Merged trunk at revision 161680 into branch.
[official-gcc.git] / gcc / fortran / trans-array.c
blob7eb8e755785ac9daccea5efd86b1c0fde52da121
1 /* Array translation routines
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Paul Brook <paul@nowt.org>
5 and Steven Bosscher <s.bosscher@student.tudelft.nl>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* trans-array.c-- Various array related code, including scalarization,
24 allocation, initialization and other support routines. */
26 /* How the scalarizer works.
27 In gfortran, array expressions use the same core routines as scalar
28 expressions.
29 First, a Scalarization State (SS) chain is built. This is done by walking
30 the expression tree, and building a linear list of the terms in the
31 expression. As the tree is walked, scalar subexpressions are translated.
33 The scalarization parameters are stored in a gfc_loopinfo structure.
34 First the start and stride of each term is calculated by
35 gfc_conv_ss_startstride. During this process the expressions for the array
36 descriptors and data pointers are also translated.
38 If the expression is an assignment, we must then resolve any dependencies.
39 In fortran all the rhs values of an assignment must be evaluated before
40 any assignments take place. This can require a temporary array to store the
41 values. We also require a temporary when we are passing array expressions
42 or vector subscripts as procedure parameters.
44 Array sections are passed without copying to a temporary. These use the
45 scalarizer to determine the shape of the section. The flag
46 loop->array_parameter tells the scalarizer that the actual values and loop
47 variables will not be required.
49 The function gfc_conv_loop_setup generates the scalarization setup code.
50 It determines the range of the scalarizing loop variables. If a temporary
51 is required, this is created and initialized. Code for scalar expressions
52 taken outside the loop is also generated at this time. Next the offset and
53 scaling required to translate from loop variables to array indices for each
54 term is calculated.
56 A call to gfc_start_scalarized_body marks the start of the scalarized
57 expression. This creates a scope and declares the loop variables. Before
58 calling this gfc_make_ss_chain_used must be used to indicate which terms
59 will be used inside this loop.
61 The scalar gfc_conv_* functions are then used to build the main body of the
62 scalarization loop. Scalarization loop variables and precalculated scalar
63 values are automatically substituted. Note that gfc_advance_se_ss_chain
64 must be used, rather than changing the se->ss directly.
66 For assignment expressions requiring a temporary two sub loops are
67 generated. The first stores the result of the expression in the temporary,
68 the second copies it to the result. A call to
69 gfc_trans_scalarized_loop_boundary marks the end of the main loop code and
70 the start of the copying loop. The temporary may be less than full rank.
72 Finally gfc_trans_scalarizing_loops is called to generate the implicit do
73 loops. The loops are added to the pre chain of the loopinfo. The post
74 chain may still contain cleanup code.
76 After the loop code has been added into its parent scope gfc_cleanup_loop
77 is called to free all the SS allocated by the scalarizer. */
79 #include "config.h"
80 #include "system.h"
81 #include "coretypes.h"
82 #include "tree.h"
83 #include "toplev.h" /* For internal_error/fatal_error. */
84 #include "flags.h"
85 #include "gfortran.h"
86 #include "constructor.h"
87 #include "trans.h"
88 #include "trans-stmt.h"
89 #include "trans-types.h"
90 #include "trans-array.h"
91 #include "trans-const.h"
92 #include "dependency.h"
94 static gfc_ss *gfc_walk_subexpr (gfc_ss *, gfc_expr *);
95 static bool gfc_get_array_constructor_size (mpz_t *, gfc_constructor_base);
97 /* The contents of this structure aren't actually used, just the address. */
98 static gfc_ss gfc_ss_terminator_var;
99 gfc_ss * const gfc_ss_terminator = &gfc_ss_terminator_var;
102 static tree
103 gfc_array_dataptr_type (tree desc)
105 return (GFC_TYPE_ARRAY_DATAPTR_TYPE (TREE_TYPE (desc)));
109 /* Build expressions to access the members of an array descriptor.
110 It's surprisingly easy to mess up here, so never access
111 an array descriptor by "brute force", always use these
112 functions. This also avoids problems if we change the format
113 of an array descriptor.
115 To understand these magic numbers, look at the comments
116 before gfc_build_array_type() in trans-types.c.
118 The code within these defines should be the only code which knows the format
119 of an array descriptor.
121 Any code just needing to read obtain the bounds of an array should use
122 gfc_conv_array_* rather than the following functions as these will return
123 know constant values, and work with arrays which do not have descriptors.
125 Don't forget to #undef these! */
127 #define DATA_FIELD 0
128 #define OFFSET_FIELD 1
129 #define DTYPE_FIELD 2
130 #define DIMENSION_FIELD 3
132 #define STRIDE_SUBFIELD 0
133 #define LBOUND_SUBFIELD 1
134 #define UBOUND_SUBFIELD 2
136 /* This provides READ-ONLY access to the data field. The field itself
137 doesn't have the proper type. */
139 tree
140 gfc_conv_descriptor_data_get (tree desc)
142 tree field, type, t;
144 type = TREE_TYPE (desc);
145 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
147 field = TYPE_FIELDS (type);
148 gcc_assert (DATA_FIELD == 0);
150 t = fold_build3 (COMPONENT_REF, TREE_TYPE (field), desc, field, NULL_TREE);
151 t = fold_convert (GFC_TYPE_ARRAY_DATAPTR_TYPE (type), t);
153 return t;
156 /* This provides WRITE access to the data field.
158 TUPLES_P is true if we are generating tuples.
160 This function gets called through the following macros:
161 gfc_conv_descriptor_data_set
162 gfc_conv_descriptor_data_set. */
164 void
165 gfc_conv_descriptor_data_set (stmtblock_t *block, tree desc, tree value)
167 tree field, type, t;
169 type = TREE_TYPE (desc);
170 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
172 field = TYPE_FIELDS (type);
173 gcc_assert (DATA_FIELD == 0);
175 t = fold_build3 (COMPONENT_REF, TREE_TYPE (field), desc, field, NULL_TREE);
176 gfc_add_modify (block, t, fold_convert (TREE_TYPE (field), value));
180 /* This provides address access to the data field. This should only be
181 used by array allocation, passing this on to the runtime. */
183 tree
184 gfc_conv_descriptor_data_addr (tree desc)
186 tree field, type, t;
188 type = TREE_TYPE (desc);
189 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
191 field = TYPE_FIELDS (type);
192 gcc_assert (DATA_FIELD == 0);
194 t = fold_build3 (COMPONENT_REF, TREE_TYPE (field), desc, field, NULL_TREE);
195 return gfc_build_addr_expr (NULL_TREE, t);
198 static tree
199 gfc_conv_descriptor_offset (tree desc)
201 tree type;
202 tree field;
204 type = TREE_TYPE (desc);
205 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
207 field = gfc_advance_chain (TYPE_FIELDS (type), OFFSET_FIELD);
208 gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);
210 return fold_build3 (COMPONENT_REF, TREE_TYPE (field),
211 desc, field, NULL_TREE);
214 tree
215 gfc_conv_descriptor_offset_get (tree desc)
217 return gfc_conv_descriptor_offset (desc);
220 void
221 gfc_conv_descriptor_offset_set (stmtblock_t *block, tree desc,
222 tree value)
224 tree t = gfc_conv_descriptor_offset (desc);
225 gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value));
229 tree
230 gfc_conv_descriptor_dtype (tree desc)
232 tree field;
233 tree type;
235 type = TREE_TYPE (desc);
236 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
238 field = gfc_advance_chain (TYPE_FIELDS (type), DTYPE_FIELD);
239 gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);
241 return fold_build3 (COMPONENT_REF, TREE_TYPE (field),
242 desc, field, NULL_TREE);
245 static tree
246 gfc_conv_descriptor_dimension (tree desc, tree dim)
248 tree field;
249 tree type;
250 tree tmp;
252 type = TREE_TYPE (desc);
253 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
255 field = gfc_advance_chain (TYPE_FIELDS (type), DIMENSION_FIELD);
256 gcc_assert (field != NULL_TREE
257 && TREE_CODE (TREE_TYPE (field)) == ARRAY_TYPE
258 && TREE_CODE (TREE_TYPE (TREE_TYPE (field))) == RECORD_TYPE);
260 tmp = fold_build3 (COMPONENT_REF, TREE_TYPE (field),
261 desc, field, NULL_TREE);
262 tmp = gfc_build_array_ref (tmp, dim, NULL);
263 return tmp;
266 static tree
267 gfc_conv_descriptor_stride (tree desc, tree dim)
269 tree tmp;
270 tree field;
272 tmp = gfc_conv_descriptor_dimension (desc, dim);
273 field = TYPE_FIELDS (TREE_TYPE (tmp));
274 field = gfc_advance_chain (field, STRIDE_SUBFIELD);
275 gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);
277 tmp = fold_build3 (COMPONENT_REF, TREE_TYPE (field),
278 tmp, field, NULL_TREE);
279 return tmp;
282 tree
283 gfc_conv_descriptor_stride_get (tree desc, tree dim)
285 tree type = TREE_TYPE (desc);
286 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
287 if (integer_zerop (dim)
288 && (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE
289 ||GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT
290 ||GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT))
291 return gfc_index_one_node;
293 return gfc_conv_descriptor_stride (desc, dim);
296 void
297 gfc_conv_descriptor_stride_set (stmtblock_t *block, tree desc,
298 tree dim, tree value)
300 tree t = gfc_conv_descriptor_stride (desc, dim);
301 gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value));
304 static tree
305 gfc_conv_descriptor_lbound (tree desc, tree dim)
307 tree tmp;
308 tree field;
310 tmp = gfc_conv_descriptor_dimension (desc, dim);
311 field = TYPE_FIELDS (TREE_TYPE (tmp));
312 field = gfc_advance_chain (field, LBOUND_SUBFIELD);
313 gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);
315 tmp = fold_build3 (COMPONENT_REF, TREE_TYPE (field),
316 tmp, field, NULL_TREE);
317 return tmp;
320 tree
321 gfc_conv_descriptor_lbound_get (tree desc, tree dim)
323 return gfc_conv_descriptor_lbound (desc, dim);
326 void
327 gfc_conv_descriptor_lbound_set (stmtblock_t *block, tree desc,
328 tree dim, tree value)
330 tree t = gfc_conv_descriptor_lbound (desc, dim);
331 gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value));
334 static tree
335 gfc_conv_descriptor_ubound (tree desc, tree dim)
337 tree tmp;
338 tree field;
340 tmp = gfc_conv_descriptor_dimension (desc, dim);
341 field = TYPE_FIELDS (TREE_TYPE (tmp));
342 field = gfc_advance_chain (field, UBOUND_SUBFIELD);
343 gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);
345 tmp = fold_build3 (COMPONENT_REF, TREE_TYPE (field),
346 tmp, field, NULL_TREE);
347 return tmp;
350 tree
351 gfc_conv_descriptor_ubound_get (tree desc, tree dim)
353 return gfc_conv_descriptor_ubound (desc, dim);
356 void
357 gfc_conv_descriptor_ubound_set (stmtblock_t *block, tree desc,
358 tree dim, tree value)
360 tree t = gfc_conv_descriptor_ubound (desc, dim);
361 gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value));
364 /* Build a null array descriptor constructor. */
366 tree
367 gfc_build_null_descriptor (tree type)
369 tree field;
370 tree tmp;
372 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
373 gcc_assert (DATA_FIELD == 0);
374 field = TYPE_FIELDS (type);
376 /* Set a NULL data pointer. */
377 tmp = build_constructor_single (type, field, null_pointer_node);
378 TREE_CONSTANT (tmp) = 1;
379 /* All other fields are ignored. */
381 return tmp;
385 /* Cleanup those #defines. */
387 #undef DATA_FIELD
388 #undef OFFSET_FIELD
389 #undef DTYPE_FIELD
390 #undef DIMENSION_FIELD
391 #undef STRIDE_SUBFIELD
392 #undef LBOUND_SUBFIELD
393 #undef UBOUND_SUBFIELD
396 /* Mark a SS chain as used. Flags specifies in which loops the SS is used.
397 flags & 1 = Main loop body.
398 flags & 2 = temp copy loop. */
400 void
401 gfc_mark_ss_chain_used (gfc_ss * ss, unsigned flags)
403 for (; ss != gfc_ss_terminator; ss = ss->next)
404 ss->useflags = flags;
407 static void gfc_free_ss (gfc_ss *);
410 /* Free a gfc_ss chain. */
412 static void
413 gfc_free_ss_chain (gfc_ss * ss)
415 gfc_ss *next;
417 while (ss != gfc_ss_terminator)
419 gcc_assert (ss != NULL);
420 next = ss->next;
421 gfc_free_ss (ss);
422 ss = next;
427 /* Free a SS. */
429 static void
430 gfc_free_ss (gfc_ss * ss)
432 int n;
434 switch (ss->type)
436 case GFC_SS_SECTION:
437 for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
439 if (ss->data.info.subscript[n])
440 gfc_free_ss_chain (ss->data.info.subscript[n]);
442 break;
444 default:
445 break;
448 gfc_free (ss);
452 /* Free all the SS associated with a loop. */
454 void
455 gfc_cleanup_loop (gfc_loopinfo * loop)
457 gfc_ss *ss;
458 gfc_ss *next;
460 ss = loop->ss;
461 while (ss != gfc_ss_terminator)
463 gcc_assert (ss != NULL);
464 next = ss->loop_chain;
465 gfc_free_ss (ss);
466 ss = next;
471 /* Associate a SS chain with a loop. */
473 void
474 gfc_add_ss_to_loop (gfc_loopinfo * loop, gfc_ss * head)
476 gfc_ss *ss;
478 if (head == gfc_ss_terminator)
479 return;
481 ss = head;
482 for (; ss && ss != gfc_ss_terminator; ss = ss->next)
484 if (ss->next == gfc_ss_terminator)
485 ss->loop_chain = loop->ss;
486 else
487 ss->loop_chain = ss->next;
489 gcc_assert (ss == gfc_ss_terminator);
490 loop->ss = head;
494 /* Generate an initializer for a static pointer or allocatable array. */
496 void
497 gfc_trans_static_array_pointer (gfc_symbol * sym)
499 tree type;
501 gcc_assert (TREE_STATIC (sym->backend_decl));
502 /* Just zero the data member. */
503 type = TREE_TYPE (sym->backend_decl);
504 DECL_INITIAL (sym->backend_decl) = gfc_build_null_descriptor (type);
508 /* If the bounds of SE's loop have not yet been set, see if they can be
509 determined from array spec AS, which is the array spec of a called
510 function. MAPPING maps the callee's dummy arguments to the values
511 that the caller is passing. Add any initialization and finalization
512 code to SE. */
514 void
515 gfc_set_loop_bounds_from_array_spec (gfc_interface_mapping * mapping,
516 gfc_se * se, gfc_array_spec * as)
518 int n, dim;
519 gfc_se tmpse;
520 tree lower;
521 tree upper;
522 tree tmp;
524 if (as && as->type == AS_EXPLICIT)
525 for (dim = 0; dim < se->loop->dimen; dim++)
527 n = se->loop->order[dim];
528 if (se->loop->to[n] == NULL_TREE)
530 /* Evaluate the lower bound. */
531 gfc_init_se (&tmpse, NULL);
532 gfc_apply_interface_mapping (mapping, &tmpse, as->lower[dim]);
533 gfc_add_block_to_block (&se->pre, &tmpse.pre);
534 gfc_add_block_to_block (&se->post, &tmpse.post);
535 lower = fold_convert (gfc_array_index_type, tmpse.expr);
537 /* ...and the upper bound. */
538 gfc_init_se (&tmpse, NULL);
539 gfc_apply_interface_mapping (mapping, &tmpse, as->upper[dim]);
540 gfc_add_block_to_block (&se->pre, &tmpse.pre);
541 gfc_add_block_to_block (&se->post, &tmpse.post);
542 upper = fold_convert (gfc_array_index_type, tmpse.expr);
544 /* Set the upper bound of the loop to UPPER - LOWER. */
545 tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type, upper, lower);
546 tmp = gfc_evaluate_now (tmp, &se->pre);
547 se->loop->to[n] = tmp;
553 /* Generate code to allocate an array temporary, or create a variable to
554 hold the data. If size is NULL, zero the descriptor so that the
555 callee will allocate the array. If DEALLOC is true, also generate code to
556 free the array afterwards.
