c++: Implement modules ABI for vtable emissions
[official-gcc.git] / gcc / lra-constraints.cc
blob10e3d4e4097736a71728a98724a0d42458d1aec6
1 /* Code for RTL transformations to satisfy insn constraints.
2 Copyright (C) 2010-2024 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* This file contains code for 3 passes: constraint pass,
23 inheritance/split pass, and pass for undoing failed inheritance and
24 split.
26 The major goal of constraint pass is to transform RTL to satisfy
27 insn and address constraints by:
28 o choosing insn alternatives;
29 o generating *reload insns* (or reloads in brief) and *reload
30 pseudos* which will get necessary hard registers later;
31 o substituting pseudos with equivalent values and removing the
32 instructions that initialized those pseudos.
34 The constraint pass has biggest and most complicated code in LRA.
35 There are a lot of important details like:
36 o reuse of input reload pseudos to simplify reload pseudo
37 allocations;
38 o some heuristics to choose insn alternative to improve the
39 inheritance;
40 o early clobbers etc.
42 The pass is mimicking former reload pass in alternative choosing
43 because the reload pass is oriented to current machine description
44 model. It might be changed if the machine description model is
45 changed.
47 There is special code for preventing all LRA and this pass cycling
48 in case of bugs.
50 On the first iteration of the pass we process every instruction and
51 choose an alternative for each one. On subsequent iterations we try
52 to avoid reprocessing instructions if we can be sure that the old
53 choice is still valid.
55 The inheritance/spilt pass is to transform code to achieve
56 ineheritance and live range splitting. It is done on backward
57 traversal of EBBs.
59 The inheritance optimization goal is to reuse values in hard
60 registers. There is analogous optimization in old reload pass. The
61 inheritance is achieved by following transformation:
63 reload_p1 <- p reload_p1 <- p
64 ... new_p <- reload_p1
65 ... => ...
66 reload_p2 <- p reload_p2 <- new_p
68 where p is spilled and not changed between the insns. Reload_p1 is
69 also called *original pseudo* and new_p is called *inheritance
70 pseudo*.
72 The subsequent assignment pass will try to assign the same (or
73 another if it is not possible) hard register to new_p as to
74 reload_p1 or reload_p2.
76 If the assignment pass fails to assign a hard register to new_p,
77 this file will undo the inheritance and restore the original code.
78 This is because implementing the above sequence with a spilled
79 new_p would make the code much worse. The inheritance is done in
80 EBB scope. The above is just a simplified example to get an idea
81 of the inheritance as the inheritance is also done for non-reload
82 insns.
84 Splitting (transformation) is also done in EBB scope on the same
85 pass as the inheritance:
87 r <- ... or ... <- r r <- ... or ... <- r
88 ... s <- r (new insn -- save)
89 ... =>
90 ... r <- s (new insn -- restore)
91 ... <- r ... <- r
93 The *split pseudo* s is assigned to the hard register of the
94 original pseudo or hard register r.
96 Splitting is done:
97 o In EBBs with high register pressure for global pseudos (living
98 in at least 2 BBs) and assigned to hard registers when there
99 are more one reloads needing the hard registers;
100 o for pseudos needing save/restore code around calls.
102 If the split pseudo still has the same hard register as the
103 original pseudo after the subsequent assignment pass or the
104 original pseudo was split, the opposite transformation is done on
105 the same pass for undoing inheritance. */
107 #undef REG_OK_STRICT
109 #include "config.h"
110 #include "system.h"
111 #include "coretypes.h"
112 #include "backend.h"
113 #include "hooks.h"
114 #include "target.h"
115 #include "rtl.h"
116 #include "tree.h"
117 #include "predict.h"
118 #include "df.h"
119 #include "memmodel.h"
120 #include "tm_p.h"
121 #include "expmed.h"
122 #include "optabs.h"
123 #include "regs.h"
124 #include "ira.h"
125 #include "recog.h"
126 #include "output.h"
127 #include "addresses.h"
128 #include "expr.h"
129 #include "cfgrtl.h"
130 #include "rtl-error.h"
131 #include "lra.h"
132 #include "lra-int.h"
133 #include "print-rtl.h"
134 #include "function-abi.h"
135 #include "rtl-iter.h"
137 /* Value of LRA_CURR_RELOAD_NUM at the beginning of BB of the current
138 insn. Remember that LRA_CURR_RELOAD_NUM is the number of emitted
139 reload insns. */
140 static int bb_reload_num;
142 /* The current insn being processed and corresponding its single set
143 (NULL otherwise), its data (basic block, the insn data, the insn
144 static data, and the mode of each operand). */
145 static rtx_insn *curr_insn;
146 static rtx curr_insn_set;
147 static basic_block curr_bb;
148 static lra_insn_recog_data_t curr_id;
149 static struct lra_static_insn_data *curr_static_id;
150 static machine_mode curr_operand_mode[MAX_RECOG_OPERANDS];
151 /* Mode of the register substituted by its equivalence with VOIDmode
152 (e.g. constant) and whose subreg is given operand of the current
153 insn. VOIDmode in all other cases. */
154 static machine_mode original_subreg_reg_mode[MAX_RECOG_OPERANDS];
158 /* Start numbers for new registers and insns at the current constraints
159 pass start. */
160 static int new_regno_start;
161 static int new_insn_uid_start;
163 /* If LOC is nonnull, strip any outer subreg from it. */
164 static inline rtx *
165 strip_subreg (rtx *loc)
167 return loc && GET_CODE (*loc) == SUBREG ? &SUBREG_REG (*loc) : loc;
170 /* Return hard regno of REGNO or if it is was not assigned to a hard
171 register, use a hard register from its allocno class. */
172 static int
173 get_try_hard_regno (int regno)
175 int hard_regno;
176 enum reg_class rclass;
178 if ((hard_regno = regno) >= FIRST_PSEUDO_REGISTER)
179 hard_regno = lra_get_regno_hard_regno (regno);
180 if (hard_regno >= 0)
181 return hard_regno;
182 rclass = lra_get_allocno_class (regno);
183 if (rclass == NO_REGS)
184 return -1;
185 return ira_class_hard_regs[rclass][0];
188 /* Return the hard regno of X after removing its subreg. If X is not a
189 register or a subreg of a register, return -1. If X is a pseudo, use its
190 assignment. If X is a hard regno, return the final hard regno which will be
191 after elimination. */
192 static int
193 get_hard_regno (rtx x)
195 rtx reg;
196 int hard_regno;
198 reg = x;
199 if (SUBREG_P (x))
200 reg = SUBREG_REG (x);
201 if (! REG_P (reg))
202 return -1;
203 if (! HARD_REGISTER_NUM_P (hard_regno = REGNO (reg)))
204 hard_regno = lra_get_regno_hard_regno (hard_regno);
205 if (hard_regno < 0)
206 return -1;
207 if (HARD_REGISTER_NUM_P (REGNO (reg)))
208 hard_regno = lra_get_elimination_hard_regno (hard_regno);
209 if (SUBREG_P (x))
210 hard_regno += subreg_regno_offset (hard_regno, GET_MODE (reg),
211 SUBREG_BYTE (x), GET_MODE (x));
212 return hard_regno;
215 /* If REGNO is a hard register or has been allocated a hard register,
216 return the class of that register. If REGNO is a reload pseudo
217 created by the current constraints pass, return its allocno class.
218 Return NO_REGS otherwise. */
219 static enum reg_class
220 get_reg_class (int regno)
222 int hard_regno;
224 if (! HARD_REGISTER_NUM_P (hard_regno = regno))
225 hard_regno = lra_get_regno_hard_regno (regno);
226 if (hard_regno >= 0)
228 hard_regno = lra_get_elimination_hard_regno (hard_regno);
229 return REGNO_REG_CLASS (hard_regno);
231 if (regno >= new_regno_start)
232 return lra_get_allocno_class (regno);
233 return NO_REGS;
236 /* Return true if REG_CLASS has enough allocatable hard regs to keep value of
237 REG_MODE. */
238 static bool
239 enough_allocatable_hard_regs_p (enum reg_class reg_class,
240 enum machine_mode reg_mode)
242 int i, j, hard_regno, class_size, nregs;
244 if (hard_reg_set_subset_p (reg_class_contents[reg_class], lra_no_alloc_regs))
245 return false;
246 class_size = ira_class_hard_regs_num[reg_class];
247 for (i = 0; i < class_size; i++)
249 hard_regno = ira_class_hard_regs[reg_class][i];
250 nregs = hard_regno_nregs (hard_regno, reg_mode);
251 if (nregs == 1)
252 return true;
253 for (j = 0; j < nregs; j++)
254 if (TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno + j)
255 || ! TEST_HARD_REG_BIT (reg_class_contents[reg_class],
256 hard_regno + j))
257 break;
258 if (j >= nregs)
259 return true;
261 return false;
264 /* True if C is a non-empty register class that has too few registers
265 to be safely used as a reload target class. */
266 #define SMALL_REGISTER_CLASS_P(C) \
267 (ira_class_hard_regs_num [(C)] == 1 \
268 || (ira_class_hard_regs_num [(C)] >= 1 \
269 && targetm.class_likely_spilled_p (C)))
271 /* Return true if REG satisfies (or will satisfy) reg class constraint
272 CL. Use elimination first if REG is a hard register. If REG is a
273 reload pseudo created by this constraints pass, assume that it will
274 be allocated a hard register from its allocno class, but allow that
275 class to be narrowed to CL if it is currently a superset of CL and
276 if either:
278 - ALLOW_ALL_RELOAD_CLASS_CHANGES_P is true or
279 - the instruction we're processing is not a reload move.
281 If NEW_CLASS is nonnull, set *NEW_CLASS to the new allocno class of
282 REGNO (reg), or NO_REGS if no change in its class was needed. */
283 static bool
284 in_class_p (rtx reg, enum reg_class cl, enum reg_class *new_class,
285 bool allow_all_reload_class_changes_p = false)
287 enum reg_class rclass, common_class;
288 machine_mode reg_mode;
289 rtx src;
290 int regno = REGNO (reg);
292 if (new_class != NULL)
293 *new_class = NO_REGS;
294 if (regno < FIRST_PSEUDO_REGISTER)
296 rtx final_reg = reg;
297 rtx *final_loc = &final_reg;
299 lra_eliminate_reg_if_possible (final_loc);
300 return TEST_HARD_REG_BIT (reg_class_contents[cl], REGNO (*final_loc));
302 reg_mode = GET_MODE (reg);
303 rclass = get_reg_class (regno);
304 src = curr_insn_set != NULL ? SET_SRC (curr_insn_set) : NULL;
305 if (regno < new_regno_start
306 /* Do not allow the constraints for reload instructions to
307 influence the classes of new pseudos. These reloads are
308 typically moves that have many alternatives, and restricting
309 reload pseudos for one alternative may lead to situations
310 where other reload pseudos are no longer allocatable. */
311 || (!allow_all_reload_class_changes_p
312 && INSN_UID (curr_insn) >= new_insn_uid_start
313 && src != NULL
314 && ((REG_P (src) || MEM_P (src))
315 || (GET_CODE (src) == SUBREG
316 && (REG_P (SUBREG_REG (src)) || MEM_P (SUBREG_REG (src)))))))
317 /* When we don't know what class will be used finally for reload
318 pseudos, we use ALL_REGS. */
319 return ((regno >= new_regno_start && rclass == ALL_REGS)
320 || (rclass != NO_REGS && ira_class_subset_p[rclass][cl]
321 && ! hard_reg_set_subset_p (reg_class_contents[cl],
322 lra_no_alloc_regs)));
323 else
325 common_class = ira_reg_class_subset[rclass][cl];
326 if (new_class != NULL)
327 *new_class = common_class;
328 return (enough_allocatable_hard_regs_p (common_class, reg_mode)
329 /* Do not permit reload insn operand matching (new_class == NULL
330 case) if the new class is too small. */
331 && (new_class != NULL || common_class == rclass
332 || !SMALL_REGISTER_CLASS_P (common_class)));
336 /* Return true if REGNO satisfies a memory constraint. */
337 static bool
338 in_mem_p (int regno)
340 return get_reg_class (regno) == NO_REGS;
343 /* Return true if ADDR is a valid memory address for mode MODE in address
344 space AS, and check that each pseudo has the proper kind of hard
345 reg. */
346 static bool
347 valid_address_p (machine_mode mode ATTRIBUTE_UNUSED,
348 rtx addr, addr_space_t as)
350 #ifdef GO_IF_LEGITIMATE_ADDRESS
351 lra_assert (ADDR_SPACE_GENERIC_P (as));
352 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
353 return false;
355 win:
356 return true;
357 #else
358 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as,
359 ERROR_MARK);
360 #endif
363 namespace {
364 /* Temporarily eliminates registers in an address (for the lifetime of
365 the object). */
366 class address_eliminator {
367 public:
368 address_eliminator (struct address_info *ad);
369 ~address_eliminator ();
371 private:
372 struct address_info *m_ad;
373 rtx *m_base_loc;
374 rtx m_base_reg;
375 rtx *m_index_loc;
376 rtx m_index_reg;
380 address_eliminator::address_eliminator (struct address_info *ad)
381 : m_ad (ad),
382 m_base_loc (strip_subreg (ad->base_term)),
383 m_base_reg (NULL_RTX),
384 m_index_loc (strip_subreg (ad->index_term)),
385 m_index_reg (NULL_RTX)
387 if (m_base_loc != NULL)
389 m_base_reg = *m_base_loc;
390 /* If we have non-legitimate address which is decomposed not in
391 the way we expected, don't do elimination here. In such case
392 the address will be reloaded and elimination will be done in
393 reload insn finally. */
394 if (REG_P (m_base_reg))
395 lra_eliminate_reg_if_possible (m_base_loc);
396 if (m_ad->base_term2 != NULL)
397 *m_ad->base_term2 = *m_ad->base_term;
399 if (m_index_loc != NULL)
401 m_index_reg = *m_index_loc;
402 if (REG_P (m_index_reg))
403 lra_eliminate_reg_if_possible (m_index_loc);
407 address_eliminator::~address_eliminator ()
409 if (m_base_loc && *m_base_loc != m_base_reg)
411 *m_base_loc = m_base_reg;
412 if (m_ad->base_term2 != NULL)
413 *m_ad->base_term2 = *m_ad->base_term;
415 if (m_index_loc && *m_index_loc != m_index_reg)
416 *m_index_loc = m_index_reg;
419 /* Return true if the eliminated form of AD is a legitimate target address.
420 If OP is a MEM, AD is the address within OP, otherwise OP should be
421 ignored. CONSTRAINT is one constraint that the operand may need
422 to meet. */
423 static bool
424 valid_address_p (rtx op, struct address_info *ad,
425 enum constraint_num constraint)
427 address_eliminator eliminator (ad);
429 /* Allow a memory OP if it matches CONSTRAINT, even if CONSTRAINT is more
430 forgiving than "m".
431 Need to extract memory from op for special memory constraint,
432 i.e. bcst_mem_operand in i386 backend. */
433 if (MEM_P (extract_mem_from_operand (op))
434 && insn_extra_relaxed_memory_constraint (constraint)
435 && constraint_satisfied_p (op, constraint))
436 return true;
438 return valid_address_p (ad->mode, *ad->outer, ad->as);
441 /* For special_memory_operand, it could be false for MEM_P (op),
442 i.e. bcst_mem_operand in i386 backend.
443 Extract and return real memory operand or op. */
445 extract_mem_from_operand (rtx op)
447 for (rtx x = op;; x = XEXP (x, 0))
449 if (MEM_P (x))
450 return x;
451 if (GET_RTX_LENGTH (GET_CODE (x)) != 1
452 || GET_RTX_FORMAT (GET_CODE (x))[0] != 'e')
453 break;
455 return op;
458 /* Return true if the eliminated form of memory reference OP satisfies
459 extra (special) memory constraint CONSTRAINT. */
460 static bool
461 satisfies_memory_constraint_p (rtx op, enum constraint_num constraint)
463 struct address_info ad;
464 rtx mem = extract_mem_from_operand (op);
465 if (!MEM_P (mem))
466 return false;
468 decompose_mem_address (&ad, mem);
469 address_eliminator eliminator (&ad);
470 return constraint_satisfied_p (op, constraint);
473 /* Return true if the eliminated form of address AD satisfies extra
474 address constraint CONSTRAINT. */
475 static bool
476 satisfies_address_constraint_p (struct address_info *ad,
477 enum constraint_num constraint)
479 address_eliminator eliminator (ad);
480 return constraint_satisfied_p (*ad->outer, constraint);
483 /* Return true if the eliminated form of address OP satisfies extra
484 address constraint CONSTRAINT. */
485 static bool
486 satisfies_address_constraint_p (rtx op, enum constraint_num constraint)
488 struct address_info ad;
490 decompose_lea_address (&ad, &op);
491 return satisfies_address_constraint_p (&ad, constraint);
494 /* Initiate equivalences for LRA. As we keep original equivalences
495 before any elimination, we need to make copies otherwise any change
496 in insns might change the equivalences. */
497 void
498 lra_init_equiv (void)
500 ira_expand_reg_equiv ();
501 for (int i = FIRST_PSEUDO_REGISTER; i < max_reg_num (); i++)
503 rtx res;
505 if ((res = ira_reg_equiv[i].memory) != NULL_RTX)
506 ira_reg_equiv[i].memory = copy_rtx (res);
507 if ((res = ira_reg_equiv[i].invariant) != NULL_RTX)
508 ira_reg_equiv[i].invariant = copy_rtx (res);
512 static rtx loc_equivalence_callback (rtx, const_rtx, void *);
514 /* Update equivalence for REGNO. We need to this as the equivalence
515 might contain other pseudos which are changed by their
516 equivalences. */
517 static void
518 update_equiv (int regno)
520 rtx x;
522 if ((x = ira_reg_equiv[regno].memory) != NULL_RTX)
523 ira_reg_equiv[regno].memory
524 = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
525 NULL_RTX);
526 if ((x = ira_reg_equiv[regno].invariant) != NULL_RTX)
527 ira_reg_equiv[regno].invariant
528 = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
529 NULL_RTX);
532 /* If we have decided to substitute X with another value, return that
533 value, otherwise return X. */
534 static rtx
535 get_equiv (rtx x)
537 int regno;
538 rtx res;
540 if (! REG_P (x) || (regno = REGNO (x)) < FIRST_PSEUDO_REGISTER
541 || ! ira_reg_equiv[regno].defined_p
542 || ! ira_reg_equiv[regno].profitable_p
543 || lra_get_regno_hard_regno (regno) >= 0)
544 return x;
545 if ((res = ira_reg_equiv[regno].memory) != NULL_RTX)
547 if (targetm.cannot_substitute_mem_equiv_p (res))
548 return x;
549 return res;
551 if ((res = ira_reg_equiv[regno].constant) != NULL_RTX)
552 return res;
553 if ((res = ira_reg_equiv[regno].invariant) != NULL_RTX)
554 return res;
555 gcc_unreachable ();
558 /* If we have decided to substitute X with the equivalent value,
559 return that value after elimination for INSN, otherwise return
560 X. */
561 static rtx
562 get_equiv_with_elimination (rtx x, rtx_insn *insn)
564 rtx res = get_equiv (x);
566 if (x == res || CONSTANT_P (res))
567 return res;
568 return lra_eliminate_regs_1 (insn, res, GET_MODE (res),
569 false, false, 0, true);
572 /* Set up curr_operand_mode. */
573 static void
574 init_curr_operand_mode (void)
576 int nop = curr_static_id->n_operands;
577 for (int i = 0; i < nop; i++)
579 machine_mode mode = GET_MODE (*curr_id->operand_loc[i]);
580 if (mode == VOIDmode)
582 /* The .md mode for address operands is the mode of the
583 addressed value rather than the mode of the address itself. */
584 if (curr_id->icode >= 0 && curr_static_id->operand[i].is_address)
585 mode = Pmode;
586 else
587 mode = curr_static_id->operand[i].mode;
589 curr_operand_mode[i] = mode;
595 /* The page contains code to reuse input reloads. */
597 /* Structure describes input reload of the current insns. */
598 struct input_reload
600 /* True for input reload of matched operands. */
601 bool match_p;
602 /* Reloaded value. */
603 rtx input;
604 /* Reload pseudo used. */
605 rtx reg;
608 /* The number of elements in the following array. */
609 static int curr_insn_input_reloads_num;
610 /* Array containing info about input reloads. It is used to find the
611 same input reload and reuse the reload pseudo in this case. */
612 static struct input_reload curr_insn_input_reloads[LRA_MAX_INSN_RELOADS];
614 /* Initiate data concerning reuse of input reloads for the current
615 insn. */
616 static void
617 init_curr_insn_input_reloads (void)
619 curr_insn_input_reloads_num = 0;
622 /* The canonical form of an rtx inside a MEM is not necessarily the same as the
623 canonical form of the rtx outside the MEM. Fix this up in the case that
624 we're reloading an address (and therefore pulling it outside a MEM). */
625 static rtx
626 canonicalize_reload_addr (rtx addr)
628 subrtx_var_iterator::array_type array;
629 FOR_EACH_SUBRTX_VAR (iter, array, addr, NONCONST)
631 rtx x = *iter;
632 if (GET_CODE (x) == MULT && CONST_INT_P (XEXP (x, 1)))
634 const HOST_WIDE_INT ci = INTVAL (XEXP (x, 1));
635 const int pwr2 = exact_log2 (ci);
636 if (pwr2 > 0)
638 /* Rewrite this to use a shift instead, which is canonical when
639 outside of a MEM. */
640 PUT_CODE (x, ASHIFT);
641 XEXP (x, 1) = GEN_INT (pwr2);
646 return addr;
649 /* Create a new pseudo using MODE, RCLASS, EXCLUDE_START_HARD_REGS, ORIGINAL or
650 reuse an existing reload pseudo. Don't reuse an existing reload pseudo if
651 IN_SUBREG_P is true and the reused pseudo should be wrapped up in a SUBREG.
652 The result pseudo is returned through RESULT_REG. Return TRUE if we created
653 a new pseudo, FALSE if we reused an existing reload pseudo. Use TITLE to
654 describe new registers for debug purposes. */
655 static bool
656 get_reload_reg (enum op_type type, machine_mode mode, rtx original,
657 enum reg_class rclass, HARD_REG_SET *exclude_start_hard_regs,
658 bool in_subreg_p, const char *title, rtx *result_reg)
660 int i, regno;
661 enum reg_class new_class;
662 bool unique_p = false;
664 if (type == OP_OUT)
666 /* Output reload registers tend to start out with a conservative
667 choice of register class. Usually this is ALL_REGS, although
668 a target might narrow it (for performance reasons) through
669 targetm.preferred_reload_class. It's therefore quite common
670 for a reload instruction to require a more restrictive class
671 than the class that was originally assigned to the reload register.
673 In these situations, it's more efficient to refine the choice
674 of register class rather than create a second reload register.
675 This also helps to avoid cycling for registers that are only
676 used by reload instructions. */
677 if (REG_P (original)
678 && (int) REGNO (original) >= new_regno_start
679 && INSN_UID (curr_insn) >= new_insn_uid_start
680 && in_class_p (original, rclass, &new_class, true))
682 unsigned int regno = REGNO (original);
683 if (lra_dump_file != NULL)
685 fprintf (lra_dump_file, " Reuse r%d for output ", regno);
686 dump_value_slim (lra_dump_file, original, 1);
688 if (new_class != lra_get_allocno_class (regno))
689 lra_change_class (regno, new_class, ", change to", false);
690 if (lra_dump_file != NULL)
691 fprintf (lra_dump_file, "\n");
692 *result_reg = original;
693 return false;
695 *result_reg
696 = lra_create_new_reg_with_unique_value (mode, original, rclass,
697 exclude_start_hard_regs, title);
698 return true;
700 /* Prevent reuse value of expression with side effects,
701 e.g. volatile memory. */
702 if (! side_effects_p (original))
703 for (i = 0; i < curr_insn_input_reloads_num; i++)
705 if (! curr_insn_input_reloads[i].match_p
706 && rtx_equal_p (curr_insn_input_reloads[i].input, original)
707 && in_class_p (curr_insn_input_reloads[i].reg, rclass, &new_class))
709 rtx reg = curr_insn_input_reloads[i].reg;
710 regno = REGNO (reg);
711 /* If input is equal to original and both are VOIDmode,
712 GET_MODE (reg) might be still different from mode.
713 Ensure we don't return *result_reg with wrong mode. */
714 if (GET_MODE (reg) != mode)
716 if (in_subreg_p)
717 continue;
718 if (maybe_lt (GET_MODE_SIZE (GET_MODE (reg)),
719 GET_MODE_SIZE (mode)))
720 continue;
721 reg = lowpart_subreg (mode, reg, GET_MODE (reg));
722 if (reg == NULL_RTX || GET_CODE (reg) != SUBREG)
723 continue;
725 *result_reg = reg;
726 if (lra_dump_file != NULL)
728 fprintf (lra_dump_file, " Reuse r%d for reload ", regno);
729 dump_value_slim (lra_dump_file, original, 1);
731 if (new_class != lra_get_allocno_class (regno))
732 lra_change_class (regno, new_class, ", change to", false);
733 if (lra_dump_file != NULL)
734 fprintf (lra_dump_file, "\n");
735 return false;
737 /* If we have an input reload with a different mode, make sure it
738 will get a different hard reg. */
739 else if (REG_P (original)
740 && REG_P (curr_insn_input_reloads[i].input)
741 && REGNO (original) == REGNO (curr_insn_input_reloads[i].input)
742 && (GET_MODE (original)
743 != GET_MODE (curr_insn_input_reloads[i].input)))
744 unique_p = true;
746 *result_reg = (unique_p
747 ? lra_create_new_reg_with_unique_value
748 : lra_create_new_reg) (mode, original, rclass,
749 exclude_start_hard_regs, title);
750 lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
751 curr_insn_input_reloads[curr_insn_input_reloads_num].input = original;
752 curr_insn_input_reloads[curr_insn_input_reloads_num].match_p = false;
753 curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = *result_reg;
754 return true;
758 /* The page contains major code to choose the current insn alternative
759 and generate reloads for it. */
761 /* Return the offset from REGNO of the least significant register
762 in (reg:MODE REGNO).
764 This function is used to tell whether two registers satisfy
765 a matching constraint. (reg:MODE1 REGNO1) matches (reg:MODE2 REGNO2) if:
767 REGNO1 + lra_constraint_offset (REGNO1, MODE1)
768 == REGNO2 + lra_constraint_offset (REGNO2, MODE2) */
770 lra_constraint_offset (int regno, machine_mode mode)
772 lra_assert (regno < FIRST_PSEUDO_REGISTER);
774 scalar_int_mode int_mode;
775 if (WORDS_BIG_ENDIAN
776 && is_a <scalar_int_mode> (mode, &int_mode)
777 && GET_MODE_SIZE (int_mode) > UNITS_PER_WORD)
778 return hard_regno_nregs (regno, mode) - 1;
779 return 0;
782 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
783 if they are the same hard reg, and has special hacks for
784 auto-increment and auto-decrement. This is specifically intended for
785 process_alt_operands to use in determining whether two operands
786 match. X is the operand whose number is the lower of the two.
788 It is supposed that X is the output operand and Y is the input
789 operand. Y_HARD_REGNO is the final hard regno of register Y or
790 register in subreg Y as we know it now. Otherwise, it is a
791 negative value. */
792 static bool
793 operands_match_p (rtx x, rtx y, int y_hard_regno)
795 int i;
796 RTX_CODE code = GET_CODE (x);
797 const char *fmt;
799 if (x == y)
800 return true;
801 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
802 && (REG_P (y) || (GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y)))))
804 int j;
806 i = get_hard_regno (x);
807 if (i < 0)
808 goto slow;
810 if ((j = y_hard_regno) < 0)
811 goto slow;
813 i += lra_constraint_offset (i, GET_MODE (x));
814 j += lra_constraint_offset (j, GET_MODE (y));
816 return i == j;
819 /* If two operands must match, because they are really a single
820 operand of an assembler insn, then two post-increments are invalid
821 because the assembler insn would increment only once. On the
822 other hand, a post-increment matches ordinary indexing if the
823 post-increment is the output operand. */
824 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
825 return operands_match_p (XEXP (x, 0), y, y_hard_regno);
827 /* Two pre-increments are invalid because the assembler insn would
828 increment only once. On the other hand, a pre-increment matches
829 ordinary indexing if the pre-increment is the input operand. */
830 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
831 || GET_CODE (y) == PRE_MODIFY)
832 return operands_match_p (x, XEXP (y, 0), -1);
834 slow:
836 if (code == REG && REG_P (y))
837 return REGNO (x) == REGNO (y);
839 if (code == REG && GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y))
840 && x == SUBREG_REG (y))
841 return true;
842 if (GET_CODE (y) == REG && code == SUBREG && REG_P (SUBREG_REG (x))
843 && SUBREG_REG (x) == y)
844 return true;
846 /* Now we have disposed of all the cases in which different rtx
847 codes can match. */
848 if (code != GET_CODE (y))
849 return false;
851 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
852 if (GET_MODE (x) != GET_MODE (y))
853 return false;
855 switch (code)
857 CASE_CONST_UNIQUE:
858 return false;
860 case CONST_VECTOR:
861 if (!same_vector_encodings_p (x, y))
862 return false;
863 break;
865 case LABEL_REF:
866 return label_ref_label (x) == label_ref_label (y);
867 case SYMBOL_REF:
868 return XSTR (x, 0) == XSTR (y, 0);
870 default:
871 break;
874 /* Compare the elements. If any pair of corresponding elements fail
875 to match, return false for the whole things. */
877 fmt = GET_RTX_FORMAT (code);
878 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
880 int val, j;
881 switch (fmt[i])
883 case 'w':
884 if (XWINT (x, i) != XWINT (y, i))
885 return false;
886 break;
888 case 'i':
889 if (XINT (x, i) != XINT (y, i))
890 return false;
891 break;
893 case 'p':
894 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
895 return false;
896 break;
898 case 'e':
899 val = operands_match_p (XEXP (x, i), XEXP (y, i), -1);
900 if (val == 0)
901 return false;
902 break;
904 case '0':
905 break;
907 case 'E':
908 if (XVECLEN (x, i) != XVECLEN (y, i))
909 return false;
910 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
912 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j), -1);
913 if (val == 0)
914 return false;
916 break;
918 /* It is believed that rtx's at this level will never
919 contain anything but integers and other rtx's, except for
920 within LABEL_REFs and SYMBOL_REFs. */
921 default:
922 gcc_unreachable ();
925 return true;
928 /* True if X is a constant that can be forced into the constant pool.
929 MODE is the mode of the operand, or VOIDmode if not known. */
930 #define CONST_POOL_OK_P(MODE, X) \
931 ((MODE) != VOIDmode \
932 && CONSTANT_P (X) \
933 && GET_CODE (X) != HIGH \
934 && GET_MODE_SIZE (MODE).is_constant () \
935 && !targetm.cannot_force_const_mem (MODE, X))
937 /* If REG is a reload pseudo, try to make its class satisfying CL. */
938 static void
939 narrow_reload_pseudo_class (rtx reg, enum reg_class cl)
941 enum reg_class rclass;
943 /* Do not make more accurate class from reloads generated. They are
944 mostly moves with a lot of constraints. Making more accurate
945 class may results in very narrow class and impossibility of find
946 registers for several reloads of one insn. */
947 if (INSN_UID (curr_insn) >= new_insn_uid_start)
948 return;
949 if (GET_CODE (reg) == SUBREG)
950 reg = SUBREG_REG (reg);
951 if (! REG_P (reg) || (int) REGNO (reg) < new_regno_start)
952 return;
953 if (in_class_p (reg, cl, &rclass) && rclass != cl)
954 lra_change_class (REGNO (reg), rclass, " Change to", true);
957 /* Searches X for any reference to a reg with the same value as REGNO,
958 returning the rtx of the reference found if any. Otherwise,
959 returns NULL_RTX. */
960 static rtx
961 regno_val_use_in (unsigned int regno, rtx x)
963 const char *fmt;
964 int i, j;
965 rtx tem;
967 if (REG_P (x) && lra_reg_info[REGNO (x)].val == lra_reg_info[regno].val)
968 return x;
970 fmt = GET_RTX_FORMAT (GET_CODE (x));
971 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
973 if (fmt[i] == 'e')
975 if ((tem = regno_val_use_in (regno, XEXP (x, i))))
976 return tem;
978 else if (fmt[i] == 'E')
979 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
980 if ((tem = regno_val_use_in (regno , XVECEXP (x, i, j))))
981 return tem;
984 return NULL_RTX;
987 /* Return true if all current insn non-output operands except INS (it
988 has a negaitve end marker) do not use pseudos with the same value
989 as REGNO. */
990 static bool
991 check_conflict_input_operands (int regno, signed char *ins)
993 int in;
994 int n_operands = curr_static_id->n_operands;
996 for (int nop = 0; nop < n_operands; nop++)
997 if (! curr_static_id->operand[nop].is_operator
998 && curr_static_id->operand[nop].type != OP_OUT)
1000 for (int i = 0; (in = ins[i]) >= 0; i++)
1001 if (in == nop)
1002 break;
1003 if (in < 0
1004 && regno_val_use_in (regno, *curr_id->operand_loc[nop]) != NULL_RTX)
1005 return false;
1007 return true;
1010 /* Generate reloads for matching OUT and INS (array of input operand numbers
1011 with end marker -1) with reg class GOAL_CLASS and EXCLUDE_START_HARD_REGS,
1012 considering output operands OUTS (similar array to INS) needing to be in
1013 different registers. Add input and output reloads correspondingly to the
1014 lists *BEFORE and *AFTER. OUT might be negative. In this case we generate
1015 input reloads for matched input operands INS. EARLY_CLOBBER_P is a flag
1016 that the output operand is early clobbered for chosen alternative. */
1017 static void
1018 match_reload (signed char out, signed char *ins, signed char *outs,
1019 enum reg_class goal_class, HARD_REG_SET *exclude_start_hard_regs,
1020 rtx_insn **before, rtx_insn **after, bool early_clobber_p)
1022 bool out_conflict;
1023 int i, in;
1024 rtx new_in_reg, new_out_reg, reg;
1025 machine_mode inmode, outmode;
1026 rtx in_rtx = *curr_id->operand_loc[ins[0]];
1027 rtx out_rtx = out < 0 ? in_rtx : *curr_id->operand_loc[out];
1029 inmode = curr_operand_mode[ins[0]];
1030 outmode = out < 0 ? inmode : curr_operand_mode[out];
1031 push_to_sequence (*before);
1032 if (inmode != outmode)
1034 /* process_alt_operands has already checked that the mode sizes
1035 are ordered. */
1036 if (partial_subreg_p (outmode, inmode))
1038 bool asm_p = asm_noperands (PATTERN (curr_insn)) >= 0;
1039 int hr;
1040 HARD_REG_SET temp_hard_reg_set;
1042 if (asm_p && (hr = get_hard_regno (out_rtx)) >= 0
1043 && hard_regno_nregs (hr, inmode) > 1)
1045 /* See gcc.c-torture/execute/20030222-1.c.
1046 Consider the code for 32-bit (e.g. BE) target:
1047 int i, v; long x; x = v; asm ("" : "=r" (i) : "0" (x));
1048 We generate the following RTL with reload insns:
1049 1. subreg:si(x:di, 0) = 0;
1050 2. subreg:si(x:di, 4) = v:si;
1051 3. t:di = x:di, dead x;
1052 4. asm ("" : "=r" (subreg:si(t:di,4)) : "0" (t:di))
1053 5. i:si = subreg:si(t:di,4);
1054 If we assign hard reg of x to t, dead code elimination
1055 will remove insn #2 and we will use unitialized hard reg.
