;
4155 int real_index;
4157 real_index = follow_ready_element ? ready.first - index : index;
4159 expr = VEC_index (expr_t, vec_av_set, real_index);
4160 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4162 return expr;
4165 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4166 of such insns found. */
4167 static int
4168 invoke_dfa_lookahead_guard (void)
4170 int i, n;
4171 bool have_hook
4172 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4174 if (sched_verbose >= 2)
4175 sel_print ("ready after reorder: ");
4177 for (i = 0, n = 0; i < ready.n_ready; i++)
4179 expr_t expr;
4180 insn_t insn;
4181 int r;
4183 /* In this loop insn is Ith element of the ready list given by
4184 ready_element, not Ith element of ready.vec. */
4185 insn = ready_element (&ready, i);
4187 if (! have_hook || i == 0)
4188 r = 0;
4189 else
4190 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
4192 gcc_assert (INSN_CODE (insn) >= 0);
4194 /* Only insns with ready_try = 0 can get here
4195 from fill_ready_list. */
4196 gcc_assert (ready_try [i] == 0);
4197 ready_try[i] = r;
4198 if (!r)
4199 n++;
4201 expr = find_expr_for_ready (i, true);
4203 if (sched_verbose >= 2)
4205 dump_vinsn (EXPR_VINSN (expr));
4206 sel_print (":%d; ", ready_try[i]);
4210 if (sched_verbose >= 2)
4211 sel_print ("\n");
4212 return n;
4215 /* Calculate the number of privileged insns and return it. */
4216 static int
4217 calculate_privileged_insns (void)
4219 expr_t cur_expr, min_spec_expr = NULL;
4220 int privileged_n = 0, i;
4222 for (i = 0; i < ready.n_ready; i++)
4224 if (ready_try[i])
4225 continue;
4227 if (! min_spec_expr)
4228 min_spec_expr = find_expr_for_ready (i, true);
4230 cur_expr = find_expr_for_ready (i, true);
4232 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4233 break;
4235 ++privileged_n;
4238 if (i == ready.n_ready)
4239 privileged_n = 0;
4241 if (sched_verbose >= 2)
4242 sel_print ("privileged_n: %d insns with SPEC %d\n",
4243 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4244 return privileged_n;
4247 /* Call the rest of the hooks after the choice was made. Return
4248 the number of insns that still can be issued given that the current
4249 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4250 and the insn chosen for scheduling, respectively. */
4251 static int
4252 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4254 gcc_assert (INSN_P (best_insn));
4256 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4257 sel_dfa_new_cycle (best_insn, fence);
4259 if (targetm.sched.variable_issue)
4261 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4262 issue_more =
4263 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4264 issue_more);
4265 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4267 else if (GET_CODE (PATTERN (best_insn)) != USE
4268 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4269 issue_more--;
4271 return issue_more;
4274 /* Estimate the cost of issuing INSN on DFA state STATE. */
4275 static int
4276 estimate_insn_cost (rtx insn, state_t state)
4278 static state_t temp = NULL;
4279 int cost;
4281 if (!temp)
4282 temp = xmalloc (dfa_state_size);
4284 memcpy (temp, state, dfa_state_size);
4285 cost = state_transition (temp, insn);
4287 if (cost < 0)
4288 return 0;
4289 else if (cost == 0)
4290 return 1;
4291 return cost;
4294 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4295 This function properly handles ASMs, USEs etc. */
4296 static int
4297 get_expr_cost (expr_t expr, fence_t fence)
4299 rtx insn = EXPR_INSN_RTX (expr);
4301 if (recog_memoized (insn) < 0)
4303 if (!FENCE_STARTS_CYCLE_P (fence)
4304 && INSN_ASM_P (insn))
4305 /* This is asm insn which is tryed to be issued on the
4306 cycle not first. Issue it on the next cycle. */
4307 return 1;
4308 else
4309 /* A USE insn, or something else we don't need to
4310 understand. We can't pass these directly to
4311 state_transition because it will trigger a
4312 fatal error for unrecognizable insns. */
4313 return 0;
4315 else
4316 return estimate_insn_cost (insn, FENCE_STATE (fence));
4319 /* Find the best insn for scheduling, either via max_issue or just take
4320 the most prioritized available. */
4321 static int
4322 choose_best_insn (fence_t fence, int privileged_n, int *index)
4324 int can_issue = 0;
4326 if (dfa_lookahead > 0)
4328 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4329 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4330 can_issue = max_issue (&ready, privileged_n,
4331 FENCE_STATE (fence), true, index);
4332 if (sched_verbose >= 2)
4333 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4334 can_issue, FENCE_ISSUED_INSNS (fence));
4336 else
4338 /* We can't use max_issue; just return the first available element. */
4339 int i;
4341 for (i = 0; i < ready.n_ready; i++)
4343 expr_t expr = find_expr_for_ready (i, true);
4345 if (get_expr_cost (expr, fence) < 1)
4347 can_issue = can_issue_more;
4348 *index = i;
4350 if (sched_verbose >= 2)
4351 sel_print ("using %dth insn from the ready list\n", i + 1);
4353 break;
4357 if (i == ready.n_ready)
4359 can_issue = 0;
4360 *index = -1;
4364 return can_issue;
4367 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4368 BNDS and FENCE are current boundaries and scheduling fence respectively.
4369 Return the expr found and NULL if nothing can be issued atm.
4370 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4371 static expr_t
4372 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4373 int *pneed_stall)
4375 expr_t best;
4377 /* Choose the best insn for scheduling via:
4378 1) sorting the ready list based on priority;
4379 2) calling the reorder hook;
4380 3) calling max_issue. */
4381 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4382 if (best == NULL && ready.n_ready > 0)
4384 int privileged_n, index;
4386 can_issue_more = invoke_reorder_hooks (fence);
4387 if (can_issue_more > 0)
4389 /* Try choosing the best insn until we find one that is could be
4390 scheduled due to liveness restrictions on its destination register.
4391 In the future, we'd like to choose once and then just probe insns
4392 in the order of their priority. */
4393 invoke_dfa_lookahead_guard ();
4394 privileged_n = calculate_privileged_insns ();
4395 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4396 if (can_issue_more)
4397 best = find_expr_for_ready (index, true);
4399 /* We had some available insns, so if we can't issue them,
4400 we have a stall. */
4401 if (can_issue_more == 0)
4403 best = NULL;
4404 *pneed_stall = 1;
4408 if (best != NULL)
4410 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4411 can_issue_more);
4412 if (targetm.sched.variable_issue
4413 && can_issue_more == 0)
4414 *pneed_stall = 1;
4417 if (sched_verbose >= 2)
4419 if (best != NULL)
4421 sel_print ("Best expression (vliw form): ");
4422 dump_expr (best);
4423 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4425 else
4426 sel_print ("No best expr found!\n");
4429 return best;
4433 /* Functions that implement the core of the scheduler. */
4436 /* Emit an instruction from EXPR with SEQNO and VINSN after
4437 PLACE_TO_INSERT. */
4438 static insn_t
4439 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4440 insn_t place_to_insert)
4442 /* This assert fails when we have identical instructions
4443 one of which dominates the other. In this case move_op ()
4444 finds the first instruction and doesn't search for second one.
4445 The solution would be to compute av_set after the first found
4446 insn and, if insn present in that set, continue searching.
4447 For now we workaround this issue in move_op. */
4448 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4450 if (EXPR_WAS_RENAMED (expr))
4452 unsigned regno = expr_dest_regno (expr);
4454 if (HARD_REGISTER_NUM_P (regno))
4456 df_set_regs_ever_live (regno, true);
4457 reg_rename_tick[regno] = ++reg_rename_this_tick;
4461 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4462 place_to_insert);
4465 /* Return TRUE if BB can hold bookkeeping code. */
4466 static bool
4467 block_valid_for_bookkeeping_p (basic_block bb)
4469 insn_t bb_end = BB_END (bb);
4471 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4472 return false;
4474 if (INSN_P (bb_end))
4476 if (INSN_SCHED_TIMES (bb_end) > 0)
4477 return false;
4479 else
4480 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4482 return true;
4485 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4486 into E2->dest, except from E1->src (there may be a sequence of empty basic
4487 blocks between E1->src and E2->dest). Return found block, or NULL if new
4488 one must be created. If LAX holds, don't assume there is a simple path
4489 from E1->src to E2->dest. */
4490 static basic_block
4491 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4493 basic_block candidate_block = NULL;
4494 edge e;
4496 /* Loop over edges from E1 to E2, inclusive. */
4497 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
4499 if (EDGE_COUNT (e->dest->preds) == 2)
4501 if (candidate_block == NULL)
4502 candidate_block = (EDGE_PRED (e->dest, 0) == e
4503 ? EDGE_PRED (e->dest, 1)->src
4504 : EDGE_PRED (e->dest, 0)->src);
4505 else
4506 /* Found additional edge leading to path from e1 to e2
4507 from aside. */
4508 return NULL;
4510 else if (EDGE_COUNT (e->dest->preds) > 2)
4511 /* Several edges leading to path from e1 to e2 from aside. */
4512 return NULL;
4514 if (e == e2)
4515 return ((!lax || candidate_block)
4516 && block_valid_for_bookkeeping_p (candidate_block)
4517 ? candidate_block
4518 : NULL);
4520 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4521 return NULL;
4524 if (lax)
4525 return NULL;
4527 gcc_unreachable ();
4530 /* Create new basic block for bookkeeping code for path(s) incoming into
4531 E2->dest, except from E1->src. Return created block. */
4532 static basic_block
4533 create_block_for_bookkeeping (edge e1, edge e2)
4535 basic_block new_bb, bb = e2->dest;
4537 /* Check that we don't spoil the loop structure. */
4538 if (current_loop_nest)
4540 basic_block latch = current_loop_nest->latch;
4542 /* We do not split header. */
4543 gcc_assert (e2->dest != current_loop_nest->header);
4545 /* We do not redirect the only edge to the latch block. */
4546 gcc_assert (e1->dest != latch
4547 || !single_pred_p (latch)
4548 || e1 != single_pred_edge (latch));
4551 /* Split BB to insert BOOK_INSN there. */
4552 new_bb = sched_split_block (bb, NULL);
4554 /* Move note_list from the upper bb. */
4555 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4556 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4557 BB_NOTE_LIST (bb) = NULL_RTX;
4559 gcc_assert (e2->dest == bb);
4561 /* Skip block for bookkeeping copy when leaving E1->src. */
4562 if (e1->flags & EDGE_FALLTHRU)
4563 sel_redirect_edge_and_branch_force (e1, new_bb);
4564 else
4565 sel_redirect_edge_and_branch (e1, new_bb);
4567 gcc_assert (e1->dest == new_bb);
4568 gcc_assert (sel_bb_empty_p (bb));
4570 /* To keep basic block numbers in sync between debug and non-debug
4571 compilations, we have to rotate blocks here. Consider that we
4572 started from (a,b)->d, (c,d)->e, and d contained only debug
4573 insns. It would have been removed before if the debug insns
4574 weren't there, so we'd have split e rather than d. So what we do
4575 now is to swap the block numbers of new_bb and
4576 single_succ(new_bb) == e, so that the insns that were in e before
4577 get the new block number. */
4579 if (MAY_HAVE_DEBUG_INSNS)
4581 basic_block succ;
4582 insn_t insn = sel_bb_head (new_bb);
4583 insn_t last;
4585 if (DEBUG_INSN_P (insn)
4586 && single_succ_p (new_bb)
4587 && (succ = single_succ (new_bb))
4588 && succ != EXIT_BLOCK_PTR
4589 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4591 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4592 insn = NEXT_INSN (insn);
4594 if (insn == last)
4596 sel_global_bb_info_def gbi;
4597 sel_region_bb_info_def rbi;
4598 int i;
4600 if (sched_verbose >= 2)
4601 sel_print ("Swapping block ids %i and %i\n",
4602 new_bb->index, succ->index);
4604 i = new_bb->index;
4605 new_bb->index = succ->index;
4606 succ->index = i;
4608 SET_BASIC_BLOCK (new_bb->index, new_bb);
4609 SET_BASIC_BLOCK (succ->index, succ);
4611 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4612 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4613 sizeof (gbi));
4614 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4616 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4617 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4618 sizeof (rbi));
4619 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4621 i = BLOCK_TO_BB (new_bb->index);
4622 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4623 BLOCK_TO_BB (succ->index) = i;
4625 i = CONTAINING_RGN (new_bb->index);
4626 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4627 CONTAINING_RGN (succ->index) = i;
4629 for (i = 0; i < current_nr_blocks; i++)
4630 if (BB_TO_BLOCK (i) == succ->index)
4631 BB_TO_BLOCK (i) = new_bb->index;
4632 else if (BB_TO_BLOCK (i) == new_bb->index)
4633 BB_TO_BLOCK (i) = succ->index;
4635 FOR_BB_INSNS (new_bb, insn)
4636 if (INSN_P (insn))
4637 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4639 FOR_BB_INSNS (succ, insn)
4640 if (INSN_P (insn))
4641 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4643 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4644 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4646 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4647 && LABEL_P (BB_HEAD (succ)));
4649 if (sched_verbose >= 4)
4650 sel_print ("Swapping code labels %i and %i\n",
4651 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4652 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4654 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4655 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4656 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4657 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4662 return bb;
4665 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4666 into E2->dest, except from E1->src. */
4667 static insn_t
4668 find_place_for_bookkeeping (edge e1, edge e2)
4670 insn_t place_to_insert;
4671 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4672 create new basic block, but insert bookkeeping there. */
4673 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4675 if (book_block)
4677 place_to_insert = BB_END (book_block);
4679 /* Don't use a block containing only debug insns for
4680 bookkeeping, this causes scheduling differences between debug
4681 and non-debug compilations, for the block would have been
4682 removed already. */
4683 if (DEBUG_INSN_P (place_to_insert))
4685 rtx insn = sel_bb_head (book_block);
4687 while (insn != place_to_insert &&
4688 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4689 insn = NEXT_INSN (insn);
4691 if (insn == place_to_insert)
4692 book_block = NULL;
4696 if (!book_block)
4698 book_block = create_block_for_bookkeeping (e1, e2);
4699 place_to_insert = BB_END (book_block);
4700 if (sched_verbose >= 9)
4701 sel_print ("New block is %i, split from bookkeeping block %i\n",
4702 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4704 else
4706 if (sched_verbose >= 9)
4707 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4710 /* If basic block ends with a jump, insert bookkeeping code right before it. */
4711 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4712 place_to_insert = PREV_INSN (place_to_insert);
4714 return place_to_insert;
4717 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4718 for JOIN_POINT. */
4719 static int
4720 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4722 int seqno;
4723 rtx next;
4725 /* Check if we are about to insert bookkeeping copy before a jump, and use
4726 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4727 next = NEXT_INSN (place_to_insert);
4728 if (INSN_P (next)
4729 && JUMP_P (next)
4730 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4732 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4733 seqno = INSN_SEQNO (next);
4735 else if (INSN_SEQNO (join_point) > 0)
4736 seqno = INSN_SEQNO (join_point);
4737 else
4739 seqno = get_seqno_by_preds (place_to_insert);
4741 /* Sometimes the fences can move in such a way that there will be
4742 no instructions with positive seqno around this bookkeeping.