558 If INITIAL is not NULL, it is packed using internal_pack and the result used
559 as data instead of allocating a fresh, unitialized area of memory.
561 Initialization code is added to PRE and finalization code to POST.
562 DYNAMIC is true if the caller may want to extend the array later
563 using realloc. This prevents us from putting the array on the stack. */
565 static void
566 gfc_trans_allocate_array_storage (stmtblock_t * pre, stmtblock_t * post,
567 gfc_ss_info * info, tree size, tree nelem,
568 tree initial, bool dynamic, bool dealloc)
570 tree tmp;
571 tree desc;
572 bool onstack;
574 desc = info->descriptor;
575 info->offset = gfc_index_zero_node;
576 if (size == NULL_TREE || integer_zerop (size))
578 /* A callee allocated array. */
579 gfc_conv_descriptor_data_set (pre, desc, null_pointer_node);
580 onstack = FALSE;
582 else
584 /* Allocate the temporary. */
585 onstack = !dynamic && initial == NULL_TREE
586 && gfc_can_put_var_on_stack (size);
588 if (onstack)
590 /* Make a temporary variable to hold the data. */
591 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (nelem), nelem,
592 gfc_index_one_node);
593 tmp = build_range_type (gfc_array_index_type, gfc_index_zero_node,
594 tmp);
595 tmp = build_array_type (gfc_get_element_type (TREE_TYPE (desc)),
596 tmp);
597 tmp = gfc_create_var (tmp, "A");
598 tmp = gfc_build_addr_expr (NULL_TREE, tmp);
599 gfc_conv_descriptor_data_set (pre, desc, tmp);
601 else
603 /* Allocate memory to hold the data or call internal_pack. */
604 if (initial == NULL_TREE)
606 tmp = gfc_call_malloc (pre, NULL, size);
607 tmp = gfc_evaluate_now (tmp, pre);
609 else
611 tree packed;
612 tree source_data;
613 tree was_packed;
614 stmtblock_t do_copying;
616 tmp = TREE_TYPE (initial); /* Pointer to descriptor. */
617 gcc_assert (TREE_CODE (tmp) == POINTER_TYPE);
618 tmp = TREE_TYPE (tmp); /* The descriptor itself. */
619 tmp = gfc_get_element_type (tmp);
620 gcc_assert (tmp == gfc_get_element_type (TREE_TYPE (desc)));
621 packed = gfc_create_var (build_pointer_type (tmp), "data");
623 tmp = build_call_expr_loc (input_location,
624 gfor_fndecl_in_pack, 1, initial);
625 tmp = fold_convert (TREE_TYPE (packed), tmp);
626 gfc_add_modify (pre, packed, tmp);
628 tmp = build_fold_indirect_ref_loc (input_location,
629 initial);
630 source_data = gfc_conv_descriptor_data_get (tmp);
632 /* internal_pack may return source->data without any allocation
633 or copying if it is already packed. If that's the case, we
634 need to allocate and copy manually. */
636 gfc_start_block (&do_copying);
637 tmp = gfc_call_malloc (&do_copying, NULL, size);
638 tmp = fold_convert (TREE_TYPE (packed), tmp);
639 gfc_add_modify (&do_copying, packed, tmp);
640 tmp = gfc_build_memcpy_call (packed, source_data, size);
641 gfc_add_expr_to_block (&do_copying, tmp);
643 was_packed = fold_build2 (EQ_EXPR, boolean_type_node,
644 packed, source_data);
645 tmp = gfc_finish_block (&do_copying);
646 tmp = build3_v (COND_EXPR, was_packed, tmp,
647 build_empty_stmt (input_location));
648 gfc_add_expr_to_block (pre, tmp);
650 tmp = fold_convert (pvoid_type_node, packed);
653 gfc_conv_descriptor_data_set (pre, desc, tmp);
656 info->data = gfc_conv_descriptor_data_get (desc);
658 /* The offset is zero because we create temporaries with a zero
659 lower bound. */
660 gfc_conv_descriptor_offset_set (pre, desc, gfc_index_zero_node);
662 if (dealloc && !onstack)
664 /* Free the temporary. */
665 tmp = gfc_conv_descriptor_data_get (desc);
666 tmp = gfc_call_free (fold_convert (pvoid_type_node, tmp));
667 gfc_add_expr_to_block (post, tmp);
672 /* Generate code to create and initialize the descriptor for a temporary
673 array. This is used for both temporaries needed by the scalarizer, and
674 functions returning arrays. Adjusts the loop variables to be
675 zero-based, and calculates the loop bounds for callee allocated arrays.
676 Allocate the array unless it's callee allocated (we have a callee
677 allocated array if 'callee_alloc' is true, or if loop->to[n] is
678 NULL_TREE for any n). Also fills in the descriptor, data and offset
679 fields of info if known. Returns the size of the array, or NULL for a
680 callee allocated array.
682 PRE, POST, INITIAL, DYNAMIC and DEALLOC are as for
683 gfc_trans_allocate_array_storage.
686 tree
687 gfc_trans_create_temp_array (stmtblock_t * pre, stmtblock_t * post,
688 gfc_loopinfo * loop, gfc_ss_info * info,
689 tree eltype, tree initial, bool dynamic,
690 bool dealloc, bool callee_alloc, locus * where)
692 tree type;
693 tree desc;
694 tree tmp;
695 tree size;
696 tree nelem;
697 tree cond;
698 tree or_expr;
699 int n;
700 int dim;
702 gcc_assert (info->dimen > 0);
704 if (gfc_option.warn_array_temp && where)
705 gfc_warning ("Creating array temporary at %L", where);
707 /* Set the lower bound to zero. */
708 for (dim = 0; dim < info->dimen; dim++)
710 n = loop->order[dim];
711 /* Callee allocated arrays may not have a known bound yet. */
712 if (loop->to[n])
713 loop->to[n] = gfc_evaluate_now (fold_build2 (MINUS_EXPR,
714 gfc_array_index_type,
715 loop->to[n], loop->from[n]), pre);
716 loop->from[n] = gfc_index_zero_node;
718 info->delta[dim] = gfc_index_zero_node;
719 info->start[dim] = gfc_index_zero_node;
720 info->end[dim] = gfc_index_zero_node;
721 info->stride[dim] = gfc_index_one_node;
722 info->dim[dim] = dim;
725 /* Initialize the descriptor. */
726 type =
727 gfc_get_array_type_bounds (eltype, info->dimen, 0, loop->from, loop->to, 1,
728 GFC_ARRAY_UNKNOWN, true);
729 desc = gfc_create_var (type, "atmp");
730 GFC_DECL_PACKED_ARRAY (desc) = 1;
732 info->descriptor = desc;
733 size = gfc_index_one_node;
735 /* Fill in the array dtype. */
736 tmp = gfc_conv_descriptor_dtype (desc);
737 gfc_add_modify (pre, tmp, gfc_get_dtype (TREE_TYPE (desc)));
740 Fill in the bounds and stride. This is a packed array, so:
742 size = 1;
743 for (n = 0; n < rank; n++)
745 stride[n] = size
746 delta = ubound[n] + 1 - lbound[n];
747 size = size * delta;
749 size = size * sizeof(element);
752 or_expr = NULL_TREE;
754 /* If there is at least one null loop->to[n], it is a callee allocated
755 array. */
756 for (n = 0; n < info->dimen; n++)
757 if (loop->to[n] == NULL_TREE)
759 size = NULL_TREE;
760 break;
763 for (n = 0; n < info->dimen; n++)
765 if (size == NULL_TREE)
767 /* For a callee allocated array express the loop bounds in terms
768 of the descriptor fields. */
769 tmp =
770 fold_build2 (MINUS_EXPR, gfc_array_index_type,
771 gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[n]),
772 gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[n]));
773 loop->to[n] = tmp;
774 continue;
777 /* Store the stride and bound components in the descriptor. */
778 gfc_conv_descriptor_stride_set (pre, desc, gfc_rank_cst[n], size);
780 gfc_conv_descriptor_lbound_set (pre, desc, gfc_rank_cst[n],
781 gfc_index_zero_node);
783 gfc_conv_descriptor_ubound_set (pre, desc, gfc_rank_cst[n], loop->to[n]);
785 tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
786 loop->to[n], gfc_index_one_node);
788 /* Check whether the size for this dimension is negative. */
789 cond = fold_build2 (LE_EXPR, boolean_type_node, tmp,
790 gfc_index_zero_node);
791 cond = gfc_evaluate_now (cond, pre);
793 if (n == 0)
794 or_expr = cond;
795 else
796 or_expr = fold_build2 (TRUTH_OR_EXPR, boolean_type_node, or_expr, cond);
798 size = fold_build2 (MULT_EXPR, gfc_array_index_type, size, tmp);
799 size = gfc_evaluate_now (size, pre);
802 /* Get the size of the array. */
804 if (size && !callee_alloc)
806 /* If or_expr is true, then the extent in at least one
807 dimension is zero and the size is set to zero. */
808 size = fold_build3 (COND_EXPR, gfc_array_index_type,
809 or_expr, gfc_index_zero_node, size);
811 nelem = size;
812 size = fold_build2 (MULT_EXPR, gfc_array_index_type, size,
813 fold_convert (gfc_array_index_type,
814 TYPE_SIZE_UNIT (gfc_get_element_type (type))));
816 else
818 nelem = size;
819 size = NULL_TREE;
822 gfc_trans_allocate_array_storage (pre, post, info, size, nelem, initial,
823 dynamic, dealloc);
825 if (info->dimen > loop->temp_dim)
826 loop->temp_dim = info->dimen;
828 return size;
832 /* Generate code to transpose array EXPR by creating a new descriptor
833 in which the dimension specifications have been reversed. */
835 void
836 gfc_conv_array_transpose (gfc_se * se, gfc_expr * expr)
838 tree dest, src, dest_index, src_index;
839 gfc_loopinfo *loop;
840 gfc_ss_info *dest_info;
841 gfc_ss *dest_ss, *src_ss;
842 gfc_se src_se;
843 int n;
845 loop = se->loop;
847 src_ss = gfc_walk_expr (expr);
848 dest_ss = se->ss;
850 dest_info = &dest_ss->data.info;
851 gcc_assert (dest_info->dimen == 2);
853 /* Get a descriptor for EXPR. */
854 gfc_init_se (&src_se, NULL);
855 gfc_conv_expr_descriptor (&src_se, expr, src_ss);
856 gfc_add_block_to_block (&se->pre, &src_se.pre);
857 gfc_add_block_to_block (&se->post, &src_se.post);
858 src = src_se.expr;
860 /* Allocate a new descriptor for the return value. */
861 dest = gfc_create_var (TREE_TYPE (src), "atmp");
862 dest_info->descriptor = dest;
863 se->expr = dest;
865 /* Copy across the dtype field. */
866 gfc_add_modify (&se->pre,
867 gfc_conv_descriptor_dtype (dest),
868 gfc_conv_descriptor_dtype (src));
870 /* Copy the dimension information, renumbering dimension 1 to 0 and
871 0 to 1. */
872 for (n = 0; n < 2; n++)
874 dest_info->delta[n] = gfc_index_zero_node;
875 dest_info->start[n] = gfc_index_zero_node;
876 dest_info->end[n] = gfc_index_zero_node;
877 dest_info->stride[n] = gfc_index_one_node;
878 dest_info->dim[n] = n;
880 dest_index = gfc_rank_cst[n];
881 src_index = gfc_rank_cst[1 - n];
883 gfc_conv_descriptor_stride_set (&se->pre, dest, dest_index,
884 gfc_conv_descriptor_stride_get (src, src_index));
886 gfc_conv_descriptor_lbound_set (&se->pre, dest, dest_index,
887 gfc_conv_descriptor_lbound_get (src, src_index));
889 gfc_conv_descriptor_ubound_set (&se->pre, dest, dest_index,
890 gfc_conv_descriptor_ubound_get (src, src_index));
892 if (!loop->to[n])
894 gcc_assert (integer_zerop (loop->from[n]));
895 loop->to[n] =
896 fold_build2 (MINUS_EXPR, gfc_array_index_type,
897 gfc_conv_descriptor_ubound_get (dest, dest_index),
898 gfc_conv_descriptor_lbound_get (dest, dest_index));
902 /* Copy the data pointer. */
903 dest_info->data = gfc_conv_descriptor_data_get (src);
904 gfc_conv_descriptor_data_set (&se->pre, dest, dest_info->data);
906 /* Copy the offset. This is not changed by transposition; the top-left
907 element is still at the same offset as before, except where the loop
908 starts at zero. */
909 if (!integer_zerop (loop->from[0]))
910 dest_info->offset = gfc_conv_descriptor_offset_get (src);
911 else
912 dest_info->offset = gfc_index_zero_node;
914 gfc_conv_descriptor_offset_set (&se->pre, dest,
915 dest_info->offset);
917 if (dest_info->dimen > loop->temp_dim)
918 loop->temp_dim = dest_info->dimen;
922 /* Return the number of iterations in a loop that starts at START,
923 ends at END, and has step STEP. */
925 static tree
926 gfc_get_iteration_count (tree start, tree end, tree step)
928 tree tmp;
929 tree type;
931 type = TREE_TYPE (step);
932 tmp = fold_build2 (MINUS_EXPR, type, end, start);
933 tmp = fold_build2 (FLOOR_DIV_EXPR, type, tmp, step);
934 tmp = fold_build2 (PLUS_EXPR, type, tmp, build_int_cst (type, 1));
935 tmp = fold_build2 (MAX_EXPR, type, tmp, build_int_cst (type, 0));
936 return fold_convert (gfc_array_index_type, tmp);
940 /* Extend the data in array DESC by EXTRA elements. */
942 static void
943 gfc_grow_array (stmtblock_t * pblock, tree desc, tree extra)
945 tree arg0, arg1;
946 tree tmp;
947 tree size;
948 tree ubound;
950 if (integer_zerop (extra))
951 return;
953 ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[0]);
955 /* Add EXTRA to the upper bound. */
956 tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, ubound, extra);
957 gfc_conv_descriptor_ubound_set (pblock, desc, gfc_rank_cst[0], tmp);
959 /* Get the value of the current data pointer. */
960 arg0 = gfc_conv_descriptor_data_get (desc);
962 /* Calculate the new array size. */
963 size = TYPE_SIZE_UNIT (gfc_get_element_type (TREE_TYPE (desc)));
964 tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
965 ubound, gfc_index_one_node);
966 arg1 = fold_build2 (MULT_EXPR, size_type_node,
967 fold_convert (size_type_node, tmp),
968 fold_convert (size_type_node, size));
970 /* Call the realloc() function. */
971 tmp = gfc_call_realloc (pblock, arg0, arg1);
972 gfc_conv_descriptor_data_set (pblock, desc, tmp);
976 /* Return true if the bounds of iterator I can only be determined
977 at run time. */
979 static inline bool
980 gfc_iterator_has_dynamic_bounds (gfc_iterator * i)
982 return (i->start->expr_type != EXPR_CONSTANT
983 || i->end->expr_type != EXPR_CONSTANT
984 || i->step->expr_type != EXPR_CONSTANT);
988 /* Split the size of constructor element EXPR into the sum of two terms,
989 one of which can be determined at compile time and one of which must
990 be calculated at run time. Set *SIZE to the former and return true
991 if the latter might be nonzero. */
993 static bool
994 gfc_get_array_constructor_element_size (mpz_t * size, gfc_expr * expr)
996 if (expr->expr_type == EXPR_ARRAY)
997 return gfc_get_array_constructor_size (size, expr->value.constructor);
998 else if (expr->rank > 0)
1000 /* Calculate everything at run time. */
1001 mpz_set_ui (*size, 0);
1002 return true;
1004 else
1006 /* A single element. */
1007 mpz_set_ui (*size, 1);
1008 return false;
1013 /* Like gfc_get_array_constructor_element_size, but applied to the whole
1014 of array constructor C. */
1016 static bool
1017 gfc_get_array_constructor_size (mpz_t * size, gfc_constructor_base base)
1019 gfc_constructor *c;
1020 gfc_iterator *i;
1021 mpz_t val;
1022 mpz_t len;
1023 bool dynamic;
1025 mpz_set_ui (*size, 0);
1026 mpz_init (len);
1027 mpz_init (val);
1029 dynamic = false;
1030 for (c = gfc_constructor_first (base); c; c = gfc_constructor_next (c))
