new tests
[official-gcc.git] / gcc / explow.c
bloba0a160dd2bd2e721d8d607d3c97a3afa936aa5cf
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "except.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "libfuncs.h"
37 #include "hard-reg-set.h"
38 #include "insn-config.h"
39 #include "ggc.h"
40 #include "recog.h"
41 #include "langhooks.h"
42 #include "target.h"
43 #include "output.h"
45 static rtx break_out_memory_refs (rtx);
48 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
50 HOST_WIDE_INT
51 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
53 int width = GET_MODE_BITSIZE (mode);
55 /* You want to truncate to a _what_? */
56 gcc_assert (SCALAR_INT_MODE_P (mode));
58 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
59 if (mode == BImode)
60 return c & 1 ? STORE_FLAG_VALUE : 0;
62 /* Sign-extend for the requested mode. */
64 if (width < HOST_BITS_PER_WIDE_INT)
66 HOST_WIDE_INT sign = 1;
67 sign <<= width - 1;
68 c &= (sign << 1) - 1;
69 c ^= sign;
70 c -= sign;
73 return c;
76 /* Return an rtx for the sum of X and the integer C. */
78 rtx
79 plus_constant (rtx x, HOST_WIDE_INT c)
81 RTX_CODE code;
82 rtx y;
83 enum machine_mode mode;
84 rtx tem;
85 int all_constant = 0;
87 if (c == 0)
88 return x;
90 restart:
92 code = GET_CODE (x);
93 mode = GET_MODE (x);
94 y = x;
96 switch (code)
98 case CONST_INT:
99 return GEN_INT (INTVAL (x) + c);
101 case CONST_DOUBLE:
103 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
104 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
105 unsigned HOST_WIDE_INT l2 = c;
106 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
107 unsigned HOST_WIDE_INT lv;
108 HOST_WIDE_INT hv;
110 add_double (l1, h1, l2, h2, &lv, &hv);
112 return immed_double_const (lv, hv, VOIDmode);
115 case MEM:
116 /* If this is a reference to the constant pool, try replacing it with
117 a reference to a new constant. If the resulting address isn't
118 valid, don't return it because we have no way to validize it. */
119 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
120 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
123 = force_const_mem (GET_MODE (x),
124 plus_constant (get_pool_constant (XEXP (x, 0)),
125 c));
126 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
127 return tem;
129 break;
131 case CONST:
132 /* If adding to something entirely constant, set a flag
133 so that we can add a CONST around the result. */
134 x = XEXP (x, 0);
135 all_constant = 1;
136 goto restart;
138 case SYMBOL_REF:
139 case LABEL_REF:
140 all_constant = 1;
141 break;
143 case PLUS:
144 /* The interesting case is adding the integer to a sum.
145 Look for constant term in the sum and combine
146 with C. For an integer constant term, we make a combined
147 integer. For a constant term that is not an explicit integer,
148 we cannot really combine, but group them together anyway.
150 Restart or use a recursive call in case the remaining operand is
151 something that we handle specially, such as a SYMBOL_REF.
153 We may not immediately return from the recursive call here, lest
154 all_constant gets lost. */
156 if (CONST_INT_P (XEXP (x, 1)))
158 c += INTVAL (XEXP (x, 1));
160 if (GET_MODE (x) != VOIDmode)
161 c = trunc_int_for_mode (c, GET_MODE (x));
163 x = XEXP (x, 0);
164 goto restart;
166 else if (CONSTANT_P (XEXP (x, 1)))
168 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
169 c = 0;
171 else if (find_constant_term_loc (&y))
173 /* We need to be careful since X may be shared and we can't
174 modify it in place. */
175 rtx copy = copy_rtx (x);
176 rtx *const_loc = find_constant_term_loc (&copy);
178 *const_loc = plus_constant (*const_loc, c);
179 x = copy;
180 c = 0;
182 break;
184 default:
185 break;
188 if (c != 0)
189 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
191 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
192 return x;
193 else if (all_constant)
194 return gen_rtx_CONST (mode, x);
195 else
196 return x;
199 /* If X is a sum, return a new sum like X but lacking any constant terms.
200 Add all the removed constant terms into *CONSTPTR.
201 X itself is not altered. The result != X if and only if
202 it is not isomorphic to X. */
205 eliminate_constant_term (rtx x, rtx *constptr)
207 rtx x0, x1;
208 rtx tem;
210 if (GET_CODE (x) != PLUS)
211 return x;
213 /* First handle constants appearing at this level explicitly. */
214 if (CONST_INT_P (XEXP (x, 1))
215 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
216 XEXP (x, 1)))
217 && CONST_INT_P (tem))
219 *constptr = tem;
220 return eliminate_constant_term (XEXP (x, 0), constptr);
223 tem = const0_rtx;
224 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
225 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
226 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
227 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
228 *constptr, tem))
229 && CONST_INT_P (tem))
231 *constptr = tem;
232 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
235 return x;
238 /* Return an rtx for the size in bytes of the value of EXP. */
241 expr_size (tree exp)
243 tree size;
245 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
246 size = TREE_OPERAND (exp, 1);
247 else
249 size = tree_expr_size (exp);
250 gcc_assert (size);
251 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
254 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
257 /* Return a wide integer for the size in bytes of the value of EXP, or -1
258 if the size can vary or is larger than an integer. */
260 HOST_WIDE_INT
261 int_expr_size (tree exp)
263 tree size;
265 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
266 size = TREE_OPERAND (exp, 1);
267 else
269 size = tree_expr_size (exp);
270 gcc_assert (size);
273 if (size == 0 || !host_integerp (size, 0))
274 return -1;
276 return tree_low_cst (size, 0);
279 /* Return a copy of X in which all memory references
280 and all constants that involve symbol refs
281 have been replaced with new temporary registers.
282 Also emit code to load the memory locations and constants
283 into those registers.
285 If X contains no such constants or memory references,
286 X itself (not a copy) is returned.
288 If a constant is found in the address that is not a legitimate constant
289 in an insn, it is left alone in the hope that it might be valid in the
290 address.
