lto-wrapper: Truncate files using -truncate driver option [PR110710]
[official-gcc.git] / gcc / modulo-sched.cc
blob39360f9a40cd81259dd6327ace9a7d1ac12125e9
1 /* Swing Modulo Scheduling implementation.
2 Copyright (C) 2004-2024 Free Software Foundation, Inc.
3 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "cfghooks.h"
30 #include "df.h"
31 #include "memmodel.h"
32 #include "optabs.h"
33 #include "regs.h"
34 #include "emit-rtl.h"
35 #include "gcov-io.h"
36 #include "profile.h"
37 #include "insn-attr.h"
38 #include "cfgrtl.h"
39 #include "sched-int.h"
40 #include "cfgloop.h"
41 #include "expr.h"
42 #include "ddg.h"
43 #include "tree-pass.h"
44 #include "dbgcnt.h"
45 #include "loop-unroll.h"
46 #include "hard-reg-set.h"
48 #ifdef INSN_SCHEDULING
50 /* This file contains the implementation of the Swing Modulo Scheduler,
51 described in the following references:
52 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
53 Lifetime--sensitive modulo scheduling in a production environment.
54 IEEE Trans. on Comps., 50(3), March 2001
55 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
56 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
57 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
59 The basic structure is:
60 1. Build a data-dependence graph (DDG) for each loop.
61 2. Use the DDG to order the insns of a loop (not in topological order
62 necessarily, but rather) trying to place each insn after all its
63 predecessors _or_ after all its successors.
64 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
65 4. Use the ordering to perform list-scheduling of the loop:
66 1. Set II = MII. We will try to schedule the loop within II cycles.
67 2. Try to schedule the insns one by one according to the ordering.
68 For each insn compute an interval of cycles by considering already-
69 scheduled preds and succs (and associated latencies); try to place
70 the insn in the cycles of this window checking for potential
71 resource conflicts (using the DFA interface).
72 Note: this is different from the cycle-scheduling of schedule_insns;
73 here the insns are not scheduled monotonically top-down (nor bottom-
74 up).
75 3. If failed in scheduling all insns - bump II++ and try again, unless
76 II reaches an upper bound MaxII, in which case report failure.
77 5. If we succeeded in scheduling the loop within II cycles, we now
78 generate prolog and epilog, decrease the counter of the loop, and
79 perform modulo variable expansion for live ranges that span more than
80 II cycles (i.e. use register copies to prevent a def from overwriting
81 itself before reaching the use).
83 SMS works with countable loops (1) whose control part can be easily
84 decoupled from the rest of the loop and (2) whose loop count can
85 be easily adjusted. This is because we peel a constant number of
86 iterations into a prologue and epilogue for which we want to avoid
87 emitting the control part, and a kernel which is to iterate that
88 constant number of iterations less than the original loop. So the
89 control part should be a set of insns clearly identified and having
90 its own iv, not otherwise used in the loop (at-least for now), which
91 initializes a register before the loop to the number of iterations.
92 Currently SMS relies on the do-loop pattern to recognize such loops,
93 where (1) the control part comprises of all insns defining and/or
94 using a certain 'count' register and (2) the loop count can be
95 adjusted by modifying this register prior to the loop.
96 TODO: Rely on cfgloop analysis instead. */
98 /* This page defines partial-schedule structures and functions for
99 modulo scheduling. */
101 typedef struct partial_schedule *partial_schedule_ptr;
102 typedef struct ps_insn *ps_insn_ptr;
104 /* The minimum (absolute) cycle that a node of ps was scheduled in. */
105 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
107 /* The maximum (absolute) cycle that a node of ps was scheduled in. */
108 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
110 /* Perform signed modulo, always returning a non-negative value. */
111 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
113 /* The number of different iterations the nodes in ps span, assuming
114 the stage boundaries are placed efficiently. */
115 #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
116 + 1 + ii - 1) / ii)
117 /* The stage count of ps. */
118 #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
120 /* A single instruction in the partial schedule. */
121 struct ps_insn
123 /* Identifies the instruction to be scheduled. Values smaller than
124 the ddg's num_nodes refer directly to ddg nodes. A value of
125 X - num_nodes refers to register move X. */
126 int id;
128 /* The (absolute) cycle in which the PS instruction is scheduled.
129 Same as SCHED_TIME (node). */
130 int cycle;
132 /* The next/prev PS_INSN in the same row. */
133 ps_insn_ptr next_in_row,
134 prev_in_row;
138 /* Information about a register move that has been added to a partial
139 schedule. */
140 struct ps_reg_move_info
142 /* The source of the move is defined by the ps_insn with id DEF.
143 The destination is used by the ps_insns with the ids in USES. */
144 int def;
145 sbitmap uses;
147 /* The original form of USES' instructions used OLD_REG, but they
148 should now use NEW_REG. */
149 rtx old_reg;
150 rtx new_reg;
152 /* The number of consecutive stages that the move occupies. */
153 int num_consecutive_stages;
155 /* An instruction that sets NEW_REG to the correct value. The first
156 move associated with DEF will have an rhs of OLD_REG; later moves
157 use the result of the previous move. */
158 rtx_insn *insn;
161 /* Holds the partial schedule as an array of II rows. Each entry of the
162 array points to a linked list of PS_INSNs, which represents the
163 instructions that are scheduled for that row. */
164 struct partial_schedule
166 int ii; /* Number of rows in the partial schedule. */
167 int history; /* Threshold for conflict checking using DFA. */
169 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
170 ps_insn_ptr *rows;
172 /* All the moves added for this partial schedule. Index X has
173 a ps_insn id of X + g->num_nodes. */
174 vec<ps_reg_move_info> reg_moves;
176 /* rows_length[i] holds the number of instructions in the row.
177 It is used only (as an optimization) to back off quickly from
178 trying to schedule a node in a full row; that is, to avoid running
179 through futile DFA state transitions. */
180 int *rows_length;
182 /* The earliest absolute cycle of an insn in the partial schedule. */
183 int min_cycle;
185 /* The latest absolute cycle of an insn in the partial schedule. */
186 int max_cycle;
188 ddg_ptr g; /* The DDG of the insns in the partial schedule. */
190 int stage_count; /* The stage count of the partial schedule. */
194 static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
195 static void free_partial_schedule (partial_schedule_ptr);
196 static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
197 void print_partial_schedule (partial_schedule_ptr, FILE *);
198 static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
199 static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
200 int, int, sbitmap, sbitmap);
201 static void rotate_partial_schedule (partial_schedule_ptr, int);
202 void set_row_column_for_ps (partial_schedule_ptr);
203 static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
204 static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
207 /* This page defines constants and structures for the modulo scheduling
208 driver. */
210 static int sms_order_nodes (ddg_ptr, int, int *, int *);
211 static void set_node_sched_params (ddg_ptr);
212 static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
213 static void permute_partial_schedule (partial_schedule_ptr, rtx_insn *);
214 static int calculate_stage_count (partial_schedule_ptr, int);
215 static void calculate_must_precede_follow (ddg_node_ptr, int, int,
216 int, int, sbitmap, sbitmap, sbitmap);
217 static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
218 sbitmap, int, int *, int *, int *);
219 static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
220 sbitmap, int *, sbitmap, sbitmap);
221 static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
223 #define NODE_ASAP(node) ((node)->aux.count)
225 #define SCHED_PARAMS(x) (&node_sched_param_vec[x])
226 #define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
227 #define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
228 #define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
229 #define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
231 /* The scheduling parameters held for each node. */
232 typedef struct node_sched_params
234 int time; /* The absolute scheduling cycle. */
236 int row; /* Holds time % ii. */
237 int stage; /* Holds time / ii. */
239 /* The column of a node inside the ps. If nodes u, v are on the same row,
240 u will precede v if column (u) < column (v). */
241 int column;
242 } *node_sched_params_ptr;
244 /* The following three functions are copied from the current scheduler
245 code in order to use sched_analyze() for computing the dependencies.
246 They are used when initializing the sched_info structure. */
247 static const char *
248 sms_print_insn (const rtx_insn *insn, int aligned ATTRIBUTE_UNUSED)
250 static char tmp[80];
252 sprintf (tmp, "i%4d", INSN_UID (insn));
253 return tmp;
256 static void
257 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
258 regset used ATTRIBUTE_UNUSED)
262 static struct common_sched_info_def sms_common_sched_info;
264 static struct sched_deps_info_def sms_sched_deps_info =
266 compute_jump_reg_dependencies,
267 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
268 NULL,
269 0, 0, 0
272 static struct haifa_sched_info sms_sched_info =
274 NULL,
275 NULL,
276 NULL,
277 NULL,
278 NULL,
279 sms_print_insn,
280 NULL,
281 NULL, /* insn_finishes_block_p */
282 NULL, NULL,
283 NULL, NULL,
284 0, 0,
286 NULL, NULL, NULL, NULL,
287 NULL, NULL,
291 /* Partial schedule instruction ID in PS is a register move. Return
292 information about it. */
293 static struct ps_reg_move_info *
294 ps_reg_move (partial_schedule_ptr ps, int id)
296 gcc_checking_assert (id >= ps->g->num_nodes);
297 return &ps->reg_moves[id - ps->g->num_nodes];
300 /* Return the rtl instruction that is being scheduled by partial schedule
301 instruction ID, which belongs to schedule PS. */
302 static rtx_insn *
303 ps_rtl_insn (partial_schedule_ptr ps, int id)
305 if (id < ps->g->num_nodes)
306 return ps->g->nodes[id].insn;
307 else
308 return ps_reg_move (ps, id)->insn;
311 /* Partial schedule instruction ID, which belongs to PS, occurred in
312 the original (unscheduled) loop. Return the first instruction
313 in the loop that was associated with ps_rtl_insn (PS, ID).
314 If the instruction had some notes before it, this is the first
315 of those notes. */
316 static rtx_insn *
317 ps_first_note (partial_schedule_ptr ps, int id)
319 gcc_assert (id < ps->g->num_nodes);
320 return ps->g->nodes[id].first_note;
323 /* Return the number of consecutive stages that are occupied by
324 partial schedule instruction ID in PS. */
325 static int
326 ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
328 if (id < ps->g->num_nodes)
329 return 1;
330 else
331 return ps_reg_move (ps, id)->num_consecutive_stages;
334 /* Given HEAD and TAIL which are the first and last insns in a loop;
335 return the register which controls the loop. Return zero if it has
336 more than one occurrence in the loop besides the control part or the
337 do-loop pattern is not of the form we expect. */
338 static rtx
339 doloop_register_get (rtx_insn *head, rtx_insn *tail)
341 rtx reg, condition;
342 rtx_insn *insn, *first_insn_not_to_check;
344 if (!JUMP_P (tail))
345 return NULL_RTX;
347 if (!targetm.code_for_doloop_end)
348 return NULL_RTX;
350 /* TODO: Free SMS's dependence on doloop_condition_get. */
351 condition = doloop_condition_get (tail);
352 if (! condition)
353 return NULL_RTX;
355 if (REG_P (XEXP (condition, 0)))
356 reg = XEXP (condition, 0);
357 else if (GET_CODE (XEXP (condition, 0)) == PLUS
358 && REG_P (XEXP (XEXP (condition, 0), 0)))
359 reg = XEXP (XEXP (condition, 0), 0);
360 else
361 gcc_unreachable ();
363 /* Check that the COUNT_REG has no other occurrences in the loop
364 until the decrement. We assume the control part consists of
365 either a single (parallel) branch-on-count or a (non-parallel)
366 branch immediately preceded by a single (decrement) insn. */
367 first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
368 : prev_nondebug_insn (tail));
370 for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
371 if (NONDEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
373 if (dump_file)
375 fprintf (dump_file, "SMS count_reg found ");
376 print_rtl_single (dump_file, reg);
377 fprintf (dump_file, " outside control in insn:\n");
378 print_rtl_single (dump_file, insn);
381 return NULL_RTX;
384 return reg;
387 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
388 that the number of iterations is a compile-time constant. If so,
389 return the rtx_insn that sets COUNT_REG to a constant, and set COUNT to
390 this constant. Otherwise return 0. */
391 static rtx_insn *
392 const_iteration_count (rtx count_reg, basic_block pre_header,
393 int64_t *count, bool* adjust_inplace)
395 rtx_insn *insn;
396 rtx_insn *head, *tail;
398 *adjust_inplace = false;
399 bool read_after = false;
401 if (! pre_header)
402 return NULL;
404 get_ebb_head_tail (pre_header, pre_header, &head, &tail);
406 for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
407 if (single_set (insn) && rtx_equal_p (count_reg,
408 SET_DEST (single_set (insn))))
410 rtx pat = single_set (insn);
412 if (CONST_INT_P (SET_SRC (pat)))
414 *count = INTVAL (SET_SRC (pat));
415 *adjust_inplace = !read_after;
416 return insn;
419 return NULL;
421 else if (NONDEBUG_INSN_P (insn) && reg_mentioned_p (count_reg, insn))
423 read_after = true;
424 if (reg_set_p (count_reg, insn))
425 break;
428 return NULL;
431 /* A very simple resource-based lower bound on the initiation interval.