1032 i = c->iterator;
1033 if (i && gfc_iterator_has_dynamic_bounds (i))
1034 dynamic = true;
1035 else
1037 dynamic |= gfc_get_array_constructor_element_size (&len, c->expr);
1038 if (i)
1040 /* Multiply the static part of the element size by the
1041 number of iterations. */
1042 mpz_sub (val, i->end->value.integer, i->start->value.integer);
1043 mpz_fdiv_q (val, val, i->step->value.integer);
1044 mpz_add_ui (val, val, 1);
1045 if (mpz_sgn (val) > 0)
1046 mpz_mul (len, len, val);
1047 else
1048 mpz_set_ui (len, 0);
1050 mpz_add (*size, *size, len);
1053 mpz_clear (len);
1054 mpz_clear (val);
1055 return dynamic;
1059 /* Make sure offset is a variable. */
1061 static void
1062 gfc_put_offset_into_var (stmtblock_t * pblock, tree * poffset,
1063 tree * offsetvar)
1065 /* We should have already created the offset variable. We cannot
1066 create it here because we may be in an inner scope. */
1067 gcc_assert (*offsetvar != NULL_TREE);
1068 gfc_add_modify (pblock, *offsetvar, *poffset);
1069 *poffset = *offsetvar;
1070 TREE_USED (*offsetvar) = 1;
1074 /* Variables needed for bounds-checking. */
1075 static bool first_len;
1076 static tree first_len_val;
1077 static bool typespec_chararray_ctor;
1079 static void
1080 gfc_trans_array_ctor_element (stmtblock_t * pblock, tree desc,
1081 tree offset, gfc_se * se, gfc_expr * expr)
1083 tree tmp;
1085 gfc_conv_expr (se, expr);
1087 /* Store the value. */
1088 tmp = build_fold_indirect_ref_loc (input_location,
1089 gfc_conv_descriptor_data_get (desc));
1090 tmp = gfc_build_array_ref (tmp, offset, NULL);
1092 if (expr->ts.type == BT_CHARACTER)
1094 int i = gfc_validate_kind (BT_CHARACTER, expr->ts.kind, false);
1095 tree esize;
1097 esize = size_in_bytes (gfc_get_element_type (TREE_TYPE (desc)));
1098 esize = fold_convert (gfc_charlen_type_node, esize);
1099 esize = fold_build2 (TRUNC_DIV_EXPR, gfc_charlen_type_node, esize,
1100 build_int_cst (gfc_charlen_type_node,
1101 gfc_character_kinds[i].bit_size / 8));
1103 gfc_conv_string_parameter (se);
1104 if (POINTER_TYPE_P (TREE_TYPE (tmp)))
1106 /* The temporary is an array of pointers. */
1107 se->expr = fold_convert (TREE_TYPE (tmp), se->expr);
1108 gfc_add_modify (&se->pre, tmp, se->expr);
1110 else
1112 /* The temporary is an array of string values. */
1113 tmp = gfc_build_addr_expr (gfc_get_pchar_type (expr->ts.kind), tmp);
1114 /* We know the temporary and the value will be the same length,
1115 so can use memcpy. */
1116 gfc_trans_string_copy (&se->pre, esize, tmp, expr->ts.kind,
1117 se->string_length, se->expr, expr->ts.kind);
1119 if ((gfc_option.rtcheck & GFC_RTCHECK_BOUNDS) && !typespec_chararray_ctor)
1121 if (first_len)
1123 gfc_add_modify (&se->pre, first_len_val,
1124 se->string_length);
1125 first_len = false;
1127 else
1129 /* Verify that all constructor elements are of the same
1130 length. */
1131 tree cond = fold_build2 (NE_EXPR, boolean_type_node,
1132 first_len_val, se->string_length);
1133 gfc_trans_runtime_check
1134 (true, false, cond, &se->pre, &expr->where,
1135 "Different CHARACTER lengths (%ld/%ld) in array constructor",
1136 fold_convert (long_integer_type_node, first_len_val),
1137 fold_convert (long_integer_type_node, se->string_length));
1141 else
1143 /* TODO: Should the frontend already have done this conversion? */
1144 se->expr = fold_convert (TREE_TYPE (tmp), se->expr);
1145 gfc_add_modify (&se->pre, tmp, se->expr);
1148 gfc_add_block_to_block (pblock, &se->pre);
1149 gfc_add_block_to_block (pblock, &se->post);
1153 /* Add the contents of an array to the constructor. DYNAMIC is as for
1154 gfc_trans_array_constructor_value. */
1156 static void
1157 gfc_trans_array_constructor_subarray (stmtblock_t * pblock,
1158 tree type ATTRIBUTE_UNUSED,
1159 tree desc, gfc_expr * expr,
1160 tree * poffset, tree * offsetvar,
1161 bool dynamic)
1163 gfc_se se;
1164 gfc_ss *ss;
1165 gfc_loopinfo loop;
1166 stmtblock_t body;
1167 tree tmp;
1168 tree size;
1169 int n;
1171 /* We need this to be a variable so we can increment it. */
1172 gfc_put_offset_into_var (pblock, poffset, offsetvar);
1174 gfc_init_se (&se, NULL);
1176 /* Walk the array expression. */
1177 ss = gfc_walk_expr (expr);
1178 gcc_assert (ss != gfc_ss_terminator);
1180 /* Initialize the scalarizer. */
1181 gfc_init_loopinfo (&loop);
1182 gfc_add_ss_to_loop (&loop, ss);
1184 /* Initialize the loop. */
1185 gfc_conv_ss_startstride (&loop);
1186 gfc_conv_loop_setup (&loop, &expr->where);
1188 /* Make sure the constructed array has room for the new data. */
1189 if (dynamic)
1191 /* Set SIZE to the total number of elements in the subarray. */
1192 size = gfc_index_one_node;
1193 for (n = 0; n < loop.dimen; n++)
1195 tmp = gfc_get_iteration_count (loop.from[n], loop.to[n],
1196 gfc_index_one_node);
1197 size = fold_build2 (MULT_EXPR, gfc_array_index_type, size, tmp);
1200 /* Grow the constructed array by SIZE elements. */
1201 gfc_grow_array (&loop.pre, desc, size);
1204 /* Make the loop body. */
1205 gfc_mark_ss_chain_used (ss, 1);
1206 gfc_start_scalarized_body (&loop, &body);
1207 gfc_copy_loopinfo_to_se (&se, &loop);
1208 se.ss = ss;
1210 gfc_trans_array_ctor_element (&body, desc, *poffset, &se, expr);
1211 gcc_assert (se.ss == gfc_ss_terminator);
1213 /* Increment the offset. */
1214 tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
1215 *poffset, gfc_index_one_node);
1216 gfc_add_modify (&body, *poffset, tmp);
1218 /* Finish the loop. */
1219 gfc_trans_scalarizing_loops (&loop, &body);
1220 gfc_add_block_to_block (&loop.pre, &loop.post);
1221 tmp = gfc_finish_block (&loop.pre);
1222 gfc_add_expr_to_block (pblock, tmp);
1224 gfc_cleanup_loop (&loop);
1228 /* Assign the values to the elements of an array constructor. DYNAMIC
1229 is true if descriptor DESC only contains enough data for the static
1230 size calculated by gfc_get_array_constructor_size. When true, memory
1231 for the dynamic parts must be allocated using realloc. */
1233 static void
1234 gfc_trans_array_constructor_value (stmtblock_t * pblock, tree type,
1235 tree desc, gfc_constructor_base base,
1236 tree * poffset, tree * offsetvar,
1237 bool dynamic)
1239 tree tmp;
1240 stmtblock_t body;
1241 gfc_se se;
1242 mpz_t size;
1243 gfc_constructor *c;
1245 tree shadow_loopvar = NULL_TREE;
1246 gfc_saved_var saved_loopvar;
1248 mpz_init (size);
1249 for (c = gfc_constructor_first (base); c; c = gfc_constructor_next (c))
1251 /* If this is an iterator or an array, the offset must be a variable. */
1252 if ((c->iterator || c->expr->rank > 0) && INTEGER_CST_P (*poffset))
1253 gfc_put_offset_into_var (pblock, poffset, offsetvar);
1255 /* Shadowing the iterator avoids changing its value and saves us from
1256 keeping track of it. Further, it makes sure that there's always a
1257 backend-decl for the symbol, even if there wasn't one before,
1258 e.g. in the case of an iterator that appears in a specification
1259 expression in an interface mapping. */
1260 if (c->iterator)
1262 gfc_symbol *sym = c->iterator->var->symtree->n.sym;
1263 tree type = gfc_typenode_for_spec (&sym->ts);
1265 shadow_loopvar = gfc_create_var (type, "shadow_loopvar");
1266 gfc_shadow_sym (sym, shadow_loopvar, &saved_loopvar);
1269 gfc_start_block (&body);
1271 if (c->expr->expr_type == EXPR_ARRAY)
1273 /* Array constructors can be nested. */
1274 gfc_trans_array_constructor_value (&body, type, desc,
1275 c->expr->value.constructor,
1276 poffset, offsetvar, dynamic);
1278 else if (c->expr->rank > 0)
1280 gfc_trans_array_constructor_subarray (&body, type, desc, c->expr,
1281 poffset, offsetvar, dynamic);
1283 else
1285 /* This code really upsets the gimplifier so don't bother for now. */
1286 gfc_constructor *p;
1287 HOST_WIDE_INT n;
1288 HOST_WIDE_INT size;
1290 p = c;
1291 n = 0;
1292 while (p && !(p->iterator || p->expr->expr_type != EXPR_CONSTANT))
1294 p = gfc_constructor_next (p);
1295 n++;
1297 if (n < 4)
1299 /* Scalar values. */
1300 gfc_init_se (&se, NULL);
1301 gfc_trans_array_ctor_element (&body, desc, *poffset,
1302 &se, c->expr);
1304 *poffset = fold_build2 (PLUS_EXPR, gfc_array_index_type,
1305 *poffset, gfc_index_one_node);
1307 else
1309 /* Collect multiple scalar constants into a constructor. */
1310 VEC(constructor_elt,gc) *v = NULL;
1311 tree init;
1312 tree bound;
1313 tree tmptype;
1314 HOST_WIDE_INT idx = 0;
1316 p = c;
1317 /* Count the number of consecutive scalar constants. */
1318 while (p && !(p->iterator
1319 || p->expr->expr_type != EXPR_CONSTANT))
1321 gfc_init_se (&se, NULL);
1322 gfc_conv_constant (&se, p->expr);
1324 if (c->expr->ts.type != BT_CHARACTER)
1325 se.expr = fold_convert (type, se.expr);
1326 /* For constant character array constructors we build
1327 an array of pointers. */
1328 else if (POINTER_TYPE_P (type))
1329 se.expr = gfc_build_addr_expr
1330 (gfc_get_pchar_type (p->expr->ts.kind),
1331 se.expr);
1333 CONSTRUCTOR_APPEND_ELT (v,
1334 build_int_cst (gfc_array_index_type,
1335 idx++),
1336 se.expr);
1337 c = p;
1338 p = gfc_constructor_next (p);
1341 bound = build_int_cst (NULL_TREE, n - 1);
1342 /* Create an array type to hold them. */
1343 tmptype = build_range_type (gfc_array_index_type,
1344 gfc_index_zero_node, bound);
1345 tmptype = build_array_type (type, tmptype);
1347 init = build_constructor (tmptype, v);
1348 TREE_CONSTANT (init) = 1;
1349 TREE_STATIC (init) = 1;
1350 /* Create a static variable to hold the data. */
1351 tmp = gfc_create_var (tmptype, "data");
1352 TREE_STATIC (tmp) = 1;
1353 TREE_CONSTANT (tmp) = 1;
1354 TREE_READONLY (tmp) = 1;
1355 DECL_INITIAL (tmp) = init;
1356 init = tmp;
1358 /* Use BUILTIN_MEMCPY to assign the values. */
1359 tmp = gfc_conv_descriptor_data_get (desc);
1360 tmp = build_fold_indirect_ref_loc (input_location,
1361 tmp);
1362 tmp = gfc_build_array_ref (tmp, *poffset, NULL);
1363 tmp = gfc_build_addr_expr (NULL_TREE, tmp);
1364 init = gfc_build_addr_expr (NULL_TREE, init);
1366 size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (type));
1367 bound = build_int_cst (NULL_TREE, n * size);
1368 tmp = build_call_expr_loc (input_location,
1369 built_in_decls[BUILT_IN_MEMCPY], 3,
1370 tmp, init, bound);
1371 gfc_add_expr_to_block (&body, tmp);
1373 *poffset = fold_build2 (PLUS_EXPR, gfc_array_index_type,
1374 *poffset,
1375 build_int_cst (gfc_array_index_type, n));
1377 if (!INTEGER_CST_P (*poffset))
1379 gfc_add_modify (&body, *offsetvar, *poffset);
1380 *poffset = *offsetvar;
1384 /* The frontend should already have done any expansions
1385 at compile-time. */
1386 if (!c->iterator)
1388 /* Pass the code as is. */
1389 tmp = gfc_finish_block (&body);
1390 gfc_add_expr_to_block (pblock, tmp);
1392 else
1394 /* Build the implied do-loop. */
1395 stmtblock_t implied_do_block;
1396 tree cond;
1397 tree end;
1398 tree step;
1399 tree exit_label;
1400 tree loopbody;
1401 tree tmp2;
1403 loopbody = gfc_finish_block (&body);
1405 /* Create a new block that holds the implied-do loop. A temporary
1406 loop-variable is used. */
1407 gfc_start_block(&implied_do_block);
1409 /* Initialize the loop. */
1410 gfc_init_se (&se, NULL);
1411 gfc_conv_expr_val (&se, c->iterator->start);
1412 gfc_add_block_to_block (&implied_do_block, &se.pre);
1413 gfc_add_modify (&implied_do_block, shadow_loopvar, se.expr);
1415 gfc_init_se (&se, NULL);
1416 gfc_conv_expr_val (&se, c->iterator->end);
1417 gfc_add_block_to_block (&implied_do_block, &se.pre);
1418 end = gfc_evaluate_now (se.expr, &implied_do_block);
1420 gfc_init_se (&se, NULL);
1421 gfc_conv_expr_val (&se, c->iterator->step);
1422 gfc_add_block_to_block (&implied_do_block, &se.pre);
1423 step = gfc_evaluate_now (se.expr, &implied_do_block);
1425 /* If this array expands dynamically, and the number of iterations
1426 is not constant, we won't have allocated space for the static
1427 part of C->EXPR's size. Do that now. */
1428 if (dynamic && gfc_iterator_has_dynamic_bounds (c->iterator))
1430 /* Get the number of iterations. */
1431 tmp = gfc_get_iteration_count (shadow_loopvar, end, step);
1433 /* Get the static part of C->EXPR's size. */
1434 gfc_get_array_constructor_element_size (&size, c->expr);
1435 tmp2 = gfc_conv_mpz_to_tree (size, gfc_index_integer_kind);
1437 /* Grow the array by TMP * TMP2 elements. */
1438 tmp = fold_build2 (MULT_EXPR, gfc_array_index_type, tmp, tmp2);
1439 gfc_grow_array (&implied_do_block, desc, tmp);
1442 /* Generate the loop body. */
1443 exit_label = gfc_build_label_decl (NULL_TREE);
1444 gfc_start_block (&body);
1446 /* Generate the exit condition. Depending on the sign of
1447 the step variable we have to generate the correct
1448 comparison. */
1449 tmp = fold_build2 (GT_EXPR, boolean_type_node, step,
1450 build_int_cst (TREE_TYPE (step), 0));
1451 cond = fold_build3 (COND_EXPR, boolean_type_node, tmp,
1452 fold_build2 (GT_EXPR, boolean_type_node,
1453 shadow_loopvar, end),
1454 fold_build2 (LT_EXPR, boolean_type_node,
1455 shadow_loopvar, end));
1456 tmp = build1_v (GOTO_EXPR, exit_label);
1457 TREE_USED (exit_label) = 1;
1458 tmp = build3_v (COND_EXPR, cond, tmp,
1459 build_empty_stmt (input_location));
1460 gfc_add_expr_to_block (&body, tmp);
1462 /* The main loop body. */
1463 gfc_add_expr_to_block (&body, loopbody);
1465 /* Increase loop variable by step. */
1466 tmp = fold_build2 (PLUS_EXPR, TREE_TYPE (shadow_loopvar), shadow_loopvar, step);
1467 gfc_add_modify (&body, shadow_loopvar, tmp);
1469 /* Finish the loop. */
1470 tmp = gfc_finish_block (&body);
1471 tmp = build1_v (LOOP_EXPR, tmp);
1472 gfc_add_expr_to_block (&implied_do_block, tmp);
1474 /* Add the exit label. */
1475 tmp = build1_v (LABEL_EXPR, exit_label);
1476 gfc_add_expr_to_block (&implied_do_block, tmp);
1478 /* Finishe the implied-do loop. */
1479 tmp = gfc_finish_block(&implied_do_block);
1480 gfc_add_expr_to_block(pblock, tmp);
1482 gfc_restore_sym (c->iterator->var->symtree->n.sym, &saved_loopvar);
1485 mpz_clear (size);
1489 /* Figure out the string length of a variable reference expression.