1056 So exclude the hard reg of x for t. We could ignore this
1057 problem for non-empty asm using all x value but it is hard to
1058 check that the asm are expanded into insn realy using x
1059 and setting r. */
1060 CLEAR_HARD_REG_SET (temp_hard_reg_set);
1061 if (exclude_start_hard_regs != NULL)
1062 temp_hard_reg_set = *exclude_start_hard_regs;
1063 SET_HARD_REG_BIT (temp_hard_reg_set, hr);
1064 exclude_start_hard_regs = &temp_hard_reg_set;
1066 reg = new_in_reg
1067 = lra_create_new_reg_with_unique_value (inmode, in_rtx, goal_class,
1068 exclude_start_hard_regs,
1069 "");
1070 new_out_reg = gen_lowpart_SUBREG (outmode, reg);
1071 LRA_SUBREG_P (new_out_reg) = 1;
1072 /* If the input reg is dying here, we can use the same hard
1073 register for REG and IN_RTX. We do it only for original
1074 pseudos as reload pseudos can die although original
1075 pseudos still live where reload pseudos dies. */
1076 if (REG_P (in_rtx) && (int) REGNO (in_rtx) < lra_new_regno_start
1077 && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx))
1078 && (!early_clobber_p
1079 || check_conflict_input_operands(REGNO (in_rtx), ins)))
1080 lra_assign_reg_val (REGNO (in_rtx), REGNO (reg));
1082 else
1084 reg = new_out_reg
1085 = lra_create_new_reg_with_unique_value (outmode, out_rtx,
1086 goal_class,
1087 exclude_start_hard_regs,
1088 "");
1089 new_in_reg = gen_lowpart_SUBREG (inmode, reg);
1090 /* NEW_IN_REG is non-paradoxical subreg. We don't want
1091 NEW_OUT_REG living above. We add clobber clause for
1092 this. This is just a temporary clobber. We can remove
1093 it at the end of LRA work. */
1094 rtx_insn *clobber = emit_clobber (new_out_reg);
1095 LRA_TEMP_CLOBBER_P (PATTERN (clobber)) = 1;
1096 LRA_SUBREG_P (new_in_reg) = 1;
1097 if (GET_CODE (in_rtx) == SUBREG)
1099 rtx subreg_reg = SUBREG_REG (in_rtx);
1101 /* If SUBREG_REG is dying here and sub-registers IN_RTX
1102 and NEW_IN_REG are similar, we can use the same hard
1103 register for REG and SUBREG_REG. */
1104 if (REG_P (subreg_reg)
1105 && (int) REGNO (subreg_reg) < lra_new_regno_start
1106 && GET_MODE (subreg_reg) == outmode
1107 && known_eq (SUBREG_BYTE (in_rtx), SUBREG_BYTE (new_in_reg))
1108 && find_regno_note (curr_insn, REG_DEAD, REGNO (subreg_reg))
1109 && (! early_clobber_p
1110 || check_conflict_input_operands (REGNO (subreg_reg),
1111 ins)))
1112 lra_assign_reg_val (REGNO (subreg_reg), REGNO (reg));
1116 else
1118 /* Pseudos have values -- see comments for lra_reg_info.
1119 Different pseudos with the same value do not conflict even if
1120 they live in the same place. When we create a pseudo we
1121 assign value of original pseudo (if any) from which we
1122 created the new pseudo. If we create the pseudo from the
1123 input pseudo, the new pseudo will have no conflict with the
1124 input pseudo which is wrong when the input pseudo lives after
1125 the insn and as the new pseudo value is changed by the insn
1126 output. Therefore we create the new pseudo from the output
1127 except the case when we have single matched dying input
1128 pseudo.
1130 We cannot reuse the current output register because we might
1131 have a situation like "a <- a op b", where the constraints
1132 force the second input operand ("b") to match the output
1133 operand ("a"). "b" must then be copied into a new register
1134 so that it doesn't clobber the current value of "a".
1136 We cannot use the same value if the output pseudo is
1137 early clobbered or the input pseudo is mentioned in the
1138 output, e.g. as an address part in memory, because
1139 output reload will actually extend the pseudo liveness.
1140 We don't care about eliminable hard regs here as we are
1141 interesting only in pseudos. */
1143 /* Matching input's register value is the same as one of the other
1144 output operand. Output operands in a parallel insn must be in
1145 different registers. */
1146 out_conflict = false;
1147 if (REG_P (in_rtx))
1149 for (i = 0; outs[i] >= 0; i++)
1151 rtx other_out_rtx = *curr_id->operand_loc[outs[i]];
1152 if (outs[i] != out && REG_P (other_out_rtx)
1153 && (regno_val_use_in (REGNO (in_rtx), other_out_rtx)
1154 != NULL_RTX))
1156 out_conflict = true;
1157 break;
1162 new_in_reg = new_out_reg
1163 = (! early_clobber_p && ins[1] < 0 && REG_P (in_rtx)
1164 && (int) REGNO (in_rtx) < lra_new_regno_start
1165 && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx))
1166 && (! early_clobber_p
1167 || check_conflict_input_operands (REGNO (in_rtx), ins))
1168 && (out < 0
1169 || regno_val_use_in (REGNO (in_rtx), out_rtx) == NULL_RTX)
1170 && !out_conflict
1171 ? lra_create_new_reg (inmode, in_rtx, goal_class,
1172 exclude_start_hard_regs, "")
1173 : lra_create_new_reg_with_unique_value (outmode, out_rtx, goal_class,
1174 exclude_start_hard_regs,
1175 ""));
1177 /* In operand can be got from transformations before processing insn
1178 constraints. One example of such transformations is subreg
1179 reloading (see function simplify_operand_subreg). The new
1180 pseudos created by the transformations might have inaccurate
1181 class (ALL_REGS) and we should make their classes more
1182 accurate. */
1183 narrow_reload_pseudo_class (in_rtx, goal_class);
1184 lra_emit_move (copy_rtx (new_in_reg), in_rtx);
1185 *before = get_insns ();
1186 end_sequence ();
1187 /* Add the new pseudo to consider values of subsequent input reload
1188 pseudos. */
1189 lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
1190 curr_insn_input_reloads[curr_insn_input_reloads_num].input = in_rtx;
1191 curr_insn_input_reloads[curr_insn_input_reloads_num].match_p = true;
1192 curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = new_in_reg;
1193 for (i = 0; (in = ins[i]) >= 0; i++)
1194 if (GET_MODE (*curr_id->operand_loc[in]) == VOIDmode
1195 || GET_MODE (new_in_reg) == GET_MODE (*curr_id->operand_loc[in]))
1196 *curr_id->operand_loc[in] = new_in_reg;
1197 else
1199 lra_assert
1200 (GET_MODE (new_out_reg) == GET_MODE (*curr_id->operand_loc[in]));
1201 *curr_id->operand_loc[in] = new_out_reg;
1203 lra_update_dups (curr_id, ins);
1204 if (out < 0)
1205 return;
1206 /* See a comment for the input operand above. */
1207 narrow_reload_pseudo_class (out_rtx, goal_class);
1208 if (find_reg_note (curr_insn, REG_UNUSED, out_rtx) == NULL_RTX)
1210 reg = SUBREG_P (out_rtx) ? SUBREG_REG (out_rtx) : out_rtx;
1211 start_sequence ();
1212 /* If we had strict_low_part, use it also in reload to keep other
1213 parts unchanged but do it only for regs as strict_low_part
1214 has no sense for memory and probably there is no insn pattern
1215 to match the reload insn in memory case. */
1216 if (out >= 0 && curr_static_id->operand[out].strict_low && REG_P (reg))
1217 out_rtx = gen_rtx_STRICT_LOW_PART (VOIDmode, out_rtx);
1218 lra_emit_move (out_rtx, copy_rtx (new_out_reg));
1219 emit_insn (*after);
1220 *after = get_insns ();
1221 end_sequence ();
1223 *curr_id->operand_loc[out] = new_out_reg;
1224 lra_update_dup (curr_id, out);
1227 /* Return register class which is union of all reg classes in insn
1228 constraint alternative string starting with P. */
1229 static enum reg_class
1230 reg_class_from_constraints (const char *p)
1232 int c, len;
1233 enum reg_class op_class = NO_REGS;
1236 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
1238 case '#':
1239 case ',':
1240 return op_class;
1242 case 'g':
1243 op_class = reg_class_subunion[op_class][GENERAL_REGS];
1244 break;
1246 default:
1247 enum constraint_num cn = lookup_constraint (p);
1248 enum reg_class cl = reg_class_for_constraint (cn);
1249 if (cl == NO_REGS)
1251 if (insn_extra_address_constraint (cn))
1252 op_class
1253 = (reg_class_subunion
1254 [op_class][base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1255 ADDRESS, SCRATCH)]);
1256 break;
1259 op_class = reg_class_subunion[op_class][cl];
1260 break;
1262 while ((p += len), c);
1263 return op_class;
1266 /* If OP is a register, return the class of the register as per
1267 get_reg_class, otherwise return NO_REGS. */
1268 static inline enum reg_class
1269 get_op_class (rtx op)
1271 return REG_P (op) ? get_reg_class (REGNO (op)) : NO_REGS;
1274 /* Return generated insn mem_pseudo:=val if TO_P or val:=mem_pseudo
1275 otherwise. If modes of MEM_PSEUDO and VAL are different, use
1276 SUBREG for VAL to make them equal. */
1277 static rtx_insn *
1278 emit_spill_move (bool to_p, rtx mem_pseudo, rtx val)
1280 if (GET_MODE (mem_pseudo) != GET_MODE (val))
1282 /* Usually size of mem_pseudo is greater than val size but in
1283 rare cases it can be less as it can be defined by target
1284 dependent macro HARD_REGNO_CALLER_SAVE_MODE. */
1285 if (! MEM_P (val))
1287 val = gen_lowpart_SUBREG (GET_MODE (mem_pseudo),
1288 GET_CODE (val) == SUBREG
1289 ? SUBREG_REG (val) : val);
1290 LRA_SUBREG_P (val) = 1;
1292 else
1294 mem_pseudo = gen_lowpart_SUBREG (GET_MODE (val), mem_pseudo);
1295 LRA_SUBREG_P (mem_pseudo) = 1;
1298 return to_p ? gen_move_insn (mem_pseudo, val)
1299 : gen_move_insn (val, mem_pseudo);
1302 /* Process a special case insn (register move), return true if we
1303 don't need to process it anymore. INSN should be a single set
1304 insn. Set up that RTL was changed through CHANGE_P and that hook
1305 TARGET_SECONDARY_MEMORY_NEEDED says to use secondary memory through
1306 SEC_MEM_P. */
1307 static bool
1308 check_and_process_move (bool *change_p, bool *sec_mem_p ATTRIBUTE_UNUSED)
1310 int sregno, dregno;
1311 rtx dest, src, dreg, sreg, new_reg, scratch_reg;
1312 rtx_insn *before;
1313 enum reg_class dclass, sclass, secondary_class;
1314 secondary_reload_info sri;
1316 lra_assert (curr_insn_set != NULL_RTX);
1317 dreg = dest = SET_DEST (curr_insn_set);
1318 sreg = src = SET_SRC (curr_insn_set);
1319 if (GET_CODE (dest) == SUBREG)
1320 dreg = SUBREG_REG (dest);
1321 if (GET_CODE (src) == SUBREG)
1322 sreg = SUBREG_REG (src);
1323 if (! (REG_P (dreg) || MEM_P (dreg)) || ! (REG_P (sreg) || MEM_P (sreg)))
1324 return false;
1325 sclass = dclass = NO_REGS;
1326 if (REG_P (dreg))
1327 dclass = get_reg_class (REGNO (dreg));
1328 gcc_assert (dclass < LIM_REG_CLASSES && dclass >= NO_REGS);
1329 if (dclass == ALL_REGS)
1330 /* ALL_REGS is used for new pseudos created by transformations
1331 like reload of SUBREG_REG (see function
1332 simplify_operand_subreg). We don't know their class yet. We
1333 should figure out the class from processing the insn
1334 constraints not in this fast path function. Even if ALL_REGS
1335 were a right class for the pseudo, secondary_... hooks usually
1336 are not define for ALL_REGS. */
1337 return false;
1338 if (REG_P (sreg))
1339 sclass = get_reg_class (REGNO (sreg));
1340 gcc_assert (sclass < LIM_REG_CLASSES && sclass >= NO_REGS);
1341 if (sclass == ALL_REGS)
1342 /* See comments above. */
1343 return false;
1344 if (sclass == NO_REGS && dclass == NO_REGS)
1345 return false;
1346 if (targetm.secondary_memory_needed (GET_MODE (src), sclass, dclass)
1347 && ((sclass != NO_REGS && dclass != NO_REGS)
1348 || (GET_MODE (src)
1349 != targetm.secondary_memory_needed_mode (GET_MODE (src)))))
1351 *sec_mem_p = true;
1352 return false;
1354 if (! REG_P (dreg) || ! REG_P (sreg))
1355 return false;
1356 sri.prev_sri = NULL;
1357 sri.icode = CODE_FOR_nothing;
1358 sri.extra_cost = 0;
1359 secondary_class = NO_REGS;
1360 /* Set up hard register for a reload pseudo for hook
1361 secondary_reload because some targets just ignore unassigned
1362 pseudos in the hook. */
1363 if (dclass != NO_REGS && lra_get_regno_hard_regno (REGNO (dreg)) < 0)
1365 dregno = REGNO (dreg);
1366 reg_renumber[dregno] = ira_class_hard_regs[dclass][0];
1368 else
1369 dregno = -1;
1370 if (sclass != NO_REGS && lra_get_regno_hard_regno (REGNO (sreg)) < 0)
1372 sregno = REGNO (sreg);
1373 reg_renumber[sregno] = ira_class_hard_regs[sclass][0];
1375 else
1376 sregno = -1;
1377 if (sclass != NO_REGS)
1378 secondary_class
1379 = (enum reg_class) targetm.secondary_reload (false, dest,
1380 (reg_class_t) sclass,
1381 GET_MODE (src), &sri);
1382 if (sclass == NO_REGS
1383 || ((secondary_class != NO_REGS || sri.icode != CODE_FOR_nothing)
1384 && dclass != NO_REGS))
1386 enum reg_class old_sclass = secondary_class;
1387 secondary_reload_info old_sri = sri;
1389 sri.prev_sri = NULL;
1390 sri.icode = CODE_FOR_nothing;
1391 sri.extra_cost = 0;
1392 secondary_class
1393 = (enum reg_class) targetm.secondary_reload (true, src,
1394 (reg_class_t) dclass,
1395 GET_MODE (src), &sri);
1396 /* Check the target hook consistency. */
1397 lra_assert
1398 ((secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1399 || (old_sclass == NO_REGS && old_sri.icode == CODE_FOR_nothing)
1400 || (secondary_class == old_sclass && sri.icode == old_sri.icode));
1402 if (sregno >= 0)
1403 reg_renumber [sregno] = -1;
1404 if (dregno >= 0)
1405 reg_renumber [dregno] = -1;
1406 if (secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1407 return false;
1408 *change_p = true;
1409 new_reg = NULL_RTX;
1410 if (secondary_class != NO_REGS)
1411 new_reg = lra_create_new_reg_with_unique_value (GET_MODE (src), NULL_RTX,
1412 secondary_class, NULL,
1413 "secondary");
1414 start_sequence ();
1415 if (sri.icode == CODE_FOR_nothing)
1416 lra_emit_move (new_reg, src);
1417 else
1419 enum reg_class scratch_class;
1421 scratch_class = (reg_class_from_constraints
1422 (insn_data[sri.icode].operand[2].constraint));
1423 scratch_reg = (lra_create_new_reg_with_unique_value
1424 (insn_data[sri.icode].operand[2].mode, NULL_RTX,
1425 scratch_class, NULL, "scratch"));
1426 emit_insn (GEN_FCN (sri.icode) (new_reg != NULL_RTX ? new_reg : dest,
1427 src, scratch_reg));
1429 before = get_insns ();
1430 end_sequence ();
1431 lra_process_new_insns (curr_insn, before, NULL, "Inserting the move");
1432 if (new_reg != NULL_RTX)
1433 SET_SRC (curr_insn_set) = new_reg;
1434 else
1436 if (lra_dump_file != NULL)
1438 fprintf (lra_dump_file, "Deleting move %u\n", INSN_UID (curr_insn));
1439 dump_insn_slim (lra_dump_file, curr_insn);
1441 lra_set_insn_deleted (curr_insn);
1442 return true;
1444 return false;
1447 /* The following data describe the result of process_alt_operands.
1448 The data are used in curr_insn_transform to generate reloads. */
1450 /* The chosen reg classes which should be used for the corresponding
1451 operands. */
1452 static enum reg_class goal_alt[MAX_RECOG_OPERANDS];
1453 /* Hard registers which cannot be a start hard register for the corresponding
1454 operands. */
1455 static HARD_REG_SET goal_alt_exclude_start_hard_regs[MAX_RECOG_OPERANDS];
1456 /* True if the operand should be the same as another operand and that
1457 other operand does not need a reload. */
1458 static bool goal_alt_match_win[MAX_RECOG_OPERANDS];
1459 /* True if the operand does not need a reload. */
1460 static bool goal_alt_win[MAX_RECOG_OPERANDS];
1461 /* True if the operand can be offsetable memory. */
1462 static bool goal_alt_offmemok[MAX_RECOG_OPERANDS];
1463 /* The number of an operand to which given operand can be matched to. */
1464 static int goal_alt_matches[MAX_RECOG_OPERANDS];
1465 /* The number of elements in the following array. */
1466 static int goal_alt_dont_inherit_ops_num;
1467 /* Numbers of operands whose reload pseudos should not be inherited. */
1468 static int goal_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1469 /* True if we should try only this alternative for the next constraint sub-pass
1470 to speed up the sub-pass. */
1471 static bool goal_reuse_alt_p;
1472 /* True if the insn commutative operands should be swapped. */
1473 static bool goal_alt_swapped;
1474 /* The chosen insn alternative. */
1475 static int goal_alt_number;
1476 /* True if output reload of the stack pointer should be generated. */
1477 static bool goal_alt_out_sp_reload_p;
1479 /* True if the corresponding operand is the result of an equivalence
1480 substitution. */
1481 static bool equiv_substition_p[MAX_RECOG_OPERANDS];
1483 /* The following five variables are used to choose the best insn
1484 alternative. They reflect final characteristics of the best
1485 alternative. */
1487 /* Number of necessary reloads and overall cost reflecting the
1488 previous value and other unpleasantness of the best alternative. */
1489 static int best_losers, best_overall;
1490 /* Overall number hard registers used for reloads. For example, on
1491 some targets we need 2 general registers to reload DFmode and only
1492 one floating point register. */
1493 static int best_reload_nregs;
1494 /* Overall number reflecting distances of previous reloading the same
1495 value. The distances are counted from the current BB start. It is
1496 used to improve inheritance chances. */
1497 static int best_reload_sum;
1499 /* True if the current insn should have no correspondingly input or
1500 output reloads. */
1501 static bool no_input_reloads_p, no_output_reloads_p;
1503 /* True if we swapped the commutative operands in the current
1504 insn. */
1505 static int curr_swapped;
1507 /* if CHECK_ONLY_P is false, arrange for address element *LOC to be a
1508 register of class CL. Add any input reloads to list BEFORE. AFTER
1509 is nonnull if *LOC is an automodified value; handle that case by
1510 adding the required output reloads to list AFTER. Return true if
1511 the RTL was changed.
1513 if CHECK_ONLY_P is true, check that the *LOC is a correct address
1514 register. Return false if the address register is correct. */
1515 static bool
1516 process_addr_reg (rtx *loc, bool check_only_p, rtx_insn **before, rtx_insn **after,
1517 enum reg_class cl)
1519 int regno;
1520 enum reg_class rclass, new_class;
1521 rtx reg;
1522 rtx new_reg;
1523 machine_mode mode;
1524 bool subreg_p, before_p = false;
1526 subreg_p = GET_CODE (*loc) == SUBREG;
1527 if (subreg_p)
1529 reg = SUBREG_REG (*loc);
1530 mode = GET_MODE (reg);
1532 /* For mode with size bigger than ptr_mode, there unlikely to be "mov"
1533 between two registers with different classes, but there normally will
1534 be "mov" which transfers element of vector register into the general
1535 register, and this normally will be a subreg which should be reloaded
1536 as a whole. This is particularly likely to be triggered when
1537 -fno-split-wide-types specified. */
1538 if (!REG_P (reg)
1539 || in_class_p (reg, cl, &new_class)
1540 || known_le (GET_MODE_SIZE (mode), GET_MODE_SIZE (ptr_mode)))
1541 loc = &SUBREG_REG (*loc);
1544 reg = *loc;
1545 mode = GET_MODE (reg);
1546 if (! REG_P (reg))
1548 if (check_only_p)
1549 return true;
1550 /* Always reload memory in an address even if the target supports
1551 such addresses. */
1552 new_reg = lra_create_new_reg_with_unique_value (mode, reg, cl, NULL,
1553 "address");
1554 before_p = true;
1556 else
1558 regno = REGNO (reg);
1559 rclass = get_reg_class (regno);
1560 if (! check_only_p
1561 && (*loc = get_equiv_with_elimination (reg, curr_insn)) != reg)
1563 if (lra_dump_file != NULL)
1565 fprintf (lra_dump_file,
1566 "Changing pseudo %d in address of insn %u on equiv ",
1567 REGNO (reg), INSN_UID (curr_insn));
1568 dump_value_slim (lra_dump_file, *loc, 1);
1569 fprintf (lra_dump_file, "\n");
1571 *loc = copy_rtx (*loc);
1573 if (*loc != reg || ! in_class_p (reg, cl, &new_class))
1575 if (check_only_p)
1576 return true;
1577 reg = *loc;
1578 if (get_reload_reg (after == NULL ? OP_IN : OP_INOUT,
1579 mode, reg, cl, NULL,
1580 subreg_p, "address", &new_reg))
1581 before_p = true;
1583 else if (new_class != NO_REGS && rclass != new_class)
1585 if (check_only_p)
1586 return true;
1587 lra_change_class (regno, new_class, " Change to", true);
1588 return false;
1590 else
1591 return false;
1593 if (before_p)
1595 push_to_sequence (*before);
1596 lra_emit_move (new_reg, reg);
1597 *before = get_insns ();
1598 end_sequence ();
1600 *loc = new_reg;
1601 if (after != NULL)
1603 start_sequence ();
1604 lra_emit_move (before_p ? copy_rtx (reg) : reg, new_reg);
1605 emit_insn (*after);
1606 *after = get_insns ();
1607 end_sequence ();
1609 return true;
1612 /* Insert move insn in simplify_operand_subreg. BEFORE returns
1613 the insn to be inserted before curr insn. AFTER returns the
1614 the insn to be inserted after curr insn. ORIGREG and NEWREG
1615 are the original reg and new reg for reload. */
1616 static void
1617 insert_move_for_subreg (rtx_insn **before, rtx_insn **after, rtx origreg,
1618 rtx newreg)
1620 if (before)
1622 push_to_sequence (*before);
1623 lra_emit_move (newreg, origreg);
1624 *before = get_insns ();
1625 end_sequence ();
1627 if (after)
1629 start_sequence ();
1630 lra_emit_move (origreg, newreg);
1631 emit_insn (*after);
1632 *after = get_insns ();
1633 end_sequence ();
1637 static bool valid_address_p (machine_mode mode, rtx addr, addr_space_t as);
1638 static bool process_address (int, bool, rtx_insn **, rtx_insn **);
1640 /* Make reloads for subreg in operand NOP with internal subreg mode
1641 REG_MODE, add new reloads for further processing. Return true if
1642 any change was done. */
1643 static bool
1644 simplify_operand_subreg (int nop, machine_mode reg_mode)
1646 int hard_regno, inner_hard_regno;
1647 rtx_insn *before, *after;
1648 machine_mode mode, innermode;
1649 rtx reg, new_reg;
1650 rtx operand = *curr_id->operand_loc[nop];
1651 enum reg_class regclass;
1652 enum op_type type;
1654 before = after = NULL;
1656 if (GET_CODE (operand) != SUBREG)
1657 return false;
1659 mode = GET_MODE (operand);
1660 reg = SUBREG_REG (operand);
1661 innermode = GET_MODE (reg);
1662 type = curr_static_id->operand[nop].type;
1663 if (MEM_P (reg))
1665 const bool addr_was_valid
1666 = valid_address_p (innermode, XEXP (reg, 0), MEM_ADDR_SPACE (reg));
1667 alter_subreg (curr_id->operand_loc[nop], false);
1668 rtx subst = *curr_id->operand_loc[nop];
1669 lra_assert (MEM_P (subst));
1670 const bool addr_is_valid = valid_address_p (GET_MODE (subst),
1671 XEXP (subst, 0),
1672 MEM_ADDR_SPACE (subst));
1673 if (!addr_was_valid
1674 || addr_is_valid
1675 || ((get_constraint_type (lookup_constraint
1676 (curr_static_id->operand[nop].constraint))
1677 != CT_SPECIAL_MEMORY)
1678 /* We still can reload address and if the address is
1679 valid, we can remove subreg without reloading its
1680 inner memory. */
1681 && valid_address_p (GET_MODE (subst),
1682 regno_reg_rtx
1683 [ira_class_hard_regs
1684 [base_reg_class (GET_MODE (subst),
1685 MEM_ADDR_SPACE (subst),
1686 ADDRESS, SCRATCH)][0]],
1687 MEM_ADDR_SPACE (subst))))
1689 /* If we change the address for a paradoxical subreg of memory, the
1690 new address might violate the necessary alignment or the access
1691 might be slow; take this into consideration. We need not worry
1692 about accesses beyond allocated memory for paradoxical memory
1693 subregs as we don't substitute such equiv memory (see processing
1694 equivalences in function lra_constraints) and because for spilled
1695 pseudos we allocate stack memory enough for the biggest
1696 corresponding paradoxical subreg.
1698 However, do not blindly simplify a (subreg (mem ...)) for
1699 WORD_REGISTER_OPERATIONS targets as this may lead to loading junk
1700 data into a register when the inner is narrower than outer or
1701 missing important data from memory when the inner is wider than
1702 outer. This rule only applies to modes that are no wider than
1703 a word.
1705 If valid memory becomes invalid after subreg elimination
1706 and address might be different we still have to reload
1707 memory.
1709 if ((! addr_was_valid
1710 || addr_is_valid
1711 || known_eq (GET_MODE_SIZE (mode), GET_MODE_SIZE (innermode)))
1712 && !(maybe_ne (GET_MODE_PRECISION (mode),
1713 GET_MODE_PRECISION (innermode))
1714 && known_le (GET_MODE_SIZE (mode), UNITS_PER_WORD)
1715 && known_le (GET_MODE_SIZE (innermode), UNITS_PER_WORD)
1716 && WORD_REGISTER_OPERATIONS)
1717 && (!(MEM_ALIGN (subst) < GET_MODE_ALIGNMENT (mode)
1718 && targetm.slow_unaligned_access (mode, MEM_ALIGN (subst)))
1719 || (MEM_ALIGN (reg) < GET_MODE_ALIGNMENT (innermode)
1720 && targetm.slow_unaligned_access (innermode,
1721 MEM_ALIGN (reg)))))
1722 return true;
1724 *curr_id->operand_loc[nop] = operand;
1726 /* But if the address was not valid, we cannot reload the MEM without
1727 reloading the address first. */
1728 if (!addr_was_valid)
1729 process_address (nop, false, &before, &after);
1731 /* INNERMODE is fast, MODE slow. Reload the mem in INNERMODE. */
1732 enum reg_class rclass
1733 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1734 if (get_reload_reg (curr_static_id->operand[nop].type, innermode,
1735 reg, rclass, NULL,
1736 true, "slow/invalid mem", &new_reg))
1738 bool insert_before, insert_after;
1739 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1741 insert_before = (type != OP_OUT
1742 || partial_subreg_p (mode, innermode));
1743 insert_after = type != OP_IN;
1744 insert_move_for_subreg (insert_before ? &before : NULL,
1745 insert_after ? &after : NULL,
1746 reg, new_reg);
1748 SUBREG_REG (operand) = new_reg;
1750 /* Convert to MODE. */
1751 reg = operand;
1752 rclass
1753 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1754 if (get_reload_reg (curr_static_id->operand[nop].type, mode, reg,
1755 rclass, NULL,
1756 true, "slow/invalid mem", &new_reg))
1758 bool insert_before, insert_after;
1759 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1761 insert_before = type != OP_OUT;
1762 insert_after = type != OP_IN;
1763 insert_move_for_subreg (insert_before ? &before : NULL,
1764 insert_after ? &after : NULL,
1765 reg, new_reg);
1767 *curr_id->operand_loc[nop] = new_reg;
1768 lra_process_new_insns (curr_insn, before, after,
1769 "Inserting slow/invalid mem reload");
1770 return true;
1773 /* If the address was valid and became invalid, prefer to reload
1774 the memory. Typical case is when the index scale should
1775 correspond the memory. */
1776 *curr_id->operand_loc[nop] = operand;
1777 /* Do not return false here as the MEM_P (reg) will be processed
1778 later in this function. */
1780 else if (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER)
1782 alter_subreg (curr_id->operand_loc[nop], false);
1783 return true;
1785 else if (CONSTANT_P (reg))
1787 /* Try to simplify subreg of constant. It is usually result of
1788 equivalence substitution. */
1789 if (innermode == VOIDmode
1790 && (innermode = original_subreg_reg_mode[nop]) == VOIDmode)
1791 innermode = curr_static_id->operand[nop].mode;
1792 if ((new_reg = simplify_subreg (mode, reg, innermode,
1793 SUBREG_BYTE (operand))) != NULL_RTX)
1795 *curr_id->operand_loc[nop] = new_reg;
1796 return true;
1799 /* Put constant into memory when we have mixed modes. It generates
1800 a better code in most cases as it does not need a secondary
1801 reload memory. It also prevents LRA looping when LRA is using
1802 secondary reload memory again and again. */
1803 if (CONSTANT_P (reg) && CONST_POOL_OK_P (reg_mode, reg)
1804 && SCALAR_INT_MODE_P (reg_mode) != SCALAR_INT_MODE_P (mode))
1806 SUBREG_REG (operand) = force_const_mem (reg_mode, reg);
1807 alter_subreg (curr_id->operand_loc[nop], false);
1808 return true;
1810 auto fp_subreg_can_be_simplified_after_reload_p = [] (machine_mode innermode,
1811 poly_uint64 offset,
1812 machine_mode mode) {
1813 reload_completed = 1;
1814 bool res = simplify_subreg_regno (FRAME_POINTER_REGNUM,
1815 innermode,
1816 offset, mode) >= 0;
1817 reload_completed = 0;
1818 return res;
1820 /* Force a reload of the SUBREG_REG if this is a constant or PLUS or
1821 if there may be a problem accessing OPERAND in the outer
1822 mode. */
1823 if ((REG_P (reg)
1824 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1825 && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1826 /* Don't reload paradoxical subregs because we could be looping
1827 having repeatedly final regno out of hard regs range. */
1828 && (hard_regno_nregs (hard_regno, innermode)
1829 >= hard_regno_nregs (hard_regno, mode))
1830 && simplify_subreg_regno (hard_regno, innermode,
1831 SUBREG_BYTE (operand), mode) < 0
1832 /* Exclude reloading of frame pointer in subreg if frame pointer can not
1833 be simplified here only because the reload is not finished yet. */
1834 && (hard_regno != FRAME_POINTER_REGNUM
1835 || !fp_subreg_can_be_simplified_after_reload_p (innermode,
1836 SUBREG_BYTE (operand),
1837 mode))
1838 /* Don't reload subreg for matching reload. It is actually
1839 valid subreg in LRA. */
1840 && ! LRA_SUBREG_P (operand))
1841 || CONSTANT_P (reg) || GET_CODE (reg) == PLUS || MEM_P (reg))
1843 enum reg_class rclass;
1845 if (REG_P (reg))
1846 /* There is a big probability that we will get the same class
1847 for the new pseudo and we will get the same insn which
1848 means infinite looping. So spill the new pseudo. */
1849 rclass = NO_REGS;
1850 else
1851 /* The class will be defined later in curr_insn_transform. */
1852 rclass
1853 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1855 if (get_reload_reg (curr_static_id->operand[nop].type, reg_mode, reg,
1856 rclass, NULL,
1857 true, "subreg reg", &new_reg))
1859 bool insert_before, insert_after;
1860 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1862 insert_before = (type != OP_OUT
1863 || read_modify_subreg_p (operand));
1864 insert_after = (type != OP_IN);
1865 insert_move_for_subreg (insert_before ? &before : NULL,
1866 insert_after ? &after : NULL,
1867 reg, new_reg);
1869 SUBREG_REG (operand) = new_reg;
1870 lra_process_new_insns (curr_insn, before, after,
1871 "Inserting subreg reload");
1872 return true;
1874 /* Force a reload for a paradoxical subreg. For paradoxical subreg,
1875 IRA allocates hardreg to the inner pseudo reg according to its mode
1876 instead of the outermode, so the size of the hardreg may not be enough
1877 to contain the outermode operand, in that case we may need to insert
1878 reload for the reg. For the following two types of paradoxical subreg,
1879 we need to insert reload:
1880 1. If the op_type is OP_IN, and the hardreg could not be paired with
1881 other hardreg to contain the outermode operand
1882 (checked by in_hard_reg_set_p), we need to insert the reload.
1883 2. If the op_type is OP_OUT or OP_INOUT.
1885 Here is a paradoxical subreg example showing how the reload is generated:
1887 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1888 (subreg:TI (reg:DI 107 [ __comp ]) 0)) {*movti_internal_rex64}
1890 In IRA, reg107 is allocated to a DImode hardreg. We use x86-64 as example
1891 here, if reg107 is assigned to hardreg R15, because R15 is the last
1892 hardreg, compiler cannot find another hardreg to pair with R15 to
1893 contain TImode data. So we insert a TImode reload reg180 for it.
1894 After reload is inserted:
1896 (insn 283 0 0 (set (subreg:DI (reg:TI 180 [orig:107 __comp ] [107]) 0)
1897 (reg:DI 107 [ __comp ])) -1
1898 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1899 (subreg:TI (reg:TI 180 [orig:107 __comp ] [107]) 0)) {*movti_internal_rex64}
1901 Two reload hard registers will be allocated to reg180 to save TImode data
1902 in LRA_assign.
