Objective-C, NeXT, v2: Correct a regression in code-gen.
[official-gcc.git] / gcc / postreload-gcse.cc
blob141b5aea32432ef28dacf91b1ce76d029dc652c5
1 /* Post reload partially redundant load elimination
2 Copyright (C) 2004-2024 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "emit-rtl.h"
33 #include "recog.h"
35 #include "cfgrtl.h"
36 #include "profile.h"
37 #include "expr.h"
38 #include "tree-pass.h"
39 #include "dbgcnt.h"
40 #include "intl.h"
41 #include "gcse-common.h"
42 #include "gcse.h"
43 #include "regs.h"
44 #include "function-abi.h"
46 /* The following code implements gcse after reload, the purpose of this
47 pass is to cleanup redundant loads generated by reload and other
48 optimizations that come after gcse. It searches for simple inter-block
49 redundancies and tries to eliminate them by adding moves and loads
50 in cold places.
52 Perform partially redundant load elimination, try to eliminate redundant
53 loads created by the reload pass. We try to look for full or partial
54 redundant loads fed by one or more loads/stores in predecessor BBs,
55 and try adding loads to make them fully redundant. We also check if
56 it's worth adding loads to be able to delete the redundant load.
58 Algorithm:
59 1. Build available expressions hash table:
60 For each load/store instruction, if the loaded/stored memory didn't
61 change until the end of the basic block add this memory expression to
62 the hash table.
63 2. Perform Redundancy elimination:
64 For each load instruction do the following:
65 perform partial redundancy elimination, check if it's worth adding
66 loads to make the load fully redundant. If so add loads and
67 register copies and delete the load.
68 3. Delete instructions made redundant in step 2.
70 Future enhancement:
71 If the loaded register is used/defined between load and some store,
72 look for some other free register between load and all its stores,
73 and replace the load with a copy from this register to the loaded
74 register.
78 /* Keep statistics of this pass. */
79 static struct
81 int moves_inserted;
82 int copies_inserted;
83 int insns_deleted;
84 } stats;
86 /* We need to keep a hash table of expressions. The table entries are of
87 type 'struct expr', and for each expression there is a single linked
88 list of occurrences. */
90 /* Expression elements in the hash table. */
91 struct expr
93 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
94 rtx expr;
96 /* The same hash for this entry. */
97 hashval_t hash;
99 /* Index in the transparent bitmaps. */
100 unsigned int bitmap_index;
102 /* List of available occurrence in basic blocks in the function. */
103 struct occr *avail_occr;
106 /* Hashtable helpers. */
108 struct expr_hasher : nofree_ptr_hash <expr>
110 static inline hashval_t hash (const expr *);
111 static inline bool equal (const expr *, const expr *);
115 /* Hash expression X.
116 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
117 or if the expression contains something we don't want to insert in the
118 table. */
120 static hashval_t
121 hash_expr (rtx x, int *do_not_record_p)
123 *do_not_record_p = 0;
124 return hash_rtx (x, GET_MODE (x), do_not_record_p,
125 NULL, /*have_reg_qty=*/false);
128 /* Callback for hashtab.
129 Return the hash value for expression EXP. We don't actually hash
130 here, we just return the cached hash value. */
132 inline hashval_t
133 expr_hasher::hash (const expr *exp)
135 return exp->hash;
138 /* Callback for hashtab.
139 Return nonzero if exp1 is equivalent to exp2. */
141 inline bool
142 expr_hasher::equal (const expr *exp1, const expr *exp2)
144 bool equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true);
146 gcc_assert (!equiv_p || exp1->hash == exp2->hash);
147 return equiv_p;
150 /* The table itself. */
151 static hash_table<expr_hasher> *expr_table;
154 static struct obstack expr_obstack;
156 /* Occurrence of an expression.
157 There is at most one occurrence per basic block. If a pattern appears
158 more than once, the last appearance is used. */
160 struct occr
162 /* Next occurrence of this expression. */
163 struct occr *next;
164 /* The insn that computes the expression. */
165 rtx_insn *insn;
166 /* Nonzero if this [anticipatable] occurrence has been deleted. */
167 char deleted_p;
170 static struct obstack occr_obstack;
172 /* The following structure holds the information about the occurrences of
173 the redundant instructions. */
174 struct unoccr
176 struct unoccr *next;
177 edge pred;
178 rtx_insn *insn;
181 static struct obstack unoccr_obstack;
183 /* Array where each element is the CUID if the insn that last set the hard
184 register with the number of the element, since the start of the current
185 basic block.
187 This array is used during the building of the hash table (step 1) to
188 determine if a reg is killed before the end of a basic block.
190 It is also used when eliminating partial redundancies (step 2) to see
191 if a reg was modified since the start of a basic block. */
192 static int *reg_avail_info;
194 /* A list of insns that may modify memory within the current basic block. */
195 struct modifies_mem
197 rtx_insn *insn;
198 struct modifies_mem *next;
200 static struct modifies_mem *modifies_mem_list;
202 /* The modifies_mem structs also go on an obstack, only this obstack is
203 freed each time after completing the analysis or transformations on
204 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
205 object on the obstack to keep track of the bottom of the obstack. */
206 static struct obstack modifies_mem_obstack;
207 static struct modifies_mem *modifies_mem_obstack_bottom;
209 /* Mapping of insn UIDs to CUIDs.
