lto-wrapper: Truncate files using -truncate driver option [PR110710]
[official-gcc.git] / gcc / tree-ssa-dse.cc
blobfce4fc76a56102fbe660d6e623698d5e8cc981a5
1 /* Dead and redundant store elimination
2 Copyright (C) 2004-2024 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #define INCLUDE_MEMORY
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "tree-pass.h"
29 #include "ssa.h"
30 #include "gimple-pretty-print.h"
31 #include "fold-const.h"
32 #include "gimple-iterator.h"
33 #include "tree-cfg.h"
34 #include "tree-dfa.h"
35 #include "tree-cfgcleanup.h"
36 #include "alias.h"
37 #include "tree-ssa-loop.h"
38 #include "tree-ssa-dse.h"
39 #include "builtins.h"
40 #include "gimple-fold.h"
41 #include "gimplify.h"
42 #include "tree-eh.h"
43 #include "cfganal.h"
44 #include "cgraph.h"
45 #include "ipa-modref-tree.h"
46 #include "ipa-modref.h"
47 #include "target.h"
48 #include "tree-ssa-loop-niter.h"
49 #include "cfgloop.h"
50 #include "tree-data-ref.h"
51 #include "internal-fn.h"
52 #include "tree-ssa.h"
54 /* This file implements dead store elimination.
56 A dead store is a store into a memory location which will later be
57 overwritten by another store without any intervening loads. In this
58 case the earlier store can be deleted or trimmed if the store
59 was partially dead.
61 A redundant store is a store into a memory location which stores
62 the exact same value as a prior store to the same memory location.
63 While this can often be handled by dead store elimination, removing
64 the redundant store is often better than removing or trimming the
65 dead store.
67 In our SSA + virtual operand world we use immediate uses of virtual
68 operands to detect these cases. If a store's virtual definition
69 is used precisely once by a later store to the same location which
70 post dominates the first store, then the first store is dead. If
71 the data stored is the same, then the second store is redundant.
73 The single use of the store's virtual definition ensures that
74 there are no intervening aliased loads and the requirement that
75 the second load post dominate the first ensures that if the earlier
76 store executes, then the later stores will execute before the function
77 exits.
79 It may help to think of this as first moving the earlier store to
80 the point immediately before the later store. Again, the single
81 use of the virtual definition and the post-dominance relationship
82 ensure that such movement would be safe. Clearly if there are
83 back to back stores, then the second is makes the first dead. If
84 the second store stores the same value, then the second store is
85 redundant.
87 Reviewing section 10.7.2 in Morgan's "Building an Optimizing Compiler"
88 may also help in understanding this code since it discusses the
89 relationship between dead store and redundant load elimination. In
90 fact, they are the same transformation applied to different views of
91 the CFG. */
93 static void delete_dead_or_redundant_call (gimple_stmt_iterator *, const char *);
95 /* Bitmap of blocks that have had EH statements cleaned. We should
96 remove their dead edges eventually. */
97 static bitmap need_eh_cleanup;
98 static bitmap need_ab_cleanup;
100 /* STMT is a statement that may write into memory. Analyze it and
101 initialize WRITE to describe how STMT affects memory. When
102 MAY_DEF_OK is true then the function initializes WRITE to what
103 the stmt may define.
105 Return TRUE if the statement was analyzed, FALSE otherwise.
107 It is always safe to return FALSE. But typically better optimziation
108 can be achieved by analyzing more statements. */
110 static bool
111 initialize_ao_ref_for_dse (gimple *stmt, ao_ref *write, bool may_def_ok = false)
113 /* It's advantageous to handle certain mem* functions. */
114 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
116 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
118 case BUILT_IN_MEMCPY:
119 case BUILT_IN_MEMMOVE:
120 case BUILT_IN_MEMSET:
121 case BUILT_IN_MEMCPY_CHK:
122 case BUILT_IN_MEMMOVE_CHK:
123 case BUILT_IN_MEMSET_CHK:
124 case BUILT_IN_STRNCPY:
125 case BUILT_IN_STRNCPY_CHK:
127 tree size = gimple_call_arg (stmt, 2);
128 tree ptr = gimple_call_arg (stmt, 0);
129 ao_ref_init_from_ptr_and_size (write, ptr, size);
130 return true;
133 /* A calloc call can never be dead, but it can make
134 subsequent stores redundant if they store 0 into
135 the same memory locations. */
136 case BUILT_IN_CALLOC:
138 tree nelem = gimple_call_arg (stmt, 0);
139 tree selem = gimple_call_arg (stmt, 1);
140 tree lhs;
141 if (TREE_CODE (nelem) == INTEGER_CST
142 && TREE_CODE (selem) == INTEGER_CST
143 && (lhs = gimple_call_lhs (stmt)) != NULL_TREE)
145 tree size = fold_build2 (MULT_EXPR, TREE_TYPE (nelem),
146 nelem, selem);
147 ao_ref_init_from_ptr_and_size (write, lhs, size);
148 return true;
152 default:
153 break;
156 else if (is_gimple_call (stmt)
157 && gimple_call_internal_p (stmt))
159 switch (gimple_call_internal_fn (stmt))
161 case IFN_LEN_STORE:
162 case IFN_MASK_STORE:
163 case IFN_MASK_LEN_STORE:
165 internal_fn ifn = gimple_call_internal_fn (stmt);
166 int stored_value_index = internal_fn_stored_value_index (ifn);
167 int len_index = internal_fn_len_index (ifn);
168 if (ifn == IFN_LEN_STORE)
170 tree len = gimple_call_arg (stmt, len_index);
171 tree bias = gimple_call_arg (stmt, len_index + 1);
172 if (tree_fits_uhwi_p (len))
174 ao_ref_init_from_ptr_and_size (write,
175 gimple_call_arg (stmt, 0),
176 int_const_binop (MINUS_EXPR,
177 len, bias));
178 return true;
181 /* We cannot initialize a must-def ao_ref (in all cases) but we
182 can provide a may-def variant. */
183 if (may_def_ok)
185 ao_ref_init_from_ptr_and_size (
186 write, gimple_call_arg (stmt, 0),
187 TYPE_SIZE_UNIT (
188 TREE_TYPE (gimple_call_arg (stmt, stored_value_index))));
189 return true;
191 break;
193 default:;
196 if (tree lhs = gimple_get_lhs (stmt))
198 if (TREE_CODE (lhs) != SSA_NAME
199 && (may_def_ok || !stmt_could_throw_p (cfun, stmt)))
201 ao_ref_init (write, lhs);
202 return true;
205 return false;
208 /* Given REF from the alias oracle, return TRUE if it is a valid
209 kill memory reference for dead store elimination, false otherwise.
211 In particular, the reference must have a known base, known maximum
212 size, start at a byte offset and have a size that is one or more
213 bytes. */
215 static bool
216 valid_ao_ref_kill_for_dse (ao_ref *ref)
218 return (ao_ref_base (ref)
219 && known_size_p (ref->max_size)
220 && maybe_ne (ref->size, 0)
221 && known_eq (ref->max_size, ref->size)
222 && known_ge (ref->offset, 0));
225 /* Given REF from the alias oracle, return TRUE if it is a valid
226 load or store memory reference for dead store elimination, false otherwise.
228 Unlike for valid_ao_ref_kill_for_dse we can accept writes where max_size
229 is not same as size since we can handle conservatively the larger range. */
231 static bool
232 valid_ao_ref_for_dse (ao_ref *ref)
234 return (ao_ref_base (ref)
235 && known_size_p (ref->max_size)
236 && known_ge (ref->offset, 0));
239 /* Initialize OFFSET and SIZE to a range known to contain REF
240 where the boundaries are divisible by BITS_PER_UNIT (bit still in bits).
