Use non-throwing is_directory in filesystem::create_directory
[official-gcc.git] / gcc / tree-predcom.c
blob2bde732f8ad8dd0a142f71bfcdec214a79897c5f
1 /* Predictive commoning.
2 Copyright (C) 2005-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file implements the predictive commoning optimization. Predictive
21 commoning can be viewed as CSE around a loop, and with some improvements,
22 as generalized strength reduction-- i.e., reusing values computed in
23 earlier iterations of a loop in the later ones. So far, the pass only
24 handles the most useful case, that is, reusing values of memory references.
25 If you think this is all just a special case of PRE, you are sort of right;
26 however, concentrating on loops is simpler, and makes it possible to
27 incorporate data dependence analysis to detect the opportunities, perform
28 loop unrolling to avoid copies together with renaming immediately,
29 and if needed, we could also take register pressure into account.
31 Let us demonstrate what is done on an example:
33 for (i = 0; i < 100; i++)
35 a[i+2] = a[i] + a[i+1];
36 b[10] = b[10] + i;
37 c[i] = c[99 - i];
38 d[i] = d[i + 1];
41 1) We find data references in the loop, and split them to mutually
42 independent groups (i.e., we find components of a data dependence
43 graph). We ignore read-read dependences whose distance is not constant.
44 (TODO -- we could also ignore antidependences). In this example, we
45 find the following groups:
47 a[i]{read}, a[i+1]{read}, a[i+2]{write}
48 b[10]{read}, b[10]{write}
49 c[99 - i]{read}, c[i]{write}
50 d[i + 1]{read}, d[i]{write}
52 2) Inside each of the group, we verify several conditions:
53 a) all the references must differ in indices only, and the indices
54 must all have the same step
55 b) the references must dominate loop latch (and thus, they must be
56 ordered by dominance relation).
57 c) the distance of the indices must be a small multiple of the step
58 We are then able to compute the difference of the references (# of
59 iterations before they point to the same place as the first of them).
60 Also, in case there are writes in the loop, we split the groups into
61 chains whose head is the write whose values are used by the reads in
62 the same chain. The chains are then processed independently,
63 making the further transformations simpler. Also, the shorter chains
64 need the same number of registers, but may require lower unrolling
65 factor in order to get rid of the copies on the loop latch.
67 In our example, we get the following chains (the chain for c is invalid).
69 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
70 b[10]{read,+0}, b[10]{write,+0}
71 d[i + 1]{read,+0}, d[i]{write,+1}
73 3) For each read, we determine the read or write whose value it reuses,
74 together with the distance of this reuse. I.e. we take the last
75 reference before it with distance 0, or the last of the references
76 with the smallest positive distance to the read. Then, we remove
77 the references that are not used in any of these chains, discard the
78 empty groups, and propagate all the links so that they point to the
79 single root reference of the chain (adjusting their distance
80 appropriately). Some extra care needs to be taken for references with
81 step 0. In our example (the numbers indicate the distance of the
82 reuse),
84 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
85 b[10] --> (*) 1, b[10] (*)
87 4) The chains are combined together if possible. If the corresponding
88 elements of two chains are always combined together with the same
89 operator, we remember just the result of this combination, instead
90 of remembering the values separately. We may need to perform
91 reassociation to enable combining, for example
93 e[i] + f[i+1] + e[i+1] + f[i]
95 can be reassociated as
97 (e[i] + f[i]) + (e[i+1] + f[i+1])
99 and we can combine the chains for e and f into one chain.
101 5) For each root reference (end of the chain) R, let N be maximum distance
102 of a reference reusing its value. Variables R0 up to RN are created,
103 together with phi nodes that transfer values from R1 .. RN to
104 R0 .. R(N-1).
105 Initial values are loaded to R0..R(N-1) (in case not all references
106 must necessarily be accessed and they may trap, we may fail here;
107 TODO sometimes, the loads could be guarded by a check for the number
108 of iterations). Values loaded/stored in roots are also copied to
109 RN. Other reads are replaced with the appropriate variable Ri.
110 Everything is put to SSA form.
112 As a small improvement, if R0 is dead after the root (i.e., all uses of
113 the value with the maximum distance dominate the root), we can avoid
114 creating RN and use R0 instead of it.
116 In our example, we get (only the parts concerning a and b are shown):
117 for (i = 0; i < 100; i++)
119 f = phi (a[0], s);
120 s = phi (a[1], f);
121 x = phi (b[10], x);
123 f = f + s;
124 a[i+2] = f;
125 x = x + i;
126 b[10] = x;
129 6) Factor F for unrolling is determined as the smallest common multiple of
130 (N + 1) for each root reference (N for references for that we avoided
131 creating RN). If F and the loop is small enough, loop is unrolled F
132 times. The stores to RN (R0) in the copies of the loop body are
133 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
134 be coalesced and the copies can be eliminated.
136 TODO -- copy propagation and other optimizations may change the live
137 ranges of the temporary registers and prevent them from being coalesced;
138 this may increase the register pressure.
140 In our case, F = 2 and the (main loop of the) result is
142 for (i = 0; i < ...; i += 2)
144 f = phi (a[0], f);
145 s = phi (a[1], s);
146 x = phi (b[10], x);
148 f = f + s;
149 a[i+2] = f;
150 x = x + i;
151 b[10] = x;
153 s = s + f;
154 a[i+3] = s;
155 x = x + i;
156 b[10] = x;
159 Apart from predictive commoning on Load-Load and Store-Load chains, we
160 also support Store-Store chains -- stores killed by other store can be
161 eliminated. Given below example:
163 for (i = 0; i < n; i++)
165 a[i] = 1;
166 a[i+2] = 2;
169 It can be replaced with:
171 t0 = a[0];
172 t1 = a[1];
173 for (i = 0; i < n; i++)
175 a[i] = 1;
176 t2 = 2;
177 t0 = t1;
178 t1 = t2;
180 a[n] = t0;
181 a[n+1] = t1;
183 If the loop runs more than 1 iterations, it can be further simplified into:
185 for (i = 0; i < n; i++)
187 a[i] = 1;
189 a[n] = 2;
190 a[n+1] = 2;
192 The interesting part is this can be viewed either as general store motion
193 or general dead store elimination in either intra/inter-iterations way.
195 With trivial effort, we also support load inside Store-Store chains if the
196 load is dominated by a store statement in the same iteration of loop. You
197 can see this as a restricted Store-Mixed-Load-Store chain.
199 TODO: For now, we don't support store-store chains in multi-exit loops. We
200 force to not unroll in case of store-store chain even if other chains might
201 ask for unroll.
203 Predictive commoning can be generalized for arbitrary computations (not
204 just memory loads), and also nontrivial transfer functions (e.g., replacing
205 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
207 #include "config.h"
208 #include "system.h"
209 #include "coretypes.h"
210 #include "backend.h"
211 #include "rtl.h"
212 #include "tree.h"
213 #include "gimple.h"
214 #include "predict.h"
215 #include "tree-pass.h"
216 #include "ssa.h"
217 #include "gimple-pretty-print.h"
218 #include "alias.h"
219 #include "fold-const.h"
220 #include "cfgloop.h"
221 #include "tree-eh.h"
222 #include "gimplify.h"
223 #include "gimple-iterator.h"
224 #include "gimplify-me.h"
225 #include "tree-ssa-loop-ivopts.h"
226 #include "tree-ssa-loop-manip.h"
227 #include "tree-ssa-loop-niter.h"
228 #include "tree-ssa-loop.h"
229 #include "tree-into-ssa.h"
230 #include "tree-dfa.h"
231 #include "tree-ssa.h"
232 #include "tree-data-ref.h"
233 #include "tree-scalar-evolution.h"
234 #include "params.h"
235 #include "tree-affine.h"
236 #include "builtins.h"
238 /* The maximum number of iterations between the considered memory
239 references. */
241 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
243 /* Data references (or phi nodes that carry data reference values across
244 loop iterations). */
246 typedef struct dref_d
248 /* The reference itself. */
249 struct data_reference *ref;
251 /* The statement in that the reference appears. */
252 gimple *stmt;
254 /* In case that STMT is a phi node, this field is set to the SSA name
255 defined by it in replace_phis_by_defined_names (in order to avoid
256 pointing to phi node that got reallocated in the meantime). */
257 tree name_defined_by_phi;
259 /* Distance of the reference from the root of the chain (in number of
260 iterations of the loop). */
261 unsigned distance;
263 /* Number of iterations offset from the first reference in the component. */
264 widest_int offset;
266 /* Number of the reference in a component, in dominance ordering. */
267 unsigned pos;
269 /* True if the memory reference is always accessed when the loop is
270 entered. */
271 unsigned always_accessed : 1;
272 } *dref;
275 /* Type of the chain of the references. */
277 enum chain_type
279 /* The addresses of the references in the chain are constant. */
280 CT_INVARIANT,
282 /* There are only loads in the chain. */
283 CT_LOAD,
285 /* Root of the chain is store, the rest are loads. */
286 CT_STORE_LOAD,
288 /* There are only stores in the chain. */
289 CT_STORE_STORE,
291 /* A combination of two chains. */
292 CT_COMBINATION
295 /* Chains of data references. */
297 typedef struct chain
299 /* Type of the chain. */
300 enum chain_type type;
302 /* For combination chains, the operator and the two chains that are
303 combined, and the type of the result. */
304 enum tree_code op;
305 tree rslt_type;
306 struct chain *ch1, *ch2;
308 /* The references in the chain. */
309 vec<dref> refs;
311 /* The maximum distance of the reference in the chain from the root. */
312 unsigned length;
314 /* The variables used to copy the value throughout iterations. */
315 vec<tree> vars;
317 /* Initializers for the variables. */
318 vec<tree> inits;
320 /* Finalizers for the eliminated stores. */
321 vec<tree> finis;
323 /* gimple stmts intializing the initial variables of the chain. */
324 gimple_seq init_seq;
326 /* gimple stmts finalizing the eliminated stores of the chain. */
327 gimple_seq fini_seq;
329 /* True if there is a use of a variable with the maximal distance
330 that comes after the root in the loop. */
331 unsigned has_max_use_after : 1;
333 /* True if all the memory references in the chain are always accessed. */
334 unsigned all_always_accessed : 1;
336 /* True if this chain was combined together with some other chain. */
337 unsigned combined : 1;
339 /* True if this is store elimination chain and eliminated stores store
340 loop invariant value into memory. */
341 unsigned inv_store_elimination : 1;
342 } *chain_p;
345 /* Describes the knowledge about the step of the memory references in
346 the component. */
348 enum ref_step_type
350 /* The step is zero. */
351 RS_INVARIANT,
353 /* The step is nonzero. */
354 RS_NONZERO,
356 /* The step may or may not be nonzero. */
357 RS_ANY
360 /* Components of the data dependence graph. */
362 struct component
364 /* The references in the component. */
365 vec<dref> refs;
367 /* What we know about the step of the references in the component. */
368 enum ref_step_type comp_step;
370 /* True if all references in component are stores and we try to do
371 intra/inter loop iteration dead store elimination. */
372 bool eliminate_store_p;
374 /* Next component in the list. */
375 struct component *next;
378 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
380 static bitmap looparound_phis;
382 /* Cache used by tree_to_aff_combination_expand. */
384 static hash_map<tree, name_expansion *> *name_expansions;
386 /* Dumps data reference REF to FILE. */
