Revert wrong checkin
[official-gcc.git] / gcc / var-tracking.c
blob5e7c2fc15dc3ba34e32301a2f4be9cc0eb40e0a6
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This file contains the variable tracking pass. It computes where
22 variables are located (which registers or where in memory) at each position
23 in instruction stream and emits notes describing the locations.
24 Debug information (DWARF2 location lists) is finally generated from
25 these notes.
26 With this debug information, it is possible to show variables
27 even when debugging optimized code.
29 How does the variable tracking pass work?
31 First, it scans RTL code for uses, stores and clobbers (register/memory
32 references in instructions), for call insns and for stack adjustments
33 separately for each basic block and saves them to an array of micro
34 operations.
35 The micro operations of one instruction are ordered so that
36 pre-modifying stack adjustment < use < use with no var < call insn <
37 < set < clobber < post-modifying stack adjustment
39 Then, a forward dataflow analysis is performed to find out how locations
40 of variables change through code and to propagate the variable locations
41 along control flow graph.
42 The IN set for basic block BB is computed as a union of OUT sets of BB's
43 predecessors, the OUT set for BB is copied from the IN set for BB and
44 is changed according to micro operations in BB.
46 The IN and OUT sets for basic blocks consist of a current stack adjustment
47 (used for adjusting offset of variables addressed using stack pointer),
48 the table of structures describing the locations of parts of a variable
49 and for each physical register a linked list for each physical register.
50 The linked list is a list of variable parts stored in the register,
51 i.e. it is a list of triplets (reg, decl, offset) where decl is
52 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
53 effective deleting appropriate variable parts when we set or clobber the
54 register.
56 There may be more than one variable part in a register. The linked lists
57 should be pretty short so it is a good data structure here.
58 For example in the following code, register allocator may assign same
59 register to variables A and B, and both of them are stored in the same
60 register in CODE:
62 if (cond)
63 set A;
64 else
65 set B;
66 CODE;
67 if (cond)
68 use A;
69 else
70 use B;
72 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
73 are emitted to appropriate positions in RTL code. Each such a note describes
74 the location of one variable at the point in instruction stream where the
75 note is. There is no need to emit a note for each variable before each
76 instruction, we only emit these notes where the location of variable changes
77 (this means that we also emit notes for changes between the OUT set of the
78 previous block and the IN set of the current block).
80 The notes consist of two parts:
81 1. the declaration (from REG_EXPR or MEM_EXPR)
82 2. the location of a variable - it is either a simple register/memory
83 reference (for simple variables, for example int),
84 or a parallel of register/memory references (for a large variables
85 which consist of several parts, for example long long).
89 #include "config.h"
90 #include "system.h"
91 #include "coretypes.h"
92 #include "tm.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "tm_p.h"
96 #include "hard-reg-set.h"
97 #include "basic-block.h"
98 #include "flags.h"
99 #include "output.h"
100 #include "insn-config.h"
101 #include "reload.h"
102 #include "sbitmap.h"
103 #include "alloc-pool.h"
104 #include "fibheap.h"
105 #include "hashtab.h"
106 #include "regs.h"
107 #include "expr.h"
108 #include "timevar.h"
109 #include "tree-pass.h"
110 #include "tree-flow.h"
111 #include "cselib.h"
112 #include "target.h"
113 #include "params.h"
114 #include "diagnostic.h"
115 #include "tree-pretty-print.h"
116 #include "pointer-set.h"
117 #include "recog.h"
118 #include "tm_p.h"
120 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
121 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
122 Currently the value is the same as IDENTIFIER_NODE, which has such
123 a property. If this compile time assertion ever fails, make sure that
124 the new tree code that equals (int) VALUE has the same property. */
125 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
127 /* Type of micro operation. */
128 enum micro_operation_type
130 MO_USE, /* Use location (REG or MEM). */
131 MO_USE_NO_VAR,/* Use location which is not associated with a variable
132 or the variable is not trackable. */
133 MO_VAL_USE, /* Use location which is associated with a value. */
134 MO_VAL_LOC, /* Use location which appears in a debug insn. */
135 MO_VAL_SET, /* Set location associated with a value. */
136 MO_SET, /* Set location. */
137 MO_COPY, /* Copy the same portion of a variable from one
138 location to another. */
139 MO_CLOBBER, /* Clobber location. */
140 MO_CALL, /* Call insn. */
141 MO_ADJUST /* Adjust stack pointer. */
145 static const char * const ATTRIBUTE_UNUSED
146 micro_operation_type_name[] = {
147 "MO_USE",
148 "MO_USE_NO_VAR",
149 "MO_VAL_USE",
150 "MO_VAL_LOC",
151 "MO_VAL_SET",
152 "MO_SET",
153 "MO_COPY",
154 "MO_CLOBBER",
155 "MO_CALL",
156 "MO_ADJUST"
159 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
160 Notes emitted as AFTER_CALL are to take effect during the call,
161 rather than after the call. */
162 enum emit_note_where
164 EMIT_NOTE_BEFORE_INSN,
165 EMIT_NOTE_AFTER_INSN,
166 EMIT_NOTE_AFTER_CALL_INSN
169 /* Structure holding information about micro operation. */
170 typedef struct micro_operation_def
172 /* Type of micro operation. */
173 enum micro_operation_type type;
175 /* The instruction which the micro operation is in, for MO_USE,
176 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
177 instruction or note in the original flow (before any var-tracking
178 notes are inserted, to simplify emission of notes), for MO_SET
179 and MO_CLOBBER. */
180 rtx insn;
182 union {
183 /* Location. For MO_SET and MO_COPY, this is the SET that
184 performs the assignment, if known, otherwise it is the target
185 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
186 CONCAT of the VALUE and the LOC associated with it. For
187 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
188 associated with it. */
189 rtx loc;
191 /* Stack adjustment. */
192 HOST_WIDE_INT adjust;
193 } u;
194 } micro_operation;
196 DEF_VEC_O(micro_operation);
197 DEF_VEC_ALLOC_O(micro_operation,heap);
199 /* A declaration of a variable, or an RTL value being handled like a
200 declaration. */
201 typedef void *decl_or_value;
203 /* Structure for passing some other parameters to function
204 emit_note_insn_var_location. */
205 typedef struct emit_note_data_def
207 /* The instruction which the note will be emitted before/after. */
208 rtx insn;
210 /* Where the note will be emitted (before/after insn)? */
211 enum emit_note_where where;
213 /* The variables and values active at this point. */
214 htab_t vars;
215 } emit_note_data;
217 /* Description of location of a part of a variable. The content of a physical
218 register is described by a chain of these structures.
219 The chains are pretty short (usually 1 or 2 elements) and thus
220 chain is the best data structure. */
221 typedef struct attrs_def
223 /* Pointer to next member of the list. */
224 struct attrs_def *next;
226 /* The rtx of register. */
227 rtx loc;
229 /* The declaration corresponding to LOC. */
230 decl_or_value dv;
232 /* Offset from start of DECL. */
233 HOST_WIDE_INT offset;
234 } *attrs;
236 /* Structure holding a refcounted hash table. If refcount > 1,
237 it must be first unshared before modified. */
238 typedef struct shared_hash_def
240 /* Reference count. */
241 int refcount;
243 /* Actual hash table. */
244 htab_t htab;
245 } *shared_hash;
247 /* Structure holding the IN or OUT set for a basic block. */
248 typedef struct dataflow_set_def
250 /* Adjustment of stack offset. */
251 HOST_WIDE_INT stack_adjust;
253 /* Attributes for registers (lists of attrs). */
254 attrs regs[FIRST_PSEUDO_REGISTER];
256 /* Variable locations. */
257 shared_hash vars;
259 /* Vars that is being traversed. */
260 shared_hash traversed_vars;
261 } dataflow_set;
263 /* The structure (one for each basic block) containing the information
264 needed for variable tracking. */
265 typedef struct variable_tracking_info_def
267 /* The vector of micro operations. */
268 VEC(micro_operation, heap) *mos;
270 /* The IN and OUT set for dataflow analysis. */
271 dataflow_set in;
272 dataflow_set out;
274 /* The permanent-in dataflow set for this block. This is used to
275 hold values for which we had to compute entry values. ??? This
276 should probably be dynamically allocated, to avoid using more
277 memory in non-debug builds. */
278 dataflow_set *permp;
280 /* Has the block been visited in DFS? */
281 bool visited;
283 /* Has the block been flooded in VTA? */
284 bool flooded;
286 } *variable_tracking_info;
288 /* Structure for chaining the locations. */
289 typedef struct location_chain_def
291 /* Next element in the chain. */
292 struct location_chain_def *next;
294 /* The location (REG, MEM or VALUE). */
295 rtx loc;
297 /* The "value" stored in this location. */
298 rtx set_src;
300 /* Initialized? */
301 enum var_init_status init;
302 } *location_chain;
304 /* Structure describing one part of variable. */
305 typedef struct variable_part_def
307 /* Chain of locations of the part. */
308 location_chain loc_chain;
310 /* Location which was last emitted to location list. */
311 rtx cur_loc;
313 /* The offset in the variable. */
314 HOST_WIDE_INT offset;
315 } variable_part;
317 /* Maximum number of location parts. */
318 #define MAX_VAR_PARTS 16
320 /* Structure describing where the variable is located. */
321 typedef struct variable_def
323 /* The declaration of the variable, or an RTL value being handled
324 like a declaration. */
325 decl_or_value dv;
327 /* Reference count. */
328 int refcount;
330 /* Number of variable parts. */
331 char n_var_parts;
333 /* True if this variable changed (any of its) cur_loc fields
334 during the current emit_notes_for_changes resp.
335 emit_notes_for_differences call. */
336 bool cur_loc_changed;
338 /* True if this variable_def struct is currently in the
339 changed_variables hash table. */
340 bool in_changed_variables;
342 /* The variable parts. */
343 variable_part var_part[1];
344 } *variable;
345 typedef const struct variable_def *const_variable;
347 /* Structure for chaining backlinks from referenced VALUEs to
348 DVs that are referencing them. */
349 typedef struct value_chain_def
351 /* Next value_chain entry. */
352 struct value_chain_def *next;
354 /* The declaration of the variable, or an RTL value
355 being handled like a declaration, whose var_parts[0].loc_chain
356 references the VALUE owning this value_chain. */
357 decl_or_value dv;
359 /* Reference count. */
360 int refcount;
361 } *value_chain;
362 typedef const struct value_chain_def *const_value_chain;
364 /* Pointer to the BB's information specific to variable tracking pass. */
365 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
367 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
368 #define INT_MEM_OFFSET(mem) (MEM_OFFSET (mem) ? INTVAL (MEM_OFFSET (mem)) : 0)
370 /* Alloc pool for struct attrs_def. */
371 static alloc_pool attrs_pool;
373 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
374 static alloc_pool var_pool;
376 /* Alloc pool for struct variable_def with a single var_part entry. */
377 static alloc_pool valvar_pool;
379 /* Alloc pool for struct location_chain_def. */
380 static alloc_pool loc_chain_pool;
382 /* Alloc pool for struct shared_hash_def. */
383 static alloc_pool shared_hash_pool;
385 /* Alloc pool for struct value_chain_def. */
386 static alloc_pool value_chain_pool;
388 /* Changed variables, notes will be emitted for them. */
389 static htab_t changed_variables;
391 /* Links from VALUEs to DVs referencing them in their current loc_chains. */
392 static htab_t value_chains;
394 /* Shall notes be emitted? */
395 static bool emit_notes;
397 /* Empty shared hashtable. */
398 static shared_hash empty_shared_hash;
400 /* Scratch register bitmap used by cselib_expand_value_rtx. */
401 static bitmap scratch_regs = NULL;
403 /* Variable used to tell whether cselib_process_insn called our hook. */
404 static bool cselib_hook_called;
406 /* Local function prototypes. */
407 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
408 HOST_WIDE_INT *);
409 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
410 HOST_WIDE_INT *);
411 static bool vt_stack_adjustments (void);
412 static void note_register_arguments (rtx);
413 static hashval_t variable_htab_hash (const void *);
414 static int variable_htab_eq (const void *, const void *);
415 static void variable_htab_free (void *);
417 static void init_attrs_list_set (attrs *);
418 static void attrs_list_clear (attrs *);
419 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
420 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
421 static void attrs_list_copy (attrs *, attrs);
422 static void attrs_list_union (attrs *, attrs);
424 static void **unshare_variable (dataflow_set *set, void **slot, variable var,
425 enum var_init_status);
426 static void vars_copy (htab_t, htab_t);
427 static tree var_debug_decl (tree);
428 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
429 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
430 enum var_init_status, rtx);
431 static void var_reg_delete (dataflow_set *, rtx, bool);
432 static void var_regno_delete (dataflow_set *, int);
433 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
434 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
435 enum var_init_status, rtx);
436 static void var_mem_delete (dataflow_set *, rtx, bool);
438 static void dataflow_set_init (dataflow_set *);
439 static void dataflow_set_clear (dataflow_set *);
440 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
441 static int variable_union_info_cmp_pos (const void *, const void *);
442 static void dataflow_set_union (dataflow_set *, dataflow_set *);
443 static location_chain find_loc_in_1pdv (rtx, variable, htab_t);
444 static bool canon_value_cmp (rtx, rtx);
445 static int loc_cmp (rtx, rtx);
446 static bool variable_part_different_p (variable_part *, variable_part *);
447 static bool onepart_variable_different_p (variable, variable);
448 static bool variable_different_p (variable, variable);
449 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
450 static void dataflow_set_destroy (dataflow_set *);
452 static bool contains_symbol_ref (rtx);
453 static bool track_expr_p (tree, bool);
454 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
455 static int add_uses (rtx *, void *);
456 static void add_uses_1 (rtx *, void *);
457 static void add_stores (rtx, const_rtx, void *);
458 static bool compute_bb_dataflow (basic_block);
459 static bool vt_find_locations (void);
461 static void dump_attrs_list (attrs);
462 static int dump_var_slot (void **, void *);
463 static void dump_var (variable);
464 static void dump_vars (htab_t);
465 static void dump_dataflow_set (dataflow_set *);
466 static void dump_dataflow_sets (void);
468 static void variable_was_changed (variable, dataflow_set *);
469 static void **set_slot_part (dataflow_set *, rtx, void **,
470 decl_or_value, HOST_WIDE_INT,
471 enum var_init_status, rtx);
472 static void set_variable_part (dataflow_set *, rtx,
473 decl_or_value, HOST_WIDE_INT,
474 enum var_init_status, rtx, enum insert_option);
475 static void **clobber_slot_part (dataflow_set *, rtx,
476 void **, HOST_WIDE_INT, rtx);
477 static void clobber_variable_part (dataflow_set *, rtx,
478 decl_or_value, HOST_WIDE_INT, rtx);
479 static void **delete_slot_part (dataflow_set *, rtx, void **, HOST_WIDE_INT);
480 static void delete_variable_part (dataflow_set *, rtx,
481 decl_or_value, HOST_WIDE_INT);
482 static int emit_note_insn_var_location (void **, void *);
483 static void emit_notes_for_changes (rtx, enum emit_note_where, shared_hash);
484 static int emit_notes_for_differences_1 (void **, void *);
485 static int emit_notes_for_differences_2 (void **, void *);
486 static void emit_notes_for_differences (rtx, dataflow_set *, dataflow_set *);
487 static void emit_notes_in_bb (basic_block, dataflow_set *);
488 static void vt_emit_notes (void);
490 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
491 static void vt_add_function_parameters (void);
492 static bool vt_initialize (void);
493 static void vt_finalize (void);
495 /* Given a SET, calculate the amount of stack adjustment it contains
496 PRE- and POST-modifying stack pointer.
497 This function is similar to stack_adjust_offset. */
499 static void
500 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
501 HOST_WIDE_INT *post)
503 rtx src = SET_SRC (pattern);
504 rtx dest = SET_DEST (pattern);
505 enum rtx_code code;
507 if (dest == stack_pointer_rtx)
509 /* (set (reg sp) (plus (reg sp) (const_int))) */
510 code = GET_CODE (src);
511 if (! (code == PLUS || code == MINUS)
512 || XEXP (src, 0) != stack_pointer_rtx
513 || !CONST_INT_P (XEXP (src, 1)))
514 return;
516 if (code == MINUS)
517 *post += INTVAL (XEXP (src, 1));
518 else
519 *post -= INTVAL (XEXP (src, 1));
521 else if (MEM_P (dest))
523 /* (set (mem (pre_dec (reg sp))) (foo)) */
524 src = XEXP (dest, 0);
525 code = GET_CODE (src);
527 switch (code)
529 case PRE_MODIFY:
530 case POST_MODIFY:
531 if (XEXP (src, 0) == stack_pointer_rtx)
533 rtx val = XEXP (XEXP (src, 1), 1);
534 /* We handle only adjustments by constant amount. */
535 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS &&
536 CONST_INT_P (val));
538 if (code == PRE_MODIFY)
539 *pre -= INTVAL (val);
540 else
541 *post -= INTVAL (val);
542 break;
544 return;
546 case PRE_DEC:
547 if (XEXP (src, 0) == stack_pointer_rtx)
549 *pre += GET_MODE_SIZE (GET_MODE (dest));
550 break;
552 return;
554 case POST_DEC:
555 if (XEXP (src, 0) == stack_pointer_rtx)
557 *post += GET_MODE_SIZE (GET_MODE (dest));
558 break;
560 return;
562 case PRE_INC:
563 if (XEXP (src, 0) == stack_pointer_rtx)
565 *pre -= GET_MODE_SIZE (GET_MODE (dest));
566 break;
568 return;
570 case POST_INC:
571 if (XEXP (src, 0) == stack_pointer_rtx)
573 *post -= GET_MODE_SIZE (GET_MODE (dest));
574 break;
576 return;
578 default:
579 return;
584 /* Given an INSN, calculate the amount of stack adjustment it contains
585 PRE- and POST-modifying stack pointer. */
587 static void
588 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
589 HOST_WIDE_INT *post)
591 rtx pattern;
593 *pre = 0;
594 *post = 0;
596 pattern = PATTERN (insn);
597 if (RTX_FRAME_RELATED_P (insn))
599 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
600 if (expr)
601 pattern = XEXP (expr, 0);
604 if (GET_CODE (pattern) == SET)
605 stack_adjust_offset_pre_post (pattern, pre, post);
606 else if (GET_CODE (pattern) == PARALLEL
607 || GET_CODE (pattern) == SEQUENCE)
609 int i;
611 /* There may be stack adjustments inside compound insns. Search
612 for them. */
613 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
614 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
615 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
619 /* Compute stack adjustments for all blocks by traversing DFS tree.
620 Return true when the adjustments on all incoming edges are consistent.
621 Heavily borrowed from pre_and_rev_post_order_compute. */
623 static bool
624 vt_stack_adjustments (void)
626 edge_iterator *stack;
627 int sp;
629 /* Initialize entry block. */
630 VTI (ENTRY_BLOCK_PTR)->visited = true;
631 VTI (ENTRY_BLOCK_PTR)->in.stack_adjust = INCOMING_FRAME_SP_OFFSET;
632 VTI (ENTRY_BLOCK_PTR)->out.stack_adjust = INCOMING_FRAME_SP_OFFSET;
634 /* Allocate stack for back-tracking up CFG. */
635 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
636 sp = 0;
638 /* Push the first edge on to the stack. */
639 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
641 while (sp)
643 edge_iterator ei;
644 basic_block src;
645 basic_block dest;
647 /* Look at the edge on the top of the stack. */
648 ei = stack[sp - 1];
649 src = ei_edge (ei)->src;
650 dest = ei_edge (ei)->dest;
652 /* Check if the edge destination has been visited yet. */
653 if (!VTI (dest)->visited)
655 rtx insn;
656 HOST_WIDE_INT pre, post, offset;
657 VTI (dest)->visited = true;
658 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
660 if (dest != EXIT_BLOCK_PTR)
661 for (insn = BB_HEAD (dest);
662 insn != NEXT_INSN (BB_END (dest));
663 insn = NEXT_INSN (insn))
665 if (INSN_P (insn))
667 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
668 offset += pre + post;
670 if (CALL_P (insn))
671 note_register_arguments (insn);
674 VTI (dest)->out.stack_adjust = offset;
676 if (EDGE_COUNT (dest->succs) > 0)
677 /* Since the DEST node has been visited for the first
678 time, check its successors. */
679 stack[sp++] = ei_start (dest->succs);
681 else
683 /* Check whether the adjustments on the edges are the same. */
684 if (VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
686 free (stack);
687 return false;
690 if (! ei_one_before_end_p (ei))
691 /* Go to the next edge. */
692 ei_next (&stack[sp - 1]);
693 else
694 /* Return to previous level if there are no more edges. */
695 sp--;
699 free (stack);
700 return true;
703 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
704 hard_frame_pointer_rtx is being mapped to it and offset for it. */
705 static rtx cfa_base_rtx;
706 static HOST_WIDE_INT cfa_base_offset;
708 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
709 or hard_frame_pointer_rtx. */
711 static inline rtx
712 compute_cfa_pointer (HOST_WIDE_INT adjustment)
714 return plus_constant (cfa_base_rtx, adjustment + cfa_base_offset);
717 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
718 or -1 if the replacement shouldn't be done. */
719 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
721 /* Data for adjust_mems callback. */
723 struct adjust_mem_data
725 bool store;
726 enum machine_mode mem_mode;
727 HOST_WIDE_INT stack_adjust;
728 rtx side_effects;
731 /* Helper for adjust_mems. Return 1 if *loc is unsuitable for
732 transformation of wider mode arithmetics to narrower mode,
733 -1 if it is suitable and subexpressions shouldn't be
734 traversed and 0 if it is suitable and subexpressions should
735 be traversed. Called through for_each_rtx. */
737 static int
738 use_narrower_mode_test (rtx *loc, void *data)
740 rtx subreg = (rtx) data;
742 if (CONSTANT_P (*loc))
743 return -1;
744 switch (GET_CODE (*loc))
746 case REG:
747 if (cselib_lookup (*loc, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
748 return 1;
749 if (!validate_subreg (GET_MODE (subreg), GET_MODE (*loc),
750 *loc, subreg_lowpart_offset (GET_MODE (subreg),
751 GET_MODE (*loc))))
752 return 1;
753 return -1;
754 case PLUS:
755 case MINUS:
756 case MULT:
757 return 0;
758 case ASHIFT:
759 if (for_each_rtx (&XEXP (*loc, 0), use_narrower_mode_test, data))
760 return 1;
761 else
762 return -1;
763 default:
764 return 1;
768 /* Transform X into narrower mode MODE from wider mode WMODE. */
770 static rtx
771 use_narrower_mode (rtx x, enum machine_mode mode, enum machine_mode wmode)
773 rtx op0, op1;
774 if (CONSTANT_P (x))
775 return lowpart_subreg (mode, x, wmode);
776 switch (GET_CODE (x))
778 case REG:
779 return lowpart_subreg (mode, x, wmode);
780 case PLUS:
781 case MINUS:
782 case MULT:
783 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
784 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
785 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
786 case ASHIFT:
787 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
788 return simplify_gen_binary (ASHIFT, mode, op0, XEXP (x, 1));
789 default:
790 gcc_unreachable ();
794 /* Helper function for adjusting used MEMs. */
796 static rtx
797 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
799 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
800 rtx mem, addr = loc, tem;
801 enum machine_mode mem_mode_save;
802 bool store_save;
803 switch (GET_CODE (loc))
805 case REG:
806 /* Don't do any sp or fp replacements outside of MEM addresses
807 on the LHS. */
808 if (amd->mem_mode == VOIDmode && amd->store)
809 return loc;
810 if (loc == stack_pointer_rtx
811 && !frame_pointer_needed
812 && cfa_base_rtx)
813 return compute_cfa_pointer (amd->stack_adjust);
814 else if (loc == hard_frame_pointer_rtx
815 && frame_pointer_needed
816 && hard_frame_pointer_adjustment != -1
817 && cfa_base_rtx)
818 return compute_cfa_pointer (hard_frame_pointer_adjustment);
819 gcc_checking_assert (loc != virtual_incoming_args_rtx);
820 return loc;
821 case MEM:
822 mem = loc;
823 if (!amd->store)
825 mem = targetm.delegitimize_address (mem);
826 if (mem != loc && !MEM_P (mem))
827 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
830 addr = XEXP (mem, 0);
831 mem_mode_save = amd->mem_mode;
832 amd->mem_mode = GET_MODE (mem);
833 store_save = amd->store;
834 amd->store = false;
835 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
836 amd->store = store_save;
837 amd->mem_mode = mem_mode_save;
838 if (mem == loc)
839 addr = targetm.delegitimize_address (addr);
840 if (addr != XEXP (mem, 0))
841 mem = replace_equiv_address_nv (mem, addr);
842 if (!amd->store)
843 mem = avoid_constant_pool_reference (mem);
844 return mem;
845 case PRE_INC:
846 case PRE_DEC:
847 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
848 GEN_INT (GET_CODE (loc) == PRE_INC
849 ? GET_MODE_SIZE (amd->mem_mode)
850 : -GET_MODE_SIZE (amd->mem_mode)));
851 case POST_INC:
852 case POST_DEC:
853 if (addr == loc)
854 addr = XEXP (loc, 0);
855 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
856 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
857 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
858 GEN_INT ((GET_CODE (loc) == PRE_INC
859 || GET_CODE (loc) == POST_INC)
860 ? GET_MODE_SIZE (amd->mem_mode)
861 : -GET_MODE_SIZE (amd->mem_mode)));
862 amd->side_effects = alloc_EXPR_LIST (0,
863 gen_rtx_SET (VOIDmode,
864 XEXP (loc, 0),
865 tem),
866 amd->side_effects);
867 return addr;
868 case PRE_MODIFY:
869 addr = XEXP (loc, 1);
870 case POST_MODIFY:
871 if (addr == loc)
872 addr = XEXP (loc, 0);
873 gcc_assert (amd->mem_mode != VOIDmode);
874 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
875 amd->side_effects = alloc_EXPR_LIST (0,
876 gen_rtx_SET (VOIDmode,
877 XEXP (loc, 0),
878 XEXP (loc, 1)),
879 amd->side_effects);
880 return addr;
881 case SUBREG:
882 /* First try without delegitimization of whole MEMs and
883 avoid_constant_pool_reference, which is more likely to succeed. */
884 store_save = amd->store;
885 amd->store = true;
886 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
887 data);
888 amd->store = store_save;
889 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
890 if (mem == SUBREG_REG (loc))
892 tem = loc;
893 goto finish_subreg;
895 tem = simplify_gen_subreg (GET_MODE (loc), mem,
896 GET_MODE (SUBREG_REG (loc)),
897 SUBREG_BYTE (loc));
898 if (tem)
899 goto finish_subreg;
900 tem = simplify_gen_subreg (GET_MODE (loc), addr,
901 GET_MODE (SUBREG_REG (loc)),
902 SUBREG_BYTE (loc));
903 if (tem == NULL_RTX)
904 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
905 finish_subreg:
906 if (MAY_HAVE_DEBUG_INSNS
907 && GET_CODE (tem) == SUBREG
908 && (GET_CODE (SUBREG_REG (tem)) == PLUS
909 || GET_CODE (SUBREG_REG (tem)) == MINUS
910 || GET_CODE (SUBREG_REG (tem)) == MULT
911 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
912 && GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
913 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
914 && GET_MODE_SIZE (GET_MODE (tem))
915 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tem)))
916 && subreg_lowpart_p (tem)
917 && !for_each_rtx (&SUBREG_REG (tem), use_narrower_mode_test, tem))
918 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
919 GET_MODE (SUBREG_REG (tem)));
920 return tem;
921 case ASM_OPERANDS:
922 /* Don't do any replacements in second and following
923 ASM_OPERANDS of inline-asm with multiple sets.
924 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
925 and ASM_OPERANDS_LABEL_VEC need to be equal between
926 all the ASM_OPERANDs in the insn and adjust_insn will
927 fix this up. */
928 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
929 return loc;
930 break;
931 default:
932 break;
934 return NULL_RTX;
937 /* Helper function for replacement of uses. */
939 static void
940 adjust_mem_uses (rtx *x, void *data)
942 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
943 if (new_x != *x)
944 validate_change (NULL_RTX, x, new_x, true);
947 /* Helper function for replacement of stores. */
949 static void
950 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
952 if (MEM_P (loc))
954 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
955 adjust_mems, data);
956 if (new_dest != SET_DEST (expr))
958 rtx xexpr = CONST_CAST_RTX (expr);
959 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
964 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
965 replace them with their value in the insn and add the side-effects
966 as other sets to the insn. */
968 static void
969 adjust_insn (basic_block bb, rtx insn)
971 struct adjust_mem_data amd;
972 rtx set;
973 amd.mem_mode = VOIDmode;
974 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
975 amd.side_effects = NULL_RTX;
977 amd.store = true;
978 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
980 amd.store = false;
981 if (GET_CODE (PATTERN (insn)) == PARALLEL
982 && asm_noperands (PATTERN (insn)) > 0
983 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
985 rtx body, set0;
986 int i;
988 /* inline-asm with multiple sets is tiny bit more complicated,
989 because the 3 vectors in ASM_OPERANDS need to be shared between
990 all ASM_OPERANDS in the instruction. adjust_mems will
991 not touch ASM_OPERANDS other than the first one, asm_noperands
992 test above needs to be called before that (otherwise it would fail)
993 and afterwards this code fixes it up. */
994 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
995 body = PATTERN (insn);
996 set0 = XVECEXP (body, 0, 0);
997 gcc_checking_assert (GET_CODE (set0) == SET
998 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
999 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1000 for (i = 1; i < XVECLEN (body, 0); i++)
1001 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1002 break;
1003 else
1005 set = XVECEXP (body, 0, i);
1006 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1007 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1008 == i);
1009 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1010 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1011 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1012 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1013 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1014 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1016 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1017 ASM_OPERANDS_INPUT_VEC (newsrc)
1018 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1019 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1020 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1021 ASM_OPERANDS_LABEL_VEC (newsrc)
1022 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1023 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1027 else
1028 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1030 /* For read-only MEMs containing some constant, prefer those
1031 constants. */
1032 set = single_set (insn);
1033 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1035 rtx note = find_reg_equal_equiv_note (insn);
1037 if (note && CONSTANT_P (XEXP (note, 0)))
1038 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1041 if (amd.side_effects)
1043 rtx *pat, new_pat, s;
1044 int i, oldn, newn;
1046 pat = &PATTERN (insn);
1047 if (GET_CODE (*pat) == COND_EXEC)
1048 pat = &COND_EXEC_CODE (*pat);
1049 if (GET_CODE (*pat) == PARALLEL)
1050 oldn = XVECLEN (*pat, 0);
1051 else
1052 oldn = 1;
1053 for (s = amd.side_effects, newn = 0; s; newn++)
1054 s = XEXP (s, 1);
1055 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1056 if (GET_CODE (*pat) == PARALLEL)
1057 for (i = 0; i < oldn; i++)
1058 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1059 else
1060 XVECEXP (new_pat, 0, 0) = *pat;
1061 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1062 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1063 free_EXPR_LIST_list (&amd.side_effects);
1064 validate_change (NULL_RTX, pat, new_pat, true);
1068 /* Return true if a decl_or_value DV is a DECL or NULL. */
1069 static inline bool
1070 dv_is_decl_p (decl_or_value dv)
1072 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
1075 /* Return true if a decl_or_value is a VALUE rtl. */
1076 static inline bool
1077 dv_is_value_p (decl_or_value dv)
1079 return dv && !dv_is_decl_p (dv);
1082 /* Return the decl in the decl_or_value. */
1083 static inline tree
1084 dv_as_decl (decl_or_value dv)
1086 gcc_checking_assert (dv_is_decl_p (dv));
1087 return (tree) dv;
1090 /* Return the value in the decl_or_value. */
1091 static inline rtx
1092 dv_as_value (decl_or_value dv)
1094 gcc_checking_assert (dv_is_value_p (dv));
1095 return (rtx)dv;
1098 /* Return the opaque pointer in the decl_or_value. */
1099 static inline void *
1100 dv_as_opaque (decl_or_value dv)
1102 return dv;
1105 /* Return true if a decl_or_value must not have more than one variable
1106 part. */
1107 static inline bool
1108 dv_onepart_p (decl_or_value dv)
1110 tree decl;
1112 if (!MAY_HAVE_DEBUG_INSNS)
1113 return false;
1115 if (dv_is_value_p (dv))
1116 return true;
1118 decl = dv_as_decl (dv);
1120 if (!decl)
1121 return true;
1123 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1124 return true;
1126 return (target_for_debug_bind (decl) != NULL_TREE);
1129 /* Return the variable pool to be used for dv, depending on whether it
1130 can have multiple parts or not. */
1131 static inline alloc_pool
1132 dv_pool (decl_or_value dv)
1134 return dv_onepart_p (dv) ? valvar_pool : var_pool;
1137 /* Build a decl_or_value out of a decl. */
1138 static inline decl_or_value
1139 dv_from_decl (tree decl)
1141 decl_or_value dv;
1142 dv = decl;
1143 gcc_checking_assert (dv_is_decl_p (dv));
1144 return dv;
1147 /* Build a decl_or_value out of a value. */
1148 static inline decl_or_value
1149 dv_from_value (rtx value)
1151 decl_or_value dv;
1152 dv = value;
1153 gcc_checking_assert (dv_is_value_p (dv));
1154 return dv;
1157 extern void debug_dv (decl_or_value dv);
1159 DEBUG_FUNCTION void
1160 debug_dv (decl_or_value dv)
1162 if (dv_is_value_p (dv))
1163 debug_rtx (dv_as_value (dv));
1164 else
1165 debug_generic_stmt (dv_as_decl (dv));
1168 typedef unsigned int dvuid;
1170 /* Return the uid of DV. */
1172 static inline dvuid
1173 dv_uid (decl_or_value dv)
1175 if (dv_is_value_p (dv))
1176 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
1177 else
1178 return DECL_UID (dv_as_decl (dv));
1181 /* Compute the hash from the uid. */
1183 static inline hashval_t
1184 dv_uid2hash (dvuid uid)
1186 return uid;
1189 /* The hash function for a mask table in a shared_htab chain. */
1191 static inline hashval_t
1192 dv_htab_hash (decl_or_value dv)
1194 return dv_uid2hash (dv_uid (dv));
1197 /* The hash function for variable_htab, computes the hash value
1198 from the declaration of variable X. */
1200 static hashval_t
1201 variable_htab_hash (const void *x)
1203 const_variable const v = (const_variable) x;
1205 return dv_htab_hash (v->dv);
1208 /* Compare the declaration of variable X with declaration Y. */
1210 static int
1211 variable_htab_eq (const void *x, const void *y)
1213 const_variable const v = (const_variable) x;
1214 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
1216 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
1219 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1221 static void
1222 variable_htab_free (void *elem)
1224 int i;
1225 variable var = (variable) elem;
1226 location_chain node, next;
1228 gcc_checking_assert (var->refcount > 0);
1230 var->refcount--;
1231 if (var->refcount > 0)
1232 return;
1234 for (i = 0; i < var->n_var_parts; i++)
1236 for (node = var->var_part[i].loc_chain; node; node = next)
1238 next = node->next;
1239 pool_free (loc_chain_pool, node);
1241 var->var_part[i].loc_chain = NULL;
1243 pool_free (dv_pool (var->dv), var);
1246 /* The hash function for value_chains htab, computes the hash value
1247 from the VALUE. */
1249 static hashval_t
1250 value_chain_htab_hash (const void *x)
1252 const_value_chain const v = (const_value_chain) x;
1254 return dv_htab_hash (v->dv);
1257 /* Compare the VALUE X with VALUE Y. */
1259 static int
1260 value_chain_htab_eq (const void *x, const void *y)
1262 const_value_chain const v = (const_value_chain) x;
1263 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
1265 return dv_as_opaque (v->dv) == dv_as_opaque (dv);
1268 /* Initialize the set (array) SET of attrs to empty lists. */
1270 static void
1271 init_attrs_list_set (attrs *set)
1273 int i;
1275 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1276 set[i] = NULL;
1279 /* Make the list *LISTP empty. */
1281 static void
1282 attrs_list_clear (attrs *listp)
1284 attrs list, next;
1286 for (list = *listp; list; list = next)
1288 next = list->next;
1289 pool_free (attrs_pool, list);
1291 *listp = NULL;
1294 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1296 static attrs
1297 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1299 for (; list; list = list->next)
1300 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1301 return list;
1302 return NULL;
1305 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1307 static void
1308 attrs_list_insert (attrs *listp, decl_or_value dv,
1309 HOST_WIDE_INT offset, rtx loc)
1311 attrs list;
1313 list = (attrs) pool_alloc (attrs_pool);
1314 list->loc = loc;
1315 list->dv = dv;
1316 list->offset = offset;
1317 list->next = *listp;
1318 *listp = list;
1321 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1323 static void
1324 attrs_list_copy (attrs *dstp, attrs src)
1326 attrs n;
1328 attrs_list_clear (dstp);
1329 for (; src; src = src->next)
1331 n = (attrs) pool_alloc (attrs_pool);
1332 n->loc = src->loc;
1333 n->dv = src->dv;
1334 n->offset = src->offset;
1335 n->next = *dstp;
1336 *dstp = n;
1340 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1342 static void
1343 attrs_list_union (attrs *dstp, attrs src)
1345 for (; src; src = src->next)
1347 if (!attrs_list_member (*dstp, src->dv, src->offset))
1348 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1352 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1353 *DSTP. */
1355 static void
1356 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1358 gcc_assert (!*dstp);
1359 for (; src; src = src->next)
1361 if (!dv_onepart_p (src->dv))
1362 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1364 for (src = src2; src; src = src->next)
1366 if (!dv_onepart_p (src->dv)
1367 && !attrs_list_member (*dstp, src->dv, src->offset))
1368 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1372 /* Shared hashtable support. */
1374 /* Return true if VARS is shared. */
1376 static inline bool
1377 shared_hash_shared (shared_hash vars)
1379 return vars->refcount > 1;
1382 /* Return the hash table for VARS. */
1384 static inline htab_t
1385 shared_hash_htab (shared_hash vars)
1387 return vars->htab;
1390 /* Return true if VAR is shared, or maybe because VARS is shared. */
1392 static inline bool
1393 shared_var_p (variable var, shared_hash vars)
1395 /* Don't count an entry in the changed_variables table as a duplicate. */
1396 return ((var->refcount > 1 + (int) var->in_changed_variables)
1397 || shared_hash_shared (vars));
1400 /* Copy variables into a new hash table. */
1402 static shared_hash
1403 shared_hash_unshare (shared_hash vars)
1405 shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
1406 gcc_assert (vars->refcount > 1);
1407 new_vars->refcount = 1;
1408 new_vars->htab
1409 = htab_create (htab_elements (vars->htab) + 3, variable_htab_hash,
1410 variable_htab_eq, variable_htab_free);
1411 vars_copy (new_vars->htab, vars->htab);
1412 vars->refcount--;
1413 return new_vars;
1416 /* Increment reference counter on VARS and return it. */
1418 static inline shared_hash
1419 shared_hash_copy (shared_hash vars)
1421 vars->refcount++;
1422 return vars;
1425 /* Decrement reference counter and destroy hash table if not shared
1426 anymore. */
1428 static void
1429 shared_hash_destroy (shared_hash vars)
1431 gcc_checking_assert (vars->refcount > 0);
1432 if (--vars->refcount == 0)
1434 htab_delete (vars->htab);
1435 pool_free (shared_hash_pool, vars);
1439 /* Unshare *PVARS if shared and return slot for DV. If INS is
1440 INSERT, insert it if not already present. */
1442 static inline void **
1443 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1444 hashval_t dvhash, enum insert_option ins)
1446 if (shared_hash_shared (*pvars))
1447 *pvars = shared_hash_unshare (*pvars);
1448 return htab_find_slot_with_hash (shared_hash_htab (*pvars), dv, dvhash, ins);
1451 static inline void **
1452 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1453 enum insert_option ins)
1455 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1458 /* Return slot for DV, if it is already present in the hash table.
1459 If it is not present, insert it only VARS is not shared, otherwise
1460 return NULL. */
1462 static inline void **
1463 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1465 return htab_find_slot_with_hash (shared_hash_htab (vars), dv, dvhash,
1466 shared_hash_shared (vars)
1467 ? NO_INSERT : INSERT);
1470 static inline void **
1471 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1473 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1476 /* Return slot for DV only if it is already present in the hash table. */
1478 static inline void **
1479 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1480 hashval_t dvhash)
1482 return htab_find_slot_with_hash (shared_hash_htab (vars), dv, dvhash,
1483 NO_INSERT);
1486 static inline void **
1487 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1489 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1492 /* Return variable for DV or NULL if not already present in the hash
1493 table. */
1495 static inline variable
1496 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1498 return (variable) htab_find_with_hash (shared_hash_htab (vars), dv, dvhash);
1501 static inline variable
1502 shared_hash_find (shared_hash vars, decl_or_value dv)
1504 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1507 /* Return true if TVAL is better than CVAL as a canonival value. We
1508 choose lowest-numbered VALUEs, using the RTX address as a
1509 tie-breaker. The idea is to arrange them into a star topology,
1510 such that all of them are at most one step away from the canonical
1511 value, and the canonical value has backlinks to all of them, in
1512 addition to all the actual locations. We don't enforce this
1513 topology throughout the entire dataflow analysis, though.
1516 static inline bool
1517 canon_value_cmp (rtx tval, rtx cval)
1519 return !cval
1520 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1523 static bool dst_can_be_shared;
1525 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1527 static void **
1528 unshare_variable (dataflow_set *set, void **slot, variable var,
1529 enum var_init_status initialized)
1531 variable new_var;
1532 int i;
1534 new_var = (variable) pool_alloc (dv_pool (var->dv));
1535 new_var->dv = var->dv;
1536 new_var->refcount = 1;
1537 var->refcount--;
1538 new_var->n_var_parts = var->n_var_parts;
1539 new_var->cur_loc_changed = var->cur_loc_changed;
1540 var->cur_loc_changed = false;
1541 new_var->in_changed_variables = false;
1543 if (! flag_var_tracking_uninit)
1544 initialized = VAR_INIT_STATUS_INITIALIZED;
1546 for (i = 0; i < var->n_var_parts; i++)
1548 location_chain node;
1549 location_chain *nextp;
1551 new_var->var_part[i].offset = var->var_part[i].offset;
1552 nextp = &new_var->var_part[i].loc_chain;
1553 for (node = var->var_part[i].loc_chain; node; node = node->next)
1555 location_chain new_lc;
1557 new_lc = (location_chain) pool_alloc (loc_chain_pool);
1558 new_lc->next = NULL;
1559 if (node->init > initialized)
1560 new_lc->init = node->init;
1561 else
1562 new_lc->init = initialized;
1563 if (node->set_src && !(MEM_P (node->set_src)))
1564 new_lc->set_src = node->set_src;
1565 else
1566 new_lc->set_src = NULL;
1567 new_lc->loc = node->loc;
1569 *nextp = new_lc;
1570 nextp = &new_lc->next;
1573 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1576 dst_can_be_shared = false;
1577 if (shared_hash_shared (set->vars))
1578 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1579 else if (set->traversed_vars && set->vars != set->traversed_vars)
1580 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1581 *slot = new_var;
1582 if (var->in_changed_variables)
1584 void **cslot
1585 = htab_find_slot_with_hash (changed_variables, var->dv,
1586 dv_htab_hash (var->dv), NO_INSERT);
1587 gcc_assert (*cslot == (void *) var);
1588 var->in_changed_variables = false;
1589 variable_htab_free (var);
1590 *cslot = new_var;
1591 new_var->in_changed_variables = true;
1593 return slot;
1596 /* Copy all variables from hash table SRC to hash table DST. */
1598 static void
1599 vars_copy (htab_t dst, htab_t src)
1601 htab_iterator hi;
1602 variable var;
1604 FOR_EACH_HTAB_ELEMENT (src, var, variable, hi)
1606 void **dstp;
1607 var->refcount++;
1608 dstp = htab_find_slot_with_hash (dst, var->dv,
1609 dv_htab_hash (var->dv),
1610 INSERT);
1611 *dstp = var;
1615 /* Map a decl to its main debug decl. */
1617 static inline tree
1618 var_debug_decl (tree decl)
1620 if (decl && DECL_P (decl)
1621 && DECL_DEBUG_EXPR_IS_FROM (decl))
1623 tree debugdecl = DECL_DEBUG_EXPR (decl);
1624 if (debugdecl && DECL_P (debugdecl))
1625 decl = debugdecl;
1628 return decl;
1631 /* Set the register LOC to contain DV, OFFSET. */
1633 static void
1634 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1635 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1636 enum insert_option iopt)
1638 attrs node;
1639 bool decl_p = dv_is_decl_p (dv);
1641 if (decl_p)
1642 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1644 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1645 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1646 && node->offset == offset)
1647 break;
1648 if (!node)
1649 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1650 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1653 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1655 static void
1656 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1657 rtx set_src)
1659 tree decl = REG_EXPR (loc);
1660 HOST_WIDE_INT offset = REG_OFFSET (loc);
1662 var_reg_decl_set (set, loc, initialized,
1663 dv_from_decl (decl), offset, set_src, INSERT);
1666 static enum var_init_status
1667 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1669 variable var;
1670 int i;
1671 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1673 if (! flag_var_tracking_uninit)
1674 return VAR_INIT_STATUS_INITIALIZED;
1676 var = shared_hash_find (set->vars, dv);
1677 if (var)
1679 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1681 location_chain nextp;
1682 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1683 if (rtx_equal_p (nextp->loc, loc))
1685 ret_val = nextp->init;
1686 break;
1691 return ret_val;
1694 /* Delete current content of register LOC in dataflow set SET and set
1695 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1696 MODIFY is true, any other live copies of the same variable part are
1697 also deleted from the dataflow set, otherwise the variable part is
1698 assumed to be copied from another location holding the same
1699 part. */
1701 static void
1702 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1703 enum var_init_status initialized, rtx set_src)
1705 tree decl = REG_EXPR (loc);
1706 HOST_WIDE_INT offset = REG_OFFSET (loc);
1707 attrs node, next;
1708 attrs *nextp;
1710 decl = var_debug_decl (decl);
1712 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1713 initialized = get_init_value (set, loc, dv_from_decl (decl));
1715 nextp = &set->regs[REGNO (loc)];
1716 for (node = *nextp; node; node = next)
1718 next = node->next;
1719 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1721 delete_variable_part (set, node->loc, node->dv, node->offset);
1722 pool_free (attrs_pool, node);
1723 *nextp = next;
1725 else
1727 node->loc = loc;
1728 nextp = &node->next;
1731 if (modify)
1732 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1733 var_reg_set (set, loc, initialized, set_src);
1736 /* Delete the association of register LOC in dataflow set SET with any
1737 variables that aren't onepart. If CLOBBER is true, also delete any
1738 other live copies of the same variable part, and delete the
1739 association with onepart dvs too. */
1741 static void
1742 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1744 attrs *nextp = &set->regs[REGNO (loc)];
1745 attrs node, next;
1747 if (clobber)
1749 tree decl = REG_EXPR (loc);
1750 HOST_WIDE_INT offset = REG_OFFSET (loc);
1752 decl = var_debug_decl (decl);
1754 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1757 for (node = *nextp; node; node = next)
1759 next = node->next;
1760 if (clobber || !dv_onepart_p (node->dv))
1762 delete_variable_part (set, node->loc, node->dv, node->offset);
1763 pool_free (attrs_pool, node);
1764 *nextp = next;
1766 else
1767 nextp = &node->next;
1771 /* Delete content of register with number REGNO in dataflow set SET. */
1773 static void
1774 var_regno_delete (dataflow_set *set, int regno)
1776 attrs *reg = &set->regs[regno];
1777 attrs node, next;
1779 for (node = *reg; node; node = next)
1781 next = node->next;
1782 delete_variable_part (set, node->loc, node->dv, node->offset);
1783 pool_free (attrs_pool, node);
1785 *reg = NULL;
1788 /* Set the location of DV, OFFSET as the MEM LOC. */
1790 static void
1791 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1792 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1793 enum insert_option iopt)
1795 if (dv_is_decl_p (dv))
1796 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1798 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1801 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
1802 SET to LOC.
1803 Adjust the address first if it is stack pointer based. */
1805 static void
1806 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1807 rtx set_src)
1809 tree decl = MEM_EXPR (loc);
1810 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
1812 var_mem_decl_set (set, loc, initialized,
1813 dv_from_decl (decl), offset, set_src, INSERT);
1816 /* Delete and set the location part of variable MEM_EXPR (LOC) in
1817 dataflow set SET to LOC. If MODIFY is true, any other live copies
1818 of the same variable part are also deleted from the dataflow set,
1819 otherwise the variable part is assumed to be copied from another
1820 location holding the same part.
1821 Adjust the address first if it is stack pointer based. */
1823 static void
1824 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1825 enum var_init_status initialized, rtx set_src)
1827 tree decl = MEM_EXPR (loc);
1828 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
1830 decl = var_debug_decl (decl);
1832 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1833 initialized = get_init_value (set, loc, dv_from_decl (decl));
1835 if (modify)
1836 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
1837 var_mem_set (set, loc, initialized, set_src);
1840 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
1841 true, also delete any other live copies of the same variable part.
1842 Adjust the address first if it is stack pointer based. */
1844 static void
1845 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
1847 tree decl = MEM_EXPR (loc);
1848 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
1850 decl = var_debug_decl (decl);
1851 if (clobber)
1852 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1853 delete_variable_part (set, loc, dv_from_decl (decl), offset);
1856 /* Bind a value to a location it was just stored in. If MODIFIED
1857 holds, assume the location was modified, detaching it from any
1858 values bound to it. */
1860 static void
1861 val_store (dataflow_set *set, rtx val, rtx loc, rtx insn, bool modified)
1863 cselib_val *v = CSELIB_VAL_PTR (val);
1865 gcc_assert (cselib_preserved_value_p (v));
1867 if (dump_file)
1869 fprintf (dump_file, "%i: ", INSN_UID (insn));
1870 print_inline_rtx (dump_file, val, 0);
1871 fprintf (dump_file, " stored in ");
1872 print_inline_rtx (dump_file, loc, 0);
1873 if (v->locs)
1875 struct elt_loc_list *l;
1876 for (l = v->locs; l; l = l->next)
1878 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
1879 print_inline_rtx (dump_file, l->loc, 0);
1882 fprintf (dump_file, "\n");
1885 if (REG_P (loc))
1887 if (modified)
1888 var_regno_delete (set, REGNO (loc));
1889 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
1890 dv_from_value (val), 0, NULL_RTX, INSERT);
1892 else if (MEM_P (loc))
1893 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
1894 dv_from_value (val), 0, NULL_RTX, INSERT);
1895 else
1896 set_variable_part (set, loc, dv_from_value (val), 0,
1897 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
1900 /* Reset this node, detaching all its equivalences. Return the slot
1901 in the variable hash table that holds dv, if there is one. */
1903 static void
1904 val_reset (dataflow_set *set, decl_or_value dv)
1906 variable var = shared_hash_find (set->vars, dv) ;
1907 location_chain node;
1908 rtx cval;
1910 if (!var || !var->n_var_parts)
1911 return;
1913 gcc_assert (var->n_var_parts == 1);
1915 cval = NULL;
1916 for (node = var->var_part[0].loc_chain; node; node = node->next)
1917 if (GET_CODE (node->loc) == VALUE
1918 && canon_value_cmp (node->loc, cval))
1919 cval = node->loc;
1921 for (node = var->var_part[0].loc_chain; node; node = node->next)
1922 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
1924 /* Redirect the equivalence link to the new canonical
1925 value, or simply remove it if it would point at
1926 itself. */
1927 if (cval)
1928 set_variable_part (set, cval, dv_from_value (node->loc),
1929 0, node->init, node->set_src, NO_INSERT);
1930 delete_variable_part (set, dv_as_value (dv),
1931 dv_from_value (node->loc), 0);
1934 if (cval)
1936 decl_or_value cdv = dv_from_value (cval);
1938 /* Keep the remaining values connected, accummulating links
1939 in the canonical value. */
1940 for (node = var->var_part[0].loc_chain; node; node = node->next)
1942 if (node->loc == cval)
1943 continue;
1944 else if (GET_CODE (node->loc) == REG)
1945 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
1946 node->set_src, NO_INSERT);
1947 else if (GET_CODE (node->loc) == MEM)
1948 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
1949 node->set_src, NO_INSERT);
1950 else
1951 set_variable_part (set, node->loc, cdv, 0,
1952 node->init, node->set_src, NO_INSERT);
1956 /* We remove this last, to make sure that the canonical value is not
1957 removed to the point of requiring reinsertion. */
1958 if (cval)
1959 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
1961 clobber_variable_part (set, NULL, dv, 0, NULL);
1963 /* ??? Should we make sure there aren't other available values or
1964 variables whose values involve this one other than by
1965 equivalence? E.g., at the very least we should reset MEMs, those
1966 shouldn't be too hard to find cselib-looking up the value as an
1967 address, then locating the resulting value in our own hash
1968 table. */
1971 /* Find the values in a given location and map the val to another
1972 value, if it is unique, or add the location as one holding the
1973 value. */
1975 static void
1976 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx insn)
1978 decl_or_value dv = dv_from_value (val);
1980 if (dump_file && (dump_flags & TDF_DETAILS))
1982 if (insn)
1983 fprintf (dump_file, "%i: ", INSN_UID (insn));
1984 else
1985 fprintf (dump_file, "head: ");
1986 print_inline_rtx (dump_file, val, 0);
1987 fputs (" is at ", dump_file);
1988 print_inline_rtx (dump_file, loc, 0);
1989 fputc ('\n', dump_file);
1992 val_reset (set, dv);
1994 if (REG_P (loc))
1996 attrs node, found = NULL;
1998 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1999 if (dv_is_value_p (node->dv)
2000 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2002 found = node;
2004 /* Map incoming equivalences. ??? Wouldn't it be nice if
2005 we just started sharing the location lists? Maybe a
2006 circular list ending at the value itself or some
2007 such. */
2008 set_variable_part (set, dv_as_value (node->dv),
2009 dv_from_value (val), node->offset,
2010 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2011 set_variable_part (set, val, node->dv, node->offset,
2012 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2015 /* If we didn't find any equivalence, we need to remember that
2016 this value is held in the named register. */
2017 if (!found)
2018 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2019 dv_from_value (val), 0, NULL_RTX, INSERT);
2021 else if (MEM_P (loc))
2022 /* ??? Merge equivalent MEMs. */
2023 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2024 dv_from_value (val), 0, NULL_RTX, INSERT);
2025 else
2026 /* ??? Merge equivalent expressions. */
2027 set_variable_part (set, loc, dv_from_value (val), 0,
2028 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2031 /* Initialize dataflow set SET to be empty.
2032 VARS_SIZE is the initial size of hash table VARS. */
2034 static void
2035 dataflow_set_init (dataflow_set *set)
2037 init_attrs_list_set (set->regs);
2038 set->vars = shared_hash_copy (empty_shared_hash);
2039 set->stack_adjust = 0;
2040 set->traversed_vars = NULL;
2043 /* Delete the contents of dataflow set SET. */
2045 static void
2046 dataflow_set_clear (dataflow_set *set)
2048 int i;
2050 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2051 attrs_list_clear (&set->regs[i]);
2053 shared_hash_destroy (set->vars);
2054 set->vars = shared_hash_copy (empty_shared_hash);
2057 /* Copy the contents of dataflow set SRC to DST. */
2059 static void
2060 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2062 int i;
2064 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2065 attrs_list_copy (&dst->regs[i], src->regs[i]);
2067 shared_hash_destroy (dst->vars);
2068 dst->vars = shared_hash_copy (src->vars);
2069 dst->stack_adjust = src->stack_adjust;
2072 /* Information for merging lists of locations for a given offset of variable.
2074 struct variable_union_info
2076 /* Node of the location chain. */
2077 location_chain lc;
2079 /* The sum of positions in the input chains. */
2080 int pos;
2082 /* The position in the chain of DST dataflow set. */
2083 int pos_dst;
2086 /* Buffer for location list sorting and its allocated size. */
2087 static struct variable_union_info *vui_vec;
2088 static int vui_allocated;
2090 /* Compare function for qsort, order the structures by POS element. */
2092 static int
2093 variable_union_info_cmp_pos (const void *n1, const void *n2)
2095 const struct variable_union_info *const i1 =
2096 (const struct variable_union_info *) n1;
2097 const struct variable_union_info *const i2 =
2098 ( const struct variable_union_info *) n2;
2100 if (i1->pos != i2->pos)
2101 return i1->pos - i2->pos;
2103 return (i1->pos_dst - i2->pos_dst);
2106 /* Compute union of location parts of variable *SLOT and the same variable
2107 from hash table DATA. Compute "sorted" union of the location chains
2108 for common offsets, i.e. the locations of a variable part are sorted by
2109 a priority where the priority is the sum of the positions in the 2 chains
2110 (if a location is only in one list the position in the second list is
2111 defined to be larger than the length of the chains).
2112 When we are updating the location parts the newest location is in the
2113 beginning of the chain, so when we do the described "sorted" union
2114 we keep the newest locations in the beginning. */
2116 static int
2117 variable_union (variable src, dataflow_set *set)
2119 variable dst;
2120 void **dstp;
2121 int i, j, k;
2123 dstp = shared_hash_find_slot (set->vars, src->dv);
2124 if (!dstp || !*dstp)
2126 src->refcount++;
2128 dst_can_be_shared = false;
2129 if (!dstp)
2130 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2132 *dstp = src;
2134 /* Continue traversing the hash table. */
2135 return 1;
2137 else
2138 dst = (variable) *dstp;
2140 gcc_assert (src->n_var_parts);
2142 /* We can combine one-part variables very efficiently, because their
2143 entries are in canonical order. */
2144 if (dv_onepart_p (src->dv))
2146 location_chain *nodep, dnode, snode;
2148 gcc_assert (src->n_var_parts == 1
2149 && dst->n_var_parts == 1);
2151 snode = src->var_part[0].loc_chain;
2152 gcc_assert (snode);
2154 restart_onepart_unshared:
2155 nodep = &dst->var_part[0].loc_chain;
2156 dnode = *nodep;
2157 gcc_assert (dnode);
2159 while (snode)
2161 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2163 if (r > 0)
2165 location_chain nnode;
2167 if (shared_var_p (dst, set->vars))
2169 dstp = unshare_variable (set, dstp, dst,
2170 VAR_INIT_STATUS_INITIALIZED);
2171 dst = (variable)*dstp;
2172 goto restart_onepart_unshared;
2175 *nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
2176 nnode->loc = snode->loc;
2177 nnode->init = snode->init;
2178 if (!snode->set_src || MEM_P (snode->set_src))
2179 nnode->set_src = NULL;
2180 else
2181 nnode->set_src = snode->set_src;
2182 nnode->next = dnode;
2183 dnode = nnode;
2185 else if (r == 0)
2186 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2188 if (r >= 0)
2189 snode = snode->next;
2191 nodep = &dnode->next;
2192 dnode = *nodep;
2195 return 1;
2198 /* Count the number of location parts, result is K. */
2199 for (i = 0, j = 0, k = 0;
2200 i < src->n_var_parts && j < dst->n_var_parts; k++)
2202 if (src->var_part[i].offset == dst->var_part[j].offset)
2204 i++;
2205 j++;
2207 else if (src->var_part[i].offset < dst->var_part[j].offset)
2208 i++;
2209 else
2210 j++;
2212 k += src->n_var_parts - i;
2213 k += dst->n_var_parts - j;
2215 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2216 thus there are at most MAX_VAR_PARTS different offsets. */
2217 gcc_assert (dv_onepart_p (dst->dv) ? k == 1 : k <= MAX_VAR_PARTS);
2219 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2221 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2222 dst = (variable)*dstp;
2225 i = src->n_var_parts - 1;
2226 j = dst->n_var_parts - 1;
2227 dst->n_var_parts = k;
2229 for (k--; k >= 0; k--)
2231 location_chain node, node2;
2233 if (i >= 0 && j >= 0
2234 && src->var_part[i].offset == dst->var_part[j].offset)
2236 /* Compute the "sorted" union of the chains, i.e. the locations which
2237 are in both chains go first, they are sorted by the sum of
2238 positions in the chains. */
2239 int dst_l, src_l;
2240 int ii, jj, n;
2241 struct variable_union_info *vui;
2243 /* If DST is shared compare the location chains.