292 X may contain no arithmetic except addition, subtraction and multiplication.
293 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
295 static rtx
296 break_out_memory_refs (rtx x)
298 if (MEM_P (x)
299 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
300 && GET_MODE (x) != VOIDmode))
301 x = force_reg (GET_MODE (x), x);
302 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
303 || GET_CODE (x) == MULT)
305 rtx op0 = break_out_memory_refs (XEXP (x, 0));
306 rtx op1 = break_out_memory_refs (XEXP (x, 1));
308 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
309 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
312 return x;
315 /* Given X, a memory address in address space AS' pointer mode, convert it to
316 an address in the address space's address mode, or vice versa (TO_MODE says
317 which way). We take advantage of the fact that pointers are not allowed to
318 overflow by commuting arithmetic operations over conversions so that address
319 arithmetic insns can be used. */
322 convert_memory_address_addr_space (enum machine_mode to_mode ATTRIBUTE_UNUSED,
323 rtx x, addr_space_t as ATTRIBUTE_UNUSED)
325 #ifndef POINTERS_EXTEND_UNSIGNED
326 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
327 return x;
328 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
329 enum machine_mode pointer_mode, address_mode, from_mode;
330 rtx temp;
331 enum rtx_code code;
333 /* If X already has the right mode, just return it. */
334 if (GET_MODE (x) == to_mode)
335 return x;
337 pointer_mode = targetm.addr_space.pointer_mode (as);
338 address_mode = targetm.addr_space.address_mode (as);
339 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
341 /* Here we handle some special cases. If none of them apply, fall through
342 to the default case. */
343 switch (GET_CODE (x))
345 case CONST_INT:
346 case CONST_DOUBLE:
347 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
348 code = TRUNCATE;
349 else if (POINTERS_EXTEND_UNSIGNED < 0)
350 break;
351 else if (POINTERS_EXTEND_UNSIGNED > 0)
352 code = ZERO_EXTEND;
353 else
354 code = SIGN_EXTEND;
355 temp = simplify_unary_operation (code, to_mode, x, from_mode);
356 if (temp)
357 return temp;
358 break;
360 case SUBREG:
361 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
362 && GET_MODE (SUBREG_REG (x)) == to_mode)
363 return SUBREG_REG (x);
364 break;
366 case LABEL_REF:
367 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
368 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
369 return temp;
370 break;
372 case SYMBOL_REF:
373 temp = shallow_copy_rtx (x);
374 PUT_MODE (temp, to_mode);
375 return temp;
376 break;
378 case CONST:
379 return gen_rtx_CONST (to_mode,
380 convert_memory_address_addr_space
381 (to_mode, XEXP (x, 0), as));
382 break;
384 case PLUS:
385 case MULT:
386 /* For addition we can safely permute the conversion and addition
387 operation if one operand is a constant and converting the constant
388 does not change it or if one operand is a constant and we are
389 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
390 We can always safely permute them if we are making the address
391 narrower. */
392 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
393 || (GET_CODE (x) == PLUS
394 && CONST_INT_P (XEXP (x, 1))
395 && (XEXP (x, 1) == convert_memory_address_addr_space
396 (to_mode, XEXP (x, 1), as)
397 || POINTERS_EXTEND_UNSIGNED < 0)))
398 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
399 convert_memory_address_addr_space
400 (to_mode, XEXP (x, 0), as),
401 XEXP (x, 1));
402 break;
404 default:
405 break;
408 return convert_modes (to_mode, from_mode,
409 x, POINTERS_EXTEND_UNSIGNED);
410 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
413 /* Return something equivalent to X but valid as a memory address for something
414 of mode MODE in the named address space AS. When X is not itself valid,
415 this works by copying X or subexpressions of it into registers. */
418 memory_address_addr_space (enum machine_mode mode, rtx x, addr_space_t as)
420 rtx oldx = x;
421 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
423 x = convert_memory_address_addr_space (address_mode, x, as);
425 /* By passing constant addresses through registers
426 we get a chance to cse them. */
427 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
428 x = force_reg (address_mode, x);
430 /* We get better cse by rejecting indirect addressing at this stage.
431 Let the combiner create indirect addresses where appropriate.
432 For now, generate the code so that the subexpressions useful to share
433 are visible. But not if cse won't be done! */
434 else
436 if (! cse_not_expected && !REG_P (x))
437 x = break_out_memory_refs (x);
439 /* At this point, any valid address is accepted. */
440 if (memory_address_addr_space_p (mode, x, as))
441 goto done;
443 /* If it was valid before but breaking out memory refs invalidated it,
444 use it the old way. */
445 if (memory_address_addr_space_p (mode, oldx, as))
447 x = oldx;
448 goto done;
451 /* Perform machine-dependent transformations on X
452 in certain cases. This is not necessary since the code
453 below can handle all possible cases, but machine-dependent
454 transformations can make better code. */
456 rtx orig_x = x;
457 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
458 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
459 goto done;
462 /* PLUS and MULT can appear in special ways
463 as the result of attempts to make an address usable for indexing.
464 Usually they are dealt with by calling force_operand, below.
465 But a sum containing constant terms is special
466 if removing them makes the sum a valid address:
467 then we generate that address in a register
468 and index off of it. We do this because it often makes
469 shorter code, and because the addresses thus generated
470 in registers often become common subexpressions. */
471 if (GET_CODE (x) == PLUS)
473 rtx constant_term = const0_rtx;
474 rtx y = eliminate_constant_term (x, &constant_term);
475 if (constant_term == const0_rtx
476 || ! memory_address_addr_space_p (mode, y, as))
477 x = force_operand (x, NULL_RTX);
478 else
480 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
481 if (! memory_address_addr_space_p (mode, y, as))
482 x = force_operand (x, NULL_RTX);
483 else
484 x = y;
488 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
489 x = force_operand (x, NULL_RTX);
491 /* If we have a register that's an invalid address,
492 it must be a hard reg of the wrong class. Copy it to a pseudo. */
493 else if (REG_P (x))
494 x = copy_to_reg (x);
496 /* Last resort: copy the value to a register, since
497 the register is a valid address. */
498 else
499 x = force_reg (address_mode, x);
502 done:
504 gcc_assert (memory_address_addr_space_p (mode, x, as));
505 /* If we didn't change the address, we are done. Otherwise, mark
506 a reg as a pointer if we have REG or REG + CONST_INT. */
507 if (oldx == x)
508 return x;
509 else if (REG_P (x))
510 mark_reg_pointer (x, BITS_PER_UNIT);
511 else if (GET_CODE (x) == PLUS
512 && REG_P (XEXP (x, 0))
513 && CONST_INT_P (XEXP (x, 1)))
514 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
516 /* OLDX may have been the address on a temporary. Update the address
517 to indicate that X is now used. */
518 update_temp_slot_address (oldx, x);
520 return x;
523 /* Convert a mem ref into one with a valid memory address.