1904 For LRA pseudos this should normally be handled by the biggest_mode
1905 mechanism. However, it's possible for new uses of an LRA pseudo
1906 to be introduced after we've allocated it, such as when undoing
1907 inheritance, and the allocated register might not then be appropriate
1908 for the new uses. */
1909 else if (REG_P (reg)
1910 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1911 && paradoxical_subreg_p (operand)
1912 && (inner_hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1913 && ((hard_regno
1914 = simplify_subreg_regno (inner_hard_regno, innermode,
1915 SUBREG_BYTE (operand), mode)) < 0
1916 || ((hard_regno_nregs (inner_hard_regno, innermode)
1917 < hard_regno_nregs (hard_regno, mode))
1918 && (regclass = lra_get_allocno_class (REGNO (reg)))
1919 && (type != OP_IN
1920 || !in_hard_reg_set_p (reg_class_contents[regclass],
1921 mode, hard_regno)
1922 || overlaps_hard_reg_set_p (lra_no_alloc_regs,
1923 mode, hard_regno)))))
1925 /* The class will be defined later in curr_insn_transform. */
1926 enum reg_class rclass
1927 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1929 if (get_reload_reg (curr_static_id->operand[nop].type, mode, reg,
1930 rclass, NULL,
1931 true, "paradoxical subreg", &new_reg))
1933 rtx subreg;
1934 bool insert_before, insert_after;
1936 PUT_MODE (new_reg, mode);
1937 subreg = gen_lowpart_SUBREG (innermode, new_reg);
1938 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1940 insert_before = (type != OP_OUT);
1941 insert_after = (type != OP_IN);
1942 insert_move_for_subreg (insert_before ? &before : NULL,
1943 insert_after ? &after : NULL,
1944 reg, subreg);
1946 SUBREG_REG (operand) = new_reg;
1947 lra_process_new_insns (curr_insn, before, after,
1948 "Inserting paradoxical subreg reload");
1949 return true;
1951 return false;
1954 /* Return TRUE if X refers for a hard register from SET. */
1955 static bool
1956 uses_hard_regs_p (rtx x, HARD_REG_SET set)
1958 int i, j, x_hard_regno;
1959 machine_mode mode;
1960 const char *fmt;
1961 enum rtx_code code;
1963 if (x == NULL_RTX)
1964 return false;
1965 code = GET_CODE (x);
1966 mode = GET_MODE (x);
1968 if (code == SUBREG)
1970 /* For all SUBREGs we want to check whether the full multi-register
1971 overlaps the set. For normal SUBREGs this means 'get_hard_regno' of
1972 the inner register, for paradoxical SUBREGs this means the
1973 'get_hard_regno' of the full SUBREG and for complete SUBREGs either is
1974 fine. Use the wider mode for all cases. */
1975 rtx subreg = SUBREG_REG (x);
1976 mode = wider_subreg_mode (x);
1977 if (mode == GET_MODE (subreg))
1979 x = subreg;
1980 code = GET_CODE (x);
1984 if (REG_P (x) || SUBREG_P (x))
1986 x_hard_regno = get_hard_regno (x);
1987 return (x_hard_regno >= 0
1988 && overlaps_hard_reg_set_p (set, mode, x_hard_regno));
1990 fmt = GET_RTX_FORMAT (code);
1991 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1993 if (fmt[i] == 'e')
1995 if (uses_hard_regs_p (XEXP (x, i), set))
1996 return true;
1998 else if (fmt[i] == 'E')
2000 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2001 if (uses_hard_regs_p (XVECEXP (x, i, j), set))
2002 return true;
2005 return false;
2008 /* Return true if OP is a spilled pseudo. */
2009 static inline bool
2010 spilled_pseudo_p (rtx op)
2012 return (REG_P (op)
2013 && REGNO (op) >= FIRST_PSEUDO_REGISTER && in_mem_p (REGNO (op)));
2016 /* Return true if X is a general constant. */
2017 static inline bool
2018 general_constant_p (rtx x)
2020 return CONSTANT_P (x) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (x));
2023 static bool
2024 reg_in_class_p (rtx reg, enum reg_class cl)
2026 if (cl == NO_REGS)
2027 return get_reg_class (REGNO (reg)) == NO_REGS;
2028 return in_class_p (reg, cl, NULL);
2031 /* Return true if SET of RCLASS contains no hard regs which can be
2032 used in MODE. */
2033 static bool
2034 prohibited_class_reg_set_mode_p (enum reg_class rclass,
2035 HARD_REG_SET &set,
2036 machine_mode mode)
2038 HARD_REG_SET temp;
2040 lra_assert (hard_reg_set_subset_p (reg_class_contents[rclass], set));
2041 temp = set & ~lra_no_alloc_regs;
2042 return (hard_reg_set_subset_p
2043 (temp, ira_prohibited_class_mode_regs[rclass][mode]));
2047 /* Used to check validity info about small class input operands. It
2048 should be incremented at start of processing an insn
2049 alternative. */
2050 static unsigned int curr_small_class_check = 0;
2052 /* Update number of used inputs of class OP_CLASS for operand NOP
2053 of alternative NALT. Return true if we have more such class operands
2054 than the number of available regs. */
2055 static bool
2056 update_and_check_small_class_inputs (int nop, int nalt,
2057 enum reg_class op_class)
2059 static unsigned int small_class_check[LIM_REG_CLASSES];
2060 static int small_class_input_nums[LIM_REG_CLASSES];
2062 if (SMALL_REGISTER_CLASS_P (op_class)
2063 /* We are interesting in classes became small because of fixing
2064 some hard regs, e.g. by an user through GCC options. */
2065 && hard_reg_set_intersect_p (reg_class_contents[op_class],
2066 ira_no_alloc_regs)
2067 && (curr_static_id->operand[nop].type != OP_OUT
2068 || TEST_BIT (curr_static_id->operand[nop].early_clobber_alts, nalt)))
2070 if (small_class_check[op_class] == curr_small_class_check)
2071 small_class_input_nums[op_class]++;
2072 else
2074 small_class_check[op_class] = curr_small_class_check;
2075 small_class_input_nums[op_class] = 1;
2077 if (small_class_input_nums[op_class] > ira_class_hard_regs_num[op_class])
2078 return true;
2080 return false;
2083 /* Print operand constraints for alternative ALT_NUMBER of the current
2084 insn. */
2085 static void
2086 print_curr_insn_alt (int alt_number)
2088 for (int i = 0; i < curr_static_id->n_operands; i++)
2090 const char *p = (curr_static_id->operand_alternative
2091 [alt_number * curr_static_id->n_operands + i].constraint);
2092 if (*p == '\0')
2093 continue;
2094 fprintf (lra_dump_file, " (%d) ", i);
2095 for (; *p != '\0' && *p != ',' && *p != '#'; p++)
2096 fputc (*p, lra_dump_file);
2100 /* Major function to choose the current insn alternative and what
2101 operands should be reloaded and how. If ONLY_ALTERNATIVE is not
2102 negative we should consider only this alternative. Return false if
2103 we cannot choose the alternative or find how to reload the
2104 operands. */
2105 static bool
2106 process_alt_operands (int only_alternative)
2108 bool ok_p = false;
2109 int nop, overall, nalt;
2110 int n_alternatives = curr_static_id->n_alternatives;
2111 int n_operands = curr_static_id->n_operands;
2112 /* LOSERS counts the operands that don't fit this alternative and
2113 would require loading. */
2114 int losers;
2115 int addr_losers;
2116 /* REJECT is a count of how undesirable this alternative says it is
2117 if any reloading is required. If the alternative matches exactly
2118 then REJECT is ignored, but otherwise it gets this much counted
2119 against it in addition to the reloading needed. */
2120 int reject;
2121 /* This is defined by '!' or '?' alternative constraint and added to
2122 reject. But in some cases it can be ignored. */
2123 int static_reject;
2124 int op_reject;
2125 /* The number of elements in the following array. */
2126 int early_clobbered_regs_num;
2127 /* Numbers of operands which are early clobber registers. */
2128 int early_clobbered_nops[MAX_RECOG_OPERANDS];
2129 enum reg_class curr_alt[MAX_RECOG_OPERANDS];
2130 HARD_REG_SET curr_alt_set[MAX_RECOG_OPERANDS];
2131 HARD_REG_SET curr_alt_exclude_start_hard_regs[MAX_RECOG_OPERANDS];
2132 bool curr_alt_match_win[MAX_RECOG_OPERANDS];
2133 bool curr_alt_win[MAX_RECOG_OPERANDS];
2134 bool curr_alt_offmemok[MAX_RECOG_OPERANDS];
2135 int curr_alt_matches[MAX_RECOG_OPERANDS];
2136 /* The number of elements in the following array. */
2137 int curr_alt_dont_inherit_ops_num;
2138 /* Numbers of operands whose reload pseudos should not be inherited. */
2139 int curr_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
2140 bool curr_reuse_alt_p;
2141 /* True if output stack pointer reload should be generated for the current
2142 alternative. */
2143 bool curr_alt_out_sp_reload_p;
2144 bool curr_alt_class_change_p;
2145 rtx op;
2146 /* The register when the operand is a subreg of register, otherwise the
2147 operand itself. */
2148 rtx no_subreg_reg_operand[MAX_RECOG_OPERANDS];
2149 /* The register if the operand is a register or subreg of register,
2150 otherwise NULL. */
2151 rtx operand_reg[MAX_RECOG_OPERANDS];
2152 int hard_regno[MAX_RECOG_OPERANDS];
2153 machine_mode biggest_mode[MAX_RECOG_OPERANDS];
2154 int reload_nregs, reload_sum;
2155 bool costly_p;
2156 enum reg_class cl;
2157 const HARD_REG_SET *cl_filter;
2159 /* Calculate some data common for all alternatives to speed up the
2160 function. */
2161 for (nop = 0; nop < n_operands; nop++)
2163 rtx reg;
2165 op = no_subreg_reg_operand[nop] = *curr_id->operand_loc[nop];
2166 /* The real hard regno of the operand after the allocation. */
2167 hard_regno[nop] = get_hard_regno (op);
2169 operand_reg[nop] = reg = op;
2170 biggest_mode[nop] = GET_MODE (op);
2171 if (GET_CODE (op) == SUBREG)
2173 biggest_mode[nop] = wider_subreg_mode (op);
2174 operand_reg[nop] = reg = SUBREG_REG (op);
2176 if (! REG_P (reg))
2177 operand_reg[nop] = NULL_RTX;
2178 else if (REGNO (reg) >= FIRST_PSEUDO_REGISTER
2179 || ((int) REGNO (reg)
2180 == lra_get_elimination_hard_regno (REGNO (reg))))
2181 no_subreg_reg_operand[nop] = reg;
2182 else
2183 operand_reg[nop] = no_subreg_reg_operand[nop]
2184 /* Just use natural mode for elimination result. It should
2185 be enough for extra constraints hooks. */
2186 = regno_reg_rtx[hard_regno[nop]];
2189 /* The constraints are made of several alternatives. Each operand's
2190 constraint looks like foo,bar,... with commas separating the
2191 alternatives. The first alternatives for all operands go
2192 together, the second alternatives go together, etc.
2194 First loop over alternatives. */
2195 alternative_mask preferred = curr_id->preferred_alternatives;
2196 if (only_alternative >= 0)
2197 preferred &= ALTERNATIVE_BIT (only_alternative);
2199 for (nalt = 0; nalt < n_alternatives; nalt++)
2201 /* Loop over operands for one constraint alternative. */
2202 if (!TEST_BIT (preferred, nalt))
2203 continue;
2205 if (lra_dump_file != NULL)
2207 fprintf (lra_dump_file, " Considering alt=%d of insn %d: ",
2208 nalt, INSN_UID (curr_insn));
2209 print_curr_insn_alt (nalt);
2210 fprintf (lra_dump_file, "\n");
2213 bool matching_early_clobber[MAX_RECOG_OPERANDS];
2214 curr_small_class_check++;
2215 overall = losers = addr_losers = 0;
2216 static_reject = reject = reload_nregs = reload_sum = 0;
2217 for (nop = 0; nop < n_operands; nop++)
2219 int inc = (curr_static_id
2220 ->operand_alternative[nalt * n_operands + nop].reject);
2221 if (lra_dump_file != NULL && inc != 0)
2222 fprintf (lra_dump_file,
2223 " Staticly defined alt reject+=%d\n", inc);
2224 static_reject += inc;
2225 matching_early_clobber[nop] = 0;
2227 reject += static_reject;
2228 early_clobbered_regs_num = 0;
2229 curr_alt_out_sp_reload_p = false;
2230 curr_reuse_alt_p = true;
2231 curr_alt_class_change_p = false;
2233 for (nop = 0; nop < n_operands; nop++)
2235 const char *p;
2236 char *end;
2237 int len, c, m, i, opalt_num, this_alternative_matches;
2238 bool win, did_match, offmemok, early_clobber_p;
2239 /* false => this operand can be reloaded somehow for this
2240 alternative. */
2241 bool badop;
2242 /* true => this operand can be reloaded if the alternative
2243 allows regs. */
2244 bool winreg;
2245 /* True if a constant forced into memory would be OK for
2246 this operand. */
2247 bool constmemok;
2248 enum reg_class this_alternative, this_costly_alternative;
2249 HARD_REG_SET this_alternative_set, this_costly_alternative_set;
2250 HARD_REG_SET this_alternative_exclude_start_hard_regs;
2251 bool this_alternative_match_win, this_alternative_win;
2252 bool this_alternative_offmemok;
2253 bool scratch_p;
2254 machine_mode mode;
2255 enum constraint_num cn;
2256 bool class_change_p = false;
2258 opalt_num = nalt * n_operands + nop;
2259 if (curr_static_id->operand_alternative[opalt_num].anything_ok)
2261 /* Fast track for no constraints at all. */
2262 curr_alt[nop] = NO_REGS;
2263 CLEAR_HARD_REG_SET (curr_alt_set[nop]);
2264 curr_alt_win[nop] = true;
2265 curr_alt_match_win[nop] = false;
2266 curr_alt_offmemok[nop] = false;
2267 curr_alt_matches[nop] = -1;
2268 continue;
2271 op = no_subreg_reg_operand[nop];
2272 mode = curr_operand_mode[nop];
2274 win = did_match = winreg = offmemok = constmemok = false;
2275 badop = true;
2277 early_clobber_p = false;
2278 p = curr_static_id->operand_alternative[opalt_num].constraint;
2280 this_costly_alternative = this_alternative = NO_REGS;
2281 /* We update set of possible hard regs besides its class
2282 because reg class might be inaccurate. For example,
2283 union of LO_REGS (l), HI_REGS(h), and STACK_REG(k) in ARM
2284 is translated in HI_REGS because classes are merged by
2285 pairs and there is no accurate intermediate class. */
2286 CLEAR_HARD_REG_SET (this_alternative_set);
2287 CLEAR_HARD_REG_SET (this_costly_alternative_set);
2288 CLEAR_HARD_REG_SET (this_alternative_exclude_start_hard_regs);
2289 this_alternative_win = false;
2290 this_alternative_match_win = false;
2291 this_alternative_offmemok = false;
2292 this_alternative_matches = -1;
2294 /* An empty constraint should be excluded by the fast
2295 track. */
2296 lra_assert (*p != 0 && *p != ',');
2298 op_reject = 0;
2299 /* Scan this alternative's specs for this operand; set WIN
2300 if the operand fits any letter in this alternative.
2301 Otherwise, clear BADOP if this operand could fit some
2302 letter after reloads, or set WINREG if this operand could
2303 fit after reloads provided the constraint allows some
2304 registers. */
2305 costly_p = false;
2308 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
2310 case '\0':
2311 len = 0;
2312 break;
2313 case ',':
2314 c = '\0';
2315 break;
2317 case '&':
2318 early_clobber_p = true;
2319 break;
2321 case '$':
2322 op_reject += LRA_MAX_REJECT;
2323 break;
2324 case '^':
2325 op_reject += LRA_LOSER_COST_FACTOR;
2326 break;
2328 case '#':
2329 /* Ignore rest of this alternative. */
2330 c = '\0';
2331 break;
2333 case '0': case '1': case '2': case '3': case '4':
2334 case '5': case '6': case '7': case '8': case '9':
2336 int m_hregno;
2337 bool match_p;
2339 m = strtoul (p, &end, 10);
2340 p = end;
2341 len = 0;
2342 lra_assert (nop > m);
2344 /* Reject matches if we don't know which operand is
2345 bigger. This situation would arguably be a bug in
2346 an .md pattern, but could also occur in a user asm. */
2347 if (!ordered_p (GET_MODE_SIZE (biggest_mode[m]),
2348 GET_MODE_SIZE (biggest_mode[nop])))
2349 break;
2351 /* Don't match wrong asm insn operands for proper
2352 diagnostic later. */
2353 if (INSN_CODE (curr_insn) < 0
2354 && (curr_operand_mode[m] == BLKmode
2355 || curr_operand_mode[nop] == BLKmode)
2356 && curr_operand_mode[m] != curr_operand_mode[nop])
2357 break;
2359 m_hregno = get_hard_regno (*curr_id->operand_loc[m]);
2360 /* We are supposed to match a previous operand.
2361 If we do, we win if that one did. If we do
2362 not, count both of the operands as losers.
2363 (This is too conservative, since most of the
2364 time only a single reload insn will be needed
2365 to make the two operands win. As a result,
2366 this alternative may be rejected when it is
2367 actually desirable.) */
2368 match_p = false;
2369 if (operands_match_p (*curr_id->operand_loc[nop],
2370 *curr_id->operand_loc[m], m_hregno))
2372 /* We should reject matching of an early
2373 clobber operand if the matching operand is
2374 not dying in the insn. */
2375 if (!TEST_BIT (curr_static_id->operand[m]
2376 .early_clobber_alts, nalt)
2377 || operand_reg[nop] == NULL_RTX
2378 || (find_regno_note (curr_insn, REG_DEAD,
2379 REGNO (op))
2380 || REGNO (op) == REGNO (operand_reg[m])))
2381 match_p = true;
2383 if (match_p)
2385 /* If we are matching a non-offsettable
2386 address where an offsettable address was
2387 expected, then we must reject this
2388 combination, because we can't reload
2389 it. */
2390 if (curr_alt_offmemok[m]
2391 && MEM_P (*curr_id->operand_loc[m])
2392 && curr_alt[m] == NO_REGS && ! curr_alt_win[m])
2393 continue;
2395 else
2397 /* If the operands do not match and one
2398 operand is INOUT, we can not match them.
2399 Try other possibilities, e.g. other
2400 alternatives or commutative operand
2401 exchange. */
2402 if (curr_static_id->operand[nop].type == OP_INOUT
2403 || curr_static_id->operand[m].type == OP_INOUT)
2404 break;
2405 /* Operands don't match. If the operands are
2406 different user defined explicit hard
2407 registers, then we cannot make them match
2408 when one is early clobber operand. */
2409 if ((REG_P (*curr_id->operand_loc[nop])
2410 || SUBREG_P (*curr_id->operand_loc[nop]))
2411 && (REG_P (*curr_id->operand_loc[m])
2412 || SUBREG_P (*curr_id->operand_loc[m])))
2414 rtx nop_reg = *curr_id->operand_loc[nop];
2415 if (SUBREG_P (nop_reg))
2416 nop_reg = SUBREG_REG (nop_reg);
2417 rtx m_reg = *curr_id->operand_loc[m];
2418 if (SUBREG_P (m_reg))
2419 m_reg = SUBREG_REG (m_reg);
2421 if (REG_P (nop_reg)
2422 && HARD_REGISTER_P (nop_reg)
2423 && REG_USERVAR_P (nop_reg)
2424 && REG_P (m_reg)
2425 && HARD_REGISTER_P (m_reg)
2426 && REG_USERVAR_P (m_reg))
2428 int i;
2430 for (i = 0; i < early_clobbered_regs_num; i++)
2431 if (m == early_clobbered_nops[i])
2432 break;
2433 if (i < early_clobbered_regs_num
2434 || early_clobber_p)
2435 break;
2438 /* Both operands must allow a reload register,
2439 otherwise we cannot make them match. */
2440 if (curr_alt[m] == NO_REGS)
2441 break;
2442 /* Retroactively mark the operand we had to
2443 match as a loser, if it wasn't already and
2444 it wasn't matched to a register constraint
2445 (e.g it might be matched by memory). */
2446 if (curr_alt_win[m]
2447 && (operand_reg[m] == NULL_RTX
2448 || hard_regno[m] < 0))
2450 losers++;
2451 reload_nregs
2452 += (ira_reg_class_max_nregs[curr_alt[m]]
2453 [GET_MODE (*curr_id->operand_loc[m])]);
2456 /* Prefer matching earlyclobber alternative as
2457 it results in less hard regs required for
2458 the insn than a non-matching earlyclobber
2459 alternative. */
2460 if (TEST_BIT (curr_static_id->operand[m]
2461 .early_clobber_alts, nalt))
2463 if (lra_dump_file != NULL)
2464 fprintf
2465 (lra_dump_file,
2466 " %d Matching earlyclobber alt:"
2467 " reject--\n",
2468 nop);
2469 if (!matching_early_clobber[m])
2471 reject--;
2472 matching_early_clobber[m] = 1;
2475 /* Otherwise we prefer no matching
2476 alternatives because it gives more freedom
2477 in RA. */
2478 else if (operand_reg[nop] == NULL_RTX
2479 || (find_regno_note (curr_insn, REG_DEAD,
2480 REGNO (operand_reg[nop]))
2481 == NULL_RTX))
2483 if (lra_dump_file != NULL)
2484 fprintf
2485 (lra_dump_file,
2486 " %d Matching alt: reject+=2\n",
2487 nop);
2488 reject += 2;
2491 /* If we have to reload this operand and some
2492 previous operand also had to match the same
2493 thing as this operand, we don't know how to do
2494 that. */
2495 if (!match_p || !curr_alt_win[m])
2497 for (i = 0; i < nop; i++)
2498 if (curr_alt_matches[i] == m)
2499 break;
2500 if (i < nop)
2501 break;
2503 else
2504 did_match = true;
2506 this_alternative_matches = m;
2507 /* This can be fixed with reloads if the operand
2508 we are supposed to match can be fixed with
2509 reloads. */
2510 badop = false;
2511 this_alternative = curr_alt[m];
2512 this_alternative_set = curr_alt_set[m];
2513 this_alternative_exclude_start_hard_regs
2514 = curr_alt_exclude_start_hard_regs[m];
2515 winreg = this_alternative != NO_REGS;
2516 break;
2519 case 'g':
2520 if (MEM_P (op)
2521 || general_constant_p (op)
2522 || spilled_pseudo_p (op))
2523 win = true;
2524 cl = GENERAL_REGS;
2525 cl_filter = nullptr;
2526 goto reg;
2528 default:
2529 cn = lookup_constraint (p);
2530 switch (get_constraint_type (cn))
2532 case CT_REGISTER:
2533 cl = reg_class_for_constraint (cn);
2534 if (cl != NO_REGS)
2536 cl_filter = get_register_filter (cn);
2537 goto reg;
2539 break;
2541 case CT_CONST_INT:
2542 if (CONST_INT_P (op)
2543 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
2544 win = true;
2545 break;
2547 case CT_MEMORY:
2548 case CT_RELAXED_MEMORY:
2549 if (MEM_P (op)
2550 && satisfies_memory_constraint_p (op, cn))
2551 win = true;
2552 else if (spilled_pseudo_p (op))
2553 win = true;
2555 /* If we didn't already win, we can reload constants
2556 via force_const_mem or put the pseudo value into
2557 memory, or make other memory by reloading the
2558 address like for 'o'. */
2559 if (CONST_POOL_OK_P (mode, op)
2560 || MEM_P (op) || REG_P (op)
2561 /* We can restore the equiv insn by a
2562 reload. */
2563 || equiv_substition_p[nop])
2564 badop = false;
2565 constmemok = true;
2566 offmemok = true;
2567 break;
2569 case CT_ADDRESS:
2570 /* An asm operand with an address constraint
2571 that doesn't satisfy address_operand has
2572 is_address cleared, so that we don't try to
2573 make a non-address fit. */
2574 if (!curr_static_id->operand[nop].is_address)
2575 break;
2576 /* If we didn't already win, we can reload the address
2577 into a base register. */
2578 if (satisfies_address_constraint_p (op, cn))
2579 win = true;
2580 cl = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2581 ADDRESS, SCRATCH);
2582 cl_filter = nullptr;
2583 badop = false;
2584 goto reg;
2586 case CT_FIXED_FORM:
2587 if (constraint_satisfied_p (op, cn))
2588 win = true;
2589 break;
2591 case CT_SPECIAL_MEMORY:
2592 if (satisfies_memory_constraint_p (op, cn))
2593 win = true;
2594 else if (spilled_pseudo_p (op))
2596 curr_reuse_alt_p = false;
2597 win = true;
2599 break;
2601 break;
2603 reg:
2604 if (mode == BLKmode)
2605 break;
2606 this_alternative = reg_class_subunion[this_alternative][cl];
2607 if (hard_reg_set_subset_p (this_alternative_set,
2608 reg_class_contents[cl]))
2609 this_alternative_exclude_start_hard_regs
2610 = ira_exclude_class_mode_regs[cl][mode];
2611 else if (!hard_reg_set_subset_p (reg_class_contents[cl],
2612 this_alternative_set))
2613 this_alternative_exclude_start_hard_regs
2614 |= ira_exclude_class_mode_regs[cl][mode];
2615 this_alternative_set |= reg_class_contents[cl];
2616 if (cl_filter)
2617 this_alternative_exclude_start_hard_regs |= ~*cl_filter;
2618 if (costly_p)
2620 this_costly_alternative
2621 = reg_class_subunion[this_costly_alternative][cl];
2622 this_costly_alternative_set |= reg_class_contents[cl];
2624 winreg = true;
2625 if (REG_P (op))
2627 tree decl;
2628 if (hard_regno[nop] >= 0
2629 && in_hard_reg_set_p (this_alternative_set,
2630 mode, hard_regno[nop])
2631 && (!cl_filter
2632 || TEST_HARD_REG_BIT (*cl_filter,
2633 hard_regno[nop]))
2634 && ((REG_ATTRS (op) && (decl = REG_EXPR (op)) != NULL
2635 && VAR_P (decl) && DECL_HARD_REGISTER (decl))
2636 || !(TEST_HARD_REG_BIT
2637 (this_alternative_exclude_start_hard_regs,
2638 hard_regno[nop]))))
2639 win = true;
2640 else if (hard_regno[nop] < 0)
2642 if (in_class_p (op, this_alternative, NULL))
2643 win = true;
2644 else if (in_class_p (op, this_alternative, NULL, true))
2646 class_change_p = true;
2647 win = true;
2651 break;
2653 if (c != ' ' && c != '\t')
2654 costly_p = c == '*';
2656 while ((p += len), c);
2658 scratch_p = (operand_reg[nop] != NULL_RTX
2659 && ira_former_scratch_p (REGNO (operand_reg[nop])));
2660 /* Record which operands fit this alternative. */
2661 if (win)
2663 this_alternative_win = true;
2664 if (class_change_p)
2666 curr_alt_class_change_p = true;
2667 if (lra_dump_file != NULL)
2668 fprintf (lra_dump_file,
2669 " %d Narrowing class: reject+=3\n",
2670 nop);
2671 reject += 3;
2673 if (operand_reg[nop] != NULL_RTX)
2675 if (hard_regno[nop] >= 0)
2677 if (in_hard_reg_set_p (this_costly_alternative_set,
2678 mode, hard_regno[nop]))
2680 if (lra_dump_file != NULL)
2681 fprintf (lra_dump_file,
2682 " %d Costly set: reject++\n",
2683 nop);
2684 reject++;
2687 else
2689 /* Prefer won reg to spilled pseudo under other
2690 equal conditions for possibe inheritance. */
2691 if (! scratch_p)
2693 if (lra_dump_file != NULL)
2694 fprintf
2695 (lra_dump_file,
2696 " %d Non pseudo reload: reject++\n",
2697 nop);
2698 reject++;
2700 if (in_class_p (operand_reg[nop],
2701 this_costly_alternative, NULL, true))
2703 if (lra_dump_file != NULL)
2704 fprintf
2705 (lra_dump_file,
2706 " %d Non pseudo costly reload:"
2707 " reject++\n",
2708 nop);
2709 reject++;
2712 /* We simulate the behavior of old reload here.
2713 Although scratches need hard registers and it
2714 might result in spilling other pseudos, no reload
2715 insns are generated for the scratches. So it
2716 might cost something but probably less than old
2717 reload pass believes. */
2718 if (scratch_p)
2720 if (lra_dump_file != NULL)
2721 fprintf (lra_dump_file,
2722 " %d Scratch win: reject+=2\n",
2723 nop);
2724 reject += 2;
2728 else if (did_match)
2729 this_alternative_match_win = true;
2730 else
2732 int const_to_mem = 0;
2733 bool no_regs_p;
2735 reject += op_reject;
2736 /* Mark output reload of the stack pointer. */
2737 if (op == stack_pointer_rtx
2738 && curr_static_id->operand[nop].type != OP_IN)
2739 curr_alt_out_sp_reload_p = true;
2741 /* If this alternative asks for a specific reg class, see if there
2742 is at least one allocatable register in that class. */
2743 no_regs_p
2744 = (this_alternative == NO_REGS
2745 || (hard_reg_set_subset_p
2746 (reg_class_contents[this_alternative],
2747 lra_no_alloc_regs)));
2749 /* For asms, verify that the class for this alternative is possible
2750 for the mode that is specified. */
2751 if (!no_regs_p && INSN_CODE (curr_insn) < 0)
2753 int i;
2754 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2755 if (targetm.hard_regno_mode_ok (i, mode)
2756 && in_hard_reg_set_p (reg_class_contents[this_alternative],
2757 mode, i))
2758 break;
2759 if (i == FIRST_PSEUDO_REGISTER)
2760 winreg = false;
2763 /* If this operand accepts a register, and if the
2764 register class has at least one allocatable register,
2765 then this operand can be reloaded. */
2766 if (winreg && !no_regs_p)
2767 badop = false;
2769 if (badop)
2771 if (lra_dump_file != NULL)
2772 fprintf (lra_dump_file,
2773 " Bad operand -- refuse\n");
2774 goto fail;
2777 if (this_alternative != NO_REGS)
2779 HARD_REG_SET available_regs
2780 = (reg_class_contents[this_alternative]
2781 & ~((ira_prohibited_class_mode_regs
2782 [this_alternative][mode])
2783 | lra_no_alloc_regs));
2784 if (hard_reg_set_empty_p (available_regs))
2786 /* There are no hard regs holding a value of given
2787 mode. */
2788 if (offmemok)
2790 this_alternative = NO_REGS;
2791 if (lra_dump_file != NULL)
2792 fprintf (lra_dump_file,
2793 " %d Using memory because of"
2794 " a bad mode: reject+=2\n",
2795 nop);
2796 reject += 2;
2798 else
2800 if (lra_dump_file != NULL)
2801 fprintf (lra_dump_file,
2802 " Wrong mode -- refuse\n");
2803 goto fail;
2808 /* If not assigned pseudo has a class which a subset of
2809 required reg class, it is a less costly alternative
2810 as the pseudo still can get a hard reg of necessary
2811 class. */
2812 if (! no_regs_p && REG_P (op) && hard_regno[nop] < 0
2813 && (cl = get_reg_class (REGNO (op))) != NO_REGS
2814 && ira_class_subset_p[this_alternative][cl])
2816 if (lra_dump_file != NULL)
2817 fprintf
2818 (lra_dump_file,
2819 " %d Super set class reg: reject-=3\n", nop);
2820 reject -= 3;
2823 this_alternative_offmemok = offmemok;
2824 if (this_costly_alternative != NO_REGS)
2826 if (lra_dump_file != NULL)
2827 fprintf (lra_dump_file,
2828 " %d Costly loser: reject++\n", nop);
2829 reject++;
2831 /* If the operand is dying, has a matching constraint,
2832 and satisfies constraints of the matched operand
2833 which failed to satisfy the own constraints, most probably
2834 the reload for this operand will be gone. */
2835 if (this_alternative_matches >= 0
2836 && !curr_alt_win[this_alternative_matches]
2837 && REG_P (op)
2838 && find_regno_note (curr_insn, REG_DEAD, REGNO (op))
2839 && (hard_regno[nop] >= 0
2840 ? in_hard_reg_set_p (this_alternative_set,
2841 mode, hard_regno[nop])
2842 : in_class_p (op, this_alternative, NULL)))
2844 if (lra_dump_file != NULL)
2845 fprintf
2846 (lra_dump_file,
2847 " %d Dying matched operand reload: reject++\n",
2848 nop);
2849 reject++;
2851 else
2853 /* Strict_low_part requires to reload the register
2854 not the sub-register. In this case we should
2855 check that a final reload hard reg can hold the
2856 value mode. */
2857 if (curr_static_id->operand[nop].strict_low
2858 && REG_P (op)
2859 && hard_regno[nop] < 0
2860 && GET_CODE (*curr_id->operand_loc[nop]) == SUBREG
2861 && ira_class_hard_regs_num[this_alternative] > 0
2862 && (!targetm.hard_regno_mode_ok
2863 (ira_class_hard_regs[this_alternative][0],
2864 GET_MODE (*curr_id->operand_loc[nop]))))
2866 if (lra_dump_file != NULL)
2867 fprintf
2868 (lra_dump_file,
2869 " Strict low subreg reload -- refuse\n");
2870 goto fail;
2872 losers++;
2874 if (operand_reg[nop] != NULL_RTX
2875 /* Output operands and matched input operands are
2876 not inherited. The following conditions do not
2877 exactly describe the previous statement but they
2878 are pretty close. */
2879 && curr_static_id->operand[nop].type != OP_OUT
2880 && (this_alternative_matches < 0
2881 || curr_static_id->operand[nop].type != OP_IN))
2883 int last_reload = (lra_reg_info[ORIGINAL_REGNO
2884 (operand_reg[nop])]
2885 .last_reload);
2887 /* The value of reload_sum has sense only if we
2888 process insns in their order. It happens only on
2889 the first constraints sub-pass when we do most of
2890 reload work. */
2891 if (lra_constraint_iter == 1 && last_reload > bb_reload_num)
2892 reload_sum += last_reload - bb_reload_num;
2894 /* If this is a constant that is reloaded into the
2895 desired class by copying it to memory first, count
2896 that as another reload. This is consistent with
2897 other code and is required to avoid choosing another
2898 alternative when the constant is moved into memory.
2899 Note that the test here is precisely the same as in
2900 the code below that calls force_const_mem. */
2901 if (CONST_POOL_OK_P (mode, op)
2902 && ((targetm.preferred_reload_class
2903 (op, this_alternative) == NO_REGS)
2904 || no_input_reloads_p))
2906 const_to_mem = 1;
2907 if (! no_regs_p)
2908 losers++;
2911 /* Alternative loses if it requires a type of reload not
2912 permitted for this insn. We can always reload
2913 objects with a REG_UNUSED note. */
2914 if ((curr_static_id->operand[nop].type != OP_IN
2915 && no_output_reloads_p
2916 && ! find_reg_note (curr_insn, REG_UNUSED, op))
2917 || (curr_static_id->operand[nop].type != OP_OUT
2918 && no_input_reloads_p && ! const_to_mem)
2919 || (this_alternative_matches >= 0
2920 && (no_input_reloads_p
2921 || (no_output_reloads_p
2922 && (curr_static_id->operand
2923 [this_alternative_matches].type != OP_IN)
2924 && ! find_reg_note (curr_insn, REG_UNUSED,
2925 no_subreg_reg_operand
2926 [this_alternative_matches])))))
2928 if (lra_dump_file != NULL)
2929 fprintf
2930 (lra_dump_file,
2931 " No input/output reload -- refuse\n");
2932 goto fail;
2935 /* Alternative loses if it required class pseudo cannot
2936 hold value of required mode. Such insns can be
2937 described by insn definitions with mode iterators. */
2938 if (GET_MODE (*curr_id->operand_loc[nop]) != VOIDmode
2939 && ! hard_reg_set_empty_p (this_alternative_set)
2940 /* It is common practice for constraints to use a
2941 class which does not have actually enough regs to
2942 hold the value (e.g. x86 AREG for mode requiring
2943 more one general reg). Therefore we have 2
2944 conditions to check that the reload pseudo cannot
2945 hold the mode value. */
2946 && (!targetm.hard_regno_mode_ok
2947 (ira_class_hard_regs[this_alternative][0],
2948 GET_MODE (*curr_id->operand_loc[nop])))
2949 /* The above condition is not enough as the first
2950 reg in ira_class_hard_regs can be not aligned for
2951 multi-words mode values. */
2952 && (prohibited_class_reg_set_mode_p
2953 (this_alternative, this_alternative_set,
2954 GET_MODE (*curr_id->operand_loc[nop]))))
2956 if (lra_dump_file != NULL)
2957 fprintf (lra_dump_file,
2958 " reload pseudo for op %d "
2959 "cannot hold the mode value -- refuse\n",
2960 nop);
2961 goto fail;
2964 /* Check strong discouragement of reload of non-constant
2965 into class THIS_ALTERNATIVE. */
2966 if (! CONSTANT_P (op) && ! no_regs_p
2967 && (targetm.preferred_reload_class
2968 (op, this_alternative) == NO_REGS
2969 || (curr_static_id->operand[nop].type == OP_OUT
2970 && (targetm.preferred_output_reload_class
2971 (op, this_alternative) == NO_REGS))))
2973 if (offmemok && REG_P (op))
2975 if (lra_dump_file != NULL)
2976 fprintf
2977 (lra_dump_file,
2978 " %d Spill pseudo into memory: reject+=3\n",
2979 nop);
2980 reject += 3;
2982 else
2984 if (lra_dump_file != NULL)
2985 fprintf
2986 (lra_dump_file,
2987 " %d Non-prefered reload: reject+=%d\n",
2988 nop, LRA_MAX_REJECT);
2989 reject += LRA_MAX_REJECT;
2993 if (! (MEM_P (op) && offmemok)
2994 && ! (const_to_mem && constmemok))
2996 /* We prefer to reload pseudos over reloading other
2997 things, since such reloads may be able to be
2998 eliminated later. So bump REJECT in other cases.