2244 If they are different we will modify the chain in DST with
2245 high probability so make a copy of DST. */
2246 if (shared_var_p (dst, set->vars))
2248 for (node = src->var_part[i].loc_chain,
2249 node2 = dst->var_part[j].loc_chain; node && node2;
2250 node = node->next, node2 = node2->next)
2252 if (!((REG_P (node2->loc)
2253 && REG_P (node->loc)
2254 && REGNO (node2->loc) == REGNO (node->loc))
2255 || rtx_equal_p (node2->loc, node->loc)))
2257 if (node2->init < node->init)
2258 node2->init = node->init;
2259 break;
2262 if (node || node2)
2264 dstp = unshare_variable (set, dstp, dst,
2265 VAR_INIT_STATUS_UNKNOWN);
2266 dst = (variable)*dstp;
2270 src_l = 0;
2271 for (node = src->var_part[i].loc_chain; node; node = node->next)
2272 src_l++;
2273 dst_l = 0;
2274 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2275 dst_l++;
2277 if (dst_l == 1)
2279 /* The most common case, much simpler, no qsort is needed. */
2280 location_chain dstnode = dst->var_part[j].loc_chain;
2281 dst->var_part[k].loc_chain = dstnode;
2282 dst->var_part[k].offset = dst->var_part[j].offset;
2283 node2 = dstnode;
2284 for (node = src->var_part[i].loc_chain; node; node = node->next)
2285 if (!((REG_P (dstnode->loc)
2286 && REG_P (node->loc)
2287 && REGNO (dstnode->loc) == REGNO (node->loc))
2288 || rtx_equal_p (dstnode->loc, node->loc)))
2290 location_chain new_node;
2292 /* Copy the location from SRC. */
2293 new_node = (location_chain) pool_alloc (loc_chain_pool);
2294 new_node->loc = node->loc;
2295 new_node->init = node->init;
2296 if (!node->set_src || MEM_P (node->set_src))
2297 new_node->set_src = NULL;
2298 else
2299 new_node->set_src = node->set_src;
2300 node2->next = new_node;
2301 node2 = new_node;
2303 node2->next = NULL;
2305 else
2307 if (src_l + dst_l > vui_allocated)
2309 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2310 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2311 vui_allocated);
2313 vui = vui_vec;
2315 /* Fill in the locations from DST. */
2316 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2317 node = node->next, jj++)
2319 vui[jj].lc = node;
2320 vui[jj].pos_dst = jj;
2322 /* Pos plus value larger than a sum of 2 valid positions. */
2323 vui[jj].pos = jj + src_l + dst_l;
2326 /* Fill in the locations from SRC. */
2327 n = dst_l;
2328 for (node = src->var_part[i].loc_chain, ii = 0; node;
2329 node = node->next, ii++)
2331 /* Find location from NODE. */
2332 for (jj = 0; jj < dst_l; jj++)
2334 if ((REG_P (vui[jj].lc->loc)
2335 && REG_P (node->loc)
2336 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2337 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2339 vui[jj].pos = jj + ii;
2340 break;
2343 if (jj >= dst_l) /* The location has not been found. */
2345 location_chain new_node;
2347 /* Copy the location from SRC. */
2348 new_node = (location_chain) pool_alloc (loc_chain_pool);
2349 new_node->loc = node->loc;
2350 new_node->init = node->init;
2351 if (!node->set_src || MEM_P (node->set_src))
2352 new_node->set_src = NULL;
2353 else
2354 new_node->set_src = node->set_src;
2355 vui[n].lc = new_node;
2356 vui[n].pos_dst = src_l + dst_l;
2357 vui[n].pos = ii + src_l + dst_l;
2358 n++;
2362 if (dst_l == 2)
2364 /* Special case still very common case. For dst_l == 2
2365 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2366 vui[i].pos == i + src_l + dst_l. */
2367 if (vui[0].pos > vui[1].pos)
2369 /* Order should be 1, 0, 2... */
2370 dst->var_part[k].loc_chain = vui[1].lc;
2371 vui[1].lc->next = vui[0].lc;
2372 if (n >= 3)
2374 vui[0].lc->next = vui[2].lc;
2375 vui[n - 1].lc->next = NULL;
2377 else
2378 vui[0].lc->next = NULL;
2379 ii = 3;
2381 else
2383 dst->var_part[k].loc_chain = vui[0].lc;
2384 if (n >= 3 && vui[2].pos < vui[1].pos)
2386 /* Order should be 0, 2, 1, 3... */
2387 vui[0].lc->next = vui[2].lc;
2388 vui[2].lc->next = vui[1].lc;
2389 if (n >= 4)
2391 vui[1].lc->next = vui[3].lc;
2392 vui[n - 1].lc->next = NULL;
2394 else
2395 vui[1].lc->next = NULL;
2396 ii = 4;
2398 else
2400 /* Order should be 0, 1, 2... */
2401 ii = 1;
2402 vui[n - 1].lc->next = NULL;
2405 for (; ii < n; ii++)
2406 vui[ii - 1].lc->next = vui[ii].lc;
2408 else
2410 qsort (vui, n, sizeof (struct variable_union_info),
2411 variable_union_info_cmp_pos);
2413 /* Reconnect the nodes in sorted order. */
2414 for (ii = 1; ii < n; ii++)
2415 vui[ii - 1].lc->next = vui[ii].lc;
2416 vui[n - 1].lc->next = NULL;
2417 dst->var_part[k].loc_chain = vui[0].lc;
2420 dst->var_part[k].offset = dst->var_part[j].offset;
2422 i--;
2423 j--;
2425 else if ((i >= 0 && j >= 0
2426 && src->var_part[i].offset < dst->var_part[j].offset)
2427 || i < 0)
2429 dst->var_part[k] = dst->var_part[j];
2430 j--;
2432 else if ((i >= 0 && j >= 0
2433 && src->var_part[i].offset > dst->var_part[j].offset)
2434 || j < 0)
2436 location_chain *nextp;
2438 /* Copy the chain from SRC. */
2439 nextp = &dst->var_part[k].loc_chain;
2440 for (node = src->var_part[i].loc_chain; node; node = node->next)
2442 location_chain new_lc;
2444 new_lc = (location_chain) pool_alloc (loc_chain_pool);
2445 new_lc->next = NULL;
2446 new_lc->init = node->init;
2447 if (!node->set_src || MEM_P (node->set_src))
2448 new_lc->set_src = NULL;
2449 else
2450 new_lc->set_src = node->set_src;
2451 new_lc->loc = node->loc;
2453 *nextp = new_lc;
2454 nextp = &new_lc->next;
2457 dst->var_part[k].offset = src->var_part[i].offset;
2458 i--;
2460 dst->var_part[k].cur_loc = NULL;
2463 if (flag_var_tracking_uninit)
2464 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
2466 location_chain node, node2;
2467 for (node = src->var_part[i].loc_chain; node; node = node->next)
2468 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
2469 if (rtx_equal_p (node->loc, node2->loc))
2471 if (node->init > node2->init)
2472 node2->init = node->init;
2476 /* Continue traversing the hash table. */
2477 return 1;
2480 /* Compute union of dataflow sets SRC and DST and store it to DST. */
2482 static void
2483 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
2485 int i;
2487 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2488 attrs_list_union (&dst->regs[i], src->regs[i]);
2490 if (dst->vars == empty_shared_hash)
2492 shared_hash_destroy (dst->vars);
2493 dst->vars = shared_hash_copy (src->vars);
2495 else
2497 htab_iterator hi;
2498 variable var;
2500 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (src->vars), var, variable, hi)
2501 variable_union (var, dst);
2505 /* Whether the value is currently being expanded. */
2506 #define VALUE_RECURSED_INTO(x) \
2507 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
2508 /* Whether the value is in changed_variables hash table. */
2509 #define VALUE_CHANGED(x) \
2510 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
2511 /* Whether the decl is in changed_variables hash table. */
2512 #define DECL_CHANGED(x) TREE_VISITED (x)
2514 /* Record that DV has been added into resp. removed from changed_variables
2515 hashtable. */
2517 static inline void
2518 set_dv_changed (decl_or_value dv, bool newv)
2520 if (dv_is_value_p (dv))
2521 VALUE_CHANGED (dv_as_value (dv)) = newv;
2522 else
2523 DECL_CHANGED (dv_as_decl (dv)) = newv;
2526 /* Return true if DV is present in changed_variables hash table. */
2528 static inline bool
2529 dv_changed_p (decl_or_value dv)
2531 return (dv_is_value_p (dv)
2532 ? VALUE_CHANGED (dv_as_value (dv))
2533 : DECL_CHANGED (dv_as_decl (dv)));
2536 /* Return a location list node whose loc is rtx_equal to LOC, in the
2537 location list of a one-part variable or value VAR, or in that of
2538 any values recursively mentioned in the location lists. VARS must
2539 be in star-canonical form. */
2541 static location_chain
2542 find_loc_in_1pdv (rtx loc, variable var, htab_t vars)
2544 location_chain node;
2545 enum rtx_code loc_code;
2547 if (!var)
2548 return NULL;
2550 gcc_checking_assert (dv_onepart_p (var->dv));
2552 if (!var->n_var_parts)
2553 return NULL;
2555 gcc_checking_assert (var->var_part[0].offset == 0);
2556 gcc_checking_assert (loc != dv_as_opaque (var->dv));
2558 loc_code = GET_CODE (loc);
2559 for (node = var->var_part[0].loc_chain; node; node = node->next)
2561 decl_or_value dv;
2562 variable rvar;
2564 if (GET_CODE (node->loc) != loc_code)
2566 if (GET_CODE (node->loc) != VALUE)
2567 continue;
2569 else if (loc == node->loc)
2570 return node;
2571 else if (loc_code != VALUE)
2573 if (rtx_equal_p (loc, node->loc))
2574 return node;
2575 continue;
2578 /* Since we're in star-canonical form, we don't need to visit
2579 non-canonical nodes: one-part variables and non-canonical
2580 values would only point back to the canonical node. */
2581 if (dv_is_value_p (var->dv)
2582 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
2584 /* Skip all subsequent VALUEs. */
2585 while (node->next && GET_CODE (node->next->loc) == VALUE)
2587 node = node->next;
2588 gcc_checking_assert (!canon_value_cmp (node->loc,
2589 dv_as_value (var->dv)));
2590 if (loc == node->loc)
2591 return node;
2593 continue;
2596 gcc_checking_assert (node == var->var_part[0].loc_chain);
2597 gcc_checking_assert (!node->next);
2599 dv = dv_from_value (node->loc);
2600 rvar = (variable) htab_find_with_hash (vars, dv, dv_htab_hash (dv));
2601 return find_loc_in_1pdv (loc, rvar, vars);
2604 return NULL;
2607 /* Hash table iteration argument passed to variable_merge. */
2608 struct dfset_merge
2610 /* The set in which the merge is to be inserted. */
2611 dataflow_set *dst;
2612 /* The set that we're iterating in. */
2613 dataflow_set *cur;
2614 /* The set that may contain the other dv we are to merge with. */
2615 dataflow_set *src;
2616 /* Number of onepart dvs in src. */
2617 int src_onepart_cnt;
2620 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
2621 loc_cmp order, and it is maintained as such. */
2623 static void
2624 insert_into_intersection (location_chain *nodep, rtx loc,
2625 enum var_init_status status)
2627 location_chain node;
2628 int r;
2630 for (node = *nodep; node; nodep = &node->next, node = *nodep)
2631 if ((r = loc_cmp (node->loc, loc)) == 0)
2633 node->init = MIN (node->init, status);
2634 return;
2636 else if (r > 0)
2637 break;
2639 node = (location_chain) pool_alloc (loc_chain_pool);
2641 node->loc = loc;
2642 node->set_src = NULL;
2643 node->init = status;
2644 node->next = *nodep;
2645 *nodep = node;
2648 /* Insert in DEST the intersection the locations present in both
2649 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
2650 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
2651 DSM->dst. */
2653 static void
2654 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
2655 location_chain s1node, variable s2var)
2657 dataflow_set *s1set = dsm->cur;
2658 dataflow_set *s2set = dsm->src;
2659 location_chain found;
2661 if (s2var)
2663 location_chain s2node;
2665 gcc_checking_assert (dv_onepart_p (s2var->dv));
2667 if (s2var->n_var_parts)
2669 gcc_checking_assert (s2var->var_part[0].offset == 0);
2670 s2node = s2var->var_part[0].loc_chain;
2672 for (; s1node && s2node;
2673 s1node = s1node->next, s2node = s2node->next)
2674 if (s1node->loc != s2node->loc)
2675 break;
2676 else if (s1node->loc == val)
2677 continue;
2678 else
2679 insert_into_intersection (dest, s1node->loc,
2680 MIN (s1node->init, s2node->init));
2684 for (; s1node; s1node = s1node->next)
2686 if (s1node->loc == val)
2687 continue;
2689 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
2690 shared_hash_htab (s2set->vars))))
2692 insert_into_intersection (dest, s1node->loc,
2693 MIN (s1node->init, found->init));
2694 continue;
2697 if (GET_CODE (s1node->loc) == VALUE
2698 && !VALUE_RECURSED_INTO (s1node->loc))
2700 decl_or_value dv = dv_from_value (s1node->loc);
2701 variable svar = shared_hash_find (s1set->vars, dv);
2702 if (svar)
2704 if (svar->n_var_parts == 1)
2706 VALUE_RECURSED_INTO (s1node->loc) = true;
2707 intersect_loc_chains (val, dest, dsm,
2708 svar->var_part[0].loc_chain,
2709 s2var);
2710 VALUE_RECURSED_INTO (s1node->loc) = false;
2715 /* ??? if the location is equivalent to any location in src,
2716 searched recursively
2718 add to dst the values needed to represent the equivalence
2720 telling whether locations S is equivalent to another dv's
2721 location list:
2723 for each location D in the list
2725 if S and D satisfy rtx_equal_p, then it is present
2727 else if D is a value, recurse without cycles
2729 else if S and D have the same CODE and MODE
2731 for each operand oS and the corresponding oD
2733 if oS and oD are not equivalent, then S an D are not equivalent
2735 else if they are RTX vectors
2737 if any vector oS element is not equivalent to its respective oD,
2738 then S and D are not equivalent
2746 /* Return -1 if X should be before Y in a location list for a 1-part
2747 variable, 1 if Y should be before X, and 0 if they're equivalent
2748 and should not appear in the list. */
2750 static int
2751 loc_cmp (rtx x, rtx y)
2753 int i, j, r;
2754 RTX_CODE code = GET_CODE (x);
2755 const char *fmt;
2757 if (x == y)
2758 return 0;
2760 if (REG_P (x))
2762 if (!REG_P (y))
2763 return -1;
2764 gcc_assert (GET_MODE (x) == GET_MODE (y));
2765 if (REGNO (x) == REGNO (y))
2766 return 0;
2767 else if (REGNO (x) < REGNO (y))
2768 return -1;
2769 else
2770 return 1;
2773 if (REG_P (y))
2774 return 1;
2776 if (MEM_P (x))
2778 if (!MEM_P (y))
2779 return -1;
2780 gcc_assert (GET_MODE (x) == GET_MODE (y));
2781 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
2784 if (MEM_P (y))
2785 return 1;
2787 if (GET_CODE (x) == VALUE)
2789 if (GET_CODE (y) != VALUE)
2790 return -1;
2791 /* Don't assert the modes are the same, that is true only
2792 when not recursing. (subreg:QI (value:SI 1:1) 0)
2793 and (subreg:QI (value:DI 2:2) 0) can be compared,
2794 even when the modes are different. */
2795 if (canon_value_cmp (x, y))
2796 return -1;
2797 else
2798 return 1;
2801 if (GET_CODE (y) == VALUE)
2802 return 1;
2804 if (GET_CODE (x) == GET_CODE (y))
2805 /* Compare operands below. */;
2806 else if (GET_CODE (x) < GET_CODE (y))
2807 return -1;
2808 else
2809 return 1;
2811 gcc_assert (GET_MODE (x) == GET_MODE (y));
2813 if (GET_CODE (x) == DEBUG_EXPR)
2815 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
2816 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
2817 return -1;
2818 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
2819 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
2820 return 1;
2823 fmt = GET_RTX_FORMAT (code);
2824 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2825 switch (fmt[i])
2827 case 'w':
2828 if (XWINT (x, i) == XWINT (y, i))
2829 break;
2830 else if (XWINT (x, i) < XWINT (y, i))
2831 return -1;
2832 else
2833 return 1;
2835 case 'n':
2836 case 'i':
2837 if (XINT (x, i) == XINT (y, i))
2838 break;
2839 else if (XINT (x, i) < XINT (y, i))
2840 return -1;
2841 else
2842 return 1;
2844 case 'V':
2845 case 'E':
2846 /* Compare the vector length first. */
2847 if (XVECLEN (x, i) == XVECLEN (y, i))
2848 /* Compare the vectors elements. */;
2849 else if (XVECLEN (x, i) < XVECLEN (y, i))
2850 return -1;
2851 else
2852 return 1;
2854 for (j = 0; j < XVECLEN (x, i); j++)
2855 if ((r = loc_cmp (XVECEXP (x, i, j),
2856 XVECEXP (y, i, j))))
2857 return r;
2858 break;
2860 case 'e':
2861 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
2862 return r;
2863 break;
2865 case 'S':
2866 case 's':
2867 if (XSTR (x, i) == XSTR (y, i))
2868 break;
2869 if (!XSTR (x, i))
2870 return -1;
2871 if (!XSTR (y, i))
2872 return 1;
2873 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
2874 break;
2875 else if (r < 0)
2876 return -1;
2877 else
2878 return 1;
2880 case 'u':
2881 /* These are just backpointers, so they don't matter. */
2882 break;
2884 case '0':
2885 case 't':
2886 break;
2888 /* It is believed that rtx's at this level will never
2889 contain anything but integers and other rtx's,
2890 except for within LABEL_REFs and SYMBOL_REFs. */
2891 default:
2892 gcc_unreachable ();
2895 return 0;
2898 /* If decl or value DVP refers to VALUE from *LOC, add backlinks
2899 from VALUE to DVP. */
2901 static int
2902 add_value_chain (rtx *loc, void *dvp)
2904 decl_or_value dv, ldv;
2905 value_chain vc, nvc;
2906 void **slot;
2908 if (GET_CODE (*loc) == VALUE)
2909 ldv = dv_from_value (*loc);
2910 else if (GET_CODE (*loc) == DEBUG_EXPR)
2911 ldv = dv_from_decl (DEBUG_EXPR_TREE_DECL (*loc));
2912 else
2913 return 0;
2915 if (dv_as_opaque (ldv) == dvp)
2916 return 0;
2918 dv = (decl_or_value) dvp;
2919 slot = htab_find_slot_with_hash (value_chains, ldv, dv_htab_hash (ldv),
2920 INSERT);
2921 if (!*slot)
2923 vc = (value_chain) pool_alloc (value_chain_pool);
2924 vc->dv = ldv;
2925 vc->next = NULL;
2926 vc->refcount = 0;
2927 *slot = (void *) vc;
2929 else
2931 for (vc = ((value_chain) *slot)->next; vc; vc = vc->next)
2932 if (dv_as_opaque (vc->dv) == dv_as_opaque (dv))
2933 break;
2934 if (vc)
2936 vc->refcount++;
2937 return 0;
2940 vc = (value_chain) *slot;
2941 nvc = (value_chain) pool_alloc (value_chain_pool);
2942 nvc->dv = dv;
2943 nvc->next = vc->next;
2944 nvc->refcount = 1;
2945 vc->next = nvc;
2946 return 0;
2949 /* If decl or value DVP refers to VALUEs from within LOC, add backlinks
2950 from those VALUEs to DVP. */
2952 static void
2953 add_value_chains (decl_or_value dv, rtx loc)
2955 if (GET_CODE (loc) == VALUE || GET_CODE (loc) == DEBUG_EXPR)
2957 add_value_chain (&loc, dv_as_opaque (dv));
2958 return;
2960 if (REG_P (loc))
2961 return;
2962 if (MEM_P (loc))
2963 loc = XEXP (loc, 0);
2964 for_each_rtx (&loc, add_value_chain, dv_as_opaque (dv));
2967 /* If CSELIB_VAL_PTR of value DV refer to VALUEs, add backlinks from those
2968 VALUEs to DV. Add the same time get rid of ASM_OPERANDS from locs list,
2969 that is something we never can express in .debug_info and can prevent
2970 reverse ops from being used. */
2972 static void
2973 add_cselib_value_chains (decl_or_value dv)
2975 struct elt_loc_list **l;
2977 for (l = &CSELIB_VAL_PTR (dv_as_value (dv))->locs; *l;)
2978 if (GET_CODE ((*l)->loc) == ASM_OPERANDS)
2979 *l = (*l)->next;
2980 else
2982 for_each_rtx (&(*l)->loc, add_value_chain, dv_as_opaque (dv));
2983 l = &(*l)->next;
2987 /* If decl or value DVP refers to VALUE from *LOC, remove backlinks
2988 from VALUE to DVP. */
2990 static int
2991 remove_value_chain (rtx *loc, void *dvp)
2993 decl_or_value dv, ldv;
2994 value_chain vc;
2995 void **slot;
2997 if (GET_CODE (*loc) == VALUE)
2998 ldv = dv_from_value (*loc);
2999 else if (GET_CODE (*loc) == DEBUG_EXPR)
3000 ldv = dv_from_decl (DEBUG_EXPR_TREE_DECL (*loc));
3001 else
3002 return 0;
3004 if (dv_as_opaque (ldv) == dvp)
3005 return 0;
3007 dv = (decl_or_value) dvp;
3008 slot = htab_find_slot_with_hash (value_chains, ldv, dv_htab_hash (ldv),
3009 NO_INSERT);
3010 for (vc = (value_chain) *slot; vc->next; vc = vc->next)
3011 if (dv_as_opaque (vc->next->dv) == dv_as_opaque (dv))
3013 value_chain dvc = vc->next;
3014 gcc_assert (dvc->refcount > 0);
3015 if (--dvc->refcount == 0)
3017 vc->next = dvc->next;
3018 pool_free (value_chain_pool, dvc);
3019 if (vc->next == NULL && vc == (value_chain) *slot)
3021 pool_free (value_chain_pool, vc);
3022 htab_clear_slot (value_chains, slot);
3025 return 0;
3027 gcc_unreachable ();
3030 /* If decl or value DVP refers to VALUEs from within LOC, remove backlinks
3031 from those VALUEs to DVP. */
3033 static void
3034 remove_value_chains (decl_or_value dv, rtx loc)
3036 if (GET_CODE (loc) == VALUE || GET_CODE (loc) == DEBUG_EXPR)
3038 remove_value_chain (&loc, dv_as_opaque (dv));
3039 return;
3041 if (REG_P (loc))
3042 return;
3043 if (MEM_P (loc))
3044 loc = XEXP (loc, 0);
3045 for_each_rtx (&loc, remove_value_chain, dv_as_opaque (dv));
3048 #if ENABLE_CHECKING
3049 /* If CSELIB_VAL_PTR of value DV refer to VALUEs, remove backlinks from those
3050 VALUEs to DV. */
3052 static void
3053 remove_cselib_value_chains (decl_or_value dv)
3055 struct elt_loc_list *l;
3057 for (l = CSELIB_VAL_PTR (dv_as_value (dv))->locs; l; l = l->next)
3058 for_each_rtx (&l->loc, remove_value_chain, dv_as_opaque (dv));
3061 /* Check the order of entries in one-part variables. */
3063 static int
3064 canonicalize_loc_order_check (void **slot, void *data ATTRIBUTE_UNUSED)
3066 variable var = (variable) *slot;
3067 decl_or_value dv = var->dv;
3068 location_chain node, next;
3070 #ifdef ENABLE_RTL_CHECKING
3071 int i;
3072 for (i = 0; i < var->n_var_parts; i++)
3073 gcc_assert (var->var_part[0].cur_loc == NULL);
3074 gcc_assert (!var->cur_loc_changed && !var->in_changed_variables);
3075 #endif
3077 if (!dv_onepart_p (dv))
3078 return 1;
3080 gcc_assert (var->n_var_parts == 1);
3081 node = var->var_part[0].loc_chain;
3082 gcc_assert (node);
3084 while ((next = node->next))
3086 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3087 node = next;
3090 return 1;
3092 #endif
3094 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3095 more likely to be chosen as canonical for an equivalence set.
3096 Ensure less likely values can reach more likely neighbors, making
3097 the connections bidirectional. */
3099 static int
3100 canonicalize_values_mark (void **slot, void *data)
3102 dataflow_set *set = (dataflow_set *)data;
3103 variable var = (variable) *slot;
3104 decl_or_value dv = var->dv;
3105 rtx val;
3106 location_chain node;
3108 if (!dv_is_value_p (dv))
3109 return 1;
3111 gcc_checking_assert (var->n_var_parts == 1);
3113 val = dv_as_value (dv);
3115 for (node = var->var_part[0].loc_chain; node; node = node->next)
3116 if (GET_CODE (node->loc) == VALUE)
3118 if (canon_value_cmp (node->loc, val))
3119 VALUE_RECURSED_INTO (val) = true;
3120 else
3122 decl_or_value odv = dv_from_value (node->loc);
3123 void **oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3125 set_slot_part (set, val, oslot, odv, 0,
3126 node->init, NULL_RTX);
3128 VALUE_RECURSED_INTO (node->loc) = true;
3132 return 1;
3135 /* Remove redundant entries from equivalence lists in onepart
3136 variables, canonicalizing equivalence sets into star shapes. */
3138 static int
3139 canonicalize_values_star (void **slot, void *data)
3141 dataflow_set *set = (dataflow_set *)data;
3142 variable var = (variable) *slot;
3143 decl_or_value dv = var->dv;
3144 location_chain node;
3145 decl_or_value cdv;
3146 rtx val, cval;
3147 void **cslot;
3148 bool has_value;
3149 bool has_marks;
3151 if (!dv_onepart_p (dv))
3152 return 1;
3154 gcc_checking_assert (var->n_var_parts == 1);
3156 if (dv_is_value_p (dv))
3158 cval = dv_as_value (dv);
3159 if (!VALUE_RECURSED_INTO (cval))
3160 return 1;
3161 VALUE_RECURSED_INTO (cval) = false;
3163 else
3164 cval = NULL_RTX;
3166 restart:
3167 val = cval;
3168 has_value = false;
3169 has_marks = false;
3171 gcc_assert (var->n_var_parts == 1);
3173 for (node = var->var_part[0].loc_chain; node; node = node->next)
3174 if (GET_CODE (node->loc) == VALUE)
3176 has_value = true;
3177 if (VALUE_RECURSED_INTO (node->loc))
3178 has_marks = true;
3179 if (canon_value_cmp (node->loc, cval))
3180 cval = node->loc;
3183 if (!has_value)
3184 return 1;
3186 if (cval == val)
3188 if (!has_marks || dv_is_decl_p (dv))
3189 return 1;
3191 /* Keep it marked so that we revisit it, either after visiting a
3192 child node, or after visiting a new parent that might be
3193 found out. */
3194 VALUE_RECURSED_INTO (val) = true;
3196 for (node = var->var_part[0].loc_chain; node; node = node->next)
3197 if (GET_CODE (node->loc) == VALUE
3198 && VALUE_RECURSED_INTO (node->loc))
3200 cval = node->loc;
3201 restart_with_cval:
3202 VALUE_RECURSED_INTO (cval) = false;
3203 dv = dv_from_value (cval);
3204 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3205 if (!slot)
3207 gcc_assert (dv_is_decl_p (var->dv));
3208 /* The canonical value was reset and dropped.
3209 Remove it. */
3210 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3211 return 1;
3213 var = (variable)*slot;
3214 gcc_assert (dv_is_value_p (var->dv));
3215 if (var->n_var_parts == 0)
3216 return 1;
3217 gcc_assert (var->n_var_parts == 1);
3218 goto restart;
3221 VALUE_RECURSED_INTO (val) = false;
3223 return 1;
3226 /* Push values to the canonical one. */
3227 cdv = dv_from_value (cval);
3228 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3230 for (node = var->var_part[0].loc_chain; node; node = node->next)
3231 if (node->loc != cval)
3233 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3234 node->init, NULL_RTX);
3235 if (GET_CODE (node->loc) == VALUE)
3237 decl_or_value ndv = dv_from_value (node->loc);
3239 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3240 NO_INSERT);
3242 if (canon_value_cmp (node->loc, val))
3244 /* If it could have been a local minimum, it's not any more,
3245 since it's now neighbor to cval, so it may have to push
3246 to it. Conversely, if it wouldn't have prevailed over
3247 val, then whatever mark it has is fine: if it was to
3248 push, it will now push to a more canonical node, but if
3249 it wasn't, then it has already pushed any values it might
3250 have to. */
3251 VALUE_RECURSED_INTO (node->loc) = true;
3252 /* Make sure we visit node->loc by ensuring we cval is
3253 visited too. */
3254 VALUE_RECURSED_INTO (cval) = true;
3256 else if (!VALUE_RECURSED_INTO (node->loc))
3257 /* If we have no need to "recurse" into this node, it's
3258 already "canonicalized", so drop the link to the old
3259 parent. */
3260 clobber_variable_part (set, cval, ndv, 0, NULL);
3262 else if (GET_CODE (node->loc) == REG)
3264 attrs list = set->regs[REGNO (node->loc)], *listp;
3266 /* Change an existing attribute referring to dv so that it
3267 refers to cdv, removing any duplicate this might
3268 introduce, and checking that no previous duplicates
3269 existed, all in a single pass. */
3271 while (list)
3273 if (list->offset == 0
3274 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3275 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3276 break;
3278 list = list->next;
3281 gcc_assert (list);
3282 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3284 list->dv = cdv;
3285 for (listp = &list->next; (list = *listp); listp = &list->next)
3287 if (list->offset)
3288 continue;
3290 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3292 *listp = list->next;
3293 pool_free (attrs_pool, list);
3294 list = *listp;
3295 break;
3298 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3301 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3303 for (listp = &list->next; (list = *listp); listp = &list->next)
3305 if (list->offset)
3306 continue;
3308 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3310 *listp = list->next;
3311 pool_free (attrs_pool, list);
3312 list = *listp;
3313 break;
3316 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3319 else
3320 gcc_unreachable ();
3322 #if ENABLE_CHECKING
3323 while (list)
3325 if (list->offset == 0
3326 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3327 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3328 gcc_unreachable ();
3330 list = list->next;
3332 #endif
3336 if (val)
3337 set_slot_part (set, val, cslot, cdv, 0,
3338 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3340 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3342 /* Variable may have been unshared. */
3343 var = (variable)*slot;
3344 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3345 && var->var_part[0].loc_chain->next == NULL);
3347 if (VALUE_RECURSED_INTO (cval))
3348 goto restart_with_cval;
3350 return 1;
3353 /* Bind one-part variables to the canonical value in an equivalence
3354 set. Not doing this causes dataflow convergence failure in rare
3355 circumstances, see PR42873. Unfortunately we can't do this
3356 efficiently as part of canonicalize_values_star, since we may not
3357 have determined or even seen the canonical value of a set when we
3358 get to a variable that references another member of the set. */
3360 static int
3361 canonicalize_vars_star (void **slot, void *data)
3363 dataflow_set *set = (dataflow_set *)data;
3364 variable var = (variable) *slot;
3365 decl_or_value dv = var->dv;
3366 location_chain node;
3367 rtx cval;
3368 decl_or_value cdv;
3369 void **cslot;
3370 variable cvar;
3371 location_chain cnode;
3373 if (!dv_onepart_p (dv) || dv_is_value_p (dv))
3374 return 1;
3376 gcc_assert (var->n_var_parts == 1);
3378 node = var->var_part[0].loc_chain;
3380 if (GET_CODE (node->loc) != VALUE)
3381 return 1;
3383 gcc_assert (!node->next);
3384 cval = node->loc;
3386 /* Push values to the canonical one. */
3387 cdv = dv_from_value (cval);
3388 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3389 if (!cslot)
3390 return 1;
3391 cvar = (variable)*cslot;
3392 gcc_assert (cvar->n_var_parts == 1);
3394 cnode = cvar->var_part[0].loc_chain;
3396 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3397 that are not “more canonical” than it. */
3398 if (GET_CODE (cnode->loc) != VALUE
3399 || !canon_value_cmp (cnode->loc, cval))
3400 return 1;
3402 /* CVAL was found to be non-canonical. Change the variable to point
3403 to the canonical VALUE. */
3404 gcc_assert (!cnode->next);
3405 cval = cnode->loc;
3407 slot = set_slot_part (set, cval, slot, dv, 0,
3408 node->init, node->set_src);
3409 clobber_slot_part (set, cval, slot, 0, node->set_src);
3411 return 1;
3414 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3415 corresponding entry in DSM->src. Multi-part variables are combined
3416 with variable_union, whereas onepart dvs are combined with
3417 intersection. */
3419 static int
3420 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3422 dataflow_set *dst = dsm->dst;
3423 void **dstslot;
3424 variable s2var, dvar = NULL;
3425 decl_or_value dv = s1var->dv;
3426 bool onepart = dv_onepart_p (dv);
3427 rtx val;
3428 hashval_t dvhash;
3429 location_chain node, *nodep;
3431 /* If the incoming onepart variable has an empty location list, then
3432 the intersection will be just as empty. For other variables,
3433 it's always union. */
3434 gcc_checking_assert (s1var->n_var_parts
3435 && s1var->var_part[0].loc_chain);
3437 if (!onepart)
3438 return variable_union (s1var, dst);
3440 gcc_checking_assert (s1var->n_var_parts == 1
3441 && s1var->var_part[0].offset == 0);
3443 dvhash = dv_htab_hash (dv);
3444 if (dv_is_value_p (dv))
3445 val = dv_as_value (dv);
3446 else
3447 val = NULL;
3449 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3450 if (!s2var)
3452 dst_can_be_shared = false;
3453 return 1;
3456 dsm->src_onepart_cnt--;
3457 gcc_assert (s2var->var_part[0].loc_chain
3458 && s2var->n_var_parts == 1
3459 && s2var->var_part[0].offset == 0);
3461 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3462 if (dstslot)
3464 dvar = (variable)*dstslot;
3465 gcc_assert (dvar->refcount == 1
3466 && dvar->n_var_parts == 1
3467 && dvar->var_part[0].offset == 0);
3468 nodep = &dvar->var_part[0].loc_chain;
3470 else
3472 nodep = &node;
3473 node = NULL;
3476 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3478 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3479 dvhash, INSERT);
3480 *dstslot = dvar = s2var;
3481 dvar->refcount++;
3483 else
3485 dst_can_be_shared = false;
3487 intersect_loc_chains (val, nodep, dsm,
3488 s1var->var_part[0].loc_chain, s2var);
3490 if (!dstslot)
3492 if (node)
3494 dvar = (variable) pool_alloc (dv_pool (dv));
3495 dvar->dv = dv;
3496 dvar->refcount = 1;
3497 dvar->n_var_parts = 1;
3498 dvar->cur_loc_changed = false;
3499 dvar->in_changed_variables = false;
3500 dvar->var_part[0].offset = 0;
3501 dvar->var_part[0].loc_chain = node;
3502 dvar->var_part[0].cur_loc = NULL;
3504 dstslot
3505 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
3506 INSERT);
3507 gcc_assert (!*dstslot);
3508 *dstslot = dvar;
3510 else
3511 return 1;
3515 nodep = &dvar->var_part[0].loc_chain;
3516 while ((node = *nodep))
3518 location_chain *nextp = &node->next;
3520 if (GET_CODE (node->loc) == REG)
3522 attrs list;
3524 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
3525 if (GET_MODE (node->loc) == GET_MODE (list->loc)
3526 && dv_is_value_p (list->dv))
3527 break;
3529 if (!list)
3530 attrs_list_insert (&dst->regs[REGNO (node->loc)],
3531 dv, 0, node->loc);
3532 /* If this value became canonical for another value that had
3533 this register, we want to leave it alone. */
3534 else if (dv_as_value (list->dv) != val)
3536 dstslot = set_slot_part (dst, dv_as_value (list->dv),
3537 dstslot, dv, 0,
3538 node->init, NULL_RTX);
3539 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
3541 /* Since nextp points into the removed node, we can't
3542 use it. The pointer to the next node moved to nodep.