241 Return false if this is impossible. */
243 static bool
244 get_byte_aligned_range_containing_ref (ao_ref *ref, poly_int64 *offset,
245 HOST_WIDE_INT *size)
247 if (!known_size_p (ref->max_size))
248 return false;
249 *offset = aligned_lower_bound (ref->offset, BITS_PER_UNIT);
250 poly_int64 end = aligned_upper_bound (ref->offset + ref->max_size,
251 BITS_PER_UNIT);
252 return (end - *offset).is_constant (size);
255 /* Initialize OFFSET and SIZE to a range known to be contained REF
256 where the boundaries are divisible by BITS_PER_UNIT (but still in bits).
257 Return false if this is impossible. */
259 static bool
260 get_byte_aligned_range_contained_in_ref (ao_ref *ref, poly_int64 *offset,
261 HOST_WIDE_INT *size)
263 if (!known_size_p (ref->size)
264 || !known_eq (ref->size, ref->max_size))
265 return false;
266 *offset = aligned_upper_bound (ref->offset, BITS_PER_UNIT);
267 poly_int64 end = aligned_lower_bound (ref->offset + ref->max_size,
268 BITS_PER_UNIT);
269 /* For bit accesses we can get -1 here, but also 0 sized kill is not
270 useful. */
271 if (!known_gt (end, *offset))
272 return false;
273 return (end - *offset).is_constant (size);
276 /* Compute byte range (returned iN REF_OFFSET and RET_SIZE) for access COPY
277 inside REF. If KILL is true, then COPY represent a kill and the byte range
278 needs to be fully contained in bit range given by COPY. If KILL is false
279 then the byte range returned must contain the range of COPY. */
281 static bool
282 get_byte_range (ao_ref *copy, ao_ref *ref, bool kill,
283 HOST_WIDE_INT *ret_offset, HOST_WIDE_INT *ret_size)
285 HOST_WIDE_INT copy_size, ref_size;
286 poly_int64 copy_offset, ref_offset;
287 HOST_WIDE_INT diff;
289 /* First translate from bits to bytes, rounding to bigger or smaller ranges
290 as needed. Kills needs to be always rounded to smaller ranges while
291 uses and stores to larger ranges. */
292 if (kill)
294 if (!get_byte_aligned_range_contained_in_ref (copy, &copy_offset,
295 &copy_size))
296 return false;
298 else
300 if (!get_byte_aligned_range_containing_ref (copy, &copy_offset,
301 &copy_size))
302 return false;
305 if (!get_byte_aligned_range_containing_ref (ref, &ref_offset, &ref_size)
306 || !ordered_p (copy_offset, ref_offset))
307 return false;
309 /* Switch sizes from bits to bytes so we do not need to care about
310 overflows. Offset calculation needs to stay in bits until we compute
311 the difference and can switch to HOST_WIDE_INT. */
312 copy_size /= BITS_PER_UNIT;
313 ref_size /= BITS_PER_UNIT;
315 /* If COPY starts before REF, then reset the beginning of
316 COPY to match REF and decrease the size of COPY by the
317 number of bytes removed from COPY. */
318 if (maybe_lt (copy_offset, ref_offset))
320 if (!(ref_offset - copy_offset).is_constant (&diff)
321 || copy_size < diff / BITS_PER_UNIT)
322 return false;
323 copy_size -= diff / BITS_PER_UNIT;
324 copy_offset = ref_offset;
327 if (!(copy_offset - ref_offset).is_constant (&diff)
328 || ref_size <= diff / BITS_PER_UNIT)
329 return false;
331 /* If COPY extends beyond REF, chop off its size appropriately. */
332 HOST_WIDE_INT limit = ref_size - diff / BITS_PER_UNIT;
334 if (copy_size > limit)
335 copy_size = limit;
336 *ret_size = copy_size;
337 if (!(copy_offset - ref_offset).is_constant (ret_offset))
338 return false;
339 *ret_offset /= BITS_PER_UNIT;
340 return true;
343 /* Update LIVE_BYTES tracking REF for write to WRITE:
344 Verify we have the same base memory address, the write
345 has a known size and overlaps with REF. */
346 static void
347 clear_live_bytes_for_ref (sbitmap live_bytes, ao_ref *ref, ao_ref *write)
349 HOST_WIDE_INT start, size;
351 if (valid_ao_ref_kill_for_dse (write)
352 && operand_equal_p (write->base, ref->base, OEP_ADDRESS_OF)
353 && get_byte_range (write, ref, true, &start, &size))
354 bitmap_clear_range (live_bytes, start, size);
357 /* Clear any bytes written by STMT from the bitmap LIVE_BYTES. The base
358 address written by STMT must match the one found in REF, which must
359 have its base address previously initialized.
361 This routine must be conservative. If we don't know the offset or
362 actual size written, assume nothing was written. */
364 static void
365 clear_bytes_written_by (sbitmap live_bytes, gimple *stmt, ao_ref *ref)
367 ao_ref write;
369 if (gcall *call = dyn_cast <gcall *> (stmt))
371 bool interposed;
372 modref_summary *summary = get_modref_function_summary (call, &interposed);
374 if (summary && !interposed)
375 for (auto kill : summary->kills)
376 if (kill.get_ao_ref (as_a <gcall *> (stmt), &write))
377 clear_live_bytes_for_ref (live_bytes, ref, &write);
379 if (!initialize_ao_ref_for_dse (stmt, &write))
380 return;
382 clear_live_bytes_for_ref (live_bytes, ref, &write);
385 /* REF is a memory write. Extract relevant information from it and
386 initialize the LIVE_BYTES bitmap. If successful, return TRUE.
387 Otherwise return FALSE. */
389 static bool
390 setup_live_bytes_from_ref (ao_ref *ref, sbitmap live_bytes)
392 HOST_WIDE_INT const_size;
393 if (valid_ao_ref_for_dse (ref)
394 && ((aligned_upper_bound (ref->offset + ref->max_size, BITS_PER_UNIT)
395 - aligned_lower_bound (ref->offset,
396 BITS_PER_UNIT)).is_constant (&const_size))
397 && (const_size / BITS_PER_UNIT <= param_dse_max_object_size)
398 && const_size > 1)
400 bitmap_clear (live_bytes);
401 bitmap_set_range (live_bytes, 0, const_size / BITS_PER_UNIT);
402 return true;
404 return false;
407 /* Compute the number of stored bytes that we can trim from the head and
408 tail of REF. LIVE is the bitmap of stores to REF that are still live.
410 Store the number of bytes trimmed from the head and tail in TRIM_HEAD
411 and TRIM_TAIL respectively.
413 STMT is the statement being trimmed and is used for debugging dump
414 output only. */
416 static void
417 compute_trims (ao_ref *ref, sbitmap live, int *trim_head, int *trim_tail,
418 gimple *stmt)
420 *trim_head = 0;
421 *trim_tail = 0;
423 /* We use bitmaps biased such that ref->offset is contained in bit zero and
424 the bitmap extends through ref->max_size, so we know that in the original
425 bitmap bits 0 .. ref->max_size were true. But we need to check that this
426 covers the bytes of REF exactly. */
427 const unsigned int align = known_alignment (ref->offset);
428 if ((align > 0 && align < BITS_PER_UNIT)
429 || !known_eq (ref->size, ref->max_size))
430 return;
432 /* Now identify how much, if any of the tail we can chop off. */
433 HOST_WIDE_INT const_size;
434 int last_live = bitmap_last_set_bit (live);
435 if (ref->size.is_constant (&const_size))
437 int last_orig = (const_size / BITS_PER_UNIT) - 1;
438 /* We can leave inconvenient amounts on the tail as
439 residual handling in mem* and str* functions is usually
440 reasonably efficient. */
441 *trim_tail = last_orig - last_live;
443 /* But don't trim away out of bounds accesses, as this defeats
444 proper warnings.