524 Pass through anything else unchanged. */
527 validize_mem (rtx ref)
529 if (!MEM_P (ref))
530 return ref;
531 ref = use_anchored_address (ref);
532 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
533 MEM_ADDR_SPACE (ref)))
534 return ref;
536 /* Don't alter REF itself, since that is probably a stack slot. */
537 return replace_equiv_address (ref, XEXP (ref, 0));
540 /* If X is a memory reference to a member of an object block, try rewriting
541 it to use an anchor instead. Return the new memory reference on success
542 and the old one on failure. */
545 use_anchored_address (rtx x)
547 rtx base;
548 HOST_WIDE_INT offset;
550 if (!flag_section_anchors)
551 return x;
553 if (!MEM_P (x))
554 return x;
556 /* Split the address into a base and offset. */
557 base = XEXP (x, 0);
558 offset = 0;
559 if (GET_CODE (base) == CONST
560 && GET_CODE (XEXP (base, 0)) == PLUS
561 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
563 offset += INTVAL (XEXP (XEXP (base, 0), 1));
564 base = XEXP (XEXP (base, 0), 0);
567 /* Check whether BASE is suitable for anchors. */
568 if (GET_CODE (base) != SYMBOL_REF
569 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
570 || SYMBOL_REF_ANCHOR_P (base)
571 || SYMBOL_REF_BLOCK (base) == NULL
572 || !targetm.use_anchors_for_symbol_p (base))
573 return x;
575 /* Decide where BASE is going to be. */
576 place_block_symbol (base);
578 /* Get the anchor we need to use. */
579 offset += SYMBOL_REF_BLOCK_OFFSET (base);
580 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
581 SYMBOL_REF_TLS_MODEL (base));
583 /* Work out the offset from the anchor. */
584 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
586 /* If we're going to run a CSE pass, force the anchor into a register.
587 We will then be able to reuse registers for several accesses, if the
588 target costs say that that's worthwhile. */
589 if (!cse_not_expected)
590 base = force_reg (GET_MODE (base), base);
592 return replace_equiv_address (x, plus_constant (base, offset));
595 /* Copy the value or contents of X to a new temp reg and return that reg. */
598 copy_to_reg (rtx x)
600 rtx temp = gen_reg_rtx (GET_MODE (x));
602 /* If not an operand, must be an address with PLUS and MULT so
603 do the computation. */
604 if (! general_operand (x, VOIDmode))
605 x = force_operand (x, temp);
607 if (x != temp)
608 emit_move_insn (temp, x);
610 return temp;
613 /* Like copy_to_reg but always give the new register mode Pmode
614 in case X is a constant. */
617 copy_addr_to_reg (rtx x)
619 return copy_to_mode_reg (Pmode, x);
622 /* Like copy_to_reg but always give the new register mode MODE
623 in case X is a constant. */
626 copy_to_mode_reg (enum machine_mode mode, rtx x)
628 rtx temp = gen_reg_rtx (mode);
630 /* If not an operand, must be an address with PLUS and MULT so
631 do the computation. */
632 if (! general_operand (x, VOIDmode))
633 x = force_operand (x, temp);
635 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
636 if (x != temp)
637 emit_move_insn (temp, x);
638 return temp;
641 /* Load X into a register if it is not already one.
642 Use mode MODE for the register.
643 X should be valid for mode MODE, but it may be a constant which
644 is valid for all integer modes; that's why caller must specify MODE.
646 The caller must not alter the value in the register we return,
647 since we mark it as a "constant" register. */
650 force_reg (enum machine_mode mode, rtx x)
652 rtx temp, insn, set;
654 if (REG_P (x))
655 return x;
657 if (general_operand (x, mode))
659 temp = gen_reg_rtx (mode);
660 insn = emit_move_insn (temp, x);
662 else
664 temp = force_operand (x, NULL_RTX);
665 if (REG_P (temp))
666 insn = get_last_insn ();
667 else
669 rtx temp2 = gen_reg_rtx (mode);
670 insn = emit_move_insn (temp2, temp);
671 temp = temp2;
675 /* Let optimizers know that TEMP's value never changes
676 and that X can be substituted for it. Don't get confused
677 if INSN set something else (such as a SUBREG of TEMP). */
678 if (CONSTANT_P (x)
679 && (set = single_set (insn)) != 0
680 && SET_DEST (set) == temp
681 && ! rtx_equal_p (x, SET_SRC (set)))
682 set_unique_reg_note (insn, REG_EQUAL, x);
684 /* Let optimizers know that TEMP is a pointer, and if so, the
685 known alignment of that pointer. */
687 unsigned align = 0;
688 if (GET_CODE (x) == SYMBOL_REF)
690 align = BITS_PER_UNIT;
691 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
692 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
694 else if (GET_CODE (x) == LABEL_REF)
695 align = BITS_PER_UNIT;
696 else if (GET_CODE (x) == CONST
697 && GET_CODE (XEXP (x, 0)) == PLUS
698 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
699 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
701 rtx s = XEXP (XEXP (x, 0), 0);
702 rtx c = XEXP (XEXP (x, 0), 1);
703 unsigned sa, ca;
705 sa = BITS_PER_UNIT;
706 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
707 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
709 if (INTVAL (c) == 0)
710 align = sa;
711 else
713 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
714 align = MIN (sa, ca);
718 if (align || (MEM_P (x) && MEM_POINTER (x)))
719 mark_reg_pointer (temp, align);
722 return temp;
725 /* If X is a memory ref, copy its contents to a new temp reg and return
726 that reg. Otherwise, return X. */
729 force_not_mem (rtx x)
731 rtx temp;
733 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
734 return x;
736 temp = gen_reg_rtx (GET_MODE (x));
738 if (MEM_POINTER (x))
739 REG_POINTER (temp) = 1;
741 emit_move_insn (temp, x);
742 return temp;
745 /* Copy X to TARGET (if it's nonzero and a reg)
746 or to a new temp reg and return that reg.
747 MODE is the mode to use for X in case it is a constant. */
750 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
752 rtx temp;
754 if (target && REG_P (target))
755 temp = target;
756 else
757 temp = gen_reg_rtx (mode);
759 emit_move_insn (temp, x);
760 return temp;
763 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
764 PUNSIGNEDP points to the signedness of the type and may be adjusted
765 to show what signedness to use on extension operations.
767 FOR_RETURN is nonzero if the caller is promoting the return value
768 of FNDECL, else it is for promoting args. */
770 enum machine_mode
771 promote_function_mode (const_tree type, enum machine_mode mode, int *punsignedp,
772 const_tree funtype, int for_return)
774 switch (TREE_CODE (type))
776 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
777 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
778 case POINTER_TYPE: case REFERENCE_TYPE:
779 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
780 for_return);
782 default:
783 return mode;
786 /* Return the mode to use to store a scalar of TYPE and MODE.