1490 Used by get_array_ctor_strlen. */
1492 static void
1493 get_array_ctor_var_strlen (gfc_expr * expr, tree * len)
1495 gfc_ref *ref;
1496 gfc_typespec *ts;
1497 mpz_t char_len;
1499 /* Don't bother if we already know the length is a constant. */
1500 if (*len && INTEGER_CST_P (*len))
1501 return;
1503 ts = &expr->symtree->n.sym->ts;
1504 for (ref = expr->ref; ref; ref = ref->next)
1506 switch (ref->type)
1508 case REF_ARRAY:
1509 /* Array references don't change the string length. */
1510 break;
1512 case REF_COMPONENT:
1513 /* Use the length of the component. */
1514 ts = &ref->u.c.component->ts;
1515 break;
1517 case REF_SUBSTRING:
1518 if (ref->u.ss.start->expr_type != EXPR_CONSTANT
1519 || ref->u.ss.end->expr_type != EXPR_CONSTANT)
1520 break;
1521 mpz_init_set_ui (char_len, 1);
1522 mpz_add (char_len, char_len, ref->u.ss.end->value.integer);
1523 mpz_sub (char_len, char_len, ref->u.ss.start->value.integer);
1524 *len = gfc_conv_mpz_to_tree (char_len, gfc_default_integer_kind);
1525 *len = convert (gfc_charlen_type_node, *len);
1526 mpz_clear (char_len);
1527 return;
1529 default:
1530 /* TODO: Substrings are tricky because we can't evaluate the
1531 expression more than once. For now we just give up, and hope
1532 we can figure it out elsewhere. */
1533 return;
1537 *len = ts->u.cl->backend_decl;
1541 /* A catch-all to obtain the string length for anything that is not a
1542 constant, array or variable. */
1543 static void
1544 get_array_ctor_all_strlen (stmtblock_t *block, gfc_expr *e, tree *len)
1546 gfc_se se;
1547 gfc_ss *ss;
1549 /* Don't bother if we already know the length is a constant. */
1550 if (*len && INTEGER_CST_P (*len))
1551 return;
1553 if (!e->ref && e->ts.u.cl && e->ts.u.cl->length
1554 && e->ts.u.cl->length->expr_type == EXPR_CONSTANT)
1556 /* This is easy. */
1557 gfc_conv_const_charlen (e->ts.u.cl);
1558 *len = e->ts.u.cl->backend_decl;
1560 else
1562 /* Otherwise, be brutal even if inefficient. */
1563 ss = gfc_walk_expr (e);
1564 gfc_init_se (&se, NULL);
1566 /* No function call, in case of side effects. */
1567 se.no_function_call = 1;
1568 if (ss == gfc_ss_terminator)
1569 gfc_conv_expr (&se, e);
1570 else
1571 gfc_conv_expr_descriptor (&se, e, ss);
1573 /* Fix the value. */
1574 *len = gfc_evaluate_now (se.string_length, &se.pre);
1576 gfc_add_block_to_block (block, &se.pre);
1577 gfc_add_block_to_block (block, &se.post);
1579 e->ts.u.cl->backend_decl = *len;
1584 /* Figure out the string length of a character array constructor.
1585 If len is NULL, don't calculate the length; this happens for recursive calls
1586 when a sub-array-constructor is an element but not at the first position,
1587 so when we're not interested in the length.
1588 Returns TRUE if all elements are character constants. */
1590 bool
1591 get_array_ctor_strlen (stmtblock_t *block, gfc_constructor_base base, tree * len)
1593 gfc_constructor *c;
1594 bool is_const;
1596 is_const = TRUE;
1598 if (gfc_constructor_first (base) == NULL)
1600 if (len)
1601 *len = build_int_cstu (gfc_charlen_type_node, 0);
1602 return is_const;
1605 /* Loop over all constructor elements to find out is_const, but in len we
1606 want to store the length of the first, not the last, element. We can
1607 of course exit the loop as soon as is_const is found to be false. */
1608 for (c = gfc_constructor_first (base);
1609 c && is_const; c = gfc_constructor_next (c))
1611 switch (c->expr->expr_type)
1613 case EXPR_CONSTANT:
1614 if (len && !(*len && INTEGER_CST_P (*len)))
1615 *len = build_int_cstu (gfc_charlen_type_node,
1616 c->expr->value.character.length);
1617 break;
1619 case EXPR_ARRAY:
1620 if (!get_array_ctor_strlen (block, c->expr->value.constructor, len))
1621 is_const = false;
1622 break;
1624 case EXPR_VARIABLE:
1625 is_const = false;
1626 if (len)
1627 get_array_ctor_var_strlen (c->expr, len);
1628 break;
1630 default:
1631 is_const = false;
1632 if (len)
1633 get_array_ctor_all_strlen (block, c->expr, len);
1634 break;
1637 /* After the first iteration, we don't want the length modified. */
1638 len = NULL;
1641 return is_const;
1644 /* Check whether the array constructor C consists entirely of constant
1645 elements, and if so returns the number of those elements, otherwise
1646 return zero. Note, an empty or NULL array constructor returns zero. */
1648 unsigned HOST_WIDE_INT
1649 gfc_constant_array_constructor_p (gfc_constructor_base base)
1651 unsigned HOST_WIDE_INT nelem = 0;
1653 gfc_constructor *c = gfc_constructor_first (base);
1654 while (c)
1656 if (c->iterator
1657 || c->expr->rank > 0
1658 || c->expr->expr_type != EXPR_CONSTANT)
1659 return 0;
1660 c = gfc_constructor_next (c);
1661 nelem++;
1663 return nelem;
1667 /* Given EXPR, the constant array constructor specified by an EXPR_ARRAY,
1668 and the tree type of it's elements, TYPE, return a static constant
1669 variable that is compile-time initialized. */
1671 tree
1672 gfc_build_constant_array_constructor (gfc_expr * expr, tree type)
1674 tree tmptype, init, tmp;
1675 HOST_WIDE_INT nelem;
1676 gfc_constructor *c;
1677 gfc_array_spec as;
1678 gfc_se se;
1679 int i;
1680 VEC(constructor_elt,gc) *v = NULL;
1682 /* First traverse the constructor list, converting the constants
1683 to tree to build an initializer. */
1684 nelem = 0;
1685 c = gfc_constructor_first (expr->value.constructor);
1686 while (c)
1688 gfc_init_se (&se, NULL);
1689 gfc_conv_constant (&se, c->expr);
1690 if (c->expr->ts.type != BT_CHARACTER)
1691 se.expr = fold_convert (type, se.expr);
1692 else if (POINTER_TYPE_P (type))
1693 se.expr = gfc_build_addr_expr (gfc_get_pchar_type (c->expr->ts.kind),
1694 se.expr);
1695 CONSTRUCTOR_APPEND_ELT (v, build_int_cst (gfc_array_index_type, nelem),
1696 se.expr);
1697 c = gfc_constructor_next (c);
1698 nelem++;
1701 /* Next determine the tree type for the array. We use the gfortran
1702 front-end's gfc_get_nodesc_array_type in order to create a suitable
1703 GFC_ARRAY_TYPE_P that may be used by the scalarizer. */
1705 memset (&as, 0, sizeof (gfc_array_spec));
1707 as.rank = expr->rank;
1708 as.type = AS_EXPLICIT;
1709 if (!expr->shape)
1711 as.lower[0] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 0);
1712 as.upper[0] = gfc_get_int_expr (gfc_default_integer_kind,
1713 NULL, nelem - 1);
1715 else
1716 for (i = 0; i < expr->rank; i++)
1718 int tmp = (int) mpz_get_si (expr->shape[i]);
1719 as.lower[i] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 0);
1720 as.upper[i] = gfc_get_int_expr (gfc_default_integer_kind,
1721 NULL, tmp - 1);
1724 tmptype = gfc_get_nodesc_array_type (type, &as, PACKED_STATIC, true);
1726 init = build_constructor (tmptype, v);
1728 TREE_CONSTANT (init) = 1;
1729 TREE_STATIC (init) = 1;
1731 tmp = gfc_create_var (tmptype, "A");
1732 TREE_STATIC (tmp) = 1;
1733 TREE_CONSTANT (tmp) = 1;
1734 TREE_READONLY (tmp) = 1;
1735 DECL_INITIAL (tmp) = init;
1737 return tmp;
1741 /* Translate a constant EXPR_ARRAY array constructor for the scalarizer.
1742 This mostly initializes the scalarizer state info structure with the
1743 appropriate values to directly use the array created by the function
1744 gfc_build_constant_array_constructor. */
1746 static void
1747 gfc_trans_constant_array_constructor (gfc_loopinfo * loop,
1748 gfc_ss * ss, tree type)
1750 gfc_ss_info *info;
1751 tree tmp;
1752 int i;
1754 tmp = gfc_build_constant_array_constructor (ss->expr, type);
1756 info = &ss->data.info;
1758 info->descriptor = tmp;
1759 info->data = gfc_build_addr_expr (NULL_TREE, tmp);
1760 info->offset = gfc_index_zero_node;
1762 for (i = 0; i < info->dimen; i++)
1764 info->delta[i] = gfc_index_zero_node;
1765 info->start[i] = gfc_index_zero_node;
1766 info->end[i] = gfc_index_zero_node;
1767 info->stride[i] = gfc_index_one_node;
1768 info->dim[i] = i;
1771 if (info->dimen > loop->temp_dim)
1772 loop->temp_dim = info->dimen;
1775 /* Helper routine of gfc_trans_array_constructor to determine if the
1776 bounds of the loop specified by LOOP are constant and simple enough
1777 to use with gfc_trans_constant_array_constructor. Returns the
1778 iteration count of the loop if suitable, and NULL_TREE otherwise. */
1780 static tree
1781 constant_array_constructor_loop_size (gfc_loopinfo * loop)
1783 tree size = gfc_index_one_node;
1784 tree tmp;
1785 int i;
1787 for (i = 0; i < loop->dimen; i++)
1789 /* If the bounds aren't constant, return NULL_TREE. */
1790 if (!INTEGER_CST_P (loop->from[i]) || !INTEGER_CST_P (loop->to[i]))
1791 return NULL_TREE;
1792 if (!integer_zerop (loop->from[i]))
1794 /* Only allow nonzero "from" in one-dimensional arrays. */
1795 if (loop->dimen != 1)
1796 return NULL_TREE;
1797 tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type,
1798 loop->to[i], loop->from[i]);
1800 else
1801 tmp = loop->to[i];
1802 tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
1803 tmp, gfc_index_one_node);
1804 size = fold_build2 (MULT_EXPR, gfc_array_index_type, size, tmp);
1807 return size;
1811 /* Array constructors are handled by constructing a temporary, then using that
1812 within the scalarization loop. This is not optimal, but seems by far the
1813 simplest method. */
1815 static void
1816 gfc_trans_array_constructor (gfc_loopinfo * loop, gfc_ss * ss, locus * where)
1818 gfc_constructor_base c;
1819 tree offset;
1820 tree offsetvar;
1821 tree desc;
1822 tree type;
1823 bool dynamic;
1824 bool old_first_len, old_typespec_chararray_ctor;
1825 tree old_first_len_val;
1827 /* Save the old values for nested checking. */
1828 old_first_len = first_len;
1829 old_first_len_val = first_len_val;
1830 old_typespec_chararray_ctor = typespec_chararray_ctor;
1832 /* Do bounds-checking here and in gfc_trans_array_ctor_element only if no
1833 typespec was given for the array constructor. */
1834 typespec_chararray_ctor = (ss->expr->ts.u.cl
1835 && ss->expr->ts.u.cl->length_from_typespec);
1837 if ((gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
1838 && ss->expr->ts.type == BT_CHARACTER && !typespec_chararray_ctor)
1840 first_len_val = gfc_create_var (gfc_charlen_type_node, "len");
1841 first_len = true;
1844 ss->data.info.dimen = loop->dimen;
1846 c = ss->expr->value.constructor;
1847 if (ss->expr->ts.type == BT_CHARACTER)
1849 bool const_string;
1851 /* get_array_ctor_strlen walks the elements of the constructor, if a
1852 typespec was given, we already know the string length and want the one
1853 specified there. */
1854 if (typespec_chararray_ctor && ss->expr->ts.u.cl->length
1855 && ss->expr->ts.u.cl->length->expr_type != EXPR_CONSTANT)
1857 gfc_se length_se;
1859 const_string = false;
1860 gfc_init_se (&length_se, NULL);
1861 gfc_conv_expr_type (&length_se, ss->expr->ts.u.cl->length,
1862 gfc_charlen_type_node);
1863 ss->string_length = length_se.expr;
1864 gfc_add_block_to_block (&loop->pre, &length_se.pre);
1865 gfc_add_block_to_block (&loop->post, &length_se.post);
1867 else
1868 const_string = get_array_ctor_strlen (&loop->pre, c,
1869 &ss->string_length);
1871 /* Complex character array constructors should have been taken care of
1872 and not end up here. */
1873 gcc_assert (ss->string_length);
1875 ss->expr->ts.u.cl->backend_decl = ss->string_length;
1877 type = gfc_get_character_type_len (ss->expr->ts.kind, ss->string_length);
1878 if (const_string)
1879 type = build_pointer_type (type);
1881 else
1882 type = gfc_typenode_for_spec (&ss->expr->ts);
1884 /* See if the constructor determines the loop bounds. */
1885 dynamic = false;
1887 if (ss->expr->shape && loop->dimen > 1 && loop->to[0] == NULL_TREE)
1889 /* We have a multidimensional parameter. */
1890 int n;
1891 for (n = 0; n < ss->expr->rank; n++)
1893 loop->from[n] = gfc_index_zero_node;
1894 loop->to[n] = gfc_conv_mpz_to_tree (ss->expr->shape [n],
1895 gfc_index_integer_kind);
1896 loop->to[n] = fold_build2 (MINUS_EXPR, gfc_array_index_type,
1897 loop->to[n], gfc_index_one_node);
1901 if (loop->to[0] == NULL_TREE)
1903 mpz_t size;
1905 /* We should have a 1-dimensional, zero-based loop. */
1906 gcc_assert (loop->dimen == 1);
1907 gcc_assert (integer_zerop (loop->from[0]));
1909 /* Split the constructor size into a static part and a dynamic part.