388 extern void dump_dref (FILE *, dref);
389 void
390 dump_dref (FILE *file, dref ref)
392 if (ref->ref)
394 fprintf (file, " ");
395 print_generic_expr (file, DR_REF (ref->ref), TDF_SLIM);
396 fprintf (file, " (id %u%s)\n", ref->pos,
397 DR_IS_READ (ref->ref) ? "" : ", write");
399 fprintf (file, " offset ");
400 print_decs (ref->offset, file);
401 fprintf (file, "\n");
403 fprintf (file, " distance %u\n", ref->distance);
405 else
407 if (gimple_code (ref->stmt) == GIMPLE_PHI)
408 fprintf (file, " looparound ref\n");
409 else
410 fprintf (file, " combination ref\n");
411 fprintf (file, " in statement ");
412 print_gimple_stmt (file, ref->stmt, 0, TDF_SLIM);
413 fprintf (file, "\n");
414 fprintf (file, " distance %u\n", ref->distance);
419 /* Dumps CHAIN to FILE. */
421 extern void dump_chain (FILE *, chain_p);
422 void
423 dump_chain (FILE *file, chain_p chain)
425 dref a;
426 const char *chain_type;
427 unsigned i;
428 tree var;
430 switch (chain->type)
432 case CT_INVARIANT:
433 chain_type = "Load motion";
434 break;
436 case CT_LOAD:
437 chain_type = "Loads-only";
438 break;
440 case CT_STORE_LOAD:
441 chain_type = "Store-loads";
442 break;
444 case CT_STORE_STORE:
445 chain_type = "Store-stores";
446 break;
448 case CT_COMBINATION:
449 chain_type = "Combination";
450 break;
452 default:
453 gcc_unreachable ();
456 fprintf (file, "%s chain %p%s\n", chain_type, (void *) chain,
457 chain->combined ? " (combined)" : "");
458 if (chain->type != CT_INVARIANT)
459 fprintf (file, " max distance %u%s\n", chain->length,
460 chain->has_max_use_after ? "" : ", may reuse first");
462 if (chain->type == CT_COMBINATION)
464 fprintf (file, " equal to %p %s %p in type ",
465 (void *) chain->ch1, op_symbol_code (chain->op),
466 (void *) chain->ch2);
467 print_generic_expr (file, chain->rslt_type, TDF_SLIM);
468 fprintf (file, "\n");
471 if (chain->vars.exists ())
473 fprintf (file, " vars");
474 FOR_EACH_VEC_ELT (chain->vars, i, var)
476 fprintf (file, " ");
477 print_generic_expr (file, var, TDF_SLIM);
479 fprintf (file, "\n");
482 if (chain->inits.exists ())
484 fprintf (file, " inits");
485 FOR_EACH_VEC_ELT (chain->inits, i, var)
487 fprintf (file, " ");
488 print_generic_expr (file, var, TDF_SLIM);
490 fprintf (file, "\n");
493 fprintf (file, " references:\n");
494 FOR_EACH_VEC_ELT (chain->refs, i, a)
495 dump_dref (file, a);
497 fprintf (file, "\n");
500 /* Dumps CHAINS to FILE. */
502 extern void dump_chains (FILE *, vec<chain_p> );
503 void
504 dump_chains (FILE *file, vec<chain_p> chains)
506 chain_p chain;
507 unsigned i;
509 FOR_EACH_VEC_ELT (chains, i, chain)
510 dump_chain (file, chain);
513 /* Dumps COMP to FILE. */
515 extern void dump_component (FILE *, struct component *);
516 void
517 dump_component (FILE *file, struct component *comp)
519 dref a;
520 unsigned i;
522 fprintf (file, "Component%s:\n",
523 comp->comp_step == RS_INVARIANT ? " (invariant)" : "");
524 FOR_EACH_VEC_ELT (comp->refs, i, a)
525 dump_dref (file, a);
526 fprintf (file, "\n");
529 /* Dumps COMPS to FILE. */
531 extern void dump_components (FILE *, struct component *);
532 void
533 dump_components (FILE *file, struct component *comps)
535 struct component *comp;
537 for (comp = comps; comp; comp = comp->next)
538 dump_component (file, comp);
541 /* Frees a chain CHAIN. */
543 static void
544 release_chain (chain_p chain)
546 dref ref;
547 unsigned i;
549 if (chain == NULL)
550 return;
552 FOR_EACH_VEC_ELT (chain->refs, i, ref)
553 free (ref);
555 chain->refs.release ();
556 chain->vars.release ();
557 chain->inits.release ();
558 if (chain->init_seq)
559 gimple_seq_discard (chain->init_seq);
561 chain->finis.release ();
562 if (chain->fini_seq)
563 gimple_seq_discard (chain->fini_seq);
565 free (chain);
568 /* Frees CHAINS. */
570 static void
571 release_chains (vec<chain_p> chains)
573 unsigned i;
574 chain_p chain;
576 FOR_EACH_VEC_ELT (chains, i, chain)
577 release_chain (chain);
578 chains.release ();
581 /* Frees a component COMP. */
583 static void
584 release_component (struct component *comp)
586 comp->refs.release ();
587 free (comp);
590 /* Frees list of components COMPS. */
592 static void
593 release_components (struct component *comps)
595 struct component *act, *next;
597 for (act = comps; act; act = next)
599 next = act->next;
600 release_component (act);
604 /* Finds a root of tree given by FATHERS containing A, and performs path
605 shortening. */
607 static unsigned
608 component_of (unsigned fathers[], unsigned a)
610 unsigned root, n;
612 for (root = a; root != fathers[root]; root = fathers[root])
613 continue;
615 for (; a != root; a = n)
617 n = fathers[a];
618 fathers[a] = root;
621 return root;
624 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
625 components, A and B are components to merge. */
627 static void
628 merge_comps (unsigned fathers[], unsigned sizes[], unsigned a, unsigned b)
630 unsigned ca = component_of (fathers, a);
631 unsigned cb = component_of (fathers, b);
633 if (ca == cb)
634 return;
636 if (sizes[ca] < sizes[cb])
638 sizes[cb] += sizes[ca];
639 fathers[ca] = cb;
641 else
643 sizes[ca] += sizes[cb];
644 fathers[cb] = ca;
648 /* Returns true if A is a reference that is suitable for predictive commoning
649 in the innermost loop that contains it. REF_STEP is set according to the
650 step of the reference A. */
652 static bool
653 suitable_reference_p (struct data_reference *a, enum ref_step_type *ref_step)
655 tree ref = DR_REF (a), step = DR_STEP (a);
657 if (!step
658 || TREE_THIS_VOLATILE (ref)
659 || !is_gimple_reg_type (TREE_TYPE (ref))
660 || tree_could_throw_p (ref))
661 return false;
663 if (integer_zerop (step))
664 *ref_step = RS_INVARIANT;
665 else if (integer_nonzerop (step))
666 *ref_step = RS_NONZERO;
667 else
668 *ref_step = RS_ANY;
670 return true;
673 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
675 static void
676 aff_combination_dr_offset (struct data_reference *dr, aff_tree *offset)
678 tree type = TREE_TYPE (DR_OFFSET (dr));
679 aff_tree delta;
681 tree_to_aff_combination_expand (DR_OFFSET (dr), type, offset,
682 &name_expansions);
683 aff_combination_const (&delta, type, wi::to_poly_widest (DR_INIT (dr)));
684 aff_combination_add (offset, &delta);
687 /* Determines number of iterations of the innermost enclosing loop before B
688 refers to exactly the same location as A and stores it to OFF. If A and
689 B do not have the same step, they never meet, or anything else fails,
690 returns false, otherwise returns true. Both A and B are assumed to
691 satisfy suitable_reference_p. */
693 static bool
694 determine_offset (struct data_reference *a, struct data_reference *b,
695 poly_widest_int *off)
697 aff_tree diff, baseb, step;
698 tree typea, typeb;
700 /* Check that both the references access the location in the same type. */
701 typea = TREE_TYPE (DR_REF (a));
702 typeb = TREE_TYPE (DR_REF (b));
703 if (!useless_type_conversion_p (typeb, typea))
704 return false;
706 /* Check whether the base address and the step of both references is the
707 same. */
708 if (!operand_equal_p (DR_STEP (a), DR_STEP (b), 0)
709 || !operand_equal_p (DR_BASE_ADDRESS (a), DR_BASE_ADDRESS (b), 0))
710 return false;
712 if (integer_zerop (DR_STEP (a)))
714 /* If the references have loop invariant address, check that they access
715 exactly the same location. */
716 *off = 0;
717 return (operand_equal_p (DR_OFFSET (a), DR_OFFSET (b), 0)
718 && operand_equal_p (DR_INIT (a), DR_INIT (b), 0));
721 /* Compare the offsets of the addresses, and check whether the difference
722 is a multiple of step. */
723 aff_combination_dr_offset (a, &diff);
724 aff_combination_dr_offset (b, &baseb);
725 aff_combination_scale (&baseb, -1);
726 aff_combination_add (&diff, &baseb);
728 tree_to_aff_combination_expand (DR_STEP (a), TREE_TYPE (DR_STEP (a)),
729 &step, &name_expansions);
730 return aff_combination_constant_multiple_p (&diff, &step, off);
733 /* Returns the last basic block in LOOP for that we are sure that
734 it is executed whenever the loop is entered. */
736 static basic_block
737 last_always_executed_block (struct loop *loop)
739 unsigned i;
740 vec<edge> exits = get_loop_exit_edges (loop);
741 edge ex;
742 basic_block last = loop->latch;
744 FOR_EACH_VEC_ELT (exits, i, ex)
745 last = nearest_common_dominator (CDI_DOMINATORS, last, ex->src);
746 exits.release ();
748 return last;
751 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
753 static struct component *
754 split_data_refs_to_components (struct loop *loop,
755 vec<data_reference_p> datarefs,
756 vec<ddr_p> depends)
758 unsigned i, n = datarefs.length ();
759 unsigned ca, ia, ib, bad;
760 unsigned *comp_father = XNEWVEC (unsigned, n + 1);
761 unsigned *comp_size = XNEWVEC (unsigned, n + 1);
762 struct component **comps;
763 struct data_reference *dr, *dra, *drb;
764 struct data_dependence_relation *ddr;
765 struct component *comp_list = NULL, *comp;
766 dref dataref;
767 /* Don't do store elimination if loop has multiple exit edges. */
768 bool eliminate_store_p = single_exit (loop) != NULL;
769 basic_block last_always_executed = last_always_executed_block (loop);
771 FOR_EACH_VEC_ELT (datarefs, i, dr)
773 if (!DR_REF (dr))
775 /* A fake reference for call or asm_expr that may clobber memory;
776 just fail. */
777 goto end;
779 /* predcom pass isn't prepared to handle calls with data references. */
780 if (is_gimple_call (DR_STMT (dr)))
781 goto end;
782 dr->aux = (void *) (size_t) i;
783 comp_father[i] = i;
784 comp_size[i] = 1;
787 /* A component reserved for the "bad" data references. */
788 comp_father[n] = n;
789 comp_size[n] = 1;
791 FOR_EACH_VEC_ELT (datarefs, i, dr)
793 enum ref_step_type dummy;
795 if (!suitable_reference_p (dr, &dummy))
797 ia = (unsigned) (size_t) dr->aux;
798 merge_comps (comp_father, comp_size, n, ia);
802 FOR_EACH_VEC_ELT (depends, i, ddr)
804 poly_widest_int dummy_off;
806 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
807 continue;
809 dra = DDR_A (ddr);
810 drb = DDR_B (ddr);
812 /* Don't do store elimination if there is any unknown dependence for
813 any store data reference. */
814 if ((DR_IS_WRITE (dra) || DR_IS_WRITE (drb))
815 && (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know
816 || DDR_NUM_DIST_VECTS (ddr) == 0))
817 eliminate_store_p = false;
819 ia = component_of (comp_father, (unsigned) (size_t) dra->aux);
820 ib = component_of (comp_father, (unsigned) (size_t) drb->aux);
821 if (ia == ib)
822 continue;
824 bad = component_of (comp_father, n);
826 /* If both A and B are reads, we may ignore unsuitable dependences. */
827 if (DR_IS_READ (dra) && DR_IS_READ (drb))
829 if (ia == bad || ib == bad
830 || !determine_offset (dra, drb, &dummy_off))
831 continue;
833 /* If A is read and B write or vice versa and there is unsuitable
834 dependence, instead of merging both components into a component
835 that will certainly not pass suitable_component_p, just put the
836 read into bad component, perhaps at least the write together with
837 all the other data refs in it's component will be optimizable. */
838 else if (DR_IS_READ (dra) && ib != bad)
840 if (ia == bad)
841 continue;
842 else if (!determine_offset (dra, drb, &dummy_off))
844 merge_comps (comp_father, comp_size, bad, ia);
845 continue;
848 else if (DR_IS_READ (drb) && ia != bad)
850 if (ib == bad)
851 continue;
852 else if (!determine_offset (dra, drb, &dummy_off))
854 merge_comps (comp_father, comp_size, bad, ib);
855 continue;
858 else if (DR_IS_WRITE (dra) && DR_IS_WRITE (drb)
859 && ia != bad && ib != bad
860 && !determine_offset (dra, drb, &dummy_off))
862 merge_comps (comp_father, comp_size, bad, ia);
863 merge_comps (comp_father, comp_size, bad, ib);
864 continue;
867 merge_comps (comp_father, comp_size, ia, ib);
870 if (eliminate_store_p)
872 tree niters = number_of_latch_executions (loop);
874 /* Don't do store elimination if niters info is unknown because stores
875 in the last iteration can't be eliminated and we need to recover it