446 We could have a type with no TYPE_SIZE_UNIT or we could have a VLA
447 where TYPE_SIZE_UNIT is not a constant. */
448 if (*trim_tail
449 && TYPE_SIZE_UNIT (TREE_TYPE (ref->base))
450 && TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (ref->base))) == INTEGER_CST
451 && compare_tree_int (TYPE_SIZE_UNIT (TREE_TYPE (ref->base)),
452 last_orig) <= 0)
453 *trim_tail = 0;
456 /* Identify how much, if any of the head we can chop off. */
457 int first_orig = 0;
458 int first_live = bitmap_first_set_bit (live);
459 *trim_head = first_live - first_orig;
461 /* If REF is aligned, try to maintain this alignment if it reduces
462 the number of (power-of-two sized aligned) writes to memory. */
463 unsigned int align_bits;
464 unsigned HOST_WIDE_INT bitpos;
465 if ((*trim_head || *trim_tail)
466 && last_live - first_live >= 2
467 && ao_ref_alignment (ref, &align_bits, &bitpos)
468 && align_bits >= 32
469 && bitpos == 0
470 && align_bits % BITS_PER_UNIT == 0)
472 unsigned int align_units = align_bits / BITS_PER_UNIT;
473 if (align_units > 16)
474 align_units = 16;
475 while ((first_live | (align_units - 1)) > (unsigned int)last_live)
476 align_units >>= 1;
478 if (*trim_head)
480 unsigned int pos = first_live & (align_units - 1);
481 for (unsigned int i = 1; i <= align_units; i <<= 1)
483 unsigned int mask = ~(i - 1);
484 unsigned int bytes = align_units - (pos & mask);
485 if (wi::popcount (bytes) <= 1)
487 *trim_head &= mask;
488 break;
493 if (*trim_tail)
495 unsigned int pos = last_live & (align_units - 1);
496 for (unsigned int i = 1; i <= align_units; i <<= 1)
498 int mask = i - 1;
499 unsigned int bytes = (pos | mask) + 1;
500 if ((last_live | mask) > (last_live + *trim_tail))
501 break;
502 if (wi::popcount (bytes) <= 1)
504 unsigned int extra = (last_live | mask) - last_live;
505 *trim_tail -= extra;
506 break;
512 if ((*trim_head || *trim_tail) && dump_file && (dump_flags & TDF_DETAILS))
514 fprintf (dump_file, " Trimming statement (head = %d, tail = %d): ",
515 *trim_head, *trim_tail);
516 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
517 fprintf (dump_file, "\n");
521 /* STMT initializes an object from COMPLEX_CST where one or more of the bytes
522 written may be dead stores. REF is a representation of the memory written.
523 LIVE is the bitmap of stores to REF that are still live.
525 Attempt to rewrite STMT so that only the real or the imaginary part of the
526 object is actually stored. */
528 static void
529 maybe_trim_complex_store (ao_ref *ref, sbitmap live, gimple *stmt)
531 int trim_head, trim_tail;
532 compute_trims (ref, live, &trim_head, &trim_tail, stmt);
534 /* The amount of data trimmed from the head or tail must be at
535 least half the size of the object to ensure we're trimming
536 the entire real or imaginary half. By writing things this
537 way we avoid more O(n) bitmap operations. */
538 if (known_ge (trim_tail * 2 * BITS_PER_UNIT, ref->size))
540 /* TREE_REALPART is live */
541 tree x = TREE_REALPART (gimple_assign_rhs1 (stmt));
542 tree y = gimple_assign_lhs (stmt);
543 y = build1 (REALPART_EXPR, TREE_TYPE (x), y);
544 gimple_assign_set_lhs (stmt, y);
545 gimple_assign_set_rhs1 (stmt, x);
547 else if (known_ge (trim_head * 2 * BITS_PER_UNIT, ref->size))
549 /* TREE_IMAGPART is live */
550 tree x = TREE_IMAGPART (gimple_assign_rhs1 (stmt));
551 tree y = gimple_assign_lhs (stmt);
552 y = build1 (IMAGPART_EXPR, TREE_TYPE (x), y);
553 gimple_assign_set_lhs (stmt, y);
554 gimple_assign_set_rhs1 (stmt, x);
557 /* Other cases indicate parts of both the real and imag subobjects
558 are live. We do not try to optimize those cases. */
561 /* STMT initializes an object using a CONSTRUCTOR where one or more of the
562 bytes written are dead stores. REF is a representation of the memory
563 written. LIVE is the bitmap of stores to REF that are still live.
565 Attempt to rewrite STMT so that it writes fewer memory locations.
567 The most common case for getting here is a CONSTRUCTOR with no elements
568 being used to zero initialize an object. We do not try to handle other
569 cases as those would force us to fully cover the object with the
570 CONSTRUCTOR node except for the components that are dead. */
572 static void
573 maybe_trim_constructor_store (ao_ref *ref, sbitmap live, gimple *stmt)
575 tree ctor = gimple_assign_rhs1 (stmt);
577 /* This is the only case we currently handle. It actually seems to
578 catch most cases of actual interest. */
579 gcc_assert (CONSTRUCTOR_NELTS (ctor) == 0);
581 int head_trim = 0;
582 int tail_trim = 0;
583 compute_trims (ref, live, &head_trim, &tail_trim, stmt);
585 /* Now we want to replace the constructor initializer
586 with memset (object + head_trim, 0, size - head_trim - tail_trim). */
587 if (head_trim || tail_trim)
589 /* We want &lhs for the MEM_REF expression. */
590 tree lhs_addr = build_fold_addr_expr (gimple_assign_lhs (stmt));
592 if (! is_gimple_min_invariant (lhs_addr))
593 return;
595 /* The number of bytes for the new constructor. */
596 poly_int64 ref_bytes = exact_div (ref->size, BITS_PER_UNIT);
597 poly_int64 count = ref_bytes - head_trim - tail_trim;
599 /* And the new type for the CONSTRUCTOR. Essentially it's just
600 a char array large enough to cover the non-trimmed parts of
601 the original CONSTRUCTOR. Note we want explicit bounds here
602 so that we know how many bytes to clear when expanding the
603 CONSTRUCTOR. */
604 tree type = build_array_type_nelts (char_type_node, count);
606 /* Build a suitable alias type rather than using alias set zero
607 to avoid pessimizing. */
608 tree alias_type = reference_alias_ptr_type (gimple_assign_lhs (stmt));
610 /* Build a MEM_REF representing the whole accessed area, starting
611 at the first byte not trimmed. */
612 tree exp = fold_build2 (MEM_REF, type, lhs_addr,
613 build_int_cst (alias_type, head_trim));
615 /* Now update STMT with a new RHS and LHS. */
616 gimple_assign_set_lhs (stmt, exp);
617 gimple_assign_set_rhs1 (stmt, build_constructor (type, NULL));
621 /* STMT is a memcpy, memmove or memset. Decrement the number of bytes
622 copied/set by DECREMENT. */
623 static void
624 decrement_count (gimple *stmt, int decrement)
626 tree *countp = gimple_call_arg_ptr (stmt, 2);
627 gcc_assert (TREE_CODE (*countp) == INTEGER_CST);
628 *countp = wide_int_to_tree (TREE_TYPE (*countp), (TREE_INT_CST_LOW (*countp)
629 - decrement));
632 static void
633 increment_start_addr (gimple *stmt, tree *where, int increment)
635 if (tree lhs = gimple_call_lhs (stmt))
636 if (where == gimple_call_arg_ptr (stmt, 0))
638 gassign *newop = gimple_build_assign (lhs, unshare_expr (*where));
639 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
640 gsi_insert_after (&gsi, newop, GSI_SAME_STMT);
641 gimple_call_set_lhs (stmt, NULL_TREE);
642 update_stmt (stmt);
645 if (TREE_CODE (*where) == SSA_NAME)
647 tree tem = make_ssa_name (TREE_TYPE (*where));
648 gassign *newop
649 = gimple_build_assign (tem, POINTER_PLUS_EXPR, *where,
650 build_int_cst (sizetype, increment));
651 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
652 gsi_insert_before (&gsi, newop, GSI_SAME_STMT);
653 *where = tem;
654 update_stmt (stmt);
655 return;
658 *where = build_fold_addr_expr (fold_build2 (MEM_REF, char_type_node,
659 *where,
660 build_int_cst (ptr_type_node,
661 increment)));
662 STRIP_USELESS_TYPE_CONVERSION (*where);
665 /* STMT is builtin call that writes bytes in bitmap ORIG, some bytes are dead
666 (ORIG & ~NEW) and need not be stored. Try to rewrite STMT to reduce
667 the amount of data it actually writes.