3543 However, if the variable we're walking is unshared
3544 during our walk, we'll keep walking the location list
3545 of the previously-shared variable, in which case the
3546 node won't have been removed, and we'll want to skip
3547 it. That's why we test *nodep here. */
3548 if (*nodep != node)
3549 nextp = nodep;
3552 else
3553 /* Canonicalization puts registers first, so we don't have to
3554 walk it all. */
3555 break;
3556 nodep = nextp;
3559 if (dvar != (variable)*dstslot)
3560 dvar = (variable)*dstslot;
3561 nodep = &dvar->var_part[0].loc_chain;
3563 if (val)
3565 /* Mark all referenced nodes for canonicalization, and make sure
3566 we have mutual equivalence links. */
3567 VALUE_RECURSED_INTO (val) = true;
3568 for (node = *nodep; node; node = node->next)
3569 if (GET_CODE (node->loc) == VALUE)
3571 VALUE_RECURSED_INTO (node->loc) = true;
3572 set_variable_part (dst, val, dv_from_value (node->loc), 0,
3573 node->init, NULL, INSERT);
3576 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3577 gcc_assert (*dstslot == dvar);
3578 canonicalize_values_star (dstslot, dst);
3579 gcc_checking_assert (dstslot
3580 == shared_hash_find_slot_noinsert_1 (dst->vars,
3581 dv, dvhash));
3582 dvar = (variable)*dstslot;
3584 else
3586 bool has_value = false, has_other = false;
3588 /* If we have one value and anything else, we're going to
3589 canonicalize this, so make sure all values have an entry in
3590 the table and are marked for canonicalization. */
3591 for (node = *nodep; node; node = node->next)
3593 if (GET_CODE (node->loc) == VALUE)
3595 /* If this was marked during register canonicalization,
3596 we know we have to canonicalize values. */
3597 if (has_value)
3598 has_other = true;
3599 has_value = true;
3600 if (has_other)
3601 break;
3603 else
3605 has_other = true;
3606 if (has_value)
3607 break;
3611 if (has_value && has_other)
3613 for (node = *nodep; node; node = node->next)
3615 if (GET_CODE (node->loc) == VALUE)
3617 decl_or_value dv = dv_from_value (node->loc);
3618 void **slot = NULL;
3620 if (shared_hash_shared (dst->vars))
3621 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
3622 if (!slot)
3623 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
3624 INSERT);
3625 if (!*slot)
3627 variable var = (variable) pool_alloc (dv_pool (dv));
3628 var->dv = dv;
3629 var->refcount = 1;
3630 var->n_var_parts = 1;
3631 var->cur_loc_changed = false;
3632 var->in_changed_variables = false;
3633 var->var_part[0].offset = 0;
3634 var->var_part[0].loc_chain = NULL;
3635 var->var_part[0].cur_loc = NULL;
3636 *slot = var;
3639 VALUE_RECURSED_INTO (node->loc) = true;
3643 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3644 gcc_assert (*dstslot == dvar);
3645 canonicalize_values_star (dstslot, dst);
3646 gcc_checking_assert (dstslot
3647 == shared_hash_find_slot_noinsert_1 (dst->vars,
3648 dv, dvhash));
3649 dvar = (variable)*dstslot;
3653 if (!onepart_variable_different_p (dvar, s2var))
3655 variable_htab_free (dvar);
3656 *dstslot = dvar = s2var;
3657 dvar->refcount++;
3659 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
3661 variable_htab_free (dvar);
3662 *dstslot = dvar = s1var;
3663 dvar->refcount++;
3664 dst_can_be_shared = false;
3666 else
3667 dst_can_be_shared = false;
3669 return 1;
3672 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
3673 multi-part variable. Unions of multi-part variables and
3674 intersections of one-part ones will be handled in
3675 variable_merge_over_cur(). */
3677 static int
3678 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
3680 dataflow_set *dst = dsm->dst;
3681 decl_or_value dv = s2var->dv;
3682 bool onepart = dv_onepart_p (dv);
3684 if (!onepart)
3686 void **dstp = shared_hash_find_slot (dst->vars, dv);
3687 *dstp = s2var;
3688 s2var->refcount++;
3689 return 1;
3692 dsm->src_onepart_cnt++;
3693 return 1;
3696 /* Combine dataflow set information from SRC2 into DST, using PDST
3697 to carry over information across passes. */
3699 static void
3700 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
3702 dataflow_set cur = *dst;
3703 dataflow_set *src1 = &cur;
3704 struct dfset_merge dsm;
3705 int i;
3706 size_t src1_elems, src2_elems;
3707 htab_iterator hi;
3708 variable var;
3710 src1_elems = htab_elements (shared_hash_htab (src1->vars));
3711 src2_elems = htab_elements (shared_hash_htab (src2->vars));
3712 dataflow_set_init (dst);
3713 dst->stack_adjust = cur.stack_adjust;
3714 shared_hash_destroy (dst->vars);
3715 dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
3716 dst->vars->refcount = 1;
3717 dst->vars->htab
3718 = htab_create (MAX (src1_elems, src2_elems), variable_htab_hash,
3719 variable_htab_eq, variable_htab_free);
3721 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3722 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
3724 dsm.dst = dst;
3725 dsm.src = src2;
3726 dsm.cur = src1;
3727 dsm.src_onepart_cnt = 0;
3729 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (dsm.src->vars), var, variable, hi)
3730 variable_merge_over_src (var, &dsm);
3731 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (dsm.cur->vars), var, variable, hi)
3732 variable_merge_over_cur (var, &dsm);
3734 if (dsm.src_onepart_cnt)
3735 dst_can_be_shared = false;
3737 dataflow_set_destroy (src1);
3740 /* Mark register equivalences. */
3742 static void
3743 dataflow_set_equiv_regs (dataflow_set *set)
3745 int i;
3746 attrs list, *listp;
3748 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3750 rtx canon[NUM_MACHINE_MODES];
3752 /* If the list is empty or one entry, no need to canonicalize
3753 anything. */
3754 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
3755 continue;
3757 memset (canon, 0, sizeof (canon));
3759 for (list = set->regs[i]; list; list = list->next)
3760 if (list->offset == 0 && dv_is_value_p (list->dv))
3762 rtx val = dv_as_value (list->dv);
3763 rtx *cvalp = &canon[(int)GET_MODE (val)];
3764 rtx cval = *cvalp;
3766 if (canon_value_cmp (val, cval))
3767 *cvalp = val;
3770 for (list = set->regs[i]; list; list = list->next)
3771 if (list->offset == 0 && dv_onepart_p (list->dv))
3773 rtx cval = canon[(int)GET_MODE (list->loc)];
3775 if (!cval)
3776 continue;
3778 if (dv_is_value_p (list->dv))
3780 rtx val = dv_as_value (list->dv);
3782 if (val == cval)
3783 continue;
3785 VALUE_RECURSED_INTO (val) = true;
3786 set_variable_part (set, val, dv_from_value (cval), 0,
3787 VAR_INIT_STATUS_INITIALIZED,
3788 NULL, NO_INSERT);
3791 VALUE_RECURSED_INTO (cval) = true;
3792 set_variable_part (set, cval, list->dv, 0,
3793 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
3796 for (listp = &set->regs[i]; (list = *listp);
3797 listp = list ? &list->next : listp)
3798 if (list->offset == 0 && dv_onepart_p (list->dv))
3800 rtx cval = canon[(int)GET_MODE (list->loc)];
3801 void **slot;
3803 if (!cval)
3804 continue;
3806 if (dv_is_value_p (list->dv))
3808 rtx val = dv_as_value (list->dv);
3809 if (!VALUE_RECURSED_INTO (val))
3810 continue;
3813 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
3814 canonicalize_values_star (slot, set);
3815 if (*listp != list)
3816 list = NULL;
3821 /* Remove any redundant values in the location list of VAR, which must
3822 be unshared and 1-part. */
3824 static void
3825 remove_duplicate_values (variable var)
3827 location_chain node, *nodep;
3829 gcc_assert (dv_onepart_p (var->dv));
3830 gcc_assert (var->n_var_parts == 1);
3831 gcc_assert (var->refcount == 1);
3833 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
3835 if (GET_CODE (node->loc) == VALUE)
3837 if (VALUE_RECURSED_INTO (node->loc))
3839 /* Remove duplicate value node. */
3840 *nodep = node->next;
3841 pool_free (loc_chain_pool, node);
3842 continue;
3844 else
3845 VALUE_RECURSED_INTO (node->loc) = true;
3847 nodep = &node->next;
3850 for (node = var->var_part[0].loc_chain; node; node = node->next)
3851 if (GET_CODE (node->loc) == VALUE)
3853 gcc_assert (VALUE_RECURSED_INTO (node->loc));
3854 VALUE_RECURSED_INTO (node->loc) = false;
3859 /* Hash table iteration argument passed to variable_post_merge. */
3860 struct dfset_post_merge
3862 /* The new input set for the current block. */
3863 dataflow_set *set;
3864 /* Pointer to the permanent input set for the current block, or
3865 NULL. */
3866 dataflow_set **permp;
3869 /* Create values for incoming expressions associated with one-part
3870 variables that don't have value numbers for them. */
3872 static int
3873 variable_post_merge_new_vals (void **slot, void *info)
3875 struct dfset_post_merge *dfpm = (struct dfset_post_merge *)info;
3876 dataflow_set *set = dfpm->set;
3877 variable var = (variable)*slot;
3878 location_chain node;
3880 if (!dv_onepart_p (var->dv) || !var->n_var_parts)
3881 return 1;
3883 gcc_assert (var->n_var_parts == 1);
3885 if (dv_is_decl_p (var->dv))
3887 bool check_dupes = false;
3889 restart:
3890 for (node = var->var_part[0].loc_chain; node; node = node->next)
3892 if (GET_CODE (node->loc) == VALUE)
3893 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
3894 else if (GET_CODE (node->loc) == REG)
3896 attrs att, *attp, *curp = NULL;
3898 if (var->refcount != 1)
3900 slot = unshare_variable (set, slot, var,
3901 VAR_INIT_STATUS_INITIALIZED);
3902 var = (variable)*slot;
3903 goto restart;
3906 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
3907 attp = &att->next)
3908 if (att->offset == 0
3909 && GET_MODE (att->loc) == GET_MODE (node->loc))
3911 if (dv_is_value_p (att->dv))
3913 rtx cval = dv_as_value (att->dv);
3914 node->loc = cval;
3915 check_dupes = true;
3916 break;
3918 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
3919 curp = attp;
3922 if (!curp)
3924 curp = attp;
3925 while (*curp)
3926 if ((*curp)->offset == 0
3927 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
3928 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
3929 break;
3930 else
3931 curp = &(*curp)->next;
3932 gcc_assert (*curp);
3935 if (!att)
3937 decl_or_value cdv;
3938 rtx cval;
3940 if (!*dfpm->permp)
3942 *dfpm->permp = XNEW (dataflow_set);
3943 dataflow_set_init (*dfpm->permp);
3946 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
3947 att; att = att->next)
3948 if (GET_MODE (att->loc) == GET_MODE (node->loc))
3950 gcc_assert (att->offset == 0
3951 && dv_is_value_p (att->dv));
3952 val_reset (set, att->dv);
3953 break;
3956 if (att)
3958 cdv = att->dv;
3959 cval = dv_as_value (cdv);
3961 else
3963 /* Create a unique value to hold this register,
3964 that ought to be found and reused in
3965 subsequent rounds. */
3966 cselib_val *v;
3967 gcc_assert (!cselib_lookup (node->loc,
3968 GET_MODE (node->loc), 0,
3969 VOIDmode));
3970 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
3971 VOIDmode);
3972 cselib_preserve_value (v);
3973 cselib_invalidate_rtx (node->loc);
3974 cval = v->val_rtx;
3975 cdv = dv_from_value (cval);
3976 if (dump_file)
3977 fprintf (dump_file,
3978 "Created new value %u:%u for reg %i\n",
3979 v->uid, v->hash, REGNO (node->loc));
3982 var_reg_decl_set (*dfpm->permp, node->loc,
3983 VAR_INIT_STATUS_INITIALIZED,
3984 cdv, 0, NULL, INSERT);
3986 node->loc = cval;
3987 check_dupes = true;
3990 /* Remove attribute referring to the decl, which now
3991 uses the value for the register, already existing or
3992 to be added when we bring perm in. */
3993 att = *curp;
3994 *curp = att->next;
3995 pool_free (attrs_pool, att);
3999 if (check_dupes)
4000 remove_duplicate_values (var);
4003 return 1;
4006 /* Reset values in the permanent set that are not associated with the
4007 chosen expression. */
4009 static int
4010 variable_post_merge_perm_vals (void **pslot, void *info)
4012 struct dfset_post_merge *dfpm = (struct dfset_post_merge *)info;
4013 dataflow_set *set = dfpm->set;
4014 variable pvar = (variable)*pslot, var;
4015 location_chain pnode;
4016 decl_or_value dv;
4017 attrs att;
4019 gcc_assert (dv_is_value_p (pvar->dv)
4020 && pvar->n_var_parts == 1);
4021 pnode = pvar->var_part[0].loc_chain;
4022 gcc_assert (pnode
4023 && !pnode->next
4024 && REG_P (pnode->loc));
4026 dv = pvar->dv;
4028 var = shared_hash_find (set->vars, dv);
4029 if (var)
4031 /* Although variable_post_merge_new_vals may have made decls
4032 non-star-canonical, values that pre-existed in canonical form
4033 remain canonical, and newly-created values reference a single
4034 REG, so they are canonical as well. Since VAR has the
4035 location list for a VALUE, using find_loc_in_1pdv for it is
4036 fine, since VALUEs don't map back to DECLs. */
4037 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4038 return 1;
4039 val_reset (set, dv);
4042 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4043 if (att->offset == 0
4044 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4045 && dv_is_value_p (att->dv))
4046 break;
4048 /* If there is a value associated with this register already, create
4049 an equivalence. */
4050 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4052 rtx cval = dv_as_value (att->dv);
4053 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4054 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4055 NULL, INSERT);
4057 else if (!att)
4059 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4060 dv, 0, pnode->loc);
4061 variable_union (pvar, set);
4064 return 1;
4067 /* Just checking stuff and registering register attributes for
4068 now. */
4070 static void
4071 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4073 struct dfset_post_merge dfpm;
4075 dfpm.set = set;
4076 dfpm.permp = permp;
4078 htab_traverse (shared_hash_htab (set->vars), variable_post_merge_new_vals,
4079 &dfpm);
4080 if (*permp)
4081 htab_traverse (shared_hash_htab ((*permp)->vars),
4082 variable_post_merge_perm_vals, &dfpm);
4083 htab_traverse (shared_hash_htab (set->vars), canonicalize_values_star, set);
4084 htab_traverse (shared_hash_htab (set->vars), canonicalize_vars_star, set);
4087 /* Return a node whose loc is a MEM that refers to EXPR in the
4088 location list of a one-part variable or value VAR, or in that of
4089 any values recursively mentioned in the location lists. */
4091 static location_chain
4092 find_mem_expr_in_1pdv (tree expr, rtx val, htab_t vars)
4094 location_chain node;
4095 decl_or_value dv;
4096 variable var;
4097 location_chain where = NULL;
4099 if (!val)
4100 return NULL;
4102 gcc_assert (GET_CODE (val) == VALUE
4103 && !VALUE_RECURSED_INTO (val));
4105 dv = dv_from_value (val);
4106 var = (variable) htab_find_with_hash (vars, dv, dv_htab_hash (dv));
4108 if (!var)
4109 return NULL;
4111 gcc_assert (dv_onepart_p (var->dv));
4113 if (!var->n_var_parts)
4114 return NULL;
4116 gcc_assert (var->var_part[0].offset == 0);
4118 VALUE_RECURSED_INTO (val) = true;
4120 for (node = var->var_part[0].loc_chain; node; node = node->next)
4121 if (MEM_P (node->loc)
4122 && MEM_EXPR (node->loc) == expr
4123 && INT_MEM_OFFSET (node->loc) == 0)
4125 where = node;
4126 break;
4128 else if (GET_CODE (node->loc) == VALUE
4129 && !VALUE_RECURSED_INTO (node->loc)
4130 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4131 break;
4133 VALUE_RECURSED_INTO (val) = false;
4135 return where;
4138 /* Return TRUE if the value of MEM may vary across a call. */
4140 static bool
4141 mem_dies_at_call (rtx mem)
4143 tree expr = MEM_EXPR (mem);
4144 tree decl;
4146 if (!expr)
4147 return true;
4149 decl = get_base_address (expr);
4151 if (!decl)
4152 return true;
4154 if (!DECL_P (decl))
4155 return true;
4157 return (may_be_aliased (decl)
4158 || (!TREE_READONLY (decl) && is_global_var (decl)));
4161 /* Remove all MEMs from the location list of a hash table entry for a
4162 one-part variable, except those whose MEM attributes map back to
4163 the variable itself, directly or within a VALUE. */
4165 static int
4166 dataflow_set_preserve_mem_locs (void **slot, void *data)
4168 dataflow_set *set = (dataflow_set *) data;
4169 variable var = (variable) *slot;
4171 if (dv_is_decl_p (var->dv) && dv_onepart_p (var->dv))
4173 tree decl = dv_as_decl (var->dv);
4174 location_chain loc, *locp;
4175 bool changed = false;
4177 if (!var->n_var_parts)
4178 return 1;
4180 gcc_assert (var->n_var_parts == 1);
4182 if (shared_var_p (var, set->vars))
4184 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4186 /* We want to remove dying MEMs that doesn't refer to DECL. */
4187 if (GET_CODE (loc->loc) == MEM
4188 && (MEM_EXPR (loc->loc) != decl
4189 || INT_MEM_OFFSET (loc->loc) != 0)
4190 && !mem_dies_at_call (loc->loc))
4191 break;
4192 /* We want to move here MEMs that do refer to DECL. */
4193 else if (GET_CODE (loc->loc) == VALUE
4194 && find_mem_expr_in_1pdv (decl, loc->loc,
4195 shared_hash_htab (set->vars)))
4196 break;
4199 if (!loc)
4200 return 1;
4202 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4203 var = (variable)*slot;
4204 gcc_assert (var->n_var_parts == 1);
4207 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4208 loc; loc = *locp)
4210 rtx old_loc = loc->loc;
4211 if (GET_CODE (old_loc) == VALUE)
4213 location_chain mem_node
4214 = find_mem_expr_in_1pdv (decl, loc->loc,
4215 shared_hash_htab (set->vars));
4217 /* ??? This picks up only one out of multiple MEMs that
4218 refer to the same variable. Do we ever need to be
4219 concerned about dealing with more than one, or, given
4220 that they should all map to the same variable
4221 location, their addresses will have been merged and
4222 they will be regarded as equivalent? */
4223 if (mem_node)
4225 loc->loc = mem_node->loc;
4226 loc->set_src = mem_node->set_src;
4227 loc->init = MIN (loc->init, mem_node->init);
4231 if (GET_CODE (loc->loc) != MEM
4232 || (MEM_EXPR (loc->loc) == decl
4233 && INT_MEM_OFFSET (loc->loc) == 0)
4234 || !mem_dies_at_call (loc->loc))
4236 if (old_loc != loc->loc && emit_notes)
4238 if (old_loc == var->var_part[0].cur_loc)
4240 changed = true;
4241 var->var_part[0].cur_loc = NULL;
4242 var->cur_loc_changed = true;
4244 add_value_chains (var->dv, loc->loc);
4245 remove_value_chains (var->dv, old_loc);
4247 locp = &loc->next;
4248 continue;
4251 if (emit_notes)
4253 remove_value_chains (var->dv, old_loc);
4254 if (old_loc == var->var_part[0].cur_loc)
4256 changed = true;
4257 var->var_part[0].cur_loc = NULL;
4258 var->cur_loc_changed = true;
4261 *locp = loc->next;
4262 pool_free (loc_chain_pool, loc);
4265 if (!var->var_part[0].loc_chain)
4267 var->n_var_parts--;
4268 changed = true;
4270 if (changed)
4271 variable_was_changed (var, set);
4274 return 1;
4277 /* Remove all MEMs from the location list of a hash table entry for a
4278 value. */
4280 static int
4281 dataflow_set_remove_mem_locs (void **slot, void *data)
4283 dataflow_set *set = (dataflow_set *) data;
4284 variable var = (variable) *slot;
4286 if (dv_is_value_p (var->dv))
4288 location_chain loc, *locp;
4289 bool changed = false;
4291 gcc_assert (var->n_var_parts == 1);
4293 if (shared_var_p (var, set->vars))
4295 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4296 if (GET_CODE (loc->loc) == MEM
4297 && mem_dies_at_call (loc->loc))
4298 break;
4300 if (!loc)
4301 return 1;
4303 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4304 var = (variable)*slot;
4305 gcc_assert (var->n_var_parts == 1);
4308 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4309 loc; loc = *locp)
4311 if (GET_CODE (loc->loc) != MEM
4312 || !mem_dies_at_call (loc->loc))
4314 locp = &loc->next;
4315 continue;
4318 if (emit_notes)
4319 remove_value_chains (var->dv, loc->loc);
4320 *locp = loc->next;
4321 /* If we have deleted the location which was last emitted
4322 we have to emit new location so add the variable to set
4323 of changed variables. */
4324 if (var->var_part[0].cur_loc == loc->loc)
4326 changed = true;
4327 var->var_part[0].cur_loc = NULL;
4328 var->cur_loc_changed = true;
4330 pool_free (loc_chain_pool, loc);
4333 if (!var->var_part[0].loc_chain)
4335 var->n_var_parts--;
4336 changed = true;
4338 if (changed)
4339 variable_was_changed (var, set);
4342 return 1;
4345 /* Remove all variable-location information about call-clobbered
4346 registers, as well as associations between MEMs and VALUEs. */
4348 static void
4349 dataflow_set_clear_at_call (dataflow_set *set)
4351 int r;
4353 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
4354 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, r))
4355 var_regno_delete (set, r);
4357 if (MAY_HAVE_DEBUG_INSNS)
4359 set->traversed_vars = set->vars;
4360 htab_traverse (shared_hash_htab (set->vars),
4361 dataflow_set_preserve_mem_locs, set);
4362 set->traversed_vars = set->vars;
4363 htab_traverse (shared_hash_htab (set->vars), dataflow_set_remove_mem_locs,
4364 set);
4365 set->traversed_vars = NULL;
4369 static bool
4370 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4372 location_chain lc1, lc2;
4374 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4376 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4378 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4380 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4381 break;
4383 if (rtx_equal_p (lc1->loc, lc2->loc))
4384 break;
4386 if (!lc2)
4387 return true;
4389 return false;
4392 /* Return true if one-part variables VAR1 and VAR2 are different.
4393 They must be in canonical order. */
4395 static bool
4396 onepart_variable_different_p (variable var1, variable var2)
4398 location_chain lc1, lc2;
4400 if (var1 == var2)
4401 return false;
4403 gcc_assert (var1->n_var_parts == 1
4404 && var2->n_var_parts == 1);
4406 lc1 = var1->var_part[0].loc_chain;
4407 lc2 = var2->var_part[0].loc_chain;
4409 gcc_assert (lc1 && lc2);
4411 while (lc1 && lc2)
4413 if (loc_cmp (lc1->loc, lc2->loc))
4414 return true;
4415 lc1 = lc1->next;
4416 lc2 = lc2->next;
4419 return lc1 != lc2;
4422 /* Return true if variables VAR1 and VAR2 are different. */
4424 static bool
4425 variable_different_p (variable var1, variable var2)
4427 int i;
4429 if (var1 == var2)
4430 return false;
4432 if (var1->n_var_parts != var2->n_var_parts)
4433 return true;
4435 for (i = 0; i < var1->n_var_parts; i++)
4437 if (var1->var_part[i].offset != var2->var_part[i].offset)
4438 return true;
4439 /* One-part values have locations in a canonical order. */
4440 if (i == 0 && var1->var_part[i].offset == 0 && dv_onepart_p (var1->dv))
4442 gcc_assert (var1->n_var_parts == 1
4443 && dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv));
4444 return onepart_variable_different_p (var1, var2);
4446 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4447 return true;
4448 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4449 return true;
4451 return false;
4454 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4456 static bool
4457 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4459 htab_iterator hi;
4460 variable var1;
4462 if (old_set->vars == new_set->vars)
4463 return false;
4465 if (htab_elements (shared_hash_htab (old_set->vars))
4466 != htab_elements (shared_hash_htab (new_set->vars)))
4467 return true;
4469 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (old_set->vars), var1, variable, hi)
4471 htab_t htab = shared_hash_htab (new_set->vars);
4472 variable var2 = (variable) htab_find_with_hash (htab, var1->dv,
4473 dv_htab_hash (var1->dv));
4474 if (!var2)
4476 if (dump_file && (dump_flags & TDF_DETAILS))
4478 fprintf (dump_file, "dataflow difference found: removal of:\n");
4479 dump_var (var1);
4481 return true;
4484 if (variable_different_p (var1, var2))
4486 if (dump_file && (dump_flags & TDF_DETAILS))
4488 fprintf (dump_file, "dataflow difference found: "
4489 "old and new follow:\n");
4490 dump_var (var1);
4491 dump_var (var2);
4493 return true;
4497 /* No need to traverse the second hashtab, if both have the same number
4498 of elements and the second one had all entries found in the first one,
4499 then it can't have any extra entries. */
4500 return false;
4503 /* Free the contents of dataflow set SET. */
4505 static void
4506 dataflow_set_destroy (dataflow_set *set)
4508 int i;
4510 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4511 attrs_list_clear (&set->regs[i]);
4513 shared_hash_destroy (set->vars);
4514 set->vars = NULL;
4517 /* Return true if RTL X contains a SYMBOL_REF. */
4519 static bool
4520 contains_symbol_ref (rtx x)
4522 const char *fmt;
4523 RTX_CODE code;
4524 int i;
4526 if (!x)
4527 return false;
4529 code = GET_CODE (x);
4530 if (code == SYMBOL_REF)
4531 return true;
4533 fmt = GET_RTX_FORMAT (code);
4534 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4536 if (fmt[i] == 'e')
4538 if (contains_symbol_ref (XEXP (x, i)))
4539 return true;
4541 else if (fmt[i] == 'E')
4543 int j;
4544 for (j = 0; j < XVECLEN (x, i); j++)
4545 if (contains_symbol_ref (XVECEXP (x, i, j)))
4546 return true;
4550 return false;
4553 /* Shall EXPR be tracked? */
4555 static bool
4556 track_expr_p (tree expr, bool need_rtl)
4558 rtx decl_rtl;
4559 tree realdecl;
4561 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
4562 return DECL_RTL_SET_P (expr);
4564 /* If EXPR is not a parameter or a variable do not track it. */
4565 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
4566 return 0;
4568 /* It also must have a name... */
4569 if (!DECL_NAME (expr) && need_rtl)
4570 return 0;
4572 /* ... and a RTL assigned to it. */
4573 decl_rtl = DECL_RTL_IF_SET (expr);
4574 if (!decl_rtl && need_rtl)
4575 return 0;
4577 /* If this expression is really a debug alias of some other declaration, we
4578 don't need to track this expression if the ultimate declaration is
4579 ignored. */
4580 realdecl = expr;
4581 if (DECL_DEBUG_EXPR_IS_FROM (realdecl))
4583 realdecl = DECL_DEBUG_EXPR (realdecl);
4584 if (realdecl == NULL_TREE)
4585 realdecl = expr;
4586 else if (!DECL_P (realdecl))
4588 if (handled_component_p (realdecl))
4590 HOST_WIDE_INT bitsize, bitpos, maxsize;
4591 tree innerdecl
4592 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
4593 &maxsize);
4594 if (!DECL_P (innerdecl)
4595 || DECL_IGNORED_P (innerdecl)
4596 || TREE_STATIC (innerdecl)
4597 || bitsize <= 0
4598 || bitpos + bitsize > 256
4599 || bitsize != maxsize)
4600 return 0;
4601 else
4602 realdecl = expr;
4604 else
4605 return 0;
4609 /* Do not track EXPR if REALDECL it should be ignored for debugging
4610 purposes. */
4611 if (DECL_IGNORED_P (realdecl))
4612 return 0;
4614 /* Do not track global variables until we are able to emit correct location
4615 list for them. */
4616 if (TREE_STATIC (realdecl))
4617 return 0;
4619 /* When the EXPR is a DECL for alias of some variable (see example)
4620 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
4621 DECL_RTL contains SYMBOL_REF.
4623 Example:
4624 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
4625 char **_dl_argv;
4627 if (decl_rtl && MEM_P (decl_rtl)
4628 && contains_symbol_ref (XEXP (decl_rtl, 0)))
4629 return 0;
4631 /* If RTX is a memory it should not be very large (because it would be
4632 an array or struct). */
4633 if (decl_rtl && MEM_P (decl_rtl))
4635 /* Do not track structures and arrays. */
4636 if (GET_MODE (decl_rtl) == BLKmode
4637 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
4638 return 0;
4639 if (MEM_SIZE (decl_rtl)
4640 && INTVAL (MEM_SIZE (decl_rtl)) > MAX_VAR_PARTS)
4641 return 0;
4644 DECL_CHANGED (expr) = 0;
4645 DECL_CHANGED (realdecl) = 0;
4646 return 1;
4649 /* Determine whether a given LOC refers to the same variable part as
4650 EXPR+OFFSET. */
4652 static bool
4653 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
4655 tree expr2;
4656 HOST_WIDE_INT offset2;
4658 if (! DECL_P (expr))
4659 return false;
4661 if (REG_P (loc))
4663 expr2 = REG_EXPR (loc);
4664 offset2 = REG_OFFSET (loc);
4666 else if (MEM_P (loc))
4668 expr2 = MEM_EXPR (loc);
4669 offset2 = INT_MEM_OFFSET (loc);
4671 else
4672 return false;
4674 if (! expr2 || ! DECL_P (expr2))
4675 return false;
4677 expr = var_debug_decl (expr);
4678 expr2 = var_debug_decl (expr2);
4680 return (expr == expr2 && offset == offset2);
4683 /* LOC is a REG or MEM that we would like to track if possible.