210 CUIDs are like UIDs except they increase monotonically in each basic
211 block, have no gaps, and only apply to real insns. */
212 static int *uid_cuid;
213 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
215 /* Bitmap of blocks which have memory stores. */
216 static bitmap modify_mem_list_set;
218 /* Bitmap of blocks which have calls. */
219 static bitmap blocks_with_calls;
221 /* Vector indexed by block # with a list of all the insns that
222 modify memory within the block. */
223 static vec<rtx_insn *> *modify_mem_list;
225 /* Vector indexed by block # with a canonicalized list of insns
226 that modify memory in the block. */
227 static vec<modify_pair> *canon_modify_mem_list;
229 /* Vector of simple bitmaps indexed by block number. Each component sbitmap
230 indicates which expressions are transparent through the block. */
231 static sbitmap *transp;
234 /* Helpers for memory allocation/freeing. */
235 static void alloc_mem (void);
236 static void free_mem (void);
238 /* Support for hash table construction and transformations. */
239 static bool oprs_unchanged_p (rtx, rtx_insn *, bool);
240 static void record_last_reg_set_info (rtx_insn *, rtx);
241 static void record_last_reg_set_info_regno (rtx_insn *, int);
242 static void record_last_mem_set_info (rtx_insn *);
243 static void record_last_set_info (rtx, const_rtx, void *);
244 static void record_opr_changes (rtx_insn *);
246 static void find_mem_conflicts (rtx, const_rtx, void *);
247 static bool load_killed_in_block_p (int, rtx, bool);
248 static void reset_opr_set_tables (void);
250 /* Hash table support. */
251 static hashval_t hash_expr (rtx, int *);
252 static void insert_expr_in_table (rtx, rtx_insn *);
253 static struct expr *lookup_expr_in_table (rtx);
254 static void dump_hash_table (FILE *);
256 /* Helpers for eliminate_partially_redundant_load. */
257 static bool reg_killed_on_edge (rtx, edge);
258 static bool reg_used_on_edge (rtx, edge);
260 static rtx get_avail_load_store_reg (rtx_insn *);
262 static bool bb_has_well_behaved_predecessors (basic_block);
263 static struct occr* get_bb_avail_insn (basic_block, struct occr *, int);
264 static void hash_scan_set (rtx_insn *);
265 static void compute_hash_table (void);
267 /* The work horses of this pass. */
268 static void eliminate_partially_redundant_load (basic_block,
269 rtx_insn *,
270 struct expr *);
271 static void eliminate_partially_redundant_loads (void);
274 /* Allocate memory for the CUID mapping array and register/memory
275 tracking tables. */
277 static void
278 alloc_mem (void)
280 int i;
281 basic_block bb;
282 rtx_insn *insn;
284 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
285 uid_cuid = XCNEWVEC (int, get_max_uid () + 1);
286 i = 1;
287 FOR_EACH_BB_FN (bb, cfun)
288 FOR_BB_INSNS (bb, insn)
290 if (INSN_P (insn))
291 uid_cuid[INSN_UID (insn)] = i++;
292 else
293 uid_cuid[INSN_UID (insn)] = i;
296 /* Allocate the available expressions hash table. We don't want to
297 make the hash table too small, but unnecessarily making it too large
298 also doesn't help. The i/4 is a gcse.cc relic, and seems like a
299 reasonable choice. */
300 expr_table = new hash_table<expr_hasher> (MAX (i / 4, 13));
302 /* We allocate everything on obstacks because we often can roll back
303 the whole obstack to some point. Freeing obstacks is very fast. */
304 gcc_obstack_init (&expr_obstack);
305 gcc_obstack_init (&occr_obstack);
306 gcc_obstack_init (&unoccr_obstack);
307 gcc_obstack_init (&modifies_mem_obstack);
309 /* Working array used to track the last set for each register
310 in the current block. */
311 reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int));
313 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
314 can roll it back in reset_opr_set_tables. */
315 modifies_mem_obstack_bottom =
316 (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
317 sizeof (struct modifies_mem));
319 blocks_with_calls = BITMAP_ALLOC (NULL);
320 modify_mem_list_set = BITMAP_ALLOC (NULL);
322 modify_mem_list = (vec_rtx_heap *) xcalloc (last_basic_block_for_fn (cfun),
323 sizeof (vec_rtx_heap));
324 canon_modify_mem_list
325 = (vec_modify_pair_heap *) xcalloc (last_basic_block_for_fn (cfun),
326 sizeof (vec_modify_pair_heap));
329 /* Free memory allocated by alloc_mem. */
331 static void
332 free_mem (void)
334 free (uid_cuid);
336 delete expr_table;
337 expr_table = NULL;
339 obstack_free (&expr_obstack, NULL);
340 obstack_free (&occr_obstack, NULL);
341 obstack_free (&unoccr_obstack, NULL);
342 obstack_free (&modifies_mem_obstack, NULL);
344 unsigned i;
345 bitmap_iterator bi;
346 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
348 modify_mem_list[i].release ();
349 canon_modify_mem_list[i].release ();
352 BITMAP_FREE (blocks_with_calls);
353 BITMAP_FREE (modify_mem_list_set);
354 free (reg_avail_info);
355 free (modify_mem_list);
356 free (canon_modify_mem_list);
360 /* Insert expression X in INSN in the hash TABLE.
361 If it is already present, record it as the last occurrence in INSN's
362 basic block. */
364 static void
365 insert_expr_in_table (rtx x, rtx_insn *insn)
367 int do_not_record_p;
368 hashval_t hash;
369 struct expr *cur_expr, **slot;
370 struct occr *avail_occr;
372 hash = hash_expr (x, &do_not_record_p);
374 /* Do not insert expression in the table if it contains volatile operands,
375 or if hash_expr determines the expression is something we don't want
376 to or can't handle. */
377 if (do_not_record_p)
378 return;
380 /* We anticipate that redundant expressions are rare, so for convenience
381 allocate a new hash table element here already and set its fields.