4743 This means that there will be no way to get to it by a regular
4744 fence movement. Never mind because we pick up such pieces for
4745 rescheduling anyways, so any positive value will do for now. */
4746 if (seqno < 0)
4748 gcc_assert (pipelining_p);
4749 seqno = 1;
4753 gcc_assert (seqno > 0);
4754 return seqno;
4757 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4758 NEW_SEQNO to it. Return created insn. */
4759 static insn_t
4760 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4762 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4764 vinsn_t new_vinsn
4765 = create_vinsn_from_insn_rtx (new_insn_rtx,
4766 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4768 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4769 place_to_insert);
4771 INSN_SCHED_TIMES (new_insn) = 0;
4772 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4774 return new_insn;
4777 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4778 E2->dest, except from E1->src (there may be a sequence of empty blocks
4779 between E1->src and E2->dest). Return block containing the copy.
4780 All scheduler data is initialized for the newly created insn. */
4781 static basic_block
4782 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4784 insn_t join_point, place_to_insert, new_insn;
4785 int new_seqno;
4786 bool need_to_exchange_data_sets;
4788 if (sched_verbose >= 4)
4789 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4790 e2->dest->index);
4792 join_point = sel_bb_head (e2->dest);
4793 place_to_insert = find_place_for_bookkeeping (e1, e2);
4794 if (!place_to_insert)
4795 return NULL;
4796 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4797 need_to_exchange_data_sets
4798 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4800 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4802 /* When inserting bookkeeping insn in new block, av sets should be
4803 following: old basic block (that now holds bookkeeping) data sets are
4804 the same as was before generation of bookkeeping, and new basic block
4805 (that now hold all other insns of old basic block) data sets are
4806 invalid. So exchange data sets for these basic blocks as sel_split_block
4807 mistakenly exchanges them in this case. Cannot do it earlier because
4808 when single instruction is added to new basic block it should hold NULL
4809 lv_set. */
4810 if (need_to_exchange_data_sets)
4811 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4812 BLOCK_FOR_INSN (join_point));
4814 stat_bookkeeping_copies++;
4815 return BLOCK_FOR_INSN (new_insn);
4818 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4819 on FENCE, but we are unable to copy them. */
4820 static void
4821 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4823 expr_t expr;
4824 av_set_iterator i;
4826 /* An expression does not need bookkeeping if it is available on all paths
4827 from current block to original block and current block dominates
4828 original block. We check availability on all paths by examining
4829 EXPR_SPEC; this is not equivalent, because it may be positive even
4830 if expr is available on all paths (but if expr is not available on
4831 any path, EXPR_SPEC will be positive). */
4833 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4835 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4836 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4837 && (EXPR_SPEC (expr)
4838 || !EXPR_ORIG_BB_INDEX (expr)
4839 || !dominated_by_p (CDI_DOMINATORS,
4840 BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
4841 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4843 if (sched_verbose >= 4)
4844 sel_print ("Expr %d removed because it would need bookkeeping, which "
4845 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4846 av_set_iter_remove (&i);
4851 /* Moving conditional jump through some instructions.
4853 Consider example:
4855 ... <- current scheduling point
4856 NOTE BASIC BLOCK: <- bb header
4857 (p8) add r14=r14+0x9;;
4858 (p8) mov [r14]=r23
4859 (!p8) jump L1;;
4860 NOTE BASIC BLOCK:
4863 We can schedule jump one cycle earlier, than mov, because they cannot be
4864 executed together as their predicates are mutually exclusive.
4866 This is done in this way: first, new fallthrough basic block is created
4867 after jump (it is always can be done, because there already should be a
4868 fallthrough block, where control flow goes in case of predicate being true -
4869 in our example; otherwise there should be a dependence between those
4870 instructions and jump and we cannot schedule jump right now);
4871 next, all instructions between jump and current scheduling point are moved
4872 to this new block. And the result is this:
4874 NOTE BASIC BLOCK:
4875 (!p8) jump L1 <- current scheduling point
4876 NOTE BASIC BLOCK: <- bb header
4877 (p8) add r14=r14+0x9;;
4878 (p8) mov [r14]=r23
4879 NOTE BASIC BLOCK:
4882 static void
4883 move_cond_jump (rtx insn, bnd_t bnd)
4885 edge ft_edge;
4886 basic_block block_from, block_next, block_new, block_bnd, bb;
4887 rtx next, prev, link, head;
4889 block_from = BLOCK_FOR_INSN (insn);
4890 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4891 prev = BND_TO (bnd);
4893 #ifdef ENABLE_CHECKING
4894 /* Moving of jump should not cross any other jumps or beginnings of new
4895 basic blocks. The only exception is when we move a jump through
4896 mutually exclusive insns along fallthru edges. */
4897 if (block_from != block_bnd)
4899 bb = block_from;
4900 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4901 link = PREV_INSN (link))
4903 if (INSN_P (link))
4904 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4905 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4907 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4908 bb = BLOCK_FOR_INSN (link);
4912 #endif
4914 /* Jump is moved to the boundary. */
4915 next = PREV_INSN (insn);
4916 BND_TO (bnd) = insn;
4918 ft_edge = find_fallthru_edge_from (block_from);
4919 block_next = ft_edge->dest;
4920 /* There must be a fallthrough block (or where should go
4921 control flow in case of false jump predicate otherwise?). */
4922 gcc_assert (block_next);
4924 /* Create new empty basic block after source block. */
4925 block_new = sel_split_edge (ft_edge);
4926 gcc_assert (block_new->next_bb == block_next
4927 && block_from->next_bb == block_new);
4929 /* Move all instructions except INSN to BLOCK_NEW. */
4930 bb = block_bnd;
4931 head = BB_HEAD (block_new);
4932 while (bb != block_from->next_bb)
4934 rtx from, to;
4935 from = bb == block_bnd ? prev : sel_bb_head (bb);
4936 to = bb == block_from ? next : sel_bb_end (bb);
4938 /* The jump being moved can be the first insn in the block.