2999 Don't do this in the case where we are forcing a
3000 constant into memory and it will then win since
3001 we don't want to have a different alternative
3002 match then. */
3003 if (! (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER))
3005 if (lra_dump_file != NULL)
3006 fprintf
3007 (lra_dump_file,
3008 " %d Non-pseudo reload: reject+=2\n",
3009 nop);
3010 reject += 2;
3013 if (! no_regs_p)
3014 reload_nregs
3015 += ira_reg_class_max_nregs[this_alternative][mode];
3017 if (SMALL_REGISTER_CLASS_P (this_alternative))
3019 if (lra_dump_file != NULL)
3020 fprintf
3021 (lra_dump_file,
3022 " %d Small class reload: reject+=%d\n",
3023 nop, LRA_LOSER_COST_FACTOR / 2);
3024 reject += LRA_LOSER_COST_FACTOR / 2;
3028 /* We are trying to spill pseudo into memory. It is
3029 usually more costly than moving to a hard register
3030 although it might takes the same number of
3031 reloads.
3033 Non-pseudo spill may happen also. Suppose a target allows both
3034 register and memory in the operand constraint alternatives,
3035 then it's typical that an eliminable register has a substition
3036 of "base + offset" which can either be reloaded by a simple
3037 "new_reg <= base + offset" which will match the register
3038 constraint, or a similar reg addition followed by further spill
3039 to and reload from memory which will match the memory
3040 constraint, but this memory spill will be much more costly
3041 usually.
3043 Code below increases the reject for both pseudo and non-pseudo
3044 spill. */
3045 if (no_regs_p
3046 && !(MEM_P (op) && offmemok)
3047 && !(REG_P (op) && hard_regno[nop] < 0))
3049 if (lra_dump_file != NULL)
3050 fprintf
3051 (lra_dump_file,
3052 " %d Spill %spseudo into memory: reject+=3\n",
3053 nop, REG_P (op) ? "" : "Non-");
3054 reject += 3;
3055 if (VECTOR_MODE_P (mode))
3057 /* Spilling vectors into memory is usually more
3058 costly as they contain big values. */
3059 if (lra_dump_file != NULL)
3060 fprintf
3061 (lra_dump_file,
3062 " %d Spill vector pseudo: reject+=2\n",
3063 nop);
3064 reject += 2;
3068 /* When we use an operand requiring memory in given
3069 alternative, the insn should write *and* read the
3070 value to/from memory it is costly in comparison with
3071 an insn alternative which does not use memory
3072 (e.g. register or immediate operand). We exclude
3073 memory operand for such case as we can satisfy the
3074 memory constraints by reloading address. */
3075 if (no_regs_p && offmemok && !MEM_P (op))
3077 if (lra_dump_file != NULL)
3078 fprintf
3079 (lra_dump_file,
3080 " Using memory insn operand %d: reject+=3\n",
3081 nop);
3082 reject += 3;
3085 /* If reload requires moving value through secondary
3086 memory, it will need one more insn at least. */
3087 if (this_alternative != NO_REGS
3088 && REG_P (op) && (cl = get_reg_class (REGNO (op))) != NO_REGS
3089 && ((curr_static_id->operand[nop].type != OP_OUT
3090 && targetm.secondary_memory_needed (GET_MODE (op), cl,
3091 this_alternative))
3092 || (curr_static_id->operand[nop].type != OP_IN
3093 && (targetm.secondary_memory_needed
3094 (GET_MODE (op), this_alternative, cl)))))
3095 losers++;
3097 if (MEM_P (op) && offmemok)
3098 addr_losers++;
3099 else
3101 /* Input reloads can be inherited more often than
3102 output reloads can be removed, so penalize output
3103 reloads. */
3104 if (!REG_P (op) || curr_static_id->operand[nop].type != OP_IN)
3106 if (lra_dump_file != NULL)
3107 fprintf
3108 (lra_dump_file,
3109 " %d Non input pseudo reload: reject++\n",
3110 nop);
3111 reject++;
3114 if (curr_static_id->operand[nop].type == OP_INOUT)
3116 if (lra_dump_file != NULL)
3117 fprintf
3118 (lra_dump_file,
3119 " %d Input/Output reload: reject+=%d\n",
3120 nop, LRA_LOSER_COST_FACTOR);
3121 reject += LRA_LOSER_COST_FACTOR;
3126 if (early_clobber_p && ! scratch_p)
3128 if (lra_dump_file != NULL)
3129 fprintf (lra_dump_file,
3130 " %d Early clobber: reject++\n", nop);
3131 reject++;
3133 /* ??? We check early clobbers after processing all operands
3134 (see loop below) and there we update the costs more.
3135 Should we update the cost (may be approximately) here
3136 because of early clobber register reloads or it is a rare
3137 or non-important thing to be worth to do it. */
3138 overall = (losers * LRA_LOSER_COST_FACTOR + reject
3139 - (addr_losers == losers ? static_reject : 0));
3140 if ((best_losers == 0 || losers != 0) && best_overall < overall)
3142 if (lra_dump_file != NULL)
3143 fprintf (lra_dump_file,
3144 " overall=%d,losers=%d -- refuse\n",
3145 overall, losers);
3146 goto fail;
3149 if (update_and_check_small_class_inputs (nop, nalt,
3150 this_alternative))
3152 if (lra_dump_file != NULL)
3153 fprintf (lra_dump_file,
3154 " not enough small class regs -- refuse\n");
3155 goto fail;
3157 curr_alt[nop] = this_alternative;
3158 curr_alt_set[nop] = this_alternative_set;
3159 curr_alt_exclude_start_hard_regs[nop]
3160 = this_alternative_exclude_start_hard_regs;
3161 curr_alt_win[nop] = this_alternative_win;
3162 curr_alt_match_win[nop] = this_alternative_match_win;
3163 curr_alt_offmemok[nop] = this_alternative_offmemok;
3164 curr_alt_matches[nop] = this_alternative_matches;
3166 if (this_alternative_matches >= 0
3167 && !did_match && !this_alternative_win)
3168 curr_alt_win[this_alternative_matches] = false;
3170 if (early_clobber_p && operand_reg[nop] != NULL_RTX)
3171 early_clobbered_nops[early_clobbered_regs_num++] = nop;
3174 if (curr_insn_set != NULL_RTX && n_operands == 2
3175 /* Prevent processing non-move insns. */
3176 && (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
3177 || SET_SRC (curr_insn_set) == no_subreg_reg_operand[1])
3178 && ((! curr_alt_win[0] && ! curr_alt_win[1]
3179 && REG_P (no_subreg_reg_operand[0])
3180 && REG_P (no_subreg_reg_operand[1])
3181 && (reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
3182 || reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0])))
3183 || (! curr_alt_win[0] && curr_alt_win[1]
3184 && REG_P (no_subreg_reg_operand[1])
3185 /* Check that we reload memory not the memory
3186 address. */
3187 && ! (curr_alt_offmemok[0]
3188 && MEM_P (no_subreg_reg_operand[0]))
3189 && reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0]))
3190 || (curr_alt_win[0] && ! curr_alt_win[1]
3191 && REG_P (no_subreg_reg_operand[0])
3192 /* Check that we reload memory not the memory
3193 address. */
3194 && ! (curr_alt_offmemok[1]
3195 && MEM_P (no_subreg_reg_operand[1]))
3196 && reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
3197 && (! CONST_POOL_OK_P (curr_operand_mode[1],
3198 no_subreg_reg_operand[1])
3199 || (targetm.preferred_reload_class
3200 (no_subreg_reg_operand[1],
3201 (enum reg_class) curr_alt[1]) != NO_REGS))
3202 /* If it is a result of recent elimination in move
3203 insn we can transform it into an add still by
3204 using this alternative. */
3205 && GET_CODE (no_subreg_reg_operand[1]) != PLUS
3206 /* Likewise if the source has been replaced with an
3207 equivalent value. This only happens once -- the reload
3208 will use the equivalent value instead of the register it
3209 replaces -- so there should be no danger of cycling. */
3210 && !equiv_substition_p[1])))
3212 /* We have a move insn and a new reload insn will be similar
3213 to the current insn. We should avoid such situation as
3214 it results in LRA cycling. */
3215 if (lra_dump_file != NULL)
3216 fprintf (lra_dump_file,
3217 " Cycle danger: overall += LRA_MAX_REJECT\n");
3218 overall += LRA_MAX_REJECT;
3220 ok_p = true;
3221 curr_alt_dont_inherit_ops_num = 0;
3222 for (nop = 0; nop < early_clobbered_regs_num; nop++)
3224 int i, j, clobbered_hard_regno, first_conflict_j, last_conflict_j;
3225 HARD_REG_SET temp_set;
3227 i = early_clobbered_nops[nop];
3228 if ((! curr_alt_win[i] && ! curr_alt_match_win[i])
3229 || hard_regno[i] < 0)
3230 continue;
3231 lra_assert (operand_reg[i] != NULL_RTX);
3232 clobbered_hard_regno = hard_regno[i];
3233 CLEAR_HARD_REG_SET (temp_set);
3234 add_to_hard_reg_set (&temp_set, GET_MODE (*curr_id->operand_loc[i]),
3235 clobbered_hard_regno);
3236 first_conflict_j = last_conflict_j = -1;
3237 for (j = 0; j < n_operands; j++)
3238 if (j == i
3239 /* We don't want process insides of match_operator and
3240 match_parallel because otherwise we would process
3241 their operands once again generating a wrong
3242 code. */
3243 || curr_static_id->operand[j].is_operator)
3244 continue;
3245 else if ((curr_alt_matches[j] == i && curr_alt_match_win[j])
3246 || (curr_alt_matches[i] == j && curr_alt_match_win[i]))
3247 continue;
3248 /* If we don't reload j-th operand, check conflicts. */
3249 else if ((curr_alt_win[j] || curr_alt_match_win[j])
3250 && uses_hard_regs_p (*curr_id->operand_loc[j], temp_set))
3252 if (first_conflict_j < 0)
3253 first_conflict_j = j;
3254 last_conflict_j = j;
3255 /* Both the earlyclobber operand and conflicting operand
3256 cannot both be user defined hard registers. */
3257 if (HARD_REGISTER_P (operand_reg[i])
3258 && REG_USERVAR_P (operand_reg[i])
3259 && operand_reg[j] != NULL_RTX
3260 && HARD_REGISTER_P (operand_reg[j])
3261 && REG_USERVAR_P (operand_reg[j]))
3263 /* For asm, let curr_insn_transform diagnose it. */
3264 if (INSN_CODE (curr_insn) < 0)
3265 return false;
3266 fatal_insn ("unable to generate reloads for "
3267 "impossible constraints:", curr_insn);
3270 if (last_conflict_j < 0)
3271 continue;
3273 /* If an earlyclobber operand conflicts with another non-matching
3274 operand (ie, they have been assigned the same hard register),
3275 then it is better to reload the other operand, as there may
3276 exist yet another operand with a matching constraint associated
3277 with the earlyclobber operand. However, if one of the operands
3278 is an explicit use of a hard register, then we must reload the
3279 other non-hard register operand. */
3280 if (HARD_REGISTER_P (operand_reg[i])
3281 || (first_conflict_j == last_conflict_j
3282 && operand_reg[last_conflict_j] != NULL_RTX
3283 && !curr_alt_match_win[last_conflict_j]
3284 && !HARD_REGISTER_P (operand_reg[last_conflict_j])))
3286 curr_alt_win[last_conflict_j] = false;
3287 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++]
3288 = last_conflict_j;
3289 losers++;
3290 if (lra_dump_file != NULL)
3291 fprintf
3292 (lra_dump_file,
3293 " %d Conflict early clobber reload: reject--\n",
3296 else
3298 /* We need to reload early clobbered register and the
3299 matched registers. */
3300 for (j = 0; j < n_operands; j++)
3301 if (curr_alt_matches[j] == i)
3303 curr_alt_match_win[j] = false;
3304 losers++;
3305 overall += LRA_LOSER_COST_FACTOR;
3307 if (! curr_alt_match_win[i])
3308 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++] = i;
3309 else
3311 /* Remember pseudos used for match reloads are never
3312 inherited. */
3313 lra_assert (curr_alt_matches[i] >= 0);
3314 curr_alt_win[curr_alt_matches[i]] = false;
3316 curr_alt_win[i] = curr_alt_match_win[i] = false;
3317 losers++;
3318 if (lra_dump_file != NULL)
3319 fprintf
3320 (lra_dump_file,
3321 " %d Matched conflict early clobber reloads: "
3322 "reject--\n",
3325 /* Early clobber was already reflected in REJECT. */
3326 if (!matching_early_clobber[i])
3328 lra_assert (reject > 0);
3329 reject--;
3330 matching_early_clobber[i] = 1;
3332 overall += LRA_LOSER_COST_FACTOR - 1;
3334 if (lra_dump_file != NULL)
3335 fprintf (lra_dump_file, " overall=%d,losers=%d,rld_nregs=%d\n",
3336 overall, losers, reload_nregs);
3338 /* If this alternative can be made to work by reloading, and it
3339 needs less reloading than the others checked so far, record
3340 it as the chosen goal for reloading. */
3341 if ((best_losers != 0 && losers == 0)
3342 || (((best_losers == 0 && losers == 0)
3343 || (best_losers != 0 && losers != 0))
3344 && (best_overall > overall
3345 || (best_overall == overall
3346 /* If the cost of the reloads is the same,
3347 prefer alternative which requires minimal
3348 number of reload regs. */
3349 && (reload_nregs < best_reload_nregs
3350 || (reload_nregs == best_reload_nregs
3351 && (best_reload_sum < reload_sum
3352 || (best_reload_sum == reload_sum
3353 && nalt < goal_alt_number))))))))
3355 for (nop = 0; nop < n_operands; nop++)
3357 goal_alt_win[nop] = curr_alt_win[nop];
3358 goal_alt_match_win[nop] = curr_alt_match_win[nop];
3359 goal_alt_matches[nop] = curr_alt_matches[nop];
3360 goal_alt[nop] = curr_alt[nop];
3361 goal_alt_exclude_start_hard_regs[nop]
3362 = curr_alt_exclude_start_hard_regs[nop];
3363 goal_alt_offmemok[nop] = curr_alt_offmemok[nop];
3365 goal_alt_dont_inherit_ops_num = curr_alt_dont_inherit_ops_num;
3366 goal_reuse_alt_p = curr_reuse_alt_p;
3367 for (nop = 0; nop < curr_alt_dont_inherit_ops_num; nop++)
3368 goal_alt_dont_inherit_ops[nop] = curr_alt_dont_inherit_ops[nop];
3369 goal_alt_swapped = curr_swapped;
3370 goal_alt_out_sp_reload_p = curr_alt_out_sp_reload_p;
3371 best_overall = overall;
3372 best_losers = losers;
3373 best_reload_nregs = reload_nregs;
3374 best_reload_sum = reload_sum;
3375 goal_alt_number = nalt;
3377 if (losers == 0 && !curr_alt_class_change_p)
3378 /* Everything is satisfied. Do not process alternatives
3379 anymore. */
3380 break;
3381 fail:
3384 return ok_p;
3387 /* Make reload base reg from address AD. */
3388 static rtx
3389 base_to_reg (struct address_info *ad)
3391 enum reg_class cl;
3392 int code = -1;
3393 rtx new_inner = NULL_RTX;
3394 rtx new_reg = NULL_RTX;
3395 rtx_insn *insn;
3396 rtx_insn *last_insn = get_last_insn();
3398 lra_assert (ad->disp == ad->disp_term);
3399 cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
3400 get_index_code (ad));
3401 new_reg = lra_create_new_reg (GET_MODE (*ad->base), NULL_RTX, cl, NULL,
3402 "base");
3403 new_inner = simplify_gen_binary (PLUS, GET_MODE (new_reg), new_reg,
3404 ad->disp_term == NULL
3405 ? const0_rtx
3406 : *ad->disp_term);
3407 if (!valid_address_p (ad->mode, new_inner, ad->as))
3408 return NULL_RTX;
3409 insn = emit_insn (gen_rtx_SET (new_reg, *ad->base));
3410 code = recog_memoized (insn);
3411 if (code < 0)
3413 delete_insns_since (last_insn);
3414 return NULL_RTX;
3417 return new_inner;
3420 /* Make reload base reg + DISP from address AD. Return the new pseudo. */
3421 static rtx
3422 base_plus_disp_to_reg (struct address_info *ad, rtx disp)
3424 enum reg_class cl;
3425 rtx new_reg;
3427 lra_assert (ad->base == ad->base_term);
3428 cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
3429 get_index_code (ad));
3430 new_reg = lra_create_new_reg (GET_MODE (*ad->base_term), NULL_RTX, cl, NULL,
3431 "base + disp");
3432 lra_emit_add (new_reg, *ad->base_term, disp);
3433 return new_reg;
3436 /* Make reload of index part of address AD. Return the new
3437 pseudo. */
3438 static rtx
3439 index_part_to_reg (struct address_info *ad, enum reg_class index_class)
3441 rtx new_reg;
3443 new_reg = lra_create_new_reg (GET_MODE (*ad->index), NULL_RTX,
3444 index_class, NULL, "index term");
3445 expand_mult (GET_MODE (*ad->index), *ad->index_term,
3446 GEN_INT (get_index_scale (ad)), new_reg, 1);
3447 return new_reg;
3450 /* Return true if we can add a displacement to address AD, even if that
3451 makes the address invalid. The fix-up code requires any new address
3452 to be the sum of the BASE_TERM, INDEX and DISP_TERM fields. */
3453 static bool
3454 can_add_disp_p (struct address_info *ad)
3456 return (!ad->autoinc_p
3457 && ad->segment == NULL
3458 && ad->base == ad->base_term
3459 && ad->disp == ad->disp_term);
3462 /* Make equiv substitution in address AD. Return true if a substitution
3463 was made. */
3464 static bool
3465 equiv_address_substitution (struct address_info *ad)
3467 rtx base_reg, new_base_reg, index_reg, new_index_reg, *base_term, *index_term;
3468 poly_int64 disp;
3469 HOST_WIDE_INT scale;
3470 bool change_p;
3472 base_term = strip_subreg (ad->base_term);
3473 if (base_term == NULL)
3474 base_reg = new_base_reg = NULL_RTX;
3475 else
3477 base_reg = *base_term;
3478 new_base_reg = get_equiv_with_elimination (base_reg, curr_insn);
3480 index_term = strip_subreg (ad->index_term);
3481 if (index_term == NULL)
3482 index_reg = new_index_reg = NULL_RTX;
3483 else
3485 index_reg = *index_term;
3486 new_index_reg = get_equiv_with_elimination (index_reg, curr_insn);
3488 if (base_reg == new_base_reg && index_reg == new_index_reg)
3489 return false;
3490 disp = 0;
3491 change_p = false;
3492 if (lra_dump_file != NULL)
3494 fprintf (lra_dump_file, "Changing address in insn %d ",
3495 INSN_UID (curr_insn));
3496 dump_value_slim (lra_dump_file, *ad->outer, 1);
3498 if (base_reg != new_base_reg)
3500 poly_int64 offset;
3501 if (REG_P (new_base_reg))
3503 *base_term = new_base_reg;
3504 change_p = true;
3506 else if (GET_CODE (new_base_reg) == PLUS
3507 && REG_P (XEXP (new_base_reg, 0))
3508 && poly_int_rtx_p (XEXP (new_base_reg, 1), &offset)
3509 && can_add_disp_p (ad))
3511 disp += offset;
3512 *base_term = XEXP (new_base_reg, 0);
3513 change_p = true;
3515 if (ad->base_term2 != NULL)
3516 *ad->base_term2 = *ad->base_term;
3518 if (index_reg != new_index_reg)
3520 poly_int64 offset;
3521 if (REG_P (new_index_reg))
3523 *index_term = new_index_reg;
3524 change_p = true;
3526 else if (GET_CODE (new_index_reg) == PLUS
3527 && REG_P (XEXP (new_index_reg, 0))
3528 && poly_int_rtx_p (XEXP (new_index_reg, 1), &offset)
3529 && can_add_disp_p (ad)
3530 && (scale = get_index_scale (ad)))
3532 disp += offset * scale;
3533 *index_term = XEXP (new_index_reg, 0);
3534 change_p = true;
3537 if (maybe_ne (disp, 0))
3539 if (ad->disp != NULL)
3540 *ad->disp = plus_constant (GET_MODE (*ad->inner), *ad->disp, disp);
3541 else
3543 *ad->inner = plus_constant (GET_MODE (*ad->inner), *ad->inner, disp);
3544 update_address (ad);
3546 change_p = true;
3548 if (lra_dump_file != NULL)
3550 if (! change_p)
3551 fprintf (lra_dump_file, " -- no change\n");
3552 else
3554 fprintf (lra_dump_file, " on equiv ");
3555 dump_value_slim (lra_dump_file, *ad->outer, 1);
3556 fprintf (lra_dump_file, "\n");
3559 return change_p;
3562 /* Skip all modifiers and whitespaces in constraint STR and return the
3563 result. */
3564 static const char *
3565 skip_constraint_modifiers (const char *str)
3567 for (;;str++)
3568 switch (*str)
3570 case '+': case '&' : case '=': case '*': case ' ': case '\t':
3571 case '$': case '^' : case '%': case '?': case '!':
3572 break;
3573 default: return str;
3577 /* Takes a string of 0 or more comma-separated constraints. When more
3578 than one constraint is present, evaluate whether they all correspond
3579 to a single, repeated constraint (e.g. "r,r") or whether we have
3580 more than one distinct constraints (e.g. "r,m"). */
3581 static bool
3582 constraint_unique (const char *cstr)
3584 enum constraint_num ca, cb;
3585 ca = CONSTRAINT__UNKNOWN;
3586 for (;;)
3588 cstr = skip_constraint_modifiers (cstr);
3589 if (*cstr == '\0' || *cstr == ',')
3590 cb = CONSTRAINT_X;
3591 else
3593 cb = lookup_constraint (cstr);
3594 if (cb == CONSTRAINT__UNKNOWN)
3595 return false;
3596 cstr += CONSTRAINT_LEN (cstr[0], cstr);
3598 /* Handle the first iteration of the loop. */
3599 if (ca == CONSTRAINT__UNKNOWN)
3600 ca = cb;
3601 /* Handle the general case of comparing ca with subsequent
3602 constraints. */
3603 else if (ca != cb)
3604 return false;
3605 if (*cstr == '\0')
3606 return true;
3607 if (*cstr == ',')
3608 cstr += 1;
3612 /* Major function to make reloads for an address in operand NOP or
3613 check its correctness (If CHECK_ONLY_P is true). The supported
3614 cases are:
3616 1) an address that existed before LRA started, at which point it
3617 must have been valid. These addresses are subject to elimination
3618 and may have become invalid due to the elimination offset being out
3619 of range.
3621 2) an address created by forcing a constant to memory
3622 (force_const_to_mem). The initial form of these addresses might
3623 not be valid, and it is this function's job to make them valid.
3625 3) a frame address formed from a register and a (possibly zero)
3626 constant offset. As above, these addresses might not be valid and
3627 this function must make them so.
3629 Add reloads to the lists *BEFORE and *AFTER. We might need to add
3630 reloads to *AFTER because of inc/dec, {pre, post} modify in the
3631 address. Return true for any RTL change.
3633 The function is a helper function which does not produce all
3634 transformations (when CHECK_ONLY_P is false) which can be
3635 necessary. It does just basic steps. To do all necessary
3636 transformations use function process_address. */
3637 static bool
3638 process_address_1 (int nop, bool check_only_p,
3639 rtx_insn **before, rtx_insn **after)
3641 struct address_info ad;
3642 rtx new_reg;
3643 HOST_WIDE_INT scale;
3644 rtx op = *curr_id->operand_loc[nop];
3645 rtx mem = extract_mem_from_operand (op);
3646 const char *constraint;
3647 enum constraint_num cn;
3648 bool change_p = false;
3650 if (MEM_P (mem)
3651 && GET_MODE (mem) == BLKmode
3652 && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3653 return false;
3655 constraint
3656 = skip_constraint_modifiers (curr_static_id->operand[nop].constraint);
3657 if (IN_RANGE (constraint[0], '0', '9'))
3659 char *end;
3660 unsigned long dup = strtoul (constraint, &end, 10);
3661 constraint
3662 = skip_constraint_modifiers (curr_static_id->operand[dup].constraint);
3664 cn = lookup_constraint (*constraint == '\0' ? "X" : constraint);
3665 /* If we have several alternatives or/and several constraints in an
3666 alternative and we can not say at this stage what constraint will be used,
3667 use unknown constraint. The exception is an address constraint. If
3668 operand has one address constraint, probably all others constraints are
3669 address ones. */
3670 if (constraint[0] != '\0' && get_constraint_type (cn) != CT_ADDRESS
3671 && !constraint_unique (constraint))
3672 cn = CONSTRAINT__UNKNOWN;
3673 if (insn_extra_address_constraint (cn)
3674 /* When we find an asm operand with an address constraint that
3675 doesn't satisfy address_operand to begin with, we clear
3676 is_address, so that we don't try to make a non-address fit.
3677 If the asm statement got this far, it's because other
3678 constraints are available, and we'll use them, disregarding
3679 the unsatisfiable address ones. */
3680 && curr_static_id->operand[nop].is_address)
3681 decompose_lea_address (&ad, curr_id->operand_loc[nop]);
3682 /* Do not attempt to decompose arbitrary addresses generated by combine
3683 for asm operands with loose constraints, e.g 'X'.
3684 Need to extract memory from op for special memory constraint,
3685 i.e. bcst_mem_operand in i386 backend. */
3686 else if (MEM_P (mem)
3687 && !(INSN_CODE (curr_insn) < 0
3688 && get_constraint_type (cn) == CT_FIXED_FORM
3689 && constraint_satisfied_p (op, cn)))
3690 decompose_mem_address (&ad, mem);
3691 else if (GET_CODE (op) == SUBREG
3692 && MEM_P (SUBREG_REG (op)))
3693 decompose_mem_address (&ad, SUBREG_REG (op));
3694 else
3695 return false;
3696 /* If INDEX_REG_CLASS is assigned to base_term already and isn't to
3697 index_term, swap them so to avoid assigning INDEX_REG_CLASS to both
3698 when INDEX_REG_CLASS is a single register class. */
3699 enum reg_class index_cl = index_reg_class (curr_insn);
3700 if (ad.base_term != NULL
3701 && ad.index_term != NULL
3702 && ira_class_hard_regs_num[index_cl] == 1
3703 && REG_P (*ad.base_term)
3704 && REG_P (*ad.index_term)
3705 && in_class_p (*ad.base_term, index_cl, NULL)
3706 && ! in_class_p (*ad.index_term, index_cl, NULL))
3708 std::swap (ad.base, ad.index);
3709 std::swap (ad.base_term, ad.index_term);
3711 if (! check_only_p)
3712 change_p = equiv_address_substitution (&ad);
3713 if (ad.base_term != NULL
3714 && (process_addr_reg
3715 (ad.base_term, check_only_p, before,
3716 (ad.autoinc_p
3717 && !(REG_P (*ad.base_term)
3718 && find_regno_note (curr_insn, REG_DEAD,
3719 REGNO (*ad.base_term)) != NULL_RTX)
3720 ? after : NULL),
3721 base_reg_class (ad.mode, ad.as, ad.base_outer_code,
3722 get_index_code (&ad), curr_insn))))
3724 change_p = true;
3725 if (ad.base_term2 != NULL)
3726 *ad.base_term2 = *ad.base_term;
3728 if (ad.index_term != NULL
3729 && process_addr_reg (ad.index_term, check_only_p,
3730 before, NULL, index_cl))
3731 change_p = true;
3733 /* Target hooks sometimes don't treat extra-constraint addresses as
3734 legitimate address_operands, so handle them specially. */
3735 if (insn_extra_address_constraint (cn)
3736 && satisfies_address_constraint_p (&ad, cn))
3737 return change_p;
3739 if (check_only_p)
3740 return change_p;
3742 /* There are three cases where the shape of *AD.INNER may now be invalid:
3744 1) the original address was valid, but either elimination or
3745 equiv_address_substitution was applied and that made
3746 the address invalid.
3748 2) the address is an invalid symbolic address created by
3749 force_const_to_mem.
3751 3) the address is a frame address with an invalid offset.
3753 4) the address is a frame address with an invalid base.
3755 All these cases involve a non-autoinc address, so there is no
3756 point revalidating other types. */
3757 if (ad.autoinc_p || valid_address_p (op, &ad, cn))
3758 return change_p;
3760 /* Any index existed before LRA started, so we can assume that the
3761 presence and shape of the index is valid. */
3762 push_to_sequence (*before);
3763 lra_assert (ad.disp == ad.disp_term);
3764 if (ad.base == NULL)
3766 if (ad.index == NULL)
3768 rtx_insn *insn;
3769 rtx_insn *last = get_last_insn ();
3770 int code = -1;
3771 enum reg_class cl = base_reg_class (ad.mode, ad.as,
3772 SCRATCH, SCRATCH,
3773 curr_insn);
3774 rtx addr = *ad.inner;
3776 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, NULL, "addr");
3777 if (HAVE_lo_sum)
3779 /* addr => lo_sum (new_base, addr), case (2) above. */
3780 insn = emit_insn (gen_rtx_SET
3781 (new_reg,
3782 gen_rtx_HIGH (Pmode, copy_rtx (addr))));
3783 code = recog_memoized (insn);
3784 if (code >= 0)
3786 *ad.inner = gen_rtx_LO_SUM (Pmode, new_reg, addr);
3787 if (!valid_address_p (op, &ad, cn))
3789 /* Try to put lo_sum into register. */
3790 insn = emit_insn (gen_rtx_SET
3791 (new_reg,
3792 gen_rtx_LO_SUM (Pmode, new_reg, addr)));
3793 code = recog_memoized (insn);
3794 if (code >= 0)
3796 *ad.inner = new_reg;
3797 if (!valid_address_p (op, &ad, cn))
3799 *ad.inner = addr;
3800 code = -1;
3806 if (code < 0)
3807 delete_insns_since (last);
3810 if (code < 0)
3812 /* addr => new_base, case (2) above. */
3813 lra_emit_move (new_reg, addr);
3815 for (insn = last == NULL_RTX ? get_insns () : NEXT_INSN (last);
3816 insn != NULL_RTX;
3817 insn = NEXT_INSN (insn))
3818 if (recog_memoized (insn) < 0)
3819 break;
3820 if (insn != NULL_RTX)
3822 /* Do nothing if we cannot generate right insns.
3823 This is analogous to reload pass behavior. */
3824 delete_insns_since (last);
3825 end_sequence ();
3826 return false;
3828 *ad.inner = new_reg;
3831 else
3833 /* index * scale + disp => new base + index * scale,
3834 case (1) above. */
3835 enum reg_class cl = base_reg_class (ad.mode, ad.as, PLUS,
3836 GET_CODE (*ad.index),
3837 curr_insn);
3839 lra_assert (index_cl != NO_REGS);
3840 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, NULL, "disp");
3841 lra_emit_move (new_reg, *ad.disp);
3842 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3843 new_reg, *ad.index);
3846 else if (ad.index == NULL)
3848 int regno;
3849 enum reg_class cl;
3850 rtx set;
3851 rtx_insn *insns, *last_insn;
3852 /* Try to reload base into register only if the base is invalid
3853 for the address but with valid offset, case (4) above. */
3854 start_sequence ();
3855 new_reg = base_to_reg (&ad);
3857 /* base + disp => new base, cases (1) and (3) above. */
3858 /* Another option would be to reload the displacement into an
3859 index register. However, postreload has code to optimize
3860 address reloads that have the same base and different
3861 displacements, so reloading into an index register would
3862 not necessarily be a win. */
3863 if (new_reg == NULL_RTX)
3865 /* See if the target can split the displacement into a
3866 legitimate new displacement from a local anchor. */
3867 gcc_assert (ad.disp == ad.disp_term);
3868 poly_int64 orig_offset;
3869 rtx offset1, offset2;
3870 if (poly_int_rtx_p (*ad.disp, &orig_offset)
3871 && targetm.legitimize_address_displacement (&offset1, &offset2,
3872 orig_offset,
3873 ad.mode))
3875 new_reg = base_plus_disp_to_reg (&ad, offset1);
3876 new_reg = gen_rtx_PLUS (GET_MODE (new_reg), new_reg, offset2);
3878 else
3879 new_reg = base_plus_disp_to_reg (&ad, *ad.disp);
3881 insns = get_insns ();
3882 last_insn = get_last_insn ();
3883 /* If we generated at least two insns, try last insn source as
3884 an address. If we succeed, we generate one less insn. */
3885 if (REG_P (new_reg)
3886 && last_insn != insns
3887 && (set = single_set (last_insn)) != NULL_RTX
3888 && GET_CODE (SET_SRC (set)) == PLUS
3889 && REG_P (XEXP (SET_SRC (set), 0))
3890 && CONSTANT_P (XEXP (SET_SRC (set), 1)))
3892 *ad.inner = SET_SRC (set);
3893 if (valid_address_p (op, &ad, cn))
3895 *ad.base_term = XEXP (SET_SRC (set), 0);
3896 *ad.disp_term = XEXP (SET_SRC (set), 1);
3897 cl = base_reg_class (ad.mode, ad.as, ad.base_outer_code,
3898 get_index_code (&ad), curr_insn);
3899 regno = REGNO (*ad.base_term);
3900 if (regno >= FIRST_PSEUDO_REGISTER
3901 && cl != lra_get_allocno_class (regno))
3902 lra_change_class (regno, cl, " Change to", true);
3903 new_reg = SET_SRC (set);
3904 delete_insns_since (PREV_INSN (last_insn));
3907 end_sequence ();
3908 emit_insn (insns);
3909 *ad.inner = new_reg;
3911 else if (ad.disp_term != NULL)
3913 /* base + scale * index + disp => new base + scale * index,
3914 case (1) above. */
3915 gcc_assert (ad.disp == ad.disp_term);
3916 new_reg = base_plus_disp_to_reg (&ad, *ad.disp);
3917 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3918 new_reg, *ad.index);
3920 else if ((scale = get_index_scale (&ad)) == 1)
3922 /* The last transformation to one reg will be made in
3923 curr_insn_transform function. */
3924 end_sequence ();
3925 return false;
3927 else if (scale != 0)
3929 /* base + scale * index => base + new_reg,
3930 case (1) above.
3931 Index part of address may become invalid. For example, we
3932 changed pseudo on the equivalent memory and a subreg of the
3933 pseudo onto the memory of different mode for which the scale is
3934 prohibitted. */
3935 new_reg = index_part_to_reg (&ad, index_cl);
3936 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3937 *ad.base_term, new_reg);
3939 else
3941 enum reg_class cl = base_reg_class (ad.mode, ad.as,
3942 SCRATCH, SCRATCH,
3943 curr_insn);
3944 rtx addr = *ad.inner;
3946 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, NULL, "addr");
3947 /* addr => new_base. */
3948 lra_emit_move (new_reg, addr);
3949 *ad.inner = new_reg;
3951 *before = get_insns ();
3952 end_sequence ();
3953 return true;
3956 /* If CHECK_ONLY_P is false, do address reloads until it is necessary.