876 after loop. */
877 eliminate_store_p = (niters != NULL_TREE && niters != chrec_dont_know);
880 comps = XCNEWVEC (struct component *, n);
881 bad = component_of (comp_father, n);
882 FOR_EACH_VEC_ELT (datarefs, i, dr)
884 ia = (unsigned) (size_t) dr->aux;
885 ca = component_of (comp_father, ia);
886 if (ca == bad)
887 continue;
889 comp = comps[ca];
890 if (!comp)
892 comp = XCNEW (struct component);
893 comp->refs.create (comp_size[ca]);
894 comp->eliminate_store_p = eliminate_store_p;
895 comps[ca] = comp;
898 dataref = XCNEW (struct dref_d);
899 dataref->ref = dr;
900 dataref->stmt = DR_STMT (dr);
901 dataref->offset = 0;
902 dataref->distance = 0;
904 dataref->always_accessed
905 = dominated_by_p (CDI_DOMINATORS, last_always_executed,
906 gimple_bb (dataref->stmt));
907 dataref->pos = comp->refs.length ();
908 comp->refs.quick_push (dataref);
911 for (i = 0; i < n; i++)
913 comp = comps[i];
914 if (comp)
916 comp->next = comp_list;
917 comp_list = comp;
920 free (comps);
922 end:
923 free (comp_father);
924 free (comp_size);
925 return comp_list;
928 /* Returns true if the component COMP satisfies the conditions
929 described in 2) at the beginning of this file. LOOP is the current
930 loop. */
932 static bool
933 suitable_component_p (struct loop *loop, struct component *comp)
935 unsigned i;
936 dref a, first;
937 basic_block ba, bp = loop->header;
938 bool ok, has_write = false;
940 FOR_EACH_VEC_ELT (comp->refs, i, a)
942 ba = gimple_bb (a->stmt);
944 if (!just_once_each_iteration_p (loop, ba))
945 return false;
947 gcc_assert (dominated_by_p (CDI_DOMINATORS, ba, bp));
948 bp = ba;
950 if (DR_IS_WRITE (a->ref))
951 has_write = true;
954 first = comp->refs[0];
955 ok = suitable_reference_p (first->ref, &comp->comp_step);
956 gcc_assert (ok);
957 first->offset = 0;
959 for (i = 1; comp->refs.iterate (i, &a); i++)
961 /* Polynomial offsets are no use, since we need to know the
962 gap between iteration numbers at compile time. */
963 poly_widest_int offset;
964 if (!determine_offset (first->ref, a->ref, &offset)
965 || !offset.is_constant (&a->offset))
966 return false;
968 enum ref_step_type a_step;
969 gcc_checking_assert (suitable_reference_p (a->ref, &a_step)
970 && a_step == comp->comp_step);
973 /* If there is a write inside the component, we must know whether the
974 step is nonzero or not -- we would not otherwise be able to recognize
975 whether the value accessed by reads comes from the OFFSET-th iteration
976 or the previous one. */
977 if (has_write && comp->comp_step == RS_ANY)
978 return false;
980 return true;
983 /* Check the conditions on references inside each of components COMPS,
984 and remove the unsuitable components from the list. The new list
985 of components is returned. The conditions are described in 2) at
986 the beginning of this file. LOOP is the current loop. */
988 static struct component *
989 filter_suitable_components (struct loop *loop, struct component *comps)
991 struct component **comp, *act;
993 for (comp = &comps; *comp; )
995 act = *comp;
996 if (suitable_component_p (loop, act))
997 comp = &act->next;
998 else
1000 dref ref;
1001 unsigned i;
1003 *comp = act->next;
1004 FOR_EACH_VEC_ELT (act->refs, i, ref)
1005 free (ref);
1006 release_component (act);
1010 return comps;
1013 /* Compares two drefs A and B by their offset and position. Callback for
1014 qsort. */
1016 static int
1017 order_drefs (const void *a, const void *b)
1019 const dref *const da = (const dref *) a;
1020 const dref *const db = (const dref *) b;
1021 int offcmp = wi::cmps ((*da)->offset, (*db)->offset);
1023 if (offcmp != 0)
1024 return offcmp;
1026 return (*da)->pos - (*db)->pos;
1029 /* Compares two drefs A and B by their position. Callback for qsort. */
1031 static int
1032 order_drefs_by_pos (const void *a, const void *b)
1034 const dref *const da = (const dref *) a;
1035 const dref *const db = (const dref *) b;
1037 return (*da)->pos - (*db)->pos;
1040 /* Returns root of the CHAIN. */
1042 static inline dref
1043 get_chain_root (chain_p chain)
1045 return chain->refs[0];
1048 /* Given CHAIN, returns the last write ref at DISTANCE, or NULL if it doesn't
1049 exist. */
1051 static inline dref
1052 get_chain_last_write_at (chain_p chain, unsigned distance)
1054 for (unsigned i = chain->refs.length (); i > 0; i--)
1055 if (DR_IS_WRITE (chain->refs[i - 1]->ref)
1056 && distance == chain->refs[i - 1]->distance)
1057 return chain->refs[i - 1];
1059 return NULL;
1062 /* Given CHAIN, returns the last write ref with the same distance before load
1063 at index LOAD_IDX, or NULL if it doesn't exist. */
1065 static inline dref
1066 get_chain_last_write_before_load (chain_p chain, unsigned load_idx)
1068 gcc_assert (load_idx < chain->refs.length ());
1070 unsigned distance = chain->refs[load_idx]->distance;
1072 for (unsigned i = load_idx; i > 0; i--)
1073 if (DR_IS_WRITE (chain->refs[i - 1]->ref)
1074 && distance == chain->refs[i - 1]->distance)
1075 return chain->refs[i - 1];
1077 return NULL;
1080 /* Adds REF to the chain CHAIN. */
1082 static void
1083 add_ref_to_chain (chain_p chain, dref ref)
1085 dref root = get_chain_root (chain);
1087 gcc_assert (wi::les_p (root->offset, ref->offset));
1088 widest_int dist = ref->offset - root->offset;
1089 gcc_assert (wi::fits_uhwi_p (dist));
1091 chain->refs.safe_push (ref);
1093 ref->distance = dist.to_uhwi ();
1095 if (ref->distance >= chain->length)
1097 chain->length = ref->distance;
1098 chain->has_max_use_after = false;
1101 /* Promote this chain to CT_STORE_STORE if it has multiple stores. */
1102 if (DR_IS_WRITE (ref->ref))
1103 chain->type = CT_STORE_STORE;
1105 /* Don't set the flag for store-store chain since there is no use. */
1106 if (chain->type != CT_STORE_STORE
1107 && ref->distance == chain->length
1108 && ref->pos > root->pos)
1109 chain->has_max_use_after = true;
1111 chain->all_always_accessed &= ref->always_accessed;
1114 /* Returns the chain for invariant component COMP. */
1116 static chain_p
1117 make_invariant_chain (struct component *comp)
1119 chain_p chain = XCNEW (struct chain);
1120 unsigned i;
1121 dref ref;
1123 chain->type = CT_INVARIANT;
1125 chain->all_always_accessed = true;
1127 FOR_EACH_VEC_ELT (comp->refs, i, ref)
1129 chain->refs.safe_push (ref);
1130 chain->all_always_accessed &= ref->always_accessed;
1133 chain->inits = vNULL;
1134 chain->finis = vNULL;
1136 return chain;
1139 /* Make a new chain of type TYPE rooted at REF. */
1141 static chain_p
1142 make_rooted_chain (dref ref, enum chain_type type)
1144 chain_p chain = XCNEW (struct chain);
1146 chain->type = type;
1147 chain->refs.safe_push (ref);
1148 chain->all_always_accessed = ref->always_accessed;
1149 ref->distance = 0;
1151 chain->inits = vNULL;
1152 chain->finis = vNULL;
1154 return chain;
1157 /* Returns true if CHAIN is not trivial. */
1159 static bool
1160 nontrivial_chain_p (chain_p chain)
1162 return chain != NULL && chain->refs.length () > 1;
1165 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1166 is no such name. */
1168 static tree
1169 name_for_ref (dref ref)
1171 tree name;
1173 if (is_gimple_assign (ref->stmt))
1175 if (!ref->ref || DR_IS_READ (ref->ref))
1176 name = gimple_assign_lhs (ref->stmt);
1177 else
1178 name = gimple_assign_rhs1 (ref->stmt);
1180 else
1181 name = PHI_RESULT (ref->stmt);
1183 return (TREE_CODE (name) == SSA_NAME ? name : NULL_TREE);
1186 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1187 iterations of the innermost enclosing loop). */
1189 static bool
1190 valid_initializer_p (struct data_reference *ref,
1191 unsigned distance, struct data_reference *root)
1193 aff_tree diff, base, step;
1194 poly_widest_int off;
1196 /* Both REF and ROOT must be accessing the same object. */
1197 if (!operand_equal_p (DR_BASE_ADDRESS (ref), DR_BASE_ADDRESS (root), 0))
1198 return false;
1200 /* The initializer is defined outside of loop, hence its address must be
1201 invariant inside the loop. */
1202 gcc_assert (integer_zerop (DR_STEP (ref)));
1204 /* If the address of the reference is invariant, initializer must access
1205 exactly the same location. */
1206 if (integer_zerop (DR_STEP (root)))
1207 return (operand_equal_p (DR_OFFSET (ref), DR_OFFSET (root), 0)
1208 && operand_equal_p (DR_INIT (ref), DR_INIT (root), 0));
1210 /* Verify that this index of REF is equal to the root's index at
1211 -DISTANCE-th iteration. */
1212 aff_combination_dr_offset (root, &diff);
1213 aff_combination_dr_offset (ref, &base);
1214 aff_combination_scale (&base, -1);
1215 aff_combination_add (&diff, &base);
1217 tree_to_aff_combination_expand (DR_STEP (root), TREE_TYPE (DR_STEP (root)),
1218 &step, &name_expansions);
1219 if (!aff_combination_constant_multiple_p (&diff, &step, &off))
1220 return false;
1222 if (maybe_ne (off, distance))
1223 return false;
1225 return true;
1228 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1229 initial value is correct (equal to initial value of REF shifted by one
1230 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1231 is the root of the current chain. */
1233 static gphi *
1234 find_looparound_phi (struct loop *loop, dref ref, dref root)
1236 tree name, init, init_ref;
1237 gphi *phi = NULL;
1238 gimple *init_stmt;
1239 edge latch = loop_latch_edge (loop);
1240 struct data_reference init_dr;
1241 gphi_iterator psi;
1243 if (is_gimple_assign (ref->stmt))
1245 if (DR_IS_READ (ref->ref))
1246 name = gimple_assign_lhs (ref->stmt);
1247 else
1248 name = gimple_assign_rhs1 (ref->stmt);
1250 else
1251 name = PHI_RESULT (ref->stmt);
1252 if (!name)
1253 return NULL;
1255 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1257 phi = psi.phi ();
1258 if (PHI_ARG_DEF_FROM_EDGE (phi, latch) == name)
1259 break;
1262 if (gsi_end_p (psi))
1263 return NULL;
1265 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1266 if (TREE_CODE (init) != SSA_NAME)
1267 return NULL;
1268 init_stmt = SSA_NAME_DEF_STMT (init);
1269 if (gimple_code (init_stmt) != GIMPLE_ASSIGN)
1270 return NULL;
1271 gcc_assert (gimple_assign_lhs (init_stmt) == init);
1273 init_ref = gimple_assign_rhs1 (init_stmt);
1274 if (!REFERENCE_CLASS_P (init_ref)
1275 && !DECL_P (init_ref))
1276 return NULL;
1278 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1279 loop enclosing PHI). */
1280 memset (&init_dr, 0, sizeof (struct data_reference));
1281 DR_REF (&init_dr) = init_ref;
1282 DR_STMT (&init_dr) = phi;
1283 if (!dr_analyze_innermost (&DR_INNERMOST (&init_dr), init_ref, loop))
1284 return NULL;
1286 if (!valid_initializer_p (&init_dr, ref->distance + 1, root->ref))
1287 return NULL;
1289 return phi;
1292 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1294 static void
1295 insert_looparound_copy (chain_p chain, dref ref, gphi *phi)
1297 dref nw = XCNEW (struct dref_d), aref;
1298 unsigned i;
1300 nw->stmt = phi;
1301 nw->distance = ref->distance + 1;
1302 nw->always_accessed = 1;
1304 FOR_EACH_VEC_ELT (chain->refs, i, aref)
1305 if (aref->distance >= nw->distance)
1306 break;
1307 chain->refs.safe_insert (i, nw);
1309 if (nw->distance > chain->length)
1311 chain->length = nw->distance;
1312 chain->has_max_use_after = false;
1316 /* For references in CHAIN that are copied around the LOOP (created previously
1317 by PRE, or by user), add the results of such copies to the chain. This
1318 enables us to remove the copies by unrolling, and may need less registers
1319 (also, it may allow us to combine chains together). */
1321 static void
1322 add_looparound_copies (struct loop *loop, chain_p chain)
1324 unsigned i;
1325 dref ref, root = get_chain_root (chain);
1326 gphi *phi;
1328 if (chain->type == CT_STORE_STORE)
1329 return;
1331 FOR_EACH_VEC_ELT (chain->refs, i, ref)
1333 phi = find_looparound_phi (loop, ref, root);
1334 if (!phi)
1335 continue;
1337 bitmap_set_bit (looparound_phis, SSA_NAME_VERSION (PHI_RESULT (phi)));
1338 insert_looparound_copy (chain, ref, phi);
1342 /* Find roots of the values and determine distances in the component COMP.