432 ??? Improve the accuracy of this bound by considering the
433 utilization of various units. */
434 static int
435 res_MII (ddg_ptr g)
437 if (targetm.sched.sms_res_mii)
438 return targetm.sched.sms_res_mii (g);
440 return g->num_nodes / issue_rate;
444 /* A vector that contains the sched data for each ps_insn. */
445 static vec<node_sched_params> node_sched_param_vec;
447 /* Allocate sched_params for each node and initialize it. */
448 static void
449 set_node_sched_params (ddg_ptr g)
451 node_sched_param_vec.truncate (0);
452 node_sched_param_vec.safe_grow_cleared (g->num_nodes, true);
455 /* Make sure that node_sched_param_vec has an entry for every move in PS. */
456 static void
457 extend_node_sched_params (partial_schedule_ptr ps)
459 node_sched_param_vec.safe_grow_cleared (ps->g->num_nodes
460 + ps->reg_moves.length (), true);
463 /* Update the sched_params (time, row and stage) for node U using the II,
464 the CYCLE of U and MIN_CYCLE.
465 We're not simply taking the following
466 SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
467 because the stages may not be aligned on cycle 0. */
468 static void
469 update_node_sched_params (int u, int ii, int cycle, int min_cycle)
471 int sc_until_cycle_zero;
472 int stage;
474 SCHED_TIME (u) = cycle;
475 SCHED_ROW (u) = SMODULO (cycle, ii);
477 /* The calculation of stage count is done adding the number
478 of stages before cycle zero and after cycle zero. */
479 sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
481 if (SCHED_TIME (u) < 0)
483 stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
484 SCHED_STAGE (u) = sc_until_cycle_zero - stage;
486 else
488 stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
489 SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
493 static void
494 print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
496 int i;
498 if (! file)
499 return;
500 for (i = 0; i < num_nodes; i++)
502 node_sched_params_ptr nsp = SCHED_PARAMS (i);
504 fprintf (file, "Node = %d; INSN = %d\n", i,
505 INSN_UID (ps_rtl_insn (ps, i)));
506 fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
507 fprintf (file, " time = %d:\n", nsp->time);
508 fprintf (file, " stage = %d:\n", nsp->stage);
512 /* Set SCHED_COLUMN for each instruction in row ROW of PS. */
513 static void
514 set_columns_for_row (partial_schedule_ptr ps, int row)
516 ps_insn_ptr cur_insn;
517 int column;
519 column = 0;
520 for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
521 SCHED_COLUMN (cur_insn->id) = column++;
524 /* Set SCHED_COLUMN for each instruction in PS. */
525 static void
526 set_columns_for_ps (partial_schedule_ptr ps)
528 int row;
530 for (row = 0; row < ps->ii; row++)
531 set_columns_for_row (ps, row);
534 /* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
535 Its single predecessor has already been scheduled, as has its
536 ddg node successors. (The move may have also another move as its
537 successor, in which case that successor will be scheduled later.)
539 The move is part of a chain that satisfies register dependencies
540 between a producing ddg node and various consuming ddg nodes.
541 If some of these dependencies have a distance of 1 (meaning that
542 the use is upward-exposed) then DISTANCE1_USES is nonnull and
543 contains the set of uses with distance-1 dependencies.
544 DISTANCE1_USES is null otherwise.
546 MUST_FOLLOW is a scratch bitmap that is big enough to hold
547 all current ps_insn ids.
549 Return true on success. */
550 static bool
551 schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
552 sbitmap distance1_uses, sbitmap must_follow)
554 unsigned int u;
555 int this_time, this_distance, this_start, this_end, this_latency;
556 int start, end, c, ii;
557 sbitmap_iterator sbi;
558 ps_reg_move_info *move;
559 rtx_insn *this_insn;
560 ps_insn_ptr psi;
562 move = ps_reg_move (ps, i_reg_move);
563 ii = ps->ii;
564 if (dump_file)
566 fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
567 ", min cycle = %d\n\n", INSN_UID (move->insn), ii,
568 PS_MIN_CYCLE (ps));
569 print_rtl_single (dump_file, move->insn);
570 fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
571 fprintf (dump_file, "=========== =========== =====\n");
574 start = INT_MIN;
575 end = INT_MAX;
577 /* For dependencies of distance 1 between a producer ddg node A
578 and consumer ddg node B, we have a chain of dependencies:
580 A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
582 where Mi is the ith move. For dependencies of distance 0 between
583 a producer ddg node A and consumer ddg node C, we have a chain of
584 dependencies:
586 A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
588 where Mi' occupies the same position as Mi but occurs a stage later.
589 We can only schedule each move once, so if we have both types of
590 chain, we model the second as:
592 A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
594 First handle the dependencies between the previously-scheduled
595 predecessor and the move. */
596 this_insn = ps_rtl_insn (ps, move->def);
597 this_latency = insn_latency (this_insn, move->insn);
598 this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
599 this_time = SCHED_TIME (move->def) - this_distance * ii;
600 this_start = this_time + this_latency;
601 this_end = this_time + ii;
602 if (dump_file)
603 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
604 this_start, this_end, SCHED_TIME (move->def),
605 INSN_UID (this_insn), this_latency, this_distance,
606 INSN_UID (move->insn));
608 if (start < this_start)
609 start = this_start;
610 if (end > this_end)
611 end = this_end;
613 /* Handle the dependencies between the move and previously-scheduled
614 successors. */
615 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, u, sbi)
617 this_insn = ps_rtl_insn (ps, u);
618 this_latency = insn_latency (move->insn, this_insn);
619 if (distance1_uses && !bitmap_bit_p (distance1_uses, u))
620 this_distance = -1;
621 else
622 this_distance = 0;
623 this_time = SCHED_TIME (u) + this_distance * ii;
624 this_start = this_time - ii;
625 this_end = this_time - this_latency;
626 if (dump_file)
627 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
628 this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
629 this_latency, this_distance, INSN_UID (this_insn));
631 if (start < this_start)
632 start = this_start;
633 if (end > this_end)
634 end = this_end;
637 if (dump_file)
639 fprintf (dump_file, "----------- ----------- -----\n");
640 fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
643 bitmap_clear (must_follow);
644 bitmap_set_bit (must_follow, move->def);
646 start = MAX (start, end - (ii - 1));
647 for (c = end; c >= start; c--)
649 psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
650 move->uses, must_follow);
651 if (psi)
653 update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
654 if (dump_file)
655 fprintf (dump_file, "\nScheduled register move INSN %d at"
656 " time %d, row %d\n\n", INSN_UID (move->insn), c,
657 SCHED_ROW (i_reg_move));
658 return true;
662 if (dump_file)
663 fprintf (dump_file, "\nNo available slot\n\n");
665 return false;
669 Breaking intra-loop register anti-dependences:
670 Each intra-loop register anti-dependence implies a cross-iteration true
671 dependence of distance 1. Therefore, we can remove such false dependencies
672 and figure out if the partial schedule broke them by checking if (for a
673 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
674 if so generate a register move. The number of such moves is equal to:
675 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
676 nreg_moves = ----------------------------------- + 1 - { dependence.
677 ii { 1 if not.
679 static bool
680 schedule_reg_moves (partial_schedule_ptr ps)
682 ddg_ptr g = ps->g;
683 int ii = ps->ii;
684 int i;
686 for (i = 0; i < g->num_nodes; i++)
688 ddg_node_ptr u = &g->nodes[i];
689 ddg_edge_ptr e;
690 int nreg_moves = 0, i_reg_move;
691 rtx prev_reg, old_reg;
692 int first_move;
693 int distances[2];
694 sbitmap distance1_uses;
695 rtx set = single_set (u->insn);
697 /* Skip instructions that do not set a register. */
698 if (set && !REG_P (SET_DEST (set)))
699 continue;
701 /* Compute the number of reg_moves needed for u, by looking at life
702 ranges started at u (excluding self-loops). */
703 distances[0] = distances[1] = false;
704 for (e = u->out; e; e = e->next_out)
705 if (e->type == TRUE_DEP && e->dest != e->src)
707 int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
708 - SCHED_TIME (e->src->cuid)) / ii;
710 if (e->distance == 1)
711 nreg_moves4e = (SCHED_TIME (e->dest->cuid)
712 - SCHED_TIME (e->src->cuid) + ii) / ii;
714 /* If dest precedes src in the schedule of the kernel, then dest
715 will read before src writes and we can save one reg_copy. */
716 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
717 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
718 nreg_moves4e--;
720 if (nreg_moves4e >= 1)
722 /* !single_set instructions are not supported yet and
723 thus we do not except to encounter them in the loop
724 except from the doloop part. For the latter case
725 we assume no regmoves are generated as the doloop
726 instructions are tied to the branch with an edge. */
727 gcc_assert (set);
728 /* If the instruction contains auto-inc register then
729 validate that the regmov is being generated for the
730 target regsiter rather then the inc'ed register. */
731 gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
734 if (nreg_moves4e)
736 gcc_assert (e->distance < 2);
737 distances[e->distance] = true;
739 nreg_moves = MAX (nreg_moves, nreg_moves4e);
742 if (nreg_moves == 0)
743 continue;
745 /* Create NREG_MOVES register moves. */
746 first_move = ps->reg_moves.length ();
747 ps->reg_moves.safe_grow_cleared (first_move + nreg_moves, true);
748 extend_node_sched_params (ps);
750 /* Record the moves associated with this node. */
751 first_move += ps->g->num_nodes;
753 /* Generate each move. */
754 old_reg = prev_reg = SET_DEST (set);
755 if (HARD_REGISTER_P (old_reg))
756 return false;
758 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
760 ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
762 move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
763 move->uses = sbitmap_alloc (first_move + nreg_moves);
764 move->old_reg = old_reg;
765 move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
766 move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
767 move->insn = gen_move_insn (move->new_reg, copy_rtx (prev_reg));
768 bitmap_clear (move->uses);
770 prev_reg = move->new_reg;
773 distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
775 if (distance1_uses)
776 bitmap_clear (distance1_uses);
778 /* Every use of the register defined by node may require a different
779 copy of this register, depending on the time the use is scheduled.