4939 In this case we don't have to move anything in this block. */
4940 if (NEXT_INSN (to) != from)
4942 reorder_insns (from, to, head);
4944 for (link = to; link != head; link = PREV_INSN (link))
4945 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4946 head = to;
4949 /* Cleanup possibly empty blocks left. */
4950 block_next = bb->next_bb;
4951 if (bb != block_from)
4952 tidy_control_flow (bb, false);
4953 bb = block_next;
4956 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4957 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4959 gcc_assert (!sel_bb_empty_p (block_from)
4960 && !sel_bb_empty_p (block_new));
4962 /* Update data sets for BLOCK_NEW to represent that INSN and
4963 instructions from the other branch of INSN is no longer
4964 available at BLOCK_NEW. */
4965 BB_AV_LEVEL (block_new) = global_level;
4966 gcc_assert (BB_LV_SET (block_new) == NULL);
4967 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4968 update_data_sets (sel_bb_head (block_new));
4970 /* INSN is a new basic block header - so prepare its data
4971 structures and update availability and liveness sets. */
4972 update_data_sets (insn);
4974 if (sched_verbose >= 4)
4975 sel_print ("Moving jump %d\n", INSN_UID (insn));
4978 /* Remove nops generated during move_op for preventing removal of empty
4979 basic blocks. */
4980 static void
4981 remove_temp_moveop_nops (bool full_tidying)
4983 int i;
4984 insn_t insn;
4986 FOR_EACH_VEC_ELT (insn_t, vec_temp_moveop_nops, i, insn)
4988 gcc_assert (INSN_NOP_P (insn));
4989 return_nop_to_pool (insn, full_tidying);
4992 /* Empty the vector. */
4993 if (VEC_length (insn_t, vec_temp_moveop_nops) > 0)
4994 VEC_block_remove (insn_t, vec_temp_moveop_nops, 0,
4995 VEC_length (insn_t, vec_temp_moveop_nops));
4998 /* Records the maximal UID before moving up an instruction. Used for
4999 distinguishing between bookkeeping copies and original insns. */
5000 static int max_uid_before_move_op = 0;
5002 /* Remove from AV_VLIW_P all instructions but next when debug counter
5003 tells us so. Next instruction is fetched from BNDS. */
5004 static void
5005 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5007 if (! dbg_cnt (sel_sched_insn_cnt))
5008 /* Leave only the next insn in av_vliw. */
5010 av_set_iterator av_it;
5011 expr_t expr;
5012 bnd_t bnd = BLIST_BND (bnds);
5013 insn_t next = BND_TO (bnd);
5015 gcc_assert (BLIST_NEXT (bnds) == NULL);
5017 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5018 if (EXPR_INSN_RTX (expr) != next)
5019 av_set_iter_remove (&av_it);
5023 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5024 the computed set to *AV_VLIW_P. */
5025 static void
5026 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5028 if (sched_verbose >= 2)
5030 sel_print ("Boundaries: ");
5031 dump_blist (bnds);
5032 sel_print ("\n");
5035 for (; bnds; bnds = BLIST_NEXT (bnds))
5037 bnd_t bnd = BLIST_BND (bnds);
5038 av_set_t av1_copy;
5039 insn_t bnd_to = BND_TO (bnd);
5041 /* Rewind BND->TO to the basic block header in case some bookkeeping
5042 instructions were inserted before BND->TO and it needs to be
5043 adjusted. */
5044 if (sel_bb_head_p (bnd_to))
5045 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5046 else
5047 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5049 bnd_to = PREV_INSN (bnd_to);
5050 if (sel_bb_head_p (bnd_to))
5051 break;
5054 if (BND_TO (bnd) != bnd_to)
5056 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5057 FENCE_INSN (fence) = bnd_to;
5058 BND_TO (bnd) = bnd_to;
5061 av_set_clear (&BND_AV (bnd));
5062 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5064 av_set_clear (&BND_AV1 (bnd));
5065 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5067 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5069 av1_copy = av_set_copy (BND_AV1 (bnd));
5070 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5073 if (sched_verbose >= 2)
5075 sel_print ("Available exprs (vliw form): ");
5076 dump_av_set (*av_vliw_p);
5077 sel_print ("\n");
5081 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5082 expression. When FOR_MOVEOP is true, also replace the register of
5083 expressions found with the register from EXPR_VLIW. */
5084 static av_set_t
5085 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5087 av_set_t expr_seq = NULL;
5088 expr_t expr;
5089 av_set_iterator i;
5091 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5093 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5095 if (for_moveop)
5097 /* The sequential expression has the right form to pass
5098 to move_op except when renaming happened. Put the
5099 correct register in EXPR then. */
5100 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5102 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5104 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5105 stat_renamed_scheduled++;
5107 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5108 This is needed when renaming came up with original
5109 register. */
5110 else if (EXPR_TARGET_AVAILABLE (expr)
5111 != EXPR_TARGET_AVAILABLE (expr_vliw))
5113 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5114 EXPR_TARGET_AVAILABLE (expr) = 1;
5117 if (EXPR_WAS_SUBSTITUTED (expr))
5118 stat_substitutions_total++;
5121 av_set_add (&expr_seq, expr);
5123 /* With substitution inside insn group, it is possible
5124 that more than one expression in expr_seq will correspond
5125 to expr_vliw. In this case, choose one as the attempt to
5126 move both leads to miscompiles. */
5127 break;
5131 if (for_moveop && sched_verbose >= 2)
5133 sel_print ("Best expression(s) (sequential form): ");
5134 dump_av_set (expr_seq);
5135 sel_print ("\n");
5138 return expr_seq;
5142 /* Move nop to previous block. */
5143 static void ATTRIBUTE_UNUSED
5144 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5146 insn_t prev_insn, next_insn, note;
5148 gcc_assert (sel_bb_head_p (nop)
5149 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5150 note = bb_note (BLOCK_FOR_INSN (nop));
5151 prev_insn = sel_bb_end (prev_bb);
5152 next_insn = NEXT_INSN (nop);
5153 gcc_assert (prev_insn != NULL_RTX
5154 && PREV_INSN (note) == prev_insn);
5156 NEXT_INSN (prev_insn) = nop;
5157 PREV_INSN (nop) = prev_insn;
5159 PREV_INSN (note) = nop;
5160 NEXT_INSN (note) = next_insn;
5162 NEXT_INSN (nop) = note;
5163 PREV_INSN (next_insn) = note;
5165 BB_END (prev_bb) = nop;
5166 BLOCK_FOR_INSN (nop) = prev_bb;
5169 /* Prepare a place to insert the chosen expression on BND. */
5170 static insn_t
5171 prepare_place_to_insert (bnd_t bnd)
5173 insn_t place_to_insert;
5175 /* Init place_to_insert before calling move_op, as the later
5176 can possibly remove BND_TO (bnd). */
5177 if (/* If this is not the first insn scheduled. */
5178 BND_PTR (bnd))
5180 /* Add it after last scheduled. */
5181 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5182 if (DEBUG_INSN_P (place_to_insert))
5184 ilist_t l = BND_PTR (bnd);
5185 while ((l = ILIST_NEXT (l)) &&
5186 DEBUG_INSN_P (ILIST_INSN (l)))
5188 if (!l)
5189 place_to_insert = NULL;
5192 else
5193 place_to_insert = NULL;
5195 if (!place_to_insert)
5197 /* Add it before BND_TO. The difference is in the
5198 basic block, where INSN will be added. */
5199 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5200 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5201 == BLOCK_FOR_INSN (BND_TO (bnd)));
5204 return place_to_insert;
5207 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5208 Return the expression to emit in C_EXPR. */
5209 static bool
5210 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5211 av_set_t expr_seq, expr_t c_expr)
5213 bool b, should_move;
5214 unsigned book_uid;
5215 bitmap_iterator bi;
5216 int n_bookkeeping_copies_before_moveop;
5218 /* Make a move. This call will remove the original operation,
5219 insert all necessary bookkeeping instructions and update the
5220 data sets. After that all we have to do is add the operation
5221 at before BND_TO (BND). */
5222 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5223 max_uid_before_move_op = get_max_uid ();
5224 bitmap_clear (current_copies);
5225 bitmap_clear (current_originators);
5227 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5228 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5230 /* We should be able to find the expression we've chosen for
5231 scheduling. */
5232 gcc_assert (b);
5234 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5235 stat_insns_needed_bookkeeping++;
5237 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5239 unsigned uid;
5240 bitmap_iterator bi;
5242 /* We allocate these bitmaps lazily. */
5243 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5244 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5246 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5247 current_originators);
5249 /* Transitively add all originators' originators. */
5250 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5251 if (INSN_ORIGINATORS_BY_UID (uid))
5252 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5253 INSN_ORIGINATORS_BY_UID (uid));
5256 return should_move;
5260 /* Debug a DFA state as an array of bytes. */
5261 static void
5262 debug_state (state_t state)
5264 unsigned char *p;
5265 unsigned int i, size = dfa_state_size;
5267 sel_print ("state (%u):", size);
5268 for (i = 0, p = (unsigned char *) state; i < size; i++)
5269 sel_print (" %d", p[i]);
5270 sel_print ("\n");
5273 /* Advance state on FENCE with INSN. Return true if INSN is
5274 an ASM, and we should advance state once more. */
5275 static bool
5276 advance_state_on_fence (fence_t fence, insn_t insn)
5278 bool asm_p;
5280 if (recog_memoized (insn) >= 0)
5282 int res;
5283 state_t temp_state = alloca (dfa_state_size);
5285 gcc_assert (!INSN_ASM_P (insn));
5286 asm_p = false;
5288 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5289 res = state_transition (FENCE_STATE (fence), insn);
5290 gcc_assert (res < 0);
5292 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5294 FENCE_ISSUED_INSNS (fence)++;
5296 /* We should never issue more than issue_rate insns. */
5297 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5298 gcc_unreachable ();
5301 else
5303 /* This could be an ASM insn which we'd like to schedule
5304 on the next cycle. */
5305 asm_p = INSN_ASM_P (insn);
5306 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5307 advance_one_cycle (fence);
5310 if (sched_verbose >= 2)
5311 debug_state (FENCE_STATE (fence));
5312 if (!DEBUG_INSN_P (insn))
5313 FENCE_STARTS_CYCLE_P (fence) = 0;
5314 FENCE_ISSUE_MORE (fence) = can_issue_more;
5315 return asm_p;
5318 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5319 is nonzero if we need to stall after issuing INSN. */
5320 static void
5321 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5323 bool asm_p;
5325 /* First, reflect that something is scheduled on this fence. */
5326 asm_p = advance_state_on_fence (fence, insn);
5327 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5328 VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn);
5329 if (SCHED_GROUP_P (insn))
5331 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5332 SCHED_GROUP_P (insn) = 0;
5334 else
5335 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5336 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5337 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5339 /* Set instruction scheduling info. This will be used in bundling,
5340 pipelining, tick computations etc. */
5341 ++INSN_SCHED_TIMES (insn);
5342 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5343 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5344 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5345 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5347 /* This does not account for adjust_cost hooks, just add the biggest
5348 constant the hook may add to the latency. TODO: make this
5349 a target dependent constant. */
5350 INSN_READY_CYCLE (insn)
5351 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5353 : maximal_insn_latency (insn) + 1);
5355 /* Change these fields last, as they're used above. */
5356 FENCE_AFTER_STALL_P (fence) = 0;
5357 if (asm_p || need_stall)
5358 advance_one_cycle (fence);
5360 /* Indicate that we've scheduled something on this fence. */
5361 FENCE_SCHEDULED_P (fence) = true;
5362 scheduled_something_on_previous_fence = true;
5364 /* Print debug information when insn's fields are updated. */
5365 if (sched_verbose >= 2)
5367 sel_print ("Scheduling insn: ");
5368 dump_insn_1 (insn, 1);
5369 sel_print ("\n");
5373 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5374 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5375 return it. */
5376 static blist_t *
5377 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5378 blist_t *bnds_tailp)
5380 succ_iterator si;
5381 insn_t succ;
5383 advance_deps_context (BND_DC (bnd), insn);
5384 FOR_EACH_SUCC_1 (succ, si, insn,
5385 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5387 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5389 ilist_add (&ptr, insn);
5391 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5392 && is_ineligible_successor (succ, ptr))
5394 ilist_clear (&ptr);
5395 continue;
5398 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5400 if (sched_verbose >= 9)
5401 sel_print ("Updating fence insn from %i to %i\n",
5402 INSN_UID (insn), INSN_UID (succ));
5403 FENCE_INSN (fence) = succ;
5405 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5406 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5409 blist_remove (bndsp);
5410 return bnds_tailp;
5413 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5414 static insn_t
5415 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5417 av_set_t expr_seq;
5418 expr_t c_expr = XALLOCA (expr_def);
5419 insn_t place_to_insert;
5420 insn_t insn;
5421 bool should_move;
5423 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5425 /* In case of scheduling a jump skipping some other instructions,
5426 prepare CFG. After this, jump is at the boundary and can be
5427 scheduled as usual insn by MOVE_OP. */
5428 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5430 insn = EXPR_INSN_RTX (expr_vliw);
5432 /* Speculative jumps are not handled. */
5433 if (insn != BND_TO (bnd)
5434 && !sel_insn_is_speculation_check (insn))
5435 move_cond_jump (insn, bnd);
5438 /* Find a place for C_EXPR to schedule. */
5439 place_to_insert = prepare_place_to_insert (bnd);
5440 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5441 clear_expr (c_expr);
5443 /* Add the instruction. The corner case to care about is when
5444 the expr_seq set has more than one expr, and we chose the one that
5445 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5446 we can't use it. Generate the new vinsn. */
5447 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5449 vinsn_t vinsn_new;
5451 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5452 change_vinsn_in_expr (expr_vliw, vinsn_new);
5453 should_move = false;
5455 if (should_move)
5456 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5457 else
5458 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5459 place_to_insert);
5461 /* Return the nops generated for preserving of data sets back
5462 into pool. */
5463 if (INSN_NOP_P (place_to_insert))
5464 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5465 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5467 av_set_clear (&expr_seq);
5469 /* Save the expression scheduled so to reset target availability if we'll
5470 meet it later on the same fence. */
5471 if (EXPR_WAS_RENAMED (expr_vliw))
5472 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5474 /* Check that the recent movement didn't destroyed loop
5475 structure. */
5476 gcc_assert (!pipelining_p
5477 || current_loop_nest == NULL
5478 || loop_latch_edge (current_loop_nest));
5479 return insn;
5482 /* Stall for N cycles on FENCE. */
5483 static void
5484 stall_for_cycles (fence_t fence, int n)
5486 int could_more;
5488 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5489 while (n--)
5490 advance_one_cycle (fence);
5491 if (could_more)
5492 FENCE_AFTER_STALL_P (fence) = 1;
5495 /* Gather a parallel group of insns at FENCE and assign their seqno
5496 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5497 list for later recalculation of seqnos. */
5498 static void
5499 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5501 blist_t bnds = NULL, *bnds_tailp;
5502 av_set_t av_vliw = NULL;
5503 insn_t insn = FENCE_INSN (fence);
5505 if (sched_verbose >= 2)
5506 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5507 INSN_UID (insn), FENCE_CYCLE (fence));
5509 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5510 bnds_tailp = &BLIST_NEXT (bnds);
5511 set_target_context (FENCE_TC (fence));
5512 can_issue_more = FENCE_ISSUE_MORE (fence);
5513 target_bb = INSN_BB (insn);
5515 /* Do while we can add any operation to the current group. */
5518 blist_t *bnds_tailp1, *bndsp;
5519 expr_t expr_vliw;
5520 int need_stall = false;
5521 int was_stall = 0, scheduled_insns = 0;
5522 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5523 int max_stall = pipelining_p ? 1 : 3;
5524 bool last_insn_was_debug = false;
5525 bool was_debug_bb_end_p = false;
5527 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5528 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5529 remove_insns_for_debug (bnds, &av_vliw);
5531 /* Return early if we have nothing to schedule. */
5532 if (av_vliw == NULL)
5533 break;
5535 /* Choose the best expression and, if needed, destination register
5536 for it. */
5539 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5540 if (! expr_vliw && need_stall)
5542 /* All expressions required a stall. Do not recompute av sets
5543 as we'll get the same answer (modulo the insns between
5544 the fence and its boundary, which will not be available for
5545 pipelining).