1343 The references are redistributed into CHAINS. LOOP is the current
1344 loop. */
1346 static void
1347 determine_roots_comp (struct loop *loop,
1348 struct component *comp,
1349 vec<chain_p> *chains)
1351 unsigned i;
1352 dref a;
1353 chain_p chain = NULL;
1354 widest_int last_ofs = 0;
1355 enum chain_type type;
1357 /* Invariants are handled specially. */
1358 if (comp->comp_step == RS_INVARIANT)
1360 chain = make_invariant_chain (comp);
1361 chains->safe_push (chain);
1362 return;
1365 /* Trivial component. */
1366 if (comp->refs.length () <= 1)
1368 if (comp->refs.length () == 1)
1370 free (comp->refs[0]);
1371 comp->refs.truncate (0);
1373 return;
1376 comp->refs.qsort (order_drefs);
1378 /* For Store-Store chain, we only support load if it is dominated by a
1379 store statement in the same iteration of loop. */
1380 if (comp->eliminate_store_p)
1381 for (a = NULL, i = 0; i < comp->refs.length (); i++)
1383 if (DR_IS_WRITE (comp->refs[i]->ref))
1384 a = comp->refs[i];
1385 else if (a == NULL || a->offset != comp->refs[i]->offset)
1387 /* If there is load that is not dominated by a store in the
1388 same iteration of loop, clear the flag so no Store-Store
1389 chain is generated for this component. */
1390 comp->eliminate_store_p = false;
1391 break;
1395 /* Determine roots and create chains for components. */
1396 FOR_EACH_VEC_ELT (comp->refs, i, a)
1398 if (!chain
1399 || (chain->type == CT_LOAD && DR_IS_WRITE (a->ref))
1400 || (!comp->eliminate_store_p && DR_IS_WRITE (a->ref))
1401 || wi::leu_p (MAX_DISTANCE, a->offset - last_ofs))
1403 if (nontrivial_chain_p (chain))
1405 add_looparound_copies (loop, chain);
1406 chains->safe_push (chain);
1408 else
1409 release_chain (chain);
1411 /* Determine type of the chain. If the root reference is a load,
1412 this can only be a CT_LOAD chain; other chains are intialized
1413 to CT_STORE_LOAD and might be promoted to CT_STORE_STORE when
1414 new reference is added. */
1415 type = DR_IS_READ (a->ref) ? CT_LOAD : CT_STORE_LOAD;
1416 chain = make_rooted_chain (a, type);
1417 last_ofs = a->offset;
1418 continue;
1421 add_ref_to_chain (chain, a);
1424 if (nontrivial_chain_p (chain))
1426 add_looparound_copies (loop, chain);
1427 chains->safe_push (chain);
1429 else
1430 release_chain (chain);
1433 /* Find roots of the values and determine distances in components COMPS, and
1434 separates the references to CHAINS. LOOP is the current loop. */
1436 static void
1437 determine_roots (struct loop *loop,
1438 struct component *comps, vec<chain_p> *chains)
1440 struct component *comp;
1442 for (comp = comps; comp; comp = comp->next)
1443 determine_roots_comp (loop, comp, chains);
1446 /* Replace the reference in statement STMT with temporary variable
1447 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1448 the reference in the statement. IN_LHS is true if the reference
1449 is in the lhs of STMT, false if it is in rhs. */
1451 static void
1452 replace_ref_with (gimple *stmt, tree new_tree, bool set, bool in_lhs)
1454 tree val;
1455 gassign *new_stmt;
1456 gimple_stmt_iterator bsi, psi;
1458 if (gimple_code (stmt) == GIMPLE_PHI)
1460 gcc_assert (!in_lhs && !set);
1462 val = PHI_RESULT (stmt);
1463 bsi = gsi_after_labels (gimple_bb (stmt));
1464 psi = gsi_for_stmt (stmt);
1465 remove_phi_node (&psi, false);
1467 /* Turn the phi node into GIMPLE_ASSIGN. */
1468 new_stmt = gimple_build_assign (val, new_tree);
1469 gsi_insert_before (&bsi, new_stmt, GSI_NEW_STMT);
1470 return;
1473 /* Since the reference is of gimple_reg type, it should only
1474 appear as lhs or rhs of modify statement. */
1475 gcc_assert (is_gimple_assign (stmt));
1477 bsi = gsi_for_stmt (stmt);
1479 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1480 if (!set)
1482 gcc_assert (!in_lhs);
1483 gimple_assign_set_rhs_from_tree (&bsi, new_tree);
1484 stmt = gsi_stmt (bsi);
1485 update_stmt (stmt);
1486 return;
1489 if (in_lhs)
1491 /* We have statement
1493 OLD = VAL
1495 If OLD is a memory reference, then VAL is gimple_val, and we transform
1496 this to
1498 OLD = VAL
1499 NEW = VAL
1501 Otherwise, we are replacing a combination chain,
1502 VAL is the expression that performs the combination, and OLD is an
1503 SSA name. In this case, we transform the assignment to
1505 OLD = VAL
1506 NEW = OLD
1510 val = gimple_assign_lhs (stmt);
1511 if (TREE_CODE (val) != SSA_NAME)
1513 val = gimple_assign_rhs1 (stmt);
1514 gcc_assert (gimple_assign_single_p (stmt));
1515 if (TREE_CLOBBER_P (val))
1516 val = get_or_create_ssa_default_def (cfun, SSA_NAME_VAR (new_tree));
1517 else
1518 gcc_assert (gimple_assign_copy_p (stmt));
1521 else
1523 /* VAL = OLD
1525 is transformed to
1527 VAL = OLD
1528 NEW = VAL */
1530 val = gimple_assign_lhs (stmt);
1533 new_stmt = gimple_build_assign (new_tree, unshare_expr (val));
1534 gsi_insert_after (&bsi, new_stmt, GSI_NEW_STMT);
1537 /* Returns a memory reference to DR in the (NITERS + ITER)-th iteration
1538 of the loop it was analyzed in. Append init stmts to STMTS. */
1540 static tree
1541 ref_at_iteration (data_reference_p dr, int iter,
1542 gimple_seq *stmts, tree niters = NULL_TREE)
1544 tree off = DR_OFFSET (dr);
1545 tree coff = DR_INIT (dr);
1546 tree ref = DR_REF (dr);
1547 enum tree_code ref_code = ERROR_MARK;
1548 tree ref_type = NULL_TREE;
1549 tree ref_op1 = NULL_TREE;
1550 tree ref_op2 = NULL_TREE;
1551 tree new_offset;
1553 if (iter != 0)
1555 new_offset = size_binop (MULT_EXPR, DR_STEP (dr), ssize_int (iter));
1556 if (TREE_CODE (new_offset) == INTEGER_CST)
1557 coff = size_binop (PLUS_EXPR, coff, new_offset);
1558 else
1559 off = size_binop (PLUS_EXPR, off, new_offset);
1562 if (niters != NULL_TREE)
1564 niters = fold_convert (ssizetype, niters);
1565 new_offset = size_binop (MULT_EXPR, DR_STEP (dr), niters);
1566 if (TREE_CODE (niters) == INTEGER_CST)
1567 coff = size_binop (PLUS_EXPR, coff, new_offset);
1568 else
1569 off = size_binop (PLUS_EXPR, off, new_offset);
1572 /* While data-ref analysis punts on bit offsets it still handles
1573 bitfield accesses at byte boundaries. Cope with that. Note that
1574 if the bitfield object also starts at a byte-boundary we can simply
1575 replicate the COMPONENT_REF, but we have to subtract the component's
1576 byte-offset from the MEM_REF address first.
1577 Otherwise we simply build a BIT_FIELD_REF knowing that the bits
1578 start at offset zero. */
1579 if (TREE_CODE (ref) == COMPONENT_REF
1580 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
1582 unsigned HOST_WIDE_INT boff;
1583 tree field = TREE_OPERAND (ref, 1);
1584 tree offset = component_ref_field_offset (ref);
1585 ref_type = TREE_TYPE (ref);
1586 boff = tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field));
1587 /* This can occur in Ada. See the comment in get_bit_range. */
1588 if (boff % BITS_PER_UNIT != 0
1589 || !tree_fits_uhwi_p (offset))
1591 ref_code = BIT_FIELD_REF;
1592 ref_op1 = DECL_SIZE (field);
1593 ref_op2 = bitsize_zero_node;
1595 else
1597 boff >>= LOG2_BITS_PER_UNIT;
1598 boff += tree_to_uhwi (offset);
1599 coff = size_binop (MINUS_EXPR, coff, ssize_int (boff));
1600 ref_code = COMPONENT_REF;
1601 ref_op1 = field;
1602 ref_op2 = TREE_OPERAND (ref, 2);
1603 ref = TREE_OPERAND (ref, 0);
1606 tree addr = fold_build_pointer_plus (DR_BASE_ADDRESS (dr), off);
1607 addr = force_gimple_operand_1 (unshare_expr (addr), stmts,
1608 is_gimple_mem_ref_addr, NULL_TREE);
1609 tree alias_ptr = fold_convert (reference_alias_ptr_type (ref), coff);
1610 tree type = build_aligned_type (TREE_TYPE (ref),
1611 get_object_alignment (ref));
1612 ref = build2 (MEM_REF, type, addr, alias_ptr);
1613 if (ref_type)
1614 ref = build3 (ref_code, ref_type, ref, ref_op1, ref_op2);
1615 return ref;
1618 /* Get the initialization expression for the INDEX-th temporary variable
1619 of CHAIN. */
1621 static tree
1622 get_init_expr (chain_p chain, unsigned index)
1624 if (chain->type == CT_COMBINATION)
1626 tree e1 = get_init_expr (chain->ch1, index);
1627 tree e2 = get_init_expr (chain->ch2, index);
1629 return fold_build2 (chain->op, chain->rslt_type, e1, e2);
1631 else
1632 return chain->inits[index];
1635 /* Returns a new temporary variable used for the I-th variable carrying
1636 value of REF. The variable's uid is marked in TMP_VARS. */
1638 static tree
1639 predcom_tmp_var (tree ref, unsigned i, bitmap tmp_vars)
1641 tree type = TREE_TYPE (ref);
1642 /* We never access the components of the temporary variable in predictive
1643 commoning. */
1644 tree var = create_tmp_reg (type, get_lsm_tmp_name (ref, i));
1645 bitmap_set_bit (tmp_vars, DECL_UID (var));
1646 return var;
1649 /* Creates the variables for CHAIN, as well as phi nodes for them and
1650 initialization on entry to LOOP. Uids of the newly created
1651 temporary variables are marked in TMP_VARS. */
1653 static void
1654 initialize_root_vars (struct loop *loop, chain_p chain, bitmap tmp_vars)
1656 unsigned i;
1657 unsigned n = chain->length;
1658 dref root = get_chain_root (chain);
1659 bool reuse_first = !chain->has_max_use_after;
1660 tree ref, init, var, next;
1661 gphi *phi;
1662 gimple_seq stmts;
1663 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1665 /* If N == 0, then all the references are within the single iteration. And
1666 since this is an nonempty chain, reuse_first cannot be true. */
1667 gcc_assert (n > 0 || !reuse_first);
1669 chain->vars.create (n + 1);
1671 if (chain->type == CT_COMBINATION)
1672 ref = gimple_assign_lhs (root->stmt);
1673 else
1674 ref = DR_REF (root->ref);
1676 for (i = 0; i < n + (reuse_first ? 0 : 1); i++)
1678 var = predcom_tmp_var (ref, i, tmp_vars);
1679 chain->vars.quick_push (var);
1681 if (reuse_first)
1682 chain->vars.quick_push (chain->vars[0]);
1684 FOR_EACH_VEC_ELT (chain->vars, i, var)
1685 chain->vars[i] = make_ssa_name (var);
1687 for (i = 0; i < n; i++)
1689 var = chain->vars[i];
1690 next = chain->vars[i + 1];
1691 init = get_init_expr (chain, i);
1693 init = force_gimple_operand (init, &stmts, true, NULL_TREE);
1694 if (stmts)
1695 gsi_insert_seq_on_edge_immediate (entry, stmts);
1697 phi = create_phi_node (var, loop->header);
1698 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1699 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1703 /* For inter-iteration store elimination CHAIN in LOOP, returns true if
1704 all stores to be eliminated store loop invariant values into memory.