4684 If EXPR is null, we don't know what expression LOC refers to,
4685 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
4686 LOC is an lvalue register.
4688 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
4689 is something we can track. When returning true, store the mode of
4690 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
4691 from EXPR in *OFFSET_OUT (if nonnull). */
4693 static bool
4694 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
4695 enum machine_mode *mode_out, HOST_WIDE_INT *offset_out)
4697 enum machine_mode mode;
4699 if (expr == NULL || !track_expr_p (expr, true))
4700 return false;
4702 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
4703 whole subreg, but only the old inner part is really relevant. */
4704 mode = GET_MODE (loc);
4705 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
4707 enum machine_mode pseudo_mode;
4709 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
4710 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
4712 offset += byte_lowpart_offset (pseudo_mode, mode);
4713 mode = pseudo_mode;
4717 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
4718 Do the same if we are storing to a register and EXPR occupies
4719 the whole of register LOC; in that case, the whole of EXPR is
4720 being changed. We exclude complex modes from the second case
4721 because the real and imaginary parts are represented as separate
4722 pseudo registers, even if the whole complex value fits into one
4723 hard register. */
4724 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
4725 || (store_reg_p
4726 && !COMPLEX_MODE_P (DECL_MODE (expr))
4727 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
4728 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
4730 mode = DECL_MODE (expr);
4731 offset = 0;
4734 if (offset < 0 || offset >= MAX_VAR_PARTS)
4735 return false;
4737 if (mode_out)
4738 *mode_out = mode;
4739 if (offset_out)
4740 *offset_out = offset;
4741 return true;
4744 /* Return the MODE lowpart of LOC, or null if LOC is not something we
4745 want to track. When returning nonnull, make sure that the attributes
4746 on the returned value are updated. */
4748 static rtx
4749 var_lowpart (enum machine_mode mode, rtx loc)
4751 unsigned int offset, reg_offset, regno;
4753 if (!REG_P (loc) && !MEM_P (loc))
4754 return NULL;
4756 if (GET_MODE (loc) == mode)
4757 return loc;
4759 offset = byte_lowpart_offset (mode, GET_MODE (loc));
4761 if (MEM_P (loc))
4762 return adjust_address_nv (loc, mode, offset);
4764 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
4765 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
4766 reg_offset, mode);
4767 return gen_rtx_REG_offset (loc, mode, regno, offset);
4770 /* Carry information about uses and stores while walking rtx. */
4772 struct count_use_info
4774 /* The insn where the RTX is. */
4775 rtx insn;
4777 /* The basic block where insn is. */
4778 basic_block bb;
4780 /* The array of n_sets sets in the insn, as determined by cselib. */
4781 struct cselib_set *sets;
4782 int n_sets;
4784 /* True if we're counting stores, false otherwise. */
4785 bool store_p;
4788 /* Find a VALUE corresponding to X. */
4790 static inline cselib_val *
4791 find_use_val (rtx x, enum machine_mode mode, struct count_use_info *cui)
4793 int i;
4795 if (cui->sets)
4797 /* This is called after uses are set up and before stores are
4798 processed by cselib, so it's safe to look up srcs, but not
4799 dsts. So we look up expressions that appear in srcs or in
4800 dest expressions, but we search the sets array for dests of
4801 stores. */
4802 if (cui->store_p)
4804 /* Some targets represent memset and memcpy patterns
4805 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
4806 (set (mem:BLK ...) (const_int ...)) or
4807 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
4808 in that case, otherwise we end up with mode mismatches. */
4809 if (mode == BLKmode && MEM_P (x))
4810 return NULL;
4811 for (i = 0; i < cui->n_sets; i++)
4812 if (cui->sets[i].dest == x)
4813 return cui->sets[i].src_elt;
4815 else
4816 return cselib_lookup (x, mode, 0, VOIDmode);
4819 return NULL;
4822 /* Helper function to get mode of MEM's address. */
4824 static inline enum machine_mode
4825 get_address_mode (rtx mem)
4827 enum machine_mode mode = GET_MODE (XEXP (mem, 0));
4828 if (mode != VOIDmode)
4829 return mode;
4830 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
4833 /* Replace all registers and addresses in an expression with VALUE
4834 expressions that map back to them, unless the expression is a
4835 register. If no mapping is or can be performed, returns NULL. */
4837 static rtx
4838 replace_expr_with_values (rtx loc)
4840 if (REG_P (loc))
4841 return NULL;
4842 else if (MEM_P (loc))
4844 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
4845 get_address_mode (loc), 0,
4846 GET_MODE (loc));
4847 if (addr)
4848 return replace_equiv_address_nv (loc, addr->val_rtx);
4849 else
4850 return NULL;
4852 else
4853 return cselib_subst_to_values (loc, VOIDmode);
4856 /* Determine what kind of micro operation to choose for a USE. Return
4857 MO_CLOBBER if no micro operation is to be generated. */
4859 static enum micro_operation_type
4860 use_type (rtx loc, struct count_use_info *cui, enum machine_mode *modep)
4862 tree expr;
4864 if (cui && cui->sets)
4866 if (GET_CODE (loc) == VAR_LOCATION)
4868 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
4870 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
4871 if (! VAR_LOC_UNKNOWN_P (ploc))
4873 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
4874 VOIDmode);
4876 /* ??? flag_float_store and volatile mems are never
4877 given values, but we could in theory use them for
4878 locations. */
4879 gcc_assert (val || 1);
4881 return MO_VAL_LOC;
4883 else
4884 return MO_CLOBBER;
4887 if (REG_P (loc) || MEM_P (loc))
4889 if (modep)
4890 *modep = GET_MODE (loc);
4891 if (cui->store_p)
4893 if (REG_P (loc)
4894 || (find_use_val (loc, GET_MODE (loc), cui)
4895 && cselib_lookup (XEXP (loc, 0),
4896 get_address_mode (loc), 0,
4897 GET_MODE (loc))))
4898 return MO_VAL_SET;
4900 else
4902 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
4904 if (val && !cselib_preserved_value_p (val))
4905 return MO_VAL_USE;
4910 if (REG_P (loc))
4912 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
4914 if (loc == cfa_base_rtx)
4915 return MO_CLOBBER;
4916 expr = REG_EXPR (loc);
4918 if (!expr)
4919 return MO_USE_NO_VAR;
4920 else if (target_for_debug_bind (var_debug_decl (expr)))
4921 return MO_CLOBBER;
4922 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
4923 false, modep, NULL))
4924 return MO_USE;
4925 else
4926 return MO_USE_NO_VAR;
4928 else if (MEM_P (loc))
4930 expr = MEM_EXPR (loc);
4932 if (!expr)
4933 return MO_CLOBBER;
4934 else if (target_for_debug_bind (var_debug_decl (expr)))
4935 return MO_CLOBBER;
4936 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
4937 false, modep, NULL))
4938 return MO_USE;
4939 else
4940 return MO_CLOBBER;
4943 return MO_CLOBBER;
4946 /* Log to OUT information about micro-operation MOPT involving X in
4947 INSN of BB. */
4949 static inline void
4950 log_op_type (rtx x, basic_block bb, rtx insn,
4951 enum micro_operation_type mopt, FILE *out)
4953 fprintf (out, "bb %i op %i insn %i %s ",
4954 bb->index, VEC_length (micro_operation, VTI (bb)->mos),
4955 INSN_UID (insn), micro_operation_type_name[mopt]);
4956 print_inline_rtx (out, x, 2);
4957 fputc ('\n', out);
4960 /* Tell whether the CONCAT used to holds a VALUE and its location
4961 needs value resolution, i.e., an attempt of mapping the location
4962 back to other incoming values. */
4963 #define VAL_NEEDS_RESOLUTION(x) \
4964 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
4965 /* Whether the location in the CONCAT is a tracked expression, that
4966 should also be handled like a MO_USE. */
4967 #define VAL_HOLDS_TRACK_EXPR(x) \
4968 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
4969 /* Whether the location in the CONCAT should be handled like a MO_COPY
4970 as well. */
4971 #define VAL_EXPR_IS_COPIED(x) \
4972 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
4973 /* Whether the location in the CONCAT should be handled like a
4974 MO_CLOBBER as well. */
4975 #define VAL_EXPR_IS_CLOBBERED(x) \
4976 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
4977 /* Whether the location is a CONCAT of the MO_VAL_SET expression and
4978 a reverse operation that should be handled afterwards. */
4979 #define VAL_EXPR_HAS_REVERSE(x) \
4980 (RTL_FLAG_CHECK1 ("VAL_EXPR_HAS_REVERSE", (x), CONCAT)->return_val)
4982 /* All preserved VALUEs. */
4983 static VEC (rtx, heap) *preserved_values;
4985 /* Registers used in the current function for passing parameters. */
4986 static HARD_REG_SET argument_reg_set;
4988 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
4990 static void
4991 preserve_value (cselib_val *val)
4993 cselib_preserve_value (val);
4994 VEC_safe_push (rtx, heap, preserved_values, val->val_rtx);
4997 /* Helper function for MO_VAL_LOC handling. Return non-zero if
4998 any rtxes not suitable for CONST use not replaced by VALUEs
4999 are discovered. */
5001 static int
5002 non_suitable_const (rtx *x, void *data ATTRIBUTE_UNUSED)
5004 if (*x == NULL_RTX)
5005 return 0;
5007 switch (GET_CODE (*x))
5009 case REG:
5010 case DEBUG_EXPR:
5011 case PC:
5012 case SCRATCH:
5013 case CC0:
5014 case ASM_INPUT:
5015 case ASM_OPERANDS:
5016 return 1;
5017 case MEM:
5018 return !MEM_READONLY_P (*x);
5019 default:
5020 return 0;
5024 /* Add uses (register and memory references) LOC which will be tracked
5025 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
5027 static int
5028 add_uses (rtx *ploc, void *data)
5030 rtx loc = *ploc;
5031 enum machine_mode mode = VOIDmode;
5032 struct count_use_info *cui = (struct count_use_info *)data;
5033 enum micro_operation_type type = use_type (loc, cui, &mode);
5035 if (type != MO_CLOBBER)
5037 basic_block bb = cui->bb;
5038 micro_operation mo;
5040 mo.type = type;
5041 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5042 mo.insn = cui->insn;
5044 if (type == MO_VAL_LOC)
5046 rtx oloc = loc;
5047 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5048 cselib_val *val;
5050 gcc_assert (cui->sets);
5052 if (MEM_P (vloc)
5053 && !REG_P (XEXP (vloc, 0))
5054 && !MEM_P (XEXP (vloc, 0))
5055 && (GET_CODE (XEXP (vloc, 0)) != PLUS
5056 || XEXP (XEXP (vloc, 0), 0) != cfa_base_rtx
5057 || !CONST_INT_P (XEXP (XEXP (vloc, 0), 1))))
5059 rtx mloc = vloc;
5060 enum machine_mode address_mode = get_address_mode (mloc);
5061 cselib_val *val
5062 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5063 GET_MODE (mloc));
5065 if (val && !cselib_preserved_value_p (val))
5067 micro_operation moa;
5068 preserve_value (val);
5069 mloc = cselib_subst_to_values (XEXP (mloc, 0),
5070 GET_MODE (mloc));
5071 moa.type = MO_VAL_USE;
5072 moa.insn = cui->insn;
5073 moa.u.loc = gen_rtx_CONCAT (address_mode,
5074 val->val_rtx, mloc);
5075 if (dump_file && (dump_flags & TDF_DETAILS))
5076 log_op_type (moa.u.loc, cui->bb, cui->insn,
5077 moa.type, dump_file);
5078 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &moa);
5082 if (CONSTANT_P (vloc)
5083 && (GET_CODE (vloc) != CONST
5084 || for_each_rtx (&vloc, non_suitable_const, NULL)))
5085 /* For constants don't look up any value. */;
5086 else if (!VAR_LOC_UNKNOWN_P (vloc)
5087 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5089 enum machine_mode mode2;
5090 enum micro_operation_type type2;
5091 rtx nloc = replace_expr_with_values (vloc);
5093 if (nloc)
5095 oloc = shallow_copy_rtx (oloc);
5096 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5099 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5101 type2 = use_type (vloc, 0, &mode2);
5103 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5104 || type2 == MO_CLOBBER);
5106 if (type2 == MO_CLOBBER
5107 && !cselib_preserved_value_p (val))
5109 VAL_NEEDS_RESOLUTION (oloc) = 1;
5110 preserve_value (val);
5113 else if (!VAR_LOC_UNKNOWN_P (vloc))
5115 oloc = shallow_copy_rtx (oloc);
5116 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5119 mo.u.loc = oloc;
5121 else if (type == MO_VAL_USE)
5123 enum machine_mode mode2 = VOIDmode;
5124 enum micro_operation_type type2;
5125 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5126 rtx vloc, oloc = loc, nloc;
5128 gcc_assert (cui->sets);
5130 if (MEM_P (oloc)
5131 && !REG_P (XEXP (oloc, 0))
5132 && !MEM_P (XEXP (oloc, 0))
5133 && (GET_CODE (XEXP (oloc, 0)) != PLUS
5134 || XEXP (XEXP (oloc, 0), 0) != cfa_base_rtx
5135 || !CONST_INT_P (XEXP (XEXP (oloc, 0), 1))))
5137 rtx mloc = oloc;
5138 enum machine_mode address_mode = get_address_mode (mloc);
5139 cselib_val *val
5140 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5141 GET_MODE (mloc));
5143 if (val && !cselib_preserved_value_p (val))
5145 micro_operation moa;
5146 preserve_value (val);
5147 mloc = cselib_subst_to_values (XEXP (mloc, 0),
5148 GET_MODE (mloc));
5149 moa.type = MO_VAL_USE;
5150 moa.insn = cui->insn;
5151 moa.u.loc = gen_rtx_CONCAT (address_mode,
5152 val->val_rtx, mloc);
5153 if (dump_file && (dump_flags & TDF_DETAILS))
5154 log_op_type (moa.u.loc, cui->bb, cui->insn,
5155 moa.type, dump_file);
5156 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &moa);
5160 type2 = use_type (loc, 0, &mode2);
5162 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5163 || type2 == MO_CLOBBER);
5165 if (type2 == MO_USE)
5166 vloc = var_lowpart (mode2, loc);
5167 else
5168 vloc = oloc;
5170 /* The loc of a MO_VAL_USE may have two forms:
5172 (concat val src): val is at src, a value-based
5173 representation.
5175 (concat (concat val use) src): same as above, with use as
5176 the MO_USE tracked value, if it differs from src.
5180 nloc = replace_expr_with_values (loc);
5181 if (!nloc)
5182 nloc = oloc;
5184 if (vloc != nloc)
5185 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5186 else
5187 oloc = val->val_rtx;
5189 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5191 if (type2 == MO_USE)
5192 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5193 if (!cselib_preserved_value_p (val))
5195 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5196 preserve_value (val);
5199 else
5200 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5202 if (dump_file && (dump_flags & TDF_DETAILS))
5203 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5204 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5207 return 0;
5210 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5212 static void
5213 add_uses_1 (rtx *x, void *cui)
5215 for_each_rtx (x, add_uses, cui);
5218 /* Attempt to reverse the EXPR operation in the debug info. Say for
5219 reg1 = reg2 + 6 even when reg2 is no longer live we
5220 can express its value as VAL - 6. */
5222 static rtx
5223 reverse_op (rtx val, const_rtx expr)
5225 rtx src, arg, ret;
5226 cselib_val *v;
5227 enum rtx_code code;
5229 if (GET_CODE (expr) != SET)
5230 return NULL_RTX;
5232 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5233 return NULL_RTX;
5235 src = SET_SRC (expr);
5236 switch (GET_CODE (src))
5238 case PLUS:
5239 case MINUS:
5240 case XOR:
5241 case NOT:
5242 case NEG:
5243 if (!REG_P (XEXP (src, 0)))
5244 return NULL_RTX;
5245 break;
5246 case SIGN_EXTEND:
5247 case ZERO_EXTEND:
5248 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5249 return NULL_RTX;
5250 break;
5251 default:
5252 return NULL_RTX;
5255 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5256 return NULL_RTX;
5258 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5259 if (!v || !cselib_preserved_value_p (v))
5260 return NULL_RTX;
5262 switch (GET_CODE (src))
5264 case NOT:
5265 case NEG:
5266 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5267 return NULL_RTX;
5268 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5269 break;
5270 case SIGN_EXTEND:
5271 case ZERO_EXTEND:
5272 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5273 break;
5274 case XOR:
5275 code = XOR;
5276 goto binary;
5277 case PLUS:
5278 code = MINUS;
5279 goto binary;
5280 case MINUS:
5281 code = PLUS;
5282 goto binary;
5283 binary:
5284 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5285 return NULL_RTX;
5286 arg = XEXP (src, 1);
5287 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5289 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5290 if (arg == NULL_RTX)
5291 return NULL_RTX;
5292 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5293 return NULL_RTX;
5295 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5296 if (ret == val)
5297 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5298 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5299 breaks a lot of routines during var-tracking. */
5300 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5301 break;
5302 default:
5303 gcc_unreachable ();
5306 return gen_rtx_CONCAT (GET_MODE (v->val_rtx), v->val_rtx, ret);
5309 /* Add stores (register and memory references) LOC which will be tracked
5310 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5311 CUIP->insn is instruction which the LOC is part of. */
5313 static void
5314 add_stores (rtx loc, const_rtx expr, void *cuip)
5316 enum machine_mode mode = VOIDmode, mode2;
5317 struct count_use_info *cui = (struct count_use_info *)cuip;
5318 basic_block bb = cui->bb;
5319 micro_operation mo;
5320 rtx oloc = loc, nloc, src = NULL;
5321 enum micro_operation_type type = use_type (loc, cui, &mode);
5322 bool track_p = false;
5323 cselib_val *v;
5324 bool resolve, preserve;
5325 rtx reverse;
5327 if (type == MO_CLOBBER)
5328 return;
5330 mode2 = mode;
5332 if (REG_P (loc))
5334 gcc_assert (loc != cfa_base_rtx);
5335 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5336 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5337 || GET_CODE (expr) == CLOBBER)
5339 mo.type = MO_CLOBBER;
5340 mo.u.loc = loc;
5341 if (GET_CODE (expr) == SET
5342 && SET_DEST (expr) == loc
5343 && REGNO (loc) < FIRST_PSEUDO_REGISTER
5344 && TEST_HARD_REG_BIT (argument_reg_set, REGNO (loc))
5345 && find_use_val (loc, mode, cui)
5346 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5348 gcc_checking_assert (type == MO_VAL_SET);
5349 mo.u.loc = gen_rtx_SET (VOIDmode, loc, SET_SRC (expr));
5352 else
5354 if (GET_CODE (expr) == SET
5355 && SET_DEST (expr) == loc
5356 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5357 src = var_lowpart (mode2, SET_SRC (expr));
5358 loc = var_lowpart (mode2, loc);
5360 if (src == NULL)
5362 mo.type = MO_SET;
5363 mo.u.loc = loc;
5365 else
5367 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5368 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5369 mo.type = MO_COPY;
5370 else
5371 mo.type = MO_SET;
5372 mo.u.loc = xexpr;
5375 mo.insn = cui->insn;
5377 else if (MEM_P (loc)
5378 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5379 || cui->sets))
5381 if (MEM_P (loc) && type == MO_VAL_SET
5382 && !REG_P (XEXP (loc, 0))
5383 && !MEM_P (XEXP (loc, 0))
5384 && (GET_CODE (XEXP (loc, 0)) != PLUS
5385 || XEXP (XEXP (loc, 0), 0) != cfa_base_rtx
5386 || !CONST_INT_P (XEXP (XEXP (loc, 0), 1))))
5388 rtx mloc = loc;
5389 enum machine_mode address_mode = get_address_mode (mloc);
5390 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5391 address_mode, 0,
5392 GET_MODE (mloc));
5394 if (val && !cselib_preserved_value_p (val))
5396 preserve_value (val);
5397 mo.type = MO_VAL_USE;
5398 mloc = cselib_subst_to_values (XEXP (mloc, 0),
5399 GET_MODE (mloc));
5400 mo.u.loc = gen_rtx_CONCAT (address_mode, val->val_rtx, mloc);
5401 mo.insn = cui->insn;
5402 if (dump_file && (dump_flags & TDF_DETAILS))
5403 log_op_type (mo.u.loc, cui->bb, cui->insn,
5404 mo.type, dump_file);
5405 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5409 if (GET_CODE (expr) == CLOBBER || !track_p)
5411 mo.type = MO_CLOBBER;
5412 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5414 else
5416 if (GET_CODE (expr) == SET
5417 && SET_DEST (expr) == loc
5418 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5419 src = var_lowpart (mode2, SET_SRC (expr));
5420 loc = var_lowpart (mode2, loc);
5422 if (src == NULL)
5424 mo.type = MO_SET;
5425 mo.u.loc = loc;
5427 else
5429 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5430 if (same_variable_part_p (SET_SRC (xexpr),
5431 MEM_EXPR (loc),
5432 INT_MEM_OFFSET (loc)))
5433 mo.type = MO_COPY;
5434 else
5435 mo.type = MO_SET;
5436 mo.u.loc = xexpr;
5439 mo.insn = cui->insn;
5441 else
5442 return;
5444 if (type != MO_VAL_SET)
5445 goto log_and_return;
5447 v = find_use_val (oloc, mode, cui);
5449 if (!v)
5450 goto log_and_return;
5452 resolve = preserve = !cselib_preserved_value_p (v);
5454 nloc = replace_expr_with_values (oloc);
5455 if (nloc)
5456 oloc = nloc;
5458 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
5460 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
5462 gcc_assert (oval != v);
5463 gcc_assert (REG_P (oloc) || MEM_P (oloc));
5465 if (!cselib_preserved_value_p (oval))
5467 micro_operation moa;
5469 preserve_value (oval);
5471 moa.type = MO_VAL_USE;
5472 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
5473 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
5474 moa.insn = cui->insn;
5476 if (dump_file && (dump_flags & TDF_DETAILS))
5477 log_op_type (moa.u.loc, cui->bb, cui->insn,
5478 moa.type, dump_file);
5479 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &moa);
5482 resolve = false;
5484 else if (resolve && GET_CODE (mo.u.loc) == SET)
5486 nloc = replace_expr_with_values (SET_SRC (expr));
5488 /* Avoid the mode mismatch between oexpr and expr. */
5489 if (!nloc && mode != mode2)
5491 nloc = SET_SRC (expr);
5492 gcc_assert (oloc == SET_DEST (expr));
5495 if (nloc)
5496 oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
5497 else
5499 if (oloc == SET_DEST (mo.u.loc))
5500 /* No point in duplicating. */
5501 oloc = mo.u.loc;
5502 if (!REG_P (SET_SRC (mo.u.loc)))
5503 resolve = false;
5506 else if (!resolve)
5508 if (GET_CODE (mo.u.loc) == SET
5509 && oloc == SET_DEST (mo.u.loc))
5510 /* No point in duplicating. */
5511 oloc = mo.u.loc;
5513 else
5514 resolve = false;
5516 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
5518 if (mo.u.loc != oloc)
5519 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
5521 /* The loc of a MO_VAL_SET may have various forms:
5523 (concat val dst): dst now holds val
5525 (concat val (set dst src)): dst now holds val, copied from src
5527 (concat (concat val dstv) dst): dst now holds val; dstv is dst
5528 after replacing mems and non-top-level regs with values.
5530 (concat (concat val dstv) (set dst src)): dst now holds val,
5531 copied from src. dstv is a value-based representation of dst, if
5532 it differs from dst. If resolution is needed, src is a REG, and
5533 its mode is the same as that of val.
5535 (concat (concat val (set dstv srcv)) (set dst src)): src
5536 copied to dst, holding val. dstv and srcv are value-based
5537 representations of dst and src, respectively.