5546 If we are going to stall for too long, break to recompute av
5547 sets and bring more insns for pipelining. */
5548 was_stall++;
5549 if (need_stall <= 3)
5550 stall_for_cycles (fence, need_stall);
5551 else
5553 stall_for_cycles (fence, 1);
5554 break;
5558 while (! expr_vliw && need_stall);
5560 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5561 if (!expr_vliw)
5563 av_set_clear (&av_vliw);
5564 break;
5567 bndsp = &bnds;
5568 bnds_tailp1 = bnds_tailp;
5571 /* This code will be executed only once until we'd have several
5572 boundaries per fence. */
5574 bnd_t bnd = BLIST_BND (*bndsp);
5576 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5578 bndsp = &BLIST_NEXT (*bndsp);
5579 continue;
5582 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5583 last_insn_was_debug = DEBUG_INSN_P (insn);
5584 if (last_insn_was_debug)
5585 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5586 update_fence_and_insn (fence, insn, need_stall);
5587 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5589 /* Add insn to the list of scheduled on this cycle instructions. */
5590 ilist_add (*scheduled_insns_tailpp, insn);
5591 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5593 while (*bndsp != *bnds_tailp1);
5595 av_set_clear (&av_vliw);
5596 if (!last_insn_was_debug)
5597 scheduled_insns++;
5599 /* We currently support information about candidate blocks only for
5600 one 'target_bb' block. Hence we can't schedule after jump insn,
5601 as this will bring two boundaries and, hence, necessity to handle
5602 information for two or more blocks concurrently. */
5603 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5604 || (was_stall
5605 && (was_stall >= max_stall
5606 || scheduled_insns >= max_insns)))
5607 break;
5609 while (bnds);
5611 gcc_assert (!FENCE_BNDS (fence));
5613 /* Update boundaries of the FENCE. */
5614 while (bnds)
5616 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5618 if (ptr)
5620 insn = ILIST_INSN (ptr);
5622 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5623 ilist_add (&FENCE_BNDS (fence), insn);
5626 blist_remove (&bnds);
5629 /* Update target context on the fence. */
5630 reset_target_context (FENCE_TC (fence), false);
5633 /* All exprs in ORIG_OPS must have the same destination register or memory.
5634 Return that destination. */
5635 static rtx
5636 get_dest_from_orig_ops (av_set_t orig_ops)
5638 rtx dest = NULL_RTX;
5639 av_set_iterator av_it;
5640 expr_t expr;
5641 bool first_p = true;
5643 FOR_EACH_EXPR (expr, av_it, orig_ops)
5645 rtx x = EXPR_LHS (expr);
5647 if (first_p)
5649 first_p = false;
5650 dest = x;
5652 else
5653 gcc_assert (dest == x
5654 || (dest != NULL_RTX && x != NULL_RTX
5655 && rtx_equal_p (dest, x)));
5658 return dest;
5661 /* Update data sets for the bookkeeping block and record those expressions
5662 which become no longer available after inserting this bookkeeping. */
5663 static void
5664 update_and_record_unavailable_insns (basic_block book_block)
5666 av_set_iterator i;
5667 av_set_t old_av_set = NULL;
5668 expr_t cur_expr;
5669 rtx bb_end = sel_bb_end (book_block);
5671 /* First, get correct liveness in the bookkeeping block. The problem is
5672 the range between the bookeeping insn and the end of block. */
5673 update_liveness_on_insn (bb_end);
5674 if (control_flow_insn_p (bb_end))
5675 update_liveness_on_insn (PREV_INSN (bb_end));
5677 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5678 fence above, where we may choose to schedule an insn which is
5679 actually blocked from moving up with the bookkeeping we create here. */
5680 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5682 old_av_set = av_set_copy (BB_AV_SET (book_block));
5683 update_data_sets (sel_bb_head (book_block));
5685 /* Traverse all the expressions in the old av_set and check whether
5686 CUR_EXPR is in new AV_SET. */
5687 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5689 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5690 EXPR_VINSN (cur_expr));
5692 if (! new_expr
5693 /* In this case, we can just turn off the E_T_A bit, but we can't
5694 represent this information with the current vector. */
5695 || EXPR_TARGET_AVAILABLE (new_expr)
5696 != EXPR_TARGET_AVAILABLE (cur_expr))
5697 /* Unfortunately, the below code could be also fired up on
5698 separable insns.
5699 FIXME: add an example of how this could happen. */
5700 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5703 av_set_clear (&old_av_set);
5707 /* The main effect of this function is that sparams->c_expr is merged
5708 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5709 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5710 lparams->c_expr_merged is copied back to sparams->c_expr after all
5711 successors has been traversed. lparams->c_expr_local is an expr allocated
5712 on stack in the caller function, and is used if there is more than one
5713 successor.
5715 SUCC is one of the SUCCS_NORMAL successors of INSN,
5716 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5717 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5718 static void
5719 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5720 insn_t succ ATTRIBUTE_UNUSED,
5721 int moveop_drv_call_res,
5722 cmpd_local_params_p lparams, void *static_params)
5724 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5726 /* Nothing to do, if original expr wasn't found below. */
5727 if (moveop_drv_call_res != 1)
5728 return;
5730 /* If this is a first successor. */
5731 if (!lparams->c_expr_merged)
5733 lparams->c_expr_merged = sparams->c_expr;
5734 sparams->c_expr = lparams->c_expr_local;
5736 else
5738 /* We must merge all found expressions to get reasonable
5739 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5740 do so then we can first find the expr with epsilon
5741 speculation success probability and only then with the
5742 good probability. As a result the insn will get epsilon
5743 probability and will never be scheduled because of
5744 weakness_cutoff in find_best_expr.
5746 We call merge_expr_data here instead of merge_expr
5747 because due to speculation C_EXPR and X may have the
5748 same insns with different speculation types. And as of
5749 now such insns are considered non-equal.
5751 However, EXPR_SCHED_TIMES is different -- we must get
5752 SCHED_TIMES from a real insn, not a bookkeeping copy.
5753 We force this here. Instead, we may consider merging
5754 SCHED_TIMES to the maximum instead of minimum in the
5755 below function. */
5756 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5758 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5759 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5760 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5762 clear_expr (sparams->c_expr);
5766 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5768 SUCC is one of the SUCCS_NORMAL successors of INSN,
5769 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5770 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5771 STATIC_PARAMS contain USED_REGS set. */
5772 static void
5773 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5774 int moveop_drv_call_res,
5775 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5776 void *static_params)
5778 regset succ_live;
5779 fur_static_params_p sparams = (fur_static_params_p) static_params;
5781 /* Here we compute live regsets only for branches that do not lie
5782 on the code motion paths. These branches correspond to value
5783 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5784 for such branches code_motion_path_driver is not called. */
5785 if (moveop_drv_call_res != 0)
5786 return;
5788 /* Mark all registers that do not meet the following condition:
5789 (3) not live on the other path of any conditional branch
5790 that is passed by the operation, in case original
5791 operations are not present on both paths of the
5792 conditional branch. */
5793 succ_live = compute_live (succ);
5794 IOR_REG_SET (sparams->used_regs, succ_live);
5797 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5798 into SP->CEXPR. */
5799 static void
5800 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5802 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5804 sp->c_expr = lp->c_expr_merged;
5807 /* Track bookkeeping copies created, insns scheduled, and blocks for
5808 rescheduling when INSN is found by move_op. */
5809 static void
5810 track_scheduled_insns_and_blocks (rtx insn)
5812 /* Even if this insn can be a copy that will be removed during current move_op,
5813 we still need to count it as an originator. */
5814 bitmap_set_bit (current_originators, INSN_UID (insn));
5816 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5818 /* Note that original block needs to be rescheduled, as we pulled an
5819 instruction out of it. */
5820 if (INSN_SCHED_TIMES (insn) > 0)
5821 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5822 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5823 num_insns_scheduled++;
5826 /* For instructions we must immediately remove insn from the
5827 stream, so subsequent update_data_sets () won't include this
5828 insn into av_set.
5829 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5830 if (INSN_UID (insn) > max_uid_before_move_op)
5831 stat_bookkeeping_copies--;
5834 /* Emit a register-register copy for INSN if needed. Return true if
5835 emitted one. PARAMS is the move_op static parameters. */
5836 static bool
5837 maybe_emit_renaming_copy (rtx insn,
5838 moveop_static_params_p params)
5840 bool insn_emitted = false;
5841 rtx cur_reg;
5843 /* Bail out early when expression can not be renamed at all. */
5844 if (!EXPR_SEPARABLE_P (params->c_expr))
5845 return false;
5847 cur_reg = expr_dest_reg (params->c_expr);
5848 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5850 /* If original operation has expr and the register chosen for
5851 that expr is not original operation's dest reg, substitute
5852 operation's right hand side with the register chosen. */
5853 if (REGNO (params->dest) != REGNO (cur_reg))
5855 insn_t reg_move_insn, reg_move_insn_rtx;
5857 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5858 params->dest);
5859 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5860 INSN_EXPR (insn),
5861 INSN_SEQNO (insn),
5862 insn);
5863 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5864 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5866 insn_emitted = true;
5867 params->was_renamed = true;
5870 return insn_emitted;
5873 /* Emit a speculative check for INSN speculated as EXPR if needed.
5874 Return true if we've emitted one. PARAMS is the move_op static
5875 parameters. */
5876 static bool
5877 maybe_emit_speculative_check (rtx insn, expr_t expr,
5878 moveop_static_params_p params)
5880 bool insn_emitted = false;
5881 insn_t x;
5882 ds_t check_ds;
5884 check_ds = get_spec_check_type_for_insn (insn, expr);
5885 if (check_ds != 0)
5887 /* A speculation check should be inserted. */
5888 x = create_speculation_check (params->c_expr, check_ds, insn);
5889 insn_emitted = true;
5891 else
5893 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5894 x = insn;
5897 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5898 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5899 return insn_emitted;
5902 /* Handle transformations that leave an insn in place of original
5903 insn such as renaming/speculation. Return true if one of such
5904 transformations actually happened, and we have emitted this insn. */
5905 static bool
5906 handle_emitting_transformations (rtx insn, expr_t expr,
5907 moveop_static_params_p params)
5909 bool insn_emitted = false;
5911 insn_emitted = maybe_emit_renaming_copy (insn, params);
5912 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5914 return insn_emitted;
5917 /* If INSN is the only insn in the basic block (not counting JUMP,
5918 which may be a jump to next insn, and DEBUG_INSNs), we want to
5919 leave a NOP there till the return to fill_insns. */
5921 static bool
5922 need_nop_to_preserve_insn_bb (rtx insn)
5924 insn_t bb_head, bb_end, bb_next, in_next;
5925 basic_block bb = BLOCK_FOR_INSN (insn);
5927 bb_head = sel_bb_head (bb);
5928 bb_end = sel_bb_end (bb);
5930 if (bb_head == bb_end)
5931 return true;
5933 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5934 bb_head = NEXT_INSN (bb_head);
5936 if (bb_head == bb_end)
5937 return true;
5939 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5940 bb_end = PREV_INSN (bb_end);
5942 if (bb_head == bb_end)
5943 return true;
5945 bb_next = NEXT_INSN (bb_head);
5946 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5947 bb_next = NEXT_INSN (bb_next);
5949 if (bb_next == bb_end && JUMP_P (bb_end))
5950 return true;
5952 in_next = NEXT_INSN (insn);
5953 while (DEBUG_INSN_P (in_next))
5954 in_next = NEXT_INSN (in_next);
5956 if (IN_CURRENT_FENCE_P (in_next))
5957 return true;
5959 return false;
5962 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5963 is not removed but reused when INSN is re-emitted. */
5964 static void
5965 remove_insn_from_stream (rtx insn, bool only_disconnect)
5967 /* If there's only one insn in the BB, make sure that a nop is
5968 inserted into it, so the basic block won't disappear when we'll
5969 delete INSN below with sel_remove_insn. It should also survive
5970 till the return to fill_insns. */
5971 if (need_nop_to_preserve_insn_bb (insn))
5973 insn_t nop = get_nop_from_pool (insn);
5974 gcc_assert (INSN_NOP_P (nop));
5975 VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop);
5978 sel_remove_insn (insn, only_disconnect, false);
5981 /* This function is called when original expr is found.