3957 Use process_address_1 as a helper function. Return true for any
3958 RTL changes.
3960 If CHECK_ONLY_P is true, just check address correctness. Return
3961 false if the address correct. */
3962 static bool
3963 process_address (int nop, bool check_only_p,
3964 rtx_insn **before, rtx_insn **after)
3966 bool res = false;
3968 while (process_address_1 (nop, check_only_p, before, after))
3970 if (check_only_p)
3971 return true;
3972 res = true;
3974 return res;
3977 /* Override the generic address_reload_context in order to
3978 control the creation of reload pseudos. */
3979 class lra_autoinc_reload_context : public address_reload_context
3981 machine_mode mode;
3982 enum reg_class rclass;
3984 public:
3985 lra_autoinc_reload_context (machine_mode mode, enum reg_class new_rclass)
3986 : mode (mode), rclass (new_rclass) {}
3988 rtx get_reload_reg () const override final
3990 return lra_create_new_reg (mode, NULL_RTX, rclass, NULL, "INC/DEC result");
3994 /* Emit insns to reload VALUE into a new register. VALUE is an
3995 auto-increment or auto-decrement RTX whose operand is a register or
3996 memory location; so reloading involves incrementing that location.
3998 INC_AMOUNT is the number to increment or decrement by (always
3999 positive and ignored for POST_MODIFY/PRE_MODIFY).
4001 Return a pseudo containing the result. */
4002 static rtx
4003 emit_inc (enum reg_class new_rclass, rtx value, poly_int64 inc_amount)
4005 lra_autoinc_reload_context context (GET_MODE (value), new_rclass);
4006 return context.emit_autoinc (value, inc_amount);
4009 /* Return true if the current move insn does not need processing as we
4010 already know that it satisfies its constraints. */
4011 static bool
4012 simple_move_p (void)
4014 rtx dest, src;
4015 enum reg_class dclass, sclass;
4017 lra_assert (curr_insn_set != NULL_RTX);
4018 dest = SET_DEST (curr_insn_set);
4019 src = SET_SRC (curr_insn_set);
4021 /* If the instruction has multiple sets we need to process it even if it
4022 is single_set. This can happen if one or more of the SETs are dead.
4023 See PR73650. */
4024 if (multiple_sets (curr_insn))
4025 return false;
4027 return ((dclass = get_op_class (dest)) != NO_REGS
4028 && (sclass = get_op_class (src)) != NO_REGS
4029 /* The backend guarantees that register moves of cost 2
4030 never need reloads. */
4031 && targetm.register_move_cost (GET_MODE (src), sclass, dclass) == 2);
4034 /* Swap operands NOP and NOP + 1. */
4035 static inline void
4036 swap_operands (int nop)
4038 std::swap (curr_operand_mode[nop], curr_operand_mode[nop + 1]);
4039 std::swap (original_subreg_reg_mode[nop], original_subreg_reg_mode[nop + 1]);
4040 std::swap (*curr_id->operand_loc[nop], *curr_id->operand_loc[nop + 1]);
4041 std::swap (equiv_substition_p[nop], equiv_substition_p[nop + 1]);
4042 /* Swap the duplicates too. */
4043 lra_update_dup (curr_id, nop);
4044 lra_update_dup (curr_id, nop + 1);
4047 /* Main entry point of the constraint code: search the body of the
4048 current insn to choose the best alternative. It is mimicking insn
4049 alternative cost calculation model of former reload pass. That is
4050 because machine descriptions were written to use this model. This
4051 model can be changed in future. Make commutative operand exchange
4052 if it is chosen.
4054 if CHECK_ONLY_P is false, do RTL changes to satisfy the
4055 constraints. Return true if any change happened during function
4056 call.
4058 If CHECK_ONLY_P is true then don't do any transformation. Just
4059 check that the insn satisfies all constraints. If the insn does
4060 not satisfy any constraint, return true. */
4061 static bool
4062 curr_insn_transform (bool check_only_p)
4064 int i, j, k;
4065 int n_operands;
4066 int n_alternatives;
4067 int n_outputs;
4068 int commutative;
4069 signed char goal_alt_matched[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
4070 signed char match_inputs[MAX_RECOG_OPERANDS + 1];
4071 signed char outputs[MAX_RECOG_OPERANDS + 1];
4072 rtx_insn *before, *after;
4073 bool alt_p = false;
4074 /* Flag that the insn has been changed through a transformation. */
4075 bool change_p;
4076 bool sec_mem_p;
4077 bool use_sec_mem_p;
4078 int max_regno_before;
4079 int reused_alternative_num;
4081 curr_insn_set = single_set (curr_insn);
4082 if (curr_insn_set != NULL_RTX && simple_move_p ())
4084 /* We assume that the corresponding insn alternative has no
4085 earlier clobbers. If it is not the case, don't define move
4086 cost equal to 2 for the corresponding register classes. */
4087 lra_set_used_insn_alternative (curr_insn, LRA_NON_CLOBBERED_ALT);
4088 return false;
4091 no_input_reloads_p = no_output_reloads_p = false;
4092 goal_alt_number = -1;
4093 change_p = sec_mem_p = false;
4095 /* CALL_INSNs are not allowed to have any output reloads. */
4096 if (CALL_P (curr_insn))
4097 no_output_reloads_p = true;
4099 n_operands = curr_static_id->n_operands;
4100 n_alternatives = curr_static_id->n_alternatives;
4102 /* Just return "no reloads" if insn has no operands with
4103 constraints. */
4104 if (n_operands == 0 || n_alternatives == 0)
4105 return false;
4107 max_regno_before = max_reg_num ();
4109 for (i = 0; i < n_operands; i++)
4111 goal_alt_matched[i][0] = -1;
4112 goal_alt_matches[i] = -1;
4115 commutative = curr_static_id->commutative;
4117 /* Now see what we need for pseudos that didn't get hard regs or got
4118 the wrong kind of hard reg. For this, we must consider all the
4119 operands together against the register constraints. */
4121 best_losers = best_overall = INT_MAX;
4122 best_reload_sum = 0;
4124 curr_swapped = false;
4125 goal_alt_swapped = false;
4127 if (! check_only_p)
4128 /* Make equivalence substitution and memory subreg elimination
4129 before address processing because an address legitimacy can
4130 depend on memory mode. */
4131 for (i = 0; i < n_operands; i++)
4133 rtx op, subst, old;
4134 bool op_change_p = false;
4136 if (curr_static_id->operand[i].is_operator)
4137 continue;
4139 old = op = *curr_id->operand_loc[i];
4140 if (GET_CODE (old) == SUBREG)
4141 old = SUBREG_REG (old);
4142 subst = get_equiv_with_elimination (old, curr_insn);
4143 original_subreg_reg_mode[i] = VOIDmode;
4144 equiv_substition_p[i] = false;
4145 if (subst != old)
4147 equiv_substition_p[i] = true;
4148 subst = copy_rtx (subst);
4149 lra_assert (REG_P (old));
4150 if (GET_CODE (op) != SUBREG)
4151 *curr_id->operand_loc[i] = subst;
4152 else
4154 SUBREG_REG (op) = subst;
4155 if (GET_MODE (subst) == VOIDmode)
4156 original_subreg_reg_mode[i] = GET_MODE (old);
4158 if (lra_dump_file != NULL)
4160 fprintf (lra_dump_file,
4161 "Changing pseudo %d in operand %i of insn %u on equiv ",
4162 REGNO (old), i, INSN_UID (curr_insn));
4163 dump_value_slim (lra_dump_file, subst, 1);
4164 fprintf (lra_dump_file, "\n");
4166 op_change_p = change_p = true;
4168 if (simplify_operand_subreg (i, GET_MODE (old)) || op_change_p)
4170 change_p = true;
4171 lra_update_dup (curr_id, i);
4175 /* Reload address registers and displacements. We do it before
4176 finding an alternative because of memory constraints. */
4177 before = after = NULL;
4178 for (i = 0; i < n_operands; i++)
4179 if (! curr_static_id->operand[i].is_operator
4180 && process_address (i, check_only_p, &before, &after))
4182 if (check_only_p)
4183 return true;
4184 change_p = true;
4185 lra_update_dup (curr_id, i);
4188 if (change_p)
4189 /* If we've changed the instruction then any alternative that
4190 we chose previously may no longer be valid. */
4191 lra_set_used_insn_alternative (curr_insn, LRA_UNKNOWN_ALT);
4193 if (! check_only_p && curr_insn_set != NULL_RTX
4194 && check_and_process_move (&change_p, &sec_mem_p))
4195 return change_p;
4197 try_swapped:
4199 reused_alternative_num = check_only_p ? LRA_UNKNOWN_ALT : curr_id->used_insn_alternative;
4200 if (lra_dump_file != NULL && reused_alternative_num >= 0)
4201 fprintf (lra_dump_file, "Reusing alternative %d for insn #%u\n",
4202 reused_alternative_num, INSN_UID (curr_insn));
4204 if (process_alt_operands (reused_alternative_num))
4205 alt_p = true;
4207 if (check_only_p)
4208 return ! alt_p || best_losers != 0;
4210 /* If insn is commutative (it's safe to exchange a certain pair of
4211 operands) then we need to try each alternative twice, the second
4212 time matching those two operands as if we had exchanged them. To
4213 do this, really exchange them in operands.
4215 If we have just tried the alternatives the second time, return
4216 operands to normal and drop through. */
4218 if (reused_alternative_num < 0 && commutative >= 0)
4220 curr_swapped = !curr_swapped;
4221 if (curr_swapped)
4223 swap_operands (commutative);
4224 goto try_swapped;
4226 else
4227 swap_operands (commutative);
4230 if (! alt_p && ! sec_mem_p)
4232 /* No alternative works with reloads?? */
4233 if (INSN_CODE (curr_insn) >= 0)
4234 fatal_insn ("unable to generate reloads for:", curr_insn);
4235 error_for_asm (curr_insn,
4236 "inconsistent operand constraints in an %<asm%>");
4237 lra_asm_error_p = true;
4238 if (! JUMP_P (curr_insn))
4240 /* Avoid further trouble with this insn. Don't generate use
4241 pattern here as we could use the insn SP offset. */
4242 lra_set_insn_deleted (curr_insn);
4244 else
4246 lra_invalidate_insn_data (curr_insn);
4247 ira_nullify_asm_goto (curr_insn);
4248 lra_update_insn_regno_info (curr_insn);
4250 return true;
4253 /* If the best alternative is with operands 1 and 2 swapped, swap
4254 them. Update the operand numbers of any reloads already
4255 pushed. */
4257 if (goal_alt_swapped)
4259 if (lra_dump_file != NULL)
4260 fprintf (lra_dump_file, " Commutative operand exchange in insn %u\n",
4261 INSN_UID (curr_insn));
4263 /* Swap the duplicates too. */
4264 swap_operands (commutative);
4265 change_p = true;
4268 /* Some targets' TARGET_SECONDARY_MEMORY_NEEDED (e.g. x86) are defined
4269 too conservatively. So we use the secondary memory only if there
4270 is no any alternative without reloads. */
4271 use_sec_mem_p = false;
4272 if (! alt_p)
4273 use_sec_mem_p = true;
4274 else if (sec_mem_p)
4276 for (i = 0; i < n_operands; i++)
4277 if (! goal_alt_win[i] && ! goal_alt_match_win[i])
4278 break;
4279 use_sec_mem_p = i < n_operands;
4282 if (use_sec_mem_p)
4284 int in = -1, out = -1;
4285 rtx new_reg, src, dest, rld;
4286 machine_mode sec_mode, rld_mode;
4288 lra_assert (curr_insn_set != NULL_RTX && sec_mem_p);
4289 dest = SET_DEST (curr_insn_set);
4290 src = SET_SRC (curr_insn_set);
4291 for (i = 0; i < n_operands; i++)
4292 if (*curr_id->operand_loc[i] == dest)
4293 out = i;
4294 else if (*curr_id->operand_loc[i] == src)
4295 in = i;
4296 for (i = 0; i < curr_static_id->n_dups; i++)
4297 if (out < 0 && *curr_id->dup_loc[i] == dest)
4298 out = curr_static_id->dup_num[i];
4299 else if (in < 0 && *curr_id->dup_loc[i] == src)
4300 in = curr_static_id->dup_num[i];
4301 lra_assert (out >= 0 && in >= 0
4302 && curr_static_id->operand[out].type == OP_OUT
4303 && curr_static_id->operand[in].type == OP_IN);
4304 rld = partial_subreg_p (GET_MODE (src), GET_MODE (dest)) ? src : dest;
4305 rld_mode = GET_MODE (rld);
4306 sec_mode = targetm.secondary_memory_needed_mode (rld_mode);
4307 new_reg = lra_create_new_reg (sec_mode, NULL_RTX, NO_REGS, NULL,
4308 "secondary");
4309 /* If the mode is changed, it should be wider. */
4310 lra_assert (!partial_subreg_p (sec_mode, rld_mode));
4311 if (sec_mode != rld_mode)
4313 /* If the target says specifically to use another mode for
4314 secondary memory moves we cannot reuse the original
4315 insn. */
4316 after = emit_spill_move (false, new_reg, dest);
4317 lra_process_new_insns (curr_insn, NULL, after,
4318 "Inserting the sec. move");
4319 /* We may have non null BEFORE here (e.g. after address
4320 processing. */
4321 push_to_sequence (before);
4322 before = emit_spill_move (true, new_reg, src);
4323 emit_insn (before);
4324 before = get_insns ();
4325 end_sequence ();
4326 lra_process_new_insns (curr_insn, before, NULL, "Changing on");
4327 lra_set_insn_deleted (curr_insn);
4329 else if (dest == rld)
4331 *curr_id->operand_loc[out] = new_reg;
4332 lra_update_dup (curr_id, out);
4333 after = emit_spill_move (false, new_reg, dest);
4334 lra_process_new_insns (curr_insn, NULL, after,
4335 "Inserting the sec. move");
4337 else
4339 *curr_id->operand_loc[in] = new_reg;
4340 lra_update_dup (curr_id, in);
4341 /* See comments above. */
4342 push_to_sequence (before);
4343 before = emit_spill_move (true, new_reg, src);
4344 emit_insn (before);
4345 before = get_insns ();
4346 end_sequence ();
4347 lra_process_new_insns (curr_insn, before, NULL,
4348 "Inserting the sec. move");
4350 lra_update_insn_regno_info (curr_insn);
4351 return true;
4354 lra_assert (goal_alt_number >= 0);
4355 lra_set_used_insn_alternative (curr_insn, goal_reuse_alt_p
4356 ? goal_alt_number : LRA_UNKNOWN_ALT);
4358 if (lra_dump_file != NULL)
4360 const char *p;
4362 fprintf (lra_dump_file, " Choosing alt %d in insn %u:",
4363 goal_alt_number, INSN_UID (curr_insn));
4364 print_curr_insn_alt (goal_alt_number);
4365 if (INSN_CODE (curr_insn) >= 0
4366 && (p = get_insn_name (INSN_CODE (curr_insn))) != NULL)
4367 fprintf (lra_dump_file, " {%s}", p);
4368 if (maybe_ne (curr_id->sp_offset, 0))
4370 fprintf (lra_dump_file, " (sp_off=");
4371 print_dec (curr_id->sp_offset, lra_dump_file);
4372 fprintf (lra_dump_file, ")");
4374 fprintf (lra_dump_file, "\n");
4377 /* Right now, for any pair of operands I and J that are required to
4378 match, with J < I, goal_alt_matches[I] is J. Add I to
4379 goal_alt_matched[J]. */
4381 for (i = 0; i < n_operands; i++)
4382 if ((j = goal_alt_matches[i]) >= 0)
4384 for (k = 0; goal_alt_matched[j][k] >= 0; k++)
4386 /* We allow matching one output operand and several input
4387 operands. */
4388 lra_assert (k == 0
4389 || (curr_static_id->operand[j].type == OP_OUT
4390 && curr_static_id->operand[i].type == OP_IN
4391 && (curr_static_id->operand
4392 [goal_alt_matched[j][0]].type == OP_IN)));
4393 goal_alt_matched[j][k] = i;
4394 goal_alt_matched[j][k + 1] = -1;
4397 for (i = 0; i < n_operands; i++)
4398 goal_alt_win[i] |= goal_alt_match_win[i];
4400 /* Any constants that aren't allowed and can't be reloaded into
4401 registers are here changed into memory references. */
4402 for (i = 0; i < n_operands; i++)
4403 if (goal_alt_win[i])
4405 int regno;
4406 enum reg_class new_class;
4407 rtx reg = *curr_id->operand_loc[i];
4409 if (GET_CODE (reg) == SUBREG)
4410 reg = SUBREG_REG (reg);
4412 if (REG_P (reg) && (regno = REGNO (reg)) >= FIRST_PSEUDO_REGISTER)
4414 bool ok_p = in_class_p (reg, goal_alt[i], &new_class, true);
4416 if (new_class != NO_REGS && get_reg_class (regno) != new_class)
4418 lra_assert (ok_p);
4419 lra_change_class (regno, new_class, " Change to", true);
4423 else
4425 const char *constraint;
4426 char c;
4427 rtx op = *curr_id->operand_loc[i];
4428 rtx subreg = NULL_RTX;
4429 machine_mode mode = curr_operand_mode[i];
4431 if (GET_CODE (op) == SUBREG)
4433 subreg = op;
4434 op = SUBREG_REG (op);
4435 mode = GET_MODE (op);
4438 if (CONST_POOL_OK_P (mode, op)
4439 && ((targetm.preferred_reload_class
4440 (op, (enum reg_class) goal_alt[i]) == NO_REGS)
4441 || no_input_reloads_p))
4443 rtx tem = force_const_mem (mode, op);
4445 change_p = true;
4446 if (subreg != NULL_RTX)
4447 tem = gen_rtx_SUBREG (mode, tem, SUBREG_BYTE (subreg));
4449 *curr_id->operand_loc[i] = tem;
4450 lra_update_dup (curr_id, i);
4451 process_address (i, false, &before, &after);
4453 /* If the alternative accepts constant pool refs directly
4454 there will be no reload needed at all. */
4455 if (subreg != NULL_RTX)
4456 continue;
4457 /* Skip alternatives before the one requested. */
4458 constraint = (curr_static_id->operand_alternative
4459 [goal_alt_number * n_operands + i].constraint);
4460 for (;
4461 (c = *constraint) && c != ',' && c != '#';
4462 constraint += CONSTRAINT_LEN (c, constraint))
4464 enum constraint_num cn = lookup_constraint (constraint);
4465 if ((insn_extra_memory_constraint (cn)
4466 || insn_extra_special_memory_constraint (cn)
4467 || insn_extra_relaxed_memory_constraint (cn))
4468 && satisfies_memory_constraint_p (tem, cn))
4469 break;
4471 if (c == '\0' || c == ',' || c == '#')
4472 continue;
4474 goal_alt_win[i] = true;
4478 n_outputs = 0;
4479 for (i = 0; i < n_operands; i++)
4480 if (curr_static_id->operand[i].type == OP_OUT)
4481 outputs[n_outputs++] = i;
4482 outputs[n_outputs] = -1;
4483 for (i = 0; i < n_operands; i++)
4485 int regno;
4486 bool optional_p = false;
4487 rtx old, new_reg;
4488 rtx op = *curr_id->operand_loc[i];
4490 if (goal_alt_win[i])
4492 if (goal_alt[i] == NO_REGS
4493 && REG_P (op)
4494 && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER
4495 /* We assigned a hard register to the pseudo in the past but now
4496 decided to spill it for the insn. If the pseudo is used only
4497 in this insn, it is better to spill it here as we free hard
4498 registers for other pseudos referenced in the insn. The most
4499 common case of this is a scratch register which will be
4500 transformed to scratch back at the end of LRA. */
4501 && bitmap_single_bit_set_p (&lra_reg_info[regno].insn_bitmap))
4503 if (lra_get_allocno_class (regno) != NO_REGS)
4504 lra_change_class (regno, NO_REGS, " Change to", true);
4505 reg_renumber[regno] = -1;
4507 /* We can do an optional reload. If the pseudo got a hard
4508 reg, we might improve the code through inheritance. If
4509 it does not get a hard register we coalesce memory/memory
4510 moves later. Ignore move insns to avoid cycling. */
4511 if (! lra_simple_p
4512 && lra_undo_inheritance_iter < LRA_MAX_INHERITANCE_PASSES
4513 && goal_alt[i] != NO_REGS && REG_P (op)
4514 && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER
4515 && regno < new_regno_start
4516 && ! ira_former_scratch_p (regno)
4517 && reg_renumber[regno] < 0
4518 /* Check that the optional reload pseudo will be able to
4519 hold given mode value. */
4520 && ! (prohibited_class_reg_set_mode_p
4521 (goal_alt[i], reg_class_contents[goal_alt[i]],
4522 PSEUDO_REGNO_MODE (regno)))
4523 && (curr_insn_set == NULL_RTX
4524 || !((REG_P (SET_SRC (curr_insn_set))
4525 || MEM_P (SET_SRC (curr_insn_set))
4526 || GET_CODE (SET_SRC (curr_insn_set)) == SUBREG)
4527 && (REG_P (SET_DEST (curr_insn_set))
4528 || MEM_P (SET_DEST (curr_insn_set))
4529 || GET_CODE (SET_DEST (curr_insn_set)) == SUBREG))))
4530 optional_p = true;
4531 else if (goal_alt_matched[i][0] != -1
4532 && curr_static_id->operand[i].type == OP_OUT
4533 && (curr_static_id->operand_alternative
4534 [goal_alt_number * n_operands + i].earlyclobber)
4535 && REG_P (op))
4537 for (j = 0; goal_alt_matched[i][j] != -1; j++)
4539 rtx op2 = *curr_id->operand_loc[goal_alt_matched[i][j]];
4541 if (REG_P (op2) && REGNO (op) != REGNO (op2))
4542 break;
4544 if (goal_alt_matched[i][j] != -1)
4546 /* Generate reloads for different output and matched
4547 input registers. This is the easiest way to avoid
4548 creation of non-existing register conflicts in
4549 lra-lives.cc. */
4550 match_reload (i, goal_alt_matched[i], outputs, goal_alt[i],
4551 &goal_alt_exclude_start_hard_regs[i], &before,
4552 &after, true);
4554 continue;
4556 else
4558 enum reg_class rclass, common_class;
4560 if (REG_P (op) && goal_alt[i] != NO_REGS
4561 && (regno = REGNO (op)) >= new_regno_start
4562 && (rclass = get_reg_class (regno)) == ALL_REGS
4563 && ((common_class = ira_reg_class_subset[rclass][goal_alt[i]])
4564 != NO_REGS)
4565 && common_class != ALL_REGS
4566 && enough_allocatable_hard_regs_p (common_class,
4567 GET_MODE (op)))
4568 /* Refine reload pseudo class from chosen alternative
4569 constraint. */
4570 lra_change_class (regno, common_class, " Change to", true);
4571 continue;
4575 /* Operands that match previous ones have already been handled. */
4576 if (goal_alt_matches[i] >= 0)
4577 continue;
4579 /* We should not have an operand with a non-offsettable address
4580 appearing where an offsettable address will do. It also may
4581 be a case when the address should be special in other words
4582 not a general one (e.g. it needs no index reg). */
4583 if (goal_alt_matched[i][0] == -1 && goal_alt_offmemok[i] && MEM_P (op))
4585 enum reg_class rclass;
4586 rtx *loc = &XEXP (op, 0);
4587 enum rtx_code code = GET_CODE (*loc);
4589 push_to_sequence (before);
4590 rclass = base_reg_class (GET_MODE (op), MEM_ADDR_SPACE (op),
4591 MEM, SCRATCH, curr_insn);
4592 if (GET_RTX_CLASS (code) == RTX_AUTOINC)
4593 new_reg = emit_inc (rclass, *loc,
4594 /* This value does not matter for MODIFY. */
4595 GET_MODE_SIZE (GET_MODE (op)));
4596 else if (get_reload_reg (OP_IN, Pmode, *loc, rclass,
4597 NULL, false,
4598 "offsetable address", &new_reg))
4600 rtx addr = *loc;
4601 enum rtx_code code = GET_CODE (addr);
4602 bool align_p = false;
4604 if (code == AND && CONST_INT_P (XEXP (addr, 1)))
4606 /* (and ... (const_int -X)) is used to align to X bytes. */
4607 align_p = true;
4608 addr = XEXP (*loc, 0);
4610 else
4611 addr = canonicalize_reload_addr (addr);
4613 lra_emit_move (new_reg, addr);
4614 if (align_p)
4615 emit_move_insn (new_reg, gen_rtx_AND (GET_MODE (new_reg), new_reg, XEXP (*loc, 1)));
4617 before = get_insns ();
4618 end_sequence ();
4619 *loc = new_reg;
4620 lra_update_dup (curr_id, i);
4622 else if (goal_alt_matched[i][0] == -1)
4624 machine_mode mode;
4625 rtx reg, *loc;
4626 int hard_regno;
4627 enum op_type type = curr_static_id->operand[i].type;
4629 loc = curr_id->operand_loc[i];
4630 mode = curr_operand_mode[i];
4631 if (GET_CODE (*loc) == SUBREG)
4633 reg = SUBREG_REG (*loc);
4634 poly_int64 byte = SUBREG_BYTE (*loc);
4635 if (REG_P (reg)
4636 /* Strict_low_part requires reloading the register and not
4637 just the subreg. Likewise for a strict subreg no wider
4638 than a word for WORD_REGISTER_OPERATIONS targets. */
4639 && (curr_static_id->operand[i].strict_low
4640 || (!paradoxical_subreg_p (mode, GET_MODE (reg))
4641 && (hard_regno
4642 = get_try_hard_regno (REGNO (reg))) >= 0
4643 && (simplify_subreg_regno
4644 (hard_regno,
4645 GET_MODE (reg), byte, mode) < 0)
4646 && (goal_alt[i] == NO_REGS
4647 || (simplify_subreg_regno
4648 (ira_class_hard_regs[goal_alt[i]][0],
4649 GET_MODE (reg), byte, mode) >= 0)))
4650 || (partial_subreg_p (mode, GET_MODE (reg))
4651 && known_le (GET_MODE_SIZE (GET_MODE (reg)),
4652 UNITS_PER_WORD)
4653 && WORD_REGISTER_OPERATIONS))
4654 /* Avoid the situation when there are no available hard regs
4655 for the pseudo mode but there are ones for the subreg
4656 mode: */
4657 && !(goal_alt[i] != NO_REGS
4658 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
4659 && (prohibited_class_reg_set_mode_p
4660 (goal_alt[i], reg_class_contents[goal_alt[i]],
4661 GET_MODE (reg)))
4662 && !(prohibited_class_reg_set_mode_p
4663 (goal_alt[i], reg_class_contents[goal_alt[i]],
4664 mode))))
4666 /* An OP_INOUT is required when reloading a subreg of a
4667 mode wider than a word to ensure that data beyond the
4668 word being reloaded is preserved. Also automatically
4669 ensure that strict_low_part reloads are made into
4670 OP_INOUT which should already be true from the backend
4671 constraints. */
4672 if (type == OP_OUT
4673 && (curr_static_id->operand[i].strict_low
4674 || read_modify_subreg_p (*loc)))
4675 type = OP_INOUT;
4676 loc = &SUBREG_REG (*loc);
4677 mode = GET_MODE (*loc);
4680 old = *loc;
4681 if (get_reload_reg (type, mode, old, goal_alt[i],
4682 &goal_alt_exclude_start_hard_regs[i],
4683 loc != curr_id->operand_loc[i], "", &new_reg)
4684 && type != OP_OUT)
4686 push_to_sequence (before);
4687 lra_emit_move (new_reg, old);
4688 before = get_insns ();
4689 end_sequence ();
4691 *loc = new_reg;
4692 if (type != OP_IN
4693 && find_reg_note (curr_insn, REG_UNUSED, old) == NULL_RTX)
4695 start_sequence ();
4696 lra_emit_move (type == OP_INOUT ? copy_rtx (old) : old, new_reg);
4697 emit_insn (after);
4698 after = get_insns ();
4699 end_sequence ();
4700 *loc = new_reg;
4702 for (j = 0; j < goal_alt_dont_inherit_ops_num; j++)
4703 if (goal_alt_dont_inherit_ops[j] == i)
4705 lra_set_regno_unique_value (REGNO (new_reg));
4706 break;
4708 lra_update_dup (curr_id, i);
4710 else if (curr_static_id->operand[i].type == OP_IN
4711 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4712 == OP_OUT
4713 || (curr_static_id->operand[goal_alt_matched[i][0]].type
4714 == OP_INOUT
4715 && (operands_match_p
4716 (*curr_id->operand_loc[i],
4717 *curr_id->operand_loc[goal_alt_matched[i][0]],
4718 -1)))))
4720 /* generate reloads for input and matched outputs. */
4721 match_inputs[0] = i;
4722 match_inputs[1] = -1;
4723 match_reload (goal_alt_matched[i][0], match_inputs, outputs,
4724 goal_alt[i], &goal_alt_exclude_start_hard_regs[i],
4725 &before, &after,
4726 curr_static_id->operand_alternative
4727 [goal_alt_number * n_operands + goal_alt_matched[i][0]]
4728 .earlyclobber);
4730 else if ((curr_static_id->operand[i].type == OP_OUT
4731 || (curr_static_id->operand[i].type == OP_INOUT
4732 && (operands_match_p
4733 (*curr_id->operand_loc[i],
4734 *curr_id->operand_loc[goal_alt_matched[i][0]],
4735 -1))))
4736 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4737 == OP_IN))
4738 /* Generate reloads for output and matched inputs. */
4739 match_reload (i, goal_alt_matched[i], outputs, goal_alt[i],
4740 &goal_alt_exclude_start_hard_regs[i], &before, &after,
4741 curr_static_id->operand_alternative
4742 [goal_alt_number * n_operands + i].earlyclobber);
4743 else if (curr_static_id->operand[i].type == OP_IN
4744 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4745 == OP_IN))
4747 /* Generate reloads for matched inputs. */
4748 match_inputs[0] = i;
4749 for (j = 0; (k = goal_alt_matched[i][j]) >= 0; j++)
4750 match_inputs[j + 1] = k;
4751 match_inputs[j + 1] = -1;
4752 match_reload (-1, match_inputs, outputs, goal_alt[i],
4753 &goal_alt_exclude_start_hard_regs[i],
4754 &before, &after, false);
4756 else
4757 /* We must generate code in any case when function
4758 process_alt_operands decides that it is possible. */
4759 gcc_unreachable ();
4761 if (optional_p)
4763 rtx reg = op;
4765 lra_assert (REG_P (reg));
4766 regno = REGNO (reg);
4767 op = *curr_id->operand_loc[i]; /* Substitution. */
4768 if (GET_CODE (op) == SUBREG)
4769 op = SUBREG_REG (op);
4770 gcc_assert (REG_P (op) && (int) REGNO (op) >= new_regno_start);
4771 bitmap_set_bit (&lra_optional_reload_pseudos, REGNO (op));
4772 lra_reg_info[REGNO (op)].restore_rtx = reg;
4773 if (lra_dump_file != NULL)
4774 fprintf (lra_dump_file,
4775 " Making reload reg %d for reg %d optional\n",
4776 REGNO (op), regno);
4779 if (before != NULL_RTX || after != NULL_RTX
4780 || max_regno_before != max_reg_num ())
4781 change_p = true;
4782 if (change_p)
4784 lra_update_operator_dups (curr_id);
4785 /* Something changes -- process the insn. */
4786 lra_update_insn_regno_info (curr_insn);
4787 if (asm_noperands (PATTERN (curr_insn)) >= 0
4788 && ++curr_id->asm_reloads_num >= FIRST_PSEUDO_REGISTER)
4789 /* Most probably there are no enough registers to satisfy asm insn: */
4790 lra_asm_insn_error (curr_insn);
4792 if (goal_alt_out_sp_reload_p)
4794 /* We have an output stack pointer reload -- update sp offset: */
4795 rtx set;
4796 bool done_p = false;
4797 poly_int64 sp_offset = curr_id->sp_offset;
4798 for (rtx_insn *insn = after; insn != NULL_RTX; insn = NEXT_INSN (insn))
4799 if ((set = single_set (insn)) != NULL_RTX
4800 && SET_DEST (set) == stack_pointer_rtx)
4802 lra_assert (!done_p);
4803 done_p = true;
4804 curr_id->sp_offset = 0;
4805 lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
4806 id->sp_offset = sp_offset;
4807 if (lra_dump_file != NULL)
4808 fprintf (lra_dump_file,
4809 " Moving sp offset from insn %u to %u\n",
4810 INSN_UID (curr_insn), INSN_UID (insn));
4812 lra_assert (done_p);
4814 lra_process_new_insns (curr_insn, before, after, "Inserting insn reload");
4815 return change_p;
4818 /* Return true if INSN satisfies all constraints. In other words, no
4819 reload insns are needed. */
4820 bool
4821 lra_constrain_insn (rtx_insn *insn)
4823 int saved_new_regno_start = new_regno_start;
4824 int saved_new_insn_uid_start = new_insn_uid_start;
4825 bool change_p;
4827 curr_insn = insn;
4828 curr_id = lra_get_insn_recog_data (curr_insn);
4829 curr_static_id = curr_id->insn_static_data;
4830 new_insn_uid_start = get_max_uid ();
4831 new_regno_start = max_reg_num ();
4832 change_p = curr_insn_transform (true);
4833 new_regno_start = saved_new_regno_start;
4834 new_insn_uid_start = saved_new_insn_uid_start;
4835 return ! change_p;
4838 /* Return true if X is in LIST. */
4839 static bool
4840 in_list_p (rtx x, rtx list)
4842 for (; list != NULL_RTX; list = XEXP (list, 1))
4843 if (XEXP (list, 0) == x)
4844 return true;
4845 return false;
4848 /* Return true if X contains an allocatable hard register (if
4849 HARD_REG_P) or a (spilled if SPILLED_P) pseudo. */
4850 static bool
4851 contains_reg_p (rtx x, bool hard_reg_p, bool spilled_p)
4853 int i, j;
4854 const char *fmt;
4855 enum rtx_code code;
4857 code = GET_CODE (x);
4858 if (REG_P (x))
4860 int regno = REGNO (x);
4861 HARD_REG_SET alloc_regs;
4863 if (hard_reg_p)
4865 if (regno >= FIRST_PSEUDO_REGISTER)
4866 regno = lra_get_regno_hard_regno (regno);
4867 if (regno < 0)
4868 return false;
4869 alloc_regs = ~lra_no_alloc_regs;
4870 return overlaps_hard_reg_set_p (alloc_regs, GET_MODE (x), regno);
4872 else
4874 if (regno < FIRST_PSEUDO_REGISTER)
4875 return false;
4876 if (! spilled_p)
4877 return true;
4878 return lra_get_regno_hard_regno (regno) < 0;
4881 fmt = GET_RTX_FORMAT (code);
4882 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4884 if (fmt[i] == 'e')
4886 if (contains_reg_p (XEXP (x, i), hard_reg_p, spilled_p))
4887 return true;
4889 else if (fmt[i] == 'E')
4891 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4892 if (contains_reg_p (XVECEXP (x, i, j), hard_reg_p, spilled_p))
4893 return true;
4896 return false;
4899 /* Process all regs in location *LOC and change them on equivalent
4900 substitution. Return true if any change was done. */
4901 static bool
4902 loc_equivalence_change_p (rtx *loc)
4904 rtx subst, reg, x = *loc;
4905 bool result = false;
4906 enum rtx_code code = GET_CODE (x);
4907 const char *fmt;
4908 int i, j;
4910 if (code == SUBREG)
4912 reg = SUBREG_REG (x);
4913 if ((subst = get_equiv_with_elimination (reg, curr_insn)) != reg
4914 && GET_MODE (subst) == VOIDmode)
4916 /* We cannot reload debug location. Simplify subreg here
4917 while we know the inner mode. */
4918 *loc = simplify_gen_subreg (GET_MODE (x), subst,
4919 GET_MODE (reg), SUBREG_BYTE (x));
4920 return true;
4923 if (code == REG && (subst = get_equiv_with_elimination (x, curr_insn)) != x)
4925 *loc = subst;
4926 return true;
4929 /* Scan all the operand sub-expressions. */
4930 fmt = GET_RTX_FORMAT (code);
4931 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4933 if (fmt[i] == 'e')
4934 result = loc_equivalence_change_p (&XEXP (x, i)) || result;
4935 else if (fmt[i] == 'E')
4936 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4937 result
4938 = loc_equivalence_change_p (&XVECEXP (x, i, j)) || result;
4940 return result;
4943 /* Similar to loc_equivalence_change_p, but for use as
4944 simplify_replace_fn_rtx callback. DATA is insn for which the
4945 elimination is done. If it null we don't do the elimination. */
4946 static rtx
4947 loc_equivalence_callback (rtx loc, const_rtx, void *data)
4949 if (!REG_P (loc))
4950 return NULL_RTX;
4952 rtx subst = (data == NULL
4953 ? get_equiv (loc) : get_equiv_with_elimination (loc, (rtx_insn *) data));
4954 if (subst != loc)
4955 return subst;
4957 return NULL_RTX;
4960 /* Maximum number of generated reload insns per an insn. It is for
4961 preventing this pass cycling in a bug case. */
4962 #define MAX_RELOAD_INSNS_NUMBER LRA_MAX_INSN_RELOADS
4964 /* The current iteration number of this LRA pass. */
4965 int lra_constraint_iter;
4967 /* True if we should during assignment sub-pass check assignment
4968 correctness for all pseudos and spill some of them to correct
4969 conflicts. It can be necessary when we substitute equiv which
4970 needs checking register allocation correctness because the
4971 equivalent value contains allocatable hard registers, or when we
4972 restore multi-register pseudo, or when we change the insn code and
4973 its operand became INOUT operand when it was IN one before. */
4974 bool check_and_force_assignment_correctness_p;
4976 /* Return true if REGNO is referenced in more than one block. */
4977 static bool
4978 multi_block_pseudo_p (int regno)
4980 basic_block bb = NULL;
4981 unsigned int uid;
4982 bitmap_iterator bi;
4984 if (regno < FIRST_PSEUDO_REGISTER)
4985 return false;
4987 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
4988 if (bb == NULL)
4989 bb = BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn);
4990 else if (BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn) != bb)
4991 return true;
4992 return false;
4995 /* Return true if LIST contains a deleted insn. */
4996 static bool
4997 contains_deleted_insn_p (rtx_insn_list *list)
4999 for (; list != NULL_RTX; list = list->next ())
5000 if (NOTE_P (list->insn ())
5001 && NOTE_KIND (list->insn ()) == NOTE_INSN_DELETED)
5002 return true;
5003 return false;
5006 /* Return true if X contains a pseudo dying in INSN. */
5007 static bool
5008 dead_pseudo_p (rtx x, rtx_insn *insn)
5010 int i, j;
5011 const char *fmt;
5012 enum rtx_code code;
5014 if (REG_P (x))
5015 return (insn != NULL_RTX
5016 && find_regno_note (insn, REG_DEAD, REGNO (x)) != NULL_RTX);
5017 code = GET_CODE (x);
5018 fmt = GET_RTX_FORMAT (code);
5019 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5021 if (fmt[i] == 'e')
5023 if (dead_pseudo_p (XEXP (x, i), insn))
5024 return true;
5026 else if (fmt[i] == 'E')
5028 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5029 if (dead_pseudo_p (XVECEXP (x, i, j), insn))
5030 return true;
5033 return false;
5036 /* Return true if INSN contains a dying pseudo in INSN right hand
5037 side. */
5038 static bool
5039 insn_rhs_dead_pseudo_p (rtx_insn *insn)
5041 rtx set = single_set (insn);
5043 gcc_assert (set != NULL);
5044 return dead_pseudo_p (SET_SRC (set), insn);
5047 /* Return true if any init insn of REGNO contains a dying pseudo in
5048 insn right hand side. */
5049 static bool
5050 init_insn_rhs_dead_pseudo_p (int regno)
5052 rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
5054 if (insns == NULL)
5055 return false;
5056 for (; insns != NULL_RTX; insns = insns->next ())
5057 if (insn_rhs_dead_pseudo_p (insns->insn ()))
5058 return true;
5059 return false;
5062 /* Return TRUE if REGNO has a reverse equivalence. The equivalence is
5063 reverse only if we have one init insn with given REGNO as a
5064 source. */
5065 static bool
5066 reverse_equiv_p (int regno)
5068 rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
5069 rtx set;
5071 if (insns == NULL)
5072 return false;
5073 if (! INSN_P (insns->insn ())
5074 || insns->next () != NULL)
5075 return false;
5076 if ((set = single_set (insns->insn ())) == NULL_RTX)
5077 return false;
5078 return REG_P (SET_SRC (set)) && (int) REGNO (SET_SRC (set)) == regno;
5081 /* Return TRUE if REGNO was reloaded in an equivalence init insn. We
5082 call this function only for non-reverse equivalence. */
5083 static bool
5084 contains_reloaded_insn_p (int regno)
5086 rtx set;
5087 rtx_insn_list *list = ira_reg_equiv[regno].init_insns;
5089 for (; list != NULL; list = list->next ())
5090 if ((set = single_set (list->insn ())) == NULL_RTX
5091 || ! REG_P (SET_DEST (set))
5092 || (int) REGNO (SET_DEST (set)) != regno)
5093 return true;
5094 return false;
5097 /* Try combine secondary memory reload insn FROM for insn TO into TO insn.