5541 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
5543 reverse = reverse_op (v->val_rtx, expr);
5544 if (reverse)
5546 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, reverse);
5547 VAL_EXPR_HAS_REVERSE (loc) = 1;
5551 mo.u.loc = loc;
5553 if (track_p)
5554 VAL_HOLDS_TRACK_EXPR (loc) = 1;
5555 if (preserve)
5557 VAL_NEEDS_RESOLUTION (loc) = resolve;
5558 preserve_value (v);
5560 if (mo.type == MO_CLOBBER)
5561 VAL_EXPR_IS_CLOBBERED (loc) = 1;
5562 if (mo.type == MO_COPY)
5563 VAL_EXPR_IS_COPIED (loc) = 1;
5565 mo.type = MO_VAL_SET;
5567 log_and_return:
5568 if (dump_file && (dump_flags & TDF_DETAILS))
5569 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5570 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5573 /* Arguments to the call. */
5574 static rtx call_arguments;
5576 /* Compute call_arguments. */
5578 static void
5579 prepare_call_arguments (basic_block bb, rtx insn)
5581 rtx link, x;
5582 rtx prev, cur, next;
5583 rtx call = PATTERN (insn);
5584 rtx this_arg = NULL_RTX;
5585 tree type = NULL_TREE, t, fndecl = NULL_TREE;
5586 tree obj_type_ref = NULL_TREE;
5587 CUMULATIVE_ARGS args_so_far;
5589 memset (&args_so_far, 0, sizeof (args_so_far));
5590 if (GET_CODE (call) == PARALLEL)
5591 call = XVECEXP (call, 0, 0);
5592 if (GET_CODE (call) == SET)
5593 call = SET_SRC (call);
5594 if (GET_CODE (call) == CALL && MEM_P (XEXP (call, 0)))
5596 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
5598 rtx symbol = XEXP (XEXP (call, 0), 0);
5599 if (SYMBOL_REF_DECL (symbol))
5600 fndecl = SYMBOL_REF_DECL (symbol);
5602 if (fndecl == NULL_TREE)
5603 fndecl = MEM_EXPR (XEXP (call, 0));
5604 if (fndecl
5605 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
5606 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
5607 fndecl = NULL_TREE;
5608 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
5609 type = TREE_TYPE (fndecl);
5610 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
5612 if (TREE_CODE (fndecl) == INDIRECT_REF
5613 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
5614 obj_type_ref = TREE_OPERAND (fndecl, 0);
5615 fndecl = NULL_TREE;
5617 if (type)
5619 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
5620 t = TREE_CHAIN (t))
5621 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
5622 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
5623 break;
5624 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
5625 type = NULL;
5626 else
5628 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
5629 link = CALL_INSN_FUNCTION_USAGE (insn);
5630 #ifndef PCC_STATIC_STRUCT_RETURN
5631 if (aggregate_value_p (TREE_TYPE (type), type)
5632 && targetm.calls.struct_value_rtx (type, 0) == 0)
5634 tree struct_addr = build_pointer_type (TREE_TYPE (type));
5635 enum machine_mode mode = TYPE_MODE (struct_addr);
5636 rtx reg;
5637 INIT_CUMULATIVE_ARGS (args_so_far, type, NULL_RTX, fndecl,
5638 nargs + 1);
5639 reg = targetm.calls.function_arg (&args_so_far, mode,
5640 struct_addr, true);
5641 targetm.calls.function_arg_advance (&args_so_far, mode,
5642 struct_addr, true);
5643 if (reg == NULL_RTX)
5645 for (; link; link = XEXP (link, 1))
5646 if (GET_CODE (XEXP (link, 0)) == USE
5647 && MEM_P (XEXP (XEXP (link, 0), 0)))
5649 link = XEXP (link, 1);
5650 break;
5654 else
5655 #endif
5656 INIT_CUMULATIVE_ARGS (args_so_far, type, NULL_RTX, fndecl,
5657 nargs);
5658 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
5660 enum machine_mode mode;
5661 t = TYPE_ARG_TYPES (type);
5662 mode = TYPE_MODE (TREE_VALUE (t));
5663 this_arg = targetm.calls.function_arg (&args_so_far, mode,
5664 TREE_VALUE (t), true);
5665 if (this_arg && !REG_P (this_arg))
5666 this_arg = NULL_RTX;
5667 else if (this_arg == NULL_RTX)
5669 for (; link; link = XEXP (link, 1))
5670 if (GET_CODE (XEXP (link, 0)) == USE
5671 && MEM_P (XEXP (XEXP (link, 0), 0)))
5673 this_arg = XEXP (XEXP (link, 0), 0);
5674 break;
5681 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
5683 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
5684 if (GET_CODE (XEXP (link, 0)) == USE)
5686 rtx item = NULL_RTX;
5687 x = XEXP (XEXP (link, 0), 0);
5688 if (REG_P (x))
5690 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
5691 if (val && cselib_preserved_value_p (val))
5692 item = gen_rtx_CONCAT (GET_MODE (x), x, val->val_rtx);
5693 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
5695 enum machine_mode mode = GET_MODE (x);
5697 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
5698 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
5700 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
5702 if (reg == NULL_RTX || !REG_P (reg))
5703 continue;
5704 val = cselib_lookup (reg, mode, 0, VOIDmode);
5705 if (val && cselib_preserved_value_p (val))
5707 item = gen_rtx_CONCAT (GET_MODE (x), x,
5708 lowpart_subreg (GET_MODE (x),
5709 val->val_rtx,
5710 mode));
5711 break;
5716 else if (MEM_P (x))
5718 rtx mem = x;
5719 cselib_val *val;
5721 if (!frame_pointer_needed)
5723 struct adjust_mem_data amd;
5724 amd.mem_mode = VOIDmode;
5725 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
5726 amd.side_effects = NULL_RTX;
5727 amd.store = true;
5728 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
5729 &amd);
5730 gcc_assert (amd.side_effects == NULL_RTX);
5732 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
5733 if (val && cselib_preserved_value_p (val))
5734 item = gen_rtx_CONCAT (GET_MODE (x), copy_rtx (x), val->val_rtx);
5736 if (item)
5737 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
5738 if (t && t != void_list_node)
5740 tree argtype = TREE_VALUE (t);
5741 enum machine_mode mode = TYPE_MODE (argtype);
5742 rtx reg;
5743 if (pass_by_reference (&args_so_far, mode, argtype, true))
5745 argtype = build_pointer_type (argtype);
5746 mode = TYPE_MODE (argtype);
5748 reg = targetm.calls.function_arg (&args_so_far, mode,
5749 argtype, true);
5750 if (TREE_CODE (argtype) == REFERENCE_TYPE
5751 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
5752 && reg
5753 && REG_P (reg)
5754 && GET_MODE (reg) == mode
5755 && GET_MODE_CLASS (mode) == MODE_INT
5756 && REG_P (x)
5757 && REGNO (x) == REGNO (reg)
5758 && GET_MODE (x) == mode
5759 && item)
5761 enum machine_mode indmode
5762 = TYPE_MODE (TREE_TYPE (argtype));
5763 rtx mem = gen_rtx_MEM (indmode, x);
5764 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
5765 if (val && cselib_preserved_value_p (val))
5767 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
5768 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
5769 call_arguments);
5771 else
5773 struct elt_loc_list *l;
5774 tree initial;
5776 /* Try harder, when passing address of a constant
5777 pool integer it can be easily read back. */
5778 item = XEXP (item, 1);
5779 if (GET_CODE (item) == SUBREG)
5780 item = SUBREG_REG (item);
5781 gcc_assert (GET_CODE (item) == VALUE);
5782 val = CSELIB_VAL_PTR (item);
5783 for (l = val->locs; l; l = l->next)
5784 if (GET_CODE (l->loc) == SYMBOL_REF
5785 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
5786 && SYMBOL_REF_DECL (l->loc)
5787 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
5789 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
5790 if (host_integerp (initial, 0))
5792 item = GEN_INT (tree_low_cst (initial, 0));
5793 item = gen_rtx_CONCAT (indmode, mem, item);
5794 call_arguments
5795 = gen_rtx_EXPR_LIST (VOIDmode, item,
5796 call_arguments);
5798 break;
5802 targetm.calls.function_arg_advance (&args_so_far, mode,
5803 argtype, true);
5804 t = TREE_CHAIN (t);
5808 /* Reverse call_arguments chain. */
5809 prev = NULL_RTX;
5810 for (cur = call_arguments; cur; cur = next)
5812 next = XEXP (cur, 1);
5813 XEXP (cur, 1) = prev;
5814 prev = cur;
5816 call_arguments = prev;
5818 x = PATTERN (insn);
5819 if (GET_CODE (x) == PARALLEL)
5820 x = XVECEXP (x, 0, 0);
5821 if (GET_CODE (x) == SET)
5822 x = SET_SRC (x);
5823 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
5825 x = XEXP (XEXP (x, 0), 0);
5826 if (GET_CODE (x) == SYMBOL_REF)
5827 /* Don't record anything. */;
5828 else if (CONSTANT_P (x))
5830 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
5831 pc_rtx, x);
5832 call_arguments
5833 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
5835 else
5837 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
5838 if (val && cselib_preserved_value_p (val))
5840 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
5841 call_arguments
5842 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
5846 if (this_arg)
5848 enum machine_mode mode
5849 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
5850 rtx clobbered = gen_rtx_MEM (mode, this_arg);
5851 HOST_WIDE_INT token
5852 = tree_low_cst (OBJ_TYPE_REF_TOKEN (obj_type_ref), 0);
5853 if (token)
5854 clobbered = plus_constant (clobbered, token * GET_MODE_SIZE (mode));
5855 clobbered = gen_rtx_MEM (mode, clobbered);
5856 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
5857 call_arguments
5858 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
5862 /* Callback for cselib_record_sets_hook, that records as micro
5863 operations uses and stores in an insn after cselib_record_sets has
5864 analyzed the sets in an insn, but before it modifies the stored
5865 values in the internal tables, unless cselib_record_sets doesn't
5866 call it directly (perhaps because we're not doing cselib in the
5867 first place, in which case sets and n_sets will be 0). */
5869 static void
5870 add_with_sets (rtx insn, struct cselib_set *sets, int n_sets)
5872 basic_block bb = BLOCK_FOR_INSN (insn);
5873 int n1, n2;
5874 struct count_use_info cui;
5875 micro_operation *mos;
5877 cselib_hook_called = true;
5879 cui.insn = insn;
5880 cui.bb = bb;
5881 cui.sets = sets;
5882 cui.n_sets = n_sets;
5884 n1 = VEC_length (micro_operation, VTI (bb)->mos);
5885 cui.store_p = false;
5886 note_uses (&PATTERN (insn), add_uses_1, &cui);
5887 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
5888 mos = VEC_address (micro_operation, VTI (bb)->mos);
5890 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
5891 MO_VAL_LOC last. */
5892 while (n1 < n2)
5894 while (n1 < n2 && mos[n1].type == MO_USE)
5895 n1++;
5896 while (n1 < n2 && mos[n2].type != MO_USE)
5897 n2--;
5898 if (n1 < n2)
5900 micro_operation sw;
5902 sw = mos[n1];
5903 mos[n1] = mos[n2];
5904 mos[n2] = sw;
5908 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
5909 while (n1 < n2)
5911 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
5912 n1++;
5913 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
5914 n2--;
5915 if (n1 < n2)
5917 micro_operation sw;
5919 sw = mos[n1];
5920 mos[n1] = mos[n2];
5921 mos[n2] = sw;
5925 if (CALL_P (insn))
5927 micro_operation mo;
5929 mo.type = MO_CALL;
5930 mo.insn = insn;
5931 mo.u.loc = call_arguments;
5932 call_arguments = NULL_RTX;
5934 if (dump_file && (dump_flags & TDF_DETAILS))
5935 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
5936 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5939 n1 = VEC_length (micro_operation, VTI (bb)->mos);
5940 /* This will record NEXT_INSN (insn), such that we can
5941 insert notes before it without worrying about any
5942 notes that MO_USEs might emit after the insn. */
5943 cui.store_p = true;
5944 note_stores (PATTERN (insn), add_stores, &cui);
5945 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
5946 mos = VEC_address (micro_operation, VTI (bb)->mos);
5948 /* Order the MO_VAL_USEs first (note_stores does nothing
5949 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
5950 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
5951 while (n1 < n2)
5953 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
5954 n1++;
5955 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
5956 n2--;
5957 if (n1 < n2)
5959 micro_operation sw;
5961 sw = mos[n1];
5962 mos[n1] = mos[n2];
5963 mos[n2] = sw;
5967 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
5968 while (n1 < n2)
5970 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
5971 n1++;
5972 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
5973 n2--;
5974 if (n1 < n2)
5976 micro_operation sw;
5978 sw = mos[n1];
5979 mos[n1] = mos[n2];
5980 mos[n2] = sw;
5985 static enum var_init_status
5986 find_src_status (dataflow_set *in, rtx src)
5988 tree decl = NULL_TREE;
5989 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
5991 if (! flag_var_tracking_uninit)
5992 status = VAR_INIT_STATUS_INITIALIZED;
5994 if (src && REG_P (src))
5995 decl = var_debug_decl (REG_EXPR (src));
5996 else if (src && MEM_P (src))
5997 decl = var_debug_decl (MEM_EXPR (src));
5999 if (src && decl)
6000 status = get_init_value (in, src, dv_from_decl (decl));
6002 return status;
6005 /* SRC is the source of an assignment. Use SET to try to find what
6006 was ultimately assigned to SRC. Return that value if known,
6007 otherwise return SRC itself. */
6009 static rtx
6010 find_src_set_src (dataflow_set *set, rtx src)
6012 tree decl = NULL_TREE; /* The variable being copied around. */
6013 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6014 variable var;
6015 location_chain nextp;
6016 int i;
6017 bool found;
6019 if (src && REG_P (src))
6020 decl = var_debug_decl (REG_EXPR (src));
6021 else if (src && MEM_P (src))
6022 decl = var_debug_decl (MEM_EXPR (src));
6024 if (src && decl)
6026 decl_or_value dv = dv_from_decl (decl);
6028 var = shared_hash_find (set->vars, dv);
6029 if (var)
6031 found = false;
6032 for (i = 0; i < var->n_var_parts && !found; i++)
6033 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6034 nextp = nextp->next)
6035 if (rtx_equal_p (nextp->loc, src))
6037 set_src = nextp->set_src;
6038 found = true;
6044 return set_src;
6047 /* Compute the changes of variable locations in the basic block BB. */
6049 static bool
6050 compute_bb_dataflow (basic_block bb)
6052 unsigned int i;
6053 micro_operation *mo;
6054 bool changed;
6055 dataflow_set old_out;
6056 dataflow_set *in = &VTI (bb)->in;
6057 dataflow_set *out = &VTI (bb)->out;
6059 dataflow_set_init (&old_out);
6060 dataflow_set_copy (&old_out, out);
6061 dataflow_set_copy (out, in);
6063 FOR_EACH_VEC_ELT (micro_operation, VTI (bb)->mos, i, mo)
6065 rtx insn = mo->insn;
6067 switch (mo->type)
6069 case MO_CALL:
6070 dataflow_set_clear_at_call (out);
6071 break;
6073 case MO_USE:
6075 rtx loc = mo->u.loc;
6077 if (REG_P (loc))
6078 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6079 else if (MEM_P (loc))
6080 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6082 break;
6084 case MO_VAL_LOC:
6086 rtx loc = mo->u.loc;
6087 rtx val, vloc;
6088 tree var;
6090 if (GET_CODE (loc) == CONCAT)
6092 val = XEXP (loc, 0);
6093 vloc = XEXP (loc, 1);
6095 else
6097 val = NULL_RTX;
6098 vloc = loc;
6101 var = PAT_VAR_LOCATION_DECL (vloc);
6103 clobber_variable_part (out, NULL_RTX,
6104 dv_from_decl (var), 0, NULL_RTX);
6105 if (val)
6107 if (VAL_NEEDS_RESOLUTION (loc))
6108 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6109 set_variable_part (out, val, dv_from_decl (var), 0,
6110 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6111 INSERT);
6113 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6114 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6115 dv_from_decl (var), 0,
6116 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6117 INSERT);
6119 break;
6121 case MO_VAL_USE:
6123 rtx loc = mo->u.loc;
6124 rtx val, vloc, uloc;
6126 vloc = uloc = XEXP (loc, 1);
6127 val = XEXP (loc, 0);
6129 if (GET_CODE (val) == CONCAT)
6131 uloc = XEXP (val, 1);
6132 val = XEXP (val, 0);
6135 if (VAL_NEEDS_RESOLUTION (loc))
6136 val_resolve (out, val, vloc, insn);
6137 else
6138 val_store (out, val, uloc, insn, false);
6140 if (VAL_HOLDS_TRACK_EXPR (loc))
6142 if (GET_CODE (uloc) == REG)
6143 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6144 NULL);
6145 else if (GET_CODE (uloc) == MEM)
6146 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6147 NULL);
6150 break;
6152 case MO_VAL_SET:
6154 rtx loc = mo->u.loc;
6155 rtx val, vloc, uloc, reverse = NULL_RTX;
6157 vloc = loc;
6158 if (VAL_EXPR_HAS_REVERSE (loc))
6160 reverse = XEXP (loc, 1);
6161 vloc = XEXP (loc, 0);
6163 uloc = XEXP (vloc, 1);
6164 val = XEXP (vloc, 0);
6165 vloc = uloc;
6167 if (GET_CODE (val) == CONCAT)
6169 vloc = XEXP (val, 1);
6170 val = XEXP (val, 0);
6173 if (GET_CODE (vloc) == SET)
6175 rtx vsrc = SET_SRC (vloc);
6177 gcc_assert (val != vsrc);
6178 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6180 vloc = SET_DEST (vloc);
6182 if (VAL_NEEDS_RESOLUTION (loc))
6183 val_resolve (out, val, vsrc, insn);
6185 else if (VAL_NEEDS_RESOLUTION (loc))
6187 gcc_assert (GET_CODE (uloc) == SET
6188 && GET_CODE (SET_SRC (uloc)) == REG);
6189 val_resolve (out, val, SET_SRC (uloc), insn);
6192 if (VAL_HOLDS_TRACK_EXPR (loc))
6194 if (VAL_EXPR_IS_CLOBBERED (loc))
6196 if (REG_P (uloc))
6197 var_reg_delete (out, uloc, true);
6198 else if (MEM_P (uloc))
6199 var_mem_delete (out, uloc, true);
6201 else
6203 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6204 rtx set_src = NULL;
6205 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6207 if (GET_CODE (uloc) == SET)
6209 set_src = SET_SRC (uloc);
6210 uloc = SET_DEST (uloc);
6213 if (copied_p)
6215 if (flag_var_tracking_uninit)
6217 status = find_src_status (in, set_src);
6219 if (status == VAR_INIT_STATUS_UNKNOWN)
6220 status = find_src_status (out, set_src);
6223 set_src = find_src_set_src (in, set_src);
6226 if (REG_P (uloc))
6227 var_reg_delete_and_set (out, uloc, !copied_p,
6228 status, set_src);
6229 else if (MEM_P (uloc))
6230 var_mem_delete_and_set (out, uloc, !copied_p,
6231 status, set_src);
6234 else if (REG_P (uloc))
6235 var_regno_delete (out, REGNO (uloc));
6237 val_store (out, val, vloc, insn, true);
6239 if (reverse)
6240 val_store (out, XEXP (reverse, 0), XEXP (reverse, 1),
6241 insn, false);
6243 break;
6245 case MO_SET:
6247 rtx loc = mo->u.loc;
6248 rtx set_src = NULL;
6250 if (GET_CODE (loc) == SET)
6252 set_src = SET_SRC (loc);
6253 loc = SET_DEST (loc);
6256 if (REG_P (loc))
6257 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6258 set_src);
6259 else if (MEM_P (loc))
6260 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6261 set_src);
6263 break;
6265 case MO_COPY:
6267 rtx loc = mo->u.loc;
6268 enum var_init_status src_status;
6269 rtx set_src = NULL;
6271 if (GET_CODE (loc) == SET)
6273 set_src = SET_SRC (loc);
6274 loc = SET_DEST (loc);
6277 if (! flag_var_tracking_uninit)
6278 src_status = VAR_INIT_STATUS_INITIALIZED;
6279 else
6281 src_status = find_src_status (in, set_src);
6283 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6284 src_status = find_src_status (out, set_src);
6287 set_src = find_src_set_src (in, set_src);
6289 if (REG_P (loc))
6290 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6291 else if (MEM_P (loc))
6292 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6294 break;
6296 case MO_USE_NO_VAR:
6298 rtx loc = mo->u.loc;
6300 if (REG_P (loc))
6301 var_reg_delete (out, loc, false);
6302 else if (MEM_P (loc))
6303 var_mem_delete (out, loc, false);
6305 break;
6307 case MO_CLOBBER:
6309 rtx loc = mo->u.loc;
6311 if (REG_P (loc))
6312 var_reg_delete (out, loc, true);
6313 else if (MEM_P (loc))
6314 var_mem_delete (out, loc, true);
6316 break;
6318 case MO_ADJUST:
6319 out->stack_adjust += mo->u.adjust;
6320 break;
6324 if (MAY_HAVE_DEBUG_INSNS)
6326 dataflow_set_equiv_regs (out);
6327 htab_traverse (shared_hash_htab (out->vars), canonicalize_values_mark,
6328 out);
6329 htab_traverse (shared_hash_htab (out->vars), canonicalize_values_star,
6330 out);
6331 #if ENABLE_CHECKING
6332 htab_traverse (shared_hash_htab (out->vars),
6333 canonicalize_loc_order_check, out);
6334 #endif
6336 changed = dataflow_set_different (&old_out, out);
6337 dataflow_set_destroy (&old_out);
6338 return changed;
6341 /* Find the locations of variables in the whole function. */
6343 static bool
6344 vt_find_locations (void)
6346 fibheap_t worklist, pending, fibheap_swap;
6347 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
6348 basic_block bb;
6349 edge e;
6350 int *bb_order;
6351 int *rc_order;
6352 int i;
6353 int htabsz = 0;
6354 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6355 bool success = true;
6357 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6358 /* Compute reverse completion order of depth first search of the CFG
6359 so that the data-flow runs faster. */
6360 rc_order = XNEWVEC (int, n_basic_blocks - NUM_FIXED_BLOCKS);
6361 bb_order = XNEWVEC (int, last_basic_block);
6362 pre_and_rev_post_order_compute (NULL, rc_order, false);
6363 for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++)
6364 bb_order[rc_order[i]] = i;
6365 free (rc_order);
6367 worklist = fibheap_new ();
6368 pending = fibheap_new ();
6369 visited = sbitmap_alloc (last_basic_block);
6370 in_worklist = sbitmap_alloc (last_basic_block);
6371 in_pending = sbitmap_alloc (last_basic_block);
6372 sbitmap_zero (in_worklist);
6374 FOR_EACH_BB (bb)
6375 fibheap_insert (pending, bb_order[bb->index], bb);
6376 sbitmap_ones (in_pending);
6378 while (success && !fibheap_empty (pending))
6380 fibheap_swap = pending;
6381 pending = worklist;
6382 worklist = fibheap_swap;
6383 sbitmap_swap = in_pending;
6384 in_pending = in_worklist;
6385 in_worklist = sbitmap_swap;
6387 sbitmap_zero (visited);
6389 while (!fibheap_empty (worklist))
6391 bb = (basic_block) fibheap_extract_min (worklist);
6392 RESET_BIT (in_worklist, bb->index);
6393 gcc_assert (!TEST_BIT (visited, bb->index));
6394 if (!TEST_BIT (visited, bb->index))
6396 bool changed;
6397 edge_iterator ei;
6398 int oldinsz, oldoutsz;
6400 SET_BIT (visited, bb->index);
6402 if (VTI (bb)->in.vars)
6404 htabsz
6405 -= (htab_size (shared_hash_htab (VTI (bb)->in.vars))
6406 + htab_size (shared_hash_htab (VTI (bb)->out.vars)));
6407 oldinsz
6408 = htab_elements (shared_hash_htab (VTI (bb)->in.vars));
6409 oldoutsz
6410 = htab_elements (shared_hash_htab (VTI (bb)->out.vars));
6412 else
6413 oldinsz = oldoutsz = 0;
6415 if (MAY_HAVE_DEBUG_INSNS)
6417 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
6418 bool first = true, adjust = false;
6420 /* Calculate the IN set as the intersection of
6421 predecessor OUT sets. */
6423 dataflow_set_clear (in);
6424 dst_can_be_shared = true;
6426 FOR_EACH_EDGE (e, ei, bb->preds)
6427 if (!VTI (e->src)->flooded)
6428 gcc_assert (bb_order[bb->index]
6429 <= bb_order[e->src->index]);
6430 else if (first)
6432 dataflow_set_copy (in, &VTI (e->src)->out);
6433 first_out = &VTI (e->src)->out;
6434 first = false;
6436 else
6438 dataflow_set_merge (in, &VTI (e->src)->out);
6439 adjust = true;
6442 if (adjust)
6444 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
6445 #if ENABLE_CHECKING
6446 /* Merge and merge_adjust should keep entries in
6447 canonical order. */
6448 htab_traverse (shared_hash_htab (in->vars),
6449 canonicalize_loc_order_check,
6450 in);
6451 #endif
6452 if (dst_can_be_shared)
6454 shared_hash_destroy (in->vars);
6455 in->vars = shared_hash_copy (first_out->vars);
6459 VTI (bb)->flooded = true;
6461 else
6463 /* Calculate the IN set as union of predecessor OUT sets. */
6464 dataflow_set_clear (&VTI (bb)->in);
6465 FOR_EACH_EDGE (e, ei, bb->preds)
6466 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
6469 changed = compute_bb_dataflow (bb);
6470 htabsz += (htab_size (shared_hash_htab (VTI (bb)->in.vars))
6471 + htab_size (shared_hash_htab (VTI (bb)->out.vars)));
6473 if (htabmax && htabsz > htabmax)
6475 if (MAY_HAVE_DEBUG_INSNS)
6476 inform (DECL_SOURCE_LOCATION (cfun->decl),
6477 "variable tracking size limit exceeded with "
6478 "-fvar-tracking-assignments, retrying without");
6479 else
6480 inform (DECL_SOURCE_LOCATION (cfun->decl),
6481 "variable tracking size limit exceeded");
6482 success = false;
6483 break;
6486 if (changed)
6488 FOR_EACH_EDGE (e, ei, bb->succs)
6490 if (e->dest == EXIT_BLOCK_PTR)
6491 continue;
6493 if (TEST_BIT (visited, e->dest->index))
6495 if (!TEST_BIT (in_pending, e->dest->index))
6497 /* Send E->DEST to next round. */
6498 SET_BIT (in_pending, e->dest->index);
6499 fibheap_insert (pending,
6500 bb_order[e->dest->index],
6501 e->dest);
6504 else if (!TEST_BIT (in_worklist, e->dest->index))
6506 /* Add E->DEST to current round. */
6507 SET_BIT (in_worklist, e->dest->index);
6508 fibheap_insert (worklist, bb_order[e->dest->index],
6509 e->dest);
6514 if (dump_file)
6515 fprintf (dump_file,
6516 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
6517 bb->index,
6518 (int)htab_elements (shared_hash_htab (VTI (bb)->in.vars)),
6519 oldinsz,
6520 (int)htab_elements (shared_hash_htab (VTI (bb)->out.vars)),
6521 oldoutsz,
6522 (int)worklist->nodes, (int)pending->nodes, htabsz);
6524 if (dump_file && (dump_flags & TDF_DETAILS))
6526 fprintf (dump_file, "BB %i IN:\n", bb->index);
6527 dump_dataflow_set (&VTI (bb)->in);
6528 fprintf (dump_file, "BB %i OUT:\n", bb->index);
6529 dump_dataflow_set (&VTI (bb)->out);
6535 if (success && MAY_HAVE_DEBUG_INSNS)
6536 FOR_EACH_BB (bb)
6537 gcc_assert (VTI (bb)->flooded);
6539 free (bb_order);
6540 fibheap_delete (worklist);
6541 fibheap_delete (pending);
6542 sbitmap_free (visited);
6543 sbitmap_free (in_worklist);
6544 sbitmap_free (in_pending);
6546 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
6547 return success;
6550 /* Print the content of the LIST to dump file. */
6552 static void
6553 dump_attrs_list (attrs list)
6555 for (; list; list = list->next)
6557 if (dv_is_decl_p (list->dv))
6558 print_mem_expr (dump_file, dv_as_decl (list->dv));
6559 else
6560 print_rtl_single (dump_file, dv_as_value (list->dv));
6561 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
6563 fprintf (dump_file, "\n");
6566 /* Print the information about variable *SLOT to dump file. */
6568 static int
6569 dump_var_slot (void **slot, void *data ATTRIBUTE_UNUSED)
6571 variable var = (variable) *slot;
6573 dump_var (var);
6575 /* Continue traversing the hash table. */
6576 return 1;
6579 /* Print the information about variable VAR to dump file. */
6581 static void
6582 dump_var (variable var)
6584 int i;
6585 location_chain node;
6587 if (dv_is_decl_p (var->dv))
6589 const_tree decl = dv_as_decl (var->dv);
6591 if (DECL_NAME (decl))
6593 fprintf (dump_file, " name: %s",
6594 IDENTIFIER_POINTER (DECL_NAME (decl)));
6595 if (dump_flags & TDF_UID)
6596 fprintf (dump_file, "D.%u", DECL_UID (decl));
6598 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
6599 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
6600 else
6601 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
6602 fprintf (dump_file, "\n");
6604 else
6606 fputc (' ', dump_file);
6607 print_rtl_single (dump_file, dv_as_value (var->dv));
6610 for (i = 0; i < var->n_var_parts; i++)
6612 fprintf (dump_file, " offset %ld\n",
6613 (long) var->var_part[i].offset);
6614 for (node = var->var_part[i].loc_chain; node; node = node->next)
6616 fprintf (dump_file, " ");
6617 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
6618 fprintf (dump_file, "[uninit]");
6619 print_rtl_single (dump_file, node->loc);
6624 /* Print the information about variables from hash table VARS to dump file. */
6626 static void
6627 dump_vars (htab_t vars)
6629 if (htab_elements (vars) > 0)
6631 fprintf (dump_file, "Variables:\n");
6632 htab_traverse (vars, dump_var_slot, NULL);
6636 /* Print the dataflow set SET to dump file. */
6638 static void
6639 dump_dataflow_set (dataflow_set *set)
6641 int i;
6643 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
6644 set->stack_adjust);
6645 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6647 if (set->regs[i])
6649 fprintf (dump_file, "Reg %d:", i);
6650 dump_attrs_list (set->regs[i]);
6653 dump_vars (shared_hash_htab (set->vars));
6654 fprintf (dump_file, "\n");
6657 /* Print the IN and OUT sets for each basic block to dump file. */
6659 static void
6660 dump_dataflow_sets (void)
6662 basic_block bb;
6664 FOR_EACH_BB (bb)
6666 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
6667 fprintf (dump_file, "IN:\n");
6668 dump_dataflow_set (&VTI (bb)->in);
6669 fprintf (dump_file, "OUT:\n");
6670 dump_dataflow_set (&VTI (bb)->out);
6674 /* Add variable VAR to the hash table of changed variables and
6675 if it has no locations delete it from SET's hash table. */
6677 static void
6678 variable_was_changed (variable var, dataflow_set *set)
6680 hashval_t hash = dv_htab_hash (var->dv);
6682 if (emit_notes)
6684 void **slot;
6685 bool old_cur_loc_changed = false;
6687 /* Remember this decl or VALUE has been added to changed_variables. */
6688 set_dv_changed (var->dv, true);
6690 slot = htab_find_slot_with_hash (changed_variables,
6691 var->dv,
6692 hash, INSERT);
6694 if (*slot)
6696 variable old_var = (variable) *slot;
6697 gcc_assert (old_var->in_changed_variables);
6698 old_var->in_changed_variables = false;
6699 old_cur_loc_changed = old_var->cur_loc_changed;
6700 variable_htab_free (*slot);
6702 if (set && var->n_var_parts == 0)
6704 variable empty_var;
6706 empty_var = (variable) pool_alloc (dv_pool (var->dv));
6707 empty_var->dv = var->dv;
6708 empty_var->refcount = 1;
6709 empty_var->n_var_parts = 0;
6710 empty_var->cur_loc_changed = true;
6711 empty_var->in_changed_variables = true;
6712 *slot = empty_var;
6713 goto drop_var;
6715 else
6717 var->refcount++;
6718 var->in_changed_variables = true;
6719 /* If within processing one uop a variable is deleted
6720 and then readded, we need to assume it has changed. */
6721 if (old_cur_loc_changed)
6722 var->cur_loc_changed = true;
6723 *slot = var;
6726 else
6728 gcc_assert (set);
6729 if (var->n_var_parts == 0)
6731 void **slot;
6733 drop_var:
6734 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
6735 if (slot)
6737 if (shared_hash_shared (set->vars))
6738 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
6739 NO_INSERT);
6740 htab_clear_slot (shared_hash_htab (set->vars), slot);
6746 /* Look for the index in VAR->var_part corresponding to OFFSET.