5982 INSN - current insn traversed, EXPR - the corresponding expr found.
5983 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5984 is static parameters of move_op. */
5985 static void
5986 move_op_orig_expr_found (insn_t insn, expr_t expr,
5987 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5988 void *static_params)
5990 bool only_disconnect, insn_emitted;
5991 moveop_static_params_p params = (moveop_static_params_p) static_params;
5993 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5994 track_scheduled_insns_and_blocks (insn);
5995 insn_emitted = handle_emitting_transformations (insn, expr, params);
5996 only_disconnect = (params->uid == INSN_UID (insn)
5997 && ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
5999 /* Mark that we've disconnected an insn. */
6000 if (only_disconnect)
6001 params->uid = -1;
6002 remove_insn_from_stream (insn, only_disconnect);
6005 /* The function is called when original expr is found.
6006 INSN - current insn traversed, EXPR - the corresponding expr found,
6007 crosses_call and original_insns in STATIC_PARAMS are updated. */
6008 static void
6009 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6010 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6011 void *static_params)
6013 fur_static_params_p params = (fur_static_params_p) static_params;
6014 regset tmp;
6016 if (CALL_P (insn))
6017 params->crosses_call = true;
6019 def_list_add (params->original_insns, insn, params->crosses_call);
6021 /* Mark the registers that do not meet the following condition:
6022 (2) not among the live registers of the point
6023 immediately following the first original operation on
6024 a given downward path, except for the original target
6025 register of the operation. */
6026 tmp = get_clear_regset_from_pool ();
6027 compute_live_below_insn (insn, tmp);
6028 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6029 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6030 IOR_REG_SET (params->used_regs, tmp);
6031 return_regset_to_pool (tmp);
6033 /* (*1) We need to add to USED_REGS registers that are read by
6034 INSN's lhs. This may lead to choosing wrong src register.
6035 E.g. (scheduling const expr enabled):
6037 429: ax=0x0 <- Can't use AX for this expr (0x0)
6038 433: dx=[bp-0x18]
6039 427: [ax+dx+0x1]=ax
6040 REG_DEAD: ax
6041 168: di=dx
6042 REG_DEAD: dx
6044 /* FIXME: see comment above and enable MEM_P
6045 in vinsn_separable_p. */
6046 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6047 || !MEM_P (INSN_LHS (insn)));
6050 /* This function is called on the ascending pass, before returning from
6051 current basic block. */
6052 static void
6053 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6054 void *static_params)
6056 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6057 basic_block book_block = NULL;
6059 /* When we have removed the boundary insn for scheduling, which also
6060 happened to be the end insn in its bb, we don't need to update sets. */
6061 if (!lparams->removed_last_insn
6062 && lparams->e1
6063 && sel_bb_head_p (insn))
6065 /* We should generate bookkeeping code only if we are not at the
6066 top level of the move_op. */
6067 if (sel_num_cfg_preds_gt_1 (insn))
6068 book_block = generate_bookkeeping_insn (sparams->c_expr,
6069 lparams->e1, lparams->e2);
6070 /* Update data sets for the current insn. */
6071 update_data_sets (insn);
6074 /* If bookkeeping code was inserted, we need to update av sets of basic
6075 block that received bookkeeping. After generation of bookkeeping insn,
6076 bookkeeping block does not contain valid av set because we are not following
6077 the original algorithm in every detail with regards to e.g. renaming
6078 simple reg-reg copies. Consider example:
6080 bookkeeping block scheduling fence
6082 \ join /
6083 ----------
6085 ----------
6088 r1 := r2 r1 := r3
6090 We try to schedule insn "r1 := r3" on the current
6091 scheduling fence. Also, note that av set of bookkeeping block
6092 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6093 been scheduled, the CFG is as follows:
6095 r1 := r3 r1 := r3
6096 bookkeeping block scheduling fence
6098 \ join /
6099 ----------
6101 ----------
6104 r1 := r2
6106 Here, insn "r1 := r3" was scheduled at the current scheduling point
6107 and bookkeeping code was generated at the bookeeping block. This
6108 way insn "r1 := r2" is no longer available as a whole instruction
6109 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6110 This situation is handled by calling update_data_sets.
6112 Since update_data_sets is called only on the bookkeeping block, and
6113 it also may have predecessors with av_sets, containing instructions that
6114 are no longer available, we save all such expressions that become
6115 unavailable during data sets update on the bookkeeping block in
6116 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6117 expressions for scheduling. This allows us to avoid recomputation of
6118 av_sets outside the code motion path. */
6120 if (book_block)
6121 update_and_record_unavailable_insns (book_block);
6123 /* If INSN was previously marked for deletion, it's time to do it. */
6124 if (lparams->removed_last_insn)
6125 insn = PREV_INSN (insn);
6127 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6128 kill a block with a single nop in which the insn should be emitted. */
6129 if (lparams->e1)
6130 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6133 /* This function is called on the ascending pass, before returning from the
6134 current basic block. */
6135 static void
6136 fur_at_first_insn (insn_t insn,
6137 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6138 void *static_params ATTRIBUTE_UNUSED)
6140 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6141 || AV_LEVEL (insn) == -1);
6144 /* Called on the backward stage of recursion to call moveup_expr for insn
6145 and sparams->c_expr. */
6146 static void
6147 move_op_ascend (insn_t insn, void *static_params)
6149 enum MOVEUP_EXPR_CODE res;
6150 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6152 if (! INSN_NOP_P (insn))
6154 res = moveup_expr_cached (sparams->c_expr, insn, false);
6155 gcc_assert (res != MOVEUP_EXPR_NULL);
6158 /* Update liveness for this insn as it was invalidated. */
6159 update_liveness_on_insn (insn);
6162 /* This function is called on enter to the basic block.
6163 Returns TRUE if this block already have been visited and
6164 code_motion_path_driver should return 1, FALSE otherwise. */
6165 static int
6166 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6167 void *static_params, bool visited_p)
6169 fur_static_params_p sparams = (fur_static_params_p) static_params;
6171 if (visited_p)
6173 /* If we have found something below this block, there should be at
6174 least one insn in ORIGINAL_INSNS. */
6175 gcc_assert (*sparams->original_insns);
6177 /* Adjust CROSSES_CALL, since we may have come to this block along
6178 different path. */
6179 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6180 |= sparams->crosses_call;
6182 else
6183 local_params->old_original_insns = *sparams->original_insns;
6185 return 1;
6188 /* Same as above but for move_op. */
6189 static int
6190 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6191 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6192 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6194 if (visited_p)
6195 return -1;
6196 return 1;
6199 /* This function is called while descending current basic block if current
6200 insn is not the original EXPR we're searching for.
6202 Return value: FALSE, if code_motion_path_driver should perform a local
6203 cleanup and return 0 itself;
6204 TRUE, if code_motion_path_driver should continue. */
6205 static bool
6206 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6207 void *static_params)
6209 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6211 #ifdef ENABLE_CHECKING
6212 sparams->failed_insn = insn;
6213 #endif
6215 /* If we're scheduling separate expr, in order to generate correct code
6216 we need to stop the search at bookkeeping code generated with the
6217 same destination register or memory. */
6218 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6219 return false;
6220 return true;
6223 /* This function is called while descending current basic block if current
6224 insn is not the original EXPR we're searching for.
6226 Return value: TRUE (code_motion_path_driver should continue). */
6227 static bool
6228 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6230 bool mutexed;
6231 expr_t r;
6232 av_set_iterator avi;
6233 fur_static_params_p sparams = (fur_static_params_p) static_params;
6235 if (CALL_P (insn))
6236 sparams->crosses_call = true;
6237 else if (DEBUG_INSN_P (insn))
6238 return true;
6240 /* If current insn we are looking at cannot be executed together
6241 with original insn, then we can skip it safely.
6243 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6244 INSN = (!p6) r14 = r14 + 1;
6246 Here we can schedule ORIG_OP with lhs = r14, though only
6247 looking at the set of used and set registers of INSN we must
6248 forbid it. So, add set/used in INSN registers to the
6249 untouchable set only if there is an insn in ORIG_OPS that can
6250 affect INSN. */
6251 mutexed = true;
6252 FOR_EACH_EXPR (r, avi, orig_ops)
6253 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6255 mutexed = false;
6256 break;
6259 /* Mark all registers that do not meet the following condition:
6260 (1) Not set or read on any path from xi to an instance of the
6261 original operation. */
6262 if (!mutexed)
6264 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6265 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6266 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6269 return true;
6272 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6273 struct code_motion_path_driver_info_def move_op_hooks = {
6274 move_op_on_enter,
6275 move_op_orig_expr_found,
6276 move_op_orig_expr_not_found,
6277 move_op_merge_succs,
6278 move_op_after_merge_succs,
6279 move_op_ascend,
6280 move_op_at_first_insn,
6281 SUCCS_NORMAL,
6282 "move_op"
6285 /* Hooks and data to perform find_used_regs operations
6286 with code_motion_path_driver. */
6287 struct code_motion_path_driver_info_def fur_hooks = {
6288 fur_on_enter,
6289 fur_orig_expr_found,
6290 fur_orig_expr_not_found,
6291 fur_merge_succs,
6292 NULL, /* fur_after_merge_succs */
6293 NULL, /* fur_ascend */
6294 fur_at_first_insn,
6295 SUCCS_ALL,
6296 "find_used_regs"
6299 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6300 code_motion_path_driver is called recursively. Original operation
6301 was found at least on one path that is starting with one of INSN's
6302 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6303 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6304 of either move_op or find_used_regs depending on the caller.
6306 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6307 know for sure at this point. */
6308 static int
6309 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6310 ilist_t path, void *static_params)
6312 int res = 0;
6313 succ_iterator succ_i;
6314 rtx succ;
6315 basic_block bb;
6316 int old_index;
6317 unsigned old_succs;
6319 struct cmpd_local_params lparams;
6320 expr_def _x;
6322 lparams.c_expr_local = &_x;
6323 lparams.c_expr_merged = NULL;
6325 /* We need to process only NORMAL succs for move_op, and collect live
6326 registers from ALL branches (including those leading out of the
6327 region) for find_used_regs.
6329 In move_op, there can be a case when insn's bb number has changed
6330 due to created bookkeeping. This happens very rare, as we need to
6331 move expression from the beginning to the end of the same block.