780 Record which uses require which move results. */
781 for (e = u->out; e; e = e->next_out)
782 if (e->type == TRUE_DEP && e->dest != e->src)
784 int dest_copy = (SCHED_TIME (e->dest->cuid)
785 - SCHED_TIME (e->src->cuid)) / ii;
787 if (e->distance == 1)
788 dest_copy = (SCHED_TIME (e->dest->cuid)
789 - SCHED_TIME (e->src->cuid) + ii) / ii;
791 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
792 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
793 dest_copy--;
795 if (dest_copy)
797 ps_reg_move_info *move;
799 move = ps_reg_move (ps, first_move + dest_copy - 1);
800 bitmap_set_bit (move->uses, e->dest->cuid);
801 if (e->distance == 1)
802 bitmap_set_bit (distance1_uses, e->dest->cuid);
806 auto_sbitmap must_follow (first_move + nreg_moves);
807 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
808 if (!schedule_reg_move (ps, first_move + i_reg_move,
809 distance1_uses, must_follow))
810 break;
811 if (distance1_uses)
812 sbitmap_free (distance1_uses);
813 if (i_reg_move < nreg_moves)
814 return false;
816 return true;
819 /* Emit the moves associated with PS. Apply the substitutions
820 associated with them. */
821 static void
822 apply_reg_moves (partial_schedule_ptr ps)
824 ps_reg_move_info *move;
825 int i;
827 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
829 unsigned int i_use;
830 sbitmap_iterator sbi;
832 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, i_use, sbi)
834 replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
835 df_insn_rescan (ps->g->nodes[i_use].insn);
840 /* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
841 SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
842 will move to cycle zero. */
843 static void
844 reset_sched_times (partial_schedule_ptr ps, int amount)
846 int row;
847 int ii = ps->ii;
848 ps_insn_ptr crr_insn;
850 for (row = 0; row < ii; row++)
851 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
853 int u = crr_insn->id;
854 int normalized_time = SCHED_TIME (u) - amount;
855 int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
857 if (dump_file)
859 /* Print the scheduling times after the rotation. */
860 rtx_insn *insn = ps_rtl_insn (ps, u);
862 fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
863 "crr_insn->cycle=%d, min_cycle=%d", u,
864 INSN_UID (insn), normalized_time, new_min_cycle);
865 if (JUMP_P (insn))
866 fprintf (dump_file, " (branch)");
867 fprintf (dump_file, "\n");
870 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
871 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
873 crr_insn->cycle = normalized_time;
874 update_node_sched_params (u, ii, normalized_time, new_min_cycle);
878 /* Permute the insns according to their order in PS, from row 0 to
879 row ii-1, and position them right before LAST. This schedules
880 the insns of the loop kernel. */
881 static void
882 permute_partial_schedule (partial_schedule_ptr ps, rtx_insn *last)
884 int ii = ps->ii;
885 int row;
886 ps_insn_ptr ps_ij;
888 for (row = 0; row < ii ; row++)
889 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
891 rtx_insn *insn = ps_rtl_insn (ps, ps_ij->id);
893 if (PREV_INSN (last) != insn)
895 if (ps_ij->id < ps->g->num_nodes)
896 reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
897 PREV_INSN (last));
898 else
899 add_insn_before (insn, last, NULL);
904 /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
905 respectively only if cycle C falls on the border of the scheduling
906 window boundaries marked by START and END cycles. STEP is the
907 direction of the window. */
908 static inline void
909 set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
910 sbitmap *tmp_precede, sbitmap must_precede, int c,
911 int start, int end, int step)
913 *tmp_precede = NULL;
914 *tmp_follow = NULL;
916 if (c == start)
918 if (step == 1)
919 *tmp_precede = must_precede;
920 else /* step == -1. */
921 *tmp_follow = must_follow;
923 if (c == end - step)
925 if (step == 1)
926 *tmp_follow = must_follow;
927 else /* step == -1. */
928 *tmp_precede = must_precede;
933 /* Return True if the branch can be moved to row ii-1 while
934 normalizing the partial schedule PS to start from cycle zero and thus
935 optimize the SC. Otherwise return False. */
936 static bool
937 optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
939 int amount = PS_MIN_CYCLE (ps);
940 int start, end, step;
941 int ii = ps->ii;
942 bool ok = false;
943 int stage_count, stage_count_curr;
945 /* Compare the SC after normalization and SC after bringing the branch
946 to row ii-1. If they are equal just bail out. */
947 stage_count = calculate_stage_count (ps, amount);
948 stage_count_curr =
949 calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
951 if (stage_count == stage_count_curr)
953 if (dump_file)
954 fprintf (dump_file, "SMS SC already optimized.\n");
956 return false;
959 if (dump_file)
961 fprintf (dump_file, "SMS Trying to optimize branch location\n");
962 fprintf (dump_file, "SMS partial schedule before trial:\n");
963 print_partial_schedule (ps, dump_file);
966 /* First, normalize the partial scheduling. */
967 reset_sched_times (ps, amount);
968 rotate_partial_schedule (ps, amount);
969 if (dump_file)
971 fprintf (dump_file,
972 "SMS partial schedule after normalization (ii, %d, SC %d):\n",
973 ii, stage_count);
974 print_partial_schedule (ps, dump_file);
977 if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
978 return true;
980 auto_sbitmap sched_nodes (g->num_nodes);
981 bitmap_ones (sched_nodes);
983 /* Calculate the new placement of the branch. It should be in row
984 ii-1 and fall into it's scheduling window. */
985 if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
986 &step, &end) == 0)
988 bool success;
989 ps_insn_ptr next_ps_i;
990 int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
991 int row = SMODULO (branch_cycle, ps->ii);
992 int num_splits = 0;
993 sbitmap tmp_precede, tmp_follow;
994 int min_cycle, c;
996 if (dump_file)
997 fprintf (dump_file, "\nTrying to schedule node %d "
998 "INSN = %d in (%d .. %d) step %d\n",
999 g->closing_branch->cuid,
1000 (INSN_UID (g->closing_branch->insn)), start, end, step);
1002 gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
1003 if (step == 1)
1005 c = start + ii - SMODULO (start, ii) - 1;
1006 gcc_assert (c >= start);
1007 if (c >= end)
1009 if (dump_file)
1010 fprintf (dump_file,
1011 "SMS failed to schedule branch at cycle: %d\n", c);
1012 return false;
1015 else
1017 c = start - SMODULO (start, ii) - 1;
1018 gcc_assert (c <= start);
1020 if (c <= end)
1022 if (dump_file)
1023 fprintf (dump_file,
1024 "SMS failed to schedule branch at cycle: %d\n", c);
1025 return false;
1029 auto_sbitmap must_precede (g->num_nodes);
1030 auto_sbitmap must_follow (g->num_nodes);
1032 /* Try to schedule the branch is it's new cycle. */
1033 calculate_must_precede_follow (g->closing_branch, start, end,
1034 step, ii, sched_nodes,
1035 must_precede, must_follow);
1037 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1038 must_precede, c, start, end, step);
1040 /* Find the element in the partial schedule related to the closing
1041 branch so we can remove it from it's current cycle. */
1042 for (next_ps_i = ps->rows[row];
1043 next_ps_i; next_ps_i = next_ps_i->next_in_row)
1044 if (next_ps_i->id == g->closing_branch->cuid)
1045 break;
1047 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1048 remove_node_from_ps (ps, next_ps_i);
1049 success =
1050 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
1051 sched_nodes, &num_splits,
1052 tmp_precede, tmp_follow);
1053 gcc_assert (num_splits == 0);
1054 if (!success)
1056 if (dump_file)
1057 fprintf (dump_file,
1058 "SMS failed to schedule branch at cycle: %d, "
1059 "bringing it back to cycle %d\n", c, branch_cycle);
1061 /* The branch was failed to be placed in row ii - 1.
1062 Put it back in it's original place in the partial
1063 schedualing. */
1064 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1065 must_precede, branch_cycle, start, end,
1066 step);
1067 success =
1068 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
1069 branch_cycle, sched_nodes,
1070 &num_splits, tmp_precede,
1071 tmp_follow);
1072 gcc_assert (success && (num_splits == 0));
1073 ok = false;
1075 else
1077 /* The branch is placed in row ii - 1. */
1078 if (dump_file)
1079 fprintf (dump_file,
1080 "SMS success in moving branch to cycle %d\n", c);
1082 update_node_sched_params (g->closing_branch->cuid, ii, c,
1083 PS_MIN_CYCLE (ps));
1084 ok = true;
1087 /* This might have been added to a new first stage. */
1088 if (PS_MIN_CYCLE (ps) < min_cycle)
1089 reset_sched_times (ps, 0);
1092 return ok;
1095 static void
1096 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
1097 int to_stage, rtx count_reg, class loop *loop)
1099 int row;
1100 ps_insn_ptr ps_ij;
1101 copy_bb_data id;
1103 for (row = 0; row < ps->ii; row++)
1104 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
1106 int u = ps_ij->id;
1107 int first_u, last_u;
1108 rtx_insn *u_insn;
1110 /* Do not duplicate any insn which refers to count_reg as it
1111 belongs to the control part.
1112 The closing branch is scheduled as well and thus should
1113 be ignored.
1114 TODO: This should be done by analyzing the control part of
1115 the loop. */
1116 u_insn = ps_rtl_insn (ps, u);
1117 if (reg_mentioned_p (count_reg, u_insn)
1118 || JUMP_P (u_insn))
1119 continue;
1121 first_u = SCHED_STAGE (u);
1122 last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
1123 if (from_stage <= last_u && to_stage >= first_u)
1125 if (u < ps->g->num_nodes)
1126 duplicate_insn_chain (ps_first_note (ps, u), u_insn,
1127 loop, &id);
1128 else
1129 emit_insn (copy_rtx (PATTERN (u_insn)));
1135 /* Generate the instructions (including reg_moves) for prolog & epilog. */
1136 static void
1137 generate_prolog_epilog (partial_schedule_ptr ps, class loop *loop,
1138 rtx count_reg, bool adjust_init)
1140 int i;
1141 int last_stage = PS_STAGE_COUNT (ps) - 1;
1142 edge e;
1144 /* Generate the prolog, inserting its insns on the loop-entry edge. */
1145 start_sequence ();
1147 if (adjust_init)
1149 /* Generate instructions at the beginning of the prolog to
1150 adjust the loop count by STAGE_COUNT. If loop count is constant
1151 and it not used anywhere in prologue, this constant is adjusted by
1152 STAGE_COUNT outside of generate_prolog_epilog function. */
1153 rtx sub_reg = NULL_RTX;
1155 sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS, count_reg,
1156 gen_int_mode (last_stage,
1157 GET_MODE (count_reg)),
1158 count_reg, 1, OPTAB_DIRECT);
1159 gcc_assert (REG_P (sub_reg));
1160 if (REGNO (sub_reg) != REGNO (count_reg))
1161 emit_move_insn (count_reg, sub_reg);
1164 for (i = 0; i < last_stage; i++)
1165 duplicate_insns_of_cycles (ps, 0, i, count_reg, loop);
1167 /* Put the prolog on the entry edge. */
1168 e = loop_preheader_edge (loop);
1169 split_edge_and_insert (e, get_insns ());
1170 if (!flag_resched_modulo_sched)
1171 e->dest->flags |= BB_DISABLE_SCHEDULE;
1173 end_sequence ();
1175 /* Generate the epilog, inserting its insns on the loop-exit edge. */
1176 start_sequence ();
1178 for (i = 0; i < last_stage; i++)
1179 duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg, loop);
1181 /* Put the epilogue on the exit edge. */
1182 gcc_assert (single_exit (loop));
1183 e = single_exit (loop);
1184 split_edge_and_insert (e, get_insns ());
1185 if (!flag_resched_modulo_sched)
1186 e->dest->flags |= BB_DISABLE_SCHEDULE;
1188 end_sequence ();
1191 /* Mark LOOP as software pipelined so the later
1192 scheduling passes don't touch it. */
1193 static void
1194 mark_loop_unsched (class loop *loop)
1196 unsigned i;
1197 basic_block *bbs = get_loop_body (loop);
1199 for (i = 0; i < loop->num_nodes; i++)
1200 bbs[i]->flags |= BB_DISABLE_SCHEDULE;
1202 free (bbs);
1205 /* Return true if all the BBs of the loop are empty except the
1206 loop header. */
1207 static bool
1208 loop_single_full_bb_p (class loop *loop)
1210 unsigned i;
1211 basic_block *bbs = get_loop_body (loop);
1213 for (i = 0; i < loop->num_nodes ; i++)
1215 rtx_insn *head, *tail;
1216 bool empty_bb = true;
1218 if (bbs[i] == loop->header)
1219 continue;
1221 /* Make sure that basic blocks other than the header
1222 have only notes labels or jumps. */
1223 get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
1224 for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
1226 if (NOTE_P (head) || LABEL_P (head)
1227 || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
1228 continue;
1229 empty_bb = false;
1230 break;
1233 if (! empty_bb)
1235 free (bbs);
1236 return false;
1239 free (bbs);
1240 return true;
1243 /* Dump file:line from INSN's location info to dump_file. */
1245 static void
1246 dump_insn_location (rtx_insn *insn)
1248 if (dump_file && INSN_HAS_LOCATION (insn))
1250 expanded_location xloc = insn_location (insn);
1251 fprintf (dump_file, " %s:%i", xloc.file, xloc.line);
1255 /* A simple loop from SMS point of view; it is a loop that is composed of
1256 either a single basic block or two BBs - a header and a latch. */
1257 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
1258 && (EDGE_COUNT (loop->latch->preds) == 1) \
1259 && (EDGE_COUNT (loop->latch->succs) == 1))
1261 /* Return true if the loop is in its canonical form and false if not.