787 PUNSIGNEDP points to the signedness of the type and may be adjusted
788 to show what signedness to use on extension operations. */
790 enum machine_mode
791 promote_mode (const_tree type ATTRIBUTE_UNUSED, enum machine_mode mode,
792 int *punsignedp ATTRIBUTE_UNUSED)
794 /* FIXME: this is the same logic that was there until GCC 4.4, but we
795 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
796 is not defined. The affected targets are M32C, S390, SPARC. */
797 #ifdef PROMOTE_MODE
798 const enum tree_code code = TREE_CODE (type);
799 int unsignedp = *punsignedp;
801 switch (code)
803 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
804 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
805 PROMOTE_MODE (mode, unsignedp, type);
806 *punsignedp = unsignedp;
807 return mode;
808 break;
810 #ifdef POINTERS_EXTEND_UNSIGNED
811 case REFERENCE_TYPE:
812 case POINTER_TYPE:
813 *punsignedp = POINTERS_EXTEND_UNSIGNED;
814 return targetm.addr_space.address_mode
815 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
816 break;
817 #endif
819 default:
820 return mode;
822 #else
823 return mode;
824 #endif
828 /* Use one of promote_mode or promote_function_mode to find the promoted
829 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
830 of DECL after promotion. */
832 enum machine_mode
833 promote_decl_mode (const_tree decl, int *punsignedp)
835 tree type = TREE_TYPE (decl);
836 int unsignedp = TYPE_UNSIGNED (type);
837 enum machine_mode mode = DECL_MODE (decl);
838 enum machine_mode pmode;
840 if (TREE_CODE (decl) == RESULT_DECL
841 || TREE_CODE (decl) == PARM_DECL)
842 pmode = promote_function_mode (type, mode, &unsignedp,
843 TREE_TYPE (current_function_decl), 2);
844 else
845 pmode = promote_mode (type, mode, &unsignedp);
847 if (punsignedp)
848 *punsignedp = unsignedp;
849 return pmode;
853 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
854 This pops when ADJUST is positive. ADJUST need not be constant. */
856 void
857 adjust_stack (rtx adjust)
859 rtx temp;
861 if (adjust == const0_rtx)
862 return;
864 /* We expect all variable sized adjustments to be multiple of
865 PREFERRED_STACK_BOUNDARY. */
866 if (CONST_INT_P (adjust))
867 stack_pointer_delta -= INTVAL (adjust);
869 temp = expand_binop (Pmode,
870 #ifdef STACK_GROWS_DOWNWARD
871 add_optab,
872 #else
873 sub_optab,
874 #endif
875 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
876 OPTAB_LIB_WIDEN);
878 if (temp != stack_pointer_rtx)
879 emit_move_insn (stack_pointer_rtx, temp);
882 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
883 This pushes when ADJUST is positive. ADJUST need not be constant. */
885 void
886 anti_adjust_stack (rtx adjust)
888 rtx temp;
890 if (adjust == const0_rtx)
891 return;
893 /* We expect all variable sized adjustments to be multiple of
894 PREFERRED_STACK_BOUNDARY. */
895 if (CONST_INT_P (adjust))
896 stack_pointer_delta += INTVAL (adjust);
898 temp = expand_binop (Pmode,
899 #ifdef STACK_GROWS_DOWNWARD
900 sub_optab,
901 #else
902 add_optab,
903 #endif
904 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
905 OPTAB_LIB_WIDEN);
907 if (temp != stack_pointer_rtx)
908 emit_move_insn (stack_pointer_rtx, temp);
911 /* Round the size of a block to be pushed up to the boundary required
912 by this machine. SIZE is the desired size, which need not be constant. */
914 static rtx
915 round_push (rtx size)
917 rtx align_rtx, alignm1_rtx;
919 if (!SUPPORTS_STACK_ALIGNMENT
920 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
922 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
924 if (align == 1)
925 return size;
927 if (CONST_INT_P (size))
929 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
931 if (INTVAL (size) != new_size)
932 size = GEN_INT (new_size);
933 return size;
936 align_rtx = GEN_INT (align);
937 alignm1_rtx = GEN_INT (align - 1);
939 else
941 /* If crtl->preferred_stack_boundary might still grow, use
942 virtual_preferred_stack_boundary_rtx instead. This will be
943 substituted by the right value in vregs pass and optimized
944 during combine. */
945 align_rtx = virtual_preferred_stack_boundary_rtx;
946 alignm1_rtx = force_operand (plus_constant (align_rtx, -1), NULL_RTX);
949 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
950 but we know it can't. So add ourselves and then do
951 TRUNC_DIV_EXPR. */
952 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
953 NULL_RTX, 1, OPTAB_LIB_WIDEN);
954 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
955 NULL_RTX, 1);
956 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
958 return size;
961 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
962 to a previously-created save area. If no save area has been allocated,
963 this function will allocate one. If a save area is specified, it
964 must be of the proper mode. */
966 void
967 emit_stack_save (enum save_level save_level, rtx *psave)
969 rtx sa = *psave;
970 /* The default is that we use a move insn and save in a Pmode object. */
971 rtx (*fcn) (rtx, rtx) = gen_move_insn;
972 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
974 /* See if this machine has anything special to do for this kind of save. */
975 switch (save_level)
977 #ifdef HAVE_save_stack_block
978 case SAVE_BLOCK:
979 if (HAVE_save_stack_block)
980 fcn = gen_save_stack_block;
981 break;
982 #endif
983 #ifdef HAVE_save_stack_function
984 case SAVE_FUNCTION:
985 if (HAVE_save_stack_function)
986 fcn = gen_save_stack_function;
987 break;
988 #endif
989 #ifdef HAVE_save_stack_nonlocal
990 case SAVE_NONLOCAL:
991 if (HAVE_save_stack_nonlocal)
992 fcn = gen_save_stack_nonlocal;
993 break;
994 #endif
995 default:
996 break;
999 /* If there is no save area and we have to allocate one, do so. Otherwise
1000 verify the save area is the proper mode. */
1002 if (sa == 0)
1004 if (mode != VOIDmode)
1006 if (save_level == SAVE_NONLOCAL)
1007 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1008 else
1009 *psave = sa = gen_reg_rtx (mode);
1013 do_pending_stack_adjust ();
1014 if (sa != 0)
1015 sa = validize_mem (sa);
1016 emit_insn (fcn (sa, stack_pointer_rtx));
1019 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1020 area made by emit_stack_save. If it is zero, we have nothing to do. */
1022 void
1023 emit_stack_restore (enum save_level save_level, rtx sa)
1025 /* The default is that we use a move insn. */
1026 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1028 /* See if this machine has anything special to do for this kind of save. */
1029 switch (save_level)
1031 #ifdef HAVE_restore_stack_block
1032 case SAVE_BLOCK:
1033 if (HAVE_restore_stack_block)