6332 Rescan successors in this case. */
6334 rescan:
6335 bb = BLOCK_FOR_INSN (insn);
6336 old_index = bb->index;
6337 old_succs = EDGE_COUNT (bb->succs);
6339 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6341 int b;
6343 lparams.e1 = succ_i.e1;
6344 lparams.e2 = succ_i.e2;
6346 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6347 current region). */
6348 if (succ_i.current_flags == SUCCS_NORMAL)
6349 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6350 static_params);
6351 else
6352 b = 0;
6354 /* Merge c_expres found or unify live register sets from different
6355 successors. */
6356 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6357 static_params);
6358 if (b == 1)
6359 res = b;
6360 else if (b == -1 && res != 1)
6361 res = b;
6363 /* We have simplified the control flow below this point. In this case,
6364 the iterator becomes invalid. We need to try again. */
6365 if (BLOCK_FOR_INSN (insn)->index != old_index
6366 || EDGE_COUNT (bb->succs) != old_succs)
6368 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6369 goto rescan;
6373 #ifdef ENABLE_CHECKING
6374 /* Here, RES==1 if original expr was found at least for one of the
6375 successors. After the loop, RES may happen to have zero value
6376 only if at some point the expr searched is present in av_set, but is
6377 not found below. In most cases, this situation is an error.
6378 The exception is when the original operation is blocked by
6379 bookkeeping generated for another fence or for another path in current
6380 move_op. */
6381 gcc_assert (res == 1
6382 || (res == 0
6383 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6384 static_params))
6385 || res == -1);
6386 #endif
6388 /* Merge data, clean up, etc. */
6389 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6390 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6392 return res;
6396 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6397 is the pointer to the av set with expressions we were looking for,
6398 PATH_P is the pointer to the traversed path. */
6399 static inline void
6400 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6402 ilist_remove (path_p);
6403 av_set_clear (orig_ops_p);
6406 /* The driver function that implements move_op or find_used_regs
6407 functionality dependent whether code_motion_path_driver_INFO is set to
6408 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6409 of code (CFG traversal etc) that are shared among both functions. INSN
6410 is the insn we're starting the search from, ORIG_OPS are the expressions
6411 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6412 parameters of the driver, and STATIC_PARAMS are static parameters of
6413 the caller.
6415 Returns whether original instructions were found. Note that top-level
6416 code_motion_path_driver always returns true. */
6417 static int
6418 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6419 cmpd_local_params_p local_params_in,
6420 void *static_params)
6422 expr_t expr = NULL;
6423 basic_block bb = BLOCK_FOR_INSN (insn);
6424 insn_t first_insn, bb_tail, before_first;
6425 bool removed_last_insn = false;
6427 if (sched_verbose >= 6)
6429 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6430 dump_insn (insn);
6431 sel_print (",");
6432 dump_av_set (orig_ops);
6433 sel_print (")\n");
6436 gcc_assert (orig_ops);
6438 /* If no original operations exist below this insn, return immediately. */
6439 if (is_ineligible_successor (insn, path))
6441 if (sched_verbose >= 6)
6442 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6443 return false;
6446 /* The block can have invalid av set, in which case it was created earlier
6447 during move_op. Return immediately. */
6448 if (sel_bb_head_p (insn))
6450 if (! AV_SET_VALID_P (insn))
6452 if (sched_verbose >= 6)
6453 sel_print ("Returned from block %d as it had invalid av set\n",
6454 bb->index);
6455 return false;
6458 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6460 /* We have already found an original operation on this branch, do not
6461 go any further and just return TRUE here. If we don't stop here,
6462 function can have exponential behaviour even on the small code
6463 with many different paths (e.g. with data speculation and
6464 recovery blocks). */
6465 if (sched_verbose >= 6)
6466 sel_print ("Block %d already visited in this traversal\n", bb->index);
6467 if (code_motion_path_driver_info->on_enter)
6468 return code_motion_path_driver_info->on_enter (insn,
6469 local_params_in,
6470 static_params,
6471 true);
6475 if (code_motion_path_driver_info->on_enter)
6476 code_motion_path_driver_info->on_enter (insn, local_params_in,
6477 static_params, false);
6478 orig_ops = av_set_copy (orig_ops);
6480 /* Filter the orig_ops set. */
6481 if (AV_SET_VALID_P (insn))
6482 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6484 /* If no more original ops, return immediately. */
6485 if (!orig_ops)
6487 if (sched_verbose >= 6)
6488 sel_print ("No intersection with av set of block %d\n", bb->index);
6489 return false;
6492 /* For non-speculative insns we have to leave only one form of the
6493 original operation, because if we don't, we may end up with
6494 different C_EXPRes and, consequently, with bookkeepings for different
6495 expression forms along the same code motion path. That may lead to
6496 generation of incorrect code. So for each code motion we stick to
6497 the single form of the instruction, except for speculative insns
6498 which we need to keep in different forms with all speculation
6499 types. */
6500 av_set_leave_one_nonspec (&orig_ops);
6502 /* It is not possible that all ORIG_OPS are filtered out. */
6503 gcc_assert (orig_ops);
6505 /* It is enough to place only heads and tails of visited basic blocks into
6506 the PATH. */
6507 ilist_add (&path, insn);
6508 first_insn = insn;
6509 bb_tail = sel_bb_end (bb);
6511 /* Descend the basic block in search of the original expr; this part
6512 corresponds to the part of the original move_op procedure executed
6513 before the recursive call. */
6514 for (;;)
6516 /* Look at the insn and decide if it could be an ancestor of currently
6517 scheduling operation. If it is so, then the insn "dest = op" could
6518 either be replaced with "dest = reg", because REG now holds the result
6519 of OP, or just removed, if we've scheduled the insn as a whole.
6521 If this insn doesn't contain currently scheduling OP, then proceed
6522 with searching and look at its successors. Operations we're searching
6523 for could have changed when moving up through this insn via
6524 substituting. In this case, perform unsubstitution on them first.
6526 When traversing the DAG below this insn is finished, insert
6527 bookkeeping code, if the insn is a joint point, and remove
6528 leftovers. */
6530 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6531 if (expr)
6533 insn_t last_insn = PREV_INSN (insn);
6535 /* We have found the original operation. */
6536 if (sched_verbose >= 6)
6537 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6539 code_motion_path_driver_info->orig_expr_found
6540 (insn, expr, local_params_in, static_params);
6542 /* Step back, so on the way back we'll start traversing from the
6543 previous insn (or we'll see that it's bb_note and skip that
6544 loop). */
6545 if (insn == first_insn)
6547 first_insn = NEXT_INSN (last_insn);
6548 removed_last_insn = sel_bb_end_p (last_insn);
6550 insn = last_insn;
6551 break;
6553 else
6555 /* We haven't found the original expr, continue descending the basic
6556 block. */
6557 if (code_motion_path_driver_info->orig_expr_not_found
6558 (insn, orig_ops, static_params))
6560 /* Av set ops could have been changed when moving through this
6561 insn. To find them below it, we have to un-substitute them. */
6562 undo_transformations (&orig_ops, insn);
6564 else
6566 /* Clean up and return, if the hook tells us to do so. It may
6567 happen if we've encountered the previously created
6568 bookkeeping. */
6569 code_motion_path_driver_cleanup (&orig_ops, &path);
6570 return -1;
6573 gcc_assert (orig_ops);
6576 /* Stop at insn if we got to the end of BB. */
6577 if (insn == bb_tail)
6578 break;
6580 insn = NEXT_INSN (insn);
6583 /* Here INSN either points to the insn before the original insn (may be
6584 bb_note, if original insn was a bb_head) or to the bb_end. */
6585 if (!expr)
6587 int res;
6588 rtx last_insn = PREV_INSN (insn);
6589 bool added_to_path;
6591 gcc_assert (insn == sel_bb_end (bb));
6593 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6594 it's already in PATH then). */
6595 if (insn != first_insn)
6597 ilist_add (&path, insn);
6598 added_to_path = true;
6600 else
6601 added_to_path = false;
6603 /* Process_successors should be able to find at least one
6604 successor for which code_motion_path_driver returns TRUE. */
6605 res = code_motion_process_successors (insn, orig_ops,
6606 path, static_params);
6608 /* Jump in the end of basic block could have been removed or replaced
6609 during code_motion_process_successors, so recompute insn as the
6610 last insn in bb. */
6611 if (NEXT_INSN (last_insn) != insn)
6613 insn = sel_bb_end (bb);
6614 first_insn = sel_bb_head (bb);
6617 /* Remove bb tail from path. */
6618 if (added_to_path)
6619 ilist_remove (&path);
6621 if (res != 1)
6623 /* This is the case when one of the original expr is no longer available
6624 due to bookkeeping created on this branch with the same register.
6625 In the original algorithm, which doesn't have update_data_sets call
6626 on a bookkeeping block, it would simply result in returning
6627 FALSE when we've encountered a previously generated bookkeeping
6628 insn in moveop_orig_expr_not_found. */
6629 code_motion_path_driver_cleanup (&orig_ops, &path);
6630 return res;
6634 /* Don't need it any more. */
6635 av_set_clear (&orig_ops);
6637 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6638 the beginning of the basic block. */
6639 before_first = PREV_INSN (first_insn);
6640 while (insn != before_first)
6642 if (code_motion_path_driver_info->ascend)
6643 code_motion_path_driver_info->ascend (insn, static_params);
6645 insn = PREV_INSN (insn);
6648 /* Now we're at the bb head. */
6649 insn = first_insn;
6650 ilist_remove (&path);
6651 local_params_in->removed_last_insn = removed_last_insn;
6652 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6654 /* This should be the very last operation as at bb head we could change
6655 the numbering by creating bookkeeping blocks. */
6656 if (removed_last_insn)
6657 insn = PREV_INSN (insn);
6658 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6659 return true;
6662 /* Move up the operations from ORIG_OPS set traversing the dag starting
6663 from INSN. PATH represents the edges traversed so far.
6664 DEST is the register chosen for scheduling the current expr. Insert
6665 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6666 C_EXPR is how it looks like at the given cfg point.
6667 Set *SHOULD_MOVE to indicate whether we have only disconnected
6668 one of the insns found.
6670 Returns whether original instructions were found, which is asserted
6671 to be true in the caller. */
6672 static bool
6673 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6674 rtx dest, expr_t c_expr, bool *should_move)
6676 struct moveop_static_params sparams;
6677 struct cmpd_local_params lparams;
6678 bool res;
6680 /* Init params for code_motion_path_driver. */
6681 sparams.dest = dest;
6682 sparams.c_expr = c_expr;
6683 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6684 #ifdef ENABLE_CHECKING
6685 sparams.failed_insn = NULL;
6686 #endif
6687 sparams.was_renamed = false;
6688 lparams.e1 = NULL;
6690 /* We haven't visited any blocks yet. */
6691 bitmap_clear (code_motion_visited_blocks);
6693 /* Set appropriate hooks and data. */
6694 code_motion_path_driver_info = &move_op_hooks;
6695 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6697 if (sparams.was_renamed)
6698 EXPR_WAS_RENAMED (expr_vliw) = true;
6700 *should_move = (sparams.uid == -1);
6702 return res;
6706 /* Functions that work with regions. */
6708 /* Current number of seqno used in init_seqno and init_seqno_1. */
6709 static int cur_seqno;
6711 /* A helper for init_seqno. Traverse the region starting from BB and
6712 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6713 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6714 static void
6715 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6717 int bbi = BLOCK_TO_BB (bb->index);
6718 insn_t insn, note = bb_note (bb);
6719 insn_t succ_insn;
6720 succ_iterator si;
6722 SET_BIT (visited_bbs, bbi);
6723 if (blocks_to_reschedule)
6724 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6726 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6727 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6729 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6730 int succ_bbi = BLOCK_TO_BB (succ->index);
6732 gcc_assert (in_current_region_p (succ));
6734 if (!TEST_BIT (visited_bbs, succ_bbi))
6736 gcc_assert (succ_bbi > bbi);
6738 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6740 else if (blocks_to_reschedule)
6741 bitmap_set_bit (forced_ebb_heads, succ->index);
6744 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6745 INSN_SEQNO (insn) = cur_seqno--;
6748 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6749 blocks on which we're rescheduling when pipelining, FROM is the block where
6750 traversing region begins (it may not be the head of the region when
6751 pipelining, but the head of the loop instead).