6747 Return -1 if not found. If INSERTION_POINT is non-NULL, the
6748 referenced int will be set to the index that the part has or should
6749 have, if it should be inserted. */
6751 static inline int
6752 find_variable_location_part (variable var, HOST_WIDE_INT offset,
6753 int *insertion_point)
6755 int pos, low, high;
6757 /* Find the location part. */
6758 low = 0;
6759 high = var->n_var_parts;
6760 while (low != high)
6762 pos = (low + high) / 2;
6763 if (var->var_part[pos].offset < offset)
6764 low = pos + 1;
6765 else
6766 high = pos;
6768 pos = low;
6770 if (insertion_point)
6771 *insertion_point = pos;
6773 if (pos < var->n_var_parts && var->var_part[pos].offset == offset)
6774 return pos;
6776 return -1;
6779 static void **
6780 set_slot_part (dataflow_set *set, rtx loc, void **slot,
6781 decl_or_value dv, HOST_WIDE_INT offset,
6782 enum var_init_status initialized, rtx set_src)
6784 int pos;
6785 location_chain node, next;
6786 location_chain *nextp;
6787 variable var;
6788 bool onepart = dv_onepart_p (dv);
6790 gcc_assert (offset == 0 || !onepart);
6791 gcc_assert (loc != dv_as_opaque (dv));
6793 var = (variable) *slot;
6795 if (! flag_var_tracking_uninit)
6796 initialized = VAR_INIT_STATUS_INITIALIZED;
6798 if (!var)
6800 /* Create new variable information. */
6801 var = (variable) pool_alloc (dv_pool (dv));
6802 var->dv = dv;
6803 var->refcount = 1;
6804 var->n_var_parts = 1;
6805 var->cur_loc_changed = false;
6806 var->in_changed_variables = false;
6807 var->var_part[0].offset = offset;
6808 var->var_part[0].loc_chain = NULL;
6809 var->var_part[0].cur_loc = NULL;
6810 *slot = var;
6811 pos = 0;
6812 nextp = &var->var_part[0].loc_chain;
6814 else if (onepart)
6816 int r = -1, c = 0;
6818 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
6820 pos = 0;
6822 if (GET_CODE (loc) == VALUE)
6824 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
6825 nextp = &node->next)
6826 if (GET_CODE (node->loc) == VALUE)
6828 if (node->loc == loc)
6830 r = 0;
6831 break;
6833 if (canon_value_cmp (node->loc, loc))
6834 c++;
6835 else
6837 r = 1;
6838 break;
6841 else if (REG_P (node->loc) || MEM_P (node->loc))
6842 c++;
6843 else
6845 r = 1;
6846 break;
6849 else if (REG_P (loc))
6851 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
6852 nextp = &node->next)
6853 if (REG_P (node->loc))
6855 if (REGNO (node->loc) < REGNO (loc))
6856 c++;
6857 else
6859 if (REGNO (node->loc) == REGNO (loc))
6860 r = 0;
6861 else
6862 r = 1;
6863 break;
6866 else
6868 r = 1;
6869 break;
6872 else if (MEM_P (loc))
6874 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
6875 nextp = &node->next)
6876 if (REG_P (node->loc))
6877 c++;
6878 else if (MEM_P (node->loc))
6880 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
6881 break;
6882 else
6883 c++;
6885 else
6887 r = 1;
6888 break;
6891 else
6892 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
6893 nextp = &node->next)
6894 if ((r = loc_cmp (node->loc, loc)) >= 0)
6895 break;
6896 else
6897 c++;
6899 if (r == 0)
6900 return slot;
6902 if (shared_var_p (var, set->vars))
6904 slot = unshare_variable (set, slot, var, initialized);
6905 var = (variable)*slot;
6906 for (nextp = &var->var_part[0].loc_chain; c;
6907 nextp = &(*nextp)->next)
6908 c--;
6909 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
6912 else
6914 int inspos = 0;
6916 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
6918 pos = find_variable_location_part (var, offset, &inspos);
6920 if (pos >= 0)
6922 node = var->var_part[pos].loc_chain;
6924 if (node
6925 && ((REG_P (node->loc) && REG_P (loc)
6926 && REGNO (node->loc) == REGNO (loc))
6927 || rtx_equal_p (node->loc, loc)))
6929 /* LOC is in the beginning of the chain so we have nothing
6930 to do. */
6931 if (node->init < initialized)
6932 node->init = initialized;
6933 if (set_src != NULL)
6934 node->set_src = set_src;
6936 return slot;
6938 else
6940 /* We have to make a copy of a shared variable. */
6941 if (shared_var_p (var, set->vars))
6943 slot = unshare_variable (set, slot, var, initialized);
6944 var = (variable)*slot;
6948 else
6950 /* We have not found the location part, new one will be created. */
6952 /* We have to make a copy of the shared variable. */
6953 if (shared_var_p (var, set->vars))
6955 slot = unshare_variable (set, slot, var, initialized);
6956 var = (variable)*slot;
6959 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
6960 thus there are at most MAX_VAR_PARTS different offsets. */
6961 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
6962 && (!var->n_var_parts || !dv_onepart_p (var->dv)));
6964 /* We have to move the elements of array starting at index
6965 inspos to the next position. */
6966 for (pos = var->n_var_parts; pos > inspos; pos--)
6967 var->var_part[pos] = var->var_part[pos - 1];
6969 var->n_var_parts++;
6970 var->var_part[pos].offset = offset;
6971 var->var_part[pos].loc_chain = NULL;
6972 var->var_part[pos].cur_loc = NULL;
6975 /* Delete the location from the list. */
6976 nextp = &var->var_part[pos].loc_chain;
6977 for (node = var->var_part[pos].loc_chain; node; node = next)
6979 next = node->next;
6980 if ((REG_P (node->loc) && REG_P (loc)
6981 && REGNO (node->loc) == REGNO (loc))
6982 || rtx_equal_p (node->loc, loc))
6984 /* Save these values, to assign to the new node, before
6985 deleting this one. */
6986 if (node->init > initialized)
6987 initialized = node->init;
6988 if (node->set_src != NULL && set_src == NULL)
6989 set_src = node->set_src;
6990 if (var->var_part[pos].cur_loc == node->loc)
6992 var->var_part[pos].cur_loc = NULL;
6993 var->cur_loc_changed = true;
6995 pool_free (loc_chain_pool, node);
6996 *nextp = next;
6997 break;
6999 else
7000 nextp = &node->next;
7003 nextp = &var->var_part[pos].loc_chain;
7006 /* Add the location to the beginning. */
7007 node = (location_chain) pool_alloc (loc_chain_pool);
7008 node->loc = loc;
7009 node->init = initialized;
7010 node->set_src = set_src;
7011 node->next = *nextp;
7012 *nextp = node;
7014 if (onepart && emit_notes)
7015 add_value_chains (var->dv, loc);
7017 /* If no location was emitted do so. */
7018 if (var->var_part[pos].cur_loc == NULL)
7019 variable_was_changed (var, set);
7021 return slot;
7024 /* Set the part of variable's location in the dataflow set SET. The
7025 variable part is specified by variable's declaration in DV and
7026 offset OFFSET and the part's location by LOC. IOPT should be
7027 NO_INSERT if the variable is known to be in SET already and the
7028 variable hash table must not be resized, and INSERT otherwise. */
7030 static void
7031 set_variable_part (dataflow_set *set, rtx loc,
7032 decl_or_value dv, HOST_WIDE_INT offset,
7033 enum var_init_status initialized, rtx set_src,
7034 enum insert_option iopt)
7036 void **slot;
7038 if (iopt == NO_INSERT)
7039 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7040 else
7042 slot = shared_hash_find_slot (set->vars, dv);
7043 if (!slot)
7044 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7046 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7049 /* Remove all recorded register locations for the given variable part
7050 from dataflow set SET, except for those that are identical to loc.
7051 The variable part is specified by variable's declaration or value
7052 DV and offset OFFSET. */
7054 static void **
7055 clobber_slot_part (dataflow_set *set, rtx loc, void **slot,
7056 HOST_WIDE_INT offset, rtx set_src)
7058 variable var = (variable) *slot;
7059 int pos = find_variable_location_part (var, offset, NULL);
7061 if (pos >= 0)
7063 location_chain node, next;
7065 /* Remove the register locations from the dataflow set. */
7066 next = var->var_part[pos].loc_chain;
7067 for (node = next; node; node = next)
7069 next = node->next;
7070 if (node->loc != loc
7071 && (!flag_var_tracking_uninit
7072 || !set_src
7073 || MEM_P (set_src)
7074 || !rtx_equal_p (set_src, node->set_src)))
7076 if (REG_P (node->loc))
7078 attrs anode, anext;
7079 attrs *anextp;
7081 /* Remove the variable part from the register's
7082 list, but preserve any other variable parts
7083 that might be regarded as live in that same
7084 register. */
7085 anextp = &set->regs[REGNO (node->loc)];
7086 for (anode = *anextp; anode; anode = anext)
7088 anext = anode->next;
7089 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7090 && anode->offset == offset)
7092 pool_free (attrs_pool, anode);
7093 *anextp = anext;
7095 else
7096 anextp = &anode->next;
7100 slot = delete_slot_part (set, node->loc, slot, offset);
7105 return slot;
7108 /* Remove all recorded register locations for the given variable part
7109 from dataflow set SET, except for those that are identical to loc.
7110 The variable part is specified by variable's declaration or value
7111 DV and offset OFFSET. */
7113 static void
7114 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7115 HOST_WIDE_INT offset, rtx set_src)
7117 void **slot;
7119 if (!dv_as_opaque (dv)
7120 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7121 return;
7123 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7124 if (!slot)
7125 return;
7127 clobber_slot_part (set, loc, slot, offset, set_src);
7130 /* Delete the part of variable's location from dataflow set SET. The
7131 variable part is specified by its SET->vars slot SLOT and offset
7132 OFFSET and the part's location by LOC. */
7134 static void **
7135 delete_slot_part (dataflow_set *set, rtx loc, void **slot,
7136 HOST_WIDE_INT offset)
7138 variable var = (variable) *slot;
7139 int pos = find_variable_location_part (var, offset, NULL);
7141 if (pos >= 0)
7143 location_chain node, next;
7144 location_chain *nextp;
7145 bool changed;
7147 if (shared_var_p (var, set->vars))
7149 /* If the variable contains the location part we have to
7150 make a copy of the variable. */
7151 for (node = var->var_part[pos].loc_chain; node;
7152 node = node->next)
7154 if ((REG_P (node->loc) && REG_P (loc)
7155 && REGNO (node->loc) == REGNO (loc))
7156 || rtx_equal_p (node->loc, loc))
7158 slot = unshare_variable (set, slot, var,
7159 VAR_INIT_STATUS_UNKNOWN);
7160 var = (variable)*slot;
7161 break;
7166 /* Delete the location part. */
7167 changed = false;
7168 nextp = &var->var_part[pos].loc_chain;
7169 for (node = *nextp; node; node = next)
7171 next = node->next;
7172 if ((REG_P (node->loc) && REG_P (loc)
7173 && REGNO (node->loc) == REGNO (loc))
7174 || rtx_equal_p (node->loc, loc))
7176 if (emit_notes && pos == 0 && dv_onepart_p (var->dv))
7177 remove_value_chains (var->dv, node->loc);
7178 /* If we have deleted the location which was last emitted
7179 we have to emit new location so add the variable to set
7180 of changed variables. */
7181 if (var->var_part[pos].cur_loc == node->loc)
7183 changed = true;
7184 var->var_part[pos].cur_loc = NULL;
7185 var->cur_loc_changed = true;
7187 pool_free (loc_chain_pool, node);
7188 *nextp = next;
7189 break;
7191 else
7192 nextp = &node->next;
7195 if (var->var_part[pos].loc_chain == NULL)
7197 changed = true;
7198 var->n_var_parts--;
7199 if (emit_notes)
7200 var->cur_loc_changed = true;
7201 while (pos < var->n_var_parts)
7203 var->var_part[pos] = var->var_part[pos + 1];
7204 pos++;
7207 if (changed)
7208 variable_was_changed (var, set);
7211 return slot;
7214 /* Delete the part of variable's location from dataflow set SET. The
7215 variable part is specified by variable's declaration or value DV
7216 and offset OFFSET and the part's location by LOC. */
7218 static void
7219 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7220 HOST_WIDE_INT offset)
7222 void **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7223 if (!slot)
7224 return;
7226 delete_slot_part (set, loc, slot, offset);
7229 /* Structure for passing some other parameters to function
7230 vt_expand_loc_callback. */
7231 struct expand_loc_callback_data
7233 /* The variables and values active at this point. */
7234 htab_t vars;
7236 /* True in vt_expand_loc_dummy calls, no rtl should be allocated.
7237 Non-NULL should be returned if vt_expand_loc would return
7238 non-NULL in that case, NULL otherwise. cur_loc_changed should be
7239 computed and cur_loc recomputed when possible (but just once
7240 per emit_notes_for_changes call). */
7241 bool dummy;
7243 /* True if expansion of subexpressions had to recompute some
7244 VALUE/DEBUG_EXPR_DECL's cur_loc or used a VALUE/DEBUG_EXPR_DECL
7245 whose cur_loc has been already recomputed during current
7246 emit_notes_for_changes call. */
7247 bool cur_loc_changed;
7249 /* True if cur_loc should be ignored and any possible location
7250 returned. */
7251 bool ignore_cur_loc;
7254 /* Callback for cselib_expand_value, that looks for expressions
7255 holding the value in the var-tracking hash tables. Return X for
7256 standard processing, anything else is to be used as-is. */
7258 static rtx
7259 vt_expand_loc_callback (rtx x, bitmap regs, int max_depth, void *data)
7261 struct expand_loc_callback_data *elcd
7262 = (struct expand_loc_callback_data *) data;
7263 bool dummy = elcd->dummy;
7264 bool cur_loc_changed = elcd->cur_loc_changed;
7265 rtx cur_loc;
7266 decl_or_value dv;
7267 variable var;
7268 location_chain loc;
7269 rtx result, subreg, xret;
7271 switch (GET_CODE (x))
7273 case SUBREG:
7274 if (dummy)
7276 if (cselib_dummy_expand_value_rtx_cb (SUBREG_REG (x), regs,
7277 max_depth - 1,
7278 vt_expand_loc_callback, data))
7279 return pc_rtx;
7280 else
7281 return NULL;
7284 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
7285 max_depth - 1,
7286 vt_expand_loc_callback, data);
7288 if (!subreg)
7289 return NULL;
7291 result = simplify_gen_subreg (GET_MODE (x), subreg,
7292 GET_MODE (SUBREG_REG (x)),
7293 SUBREG_BYTE (x));
7295 /* Invalid SUBREGs are ok in debug info. ??? We could try
7296 alternate expansions for the VALUE as well. */
7297 if (!result)
7298 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
7300 return result;
7302 case DEBUG_EXPR:
7303 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
7304 xret = NULL;
7305 break;
7307 case VALUE:
7308 dv = dv_from_value (x);
7309 xret = x;
7310 break;
7312 default:
7313 return x;
7316 if (VALUE_RECURSED_INTO (x))
7317 return NULL;
7319 var = (variable) htab_find_with_hash (elcd->vars, dv, dv_htab_hash (dv));
7321 if (!var)
7323 if (dummy && dv_changed_p (dv))
7324 elcd->cur_loc_changed = true;
7325 return xret;
7328 if (var->n_var_parts == 0)
7330 if (dummy)
7331 elcd->cur_loc_changed = true;
7332 return xret;
7335 gcc_assert (var->n_var_parts == 1);
7337 VALUE_RECURSED_INTO (x) = true;
7338 result = NULL;
7340 if (var->var_part[0].cur_loc && !elcd->ignore_cur_loc)
7342 if (dummy)
7344 if (cselib_dummy_expand_value_rtx_cb (var->var_part[0].cur_loc, regs,
7345 max_depth,
7346 vt_expand_loc_callback, data))
7347 result = pc_rtx;
7349 else
7350 result = cselib_expand_value_rtx_cb (var->var_part[0].cur_loc, regs,
7351 max_depth,
7352 vt_expand_loc_callback, data);
7353 if (result)
7354 set_dv_changed (dv, false);
7355 cur_loc = var->var_part[0].cur_loc;
7357 else
7358 cur_loc = NULL_RTX;
7359 if (!result && (dv_changed_p (dv) || elcd->ignore_cur_loc))
7361 if (!elcd->ignore_cur_loc)
7362 set_dv_changed (dv, false);
7363 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
7364 if (loc->loc == cur_loc)
7365 continue;
7366 else if (dummy)
7368 elcd->cur_loc_changed = cur_loc_changed;
7369 if (cselib_dummy_expand_value_rtx_cb (loc->loc, regs, max_depth,
7370 vt_expand_loc_callback,
7371 data))
7373 result = pc_rtx;
7374 break;
7377 else
7379 result = cselib_expand_value_rtx_cb (loc->loc, regs, max_depth,
7380 vt_expand_loc_callback, data);
7381 if (result)
7382 break;
7384 if (dummy && (result || var->var_part[0].cur_loc))
7385 var->cur_loc_changed = true;
7386 if (!elcd->ignore_cur_loc)
7387 var->var_part[0].cur_loc = loc ? loc->loc : NULL_RTX;
7389 if (dummy)
7391 if (var->cur_loc_changed)
7392 elcd->cur_loc_changed = true;
7393 else if (!result && var->var_part[0].cur_loc == NULL_RTX)
7394 elcd->cur_loc_changed = cur_loc_changed;
7397 VALUE_RECURSED_INTO (x) = false;
7398 if (result)
7399 return result;
7400 else
7401 return xret;
7404 /* Expand VALUEs in LOC, using VARS as well as cselib's equivalence
7405 tables. */
7407 static rtx
7408 vt_expand_loc (rtx loc, htab_t vars, bool ignore_cur_loc)
7410 struct expand_loc_callback_data data;
7412 if (!MAY_HAVE_DEBUG_INSNS)
7413 return loc;
7415 data.vars = vars;
7416 data.dummy = false;
7417 data.cur_loc_changed = false;
7418 data.ignore_cur_loc = ignore_cur_loc;
7419 loc = cselib_expand_value_rtx_cb (loc, scratch_regs, 8,
7420 vt_expand_loc_callback, &data);
7422 if (loc && MEM_P (loc))
7423 loc = targetm.delegitimize_address (loc);
7424 return loc;
7427 /* Like vt_expand_loc, but only return true/false (whether vt_expand_loc
7428 would succeed or not, without actually allocating new rtxes. */
7430 static bool
7431 vt_expand_loc_dummy (rtx loc, htab_t vars, bool *pcur_loc_changed)
7433 struct expand_loc_callback_data data;
7434 bool ret;
7436 gcc_assert (MAY_HAVE_DEBUG_INSNS);
7437 data.vars = vars;
7438 data.dummy = true;
7439 data.cur_loc_changed = false;
7440 data.ignore_cur_loc = false;
7441 ret = cselib_dummy_expand_value_rtx_cb (loc, scratch_regs, 8,
7442 vt_expand_loc_callback, &data);
7443 *pcur_loc_changed = data.cur_loc_changed;
7444 return ret;
7447 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
7448 additional parameters: WHERE specifies whether the note shall be emitted
7449 before or after instruction INSN. */
7451 static int
7452 emit_note_insn_var_location (void **varp, void *data)
7454 variable var = (variable) *varp;
7455 rtx insn = ((emit_note_data *)data)->insn;
7456 enum emit_note_where where = ((emit_note_data *)data)->where;
7457 htab_t vars = ((emit_note_data *)data)->vars;
7458 rtx note, note_vl;
7459 int i, j, n_var_parts;
7460 bool complete;
7461 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
7462 HOST_WIDE_INT last_limit;
7463 tree type_size_unit;
7464 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
7465 rtx loc[MAX_VAR_PARTS];
7466 tree decl;
7467 location_chain lc;
7469 if (dv_is_value_p (var->dv))
7470 goto value_or_debug_decl;
7472 decl = dv_as_decl (var->dv);
7474 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7475 goto value_or_debug_decl;
7477 complete = true;
7478 last_limit = 0;
7479 n_var_parts = 0;
7480 if (!MAY_HAVE_DEBUG_INSNS)
7482 for (i = 0; i < var->n_var_parts; i++)
7483 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
7485 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
7486 var->cur_loc_changed = true;
7488 if (var->n_var_parts == 0)
7489 var->cur_loc_changed = true;
7491 if (!var->cur_loc_changed)
7492 goto clear;
7493 for (i = 0; i < var->n_var_parts; i++)
7495 enum machine_mode mode, wider_mode;
7496 rtx loc2;
7498 if (last_limit < var->var_part[i].offset)
7500 complete = false;
7501 break;
7503 else if (last_limit > var->var_part[i].offset)
7504 continue;
7505 offsets[n_var_parts] = var->var_part[i].offset;
7506 if (!var->var_part[i].cur_loc)
7508 complete = false;
7509 continue;
7511 loc2 = vt_expand_loc (var->var_part[i].cur_loc, vars, false);
7512 if (!loc2)
7514 complete = false;
7515 continue;
7517 loc[n_var_parts] = loc2;
7518 mode = GET_MODE (var->var_part[i].cur_loc);
7519 if (mode == VOIDmode && dv_onepart_p (var->dv))
7520 mode = DECL_MODE (decl);
7521 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
7522 if (var->var_part[i].cur_loc == lc->loc)
7524 initialized = lc->init;
7525 break;
7527 gcc_assert (lc);
7528 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
7530 /* Attempt to merge adjacent registers or memory. */
7531 wider_mode = GET_MODE_WIDER_MODE (mode);
7532 for (j = i + 1; j < var->n_var_parts; j++)
7533 if (last_limit <= var->var_part[j].offset)
7534 break;
7535 if (j < var->n_var_parts
7536 && wider_mode != VOIDmode
7537 && var->var_part[j].cur_loc
7538 && mode == GET_MODE (var->var_part[j].cur_loc)
7539 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
7540 && last_limit == var->var_part[j].offset
7541 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars, false))
7542 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
7544 rtx new_loc = NULL;
7546 if (REG_P (loc[n_var_parts])
7547 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
7548 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
7549 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
7550 == REGNO (loc2))
7552 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
7553 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
7554 mode, 0);
7555 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
7556 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
7557 if (new_loc)
7559 if (!REG_P (new_loc)
7560 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
7561 new_loc = NULL;
7562 else
7563 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
7566 else if (MEM_P (loc[n_var_parts])
7567 && GET_CODE (XEXP (loc2, 0)) == PLUS
7568 && REG_P (XEXP (XEXP (loc2, 0), 0))
7569 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
7571 if ((REG_P (XEXP (loc[n_var_parts], 0))
7572 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
7573 XEXP (XEXP (loc2, 0), 0))
7574 && INTVAL (XEXP (XEXP (loc2, 0), 1))
7575 == GET_MODE_SIZE (mode))
7576 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
7577 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
7578 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
7579 XEXP (XEXP (loc2, 0), 0))
7580 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
7581 + GET_MODE_SIZE (mode)
7582 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
7583 new_loc = adjust_address_nv (loc[n_var_parts],
7584 wider_mode, 0);
7587 if (new_loc)
7589 loc[n_var_parts] = new_loc;
7590 mode = wider_mode;
7591 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
7592 i = j;
7595 ++n_var_parts;
7597 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
7598 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
7599 complete = false;
7601 if (! flag_var_tracking_uninit)
7602 initialized = VAR_INIT_STATUS_INITIALIZED;
7604 note_vl = NULL_RTX;
7605 if (!complete)
7606 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX,
7607 (int) initialized);
7608 else if (n_var_parts == 1)
7610 rtx expr_list;
7612 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
7613 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
7614 else
7615 expr_list = loc[0];
7617 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list,
7618 (int) initialized);
7620 else if (n_var_parts)
7622 rtx parallel;
7624 for (i = 0; i < n_var_parts; i++)
7625 loc[i]
7626 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
7628 parallel = gen_rtx_PARALLEL (VOIDmode,
7629 gen_rtvec_v (n_var_parts, loc));
7630 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
7631 parallel, (int) initialized);
7634 if (where != EMIT_NOTE_BEFORE_INSN)
7636 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
7637 if (where == EMIT_NOTE_AFTER_CALL_INSN)
7638 NOTE_DURING_CALL_P (note) = true;
7640 else
7642 /* Make sure that the call related notes come first. */
7643 while (NEXT_INSN (insn)
7644 && NOTE_P (insn)
7645 && NOTE_DURING_CALL_P (insn))
7646 insn = NEXT_INSN (insn);
7647 if (NOTE_P (insn) && NOTE_DURING_CALL_P (insn))
7648 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
7649 else
7650 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
7652 NOTE_VAR_LOCATION (note) = note_vl;
7654 clear:
7655 set_dv_changed (var->dv, false);
7656 var->cur_loc_changed = false;
7657 gcc_assert (var->in_changed_variables);
7658 var->in_changed_variables = false;
7659 htab_clear_slot (changed_variables, varp);
7661 /* Continue traversing the hash table. */
7662 return 1;
7664 value_or_debug_decl:
7665 if (dv_changed_p (var->dv) && var->n_var_parts)
7667 location_chain lc;
7668 bool cur_loc_changed;
7670 if (var->var_part[0].cur_loc
7671 && vt_expand_loc_dummy (var->var_part[0].cur_loc, vars,
7672 &cur_loc_changed))
7673 goto clear;
7674 for (lc = var->var_part[0].loc_chain; lc; lc = lc->next)
7675 if (lc->loc != var->var_part[0].cur_loc
7676 && vt_expand_loc_dummy (lc->loc, vars, &cur_loc_changed))
7677 break;
7678 var->var_part[0].cur_loc = lc ? lc->loc : NULL_RTX;
7680 goto clear;
7683 DEF_VEC_P (variable);
7684 DEF_VEC_ALLOC_P (variable, heap);
7686 /* Stack of variable_def pointers that need processing with
7687 check_changed_vars_2. */
7689 static VEC (variable, heap) *changed_variables_stack;
7691 /* VALUEs with no variables that need set_dv_changed (val, false)
7692 called before check_changed_vars_3. */
7694 static VEC (rtx, heap) *changed_values_stack;
7696 /* Helper function for check_changed_vars_1 and check_changed_vars_2. */
7698 static void
7699 check_changed_vars_0 (decl_or_value dv, htab_t htab)
7701 value_chain vc
7702 = (value_chain) htab_find_with_hash (value_chains, dv, dv_htab_hash (dv));
7704 if (vc == NULL)
7705 return;
7706 for (vc = vc->next; vc; vc = vc->next)
7707 if (!dv_changed_p (vc->dv))
7709 variable vcvar
7710 = (variable) htab_find_with_hash (htab, vc->dv,
7711 dv_htab_hash (vc->dv));
7712 if (vcvar)
7714 set_dv_changed (vc->dv, true);
7715 VEC_safe_push (variable, heap, changed_variables_stack, vcvar);
7717 else if (dv_is_value_p (vc->dv))
7719 set_dv_changed (vc->dv, true);
7720 VEC_safe_push (rtx, heap, changed_values_stack,
7721 dv_as_value (vc->dv));
7722 check_changed_vars_0 (vc->dv, htab);
7727 /* Populate changed_variables_stack with variable_def pointers
7728 that need variable_was_changed called on them. */
7730 static int
7731 check_changed_vars_1 (void **slot, void *data)
7733 variable var = (variable) *slot;
7734 htab_t htab = (htab_t) data;
7736 if (dv_is_value_p (var->dv)
7737 || TREE_CODE (dv_as_decl (var->dv)) == DEBUG_EXPR_DECL)
7738 check_changed_vars_0 (var->dv, htab);
7739 return 1;
7742 /* Add VAR to changed_variables and also for VALUEs add recursively
7743 all DVs that aren't in changed_variables yet but reference the
7744 VALUE from its loc_chain. */
7746 static void
7747 check_changed_vars_2 (variable var, htab_t htab)
7749 variable_was_changed (var, NULL);
7750 if (dv_is_value_p (var->dv)
7751 || TREE_CODE (dv_as_decl (var->dv)) == DEBUG_EXPR_DECL)
7752 check_changed_vars_0 (var->dv, htab);
7755 /* For each changed decl (except DEBUG_EXPR_DECLs) recompute
7756 cur_loc if needed (and cur_loc of all VALUEs and DEBUG_EXPR_DECLs
7757 it needs and are also in changed variables) and track whether
7758 cur_loc (or anything it uses to compute location) had to change
7759 during the current emit_notes_for_changes call. */
7761 static int
7762 check_changed_vars_3 (void **slot, void *data)
7764 variable var = (variable) *slot;
7765 htab_t vars = (htab_t) data;
7766 int i;
7767 location_chain lc;
7768 bool cur_loc_changed;
7770 if (dv_is_value_p (var->dv)
7771 || TREE_CODE (dv_as_decl (var->dv)) == DEBUG_EXPR_DECL)
7772 return 1;
7774 for (i = 0; i < var->n_var_parts; i++)
7776 if (var->var_part[i].cur_loc
7777 && vt_expand_loc_dummy (var->var_part[i].cur_loc, vars,
7778 &cur_loc_changed))
7780 if (cur_loc_changed)
7781 var->cur_loc_changed = true;
7782 continue;
7784 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
7785 if (lc->loc != var->var_part[i].cur_loc
7786 && vt_expand_loc_dummy (lc->loc, vars, &cur_loc_changed))
7787 break;
7788 if (lc || var->var_part[i].cur_loc)
7789 var->cur_loc_changed = true;
7790 var->var_part[i].cur_loc = lc ? lc->loc : NULL_RTX;
7792 if (var->n_var_parts == 0)
7793 var->cur_loc_changed = true;
7794 return 1;
7797 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
7798 CHANGED_VARIABLES and delete this chain. WHERE specifies whether the notes
7799 shall be emitted before of after instruction INSN. */
7801 static void
7802 emit_notes_for_changes (rtx insn, enum emit_note_where where,
7803 shared_hash vars)
7805 emit_note_data data;
7806 htab_t htab = shared_hash_htab (vars);
7808 if (!htab_elements (changed_variables))
7809 return;
7811 if (MAY_HAVE_DEBUG_INSNS)
7813 /* Unfortunately this has to be done in two steps, because
7814 we can't traverse a hashtab into which we are inserting
7815 through variable_was_changed. */
7816 htab_traverse (changed_variables, check_changed_vars_1, htab);
7817 while (VEC_length (variable, changed_variables_stack) > 0)
7818 check_changed_vars_2 (VEC_pop (variable, changed_variables_stack),
7819 htab);
7820 while (VEC_length (rtx, changed_values_stack) > 0)
7821 set_dv_changed (dv_from_value (VEC_pop (rtx, changed_values_stack)),
7822 false);
7823 htab_traverse (changed_variables, check_changed_vars_3, htab);
7826 data.insn = insn;
7827 data.where = where;
7828 data.vars = htab;
7830 htab_traverse (changed_variables, emit_note_insn_var_location, &data);
7833 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
7834 same variable in hash table DATA or is not there at all. */
7836 static int
7837 emit_notes_for_differences_1 (void **slot, void *data)
7839 htab_t new_vars = (htab_t) data;
7840 variable old_var, new_var;
7842 old_var = (variable) *slot;
7843 new_var = (variable) htab_find_with_hash (new_vars, old_var->dv,
7844 dv_htab_hash (old_var->dv));
7846 if (!new_var)
7848 /* Variable has disappeared. */
7849 variable empty_var;
7851 empty_var = (variable) pool_alloc (dv_pool (old_var->dv));
7852 empty_var->dv = old_var->dv;
7853 empty_var->refcount = 0;
7854 empty_var->n_var_parts = 0;
7855 empty_var->cur_loc_changed = false;
7856 empty_var->in_changed_variables = false;
7857 if (dv_onepart_p (old_var->dv))
7859 location_chain lc;
7861 gcc_assert (old_var->n_var_parts == 1);
7862 for (lc = old_var->var_part[0].loc_chain; lc; lc = lc->next)
7863 remove_value_chains (old_var->dv, lc->loc);
7865 variable_was_changed (empty_var, NULL);
7866 /* Continue traversing the hash table. */
7867 return 1;
7869 if (variable_different_p (old_var, new_var))
7871 if (dv_onepart_p (old_var->dv))
7873 location_chain lc1, lc2;
7875 gcc_assert (old_var->n_var_parts == 1