1705 In this case, we can use these invariant values directly after LOOP. */
1707 static bool
1708 is_inv_store_elimination_chain (struct loop *loop, chain_p chain)
1710 if (chain->length == 0 || chain->type != CT_STORE_STORE)
1711 return false;
1713 gcc_assert (!chain->has_max_use_after);
1715 /* If loop iterates for unknown times or fewer times than chain->lenght,
1716 we still need to setup root variable and propagate it with PHI node. */
1717 tree niters = number_of_latch_executions (loop);
1718 if (TREE_CODE (niters) != INTEGER_CST
1719 || wi::leu_p (wi::to_wide (niters), chain->length))
1720 return false;
1722 /* Check stores in chain for elimination if they only store loop invariant
1723 values. */
1724 for (unsigned i = 0; i < chain->length; i++)
1726 dref a = get_chain_last_write_at (chain, i);
1727 if (a == NULL)
1728 continue;
1730 gimple *def_stmt, *stmt = a->stmt;
1731 if (!gimple_assign_single_p (stmt))
1732 return false;
1734 tree val = gimple_assign_rhs1 (stmt);
1735 if (TREE_CLOBBER_P (val))
1736 return false;
1738 if (CONSTANT_CLASS_P (val))
1739 continue;
1741 if (TREE_CODE (val) != SSA_NAME)
1742 return false;
1744 def_stmt = SSA_NAME_DEF_STMT (val);
1745 if (gimple_nop_p (def_stmt))
1746 continue;
1748 if (flow_bb_inside_loop_p (loop, gimple_bb (def_stmt)))
1749 return false;
1751 return true;
1754 /* Creates root variables for store elimination CHAIN in which stores for
1755 elimination only store loop invariant values. In this case, we neither
1756 need to load root variables before loop nor propagate it with PHI nodes. */
1758 static void
1759 initialize_root_vars_store_elim_1 (chain_p chain)
1761 tree var;
1762 unsigned i, n = chain->length;
1764 chain->vars.create (n);
1765 chain->vars.safe_grow_cleared (n);
1767 /* Initialize root value for eliminated stores at each distance. */
1768 for (i = 0; i < n; i++)
1770 dref a = get_chain_last_write_at (chain, i);
1771 if (a == NULL)
1772 continue;
1774 var = gimple_assign_rhs1 (a->stmt);
1775 chain->vars[a->distance] = var;
1778 /* We don't propagate values with PHI nodes, so manually propagate value
1779 to bubble positions. */
1780 var = chain->vars[0];
1781 for (i = 1; i < n; i++)
1783 if (chain->vars[i] != NULL_TREE)
1785 var = chain->vars[i];
1786 continue;
1788 chain->vars[i] = var;
1791 /* Revert the vector. */
1792 for (i = 0; i < n / 2; i++)
1793 std::swap (chain->vars[i], chain->vars[n - i - 1]);
1796 /* Creates root variables for store elimination CHAIN in which stores for
1797 elimination store loop variant values. In this case, we may need to
1798 load root variables before LOOP and propagate it with PHI nodes. Uids
1799 of the newly created root variables are marked in TMP_VARS. */
1801 static void
1802 initialize_root_vars_store_elim_2 (struct loop *loop,
1803 chain_p chain, bitmap tmp_vars)
1805 unsigned i, n = chain->length;
1806 tree ref, init, var, next, val, phi_result;
1807 gimple *stmt;
1808 gimple_seq stmts;
1810 chain->vars.create (n);
1812 ref = DR_REF (get_chain_root (chain)->ref);
1813 for (i = 0; i < n; i++)
1815 var = predcom_tmp_var (ref, i, tmp_vars);
1816 chain->vars.quick_push (var);
1819 FOR_EACH_VEC_ELT (chain->vars, i, var)
1820 chain->vars[i] = make_ssa_name (var);
1822 /* Root values are either rhs operand of stores to be eliminated, or
1823 loaded from memory before loop. */
1824 auto_vec<tree> vtemps;
1825 vtemps.safe_grow_cleared (n);
1826 for (i = 0; i < n; i++)
1828 init = get_init_expr (chain, i);
1829 if (init == NULL_TREE)
1831 /* Root value is rhs operand of the store to be eliminated if
1832 it isn't loaded from memory before loop. */
1833 dref a = get_chain_last_write_at (chain, i);
1834 val = gimple_assign_rhs1 (a->stmt);
1835 if (TREE_CLOBBER_P (val))
1837 val = get_or_create_ssa_default_def (cfun, SSA_NAME_VAR (var));
1838 gimple_assign_set_rhs1 (a->stmt, val);
1841 vtemps[n - i - 1] = val;
1843 else
1845 edge latch = loop_latch_edge (loop);
1846 edge entry = loop_preheader_edge (loop);
1848 /* Root value is loaded from memory before loop, we also need
1849 to add PHI nodes to propagate the value across iterations. */
1850 init = force_gimple_operand (init, &stmts, true, NULL_TREE);
1851 if (stmts)
1852 gsi_insert_seq_on_edge_immediate (entry, stmts);
1854 next = chain->vars[n - i];
1855 phi_result = copy_ssa_name (next);
1856 gphi *phi = create_phi_node (phi_result, loop->header);
1857 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1858 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1859 vtemps[n - i - 1] = phi_result;
1863 /* Find the insertion position. */
1864 dref last = get_chain_root (chain);
1865 for (i = 0; i < chain->refs.length (); i++)
1867 if (chain->refs[i]->pos > last->pos)
1868 last = chain->refs[i];
1871 gimple_stmt_iterator gsi = gsi_for_stmt (last->stmt);
1873 /* Insert statements copying root value to root variable. */
1874 for (i = 0; i < n; i++)
1876 var = chain->vars[i];
1877 val = vtemps[i];
1878 stmt = gimple_build_assign (var, val);
1879 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1883 /* Generates stores for CHAIN's eliminated stores in LOOP's last
1884 (CHAIN->length - 1) iterations. */
1886 static void
1887 finalize_eliminated_stores (struct loop *loop, chain_p chain)
1889 unsigned i, n = chain->length;
1891 for (i = 0; i < n; i++)
1893 tree var = chain->vars[i];
1894 tree fini = chain->finis[n - i - 1];
1895 gimple *stmt = gimple_build_assign (fini, var);
1897 gimple_seq_add_stmt_without_update (&chain->fini_seq, stmt);
1900 if (chain->fini_seq)
1902 gsi_insert_seq_on_edge_immediate (single_exit (loop), chain->fini_seq);
1903 chain->fini_seq = NULL;
1907 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1908 initialization on entry to LOOP if necessary. The ssa name for the variable
1909 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1910 around the loop is created. Uid of the newly created temporary variable
1911 is marked in TMP_VARS. INITS is the list containing the (single)
1912 initializer. */
1914 static void
1915 initialize_root_vars_lm (struct loop *loop, dref root, bool written,
1916 vec<tree> *vars, vec<tree> inits,
1917 bitmap tmp_vars)
1919 unsigned i;
1920 tree ref = DR_REF (root->ref), init, var, next;
1921 gimple_seq stmts;
1922 gphi *phi;
1923 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1925 /* Find the initializer for the variable, and check that it cannot
1926 trap. */
1927 init = inits[0];
1929 vars->create (written ? 2 : 1);
1930 var = predcom_tmp_var (ref, 0, tmp_vars);
1931 vars->quick_push (var);
1932 if (written)
1933 vars->quick_push ((*vars)[0]);
1935 FOR_EACH_VEC_ELT (*vars, i, var)
1936 (*vars)[i] = make_ssa_name (var);
1938 var = (*vars)[0];
1940 init = force_gimple_operand (init, &stmts, written, NULL_TREE);
1941 if (stmts)
1942 gsi_insert_seq_on_edge_immediate (entry, stmts);
1944 if (written)
1946 next = (*vars)[1];
1947 phi = create_phi_node (var, loop->header);
1948 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1949 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1951 else
1953 gassign *init_stmt = gimple_build_assign (var, init);
1954 gsi_insert_on_edge_immediate (entry, init_stmt);
1959 /* Execute load motion for references in chain CHAIN. Uids of the newly
1960 created temporary variables are marked in TMP_VARS. */
1962 static void
1963 execute_load_motion (struct loop *loop, chain_p chain, bitmap tmp_vars)
1965 auto_vec<tree> vars;
1966 dref a;
1967 unsigned n_writes = 0, ridx, i;
1968 tree var;
1970 gcc_assert (chain->type == CT_INVARIANT);
1971 gcc_assert (!chain->combined);
1972 FOR_EACH_VEC_ELT (chain->refs, i, a)
1973 if (DR_IS_WRITE (a->ref))
1974 n_writes++;
1976 /* If there are no reads in the loop, there is nothing to do. */
1977 if (n_writes == chain->refs.length ())
1978 return;
1980 initialize_root_vars_lm (loop, get_chain_root (chain), n_writes > 0,
1981 &vars, chain->inits, tmp_vars);
1983 ridx = 0;
1984 FOR_EACH_VEC_ELT (chain->refs, i, a)
1986 bool is_read = DR_IS_READ (a->ref);
1988 if (DR_IS_WRITE (a->ref))
1990 n_writes--;
1991 if (n_writes)
1993 var = vars[0];
1994 var = make_ssa_name (SSA_NAME_VAR (var));
1995 vars[0] = var;
1997 else
1998 ridx = 1;
2001 replace_ref_with (a->stmt, vars[ridx],
2002 !is_read, !is_read);
2006 /* Returns the single statement in that NAME is used, excepting
2007 the looparound phi nodes contained in one of the chains. If there is no
2008 such statement, or more statements, NULL is returned. */
2010 static gimple *
2011 single_nonlooparound_use (tree name)
2013 use_operand_p use;
2014 imm_use_iterator it;
2015 gimple *stmt, *ret = NULL;
2017 FOR_EACH_IMM_USE_FAST (use, it, name)
2019 stmt = USE_STMT (use);
2021 if (gimple_code (stmt) == GIMPLE_PHI)
2023 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
2024 could not be processed anyway, so just fail for them. */
2025 if (bitmap_bit_p (looparound_phis,
2026 SSA_NAME_VERSION (PHI_RESULT (stmt))))
2027 continue;
2029 return NULL;
2031 else if (is_gimple_debug (stmt))
2032 continue;
2033 else if (ret != NULL)
2034 return NULL;
2035 else
2036 ret = stmt;
2039 return ret;
2042 /* Remove statement STMT, as well as the chain of assignments in that it is
2043 used. */
2045 static void
2046 remove_stmt (gimple *stmt)
2048 tree name;
2049 gimple *next;
2050 gimple_stmt_iterator psi;
2052 if (gimple_code (stmt) == GIMPLE_PHI)
2054 name = PHI_RESULT (stmt);
2055 next = single_nonlooparound_use (name);
2056 reset_debug_uses (stmt);
2057 psi = gsi_for_stmt (stmt);
2058 remove_phi_node (&psi, true);
2060 if (!next
2061 || !gimple_assign_ssa_name_copy_p (next)
2062 || gimple_assign_rhs1 (next) != name)
2063 return;
2065 stmt = next;
2068 while (1)
2070 gimple_stmt_iterator bsi;
2072 bsi = gsi_for_stmt (stmt);
2074 name = gimple_assign_lhs (stmt);
2075 if (TREE_CODE (name) == SSA_NAME)
2077 next = single_nonlooparound_use (name);
2078 reset_debug_uses (stmt);
2080 else
2082 /* This is a store to be eliminated. */
2083 gcc_assert (gimple_vdef (stmt) != NULL);
2084 next = NULL;
2087 unlink_stmt_vdef (stmt);
2088 gsi_remove (&bsi, true);
2089 release_defs (stmt);
2091 if (!next
2092 || !gimple_assign_ssa_name_copy_p (next)
2093 || gimple_assign_rhs1 (next) != name)
2094 return;
2096 stmt = next;
2100 /* Perform the predictive commoning optimization for a chain CHAIN.
2101 Uids of the newly created temporary variables are marked in TMP_VARS.*/
2103 static void
2104 execute_pred_commoning_chain (struct loop *loop, chain_p chain,
2105 bitmap tmp_vars)
2107 unsigned i;
2108 dref a;
2109 tree var;
2110 bool in_lhs;
2112 if (chain->combined)
2114 /* For combined chains, just remove the statements that are used to
2115 compute the values of the expression (except for the root one).
2116 We delay this until after all chains are processed. */
2118 else if (chain->type == CT_STORE_STORE)
2120 if (chain->length > 0)
2122 if (chain->inv_store_elimination)
2124 /* If dead stores in this chain only store loop invariant
2125 values, we can simply record the invariant value and use
2126 it directly after loop. */
2127 initialize_root_vars_store_elim_1 (chain);
2129 else
2131 /* If dead stores in this chain store loop variant values,
2132 we need to set up the variables by loading from memory
2133 before loop and propagating it with PHI nodes. */
2134 initialize_root_vars_store_elim_2 (loop, chain, tmp_vars);
2137 /* For inter-iteration store elimination chain, stores at each
2138 distance in loop's last (chain->length - 1) iterations can't
2139 be eliminated, because there is no following killing store.