1262 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
1263 static bool
1264 loop_canon_p (class loop *loop)
1267 if (loop->inner || !loop_outer (loop))
1269 if (dump_file)
1270 fprintf (dump_file, "SMS loop inner or !loop_outer\n");
1271 return false;
1274 if (!single_exit (loop))
1276 if (dump_file)
1278 rtx_insn *insn = BB_END (loop->header);
1280 fprintf (dump_file, "SMS loop many exits");
1281 dump_insn_location (insn);
1282 fprintf (dump_file, "\n");
1284 return false;
1287 if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
1289 if (dump_file)
1291 rtx_insn *insn = BB_END (loop->header);
1293 fprintf (dump_file, "SMS loop many BBs.");
1294 dump_insn_location (insn);
1295 fprintf (dump_file, "\n");
1297 return false;
1300 return true;
1303 /* If there are more than one entry for the loop,
1304 make it one by splitting the first entry edge and
1305 redirecting the others to the new BB. */
1306 static void
1307 canon_loop (class loop *loop)
1309 edge e;
1310 edge_iterator i;
1312 /* Avoid annoying special cases of edges going to exit
1313 block. */
1314 FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1315 if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
1316 split_edge (e);
1318 if (loop->latch == loop->header
1319 || EDGE_COUNT (loop->latch->succs) > 1)
1321 FOR_EACH_EDGE (e, i, loop->header->preds)
1322 if (e->src == loop->latch)
1323 break;
1324 split_edge (e);
1328 /* Setup infos. */
1329 static void
1330 setup_sched_infos (void)
1332 memcpy (&sms_common_sched_info, &haifa_common_sched_info,
1333 sizeof (sms_common_sched_info));
1334 sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
1335 common_sched_info = &sms_common_sched_info;
1337 sched_deps_info = &sms_sched_deps_info;
1338 current_sched_info = &sms_sched_info;
1341 /* Probability in % that the sms-ed loop rolls enough so that optimized
1342 version may be entered. Just a guess. */
1343 #define PROB_SMS_ENOUGH_ITERATIONS 80
1345 /* Main entry point, perform SMS scheduling on the loops of the function
1346 that consist of single basic blocks. */
1347 static void
1348 sms_schedule (void)
1350 rtx_insn *insn;
1351 ddg_ptr *g_arr, g;
1352 int * node_order;
1353 int maxii, max_asap;
1354 partial_schedule_ptr ps;
1355 basic_block bb = NULL;
1356 basic_block condition_bb = NULL;
1357 edge latch_edge;
1358 HOST_WIDE_INT trip_count, max_trip_count;
1359 HARD_REG_SET prohibited_regs;
1361 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
1362 | LOOPS_HAVE_RECORDED_EXITS);
1363 if (number_of_loops (cfun) <= 1)
1365 loop_optimizer_finalize ();
1366 return; /* There are no loops to schedule. */
1369 /* Initialize issue_rate. */
1370 if (targetm.sched.issue_rate)
1372 int temp = reload_completed;
1374 reload_completed = 1;
1375 issue_rate = targetm.sched.issue_rate ();
1376 reload_completed = temp;
1378 else
1379 issue_rate = 1;
1381 /* Initialize the scheduler. */
1382 setup_sched_infos ();
1383 haifa_sched_init ();
1385 /* Allocate memory to hold the DDG array one entry for each loop.
1386 We use loop->num as index into this array. */
1387 g_arr = XCNEWVEC (ddg_ptr, number_of_loops (cfun));
1389 REG_SET_TO_HARD_REG_SET (prohibited_regs, &df->regular_block_artificial_uses);
1391 if (dump_file)
1393 fprintf (dump_file, "\n\nSMS analysis phase\n");
1394 fprintf (dump_file, "===================\n\n");
1397 /* Build DDGs for all the relevant loops and hold them in G_ARR
1398 indexed by the loop index. */
1399 for (auto loop : loops_list (cfun, 0))
1401 rtx_insn *head, *tail;
1402 rtx count_reg;
1404 /* For debugging. */
1405 if (dbg_cnt (sms_sched_loop) == false)
1407 if (dump_file)
1408 fprintf (dump_file, "SMS reached max limit... \n");
1410 break;
1413 if (dump_file)
1415 rtx_insn *insn = BB_END (loop->header);
1417 fprintf (dump_file, "SMS loop num: %d", loop->num);
1418 dump_insn_location (insn);
1419 fprintf (dump_file, "\n");
1422 if (! loop_canon_p (loop))
1423 continue;
1425 if (! loop_single_full_bb_p (loop))
1427 if (dump_file)
1428 fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
1429 continue;
1432 bb = loop->header;
1434 get_ebb_head_tail (bb, bb, &head, &tail);
1435 latch_edge = loop_latch_edge (loop);
1436 gcc_assert (single_exit (loop));
1437 trip_count = get_estimated_loop_iterations_int (loop);
1438 max_trip_count = get_max_loop_iterations_int (loop);
1440 /* Perform SMS only on loops that their average count is above threshold. */
1442 if (latch_edge->count () > profile_count::zero ()
1443 && (latch_edge->count ()
1444 < (single_exit (loop)->count ()
1445 * param_sms_loop_average_count_threshold)))
1447 if (dump_file)
1449 dump_insn_location (tail);
1450 fprintf (dump_file, "\nSMS single-bb-loop\n");
1451 if (profile_info && flag_branch_probabilities)
1453 fprintf (dump_file, "SMS loop-count ");
1454 fprintf (dump_file, "%" PRId64,
1455 (int64_t) bb->count.to_gcov_type ());
1456 fprintf (dump_file, "\n");
1457 fprintf (dump_file, "SMS trip-count ");
1458 fprintf (dump_file, "%" PRId64 "max %" PRId64,
1459 (int64_t) trip_count, (int64_t) max_trip_count);
1460 fprintf (dump_file, "\n");
1463 continue;
1466 /* Make sure this is a doloop. */
1467 if (!(count_reg = doloop_register_get (head, tail)))
1469 if (dump_file)
1470 fprintf (dump_file, "SMS doloop_register_get failed\n");
1471 continue;
1474 /* Don't handle BBs with calls or barriers
1475 or !single_set with the exception of do-loop control part insns.
1476 ??? Should handle insns defining subregs. */
1477 for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
1479 if (INSN_P (insn))
1481 HARD_REG_SET regs;
1482 CLEAR_HARD_REG_SET (regs);
1483 note_stores (insn, record_hard_reg_sets, &regs);
1484 if (hard_reg_set_intersect_p (regs, prohibited_regs))
1485 break;
1488 if (CALL_P (insn)
1489 || BARRIER_P (insn)
1490 || (INSN_P (insn) && single_set (insn)
1491 && GET_CODE (SET_DEST (single_set (insn))) == SUBREG)
1492 /* Not a single set. */
1493 || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1494 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
1495 /* But non-single-set allowed in one special case. */
1496 && (insn != prev_nondebug_insn (tail)
1497 || !reg_mentioned_p (count_reg, insn))))
1498 break;
1501 if (insn != NEXT_INSN (tail))
1503 if (dump_file)
1505 if (CALL_P (insn))
1506 fprintf (dump_file, "SMS loop-with-call\n");
1507 else if (BARRIER_P (insn))
1508 fprintf (dump_file, "SMS loop-with-barrier\n");
1509 else if (INSN_P (insn) && single_set (insn)
1510 && GET_CODE (SET_DEST (single_set (insn))) == SUBREG)
1511 fprintf (dump_file, "SMS loop with subreg in lhs\n");
1512 else
1513 fprintf (dump_file,
1514 "SMS loop-with-not-single-set-or-prohibited-reg\n");
1516 print_rtl_single (dump_file, insn);
1519 continue;
1522 /* Always schedule the closing branch with the rest of the
1523 instructions. The branch is rotated to be in row ii-1 at the
1524 end of the scheduling procedure to make sure it's the last
1525 instruction in the iteration. */
1526 if (! (g = create_ddg (bb, 1)))
1528 if (dump_file)
1529 fprintf (dump_file, "SMS create_ddg failed\n");
1530 continue;
1533 g_arr[loop->num] = g;
1534 if (dump_file)
1535 fprintf (dump_file, "...OK\n");
1538 if (dump_file)
1540 fprintf (dump_file, "\nSMS transformation phase\n");
1541 fprintf (dump_file, "=========================\n\n");
1544 /* We don't want to perform SMS on new loops - created by versioning. */
1545 for (auto loop : loops_list (cfun, 0))
1547 rtx_insn *head, *tail;
1548 rtx count_reg;
1549 rtx_insn *count_init;
1550 int mii, rec_mii, stage_count, min_cycle;
1551 int64_t loop_count = 0;
1552 bool opt_sc_p, adjust_inplace = false;
1553 basic_block pre_header;
1555 if (! (g = g_arr[loop->num]))
1556 continue;
1558 if (dump_file)
1560 rtx_insn *insn = BB_END (loop->header);
1562 fprintf (dump_file, "SMS loop num: %d", loop->num);
1563 dump_insn_location (insn);
1564 fprintf (dump_file, "\n");
1566 print_ddg (dump_file, g);
1569 get_ebb_head_tail (loop->header, loop->header, &head, &tail);
1571 latch_edge = loop_latch_edge (loop);
1572 gcc_assert (single_exit (loop));
1573 trip_count = get_estimated_loop_iterations_int (loop);
1574 max_trip_count = get_max_loop_iterations_int (loop);
1576 if (dump_file)
1578 dump_insn_location (tail);
1579 fprintf (dump_file, "\nSMS single-bb-loop\n");
1580 if (profile_info && flag_branch_probabilities)
1582 fprintf (dump_file, "SMS loop-count ");
1583 fprintf (dump_file, "%" PRId64,
1584 (int64_t) bb->count.to_gcov_type ());
1585 fprintf (dump_file, "\n");
1587 fprintf (dump_file, "SMS doloop\n");
1588 fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
1589 fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
1590 fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
1594 count_reg = doloop_register_get (head, tail);
1595 gcc_assert (count_reg);
1597 pre_header = loop_preheader_edge (loop)->src;
1598 count_init = const_iteration_count (count_reg, pre_header, &loop_count,
1599 &adjust_inplace);
1601 if (dump_file && count_init)
1603 fprintf (dump_file, "SMS const-doloop ");
1604 fprintf (dump_file, "%" PRId64,
1605 loop_count);
1606 fprintf (dump_file, "\n");
1609 node_order = XNEWVEC (int, g->num_nodes);
1611 mii = 1; /* Need to pass some estimate of mii. */
1612 rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
1613 mii = MAX (res_MII (g), rec_mii);
1614 mii = MAX (mii, 1);
1615 maxii = MAX (max_asap, param_sms_max_ii_factor * mii);
1617 if (dump_file)
1618 fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1619 rec_mii, mii, maxii);
1621 for (;;)
1623 set_node_sched_params (g);
1625 stage_count = 0;
1626 opt_sc_p = false;
1627 ps = sms_schedule_by_order (g, mii, maxii, node_order);
1629 if (ps)
1631 /* Try to achieve optimized SC by normalizing the partial
1632 schedule (having the cycles start from cycle zero).
1633 The branch location must be placed in row ii-1 in the
1634 final scheduling. If failed, shift all instructions to
1635 position the branch in row ii-1. */
1636 opt_sc_p = optimize_sc (ps, g);
1637 if (opt_sc_p)
1638 stage_count = calculate_stage_count (ps, 0);
1639 else
1641 /* Bring the branch to cycle ii-1. */
1642 int amount = (SCHED_TIME (g->closing_branch->cuid)
1643 - (ps->ii - 1));
1645 if (dump_file)
1646 fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
1648 stage_count = calculate_stage_count (ps, amount);
1651 gcc_assert (stage_count >= 1);
1654 /* The default value of param_sms_min_sc is 2 as stage count of
1655 1 means that there is no interleaving between iterations thus
1656 we let the scheduling passes do the job in this case. */
1657 if (stage_count < param_sms_min_sc
1658 || (count_init && (loop_count <= stage_count))
1659 || (max_trip_count >= 0 && max_trip_count <= stage_count)
1660 || (trip_count >= 0 && trip_count <= stage_count))
1662 if (dump_file)
1664 fprintf (dump_file, "SMS failed... \n");
1665 fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
1666 " loop-count=", stage_count);
1667 fprintf (dump_file, "%" PRId64, loop_count);
1668 fprintf (dump_file, ", trip-count=");
1669 fprintf (dump_file, "%" PRId64 "max %" PRId64,
1670 (int64_t) trip_count, (int64_t) max_trip_count);
1671 fprintf (dump_file, ")\n");
1673 break;
1676 if (!opt_sc_p)
1678 /* Rotate the partial schedule to have the branch in row ii-1. */
1679 int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
1681 reset_sched_times (ps, amount);
1682 rotate_partial_schedule (ps, amount);
1685 set_columns_for_ps (ps);
1687 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1688 if (!schedule_reg_moves (ps))
1690 mii = ps->ii + 1;
1691 free_partial_schedule (ps);
1692 continue;
1695 /* Moves that handle incoming values might have been added
1696 to a new first stage. Bump the stage count if so.