382 If we don't do this, we need a hack with a static struct expr. Anyway,
383 obstack_free is really fast and one more obstack_alloc doesn't hurt if
384 we're going to see more expressions later on. */
385 cur_expr = (struct expr *) obstack_alloc (&expr_obstack,
386 sizeof (struct expr));
387 cur_expr->expr = x;
388 cur_expr->hash = hash;
389 cur_expr->avail_occr = NULL;
391 slot = expr_table->find_slot_with_hash (cur_expr, hash, INSERT);
393 if (! (*slot))
395 /* The expression isn't found, so insert it. */
396 *slot = cur_expr;
398 /* Anytime we add an entry to the table, record the index
399 of the new entry. The bitmap index starts counting
400 at zero. */
401 cur_expr->bitmap_index = expr_table->elements () - 1;
403 else
405 /* The expression is already in the table, so roll back the
406 obstack and use the existing table entry. */
407 obstack_free (&expr_obstack, cur_expr);
408 cur_expr = *slot;
411 /* Search for another occurrence in the same basic block. We insert
412 insns blockwise from start to end, so keep appending to the
413 start of the list so we have to check only a single element. */
414 avail_occr = cur_expr->avail_occr;
415 if (avail_occr
416 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
417 avail_occr->insn = insn;
418 else
420 /* First occurrence of this expression in this basic block. */
421 avail_occr = (struct occr *) obstack_alloc (&occr_obstack,
422 sizeof (struct occr));
423 avail_occr->insn = insn;
424 avail_occr->next = cur_expr->avail_occr;
425 avail_occr->deleted_p = 0;
426 cur_expr->avail_occr = avail_occr;
431 /* Lookup pattern PAT in the expression hash table.
432 The result is a pointer to the table entry, or NULL if not found. */
434 static struct expr *
435 lookup_expr_in_table (rtx pat)
437 int do_not_record_p;
438 struct expr **slot, *tmp_expr;
439 hashval_t hash = hash_expr (pat, &do_not_record_p);
441 if (do_not_record_p)
442 return NULL;
444 tmp_expr = (struct expr *) obstack_alloc (&expr_obstack,
445 sizeof (struct expr));
446 tmp_expr->expr = pat;
447 tmp_expr->hash = hash;
448 tmp_expr->avail_occr = NULL;
450 slot = expr_table->find_slot_with_hash (tmp_expr, hash, NO_INSERT);
451 obstack_free (&expr_obstack, tmp_expr);
453 if (!slot)
454 return NULL;
455 else
456 return (*slot);
460 /* Dump all expressions and occurrences that are currently in the
461 expression hash table to FILE. */
463 /* This helper is called via htab_traverse. */
465 dump_expr_hash_table_entry (expr **slot, FILE *file)
467 struct expr *exprs = *slot;
468 struct occr *occr;
470 fprintf (file, "expr: ");
471 print_rtl (file, exprs->expr);
472 fprintf (file,"\nhashcode: %u\n", exprs->hash);
473 fprintf (file,"list of occurrences:\n");
474 occr = exprs->avail_occr;
475 while (occr)
477 rtx_insn *insn = occr->insn;
478 print_rtl_single (file, insn);
479 fprintf (file, "\n");
480 occr = occr->next;
482 fprintf (file, "\n");
483 return 1;
486 static void
487 dump_hash_table (FILE *file)
489 fprintf (file, "\n\nexpression hash table\n");
490 fprintf (file, "size " HOST_SIZE_T_PRINT_DEC ", " HOST_SIZE_T_PRINT_DEC
491 " elements, %f collision/search ratio\n",
492 (fmt_size_t) expr_table->size (),
493 (fmt_size_t) expr_table->elements (),
494 expr_table->collisions ());
495 if (!expr_table->is_empty ())
497 fprintf (file, "\n\ntable entries:\n");
498 expr_table->traverse <FILE *, dump_expr_hash_table_entry> (file);
500 fprintf (file, "\n");
503 /* Return true if register X is recorded as being set by an instruction
504 whose CUID is greater than the one given. */
506 static bool
507 reg_changed_after_insn_p (rtx x, int cuid)
509 unsigned int regno, end_regno;
511 regno = REGNO (x);
512 end_regno = END_REGNO (x);
514 if (reg_avail_info[regno] > cuid)
515 return true;
516 while (++regno < end_regno);
517 return false;
520 /* Return nonzero if the operands of expression X are unchanged
521 1) from the start of INSN's basic block up to but not including INSN
522 if AFTER_INSN is false, or
523 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
525 static bool
526 oprs_unchanged_p (rtx x, rtx_insn *insn, bool after_insn)
528 int i, j;
529 enum rtx_code code;
530 const char *fmt;
532 if (x == 0)
533 return true;
535 code = GET_CODE (x);
536 switch (code)
538 case REG:
539 /* We are called after register allocation. */
540 gcc_assert (REGNO (x) < FIRST_PSEUDO_REGISTER);
541 if (after_insn)
542 return !reg_changed_after_insn_p (x, INSN_CUID (insn) - 1);
543 else
544 return !reg_changed_after_insn_p (x, 0);
546 case MEM:
547 if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn))
548 return false;
549 else
550 return oprs_unchanged_p (XEXP (x, 0), insn, after_insn);
552 case PC:
553 case CONST:
554 CASE_CONST_ANY:
555 case SYMBOL_REF:
556 case LABEL_REF:
557 case ADDR_VEC:
558 case ADDR_DIFF_VEC:
559 return true;
561 case PRE_DEC:
562 case PRE_INC:
563 case POST_DEC:
564 case POST_INC:
565 case PRE_MODIFY:
566 case POST_MODIFY:
567 if (after_insn)
568 return false;
569 break;
571 default:
572 break;
575 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
577 if (fmt[i] == 'e')
579 if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn))
580 return false;
582 else if (fmt[i] == 'E')
583 for (j = 0; j < XVECLEN (x, i); j++)
584 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn))
585 return false;
588 return true;
592 /* Used for communication between find_mem_conflicts and
593 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
594 conflict between two memory references.