1034 fcn = gen_restore_stack_block;
1035 break;
1036 #endif
1037 #ifdef HAVE_restore_stack_function
1038 case SAVE_FUNCTION:
1039 if (HAVE_restore_stack_function)
1040 fcn = gen_restore_stack_function;
1041 break;
1042 #endif
1043 #ifdef HAVE_restore_stack_nonlocal
1044 case SAVE_NONLOCAL:
1045 if (HAVE_restore_stack_nonlocal)
1046 fcn = gen_restore_stack_nonlocal;
1047 break;
1048 #endif
1049 default:
1050 break;
1053 if (sa != 0)
1055 sa = validize_mem (sa);
1056 /* These clobbers prevent the scheduler from moving
1057 references to variable arrays below the code
1058 that deletes (pops) the arrays. */
1059 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1060 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1063 discard_pending_stack_adjust ();
1065 emit_insn (fcn (stack_pointer_rtx, sa));
1068 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1069 function. This function should be called whenever we allocate or
1070 deallocate dynamic stack space. */
1072 void
1073 update_nonlocal_goto_save_area (void)
1075 tree t_save;
1076 rtx r_save;
1078 /* The nonlocal_goto_save_area object is an array of N pointers. The
1079 first one is used for the frame pointer save; the rest are sized by
1080 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1081 of the stack save area slots. */
1082 t_save = build4 (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1083 integer_one_node, NULL_TREE, NULL_TREE);
1084 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1086 emit_stack_save (SAVE_NONLOCAL, &r_save);
1089 /* Return an rtx representing the address of an area of memory dynamically
1090 pushed on the stack.
1092 Any required stack pointer alignment is preserved.
1094 SIZE is an rtx representing the size of the area.
1096 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1097 parameter may be zero. If so, a proper value will be extracted
1098 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1100 REQUIRED_ALIGN is the alignment (in bits) required for the region
1101 of memory.
1103 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1104 stack space allocated by the generated code cannot be added with itself
1105 in the course of the execution of the function. It is always safe to
1106 pass FALSE here and the following criterion is sufficient in order to
1107 pass TRUE: every path in the CFG that starts at the allocation point and
1108 loops to it executes the associated deallocation code. */
1111 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1112 unsigned required_align, bool cannot_accumulate)
1114 HOST_WIDE_INT stack_usage_size = -1;
1115 rtx final_label, final_target, target;
1116 unsigned extra_align = 0;
1117 bool must_align;
1119 /* If we're asking for zero bytes, it doesn't matter what we point
1120 to since we can't dereference it. But return a reasonable
1121 address anyway. */
1122 if (size == const0_rtx)
1123 return virtual_stack_dynamic_rtx;
1125 /* Otherwise, show we're calling alloca or equivalent. */
1126 cfun->calls_alloca = 1;
1128 /* If stack usage info is requested, look into the size we are passed.
1129 We need to do so this early to avoid the obfuscation that may be
1130 introduced later by the various alignment operations. */
1131 if (flag_stack_usage)
1133 if (CONST_INT_P (size))
1134 stack_usage_size = INTVAL (size);
1135 else if (REG_P (size))
1137 /* Look into the last emitted insn and see if we can deduce
1138 something for the register. */
1139 rtx insn, set, note;
1140 insn = get_last_insn ();
1141 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1143 if (CONST_INT_P (SET_SRC (set)))
1144 stack_usage_size = INTVAL (SET_SRC (set));
1145 else if ((note = find_reg_equal_equiv_note (insn))
1146 && CONST_INT_P (XEXP (note, 0)))
1147 stack_usage_size = INTVAL (XEXP (note, 0));
1151 /* If the size is not constant, we can't say anything. */
1152 if (stack_usage_size == -1)
1154 current_function_has_unbounded_dynamic_stack_size = 1;
1155 stack_usage_size = 0;
1159 /* Ensure the size is in the proper mode. */
1160 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1161 size = convert_to_mode (Pmode, size, 1);
1163 /* Adjust SIZE_ALIGN, if needed. */
1164 if (CONST_INT_P (size))
1166 unsigned HOST_WIDE_INT lsb;
1168 lsb = INTVAL (size);
1169 lsb &= -lsb;
1171 /* Watch out for overflow truncating to "unsigned". */
1172 if (lsb > UINT_MAX / BITS_PER_UNIT)
1173 size_align = 1u << (HOST_BITS_PER_INT - 1);
1174 else
1175 size_align = (unsigned)lsb * BITS_PER_UNIT;
1177 else if (size_align < BITS_PER_UNIT)
1178 size_align = BITS_PER_UNIT;
1180 /* We can't attempt to minimize alignment necessary, because we don't
1181 know the final value of preferred_stack_boundary yet while executing
1182 this code. */
1183 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1184 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1186 /* We will need to ensure that the address we return is aligned to
1187 REQUIRED_ALIGN. If STACK_DYNAMIC_OFFSET is defined, we don't
1188 always know its final value at this point in the compilation (it
1189 might depend on the size of the outgoing parameter lists, for
1190 example), so we must align the value to be returned in that case.
1191 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1192 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1193 We must also do an alignment operation on the returned value if
1194 the stack pointer alignment is less strict than REQUIRED_ALIGN.
1196 If we have to align, we must leave space in SIZE for the hole
1197 that might result from the alignment operation. */
1199 must_align = (crtl->preferred_stack_boundary < required_align);
1200 if (must_align)
1202 if (required_align > PREFERRED_STACK_BOUNDARY)
1203 extra_align = PREFERRED_STACK_BOUNDARY;
1204 else if (required_align > STACK_BOUNDARY)
1205 extra_align = STACK_BOUNDARY;
1206 else
1207 extra_align = BITS_PER_UNIT;
1210 /* ??? STACK_POINTER_OFFSET is always defined now. */
1211 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1212 must_align = true;
1213 extra_align = BITS_PER_UNIT;
1214 #endif
1216 if (must_align)
1218 unsigned extra = (required_align - extra_align) / BITS_PER_UNIT;
1220 size = plus_constant (size, extra);
1221 size = force_operand (size, NULL_RTX);
1223 if (flag_stack_usage)
1224 stack_usage_size += extra;
1226 if (extra && size_align > extra_align)
1227 size_align = extra_align;
1230 #ifdef SETJMP_VIA_SAVE_AREA
1231 /* If setjmp restores regs from a save area in the stack frame,
1232 avoid clobbering the reg save area. Note that the offset of
1233 virtual_incoming_args_rtx includes the preallocated stack args space.