5098 FROM should be a load insn (usually a secondary memory reload insn). Return
5099 TRUE in case of success. */
5100 static bool
5101 combine_reload_insn (rtx_insn *from, rtx_insn *to)
5103 bool ok_p;
5104 rtx_insn *saved_insn;
5105 rtx set, from_reg, to_reg, op;
5106 enum reg_class to_class, from_class;
5107 int n, nop;
5108 signed char changed_nops[MAX_RECOG_OPERANDS + 1];
5110 /* Check conditions for second memory reload and original insn: */
5111 if ((targetm.secondary_memory_needed
5112 == hook_bool_mode_reg_class_t_reg_class_t_false)
5113 || NEXT_INSN (from) != to
5114 || !NONDEBUG_INSN_P (to)
5115 || CALL_P (to))
5116 return false;
5118 lra_insn_recog_data_t id = lra_get_insn_recog_data (to);
5119 struct lra_static_insn_data *static_id = id->insn_static_data;
5121 if (id->used_insn_alternative == LRA_UNKNOWN_ALT
5122 || (set = single_set (from)) == NULL_RTX)
5123 return false;
5124 from_reg = SET_DEST (set);
5125 to_reg = SET_SRC (set);
5126 /* Ignore optional reloads: */
5127 if (! REG_P (from_reg) || ! REG_P (to_reg)
5128 || bitmap_bit_p (&lra_optional_reload_pseudos, REGNO (from_reg)))
5129 return false;
5130 to_class = lra_get_allocno_class (REGNO (to_reg));
5131 from_class = lra_get_allocno_class (REGNO (from_reg));
5132 /* Check that reload insn is a load: */
5133 if (to_class != NO_REGS || from_class == NO_REGS)
5134 return false;
5135 for (n = nop = 0; nop < static_id->n_operands; nop++)
5137 if (static_id->operand[nop].type != OP_IN)
5138 continue;
5139 op = *id->operand_loc[nop];
5140 if (!REG_P (op) || REGNO (op) != REGNO (from_reg))
5141 continue;
5142 *id->operand_loc[nop] = to_reg;
5143 changed_nops[n++] = nop;
5145 changed_nops[n] = -1;
5146 lra_update_dups (id, changed_nops);
5147 lra_update_insn_regno_info (to);
5148 ok_p = recog_memoized (to) >= 0;
5149 if (ok_p)
5151 /* Check that combined insn does not need any reloads: */
5152 saved_insn = curr_insn;
5153 curr_insn = to;
5154 curr_id = lra_get_insn_recog_data (curr_insn);
5155 curr_static_id = curr_id->insn_static_data;
5156 for (bool swapped_p = false;;)
5158 ok_p = !curr_insn_transform (true);
5159 if (ok_p || curr_static_id->commutative < 0)
5160 break;
5161 swap_operands (curr_static_id->commutative);
5162 if (lra_dump_file != NULL)
5164 fprintf (lra_dump_file,
5165 " Swapping %scombined insn operands:\n",
5166 swapped_p ? "back " : "");
5167 dump_insn_slim (lra_dump_file, to);
5169 if (swapped_p)
5170 break;
5171 swapped_p = true;
5173 curr_insn = saved_insn;
5174 curr_id = lra_get_insn_recog_data (curr_insn);
5175 curr_static_id = curr_id->insn_static_data;
5177 if (ok_p)
5179 id->used_insn_alternative = -1;
5180 lra_push_insn_and_update_insn_regno_info (to);
5181 if (lra_dump_file != NULL)
5183 fprintf (lra_dump_file, " Use combined insn:\n");
5184 dump_insn_slim (lra_dump_file, to);
5186 return true;
5188 if (lra_dump_file != NULL)
5190 fprintf (lra_dump_file, " Failed combined insn:\n");
5191 dump_insn_slim (lra_dump_file, to);
5193 for (int i = 0; i < n; i++)
5195 nop = changed_nops[i];
5196 *id->operand_loc[nop] = from_reg;
5198 lra_update_dups (id, changed_nops);
5199 lra_update_insn_regno_info (to);
5200 if (lra_dump_file != NULL)
5202 fprintf (lra_dump_file, " Restoring insn after failed combining:\n");
5203 dump_insn_slim (lra_dump_file, to);
5205 return false;
5208 /* Entry function of LRA constraint pass. Return true if the
5209 constraint pass did change the code. */
5210 bool
5211 lra_constraints (bool first_p)
5213 bool changed_p;
5214 int i, hard_regno, new_insns_num;
5215 unsigned int min_len, new_min_len, uid;
5216 rtx set, x, reg, nosubreg_dest;
5217 rtx_insn *original_insn;
5218 basic_block last_bb;
5219 bitmap_iterator bi;
5221 lra_constraint_iter++;
5222 if (lra_dump_file != NULL)
5223 fprintf (lra_dump_file, "\n********** Local #%d: **********\n\n",
5224 lra_constraint_iter);
5225 changed_p = false;
5226 if (pic_offset_table_rtx
5227 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5228 check_and_force_assignment_correctness_p = true;
5229 else if (first_p)
5230 /* On the first iteration we should check IRA assignment
5231 correctness. In rare cases, the assignments can be wrong as
5232 early clobbers operands are ignored in IRA or usages of
5233 paradoxical sub-registers are not taken into account by
5234 IRA. */
5235 check_and_force_assignment_correctness_p = true;
5236 new_insn_uid_start = get_max_uid ();
5237 new_regno_start = first_p ? lra_constraint_new_regno_start : max_reg_num ();
5238 /* Mark used hard regs for target stack size calulations. */
5239 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
5240 if (lra_reg_info[i].nrefs != 0
5241 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
5243 int j, nregs;
5245 nregs = hard_regno_nregs (hard_regno, lra_reg_info[i].biggest_mode);
5246 for (j = 0; j < nregs; j++)
5247 df_set_regs_ever_live (hard_regno + j, true);
5249 /* Do elimination before the equivalence processing as we can spill
5250 some pseudos during elimination. */
5251 lra_eliminate (false, first_p);
5252 auto_bitmap equiv_insn_bitmap (&reg_obstack);
5253 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
5254 if (lra_reg_info[i].nrefs != 0)
5256 ira_reg_equiv[i].profitable_p = true;
5257 reg = regno_reg_rtx[i];
5258 if (lra_get_regno_hard_regno (i) < 0 && (x = get_equiv (reg)) != reg)
5260 bool pseudo_p = contains_reg_p (x, false, false);
5262 /* After RTL transformation, we cannot guarantee that
5263 pseudo in the substitution was not reloaded which might
5264 make equivalence invalid. For example, in reverse
5265 equiv of p0
5267 p0 <- ...
5269 equiv_mem <- p0
5271 the memory address register was reloaded before the 2nd
5272 insn. */
5273 if ((! first_p && pseudo_p)
5274 /* We don't use DF for compilation speed sake. So it
5275 is problematic to update live info when we use an
5276 equivalence containing pseudos in more than one
5277 BB. */
5278 || (pseudo_p && multi_block_pseudo_p (i))
5279 /* If an init insn was deleted for some reason, cancel
5280 the equiv. We could update the equiv insns after
5281 transformations including an equiv insn deletion
5282 but it is not worthy as such cases are extremely
5283 rare. */
5284 || contains_deleted_insn_p (ira_reg_equiv[i].init_insns)
5285 /* If it is not a reverse equivalence, we check that a
5286 pseudo in rhs of the init insn is not dying in the
5287 insn. Otherwise, the live info at the beginning of
5288 the corresponding BB might be wrong after we
5289 removed the insn. When the equiv can be a
5290 constant, the right hand side of the init insn can
5291 be a pseudo. */
5292 || (! reverse_equiv_p (i)
5293 && (init_insn_rhs_dead_pseudo_p (i)
5294 /* If we reloaded the pseudo in an equivalence
5295 init insn, we cannot remove the equiv init
5296 insns and the init insns might write into
5297 const memory in this case. */
5298 || contains_reloaded_insn_p (i)))
5299 /* Prevent access beyond equivalent memory for
5300 paradoxical subregs. */
5301 || (MEM_P (x)
5302 && maybe_gt (GET_MODE_SIZE (lra_reg_info[i].biggest_mode),
5303 GET_MODE_SIZE (GET_MODE (x))))
5304 || (pic_offset_table_rtx
5305 && ((CONST_POOL_OK_P (PSEUDO_REGNO_MODE (i), x)
5306 && (targetm.preferred_reload_class
5307 (x, lra_get_allocno_class (i)) == NO_REGS))
5308 || contains_symbol_ref_p (x))))
5309 ira_reg_equiv[i].defined_p
5310 = ira_reg_equiv[i].caller_save_p = false;
5311 if (contains_reg_p (x, false, true))
5312 ira_reg_equiv[i].profitable_p = false;
5313 if (get_equiv (reg) != reg)
5314 bitmap_ior_into (equiv_insn_bitmap, &lra_reg_info[i].insn_bitmap);
5317 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
5318 update_equiv (i);
5319 /* We should add all insns containing pseudos which should be
5320 substituted by their equivalences. */
5321 EXECUTE_IF_SET_IN_BITMAP (equiv_insn_bitmap, 0, uid, bi)
5322 lra_push_insn_by_uid (uid);
5323 min_len = lra_insn_stack_length ();
5324 new_insns_num = 0;
5325 last_bb = NULL;
5326 changed_p = false;
5327 original_insn = NULL;
5328 while ((new_min_len = lra_insn_stack_length ()) != 0)
5330 curr_insn = lra_pop_insn ();
5331 --new_min_len;
5332 curr_bb = BLOCK_FOR_INSN (curr_insn);
5333 if (curr_bb != last_bb)
5335 last_bb = curr_bb;
5336 bb_reload_num = lra_curr_reload_num;
5338 if (min_len > new_min_len)
5340 min_len = new_min_len;
5341 new_insns_num = 0;
5342 original_insn = curr_insn;
5344 else if (combine_reload_insn (curr_insn, original_insn))
5346 continue;
5348 if (new_insns_num > MAX_RELOAD_INSNS_NUMBER)
5349 internal_error
5350 ("maximum number of generated reload insns per insn achieved (%d)",
5351 MAX_RELOAD_INSNS_NUMBER);
5352 new_insns_num++;
5353 if (DEBUG_INSN_P (curr_insn))
5355 /* We need to check equivalence in debug insn and change
5356 pseudo to the equivalent value if necessary. */
5357 curr_id = lra_get_insn_recog_data (curr_insn);
5358 if (bitmap_bit_p (equiv_insn_bitmap, INSN_UID (curr_insn)))
5360 rtx old = *curr_id->operand_loc[0];
5361 *curr_id->operand_loc[0]
5362 = simplify_replace_fn_rtx (old, NULL_RTX,
5363 loc_equivalence_callback, curr_insn);
5364 if (old != *curr_id->operand_loc[0])
5366 /* If we substitute pseudo by shared equivalence, we can fail
5367 to update LRA reg info and this can result in many
5368 unexpected consequences. So keep rtl unshared: */
5369 *curr_id->operand_loc[0]
5370 = copy_rtx (*curr_id->operand_loc[0]);
5371 lra_update_insn_regno_info (curr_insn);
5372 changed_p = true;
5376 else if (INSN_P (curr_insn))
5378 if ((set = single_set (curr_insn)) != NULL_RTX)
5380 nosubreg_dest = SET_DEST (set);
5381 /* The equivalence pseudo could be set up as SUBREG in a
5382 case when it is a call restore insn in a mode
5383 different from the pseudo mode. */
5384 if (GET_CODE (nosubreg_dest) == SUBREG)
5385 nosubreg_dest = SUBREG_REG (nosubreg_dest);
5386 if ((REG_P (nosubreg_dest)
5387 && (x = get_equiv (nosubreg_dest)) != nosubreg_dest
5388 /* Remove insns which set up a pseudo whose value
5389 cannot be changed. Such insns might be not in
5390 init_insns because we don't update equiv data
5391 during insn transformations.
5393 As an example, let suppose that a pseudo got
5394 hard register and on the 1st pass was not
5395 changed to equivalent constant. We generate an
5396 additional insn setting up the pseudo because of
5397 secondary memory movement. Then the pseudo is
5398 spilled and we use the equiv constant. In this
5399 case we should remove the additional insn and
5400 this insn is not init_insns list. */
5401 && (! MEM_P (x) || MEM_READONLY_P (x)
5402 /* Check that this is actually an insn setting
5403 up the equivalence. */
5404 || in_list_p (curr_insn,
5405 ira_reg_equiv
5406 [REGNO (nosubreg_dest)].init_insns)))
5407 || (((x = get_equiv (SET_SRC (set))) != SET_SRC (set))
5408 && in_list_p (curr_insn,
5409 ira_reg_equiv
5410 [REGNO (SET_SRC (set))].init_insns)
5411 /* This is a reverse equivalence to memory (see ira.cc)
5412 in store insn. We can reload all the destination and
5413 have an output reload which is a store to memory. If
5414 we just remove the insn, we will have the output
5415 reload storing an undefined value to the memory.
5416 Check that we did not reload the memory to prevent a
5417 wrong code generation. We could implement using the
5418 equivalence still in such case but doing this is not
5419 worth the efforts as such case is very rare. */
5420 && MEM_P (nosubreg_dest)))
5422 /* This is equiv init insn of pseudo which did not get a
5423 hard register -- remove the insn. */
5424 if (lra_dump_file != NULL)
5426 fprintf (lra_dump_file,
5427 " Removing equiv init insn %i (freq=%d)\n",
5428 INSN_UID (curr_insn),
5429 REG_FREQ_FROM_BB (BLOCK_FOR_INSN (curr_insn)));
5430 dump_insn_slim (lra_dump_file, curr_insn);
5432 if (contains_reg_p (x, true, false))
5433 check_and_force_assignment_correctness_p = true;
5434 lra_set_insn_deleted (curr_insn);
5435 continue;
5438 curr_id = lra_get_insn_recog_data (curr_insn);
5439 curr_static_id = curr_id->insn_static_data;
5440 init_curr_insn_input_reloads ();
5441 init_curr_operand_mode ();
5442 if (curr_insn_transform (false))
5443 changed_p = true;
5444 /* Check non-transformed insns too for equiv change as USE
5445 or CLOBBER don't need reloads but can contain pseudos
5446 being changed on their equivalences. */
5447 else if (bitmap_bit_p (equiv_insn_bitmap, INSN_UID (curr_insn))
5448 && loc_equivalence_change_p (&PATTERN (curr_insn)))
5450 lra_update_insn_regno_info (curr_insn);
5451 changed_p = true;
5456 /* If we used a new hard regno, changed_p should be true because the
5457 hard reg is assigned to a new pseudo. */
5458 if (flag_checking && !changed_p)
5460 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
5461 if (lra_reg_info[i].nrefs != 0
5462 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
5464 int j, nregs = hard_regno_nregs (hard_regno,
5465 PSEUDO_REGNO_MODE (i));
5467 for (j = 0; j < nregs; j++)
5468 lra_assert (df_regs_ever_live_p (hard_regno + j));
5471 if (changed_p)
5472 lra_dump_insns_if_possible ("changed func after local");
5473 return changed_p;
5476 static void initiate_invariants (void);
5477 static void finish_invariants (void);
5479 /* Initiate the LRA constraint pass. It is done once per
5480 function. */
5481 void
5482 lra_constraints_init (void)
5484 initiate_invariants ();
5487 /* Finalize the LRA constraint pass. It is done once per
5488 function. */
5489 void
5490 lra_constraints_finish (void)
5492 finish_invariants ();
5497 /* Structure describes invariants for ineheritance. */
5498 struct lra_invariant
5500 /* The order number of the invariant. */
5501 int num;
5502 /* The invariant RTX. */
5503 rtx invariant_rtx;
5504 /* The origin insn of the invariant. */
5505 rtx_insn *insn;
5508 typedef lra_invariant invariant_t;
5509 typedef invariant_t *invariant_ptr_t;
5510 typedef const invariant_t *const_invariant_ptr_t;
5512 /* Pointer to the inheritance invariants. */
5513 static vec<invariant_ptr_t> invariants;
5515 /* Allocation pool for the invariants. */
5516 static object_allocator<lra_invariant> *invariants_pool;
5518 /* Hash table for the invariants. */
5519 static htab_t invariant_table;
5521 /* Hash function for INVARIANT. */
5522 static hashval_t
5523 invariant_hash (const void *invariant)
5525 rtx inv = ((const_invariant_ptr_t) invariant)->invariant_rtx;
5526 return lra_rtx_hash (inv);
5529 /* Equal function for invariants INVARIANT1 and INVARIANT2. */
5530 static int
5531 invariant_eq_p (const void *invariant1, const void *invariant2)
5533 rtx inv1 = ((const_invariant_ptr_t) invariant1)->invariant_rtx;
5534 rtx inv2 = ((const_invariant_ptr_t) invariant2)->invariant_rtx;
5536 return rtx_equal_p (inv1, inv2);
5539 /* Insert INVARIANT_RTX into the table if it is not there yet. Return
5540 invariant which is in the table. */
5541 static invariant_ptr_t
5542 insert_invariant (rtx invariant_rtx)
5544 void **entry_ptr;
5545 invariant_t invariant;
5546 invariant_ptr_t invariant_ptr;
5548 invariant.invariant_rtx = invariant_rtx;
5549 entry_ptr = htab_find_slot (invariant_table, &invariant, INSERT);
5550 if (*entry_ptr == NULL)
5552 invariant_ptr = invariants_pool->allocate ();
5553 invariant_ptr->invariant_rtx = invariant_rtx;
5554 invariant_ptr->insn = NULL;
5555 invariants.safe_push (invariant_ptr);
5556 *entry_ptr = (void *) invariant_ptr;
5558 return (invariant_ptr_t) *entry_ptr;
5561 /* Initiate the invariant table. */
5562 static void
5563 initiate_invariants (void)
5565 invariants.create (100);
5566 invariants_pool
5567 = new object_allocator<lra_invariant> ("Inheritance invariants");
5568 invariant_table = htab_create (100, invariant_hash, invariant_eq_p, NULL);
5571 /* Finish the invariant table. */
5572 static void
5573 finish_invariants (void)
5575 htab_delete (invariant_table);
5576 delete invariants_pool;
5577 invariants.release ();
5580 /* Make the invariant table empty. */
5581 static void
5582 clear_invariants (void)
5584 htab_empty (invariant_table);
5585 invariants_pool->release ();
5586 invariants.truncate (0);
5591 /* This page contains code to do inheritance/split
5592 transformations. */
5594 /* Number of reloads passed so far in current EBB. */
5595 static int reloads_num;
5597 /* Number of calls passed so far in current EBB. */
5598 static int calls_num;
5600 /* Index ID is the CALLS_NUM associated the last call we saw with
5601 ABI identifier ID. */
5602 static int last_call_for_abi[NUM_ABI_IDS];
5604 /* Which registers have been fully or partially clobbered by a call
5605 since they were last used. */
5606 static HARD_REG_SET full_and_partial_call_clobbers;
5608 /* Current reload pseudo check for validity of elements in
5609 USAGE_INSNS. */
5610 static int curr_usage_insns_check;
5612 /* Info about last usage of registers in EBB to do inheritance/split
5613 transformation. Inheritance transformation is done from a spilled
5614 pseudo and split transformations from a hard register or a pseudo
5615 assigned to a hard register. */
5616 struct usage_insns
5618 /* If the value is equal to CURR_USAGE_INSNS_CHECK, then the member
5619 value INSNS is valid. The insns is chain of optional debug insns
5620 and a finishing non-debug insn using the corresponding reg. The
5621 value is also used to mark the registers which are set up in the
5622 current insn. The negated insn uid is used for this. */
5623 int check;
5624 /* Value of global reloads_num at the last insn in INSNS. */
5625 int reloads_num;
5626 /* Value of global reloads_nums at the last insn in INSNS. */
5627 int calls_num;
5628 /* It can be true only for splitting. And it means that the restore
5629 insn should be put after insn given by the following member. */
5630 bool after_p;
5631 /* Next insns in the current EBB which use the original reg and the
5632 original reg value is not changed between the current insn and
5633 the next insns. In order words, e.g. for inheritance, if we need
5634 to use the original reg value again in the next insns we can try
5635 to use the value in a hard register from a reload insn of the
5636 current insn. */
5637 rtx insns;
5640 /* Map: regno -> corresponding pseudo usage insns. */
5641 static struct usage_insns *usage_insns;
5643 static void
5644 setup_next_usage_insn (int regno, rtx insn, int reloads_num, bool after_p)
5646 usage_insns[regno].check = curr_usage_insns_check;
5647 usage_insns[regno].insns = insn;
5648 usage_insns[regno].reloads_num = reloads_num;
5649 usage_insns[regno].calls_num = calls_num;
5650 usage_insns[regno].after_p = after_p;
5651 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] >= 0)
5652 remove_from_hard_reg_set (&full_and_partial_call_clobbers,
5653 PSEUDO_REGNO_MODE (regno),
5654 reg_renumber[regno]);
5657 /* The function is used to form list REGNO usages which consists of
5658 optional debug insns finished by a non-debug insn using REGNO.
5659 RELOADS_NUM is current number of reload insns processed so far. */
5660 static void
5661 add_next_usage_insn (int regno, rtx_insn *insn, int reloads_num)
5663 rtx next_usage_insns;
5665 if (usage_insns[regno].check == curr_usage_insns_check
5666 && (next_usage_insns = usage_insns[regno].insns) != NULL_RTX
5667 && DEBUG_INSN_P (insn))
5669 /* Check that we did not add the debug insn yet. */
5670 if (next_usage_insns != insn
5671 && (GET_CODE (next_usage_insns) != INSN_LIST
5672 || XEXP (next_usage_insns, 0) != insn))
5673 usage_insns[regno].insns = gen_rtx_INSN_LIST (VOIDmode, insn,
5674 next_usage_insns);
5676 else if (NONDEBUG_INSN_P (insn))
5677 setup_next_usage_insn (regno, insn, reloads_num, false);
5678 else
5679 usage_insns[regno].check = 0;
5682 /* Return first non-debug insn in list USAGE_INSNS. */
5683 static rtx_insn *
5684 skip_usage_debug_insns (rtx usage_insns)
5686 rtx insn;
5688 /* Skip debug insns. */
5689 for (insn = usage_insns;
5690 insn != NULL_RTX && GET_CODE (insn) == INSN_LIST;
5691 insn = XEXP (insn, 1))
5693 return safe_as_a <rtx_insn *> (insn);
5696 /* Return true if we need secondary memory moves for insn in
5697 USAGE_INSNS after inserting inherited pseudo of class INHER_CL
5698 into the insn. */
5699 static bool
5700 check_secondary_memory_needed_p (enum reg_class inher_cl ATTRIBUTE_UNUSED,
5701 rtx usage_insns ATTRIBUTE_UNUSED)
5703 rtx_insn *insn;
5704 rtx set, dest;
5705 enum reg_class cl;
5707 if (inher_cl == ALL_REGS
5708 || (insn = skip_usage_debug_insns (usage_insns)) == NULL_RTX)
5709 return false;
5710 lra_assert (INSN_P (insn));
5711 if ((set = single_set (insn)) == NULL_RTX || ! REG_P (SET_DEST (set)))
5712 return false;
5713 dest = SET_DEST (set);
5714 if (! REG_P (dest))
5715 return false;
5716 lra_assert (inher_cl != NO_REGS);
5717 cl = get_reg_class (REGNO (dest));
5718 return (cl != NO_REGS && cl != ALL_REGS
5719 && targetm.secondary_memory_needed (GET_MODE (dest), inher_cl, cl));
5722 /* Registers involved in inheritance/split in the current EBB
5723 (inheritance/split pseudos and original registers). */
5724 static bitmap_head check_only_regs;
5726 /* Reload pseudos cannot be involded in invariant inheritance in the
5727 current EBB. */
5728 static bitmap_head invalid_invariant_regs;
5730 /* Do inheritance transformations for insn INSN, which defines (if
5731 DEF_P) or uses ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which
5732 instruction in the EBB next uses ORIGINAL_REGNO; it has the same
5733 form as the "insns" field of usage_insns. Return true if we
5734 succeed in such transformation.
5736 The transformations look like:
5738 p <- ... i <- ...
5739 ... p <- i (new insn)
5740 ... =>
5741 <- ... p ... <- ... i ...
5743 ... i <- p (new insn)
5744 <- ... p ... <- ... i ...
5745 ... =>
5746 <- ... p ... <- ... i ...
5747 where p is a spilled original pseudo and i is a new inheritance pseudo.
5750 The inheritance pseudo has the smallest class of two classes CL and
5751 class of ORIGINAL REGNO. */
5752 static bool
5753 inherit_reload_reg (bool def_p, int original_regno,
5754 enum reg_class cl, rtx_insn *insn, rtx next_usage_insns)
5756 if (optimize_function_for_size_p (cfun))
5757 return false;
5759 enum reg_class rclass = lra_get_allocno_class (original_regno);
5760 rtx original_reg = regno_reg_rtx[original_regno];
5761 rtx new_reg, usage_insn;
5762 rtx_insn *new_insns;
5764 lra_assert (! usage_insns[original_regno].after_p);
5765 if (lra_dump_file != NULL)
5766 fprintf (lra_dump_file,
5767 " <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n");
5768 if (! ira_reg_classes_intersect_p[cl][rclass])
5770 if (lra_dump_file != NULL)
5772 fprintf (lra_dump_file,
5773 " Rejecting inheritance for %d "
5774 "because of disjoint classes %s and %s\n",
5775 original_regno, reg_class_names[cl],
5776 reg_class_names[rclass]);
5777 fprintf (lra_dump_file,
5778 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5780 return false;
5782 if ((ira_class_subset_p[cl][rclass] && cl != rclass)
5783 /* We don't use a subset of two classes because it can be
5784 NO_REGS. This transformation is still profitable in most
5785 cases even if the classes are not intersected as register
5786 move is probably cheaper than a memory load. */
5787 || ira_class_hard_regs_num[cl] < ira_class_hard_regs_num[rclass])
5789 if (lra_dump_file != NULL)
5790 fprintf (lra_dump_file, " Use smallest class of %s and %s\n",
5791 reg_class_names[cl], reg_class_names[rclass]);
5793 rclass = cl;
5795 if (check_secondary_memory_needed_p (rclass, next_usage_insns))
5797 /* Reject inheritance resulting in secondary memory moves.
5798 Otherwise, there is a danger in LRA cycling. Also such
5799 transformation will be unprofitable. */
5800 if (lra_dump_file != NULL)
5802 rtx_insn *insn = skip_usage_debug_insns (next_usage_insns);
5803 rtx set = single_set (insn);
5805 lra_assert (set != NULL_RTX);
5807 rtx dest = SET_DEST (set);
5809 lra_assert (REG_P (dest));
5810 fprintf (lra_dump_file,
5811 " Rejecting inheritance for insn %d(%s)<-%d(%s) "
5812 "as secondary mem is needed\n",
5813 REGNO (dest), reg_class_names[get_reg_class (REGNO (dest))],
5814 original_regno, reg_class_names[rclass]);
5815 fprintf (lra_dump_file,
5816 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5818 return false;
5820 new_reg = lra_create_new_reg (GET_MODE (original_reg), original_reg,
5821 rclass, NULL, "inheritance");
5822 start_sequence ();
5823 if (def_p)
5824 lra_emit_move (original_reg, new_reg);
5825 else
5826 lra_emit_move (new_reg, original_reg);
5827 new_insns = get_insns ();
5828 end_sequence ();
5829 if (NEXT_INSN (new_insns) != NULL_RTX)
5831 if (lra_dump_file != NULL)
5833 fprintf (lra_dump_file,
5834 " Rejecting inheritance %d->%d "
5835 "as it results in 2 or more insns:\n",
5836 original_regno, REGNO (new_reg));
5837 dump_rtl_slim (lra_dump_file, new_insns, NULL, -1, 0);
5838 fprintf (lra_dump_file,
5839 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5841 return false;
5843 lra_substitute_pseudo_within_insn (insn, original_regno, new_reg, false);
5844 lra_update_insn_regno_info (insn);
5845 if (! def_p)
5846 /* We now have a new usage insn for original regno. */
5847 setup_next_usage_insn (original_regno, new_insns, reloads_num, false);
5848 if (lra_dump_file != NULL)
5849 fprintf (lra_dump_file, " Original reg change %d->%d (bb%d):\n",
5850 original_regno, REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
5851 lra_reg_info[REGNO (new_reg)].restore_rtx = regno_reg_rtx[original_regno];
5852 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
5853 bitmap_set_bit (&check_only_regs, original_regno);
5854 bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
5855 if (def_p)
5856 lra_process_new_insns (insn, NULL, new_insns,
5857 "Add original<-inheritance");
5858 else
5859 lra_process_new_insns (insn, new_insns, NULL,
5860 "Add inheritance<-original");
5861 while (next_usage_insns != NULL_RTX)
5863 if (GET_CODE (next_usage_insns) != INSN_LIST)
5865 usage_insn = next_usage_insns;
5866 lra_assert (NONDEBUG_INSN_P (usage_insn));
5867 next_usage_insns = NULL;
5869 else
5871 usage_insn = XEXP (next_usage_insns, 0);
5872 lra_assert (DEBUG_INSN_P (usage_insn));
5873 next_usage_insns = XEXP (next_usage_insns, 1);
5875 lra_substitute_pseudo (&usage_insn, original_regno, new_reg, false,
5876 DEBUG_INSN_P (usage_insn));
5877 lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
5878 if (lra_dump_file != NULL)
5880 basic_block bb = BLOCK_FOR_INSN (usage_insn);
5881 fprintf (lra_dump_file,
5882 " Inheritance reuse change %d->%d (bb%d):\n",
5883 original_regno, REGNO (new_reg),
5884 bb ? bb->index : -1);
5885 dump_insn_slim (lra_dump_file, as_a <rtx_insn *> (usage_insn));
5888 if (lra_dump_file != NULL)
5889 fprintf (lra_dump_file,
5890 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5891 return true;
5894 /* Return true if we need a caller save/restore for pseudo REGNO which
5895 was assigned to a hard register. */
5896 static inline bool
5897 need_for_call_save_p (int regno)
5899 lra_assert (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] >= 0);
5900 if (usage_insns[regno].calls_num < calls_num)
5902 unsigned int abis = 0;
5903 for (unsigned int i = 0; i < NUM_ABI_IDS; ++i)
5904 if (last_call_for_abi[i] > usage_insns[regno].calls_num)
5905 abis |= 1 << i;
5906 gcc_assert (abis);
5907 if (call_clobbered_in_region_p (abis, full_and_partial_call_clobbers,
5908 PSEUDO_REGNO_MODE (regno),
5909 reg_renumber[regno]))
5910 return true;
5912 return false;
5915 /* Global registers occurring in the current EBB. */
5916 static bitmap_head ebb_global_regs;
5918 /* Return true if we need a split for hard register REGNO or pseudo
5919 REGNO which was assigned to a hard register.
5920 POTENTIAL_RELOAD_HARD_REGS contains hard registers which might be
5921 used for reloads since the EBB end. It is an approximation of the
5922 used hard registers in the split range. The exact value would
5923 require expensive calculations. If we were aggressive with
5924 splitting because of the approximation, the split pseudo will save
5925 the same hard register assignment and will be removed in the undo
5926 pass. We still need the approximation because too aggressive
5927 splitting would result in too inaccurate cost calculation in the
5928 assignment pass because of too many generated moves which will be
5929 probably removed in the undo pass. */
5930 static inline bool
5931 need_for_split_p (HARD_REG_SET potential_reload_hard_regs, int regno)
5933 int hard_regno = regno < FIRST_PSEUDO_REGISTER ? regno : reg_renumber[regno];
5935 lra_assert (hard_regno >= 0);
5936 return ((TEST_HARD_REG_BIT (potential_reload_hard_regs, hard_regno)
5937 /* Don't split eliminable hard registers, otherwise we can
5938 split hard registers like hard frame pointer, which
5939 lives on BB start/end according to DF-infrastructure,
5940 when there is a pseudo assigned to the register and
5941 living in the same BB. */
5942 && (regno >= FIRST_PSEUDO_REGISTER
5943 || ! TEST_HARD_REG_BIT (eliminable_regset, hard_regno))
5944 && ! TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno)
5945 /* Don't split call clobbered hard regs living through
5946 calls, otherwise we might have a check problem in the
5947 assign sub-pass as in the most cases (exception is a
5948 situation when check_and_force_assignment_correctness_p value is
5949 true) the assign pass assumes that all pseudos living
5950 through calls are assigned to call saved hard regs. */
5951 && (regno >= FIRST_PSEUDO_REGISTER
5952 || !TEST_HARD_REG_BIT (full_and_partial_call_clobbers, regno))
5953 /* We need at least 2 reloads to make pseudo splitting
5954 profitable. We should provide hard regno splitting in
5955 any case to solve 1st insn scheduling problem when
5956 moving hard register definition up might result in
5957 impossibility to find hard register for reload pseudo of
5958 small register class. */
5959 && (usage_insns[regno].reloads_num
5960 + (regno < FIRST_PSEUDO_REGISTER ? 0 : 3) < reloads_num)
5961 && (regno < FIRST_PSEUDO_REGISTER
5962 /* For short living pseudos, spilling + inheritance can
5963 be considered a substitution for splitting.
