Use non-throwing is_directory in filesystem::create_directory
[official-gcc.git] / gcc / reg-stack.c
blob82feb5d84a02eafcf1cd7b1801dcfd62873990e2
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This pass converts stack-like registers from the "flat register
21 file" model that gcc uses, to a stack convention that the 387 uses.
23 * The form of the input:
25 On input, the function consists of insn that have had their
26 registers fully allocated to a set of "virtual" registers. Note that
27 the word "virtual" is used differently here than elsewhere in gcc: for
28 each virtual stack reg, there is a hard reg, but the mapping between
29 them is not known until this pass is run. On output, hard register
30 numbers have been substituted, and various pop and exchange insns have
31 been emitted. The hard register numbers and the virtual register
32 numbers completely overlap - before this pass, all stack register
33 numbers are virtual, and afterward they are all hard.
35 The virtual registers can be manipulated normally by gcc, and their
36 semantics are the same as for normal registers. After the hard
37 register numbers are substituted, the semantics of an insn containing
38 stack-like regs are not the same as for an insn with normal regs: for
39 instance, it is not safe to delete an insn that appears to be a no-op
40 move. In general, no insn containing hard regs should be changed
41 after this pass is done.
43 * The form of the output:
45 After this pass, hard register numbers represent the distance from
46 the current top of stack to the desired register. A reference to
47 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
48 represents the register just below that, and so forth. Also, REG_DEAD
49 notes indicate whether or not a stack register should be popped.
51 A "swap" insn looks like a parallel of two patterns, where each
52 pattern is a SET: one sets A to B, the other B to A.
54 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
55 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
56 will replace the existing stack top, not push a new value.
58 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
59 SET_SRC is REG or MEM.
61 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
62 appears ambiguous. As a special case, the presence of a REG_DEAD note
63 for FIRST_STACK_REG differentiates between a load insn and a pop.
65 If a REG_DEAD is present, the insn represents a "pop" that discards
66 the top of the register stack. If there is no REG_DEAD note, then the
67 insn represents a "dup" or a push of the current top of stack onto the
68 stack.
70 * Methodology:
72 Existing REG_DEAD and REG_UNUSED notes for stack registers are
73 deleted and recreated from scratch. REG_DEAD is never created for a
74 SET_DEST, only REG_UNUSED.
76 * asm_operands:
78 There are several rules on the usage of stack-like regs in
79 asm_operands insns. These rules apply only to the operands that are
80 stack-like regs:
82 1. Given a set of input regs that die in an asm_operands, it is
83 necessary to know which are implicitly popped by the asm, and
84 which must be explicitly popped by gcc.
86 An input reg that is implicitly popped by the asm must be
87 explicitly clobbered, unless it is constrained to match an
88 output operand.
90 2. For any input reg that is implicitly popped by an asm, it is
91 necessary to know how to adjust the stack to compensate for the pop.
92 If any non-popped input is closer to the top of the reg-stack than
93 the implicitly popped reg, it would not be possible to know what the
94 stack looked like - it's not clear how the rest of the stack "slides
95 up".
97 All implicitly popped input regs must be closer to the top of
98 the reg-stack than any input that is not implicitly popped.
100 All explicitly referenced input operands may not "skip" a reg.
101 Otherwise we can have holes in the stack.
103 3. It is possible that if an input dies in an insn, reload might
104 use the input reg for an output reload. Consider this example:
106 asm ("foo" : "=t" (a) : "f" (b));
108 This asm says that input B is not popped by the asm, and that
109 the asm pushes a result onto the reg-stack, i.e., the stack is one
110 deeper after the asm than it was before. But, it is possible that
111 reload will think that it can use the same reg for both the input and
112 the output, if input B dies in this insn.
114 If any input operand uses the "f" constraint, all output reg
115 constraints must use the "&" earlyclobber.
117 The asm above would be written as
119 asm ("foo" : "=&t" (a) : "f" (b));
121 4. Some operands need to be in particular places on the stack. All
122 output operands fall in this category - there is no other way to
123 know which regs the outputs appear in unless the user indicates
124 this in the constraints.
126 Output operands must specifically indicate which reg an output
127 appears in after an asm. "=f" is not allowed: the operand
128 constraints must select a class with a single reg.
130 5. Output operands may not be "inserted" between existing stack regs.
131 Since no 387 opcode uses a read/write operand, all output operands
132 are dead before the asm_operands, and are pushed by the asm_operands.
133 It makes no sense to push anywhere but the top of the reg-stack.
135 Output operands must start at the top of the reg-stack: output
136 operands may not "skip" a reg.
138 6. Some asm statements may need extra stack space for internal
139 calculations. This can be guaranteed by clobbering stack registers
140 unrelated to the inputs and outputs.
142 Here are a couple of reasonable asms to want to write. This asm
143 takes one input, which is internally popped, and produces two outputs.
145 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
147 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
148 and replaces them with one output. The user must code the "st(1)"
149 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
151 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
155 #include "config.h"
156 #include "system.h"
157 #include "coretypes.h"
158 #include "backend.h"
159 #include "target.h"
160 #include "rtl.h"
161 #include "tree.h"
162 #include "df.h"
163 #include "insn-config.h"
164 #include "memmodel.h"
165 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
166 #include "recog.h"
167 #include "varasm.h"
168 #include "rtl-error.h"
169 #include "cfgrtl.h"
170 #include "cfganal.h"
171 #include "cfgbuild.h"
172 #include "cfgcleanup.h"
173 #include "reload.h"
174 #include "tree-pass.h"
175 #include "rtl-iter.h"
177 #ifdef STACK_REGS
179 /* We use this array to cache info about insns, because otherwise we
180 spend too much time in stack_regs_mentioned_p.
182 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
183 the insn uses stack registers, two indicates the insn does not use
184 stack registers. */
185 static vec<char> stack_regs_mentioned_data;
187 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
189 int regstack_completed = 0;
191 /* This is the basic stack record. TOP is an index into REG[] such
192 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
194 If TOP is -2, REG[] is not yet initialized. Stack initialization
195 consists of placing each live reg in array `reg' and setting `top'
196 appropriately.
198 REG_SET indicates which registers are live. */
200 typedef struct stack_def
202 int top; /* index to top stack element */
203 HARD_REG_SET reg_set; /* set of live registers */
204 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
205 } *stack_ptr;
207 /* This is used to carry information about basic blocks. It is
208 attached to the AUX field of the standard CFG block. */
210 typedef struct block_info_def
212 struct stack_def stack_in; /* Input stack configuration. */
213 struct stack_def stack_out; /* Output stack configuration. */
214 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
215 int done; /* True if block already converted. */
216 int predecessors; /* Number of predecessors that need
217 to be visited. */
218 } *block_info;
220 #define BLOCK_INFO(B) ((block_info) (B)->aux)
222 /* Passed to change_stack to indicate where to emit insns. */
223 enum emit_where
225 EMIT_AFTER,
226 EMIT_BEFORE
229 /* The block we're currently working on. */
230 static basic_block current_block;
232 /* In the current_block, whether we're processing the first register
233 stack or call instruction, i.e. the regstack is currently the
234 same as BLOCK_INFO(current_block)->stack_in. */
235 static bool starting_stack_p;
237 /* This is the register file for all register after conversion. */
238 static rtx
239 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
241 #define FP_MODE_REG(regno,mode) \
242 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
244 /* Used to initialize uninitialized registers. */
245 static rtx not_a_num;
247 /* Forward declarations */
249 static int stack_regs_mentioned_p (const_rtx pat);
250 static void pop_stack (stack_ptr, int);
251 static rtx *get_true_reg (rtx *);
253 static int check_asm_stack_operands (rtx_insn *);
254 static void get_asm_operands_in_out (rtx, int *, int *);
255 static rtx stack_result (tree);
256 static void replace_reg (rtx *, int);
257 static void remove_regno_note (rtx_insn *, enum reg_note, unsigned int);
258 static int get_hard_regnum (stack_ptr, rtx);
259 static rtx_insn *emit_pop_insn (rtx_insn *, stack_ptr, rtx, enum emit_where);
260 static void swap_to_top (rtx_insn *, stack_ptr, rtx, rtx);
261 static bool move_for_stack_reg (rtx_insn *, stack_ptr, rtx);
262 static bool move_nan_for_stack_reg (rtx_insn *, stack_ptr, rtx);
263 static int swap_rtx_condition_1 (rtx);
264 static int swap_rtx_condition (rtx_insn *);
265 static void compare_for_stack_reg (rtx_insn *, stack_ptr, rtx, bool);
266 static bool subst_stack_regs_pat (rtx_insn *, stack_ptr, rtx);
267 static void subst_asm_stack_regs (rtx_insn *, stack_ptr);
268 static bool subst_stack_regs (rtx_insn *, stack_ptr);
269 static void change_stack (rtx_insn *, stack_ptr, stack_ptr, enum emit_where);
270 static void print_stack (FILE *, stack_ptr);
271 static rtx_insn *next_flags_user (rtx_insn *);
273 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
275 static int
276 stack_regs_mentioned_p (const_rtx pat)
278 const char *fmt;
279 int i;
281 if (STACK_REG_P (pat))
282 return 1;
284 fmt = GET_RTX_FORMAT (GET_CODE (pat));
285 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
287 if (fmt[i] == 'E')
289 int j;
291 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
292 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
293 return 1;
295 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
296 return 1;
299 return 0;
302 /* Return nonzero if INSN mentions stacked registers, else return zero. */
305 stack_regs_mentioned (const_rtx insn)
307 unsigned int uid, max;
308 int test;
310 if (! INSN_P (insn) || !stack_regs_mentioned_data.exists ())
311 return 0;
313 uid = INSN_UID (insn);
314 max = stack_regs_mentioned_data.length ();
315 if (uid >= max)
317 /* Allocate some extra size to avoid too many reallocs, but
318 do not grow too quickly. */
319 max = uid + uid / 20 + 1;
320 stack_regs_mentioned_data.safe_grow_cleared (max);
323 test = stack_regs_mentioned_data[uid];
324 if (test == 0)
326 /* This insn has yet to be examined. Do so now. */
327 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
328 stack_regs_mentioned_data[uid] = test;
331 return test == 1;
334 static rtx ix86_flags_rtx;
336 static rtx_insn *
337 next_flags_user (rtx_insn *insn)
339 /* Search forward looking for the first use of this value.
340 Stop at block boundaries. */
342 while (insn != BB_END (current_block))
344 insn = NEXT_INSN (insn);
346 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
347 return insn;
349 if (CALL_P (insn))
350 return NULL;
352 return NULL;
355 /* Reorganize the stack into ascending numbers, before this insn. */
357 static void
358 straighten_stack (rtx_insn *insn, stack_ptr regstack)
360 struct stack_def temp_stack;
361 int top;
363 /* If there is only a single register on the stack, then the stack is
364 already in increasing order and no reorganization is needed.