1234 It would be no problem to clobber that, but it's on the wrong side
1235 of the old save area.
1237 What used to happen is that, since we did not know for sure
1238 whether setjmp() was invoked until after RTL generation, we
1239 would use reg notes to store the "optimized" size and fix things
1240 up later. These days we know this information before we ever
1241 start building RTL so the reg notes are unnecessary. */
1242 if (cfun->calls_setjmp)
1244 rtx dynamic_offset
1245 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1246 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1248 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1249 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1251 /* The above dynamic offset cannot be computed statically at this
1252 point, but it will be possible to do so after RTL expansion is
1253 done. Record how many times we will need to add it. */
1254 if (flag_stack_usage)
1255 current_function_dynamic_alloc_count++;
1257 /* ??? Can we infer a minimum of STACK_BOUNDARY here? */
1258 size_align = BITS_PER_UNIT;
1260 #endif /* SETJMP_VIA_SAVE_AREA */
1262 /* Round the size to a multiple of the required stack alignment.
1263 Since the stack if presumed to be rounded before this allocation,
1264 this will maintain the required alignment.
1266 If the stack grows downward, we could save an insn by subtracting
1267 SIZE from the stack pointer and then aligning the stack pointer.
1268 The problem with this is that the stack pointer may be unaligned
1269 between the execution of the subtraction and alignment insns and
1270 some machines do not allow this. Even on those that do, some
1271 signal handlers malfunction if a signal should occur between those
1272 insns. Since this is an extremely rare event, we have no reliable
1273 way of knowing which systems have this problem. So we avoid even
1274 momentarily mis-aligning the stack. */
1275 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1277 size = round_push (size);
1279 if (flag_stack_usage)
1281 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1282 stack_usage_size = (stack_usage_size + align - 1) / align * align;
1286 target = gen_reg_rtx (Pmode);
1288 /* The size is supposed to be fully adjusted at this point so record it
1289 if stack usage info is requested. */
1290 if (flag_stack_usage)
1292 current_function_dynamic_stack_size += stack_usage_size;
1294 /* ??? This is gross but the only safe stance in the absence
1295 of stack usage oriented flow analysis. */
1296 if (!cannot_accumulate)
1297 current_function_has_unbounded_dynamic_stack_size = 1;
1300 final_label = NULL_RTX;
1301 final_target = NULL_RTX;
1303 /* If we are splitting the stack, we need to ask the backend whether
1304 there is enough room on the current stack. If there isn't, or if
1305 the backend doesn't know how to tell is, then we need to call a
1306 function to allocate memory in some other way. This memory will
1307 be released when we release the current stack segment. The
1308 effect is that stack allocation becomes less efficient, but at
1309 least it doesn't cause a stack overflow. */
1310 if (flag_split_stack)
1312 rtx available_label, ask, space, func;
1314 available_label = NULL_RTX;
1316 #ifdef HAVE_split_stack_space_check
1317 if (HAVE_split_stack_space_check)
1319 available_label = gen_label_rtx ();
1321 /* This instruction will branch to AVAILABLE_LABEL if there
1322 are SIZE bytes available on the stack. */
1323 emit_insn (gen_split_stack_space_check (size, available_label));
1325 #endif
1327 /* The __morestack_allocate_stack_space function will allocate
1328 memory using malloc. If the alignment of the memory returned
1329 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1330 make sure we allocate enough space. */
1331 if (MALLOC_ABI_ALIGNMENT >= required_align)
1332 ask = size;
1333 else
1335 ask = expand_binop (Pmode, add_optab, size,
1336 GEN_INT (required_align / BITS_PER_UNIT - 1),
1337 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1338 must_align = true;
1341 func = init_one_libfunc ("__morestack_allocate_stack_space");
1343 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1344 1, ask, Pmode);
1346 if (available_label == NULL_RTX)
1347 return space;
1349 final_target = gen_reg_rtx (Pmode);
1351 emit_move_insn (final_target, space);
1353 final_label = gen_label_rtx ();
1354 emit_jump (final_label);
1356 emit_label (available_label);
1359 do_pending_stack_adjust ();
1361 /* We ought to be called always on the toplevel and stack ought to be aligned
1362 properly. */
1363 gcc_assert (!(stack_pointer_delta
1364 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1366 /* If needed, check that we have the required amount of stack. Take into
1367 account what has already been checked. */
1368 if (STACK_CHECK_MOVING_SP)
1370 else if (flag_stack_check == GENERIC_STACK_CHECK)
1371 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1372 size);
1373 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1374 probe_stack_range (STACK_CHECK_PROTECT, size);
1376 /* Perform the required allocation from the stack. Some systems do
1377 this differently than simply incrementing/decrementing from the
1378 stack pointer, such as acquiring the space by calling malloc(). */
1379 #ifdef HAVE_allocate_stack
1380 if (HAVE_allocate_stack)
1382 struct expand_operand ops[2];
1383 /* We don't have to check against the predicate for operand 0 since
1384 TARGET is known to be a pseudo of the proper mode, which must
1385 be valid for the operand. */
1386 create_fixed_operand (&ops[0], target);
1387 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1388 expand_insn (CODE_FOR_allocate_stack, 2, ops);
1390 else
1391 #endif
1393 int saved_stack_pointer_delta;
1395 #ifndef STACK_GROWS_DOWNWARD
1396 emit_move_insn (target, virtual_stack_dynamic_rtx);
1397 #endif
1399 /* Check stack bounds if necessary. */
1400 if (crtl->limit_stack)
1402 rtx available;
1403 rtx space_available = gen_label_rtx ();
1404 #ifdef STACK_GROWS_DOWNWARD
1405 available = expand_binop (Pmode, sub_optab,
1406 stack_pointer_rtx, stack_limit_rtx,
1407 NULL_RTX, 1, OPTAB_WIDEN);
1408 #else
1409 available = expand_binop (Pmode, sub_optab,
1410 stack_limit_rtx, stack_pointer_rtx,
1411 NULL_RTX, 1, OPTAB_WIDEN);
1412 #endif
1413 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1414 space_available);
1415 #ifdef HAVE_trap
1416 if (HAVE_trap)
1417 emit_insn (gen_trap ());
1418 else
1419 #endif
1420 error ("stack limits not supported on this target");
1421 emit_barrier ();
1422 emit_label (space_available);
1425 saved_stack_pointer_delta = stack_pointer_delta;
1426 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1427 anti_adjust_stack_and_probe (size, false);
1428 else
1429 anti_adjust_stack (size);
1430 /* Even if size is constant, don't modify stack_pointer_delta.