1910 Allocate the static size up-front and record whether the dynamic
1911 size might be nonzero. */
1912 mpz_init (size);
1913 dynamic = gfc_get_array_constructor_size (&size, c);
1914 mpz_sub_ui (size, size, 1);
1915 loop->to[0] = gfc_conv_mpz_to_tree (size, gfc_index_integer_kind);
1916 mpz_clear (size);
1919 /* Special case constant array constructors. */
1920 if (!dynamic)
1922 unsigned HOST_WIDE_INT nelem = gfc_constant_array_constructor_p (c);
1923 if (nelem > 0)
1925 tree size = constant_array_constructor_loop_size (loop);
1926 if (size && compare_tree_int (size, nelem) == 0)
1928 gfc_trans_constant_array_constructor (loop, ss, type);
1929 goto finish;
1934 gfc_trans_create_temp_array (&loop->pre, &loop->post, loop, &ss->data.info,
1935 type, NULL_TREE, dynamic, true, false, where);
1937 desc = ss->data.info.descriptor;
1938 offset = gfc_index_zero_node;
1939 offsetvar = gfc_create_var_np (gfc_array_index_type, "offset");
1940 TREE_NO_WARNING (offsetvar) = 1;
1941 TREE_USED (offsetvar) = 0;
1942 gfc_trans_array_constructor_value (&loop->pre, type, desc, c,
1943 &offset, &offsetvar, dynamic);
1945 /* If the array grows dynamically, the upper bound of the loop variable
1946 is determined by the array's final upper bound. */
1947 if (dynamic)
1948 loop->to[0] = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[0]);
1950 if (TREE_USED (offsetvar))
1951 pushdecl (offsetvar);
1952 else
1953 gcc_assert (INTEGER_CST_P (offset));
1954 #if 0
1955 /* Disable bound checking for now because it's probably broken. */
1956 if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
1958 gcc_unreachable ();
1960 #endif
1962 finish:
1963 /* Restore old values of globals. */
1964 first_len = old_first_len;
1965 first_len_val = old_first_len_val;
1966 typespec_chararray_ctor = old_typespec_chararray_ctor;
1970 /* INFO describes a GFC_SS_SECTION in loop LOOP, and this function is
1971 called after evaluating all of INFO's vector dimensions. Go through
1972 each such vector dimension and see if we can now fill in any missing
1973 loop bounds. */
1975 static void
1976 gfc_set_vector_loop_bounds (gfc_loopinfo * loop, gfc_ss_info * info)
1978 gfc_se se;
1979 tree tmp;
1980 tree desc;
1981 tree zero;
1982 int n;
1983 int dim;
1985 for (n = 0; n < loop->dimen; n++)
1987 dim = info->dim[n];
1988 if (info->ref->u.ar.dimen_type[dim] == DIMEN_VECTOR
1989 && loop->to[n] == NULL)
1991 /* Loop variable N indexes vector dimension DIM, and we don't
1992 yet know the upper bound of loop variable N. Set it to the
1993 difference between the vector's upper and lower bounds. */
1994 gcc_assert (loop->from[n] == gfc_index_zero_node);
1995 gcc_assert (info->subscript[dim]
1996 && info->subscript[dim]->type == GFC_SS_VECTOR);
1998 gfc_init_se (&se, NULL);
1999 desc = info->subscript[dim]->data.info.descriptor;
2000 zero = gfc_rank_cst[0];
2001 tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type,
2002 gfc_conv_descriptor_ubound_get (desc, zero),
2003 gfc_conv_descriptor_lbound_get (desc, zero));
2004 tmp = gfc_evaluate_now (tmp, &loop->pre);
2005 loop->to[n] = tmp;
2011 /* Add the pre and post chains for all the scalar expressions in a SS chain
2012 to loop. This is called after the loop parameters have been calculated,
2013 but before the actual scalarizing loops. */
2015 static void
2016 gfc_add_loop_ss_code (gfc_loopinfo * loop, gfc_ss * ss, bool subscript,
2017 locus * where)
2019 gfc_se se;
2020 int n;
2022 /* TODO: This can generate bad code if there are ordering dependencies,
2023 e.g., a callee allocated function and an unknown size constructor. */
2024 gcc_assert (ss != NULL);
2026 for (; ss != gfc_ss_terminator; ss = ss->loop_chain)
2028 gcc_assert (ss);
2030 switch (ss->type)
2032 case GFC_SS_SCALAR:
2033 /* Scalar expression. Evaluate this now. This includes elemental
2034 dimension indices, but not array section bounds. */
2035 gfc_init_se (&se, NULL);
2036 gfc_conv_expr (&se, ss->expr);
2037 gfc_add_block_to_block (&loop->pre, &se.pre);
2039 if (ss->expr->ts.type != BT_CHARACTER)
2041 /* Move the evaluation of scalar expressions outside the
2042 scalarization loop, except for WHERE assignments. */
2043 if (subscript)
2044 se.expr = convert(gfc_array_index_type, se.expr);
2045 if (!ss->where)
2046 se.expr = gfc_evaluate_now (se.expr, &loop->pre);
2047 gfc_add_block_to_block (&loop->pre, &se.post);
2049 else
2050 gfc_add_block_to_block (&loop->post, &se.post);
2052 ss->data.scalar.expr = se.expr;
2053 ss->string_length = se.string_length;
2054 break;
2056 case GFC_SS_REFERENCE:
2057 /* Scalar argument to elemental procedure. Evaluate this
2058 now. */
2059 gfc_init_se (&se, NULL);
2060 gfc_conv_expr (&se, ss->expr);
2061 gfc_add_block_to_block (&loop->pre, &se.pre);
2062 gfc_add_block_to_block (&loop->post, &se.post);
2064 ss->data.scalar.expr = gfc_evaluate_now (se.expr, &loop->pre);
2065 ss->string_length = se.string_length;
2066 break;
2068 case GFC_SS_SECTION:
2069 /* Add the expressions for scalar and vector subscripts. */
2070 for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
2071 if (ss->data.info.subscript[n])
2072 gfc_add_loop_ss_code (loop, ss->data.info.subscript[n], true,
2073 where);
2075 gfc_set_vector_loop_bounds (loop, &ss->data.info);
2076 break;
2078 case GFC_SS_VECTOR:
2079 /* Get the vector's descriptor and store it in SS. */
2080 gfc_init_se (&se, NULL);
2081 gfc_conv_expr_descriptor (&se, ss->expr, gfc_walk_expr (ss->expr));
2082 gfc_add_block_to_block (&loop->pre, &se.pre);
2083 gfc_add_block_to_block (&loop->post, &se.post);
2084 ss->data.info.descriptor = se.expr;
2085 break;
2087 case GFC_SS_INTRINSIC:
2088 gfc_add_intrinsic_ss_code (loop, ss);
2089 break;
2091 case GFC_SS_FUNCTION:
2092 /* Array function return value. We call the function and save its
2093 result in a temporary for use inside the loop. */
2094 gfc_init_se (&se, NULL);
2095 se.loop = loop;
2096 se.ss = ss;
2097 gfc_conv_expr (&se, ss->expr);
2098 gfc_add_block_to_block (&loop->pre, &se.pre);
2099 gfc_add_block_to_block (&loop->post, &se.post);
2100 ss->string_length = se.string_length;
2101 break;
2103 case GFC_SS_CONSTRUCTOR:
2104 if (ss->expr->ts.type == BT_CHARACTER
2105 && ss->string_length == NULL
2106 && ss->expr->ts.u.cl
2107 && ss->expr->ts.u.cl->length)
2109 gfc_init_se (&se, NULL);
2110 gfc_conv_expr_type (&se, ss->expr->ts.u.cl->length,
2111 gfc_charlen_type_node);
2112 ss->string_length = se.expr;
2113 gfc_add_block_to_block (&loop->pre, &se.pre);
2114 gfc_add_block_to_block (&loop->post, &se.post);
2116 gfc_trans_array_constructor (loop, ss, where);
2117 break;
2119 case GFC_SS_TEMP:
2120 case GFC_SS_COMPONENT:
2121 /* Do nothing. These are handled elsewhere. */
2122 break;
2124 default:
2125 gcc_unreachable ();
2131 /* Translate expressions for the descriptor and data pointer of a SS. */
2132 /*GCC ARRAYS*/
2134 static void
2135 gfc_conv_ss_descriptor (stmtblock_t * block, gfc_ss * ss, int base)
2137 gfc_se se;
2138 tree tmp;
2140 /* Get the descriptor for the array to be scalarized. */
2141 gcc_assert (ss->expr->expr_type == EXPR_VARIABLE);
2142 gfc_init_se (&se, NULL);
2143 se.descriptor_only = 1;
2144 gfc_conv_expr_lhs (&se, ss->expr);
2145 gfc_add_block_to_block (block, &se.pre);
2146 ss->data.info.descriptor = se.expr;
2147 ss->string_length = se.string_length;
2149 if (base)
2151 /* Also the data pointer. */
2152 tmp = gfc_conv_array_data (se.expr);
2153 /* If this is a variable or address of a variable we use it directly.
2154 Otherwise we must evaluate it now to avoid breaking dependency
2155 analysis by pulling the expressions for elemental array indices
2156 inside the loop. */
2157 if (!(DECL_P (tmp)
2158 || (TREE_CODE (tmp) == ADDR_EXPR
2159 && DECL_P (TREE_OPERAND (tmp, 0)))))
2160 tmp = gfc_evaluate_now (tmp, block);
2161 ss->data.info.data = tmp;
2163 tmp = gfc_conv_array_offset (se.expr);
2164 ss->data.info.offset = gfc_evaluate_now (tmp, block);
2169 /* Initialize a gfc_loopinfo structure. */
2171 void
2172 gfc_init_loopinfo (gfc_loopinfo * loop)
2174 int n;
2176 memset (loop, 0, sizeof (gfc_loopinfo));
2177 gfc_init_block (&loop->pre);
2178 gfc_init_block (&loop->post);
2180 /* Initially scalarize in order. */
2181 for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
2182 loop->order[n] = n;
2184 loop->ss = gfc_ss_terminator;
2188 /* Copies the loop variable info to a gfc_se structure. Does not copy the SS
2189 chain. */
2191 void
2192 gfc_copy_loopinfo_to_se (gfc_se * se, gfc_loopinfo * loop)
2194 se->loop = loop;
2198 /* Return an expression for the data pointer of an array. */
2200 tree
2201 gfc_conv_array_data (tree descriptor)
2203 tree type;
2205 type = TREE_TYPE (descriptor);
2206 if (GFC_ARRAY_TYPE_P (type))
2208 if (TREE_CODE (type) == POINTER_TYPE)
2209 return descriptor;
2210 else
2212 /* Descriptorless arrays. */
2213 return gfc_build_addr_expr (NULL_TREE, descriptor);
2216 else
2217 return gfc_conv_descriptor_data_get (descriptor);
2221 /* Return an expression for the base offset of an array. */
2223 tree
2224 gfc_conv_array_offset (tree descriptor)
2226 tree type;
2228 type = TREE_TYPE (descriptor);
2229 if (GFC_ARRAY_TYPE_P (type))
2230 return GFC_TYPE_ARRAY_OFFSET (type);
2231 else
2232 return gfc_conv_descriptor_offset_get (descriptor);
2236 /* Get an expression for the array stride. */
2238 tree
2239 gfc_conv_array_stride (tree descriptor, int dim)
2241 tree tmp;
2242 tree type;
2244 type = TREE_TYPE (descriptor);
2246 /* For descriptorless arrays use the array size. */
2247 tmp = GFC_TYPE_ARRAY_STRIDE (type, dim);
2248 if (tmp != NULL_TREE)
2249 return tmp;
2251 tmp = gfc_conv_descriptor_stride_get (descriptor, gfc_rank_cst[dim]);
2252 return tmp;
2256 /* Like gfc_conv_array_stride, but for the lower bound. */
2258 tree
2259 gfc_conv_array_lbound (tree descriptor, int dim)
2261 tree tmp;
2262 tree type;
2264 type = TREE_TYPE (descriptor);
2266 tmp = GFC_TYPE_ARRAY_LBOUND (type, dim);
2267 if (tmp != NULL_TREE)
2268 return tmp;
2270 tmp = gfc_conv_descriptor_lbound_get (descriptor, gfc_rank_cst[dim]);
2271 return tmp;
2275 /* Like gfc_conv_array_stride, but for the upper bound. */
2277 tree
2278 gfc_conv_array_ubound (tree descriptor, int dim)
2280 tree tmp;
2281 tree type;
2283 type = TREE_TYPE (descriptor);
2285 tmp = GFC_TYPE_ARRAY_UBOUND (type, dim);
2286 if (tmp != NULL_TREE)
2287 return tmp;
2289 /* This should only ever happen when passing an assumed shape array
2290 as an actual parameter. The value will never be used. */
2291 if (GFC_ARRAY_TYPE_P (TREE_TYPE (descriptor)))
2292 return gfc_index_zero_node;
2294 tmp = gfc_conv_descriptor_ubound_get (descriptor, gfc_rank_cst[dim]);
2295 return tmp;
2299 /* Generate code to perform an array index bound check. */
2301 static tree
2302 gfc_trans_array_bound_check (gfc_se * se, tree descriptor, tree index, int n,
2303 locus * where, bool check_upper)
2305 tree fault;
2306 tree tmp_lo, tmp_up;
2307 char *msg;
2308 const char * name = NULL;
2310 if (!(gfc_option.rtcheck & GFC_RTCHECK_BOUNDS))
2311 return index;
2313 index = gfc_evaluate_now (index, &se->pre);
2315 /* We find a name for the error message. */
2316 if (se->ss)
2317 name = se->ss->expr->symtree->name;
2319 if (!name && se->loop && se->loop->ss && se->loop->ss->expr
2320 && se->loop->ss->expr->symtree)
2321 name = se->loop->ss->expr->symtree->name;
2323 if (!name && se->loop && se->loop->ss && se->loop->ss->loop_chain
2324 && se->loop->ss->loop_chain->expr
2325 && se->loop->ss->loop_chain->expr->symtree)