366 Similarly if the stack is empty. */
367 if (regstack->top <= 0)
368 return;
370 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
372 for (top = temp_stack.top = regstack->top; top >= 0; top--)
373 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
375 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
378 /* Pop a register from the stack. */
380 static void
381 pop_stack (stack_ptr regstack, int regno)
383 int top = regstack->top;
385 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
386 regstack->top--;
387 /* If regno was not at the top of stack then adjust stack. */
388 if (regstack->reg [top] != regno)
390 int i;
391 for (i = regstack->top; i >= 0; i--)
392 if (regstack->reg [i] == regno)
394 int j;
395 for (j = i; j < top; j++)
396 regstack->reg [j] = regstack->reg [j + 1];
397 break;
402 /* Return a pointer to the REG expression within PAT. If PAT is not a
403 REG, possible enclosed by a conversion rtx, return the inner part of
404 PAT that stopped the search. */
406 static rtx *
407 get_true_reg (rtx *pat)
409 for (;;)
410 switch (GET_CODE (*pat))
412 case SUBREG:
413 /* Eliminate FP subregister accesses in favor of the
414 actual FP register in use. */
416 rtx subreg;
417 if (STACK_REG_P (subreg = SUBREG_REG (*pat)))
419 int regno_off = subreg_regno_offset (REGNO (subreg),
420 GET_MODE (subreg),
421 SUBREG_BYTE (*pat),
422 GET_MODE (*pat));
423 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
424 GET_MODE (subreg));
425 return pat;
427 pat = &XEXP (*pat, 0);
428 break;
430 case FLOAT:
431 case FIX:
432 case FLOAT_EXTEND:
433 pat = &XEXP (*pat, 0);
434 break;
436 case UNSPEC:
437 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP
438 || XINT (*pat, 1) == UNSPEC_FILD_ATOMIC)
439 pat = &XVECEXP (*pat, 0, 0);
440 return pat;
442 case FLOAT_TRUNCATE:
443 if (!flag_unsafe_math_optimizations)
444 return pat;
445 pat = &XEXP (*pat, 0);
446 break;
448 default:
449 return pat;
453 /* Set if we find any malformed asms in a block. */
454 static bool any_malformed_asm;
456 /* There are many rules that an asm statement for stack-like regs must
457 follow. Those rules are explained at the top of this file: the rule
458 numbers below refer to that explanation. */
460 static int
461 check_asm_stack_operands (rtx_insn *insn)
463 int i;
464 int n_clobbers;
465 int malformed_asm = 0;
466 rtx body = PATTERN (insn);
468 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
469 char implicitly_dies[FIRST_PSEUDO_REGISTER];
470 char explicitly_used[FIRST_PSEUDO_REGISTER];
472 rtx *clobber_reg = 0;
473 int n_inputs, n_outputs;
475 /* Find out what the constraints require. If no constraint
476 alternative matches, this asm is malformed. */
477 extract_constrain_insn (insn);
479 preprocess_constraints (insn);
481 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
483 if (which_alternative < 0)
485 malformed_asm = 1;
486 /* Avoid further trouble with this insn. */
487 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
488 return 0;
490 const operand_alternative *op_alt = which_op_alt ();
492 /* Strip SUBREGs here to make the following code simpler. */
493 for (i = 0; i < recog_data.n_operands; i++)
494 if (GET_CODE (recog_data.operand[i]) == SUBREG
495 && REG_P (SUBREG_REG (recog_data.operand[i])))
496 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
498 /* Set up CLOBBER_REG. */
500 n_clobbers = 0;
502 if (GET_CODE (body) == PARALLEL)
504 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
506 for (i = 0; i < XVECLEN (body, 0); i++)
507 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
509 rtx clobber = XVECEXP (body, 0, i);
510 rtx reg = XEXP (clobber, 0);
512 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
513 reg = SUBREG_REG (reg);
515 if (STACK_REG_P (reg))
517 clobber_reg[n_clobbers] = reg;
518 n_clobbers++;
523 /* Enforce rule #4: Output operands must specifically indicate which
524 reg an output appears in after an asm. "=f" is not allowed: the
525 operand constraints must select a class with a single reg.
527 Also enforce rule #5: Output operands must start at the top of
528 the reg-stack: output operands may not "skip" a reg. */
530 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
531 for (i = 0; i < n_outputs; i++)
532 if (STACK_REG_P (recog_data.operand[i]))
534 if (reg_class_size[(int) op_alt[i].cl] != 1)
536 error_for_asm (insn, "output constraint %d must specify a single register", i);
537 malformed_asm = 1;
539 else
541 int j;
543 for (j = 0; j < n_clobbers; j++)
544 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
546 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
547 i, reg_names [REGNO (clobber_reg[j])]);
548 malformed_asm = 1;
549 break;
551 if (j == n_clobbers)
552 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
557 /* Search for first non-popped reg. */
558 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
559 if (! reg_used_as_output[i])
560 break;
562 /* If there are any other popped regs, that's an error. */
563 for (; i < LAST_STACK_REG + 1; i++)
564 if (reg_used_as_output[i])
565 break;
567 if (i != LAST_STACK_REG + 1)
569 error_for_asm (insn, "output regs must be grouped at top of stack");
570 malformed_asm = 1;
573 /* Enforce rule #2: All implicitly popped input regs must be closer
574 to the top of the reg-stack than any input that is not implicitly
575 popped. */
577 memset (implicitly_dies, 0, sizeof (implicitly_dies));
578 memset (explicitly_used, 0, sizeof (explicitly_used));
579 for (i = n_outputs; i < n_outputs + n_inputs; i++)
580 if (STACK_REG_P (recog_data.operand[i]))
582 /* An input reg is implicitly popped if it is tied to an
583 output, or if there is a CLOBBER for it. */
584 int j;
586 for (j = 0; j < n_clobbers; j++)
587 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
588 break;
590 if (j < n_clobbers || op_alt[i].matches >= 0)
591 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
592 else if (reg_class_size[(int) op_alt[i].cl] == 1)
593 explicitly_used[REGNO (recog_data.operand[i])] = 1;
596 /* Search for first non-popped reg. */
597 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
598 if (! implicitly_dies[i])
599 break;
601 /* If there are any other popped regs, that's an error. */
602 for (; i < LAST_STACK_REG + 1; i++)
603 if (implicitly_dies[i])
604 break;
606 if (i != LAST_STACK_REG + 1)
608 error_for_asm (insn,
609 "implicitly popped regs must be grouped at top of stack");
610 malformed_asm = 1;
613 /* Search for first not-explicitly used reg. */
614 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
615 if (! implicitly_dies[i] && ! explicitly_used[i])
616 break;
618 /* If there are any other explicitly used regs, that's an error. */
619 for (; i < LAST_STACK_REG + 1; i++)
620 if (explicitly_used[i])
621 break;
623 if (i != LAST_STACK_REG + 1)
625 error_for_asm (insn,
626 "explicitly used regs must be grouped at top of stack");
627 malformed_asm = 1;
630 /* Enforce rule #3: If any input operand uses the "f" constraint, all
631 output constraints must use the "&" earlyclobber.
633 ??? Detect this more deterministically by having constrain_asm_operands
634 record any earlyclobber. */
636 for (i = n_outputs; i < n_outputs + n_inputs; i++)
637 if (STACK_REG_P (recog_data.operand[i]) && op_alt[i].matches == -1)
639 int j;
641 for (j = 0; j < n_outputs; j++)
642 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
644 error_for_asm (insn,
645 "output operand %d must use %<&%> constraint", j);
646 malformed_asm = 1;
650 if (malformed_asm)
652 /* Avoid further trouble with this insn. */
653 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
654 any_malformed_asm = true;
655 return 0;
658 return 1;
661 /* Calculate the number of inputs and outputs in BODY, an
662 asm_operands. N_OPERANDS is the total number of operands, and
663 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
664 placed. */
666 static void
667 get_asm_operands_in_out (rtx body, int *pout, int *pin)
669 rtx asmop = extract_asm_operands (body);
671 *pin = ASM_OPERANDS_INPUT_LENGTH (asmop);
672 *pout = (recog_data.n_operands
673 - ASM_OPERANDS_INPUT_LENGTH (asmop)
674 - ASM_OPERANDS_LABEL_LENGTH (asmop));
677 /* If current function returns its result in an fp stack register,
678 return the REG. Otherwise, return 0. */
680 static rtx
681 stack_result (tree decl)
683 rtx result;
685 /* If the value is supposed to be returned in memory, then clearly
686 it is not returned in a stack register. */
687 if (aggregate_value_p (DECL_RESULT (decl), decl))
688 return 0;
690 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
691 if (result != 0)
692 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
693 decl, true);
695 return result != 0 && STACK_REG_P (result) ? result : 0;
700 * This section deals with stack register substitution, and forms the second
701 * pass over the RTL.
704 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
705 the desired hard REGNO. */
707 static void
708 replace_reg (rtx *reg, int regno)
710 gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
711 gcc_assert (STACK_REG_P (*reg));
713 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
714 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
716 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
719 /* Remove a note of type NOTE, which must be found, for register
720 number REGNO from INSN. Remove only one such note. */
722 static void
723 remove_regno_note (rtx_insn *insn, enum reg_note note, unsigned int regno)
725 rtx *note_link, this_rtx;
727 note_link = &REG_NOTES (insn);
728 for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
729 if (REG_NOTE_KIND (this_rtx) == note
730 && REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
732 *note_link = XEXP (this_rtx, 1);
733 return;
735 else
736 note_link = &XEXP (this_rtx, 1);
738 gcc_unreachable ();
741 /* Find the hard register number of virtual register REG in REGSTACK.
742 The hard register number is relative to the top of the stack. -1 is
743 returned if the register is not found. */
745 static int
746 get_hard_regnum (stack_ptr regstack, rtx reg)
748 int i;
750 gcc_assert (STACK_REG_P (reg));
752 for (i = regstack->top; i >= 0; i--)
753 if (regstack->reg[i] == REGNO (reg))
754 break;
756 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
759 /* Emit an insn to pop virtual register REG before or after INSN.
760 REGSTACK is the stack state after INSN and is updated to reflect this
761 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
762 is represented as a SET whose destination is the register to be popped
763 and source is the top of stack. A death note for the top of stack
764 cases the movdf pattern to pop. */
766 static rtx_insn *
767 emit_pop_insn (rtx_insn *insn, stack_ptr regstack, rtx reg, enum emit_where where)
769 rtx_insn *pop_insn;
770 rtx pop_rtx;
771 int hard_regno;
773 /* For complex types take care to pop both halves. These may survive in
774 CLOBBER and USE expressions. */
775 if (COMPLEX_MODE_P (GET_MODE (reg)))
777 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
778 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
780 pop_insn = NULL;
781 if (get_hard_regnum (regstack, reg1) >= 0)
782 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
783 if (get_hard_regnum (regstack, reg2) >= 0)
784 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
785 gcc_assert (pop_insn);
786 return pop_insn;
789 hard_regno = get_hard_regnum (regstack, reg);
791 gcc_assert (hard_regno >= FIRST_STACK_REG);
793 pop_rtx = gen_rtx_SET (FP_MODE_REG (hard_regno, DFmode),
794 FP_MODE_REG (FIRST_STACK_REG, DFmode));
796 if (where == EMIT_AFTER)
797 pop_insn = emit_insn_after (pop_rtx, insn);
798 else
799 pop_insn = emit_insn_before (pop_rtx, insn);
801 add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode));
803 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
804 = regstack->reg[regstack->top];
805 regstack->top -= 1;
806 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
808 return pop_insn;