7876 && new_var->n_var_parts == 1);
7877 lc1 = old_var->var_part[0].loc_chain;
7878 lc2 = new_var->var_part[0].loc_chain;
7879 while (lc1
7880 && lc2
7881 && ((REG_P (lc1->loc) && REG_P (lc2->loc))
7882 || rtx_equal_p (lc1->loc, lc2->loc)))
7884 lc1 = lc1->next;
7885 lc2 = lc2->next;
7887 for (; lc2; lc2 = lc2->next)
7888 add_value_chains (old_var->dv, lc2->loc);
7889 for (; lc1; lc1 = lc1->next)
7890 remove_value_chains (old_var->dv, lc1->loc);
7892 variable_was_changed (new_var, NULL);
7894 /* Update cur_loc. */
7895 if (old_var != new_var)
7897 int i;
7898 for (i = 0; i < new_var->n_var_parts; i++)
7900 new_var->var_part[i].cur_loc = NULL;
7901 if (old_var->n_var_parts != new_var->n_var_parts
7902 || old_var->var_part[i].offset != new_var->var_part[i].offset)
7903 new_var->cur_loc_changed = true;
7904 else if (old_var->var_part[i].cur_loc != NULL)
7906 location_chain lc;
7907 rtx cur_loc = old_var->var_part[i].cur_loc;
7909 for (lc = new_var->var_part[i].loc_chain; lc; lc = lc->next)
7910 if (lc->loc == cur_loc
7911 || rtx_equal_p (cur_loc, lc->loc))
7913 new_var->var_part[i].cur_loc = lc->loc;
7914 break;
7916 if (lc == NULL)
7917 new_var->cur_loc_changed = true;
7922 /* Continue traversing the hash table. */
7923 return 1;
7926 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
7927 table DATA. */
7929 static int
7930 emit_notes_for_differences_2 (void **slot, void *data)
7932 htab_t old_vars = (htab_t) data;
7933 variable old_var, new_var;
7935 new_var = (variable) *slot;
7936 old_var = (variable) htab_find_with_hash (old_vars, new_var->dv,
7937 dv_htab_hash (new_var->dv));
7938 if (!old_var)
7940 int i;
7941 /* Variable has appeared. */
7942 if (dv_onepart_p (new_var->dv))
7944 location_chain lc;
7946 gcc_assert (new_var->n_var_parts == 1);
7947 for (lc = new_var->var_part[0].loc_chain; lc; lc = lc->next)
7948 add_value_chains (new_var->dv, lc->loc);
7950 for (i = 0; i < new_var->n_var_parts; i++)
7951 new_var->var_part[i].cur_loc = NULL;
7952 variable_was_changed (new_var, NULL);
7955 /* Continue traversing the hash table. */
7956 return 1;
7959 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
7960 NEW_SET. */
7962 static void
7963 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
7964 dataflow_set *new_set)
7966 htab_traverse (shared_hash_htab (old_set->vars),
7967 emit_notes_for_differences_1,
7968 shared_hash_htab (new_set->vars));
7969 htab_traverse (shared_hash_htab (new_set->vars),
7970 emit_notes_for_differences_2,
7971 shared_hash_htab (old_set->vars));
7972 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
7975 /* Emit the notes for changes of location parts in the basic block BB. */
7977 static void
7978 emit_notes_in_bb (basic_block bb, dataflow_set *set)
7980 unsigned int i;
7981 micro_operation *mo;
7983 dataflow_set_clear (set);
7984 dataflow_set_copy (set, &VTI (bb)->in);
7986 FOR_EACH_VEC_ELT (micro_operation, VTI (bb)->mos, i, mo)
7988 rtx insn = mo->insn;
7990 switch (mo->type)
7992 case MO_CALL:
7993 dataflow_set_clear_at_call (set);
7994 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
7996 rtx arguments = mo->u.loc, *p = &arguments, note;
7997 while (*p)
7999 XEXP (XEXP (*p, 0), 1)
8000 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
8001 shared_hash_htab (set->vars), true);
8002 /* If expansion is successful, keep it in the list. */
8003 if (XEXP (XEXP (*p, 0), 1))
8004 p = &XEXP (*p, 1);
8005 /* Otherwise, if the following item is data_value for it,
8006 drop it too too. */
8007 else if (XEXP (*p, 1)
8008 && REG_P (XEXP (XEXP (*p, 0), 0))
8009 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
8010 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
8012 && REGNO (XEXP (XEXP (*p, 0), 0))
8013 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
8014 0), 0)))
8015 *p = XEXP (XEXP (*p, 1), 1);
8016 /* Just drop this item. */
8017 else
8018 *p = XEXP (*p, 1);
8020 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
8021 NOTE_VAR_LOCATION (note) = arguments;
8023 break;
8025 case MO_USE:
8027 rtx loc = mo->u.loc;
8029 if (REG_P (loc))
8030 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
8031 else
8032 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
8034 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
8036 break;
8038 case MO_VAL_LOC:
8040 rtx loc = mo->u.loc;
8041 rtx val, vloc;
8042 tree var;
8044 if (GET_CODE (loc) == CONCAT)
8046 val = XEXP (loc, 0);
8047 vloc = XEXP (loc, 1);
8049 else
8051 val = NULL_RTX;
8052 vloc = loc;
8055 var = PAT_VAR_LOCATION_DECL (vloc);
8057 clobber_variable_part (set, NULL_RTX,
8058 dv_from_decl (var), 0, NULL_RTX);
8059 if (val)
8061 if (VAL_NEEDS_RESOLUTION (loc))
8062 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
8063 set_variable_part (set, val, dv_from_decl (var), 0,
8064 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
8065 INSERT);
8067 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
8068 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
8069 dv_from_decl (var), 0,
8070 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
8071 INSERT);
8073 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
8075 break;
8077 case MO_VAL_USE:
8079 rtx loc = mo->u.loc;
8080 rtx val, vloc, uloc;
8082 vloc = uloc = XEXP (loc, 1);
8083 val = XEXP (loc, 0);
8085 if (GET_CODE (val) == CONCAT)
8087 uloc = XEXP (val, 1);
8088 val = XEXP (val, 0);
8091 if (VAL_NEEDS_RESOLUTION (loc))
8092 val_resolve (set, val, vloc, insn);
8093 else
8094 val_store (set, val, uloc, insn, false);
8096 if (VAL_HOLDS_TRACK_EXPR (loc))
8098 if (GET_CODE (uloc) == REG)
8099 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
8100 NULL);
8101 else if (GET_CODE (uloc) == MEM)
8102 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
8103 NULL);
8106 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
8108 break;
8110 case MO_VAL_SET:
8112 rtx loc = mo->u.loc;
8113 rtx val, vloc, uloc, reverse = NULL_RTX;
8115 vloc = loc;
8116 if (VAL_EXPR_HAS_REVERSE (loc))
8118 reverse = XEXP (loc, 1);
8119 vloc = XEXP (loc, 0);
8121 uloc = XEXP (vloc, 1);
8122 val = XEXP (vloc, 0);
8123 vloc = uloc;
8125 if (GET_CODE (val) == CONCAT)
8127 vloc = XEXP (val, 1);
8128 val = XEXP (val, 0);
8131 if (GET_CODE (vloc) == SET)
8133 rtx vsrc = SET_SRC (vloc);
8135 gcc_assert (val != vsrc);
8136 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
8138 vloc = SET_DEST (vloc);
8140 if (VAL_NEEDS_RESOLUTION (loc))
8141 val_resolve (set, val, vsrc, insn);
8143 else if (VAL_NEEDS_RESOLUTION (loc))
8145 gcc_assert (GET_CODE (uloc) == SET
8146 && GET_CODE (SET_SRC (uloc)) == REG);
8147 val_resolve (set, val, SET_SRC (uloc), insn);
8150 if (VAL_HOLDS_TRACK_EXPR (loc))
8152 if (VAL_EXPR_IS_CLOBBERED (loc))
8154 if (REG_P (uloc))
8155 var_reg_delete (set, uloc, true);
8156 else if (MEM_P (uloc))
8157 var_mem_delete (set, uloc, true);
8159 else
8161 bool copied_p = VAL_EXPR_IS_COPIED (loc);
8162 rtx set_src = NULL;
8163 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
8165 if (GET_CODE (uloc) == SET)
8167 set_src = SET_SRC (uloc);
8168 uloc = SET_DEST (uloc);
8171 if (copied_p)
8173 status = find_src_status (set, set_src);
8175 set_src = find_src_set_src (set, set_src);
8178 if (REG_P (uloc))
8179 var_reg_delete_and_set (set, uloc, !copied_p,
8180 status, set_src);
8181 else if (MEM_P (uloc))
8182 var_mem_delete_and_set (set, uloc, !copied_p,
8183 status, set_src);
8186 else if (REG_P (uloc))
8187 var_regno_delete (set, REGNO (uloc));
8189 val_store (set, val, vloc, insn, true);
8191 if (reverse)
8192 val_store (set, XEXP (reverse, 0), XEXP (reverse, 1),
8193 insn, false);
8195 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
8196 set->vars);
8198 break;
8200 case MO_SET:
8202 rtx loc = mo->u.loc;
8203 rtx set_src = NULL;
8205 if (GET_CODE (loc) == SET)
8207 set_src = SET_SRC (loc);
8208 loc = SET_DEST (loc);
8211 if (REG_P (loc))
8212 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
8213 set_src);
8214 else
8215 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
8216 set_src);
8218 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
8219 set->vars);
8221 break;
8223 case MO_COPY:
8225 rtx loc = mo->u.loc;
8226 enum var_init_status src_status;
8227 rtx set_src = NULL;
8229 if (GET_CODE (loc) == SET)
8231 set_src = SET_SRC (loc);
8232 loc = SET_DEST (loc);
8235 src_status = find_src_status (set, set_src);
8236 set_src = find_src_set_src (set, set_src);
8238 if (REG_P (loc))
8239 var_reg_delete_and_set (set, loc, false, src_status, set_src);
8240 else
8241 var_mem_delete_and_set (set, loc, false, src_status, set_src);
8243 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
8244 set->vars);
8246 break;
8248 case MO_USE_NO_VAR:
8250 rtx loc = mo->u.loc;
8252 if (REG_P (loc))
8253 var_reg_delete (set, loc, false);
8254 else
8255 var_mem_delete (set, loc, false);
8257 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
8259 break;
8261 case MO_CLOBBER:
8263 rtx loc = mo->u.loc;
8265 if (REG_P (loc))
8266 var_reg_delete (set, loc, true);
8267 else
8268 var_mem_delete (set, loc, true);
8270 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
8271 set->vars);
8273 break;
8275 case MO_ADJUST:
8276 set->stack_adjust += mo->u.adjust;
8277 break;
8282 /* Emit notes for the whole function. */
8284 static void
8285 vt_emit_notes (void)
8287 basic_block bb;
8288 dataflow_set cur;
8290 gcc_assert (!htab_elements (changed_variables));
8292 /* Free memory occupied by the out hash tables, as they aren't used
8293 anymore. */
8294 FOR_EACH_BB (bb)
8295 dataflow_set_clear (&VTI (bb)->out);
8297 /* Enable emitting notes by functions (mainly by set_variable_part and
8298 delete_variable_part). */
8299 emit_notes = true;
8301 if (MAY_HAVE_DEBUG_INSNS)
8303 unsigned int i;
8304 rtx val;
8306 FOR_EACH_VEC_ELT (rtx, preserved_values, i, val)
8307 add_cselib_value_chains (dv_from_value (val));
8308 changed_variables_stack = VEC_alloc (variable, heap, 40);
8309 changed_values_stack = VEC_alloc (rtx, heap, 40);
8312 dataflow_set_init (&cur);
8314 FOR_EACH_BB (bb)
8316 /* Emit the notes for changes of variable locations between two
8317 subsequent basic blocks. */
8318 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
8320 /* Emit the notes for the changes in the basic block itself. */
8321 emit_notes_in_bb (bb, &cur);
8323 /* Free memory occupied by the in hash table, we won't need it
8324 again. */
8325 dataflow_set_clear (&VTI (bb)->in);
8327 #ifdef ENABLE_CHECKING
8328 htab_traverse (shared_hash_htab (cur.vars),
8329 emit_notes_for_differences_1,
8330 shared_hash_htab (empty_shared_hash));
8331 if (MAY_HAVE_DEBUG_INSNS)
8333 unsigned int i;
8334 rtx val;
8336 FOR_EACH_VEC_ELT (rtx, preserved_values, i, val)
8337 remove_cselib_value_chains (dv_from_value (val));
8338 gcc_assert (htab_elements (value_chains) == 0);
8340 #endif
8341 dataflow_set_destroy (&cur);
8343 if (MAY_HAVE_DEBUG_INSNS)
8345 VEC_free (variable, heap, changed_variables_stack);
8346 VEC_free (rtx, heap, changed_values_stack);
8349 emit_notes = false;
8352 /* If there is a declaration and offset associated with register/memory RTL
8353 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
8355 static bool
8356 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
8358 if (REG_P (rtl))
8360 if (REG_ATTRS (rtl))
8362 *declp = REG_EXPR (rtl);
8363 *offsetp = REG_OFFSET (rtl);
8364 return true;
8367 else if (MEM_P (rtl))
8369 if (MEM_ATTRS (rtl))
8371 *declp = MEM_EXPR (rtl);
8372 *offsetp = INT_MEM_OFFSET (rtl);
8373 return true;
8376 return false;
8379 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
8381 static void
8382 vt_add_function_parameter (tree parm)
8384 rtx decl_rtl = DECL_RTL_IF_SET (parm);
8385 rtx incoming = DECL_INCOMING_RTL (parm);
8386 tree decl;
8387 enum machine_mode mode;
8388 HOST_WIDE_INT offset;
8389 dataflow_set *out;
8390 decl_or_value dv;
8392 if (TREE_CODE (parm) != PARM_DECL)
8393 return;
8395 if (!decl_rtl || !incoming)
8396 return;
8398 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
8399 return;
8401 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
8403 if (REG_P (incoming) || MEM_P (incoming))
8405 /* This means argument is passed by invisible reference. */
8406 offset = 0;
8407 decl = parm;
8408 incoming = gen_rtx_MEM (GET_MODE (decl_rtl), incoming);
8410 else
8412 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
8413 return;
8414 offset += byte_lowpart_offset (GET_MODE (incoming),
8415 GET_MODE (decl_rtl));
8419 if (!decl)
8420 return;
8422 if (parm != decl)
8424 /* Assume that DECL_RTL was a pseudo that got spilled to
8425 memory. The spill slot sharing code will force the
8426 memory to reference spill_slot_decl (%sfp), so we don't
8427 match above. That's ok, the pseudo must have referenced
8428 the entire parameter, so just reset OFFSET. */
8429 gcc_assert (decl == get_spill_slot_decl (false));
8430 offset = 0;
8433 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
8434 return;
8436 out = &VTI (ENTRY_BLOCK_PTR)->out;
8438 dv = dv_from_decl (parm);
8440 if (target_for_debug_bind (parm)
8441 /* We can't deal with these right now, because this kind of
8442 variable is single-part. ??? We could handle parallels
8443 that describe multiple locations for the same single
8444 value, but ATM we don't. */
8445 && GET_CODE (incoming) != PARALLEL)
8447 cselib_val *val;
8449 /* ??? We shouldn't ever hit this, but it may happen because
8450 arguments passed by invisible reference aren't dealt with
8451 above: incoming-rtl will have Pmode rather than the
8452 expected mode for the type. */
8453 if (offset)
8454 return;
8456 val = cselib_lookup_from_insn (var_lowpart (mode, incoming), mode, true,
8457 VOIDmode, get_insns ());
8459 /* ??? Float-typed values in memory are not handled by
8460 cselib. */
8461 if (val)
8463 preserve_value (val);
8464 set_variable_part (out, val->val_rtx, dv, offset,
8465 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
8466 dv = dv_from_value (val->val_rtx);
8470 if (REG_P (incoming))
8472 incoming = var_lowpart (mode, incoming);
8473 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
8474 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
8475 incoming);
8476 set_variable_part (out, incoming, dv, offset,
8477 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
8478 if (dv_is_value_p (dv))
8480 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (dv)), *val2;
8481 struct elt_loc_list *el;
8482 el = (struct elt_loc_list *)
8483 ggc_alloc_cleared_atomic (sizeof (*el));
8484 el->next = val->locs;
8485 el->loc = gen_rtx_ENTRY_VALUE (GET_MODE (incoming));
8486 ENTRY_VALUE_EXP (el->loc) = incoming;
8487 el->setting_insn = get_insns ();
8488 val->locs = el;
8489 val2 = cselib_lookup_from_insn (el->loc, GET_MODE (incoming),
8490 true, VOIDmode, get_insns ());
8491 if (val2
8492 && val2 != val
8493 && val2->locs
8494 && rtx_equal_p (val2->locs->loc, el->loc))
8496 struct elt_loc_list *el2;
8498 preserve_value (val2);
8499 el2 = (struct elt_loc_list *)
8500 ggc_alloc_cleared_atomic (sizeof (*el2));
8501 el2->next = val2->locs;
8502 el2->loc = dv_as_value (dv);
8503 el2->setting_insn = get_insns ();
8504 val2->locs = el2;
8506 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
8507 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
8509 enum machine_mode indmode
8510 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
8511 rtx mem = gen_rtx_MEM (indmode, incoming);
8512 val = cselib_lookup_from_insn (mem, indmode, true,
8513 VOIDmode, get_insns ());
8514 if (val)
8516 preserve_value (val);
8517 el = (struct elt_loc_list *)
8518 ggc_alloc_cleared_atomic (sizeof (*el));
8519 el->next = val->locs;
8520 el->loc = gen_rtx_ENTRY_VALUE (indmode);
8521 ENTRY_VALUE_EXP (el->loc) = mem;
8522 el->setting_insn = get_insns ();
8523 val->locs = el;
8524 val2 = cselib_lookup_from_insn (el->loc, GET_MODE (mem),
8525 true, VOIDmode,
8526 get_insns ());
8527 if (val2
8528 && val2 != val
8529 && val2->locs
8530 && rtx_equal_p (val2->locs->loc, el->loc))
8532 struct elt_loc_list *el2;
8534 preserve_value (val2);
8535 el2 = (struct elt_loc_list *)
8536 ggc_alloc_cleared_atomic (sizeof (*el2));
8537 el2->next = val2->locs;
8538 el2->loc = val->val_rtx;
8539 el2->setting_insn = get_insns ();
8540 val2->locs = el2;
8546 else if (MEM_P (incoming))
8548 incoming = var_lowpart (mode, incoming);
8549 set_variable_part (out, incoming, dv, offset,
8550 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
8554 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
8556 static void
8557 vt_add_function_parameters (void)
8559 tree parm;
8561 for (parm = DECL_ARGUMENTS (current_function_decl);
8562 parm; parm = DECL_CHAIN (parm))
8563 vt_add_function_parameter (parm);
8565 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
8567 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
8569 if (TREE_CODE (vexpr) == INDIRECT_REF)
8570 vexpr = TREE_OPERAND (vexpr, 0);
8572 if (TREE_CODE (vexpr) == PARM_DECL
8573 && DECL_ARTIFICIAL (vexpr)
8574 && !DECL_IGNORED_P (vexpr)
8575 && DECL_NAMELESS (vexpr))
8576 vt_add_function_parameter (vexpr);
8580 /* Return true if INSN in the prologue initializes hard_frame_pointer_rtx. */
8582 static bool
8583 fp_setter (rtx insn)
8585 rtx pat = PATTERN (insn);
8586 if (RTX_FRAME_RELATED_P (insn))
8588 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
8589 if (expr)
8590 pat = XEXP (expr, 0);
8592 if (GET_CODE (pat) == SET)
8593 return SET_DEST (pat) == hard_frame_pointer_rtx;
8594 else if (GET_CODE (pat) == PARALLEL)
8596 int i;
8597 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
8598 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
8599 && SET_DEST (XVECEXP (pat, 0, i)) == hard_frame_pointer_rtx)
8600 return true;
8602 return false;
8605 /* Gather all registers used for passing arguments to other functions
8606 called from the current routine. */
8608 static void
8609 note_register_arguments (rtx insn)
8611 rtx link, x;
8613 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
8614 if (GET_CODE (XEXP (link, 0)) == USE)
8616 x = XEXP (XEXP (link, 0), 0);
8617 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
8618 SET_HARD_REG_BIT (argument_reg_set, REGNO (x));
8622 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
8623 ensure it isn't flushed during cselib_reset_table.
8624 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
8625 has been eliminated. */
8627 static void
8628 vt_init_cfa_base (void)
8630 cselib_val *val;
8632 #ifdef FRAME_POINTER_CFA_OFFSET
8633 cfa_base_rtx = frame_pointer_rtx;
8634 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
8635 #else
8636 cfa_base_rtx = arg_pointer_rtx;
8637 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
8638 #endif
8639 if (cfa_base_rtx == hard_frame_pointer_rtx
8640 || !fixed_regs[REGNO (cfa_base_rtx)])
8642 cfa_base_rtx = NULL_RTX;
8643 return;
8645 if (!MAY_HAVE_DEBUG_INSNS)
8646 return;
8648 /* Tell alias analysis that cfa_base_rtx should share
8649 find_base_term value with stack pointer or hard frame pointer. */
8650 vt_equate_reg_base_value (cfa_base_rtx,
8651 frame_pointer_needed
8652 ? hard_frame_pointer_rtx : stack_pointer_rtx);
8653 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
8654 VOIDmode, get_insns ());
8655 preserve_value (val);
8656 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
8657 var_reg_decl_set (&VTI (ENTRY_BLOCK_PTR)->out, cfa_base_rtx,
8658 VAR_INIT_STATUS_INITIALIZED, dv_from_value (val->val_rtx),
8659 0, NULL_RTX, INSERT);
8662 /* Allocate and initialize the data structures for variable tracking
8663 and parse the RTL to get the micro operations. */
8665 static bool
8666 vt_initialize (void)
8668 basic_block bb, prologue_bb = single_succ (ENTRY_BLOCK_PTR);
8669 HOST_WIDE_INT fp_cfa_offset = -1;
8671 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
8673 attrs_pool = create_alloc_pool ("attrs_def pool",
8674 sizeof (struct attrs_def), 1024);
8675 var_pool = create_alloc_pool ("variable_def pool",
8676 sizeof (struct variable_def)
8677 + (MAX_VAR_PARTS - 1)
8678 * sizeof (((variable)NULL)->var_part[0]), 64);
8679 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
8680 sizeof (struct location_chain_def),
8681 1024);
8682 shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
8683 sizeof (struct shared_hash_def), 256);
8684 empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
8685 empty_shared_hash->refcount = 1;
8686 empty_shared_hash->htab
8687 = htab_create (1, variable_htab_hash, variable_htab_eq,
8688 variable_htab_free);
8689 changed_variables = htab_create (10, variable_htab_hash, variable_htab_eq,
8690 variable_htab_free);
8691 if (MAY_HAVE_DEBUG_INSNS)
8693 value_chain_pool = create_alloc_pool ("value_chain_def pool",
8694 sizeof (struct value_chain_def),
8695 1024);
8696 value_chains = htab_create (32, value_chain_htab_hash,
8697 value_chain_htab_eq, NULL);
8700 /* Init the IN and OUT sets. */
8701 FOR_ALL_BB (bb)
8703 VTI (bb)->visited = false;
8704 VTI (bb)->flooded = false;
8705 dataflow_set_init (&VTI (bb)->in);
8706 dataflow_set_init (&VTI (bb)->out);
8707 VTI (bb)->permp = NULL;
8710 if (MAY_HAVE_DEBUG_INSNS)
8712 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
8713 scratch_regs = BITMAP_ALLOC (NULL);
8714 valvar_pool = create_alloc_pool ("small variable_def pool",
8715 sizeof (struct variable_def), 256);
8716 preserved_values = VEC_alloc (rtx, heap, 256);
8718 else
8720 scratch_regs = NULL;
8721 valvar_pool = NULL;
8724 CLEAR_HARD_REG_SET (argument_reg_set);
8726 /* In order to factor out the adjustments made to the stack pointer or to
8727 the hard frame pointer and thus be able to use DW_OP_fbreg operations
8728 instead of individual location lists, we're going to rewrite MEMs based
8729 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
8730 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
8731 resp. arg_pointer_rtx. We can do this either when there is no frame
8732 pointer in the function and stack adjustments are consistent for all
8733 basic blocks or when there is a frame pointer and no stack realignment.
8734 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
8735 has been eliminated. */
8736 if (!frame_pointer_needed)
8738 rtx reg, elim;
8740 if (!vt_stack_adjustments ())
8741 return false;
8743 #ifdef FRAME_POINTER_CFA_OFFSET
8744 reg = frame_pointer_rtx;
8745 #else
8746 reg = arg_pointer_rtx;
8747 #endif
8748 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8749 if (elim != reg)
8751 if (GET_CODE (elim) == PLUS)
8752 elim = XEXP (elim, 0);
8753 if (elim == stack_pointer_rtx)
8754 vt_init_cfa_base ();
8757 else if (!crtl->stack_realign_tried)
8759 rtx reg, elim;
8761 #ifdef FRAME_POINTER_CFA_OFFSET
8762 reg = frame_pointer_rtx;
8763 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
8764 #else
8765 reg = arg_pointer_rtx;
8766 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
8767 #endif
8768 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8769 if (elim != reg)
8771 if (GET_CODE (elim) == PLUS)
8773 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
8774 elim = XEXP (elim, 0);
8776 if (elim != hard_frame_pointer_rtx)
8777 fp_cfa_offset = -1;
8779 else
8780 fp_cfa_offset = -1;
8783 if (frame_pointer_needed)
8785 rtx insn;
8786 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
8787 if (CALL_P (insn))
8788 note_register_arguments (insn);
8791 hard_frame_pointer_adjustment = -1;
8793 vt_add_function_parameters ();
8795 FOR_EACH_BB (bb)
8797 rtx insn;
8798 HOST_WIDE_INT pre, post = 0;
8799 basic_block first_bb, last_bb;
8801 if (MAY_HAVE_DEBUG_INSNS)
8803 cselib_record_sets_hook = add_with_sets;
8804 if (dump_file && (dump_flags & TDF_DETAILS))
8805 fprintf (dump_file, "first value: %i\n",
8806 cselib_get_next_uid ());
8809 first_bb = bb;
8810 for (;;)
8812 edge e;
8813 if (bb->next_bb == EXIT_BLOCK_PTR
8814 || ! single_pred_p (bb->next_bb))
8815 break;
8816 e = find_edge (bb, bb->next_bb);
8817 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
8818 break;
8819 bb = bb->next_bb;
8821 last_bb = bb;
8823 /* Add the micro-operations to the vector. */
8824 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
8826 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
8827 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
8828 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
8829 insn = NEXT_INSN (insn))
8831 if (INSN_P (insn))
8833 if (!frame_pointer_needed)
8835 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
8836 if (pre)
8838 micro_operation mo;
8839 mo.type = MO_ADJUST;
8840 mo.u.adjust = pre;
8841 mo.insn = insn;
8842 if (dump_file && (dump_flags & TDF_DETAILS))
8843 log_op_type (PATTERN (insn), bb, insn,
8844 MO_ADJUST, dump_file);
8845 VEC_safe_push (micro_operation, heap, VTI (bb)->mos,
8846 &mo);
8847 VTI (bb)->out.stack_adjust += pre;
8851 cselib_hook_called = false;
8852 adjust_insn (bb, insn);
8853 if (MAY_HAVE_DEBUG_INSNS)
8855 if (CALL_P (insn))
8856 prepare_call_arguments (bb, insn);
8857 cselib_process_insn (insn);
8858 if (dump_file && (dump_flags & TDF_DETAILS))
8860 print_rtl_single (dump_file, insn);
8861 dump_cselib_table (dump_file);
8864 if (!cselib_hook_called)
8865 add_with_sets (insn, 0, 0);
8866 cancel_changes (0);
8868 if (!frame_pointer_needed && post)
8870 micro_operation mo;
8871 mo.type = MO_ADJUST;
8872 mo.u.adjust = post;
8873 mo.insn = insn;
8874 if (dump_file && (dump_flags & TDF_DETAILS))
8875 log_op_type (PATTERN (insn), bb, insn,
8876 MO_ADJUST, dump_file);
8877 VEC_safe_push (micro_operation, heap, VTI (bb)->mos,
8878 &mo);
8879 VTI (bb)->out.stack_adjust += post;
8882 if (bb == prologue_bb
8883 && fp_cfa_offset != -1
8884 && hard_frame_pointer_adjustment == -1
8885 && RTX_FRAME_RELATED_P (insn)
8886 && fp_setter (insn))
8888 vt_init_cfa_base ();
8889 hard_frame_pointer_adjustment = fp_cfa_offset;
8893 gcc_assert (offset == VTI (bb)->out.stack_adjust);
8896 bb = last_bb;
8898 if (MAY_HAVE_DEBUG_INSNS)
8900 cselib_preserve_only_values ();
8901 cselib_reset_table (cselib_get_next_uid ());
8902 cselib_record_sets_hook = NULL;
8906 hard_frame_pointer_adjustment = -1;
8907 VTI (ENTRY_BLOCK_PTR)->flooded = true;
8908 cfa_base_rtx = NULL_RTX;
8909 return true;
8912 /* Get rid of all debug insns from the insn stream. */
8914 static void
8915 delete_debug_insns (void)
8917 basic_block bb;
8918 rtx insn, next;
8920 if (!MAY_HAVE_DEBUG_INSNS)
8921 return;
8923 FOR_EACH_BB (bb)
8925 FOR_BB_INSNS_SAFE (bb, insn, next)
8926 if (DEBUG_INSN_P (insn))
8927 delete_insn (insn);
8931 /* Run a fast, BB-local only version of var tracking, to take care of
8932 information that we don't do global analysis on, such that not all
8933 information is lost. If SKIPPED holds, we're skipping the global
8934 pass entirely, so we should try to use information it would have
8935 handled as well.. */
8937 static void
8938 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
8940 /* ??? Just skip it all for now. */
8941 delete_debug_insns ();
8944 /* Free the data structures needed for variable tracking. */
8946 static void
8947 vt_finalize (void)
8949 basic_block bb;
8951 FOR_EACH_BB (bb)
8953 VEC_free (micro_operation, heap, VTI (bb)->mos);
8956 FOR_ALL_BB (bb)
8958 dataflow_set_destroy (&VTI (bb)->in);
8959 dataflow_set_destroy (&VTI (bb)->out);
8960 if (VTI (bb)->permp)
8962 dataflow_set_destroy (VTI (bb)->permp);
8963 XDELETE (VTI (bb)->permp);
8966 free_aux_for_blocks ();
8967 htab_delete (empty_shared_hash->htab);
8968 htab_delete (changed_variables);
8969 free_alloc_pool (attrs_pool);
8970 free_alloc_pool (var_pool);
8971 free_alloc_pool (loc_chain_pool);
8972 free_alloc_pool (shared_hash_pool);
8974 if (MAY_HAVE_DEBUG_INSNS)
8976 htab_delete (value_chains);
8977 free_alloc_pool (value_chain_pool);
8978 free_alloc_pool (valvar_pool);
8979 VEC_free (rtx, heap, preserved_values);
8980 cselib_finish ();
8981 BITMAP_FREE (scratch_regs);
8982 scratch_regs = NULL;
8985 if (vui_vec)
8986 XDELETEVEC (vui_vec);
8987 vui_vec = NULL;
8988 vui_allocated = 0;
8991 /* The entry point to variable tracking pass. */
8993 static inline unsigned int
8994 variable_tracking_main_1 (void)
8996 bool success;
8998 if (flag_var_tracking_assignments < 0)
9000 delete_debug_insns ();
9001 return 0;
9004 if (n_basic_blocks > 500 && n_edges / n_basic_blocks >= 20)
9006 vt_debug_insns_local (true);
9007 return 0;
9010 mark_dfs_back_edges ();
9011 if (!vt_initialize ())
9013 vt_finalize ();
9014 vt_debug_insns_local (true);
9015 return 0;
9018 success = vt_find_locations ();
9020 if (!success && flag_var_tracking_assignments > 0)
9022 vt_finalize ();
9024 delete_debug_insns ();
9026 /* This is later restored by our caller. */
9027 flag_var_tracking_assignments = 0;
9029 success = vt_initialize ();
9030 gcc_assert (success);
9032 success = vt_find_locations ();
9035 if (!success)
9037 vt_finalize ();
9038 vt_debug_insns_local (false);
9039 return 0;
9042 if (dump_file && (dump_flags & TDF_DETAILS))
9044 dump_dataflow_sets ();
9045 dump_flow_info (dump_file, dump_flags);
9048 timevar_push (TV_VAR_TRACKING_EMIT);
9049 vt_emit_notes ();
9050 timevar_pop (TV_VAR_TRACKING_EMIT);
9052 vt_finalize ();
9053 vt_debug_insns_local (false);
9054 return 0;
9057 unsigned int
9058 variable_tracking_main (void)
9060 unsigned int ret;
9061 int save = flag_var_tracking_assignments;
9063 ret = variable_tracking_main_1 ();
9065 flag_var_tracking_assignments = save;
9067 return ret;
9070 static bool
9071 gate_handle_var_tracking (void)
9073 return (flag_var_tracking);
9078 struct rtl_opt_pass pass_variable_tracking =
9081 RTL_PASS,
9082 "vartrack", /* name */
9083 gate_handle_var_tracking, /* gate */
9084 variable_tracking_main, /* execute */
9085 NULL, /* sub */
9086 NULL, /* next */
9087 0, /* static_pass_number */
9088 TV_VAR_TRACKING, /* tv_id */
9089 0, /* properties_required */
9090 0, /* properties_provided */
9091 0, /* properties_destroyed */
9092 0, /* todo_flags_start */
9093 TODO_dump_func | TODO_verify_rtl_sharing/* todo_flags_finish */