1698 ??? Perhaps we could consider rotating the schedule here
1699 instead? */
1700 if (PS_MIN_CYCLE (ps) < min_cycle)
1702 reset_sched_times (ps, 0);
1703 stage_count++;
1706 /* The stage count should now be correct without rotation. */
1707 gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
1708 PS_STAGE_COUNT (ps) = stage_count;
1710 canon_loop (loop);
1712 if (dump_file)
1714 dump_insn_location (tail);
1715 fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n",
1716 ps->ii, stage_count);
1717 print_partial_schedule (ps, dump_file);
1720 if (count_init)
1722 if (adjust_inplace)
1724 /* When possible, set new iteration count of loop kernel in
1725 place. Otherwise, generate_prolog_epilog creates an insn
1726 to adjust. */
1727 SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1728 - stage_count + 1);
1731 else
1733 /* case the BCT count is not known , Do loop-versioning */
1734 rtx comp_rtx = gen_rtx_GT (VOIDmode, count_reg,
1735 gen_int_mode (stage_count,
1736 GET_MODE (count_reg)));
1737 profile_probability prob = profile_probability::guessed_always ()
1738 .apply_scale (PROB_SMS_ENOUGH_ITERATIONS, 100);
1740 loop_version (loop, comp_rtx, &condition_bb,
1741 prob, prob.invert (),
1742 prob, prob.invert (), true);
1745 /* Now apply the scheduled kernel to the RTL of the loop. */
1746 permute_partial_schedule (ps, g->closing_branch->first_note);
1748 /* Mark this loop as software pipelined so the later
1749 scheduling passes don't touch it. */
1750 if (! flag_resched_modulo_sched)
1751 mark_loop_unsched (loop);
1753 /* The life-info is not valid any more. */
1754 df_set_bb_dirty (g->bb);
1756 apply_reg_moves (ps);
1757 if (dump_file)
1758 print_node_sched_params (dump_file, g->num_nodes, ps);
1759 /* Generate prolog and epilog. */
1760 generate_prolog_epilog (ps, loop, count_reg, !adjust_inplace);
1761 break;
1764 free_partial_schedule (ps);
1765 node_sched_param_vec.release ();
1766 free (node_order);
1767 free_ddg (g);
1770 free (g_arr);
1772 /* Release scheduler data, needed until now because of DFA. */
1773 haifa_sched_finish ();
1774 loop_optimizer_finalize ();
1777 /* The SMS scheduling algorithm itself
1778 -----------------------------------
1779 Input: 'O' an ordered list of insns of a loop.
1780 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1782 'Q' is the empty Set
1783 'PS' is the partial schedule; it holds the currently scheduled nodes with
1784 their cycle/slot.
1785 'PSP' previously scheduled predecessors.
1786 'PSS' previously scheduled successors.
1787 't(u)' the cycle where u is scheduled.
1788 'l(u)' is the latency of u.
1789 'd(v,u)' is the dependence distance from v to u.
1790 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1791 the node ordering phase.
1792 'check_hardware_resources_conflicts(u, PS, c)'
1793 run a trace around cycle/slot through DFA model
1794 to check resource conflicts involving instruction u
1795 at cycle c given the partial schedule PS.
1796 'add_to_partial_schedule_at_time(u, PS, c)'
1797 Add the node/instruction u to the partial schedule
1798 PS at time c.
1799 'calculate_register_pressure(PS)'
1800 Given a schedule of instructions, calculate the register
1801 pressure it implies. One implementation could be the
1802 maximum number of overlapping live ranges.
1803 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1804 registers available in the hardware.
1806 1. II = MII.
1807 2. PS = empty list
1808 3. for each node u in O in pre-computed order
1809 4. if (PSP(u) != Q && PSS(u) == Q) then
1810 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1811 6. start = Early_start; end = Early_start + II - 1; step = 1
1812 11. else if (PSP(u) == Q && PSS(u) != Q) then
1813 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1814 13. start = Late_start; end = Late_start - II + 1; step = -1
1815 14. else if (PSP(u) != Q && PSS(u) != Q) then
1816 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1817 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1818 17. start = Early_start;
1819 18. end = min(Early_start + II - 1 , Late_start);
1820 19. step = 1
1821 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1822 21. start = ASAP(u); end = start + II - 1; step = 1
1823 22. endif
1825 23. success = false
1826 24. for (c = start ; c != end ; c += step)
1827 25. if check_hardware_resources_conflicts(u, PS, c) then
1828 26. add_to_partial_schedule_at_time(u, PS, c)
1829 27. success = true
1830 28. break
1831 29. endif
1832 30. endfor
1833 31. if (success == false) then
1834 32. II = II + 1
1835 33. if (II > maxII) then
1836 34. finish - failed to schedule
1837 35. endif
1838 36. goto 2.
1839 37. endif
1840 38. endfor
1841 39. if (calculate_register_pressure(PS) > maxRP) then
1842 40. goto 32.
1843 41. endif
1844 42. compute epilogue & prologue
1845 43. finish - succeeded to schedule
1847 ??? The algorithm restricts the scheduling window to II cycles.
1848 In rare cases, it may be better to allow windows of II+1 cycles.
1849 The window would then start and end on the same row, but with
1850 different "must precede" and "must follow" requirements. */
1852 /* A threshold for the number of repeated unsuccessful attempts to insert
1853 an empty row, before we flush the partial schedule and start over. */
1854 #define MAX_SPLIT_NUM 10
1855 /* Given the partial schedule PS, this function calculates and returns the
1856 cycles in which we can schedule the node with the given index I.
1857 NOTE: Here we do the backtracking in SMS, in some special cases. We have
1858 noticed that there are several cases in which we fail to SMS the loop
1859 because the sched window of a node is empty due to tight data-deps. In
1860 such cases we want to unschedule some of the predecessors/successors
1861 until we get non-empty scheduling window. It returns -1 if the
1862 scheduling window is empty and zero otherwise. */
1864 static int
1865 get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
1866 sbitmap sched_nodes, int ii, int *start_p, int *step_p,
1867 int *end_p)
1869 int start, step, end;
1870 int early_start, late_start;
1871 ddg_edge_ptr e;
1872 auto_sbitmap psp (ps->g->num_nodes);
1873 auto_sbitmap pss (ps->g->num_nodes);
1874 sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1875 sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1876 int psp_not_empty;
1877 int pss_not_empty;
1878 int count_preds;
1879 int count_succs;
1881 /* 1. compute sched window for u (start, end, step). */
1882 bitmap_clear (psp);
1883 bitmap_clear (pss);
1884 psp_not_empty = bitmap_and (psp, u_node_preds, sched_nodes);
1885 pss_not_empty = bitmap_and (pss, u_node_succs, sched_nodes);
1887 /* We first compute a forward range (start <= end), then decide whether
1888 to reverse it. */
1889 early_start = INT_MIN;
1890 late_start = INT_MAX;
1891 start = INT_MIN;
1892 end = INT_MAX;
1893 step = 1;
1895 count_preds = 0;
1896 count_succs = 0;
1898 if (dump_file && (psp_not_empty || pss_not_empty))
1900 fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
1901 "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
1902 fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
1903 "start", "early start", "late start", "end", "time");
1904 fprintf (dump_file, "=========== =========== =========== ==========="
1905 " =====\n");
1907 /* Calculate early_start and limit end. Both bounds are inclusive. */
1908 if (psp_not_empty)
1909 for (e = u_node->in; e != 0; e = e->next_in)
1911 int v = e->src->cuid;
1913 if (bitmap_bit_p (sched_nodes, v))
1915 int p_st = SCHED_TIME (v);
1916 int earliest = p_st + e->latency - (e->distance * ii);
1917 int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
1919 if (dump_file)
1921 fprintf (dump_file, "%11s %11d %11s %11d %5d",
1922 "", earliest, "", latest, p_st);
1923 print_ddg_edge (dump_file, e);
1924 fprintf (dump_file, "\n");
1927 early_start = MAX (early_start, earliest);
1928 end = MIN (end, latest);
1930 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1931 count_preds++;
1935 /* Calculate late_start and limit start. Both bounds are inclusive. */
1936 if (pss_not_empty)
1937 for (e = u_node->out; e != 0; e = e->next_out)
1939 int v = e->dest->cuid;
1941 if (bitmap_bit_p (sched_nodes, v))
1943 int s_st = SCHED_TIME (v);
1944 int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
1945 int latest = s_st - e->latency + (e->distance * ii);
1947 if (dump_file)
1949 fprintf (dump_file, "%11d %11s %11d %11s %5d",
1950 earliest, "", latest, "", s_st);
1951 print_ddg_edge (dump_file, e);
1952 fprintf (dump_file, "\n");
1955 start = MAX (start, earliest);
1956 late_start = MIN (late_start, latest);
1958 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1959 count_succs++;
1963 if (dump_file && (psp_not_empty || pss_not_empty))
1965 fprintf (dump_file, "----------- ----------- ----------- -----------"
1966 " -----\n");
1967 fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
1968 start, early_start, late_start, end, "",
1969 "(max, max, min, min)");
1972 /* Get a target scheduling window no bigger than ii. */
1973 if (early_start == INT_MIN && late_start == INT_MAX)
1974 early_start = NODE_ASAP (u_node);
1975 else if (early_start == INT_MIN)
1976 early_start = late_start - (ii - 1);
1977 late_start = MIN (late_start, early_start + (ii - 1));
1979 /* Apply memory dependence limits. */
1980 start = MAX (start, early_start);
1981 end = MIN (end, late_start);
1983 if (dump_file && (psp_not_empty || pss_not_empty))
1984 fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
1985 "", start, end, "", "");
1987 /* If there are at least as many successors as predecessors, schedule the
1988 node close to its successors. */
1989 if (pss_not_empty && count_succs >= count_preds)
1991 std::swap (start, end);
1992 step = -1;
1995 /* Now that we've finalized the window, make END an exclusive rather
1996 than an inclusive bound. */
1997 end += step;
1999 *start_p = start;
2000 *step_p = step;
2001 *end_p = end;
2003 if ((start >= end && step == 1) || (start <= end && step == -1))
2005 if (dump_file)
2006 fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
2007 start, end, step);
2008 return -1;
2011 return 0;
2014 /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
2015 node currently been scheduled. At the end of the calculation
2016 MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
2017 U_NODE which are (1) already scheduled in the first/last row of
2018 U_NODE's scheduling window, (2) whose dependence inequality with U
2019 becomes an equality when U is scheduled in this same row, and (3)
2020 whose dependence latency is zero.
2022 The first and last rows are calculated using the following parameters:
2023 START/END rows - The cycles that begins/ends the traversal on the window;
2024 searching for an empty cycle to schedule U_NODE.