811 /* Emit an insn before or after INSN to swap virtual register REG with
812 the top of stack. REGSTACK is the stack state before the swap, and
813 is updated to reflect the swap. A swap insn is represented as a
814 PARALLEL of two patterns: each pattern moves one reg to the other.
816 If REG is already at the top of the stack, no insn is emitted. */
818 static void
819 emit_swap_insn (rtx_insn *insn, stack_ptr regstack, rtx reg)
821 int hard_regno;
822 rtx swap_rtx;
823 int other_reg; /* swap regno temps */
824 rtx_insn *i1; /* the stack-reg insn prior to INSN */
825 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
827 hard_regno = get_hard_regnum (regstack, reg);
829 if (hard_regno == FIRST_STACK_REG)
830 return;
831 if (hard_regno == -1)
833 /* Something failed if the register wasn't on the stack. If we had
834 malformed asms, we zapped the instruction itself, but that didn't
835 produce the same pattern of register sets as before. To prevent
836 further failure, adjust REGSTACK to include REG at TOP. */
837 gcc_assert (any_malformed_asm);
838 regstack->reg[++regstack->top] = REGNO (reg);
839 return;
841 gcc_assert (hard_regno >= FIRST_STACK_REG);
843 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
844 std::swap (regstack->reg[regstack->top], regstack->reg[other_reg]);
846 /* Find the previous insn involving stack regs, but don't pass a
847 block boundary. */
848 i1 = NULL;
849 if (current_block && insn != BB_HEAD (current_block))
851 rtx_insn *tmp = PREV_INSN (insn);
852 rtx_insn *limit = PREV_INSN (BB_HEAD (current_block));
853 while (tmp != limit)
855 if (LABEL_P (tmp)
856 || CALL_P (tmp)
857 || NOTE_INSN_BASIC_BLOCK_P (tmp)
858 || (NONJUMP_INSN_P (tmp)
859 && stack_regs_mentioned (tmp)))
861 i1 = tmp;
862 break;
864 tmp = PREV_INSN (tmp);
868 if (i1 != NULL_RTX
869 && (i1set = single_set (i1)) != NULL_RTX)
871 rtx i1src = *get_true_reg (&SET_SRC (i1set));
872 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
874 /* If the previous register stack push was from the reg we are to
875 swap with, omit the swap. */
877 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
878 && REG_P (i1src)
879 && REGNO (i1src) == (unsigned) hard_regno - 1
880 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
881 return;
883 /* If the previous insn wrote to the reg we are to swap with,
884 omit the swap. */
886 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
887 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
888 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
889 return;
891 /* Instead of
892 fld a
893 fld b
894 fxch %st(1)
895 just use
896 fld b
897 fld a
898 if possible. Similarly for fld1, fldz, fldpi etc. instead of any
899 of the loads or for float extension from memory. */
901 i1src = SET_SRC (i1set);
902 if (GET_CODE (i1src) == FLOAT_EXTEND)
903 i1src = XEXP (i1src, 0);
904 if (REG_P (i1dest)
905 && REGNO (i1dest) == FIRST_STACK_REG
906 && (MEM_P (i1src) || GET_CODE (i1src) == CONST_DOUBLE)
907 && !side_effects_p (i1src)
908 && hard_regno == FIRST_STACK_REG + 1
909 && i1 != BB_HEAD (current_block))
911 /* i1 is the last insn that involves stack regs before insn, and
912 is known to be a load without other side-effects, i.e. fld b
913 in the above comment. */
914 rtx_insn *i2 = NULL;
915 rtx i2set;
916 rtx_insn *tmp = PREV_INSN (i1);
917 rtx_insn *limit = PREV_INSN (BB_HEAD (current_block));
918 /* Find the previous insn involving stack regs, but don't pass a
919 block boundary. */
920 while (tmp != limit)
922 if (LABEL_P (tmp)
923 || CALL_P (tmp)
924 || NOTE_INSN_BASIC_BLOCK_P (tmp)
925 || (NONJUMP_INSN_P (tmp)
926 && stack_regs_mentioned (tmp)))
928 i2 = tmp;
929 break;
931 tmp = PREV_INSN (tmp);
933 if (i2 != NULL_RTX
934 && (i2set = single_set (i2)) != NULL_RTX)
936 rtx i2dest = *get_true_reg (&SET_DEST (i2set));
937 rtx i2src = SET_SRC (i2set);
938 if (GET_CODE (i2src) == FLOAT_EXTEND)
939 i2src = XEXP (i2src, 0);
940 /* If the last two insns before insn that involve
941 stack regs are loads, where the latter (i1)
942 pushes onto the register stack and thus
943 moves the value from the first load (i2) from
944 %st to %st(1), consider swapping them. */
945 if (REG_P (i2dest)
946 && REGNO (i2dest) == FIRST_STACK_REG
947 && (MEM_P (i2src) || GET_CODE (i2src) == CONST_DOUBLE)
948 /* Ensure i2 doesn't have other side-effects. */
949 && !side_effects_p (i2src)
950 /* And that the two instructions can actually be
951 swapped, i.e. there shouldn't be any stores
952 in between i2 and i1 that might alias with
953 the i1 memory, and the memory address can't
954 use registers set in between i2 and i1. */
955 && !modified_between_p (SET_SRC (i1set), i2, i1))
957 /* Move i1 (fld b above) right before i2 (fld a
958 above. */
959 remove_insn (i1);
960 SET_PREV_INSN (i1) = NULL_RTX;
961 SET_NEXT_INSN (i1) = NULL_RTX;
962 set_block_for_insn (i1, NULL);
963 emit_insn_before (i1, i2);
964 return;
970 /* Avoid emitting the swap if this is the first register stack insn
971 of the current_block. Instead update the current_block's stack_in
972 and let compensate edges take care of this for us. */
973 if (current_block && starting_stack_p)
975 BLOCK_INFO (current_block)->stack_in = *regstack;
976 starting_stack_p = false;
977 return;
980 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
981 FP_MODE_REG (FIRST_STACK_REG, XFmode));
983 if (i1)
984 emit_insn_after (swap_rtx, i1);
985 else if (current_block)
986 emit_insn_before (swap_rtx, BB_HEAD (current_block));
987 else
988 emit_insn_before (swap_rtx, insn);
991 /* Emit an insns before INSN to swap virtual register SRC1 with
992 the top of stack and virtual register SRC2 with second stack
993 slot. REGSTACK is the stack state before the swaps, and
994 is updated to reflect the swaps. A swap insn is represented as a
995 PARALLEL of two patterns: each pattern moves one reg to the other.
997 If SRC1 and/or SRC2 are already at the right place, no swap insn
998 is emitted. */
1000 static void
1001 swap_to_top (rtx_insn *insn, stack_ptr regstack, rtx src1, rtx src2)
1003 struct stack_def temp_stack;
1004 int regno, j, k;
1006 temp_stack = *regstack;
1008 /* Place operand 1 at the top of stack. */
1009 regno = get_hard_regnum (&temp_stack, src1);
1010 gcc_assert (regno >= 0);
1011 if (regno != FIRST_STACK_REG)
1013 k = temp_stack.top - (regno - FIRST_STACK_REG);
1014 j = temp_stack.top;
1016 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
1019 /* Place operand 2 next on the stack. */
1020 regno = get_hard_regnum (&temp_stack, src2);
1021 gcc_assert (regno >= 0);
1022 if (regno != FIRST_STACK_REG + 1)
1024 k = temp_stack.top - (regno - FIRST_STACK_REG);
1025 j = temp_stack.top - 1;
1027 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
1030 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
1033 /* Handle a move to or from a stack register in PAT, which is in INSN.
1034 REGSTACK is the current stack. Return whether a control flow insn
1035 was deleted in the process. */
1037 static bool
1038 move_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx pat)
1040 rtx *psrc = get_true_reg (&SET_SRC (pat));
1041 rtx *pdest = get_true_reg (&SET_DEST (pat));
1042 rtx src, dest;
1043 rtx note;
1044 bool control_flow_insn_deleted = false;
1046 src = *psrc; dest = *pdest;
1048 if (STACK_REG_P (src) && STACK_REG_P (dest))
1050 /* Write from one stack reg to another. If SRC dies here, then
1051 just change the register mapping and delete the insn. */
1053 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1054 if (note)
1056 int i;
1058 /* If this is a no-op move, there must not be a REG_DEAD note. */
1059 gcc_assert (REGNO (src) != REGNO (dest));
1061 for (i = regstack->top; i >= 0; i--)
1062 if (regstack->reg[i] == REGNO (src))
1063 break;
1065 /* The destination must be dead, or life analysis is borked. */
1066 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1068 /* If the source is not live, this is yet another case of
1069 uninitialized variables. Load up a NaN instead. */
1070 if (i < 0)
1071 return move_nan_for_stack_reg (insn, regstack, dest);
1073 /* It is possible that the dest is unused after this insn.
1074 If so, just pop the src. */
1076 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1077 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
1078 else
1080 regstack->reg[i] = REGNO (dest);
1081 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1082 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1085 control_flow_insn_deleted |= control_flow_insn_p (insn);
1086 delete_insn (insn);
1087 return control_flow_insn_deleted;
1090 /* The source reg does not die. */
1092 /* If this appears to be a no-op move, delete it, or else it
1093 will confuse the machine description output patterns. But if
1094 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1095 for REG_UNUSED will not work for deleted insns. */
1097 if (REGNO (src) == REGNO (dest))
1099 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1100 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1102 control_flow_insn_deleted |= control_flow_insn_p (insn);
1103 delete_insn (insn);
1104 return control_flow_insn_deleted;
1107 /* The destination ought to be dead. */
1108 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1110 replace_reg (psrc, get_hard_regnum (regstack, src));
1112 regstack->reg[++regstack->top] = REGNO (dest);
1113 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1114 replace_reg (pdest, FIRST_STACK_REG);
1116 else if (STACK_REG_P (src))
1118 /* Save from a stack reg to MEM, or possibly integer reg. Since
1119 only top of stack may be saved, emit an exchange first if
1120 needs be. */
1122 emit_swap_insn (insn, regstack, src);
1124 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1125 if (note)
1127 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1128 regstack->top--;
1129 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1131 else if ((GET_MODE (src) == XFmode)
1132 && regstack->top < REG_STACK_SIZE - 1)
1134 /* A 387 cannot write an XFmode value to a MEM without
1135 clobbering the source reg. The output code can handle
1136 this by reading back the value from the MEM.
1137 But it is more efficient to use a temp register if one is
1138 available. Push the source value here if the register
1139 stack is not full, and then write the value to memory via
1140 a pop. */
1141 rtx push_rtx;
1142 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1144 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1145 emit_insn_before (push_rtx, insn);
1146 add_reg_note (insn, REG_DEAD, top_stack_reg);
1149 replace_reg (psrc, FIRST_STACK_REG);
1151 else
1153 rtx pat = PATTERN (insn);
1155 gcc_assert (STACK_REG_P (dest));
1157 /* Load from MEM, or possibly integer REG or constant, into the
1158 stack regs. The actual target is always the top of the
1159 stack. The stack mapping is changed to reflect that DEST is
1160 now at top of stack. */
1162 /* The destination ought to be dead. However, there is a
1163 special case with i387 UNSPEC_TAN, where destination is live
1164 (an argument to fptan) but inherent load of 1.0 is modelled
1165 as a load from a constant. */
1166 if (GET_CODE (pat) == PARALLEL
1167 && XVECLEN (pat, 0) == 2
1168 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1169 && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1170 && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1171 emit_swap_insn (insn, regstack, dest);
1172 else
1173 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG
1174 || any_malformed_asm);
1176 gcc_assert (regstack->top < REG_STACK_SIZE);
1178 regstack->reg[++regstack->top] = REGNO (dest);
1179 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1180 replace_reg (pdest, FIRST_STACK_REG);
1183 return control_flow_insn_deleted;
1186 /* A helper function which replaces INSN with a pattern that loads up
1187 a NaN into DEST, then invokes move_for_stack_reg. */
1189 static bool
1190 move_nan_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx dest)
1192 rtx pat;
1194 dest = FP_MODE_REG (REGNO (dest), SFmode);
1195 pat = gen_rtx_SET (dest, not_a_num);
1196 PATTERN (insn) = pat;
1197 INSN_CODE (insn) = -1;
1199 return move_for_stack_reg (insn, regstack, pat);
1202 /* Swap the condition on a branch, if there is one. Return true if we
1203 found a condition to swap. False if the condition was not used as
1204 such. */
1206 static int
1207 swap_rtx_condition_1 (rtx pat)
1209 const char *fmt;
1210 int i, r = 0;
1212 if (COMPARISON_P (pat))
1214 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1215 r = 1;
1217 else
1219 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1220 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1222 if (fmt[i] == 'E')
1224 int j;
1226 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1227 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1229 else if (fmt[i] == 'e')
1230 r |= swap_rtx_condition_1 (XEXP (pat, i));
1234 return r;
1237 static int
1238 swap_rtx_condition (rtx_insn *insn)
1240 rtx pat = PATTERN (insn);
1242 /* We're looking for a single set to cc0 or an HImode temporary. */
1244 if (GET_CODE (pat) == SET
1245 && REG_P (SET_DEST (pat))
1246 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1248 insn = next_flags_user (insn);
1249 if (insn == NULL_RTX)
1250 return 0;
1251 pat = PATTERN (insn);
1254 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1255 with the cc value right now. We may be able to search for one
1256 though. */
1258 if (GET_CODE (pat) == SET
1259 && GET_CODE (SET_SRC (pat)) == UNSPEC
1260 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1262 rtx dest = SET_DEST (pat);
1264 /* Search forward looking for the first use of this value.