669 Right now we only support trimming from the head or the tail of the
670 memory region. In theory we could split the mem* call, but it's
671 likely of marginal value. */
673 static void
674 maybe_trim_memstar_call (ao_ref *ref, sbitmap live, gimple *stmt)
676 int head_trim, tail_trim;
677 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
679 case BUILT_IN_STRNCPY:
680 case BUILT_IN_STRNCPY_CHK:
681 compute_trims (ref, live, &head_trim, &tail_trim, stmt);
682 if (head_trim)
684 /* Head trimming of strncpy is only possible if we can
685 prove all bytes we would trim are non-zero (or we could
686 turn the strncpy into memset if there must be zero
687 among the head trimmed bytes). If we don't know anything
688 about those bytes, the presence or absence of '\0' bytes
689 in there will affect whether it acts for the non-trimmed
690 bytes as memset or memcpy/strncpy. */
691 c_strlen_data lendata = { };
692 int orig_head_trim = head_trim;
693 tree srcstr = gimple_call_arg (stmt, 1);
694 if (!get_range_strlen (srcstr, &lendata, /*eltsize=*/1)
695 || !tree_fits_uhwi_p (lendata.minlen))
696 head_trim = 0;
697 else if (tree_to_uhwi (lendata.minlen) < (unsigned) head_trim)
699 head_trim = tree_to_uhwi (lendata.minlen);
700 if ((orig_head_trim & (UNITS_PER_WORD - 1)) == 0)
701 head_trim &= ~(UNITS_PER_WORD - 1);
703 if (orig_head_trim != head_trim
704 && dump_file
705 && (dump_flags & TDF_DETAILS))
706 fprintf (dump_file,
707 " Adjusting strncpy trimming to (head = %d,"
708 " tail = %d)\n", head_trim, tail_trim);
710 goto do_memcpy;
712 case BUILT_IN_MEMCPY:
713 case BUILT_IN_MEMMOVE:
714 case BUILT_IN_MEMCPY_CHK:
715 case BUILT_IN_MEMMOVE_CHK:
716 compute_trims (ref, live, &head_trim, &tail_trim, stmt);
718 do_memcpy:
719 /* Tail trimming is easy, we can just reduce the count. */
720 if (tail_trim)
721 decrement_count (stmt, tail_trim);
723 /* Head trimming requires adjusting all the arguments. */
724 if (head_trim)
726 /* For __*_chk need to adjust also the last argument. */
727 if (gimple_call_num_args (stmt) == 4)
729 tree size = gimple_call_arg (stmt, 3);
730 if (!tree_fits_uhwi_p (size))
731 break;
732 if (!integer_all_onesp (size))
734 unsigned HOST_WIDE_INT sz = tree_to_uhwi (size);
735 if (sz < (unsigned) head_trim)
736 break;
737 tree arg = wide_int_to_tree (TREE_TYPE (size),
738 sz - head_trim);
739 gimple_call_set_arg (stmt, 3, arg);
742 tree *dst = gimple_call_arg_ptr (stmt, 0);
743 increment_start_addr (stmt, dst, head_trim);
744 tree *src = gimple_call_arg_ptr (stmt, 1);
745 increment_start_addr (stmt, src, head_trim);
746 decrement_count (stmt, head_trim);
748 break;
750 case BUILT_IN_MEMSET:
751 case BUILT_IN_MEMSET_CHK:
752 compute_trims (ref, live, &head_trim, &tail_trim, stmt);
754 /* Tail trimming is easy, we can just reduce the count. */
755 if (tail_trim)
756 decrement_count (stmt, tail_trim);
758 /* Head trimming requires adjusting all the arguments. */
759 if (head_trim)
761 /* For __*_chk need to adjust also the last argument. */
762 if (gimple_call_num_args (stmt) == 4)
764 tree size = gimple_call_arg (stmt, 3);
765 if (!tree_fits_uhwi_p (size))
766 break;
767 if (!integer_all_onesp (size))
769 unsigned HOST_WIDE_INT sz = tree_to_uhwi (size);
770 if (sz < (unsigned) head_trim)
771 break;
772 tree arg = wide_int_to_tree (TREE_TYPE (size),
773 sz - head_trim);
774 gimple_call_set_arg (stmt, 3, arg);
777 tree *dst = gimple_call_arg_ptr (stmt, 0);
778 increment_start_addr (stmt, dst, head_trim);
779 decrement_count (stmt, head_trim);
781 break;
783 default:
784 break;
788 /* STMT is a memory write where one or more bytes written are dead stores.
789 REF is a representation of the memory written. LIVE is the bitmap of
790 stores to REF that are still live.
792 Attempt to rewrite STMT so that it writes fewer memory locations. Right
793 now we only support trimming at the start or end of the memory region.
794 It's not clear how much there is to be gained by trimming from the middle
795 of the region. */
797 static void
798 maybe_trim_partially_dead_store (ao_ref *ref, sbitmap live, gimple *stmt)
800 if (is_gimple_assign (stmt)
801 && TREE_CODE (gimple_assign_lhs (stmt)) != TARGET_MEM_REF)
803 switch (gimple_assign_rhs_code (stmt))
805 case CONSTRUCTOR:
806 maybe_trim_constructor_store (ref, live, stmt);
807 break;
808 case COMPLEX_CST:
809 maybe_trim_complex_store (ref, live, stmt);
810 break;
811 default:
812 break;
817 /* Return TRUE if USE_REF reads bytes from LIVE where live is
818 derived from REF, a write reference.
820 While this routine may modify USE_REF, it's passed by value, not
821 location. So callers do not see those modifications. */
823 static bool
824 live_bytes_read (ao_ref *use_ref, ao_ref *ref, sbitmap live)
826 /* We have already verified that USE_REF and REF hit the same object.
827 Now verify that there's actually an overlap between USE_REF and REF. */
828 HOST_WIDE_INT start, size;
829 if (get_byte_range (use_ref, ref, false, &start, &size))
831 /* If USE_REF covers all of REF, then it will hit one or more
832 live bytes. This avoids useless iteration over the bitmap
833 below. */
834 if (start == 0 && known_eq (size * 8, ref->size))
835 return true;
837 /* Now check if any of the remaining bits in use_ref are set in LIVE. */
838 return bitmap_bit_in_range_p (live, start, (start + size - 1));
840 return true;
843 /* Callback for dse_classify_store calling for_each_index. Verify that
844 indices are invariant in the loop with backedge PHI in basic-block DATA. */
846 static bool
847 check_name (tree, tree *idx, void *data)
849 basic_block phi_bb = (basic_block) data;
850 if (TREE_CODE (*idx) == SSA_NAME
851 && !SSA_NAME_IS_DEFAULT_DEF (*idx)
852 && dominated_by_p (CDI_DOMINATORS, gimple_bb (SSA_NAME_DEF_STMT (*idx)),
853 phi_bb))
854 return false;
855 return true;
858 /* STMT stores the value 0 into one or more memory locations
859 (via memset, empty constructor, calloc call, etc).
861 See if there is a subsequent store of the value 0 to one
862 or more of the same memory location(s). If so, the subsequent
863 store is redundant and can be removed.
865 The subsequent stores could be via memset, empty constructors,
866 simple MEM stores, etc. */
868 static void
869 dse_optimize_redundant_stores (gimple *stmt)
871 int cnt = 0;
873 /* TBAA state of STMT, if it is a call it is effectively alias-set zero. */
874 alias_set_type earlier_set = 0;
875 alias_set_type earlier_base_set = 0;
876 if (is_gimple_assign (stmt))
878 ao_ref lhs_ref;
879 ao_ref_init (&lhs_ref, gimple_assign_lhs (stmt));
880 earlier_set = ao_ref_alias_set (&lhs_ref);
881 earlier_base_set = ao_ref_base_alias_set (&lhs_ref);
884 /* We could do something fairly complex and look through PHIs
885 like DSE_CLASSIFY_STORE, but it doesn't seem to be worth
886 the effort.