1431 The constant size alloca should preserve
1432 crtl->preferred_stack_boundary alignment. */
1433 stack_pointer_delta = saved_stack_pointer_delta;
1435 #ifdef STACK_GROWS_DOWNWARD
1436 emit_move_insn (target, virtual_stack_dynamic_rtx);
1437 #endif
1440 /* Finish up the split stack handling. */
1441 if (final_label != NULL_RTX)
1443 gcc_assert (flag_split_stack);
1444 emit_move_insn (final_target, target);
1445 emit_label (final_label);
1446 target = final_target;
1449 if (must_align)
1451 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1452 but we know it can't. So add ourselves and then do
1453 TRUNC_DIV_EXPR. */
1454 target = expand_binop (Pmode, add_optab, target,
1455 GEN_INT (required_align / BITS_PER_UNIT - 1),
1456 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1457 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1458 GEN_INT (required_align / BITS_PER_UNIT),
1459 NULL_RTX, 1);
1460 target = expand_mult (Pmode, target,
1461 GEN_INT (required_align / BITS_PER_UNIT),
1462 NULL_RTX, 1);
1465 /* Now that we've committed to a return value, mark its alignment. */
1466 mark_reg_pointer (target, required_align);
1468 /* Record the new stack level for nonlocal gotos. */
1469 if (cfun->nonlocal_goto_save_area != 0)
1470 update_nonlocal_goto_save_area ();
1472 return target;
1475 /* A front end may want to override GCC's stack checking by providing a
1476 run-time routine to call to check the stack, so provide a mechanism for
1477 calling that routine. */
1479 static GTY(()) rtx stack_check_libfunc;
1481 void
1482 set_stack_check_libfunc (const char *libfunc_name)
1484 gcc_assert (stack_check_libfunc == NULL_RTX);
1485 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1488 /* Emit one stack probe at ADDRESS, an address within the stack. */
1490 void
1491 emit_stack_probe (rtx address)
1493 rtx memref = gen_rtx_MEM (word_mode, address);
1495 MEM_VOLATILE_P (memref) = 1;
1497 /* See if we have an insn to probe the stack. */
1498 #ifdef HAVE_probe_stack
1499 if (HAVE_probe_stack)
1500 emit_insn (gen_probe_stack (memref));
1501 else
1502 #endif
1503 emit_move_insn (memref, const0_rtx);
1506 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1507 FIRST is a constant and size is a Pmode RTX. These are offsets from
1508 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1509 or subtract them from the stack pointer. */
1511 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1513 #ifdef STACK_GROWS_DOWNWARD
1514 #define STACK_GROW_OP MINUS
1515 #define STACK_GROW_OPTAB sub_optab
1516 #define STACK_GROW_OFF(off) -(off)
1517 #else
1518 #define STACK_GROW_OP PLUS
1519 #define STACK_GROW_OPTAB add_optab
1520 #define STACK_GROW_OFF(off) (off)
1521 #endif
1523 void
1524 probe_stack_range (HOST_WIDE_INT first, rtx size)
1526 /* First ensure SIZE is Pmode. */
1527 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1528 size = convert_to_mode (Pmode, size, 1);
1530 /* Next see if we have a function to check the stack. */
1531 if (stack_check_libfunc)
1533 rtx addr = memory_address (Pmode,
1534 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1535 stack_pointer_rtx,
1536 plus_constant (size, first)));
1537 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1538 Pmode);
1539 return;
1542 /* Next see if we have an insn to check the stack. */
1543 #ifdef HAVE_check_stack
1544 if (HAVE_check_stack)
1546 struct expand_operand ops[1];
1547 rtx addr = memory_address (Pmode,
1548 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1549 stack_pointer_rtx,
1550 plus_constant (size, first)));
1552 create_input_operand (&ops[0], addr, Pmode);
1553 if (maybe_expand_insn (CODE_FOR_check_stack, 1, ops))
1554 return;
1556 #endif
1558 /* Otherwise we have to generate explicit probes. If we have a constant
1559 small number of them to generate, that's the easy case. */
1560 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1562 HOST_WIDE_INT isize = INTVAL (size), i;
1563 rtx addr;
1565 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1566 it exceeds SIZE. If only one probe is needed, this will not
1567 generate any code. Then probe at FIRST + SIZE. */
1568 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1570 addr = memory_address (Pmode,
1571 plus_constant (stack_pointer_rtx,
1572 STACK_GROW_OFF (first + i)));
1573 emit_stack_probe (addr);
1576 addr = memory_address (Pmode,
1577 plus_constant (stack_pointer_rtx,
1578 STACK_GROW_OFF (first + isize)));
1579 emit_stack_probe (addr);
1582 /* In the variable case, do the same as above, but in a loop. Note that we
1583 must be extra careful with variables wrapping around because we might be
1584 at the very top (or the very bottom) of the address space and we have to
1585 be able to handle this case properly; in particular, we use an equality
1586 test for the loop condition. */
1587 else
1589 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1590 rtx loop_lab = gen_label_rtx ();
1591 rtx end_lab = gen_label_rtx ();
1594 /* Step 1: round SIZE to the previous multiple of the interval. */
1596 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1597 rounded_size
1598 = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1599 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1602 /* Step 2: compute initial and final value of the loop counter. */
1604 /* TEST_ADDR = SP + FIRST. */
1605 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1606 stack_pointer_rtx,
1607 GEN_INT (first)), NULL_RTX);
1609 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1610 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1611 test_addr,
1612 rounded_size_op), NULL_RTX);
1615 /* Step 3: the loop
1617 while (TEST_ADDR != LAST_ADDR)
1619 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1620 probe at TEST_ADDR
1623 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1624 until it is equal to ROUNDED_SIZE. */
1626 emit_label (loop_lab);
1628 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1629 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1630 end_lab);
1632 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1633 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1634 GEN_INT (PROBE_INTERVAL), test_addr,
1635 1, OPTAB_WIDEN);
1637 gcc_assert (temp == test_addr);
1639 /* Probe at TEST_ADDR. */
1640 emit_stack_probe (test_addr);
1642 emit_jump (loop_lab);
1644 emit_label (end_lab);
1647 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1648 that SIZE is equal to ROUNDED_SIZE. */
1650 /* TEMP = SIZE - ROUNDED_SIZE. */
1651 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1652 if (temp != const0_rtx)
1654 rtx addr;
1656 if (CONST_INT_P (temp))
1658 /* Use [base + disp} addressing mode if supported. */