2326 name = se->loop->ss->loop_chain->expr->symtree->name;
2328 if (!name && se->loop && se->loop->ss && se->loop->ss->expr)
2330 if (se->loop->ss->expr->expr_type == EXPR_FUNCTION
2331 && se->loop->ss->expr->value.function.name)
2332 name = se->loop->ss->expr->value.function.name;
2333 else
2334 if (se->loop->ss->type == GFC_SS_CONSTRUCTOR
2335 || se->loop->ss->type == GFC_SS_SCALAR)
2336 name = "unnamed constant";
2339 if (TREE_CODE (descriptor) == VAR_DECL)
2340 name = IDENTIFIER_POINTER (DECL_NAME (descriptor));
2342 /* If upper bound is present, include both bounds in the error message. */
2343 if (check_upper)
2345 tmp_lo = gfc_conv_array_lbound (descriptor, n);
2346 tmp_up = gfc_conv_array_ubound (descriptor, n);
2348 if (name)
2349 asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' "
2350 "outside of expected range (%%ld:%%ld)", n+1, name);
2351 else
2352 asprintf (&msg, "Index '%%ld' of dimension %d "
2353 "outside of expected range (%%ld:%%ld)", n+1);
2355 fault = fold_build2 (LT_EXPR, boolean_type_node, index, tmp_lo);
2356 gfc_trans_runtime_check (true, false, fault, &se->pre, where, msg,
2357 fold_convert (long_integer_type_node, index),
2358 fold_convert (long_integer_type_node, tmp_lo),
2359 fold_convert (long_integer_type_node, tmp_up));
2360 fault = fold_build2 (GT_EXPR, boolean_type_node, index, tmp_up);
2361 gfc_trans_runtime_check (true, false, fault, &se->pre, where, msg,
2362 fold_convert (long_integer_type_node, index),
2363 fold_convert (long_integer_type_node, tmp_lo),
2364 fold_convert (long_integer_type_node, tmp_up));
2365 gfc_free (msg);
2367 else
2369 tmp_lo = gfc_conv_array_lbound (descriptor, n);
2371 if (name)
2372 asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' "
2373 "below lower bound of %%ld", n+1, name);
2374 else
2375 asprintf (&msg, "Index '%%ld' of dimension %d "
2376 "below lower bound of %%ld", n+1);
2378 fault = fold_build2 (LT_EXPR, boolean_type_node, index, tmp_lo);
2379 gfc_trans_runtime_check (true, false, fault, &se->pre, where, msg,
2380 fold_convert (long_integer_type_node, index),
2381 fold_convert (long_integer_type_node, tmp_lo));
2382 gfc_free (msg);
2385 return index;
2389 /* Return the offset for an index. Performs bound checking for elemental
2390 dimensions. Single element references are processed separately. */
2392 static tree
2393 gfc_conv_array_index_offset (gfc_se * se, gfc_ss_info * info, int dim, int i,
2394 gfc_array_ref * ar, tree stride)
2396 tree index;
2397 tree desc;
2398 tree data;
2400 /* Get the index into the array for this dimension. */
2401 if (ar)
2403 gcc_assert (ar->type != AR_ELEMENT);
2404 switch (ar->dimen_type[dim])
2406 case DIMEN_ELEMENT:
2407 /* Elemental dimension. */
2408 gcc_assert (info->subscript[dim]
2409 && info->subscript[dim]->type == GFC_SS_SCALAR);
2410 /* We've already translated this value outside the loop. */
2411 index = info->subscript[dim]->data.scalar.expr;
2413 index = gfc_trans_array_bound_check (se, info->descriptor,
2414 index, dim, &ar->where,
2415 ar->as->type != AS_ASSUMED_SIZE
2416 || dim < ar->dimen - 1);
2417 break;
2419 case DIMEN_VECTOR:
2420 gcc_assert (info && se->loop);
2421 gcc_assert (info->subscript[dim]
2422 && info->subscript[dim]->type == GFC_SS_VECTOR);
2423 desc = info->subscript[dim]->data.info.descriptor;
2425 /* Get a zero-based index into the vector. */
2426 index = fold_build2 (MINUS_EXPR, gfc_array_index_type,
2427 se->loop->loopvar[i], se->loop->from[i]);
2429 /* Multiply the index by the stride. */
2430 index = fold_build2 (MULT_EXPR, gfc_array_index_type,
2431 index, gfc_conv_array_stride (desc, 0));
2433 /* Read the vector to get an index into info->descriptor. */
2434 data = build_fold_indirect_ref_loc (input_location,
2435 gfc_conv_array_data (desc));
2436 index = gfc_build_array_ref (data, index, NULL);
2437 index = gfc_evaluate_now (index, &se->pre);
2438 index = fold_convert (gfc_array_index_type, index);
2440 /* Do any bounds checking on the final info->descriptor index. */
2441 index = gfc_trans_array_bound_check (se, info->descriptor,
2442 index, dim, &ar->where,
2443 ar->as->type != AS_ASSUMED_SIZE
2444 || dim < ar->dimen - 1);
2445 break;
2447 case DIMEN_RANGE:
2448 /* Scalarized dimension. */
2449 gcc_assert (info && se->loop);
2451 /* Multiply the loop variable by the stride and delta. */
2452 index = se->loop->loopvar[i];
2453 if (!integer_onep (info->stride[i]))
2454 index = fold_build2 (MULT_EXPR, gfc_array_index_type, index,
2455 info->stride[i]);
2456 if (!integer_zerop (info->delta[i]))
2457 index = fold_build2 (PLUS_EXPR, gfc_array_index_type, index,
2458 info->delta[i]);
2459 break;
2461 default:
2462 gcc_unreachable ();
2465 else
2467 /* Temporary array or derived type component. */
2468 gcc_assert (se->loop);
2469 index = se->loop->loopvar[se->loop->order[i]];
2470 if (!integer_zerop (info->delta[i]))
2471 index = fold_build2 (PLUS_EXPR, gfc_array_index_type,
2472 index, info->delta[i]);
2475 /* Multiply by the stride. */
2476 if (!integer_onep (stride))
2477 index = fold_build2 (MULT_EXPR, gfc_array_index_type, index, stride);
2479 return index;
2483 /* Build a scalarized reference to an array. */
2485 static void
2486 gfc_conv_scalarized_array_ref (gfc_se * se, gfc_array_ref * ar)
2488 gfc_ss_info *info;
2489 tree decl = NULL_TREE;
2490 tree index;
2491 tree tmp;
2492 int n;
2494 info = &se->ss->data.info;
2495 if (ar)
2496 n = se->loop->order[0];
2497 else
2498 n = 0;
2500 index = gfc_conv_array_index_offset (se, info, info->dim[n], n, ar,
2501 info->stride0);
2502 /* Add the offset for this dimension to the stored offset for all other
2503 dimensions. */
2504 if (!integer_zerop (info->offset))
2505 index = fold_build2 (PLUS_EXPR, gfc_array_index_type, index, info->offset);
2507 if (se->ss->expr && is_subref_array (se->ss->expr))
2508 decl = se->ss->expr->symtree->n.sym->backend_decl;
2510 tmp = build_fold_indirect_ref_loc (input_location,
2511 info->data);
2512 se->expr = gfc_build_array_ref (tmp, index, decl);
2516 /* Translate access of temporary array. */
2518 void
2519 gfc_conv_tmp_array_ref (gfc_se * se)
2521 se->string_length = se->ss->string_length;
2522 gfc_conv_scalarized_array_ref (se, NULL);
2526 /* Build an array reference. se->expr already holds the array descriptor.
2527 This should be either a variable, indirect variable reference or component
2528 reference. For arrays which do not have a descriptor, se->expr will be
2529 the data pointer.
2530 a(i, j, k) = base[offset + i * stride[0] + j * stride[1] + k * stride[2]]*/
2532 void
2533 gfc_conv_array_ref (gfc_se * se, gfc_array_ref * ar, gfc_symbol * sym,
2534 locus * where)
2536 int n;
2537 tree index;
2538 tree tmp;
2539 tree stride;
2540 gfc_se indexse;
2541 gfc_se tmpse;
2543 if (ar->dimen == 0)
2544 return;
2546 /* Handle scalarized references separately. */
2547 if (ar->type != AR_ELEMENT)
2549 gfc_conv_scalarized_array_ref (se, ar);
2550 gfc_advance_se_ss_chain (se);
2551 return;
2554 index = gfc_index_zero_node;
2556 /* Calculate the offsets from all the dimensions. */
2557 for (n = 0; n < ar->dimen; n++)
2559 /* Calculate the index for this dimension. */
2560 gfc_init_se (&indexse, se);
2561 gfc_conv_expr_type (&indexse, ar->start[n], gfc_array_index_type);
2562 gfc_add_block_to_block (&se->pre, &indexse.pre);
2564 if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
2566 /* Check array bounds. */
2567 tree cond;
2568 char *msg;
2570 /* Evaluate the indexse.expr only once. */
2571 indexse.expr = save_expr (indexse.expr);
2573 /* Lower bound. */
2574 tmp = gfc_conv_array_lbound (se->expr, n);
2575 if (sym->attr.temporary)
2577 gfc_init_se (&tmpse, se);
2578 gfc_conv_expr_type (&tmpse, ar->as->lower[n],
2579 gfc_array_index_type);
2580 gfc_add_block_to_block (&se->pre, &tmpse.pre);
2581 tmp = tmpse.expr;
2584 cond = fold_build2 (LT_EXPR, boolean_type_node,
2585 indexse.expr, tmp);
2586 asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' "
2587 "below lower bound of %%ld", n+1, sym->name);
2588 gfc_trans_runtime_check (true, false, cond, &se->pre, where, msg,
2589 fold_convert (long_integer_type_node,
2590 indexse.expr),
2591 fold_convert (long_integer_type_node, tmp));
2592 gfc_free (msg);
2594 /* Upper bound, but not for the last dimension of assumed-size
2595 arrays. */
2596 if (n < ar->dimen - 1 || ar->as->type != AS_ASSUMED_SIZE)
2598 tmp = gfc_conv_array_ubound (se->expr, n);
2599 if (sym->attr.temporary)
2601 gfc_init_se (&tmpse, se);
2602 gfc_conv_expr_type (&tmpse, ar->as->upper[n],
2603 gfc_array_index_type);
2604 gfc_add_block_to_block (&se->pre, &tmpse.pre);
2605 tmp = tmpse.expr;
2608 cond = fold_build2 (GT_EXPR, boolean_type_node,
2609 indexse.expr, tmp);
2610 asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' "
2611 "above upper bound of %%ld", n+1, sym->name);
2612 gfc_trans_runtime_check (true, false, cond, &se->pre, where, msg,
2613 fold_convert (long_integer_type_node,
2614 indexse.expr),
2615 fold_convert (long_integer_type_node, tmp));
2616 gfc_free (msg);
2620 /* Multiply the index by the stride. */
2621 stride = gfc_conv_array_stride (se->expr, n);
2622 tmp = fold_build2 (MULT_EXPR, gfc_array_index_type, indexse.expr,
2623 stride);
2625 /* And add it to the total. */
2626 index = fold_build2 (PLUS_EXPR, gfc_array_index_type, index, tmp);
2629 tmp = gfc_conv_array_offset (se->expr);
2630 if (!integer_zerop (tmp))
2631 index = fold_build2 (PLUS_EXPR, gfc_array_index_type, index, tmp);
2633 /* Access the calculated element. */
2634 tmp = gfc_conv_array_data (se->expr);
2635 tmp = build_fold_indirect_ref (tmp);
2636 se->expr = gfc_build_array_ref (tmp, index, sym->backend_decl);
2640 /* Generate the code to be executed immediately before entering a
2641 scalarization loop. */
2643 static void
2644 gfc_trans_preloop_setup (gfc_loopinfo * loop, int dim, int flag,
2645 stmtblock_t * pblock)
2647 tree index;
2648 tree stride;
2649 gfc_ss_info *info;
2650 gfc_ss *ss;
2651 gfc_se se;
2652 int i;
2654 /* This code will be executed before entering the scalarization loop
2655 for this dimension. */
2656 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
2658 if ((ss->useflags & flag) == 0)
2659 continue;
2661 if (ss->type != GFC_SS_SECTION
2662 && ss->type != GFC_SS_FUNCTION && ss->type != GFC_SS_CONSTRUCTOR
2663 && ss->type != GFC_SS_COMPONENT)
2664 continue;
2666 info = &ss->data.info;
2668 if (dim >= info->dimen)
2669 continue;
2671 if (dim == info->dimen - 1)
2673 /* For the outermost loop calculate the offset due to any
2674 elemental dimensions. It will have been initialized with the
2675 base offset of the array. */
2676 if (info->ref)
2678 for (i = 0; i < info->ref->u.ar.dimen; i++)
2680 if (info->ref->u.ar.dimen_type[i] != DIMEN_ELEMENT)
2681 continue;
2683 gfc_init_se (&se, NULL);
2684 se.loop = loop;
2685 se.expr = info->descriptor;
2686 stride = gfc_conv_array_stride (info->descriptor, i);
2687 index = gfc_conv_array_index_offset (&se, info, i, -1,
2688 &info->ref->u.ar,
2689 stride);
2690 gfc_add_block_to_block (pblock, &se.pre);
2692 info->offset = fold_build2 (PLUS_EXPR, gfc_array_index_type,
2693 info->offset, index);
2694 info->offset = gfc_evaluate_now (info->offset, pblock);
2697 i = loop->order[0];
2698 stride = gfc_conv_array_stride (info->descriptor, info->dim[i]);
2700 else
2701 stride = gfc_conv_array_stride (info->descriptor, 0);
2703 /* Calculate the stride of the innermost loop. Hopefully this will
2704 allow the backend optimizers to do their stuff more effectively.