595 This is a bit of a hack to work around the limitations of note_stores. */
596 static int mems_conflict_p;
598 /* DEST is the output of an instruction. If it is a memory reference, and
599 possibly conflicts with the load found in DATA, then set mems_conflict_p
600 to a nonzero value. */
602 static void
603 find_mem_conflicts (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
604 void *data)
606 rtx mem_op = (rtx) data;
608 while (GET_CODE (dest) == SUBREG
609 || GET_CODE (dest) == ZERO_EXTRACT
610 || GET_CODE (dest) == STRICT_LOW_PART)
611 dest = XEXP (dest, 0);
613 /* If DEST is not a MEM, then it will not conflict with the load. Note
614 that function calls are assumed to clobber memory, but are handled
615 elsewhere. */
616 if (! MEM_P (dest))
617 return;
619 if (true_dependence (dest, GET_MODE (dest), mem_op))
620 mems_conflict_p = 1;
624 /* Return nonzero if the expression in X (a memory reference) is killed
625 in the current basic block before (if AFTER_INSN is false) or after
626 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
628 This function assumes that the modifies_mem table is flushed when
629 the hash table construction or redundancy elimination phases start
630 processing a new basic block. */
632 static bool
633 load_killed_in_block_p (int uid_limit, rtx x, bool after_insn)
635 struct modifies_mem *list_entry = modifies_mem_list;
637 while (list_entry)
639 rtx_insn *setter = list_entry->insn;
641 /* Ignore entries in the list that do not apply. */
642 if ((after_insn
643 && INSN_CUID (setter) < uid_limit)
644 || (! after_insn
645 && INSN_CUID (setter) > uid_limit))
647 list_entry = list_entry->next;
648 continue;
651 /* If SETTER is a call everything is clobbered. Note that calls
652 to pure functions are never put on the list, so we need not
653 worry about them. */
654 if (CALL_P (setter))
655 return true;
657 /* SETTER must be an insn of some kind that sets memory. Call
658 note_stores to examine each hunk of memory that is modified.
659 It will set mems_conflict_p to nonzero if there may be a
660 conflict between X and SETTER. */
661 mems_conflict_p = 0;
662 note_stores (setter, find_mem_conflicts, x);
663 if (mems_conflict_p)
664 return true;
666 list_entry = list_entry->next;
668 return false;
672 /* Record register first/last/block set information for REGNO in INSN. */
674 static inline void
675 record_last_reg_set_info (rtx_insn *insn, rtx reg)
677 unsigned int regno, end_regno;
679 regno = REGNO (reg);
680 end_regno = END_REGNO (reg);
682 reg_avail_info[regno] = INSN_CUID (insn);
683 while (++regno < end_regno);
686 static inline void
687 record_last_reg_set_info_regno (rtx_insn *insn, int regno)
689 reg_avail_info[regno] = INSN_CUID (insn);
693 /* Record memory modification information for INSN. We do not actually care
694 about the memory location(s) that are set, or even how they are set (consider
695 a CALL_INSN). We merely need to record which insns modify memory. */
697 static void
698 record_last_mem_set_info (rtx_insn *insn)
700 struct modifies_mem *list_entry;
702 list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
703 sizeof (struct modifies_mem));
704 list_entry->insn = insn;
705 list_entry->next = modifies_mem_list;
706 modifies_mem_list = list_entry;
708 record_last_mem_set_info_common (insn, modify_mem_list,
709 canon_modify_mem_list,
710 modify_mem_list_set,
711 blocks_with_calls);
714 /* Called from compute_hash_table via note_stores to handle one
715 SET or CLOBBER in an insn. DATA is really the instruction in which
716 the SET is taking place. */
718 static void
719 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
721 rtx_insn *last_set_insn = (rtx_insn *) data;
723 if (GET_CODE (dest) == SUBREG)
724 dest = SUBREG_REG (dest);
726 if (REG_P (dest))
727 record_last_reg_set_info (last_set_insn, dest);
728 else if (MEM_P (dest))
730 /* Ignore pushes, they don't clobber memory. They may still
731 clobber the stack pointer though. Some targets do argument
732 pushes without adding REG_INC notes. See e.g. PR25196,
733 where a pushsi2 on i386 doesn't have REG_INC notes. Note
734 such changes here too. */
735 if (! push_operand (dest, GET_MODE (dest)))
736 record_last_mem_set_info (last_set_insn);
737 else
738 record_last_reg_set_info_regno (last_set_insn, STACK_POINTER_REGNUM);
743 /* Reset tables used to keep track of what's still available since the
744 start of the block. */
746 static void
747 reset_opr_set_tables (void)
749 memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int));
750 obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom);
751 modifies_mem_list = NULL;
755 /* Record things set by INSN.