2025 STEP - The direction in which we traverse the window.
2026 II - The initiation interval. */
2028 static void
2029 calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
2030 int step, int ii, sbitmap sched_nodes,
2031 sbitmap must_precede, sbitmap must_follow)
2033 ddg_edge_ptr e;
2034 int first_cycle_in_window, last_cycle_in_window;
2036 gcc_assert (must_precede && must_follow);
2038 /* Consider the following scheduling window:
2039 {first_cycle_in_window, first_cycle_in_window+1, ...,
2040 last_cycle_in_window}. If step is 1 then the following will be
2041 the order we traverse the window: {start=first_cycle_in_window,
2042 first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
2043 or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
2044 end=first_cycle_in_window-1} if step is -1. */
2045 first_cycle_in_window = (step == 1) ? start : end - step;
2046 last_cycle_in_window = (step == 1) ? end - step : start;
2048 bitmap_clear (must_precede);
2049 bitmap_clear (must_follow);
2051 if (dump_file)
2052 fprintf (dump_file, "\nmust_precede: ");
2054 /* Instead of checking if:
2055 (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
2056 && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
2057 first_cycle_in_window)
2058 && e->latency == 0
2059 we use the fact that latency is non-negative:
2060 SCHED_TIME (e->src) - (e->distance * ii) <=
2061 SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
2062 first_cycle_in_window
2063 and check only if
2064 SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
2065 for (e = u_node->in; e != 0; e = e->next_in)
2066 if (bitmap_bit_p (sched_nodes, e->src->cuid)
2067 && ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
2068 first_cycle_in_window))
2070 if (dump_file)
2071 fprintf (dump_file, "%d ", e->src->cuid);
2073 bitmap_set_bit (must_precede, e->src->cuid);
2076 if (dump_file)
2077 fprintf (dump_file, "\nmust_follow: ");
2079 /* Instead of checking if:
2080 (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
2081 && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
2082 last_cycle_in_window)
2083 && e->latency == 0
2084 we use the fact that latency is non-negative:
2085 SCHED_TIME (e->dest) + (e->distance * ii) >=
2086 SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
2087 last_cycle_in_window
2088 and check only if
2089 SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
2090 for (e = u_node->out; e != 0; e = e->next_out)
2091 if (bitmap_bit_p (sched_nodes, e->dest->cuid)
2092 && ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
2093 last_cycle_in_window))
2095 if (dump_file)
2096 fprintf (dump_file, "%d ", e->dest->cuid);
2098 bitmap_set_bit (must_follow, e->dest->cuid);
2101 if (dump_file)
2102 fprintf (dump_file, "\n");
2105 /* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
2106 parameters to decide if that's possible:
2107 PS - The partial schedule.
2108 U - The serial number of U_NODE.
2109 NUM_SPLITS - The number of row splits made so far.
2110 MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
2111 the first row of the scheduling window)
2112 MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
2113 last row of the scheduling window) */
2115 static bool
2116 try_scheduling_node_in_cycle (partial_schedule_ptr ps,
2117 int u, int cycle, sbitmap sched_nodes,
2118 int *num_splits, sbitmap must_precede,
2119 sbitmap must_follow)
2121 ps_insn_ptr psi;
2122 bool success = false;
2124 verify_partial_schedule (ps, sched_nodes);
2125 psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
2126 if (psi)
2128 SCHED_TIME (u) = cycle;
2129 bitmap_set_bit (sched_nodes, u);
2130 success = true;
2131 *num_splits = 0;
2132 if (dump_file)
2133 fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
2137 return success;
2140 /* This function implements the scheduling algorithm for SMS according to the
2141 above algorithm. */
2142 static partial_schedule_ptr
2143 sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
2145 int ii = mii;
2146 int i, c, success, num_splits = 0;
2147 int flush_and_start_over = true;
2148 int num_nodes = g->num_nodes;
2149 int start, end, step; /* Place together into one struct? */
2150 auto_sbitmap sched_nodes (num_nodes);
2151 auto_sbitmap must_precede (num_nodes);
2152 auto_sbitmap must_follow (num_nodes);
2153 auto_sbitmap tobe_scheduled (num_nodes);
2155 /* Value of param_sms_dfa_history is a limit on the number of cycles that
2156 resource conflicts can span. ??? Should be provided by DFA, and be
2157 dependent on the type of insn scheduled. Set to 0 by default to save
2158 compile time. */
2159 partial_schedule_ptr ps = create_partial_schedule (ii, g,
2160 param_sms_dfa_history);
2162 bitmap_ones (tobe_scheduled);
2163 bitmap_clear (sched_nodes);
2165 while (flush_and_start_over && (ii < maxii))
2168 if (dump_file)
2169 fprintf (dump_file, "Starting with ii=%d\n", ii);
2170 flush_and_start_over = false;
2171 bitmap_clear (sched_nodes);
2173 for (i = 0; i < num_nodes; i++)
2175 int u = nodes_order[i];
2176 ddg_node_ptr u_node = &ps->g->nodes[u];
2177 rtx_insn *insn = u_node->insn;
2179 gcc_checking_assert (NONDEBUG_INSN_P (insn));
2181 if (bitmap_bit_p (sched_nodes, u))
2182 continue;
2184 /* Try to get non-empty scheduling window. */
2185 success = 0;
2186 if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
2187 &step, &end) == 0)
2189 if (dump_file)
2190 fprintf (dump_file, "\nTrying to schedule node %d "
2191 "INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID
2192 (g->nodes[u].insn)), start, end, step);
2194 gcc_assert ((step > 0 && start < end)
2195 || (step < 0 && start > end));
2197 calculate_must_precede_follow (u_node, start, end, step, ii,
2198 sched_nodes, must_precede,
2199 must_follow);
2201 for (c = start; c != end; c += step)
2203 sbitmap tmp_precede, tmp_follow;
2205 set_must_precede_follow (&tmp_follow, must_follow,
2206 &tmp_precede, must_precede,
2207 c, start, end, step);
2208 success =
2209 try_scheduling_node_in_cycle (ps, u, c,
2210 sched_nodes,
2211 &num_splits, tmp_precede,
2212 tmp_follow);
2213 if (success)
2214 break;
2217 verify_partial_schedule (ps, sched_nodes);
2219 if (!success)
2221 int split_row;
2223 if (ii++ == maxii)
2224 break;
2226 if (num_splits >= MAX_SPLIT_NUM)
2228 num_splits = 0;
2229 flush_and_start_over = true;
2230 verify_partial_schedule (ps, sched_nodes);
2231 reset_partial_schedule (ps, ii);
2232 verify_partial_schedule (ps, sched_nodes);
2233 break;
2236 num_splits++;
2237 /* The scheduling window is exclusive of 'end'
2238 whereas compute_split_window() expects an inclusive,
2239 ordered range. */
2240 if (step == 1)
2241 split_row = compute_split_row (sched_nodes, start, end - 1,
2242 ps->ii, u_node);
2243 else
2244 split_row = compute_split_row (sched_nodes, end + 1, start,
2245 ps->ii, u_node);
2247 ps_insert_empty_row (ps, split_row, sched_nodes);
2248 i--; /* Go back and retry node i. */
2250 if (dump_file)
2251 fprintf (dump_file, "num_splits=%d\n", num_splits);
2254 /* ??? If (success), check register pressure estimates. */
2255 } /* Continue with next node. */
2256 } /* While flush_and_start_over. */
2257 if (ii >= maxii)
2259 free_partial_schedule (ps);
2260 ps = NULL;
2262 else
2263 gcc_assert (bitmap_equal_p (tobe_scheduled, sched_nodes));
2265 return ps;
2268 /* This function inserts a new empty row into PS at the position
2269 according to SPLITROW, keeping all already scheduled instructions
2270 intact and updating their SCHED_TIME and cycle accordingly. */
2271 static void
2272 ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
2273 sbitmap sched_nodes)
2275 ps_insn_ptr crr_insn;
2276 ps_insn_ptr *rows_new;
2277 int ii = ps->ii;
2278 int new_ii = ii + 1;
2279 int row;
2280 int *rows_length_new;
2282 verify_partial_schedule (ps, sched_nodes);
2284 /* We normalize sched_time and rotate ps to have only non-negative sched
2285 times, for simplicity of updating cycles after inserting new row. */
2286 split_row -= ps->min_cycle;
2287 split_row = SMODULO (split_row, ii);
2288 if (dump_file)
2289 fprintf (dump_file, "split_row=%d\n", split_row);
2291 reset_sched_times (ps, PS_MIN_CYCLE (ps));
2292 rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
2294 rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
2295 rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
2296 for (row = 0; row < split_row; row++)
2298 rows_new[row] = ps->rows[row];
2299 rows_length_new[row] = ps->rows_length[row];
2300 ps->rows[row] = NULL;
2301 for (crr_insn = rows_new[row];
2302 crr_insn; crr_insn = crr_insn->next_in_row)
2304 int u = crr_insn->id;
2305 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
2307 SCHED_TIME (u) = new_time;
2308 crr_insn->cycle = new_time;
2309 SCHED_ROW (u) = new_time % new_ii;
2310 SCHED_STAGE (u) = new_time / new_ii;
2315 rows_new[split_row] = NULL;
2317 for (row = split_row; row < ii; row++)
2319 rows_new[row + 1] = ps->rows[row];
2320 rows_length_new[row + 1] = ps->rows_length[row];
2321 ps->rows[row] = NULL;
2322 for (crr_insn = rows_new[row + 1];
2323 crr_insn; crr_insn = crr_insn->next_in_row)
2325 int u = crr_insn->id;
2326 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
2328 SCHED_TIME (u) = new_time;
2329 crr_insn->cycle = new_time;
2330 SCHED_ROW (u) = new_time % new_ii;
2331 SCHED_STAGE (u) = new_time / new_ii;
2335 /* Updating ps. */
2336 ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
2337 + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
2338 ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
2339 + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
2340 free (ps->rows);
2341 ps->rows = rows_new;
2342 free (ps->rows_length);
2343 ps->rows_length = rows_length_new;
2344 ps->ii = new_ii;
2345 gcc_assert (ps->min_cycle >= 0);
2347 verify_partial_schedule (ps, sched_nodes);
2349 if (dump_file)
2350 fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
2351 ps->max_cycle);
2354 /* Given U_NODE which is the node that failed to be scheduled; LOW and
2355 UP which are the boundaries of it's scheduling window; compute using
2356 SCHED_NODES and II a row in the partial schedule that can be split
2357 which will separate a critical predecessor from a critical successor
2358 thereby expanding the window, and return it. */
2359 static int
2360 compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
2361 ddg_node_ptr u_node)
2363 ddg_edge_ptr e;
2364 int lower = INT_MIN, upper = INT_MAX;
2365 int crit_pred = -1;
2366 int crit_succ = -1;
2367 int crit_cycle;
2369 for (e = u_node->in; e != 0; e = e->next_in)
2371 int v = e->src->cuid;
2373 if (bitmap_bit_p (sched_nodes, v)
2374 && (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
2375 if (SCHED_TIME (v) > lower)
2377 crit_pred = v;
2378 lower = SCHED_TIME (v);
2382 if (crit_pred >= 0)
2384 crit_cycle = SCHED_TIME (crit_pred) + 1;
2385 return SMODULO (crit_cycle, ii);
2388 for (e = u_node->out; e != 0; e = e->next_out)
2390 int v = e->dest->cuid;
2392 if (bitmap_bit_p (sched_nodes, v)
2393 && (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
2394 if (SCHED_TIME (v) < upper)
2396 crit_succ = v;
2397 upper = SCHED_TIME (v);
2401 if (crit_succ >= 0)
2403 crit_cycle = SCHED_TIME (crit_succ);
2404 return SMODULO (crit_cycle, ii);
2407 if (dump_file)
2408 fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
2410 return SMODULO ((low + up + 1) / 2, ii);
2413 static void
2414 verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
2416 int row;
2417 ps_insn_ptr crr_insn;
2419 for (row = 0; row < ps->ii; row++)
2421 int length = 0;
2423 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
2425 int u = crr_insn->id;
2427 length++;
2428 gcc_assert (bitmap_bit_p (sched_nodes, u));
2429 /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2430 popcount (sched_nodes) == number of insns in ps. */
2431 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
2432 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
2435 gcc_assert (ps->rows_length[row] == length);
2440 /* This page implements the algorithm for ordering the nodes of a DDG
2441 for modulo scheduling, activated through the
2442 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
2444 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2445 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
2446 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
2447 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2448 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
2449 #define DEPTH(x) (ASAP ((x)))
2451 typedef struct node_order_params * nopa;
2453 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
2454 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
2455 static nopa calculate_order_params (ddg_ptr, int, int *);
2456 static int find_max_asap (ddg_ptr, sbitmap);
2457 static int find_max_hv_min_mob (ddg_ptr, sbitmap);
2458 static int find_max_dv_min_mob (ddg_ptr, sbitmap);
2460 enum sms_direction {BOTTOMUP, TOPDOWN};
2462 struct node_order_params
2464 int asap;
2465 int alap;
2466 int height;
2469 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
2470 static void
2471 check_nodes_order (int *node_order, int num_nodes)
2473 int i;
2474 auto_sbitmap tmp (num_nodes);
2476 bitmap_clear (tmp);
2478 if (dump_file)
2479 fprintf (dump_file, "SMS final nodes order: \n");
2481 for (i = 0; i < num_nodes; i++)
2483 int u = node_order[i];
2485 if (dump_file)
2486 fprintf (dump_file, "%d ", u);
2487 gcc_assert (u < num_nodes && u >= 0 && !bitmap_bit_p (tmp, u));
2489 bitmap_set_bit (tmp, u);
2492 if (dump_file)
2493 fprintf (dump_file, "\n");
2496 /* Order the nodes of G for scheduling and pass the result in
2497 NODE_ORDER. Also set aux.count of each node to ASAP.
2498 Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
2499 static int
2500 sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
2502 int i;
2503 int rec_mii = 0;
2504 ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
2506 nopa nops = calculate_order_params (g, mii, pmax_asap);
2508 if (dump_file)
2509 print_sccs (dump_file, sccs, g);
2511 order_nodes_of_sccs (sccs, node_order);
2513 if (sccs->num_sccs > 0)
2514 /* First SCC has the largest recurrence_length. */
2515 rec_mii = sccs->sccs[0]->recurrence_length;
2517 /* Save ASAP before destroying node_order_params. */
2518 for (i = 0; i < g->num_nodes; i++)
2520 ddg_node_ptr v = &g->nodes[i];
2521 v->aux.count = ASAP (v);
2524 free (nops);
2525 free_ddg_all_sccs (sccs);
2526 check_nodes_order (node_order, g->num_nodes);
2528 return rec_mii;
2531 static void
2532 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
2534 int i, pos = 0;
2535 ddg_ptr g = all_sccs->ddg;
2536 int num_nodes = g->num_nodes;
2537 auto_sbitmap prev_sccs (num_nodes);
2538 auto_sbitmap on_path (num_nodes);
2539 auto_sbitmap tmp (num_nodes);
2540 auto_sbitmap ones (num_nodes);
2542 bitmap_clear (prev_sccs);
2543 bitmap_ones (ones);
2545 /* Perform the node ordering starting from the SCC with the highest recMII.