1265 Stop at block boundaries. */
1266 while (insn != BB_END (current_block))
1268 insn = NEXT_INSN (insn);
1269 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1270 break;
1271 if (CALL_P (insn))
1272 return 0;
1275 /* We haven't found it. */
1276 if (insn == BB_END (current_block))
1277 return 0;
1279 /* So we've found the insn using this value. If it is anything
1280 other than sahf or the value does not die (meaning we'd have
1281 to search further), then we must give up. */
1282 pat = PATTERN (insn);
1283 if (GET_CODE (pat) != SET
1284 || GET_CODE (SET_SRC (pat)) != UNSPEC
1285 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1286 || ! dead_or_set_p (insn, dest))
1287 return 0;
1289 /* Now we are prepared to handle this as a normal cc0 setter. */
1290 insn = next_flags_user (insn);
1291 if (insn == NULL_RTX)
1292 return 0;
1293 pat = PATTERN (insn);
1296 if (swap_rtx_condition_1 (pat))
1298 int fail = 0;
1299 INSN_CODE (insn) = -1;
1300 if (recog_memoized (insn) == -1)
1301 fail = 1;
1302 /* In case the flags don't die here, recurse to try fix
1303 following user too. */
1304 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1306 insn = next_flags_user (insn);
1307 if (!insn || !swap_rtx_condition (insn))
1308 fail = 1;
1310 if (fail)
1312 swap_rtx_condition_1 (pat);
1313 return 0;
1315 return 1;
1317 return 0;
1320 /* Handle a comparison. Special care needs to be taken to avoid
1321 causing comparisons that a 387 cannot do correctly, such as EQ.
1323 Also, a pop insn may need to be emitted. The 387 does have an
1324 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1325 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1326 set up. */
1328 static void
1329 compare_for_stack_reg (rtx_insn *insn, stack_ptr regstack,
1330 rtx pat_src, bool can_pop_second_op)
1332 rtx *src1, *src2;
1333 rtx src1_note, src2_note;
1335 src1 = get_true_reg (&XEXP (pat_src, 0));
1336 src2 = get_true_reg (&XEXP (pat_src, 1));
1338 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1339 registers that die in this insn - move those to stack top first. */
1340 if ((! STACK_REG_P (*src1)
1341 || (STACK_REG_P (*src2)
1342 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1343 && swap_rtx_condition (insn))
1345 std::swap (XEXP (pat_src, 0), XEXP (pat_src, 1));
1347 src1 = get_true_reg (&XEXP (pat_src, 0));
1348 src2 = get_true_reg (&XEXP (pat_src, 1));
1350 INSN_CODE (insn) = -1;
1353 /* We will fix any death note later. */
1355 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1357 if (STACK_REG_P (*src2))
1358 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1359 else
1360 src2_note = NULL_RTX;
1362 emit_swap_insn (insn, regstack, *src1);
1364 replace_reg (src1, FIRST_STACK_REG);
1366 if (STACK_REG_P (*src2))
1367 replace_reg (src2, get_hard_regnum (regstack, *src2));
1369 if (src1_note)
1371 if (*src2 == CONST0_RTX (GET_MODE (*src2)))
1373 /* This is `ftst' insn that can't pop register. */
1374 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src1_note, 0)));
1375 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1376 EMIT_AFTER);
1378 else
1380 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1381 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1385 /* If the second operand dies, handle that. But if the operands are
1386 the same stack register, don't bother, because only one death is
1387 needed, and it was just handled. */
1389 if (src2_note
1390 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1391 && REGNO (*src1) == REGNO (*src2)))
1393 /* As a special case, two regs may die in this insn if src2 is
1394 next to top of stack and the top of stack also dies. Since
1395 we have already popped src1, "next to top of stack" is really
1396 at top (FIRST_STACK_REG) now. */
1398 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1399 && src1_note && can_pop_second_op)
1401 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1402 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1404 else
1406 /* The 386 can only represent death of the first operand in
1407 the case handled above. In all other cases, emit a separate
1408 pop and remove the death note from here. */
1409 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1410 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1411 EMIT_AFTER);
1416 /* Substitute hardware stack regs in debug insn INSN, using stack
1417 layout REGSTACK. If we can't find a hardware stack reg for any of
1418 the REGs in it, reset the debug insn. */
1420 static void
1421 subst_all_stack_regs_in_debug_insn (rtx_insn *insn, struct stack_def *regstack)
1423 subrtx_ptr_iterator::array_type array;
1424 FOR_EACH_SUBRTX_PTR (iter, array, &INSN_VAR_LOCATION_LOC (insn), NONCONST)
1426 rtx *loc = *iter;
1427 rtx x = *loc;
1428 if (STACK_REG_P (x))
1430 int hard_regno = get_hard_regnum (regstack, x);
1432 /* If we can't find an active register, reset this debug insn. */
1433 if (hard_regno == -1)
1435 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1436 return;
1439 gcc_assert (hard_regno >= FIRST_STACK_REG);
1440 replace_reg (loc, hard_regno);
1441 iter.skip_subrtxes ();
1446 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1447 is the current register layout. Return whether a control flow insn
1448 was deleted in the process. */
1450 static bool
1451 subst_stack_regs_pat (rtx_insn *insn, stack_ptr regstack, rtx pat)
1453 rtx *dest, *src;
1454 bool control_flow_insn_deleted = false;
1456 switch (GET_CODE (pat))
1458 case USE:
1459 /* Deaths in USE insns can happen in non optimizing compilation.
1460 Handle them by popping the dying register. */
1461 src = get_true_reg (&XEXP (pat, 0));
1462 if (STACK_REG_P (*src)
1463 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1465 /* USEs are ignored for liveness information so USEs of dead
1466 register might happen. */
1467 if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1468 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1469 return control_flow_insn_deleted;
1471 /* Uninitialized USE might happen for functions returning uninitialized
1472 value. We will properly initialize the USE on the edge to EXIT_BLOCK,
1473 so it is safe to ignore the use here. This is consistent with behavior
1474 of dataflow analyzer that ignores USE too. (This also imply that
1475 forcibly initializing the register to NaN here would lead to ICE later,
1476 since the REG_DEAD notes are not issued.) */
1477 break;
1479 case VAR_LOCATION:
1480 gcc_unreachable ();
1482 case CLOBBER:
1484 rtx note;
1486 dest = get_true_reg (&XEXP (pat, 0));
1487 if (STACK_REG_P (*dest))
1489 note = find_reg_note (insn, REG_DEAD, *dest);
1491 if (pat != PATTERN (insn))
1493 /* The fix_truncdi_1 pattern wants to be able to
1494 allocate its own scratch register. It does this by
1495 clobbering an fp reg so that it is assured of an
1496 empty reg-stack register. If the register is live,
1497 kill it now. Remove the DEAD/UNUSED note so we
1498 don't try to kill it later too.
1500 In reality the UNUSED note can be absent in some
1501 complicated cases when the register is reused for
1502 partially set variable. */
1504 if (note)
1505 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1506 else
1507 note = find_reg_note (insn, REG_UNUSED, *dest);
1508 if (note)
1509 remove_note (insn, note);
1510 replace_reg (dest, FIRST_STACK_REG + 1);
1512 else
1514 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1515 indicates an uninitialized value. Because reload removed
1516 all other clobbers, this must be due to a function
1517 returning without a value. Load up a NaN. */
1519 if (!note)
1521 rtx t = *dest;
1522 if (COMPLEX_MODE_P (GET_MODE (t)))
1524 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1525 if (get_hard_regnum (regstack, u) == -1)
1527 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1528 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1529 control_flow_insn_deleted
1530 |= move_nan_for_stack_reg (insn2, regstack, u);
1533 if (get_hard_regnum (regstack, t) == -1)
1534 control_flow_insn_deleted
1535 |= move_nan_for_stack_reg (insn, regstack, t);
1539 break;
1542 case SET:
1544 rtx *src1 = (rtx *) 0, *src2;
1545 rtx src1_note, src2_note;
1546 rtx pat_src;
1548 dest = get_true_reg (&SET_DEST (pat));
1549 src = get_true_reg (&SET_SRC (pat));
1550 pat_src = SET_SRC (pat);
1552 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1553 if (STACK_REG_P (*src)
1554 || (STACK_REG_P (*dest)
1555 && (REG_P (*src) || MEM_P (*src)
1556 || CONST_DOUBLE_P (*src))))
1558 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1559 break;
1562 switch (GET_CODE (pat_src))
1564 case CALL:
1566 int count;
1567 for (count = REG_NREGS (*dest); --count >= 0;)
1569 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1570 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1573 replace_reg (dest, FIRST_STACK_REG);
1574 break;
1576 case REG:
1577 /* This is a `tstM2' case. */
1578 gcc_assert (*dest == cc0_rtx);
1579 src1 = src;
1581 /* Fall through. */
1583 case FLOAT_TRUNCATE:
1584 case SQRT:
1585 case ABS:
1586 case NEG:
1587 /* These insns only operate on the top of the stack. DEST might
1588 be cc0_rtx if we're processing a tstM pattern. Also, it's
1589 possible that the tstM case results in a REG_DEAD note on the
1590 source. */
1592 if (src1 == 0)
1593 src1 = get_true_reg (&XEXP (pat_src, 0));
1595 emit_swap_insn (insn, regstack, *src1);
1597 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1599 if (STACK_REG_P (*dest))
1600 replace_reg (dest, FIRST_STACK_REG);
1602 if (src1_note)
1604 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1605 regstack->top--;
1606 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1609 replace_reg (src1, FIRST_STACK_REG);
1610 break;
1612 case MINUS:
1613 case DIV:
1614 /* On i386, reversed forms of subM3 and divM3 exist for
1615 MODE_FLOAT, so the same code that works for addM3 and mulM3
1616 can be used. */
1617 case MULT:
1618 case PLUS:
1619 /* These insns can accept the top of stack as a destination
1620 from a stack reg or mem, or can use the top of stack as a
1621 source and some other stack register (possibly top of stack)
1622 as a destination. */
1624 src1 = get_true_reg (&XEXP (pat_src, 0));
1625 src2 = get_true_reg (&XEXP (pat_src, 1));
1627 /* We will fix any death note later. */
1629 if (STACK_REG_P (*src1))
1630 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1631 else
1632 src1_note = NULL_RTX;
1633 if (STACK_REG_P (*src2))
1634 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1635 else
1636 src2_note = NULL_RTX;
1638 /* If either operand is not a stack register, then the dest
1639 must be top of stack. */
1641 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1642 emit_swap_insn (insn, regstack, *dest);
1643 else
1645 /* Both operands are REG. If neither operand is already
1646 at the top of stack, choose to make the one that is the
1647 dest the new top of stack. */
1649 int src1_hard_regnum, src2_hard_regnum;
1651 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1652 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1654 /* If the source is not live, this is yet another case of
1655 uninitialized variables. Load up a NaN instead. */
1656 if (src1_hard_regnum == -1)
1658 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1659 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1660 control_flow_insn_deleted
1661 |= move_nan_for_stack_reg (insn2, regstack, *src1);
1663 if (src2_hard_regnum == -1)
1665 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1666 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1667 control_flow_insn_deleted
1668 |= move_nan_for_stack_reg (insn2, regstack, *src2);
1671 if (src1_hard_regnum != FIRST_STACK_REG
1672 && src2_hard_regnum != FIRST_STACK_REG)
1673 emit_swap_insn (insn, regstack, *dest);
1676 if (STACK_REG_P (*src1))
1677 replace_reg (src1, get_hard_regnum (regstack, *src1));
1678 if (STACK_REG_P (*src2))
1679 replace_reg (src2, get_hard_regnum (regstack, *src2));
1681 if (src1_note)
1683 rtx src1_reg = XEXP (src1_note, 0);
1685 /* If the register that dies is at the top of stack, then
1686 the destination is somewhere else - merely substitute it.