2140 We need to generate these stores after loop. */
2141 finalize_eliminated_stores (loop, chain);
2144 bool last_store_p = true;
2145 for (i = chain->refs.length (); i > 0; i--)
2147 a = chain->refs[i - 1];
2148 /* Preserve the last store of the chain. Eliminate other stores
2149 which are killed by the last one. */
2150 if (DR_IS_WRITE (a->ref))
2152 if (last_store_p)
2153 last_store_p = false;
2154 else
2155 remove_stmt (a->stmt);
2157 continue;
2160 /* Any load in Store-Store chain must be dominated by a previous
2161 store, we replace the load reference with rhs of the store. */
2162 dref b = get_chain_last_write_before_load (chain, i - 1);
2163 gcc_assert (b != NULL);
2164 var = gimple_assign_rhs1 (b->stmt);
2165 replace_ref_with (a->stmt, var, false, false);
2168 else
2170 /* For non-combined chains, set up the variables that hold its value. */
2171 initialize_root_vars (loop, chain, tmp_vars);
2172 a = get_chain_root (chain);
2173 in_lhs = (chain->type == CT_STORE_LOAD
2174 || chain->type == CT_COMBINATION);
2175 replace_ref_with (a->stmt, chain->vars[chain->length], true, in_lhs);
2177 /* Replace the uses of the original references by these variables. */
2178 for (i = 1; chain->refs.iterate (i, &a); i++)
2180 var = chain->vars[chain->length - a->distance];
2181 replace_ref_with (a->stmt, var, false, false);
2186 /* Determines the unroll factor necessary to remove as many temporary variable
2187 copies as possible. CHAINS is the list of chains that will be
2188 optimized. */
2190 static unsigned
2191 determine_unroll_factor (vec<chain_p> chains)
2193 chain_p chain;
2194 unsigned factor = 1, af, nfactor, i;
2195 unsigned max = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
2197 FOR_EACH_VEC_ELT (chains, i, chain)
2199 if (chain->type == CT_INVARIANT)
2200 continue;
2201 /* For now we can't handle unrolling when eliminating stores. */
2202 else if (chain->type == CT_STORE_STORE)
2203 return 1;
2205 if (chain->combined)
2207 /* For combined chains, we can't handle unrolling if we replace
2208 looparound PHIs. */
2209 dref a;
2210 unsigned j;
2211 for (j = 1; chain->refs.iterate (j, &a); j++)
2212 if (gimple_code (a->stmt) == GIMPLE_PHI)
2213 return 1;
2214 continue;
2217 /* The best unroll factor for this chain is equal to the number of
2218 temporary variables that we create for it. */
2219 af = chain->length;
2220 if (chain->has_max_use_after)
2221 af++;
2223 nfactor = factor * af / gcd (factor, af);
2224 if (nfactor <= max)
2225 factor = nfactor;
2228 return factor;
2231 /* Perform the predictive commoning optimization for CHAINS.
2232 Uids of the newly created temporary variables are marked in TMP_VARS. */
2234 static void
2235 execute_pred_commoning (struct loop *loop, vec<chain_p> chains,
2236 bitmap tmp_vars)
2238 chain_p chain;
2239 unsigned i;
2241 FOR_EACH_VEC_ELT (chains, i, chain)
2243 if (chain->type == CT_INVARIANT)
2244 execute_load_motion (loop, chain, tmp_vars);
2245 else
2246 execute_pred_commoning_chain (loop, chain, tmp_vars);
2249 FOR_EACH_VEC_ELT (chains, i, chain)
2251 if (chain->type == CT_INVARIANT)
2253 else if (chain->combined)
2255 /* For combined chains, just remove the statements that are used to
2256 compute the values of the expression (except for the root one). */
2257 dref a;
2258 unsigned j;
2259 for (j = 1; chain->refs.iterate (j, &a); j++)
2260 remove_stmt (a->stmt);
2264 update_ssa (TODO_update_ssa_only_virtuals);
2267 /* For each reference in CHAINS, if its defining statement is
2268 phi node, record the ssa name that is defined by it. */
2270 static void
2271 replace_phis_by_defined_names (vec<chain_p> chains)
2273 chain_p chain;
2274 dref a;
2275 unsigned i, j;
2277 FOR_EACH_VEC_ELT (chains, i, chain)
2278 FOR_EACH_VEC_ELT (chain->refs, j, a)
2280 if (gimple_code (a->stmt) == GIMPLE_PHI)
2282 a->name_defined_by_phi = PHI_RESULT (a->stmt);
2283 a->stmt = NULL;
2288 /* For each reference in CHAINS, if name_defined_by_phi is not
2289 NULL, use it to set the stmt field. */
2291 static void
2292 replace_names_by_phis (vec<chain_p> chains)
2294 chain_p chain;
2295 dref a;
2296 unsigned i, j;
2298 FOR_EACH_VEC_ELT (chains, i, chain)
2299 FOR_EACH_VEC_ELT (chain->refs, j, a)
2300 if (a->stmt == NULL)
2302 a->stmt = SSA_NAME_DEF_STMT (a->name_defined_by_phi);
2303 gcc_assert (gimple_code (a->stmt) == GIMPLE_PHI);
2304 a->name_defined_by_phi = NULL_TREE;
2308 /* Wrapper over execute_pred_commoning, to pass it as a callback
2309 to tree_transform_and_unroll_loop. */
2311 struct epcc_data
2313 vec<chain_p> chains;
2314 bitmap tmp_vars;
2317 static void
2318 execute_pred_commoning_cbck (struct loop *loop, void *data)
2320 struct epcc_data *const dta = (struct epcc_data *) data;
2322 /* Restore phi nodes that were replaced by ssa names before
2323 tree_transform_and_unroll_loop (see detailed description in
2324 tree_predictive_commoning_loop). */
2325 replace_names_by_phis (dta->chains);
2326 execute_pred_commoning (loop, dta->chains, dta->tmp_vars);
2329 /* Base NAME and all the names in the chain of phi nodes that use it
2330 on variable VAR. The phi nodes are recognized by being in the copies of
2331 the header of the LOOP. */
2333 static void
2334 base_names_in_chain_on (struct loop *loop, tree name, tree var)
2336 gimple *stmt, *phi;
2337 imm_use_iterator iter;
2339 replace_ssa_name_symbol (name, var);
2341 while (1)
2343 phi = NULL;
2344 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
2346 if (gimple_code (stmt) == GIMPLE_PHI
2347 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
2349 phi = stmt;
2350 BREAK_FROM_IMM_USE_STMT (iter);
2353 if (!phi)
2354 return;
2356 name = PHI_RESULT (phi);
2357 replace_ssa_name_symbol (name, var);
2361 /* Given an unrolled LOOP after predictive commoning, remove the
2362 register copies arising from phi nodes by changing the base
2363 variables of SSA names. TMP_VARS is the set of the temporary variables
2364 for those we want to perform this. */
2366 static void
2367 eliminate_temp_copies (struct loop *loop, bitmap tmp_vars)
2369 edge e;
2370 gphi *phi;
2371 gimple *stmt;
2372 tree name, use, var;
2373 gphi_iterator psi;
2375 e = loop_latch_edge (loop);
2376 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
2378 phi = psi.phi ();
2379 name = PHI_RESULT (phi);
2380 var = SSA_NAME_VAR (name);
2381 if (!var || !bitmap_bit_p (tmp_vars, DECL_UID (var)))
2382 continue;
2383 use = PHI_ARG_DEF_FROM_EDGE (phi, e);
2384 gcc_assert (TREE_CODE (use) == SSA_NAME);
2386 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
2387 stmt = SSA_NAME_DEF_STMT (use);
2388 while (gimple_code (stmt) == GIMPLE_PHI
2389 /* In case we could not unroll the loop enough to eliminate
2390 all copies, we may reach the loop header before the defining
2391 statement (in that case, some register copies will be present
2392 in loop latch in the final code, corresponding to the newly
2393 created looparound phi nodes). */
2394 && gimple_bb (stmt) != loop->header)
2396 gcc_assert (single_pred_p (gimple_bb (stmt)));
2397 use = PHI_ARG_DEF (stmt, 0);
2398 stmt = SSA_NAME_DEF_STMT (use);
2401 base_names_in_chain_on (loop, use, var);
2405 /* Returns true if CHAIN is suitable to be combined. */
2407 static bool
2408 chain_can_be_combined_p (chain_p chain)
2410 return (!chain->combined
2411 && (chain->type == CT_LOAD || chain->type == CT_COMBINATION));
2414 /* Returns the modify statement that uses NAME. Skips over assignment
2415 statements, NAME is replaced with the actual name used in the returned
2416 statement. */
2418 static gimple *
2419 find_use_stmt (tree *name)
2421 gimple *stmt;
2422 tree rhs, lhs;
2424 /* Skip over assignments. */
2425 while (1)
2427 stmt = single_nonlooparound_use (*name);
2428 if (!stmt)
2429 return NULL;
2431 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2432 return NULL;
2434 lhs = gimple_assign_lhs (stmt);
2435 if (TREE_CODE (lhs) != SSA_NAME)
2436 return NULL;
2438 if (gimple_assign_copy_p (stmt))
2440 rhs = gimple_assign_rhs1 (stmt);
2441 if (rhs != *name)
2442 return NULL;
2444 *name = lhs;
2446 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
2447 == GIMPLE_BINARY_RHS)
2448 return stmt;
2449 else
2450 return NULL;
2454 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
2456 static bool
2457 may_reassociate_p (tree type, enum tree_code code)
2459 if (FLOAT_TYPE_P (type)
2460 && !flag_unsafe_math_optimizations)
2461 return false;
2463 return (commutative_tree_code (code)
2464 && associative_tree_code (code));
2467 /* If the operation used in STMT is associative and commutative, go through the
2468 tree of the same operations and returns its root. Distance to the root
2469 is stored in DISTANCE. */
2471 static gimple *
2472 find_associative_operation_root (gimple *stmt, unsigned *distance)
2474 tree lhs;
2475 gimple *next;
2476 enum tree_code code = gimple_assign_rhs_code (stmt);
2477 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2478 unsigned dist = 0;
2480 if (!may_reassociate_p (type, code))
2481 return NULL;
2483 while (1)
2485 lhs = gimple_assign_lhs (stmt);
2486 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
2488 next = find_use_stmt (&lhs);
2489 if (!next
2490 || gimple_assign_rhs_code (next) != code)
2491 break;
2493 stmt = next;
2494 dist++;
2497 if (distance)
2498 *distance = dist;
2499 return stmt;
2502 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2503 is no such statement, returns NULL_TREE. In case the operation used on
2504 NAME1 and NAME2 is associative and commutative, returns the root of the
2505 tree formed by this operation instead of the statement that uses NAME1 or
2506 NAME2. */
2508 static gimple *
2509 find_common_use_stmt (tree *name1, tree *name2)
2511 gimple *stmt1, *stmt2;
2513 stmt1 = find_use_stmt (name1);
2514 if (!stmt1)
2515 return NULL;
2517 stmt2 = find_use_stmt (name2);
2518 if (!stmt2)
2519 return NULL;
2521 if (stmt1 == stmt2)
2522 return stmt1;
2524 stmt1 = find_associative_operation_root (stmt1, NULL);
2525 if (!stmt1)
2526 return NULL;
2527 stmt2 = find_associative_operation_root (stmt2, NULL);
2528 if (!stmt2)
2529 return NULL;
2531 return (stmt1 == stmt2 ? stmt1 : NULL);
2534 /* Checks whether R1 and R2 are combined together using CODE, with the result
2535 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2536 if it is true. If CODE is ERROR_MARK, set these values instead. */
2538 static bool
2539 combinable_refs_p (dref r1, dref r2,
2540 enum tree_code *code, bool *swap, tree *rslt_type)
2542 enum tree_code acode;
2543 bool aswap;
2544 tree atype;
2545 tree name1, name2;
2546 gimple *stmt;
2548 name1 = name_for_ref (r1);
2549 name2 = name_for_ref (r2);
2550 gcc_assert (name1 != NULL_TREE && name2 != NULL_TREE);