756 This data is used by oprs_unchanged_p. */
758 static void
759 record_opr_changes (rtx_insn *insn)
761 rtx note;
763 /* Find all stores and record them. */
764 note_stores (insn, record_last_set_info, insn);
766 /* Also record autoincremented REGs for this insn as changed. */
767 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
768 if (REG_NOTE_KIND (note) == REG_INC)
769 record_last_reg_set_info (insn, XEXP (note, 0));
771 /* Finally, if this is a call, record all call clobbers. */
772 if (CALL_P (insn))
774 unsigned int regno;
775 hard_reg_set_iterator hrsi;
776 /* We don't track modes of hard registers, so we need to be
777 conservative and assume that partial kills are full kills. */
778 HARD_REG_SET callee_clobbers
779 = insn_callee_abi (insn).full_and_partial_reg_clobbers ();
780 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, regno, hrsi)
781 record_last_reg_set_info_regno (insn, regno);
783 if (! RTL_CONST_OR_PURE_CALL_P (insn)
784 || RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
785 || can_throw_external (insn))
786 record_last_mem_set_info (insn);
791 /* Scan the pattern of INSN and add an entry to the hash TABLE.
792 After reload we are interested in loads/stores only. */
794 static void
795 hash_scan_set (rtx_insn *insn)
797 rtx pat = PATTERN (insn);
798 rtx src = SET_SRC (pat);
799 rtx dest = SET_DEST (pat);
801 /* We are only interested in loads and stores. */
802 if (! MEM_P (src) && ! MEM_P (dest))
803 return;
805 /* Don't mess with jumps and nops. */
806 if (JUMP_P (insn) || set_noop_p (pat))
807 return;
809 if (REG_P (dest))
811 if (/* Don't CSE something if we can't do a reg/reg copy. */
812 can_copy_p (GET_MODE (dest))
813 /* Is SET_SRC something we want to gcse? */
814 && general_operand (src, GET_MODE (src))
815 #ifdef STACK_REGS
816 /* Never consider insns touching the register stack. It may
817 create situations that reg-stack cannot handle (e.g. a stack
818 register live across an abnormal edge). */
819 && (REGNO (dest) < FIRST_STACK_REG || REGNO (dest) > LAST_STACK_REG)
820 #endif
821 /* An expression is not available if its operands are
822 subsequently modified, including this insn. */
823 && oprs_unchanged_p (src, insn, true))
825 insert_expr_in_table (src, insn);
828 else if (REG_P (src))
830 /* Only record sets of pseudo-regs in the hash table. */
831 if (/* Don't CSE something if we can't do a reg/reg copy. */
832 can_copy_p (GET_MODE (src))
833 /* Is SET_DEST something we want to gcse? */
834 && general_operand (dest, GET_MODE (dest))
835 #ifdef STACK_REGS
836 /* As above for STACK_REGS. */
837 && (REGNO (src) < FIRST_STACK_REG || REGNO (src) > LAST_STACK_REG)
838 #endif
839 && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
840 /* Check if the memory expression is killed after insn. */
841 && ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true)
842 && oprs_unchanged_p (XEXP (dest, 0), insn, true))
844 insert_expr_in_table (dest, insn);
850 /* Create hash table of memory expressions available at end of basic
851 blocks. Basically you should think of this hash table as the
852 representation of AVAIL_OUT. This is the set of expressions that
853 is generated in a basic block and not killed before the end of the
854 same basic block. Notice that this is really a local computation. */
856 static void
857 compute_hash_table (void)
859 basic_block bb;
861 FOR_EACH_BB_FN (bb, cfun)
863 rtx_insn *insn;
865 /* First pass over the instructions records information used to
866 determine when registers and memory are last set.
867 Since we compute a "local" AVAIL_OUT, reset the tables that
868 help us keep track of what has been modified since the start
869 of the block. */
870 reset_opr_set_tables ();
871 FOR_BB_INSNS (bb, insn)
873 if (INSN_P (insn))
874 record_opr_changes (insn);
877 /* The next pass actually builds the hash table. */
878 FOR_BB_INSNS (bb, insn)
879 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
880 hash_scan_set (insn);
885 /* Check if register REG is killed in any insn waiting to be inserted on
886 edge E. This function is required to check that our data flow analysis
887 is still valid prior to commit_edge_insertions. */
889 static bool
890 reg_killed_on_edge (rtx reg, edge e)
892 rtx_insn *insn;
894 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
895 if (INSN_P (insn) && reg_set_p (reg, insn))
896 return true;
898 return false;
901 /* Similar to above - check if register REG is used in any insn waiting
902 to be inserted on edge E.