1687 But if the reg that dies is not at top of stack, then
1688 move the top of stack to the dead reg, as though we had
1689 done the insn and then a store-with-pop. */
1691 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1693 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1694 replace_reg (dest, get_hard_regnum (regstack, *dest));
1696 else
1698 int regno = get_hard_regnum (regstack, src1_reg);
1700 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1701 replace_reg (dest, regno);
1703 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1704 = regstack->reg[regstack->top];
1707 CLEAR_HARD_REG_BIT (regstack->reg_set,
1708 REGNO (XEXP (src1_note, 0)));
1709 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1710 regstack->top--;
1712 else if (src2_note)
1714 rtx src2_reg = XEXP (src2_note, 0);
1715 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1717 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1718 replace_reg (dest, get_hard_regnum (regstack, *dest));
1720 else
1722 int regno = get_hard_regnum (regstack, src2_reg);
1724 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1725 replace_reg (dest, regno);
1727 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1728 = regstack->reg[regstack->top];
1731 CLEAR_HARD_REG_BIT (regstack->reg_set,
1732 REGNO (XEXP (src2_note, 0)));
1733 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1734 regstack->top--;
1736 else
1738 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1739 replace_reg (dest, get_hard_regnum (regstack, *dest));
1742 /* Keep operand 1 matching with destination. */
1743 if (COMMUTATIVE_ARITH_P (pat_src)
1744 && REG_P (*src1) && REG_P (*src2)
1745 && REGNO (*src1) != REGNO (*dest))
1747 int tmp = REGNO (*src1);
1748 replace_reg (src1, REGNO (*src2));
1749 replace_reg (src2, tmp);
1751 break;
1753 case UNSPEC:
1754 switch (XINT (pat_src, 1))
1756 case UNSPEC_FIST:
1757 case UNSPEC_FIST_ATOMIC:
1759 case UNSPEC_FIST_FLOOR:
1760 case UNSPEC_FIST_CEIL:
1762 /* These insns only operate on the top of the stack. */
1764 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1765 emit_swap_insn (insn, regstack, *src1);
1767 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1769 if (STACK_REG_P (*dest))
1770 replace_reg (dest, FIRST_STACK_REG);
1772 if (src1_note)
1774 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1775 regstack->top--;
1776 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1779 replace_reg (src1, FIRST_STACK_REG);
1780 break;
1782 case UNSPEC_FXAM:
1784 /* This insn only operate on the top of the stack. */
1786 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1787 emit_swap_insn (insn, regstack, *src1);
1789 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1791 replace_reg (src1, FIRST_STACK_REG);
1793 if (src1_note)
1795 remove_regno_note (insn, REG_DEAD,
1796 REGNO (XEXP (src1_note, 0)));
1797 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1798 EMIT_AFTER);
1801 break;
1803 case UNSPEC_SIN:
1804 case UNSPEC_COS:
1805 case UNSPEC_FRNDINT:
1806 case UNSPEC_F2XM1:
1808 case UNSPEC_FRNDINT_FLOOR:
1809 case UNSPEC_FRNDINT_CEIL:
1810 case UNSPEC_FRNDINT_TRUNC:
1811 case UNSPEC_FRNDINT_MASK_PM:
1813 /* Above insns operate on the top of the stack. */
1815 case UNSPEC_SINCOS_COS:
1816 case UNSPEC_XTRACT_FRACT:
1818 /* Above insns operate on the top two stack slots,
1819 first part of one input, double output insn. */
1821 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1823 emit_swap_insn (insn, regstack, *src1);
1825 /* Input should never die, it is replaced with output. */
1826 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1827 gcc_assert (!src1_note);
1829 if (STACK_REG_P (*dest))
1830 replace_reg (dest, FIRST_STACK_REG);
1832 replace_reg (src1, FIRST_STACK_REG);
1833 break;
1835 case UNSPEC_SINCOS_SIN:
1836 case UNSPEC_XTRACT_EXP:
1838 /* These insns operate on the top two stack slots,
1839 second part of one input, double output insn. */
1841 regstack->top++;
1842 /* FALLTHRU */
1844 case UNSPEC_TAN:
1846 /* For UNSPEC_TAN, regstack->top is already increased
1847 by inherent load of constant 1.0. */
1849 /* Output value is generated in the second stack slot.
1850 Move current value from second slot to the top. */
1851 regstack->reg[regstack->top]
1852 = regstack->reg[regstack->top - 1];
1854 gcc_assert (STACK_REG_P (*dest));
1856 regstack->reg[regstack->top - 1] = REGNO (*dest);
1857 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1858 replace_reg (dest, FIRST_STACK_REG + 1);
1860 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1862 replace_reg (src1, FIRST_STACK_REG);
1863 break;
1865 case UNSPEC_FPATAN:
1866 case UNSPEC_FYL2X:
1867 case UNSPEC_FYL2XP1:
1868 /* These insns operate on the top two stack slots. */
1870 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1871 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1873 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1874 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1876 swap_to_top (insn, regstack, *src1, *src2);
1878 replace_reg (src1, FIRST_STACK_REG);
1879 replace_reg (src2, FIRST_STACK_REG + 1);
1881 if (src1_note)
1882 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1883 if (src2_note)
1884 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1886 /* Pop both input operands from the stack. */
1887 CLEAR_HARD_REG_BIT (regstack->reg_set,
1888 regstack->reg[regstack->top]);
1889 CLEAR_HARD_REG_BIT (regstack->reg_set,
1890 regstack->reg[regstack->top - 1]);
1891 regstack->top -= 2;
1893 /* Push the result back onto the stack. */
1894 regstack->reg[++regstack->top] = REGNO (*dest);
1895 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1896 replace_reg (dest, FIRST_STACK_REG);
1897 break;
1899 case UNSPEC_FSCALE_FRACT:
1900 case UNSPEC_FPREM_F:
1901 case UNSPEC_FPREM1_F:
1902 /* These insns operate on the top two stack slots,
1903 first part of double input, double output insn. */
1905 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1906 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1908 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1909 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1911 /* Inputs should never die, they are
1912 replaced with outputs. */
1913 gcc_assert (!src1_note);
1914 gcc_assert (!src2_note);
1916 swap_to_top (insn, regstack, *src1, *src2);
1918 /* Push the result back onto stack. Empty stack slot
1919 will be filled in second part of insn. */
1920 if (STACK_REG_P (*dest))
1922 regstack->reg[regstack->top] = REGNO (*dest);
1923 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1924 replace_reg (dest, FIRST_STACK_REG);
1927 replace_reg (src1, FIRST_STACK_REG);
1928 replace_reg (src2, FIRST_STACK_REG + 1);
1929 break;
1931 case UNSPEC_FSCALE_EXP:
1932 case UNSPEC_FPREM_U:
1933 case UNSPEC_FPREM1_U:
1934 /* These insns operate on the top two stack slots,
1935 second part of double input, double output insn. */
1937 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1938 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1940 /* Push the result back onto stack. Fill empty slot from
1941 first part of insn and fix top of stack pointer. */
1942 if (STACK_REG_P (*dest))
1944 regstack->reg[regstack->top - 1] = REGNO (*dest);
1945 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1946 replace_reg (dest, FIRST_STACK_REG + 1);
1949 replace_reg (src1, FIRST_STACK_REG);
1950 replace_reg (src2, FIRST_STACK_REG + 1);
1951 break;
1953 case UNSPEC_C2_FLAG:
1954 /* This insn operates on the top two stack slots,
1955 third part of C2 setting double input insn. */
1957 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1958 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1960 replace_reg (src1, FIRST_STACK_REG);
1961 replace_reg (src2, FIRST_STACK_REG + 1);
1962 break;
1964 case UNSPEC_FNSTSW:
1965 /* Combined fcomp+fnstsw generated for doing well with
1966 CSE. When optimizing this would have been broken
1967 up before now. */
1969 pat_src = XVECEXP (pat_src, 0, 0);
1970 if (GET_CODE (pat_src) == COMPARE)
1971 goto do_compare;
1973 /* Fall through. */
1975 case UNSPEC_NOTRAP:
1977 pat_src = XVECEXP (pat_src, 0, 0);
1978 gcc_assert (GET_CODE (pat_src) == COMPARE);
1979 goto do_compare;
1981 default:
1982 gcc_unreachable ();
1984 break;
1986 case COMPARE:
1987 do_compare:
1988 /* `fcomi' insn can't pop two regs. */
1989 compare_for_stack_reg (insn, regstack, pat_src,
1990 REGNO (*dest) != FLAGS_REG);
1991 break;
1993 case IF_THEN_ELSE:
1994 /* This insn requires the top of stack to be the destination. */
1996 src1 = get_true_reg (&XEXP (pat_src, 1));
1997 src2 = get_true_reg (&XEXP (pat_src, 2));
1999 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
2000 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
2002 /* If the comparison operator is an FP comparison operator,
2003 it is handled correctly by compare_for_stack_reg () who
2004 will move the destination to the top of stack. But if the
2005 comparison operator is not an FP comparison operator, we
2006 have to handle it here. */
2007 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
2008 && REGNO (*dest) != regstack->reg[regstack->top])
2010 /* In case one of operands is the top of stack and the operands
2011 dies, it is safe to make it the destination operand by
2012 reversing the direction of cmove and avoid fxch. */
2013 if ((REGNO (*src1) == regstack->reg[regstack->top]
2014 && src1_note)
2015 || (REGNO (*src2) == regstack->reg[regstack->top]
2016 && src2_note))
2018 int idx1 = (get_hard_regnum (regstack, *src1)
2019 - FIRST_STACK_REG);
2020 int idx2 = (get_hard_regnum (regstack, *src2)
2021 - FIRST_STACK_REG);
2023 /* Make reg-stack believe that the operands are already
2024 swapped on the stack */
2025 regstack->reg[regstack->top - idx1] = REGNO (*src2);
2026 regstack->reg[regstack->top - idx2] = REGNO (*src1);
2028 /* Reverse condition to compensate the operand swap.
2029 i386 do have comparison always reversible. */
2030 PUT_CODE (XEXP (pat_src, 0),
2031 reversed_comparison_code (XEXP (pat_src, 0), insn));
2033 else
2034 emit_swap_insn (insn, regstack, *dest);
2038 rtx src_note [3];
2039 int i;
2041 src_note[0] = 0;
2042 src_note[1] = src1_note;
2043 src_note[2] = src2_note;
2045 if (STACK_REG_P (*src1))
2046 replace_reg (src1, get_hard_regnum (regstack, *src1));
2047 if (STACK_REG_P (*src2))
2048 replace_reg (src2, get_hard_regnum (regstack, *src2));
2050 for (i = 1; i <= 2; i++)
2051 if (src_note [i])
2053 int regno = REGNO (XEXP (src_note[i], 0));
2055 /* If the register that dies is not at the top of
2056 stack, then move the top of stack to the dead reg.
2057 Top of stack should never die, as it is the
2058 destination. */
2059 gcc_assert (regno != regstack->reg[regstack->top]);
2060 remove_regno_note (insn, REG_DEAD, regno);
2061 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
2062 EMIT_AFTER);
2066 /* Make dest the top of stack. Add dest to regstack if
2067 not present. */
2068 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
2069 regstack->reg[++regstack->top] = REGNO (*dest);
2070 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
2071 replace_reg (dest, FIRST_STACK_REG);
2072 break;
2074 default:
2075 gcc_unreachable ();
2077 break;
2080 default:
2081 break;
2084 return control_flow_insn_deleted;
2087 /* Substitute hard regnums for any stack regs in INSN, which has
2088 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
2089 before the insn, and is updated with changes made here.
