Daily bump.
[official-gcc.git] / gcc / mux-utils.h
blob790e1231588a658459e8d3e73466106bb4b5f9cd
1 // Multiplexer utilities
2 // Copyright (C) 2020-2024 Free Software Foundation, Inc.
3 //
4 // This file is part of GCC.
5 //
6 // GCC is free software; you can redistribute it and/or modify it under
7 // the terms of the GNU General Public License as published by the Free
8 // Software Foundation; either version 3, or (at your option) any later
9 // version.
11 // GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 // WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 // for more details.
16 // You should have received a copy of the GNU General Public License
17 // along with GCC; see the file COPYING3. If not see
18 // <http://www.gnu.org/licenses/>.
20 #ifndef GCC_MUX_UTILS_H
21 #define GCC_MUX_UTILS_H 1
23 // A class that stores a choice "A or B", where A has type T1 * and B has
24 // type T2 *. Both T1 and T2 must have an alignment greater than 1, since
25 // the low bit is used to identify B over A. T1 and T2 can be the same.
27 // A can be a null pointer but B cannot.
29 // Barring the requirement that B must be nonnull, using the class is
30 // equivalent to using:
32 // union { T1 *A; T2 *B; };
34 // and having a separate tag bit to indicate which alternative is active.
35 // However, using this class can have two advantages over a union:
37 // - It avoids the need to find somewhere to store the tag bit.
39 // - The compiler is aware that B cannot be null, which can make checks
40 // of the form:
42 // if (auto *B = mux.dyn_cast<T2 *> ())
44 // more efficient. With a union-based representation, the dyn_cast
45 // check could fail either because MUX is an A or because MUX is a
46 // null B, both of which require a run-time test. With a pointer_mux,
47 // only a check for MUX being A is needed.
48 template<typename T1, typename T2 = T1>
49 class pointer_mux
51 public:
52 // Return an A pointer with the given value.
53 static pointer_mux first (T1 *);
55 // Return a B pointer with the given (nonnull) value.
56 static pointer_mux second (T2 *);
58 pointer_mux () = default;
60 // Create a null A pointer.
61 pointer_mux (std::nullptr_t) : m_ptr (nullptr) {}
63 // Create an A or B pointer with the given value. This is only valid
64 // if T1 and T2 are distinct and if T can be resolved to exactly one
65 // of them.
66 template<typename T,
67 typename Enable = typename
68 std::enable_if<std::is_convertible<T *, T1 *>::value
69 != std::is_convertible<T *, T2 *>::value>::type>
70 pointer_mux (T *ptr);
72 // Return true unless the pointer is a null A pointer.
73 explicit operator bool () const { return m_ptr; }
75 // Assign A and B pointers respectively.
76 void set_first (T1 *ptr) { *this = first (ptr); }
77 void set_second (T2 *ptr) { *this = second (ptr); }
79 // Return true if the pointer is an A pointer.
80 bool is_first () const { return !(uintptr_t (m_ptr) & 1); }
82 // Return true if the pointer is a B pointer.
83 bool is_second () const { return uintptr_t (m_ptr) & 1; }
85 // Return the contents of the pointer, given that it is known to be
86 // an A pointer.
87 T1 *known_first () const { return reinterpret_cast<T1 *> (m_ptr); }
89 // Return the contents of the pointer, given that it is known to be
90 // a B pointer.
91 T2 *known_second () const { return reinterpret_cast<T2 *> (m_ptr - 1); }
93 // If the pointer is an A pointer, return its contents, otherwise
94 // return null. Thus a null return can mean that the pointer is
95 // either a null A pointer or a B pointer.
97 // If all A pointers are nonnull, it is more efficient to use:
99 // if (ptr.is_first ())
100 // ...use ptr.known_first ()...
102 // over:
104 // if (T1 *a = ptr.first_or_null ())
105 // ...use a...
106 T1 *first_or_null () const;
108 // If the pointer is a B pointer, return its contents, otherwise
109 // return null. Using:
111 // if (T1 *b = ptr.second_or_null ())
112 // ...use b...
114 // should be at least as efficient as:
116 // if (ptr.is_second ())
117 // ...use ptr.known_second ()...