6753 Returns the maximal seqno found. */
6754 static int
6755 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6757 sbitmap visited_bbs;
6758 bitmap_iterator bi;
6759 unsigned bbi;
6761 visited_bbs = sbitmap_alloc (current_nr_blocks);
6763 if (blocks_to_reschedule)
6765 sbitmap_ones (visited_bbs);
6766 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6768 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6769 RESET_BIT (visited_bbs, BLOCK_TO_BB (bbi));
6772 else
6774 sbitmap_zero (visited_bbs);
6775 from = EBB_FIRST_BB (0);
6778 cur_seqno = sched_max_luid - 1;
6779 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6781 /* cur_seqno may be positive if the number of instructions is less than
6782 sched_max_luid - 1 (when rescheduling or if some instructions have been
6783 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6784 gcc_assert (cur_seqno >= 0);
6786 sbitmap_free (visited_bbs);
6787 return sched_max_luid - 1;
6790 /* Initialize scheduling parameters for current region. */
6791 static void
6792 sel_setup_region_sched_flags (void)
6794 enable_schedule_as_rhs_p = 1;
6795 bookkeeping_p = 1;
6796 pipelining_p = (bookkeeping_p
6797 && (flag_sel_sched_pipelining != 0)
6798 && current_loop_nest != NULL
6799 && loop_has_exit_edges (current_loop_nest));
6800 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6801 max_ws = MAX_WS;
6804 /* Return true if all basic blocks of current region are empty. */
6805 static bool
6806 current_region_empty_p (void)
6808 int i;
6809 for (i = 0; i < current_nr_blocks; i++)
6810 if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
6811 return false;
6813 return true;
6816 /* Prepare and verify loop nest for pipelining. */
6817 static void
6818 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6820 current_loop_nest = get_loop_nest_for_rgn (rgn);
6822 if (!current_loop_nest)
6823 return;
6825 /* If this loop has any saved loop preheaders from nested loops,
6826 add these basic blocks to the current region. */
6827 sel_add_loop_preheaders (bbs);
6829 /* Check that we're starting with a valid information. */
6830 gcc_assert (loop_latch_edge (current_loop_nest));
6831 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6834 /* Compute instruction priorities for current region. */
6835 static void
6836 sel_compute_priorities (int rgn)
6838 sched_rgn_compute_dependencies (rgn);
6840 /* Compute insn priorities in haifa style. Then free haifa style
6841 dependencies that we've calculated for this. */
6842 compute_priorities ();
6844 if (sched_verbose >= 5)
6845 debug_rgn_dependencies (0);
6847 free_rgn_deps ();
6850 /* Init scheduling data for RGN. Returns true when this region should not
6851 be scheduled. */
6852 static bool
6853 sel_region_init (int rgn)
6855 int i;
6856 bb_vec_t bbs;
6858 rgn_setup_region (rgn);
6860 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6861 do region initialization here so the region can be bundled correctly,
6862 but we'll skip the scheduling in sel_sched_region (). */
6863 if (current_region_empty_p ())
6864 return true;
6866 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
6868 for (i = 0; i < current_nr_blocks; i++)
6869 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
6871 sel_init_bbs (bbs, NULL);
6873 if (flag_sel_sched_pipelining)
6874 setup_current_loop_nest (rgn, &bbs);
6876 sel_setup_region_sched_flags ();
6878 /* Initialize luids and dependence analysis which both sel-sched and haifa
6879 need. */
6880 sched_init_luids (bbs, NULL, NULL, NULL);
6881 sched_deps_init (false);
6883 /* Initialize haifa data. */
6884 rgn_setup_sched_infos ();
6885 sel_set_sched_flags ();
6886 haifa_init_h_i_d (bbs, NULL, NULL, NULL);
6888 sel_compute_priorities (rgn);
6889 init_deps_global ();
6891 /* Main initialization. */
6892 sel_setup_sched_infos ();
6893 sel_init_global_and_expr (bbs);
6895 VEC_free (basic_block, heap, bbs);
6897 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6899 /* Init correct liveness sets on each instruction of a single-block loop.
6900 This is the only situation when we can't update liveness when calling
6901 compute_live for the first insn of the loop. */
6902 if (current_loop_nest)
6904 int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
6906 : 0);
6908 if (current_nr_blocks == header + 1)
6909 update_liveness_on_insn
6910 (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
6913 /* Set hooks so that no newly generated insn will go out unnoticed. */
6914 sel_register_cfg_hooks ();
6916 /* !!! We call target.sched.init () for the whole region, but we invoke
6917 targetm.sched.finish () for every ebb. */
6918 if (targetm.sched.init)
6919 /* None of the arguments are actually used in any target. */
6920 targetm.sched.init (sched_dump, sched_verbose, -1);
6922 first_emitted_uid = get_max_uid () + 1;
6923 preheader_removed = false;
6925 /* Reset register allocation ticks array. */
6926 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6927 reg_rename_this_tick = 0;
6929 bitmap_initialize (forced_ebb_heads, 0);
6930 bitmap_clear (forced_ebb_heads);
6932 setup_nop_vinsn ();
6933 current_copies = BITMAP_ALLOC (NULL);
6934 current_originators = BITMAP_ALLOC (NULL);
6935 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6937 return false;
6940 /* Simplify insns after the scheduling. */
6941 static void
6942 simplify_changed_insns (void)
6944 int i;
6946 for (i = 0; i < current_nr_blocks; i++)
6948 basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6949 rtx insn;
6951 FOR_BB_INSNS (bb, insn)
6952 if (INSN_P (insn))
6954 expr_t expr = INSN_EXPR (insn);
6956 if (EXPR_WAS_SUBSTITUTED (expr))
6957 validate_simplify_insn (insn);
6962 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6963 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6964 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6965 static void
6966 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6968 insn_t head, tail;
6969 basic_block bb1 = bb;
6970 if (sched_verbose >= 2)
6971 sel_print ("Finishing schedule in bbs: ");
6975 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6977 if (sched_verbose >= 2)
6978 sel_print ("%d; ", bb1->index);
6980 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6982 if (sched_verbose >= 2)
6983 sel_print ("\n");
6985 get_ebb_head_tail (bb, bb1, &head, &tail);
6987 current_sched_info->head = head;
6988 current_sched_info->tail = tail;
6989 current_sched_info->prev_head = PREV_INSN (head);
6990 current_sched_info->next_tail = NEXT_INSN (tail);
6993 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
6994 static void
6995 reset_sched_cycles_in_current_ebb (void)
6997 int last_clock = 0;
6998 int haifa_last_clock = -1;
6999 int haifa_clock = 0;
7000 int issued_insns = 0;
7001 insn_t insn;
7003 if (targetm.sched.init)
7005 /* None of the arguments are actually used in any target.
7006 NB: We should have md_reset () hook for cases like this. */
7007 targetm.sched.init (sched_dump, sched_verbose, -1);
7010 state_reset (curr_state);
7011 advance_state (curr_state);
7013 for (insn = current_sched_info->head;
7014 insn != current_sched_info->next_tail;
7015 insn = NEXT_INSN (insn))
7017 int cost, haifa_cost;
7018 int sort_p;
7019 bool asm_p, real_insn, after_stall, all_issued;
7020 int clock;
7022 if (!INSN_P (insn))
7023 continue;
7025 asm_p = false;
7026 real_insn = recog_memoized (insn) >= 0;
7027 clock = INSN_SCHED_CYCLE (insn);
7029 cost = clock - last_clock;
7031 /* Initialize HAIFA_COST. */
7032 if (! real_insn)
7034 asm_p = INSN_ASM_P (insn);
7036 if (asm_p)
7037 /* This is asm insn which *had* to be scheduled first
7038 on the cycle. */
7039 haifa_cost = 1;
7040 else
7041 /* This is a use/clobber insn. It should not change
7042 cost. */
7043 haifa_cost = 0;
7045 else
7046 haifa_cost = estimate_insn_cost (insn, curr_state);
7048 /* Stall for whatever cycles we've stalled before. */
7049 after_stall = 0;
7050 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7052 haifa_cost = cost;
7053 after_stall = 1;
7055 all_issued = issued_insns == issue_rate;
7056 if (haifa_cost == 0 && all_issued)
7057 haifa_cost = 1;
7058 if (haifa_cost > 0)
7060 int i = 0;
7062 while (haifa_cost--)
7064 advance_state (curr_state);
7065 issued_insns = 0;
7066 i++;
7068 if (sched_verbose >= 2)
7070 sel_print ("advance_state (state_transition)\n");
7071 debug_state (curr_state);
7074 /* The DFA may report that e.g. insn requires 2 cycles to be
7075 issued, but on the next cycle it says that insn is ready
7076 to go. Check this here. */
7077 if (!after_stall
7078 && real_insn
7079 && haifa_cost > 0
7080 && estimate_insn_cost (insn, curr_state) == 0)
7081 break;
7083 /* When the data dependency stall is longer than the DFA stall,
7084 and when we have issued exactly issue_rate insns and stalled,
7085 it could be that after this longer stall the insn will again
7086 become unavailable to the DFA restrictions. Looks strange
7087 but happens e.g. on x86-64. So recheck DFA on the last
7088 iteration. */
7089 if ((after_stall || all_issued)
7090 && real_insn
7091 && haifa_cost == 0)
7092 haifa_cost = estimate_insn_cost (insn, curr_state);
7095 haifa_clock += i;
7096 if (sched_verbose >= 2)
7097 sel_print ("haifa clock: %d\n", haifa_clock);
7099 else
7100 gcc_assert (haifa_cost == 0);
7102 if (sched_verbose >= 2)
7103 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7105 if (targetm.sched.dfa_new_cycle)
7106 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7107 haifa_last_clock, haifa_clock,
7108 &sort_p))
7110 advance_state (curr_state);
7111 issued_insns = 0;
7112 haifa_clock++;
7113 if (sched_verbose >= 2)
7115 sel_print ("advance_state (dfa_new_cycle)\n");
7116 debug_state (curr_state);
7117 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7121 if (real_insn)
7123 cost = state_transition (curr_state, insn);
7124 issued_insns++;
7126 if (sched_verbose >= 2)
7128 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7129 haifa_clock + 1);
7130 debug_state (curr_state);
7132 gcc_assert (cost < 0);
7135 if (targetm.sched.variable_issue)
7136 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7138 INSN_SCHED_CYCLE (insn) = haifa_clock;
7140 last_clock = clock;
7141 haifa_last_clock = haifa_clock;
7145 /* Put TImode markers on insns starting a new issue group. */
7146 static void
7147 put_TImodes (void)
7149 int last_clock = -1;
7150 insn_t insn;
7152 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7153 insn = NEXT_INSN (insn))
7155 int cost, clock;
7157 if (!INSN_P (insn))
7158 continue;
7160 clock = INSN_SCHED_CYCLE (insn);
7161 cost = (last_clock == -1) ? 1 : clock - last_clock;
7163 gcc_assert (cost >= 0);
7165 if (issue_rate > 1
7166 && GET_CODE (PATTERN (insn)) != USE
7167 && GET_CODE (PATTERN (insn)) != CLOBBER)
7169 if (reload_completed && cost > 0)
7170 PUT_MODE (insn, TImode);
7172 last_clock = clock;
7175 if (sched_verbose >= 2)
7176 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7180 /* Perform MD_FINISH on EBBs comprising current region. When
7181 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7182 to produce correct sched cycles on insns. */
7183 static void
7184 sel_region_target_finish (bool reset_sched_cycles_p)
7186 int i;
7187 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7189 for (i = 0; i < current_nr_blocks; i++)
7191 if (bitmap_bit_p (scheduled_blocks, i))
7192 continue;
7194 /* While pipelining outer loops, skip bundling for loop
7195 preheaders. Those will be rescheduled in the outer loop. */
7196 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7197 continue;
7199 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7201 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7202 continue;
7204 if (reset_sched_cycles_p)
7205 reset_sched_cycles_in_current_ebb ();
7207 if (targetm.sched.init)
7208 targetm.sched.init (sched_dump, sched_verbose, -1);
7210 put_TImodes ();
7212 if (targetm.sched.finish)
7214 targetm.sched.finish (sched_dump, sched_verbose);
7216 /* Extend luids so that insns generated by the target will
7217 get zero luid. */
7218 sched_init_luids (NULL, NULL, NULL, NULL);
7222 BITMAP_FREE (scheduled_blocks);
7225 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7226 is true, make an additional pass emulating scheduler to get correct insn
7227 cycles for md_finish calls. */
7228 static void
7229 sel_region_finish (bool reset_sched_cycles_p)
7231 simplify_changed_insns ();
7232 sched_finish_ready_list ();
7233 free_nop_pool ();
7235 /* Free the vectors. */
7236 if (vec_av_set)
7237 VEC_free (expr_t, heap, vec_av_set);
7238 BITMAP_FREE (current_copies);
7239 BITMAP_FREE (current_originators);
7240 BITMAP_FREE (code_motion_visited_blocks);
7241 vinsn_vec_free (&vec_bookkeeping_blocked_vinsns);
7242 vinsn_vec_free (&vec_target_unavailable_vinsns);
7244 /* If LV_SET of the region head should be updated, do it now because
7245 there will be no other chance. */
7247 succ_iterator si;
7248 insn_t insn;
7250 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7251 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7253 basic_block bb = BLOCK_FOR_INSN (insn);
7255 if (!BB_LV_SET_VALID_P (bb))
7256 compute_live (insn);
7260 /* Emulate the Haifa scheduler for bundling. */
7261 if (reload_completed)
7262 sel_region_target_finish (reset_sched_cycles_p);
7264 sel_finish_global_and_expr ();
7266 bitmap_clear (forced_ebb_heads);
7268 free_nop_vinsn ();
7270 finish_deps_global ();
7271 sched_finish_luids ();
7273 sel_finish_bbs ();
7274 BITMAP_FREE (blocks_to_reschedule);
7276 sel_unregister_cfg_hooks ();
7278 max_issue_size = 0;
7282 /* Functions that implement the scheduler driver. */
7284 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7285 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7286 of insns scheduled -- these would be postprocessed later. */
7287 static void
7288 schedule_on_fences (flist_t fences, int max_seqno,
7289 ilist_t **scheduled_insns_tailpp)
7291 flist_t old_fences = fences;
7293 if (sched_verbose >= 1)
7295 sel_print ("\nScheduling on fences: ");
7296 dump_flist (fences);
7297 sel_print ("\n");
7300 scheduled_something_on_previous_fence = false;
7301 for (; fences; fences = FLIST_NEXT (fences))
7303 fence_t fence = NULL;
7304 int seqno = 0;
7305 flist_t fences2;
7306 bool first_p = true;
7308 /* Choose the next fence group to schedule.