903 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
904 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
906 static bool
907 reg_used_on_edge (rtx reg, edge e)
909 rtx_insn *insn;
911 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
912 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
913 return true;
915 return false;
918 /* Return the loaded/stored register of a load/store instruction. */
920 static rtx
921 get_avail_load_store_reg (rtx_insn *insn)
923 if (REG_P (SET_DEST (PATTERN (insn))))
924 /* A load. */
925 return SET_DEST (PATTERN (insn));
926 else
928 /* A store. */
929 gcc_assert (REG_P (SET_SRC (PATTERN (insn))));
930 return SET_SRC (PATTERN (insn));
934 /* Return true if the predecessors of BB are "well behaved". */
936 static bool
937 bb_has_well_behaved_predecessors (basic_block bb)
939 edge pred;
940 edge_iterator ei;
942 if (EDGE_COUNT (bb->preds) == 0)
943 return false;
945 FOR_EACH_EDGE (pred, ei, bb->preds)
947 /* commit_one_edge_insertion refuses to insert on abnormal edges even if
948 the source has only one successor so EDGE_CRITICAL_P is too weak. */
949 if ((pred->flags & EDGE_ABNORMAL) && !single_pred_p (pred->dest))
950 return false;
952 if ((pred->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
953 return false;
955 if (tablejump_p (BB_END (pred->src), NULL, NULL))
956 return false;
958 return true;
962 /* Search for the occurrences of expression in BB. */
964 static struct occr*
965 get_bb_avail_insn (basic_block bb, struct occr *orig_occr, int bitmap_index)
967 struct occr *occr = orig_occr;
969 for (; occr != NULL; occr = occr->next)
970 if (BLOCK_FOR_INSN (occr->insn) == bb)
971 return occr;
973 /* If we could not find an occurrence in BB, see if BB
974 has a single predecessor with an occurrence that is
975 transparent through BB. */
976 if (transp
977 && single_pred_p (bb)
978 && bitmap_bit_p (transp[bb->index], bitmap_index)
979 && (occr = get_bb_avail_insn (single_pred (bb), orig_occr, bitmap_index)))
981 rtx avail_reg = get_avail_load_store_reg (occr->insn);
982 if (!reg_set_between_p (avail_reg,
983 PREV_INSN (BB_HEAD (bb)),
984 NEXT_INSN (BB_END (bb)))
985 && !reg_killed_on_edge (avail_reg, single_pred_edge (bb)))
986 return occr;
989 return NULL;
993 /* This helper is called via htab_traverse. */
995 compute_expr_transp (expr **slot, FILE *dump_file ATTRIBUTE_UNUSED)
997 struct expr *expr = *slot;
999 compute_transp (expr->expr, expr->bitmap_index, transp,
1000 blocks_with_calls, modify_mem_list_set,
1001 canon_modify_mem_list);
1002 return 1;
1005 /* This handles the case where several stores feed a partially redundant
1006 load. It checks if the redundancy elimination is possible and if it's
1007 worth it.
1009 Redundancy elimination is possible if,
1010 1) None of the operands of an insn have been modified since the start
1011 of the current basic block.
1012 2) In any predecessor of the current basic block, the same expression
1013 is generated.
1015 See the function body for the heuristics that determine if eliminating
1016 a redundancy is also worth doing, assuming it is possible. */
1018 static void
1019 eliminate_partially_redundant_load (basic_block bb, rtx_insn *insn,
1020 struct expr *expr)
1022 edge pred;
1023 rtx_insn *avail_insn = NULL;
1024 rtx avail_reg;
1025 rtx dest, pat;
1026 struct occr *a_occr;
1027 struct unoccr *occr, *avail_occrs = NULL;
1028 struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL;
1029 int npred_ok = 0;
1030 profile_count ok_count = profile_count::zero ();
1031 /* Redundant load execution count. */
1032 profile_count critical_count = profile_count::zero ();
1033 /* Execution count of critical edges. */
1034 edge_iterator ei;
1035 bool critical_edge_split = false;
1037 /* The execution count of the loads to be added to make the
1038 load fully redundant. */
1039 profile_count not_ok_count = profile_count::zero ();
1040 basic_block pred_bb;
1042 pat = PATTERN (insn);
1043 dest = SET_DEST (pat);
1045 /* Check that the loaded register is not used, set, or killed from the
1046 beginning of the block. */
1047 if (reg_changed_after_insn_p (dest, 0)
1048 || reg_used_between_p (dest, PREV_INSN (BB_HEAD (bb)), insn))
1049 return;
1051 /* Check potential for replacing load with copy for predecessors. */
1052 FOR_EACH_EDGE (pred, ei, bb->preds)
1054 rtx_insn *next_pred_bb_end;
1056 avail_insn = NULL;
1057 avail_reg = NULL_RTX;
1058 pred_bb = pred->src;
1059 for (a_occr = get_bb_avail_insn (pred_bb,
1060 expr->avail_occr,
1061 expr->bitmap_index);
1062 a_occr;
1063 a_occr = get_bb_avail_insn (pred_bb,
1064 a_occr->next,
1065 expr->bitmap_index))
1067 /* Check if the loaded register is not used. */
1068 avail_insn = a_occr->insn;
1069 avail_reg = get_avail_load_store_reg (avail_insn);
1070 gcc_assert (avail_reg);
1072 /* Make sure we can generate a move from register avail_reg to
1073 dest. */
1074 rtx_insn *move = gen_move_insn (copy_rtx (dest),
1075 copy_rtx (avail_reg));
1076 extract_insn (move);
1077 if (! constrain_operands (1, get_preferred_alternatives (insn,
1078 pred_bb))
1079 || reg_killed_on_edge (avail_reg, pred)
1080 || reg_used_on_edge (dest, pred))
1082 avail_insn = NULL;
1083 continue;
1085 next_pred_bb_end = NEXT_INSN (BB_END (BLOCK_FOR_INSN (avail_insn)));