888 Look at all the immediate uses of the VDEF (which are obviously
889 dominated by STMT). See if one or more stores 0 into the same
890 memory locations a STMT, if so remove the immediate use statements. */
891 tree defvar = gimple_vdef (stmt);
892 imm_use_iterator ui;
893 gimple *use_stmt;
894 FOR_EACH_IMM_USE_STMT (use_stmt, ui, defvar)
896 /* Limit stmt walking. */
897 if (++cnt > param_dse_max_alias_queries_per_store)
898 break;
900 /* If USE_STMT stores 0 into one or more of the same locations
901 as STMT and STMT would kill USE_STMT, then we can just remove
902 USE_STMT. */
903 tree fndecl;
904 if ((is_gimple_assign (use_stmt)
905 && gimple_vdef (use_stmt)
906 && (gimple_assign_single_p (use_stmt)
907 && initializer_zerop (gimple_assign_rhs1 (use_stmt))))
908 || (gimple_call_builtin_p (use_stmt, BUILT_IN_NORMAL)
909 && (fndecl = gimple_call_fndecl (use_stmt)) != NULL
910 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMSET
911 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMSET_CHK)
912 && integer_zerop (gimple_call_arg (use_stmt, 1))))
914 ao_ref write;
916 if (!initialize_ao_ref_for_dse (use_stmt, &write))
917 break;
919 if (valid_ao_ref_for_dse (&write)
920 && stmt_kills_ref_p (stmt, &write))
922 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
923 if (is_gimple_assign (use_stmt))
925 ao_ref lhs_ref;
926 ao_ref_init (&lhs_ref, gimple_assign_lhs (use_stmt));
927 if ((earlier_set == ao_ref_alias_set (&lhs_ref)
928 || alias_set_subset_of (ao_ref_alias_set (&lhs_ref),
929 earlier_set))
930 && (earlier_base_set == ao_ref_base_alias_set (&lhs_ref)
931 || alias_set_subset_of
932 (ao_ref_base_alias_set (&lhs_ref),
933 earlier_base_set)))
934 delete_dead_or_redundant_assignment (&gsi, "redundant",
935 need_eh_cleanup,
936 need_ab_cleanup);
938 else if (is_gimple_call (use_stmt))
940 if ((earlier_set == 0
941 || alias_set_subset_of (0, earlier_set))
942 && (earlier_base_set == 0
943 || alias_set_subset_of (0, earlier_base_set)))
944 delete_dead_or_redundant_call (&gsi, "redundant");
946 else
947 gcc_unreachable ();
953 /* Return whether PHI contains ARG as an argument. */
955 static bool
956 contains_phi_arg (gphi *phi, tree arg)
958 for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
959 if (gimple_phi_arg_def (phi, i) == arg)
960 return true;
961 return false;
964 /* Hash map of the memory use in a GIMPLE assignment to its
965 data reference. If NULL data-ref analysis isn't used. */
966 static hash_map<gimple *, data_reference_p> *dse_stmt_to_dr_map;
968 /* A helper of dse_optimize_stmt.
969 Given a GIMPLE_ASSIGN in STMT that writes to REF, classify it
970 according to downstream uses and defs. Sets *BY_CLOBBER_P to true
971 if only clobber statements influenced the classification result.
972 Returns the classification. */
974 dse_store_status
975 dse_classify_store (ao_ref *ref, gimple *stmt,
976 bool byte_tracking_enabled, sbitmap live_bytes,
977 bool *by_clobber_p, tree stop_at_vuse)
979 gimple *temp;
980 int cnt = 0;
981 auto_bitmap visited;
982 std::unique_ptr<data_reference, void(*)(data_reference_p)>
983 dra (nullptr, free_data_ref);
985 if (by_clobber_p)
986 *by_clobber_p = true;
988 /* Find the first dominated statement that clobbers (part of) the
989 memory stmt stores to with no intermediate statement that may use
990 part of the memory stmt stores. That is, find a store that may
991 prove stmt to be a dead store. */
992 temp = stmt;
995 gimple *use_stmt;
996 imm_use_iterator ui;
997 bool fail = false;
998 tree defvar;
1000 if (gimple_code (temp) == GIMPLE_PHI)
1002 defvar = PHI_RESULT (temp);
1003 bitmap_set_bit (visited, SSA_NAME_VERSION (defvar));
1005 else
1006 defvar = gimple_vdef (temp);
1008 auto_vec<gimple *, 10> defs;
1009 gphi *first_phi_def = NULL;
1010 gphi *last_phi_def = NULL;
1012 auto_vec<tree, 10> worklist;
1013 worklist.quick_push (defvar);
1017 defvar = worklist.pop ();
1018 /* If we're instructed to stop walking at region boundary, do so. */
1019 if (defvar == stop_at_vuse)
1020 return DSE_STORE_LIVE;
1022 FOR_EACH_IMM_USE_STMT (use_stmt, ui, defvar)
1024 /* Limit stmt walking. */
1025 if (++cnt > param_dse_max_alias_queries_per_store)
1027 fail = true;
1028 break;
1031 /* In simple cases we can look through PHI nodes, but we
1032 have to be careful with loops and with memory references
1033 containing operands that are also operands of PHI nodes.
1034 See gcc.c-torture/execute/20051110-*.c. */
1035 if (gimple_code (use_stmt) == GIMPLE_PHI)
1037 /* Look through single-argument PHIs. */
1038 if (gimple_phi_num_args (use_stmt) == 1)
1039 worklist.safe_push (gimple_phi_result (use_stmt));
1041 /* If we already visited this PHI ignore it for further
1042 processing. */
1043 else if (!bitmap_bit_p (visited,
1044 SSA_NAME_VERSION
1045 (PHI_RESULT (use_stmt))))
1047 /* If we visit this PHI by following a backedge then we
1048 have to make sure ref->ref only refers to SSA names
1049 that are invariant with respect to the loop
1050 represented by this PHI node. */
1051 if (dominated_by_p (CDI_DOMINATORS, gimple_bb (stmt),
1052 gimple_bb (use_stmt))
1053 && !for_each_index (ref->ref ? &ref->ref : &ref->base,
1054 check_name, gimple_bb (use_stmt)))
1055 return DSE_STORE_LIVE;
1056 defs.safe_push (use_stmt);
1057 if (!first_phi_def)
1058 first_phi_def = as_a <gphi *> (use_stmt);
1059 last_phi_def = as_a <gphi *> (use_stmt);
1062 /* If the statement is a use the store is not dead. */
1063 else if (ref_maybe_used_by_stmt_p (use_stmt, ref))
1065 if (dse_stmt_to_dr_map
1066 && ref->ref
1067 && is_gimple_assign (use_stmt))
1069 if (!dra)
1070 dra.reset (create_data_ref (NULL, NULL, ref->ref, stmt,
1071 false, false));
1072 bool existed_p;
1073 data_reference_p &drb
1074 = dse_stmt_to_dr_map->get_or_insert (use_stmt,
1075 &existed_p);
1076 if (!existed_p)
1077 drb = create_data_ref (NULL, NULL,
1078 gimple_assign_rhs1 (use_stmt),
1079 use_stmt, false, false);
1080 if (!dr_may_alias_p (dra.get (), drb, NULL))
1082 if (gimple_vdef (use_stmt))
1083 defs.safe_push (use_stmt);
1084 continue;
1088 /* Handle common cases where we can easily build an ao_ref
1089 structure for USE_STMT and in doing so we find that the
1090 references hit non-live bytes and thus can be ignored.