2546 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
2547 for (i = 0; i < all_sccs->num_sccs; i++)
2549 ddg_scc_ptr scc = all_sccs->sccs[i];
2551 /* Add nodes on paths from previous SCCs to the current SCC. */
2552 find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
2553 bitmap_ior (tmp, scc->nodes, on_path);
2555 /* Add nodes on paths from the current SCC to previous SCCs. */
2556 find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
2557 bitmap_ior (tmp, tmp, on_path);
2559 /* Remove nodes of previous SCCs from current extended SCC. */
2560 bitmap_and_compl (tmp, tmp, prev_sccs);
2562 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2563 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
2566 /* Handle the remaining nodes that do not belong to any scc. Each call
2567 to order_nodes_in_scc handles a single connected component. */
2568 while (pos < g->num_nodes)
2570 bitmap_and_compl (tmp, ones, prev_sccs);
2571 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2575 /* MII is needed if we consider backarcs (that do not close recursive cycles). */
2576 static struct node_order_params *
2577 calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
2579 int u;
2580 int max_asap;
2581 int num_nodes = g->num_nodes;
2582 ddg_edge_ptr e;
2583 /* Allocate a place to hold ordering params for each node in the DDG. */
2584 nopa node_order_params_arr;
2586 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
2587 node_order_params_arr = (nopa) xcalloc (num_nodes,
2588 sizeof (struct node_order_params));
2590 /* Set the aux pointer of each node to point to its order_params structure. */
2591 for (u = 0; u < num_nodes; u++)
2592 g->nodes[u].aux.info = &node_order_params_arr[u];
2594 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2595 calculate ASAP, ALAP, mobility, distance, and height for each node
2596 in the dependence (direct acyclic) graph. */
2598 /* We assume that the nodes in the array are in topological order. */
2600 max_asap = 0;
2601 for (u = 0; u < num_nodes; u++)
2603 ddg_node_ptr u_node = &g->nodes[u];
2605 ASAP (u_node) = 0;
2606 for (e = u_node->in; e; e = e->next_in)
2607 if (e->distance == 0)
2608 ASAP (u_node) = MAX (ASAP (u_node),
2609 ASAP (e->src) + e->latency);
2610 max_asap = MAX (max_asap, ASAP (u_node));
2613 for (u = num_nodes - 1; u > -1; u--)
2615 ddg_node_ptr u_node = &g->nodes[u];
2617 ALAP (u_node) = max_asap;
2618 HEIGHT (u_node) = 0;
2619 for (e = u_node->out; e; e = e->next_out)
2620 if (e->distance == 0)
2622 ALAP (u_node) = MIN (ALAP (u_node),
2623 ALAP (e->dest) - e->latency);
2624 HEIGHT (u_node) = MAX (HEIGHT (u_node),
2625 HEIGHT (e->dest) + e->latency);
2628 if (dump_file)
2630 fprintf (dump_file, "\nOrder params\n");
2631 for (u = 0; u < num_nodes; u++)
2633 ddg_node_ptr u_node = &g->nodes[u];
2635 fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
2636 ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
2640 *pmax_asap = max_asap;
2641 return node_order_params_arr;
2644 static int
2645 find_max_asap (ddg_ptr g, sbitmap nodes)
2647 unsigned int u = 0;
2648 int max_asap = -1;
2649 int result = -1;
2650 sbitmap_iterator sbi;
2652 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2654 ddg_node_ptr u_node = &g->nodes[u];
2656 if (max_asap < ASAP (u_node))
2658 max_asap = ASAP (u_node);
2659 result = u;
2662 return result;
2665 static int
2666 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
2668 unsigned int u = 0;
2669 int max_hv = -1;
2670 int min_mob = INT_MAX;
2671 int result = -1;
2672 sbitmap_iterator sbi;
2674 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2676 ddg_node_ptr u_node = &g->nodes[u];
2678 if (max_hv < HEIGHT (u_node))
2680 max_hv = HEIGHT (u_node);
2681 min_mob = MOB (u_node);
2682 result = u;
2684 else if ((max_hv == HEIGHT (u_node))
2685 && (min_mob > MOB (u_node)))
2687 min_mob = MOB (u_node);
2688 result = u;
2691 return result;
2694 static int
2695 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
2697 unsigned int u = 0;
2698 int max_dv = -1;
2699 int min_mob = INT_MAX;
2700 int result = -1;
2701 sbitmap_iterator sbi;
2703 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2705 ddg_node_ptr u_node = &g->nodes[u];
2707 if (max_dv < DEPTH (u_node))
2709 max_dv = DEPTH (u_node);
2710 min_mob = MOB (u_node);
2711 result = u;
2713 else if ((max_dv == DEPTH (u_node))
2714 && (min_mob > MOB (u_node)))
2716 min_mob = MOB (u_node);
2717 result = u;
2720 return result;
2723 /* Places the nodes of SCC into the NODE_ORDER array starting
2724 at position POS, according to the SMS ordering algorithm.
2725 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2726 the NODE_ORDER array, starting from position zero. */
2727 static int
2728 order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
2729 int * node_order, int pos)
2731 enum sms_direction dir;
2732 int num_nodes = g->num_nodes;
2733 auto_sbitmap workset (num_nodes);
2734 auto_sbitmap tmp (num_nodes);
2735 sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
2736 auto_sbitmap predecessors (num_nodes);
2737 auto_sbitmap successors (num_nodes);
2739 bitmap_clear (predecessors);
2740 find_predecessors (predecessors, g, nodes_ordered);
2742 bitmap_clear (successors);
2743 find_successors (successors, g, nodes_ordered);
2745 bitmap_clear (tmp);
2746 if (bitmap_and (tmp, predecessors, scc))
2748 bitmap_copy (workset, tmp);
2749 dir = BOTTOMUP;
2751 else if (bitmap_and (tmp, successors, scc))
2753 bitmap_copy (workset, tmp);
2754 dir = TOPDOWN;
2756 else
2758 int u;
2760 bitmap_clear (workset);
2761 if ((u = find_max_asap (g, scc)) >= 0)
2762 bitmap_set_bit (workset, u);
2763 dir = BOTTOMUP;
2766 bitmap_clear (zero_bitmap);
2767 while (!bitmap_equal_p (workset, zero_bitmap))
2769 int v;
2770 ddg_node_ptr v_node;
2771 sbitmap v_node_preds;
2772 sbitmap v_node_succs;
2774 if (dir == TOPDOWN)
2776 while (!bitmap_equal_p (workset, zero_bitmap))
2778 v = find_max_hv_min_mob (g, workset);
2779 v_node = &g->nodes[v];
2780 node_order[pos++] = v;
2781 v_node_succs = NODE_SUCCESSORS (v_node);
2782 bitmap_and (tmp, v_node_succs, scc);
2784 /* Don't consider the already ordered successors again. */
2785 bitmap_and_compl (tmp, tmp, nodes_ordered);
2786 bitmap_ior (workset, workset, tmp);
2787 bitmap_clear_bit (workset, v);
2788 bitmap_set_bit (nodes_ordered, v);
2790 dir = BOTTOMUP;
2791 bitmap_clear (predecessors);
2792 find_predecessors (predecessors, g, nodes_ordered);
2793 bitmap_and (workset, predecessors, scc);
2795 else
2797 while (!bitmap_equal_p (workset, zero_bitmap))
2799 v = find_max_dv_min_mob (g, workset);
2800 v_node = &g->nodes[v];
2801 node_order[pos++] = v;
2802 v_node_preds = NODE_PREDECESSORS (v_node);
2803 bitmap_and (tmp, v_node_preds, scc);
2805 /* Don't consider the already ordered predecessors again. */
2806 bitmap_and_compl (tmp, tmp, nodes_ordered);
2807 bitmap_ior (workset, workset, tmp);
2808 bitmap_clear_bit (workset, v);
2809 bitmap_set_bit (nodes_ordered, v);
2811 dir = TOPDOWN;
2812 bitmap_clear (successors);
2813 find_successors (successors, g, nodes_ordered);
2814 bitmap_and (workset, successors, scc);
2817 sbitmap_free (zero_bitmap);
2818 return pos;
2822 /* This page contains functions for manipulating partial-schedules during
2823 modulo scheduling. */
2825 /* Create a partial schedule and allocate a memory to hold II rows. */
2827 static partial_schedule_ptr
2828 create_partial_schedule (int ii, ddg_ptr g, int history)
2830 partial_schedule_ptr ps = XNEW (struct partial_schedule);
2831 ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
2832 ps->rows_length = (int *) xcalloc (ii, sizeof (int));
2833 ps->reg_moves.create (0);
2834 ps->ii = ii;
2835 ps->history = history;
2836 ps->min_cycle = INT_MAX;
2837 ps->max_cycle = INT_MIN;
2838 ps->g = g;
2840 return ps;
2843 /* Free the PS_INSNs in rows array of the given partial schedule.