1086 if (!reg_set_between_p (avail_reg, avail_insn, next_pred_bb_end))
1087 /* AVAIL_INSN remains non-null. */
1088 break;
1089 else
1090 avail_insn = NULL;
1093 if (EDGE_CRITICAL_P (pred) && pred->count ().initialized_p ())
1094 critical_count += pred->count ();
1096 if (avail_insn != NULL_RTX)
1098 npred_ok++;
1099 if (pred->count ().initialized_p ())
1100 ok_count = ok_count + pred->count ();
1101 if (! set_noop_p (PATTERN (gen_move_insn (copy_rtx (dest),
1102 copy_rtx (avail_reg)))))
1104 /* Check if there is going to be a split. */
1105 if (EDGE_CRITICAL_P (pred))
1106 critical_edge_split = true;
1108 else /* Its a dead move no need to generate. */
1109 continue;
1110 occr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1111 sizeof (struct unoccr));
1112 occr->insn = avail_insn;
1113 occr->pred = pred;
1114 occr->next = avail_occrs;
1115 avail_occrs = occr;
1116 if (! rollback_unoccr)
1117 rollback_unoccr = occr;
1119 else
1121 /* Adding a load on a critical edge will cause a split. */
1122 if (EDGE_CRITICAL_P (pred))
1123 critical_edge_split = true;
1124 if (pred->count ().initialized_p ())
1125 not_ok_count = not_ok_count + pred->count ();
1126 unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1127 sizeof (struct unoccr));
1128 unoccr->insn = NULL;
1129 unoccr->pred = pred;
1130 unoccr->next = unavail_occrs;
1131 unavail_occrs = unoccr;
1132 if (! rollback_unoccr)
1133 rollback_unoccr = unoccr;
1137 if (/* No load can be replaced by copy. */
1138 npred_ok == 0
1139 /* Prevent exploding the code. */
1140 || (optimize_bb_for_size_p (bb) && npred_ok > 1)
1141 /* If we don't have profile information we cannot tell if splitting
1142 a critical edge is profitable or not so don't do it. */
1143 || ((!profile_info || profile_status_for_fn (cfun) != PROFILE_READ
1144 || targetm.cannot_modify_jumps_p ())
1145 && critical_edge_split))
1146 goto cleanup;
1148 /* Check if it's worth applying the partial redundancy elimination. */
1149 if (ok_count.to_gcov_type ()
1150 < param_gcse_after_reload_partial_fraction * not_ok_count.to_gcov_type ())
1151 goto cleanup;
1153 gcov_type threshold;
1154 #if (GCC_VERSION >= 5000)
1155 if (__builtin_mul_overflow (param_gcse_after_reload_critical_fraction,
1156 critical_count.to_gcov_type (), &threshold))
1157 threshold = profile_count::max_count;
1158 #else
1159 threshold
1160 = (param_gcse_after_reload_critical_fraction
1161 * critical_count.to_gcov_type ());
1162 #endif
1164 if (ok_count.to_gcov_type () < threshold)
1165 goto cleanup;
1167 /* Generate moves to the loaded register from where
1168 the memory is available. */
1169 for (occr = avail_occrs; occr; occr = occr->next)
1171 avail_insn = occr->insn;
1172 pred = occr->pred;
1173 /* Set avail_reg to be the register having the value of the
1174 memory. */
1175 avail_reg = get_avail_load_store_reg (avail_insn);
1176 gcc_assert (avail_reg);
1178 insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
1179 copy_rtx (avail_reg)),
1180 pred);
1181 stats.moves_inserted++;
1183 if (dump_file)
1184 fprintf (dump_file,
1185 "generating move from %d to %d on edge from %d to %d\n",
1186 REGNO (avail_reg),
1187 REGNO (dest),
1188 pred->src->index,
1189 pred->dest->index);
1192 /* Regenerate loads where the memory is unavailable. */
1193 for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
1195 pred = unoccr->pred;
1196 insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
1197 stats.copies_inserted++;
1199 if (dump_file)
1201 fprintf (dump_file,
1202 "generating on edge from %d to %d a copy of load: ",
1203 pred->src->index,
1204 pred->dest->index);
1205 print_rtl (dump_file, PATTERN (insn));
1206 fprintf (dump_file, "\n");
1210 /* Delete the insn if it is not available in this block and mark it
1211 for deletion if it is available. If insn is available it may help
1212 discover additional redundancies, so mark it for later deletion. */
1213 for (a_occr = get_bb_avail_insn (bb, expr->avail_occr, expr->bitmap_index);
1214 a_occr && (a_occr->insn != insn);
1215 a_occr = get_bb_avail_insn (bb, a_occr->next, expr->bitmap_index))
1218 if (!a_occr)
1220 stats.insns_deleted++;
1222 if (dump_file)
1224 fprintf (dump_file, "deleting insn:\n");
1225 print_rtl_single (dump_file, insn);
1226 fprintf (dump_file, "\n");
1228 delete_insn (insn);
1230 else
1231 a_occr->deleted_p = 1;
1233 cleanup:
1234 if (rollback_unoccr)
1235 obstack_free (&unoccr_obstack, rollback_unoccr);
1238 /* Performing the redundancy elimination as described before. */
1240 static void
1241 eliminate_partially_redundant_loads (void)
1243 rtx_insn *insn;
1244 basic_block bb;
1246 /* Note we start at block 1. */
1248 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1249 return;
1251 FOR_BB_BETWEEN (bb,
1252 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->next_bb,
1253 EXIT_BLOCK_PTR_FOR_FN (cfun),
1254 next_bb)
1256 /* Don't try anything on basic blocks with strange predecessors. */
1257 if (! bb_has_well_behaved_predecessors (bb))
1258 continue;
1260 /* Do not try anything on cold basic blocks. */
1261 if (optimize_bb_for_size_p (bb))
1262 continue;
1264 /* Reset the table of things changed since the start of the current
1265 basic block. */
1266 reset_opr_set_tables ();