1092 TODO: We can also use modref summary to handle calls. */
1093 if (byte_tracking_enabled
1094 && is_gimple_assign (use_stmt))
1096 ao_ref use_ref;
1097 ao_ref_init (&use_ref, gimple_assign_rhs1 (use_stmt));
1098 if (valid_ao_ref_for_dse (&use_ref)
1099 && operand_equal_p (use_ref.base, ref->base,
1100 OEP_ADDRESS_OF)
1101 && !live_bytes_read (&use_ref, ref, live_bytes))
1103 /* If this is a store, remember it as we possibly
1104 need to walk the defs uses. */
1105 if (gimple_vdef (use_stmt))
1106 defs.safe_push (use_stmt);
1107 continue;
1111 fail = true;
1112 break;
1114 /* We have visited ourselves already so ignore STMT for the
1115 purpose of chaining. */
1116 else if (use_stmt == stmt)
1118 /* If this is a store, remember it as we possibly need to walk the
1119 defs uses. */
1120 else if (gimple_vdef (use_stmt))
1121 defs.safe_push (use_stmt);
1124 while (!fail && !worklist.is_empty ());
1126 if (fail)
1128 /* STMT might be partially dead and we may be able to reduce
1129 how many memory locations it stores into. */
1130 if (byte_tracking_enabled && !gimple_clobber_p (stmt))
1131 return DSE_STORE_MAYBE_PARTIAL_DEAD;
1132 return DSE_STORE_LIVE;
1135 /* If we didn't find any definition this means the store is dead
1136 if it isn't a store to global reachable memory. In this case
1137 just pretend the stmt makes itself dead. Otherwise fail. */
1138 if (defs.is_empty ())
1140 if (ref_may_alias_global_p (ref, false))
1142 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (defvar));
1143 /* Assume that BUILT_IN_UNREACHABLE and BUILT_IN_UNREACHABLE_TRAP
1144 do not need to keep (global) memory side-effects live.
1145 We do not have virtual operands on BUILT_IN_UNREACHABLE
1146 but we can do poor mans reachability when the last
1147 definition we want to elide is in the block that ends
1148 in such a call. */
1149 if (EDGE_COUNT (def_bb->succs) == 0)
1150 if (gcall *last = dyn_cast <gcall *> (*gsi_last_bb (def_bb)))
1151 if (gimple_call_builtin_p (last, BUILT_IN_UNREACHABLE)
1152 || gimple_call_builtin_p (last,
1153 BUILT_IN_UNREACHABLE_TRAP))
1155 if (by_clobber_p)
1156 *by_clobber_p = false;
1157 return DSE_STORE_DEAD;
1159 return DSE_STORE_LIVE;
1162 if (by_clobber_p)
1163 *by_clobber_p = false;
1164 return DSE_STORE_DEAD;
1167 /* Process defs and remove those we need not process further. */
1168 for (unsigned i = 0; i < defs.length ();)
1170 gimple *def = defs[i];
1171 gimple *use_stmt;
1172 use_operand_p use_p;
1173 tree vdef = (gimple_code (def) == GIMPLE_PHI
1174 ? gimple_phi_result (def) : gimple_vdef (def));
1175 gphi *phi_def;
1176 /* If the path to check starts with a kill we do not need to
1177 process it further.
1178 ??? With byte tracking we need only kill the bytes currently
1179 live. */
1180 if (stmt_kills_ref_p (def, ref))
1182 if (by_clobber_p && !gimple_clobber_p (def))
1183 *by_clobber_p = false;
1184 defs.unordered_remove (i);
1186 /* If the path ends here we do not need to process it further.
1187 This for example happens with calls to noreturn functions. */
1188 else if (has_zero_uses (vdef))
1190 /* But if the store is to global memory it is definitely
1191 not dead. */
1192 if (ref_may_alias_global_p (ref, false))
1193 return DSE_STORE_LIVE;
1194 defs.unordered_remove (i);
1196 /* In addition to kills we can remove defs whose only use
1197 is another def in defs. That can only ever be PHIs of which
1198 we track two for simplicity reasons, the first and last in
1199 {first,last}_phi_def (we fail for multiple PHIs anyways).
1200 We can also ignore defs that feed only into
1201 already visited PHIs. */
1202 else if (single_imm_use (vdef, &use_p, &use_stmt)
1203 && (use_stmt == first_phi_def
1204 || use_stmt == last_phi_def
1205 || (gimple_code (use_stmt) == GIMPLE_PHI
1206 && bitmap_bit_p (visited,
1207 SSA_NAME_VERSION
1208 (PHI_RESULT (use_stmt))))))
1210 defs.unordered_remove (i);
1211 if (def == first_phi_def)
1212 first_phi_def = NULL;
1213 else if (def == last_phi_def)
1214 last_phi_def = NULL;
1216 /* If def is a PHI and one of its arguments is another PHI node still
1217 in consideration we can defer processing it. */
1218 else if ((phi_def = dyn_cast <gphi *> (def))
1219 && ((last_phi_def
1220 && phi_def != last_phi_def
1221 && contains_phi_arg (phi_def,
1222 gimple_phi_result (last_phi_def)))
1223 || (first_phi_def
1224 && phi_def != first_phi_def
1225 && contains_phi_arg
1226 (phi_def, gimple_phi_result (first_phi_def)))))
1228 defs.unordered_remove (i);
1229 if (phi_def == first_phi_def)
1230 first_phi_def = NULL;
1231 else if (phi_def == last_phi_def)
1232 last_phi_def = NULL;
1234 else
1235 ++i;
1238 /* If all defs kill the ref we are done. */
1239 if (defs.is_empty ())
1240 return DSE_STORE_DEAD;
1241 /* If more than one def survives fail. */
1242 if (defs.length () > 1)
1244 /* STMT might be partially dead and we may be able to reduce
1245 how many memory locations it stores into. */
1246 if (byte_tracking_enabled && !gimple_clobber_p (stmt))
1247 return DSE_STORE_MAYBE_PARTIAL_DEAD;
1248 return DSE_STORE_LIVE;
1250 temp = defs[0];
1252 /* Track partial kills. */
1253 if (byte_tracking_enabled)
1255 clear_bytes_written_by (live_bytes, temp, ref);
1256 if (bitmap_empty_p (live_bytes))
1258 if (by_clobber_p && !gimple_clobber_p (temp))
1259 *by_clobber_p = false;
1260 return DSE_STORE_DEAD;
1264 /* Continue walking until there are no more live bytes. */
1265 while (1);
1269 /* Delete a dead call at GSI, which is mem* call of some kind. */
1270 static void
1271 delete_dead_or_redundant_call (gimple_stmt_iterator *gsi, const char *type)
1273 gimple *stmt = gsi_stmt (*gsi);
1274 if (dump_file && (dump_flags & TDF_DETAILS))
1276 fprintf (dump_file, " Deleted %s call: ", type);
1277 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
1278 fprintf (dump_file, "\n");
1281 basic_block bb = gimple_bb (stmt);
1282 tree lhs = gimple_call_lhs (stmt);
1283 if (lhs)
1285 tree ptr = gimple_call_arg (stmt, 0);
1286 gimple *new_stmt = gimple_build_assign (lhs, ptr);
1287 unlink_stmt_vdef (stmt);
1288 if (gsi_replace (gsi, new_stmt, true))
1289 bitmap_set_bit (need_eh_cleanup, bb->index);
1291 else
1293 /* Then we need to fix the operand of the consuming stmt. */
1294 unlink_stmt_vdef (stmt);
1296 /* Remove the dead store. */
1297 if (gsi_remove (gsi, true))
1298 bitmap_set_bit (need_eh_cleanup, bb->index);
1299 release_defs (stmt);
1303 /* Delete a dead store at GSI, which is a gimple assignment. */
1305 void
1306 delete_dead_or_redundant_assignment (gimple_stmt_iterator *gsi,
1307 const char *type,
1308 bitmap need_eh_cleanup,
1309 bitmap need_ab_cleanup)
1311 gimple *stmt = gsi_stmt (*gsi);