2552 stmt = find_common_use_stmt (&name1, &name2);
2554 if (!stmt
2555 /* A simple post-dominance check - make sure the combination
2556 is executed under the same condition as the references. */
2557 || (gimple_bb (stmt) != gimple_bb (r1->stmt)
2558 && gimple_bb (stmt) != gimple_bb (r2->stmt)))
2559 return false;
2561 acode = gimple_assign_rhs_code (stmt);
2562 aswap = (!commutative_tree_code (acode)
2563 && gimple_assign_rhs1 (stmt) != name1);
2564 atype = TREE_TYPE (gimple_assign_lhs (stmt));
2566 if (*code == ERROR_MARK)
2568 *code = acode;
2569 *swap = aswap;
2570 *rslt_type = atype;
2571 return true;
2574 return (*code == acode
2575 && *swap == aswap
2576 && *rslt_type == atype);
2579 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2580 an assignment of the remaining operand. */
2582 static void
2583 remove_name_from_operation (gimple *stmt, tree op)
2585 tree other_op;
2586 gimple_stmt_iterator si;
2588 gcc_assert (is_gimple_assign (stmt));
2590 if (gimple_assign_rhs1 (stmt) == op)
2591 other_op = gimple_assign_rhs2 (stmt);
2592 else
2593 other_op = gimple_assign_rhs1 (stmt);
2595 si = gsi_for_stmt (stmt);
2596 gimple_assign_set_rhs_from_tree (&si, other_op);
2598 /* We should not have reallocated STMT. */
2599 gcc_assert (gsi_stmt (si) == stmt);
2601 update_stmt (stmt);
2604 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2605 are combined in a single statement, and returns this statement. */
2607 static gimple *
2608 reassociate_to_the_same_stmt (tree name1, tree name2)
2610 gimple *stmt1, *stmt2, *root1, *root2, *s1, *s2;
2611 gassign *new_stmt, *tmp_stmt;
2612 tree new_name, tmp_name, var, r1, r2;
2613 unsigned dist1, dist2;
2614 enum tree_code code;
2615 tree type = TREE_TYPE (name1);
2616 gimple_stmt_iterator bsi;
2618 stmt1 = find_use_stmt (&name1);
2619 stmt2 = find_use_stmt (&name2);
2620 root1 = find_associative_operation_root (stmt1, &dist1);
2621 root2 = find_associative_operation_root (stmt2, &dist2);
2622 code = gimple_assign_rhs_code (stmt1);
2624 gcc_assert (root1 && root2 && root1 == root2
2625 && code == gimple_assign_rhs_code (stmt2));
2627 /* Find the root of the nearest expression in that both NAME1 and NAME2
2628 are used. */
2629 r1 = name1;
2630 s1 = stmt1;
2631 r2 = name2;
2632 s2 = stmt2;
2634 while (dist1 > dist2)
2636 s1 = find_use_stmt (&r1);
2637 r1 = gimple_assign_lhs (s1);
2638 dist1--;
2640 while (dist2 > dist1)
2642 s2 = find_use_stmt (&r2);
2643 r2 = gimple_assign_lhs (s2);
2644 dist2--;
2647 while (s1 != s2)
2649 s1 = find_use_stmt (&r1);
2650 r1 = gimple_assign_lhs (s1);
2651 s2 = find_use_stmt (&r2);
2652 r2 = gimple_assign_lhs (s2);
2655 /* Remove NAME1 and NAME2 from the statements in that they are used
2656 currently. */
2657 remove_name_from_operation (stmt1, name1);
2658 remove_name_from_operation (stmt2, name2);
2660 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2661 combine it with the rhs of S1. */
2662 var = create_tmp_reg (type, "predreastmp");
2663 new_name = make_ssa_name (var);
2664 new_stmt = gimple_build_assign (new_name, code, name1, name2);
2666 var = create_tmp_reg (type, "predreastmp");
2667 tmp_name = make_ssa_name (var);
2669 /* Rhs of S1 may now be either a binary expression with operation
2670 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2671 so that name1 or name2 was removed from it). */
2672 tmp_stmt = gimple_build_assign (tmp_name, gimple_assign_rhs_code (s1),
2673 gimple_assign_rhs1 (s1),
2674 gimple_assign_rhs2 (s1));
2676 bsi = gsi_for_stmt (s1);
2677 gimple_assign_set_rhs_with_ops (&bsi, code, new_name, tmp_name);
2678 s1 = gsi_stmt (bsi);
2679 update_stmt (s1);
2681 gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
2682 gsi_insert_before (&bsi, tmp_stmt, GSI_SAME_STMT);
2684 return new_stmt;
2687 /* Returns the statement that combines references R1 and R2. In case R1
2688 and R2 are not used in the same statement, but they are used with an
2689 associative and commutative operation in the same expression, reassociate
2690 the expression so that they are used in the same statement. */
2692 static gimple *
2693 stmt_combining_refs (dref r1, dref r2)
2695 gimple *stmt1, *stmt2;
2696 tree name1 = name_for_ref (r1);
2697 tree name2 = name_for_ref (r2);
2699 stmt1 = find_use_stmt (&name1);
2700 stmt2 = find_use_stmt (&name2);
2701 if (stmt1 == stmt2)
2702 return stmt1;
2704 return reassociate_to_the_same_stmt (name1, name2);
2707 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2708 description of the new chain is returned, otherwise we return NULL. */
2710 static chain_p
2711 combine_chains (chain_p ch1, chain_p ch2)
2713 dref r1, r2, nw;
2714 enum tree_code op = ERROR_MARK;
2715 bool swap = false;
2716 chain_p new_chain;
2717 unsigned i;
2718 tree rslt_type = NULL_TREE;
2720 if (ch1 == ch2)
2721 return NULL;
2722 if (ch1->length != ch2->length)
2723 return NULL;
2725 if (ch1->refs.length () != ch2->refs.length ())
2726 return NULL;
2728 for (i = 0; (ch1->refs.iterate (i, &r1)
2729 && ch2->refs.iterate (i, &r2)); i++)
2731 if (r1->distance != r2->distance)
2732 return NULL;
2734 if (!combinable_refs_p (r1, r2, &op, &swap, &rslt_type))
2735 return NULL;
2738 if (swap)
2739 std::swap (ch1, ch2);
2741 new_chain = XCNEW (struct chain);
2742 new_chain->type = CT_COMBINATION;
2743 new_chain->op = op;
2744 new_chain->ch1 = ch1;
2745 new_chain->ch2 = ch2;
2746 new_chain->rslt_type = rslt_type;
2747 new_chain->length = ch1->length;
2749 for (i = 0; (ch1->refs.iterate (i, &r1)
2750 && ch2->refs.iterate (i, &r2)); i++)
2752 nw = XCNEW (struct dref_d);
2753 nw->stmt = stmt_combining_refs (r1, r2);
2754 nw->distance = r1->distance;
2756 new_chain->refs.safe_push (nw);
2759 ch1->combined = true;
2760 ch2->combined = true;
2761 return new_chain;
2764 /* Recursively update position information of all offspring chains to ROOT
2765 chain's position information. */
2767 static void
2768 update_pos_for_combined_chains (chain_p root)
2770 chain_p ch1 = root->ch1, ch2 = root->ch2;
2771 dref ref, ref1, ref2;
2772 for (unsigned j = 0; (root->refs.iterate (j, &ref)
2773 && ch1->refs.iterate (j, &ref1)
2774 && ch2->refs.iterate (j, &ref2)); ++j)
2775 ref1->pos = ref2->pos = ref->pos;
2777 if (ch1->type == CT_COMBINATION)
2778 update_pos_for_combined_chains (ch1);
2779 if (ch2->type == CT_COMBINATION)
2780 update_pos_for_combined_chains (ch2);
2783 /* Returns true if statement S1 dominates statement S2. */
2785 static bool
2786 pcom_stmt_dominates_stmt_p (gimple *s1, gimple *s2)
2788 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
2790 if (!bb1 || s1 == s2)
2791 return true;
2793 if (bb1 == bb2)
2794 return gimple_uid (s1) < gimple_uid (s2);
2796 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
2799 /* Try to combine the CHAINS in LOOP. */
2801 static void
2802 try_combine_chains (struct loop *loop, vec<chain_p> *chains)
2804 unsigned i, j;
2805 chain_p ch1, ch2, cch;
2806 auto_vec<chain_p> worklist;
2807 bool combined_p = false;
2809 FOR_EACH_VEC_ELT (*chains, i, ch1)
2810 if (chain_can_be_combined_p (ch1))
2811 worklist.safe_push (ch1);
2813 while (!worklist.is_empty ())
2815 ch1 = worklist.pop ();
2816 if (!chain_can_be_combined_p (ch1))
2817 continue;
2819 FOR_EACH_VEC_ELT (*chains, j, ch2)
2821 if (!chain_can_be_combined_p (ch2))
2822 continue;
2824 cch = combine_chains (ch1, ch2);
2825 if (cch)
2827 worklist.safe_push (cch);
2828 chains->safe_push (cch);
2829 combined_p = true;
2830 break;
2834 if (!combined_p)
2835 return;
2837 /* Setup UID for all statements in dominance order. */
2838 basic_block *bbs = get_loop_body (loop);
2839 renumber_gimple_stmt_uids_in_blocks (bbs, loop->num_nodes);
2840 free (bbs);
2842 /* Re-association in combined chains may generate statements different to
2843 order of references of the original chain. We need to keep references
2844 of combined chain in dominance order so that all uses will be inserted
2845 after definitions. Note:
2846 A) This is necessary for all combined chains.
2847 B) This is only necessary for ZERO distance references because other
2848 references inherit value from loop carried PHIs.
2850 We first update position information for all combined chains. */
2851 dref ref;
2852 for (i = 0; chains->iterate (i, &ch1); ++i)
2854 if (ch1->type != CT_COMBINATION || ch1->combined)
2855 continue;
2857 for (j = 0; ch1->refs.iterate (j, &ref); ++j)
2858 ref->pos = gimple_uid (ref->stmt);
2860 update_pos_for_combined_chains (ch1);
2862 /* Then sort references according to newly updated position information. */
2863 for (i = 0; chains->iterate (i, &ch1); ++i)
2865 if (ch1->type != CT_COMBINATION && !ch1->combined)
2866 continue;
2868 /* Find the first reference with non-ZERO distance. */
2869 if (ch1->length == 0)
2870 j = ch1->refs.length();
2871 else
2873 for (j = 0; ch1->refs.iterate (j, &ref); ++j)
2874 if (ref->distance != 0)
2875 break;
2878 /* Sort all ZERO distance references by position. */
2879 qsort (&ch1->refs[0], j, sizeof (ch1->refs[0]), order_drefs_by_pos);
2881 if (ch1->combined)
2882 continue;
2884 /* For ZERO length chain, has_max_use_after must be true since root
2885 combined stmt must dominates others. */
2886 if (ch1->length == 0)
2888 ch1->has_max_use_after = true;
2889 continue;
2891 /* Check if there is use at max distance after root for combined chains
2892 and set flag accordingly. */
2893 ch1->has_max_use_after = false;
2894 gimple *root_stmt = get_chain_root (ch1)->stmt;
2895 for (j = 1; ch1->refs.iterate (j, &ref); ++j)
2897 if (ref->distance == ch1->length
2898 && !pcom_stmt_dominates_stmt_p (ref->stmt, root_stmt))
2900 ch1->has_max_use_after = true;
2901 break;
2907 /* Prepare initializers for store elimination CHAIN in LOOP. Returns false
2908 if this is impossible because one of these initializers may trap, true
2909 otherwise. */
2911 static bool
2912 prepare_initializers_chain_store_elim (struct loop *loop, chain_p chain)
2914 unsigned i, n = chain->length;
2916 /* For now we can't eliminate stores if some of them are conditional
2917 executed. */
2918 if (!chain->all_always_accessed)
2919 return false;
2921 /* Nothing to intialize for intra-iteration store elimination. */
2922 if (n == 0 && chain->type == CT_STORE_STORE)
2923 return true;
2925 /* For store elimination chain, there is nothing to initialize if stores
2926 to be eliminated only store loop invariant values into memory. */
2927 if (chain->type == CT_STORE_STORE
2928 && is_inv_store_elimination_chain (loop, chain))
2930 chain->inv_store_elimination = true;
2931 return true;
2934 chain->inits.create (n);
2935 chain->inits.safe_grow_cleared (n);
2937 /* For store eliminatin chain like below:
2939 for (i = 0; i < len; i++)
2941 a[i] = 1;
2942 // a[i + 1] = ...