2091 There are several requirements and assumptions about the use of
2092 stack-like regs in asm statements. These rules are enforced by
2093 record_asm_stack_regs; see comments there for details. Any
2094 asm_operands left in the RTL at this point may be assume to meet the
2095 requirements, since record_asm_stack_regs removes any problem asm. */
2097 static void
2098 subst_asm_stack_regs (rtx_insn *insn, stack_ptr regstack)
2100 rtx body = PATTERN (insn);
2102 rtx *note_reg; /* Array of note contents */
2103 rtx **note_loc; /* Address of REG field of each note */
2104 enum reg_note *note_kind; /* The type of each note */
2106 rtx *clobber_reg = 0;
2107 rtx **clobber_loc = 0;
2109 struct stack_def temp_stack;
2110 int n_notes;
2111 int n_clobbers;
2112 rtx note;
2113 int i;
2114 int n_inputs, n_outputs;
2116 if (! check_asm_stack_operands (insn))
2117 return;
2119 /* Find out what the constraints required. If no constraint
2120 alternative matches, that is a compiler bug: we should have caught
2121 such an insn in check_asm_stack_operands. */
2122 extract_constrain_insn (insn);
2124 preprocess_constraints (insn);
2125 const operand_alternative *op_alt = which_op_alt ();
2127 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
2129 /* Strip SUBREGs here to make the following code simpler. */
2130 for (i = 0; i < recog_data.n_operands; i++)
2131 if (GET_CODE (recog_data.operand[i]) == SUBREG
2132 && REG_P (SUBREG_REG (recog_data.operand[i])))
2134 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2135 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2138 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2140 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2141 i++;
2143 note_reg = XALLOCAVEC (rtx, i);
2144 note_loc = XALLOCAVEC (rtx *, i);
2145 note_kind = XALLOCAVEC (enum reg_note, i);
2147 n_notes = 0;
2148 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2150 if (GET_CODE (note) != EXPR_LIST)
2151 continue;
2152 rtx reg = XEXP (note, 0);
2153 rtx *loc = & XEXP (note, 0);
2155 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2157 loc = & SUBREG_REG (reg);
2158 reg = SUBREG_REG (reg);
2161 if (STACK_REG_P (reg)
2162 && (REG_NOTE_KIND (note) == REG_DEAD
2163 || REG_NOTE_KIND (note) == REG_UNUSED))
2165 note_reg[n_notes] = reg;
2166 note_loc[n_notes] = loc;
2167 note_kind[n_notes] = REG_NOTE_KIND (note);
2168 n_notes++;
2172 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2174 n_clobbers = 0;
2176 if (GET_CODE (body) == PARALLEL)
2178 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2179 clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2181 for (i = 0; i < XVECLEN (body, 0); i++)
2182 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2184 rtx clobber = XVECEXP (body, 0, i);
2185 rtx reg = XEXP (clobber, 0);
2186 rtx *loc = & XEXP (clobber, 0);
2188 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2190 loc = & SUBREG_REG (reg);
2191 reg = SUBREG_REG (reg);
2194 if (STACK_REG_P (reg))
2196 clobber_reg[n_clobbers] = reg;
2197 clobber_loc[n_clobbers] = loc;
2198 n_clobbers++;
2203 temp_stack = *regstack;
2205 /* Put the input regs into the desired place in TEMP_STACK. */
2207 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2208 if (STACK_REG_P (recog_data.operand[i])
2209 && reg_class_subset_p (op_alt[i].cl, FLOAT_REGS)
2210 && op_alt[i].cl != FLOAT_REGS)
2212 /* If an operand needs to be in a particular reg in
2213 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2214 these constraints are for single register classes, and
2215 reload guaranteed that operand[i] is already in that class,
2216 we can just use REGNO (recog_data.operand[i]) to know which
2217 actual reg this operand needs to be in. */
2219 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2221 gcc_assert (regno >= 0);
2223 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2225 /* recog_data.operand[i] is not in the right place. Find
2226 it and swap it with whatever is already in I's place.
2227 K is where recog_data.operand[i] is now. J is where it
2228 should be. */
2229 int j, k;
2231 k = temp_stack.top - (regno - FIRST_STACK_REG);
2232 j = (temp_stack.top
2233 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2235 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
2239 /* Emit insns before INSN to make sure the reg-stack is in the right
2240 order. */
2242 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2244 /* Make the needed input register substitutions. Do death notes and
2245 clobbers too, because these are for inputs, not outputs. */
2247 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2248 if (STACK_REG_P (recog_data.operand[i]))
2250 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2252 gcc_assert (regnum >= 0);
2254 replace_reg (recog_data.operand_loc[i], regnum);
2257 for (i = 0; i < n_notes; i++)
2258 if (note_kind[i] == REG_DEAD)
2260 int regnum = get_hard_regnum (regstack, note_reg[i]);
2262 gcc_assert (regnum >= 0);
2264 replace_reg (note_loc[i], regnum);
2267 for (i = 0; i < n_clobbers; i++)
2269 /* It's OK for a CLOBBER to reference a reg that is not live.
2270 Don't try to replace it in that case. */
2271 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2273 if (regnum >= 0)
2275 /* Sigh - clobbers always have QImode. But replace_reg knows
2276 that these regs can't be MODE_INT and will assert. Just put
2277 the right reg there without calling replace_reg. */
2279 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2283 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2285 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2286 if (STACK_REG_P (recog_data.operand[i]))
2288 /* An input reg is implicitly popped if it is tied to an
2289 output, or if there is a CLOBBER for it. */
2290 int j;
2292 for (j = 0; j < n_clobbers; j++)
2293 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2294 break;
2296 if (j < n_clobbers || op_alt[i].matches >= 0)
2298 /* recog_data.operand[i] might not be at the top of stack.
2299 But that's OK, because all we need to do is pop the
2300 right number of regs off of the top of the reg-stack.
2301 record_asm_stack_regs guaranteed that all implicitly
2302 popped regs were grouped at the top of the reg-stack. */
2304 CLEAR_HARD_REG_BIT (regstack->reg_set,
2305 regstack->reg[regstack->top]);
2306 regstack->top--;
2310 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2311 Note that there isn't any need to substitute register numbers.
2312 ??? Explain why this is true. */
2314 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2316 /* See if there is an output for this hard reg. */
2317 int j;
2319 for (j = 0; j < n_outputs; j++)
2320 if (STACK_REG_P (recog_data.operand[j])
2321 && REGNO (recog_data.operand[j]) == (unsigned) i)
2323 regstack->reg[++regstack->top] = i;
2324 SET_HARD_REG_BIT (regstack->reg_set, i);
2325 break;
2329 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2330 input that the asm didn't implicitly pop. If the asm didn't
2331 implicitly pop an input reg, that reg will still be live.
2333 Note that we can't use find_regno_note here: the register numbers
2334 in the death notes have already been substituted. */
2336 for (i = 0; i < n_outputs; i++)
2337 if (STACK_REG_P (recog_data.operand[i]))
2339 int j;
2341 for (j = 0; j < n_notes; j++)
2342 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2343 && note_kind[j] == REG_UNUSED)
2345 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2346 EMIT_AFTER);
2347 break;
2351 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2352 if (STACK_REG_P (recog_data.operand[i]))
2354 int j;
2356 for (j = 0; j < n_notes; j++)
2357 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2358 && note_kind[j] == REG_DEAD
2359 && TEST_HARD_REG_BIT (regstack->reg_set,
2360 REGNO (recog_data.operand[i])))
2362 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2363 EMIT_AFTER);
2364 break;
2369 /* Substitute stack hard reg numbers for stack virtual registers in
2370 INSN. Non-stack register numbers are not changed. REGSTACK is the
2371 current stack content. Insns may be emitted as needed to arrange the
2372 stack for the 387 based on the contents of the insn. Return whether
2373 a control flow insn was deleted in the process. */
2375 static bool
2376 subst_stack_regs (rtx_insn *insn, stack_ptr regstack)
2378 rtx *note_link, note;
2379 bool control_flow_insn_deleted = false;
2380 int i;
2382 if (CALL_P (insn))
2384 int top = regstack->top;
2386 /* If there are any floating point parameters to be passed in
2387 registers for this call, make sure they are in the right
2388 order. */
2390 if (top >= 0)
2392 straighten_stack (insn, regstack);
2394 /* Now mark the arguments as dead after the call. */
2396 while (regstack->top >= 0)
2398 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2399 regstack->top--;
2404 /* Do the actual substitution if any stack regs are mentioned.
2405 Since we only record whether entire insn mentions stack regs, and
2406 subst_stack_regs_pat only works for patterns that contain stack regs,
2407 we must check each pattern in a parallel here. A call_value_pop could
2408 fail otherwise. */
2410 if (stack_regs_mentioned (insn))
2412 int n_operands = asm_noperands (PATTERN (insn));
2413 if (n_operands >= 0)
2415 /* This insn is an `asm' with operands. Decode the operands,
2416 decide how many are inputs, and do register substitution.
2417 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2419 subst_asm_stack_regs (insn, regstack);
2420 return control_flow_insn_deleted;
2423 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2424 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2426 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2428 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2429 XVECEXP (PATTERN (insn), 0, i)
2430 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2431 control_flow_insn_deleted
2432 |= subst_stack_regs_pat (insn, regstack,
2433 XVECEXP (PATTERN (insn), 0, i));
2436 else
2437 control_flow_insn_deleted
2438 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2441 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2442 REG_UNUSED will already have been dealt with, so just return. */
2444 if (NOTE_P (insn) || insn->deleted ())
2445 return control_flow_insn_deleted;
2447 /* If this a noreturn call, we can't insert pop insns after it.
2448 Instead, reset the stack state to empty. */
2449 if (CALL_P (insn)
2450 && find_reg_note (insn, REG_NORETURN, NULL))
2452 regstack->top = -1;
2453 CLEAR_HARD_REG_SET (regstack->reg_set);
2454 return control_flow_insn_deleted;
2457 /* If there is a REG_UNUSED note on a stack register on this insn,
2458 the indicated reg must be popped. The REG_UNUSED note is removed,
2459 since the form of the newly emitted pop insn references the reg,
2460 making it no longer `unset'. */
2462 note_link = &REG_NOTES (insn);
2463 for (note = *note_link; note; note = XEXP (note, 1))
2464 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2466 *note_link = XEXP (note, 1);
2467 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2469 else
2470 note_link = &XEXP (note, 1);
2472 return control_flow_insn_deleted;
2475 /* Change the organization of the stack so that it fits a new basic
2476 block. Some registers might have to be popped, but there can never be
2477 a register live in the new block that is not now live.
2479 Insert any needed insns before or after INSN, as indicated by
2480 WHERE. OLD is the original stack layout, and NEW is the desired
2481 form. OLD is updated to reflect the code emitted, i.e., it will be
2482 the same as NEW upon return.
2484 This function will not preserve block_end[]. But that information
2485 is no longer needed once this has executed. */
2487 static void
2488 change_stack (rtx_insn *insn, stack_ptr old, stack_ptr new_stack,
2489 enum emit_where where)
2491 int reg;
2492 int update_end = 0;
2493 int i;
2495 /* Stack adjustments for the first insn in a block update the
2496 current_block's stack_in instead of inserting insns directly.
2497 compensate_edges will add the necessary code later. */
2498 if (current_block
2499 && starting_stack_p
2500 && where == EMIT_BEFORE)
2502 BLOCK_INFO (current_block)->stack_in = *new_stack;
2503 starting_stack_p = false;
2504 *old = *new_stack;
2505 return;
2508 /* We will be inserting new insns "backwards". If we are to insert
2509 after INSN, find the next insn, and insert before it. */
2511 if (where == EMIT_AFTER)
2513 if (current_block && BB_END (current_block) == insn)
2514 update_end = 1;
2515 insn = NEXT_INSN (insn);
2518 /* Initialize partially dead variables. */
2519 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2520 if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
2521 && !TEST_HARD_REG_BIT (old->reg_set, i))
2523 old->reg[++old->top] = i;
2524 SET_HARD_REG_BIT (old->reg_set, i);
2525 emit_insn_before (gen_rtx_SET (FP_MODE_REG (i, SFmode), not_a_num),
2526 insn);
2529 /* Pop any registers that are not needed in the new block. */
2531 /* If the destination block's stack already has a specified layout
2532 and contains two or more registers, use a more intelligent algorithm
2533 to pop registers that minimizes the number of fxchs below. */
2534 if (new_stack->top > 0)
2536 bool slots[REG_STACK_SIZE];
2537 int pops[REG_STACK_SIZE];
2538 int next, dest, topsrc;
2540 /* First pass to determine the free slots. */
2541 for (reg = 0; reg <= new_stack->top; reg++)
2542 slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
2544 /* Second pass to allocate preferred slots. */
2545 topsrc = -1;
2546 for (reg = old->top; reg > new_stack->top; reg--)
2547 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2549 dest = -1;
2550 for (next = 0; next <= new_stack->top; next++)
2551 if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2553 /* If this is a preference for the new top of stack, record
2554 the fact by remembering it's old->reg in topsrc. */
2555 if (next == new_stack->top)
2556 topsrc = reg;
2557 slots[next] = true;
2558 dest = next;
2559 break;
2561 pops[reg] = dest;
2563 else
2564 pops[reg] = reg;
2566 /* Intentionally, avoid placing the top of stack in it's correct
2567 location, if we still need to permute the stack below and we
2568 can usefully place it somewhere else. This is the case if any
2569 slot is still unallocated, in which case we should place the
2570 top of stack there. */
2571 if (topsrc != -1)
2572 for (reg = 0; reg < new_stack->top; reg++)
2573 if (!slots[reg])
2575 pops[topsrc] = reg;
2576 slots[new_stack->top] = false;
2577 slots[reg] = true;
2578 break;
2581 /* Third pass allocates remaining slots and emits pop insns. */
2582 next = new_stack->top;
2583 for (reg = old->top; reg > new_stack->top; reg--)
2585 dest = pops[reg];
2586 if (dest == -1)
2588 /* Find next free slot. */
2589 while (slots[next])
2590 next--;
2591 dest = next--;
2593 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2594 EMIT_BEFORE);
2597 else
2599 /* The following loop attempts to maximize the number of times we
2600 pop the top of the stack, as this permits the use of the faster
2601 ffreep instruction on platforms that support it. */
2602 int live, next;
2604 live = 0;
2605 for (reg = 0; reg <= old->top; reg++)
2606 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2607 live++;
2609 next = live;
2610 while (old->top >= live)
2611 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
2613 while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
2614 next--;
2615 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2616 EMIT_BEFORE);
2618 else
2619 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2620 EMIT_BEFORE);
2623 if (new_stack->top == -2)
2625 /* If the new block has never been processed, then it can inherit
2626 the old stack order. */
2628 new_stack->top = old->top;
2629 memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
2631 else
2633 /* This block has been entered before, and we must match the
2634 previously selected stack order. */
2636 /* By now, the only difference should be the order of the stack,
2637 not their depth or liveliness. */
2639 gcc_assert (hard_reg_set_equal_p (old->reg_set, new_stack->reg_set));
2640 gcc_assert (old->top == new_stack->top);
2642 /* If the stack is not empty (new_stack->top != -1), loop here emitting
2643 swaps until the stack is correct.