1312 if (dump_file && (dump_flags & TDF_DETAILS))
1314 fprintf (dump_file, " Deleted %s store: ", type);
1315 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
1316 fprintf (dump_file, "\n");
1319 /* Then we need to fix the operand of the consuming stmt. */
1320 unlink_stmt_vdef (stmt);
1322 /* Remove the dead store. */
1323 basic_block bb = gimple_bb (stmt);
1324 if (need_ab_cleanup && stmt_can_make_abnormal_goto (stmt))
1325 bitmap_set_bit (need_ab_cleanup, bb->index);
1326 if (gsi_remove (gsi, true) && need_eh_cleanup)
1327 bitmap_set_bit (need_eh_cleanup, bb->index);
1329 /* And release any SSA_NAMEs set in this statement back to the
1330 SSA_NAME manager. */
1331 release_defs (stmt);
1334 /* Try to prove, using modref summary, that all memory written to by a call is
1335 dead and remove it. Assume that if return value is written to memory
1336 it is already proved to be dead. */
1338 static bool
1339 dse_optimize_call (gimple_stmt_iterator *gsi, sbitmap live_bytes)
1341 gcall *stmt = dyn_cast <gcall *> (gsi_stmt (*gsi));
1343 if (!stmt)
1344 return false;
1346 tree callee = gimple_call_fndecl (stmt);
1348 if (!callee)
1349 return false;
1351 /* Pure/const functions are optimized by normal DCE
1352 or handled as store above. */
1353 int flags = gimple_call_flags (stmt);
1354 if ((flags & (ECF_PURE|ECF_CONST|ECF_NOVOPS))
1355 && !(flags & (ECF_LOOPING_CONST_OR_PURE)))
1356 return false;
1358 cgraph_node *node = cgraph_node::get (callee);
1359 if (!node)
1360 return false;
1362 if (stmt_could_throw_p (cfun, stmt)
1363 && !cfun->can_delete_dead_exceptions)
1364 return false;
1366 /* If return value is used the call is not dead. */
1367 tree lhs = gimple_call_lhs (stmt);
1368 if (lhs && TREE_CODE (lhs) == SSA_NAME)
1370 imm_use_iterator ui;
1371 gimple *use_stmt;
1372 FOR_EACH_IMM_USE_STMT (use_stmt, ui, lhs)
1373 if (!is_gimple_debug (use_stmt))
1374 return false;
1377 /* Verify that there are no side-effects except for return value
1378 and memory writes tracked by modref. */
1379 modref_summary *summary = get_modref_function_summary (node);
1380 if (!summary || !summary->try_dse)
1381 return false;
1383 bool by_clobber_p = false;
1385 /* Walk all memory writes and verify that they are dead. */
1386 for (auto base_node : summary->stores->bases)
1387 for (auto ref_node : base_node->refs)
1388 for (auto access_node : ref_node->accesses)
1390 tree arg = access_node.get_call_arg (stmt);
1392 if (!arg || !POINTER_TYPE_P (TREE_TYPE (arg)))
1393 return false;
1395 if (integer_zerop (arg)
1396 && !targetm.addr_space.zero_address_valid
1397 (TYPE_ADDR_SPACE (TREE_TYPE (arg))))
1398 continue;
1400 ao_ref ref;
1402 if (!access_node.get_ao_ref (stmt, &ref))
1403 return false;
1404 ref.ref_alias_set = ref_node->ref;
1405 ref.base_alias_set = base_node->base;
1407 bool byte_tracking_enabled
1408 = setup_live_bytes_from_ref (&ref, live_bytes);
1409 enum dse_store_status store_status;
1411 store_status = dse_classify_store (&ref, stmt,
1412 byte_tracking_enabled,
1413 live_bytes, &by_clobber_p);
1414 if (store_status != DSE_STORE_DEAD)
1415 return false;
1417 delete_dead_or_redundant_assignment (gsi, "dead", need_eh_cleanup,
1418 need_ab_cleanup);
1419 return true;
1422 /* Attempt to eliminate dead stores in the statement referenced by BSI.
1424 A dead store is a store into a memory location which will later be
1425 overwritten by another store without any intervening loads. In this
1426 case the earlier store can be deleted.
1428 In our SSA + virtual operand world we use immediate uses of virtual
1429 operands to detect dead stores. If a store's virtual definition
1430 is used precisely once by a later store to the same location which
1431 post dominates the first store, then the first store is dead. */
1433 static void
1434 dse_optimize_stmt (function *fun, gimple_stmt_iterator *gsi, sbitmap live_bytes)
1436 gimple *stmt = gsi_stmt (*gsi);
1438 /* Don't return early on *this_2(D) ={v} {CLOBBER}. */
1439 if (gimple_has_volatile_ops (stmt)
1440 && (!gimple_clobber_p (stmt)
1441 || TREE_CODE (gimple_assign_lhs (stmt)) != MEM_REF))
1442 return;
1444 ao_ref ref;
1445 /* If this is not a store we can still remove dead call using
1446 modref summary. Note we specifically allow ref to be initialized
1447 to a conservative may-def since we are looking for followup stores
1448 to kill all of it. */
1449 if (!initialize_ao_ref_for_dse (stmt, &ref, true))
1451 dse_optimize_call (gsi, live_bytes);
1452 return;
1455 /* We know we have virtual definitions. We can handle assignments and
1456 some builtin calls. */
1457 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1459 tree fndecl = gimple_call_fndecl (stmt);
1460 switch (DECL_FUNCTION_CODE (fndecl))
1462 case BUILT_IN_MEMCPY:
1463 case BUILT_IN_MEMMOVE:
1464 case BUILT_IN_STRNCPY:
1465 case BUILT_IN_MEMSET:
1466 case BUILT_IN_MEMCPY_CHK:
1467 case BUILT_IN_MEMMOVE_CHK:
1468 case BUILT_IN_STRNCPY_CHK:
1469 case BUILT_IN_MEMSET_CHK:
1471 /* Occasionally calls with an explicit length of zero
1472 show up in the IL. It's pointless to do analysis
1473 on them, they're trivially dead. */
1474 tree size = gimple_call_arg (stmt, 2);
1475 if (integer_zerop (size))
1477 delete_dead_or_redundant_call (gsi, "dead");
1478 return;
1481 /* If this is a memset call that initializes an object
1482 to zero, it may be redundant with an earlier memset
1483 or empty CONSTRUCTOR of a larger object. */
1484 if ((DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMSET
1485 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMSET_CHK)
1486 && integer_zerop (gimple_call_arg (stmt, 1)))
1487 dse_optimize_redundant_stores (stmt);
1489 enum dse_store_status store_status;
1490 bool byte_tracking_enabled
1491 = setup_live_bytes_from_ref (&ref, live_bytes);
1492 store_status = dse_classify_store (&ref, stmt,
1493 byte_tracking_enabled,
1494 live_bytes);
1495 if (store_status == DSE_STORE_LIVE)
1496 return;
1498 if (store_status == DSE_STORE_MAYBE_PARTIAL_DEAD)
1500 maybe_trim_memstar_call (&ref, live_bytes, stmt);
1501 return;
1504 if (store_status == DSE_STORE_DEAD)
1505 delete_dead_or_redundant_call (gsi, "dead");
1506 return;
1509 case BUILT_IN_CALLOC:
1510 /* We already know the arguments are integer constants. */
1511 dse_optimize_redundant_stores (stmt);
1512 return;
1514 default:
1515 return;
1518 else if (is_gimple_call (stmt)
1519 && gimple_call_internal_p (stmt))
1521 switch (gimple_call_internal_fn (stmt))
1523 case IFN_LEN_STORE:
1524 case IFN_MASK_STORE:
1525 case IFN_MASK_LEN_STORE:
1527 enum dse_store_status store_status;
1528 store_status = dse_classify_store (&ref, stmt, false, live_bytes);