1268 /* Look at all insns in the current basic block and see if there are
1269 any loads in it that we can record. */
1270 FOR_BB_INSNS (bb, insn)
1272 /* Is it a load - of the form (set (reg) (mem))? */
1273 if (NONJUMP_INSN_P (insn)
1274 && GET_CODE (PATTERN (insn)) == SET
1275 && REG_P (SET_DEST (PATTERN (insn)))
1276 && MEM_P (SET_SRC (PATTERN (insn))))
1278 rtx pat = PATTERN (insn);
1279 rtx src = SET_SRC (pat);
1280 struct expr *expr;
1282 if (!MEM_VOLATILE_P (src)
1283 && GET_MODE (src) != BLKmode
1284 && general_operand (src, GET_MODE (src))
1285 /* Are the operands unchanged since the start of the
1286 block? */
1287 && oprs_unchanged_p (src, insn, false)
1288 && !(cfun->can_throw_non_call_exceptions && may_trap_p (src))
1289 && !side_effects_p (src)
1290 /* Is the expression recorded? */
1291 && (expr = lookup_expr_in_table (src)) != NULL)
1293 /* We now have a load (insn) and an available memory at
1294 its BB start (expr). Try to remove the loads if it is
1295 redundant. */
1296 eliminate_partially_redundant_load (bb, insn, expr);
1300 /* Keep track of everything modified by this insn, so that we
1301 know what has been modified since the start of the current
1302 basic block. */
1303 if (INSN_P (insn))
1304 record_opr_changes (insn);
1308 commit_edge_insertions ();
1311 /* Go over the expression hash table and delete insns that were
1312 marked for later deletion. */
1314 /* This helper is called via htab_traverse. */
1316 delete_redundant_insns_1 (expr **slot, void *data ATTRIBUTE_UNUSED)
1318 struct expr *exprs = *slot;
1319 struct occr *occr;
1321 for (occr = exprs->avail_occr; occr != NULL; occr = occr->next)
1323 if (occr->deleted_p && dbg_cnt (gcse2_delete))
1325 delete_insn (occr->insn);
1326 stats.insns_deleted++;
1328 if (dump_file)
1330 fprintf (dump_file, "deleting insn:\n");
1331 print_rtl_single (dump_file, occr->insn);
1332 fprintf (dump_file, "\n");
1337 return 1;
1340 static void
1341 delete_redundant_insns (void)
1343 expr_table->traverse <void *, delete_redundant_insns_1> (NULL);
1344 if (dump_file)
1345 fprintf (dump_file, "\n");
1348 /* Main entry point of the GCSE after reload - clean some redundant loads
1349 due to spilling. */
1351 static void
1352 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED)
1354 /* Disable computing transparentness if it is too expensive. */
1355 bool do_transp
1356 = !gcse_or_cprop_is_too_expensive (_("using simple load CSE after register "
1357 "allocation"));
1359 memset (&stats, 0, sizeof (stats));
1361 /* Allocate memory for this pass.
1362 Also computes and initializes the insns' CUIDs. */
1363 alloc_mem ();
1365 /* We need alias analysis. */
1366 init_alias_analysis ();
1368 compute_hash_table ();
1370 if (dump_file)
1371 dump_hash_table (dump_file);
1373 if (!expr_table->is_empty ())
1375 /* Knowing which MEMs are transparent through a block can signifiantly
1376 increase the number of redundant loads found. So compute transparency
1377 information for each memory expression in the hash table. */
1378 df_analyze ();
1379 if (do_transp)
1381 /* This cannot be part of the normal allocation routine because
1382 we have to know the number of elements in the hash table. */
1383 transp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
1384 expr_table->elements ());
1385 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
1386 expr_table->traverse <FILE *, compute_expr_transp> (dump_file);
1388 else
1389 transp = NULL;
1390 eliminate_partially_redundant_loads ();
1391 delete_redundant_insns ();
1392 if (do_transp)
1393 sbitmap_vector_free (transp);
1395 if (dump_file)
1397 fprintf (dump_file, "GCSE AFTER RELOAD stats:\n");
1398 fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted);
1399 fprintf (dump_file, "moves inserted: %d\n", stats.moves_inserted);
1400 fprintf (dump_file, "insns deleted: %d\n", stats.insns_deleted);
1401 fprintf (dump_file, "\n\n");
1404 statistics_counter_event (cfun, "copies inserted",
1405 stats.copies_inserted);
1406 statistics_counter_event (cfun, "moves inserted",
1407 stats.moves_inserted);
1408 statistics_counter_event (cfun, "insns deleted",
1409 stats.insns_deleted);
1412 /* We are finished with alias. */
1413 end_alias_analysis ();
1415 free_mem ();
1420 static void
1421 rest_of_handle_gcse2 (void)
1423 gcse_after_reload_main (get_insns ());
1424 rebuild_jump_labels (get_insns ());
1427 namespace {
1429 const pass_data pass_data_gcse2 =
1431 RTL_PASS, /* type */
1432 "gcse2", /* name */
1433 OPTGROUP_NONE, /* optinfo_flags */
1434 TV_GCSE_AFTER_RELOAD, /* tv_id */
1435 0, /* properties_required */
1436 0, /* properties_provided */
1437 0, /* properties_destroyed */
1438 0, /* todo_flags_start */
1439 0, /* todo_flags_finish */
1442 class pass_gcse2 : public rtl_opt_pass
1444 public:
1445 pass_gcse2 (gcc::context *ctxt)
1446 : rtl_opt_pass (pass_data_gcse2, ctxt)
1449 /* opt_pass methods: */
1450 bool gate (function *fun) final override
1452 return (optimize > 0 && flag_gcse_after_reload
1453 && optimize_function_for_speed_p (fun));
1456 unsigned int execute (function *) final override
1458 rest_of_handle_gcse2 ();
1459 return 0;
1462 }; // class pass_gcse2
1464 } // anon namespace
1466 rtl_opt_pass *
1467 make_pass_gcse2 (gcc::context *ctxt)
1469 return new pass_gcse2 (ctxt);