2645 The worst case number of swaps emitted is N + 2, where N is the
2646 depth of the stack. In some cases, the reg at the top of
2647 stack may be correct, but swapped anyway in order to fix
2648 other regs. But since we never swap any other reg away from
2649 its correct slot, this algorithm will converge. */
2651 if (new_stack->top != -1)
2654 /* Swap the reg at top of stack into the position it is
2655 supposed to be in, until the correct top of stack appears. */
2657 while (old->reg[old->top] != new_stack->reg[new_stack->top])
2659 for (reg = new_stack->top; reg >= 0; reg--)
2660 if (new_stack->reg[reg] == old->reg[old->top])
2661 break;
2663 gcc_assert (reg != -1);
2665 emit_swap_insn (insn, old,
2666 FP_MODE_REG (old->reg[reg], DFmode));
2669 /* See if any regs remain incorrect. If so, bring an
2670 incorrect reg to the top of stack, and let the while loop
2671 above fix it. */
2673 for (reg = new_stack->top; reg >= 0; reg--)
2674 if (new_stack->reg[reg] != old->reg[reg])
2676 emit_swap_insn (insn, old,
2677 FP_MODE_REG (old->reg[reg], DFmode));
2678 break;
2680 } while (reg >= 0);
2682 /* At this point there must be no differences. */
2684 for (reg = old->top; reg >= 0; reg--)
2685 gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2688 if (update_end)
2689 BB_END (current_block) = PREV_INSN (insn);
2692 /* Print stack configuration. */
2694 static void
2695 print_stack (FILE *file, stack_ptr s)
2697 if (! file)
2698 return;
2700 if (s->top == -2)
2701 fprintf (file, "uninitialized\n");
2702 else if (s->top == -1)
2703 fprintf (file, "empty\n");
2704 else
2706 int i;
2707 fputs ("[ ", file);
2708 for (i = 0; i <= s->top; ++i)
2709 fprintf (file, "%d ", s->reg[i]);
2710 fputs ("]\n", file);
2714 /* This function was doing life analysis. We now let the regular live
2715 code do it's job, so we only need to check some extra invariants
2716 that reg-stack expects. Primary among these being that all registers
2717 are initialized before use.
2719 The function returns true when code was emitted to CFG edges and
2720 commit_edge_insertions needs to be called. */
2722 static int
2723 convert_regs_entry (void)
2725 int inserted = 0;
2726 edge e;
2727 edge_iterator ei;
2729 /* Load something into each stack register live at function entry.
2730 Such live registers can be caused by uninitialized variables or
2731 functions not returning values on all paths. In order to keep
2732 the push/pop code happy, and to not scrog the register stack, we
2733 must put something in these registers. Use a QNaN.
2735 Note that we are inserting converted code here. This code is
2736 never seen by the convert_regs pass. */
2738 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
2740 basic_block block = e->dest;
2741 block_info bi = BLOCK_INFO (block);
2742 int reg, top = -1;
2744 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2745 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2747 rtx init;
2749 bi->stack_in.reg[++top] = reg;
2751 init = gen_rtx_SET (FP_MODE_REG (FIRST_STACK_REG, SFmode),
2752 not_a_num);
2753 insert_insn_on_edge (init, e);
2754 inserted = 1;
2757 bi->stack_in.top = top;
2760 return inserted;
2763 /* Construct the desired stack for function exit. This will either
2764 be `empty', or the function return value at top-of-stack. */
2766 static void
2767 convert_regs_exit (void)
2769 int value_reg_low, value_reg_high;
2770 stack_ptr output_stack;
2771 rtx retvalue;
2773 retvalue = stack_result (current_function_decl);
2774 value_reg_low = value_reg_high = -1;
2775 if (retvalue)
2777 value_reg_low = REGNO (retvalue);
2778 value_reg_high = END_REGNO (retvalue) - 1;
2781 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->stack_in;
2782 if (value_reg_low == -1)
2783 output_stack->top = -1;
2784 else
2786 int reg;
2788 output_stack->top = value_reg_high - value_reg_low;
2789 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2791 output_stack->reg[value_reg_high - reg] = reg;
2792 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2797 /* Copy the stack info from the end of edge E's source block to the
2798 start of E's destination block. */
2800 static void
2801 propagate_stack (edge e)
2803 stack_ptr src_stack = &BLOCK_INFO (e->src)->stack_out;
2804 stack_ptr dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2805 int reg;
2807 /* Preserve the order of the original stack, but check whether
2808 any pops are needed. */
2809 dest_stack->top = -1;
2810 for (reg = 0; reg <= src_stack->top; ++reg)
2811 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2812 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2814 /* Push in any partially dead values. */
2815 for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2816 if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2817 && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2818 dest_stack->reg[++dest_stack->top] = reg;
2822 /* Adjust the stack of edge E's source block on exit to match the stack
2823 of it's target block upon input. The stack layouts of both blocks
2824 should have been defined by now. */
2826 static bool
2827 compensate_edge (edge e)
2829 basic_block source = e->src, target = e->dest;
2830 stack_ptr target_stack = &BLOCK_INFO (target)->stack_in;
2831 stack_ptr source_stack = &BLOCK_INFO (source)->stack_out;
2832 struct stack_def regstack;
2833 int reg;
2835 if (dump_file)
2836 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2838 gcc_assert (target_stack->top != -2);
2840 /* Check whether stacks are identical. */
2841 if (target_stack->top == source_stack->top)
2843 for (reg = target_stack->top; reg >= 0; --reg)
2844 if (target_stack->reg[reg] != source_stack->reg[reg])
2845 break;
2847 if (reg == -1)
2849 if (dump_file)
2850 fprintf (dump_file, "no changes needed\n");
2851 return false;
2855 if (dump_file)
2857 fprintf (dump_file, "correcting stack to ");
2858 print_stack (dump_file, target_stack);
2861 /* Abnormal calls may appear to have values live in st(0), but the
2862 abnormal return path will not have actually loaded the values. */
2863 if (e->flags & EDGE_ABNORMAL_CALL)
2865 /* Assert that the lifetimes are as we expect -- one value
2866 live at st(0) on the end of the source block, and no
2867 values live at the beginning of the destination block.
2868 For complex return values, we may have st(1) live as well. */
2869 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2870 gcc_assert (target_stack->top == -1);
2871 return false;
2874 /* Handle non-call EH edges specially. The normal return path have
2875 values in registers. These will be popped en masse by the unwind
2876 library. */
2877 if (e->flags & EDGE_EH)
2879 gcc_assert (target_stack->top == -1);
2880 return false;
2883 /* We don't support abnormal edges. Global takes care to
2884 avoid any live register across them, so we should never
2885 have to insert instructions on such edges. */
2886 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2888 /* Make a copy of source_stack as change_stack is destructive. */
2889 regstack = *source_stack;
2891 /* It is better to output directly to the end of the block
2892 instead of to the edge, because emit_swap can do minimal
2893 insn scheduling. We can do this when there is only one
2894 edge out, and it is not abnormal. */
2895 if (EDGE_COUNT (source->succs) == 1)
2897 current_block = source;
2898 change_stack (BB_END (source), &regstack, target_stack,
2899 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2901 else
2903 rtx_insn *seq;
2904 rtx_note *after;
2906 current_block = NULL;
2907 start_sequence ();
2909 /* ??? change_stack needs some point to emit insns after. */
2910 after = emit_note (NOTE_INSN_DELETED);
2912 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2914 seq = get_insns ();
2915 end_sequence ();
2917 insert_insn_on_edge (seq, e);
2918 return true;
2920 return false;
2923 /* Traverse all non-entry edges in the CFG, and emit the necessary
2924 edge compensation code to change the stack from stack_out of the
2925 source block to the stack_in of the destination block. */
2927 static bool
2928 compensate_edges (void)
2930 bool inserted = false;
2931 basic_block bb;
2933 starting_stack_p = false;
2935 FOR_EACH_BB_FN (bb, cfun)
2936 if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
2938 edge e;
2939 edge_iterator ei;
2941 FOR_EACH_EDGE (e, ei, bb->succs)
2942 inserted |= compensate_edge (e);
2944 return inserted;
2947 /* Select the better of two edges E1 and E2 to use to determine the
2948 stack layout for their shared destination basic block. This is
2949 typically the more frequently executed. The edge E1 may be NULL
2950 (in which case E2 is returned), but E2 is always non-NULL. */
2952 static edge
2953 better_edge (edge e1, edge e2)
2955 if (!e1)
2956 return e2;
2958 if (e1->count () > e2->count ())
2959 return e1;
2960 if (e1->count () < e2->count ())
2961 return e2;
2963 /* Prefer critical edges to minimize inserting compensation code on
2964 critical edges. */
2966 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2967 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2969 /* Avoid non-deterministic behavior. */
2970 return (e1->src->index < e2->src->index) ? e1 : e2;
2973 /* Convert stack register references in one block. Return true if the CFG
2974 has been modified in the process. */
2976 static bool
2977 convert_regs_1 (basic_block block)
2979 struct stack_def regstack;
2980 block_info bi = BLOCK_INFO (block);
2981 int reg;
2982 rtx_insn *insn, *next;
2983 bool control_flow_insn_deleted = false;
2984 bool cfg_altered = false;
2985 int debug_insns_with_starting_stack = 0;
2987 any_malformed_asm = false;
2989 /* Choose an initial stack layout, if one hasn't already been chosen. */
2990 if (bi->stack_in.top == -2)
2992 edge e, beste = NULL;
2993 edge_iterator ei;
2995 /* Select the best incoming edge (typically the most frequent) to
2996 use as a template for this basic block. */
2997 FOR_EACH_EDGE (e, ei, block->preds)
2998 if (BLOCK_INFO (e->src)->done)
2999 beste = better_edge (beste, e);
3001 if (beste)
3002 propagate_stack (beste);
3003 else
3005 /* No predecessors. Create an arbitrary input stack. */
3006 bi->stack_in.top = -1;
3007 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
3008 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
3009 bi->stack_in.reg[++bi->stack_in.top] = reg;
3013 if (dump_file)
3015 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
3016 print_stack (dump_file, &bi->stack_in);
3019 /* Process all insns in this block. Keep track of NEXT so that we
3020 don't process insns emitted while substituting in INSN. */
3021 current_block = block;
3022 next = BB_HEAD (block);
3023 regstack = bi->stack_in;
3024 starting_stack_p = true;
3028 insn = next;
3029 next = NEXT_INSN (insn);
3031 /* Ensure we have not missed a block boundary. */
3032 gcc_assert (next);
3033 if (insn == BB_END (block))
3034 next = NULL;
3036 /* Don't bother processing unless there is a stack reg
3037 mentioned or if it's a CALL_INSN. */
3038 if (DEBUG_BIND_INSN_P (insn))
3040 if (starting_stack_p)
3041 debug_insns_with_starting_stack++;
3042 else
3044 subst_all_stack_regs_in_debug_insn (insn, &regstack);
3046 /* Nothing must ever die at a debug insn. If something
3047 is referenced in it that becomes dead, it should have
3048 died before and the reference in the debug insn
3049 should have been removed so as to avoid changing code
3050 generation. */
3051 gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
3054 else if (stack_regs_mentioned (insn)
3055 || CALL_P (insn))
3057 if (dump_file)
3059 fprintf (dump_file, " insn %d input stack: ",
3060 INSN_UID (insn));
3061 print_stack (dump_file, &regstack);
3063 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3064 starting_stack_p = false;
3067 while (next);
3069 if (debug_insns_with_starting_stack)
3071 /* Since it's the first non-debug instruction that determines
3072 the stack requirements of the current basic block, we refrain
3073 from updating debug insns before it in the loop above, and
3074 fix them up here. */
3075 for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
3076 insn = NEXT_INSN (insn))
3078 if (!DEBUG_BIND_INSN_P (insn))
3079 continue;
3081 debug_insns_with_starting_stack--;
3082 subst_all_stack_regs_in_debug_insn (insn, &bi->stack_in);
3086 if (dump_file)
3088 fprintf (dump_file, "Expected live registers [");
3089 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3090 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
3091 fprintf (dump_file, " %d", reg);
3092 fprintf (dump_file, " ]\nOutput stack: ");
3093 print_stack (dump_file, &regstack);
3096 insn = BB_END (block);
3097 if (JUMP_P (insn))
3098 insn = PREV_INSN (insn);
3100 /* If the function is declared to return a value, but it returns one
3101 in only some cases, some registers might come live here. Emit
3102 necessary moves for them. */
3104 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3106 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
3107 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
3109 rtx set;
3111 if (dump_file)
3112 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
3114 set = gen_rtx_SET (FP_MODE_REG (reg, SFmode), not_a_num);
3115 insn = emit_insn_after (set, insn);
3116 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3120 /* Amongst the insns possibly deleted during the substitution process above,
3121 might have been the only trapping insn in the block. We purge the now
3122 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3123 called at the end of convert_regs. The order in which we process the
3124 blocks ensures that we never delete an already processed edge.