2943 a[i + 2] = 3;
2946 store to a[i + 1] is missed in loop body, it acts like bubbles. The
2947 content of a[i + 1] remain the same if the loop iterates fewer times
2948 than chain->length. We need to set up root variables for such stores
2949 by loading from memory before loop. Note we only need to load bubble
2950 elements because loop body is guaranteed to be executed at least once
2951 after loop's preheader edge. */
2952 auto_vec<bool> bubbles;
2953 bubbles.safe_grow_cleared (n + 1);
2954 for (i = 0; i < chain->refs.length (); i++)
2955 bubbles[chain->refs[i]->distance] = true;
2957 struct data_reference *dr = get_chain_root (chain)->ref;
2958 for (i = 0; i < n; i++)
2960 if (bubbles[i])
2961 continue;
2963 gimple_seq stmts = NULL;
2965 tree init = ref_at_iteration (dr, (int) 0 - i, &stmts);
2966 if (stmts)
2967 gimple_seq_add_seq_without_update (&chain->init_seq, stmts);
2969 chain->inits[i] = init;
2972 return true;
2975 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2976 impossible because one of these initializers may trap, true otherwise. */
2978 static bool
2979 prepare_initializers_chain (struct loop *loop, chain_p chain)
2981 unsigned i, n = (chain->type == CT_INVARIANT) ? 1 : chain->length;
2982 struct data_reference *dr = get_chain_root (chain)->ref;
2983 tree init;
2984 dref laref;
2985 edge entry = loop_preheader_edge (loop);
2987 if (chain->type == CT_STORE_STORE)
2988 return prepare_initializers_chain_store_elim (loop, chain);
2990 /* Find the initializers for the variables, and check that they cannot
2991 trap. */
2992 chain->inits.create (n);
2993 for (i = 0; i < n; i++)
2994 chain->inits.quick_push (NULL_TREE);
2996 /* If we have replaced some looparound phi nodes, use their initializers
2997 instead of creating our own. */
2998 FOR_EACH_VEC_ELT (chain->refs, i, laref)
3000 if (gimple_code (laref->stmt) != GIMPLE_PHI)
3001 continue;
3003 gcc_assert (laref->distance > 0);
3004 chain->inits[n - laref->distance]
3005 = PHI_ARG_DEF_FROM_EDGE (laref->stmt, entry);
3008 for (i = 0; i < n; i++)
3010 gimple_seq stmts = NULL;
3012 if (chain->inits[i] != NULL_TREE)
3013 continue;
3015 init = ref_at_iteration (dr, (int) i - n, &stmts);
3016 if (!chain->all_always_accessed && tree_could_trap_p (init))
3018 gimple_seq_discard (stmts);
3019 return false;
3022 if (stmts)
3023 gimple_seq_add_seq_without_update (&chain->init_seq, stmts);
3025 chain->inits[i] = init;
3028 return true;
3031 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
3032 be used because the initializers might trap. */
3034 static void
3035 prepare_initializers (struct loop *loop, vec<chain_p> chains)
3037 chain_p chain;
3038 unsigned i;
3040 for (i = 0; i < chains.length (); )
3042 chain = chains[i];
3043 if (prepare_initializers_chain (loop, chain))
3044 i++;
3045 else
3047 release_chain (chain);
3048 chains.unordered_remove (i);
3053 /* Generates finalizer memory references for CHAIN in LOOP. Returns true
3054 if finalizer code for CHAIN can be generated, otherwise false. */
3056 static bool
3057 prepare_finalizers_chain (struct loop *loop, chain_p chain)
3059 unsigned i, n = chain->length;
3060 struct data_reference *dr = get_chain_root (chain)->ref;
3061 tree fini, niters = number_of_latch_executions (loop);
3063 /* For now we can't eliminate stores if some of them are conditional
3064 executed. */
3065 if (!chain->all_always_accessed)
3066 return false;
3068 chain->finis.create (n);
3069 for (i = 0; i < n; i++)
3070 chain->finis.quick_push (NULL_TREE);
3072 /* We never use looparound phi node for store elimination chains. */
3074 /* Find the finalizers for the variables, and check that they cannot
3075 trap. */
3076 for (i = 0; i < n; i++)
3078 gimple_seq stmts = NULL;
3079 gcc_assert (chain->finis[i] == NULL_TREE);
3081 if (TREE_CODE (niters) != INTEGER_CST && TREE_CODE (niters) != SSA_NAME)
3083 niters = unshare_expr (niters);
3084 niters = force_gimple_operand (niters, &stmts, true, NULL);
3085 if (stmts)
3087 gimple_seq_add_seq_without_update (&chain->fini_seq, stmts);
3088 stmts = NULL;
3091 fini = ref_at_iteration (dr, (int) 0 - i, &stmts, niters);
3092 if (stmts)
3093 gimple_seq_add_seq_without_update (&chain->fini_seq, stmts);
3095 chain->finis[i] = fini;
3098 return true;
3101 /* Generates finalizer memory reference for CHAINS in LOOP. Returns true
3102 if finalizer code generation for CHAINS breaks loop closed ssa form. */
3104 static bool
3105 prepare_finalizers (struct loop *loop, vec<chain_p> chains)
3107 chain_p chain;
3108 unsigned i;
3109 bool loop_closed_ssa = false;
3111 for (i = 0; i < chains.length ();)
3113 chain = chains[i];
3115 /* Finalizer is only necessary for inter-iteration store elimination
3116 chains. */
3117 if (chain->length == 0 || chain->type != CT_STORE_STORE)
3119 i++;
3120 continue;
3123 if (prepare_finalizers_chain (loop, chain))
3125 i++;
3126 /* Be conservative, assume loop closed ssa form is corrupted
3127 by store-store chain. Though it's not always the case if
3128 eliminated stores only store loop invariant values into
3129 memory. */
3130 loop_closed_ssa = true;
3132 else
3134 release_chain (chain);
3135 chains.unordered_remove (i);
3138 return loop_closed_ssa;
3141 /* Insert all initializing gimple stmts into loop's entry edge. */
3143 static void
3144 insert_init_seqs (struct loop *loop, vec<chain_p> chains)
3146 unsigned i;
3147 edge entry = loop_preheader_edge (loop);
3149 for (i = 0; i < chains.length (); ++i)
3150 if (chains[i]->init_seq)
3152 gsi_insert_seq_on_edge_immediate (entry, chains[i]->init_seq);
3153 chains[i]->init_seq = NULL;
3157 /* Performs predictive commoning for LOOP. Sets bit 1<<0 of return value
3158 if LOOP was unrolled; Sets bit 1<<1 of return value if loop closed ssa
3159 form was corrupted. */
3161 static unsigned
3162 tree_predictive_commoning_loop (struct loop *loop)
3164 vec<data_reference_p> datarefs;
3165 vec<ddr_p> dependences;
3166 struct component *components;
3167 vec<chain_p> chains = vNULL;
3168 unsigned unroll_factor;
3169 struct tree_niter_desc desc;
3170 bool unroll = false, loop_closed_ssa = false;
3171 edge exit;
3173 if (dump_file && (dump_flags & TDF_DETAILS))
3174 fprintf (dump_file, "Processing loop %d\n", loop->num);
3176 /* Nothing for predicitive commoning if loop only iterates 1 time. */
3177 if (get_max_loop_iterations_int (loop) == 0)
3179 if (dump_file && (dump_flags & TDF_DETAILS))
3180 fprintf (dump_file, "Loop iterates only 1 time, nothing to do.\n");
3182 return 0;
3185 /* Find the data references and split them into components according to their
3186 dependence relations. */
3187 auto_vec<loop_p, 3> loop_nest;
3188 dependences.create (10);
3189 datarefs.create (10);
3190 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
3191 &dependences))
3193 if (dump_file && (dump_flags & TDF_DETAILS))
3194 fprintf (dump_file, "Cannot analyze data dependencies\n");
3195 free_data_refs (datarefs);
3196 free_dependence_relations (dependences);
3197 return 0;
3200 if (dump_file && (dump_flags & TDF_DETAILS))
3201 dump_data_dependence_relations (dump_file, dependences);
3203 components = split_data_refs_to_components (loop, datarefs, dependences);
3204 loop_nest.release ();
3205 free_dependence_relations (dependences);
3206 if (!components)
3208 free_data_refs (datarefs);
3209 free_affine_expand_cache (&name_expansions);
3210 return 0;
3213 if (dump_file && (dump_flags & TDF_DETAILS))
3215 fprintf (dump_file, "Initial state:\n\n");
3216 dump_components (dump_file, components);
3219 /* Find the suitable components and split them into chains. */
3220 components = filter_suitable_components (loop, components);
3222 auto_bitmap tmp_vars;
3223 looparound_phis = BITMAP_ALLOC (NULL);
3224 determine_roots (loop, components, &chains);
3225 release_components (components);
3227 if (!chains.exists ())
3229 if (dump_file && (dump_flags & TDF_DETAILS))
3230 fprintf (dump_file,
3231 "Predictive commoning failed: no suitable chains\n");
3232 goto end;
3234 prepare_initializers (loop, chains);
3235 loop_closed_ssa = prepare_finalizers (loop, chains);
3237 /* Try to combine the chains that are always worked with together. */
3238 try_combine_chains (loop, &chains);
3240 insert_init_seqs (loop, chains);
3242 if (dump_file && (dump_flags & TDF_DETAILS))
3244 fprintf (dump_file, "Before commoning:\n\n");
3245 dump_chains (dump_file, chains);
3248 /* Determine the unroll factor, and if the loop should be unrolled, ensure
3249 that its number of iterations is divisible by the factor. */
3250 unroll_factor = determine_unroll_factor (chains);
3251 scev_reset ();
3252 unroll = (unroll_factor > 1
3253 && can_unroll_loop_p (loop, unroll_factor, &desc));
3254 exit = single_dom_exit (loop);
3256 /* Execute the predictive commoning transformations, and possibly unroll the
3257 loop. */
3258 if (unroll)
3260 struct epcc_data dta;
3262 if (dump_file && (dump_flags & TDF_DETAILS))
3263 fprintf (dump_file, "Unrolling %u times.\n", unroll_factor);
3265 dta.chains = chains;
3266 dta.tmp_vars = tmp_vars;
3268 update_ssa (TODO_update_ssa_only_virtuals);
3270 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
3271 execute_pred_commoning_cbck is called may cause phi nodes to be
3272 reallocated, which is a problem since CHAINS may point to these
3273 statements. To fix this, we store the ssa names defined by the
3274 phi nodes here instead of the phi nodes themselves, and restore
3275 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
3276 replace_phis_by_defined_names (chains);
3278 tree_transform_and_unroll_loop (loop, unroll_factor, exit, &desc,
3279 execute_pred_commoning_cbck, &dta);
3280 eliminate_temp_copies (loop, tmp_vars);
3282 else
3284 if (dump_file && (dump_flags & TDF_DETAILS))
3285 fprintf (dump_file,
3286 "Executing predictive commoning without unrolling.\n");
3287 execute_pred_commoning (loop, chains, tmp_vars);
3290 end: ;
3291 release_chains (chains);
3292 free_data_refs (datarefs);
3293 BITMAP_FREE (looparound_phis);
3295 free_affine_expand_cache (&name_expansions);
3297 return (unroll ? 1 : 0) | (loop_closed_ssa ? 2 : 0);
3300 /* Runs predictive commoning. */
3302 unsigned
3303 tree_predictive_commoning (void)
3305 struct loop *loop;
3306 unsigned ret = 0, changed = 0;
3308 initialize_original_copy_tables ();
3309 FOR_EACH_LOOP (loop, LI_ONLY_INNERMOST)
3310 if (optimize_loop_for_speed_p (loop))
3312 changed |= tree_predictive_commoning_loop (loop);
3314 free_original_copy_tables ();
3316 if (changed > 0)
3318 scev_reset ();
3320 if (changed > 1)
3321 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
3323 ret = TODO_cleanup_cfg;
3326 return ret;
3329 /* Predictive commoning Pass. */
3331 static unsigned
3332 run_tree_predictive_commoning (struct function *fun)
3334 if (number_of_loops (fun) <= 1)
3335 return 0;
3337 return tree_predictive_commoning ();
3340 namespace {
3342 const pass_data pass_data_predcom =
3344 GIMPLE_PASS, /* type */
3345 "pcom", /* name */
3346 OPTGROUP_LOOP, /* optinfo_flags */
3347 TV_PREDCOM, /* tv_id */
3348 PROP_cfg, /* properties_required */
3349 0, /* properties_provided */
3350 0, /* properties_destroyed */
3351 0, /* todo_flags_start */
3352 TODO_update_ssa_only_virtuals, /* todo_flags_finish */
3355 class pass_predcom : public gimple_opt_pass
3357 public:
3358 pass_predcom (gcc::context *ctxt)
3359 : gimple_opt_pass (pass_data_predcom, ctxt)
3362 /* opt_pass methods: */
3363 virtual bool gate (function *) { return flag_predictive_commoning != 0; }
3364 virtual unsigned int execute (function *fun)
3366 return run_tree_predictive_commoning (fun);
3369 }; // class pass_predcom
3371 } // anon namespace
3373 gimple_opt_pass *
3374 make_pass_predcom (gcc::context *ctxt)
3376 return new pass_predcom (ctxt);