5964 Therefore we do not splitting for local pseudos. It
5965 decreases also aggressiveness of splitting. The
5966 minimal number of references is chosen taking into
5967 account that for 2 references splitting has no sense
5968 as we can just spill the pseudo. */
5969 || (regno >= FIRST_PSEUDO_REGISTER
5970 && lra_reg_info[regno].nrefs > 3
5971 && bitmap_bit_p (&ebb_global_regs, regno))))
5972 || (regno >= FIRST_PSEUDO_REGISTER && need_for_call_save_p (regno)));
5975 /* Return class for the split pseudo created from original pseudo with
5976 ALLOCNO_CLASS and MODE which got a hard register HARD_REGNO. We
5977 choose subclass of ALLOCNO_CLASS which contains HARD_REGNO and
5978 results in no secondary memory movements. */
5979 static enum reg_class
5980 choose_split_class (enum reg_class allocno_class,
5981 int hard_regno ATTRIBUTE_UNUSED,
5982 machine_mode mode ATTRIBUTE_UNUSED)
5984 int i;
5985 enum reg_class cl, best_cl = NO_REGS;
5986 enum reg_class hard_reg_class ATTRIBUTE_UNUSED
5987 = REGNO_REG_CLASS (hard_regno);
5989 if (! targetm.secondary_memory_needed (mode, allocno_class, allocno_class)
5990 && TEST_HARD_REG_BIT (reg_class_contents[allocno_class], hard_regno))
5991 return allocno_class;
5992 for (i = 0;
5993 (cl = reg_class_subclasses[allocno_class][i]) != LIM_REG_CLASSES;
5994 i++)
5995 if (! targetm.secondary_memory_needed (mode, cl, hard_reg_class)
5996 && ! targetm.secondary_memory_needed (mode, hard_reg_class, cl)
5997 && TEST_HARD_REG_BIT (reg_class_contents[cl], hard_regno)
5998 && (best_cl == NO_REGS
5999 || ira_class_hard_regs_num[best_cl] < ira_class_hard_regs_num[cl]))
6000 best_cl = cl;
6001 return best_cl;
6004 /* Copy any equivalence information from ORIGINAL_REGNO to NEW_REGNO. It only
6005 makes sense to call this function if NEW_REGNO is always equal to
6006 ORIGINAL_REGNO. Set up defined_p flag when caller_save_p flag is set up and
6007 CALL_SAVE_P is true. */
6009 static void
6010 lra_copy_reg_equiv (unsigned int new_regno, unsigned int original_regno,
6011 bool call_save_p)
6013 if (!ira_reg_equiv[original_regno].defined_p
6014 && !(call_save_p && ira_reg_equiv[original_regno].caller_save_p))
6015 return;
6017 ira_expand_reg_equiv ();
6018 ira_reg_equiv[new_regno].defined_p = true;
6019 if (ira_reg_equiv[original_regno].memory)
6020 ira_reg_equiv[new_regno].memory
6021 = copy_rtx (ira_reg_equiv[original_regno].memory);
6022 if (ira_reg_equiv[original_regno].constant)
6023 ira_reg_equiv[new_regno].constant
6024 = copy_rtx (ira_reg_equiv[original_regno].constant);
6025 if (ira_reg_equiv[original_regno].invariant)
6026 ira_reg_equiv[new_regno].invariant
6027 = copy_rtx (ira_reg_equiv[original_regno].invariant);
6030 /* Do split transformations for insn INSN, which defines or uses
6031 ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which instruction in
6032 the EBB next uses ORIGINAL_REGNO; it has the same form as the
6033 "insns" field of usage_insns. If TO is not NULL, we don't use
6034 usage_insns, we put restore insns after TO insn. It is a case when
6035 we call it from lra_split_hard_reg_for, outside the inheritance
6036 pass.
6038 The transformations look like:
6040 p <- ... p <- ...
6041 ... s <- p (new insn -- save)
6042 ... =>
6043 ... p <- s (new insn -- restore)
6044 <- ... p ... <- ... p ...
6046 <- ... p ... <- ... p ...
6047 ... s <- p (new insn -- save)
6048 ... =>
6049 ... p <- s (new insn -- restore)
6050 <- ... p ... <- ... p ...
6052 where p is an original pseudo got a hard register or a hard
6053 register and s is a new split pseudo. The save is put before INSN
6054 if BEFORE_P is true. Return true if we succeed in such
6055 transformation. */
6056 static bool
6057 split_reg (bool before_p, int original_regno, rtx_insn *insn,
6058 rtx next_usage_insns, rtx_insn *to)
6060 enum reg_class rclass;
6061 rtx original_reg;
6062 int hard_regno, nregs;
6063 rtx new_reg, usage_insn;
6064 rtx_insn *restore, *save;
6065 bool after_p;
6066 bool call_save_p;
6067 machine_mode mode;
6069 if (original_regno < FIRST_PSEUDO_REGISTER)
6071 rclass = ira_allocno_class_translate[REGNO_REG_CLASS (original_regno)];
6072 hard_regno = original_regno;
6073 call_save_p = false;
6074 nregs = 1;
6075 mode = lra_reg_info[hard_regno].biggest_mode;
6076 machine_mode reg_rtx_mode = GET_MODE (regno_reg_rtx[hard_regno]);
6077 /* A reg can have a biggest_mode of VOIDmode if it was only ever seen as
6078 part of a multi-word register. In that case, just use the reg_rtx
6079 mode. Do the same also if the biggest mode was larger than a register
6080 or we can not compare the modes. Otherwise, limit the size to that of
6081 the biggest access in the function or to the natural mode at least. */
6082 if (mode == VOIDmode
6083 || !ordered_p (GET_MODE_PRECISION (mode),
6084 GET_MODE_PRECISION (reg_rtx_mode))
6085 || paradoxical_subreg_p (mode, reg_rtx_mode)
6086 || maybe_gt (GET_MODE_PRECISION (reg_rtx_mode), GET_MODE_PRECISION (mode)))
6088 original_reg = regno_reg_rtx[hard_regno];
6089 mode = reg_rtx_mode;
6091 else
6092 original_reg = gen_rtx_REG (mode, hard_regno);
6094 else
6096 mode = PSEUDO_REGNO_MODE (original_regno);
6097 hard_regno = reg_renumber[original_regno];
6098 nregs = hard_regno_nregs (hard_regno, mode);
6099 rclass = lra_get_allocno_class (original_regno);
6100 original_reg = regno_reg_rtx[original_regno];
6101 call_save_p = need_for_call_save_p (original_regno);
6103 lra_assert (hard_regno >= 0);
6104 if (lra_dump_file != NULL)
6105 fprintf (lra_dump_file,
6106 " ((((((((((((((((((((((((((((((((((((((((((((((((\n");
6108 if (call_save_p)
6110 mode = HARD_REGNO_CALLER_SAVE_MODE (hard_regno,
6111 hard_regno_nregs (hard_regno, mode),
6112 mode);
6113 new_reg = lra_create_new_reg (mode, NULL_RTX, NO_REGS, NULL, "save");
6115 else
6117 rclass = choose_split_class (rclass, hard_regno, mode);
6118 if (rclass == NO_REGS)
6120 if (lra_dump_file != NULL)
6122 fprintf (lra_dump_file,
6123 " Rejecting split of %d(%s): "
6124 "no good reg class for %d(%s)\n",
6125 original_regno,
6126 reg_class_names[lra_get_allocno_class (original_regno)],
6127 hard_regno,
6128 reg_class_names[REGNO_REG_CLASS (hard_regno)]);
6129 fprintf
6130 (lra_dump_file,
6131 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
6133 return false;
6135 /* Split_if_necessary can split hard registers used as part of a
6136 multi-register mode but splits each register individually. The
6137 mode used for each independent register may not be supported
6138 so reject the split. Splitting the wider mode should theoretically
6139 be possible but is not implemented. */
6140 if (!targetm.hard_regno_mode_ok (hard_regno, mode))
6142 if (lra_dump_file != NULL)
6144 fprintf (lra_dump_file,
6145 " Rejecting split of %d(%s): unsuitable mode %s\n",
6146 original_regno,
6147 reg_class_names[lra_get_allocno_class (original_regno)],
6148 GET_MODE_NAME (mode));
6149 fprintf
6150 (lra_dump_file,
6151 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
6153 return false;
6155 new_reg = lra_create_new_reg (mode, original_reg, rclass, NULL, "split");
6156 reg_renumber[REGNO (new_reg)] = hard_regno;
6158 int new_regno = REGNO (new_reg);
6159 save = emit_spill_move (true, new_reg, original_reg);
6160 if (NEXT_INSN (save) != NULL_RTX && !call_save_p)
6162 if (lra_dump_file != NULL)
6164 fprintf
6165 (lra_dump_file,
6166 " Rejecting split %d->%d resulting in > 2 save insns:\n",
6167 original_regno, new_regno);
6168 dump_rtl_slim (lra_dump_file, save, NULL, -1, 0);
6169 fprintf (lra_dump_file,
6170 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
6172 return false;
6174 restore = emit_spill_move (false, new_reg, original_reg);
6175 if (NEXT_INSN (restore) != NULL_RTX && !call_save_p)
6177 if (lra_dump_file != NULL)
6179 fprintf (lra_dump_file,
6180 " Rejecting split %d->%d "
6181 "resulting in > 2 restore insns:\n",
6182 original_regno, new_regno);
6183 dump_rtl_slim (lra_dump_file, restore, NULL, -1, 0);
6184 fprintf (lra_dump_file,
6185 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
6187 return false;
6189 /* Transfer equivalence information to the spill register, so that
6190 if we fail to allocate the spill register, we have the option of
6191 rematerializing the original value instead of spilling to the stack. */
6192 if (!HARD_REGISTER_NUM_P (original_regno)
6193 && mode == PSEUDO_REGNO_MODE (original_regno))
6194 lra_copy_reg_equiv (new_regno, original_regno, call_save_p);
6195 lra_reg_info[new_regno].restore_rtx = regno_reg_rtx[original_regno];
6196 bitmap_set_bit (&lra_split_regs, new_regno);
6197 if (to != NULL)
6199 lra_assert (next_usage_insns == NULL);
6200 usage_insn = to;
6201 after_p = true;
6203 else
6205 /* We need check_only_regs only inside the inheritance pass. */
6206 bitmap_set_bit (&check_only_regs, new_regno);
6207 bitmap_set_bit (&check_only_regs, original_regno);
6208 after_p = usage_insns[original_regno].after_p;
6209 for (;;)
6211 if (GET_CODE (next_usage_insns) != INSN_LIST)
6213 usage_insn = next_usage_insns;
6214 break;
6216 usage_insn = XEXP (next_usage_insns, 0);
6217 lra_assert (DEBUG_INSN_P (usage_insn));
6218 next_usage_insns = XEXP (next_usage_insns, 1);
6219 lra_substitute_pseudo (&usage_insn, original_regno, new_reg, false,
6220 true);
6221 lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
6222 if (lra_dump_file != NULL)
6224 fprintf (lra_dump_file, " Split reuse change %d->%d:\n",
6225 original_regno, new_regno);
6226 dump_insn_slim (lra_dump_file, as_a <rtx_insn *> (usage_insn));
6230 lra_assert (NOTE_P (usage_insn) || NONDEBUG_INSN_P (usage_insn));
6231 lra_assert (usage_insn != insn || (after_p && before_p));
6232 lra_process_new_insns (as_a <rtx_insn *> (usage_insn),
6233 after_p ? NULL : restore,
6234 after_p ? restore : NULL,
6235 call_save_p
6236 ? "Add reg<-save" : "Add reg<-split");
6237 lra_process_new_insns (insn, before_p ? save : NULL,
6238 before_p ? NULL : save,
6239 call_save_p
6240 ? "Add save<-reg" : "Add split<-reg");
6241 if (nregs > 1 || original_regno < FIRST_PSEUDO_REGISTER)
6242 /* If we are trying to split multi-register. We should check
6243 conflicts on the next assignment sub-pass. IRA can allocate on
6244 sub-register levels, LRA do this on pseudos level right now and
6245 this discrepancy may create allocation conflicts after
6246 splitting.
6248 If we are trying to split hard register we should also check conflicts
6249 as such splitting can create artificial conflict of the hard register
6250 with another pseudo because of simplified conflict calculation in
6251 LRA. */
6252 check_and_force_assignment_correctness_p = true;
6253 if (lra_dump_file != NULL)
6254 fprintf (lra_dump_file,
6255 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
6256 return true;
6259 /* Split a hard reg for reload pseudo REGNO having RCLASS and living
6260 in the range [FROM, TO]. Return true if did a split. Otherwise,
6261 return false. */
6262 bool
6263 spill_hard_reg_in_range (int regno, enum reg_class rclass, rtx_insn *from, rtx_insn *to)
6265 int i, hard_regno;
6266 int rclass_size;
6267 rtx_insn *insn;
6268 unsigned int uid;
6269 bitmap_iterator bi;
6270 HARD_REG_SET ignore;
6272 lra_assert (from != NULL && to != NULL);
6273 ignore = lra_no_alloc_regs;
6274 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
6276 lra_insn_recog_data_t id = lra_insn_recog_data[uid];
6277 struct lra_static_insn_data *static_id = id->insn_static_data;
6278 struct lra_insn_reg *reg;
6280 for (reg = id->regs; reg != NULL; reg = reg->next)
6281 if (reg->regno < FIRST_PSEUDO_REGISTER)
6282 SET_HARD_REG_BIT (ignore, reg->regno);
6283 for (reg = static_id->hard_regs; reg != NULL; reg = reg->next)
6284 SET_HARD_REG_BIT (ignore, reg->regno);
6286 rclass_size = ira_class_hard_regs_num[rclass];
6287 for (i = 0; i < rclass_size; i++)
6289 hard_regno = ira_class_hard_regs[rclass][i];
6290 if (! TEST_HARD_REG_BIT (lra_reg_info[regno].conflict_hard_regs, hard_regno)
6291 || TEST_HARD_REG_BIT (ignore, hard_regno))
6292 continue;
6293 for (insn = from; insn != NEXT_INSN (to); insn = NEXT_INSN (insn))
6295 struct lra_static_insn_data *static_id;
6296 struct lra_insn_reg *reg;
6298 if (!INSN_P (insn))
6299 continue;
6300 if (bitmap_bit_p (&lra_reg_info[hard_regno].insn_bitmap,
6301 INSN_UID (insn)))
6302 break;
6303 static_id = lra_get_insn_recog_data (insn)->insn_static_data;
6304 for (reg = static_id->hard_regs; reg != NULL; reg = reg->next)
6305 if (reg->regno == hard_regno)
6306 break;
6307 if (reg != NULL)
6308 break;
6310 if (insn != NEXT_INSN (to))
6311 continue;
6312 if (split_reg (true, hard_regno, from, NULL, to))
6313 return true;
6315 return false;
6318 /* Recognize that we need a split transformation for insn INSN, which
6319 defines or uses REGNO in its insn biggest MODE (we use it only if
6320 REGNO is a hard register). POTENTIAL_RELOAD_HARD_REGS contains
6321 hard registers which might be used for reloads since the EBB end.
6322 Put the save before INSN if BEFORE_P is true. MAX_UID is maximla
6323 uid before starting INSN processing. Return true if we succeed in
6324 such transformation. */
6325 static bool
6326 split_if_necessary (int regno, machine_mode mode,
6327 HARD_REG_SET potential_reload_hard_regs,
6328 bool before_p, rtx_insn *insn, int max_uid)
6330 bool res = false;
6331 int i, nregs = 1;
6332 rtx next_usage_insns;
6334 if (regno < FIRST_PSEUDO_REGISTER)
6335 nregs = hard_regno_nregs (regno, mode);
6336 for (i = 0; i < nregs; i++)
6337 if (usage_insns[regno + i].check == curr_usage_insns_check
6338 && (next_usage_insns = usage_insns[regno + i].insns) != NULL_RTX
6339 /* To avoid processing the register twice or more. */
6340 && ((GET_CODE (next_usage_insns) != INSN_LIST
6341 && INSN_UID (next_usage_insns) < max_uid)
6342 || (GET_CODE (next_usage_insns) == INSN_LIST
6343 && (INSN_UID (XEXP (next_usage_insns, 0)) < max_uid)))
6344 && need_for_split_p (potential_reload_hard_regs, regno + i)
6345 && split_reg (before_p, regno + i, insn, next_usage_insns, NULL))
6346 res = true;
6347 return res;
6350 /* Return TRUE if rtx X is considered as an invariant for
6351 inheritance. */
6352 static bool
6353 invariant_p (const_rtx x)
6355 machine_mode mode;
6356 const char *fmt;
6357 enum rtx_code code;
6358 int i, j;
6360 if (side_effects_p (x))
6361 return false;
6363 code = GET_CODE (x);
6364 mode = GET_MODE (x);
6365 if (code == SUBREG)
6367 x = SUBREG_REG (x);
6368 code = GET_CODE (x);
6369 mode = wider_subreg_mode (mode, GET_MODE (x));
6372 if (MEM_P (x))
6373 return false;
6375 if (REG_P (x))
6377 int i, nregs, regno = REGNO (x);
6379 if (regno >= FIRST_PSEUDO_REGISTER || regno == STACK_POINTER_REGNUM
6380 || TEST_HARD_REG_BIT (eliminable_regset, regno)
6381 || GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
6382 return false;
6383 nregs = hard_regno_nregs (regno, mode);
6384 for (i = 0; i < nregs; i++)
6385 if (! fixed_regs[regno + i]
6386 /* A hard register may be clobbered in the current insn
6387 but we can ignore this case because if the hard
6388 register is used it should be set somewhere after the
6389 clobber. */
6390 || bitmap_bit_p (&invalid_invariant_regs, regno + i))
6391 return false;
6393 fmt = GET_RTX_FORMAT (code);
6394 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6396 if (fmt[i] == 'e')
6398 if (! invariant_p (XEXP (x, i)))
6399 return false;
6401 else if (fmt[i] == 'E')
6403 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6404 if (! invariant_p (XVECEXP (x, i, j)))
6405 return false;
6408 return true;
6411 /* We have 'dest_reg <- invariant'. Let us try to make an invariant
6412 inheritance transformation (using dest_reg instead invariant in a
6413 subsequent insn). */
6414 static bool
6415 process_invariant_for_inheritance (rtx dst_reg, rtx invariant_rtx)
6417 invariant_ptr_t invariant_ptr;
6418 rtx_insn *insn, *new_insns;
6419 rtx insn_set, insn_reg, new_reg;
6420 int insn_regno;
6421 bool succ_p = false;
6422 int dst_regno = REGNO (dst_reg);
6423 machine_mode dst_mode = GET_MODE (dst_reg);
6424 enum reg_class cl = lra_get_allocno_class (dst_regno), insn_reg_cl;
6426 invariant_ptr = insert_invariant (invariant_rtx);
6427 if ((insn = invariant_ptr->insn) != NULL_RTX)
6429 /* We have a subsequent insn using the invariant. */
6430 insn_set = single_set (insn);
6431 lra_assert (insn_set != NULL);
6432 insn_reg = SET_DEST (insn_set);
6433 lra_assert (REG_P (insn_reg));
6434 insn_regno = REGNO (insn_reg);
6435 insn_reg_cl = lra_get_allocno_class (insn_regno);
6437 if (dst_mode == GET_MODE (insn_reg)
6438 /* We should consider only result move reg insns which are
6439 cheap. */
6440 && targetm.register_move_cost (dst_mode, cl, insn_reg_cl) == 2
6441 && targetm.register_move_cost (dst_mode, cl, cl) == 2)
6443 if (lra_dump_file != NULL)
6444 fprintf (lra_dump_file,
6445 " [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[\n");
6446 new_reg = lra_create_new_reg (dst_mode, dst_reg, cl, NULL,
6447 "invariant inheritance");
6448 bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
6449 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
6450 lra_reg_info[REGNO (new_reg)].restore_rtx = PATTERN (insn);
6451 start_sequence ();
6452 lra_emit_move (new_reg, dst_reg);
6453 new_insns = get_insns ();
6454 end_sequence ();
6455 lra_process_new_insns (curr_insn, NULL, new_insns,
6456 "Add invariant inheritance<-original");
6457 start_sequence ();
6458 lra_emit_move (SET_DEST (insn_set), new_reg);
6459 new_insns = get_insns ();
6460 end_sequence ();
6461 lra_process_new_insns (insn, NULL, new_insns,
6462 "Changing reload<-inheritance");
6463 lra_set_insn_deleted (insn);
6464 succ_p = true;
6465 if (lra_dump_file != NULL)
6467 fprintf (lra_dump_file,
6468 " Invariant inheritance reuse change %d (bb%d):\n",
6469 REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
6470 dump_insn_slim (lra_dump_file, insn);
6471 fprintf (lra_dump_file,
6472 " ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]\n");
6476 invariant_ptr->insn = curr_insn;
6477 return succ_p;
6480 /* Check only registers living at the current program point in the
6481 current EBB. */
6482 static bitmap_head live_regs;
6484 /* Update live info in EBB given by its HEAD and TAIL insns after
6485 inheritance/split transformation. The function removes dead moves
6486 too. */
6487 static void
6488 update_ebb_live_info (rtx_insn *head, rtx_insn *tail)
6490 unsigned int j;
6491 int i, regno;
6492 bool live_p;
6493 rtx_insn *prev_insn;
6494 rtx set;
6495 bool remove_p;
6496 basic_block last_bb, prev_bb, curr_bb;
6497 bitmap_iterator bi;
6498 struct lra_insn_reg *reg;
6499 edge e;
6500 edge_iterator ei;
6502 last_bb = BLOCK_FOR_INSN (tail);
6503 prev_bb = NULL;
6504 for (curr_insn = tail;
6505 curr_insn != PREV_INSN (head);
6506 curr_insn = prev_insn)
6508 prev_insn = PREV_INSN (curr_insn);
6509 /* We need to process empty blocks too. They contain
6510 NOTE_INSN_BASIC_BLOCK referring for the basic block. */
6511 if (NOTE_P (curr_insn) && NOTE_KIND (curr_insn) != NOTE_INSN_BASIC_BLOCK)
6512 continue;
6513 curr_bb = BLOCK_FOR_INSN (curr_insn);
6514 if (curr_bb != prev_bb)
6516 if (prev_bb != NULL)
6518 /* Update df_get_live_in (prev_bb): */
6519 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
6520 if (bitmap_bit_p (&live_regs, j))
6521 bitmap_set_bit (df_get_live_in (prev_bb), j);
6522 else
6523 bitmap_clear_bit (df_get_live_in (prev_bb), j);
6525 if (curr_bb != last_bb)
6527 /* Update df_get_live_out (curr_bb): */
6528 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
6530 live_p = bitmap_bit_p (&live_regs, j);
6531 if (! live_p)
6532 FOR_EACH_EDGE (e, ei, curr_bb->succs)
6533 if (bitmap_bit_p (df_get_live_in (e->dest), j))
6535 live_p = true;
6536 break;
6538 if (live_p)
6539 bitmap_set_bit (df_get_live_out (curr_bb), j);
6540 else
6541 bitmap_clear_bit (df_get_live_out (curr_bb), j);
6544 prev_bb = curr_bb;
6545 bitmap_and (&live_regs, &check_only_regs, df_get_live_out (curr_bb));
6547 if (! NONDEBUG_INSN_P (curr_insn))
6548 continue;
6549 curr_id = lra_get_insn_recog_data (curr_insn);
6550 curr_static_id = curr_id->insn_static_data;
6551 remove_p = false;
6552 if ((set = single_set (curr_insn)) != NULL_RTX
6553 && REG_P (SET_DEST (set))
6554 && (regno = REGNO (SET_DEST (set))) >= FIRST_PSEUDO_REGISTER
6555 && SET_DEST (set) != pic_offset_table_rtx
6556 && bitmap_bit_p (&check_only_regs, regno)
6557 && ! bitmap_bit_p (&live_regs, regno))
6558 remove_p = true;
6559 /* See which defined values die here. */
6560 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6561 if (reg->type == OP_OUT && ! reg->subreg_p)
6562 bitmap_clear_bit (&live_regs, reg->regno);
6563 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
6564 if (reg->type == OP_OUT && ! reg->subreg_p)
6565 bitmap_clear_bit (&live_regs, reg->regno);
6566 if (curr_id->arg_hard_regs != NULL)
6567 /* Make clobbered argument hard registers die. */
6568 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6569 if (regno >= FIRST_PSEUDO_REGISTER)
6570 bitmap_clear_bit (&live_regs, regno - FIRST_PSEUDO_REGISTER);
6571 /* Mark each used value as live. */
6572 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6573 if (reg->type != OP_OUT
6574 && bitmap_bit_p (&check_only_regs, reg->regno))
6575 bitmap_set_bit (&live_regs, reg->regno);
6576 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
6577 if (reg->type != OP_OUT
6578 && bitmap_bit_p (&check_only_regs, reg->regno))
6579 bitmap_set_bit (&live_regs, reg->regno);
6580 if (curr_id->arg_hard_regs != NULL)
6581 /* Make used argument hard registers live. */
6582 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6583 if (regno < FIRST_PSEUDO_REGISTER
6584 && bitmap_bit_p (&check_only_regs, regno))
6585 bitmap_set_bit (&live_regs, regno);
6586 /* It is quite important to remove dead move insns because it
6587 means removing dead store. We don't need to process them for
6588 constraints. */
6589 if (remove_p)
6591 if (lra_dump_file != NULL)
6593 fprintf (lra_dump_file, " Removing dead insn:\n ");
6594 dump_insn_slim (lra_dump_file, curr_insn);
6596 lra_set_insn_deleted (curr_insn);
6601 /* The structure describes info to do an inheritance for the current
6602 insn. We need to collect such info first before doing the
6603 transformations because the transformations change the insn
6604 internal representation. */
6605 struct to_inherit
6607 /* Original regno. */
6608 int regno;
6609 /* Subsequent insns which can inherit original reg value. */
6610 rtx insns;
6613 /* Array containing all info for doing inheritance from the current
6614 insn. */
6615 static struct to_inherit to_inherit[LRA_MAX_INSN_RELOADS];
6617 /* Number elements in the previous array. */
6618 static int to_inherit_num;
6620 /* Add inheritance info REGNO and INSNS. Their meaning is described in
6621 structure to_inherit. */
6622 static void
6623 add_to_inherit (int regno, rtx insns)
6625 int i;
6627 for (i = 0; i < to_inherit_num; i++)
6628 if (to_inherit[i].regno == regno)
6629 return;
6630 lra_assert (to_inherit_num < LRA_MAX_INSN_RELOADS);
6631 to_inherit[to_inherit_num].regno = regno;
6632 to_inherit[to_inherit_num++].insns = insns;
6635 /* Return the last non-debug insn in basic block BB, or the block begin
6636 note if none. */
6637 static rtx_insn *
6638 get_last_insertion_point (basic_block bb)
6640 rtx_insn *insn;
6642 FOR_BB_INSNS_REVERSE (bb, insn)
6643 if (NONDEBUG_INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
6644 return insn;
6645 gcc_unreachable ();
6648 /* Set up RES by registers living on edges FROM except the edge (FROM,
6649 TO) or by registers set up in a jump insn in BB FROM. */
6650 static void
6651 get_live_on_other_edges (basic_block from, basic_block to, bitmap res)
6653 rtx_insn *last;
6654 struct lra_insn_reg *reg;
6655 edge e;
6656 edge_iterator ei;
6658 lra_assert (to != NULL);
6659 bitmap_clear (res);
6660 FOR_EACH_EDGE (e, ei, from->succs)
6661 if (e->dest != to)
6662 bitmap_ior_into (res, df_get_live_in (e->dest));
6663 last = get_last_insertion_point (from);
6664 if (! JUMP_P (last))
6665 return;
6666 curr_id = lra_get_insn_recog_data (last);
6667 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6668 if (reg->type != OP_IN)
6669 bitmap_set_bit (res, reg->regno);
6672 /* Used as a temporary results of some bitmap calculations. */
6673 static bitmap_head temp_bitmap;
6675 /* We split for reloads of small class of hard regs. The following
6676 defines how many hard regs the class should have to be qualified as
6677 small. The code is mostly oriented to x86/x86-64 architecture
6678 where some insns need to use only specific register or pair of
6679 registers and these register can live in RTL explicitly, e.g. for
6680 parameter passing. */
6681 static const int max_small_class_regs_num = 2;
6683 /* Do inheritance/split transformations in EBB starting with HEAD and
6684 finishing on TAIL. We process EBB insns in the reverse order.