2844 ??? Consider caching the PS_INSN's. */
2845 static void
2846 free_ps_insns (partial_schedule_ptr ps)
2848 int i;
2850 for (i = 0; i < ps->ii; i++)
2852 while (ps->rows[i])
2854 ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
2856 free (ps->rows[i]);
2857 ps->rows[i] = ps_insn;
2859 ps->rows[i] = NULL;
2863 /* Free all the memory allocated to the partial schedule. */
2865 static void
2866 free_partial_schedule (partial_schedule_ptr ps)
2868 ps_reg_move_info *move;
2869 unsigned int i;
2871 if (!ps)
2872 return;
2874 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
2875 sbitmap_free (move->uses);
2876 ps->reg_moves.release ();
2878 free_ps_insns (ps);
2879 free (ps->rows);
2880 free (ps->rows_length);
2881 free (ps);
2884 /* Clear the rows array with its PS_INSNs, and create a new one with
2885 NEW_II rows. */
2887 static void
2888 reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
2890 if (!ps)
2891 return;
2892 free_ps_insns (ps);
2893 if (new_ii == ps->ii)
2894 return;
2895 ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
2896 * sizeof (ps_insn_ptr));
2897 memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
2898 ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
2899 memset (ps->rows_length, 0, new_ii * sizeof (int));
2900 ps->ii = new_ii;
2901 ps->min_cycle = INT_MAX;
2902 ps->max_cycle = INT_MIN;
2905 /* Prints the partial schedule as an ii rows array, for each rows
2906 print the ids of the insns in it. */
2907 void
2908 print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
2910 int i;
2912 for (i = 0; i < ps->ii; i++)
2914 ps_insn_ptr ps_i = ps->rows[i];
2916 fprintf (dump, "\n[ROW %d ]: ", i);
2917 while (ps_i)
2919 rtx_insn *insn = ps_rtl_insn (ps, ps_i->id);
2921 if (JUMP_P (insn))
2922 fprintf (dump, "%d (branch), ", INSN_UID (insn));
2923 else
2924 fprintf (dump, "%d, ", INSN_UID (insn));
2926 ps_i = ps_i->next_in_row;
2931 /* Creates an object of PS_INSN and initializes it to the given parameters. */
2932 static ps_insn_ptr
2933 create_ps_insn (int id, int cycle)
2935 ps_insn_ptr ps_i = XNEW (struct ps_insn);
2937 ps_i->id = id;
2938 ps_i->next_in_row = NULL;
2939 ps_i->prev_in_row = NULL;
2940 ps_i->cycle = cycle;
2942 return ps_i;
2946 /* Removes the given PS_INSN from the partial schedule. */
2947 static void
2948 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
2950 int row;
2952 gcc_assert (ps && ps_i);
2954 row = SMODULO (ps_i->cycle, ps->ii);
2955 if (! ps_i->prev_in_row)
2957 gcc_assert (ps_i == ps->rows[row]);
2958 ps->rows[row] = ps_i->next_in_row;
2959 if (ps->rows[row])
2960 ps->rows[row]->prev_in_row = NULL;
2962 else
2964 ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
2965 if (ps_i->next_in_row)
2966 ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
2969 ps->rows_length[row] -= 1;
2970 free (ps_i);
2971 return;
2974 /* Unlike what literature describes for modulo scheduling (which focuses
2975 on VLIW machines) the order of the instructions inside a cycle is
2976 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
2977 where the current instruction should go relative to the already
2978 scheduled instructions in the given cycle. Go over these
2979 instructions and find the first possible column to put it in. */
2980 static bool
2981 ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2982 sbitmap must_precede, sbitmap must_follow)
2984 ps_insn_ptr next_ps_i;
2985 ps_insn_ptr first_must_follow = NULL;
2986 ps_insn_ptr last_must_precede = NULL;
2987 ps_insn_ptr last_in_row = NULL;
2988 int row;
2990 if (! ps_i)
2991 return false;
2993 row = SMODULO (ps_i->cycle, ps->ii);
2995 /* Find the first must follow and the last must precede
2996 and insert the node immediately after the must precede
2997 but make sure that it there is no must follow after it. */
2998 for (next_ps_i = ps->rows[row];
2999 next_ps_i;
3000 next_ps_i = next_ps_i->next_in_row)
3002 if (must_follow
3003 && bitmap_bit_p (must_follow, next_ps_i->id)
3004 && ! first_must_follow)
3005 first_must_follow = next_ps_i;
3006 if (must_precede && bitmap_bit_p (must_precede, next_ps_i->id))
3008 /* If we have already met a node that must follow, then
3009 there is no possible column. */
3010 if (first_must_follow)
3011 return false;
3012 else
3013 last_must_precede = next_ps_i;
3015 /* The closing branch must be the last in the row. */
3016 if (JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
3017 return false;
3019 last_in_row = next_ps_i;
3022 /* The closing branch is scheduled as well. Make sure there is no
3023 dependent instruction after it as the branch should be the last
3024 instruction in the row. */
3025 if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
3027 if (first_must_follow)
3028 return false;
3029 if (last_in_row)
3031 /* Make the branch the last in the row. New instructions
3032 will be inserted at the beginning of the row or after the
3033 last must_precede instruction thus the branch is guaranteed
3034 to remain the last instruction in the row. */
3035 last_in_row->next_in_row = ps_i;
3036 ps_i->prev_in_row = last_in_row;
3037 ps_i->next_in_row = NULL;
3039 else
3040 ps->rows[row] = ps_i;
3041 return true;
3044 /* Now insert the node after INSERT_AFTER_PSI. */
3046 if (! last_must_precede)
3048 ps_i->next_in_row = ps->rows[row];
3049 ps_i->prev_in_row = NULL;
3050 if (ps_i->next_in_row)
3051 ps_i->next_in_row->prev_in_row = ps_i;
3052 ps->rows[row] = ps_i;
3054 else
3056 ps_i->next_in_row = last_must_precede->next_in_row;
3057 last_must_precede->next_in_row = ps_i;
3058 ps_i->prev_in_row = last_must_precede;
3059 if (ps_i->next_in_row)
3060 ps_i->next_in_row->prev_in_row = ps_i;
3063 return true;
3066 /* Advances the PS_INSN one column in its current row; returns false
3067 in failure and true in success. Bit N is set in MUST_FOLLOW if
3068 the node with cuid N must be come after the node pointed to by
3069 PS_I when scheduled in the same cycle. */
3070 static bool
3071 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
3072 sbitmap must_follow)
3074 ps_insn_ptr prev, next;
3075 int row;
3077 if (!ps || !ps_i)
3078 return false;
3080 row = SMODULO (ps_i->cycle, ps->ii);
3082 if (! ps_i->next_in_row)
3083 return false;
3085 /* Check if next_in_row is dependent on ps_i, both having same sched
3086 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
3087 if (must_follow && bitmap_bit_p (must_follow, ps_i->next_in_row->id))
3088 return false;
3090 /* Advance PS_I over its next_in_row in the doubly linked list. */
3091 prev = ps_i->prev_in_row;
3092 next = ps_i->next_in_row;
3094 if (ps_i == ps->rows[row])
3095 ps->rows[row] = next;
3097 ps_i->next_in_row = next->next_in_row;
3099 if (next->next_in_row)
3100 next->next_in_row->prev_in_row = ps_i;
3102 next->next_in_row = ps_i;
3103 ps_i->prev_in_row = next;
3105 next->prev_in_row = prev;
3106 if (prev)
3107 prev->next_in_row = next;
3109 return true;
3112 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
3113 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
3114 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
3115 before/after (respectively) the node pointed to by PS_I when scheduled
3116 in the same cycle. */
3117 static ps_insn_ptr
3118 add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
3119 sbitmap must_precede, sbitmap must_follow)
3121 ps_insn_ptr ps_i;
3122 int row = SMODULO (cycle, ps->ii);
3124 if (ps->rows_length[row] >= issue_rate)
3125 return NULL;
3127 ps_i = create_ps_insn (id, cycle);
3129 /* Finds and inserts PS_I according to MUST_FOLLOW and
3130 MUST_PRECEDE. */
3131 if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
3133 free (ps_i);
3134 return NULL;
3137 ps->rows_length[row] += 1;
3138 return ps_i;
3141 /* Advance time one cycle. Assumes DFA is being used. */
3142 static void
3143 advance_one_cycle (void)
3145 if (targetm.sched.dfa_pre_cycle_insn)
3146 state_transition (curr_state,
3147 targetm.sched.dfa_pre_cycle_insn ());
3149 state_transition (curr_state, NULL);
3151 if (targetm.sched.dfa_post_cycle_insn)
3152 state_transition (curr_state,
3153 targetm.sched.dfa_post_cycle_insn ());
3158 /* Checks if PS has resource conflicts according to DFA, starting from
3159 FROM cycle to TO cycle; returns true if there are conflicts and false
3160 if there are no conflicts. Assumes DFA is being used. */
3161 static bool
3162 ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
3164 int cycle;
3166 state_reset (curr_state);
3168 for (cycle = from; cycle <= to; cycle++)
3170 ps_insn_ptr crr_insn;
3171 /* Holds the remaining issue slots in the current row. */
3172 int can_issue_more = issue_rate;
3174 /* Walk through the DFA for the current row. */
3175 for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
3176 crr_insn;
3177 crr_insn = crr_insn->next_in_row)
3179 rtx_insn *insn = ps_rtl_insn (ps, crr_insn->id);
3181 /* Check if there is room for the current insn. */
3182 if (!can_issue_more || state_dead_lock_p (curr_state))
3183 return true;
3185 /* Update the DFA state and return with failure if the DFA found
3186 resource conflicts. */
3187 if (state_transition (curr_state, insn) >= 0)
3188 return true;
3190 if (targetm.sched.variable_issue)
3191 can_issue_more =
3192 targetm.sched.variable_issue (sched_dump, sched_verbose,
3193 insn, can_issue_more);
3194 /* A naked CLOBBER or USE generates no instruction, so don't
3195 let them consume issue slots. */
3196 else if (GET_CODE (PATTERN (insn)) != USE
3197 && GET_CODE (PATTERN (insn)) != CLOBBER)
3198 can_issue_more--;
3201 /* Advance the DFA to the next cycle. */
3202 advance_one_cycle ();
3204 return false;
3207 /* Checks if the given node causes resource conflicts when added to PS at
3208 cycle C. If not the node is added to PS and returned; otherwise zero
3209 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
3210 cuid N must be come before/after (respectively) the node pointed to by
3211 PS_I when scheduled in the same cycle. */
3212 ps_insn_ptr
3213 ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
3214 int c, sbitmap must_precede,
3215 sbitmap must_follow)
3217 int i, first, amount;
3218 bool has_conflicts = false;
3219 ps_insn_ptr ps_i;
3221 /* First add the node to the PS, if this succeeds check for
3222 conflicts, trying different issue slots in the same row. */
3223 if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
3224 return NULL; /* Failed to insert the node at the given cycle. */
3226 while (1)
3228 has_conflicts = ps_has_conflicts (ps, c, c);
3229 if (ps->history > 0 && !has_conflicts)
3231 /* Check all 2h+1 intervals, starting from c-2h..c up to c..2h,
3232 but not more than ii intervals. */
3233 first = c - ps->history;
3234 amount = 2 * ps->history + 1;
3235 if (amount > ps->ii)
3236 amount = ps->ii;
3237 for (i = first; i < first + amount; i++)
3239 has_conflicts = ps_has_conflicts (ps,
3240 i - ps->history,
3241 i + ps->history);
3242 if (has_conflicts)
3243 break;
3246 if (!has_conflicts)
3247 break;
3248 /* Try different issue slots to find one that the given node can be
3249 scheduled in without conflicts. */
3250 if (! ps_insn_advance_column (ps, ps_i, must_follow))
3251 break;
3254 if (has_conflicts)
3256 remove_node_from_ps (ps, ps_i);
3257 return NULL;
3260 ps->min_cycle = MIN (ps->min_cycle, c);
3261 ps->max_cycle = MAX (ps->max_cycle, c);
3262 return ps_i;
3265 /* Calculate the stage count of the partial schedule PS. The calculation
3266 takes into account the rotation amount passed in ROTATION_AMOUNT. */
3268 calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
3270 int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
3271 int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
3272 int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
3274 /* The calculation of stage count is done adding the number of stages
3275 before cycle zero and after cycle zero. */
3276 stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
3278 return stage_count;
3281 /* Rotate the rows of PS such that insns scheduled at time
3282 START_CYCLE will appear in row 0. Updates max/min_cycles. */
3283 void
3284 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
3286 int i, row, backward_rotates;
3287 int last_row = ps->ii - 1;
3289 if (start_cycle == 0)
3290 return;
3292 backward_rotates = SMODULO (start_cycle, ps->ii);
3294 /* Revisit later and optimize this into a single loop. */
3295 for (i = 0; i < backward_rotates; i++)
3297 ps_insn_ptr first_row = ps->rows[0];
3298 int first_row_length = ps->rows_length[0];
3300 for (row = 0; row < last_row; row++)
3302 ps->rows[row] = ps->rows[row + 1];
3303 ps->rows_length[row] = ps->rows_length[row + 1];
3306 ps->rows[last_row] = first_row;
3307 ps->rows_length[last_row] = first_row_length;
3310 ps->max_cycle -= start_cycle;
3311 ps->min_cycle -= start_cycle;
3314 #endif /* INSN_SCHEDULING */
3316 /* Run instruction scheduler. */
3317 /* Perform SMS module scheduling. */
3319 namespace {
3321 const pass_data pass_data_sms =
3323 RTL_PASS, /* type */
3324 "sms", /* name */
3325 OPTGROUP_NONE, /* optinfo_flags */
3326 TV_SMS, /* tv_id */
3327 0, /* properties_required */
3328 0, /* properties_provided */
3329 0, /* properties_destroyed */
3330 0, /* todo_flags_start */
3331 TODO_df_finish, /* todo_flags_finish */
3334 class pass_sms : public rtl_opt_pass
3336 public:
3337 pass_sms (gcc::context *ctxt)
3338 : rtl_opt_pass (pass_data_sms, ctxt)
3341 /* opt_pass methods: */
3342 bool gate (function *) final override
3344 return (optimize > 0 && flag_modulo_sched);
3347 unsigned int execute (function *) final override;
3349 }; // class pass_sms
3351 unsigned int
3352 pass_sms::execute (function *fun ATTRIBUTE_UNUSED)
3354 #ifdef INSN_SCHEDULING
3355 basic_block bb;
3357 /* Collect loop information to be used in SMS. */
3358 cfg_layout_initialize (0);
3359 sms_schedule ();
3361 /* Update the life information, because we add pseudos. */
3362 max_regno = max_reg_num ();
3364 /* Finalize layout changes. */
3365 FOR_EACH_BB_FN (bb, fun)
3366 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3367 bb->aux = bb->next_bb;
3368 free_dominance_info (CDI_DOMINATORS);
3369 cfg_layout_finalize ();
3370 #endif /* INSN_SCHEDULING */
3371 return 0;
3374 } // anon namespace
3376 rtl_opt_pass *
3377 make_pass_sms (gcc::context *ctxt)
3379 return new pass_sms (ctxt);