118 T2 *second_or_null () const;
120 bool operator == (const pointer_mux &pm) const { return m_ptr == pm.m_ptr; }
122 bool operator != (const pointer_mux &pm) const { return m_ptr != pm.m_ptr; }
124 // Return true if the pointer is a T.
126 // This is only valid if T1 and T2 are distinct and if T can be
127 // resolved to exactly one of them. The condition is checked using
128 // a static assertion rather than SFINAE because it gives a clearer
129 // error message.
130 template<typename T>
131 bool is_a () const;
133 // Assert that the pointer is a T and return it as such. See is_a
134 // for the restrictions on T.
135 template<typename T>
136 T as_a () const;
138 // If the pointer is a T, return it as such, otherwise return null.
139 // See is_a for the restrictions on T.
140 template<typename T>
141 T dyn_cast () const;
143 private:
144 pointer_mux (char *ptr) : m_ptr (ptr) {}
146 // Points to the first byte of an object for A pointers or the second
147 // byte of an object for B pointers. Using a pointer rather than a
148 // uintptr_t tells the compiler that second () can never return null,
149 // and that second_or_null () is only null if is_first ().
150 char *m_ptr;
153 template<typename T1, typename T2>
154 inline pointer_mux<T1, T2>
155 pointer_mux<T1, T2>::first (T1 *ptr)
157 gcc_checking_assert (!(uintptr_t (ptr) & 1));
158 return reinterpret_cast<char *> (ptr);
161 template<typename T1, typename T2>
162 inline pointer_mux<T1, T2>
163 pointer_mux<T1, T2>::second (T2 *ptr)
165 gcc_checking_assert (ptr && !(uintptr_t (ptr) & 1));
166 return reinterpret_cast<char *> (ptr) + 1;
169 template<typename T1, typename T2>
170 template<typename T, typename Enable>
171 inline pointer_mux<T1, T2>::pointer_mux (T *ptr)
172 : m_ptr (reinterpret_cast<char *> (ptr))
174 if (std::is_convertible<T *, T2 *>::value)
176 gcc_checking_assert (m_ptr);
177 m_ptr += 1;
181 template<typename T1, typename T2>
182 inline T1 *
183 pointer_mux<T1, T2>::first_or_null () const
185 return is_first () ? known_first () : nullptr;
188 template<typename T1, typename T2>
189 inline T2 *
190 pointer_mux<T1, T2>::second_or_null () const
192 // Micro optimization that's effective as of GCC 11: compute the value
193 // of the second pointer as an integer and test that, so that the integer
194 // result can be reused as the pointer and so that all computation can
195 // happen before a branch on null. This reduces the number of branches
196 // needed for loops.
197 return (uintptr_t (m_ptr) - 1) & 1 ? nullptr : known_second ();
200 template<typename T1, typename T2>
201 template<typename T>
202 inline bool
203 pointer_mux<T1, T2>::is_a () const
205 static_assert (std::is_convertible<T1 *, T>::value
206 != std::is_convertible<T2 *, T>::value,
207 "Ambiguous pointer type");
208 if (std::is_convertible<T2 *, T>::value)
209 return is_second ();
210 else
211 return is_first ();
214 template<typename T1, typename T2>
215 template<typename T>
216 inline T
217 pointer_mux<T1, T2>::as_a () const
219 static_assert (std::is_convertible<T1 *, T>::value
220 != std::is_convertible<T2 *, T>::value,
221 "Ambiguous pointer type");
222 if (std::is_convertible<T2 *, T>::value)
224 gcc_checking_assert (is_second ());
225 return reinterpret_cast<T> (m_ptr - 1);
227 else
229 gcc_checking_assert (is_first ());
230 return reinterpret_cast<T> (m_ptr);
234 template<typename T1, typename T2>
235 template<typename T>
236 inline T
237 pointer_mux<T1, T2>::dyn_cast () const
239 static_assert (std::is_convertible<T1 *, T>::value
240 != std::is_convertible<T2 *, T>::value,
241 "Ambiguous pointer type");
242 if (std::is_convertible<T2 *, T>::value)
244 if (is_second ())
245 return reinterpret_cast<T> (m_ptr - 1);
247 else
249 if (is_first ())
250 return reinterpret_cast<T> (m_ptr);
252 return nullptr;
255 #endif