2706 info->stride0 = gfc_evaluate_now (stride, pblock);
2708 else
2710 /* Add the offset for the previous loop dimension. */
2711 gfc_array_ref *ar;
2713 if (info->ref)
2715 ar = &info->ref->u.ar;
2716 i = loop->order[dim + 1];
2718 else
2720 ar = NULL;
2721 i = dim + 1;
2724 gfc_init_se (&se, NULL);
2725 se.loop = loop;
2726 se.expr = info->descriptor;
2727 stride = gfc_conv_array_stride (info->descriptor, info->dim[i]);
2728 index = gfc_conv_array_index_offset (&se, info, info->dim[i], i,
2729 ar, stride);
2730 gfc_add_block_to_block (pblock, &se.pre);
2731 info->offset = fold_build2 (PLUS_EXPR, gfc_array_index_type,
2732 info->offset, index);
2733 info->offset = gfc_evaluate_now (info->offset, pblock);
2736 /* Remember this offset for the second loop. */
2737 if (dim == loop->temp_dim - 1)
2738 info->saved_offset = info->offset;
2743 /* Start a scalarized expression. Creates a scope and declares loop
2744 variables. */
2746 void
2747 gfc_start_scalarized_body (gfc_loopinfo * loop, stmtblock_t * pbody)
2749 int dim;
2750 int n;
2751 int flags;
2753 gcc_assert (!loop->array_parameter);
2755 for (dim = loop->dimen - 1; dim >= 0; dim--)
2757 n = loop->order[dim];
2759 gfc_start_block (&loop->code[n]);
2761 /* Create the loop variable. */
2762 loop->loopvar[n] = gfc_create_var (gfc_array_index_type, "S");
2764 if (dim < loop->temp_dim)
2765 flags = 3;
2766 else
2767 flags = 1;
2768 /* Calculate values that will be constant within this loop. */
2769 gfc_trans_preloop_setup (loop, dim, flags, &loop->code[n]);
2771 gfc_start_block (pbody);
2775 /* Generates the actual loop code for a scalarization loop. */
2777 void
2778 gfc_trans_scalarized_loop_end (gfc_loopinfo * loop, int n,
2779 stmtblock_t * pbody)
2781 stmtblock_t block;
2782 tree cond;
2783 tree tmp;
2784 tree loopbody;
2785 tree exit_label;
2786 tree stmt;
2787 tree init;
2788 tree incr;
2790 if ((ompws_flags & (OMPWS_WORKSHARE_FLAG | OMPWS_SCALARIZER_WS))
2791 == (OMPWS_WORKSHARE_FLAG | OMPWS_SCALARIZER_WS)
2792 && n == loop->dimen - 1)
2794 /* We create an OMP_FOR construct for the outermost scalarized loop. */
2795 init = make_tree_vec (1);
2796 cond = make_tree_vec (1);
2797 incr = make_tree_vec (1);
2799 /* Cycle statement is implemented with a goto. Exit statement must not
2800 be present for this loop. */
2801 exit_label = gfc_build_label_decl (NULL_TREE);
2802 TREE_USED (exit_label) = 1;
2804 /* Label for cycle statements (if needed). */
2805 tmp = build1_v (LABEL_EXPR, exit_label);
2806 gfc_add_expr_to_block (pbody, tmp);
2808 stmt = make_node (OMP_FOR);
2810 TREE_TYPE (stmt) = void_type_node;
2811 OMP_FOR_BODY (stmt) = loopbody = gfc_finish_block (pbody);
2813 OMP_FOR_CLAUSES (stmt) = build_omp_clause (input_location,
2814 OMP_CLAUSE_SCHEDULE);
2815 OMP_CLAUSE_SCHEDULE_KIND (OMP_FOR_CLAUSES (stmt))
2816 = OMP_CLAUSE_SCHEDULE_STATIC;
2817 if (ompws_flags & OMPWS_NOWAIT)
2818 OMP_CLAUSE_CHAIN (OMP_FOR_CLAUSES (stmt))
2819 = build_omp_clause (input_location, OMP_CLAUSE_NOWAIT);
2821 /* Initialize the loopvar. */
2822 TREE_VEC_ELT (init, 0) = build2_v (MODIFY_EXPR, loop->loopvar[n],
2823 loop->from[n]);
2824 OMP_FOR_INIT (stmt) = init;
2825 /* The exit condition. */
2826 TREE_VEC_ELT (cond, 0) = build2 (LE_EXPR, boolean_type_node,
2827 loop->loopvar[n], loop->to[n]);
2828 OMP_FOR_COND (stmt) = cond;
2829 /* Increment the loopvar. */
2830 tmp = build2 (PLUS_EXPR, gfc_array_index_type,
2831 loop->loopvar[n], gfc_index_one_node);
2832 TREE_VEC_ELT (incr, 0) = fold_build2 (MODIFY_EXPR,
2833 void_type_node, loop->loopvar[n], tmp);
2834 OMP_FOR_INCR (stmt) = incr;
2836 ompws_flags &= ~OMPWS_CURR_SINGLEUNIT;
2837 gfc_add_expr_to_block (&loop->code[n], stmt);
2839 else
2841 loopbody = gfc_finish_block (pbody);
2843 /* Initialize the loopvar. */
2844 if (loop->loopvar[n] != loop->from[n])
2845 gfc_add_modify (&loop->code[n], loop->loopvar[n], loop->from[n]);
2847 exit_label = gfc_build_label_decl (NULL_TREE);
2849 /* Generate the loop body. */
2850 gfc_init_block (&block);
2852 /* The exit condition. */
2853 cond = fold_build2 (GT_EXPR, boolean_type_node,
2854 loop->loopvar[n], loop->to[n]);
2855 tmp = build1_v (GOTO_EXPR, exit_label);
2856 TREE_USED (exit_label) = 1;
2857 tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
2858 gfc_add_expr_to_block (&block, tmp);
2860 /* The main body. */
2861 gfc_add_expr_to_block (&block, loopbody);
2863 /* Increment the loopvar. */
2864 tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
2865 loop->loopvar[n], gfc_index_one_node);
2866 gfc_add_modify (&block, loop->loopvar[n], tmp);
2868 /* Build the loop. */
2869 tmp = gfc_finish_block (&block);
2870 tmp = build1_v (LOOP_EXPR, tmp);
2871 gfc_add_expr_to_block (&loop->code[n], tmp);
2873 /* Add the exit label. */
2874 tmp = build1_v (LABEL_EXPR, exit_label);
2875 gfc_add_expr_to_block (&loop->code[n], tmp);
2881 /* Finishes and generates the loops for a scalarized expression. */
2883 void
2884 gfc_trans_scalarizing_loops (gfc_loopinfo * loop, stmtblock_t * body)
2886 int dim;
2887 int n;
2888 gfc_ss *ss;
2889 stmtblock_t *pblock;
2890 tree tmp;
2892 pblock = body;
2893 /* Generate the loops. */
2894 for (dim = 0; dim < loop->dimen; dim++)
2896 n = loop->order[dim];
2897 gfc_trans_scalarized_loop_end (loop, n, pblock);
2898 loop->loopvar[n] = NULL_TREE;
2899 pblock = &loop->code[n];
2902 tmp = gfc_finish_block (pblock);
2903 gfc_add_expr_to_block (&loop->pre, tmp);
2905 /* Clear all the used flags. */
2906 for (ss = loop->ss; ss; ss = ss->loop_chain)
2907 ss->useflags = 0;
2911 /* Finish the main body of a scalarized expression, and start the secondary
2912 copying body. */
2914 void
2915 gfc_trans_scalarized_loop_boundary (gfc_loopinfo * loop, stmtblock_t * body)
2917 int dim;
2918 int n;
2919 stmtblock_t *pblock;
2920 gfc_ss *ss;
2922 pblock = body;
2923 /* We finish as many loops as are used by the temporary. */
2924 for (dim = 0; dim < loop->temp_dim - 1; dim++)
2926 n = loop->order[dim];
2927 gfc_trans_scalarized_loop_end (loop, n, pblock);
2928 loop->loopvar[n] = NULL_TREE;
2929 pblock = &loop->code[n];
2932 /* We don't want to finish the outermost loop entirely. */
2933 n = loop->order[loop->temp_dim - 1];
2934 gfc_trans_scalarized_loop_end (loop, n, pblock);
2936 /* Restore the initial offsets. */
2937 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
2939 if ((ss->useflags & 2) == 0)
2940 continue;
2942 if (ss->type != GFC_SS_SECTION
2943 && ss->type != GFC_SS_FUNCTION && ss->type != GFC_SS_CONSTRUCTOR
2944 && ss->type != GFC_SS_COMPONENT)
2945 continue;
2947 ss->data.info.offset = ss->data.info.saved_offset;
2950 /* Restart all the inner loops we just finished. */
2951 for (dim = loop->temp_dim - 2; dim >= 0; dim--)
2953 n = loop->order[dim];
2955 gfc_start_block (&loop->code[n]);
2957 loop->loopvar[n] = gfc_create_var (gfc_array_index_type, "Q");
2959 gfc_trans_preloop_setup (loop, dim, 2, &loop->code[n]);
2962 /* Start a block for the secondary copying code. */
2963 gfc_start_block (body);
2967 /* Calculate the upper bound of an array section. */
2969 static tree
2970 gfc_conv_section_upper_bound (gfc_ss * ss, int n, stmtblock_t * pblock)
2972 int dim;
2973 gfc_expr *end;
2974 tree desc;
2975 tree bound;
2976 gfc_se se;
2977 gfc_ss_info *info;
2979 gcc_assert (ss->type == GFC_SS_SECTION);
2981 info = &ss->data.info;
2982 dim = info->dim[n];
2984 if (info->ref->u.ar.dimen_type[dim] == DIMEN_VECTOR)
2985 /* We'll calculate the upper bound once we have access to the
2986 vector's descriptor. */
2987 return NULL;
2989 gcc_assert (info->ref->u.ar.dimen_type[dim] == DIMEN_RANGE);
2990 desc = info->descriptor;
2991 end = info->ref->u.ar.end[dim];
2993 if (end)
2995 /* The upper bound was specified. */
2996 gfc_init_se (&se, NULL);
2997 gfc_conv_expr_type (&se, end, gfc_array_index_type);
2998 gfc_add_block_to_block (pblock, &se.pre);
2999 bound = se.expr;
3001 else
3003 /* No upper bound was specified, so use the bound of the array. */
3004 bound = gfc_conv_array_ubound (desc, dim);
3007 return bound;
3011 /* Calculate the lower bound of an array section. */
3013 static void
3014 gfc_conv_section_startstride (gfc_loopinfo * loop, gfc_ss * ss, int n)
3016 gfc_expr *start;
3017 gfc_expr *end;
3018 gfc_expr *stride;
3019 tree desc;
3020 gfc_se se;
3021 gfc_ss_info *info;
3022 int dim;
3024 gcc_assert (ss->type == GFC_SS_SECTION);
3026 info = &ss->data.info;
3027 dim = info->dim[n];
3029 if (info->ref->u.ar.dimen_type[dim] == DIMEN_VECTOR)
3031 /* We use a zero-based index to access the vector. */
3032 info->start[n] = gfc_index_zero_node;
3033 info->end[n] = gfc_index_zero_node;
3034 info->stride[n] = gfc_index_one_node;
3035 return;
3038 gcc_assert (info->ref->u.ar.dimen_type[dim] == DIMEN_RANGE);
3039 desc = info->descriptor;
3040 start = info->ref->u.ar.start[dim];
3041 end = info->ref->u.ar.end[dim];
3042 stride = info->ref->u.ar.stride[dim];
3044 /* Calculate the start of the range. For vector subscripts this will
3045 be the range of the vector. */
3046 if (start)
3048 /* Specified section start. */
3049 gfc_init_se (&se, NULL);
3050 gfc_conv_expr_type (&se, start, gfc_array_index_type);
3051 gfc_add_block_to_block (&loop->pre, &se.pre);
3052 info->start[n] = se.expr;
3054 else
3056 /* No lower bound specified so use the bound of the array. */
3057 info->start[n] = gfc_conv_array_lbound (desc, dim);
3059 info->start[n] = gfc_evaluate_now (info->start[n], &loop->pre);
3061 /* Similarly calculate the end. Although this is not used in the
3062 scalarizer, it is needed when checking bounds and where the end
3063 is an expression with side-effects. */
3064 if (end)
3066 /* Specified section start. */
3067 gfc_init_se (&se, NULL);
3068 gfc_conv_expr_type (&se, end, gfc_array_index_type);
3069 gfc_add_block_to_block (&loop->pre, &se.pre);
3070 info->end[n] = se.expr;
3072 else
3074 /* No upper bound specified so use the bound of the array. */
3075 info->end[n] = gfc_conv_array_ubound (desc, dim);
3077 info->end[n] = gfc_evaluate_now (info->end[n], &loop->pre);
3079 /* Calculate the stride. */
3080 if (stride == NULL)
3081 info->stride[n] = gfc_index_one_node;
3082 else
3084 gfc_init_se (&se, NULL);
3085 gfc_conv_expr_type (&se, stride, gfc_array_index_type);
3086 gfc_add_block_to_block (&loop->pre, &se.pre);
3087 info->stride[n] = gfc_evaluate_now (se.expr, &loop->pre);
3092 /* Calculates the range start and stride for a SS chain. Also gets the
3093 descriptor and data pointer. The range of vector subscripts is the size
3094 of the vector. Array bounds are also checked. */
3096 void
3097 gfc_conv_ss_startstride (gfc_loopinfo * loop)
3099 int n;
3100 tree tmp;
3101 gfc_ss *ss;
3102 tree desc;
3104 loop->dimen = 0;
3105 /* Determine the rank of the loop. */
3106 for (ss = loop->ss;
3107 ss != gfc_ss_terminator && loop->dimen == 0; ss = ss->loop_chain)
3109 switch (ss->type)
3111 case GFC_SS_SECTION:
3112 case GFC_SS_CONSTRUCTOR:
3113 case GFC_SS_FUNCTION:
3114 case GFC_SS_COMPONENT:
3115 loop->dimen = ss->data.info.dimen;
3116 break;
3118 /* As usual, lbound and ubound are exceptions!. */
3119 case GFC_SS_INTRINSIC:
3120 switch (ss->expr->value.function.isym->id)
3122 case GFC_ISYM_LBOUND:
3123 case GFC_ISYM_UBOUND:
3124 loop->dimen = ss->data.info.dimen;
3126 default:
3127 break;
3130 default:
3131 break;
3135 /* We should have determined the rank of the expression by now. If
3136 not, that's bad news. */
3137 gcc_assert (loop->dimen != 0);
3139 /* Loop over all the SS in the chain. */
3140 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
3142 if (ss->expr && ss->expr->shape && !ss->shape)
3143 ss->shape = ss->expr->shape;
3145 switch (ss->type)
3147 case GFC_SS_SECTION:
3148 /* Get the descriptor for the array. */
3149 gfc_conv_ss_descriptor (&loop->pre, ss, !loop->array_parameter);
3151 for (n = 0; n < ss->data.info.dimen; n++)
3152 gfc_conv_section_startstride (loop, ss, n);
3153 break;
3155 case GFC_SS_INTRINSIC:
3156 switch (ss->expr->value.function.isym->id)
3158 /* Fall through to supply start and stride. */
3159 case GFC_ISYM_LBOUND:
3160 case GFC_ISYM_UBOUND:
3161 break;
3162 default:
3163 continue;
3166 case GFC_SS_CONSTRUCTOR:
3167 case GFC_SS_FUNCTION:
3168 for (n = 0; n < ss->data.info.dimen; n++)
3170 ss->data.info.start[n] = gfc_index_zero_node;
3171 ss->data.info.end[n] = gfc_index_zero_node;
3172 ss->data.info.stride[n] = gfc_index_one_node;
3174 break;
3176 default:
3177 break;
3181 /* The rest is just runtime bound checking. */
3182 if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
3184 stmtblock_t block;
3185 tree lbound, ubound;
3186 tree end;
3187 tree size[GFC_MAX_DIMENSIONS];
3188 tree stride_pos, stride_neg, non_zerosized, tmp2, tmp3;
3189 gfc_ss_info *info;
3190 char *msg;
3191 int dim;
3193 gfc_start_block (&block);
3195 for (n = 0; n < loop->dimen; n++)
3196 size[n] = NULL_TREE;
3198 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
3200 stmtblock_t inner;
3202 if (ss->type != GFC_SS_SECTION)
3203 continue;
3205 gfc_start_block (&inner);
3207 /* TODO: range checking for mapped dimensions. */
3208 info = &ss->data.info;
3210 /* This code only checks ranges. Elemental and vector
3211 dimensions are checked later. */
3212 for (n = 0; n < loop->dimen; n++)
3214 bool check_upper;
3216 dim = info->dim[n];
3217 if (info->ref->u.ar.dimen_type[dim] != DIMEN_RANGE)
3218 continue;
3220 if (dim == info->ref->u.ar.dimen - 1
3221 && info->ref->u.ar.as->type == AS_ASSUMED_SIZE)
3222 check_upper = false;
3223 else
3224 check_upper = true;
3226 /* Zero stride is not allowed. */
3227 tmp = fold_build2 (EQ_EXPR, boolean_type_node, info->stride[n],
3228 gfc_index_zero_node);
3229 asprintf (&msg, "Zero stride is not allowed, for dimension %d "
3230 "of array '%s'", info->dim[n]+1,
3231 ss->expr->symtree->name);
3232 gfc_trans_runtime_check (true, false, tmp, &inner,
3233 &ss->expr->where, msg);
3234 gfc_free (msg);
3236 desc = ss->data.info.descriptor;
3238 /* This is the run-time equivalent of resolve.c's
3239 check_dimension(). The logical is more readable there
3240 than it is here, with all the trees. */
3241 lbound = gfc_conv_array_lbound (desc, dim);
3242 end = info->end[n];
3243 if (check_upper)
3244 ubound = gfc_conv_array_ubound (desc, dim);
3245 else
3246 ubound = NULL;
3248 /* non_zerosized is true when the selected range is not
3249 empty. */
3250 stride_pos = fold_build2 (GT_EXPR, boolean_type_node,
3251 info->stride[n], gfc_index_zero_node);
3252 tmp = fold_build2 (LE_EXPR, boolean_type_node, info->start[n],
3253 end);
3254 stride_pos = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3255 stride_pos, tmp);
3257 stride_neg = fold_build2 (LT_EXPR, boolean_type_node,
3258 info->stride[n], gfc_index_zero_node);
3259 tmp = fold_build2 (GE_EXPR, boolean_type_node, info->start[n],
3260 end);
3261 stride_neg = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3262 stride_neg, tmp);
3263 non_zerosized = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
3264 stride_pos, stride_neg);
3266 /* Check the start of the range against the lower and upper
3267 bounds of the array, if the range is not empty.