7309 The fact that insn can be scheduled only once
7310 on the cycle is guaranteed by two properties:
7311 1. seqnos of parallel groups decrease with each iteration.
7312 2. If is_ineligible_successor () sees the larger seqno, it
7313 checks if candidate insn is_in_current_fence_p (). */
7314 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7316 fence_t f = FLIST_FENCE (fences2);
7318 if (!FENCE_PROCESSED_P (f))
7320 int i = INSN_SEQNO (FENCE_INSN (f));
7322 if (first_p || i > seqno)
7324 seqno = i;
7325 fence = f;
7326 first_p = false;
7328 else
7329 /* ??? Seqnos of different groups should be different. */
7330 gcc_assert (1 || i != seqno);
7334 gcc_assert (fence);
7336 /* As FENCE is nonnull, SEQNO is initialized. */
7337 seqno -= max_seqno + 1;
7338 fill_insns (fence, seqno, scheduled_insns_tailpp);
7339 FENCE_PROCESSED_P (fence) = true;
7342 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7343 don't need to keep bookkeeping-invalidated and target-unavailable
7344 vinsns any more. */
7345 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7346 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7349 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7350 static void
7351 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7353 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7355 /* The first element is already processed. */
7356 while ((fences = FLIST_NEXT (fences)))
7358 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7360 if (*min_seqno > seqno)
7361 *min_seqno = seqno;
7362 else if (*max_seqno < seqno)
7363 *max_seqno = seqno;
7367 /* Calculate new fences from FENCES. */
7368 static flist_t
7369 calculate_new_fences (flist_t fences, int orig_max_seqno)
7371 flist_t old_fences = fences;
7372 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7374 flist_tail_init (new_fences);
7375 for (; fences; fences = FLIST_NEXT (fences))
7377 fence_t fence = FLIST_FENCE (fences);
7378 insn_t insn;
7380 if (!FENCE_BNDS (fence))
7382 /* This fence doesn't have any successors. */
7383 if (!FENCE_SCHEDULED_P (fence))
7385 /* Nothing was scheduled on this fence. */
7386 int seqno;
7388 insn = FENCE_INSN (fence);
7389 seqno = INSN_SEQNO (insn);
7390 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7392 if (sched_verbose >= 1)
7393 sel_print ("Fence %d[%d] has not changed\n",
7394 INSN_UID (insn),
7395 BLOCK_NUM (insn));
7396 move_fence_to_fences (fences, new_fences);
7399 else
7400 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7403 flist_clear (&old_fences);
7404 return FLIST_TAIL_HEAD (new_fences);
7407 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7408 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7409 the highest seqno used in a region. Return the updated highest seqno. */
7410 static int
7411 update_seqnos_and_stage (int min_seqno, int max_seqno,
7412 int highest_seqno_in_use,
7413 ilist_t *pscheduled_insns)
7415 int new_hs;
7416 ilist_iterator ii;
7417 insn_t insn;
7419 /* Actually, new_hs is the seqno of the instruction, that was
7420 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7421 if (*pscheduled_insns)
7423 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7424 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7425 gcc_assert (new_hs > highest_seqno_in_use);
7427 else
7428 new_hs = highest_seqno_in_use;
7430 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7432 gcc_assert (INSN_SEQNO (insn) < 0);
7433 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7434 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7436 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7437 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7438 require > 1GB of memory e.g. on limit-fnargs.c. */
7439 if (! pipelining_p)
7440 free_data_for_scheduled_insn (insn);
7443 ilist_clear (pscheduled_insns);
7444 global_level++;
7446 return new_hs;
7449 /* The main driver for scheduling a region. This function is responsible
7450 for correct propagation of fences (i.e. scheduling points) and creating
7451 a group of parallel insns at each of them. It also supports
7452 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7453 of scheduling. */
7454 static void
7455 sel_sched_region_2 (int orig_max_seqno)
7457 int highest_seqno_in_use = orig_max_seqno;
7459 stat_bookkeeping_copies = 0;
7460 stat_insns_needed_bookkeeping = 0;
7461 stat_renamed_scheduled = 0;
7462 stat_substitutions_total = 0;
7463 num_insns_scheduled = 0;
7465 while (fences)
7467 int min_seqno, max_seqno;
7468 ilist_t scheduled_insns = NULL;
7469 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7471 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7472 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7473 fences = calculate_new_fences (fences, orig_max_seqno);
7474 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7475 highest_seqno_in_use,
7476 &scheduled_insns);
7479 if (sched_verbose >= 1)
7480 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7481 "bookkeeping, %d insns renamed, %d insns substituted\n",
7482 stat_bookkeeping_copies,
7483 stat_insns_needed_bookkeeping,
7484 stat_renamed_scheduled,
7485 stat_substitutions_total);
7488 /* Schedule a region. When pipelining, search for possibly never scheduled
7489 bookkeeping code and schedule it. Reschedule pipelined code without
7490 pipelining after. */
7491 static void
7492 sel_sched_region_1 (void)
7494 int orig_max_seqno;
7496 /* Remove empty blocks that might be in the region from the beginning. */
7497 purge_empty_blocks ();
7499 orig_max_seqno = init_seqno (NULL, NULL);
7500 gcc_assert (orig_max_seqno >= 1);
7502 /* When pipelining outer loops, create fences on the loop header,
7503 not preheader. */
7504 fences = NULL;
7505 if (current_loop_nest)
7506 init_fences (BB_END (EBB_FIRST_BB (0)));
7507 else
7508 init_fences (bb_note (EBB_FIRST_BB (0)));
7509 global_level = 1;
7511 sel_sched_region_2 (orig_max_seqno);
7513 gcc_assert (fences == NULL);
7515 if (pipelining_p)
7517 int i;
7518 basic_block bb;
7519 struct flist_tail_def _new_fences;
7520 flist_tail_t new_fences = &_new_fences;
7521 bool do_p = true;
7523 pipelining_p = false;
7524 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7525 bookkeeping_p = false;
7526 enable_schedule_as_rhs_p = false;
7528 /* Schedule newly created code, that has not been scheduled yet. */
7529 do_p = true;
7531 while (do_p)
7533 do_p = false;
7535 for (i = 0; i < current_nr_blocks; i++)
7537 basic_block bb = EBB_FIRST_BB (i);
7539 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7541 if (! bb_ends_ebb_p (bb))
7542 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7543 if (sel_bb_empty_p (bb))
7545 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7546 continue;
7548 clear_outdated_rtx_info (bb);
7549 if (sel_insn_is_speculation_check (BB_END (bb))
7550 && JUMP_P (BB_END (bb)))
7551 bitmap_set_bit (blocks_to_reschedule,
7552 BRANCH_EDGE (bb)->dest->index);
7554 else if (! sel_bb_empty_p (bb)
7555 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7556 bitmap_set_bit (blocks_to_reschedule, bb->index);
7559 for (i = 0; i < current_nr_blocks; i++)
7561 bb = EBB_FIRST_BB (i);
7563 /* While pipelining outer loops, skip bundling for loop
7564 preheaders. Those will be rescheduled in the outer
7565 loop. */
7566 if (sel_is_loop_preheader_p (bb))
7568 clear_outdated_rtx_info (bb);
7569 continue;
7572 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7574 flist_tail_init (new_fences);
7576 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7578 /* Mark BB as head of the new ebb. */
7579 bitmap_set_bit (forced_ebb_heads, bb->index);
7581 gcc_assert (fences == NULL);
7583 init_fences (bb_note (bb));
7585 sel_sched_region_2 (orig_max_seqno);
7587 do_p = true;
7588 break;
7595 /* Schedule the RGN region. */
7596 void
7597 sel_sched_region (int rgn)
7599 bool schedule_p;
7600 bool reset_sched_cycles_p;
7602 if (sel_region_init (rgn))
7603 return;
7605 if (sched_verbose >= 1)
7606 sel_print ("Scheduling region %d\n", rgn);
7608 schedule_p = (!sched_is_disabled_for_current_region_p ()
7609 && dbg_cnt (sel_sched_region_cnt));
7610 reset_sched_cycles_p = pipelining_p;
7611 if (schedule_p)
7612 sel_sched_region_1 ();
7613 else
7614 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7615 reset_sched_cycles_p = true;
7617 sel_region_finish (reset_sched_cycles_p);
7620 /* Perform global init for the scheduler. */
7621 static void
7622 sel_global_init (void)
7624 calculate_dominance_info (CDI_DOMINATORS);
7625 alloc_sched_pools ();
7627 /* Setup the infos for sched_init. */
7628 sel_setup_sched_infos ();
7629 setup_sched_dump ();
7631 sched_rgn_init (false);
7632 sched_init ();
7634 sched_init_bbs ();
7635 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7636 after_recovery = 0;
7637 can_issue_more = issue_rate;
7639 sched_extend_target ();
7640 sched_deps_init (true);
7641 setup_nop_and_exit_insns ();
7642 sel_extend_global_bb_info ();
7643 init_lv_sets ();
7644 init_hard_regs_data ();
7647 /* Free the global data of the scheduler. */
7648 static void
7649 sel_global_finish (void)
7651 free_bb_note_pool ();
7652 free_lv_sets ();
7653 sel_finish_global_bb_info ();
7655 free_regset_pool ();
7656 free_nop_and_exit_insns ();
7658 sched_rgn_finish ();
7659 sched_deps_finish ();
7660 sched_finish ();
7662 if (current_loops)
7663 sel_finish_pipelining ();
7665 free_sched_pools ();
7666 free_dominance_info (CDI_DOMINATORS);
7669 /* Return true when we need to skip selective scheduling. Used for debugging. */
7670 bool
7671 maybe_skip_selective_scheduling (void)
7673 return ! dbg_cnt (sel_sched_cnt);
7676 /* The entry point. */
7677 void
7678 run_selective_scheduling (void)
7680 int rgn;
7682 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7683 return;
7685 sel_global_init ();
7687 for (rgn = 0; rgn < nr_regions; rgn++)
7688 sel_sched_region (rgn);
7690 sel_global_finish ();
7693 #endif