1529 if (store_status == DSE_STORE_DEAD)
1530 delete_dead_or_redundant_call (gsi, "dead");
1531 return;
1533 default:;
1537 bool by_clobber_p = false;
1539 /* Check if this statement stores zero to a memory location,
1540 and if there is a subsequent store of zero to the same
1541 memory location. If so, remove the subsequent store. */
1542 if (gimple_assign_single_p (stmt)
1543 && initializer_zerop (gimple_assign_rhs1 (stmt)))
1544 dse_optimize_redundant_stores (stmt);
1546 /* Self-assignments are zombies. */
1547 if (is_gimple_assign (stmt)
1548 && operand_equal_p (gimple_assign_rhs1 (stmt),
1549 gimple_assign_lhs (stmt), 0))
1551 else
1553 bool byte_tracking_enabled
1554 = setup_live_bytes_from_ref (&ref, live_bytes);
1555 enum dse_store_status store_status;
1556 store_status = dse_classify_store (&ref, stmt,
1557 byte_tracking_enabled,
1558 live_bytes, &by_clobber_p);
1559 if (store_status == DSE_STORE_LIVE)
1560 return;
1562 if (store_status == DSE_STORE_MAYBE_PARTIAL_DEAD)
1564 maybe_trim_partially_dead_store (&ref, live_bytes, stmt);
1565 return;
1569 /* Now we know that use_stmt kills the LHS of stmt. */
1571 /* But only remove *this_2(D) ={v} {CLOBBER} if killed by
1572 another clobber stmt. */
1573 if (gimple_clobber_p (stmt)
1574 && !by_clobber_p)
1575 return;
1577 if (is_gimple_call (stmt)
1578 && (gimple_has_side_effects (stmt)
1579 || (stmt_could_throw_p (fun, stmt)
1580 && !fun->can_delete_dead_exceptions)))
1582 /* See if we can remove complete call. */
1583 if (dse_optimize_call (gsi, live_bytes))
1584 return;
1585 /* Make sure we do not remove a return slot we cannot reconstruct
1586 later. */
1587 if (gimple_call_return_slot_opt_p (as_a <gcall *>(stmt))
1588 && (TREE_ADDRESSABLE (TREE_TYPE (gimple_call_fntype (stmt)))
1589 || !poly_int_tree_p
1590 (TYPE_SIZE (TREE_TYPE (gimple_call_fntype (stmt))))))
1591 return;
1592 if (dump_file && (dump_flags & TDF_DETAILS))
1594 fprintf (dump_file, " Deleted dead store in call LHS: ");
1595 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
1596 fprintf (dump_file, "\n");
1598 gimple_call_set_lhs (stmt, NULL_TREE);
1599 update_stmt (stmt);
1601 else if (!stmt_could_throw_p (fun, stmt)
1602 || fun->can_delete_dead_exceptions)
1603 delete_dead_or_redundant_assignment (gsi, "dead", need_eh_cleanup,
1604 need_ab_cleanup);
1607 namespace {
1609 const pass_data pass_data_dse =
1611 GIMPLE_PASS, /* type */
1612 "dse", /* name */
1613 OPTGROUP_NONE, /* optinfo_flags */
1614 TV_TREE_DSE, /* tv_id */
1615 ( PROP_cfg | PROP_ssa ), /* properties_required */
1616 0, /* properties_provided */
1617 0, /* properties_destroyed */
1618 0, /* todo_flags_start */
1619 0, /* todo_flags_finish */
1622 class pass_dse : public gimple_opt_pass
1624 public:
1625 pass_dse (gcc::context *ctxt)
1626 : gimple_opt_pass (pass_data_dse, ctxt), use_dr_analysis_p (false)
1629 /* opt_pass methods: */
1630 opt_pass * clone () final override { return new pass_dse (m_ctxt); }
1631 void set_pass_param (unsigned n, bool param) final override
1633 gcc_assert (n == 0);
1634 use_dr_analysis_p = param;
1636 bool gate (function *) final override { return flag_tree_dse != 0; }
1637 unsigned int execute (function *) final override;
1639 private:
1640 bool use_dr_analysis_p;
1641 }; // class pass_dse
1643 unsigned int
1644 pass_dse::execute (function *fun)
1646 unsigned todo = 0;
1647 bool released_def = false;
1649 need_eh_cleanup = BITMAP_ALLOC (NULL);
1650 need_ab_cleanup = BITMAP_ALLOC (NULL);
1651 auto_sbitmap live_bytes (param_dse_max_object_size);
1652 if (flag_expensive_optimizations && use_dr_analysis_p)
1653 dse_stmt_to_dr_map = new hash_map<gimple *, data_reference_p>;
1655 renumber_gimple_stmt_uids (fun);
1657 calculate_dominance_info (CDI_DOMINATORS);
1659 /* Dead store elimination is fundamentally a reverse program order walk. */
1660 int *rpo = XNEWVEC (int, n_basic_blocks_for_fn (fun) - NUM_FIXED_BLOCKS);
1661 int n = pre_and_rev_post_order_compute_fn (fun, NULL, rpo, false);
1662 for (int i = n; i != 0; --i)
1664 basic_block bb = BASIC_BLOCK_FOR_FN (fun, rpo[i-1]);
1665 gimple_stmt_iterator gsi;
1667 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
1669 gimple *stmt = gsi_stmt (gsi);
1671 if (gimple_vdef (stmt))
1672 dse_optimize_stmt (fun, &gsi, live_bytes);
1673 else if (def_operand_p
1674 def_p = single_ssa_def_operand (stmt, SSA_OP_DEF))
1676 /* When we remove dead stores make sure to also delete trivially
1677 dead SSA defs. */
1678 if (has_zero_uses (DEF_FROM_PTR (def_p))
1679 && !gimple_has_side_effects (stmt)
1680 && !is_ctrl_altering_stmt (stmt)
1681 && (!stmt_could_throw_p (fun, stmt)
1682 || fun->can_delete_dead_exceptions))
1684 if (dump_file && (dump_flags & TDF_DETAILS))
1686 fprintf (dump_file, " Deleted trivially dead stmt: ");
1687 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
1688 fprintf (dump_file, "\n");
1690 if (gsi_remove (&gsi, true) && need_eh_cleanup)
1691 bitmap_set_bit (need_eh_cleanup, bb->index);
1692 release_defs (stmt);
1693 released_def = true;
1696 if (gsi_end_p (gsi))
1697 gsi = gsi_last_bb (bb);
1698 else
1699 gsi_prev (&gsi);
1701 bool removed_phi = false;
1702 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);)
1704 gphi *phi = si.phi ();
1705 if (has_zero_uses (gimple_phi_result (phi)))
1707 if (dump_file && (dump_flags & TDF_DETAILS))
1709 fprintf (dump_file, " Deleted trivially dead PHI: ");
1710 print_gimple_stmt (dump_file, phi, 0, dump_flags);
1711 fprintf (dump_file, "\n");
1713 remove_phi_node (&si, true);
1714 removed_phi = true;
1715 released_def = true;
1717 else
1718 gsi_next (&si);
1720 if (removed_phi && gimple_seq_empty_p (phi_nodes (bb)))
1721 todo |= TODO_cleanup_cfg;
1723 free (rpo);
1725 /* Removal of stores may make some EH edges dead. Purge such edges from
1726 the CFG as needed. */
1727 if (!bitmap_empty_p (need_eh_cleanup))
1729 gimple_purge_all_dead_eh_edges (need_eh_cleanup);
1730 todo |= TODO_cleanup_cfg;
1732 if (!bitmap_empty_p (need_ab_cleanup))
1734 gimple_purge_all_dead_abnormal_call_edges (need_ab_cleanup);
1735 todo |= TODO_cleanup_cfg;
1738 BITMAP_FREE (need_eh_cleanup);
1739 BITMAP_FREE (need_ab_cleanup);
1741 if (released_def)
1742 free_numbers_of_iterations_estimates (fun);
1744 if (flag_expensive_optimizations && use_dr_analysis_p)
1746 for (auto i = dse_stmt_to_dr_map->begin ();
1747 i != dse_stmt_to_dr_map->end (); ++i)
1748 free_data_ref ((*i).second);
1749 delete dse_stmt_to_dr_map;
1750 dse_stmt_to_dr_map = NULL;
1753 return todo;
1756 } // anon namespace
1758 gimple_opt_pass *
1759 make_pass_dse (gcc::context *ctxt)
1761 return new pass_dse (ctxt);