3126 Note that, at this point, the CFG may have been damaged by the emission
3127 of instructions after an abnormal call, which moves the basic block end
3128 (and is the reason why we call fixup_abnormal_edges later). So we must
3129 be sure that the trapping insn has been deleted before trying to purge
3130 dead edges, otherwise we risk purging valid edges.
3132 ??? We are normally supposed not to delete trapping insns, so we pretend
3133 that the insns deleted above don't actually trap. It would have been
3134 better to detect this earlier and avoid creating the EH edge in the first
3135 place, still, but we don't have enough information at that time. */
3137 if (control_flow_insn_deleted)
3138 cfg_altered |= purge_dead_edges (block);
3140 /* Something failed if the stack lives don't match. If we had malformed
3141 asms, we zapped the instruction itself, but that didn't produce the
3142 same pattern of register kills as before. */
3144 gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
3145 || any_malformed_asm);
3146 bi->stack_out = regstack;
3147 bi->done = true;
3149 return cfg_altered;
3152 /* Convert registers in all blocks reachable from BLOCK. Return true if the
3153 CFG has been modified in the process. */
3155 static bool
3156 convert_regs_2 (basic_block block)
3158 basic_block *stack, *sp;
3159 bool cfg_altered = false;
3161 /* We process the blocks in a top-down manner, in a way such that one block
3162 is only processed after all its predecessors. The number of predecessors
3163 of every block has already been computed. */
3165 stack = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
3166 sp = stack;
3168 *sp++ = block;
3172 edge e;
3173 edge_iterator ei;
3175 block = *--sp;
3177 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3178 some dead EH outgoing edge after the deletion of the trapping
3179 insn inside the block. Since the number of predecessors of
3180 BLOCK's successors was computed based on the initial edge set,
3181 we check the necessity to process some of these successors
3182 before such an edge deletion may happen. However, there is
3183 a pitfall: if BLOCK is the only predecessor of a successor and
3184 the edge between them happens to be deleted, the successor
3185 becomes unreachable and should not be processed. The problem
3186 is that there is no way to preventively detect this case so we
3187 stack the successor in all cases and hand over the task of
3188 fixing up the discrepancy to convert_regs_1. */
3190 FOR_EACH_EDGE (e, ei, block->succs)
3191 if (! (e->flags & EDGE_DFS_BACK))
3193 BLOCK_INFO (e->dest)->predecessors--;
3194 if (!BLOCK_INFO (e->dest)->predecessors)
3195 *sp++ = e->dest;
3198 cfg_altered |= convert_regs_1 (block);
3200 while (sp != stack);
3202 free (stack);
3204 return cfg_altered;
3207 /* Traverse all basic blocks in a function, converting the register
3208 references in each insn from the "flat" register file that gcc uses,
3209 to the stack-like registers the 387 uses. */
3211 static void
3212 convert_regs (void)
3214 bool cfg_altered = false;
3215 int inserted;
3216 basic_block b;
3217 edge e;
3218 edge_iterator ei;
3220 /* Initialize uninitialized registers on function entry. */
3221 inserted = convert_regs_entry ();
3223 /* Construct the desired stack for function exit. */
3224 convert_regs_exit ();
3225 BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->done = 1;
3227 /* ??? Future: process inner loops first, and give them arbitrary
3228 initial stacks which emit_swap_insn can modify. This ought to
3229 prevent double fxch that often appears at the head of a loop. */
3231 /* Process all blocks reachable from all entry points. */
3232 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
3233 cfg_altered |= convert_regs_2 (e->dest);
3235 /* ??? Process all unreachable blocks. Though there's no excuse
3236 for keeping these even when not optimizing. */
3237 FOR_EACH_BB_FN (b, cfun)
3239 block_info bi = BLOCK_INFO (b);
3241 if (! bi->done)
3242 cfg_altered |= convert_regs_2 (b);
3245 /* We must fix up abnormal edges before inserting compensation code
3246 because both mechanisms insert insns on edges. */
3247 inserted |= fixup_abnormal_edges ();
3249 inserted |= compensate_edges ();
3251 clear_aux_for_blocks ();
3253 if (inserted)
3254 commit_edge_insertions ();
3256 if (cfg_altered)
3257 cleanup_cfg (0);
3259 if (dump_file)
3260 fputc ('\n', dump_file);
3263 /* Convert register usage from "flat" register file usage to a "stack
3264 register file. FILE is the dump file, if used.
3266 Construct a CFG and run life analysis. Then convert each insn one
3267 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3268 code duplication created when the converter inserts pop insns on
3269 the edges. */
3271 static bool
3272 reg_to_stack (void)
3274 basic_block bb;
3275 int i;
3276 int max_uid;
3278 /* Clean up previous run. */
3279 stack_regs_mentioned_data.release ();
3281 /* See if there is something to do. Flow analysis is quite
3282 expensive so we might save some compilation time. */
3283 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3284 if (df_regs_ever_live_p (i))
3285 break;
3286 if (i > LAST_STACK_REG)
3287 return false;
3289 df_note_add_problem ();
3290 df_analyze ();
3292 mark_dfs_back_edges ();
3294 /* Set up block info for each basic block. */
3295 alloc_aux_for_blocks (sizeof (struct block_info_def));
3296 FOR_EACH_BB_FN (bb, cfun)
3298 block_info bi = BLOCK_INFO (bb);
3299 edge_iterator ei;
3300 edge e;
3301 int reg;
3303 FOR_EACH_EDGE (e, ei, bb->preds)
3304 if (!(e->flags & EDGE_DFS_BACK)
3305 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3306 bi->predecessors++;
3308 /* Set current register status at last instruction `uninitialized'. */
3309 bi->stack_in.top = -2;
3311 /* Copy live_at_end and live_at_start into temporaries. */
3312 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3314 if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3315 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3316 if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3317 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3321 /* Create the replacement registers up front. */
3322 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3324 machine_mode mode;
3325 FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
3326 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3327 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT)
3328 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3331 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3333 /* A QNaN for initializing uninitialized variables.
3335 ??? We can't load from constant memory in PIC mode, because
3336 we're inserting these instructions before the prologue and
3337 the PIC register hasn't been set up. In that case, fall back
3338 on zero, which we can get from `fldz'. */
3340 if ((flag_pic && !TARGET_64BIT)
3341 || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3342 not_a_num = CONST0_RTX (SFmode);
3343 else
3345 REAL_VALUE_TYPE r;
3347 real_nan (&r, "", 1, SFmode);
3348 not_a_num = const_double_from_real_value (r, SFmode);
3349 not_a_num = force_const_mem (SFmode, not_a_num);
3352 /* Allocate a cache for stack_regs_mentioned. */
3353 max_uid = get_max_uid ();
3354 stack_regs_mentioned_data.create (max_uid + 1);
3355 memset (stack_regs_mentioned_data.address (),
3356 0, sizeof (char) * (max_uid + 1));
3358 convert_regs ();
3360 free_aux_for_blocks ();
3361 return true;
3363 #endif /* STACK_REGS */
3365 namespace {
3367 const pass_data pass_data_stack_regs =
3369 RTL_PASS, /* type */
3370 "*stack_regs", /* name */
3371 OPTGROUP_NONE, /* optinfo_flags */
3372 TV_REG_STACK, /* tv_id */
3373 0, /* properties_required */
3374 0, /* properties_provided */
3375 0, /* properties_destroyed */
3376 0, /* todo_flags_start */
3377 0, /* todo_flags_finish */
3380 class pass_stack_regs : public rtl_opt_pass
3382 public:
3383 pass_stack_regs (gcc::context *ctxt)
3384 : rtl_opt_pass (pass_data_stack_regs, ctxt)
3387 /* opt_pass methods: */
3388 virtual bool gate (function *)
3390 #ifdef STACK_REGS
3391 return true;
3392 #else
3393 return false;
3394 #endif
3397 }; // class pass_stack_regs
3399 } // anon namespace
3401 rtl_opt_pass *
3402 make_pass_stack_regs (gcc::context *ctxt)
3404 return new pass_stack_regs (ctxt);
3407 /* Convert register usage from flat register file usage to a stack
3408 register file. */
3409 static unsigned int
3410 rest_of_handle_stack_regs (void)
3412 #ifdef STACK_REGS
3413 reg_to_stack ();
3414 regstack_completed = 1;
3415 #endif
3416 return 0;
3419 namespace {
3421 const pass_data pass_data_stack_regs_run =
3423 RTL_PASS, /* type */
3424 "stack", /* name */
3425 OPTGROUP_NONE, /* optinfo_flags */
3426 TV_REG_STACK, /* tv_id */
3427 0, /* properties_required */
3428 0, /* properties_provided */
3429 0, /* properties_destroyed */
3430 0, /* todo_flags_start */
3431 TODO_df_finish, /* todo_flags_finish */
3434 class pass_stack_regs_run : public rtl_opt_pass
3436 public:
3437 pass_stack_regs_run (gcc::context *ctxt)
3438 : rtl_opt_pass (pass_data_stack_regs_run, ctxt)
3441 /* opt_pass methods: */
3442 virtual unsigned int execute (function *)
3444 return rest_of_handle_stack_regs ();
3447 }; // class pass_stack_regs_run
3449 } // anon namespace
3451 rtl_opt_pass *
3452 make_pass_stack_regs_run (gcc::context *ctxt)
3454 return new pass_stack_regs_run (ctxt);