1659 HOST_WIDE_INT offset = INTVAL (temp);
1660 addr = memory_address (Pmode,
1661 plus_constant (last_addr,
1662 STACK_GROW_OFF (offset)));
1664 else
1666 /* Manual CSE if the difference is not known at compile-time. */
1667 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1668 addr = memory_address (Pmode,
1669 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1670 last_addr, temp));
1673 emit_stack_probe (addr);
1678 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1679 while probing it. This pushes when SIZE is positive. SIZE need not
1680 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1681 by plus SIZE at the end. */
1683 void
1684 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1686 /* We skip the probe for the first interval + a small dope of 4 words and
1687 probe that many bytes past the specified size to maintain a protection
1688 area at the botton of the stack. */
1689 const int dope = 4 * UNITS_PER_WORD;
1691 /* First ensure SIZE is Pmode. */
1692 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1693 size = convert_to_mode (Pmode, size, 1);
1695 /* If we have a constant small number of probes to generate, that's the
1696 easy case. */
1697 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1699 HOST_WIDE_INT isize = INTVAL (size), i;
1700 bool first_probe = true;
1702 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1703 values of N from 1 until it exceeds SIZE. If only one probe is
1704 needed, this will not generate any code. Then adjust and probe
1705 to PROBE_INTERVAL + SIZE. */
1706 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1708 if (first_probe)
1710 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1711 first_probe = false;
1713 else
1714 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1715 emit_stack_probe (stack_pointer_rtx);
1718 if (first_probe)
1719 anti_adjust_stack (plus_constant (size, PROBE_INTERVAL + dope));
1720 else
1721 anti_adjust_stack (plus_constant (size, PROBE_INTERVAL - i));
1722 emit_stack_probe (stack_pointer_rtx);
1725 /* In the variable case, do the same as above, but in a loop. Note that we
1726 must be extra careful with variables wrapping around because we might be
1727 at the very top (or the very bottom) of the address space and we have to
1728 be able to handle this case properly; in particular, we use an equality
1729 test for the loop condition. */
1730 else
1732 rtx rounded_size, rounded_size_op, last_addr, temp;
1733 rtx loop_lab = gen_label_rtx ();
1734 rtx end_lab = gen_label_rtx ();
1737 /* Step 1: round SIZE to the previous multiple of the interval. */
1739 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1740 rounded_size
1741 = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1742 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1745 /* Step 2: compute initial and final value of the loop counter. */
1747 /* SP = SP_0 + PROBE_INTERVAL. */
1748 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1750 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1751 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1752 stack_pointer_rtx,
1753 rounded_size_op), NULL_RTX);
1756 /* Step 3: the loop
1758 while (SP != LAST_ADDR)
1760 SP = SP + PROBE_INTERVAL
1761 probe at SP
1764 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1765 values of N from 1 until it is equal to ROUNDED_SIZE. */
1767 emit_label (loop_lab);
1769 /* Jump to END_LAB if SP == LAST_ADDR. */
1770 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1771 Pmode, 1, end_lab);
1773 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1774 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1775 emit_stack_probe (stack_pointer_rtx);
1777 emit_jump (loop_lab);
1779 emit_label (end_lab);
1782 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1783 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1785 /* TEMP = SIZE - ROUNDED_SIZE. */
1786 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1787 if (temp != const0_rtx)
1789 /* Manual CSE if the difference is not known at compile-time. */
1790 if (GET_CODE (temp) != CONST_INT)
1791 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1792 anti_adjust_stack (temp);
1793 emit_stack_probe (stack_pointer_rtx);
1797 /* Adjust back and account for the additional first interval. */
1798 if (adjust_back)
1799 adjust_stack (plus_constant (size, PROBE_INTERVAL + dope));
1800 else
1801 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1804 /* Return an rtx representing the register or memory location
1805 in which a scalar value of data type VALTYPE
1806 was returned by a function call to function FUNC.
1807 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1808 function is known, otherwise 0.
1809 OUTGOING is 1 if on a machine with register windows this function
1810 should return the register in which the function will put its result
1811 and 0 otherwise. */
1814 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1815 int outgoing ATTRIBUTE_UNUSED)
1817 rtx val;
1819 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1821 if (REG_P (val)
1822 && GET_MODE (val) == BLKmode)
1824 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1825 enum machine_mode tmpmode;
1827 /* int_size_in_bytes can return -1. We don't need a check here
1828 since the value of bytes will then be large enough that no
1829 mode will match anyway. */
1831 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1832 tmpmode != VOIDmode;
1833 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1835 /* Have we found a large enough mode? */
1836 if (GET_MODE_SIZE (tmpmode) >= bytes)
1837 break;
1840 /* No suitable mode found. */
1841 gcc_assert (tmpmode != VOIDmode);
1843 PUT_MODE (val, tmpmode);
1845 return val;
1848 /* Return an rtx representing the register or memory location
1849 in which a scalar value of mode MODE was returned by a library call. */
1852 hard_libcall_value (enum machine_mode mode, rtx fun)
1854 return targetm.calls.libcall_value (mode, fun);
1857 /* Look up the tree code for a given rtx code
1858 to provide the arithmetic operation for REAL_ARITHMETIC.
1859 The function returns an int because the caller may not know
1860 what `enum tree_code' means. */
1863 rtx_to_tree_code (enum rtx_code code)
1865 enum tree_code tcode;
1867 switch (code)
1869 case PLUS:
1870 tcode = PLUS_EXPR;
1871 break;
1872 case MINUS:
1873 tcode = MINUS_EXPR;
1874 break;
1875 case MULT:
1876 tcode = MULT_EXPR;
1877 break;
1878 case DIV:
1879 tcode = RDIV_EXPR;
1880 break;
1881 case SMIN:
1882 tcode = MIN_EXPR;
1883 break;
1884 case SMAX:
1885 tcode = MAX_EXPR;
1886 break;
1887 default:
1888 tcode = LAST_AND_UNUSED_TREE_CODE;
1889 break;
1891 return ((int) tcode);
1894 #include "gt-explow.h"