6685 Return true if we did any inheritance/split transformation in the
6686 EBB.
6688 We should avoid excessive splitting which results in worse code
6689 because of inaccurate cost calculations for spilling new split
6690 pseudos in such case. To achieve this we do splitting only if
6691 register pressure is high in given basic block and there are reload
6692 pseudos requiring hard registers. We could do more register
6693 pressure calculations at any given program point to avoid necessary
6694 splitting even more but it is to expensive and the current approach
6695 works well enough. */
6696 static bool
6697 inherit_in_ebb (rtx_insn *head, rtx_insn *tail)
6699 int i, src_regno, dst_regno, nregs;
6700 bool change_p, succ_p, update_reloads_num_p;
6701 rtx_insn *prev_insn, *last_insn;
6702 rtx next_usage_insns, curr_set;
6703 enum reg_class cl;
6704 struct lra_insn_reg *reg;
6705 basic_block last_processed_bb, curr_bb = NULL;
6706 HARD_REG_SET potential_reload_hard_regs, live_hard_regs;
6707 bitmap to_process;
6708 unsigned int j;
6709 bitmap_iterator bi;
6710 bool head_p, after_p;
6712 change_p = false;
6713 curr_usage_insns_check++;
6714 clear_invariants ();
6715 reloads_num = calls_num = 0;
6716 for (unsigned int i = 0; i < NUM_ABI_IDS; ++i)
6717 last_call_for_abi[i] = 0;
6718 CLEAR_HARD_REG_SET (full_and_partial_call_clobbers);
6719 bitmap_clear (&check_only_regs);
6720 bitmap_clear (&invalid_invariant_regs);
6721 last_processed_bb = NULL;
6722 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
6723 live_hard_regs = eliminable_regset | lra_no_alloc_regs;
6724 /* We don't process new insns generated in the loop. */
6725 for (curr_insn = tail; curr_insn != PREV_INSN (head); curr_insn = prev_insn)
6727 prev_insn = PREV_INSN (curr_insn);
6728 if (BLOCK_FOR_INSN (curr_insn) != NULL)
6729 curr_bb = BLOCK_FOR_INSN (curr_insn);
6730 if (last_processed_bb != curr_bb)
6732 /* We are at the end of BB. Add qualified living
6733 pseudos for potential splitting. */
6734 to_process = df_get_live_out (curr_bb);
6735 if (last_processed_bb != NULL)
6737 /* We are somewhere in the middle of EBB. */
6738 get_live_on_other_edges (curr_bb, last_processed_bb,
6739 &temp_bitmap);
6740 to_process = &temp_bitmap;
6742 last_processed_bb = curr_bb;
6743 last_insn = get_last_insertion_point (curr_bb);
6744 after_p = (! JUMP_P (last_insn)
6745 && (! CALL_P (last_insn)
6746 || (find_reg_note (last_insn,
6747 REG_NORETURN, NULL_RTX) == NULL_RTX
6748 && ! SIBLING_CALL_P (last_insn))));
6749 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
6750 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
6752 if ((int) j >= lra_constraint_new_regno_start)
6753 break;
6754 if (j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
6756 if (j < FIRST_PSEUDO_REGISTER)
6757 SET_HARD_REG_BIT (live_hard_regs, j);
6758 else
6759 add_to_hard_reg_set (&live_hard_regs,
6760 PSEUDO_REGNO_MODE (j),
6761 reg_renumber[j]);
6762 setup_next_usage_insn (j, last_insn, reloads_num, after_p);
6766 src_regno = dst_regno = -1;
6767 curr_set = single_set (curr_insn);
6768 if (curr_set != NULL_RTX && REG_P (SET_DEST (curr_set)))
6769 dst_regno = REGNO (SET_DEST (curr_set));
6770 if (curr_set != NULL_RTX && REG_P (SET_SRC (curr_set)))
6771 src_regno = REGNO (SET_SRC (curr_set));
6772 update_reloads_num_p = true;
6773 if (src_regno < lra_constraint_new_regno_start
6774 && src_regno >= FIRST_PSEUDO_REGISTER
6775 && reg_renumber[src_regno] < 0
6776 && dst_regno >= lra_constraint_new_regno_start
6777 && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS)
6779 /* 'reload_pseudo <- original_pseudo'. */
6780 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6781 reloads_num++;
6782 update_reloads_num_p = false;
6783 succ_p = false;
6784 if (usage_insns[src_regno].check == curr_usage_insns_check
6785 && (next_usage_insns = usage_insns[src_regno].insns) != NULL_RTX)
6786 succ_p = inherit_reload_reg (false, src_regno, cl,
6787 curr_insn, next_usage_insns);
6788 if (succ_p)
6789 change_p = true;
6790 else
6791 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
6792 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6793 potential_reload_hard_regs |= reg_class_contents[cl];
6795 else if (src_regno < 0
6796 && dst_regno >= lra_constraint_new_regno_start
6797 && invariant_p (SET_SRC (curr_set))
6798 && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS
6799 && ! bitmap_bit_p (&invalid_invariant_regs, dst_regno)
6800 && ! bitmap_bit_p (&invalid_invariant_regs,
6801 ORIGINAL_REGNO(regno_reg_rtx[dst_regno])))
6803 /* 'reload_pseudo <- invariant'. */
6804 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6805 reloads_num++;
6806 update_reloads_num_p = false;
6807 if (process_invariant_for_inheritance (SET_DEST (curr_set), SET_SRC (curr_set)))
6808 change_p = true;
6809 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6810 potential_reload_hard_regs |= reg_class_contents[cl];
6812 else if (src_regno >= lra_constraint_new_regno_start
6813 && dst_regno < lra_constraint_new_regno_start
6814 && dst_regno >= FIRST_PSEUDO_REGISTER
6815 && reg_renumber[dst_regno] < 0
6816 && (cl = lra_get_allocno_class (src_regno)) != NO_REGS
6817 && usage_insns[dst_regno].check == curr_usage_insns_check
6818 && (next_usage_insns
6819 = usage_insns[dst_regno].insns) != NULL_RTX)
6821 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6822 reloads_num++;
6823 update_reloads_num_p = false;
6824 /* 'original_pseudo <- reload_pseudo'. */
6825 if (! JUMP_P (curr_insn)
6826 && inherit_reload_reg (true, dst_regno, cl,
6827 curr_insn, next_usage_insns))
6828 change_p = true;
6829 /* Invalidate. */
6830 usage_insns[dst_regno].check = 0;
6831 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6832 potential_reload_hard_regs |= reg_class_contents[cl];
6834 else if (INSN_P (curr_insn))
6836 int iter;
6837 int max_uid = get_max_uid ();
6839 curr_id = lra_get_insn_recog_data (curr_insn);
6840 curr_static_id = curr_id->insn_static_data;
6841 to_inherit_num = 0;
6842 /* Process insn definitions. */
6843 for (iter = 0; iter < 2; iter++)
6844 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
6845 reg != NULL;
6846 reg = reg->next)
6847 if (reg->type != OP_IN
6848 && (dst_regno = reg->regno) < lra_constraint_new_regno_start)
6850 if (dst_regno >= FIRST_PSEUDO_REGISTER && reg->type == OP_OUT
6851 && reg_renumber[dst_regno] < 0 && ! reg->subreg_p
6852 && usage_insns[dst_regno].check == curr_usage_insns_check
6853 && (next_usage_insns
6854 = usage_insns[dst_regno].insns) != NULL_RTX)
6856 struct lra_insn_reg *r;
6858 for (r = curr_id->regs; r != NULL; r = r->next)
6859 if (r->type != OP_OUT && r->regno == dst_regno)
6860 break;
6861 /* Don't do inheritance if the pseudo is also
6862 used in the insn. */
6863 if (r == NULL)
6864 /* We cannot do inheritance right now
6865 because the current insn reg info (chain
6866 regs) can change after that. */
6867 add_to_inherit (dst_regno, next_usage_insns);
6869 /* We cannot process one reg twice here because of
6870 usage_insns invalidation. */
6871 if ((dst_regno < FIRST_PSEUDO_REGISTER
6872 || reg_renumber[dst_regno] >= 0)
6873 && ! reg->subreg_p && reg->type != OP_IN)
6875 HARD_REG_SET s;
6877 if (split_if_necessary (dst_regno, reg->biggest_mode,
6878 potential_reload_hard_regs,
6879 false, curr_insn, max_uid))
6880 change_p = true;
6881 CLEAR_HARD_REG_SET (s);
6882 if (dst_regno < FIRST_PSEUDO_REGISTER)
6883 add_to_hard_reg_set (&s, reg->biggest_mode, dst_regno);
6884 else
6885 add_to_hard_reg_set (&s, PSEUDO_REGNO_MODE (dst_regno),
6886 reg_renumber[dst_regno]);
6887 live_hard_regs &= ~s;
6888 potential_reload_hard_regs &= ~s;
6890 /* We should invalidate potential inheritance or
6891 splitting for the current insn usages to the next
6892 usage insns (see code below) as the output pseudo
6893 prevents this. */
6894 if ((dst_regno >= FIRST_PSEUDO_REGISTER
6895 && reg_renumber[dst_regno] < 0)
6896 || (reg->type == OP_OUT && ! reg->subreg_p
6897 && (dst_regno < FIRST_PSEUDO_REGISTER
6898 || reg_renumber[dst_regno] >= 0)))
6900 /* Invalidate and mark definitions. */
6901 if (dst_regno >= FIRST_PSEUDO_REGISTER)
6902 usage_insns[dst_regno].check = -(int) INSN_UID (curr_insn);
6903 else
6905 nregs = hard_regno_nregs (dst_regno,
6906 reg->biggest_mode);
6907 for (i = 0; i < nregs; i++)
6908 usage_insns[dst_regno + i].check
6909 = -(int) INSN_UID (curr_insn);
6913 /* Process clobbered call regs. */
6914 if (curr_id->arg_hard_regs != NULL)
6915 for (i = 0; (dst_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6916 if (dst_regno >= FIRST_PSEUDO_REGISTER)
6917 usage_insns[dst_regno - FIRST_PSEUDO_REGISTER].check
6918 = -(int) INSN_UID (curr_insn);
6919 if (! JUMP_P (curr_insn))
6920 for (i = 0; i < to_inherit_num; i++)
6921 if (inherit_reload_reg (true, to_inherit[i].regno,
6922 ALL_REGS, curr_insn,
6923 to_inherit[i].insns))
6924 change_p = true;
6925 if (CALL_P (curr_insn))
6927 rtx cheap, pat, dest;
6928 rtx_insn *restore;
6929 int regno, hard_regno;
6931 calls_num++;
6932 function_abi callee_abi = insn_callee_abi (curr_insn);
6933 last_call_for_abi[callee_abi.id ()] = calls_num;
6934 full_and_partial_call_clobbers
6935 |= callee_abi.full_and_partial_reg_clobbers ();
6936 if ((cheap = find_reg_note (curr_insn,
6937 REG_RETURNED, NULL_RTX)) != NULL_RTX
6938 && ((cheap = XEXP (cheap, 0)), true)
6939 && (regno = REGNO (cheap)) >= FIRST_PSEUDO_REGISTER
6940 && (hard_regno = reg_renumber[regno]) >= 0
6941 && usage_insns[regno].check == curr_usage_insns_check
6942 /* If there are pending saves/restores, the
6943 optimization is not worth. */
6944 && usage_insns[regno].calls_num == calls_num - 1
6945 && callee_abi.clobbers_reg_p (GET_MODE (cheap), hard_regno))
6947 /* Restore the pseudo from the call result as
6948 REG_RETURNED note says that the pseudo value is
6949 in the call result and the pseudo is an argument
6950 of the call. */
6951 pat = PATTERN (curr_insn);
6952 if (GET_CODE (pat) == PARALLEL)
6953 pat = XVECEXP (pat, 0, 0);
6954 dest = SET_DEST (pat);
6955 /* For multiple return values dest is PARALLEL.
6956 Currently we handle only single return value case. */
6957 if (REG_P (dest))
6959 start_sequence ();
6960 emit_move_insn (cheap, copy_rtx (dest));
6961 restore = get_insns ();
6962 end_sequence ();
6963 lra_process_new_insns (curr_insn, NULL, restore,
6964 "Inserting call parameter restore");
6965 /* We don't need to save/restore of the pseudo from
6966 this call. */
6967 usage_insns[regno].calls_num = calls_num;
6968 remove_from_hard_reg_set
6969 (&full_and_partial_call_clobbers,
6970 GET_MODE (cheap), hard_regno);
6971 bitmap_set_bit (&check_only_regs, regno);
6975 to_inherit_num = 0;
6976 /* Process insn usages. */
6977 for (iter = 0; iter < 2; iter++)
6978 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
6979 reg != NULL;
6980 reg = reg->next)
6981 if ((reg->type != OP_OUT
6982 || (reg->type == OP_OUT && reg->subreg_p))
6983 && (src_regno = reg->regno) < lra_constraint_new_regno_start)
6985 if (src_regno >= FIRST_PSEUDO_REGISTER
6986 && reg_renumber[src_regno] < 0 && reg->type == OP_IN)
6988 if (usage_insns[src_regno].check == curr_usage_insns_check
6989 && (next_usage_insns
6990 = usage_insns[src_regno].insns) != NULL_RTX
6991 && NONDEBUG_INSN_P (curr_insn))
6992 add_to_inherit (src_regno, next_usage_insns);
6993 else if (usage_insns[src_regno].check
6994 != -(int) INSN_UID (curr_insn))
6995 /* Add usages but only if the reg is not set up
6996 in the same insn. */
6997 add_next_usage_insn (src_regno, curr_insn, reloads_num);
6999 else if (src_regno < FIRST_PSEUDO_REGISTER
7000 || reg_renumber[src_regno] >= 0)
7002 bool before_p;
7003 rtx_insn *use_insn = curr_insn;
7005 before_p = (JUMP_P (curr_insn)
7006 || (CALL_P (curr_insn) && reg->type == OP_IN));
7007 if (NONDEBUG_INSN_P (curr_insn)
7008 && (! JUMP_P (curr_insn) || reg->type == OP_IN)
7009 && split_if_necessary (src_regno, reg->biggest_mode,
7010 potential_reload_hard_regs,
7011 before_p, curr_insn, max_uid))
7013 if (reg->subreg_p)
7014 check_and_force_assignment_correctness_p = true;
7015 change_p = true;
7016 /* Invalidate. */
7017 usage_insns[src_regno].check = 0;
7018 if (before_p)
7019 use_insn = PREV_INSN (curr_insn);
7021 if (NONDEBUG_INSN_P (curr_insn))
7023 if (src_regno < FIRST_PSEUDO_REGISTER)
7024 add_to_hard_reg_set (&live_hard_regs,
7025 reg->biggest_mode, src_regno);
7026 else
7027 add_to_hard_reg_set (&live_hard_regs,
7028 PSEUDO_REGNO_MODE (src_regno),
7029 reg_renumber[src_regno]);
7031 if (src_regno >= FIRST_PSEUDO_REGISTER)
7032 add_next_usage_insn (src_regno, use_insn, reloads_num);
7033 else
7035 for (i = 0; i < hard_regno_nregs (src_regno, reg->biggest_mode); i++)
7036 add_next_usage_insn (src_regno + i, use_insn, reloads_num);
7040 /* Process used call regs. */
7041 if (curr_id->arg_hard_regs != NULL)
7042 for (i = 0; (src_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
7043 if (src_regno < FIRST_PSEUDO_REGISTER)
7045 SET_HARD_REG_BIT (live_hard_regs, src_regno);
7046 add_next_usage_insn (src_regno, curr_insn, reloads_num);
7048 for (i = 0; i < to_inherit_num; i++)
7050 src_regno = to_inherit[i].regno;
7051 if (inherit_reload_reg (false, src_regno, ALL_REGS,
7052 curr_insn, to_inherit[i].insns))
7053 change_p = true;
7054 else
7055 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
7058 if (update_reloads_num_p
7059 && NONDEBUG_INSN_P (curr_insn) && curr_set != NULL_RTX)
7061 int regno = -1;
7062 if ((REG_P (SET_DEST (curr_set))
7063 && (regno = REGNO (SET_DEST (curr_set))) >= lra_constraint_new_regno_start
7064 && reg_renumber[regno] < 0
7065 && (cl = lra_get_allocno_class (regno)) != NO_REGS)
7066 || (REG_P (SET_SRC (curr_set))
7067 && (regno = REGNO (SET_SRC (curr_set))) >= lra_constraint_new_regno_start
7068 && reg_renumber[regno] < 0
7069 && (cl = lra_get_allocno_class (regno)) != NO_REGS))
7071 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
7072 reloads_num++;
7073 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
7074 potential_reload_hard_regs |= reg_class_contents[cl];
7077 if (NONDEBUG_INSN_P (curr_insn))
7079 int regno;
7081 /* Invalidate invariants with changed regs. */
7082 curr_id = lra_get_insn_recog_data (curr_insn);
7083 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
7084 if (reg->type != OP_IN)
7086 bitmap_set_bit (&invalid_invariant_regs, reg->regno);
7087 bitmap_set_bit (&invalid_invariant_regs,
7088 ORIGINAL_REGNO (regno_reg_rtx[reg->regno]));
7090 curr_static_id = curr_id->insn_static_data;
7091 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
7092 if (reg->type != OP_IN)
7093 bitmap_set_bit (&invalid_invariant_regs, reg->regno);
7094 if (curr_id->arg_hard_regs != NULL)
7095 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
7096 if (regno >= FIRST_PSEUDO_REGISTER)
7097 bitmap_set_bit (&invalid_invariant_regs,
7098 regno - FIRST_PSEUDO_REGISTER);
7100 /* We reached the start of the current basic block. */
7101 if (prev_insn == NULL_RTX || prev_insn == PREV_INSN (head)
7102 || BLOCK_FOR_INSN (prev_insn) != curr_bb)
7104 /* We reached the beginning of the current block -- do
7105 rest of spliting in the current BB. */
7106 to_process = df_get_live_in (curr_bb);
7107 if (BLOCK_FOR_INSN (head) != curr_bb)
7109 /* We are somewhere in the middle of EBB. */
7110 get_live_on_other_edges (EDGE_PRED (curr_bb, 0)->src,
7111 curr_bb, &temp_bitmap);
7112 to_process = &temp_bitmap;
7114 head_p = true;
7115 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
7117 if ((int) j >= lra_constraint_new_regno_start)
7118 break;
7119 if (((int) j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
7120 && usage_insns[j].check == curr_usage_insns_check
7121 && (next_usage_insns = usage_insns[j].insns) != NULL_RTX)
7123 if (need_for_split_p (potential_reload_hard_regs, j))
7125 if (lra_dump_file != NULL && head_p)
7127 fprintf (lra_dump_file,
7128 " ----------------------------------\n");
7129 head_p = false;
7131 if (split_reg (false, j, bb_note (curr_bb),
7132 next_usage_insns, NULL))
7133 change_p = true;
7135 usage_insns[j].check = 0;
7140 return change_p;
7143 /* This value affects EBB forming. If probability of edge from EBB to
7144 a BB is not greater than the following value, we don't add the BB
7145 to EBB. */
7146 #define EBB_PROBABILITY_CUTOFF \
7147 ((REG_BR_PROB_BASE * param_lra_inheritance_ebb_probability_cutoff) / 100)
7149 /* Current number of inheritance/split iteration. */
7150 int lra_inheritance_iter;
7152 /* Entry function for inheritance/split pass. */
7153 void
7154 lra_inheritance (void)
7156 int i;
7157 basic_block bb, start_bb;
7158 edge e;
7160 lra_inheritance_iter++;
7161 if (lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
7162 return;
7163 timevar_push (TV_LRA_INHERITANCE);
7164 if (lra_dump_file != NULL)
7165 fprintf (lra_dump_file, "\n********** Inheritance #%d: **********\n\n",
7166 lra_inheritance_iter);
7167 curr_usage_insns_check = 0;
7168 usage_insns = XNEWVEC (struct usage_insns, lra_constraint_new_regno_start);
7169 for (i = 0; i < lra_constraint_new_regno_start; i++)
7170 usage_insns[i].check = 0;
7171 bitmap_initialize (&check_only_regs, &reg_obstack);
7172 bitmap_initialize (&invalid_invariant_regs, &reg_obstack);
7173 bitmap_initialize (&live_regs, &reg_obstack);
7174 bitmap_initialize (&temp_bitmap, &reg_obstack);
7175 bitmap_initialize (&ebb_global_regs, &reg_obstack);
7176 FOR_EACH_BB_FN (bb, cfun)
7178 start_bb = bb;
7179 if (lra_dump_file != NULL)
7180 fprintf (lra_dump_file, "EBB");
7181 /* Form a EBB starting with BB. */
7182 bitmap_clear (&ebb_global_regs);
7183 bitmap_ior_into (&ebb_global_regs, df_get_live_in (bb));
7184 for (;;)
7186 if (lra_dump_file != NULL)
7187 fprintf (lra_dump_file, " %d", bb->index);
7188 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
7189 || LABEL_P (BB_HEAD (bb->next_bb)))
7190 break;
7191 e = find_fallthru_edge (bb->succs);
7192 if (! e)
7193 break;
7194 if (e->probability.initialized_p ()
7195 && e->probability.to_reg_br_prob_base () < EBB_PROBABILITY_CUTOFF)
7196 break;
7197 bb = bb->next_bb;
7199 bitmap_ior_into (&ebb_global_regs, df_get_live_out (bb));
7200 if (lra_dump_file != NULL)
7201 fprintf (lra_dump_file, "\n");
7202 if (inherit_in_ebb (BB_HEAD (start_bb), BB_END (bb)))
7203 /* Remember that the EBB head and tail can change in
7204 inherit_in_ebb. */
7205 update_ebb_live_info (BB_HEAD (start_bb), BB_END (bb));
7207 bitmap_release (&ebb_global_regs);
7208 bitmap_release (&temp_bitmap);
7209 bitmap_release (&live_regs);
7210 bitmap_release (&invalid_invariant_regs);
7211 bitmap_release (&check_only_regs);
7212 free (usage_insns);
7213 lra_dump_insns_if_possible ("func after inheritance");
7214 timevar_pop (TV_LRA_INHERITANCE);
7219 /* This page contains code to undo failed inheritance/split
7220 transformations. */
7222 /* Current number of iteration undoing inheritance/split. */
7223 int lra_undo_inheritance_iter;
7225 /* Fix BB live info LIVE after removing pseudos created on pass doing
7226 inheritance/split which are REMOVED_PSEUDOS. */
7227 static void
7228 fix_bb_live_info (bitmap live, bitmap removed_pseudos)
7230 unsigned int regno;
7231 bitmap_iterator bi;
7233 EXECUTE_IF_SET_IN_BITMAP (removed_pseudos, 0, regno, bi)
7234 if (bitmap_clear_bit (live, regno)
7235 && REG_P (lra_reg_info[regno].restore_rtx))
7236 bitmap_set_bit (live, REGNO (lra_reg_info[regno].restore_rtx));
7239 /* Return regno of the (subreg of) REG. Otherwise, return a negative
7240 number. */
7241 static int
7242 get_regno (rtx reg)
7244 if (GET_CODE (reg) == SUBREG)
7245 reg = SUBREG_REG (reg);
7246 if (REG_P (reg))
7247 return REGNO (reg);
7248 return -1;
7251 /* Delete a move INSN with destination reg DREGNO and a previous
7252 clobber insn with the same regno. The inheritance/split code can
7253 generate moves with preceding clobber and when we delete such moves
7254 we should delete the clobber insn too to keep the correct life
7255 info. */
7256 static void
7257 delete_move_and_clobber (rtx_insn *insn, int dregno)
7259 rtx_insn *prev_insn = PREV_INSN (insn);
7261 lra_set_insn_deleted (insn);
7262 lra_assert (dregno >= 0);
7263 if (prev_insn != NULL && NONDEBUG_INSN_P (prev_insn)
7264 && GET_CODE (PATTERN (prev_insn)) == CLOBBER
7265 && dregno == get_regno (XEXP (PATTERN (prev_insn), 0)))
7266 lra_set_insn_deleted (prev_insn);
7269 /* Remove inheritance/split pseudos which are in REMOVE_PSEUDOS and
7270 return true if we did any change. The undo transformations for
7271 inheritance looks like
7272 i <- i2
7273 p <- i => p <- i2
7274 or removing
7275 p <- i, i <- p, and i <- i3
7276 where p is original pseudo from which inheritance pseudo i was
7277 created, i and i3 are removed inheritance pseudos, i2 is another
7278 not removed inheritance pseudo. All split pseudos or other
7279 occurrences of removed inheritance pseudos are changed on the
7280 corresponding original pseudos.
7282 The function also schedules insns changed and created during
7283 inheritance/split pass for processing by the subsequent constraint
7284 pass. */
7285 static bool
7286 remove_inheritance_pseudos (bitmap remove_pseudos)
7288 basic_block bb;
7289 int regno, sregno, prev_sregno, dregno;
7290 rtx restore_rtx;
7291 rtx set, prev_set;
7292 rtx_insn *prev_insn;
7293 bool change_p, done_p;
7295 change_p = ! bitmap_empty_p (remove_pseudos);
7296 /* We cannot finish the function right away if CHANGE_P is true
7297 because we need to marks insns affected by previous
7298 inheritance/split pass for processing by the subsequent
7299 constraint pass. */
7300 FOR_EACH_BB_FN (bb, cfun)
7302 fix_bb_live_info (df_get_live_in (bb), remove_pseudos);
7303 fix_bb_live_info (df_get_live_out (bb), remove_pseudos);
7304 FOR_BB_INSNS_REVERSE (bb, curr_insn)
7306 if (! INSN_P (curr_insn))
7307 continue;
7308 done_p = false;
7309 sregno = dregno = -1;
7310 if (change_p && NONDEBUG_INSN_P (curr_insn)
7311 && (set = single_set (curr_insn)) != NULL_RTX)
7313 dregno = get_regno (SET_DEST (set));
7314 sregno = get_regno (SET_SRC (set));
7317 if (sregno >= 0 && dregno >= 0)
7319 if (bitmap_bit_p (remove_pseudos, dregno)
7320 && ! REG_P (lra_reg_info[dregno].restore_rtx))
7322 /* invariant inheritance pseudo <- original pseudo */
7323 if (lra_dump_file != NULL)
7325 fprintf (lra_dump_file, " Removing invariant inheritance:\n");
7326 dump_insn_slim (lra_dump_file, curr_insn);
7327 fprintf (lra_dump_file, "\n");
7329 delete_move_and_clobber (curr_insn, dregno);
7330 done_p = true;
7332 else if (bitmap_bit_p (remove_pseudos, sregno)
7333 && ! REG_P (lra_reg_info[sregno].restore_rtx))
7335 /* reload pseudo <- invariant inheritance pseudo */
7336 start_sequence ();
7337 /* We cannot just change the source. It might be
7338 an insn different from the move. */
7339 emit_insn (lra_reg_info[sregno].restore_rtx);
7340 rtx_insn *new_insns = get_insns ();
7341 end_sequence ();
7342 lra_assert (single_set (new_insns) != NULL
7343 && SET_DEST (set) == SET_DEST (single_set (new_insns)));
7344 lra_process_new_insns (curr_insn, NULL, new_insns,
7345 "Changing reload<-invariant inheritance");
7346 delete_move_and_clobber (curr_insn, dregno);
7347 done_p = true;
7349 else if ((bitmap_bit_p (remove_pseudos, sregno)
7350 && (get_regno (lra_reg_info[sregno].restore_rtx) == dregno
7351 || (bitmap_bit_p (remove_pseudos, dregno)
7352 && get_regno (lra_reg_info[sregno].restore_rtx) >= 0
7353 && (get_regno (lra_reg_info[sregno].restore_rtx)
7354 == get_regno (lra_reg_info[dregno].restore_rtx)))))
7355 || (bitmap_bit_p (remove_pseudos, dregno)
7356 && get_regno (lra_reg_info[dregno].restore_rtx) == sregno))
7357 /* One of the following cases:
7358 original <- removed inheritance pseudo
7359 removed inherit pseudo <- another removed inherit pseudo
7360 removed inherit pseudo <- original pseudo
7362 removed_split_pseudo <- original_reg
7363 original_reg <- removed_split_pseudo */
7365 if (lra_dump_file != NULL)
7367 fprintf (lra_dump_file, " Removing %s:\n",
7368 bitmap_bit_p (&lra_split_regs, sregno)
7369 || bitmap_bit_p (&lra_split_regs, dregno)
7370 ? "split" : "inheritance");
7371 dump_insn_slim (lra_dump_file, curr_insn);
7373 delete_move_and_clobber (curr_insn, dregno);
7374 done_p = true;
7376 else if (bitmap_bit_p (remove_pseudos, sregno)
7377 && bitmap_bit_p (&lra_inheritance_pseudos, sregno))
7379 /* Search the following pattern:
7380 inherit_or_split_pseudo1 <- inherit_or_split_pseudo2
7381 original_pseudo <- inherit_or_split_pseudo1
7382 where the 2nd insn is the current insn and
7383 inherit_or_split_pseudo2 is not removed. If it is found,
7384 change the current insn onto:
7385 original_pseudo <- inherit_or_split_pseudo2. */
7386 for (prev_insn = PREV_INSN (curr_insn);
7387 prev_insn != NULL_RTX && ! NONDEBUG_INSN_P (prev_insn);
7388 prev_insn = PREV_INSN (prev_insn))
7390 if (prev_insn != NULL_RTX && BLOCK_FOR_INSN (prev_insn) == bb
7391 && (prev_set = single_set (prev_insn)) != NULL_RTX
7392 /* There should be no subregs in insn we are
7393 searching because only the original reg might
7394 be in subreg when we changed the mode of
7395 load/store for splitting. */
7396 && REG_P (SET_DEST (prev_set))
7397 && REG_P (SET_SRC (prev_set))
7398 && (int) REGNO (SET_DEST (prev_set)) == sregno
7399 && ((prev_sregno = REGNO (SET_SRC (prev_set)))
7400 >= FIRST_PSEUDO_REGISTER)
7401 && (lra_reg_info[prev_sregno].restore_rtx == NULL_RTX
7403 /* As we consider chain of inheritance or
7404 splitting described in above comment we should
7405 check that sregno and prev_sregno were
7406 inheritance/split pseudos created from the
7407 same original regno. */
7408 (get_regno (lra_reg_info[sregno].restore_rtx) >= 0
7409 && (get_regno (lra_reg_info[sregno].restore_rtx)
7410 == get_regno (lra_reg_info[prev_sregno].restore_rtx))))
7411 && ! bitmap_bit_p (remove_pseudos, prev_sregno))
7413 int restore_regno = get_regno (lra_reg_info[sregno].restore_rtx);
7414 if (restore_regno < 0)
7415 restore_regno = prev_sregno;
7416 lra_assert (GET_MODE (SET_SRC (prev_set))
7417 == GET_MODE (regno_reg_rtx[restore_regno]));
7418 /* Although we have a single set, the insn can
7419 contain more one sregno register occurrence
7420 as a source. Change all occurrences. */
7421 lra_substitute_pseudo_within_insn (curr_insn, sregno,
7422 regno_reg_rtx[restore_regno],
7423 false);
7424 /* As we are finishing with processing the insn
7425 here, check the destination too as it might
7426 inheritance pseudo for another pseudo. */
7427 if (bitmap_bit_p (remove_pseudos, dregno)
7428 && bitmap_bit_p (&lra_inheritance_pseudos, dregno)
7429 && (restore_rtx
7430 = lra_reg_info[dregno].restore_rtx) != NULL_RTX)
7432 if (GET_CODE (SET_DEST (set)) == SUBREG)
7433 SUBREG_REG (SET_DEST (set)) = restore_rtx;
7434 else
7435 SET_DEST (set) = restore_rtx;
7437 lra_push_insn_and_update_insn_regno_info (curr_insn);
7438 lra_set_used_insn_alternative_by_uid
7439 (INSN_UID (curr_insn), LRA_UNKNOWN_ALT);
7440 done_p = true;
7441 if (lra_dump_file != NULL)
7443 fprintf (lra_dump_file, " Change reload insn:\n");
7444 dump_insn_slim (lra_dump_file, curr_insn);
7449 if (! done_p)
7451 struct lra_insn_reg *reg;
7452 bool restored_regs_p = false;
7453 bool kept_regs_p = false;
7455 curr_id = lra_get_insn_recog_data (curr_insn);
7456 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
7458 regno = reg->regno;
7459 restore_rtx = lra_reg_info[regno].restore_rtx;
7460 if (restore_rtx != NULL_RTX)
7462 if (change_p && bitmap_bit_p (remove_pseudos, regno))
7464 lra_substitute_pseudo_within_insn
7465 (curr_insn, regno, restore_rtx, false);
7466 restored_regs_p = true;
7468 else
7469 kept_regs_p = true;
7472 if (NONDEBUG_INSN_P (curr_insn) && kept_regs_p)
7474 /* The instruction has changed since the previous
7475 constraints pass. */
7476 lra_push_insn_and_update_insn_regno_info (curr_insn);
7477 lra_set_used_insn_alternative_by_uid
7478 (INSN_UID (curr_insn), LRA_UNKNOWN_ALT);
7480 else if (restored_regs_p)
7481 /* The instruction has been restored to the form that
7482 it had during the previous constraints pass. */
7483 lra_update_insn_regno_info (curr_insn);
7484 if (restored_regs_p && lra_dump_file != NULL)
7486 fprintf (lra_dump_file, " Insn after restoring regs:\n");
7487 dump_insn_slim (lra_dump_file, curr_insn);
7492 return change_p;
7495 /* If optional reload pseudos failed to get a hard register or was not
7496 inherited, it is better to remove optional reloads. We do this
7497 transformation after undoing inheritance to figure out necessity to
7498 remove optional reloads easier. Return true if we do any
7499 change. */
7500 static bool
7501 undo_optional_reloads (void)
7503 bool change_p, keep_p;
7504 unsigned int regno, uid;
7505 bitmap_iterator bi, bi2;
7506 rtx_insn *insn;
7507 rtx set, src, dest;
7508 auto_bitmap removed_optional_reload_pseudos (&reg_obstack);
7510 bitmap_copy (removed_optional_reload_pseudos, &lra_optional_reload_pseudos);
7511 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
7513 keep_p = false;
7514 /* Keep optional reloads from previous subpasses. */
7515 if (lra_reg_info[regno].restore_rtx == NULL_RTX
7516 /* If the original pseudo changed its allocation, just
7517 removing the optional pseudo is dangerous as the original
7518 pseudo will have longer live range. */
7519 || reg_renumber[REGNO (lra_reg_info[regno].restore_rtx)] >= 0)
7520 keep_p = true;
7521 else if (reg_renumber[regno] >= 0)
7522 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi2)
7524 insn = lra_insn_recog_data[uid]->insn;
7525 if ((set = single_set (insn)) == NULL_RTX)
7526 continue;
7527 src = SET_SRC (set);
7528 dest = SET_DEST (set);
7529 if ((! REG_P (src) && ! SUBREG_P (src))
7530 || (! REG_P (dest) && ! SUBREG_P (dest)))
7531 continue;
7532 if (get_regno (dest) == (int) regno
7533 /* Ignore insn for optional reloads itself. */
7534 && (get_regno (lra_reg_info[regno].restore_rtx)
7535 != get_regno (src))
7536 /* Check only inheritance on last inheritance pass. */
7537 && get_regno (src) >= new_regno_start
7538 /* Check that the optional reload was inherited. */
7539 && bitmap_bit_p (&lra_inheritance_pseudos, get_regno (src)))
7541 keep_p = true;
7542 break;
7545 if (keep_p)
7547 bitmap_clear_bit (removed_optional_reload_pseudos, regno);
7548 if (lra_dump_file != NULL)
7549 fprintf (lra_dump_file, "Keep optional reload reg %d\n", regno);
7552 change_p = ! bitmap_empty_p (removed_optional_reload_pseudos);
7553 auto_bitmap insn_bitmap (&reg_obstack);
7554 EXECUTE_IF_SET_IN_BITMAP (removed_optional_reload_pseudos, 0, regno, bi)
7556 if (lra_dump_file != NULL)
7557 fprintf (lra_dump_file, "Remove optional reload reg %d\n", regno);
7558 bitmap_copy (insn_bitmap, &lra_reg_info[regno].insn_bitmap);
7559 EXECUTE_IF_SET_IN_BITMAP (insn_bitmap, 0, uid, bi2)
7561 /* We may have already removed a clobber. */
7562 if (!lra_insn_recog_data[uid])
7563 continue;
7564 insn = lra_insn_recog_data[uid]->insn;
7565 if ((set = single_set (insn)) != NULL_RTX)
7567 src = SET_SRC (set);
7568 dest = SET_DEST (set);
7569 if ((REG_P (src) || SUBREG_P (src))
7570 && (REG_P (dest) || SUBREG_P (dest))
7571 && ((get_regno (src) == (int) regno
7572 && (get_regno (lra_reg_info[regno].restore_rtx)
7573 == get_regno (dest)))
7574 || (get_regno (dest) == (int) regno
7575 && (get_regno (lra_reg_info[regno].restore_rtx)
7576 == get_regno (src)))))
7578 if (lra_dump_file != NULL)
7580 fprintf (lra_dump_file, " Deleting move %u\n",
7581 INSN_UID (insn));
7582 dump_insn_slim (lra_dump_file, insn);
7584 delete_move_and_clobber (insn, get_regno (dest));
7585 continue;
7587 /* We should not worry about generation memory-memory
7588 moves here as if the corresponding inheritance did
7589 not work (inheritance pseudo did not get a hard reg),
7590 we remove the inheritance pseudo and the optional
7591 reload. */
7593 if (GET_CODE (PATTERN (insn)) == CLOBBER
7594 && REG_P (SET_DEST (insn))
7595 && get_regno (SET_DEST (insn)) == (int) regno)
7596 /* Refuse to remap clobbers to preexisting pseudos. */
7597 gcc_unreachable ();
7598 lra_substitute_pseudo_within_insn
7599 (insn, regno, lra_reg_info[regno].restore_rtx, false);
7600 lra_update_insn_regno_info (insn);
7601 if (lra_dump_file != NULL)
7603 fprintf (lra_dump_file,
7604 " Restoring original insn:\n");
7605 dump_insn_slim (lra_dump_file, insn);
7609 /* Clear restore_regnos. */
7610 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
7611 lra_reg_info[regno].restore_rtx = NULL_RTX;
7612 return change_p;
7615 /* Entry function for undoing inheritance/split transformation. Return true
7616 if we did any RTL change in this pass. */
7617 bool
7618 lra_undo_inheritance (void)
7620 unsigned int regno;
7621 int hard_regno;
7622 int n_all_inherit, n_inherit, n_all_split, n_split;
7623 rtx restore_rtx;
7624 bitmap_iterator bi;
7625 bool change_p;
7627 lra_undo_inheritance_iter++;
7628 if (lra_undo_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
7629 return false;
7630 if (lra_dump_file != NULL)
7631 fprintf (lra_dump_file,
7632 "\n********** Undoing inheritance #%d: **********\n\n",
7633 lra_undo_inheritance_iter);
7634 auto_bitmap remove_pseudos (&reg_obstack);
7635 n_inherit = n_all_inherit = 0;
7636 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
7637 if (lra_reg_info[regno].restore_rtx != NULL_RTX)
7639 n_all_inherit++;
7640 if (reg_renumber[regno] < 0
7641 /* If the original pseudo changed its allocation, just
7642 removing inheritance is dangerous as for changing
7643 allocation we used shorter live-ranges. */
7644 && (! REG_P (lra_reg_info[regno].restore_rtx)
7645 || reg_renumber[REGNO (lra_reg_info[regno].restore_rtx)] < 0))
7646 bitmap_set_bit (remove_pseudos, regno);
7647 else
7648 n_inherit++;
7650 if (lra_dump_file != NULL && n_all_inherit != 0)
7651 fprintf (lra_dump_file, "Inherit %d out of %d (%.2f%%)\n",
7652 n_inherit, n_all_inherit,
7653 (double) n_inherit / n_all_inherit * 100);
7654 n_split = n_all_split = 0;
7655 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
7656 if ((restore_rtx = lra_reg_info[regno].restore_rtx) != NULL_RTX)
7658 int restore_regno = REGNO (restore_rtx);
7660 n_all_split++;
7661 hard_regno = (restore_regno >= FIRST_PSEUDO_REGISTER
7662 ? reg_renumber[restore_regno] : restore_regno);
7663 if (hard_regno < 0 || reg_renumber[regno] == hard_regno)
7664 bitmap_set_bit (remove_pseudos, regno);
7665 else
7667 n_split++;
7668 if (lra_dump_file != NULL)
7669 fprintf (lra_dump_file, " Keep split r%d (orig=r%d)\n",
7670 regno, restore_regno);
7673 if (lra_dump_file != NULL && n_all_split != 0)
7674 fprintf (lra_dump_file, "Split %d out of %d (%.2f%%)\n",
7675 n_split, n_all_split,
7676 (double) n_split / n_all_split * 100);
7677 change_p = remove_inheritance_pseudos (remove_pseudos);
7678 /* Clear restore_regnos. */
7679 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
7680 lra_reg_info[regno].restore_rtx = NULL_RTX;
7681 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
7682 lra_reg_info[regno].restore_rtx = NULL_RTX;
7683 change_p = undo_optional_reloads () || change_p;
7684 if (change_p)
7685 lra_dump_insns_if_possible ("changed func after undoing inheritance");
7686 return change_p;