3268 If upper bound is present, include both bounds in the
3269 error message. */
3270 if (check_upper)
3272 tmp = fold_build2 (LT_EXPR, boolean_type_node,
3273 info->start[n], lbound);
3274 tmp = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3275 non_zerosized, tmp);
3276 tmp2 = fold_build2 (GT_EXPR, boolean_type_node,
3277 info->start[n], ubound);
3278 tmp2 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3279 non_zerosized, tmp2);
3280 asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' "
3281 "outside of expected range (%%ld:%%ld)",
3282 info->dim[n]+1, ss->expr->symtree->name);
3283 gfc_trans_runtime_check (true, false, tmp, &inner,
3284 &ss->expr->where, msg,
3285 fold_convert (long_integer_type_node, info->start[n]),
3286 fold_convert (long_integer_type_node, lbound),
3287 fold_convert (long_integer_type_node, ubound));
3288 gfc_trans_runtime_check (true, false, tmp2, &inner,
3289 &ss->expr->where, msg,
3290 fold_convert (long_integer_type_node, info->start[n]),
3291 fold_convert (long_integer_type_node, lbound),
3292 fold_convert (long_integer_type_node, ubound));
3293 gfc_free (msg);
3295 else
3297 tmp = fold_build2 (LT_EXPR, boolean_type_node,
3298 info->start[n], lbound);
3299 tmp = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3300 non_zerosized, tmp);
3301 asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' "
3302 "below lower bound of %%ld",
3303 info->dim[n]+1, ss->expr->symtree->name);
3304 gfc_trans_runtime_check (true, false, tmp, &inner,
3305 &ss->expr->where, msg,
3306 fold_convert (long_integer_type_node, info->start[n]),
3307 fold_convert (long_integer_type_node, lbound));
3308 gfc_free (msg);
3311 /* Compute the last element of the range, which is not
3312 necessarily "end" (think 0:5:3, which doesn't contain 5)
3313 and check it against both lower and upper bounds. */
3315 tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type, end,
3316 info->start[n]);
3317 tmp = fold_build2 (TRUNC_MOD_EXPR, gfc_array_index_type, tmp,
3318 info->stride[n]);
3319 tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type, end,
3320 tmp);
3321 tmp2 = fold_build2 (LT_EXPR, boolean_type_node, tmp, lbound);
3322 tmp2 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3323 non_zerosized, tmp2);
3324 if (check_upper)
3326 tmp3 = fold_build2 (GT_EXPR, boolean_type_node, tmp, ubound);
3327 tmp3 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3328 non_zerosized, tmp3);
3329 asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' "
3330 "outside of expected range (%%ld:%%ld)",
3331 info->dim[n]+1, ss->expr->symtree->name);
3332 gfc_trans_runtime_check (true, false, tmp2, &inner,
3333 &ss->expr->where, msg,
3334 fold_convert (long_integer_type_node, tmp),
3335 fold_convert (long_integer_type_node, ubound),
3336 fold_convert (long_integer_type_node, lbound));
3337 gfc_trans_runtime_check (true, false, tmp3, &inner,
3338 &ss->expr->where, msg,
3339 fold_convert (long_integer_type_node, tmp),
3340 fold_convert (long_integer_type_node, ubound),
3341 fold_convert (long_integer_type_node, lbound));
3342 gfc_free (msg);
3344 else
3346 asprintf (&msg, "Index '%%ld' of dimension %d of array '%s' "
3347 "below lower bound of %%ld",
3348 info->dim[n]+1, ss->expr->symtree->name);
3349 gfc_trans_runtime_check (true, false, tmp2, &inner,
3350 &ss->expr->where, msg,
3351 fold_convert (long_integer_type_node, tmp),
3352 fold_convert (long_integer_type_node, lbound));
3353 gfc_free (msg);
3356 /* Check the section sizes match. */
3357 tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type, end,
3358 info->start[n]);
3359 tmp = fold_build2 (FLOOR_DIV_EXPR, gfc_array_index_type, tmp,
3360 info->stride[n]);
3361 tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
3362 gfc_index_one_node, tmp);
3363 tmp = fold_build2 (MAX_EXPR, gfc_array_index_type, tmp,
3364 build_int_cst (gfc_array_index_type, 0));
3365 /* We remember the size of the first section, and check all the
3366 others against this. */
3367 if (size[n])
3369 tmp3 = fold_build2 (NE_EXPR, boolean_type_node, tmp, size[n]);
3370 asprintf (&msg, "Array bound mismatch for dimension %d "
3371 "of array '%s' (%%ld/%%ld)",
3372 info->dim[n]+1, ss->expr->symtree->name);
3374 gfc_trans_runtime_check (true, false, tmp3, &inner,
3375 &ss->expr->where, msg,
3376 fold_convert (long_integer_type_node, tmp),
3377 fold_convert (long_integer_type_node, size[n]));
3379 gfc_free (msg);
3381 else
3382 size[n] = gfc_evaluate_now (tmp, &inner);
3385 tmp = gfc_finish_block (&inner);
3387 /* For optional arguments, only check bounds if the argument is
3388 present. */
3389 if (ss->expr->symtree->n.sym->attr.optional
3390 || ss->expr->symtree->n.sym->attr.not_always_present)
3391 tmp = build3_v (COND_EXPR,
3392 gfc_conv_expr_present (ss->expr->symtree->n.sym),
3393 tmp, build_empty_stmt (input_location));
3395 gfc_add_expr_to_block (&block, tmp);
3399 tmp = gfc_finish_block (&block);
3400 gfc_add_expr_to_block (&loop->pre, tmp);
3405 /* Return true if the two SS could be aliased, i.e. both point to the same data
3406 object. */
3407 /* TODO: resolve aliases based on frontend expressions. */
3409 static int
3410 gfc_could_be_alias (gfc_ss * lss, gfc_ss * rss)
3412 gfc_ref *lref;
3413 gfc_ref *rref;
3414 gfc_symbol *lsym;
3415 gfc_symbol *rsym;
3417 lsym = lss->expr->symtree->n.sym;
3418 rsym = rss->expr->symtree->n.sym;
3419 if (gfc_symbols_could_alias (lsym, rsym))
3420 return 1;
3422 if (rsym->ts.type != BT_DERIVED
3423 && lsym->ts.type != BT_DERIVED)
3424 return 0;
3426 /* For derived types we must check all the component types. We can ignore
3427 array references as these will have the same base type as the previous
3428 component ref. */
3429 for (lref = lss->expr->ref; lref != lss->data.info.ref; lref = lref->next)
3431 if (lref->type != REF_COMPONENT)
3432 continue;
3434 if (gfc_symbols_could_alias (lref->u.c.sym, rsym))
3435 return 1;
3437 for (rref = rss->expr->ref; rref != rss->data.info.ref;
3438 rref = rref->next)
3440 if (rref->type != REF_COMPONENT)
3441 continue;
3443 if (gfc_symbols_could_alias (lref->u.c.sym, rref->u.c.sym))
3444 return 1;
3448 for (rref = rss->expr->ref; rref != rss->data.info.ref; rref = rref->next)
3450 if (rref->type != REF_COMPONENT)
3451 break;
3453 if (gfc_symbols_could_alias (rref->u.c.sym, lsym))
3454 return 1;
3457 return 0;
3461 /* Resolve array data dependencies. Creates a temporary if required. */
3462 /* TODO: Calc dependencies with gfc_expr rather than gfc_ss, and move to
3463 dependency.c. */
3465 void
3466 gfc_conv_resolve_dependencies (gfc_loopinfo * loop, gfc_ss * dest,
3467 gfc_ss * rss)
3469 gfc_ss *ss;
3470 gfc_ref *lref;
3471 gfc_ref *rref;
3472 int nDepend = 0;
3474 loop->temp_ss = NULL;
3476 for (ss = rss; ss != gfc_ss_terminator; ss = ss->next)
3478 if (ss->type != GFC_SS_SECTION)
3479 continue;
3481 if (dest->expr->symtree->n.sym != ss->expr->symtree->n.sym)
3483 if (gfc_could_be_alias (dest, ss)
3484 || gfc_are_equivalenced_arrays (dest->expr, ss->expr))
3486 nDepend = 1;
3487 break;
3490 else
3492 lref = dest->expr->ref;
3493 rref = ss->expr->ref;
3495 nDepend = gfc_dep_resolver (lref, rref);
3496 if (nDepend == 1)
3497 break;
3498 #if 0
3499 /* TODO : loop shifting. */
3500 if (nDepend == 1)
3502 /* Mark the dimensions for LOOP SHIFTING */
3503 for (n = 0; n < loop->dimen; n++)
3505 int dim = dest->data.info.dim[n];
3507 if (lref->u.ar.dimen_type[dim] == DIMEN_VECTOR)
3508 depends[n] = 2;
3509 else if (! gfc_is_same_range (&lref->u.ar,
3510 &rref->u.ar, dim, 0))
3511 depends[n] = 1;
3514 /* Put all the dimensions with dependencies in the
3515 innermost loops. */
3516 dim = 0;
3517 for (n = 0; n < loop->dimen; n++)
3519 gcc_assert (loop->order[n] == n);
3520 if (depends[n])
3521 loop->order[dim++] = n;
3523 for (n = 0; n < loop->dimen; n++)
3525 if (! depends[n])
3526 loop->order[dim++] = n;
3529 gcc_assert (dim == loop->dimen);
3530 break;
3532 #endif
3536 if (nDepend == 1)
3538 tree base_type = gfc_typenode_for_spec (&dest->expr->ts);
3539 if (GFC_ARRAY_TYPE_P (base_type)
3540 || GFC_DESCRIPTOR_TYPE_P (base_type))
3541 base_type = gfc_get_element_type (base_type);
3542 loop->temp_ss = gfc_get_ss ();
3543 loop->temp_ss->type = GFC_SS_TEMP;
3544 loop->temp_ss->data.temp.type = base_type;
3545 loop->temp_ss->string_length = dest->string_length;
3546 loop->temp_ss->data.temp.dimen = loop->dimen;
3547 loop->temp_ss->next = gfc_ss_terminator;
3548 gfc_add_ss_to_loop (loop, loop->temp_ss);
3550 else
3551 loop->temp_ss = NULL;
3555 /* Initialize the scalarization loop. Creates the loop variables. Determines
3556 the range of the loop variables. Creates a temporary if required.
3557 Calculates how to transform from loop variables to array indices for each
3558 expression. Also generates code for scalar expressions which have been
3559 moved outside the loop. */
3561 void
3562 gfc_conv_loop_setup (gfc_loopinfo * loop, locus * where)
3564 int n;
3565 gfc_ss_info *info;
3566 gfc_ss_info *specinfo;
3567 gfc_ss *ss;
3568 tree tmp;
3569 gfc_ss *loopspec[GFC_MAX_DIMENSIONS];
3570 bool dynamic[GFC_MAX_DIMENSIONS];
3571 mpz_t *cshape;
3572 mpz_t i;
3574 mpz_init (i);
3575 for (n = 0; n < loop->dimen; n++)
3577 loopspec[n] = NULL;
3578 dynamic[n] = false;
3579 /* We use one SS term, and use that to determine the bounds of the
3580 loop for this dimension. We try to pick the simplest term. */
3581 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
3583 if (ss->shape)
3585 /* The frontend has worked out the size for us. */
3586 if (!loopspec[n] || !loopspec[n]->shape
3587 || !integer_zerop (loopspec[n]->data.info.start[n]))
3588 /* Prefer zero-based descriptors if possible. */
3589 loopspec[n] = ss;
3590 continue;
3593 if (ss->type == GFC_SS_CONSTRUCTOR)
3595 gfc_constructor_base base;
3596 /* An unknown size constructor will always be rank one.
3597 Higher rank constructors will either have known shape,
3598 or still be wrapped in a call to reshape. */
3599 gcc_assert (loop->dimen == 1);
3601 /* Always prefer to use the constructor bounds if the size
3602 can be determined at compile time. Prefer not to otherwise,
3603 since the general case involves realloc, and it's better to
3604 avoid that overhead if possible. */
3605 base = ss->expr->value.constructor;
3606 dynamic[n] = gfc_get_array_constructor_size (&i, base);
3607 if (!dynamic[n] || !loopspec[n])
3608 loopspec[n] = ss;
3609 continue;
3612 /* TODO: Pick the best bound if we have a choice between a
3613 function and something else. */
3614 if (ss->type == GFC_SS_FUNCTION)
3616 loopspec[n] = ss;
3617 continue;
3620 if (ss->type != GFC_SS_SECTION)
3621 continue;
3623 if (loopspec[n])
3624 specinfo = &loopspec[n]->data.info;
3625 else
3626 specinfo = NULL;
3627 info = &ss->data.info;
3629 if (!specinfo)
3630 loopspec[n] = ss;
3631 /* Criteria for choosing a loop specifier (most important first):
3632 doesn't need realloc
3633 stride of one
3634 known stride
3635 known lower bound
3636 known upper bound
3638 else if (loopspec[n]->type == GFC_SS_CONSTRUCTOR && dynamic[n])
3639 loopspec[n] = ss;
3640 else if (integer_onep (info->stride[n])
3641 && !integer_onep (specinfo->stride[n]))
3642 loopspec[n] = ss;
3643 else if (INTEGER_CST_P (info->stride[n])
3644 && !INTEGER_CST_P (specinfo->stride[n]))
3645 loopspec[n] = ss;
3646 else if (INTEGER_CST_P (info->start[n])
3647 && !INTEGER_CST_P (specinfo->start[n]))
3648 loopspec[n] = ss;
3649 /* We don't work out the upper bound.
3650 else if (INTEGER_CST_P (info->finish[n])
3651 && ! INTEGER_CST_P (specinfo->finish[n]))
3652 loopspec[n] = ss; */
3655 /* We should have found the scalarization loop specifier. If not,
3656 that's bad news. */
3657 gcc_assert (loopspec[n]);
3659 info = &loopspec[n]->data.info;
3661 /* Set the extents of this range. */
3662 cshape = loopspec[n]->shape;
3663 if (cshape && INTEGER_CST_P (info->start[n])
3664 && INTEGER_CST_P (info->stride[n]))
3666 loop->from[n] = info->start[n];
3667 mpz_set (i, cshape[n]);
3668 mpz_sub_ui (i, i, 1);
3669 /* To = from + (size - 1) * stride. */
3670 tmp = gfc_conv_mpz_to_tree (i, gfc_index_integer_kind);
3671 if (!integer_onep (info->stride[n]))
3672 tmp = fold_build2 (MULT_EXPR, gfc_array_index_type,
3673 tmp, info->stride[n]);
3674 loop->to[n] = fold_build2 (PLUS_EXPR, gfc_array_index_type,
3675 loop->from[n], tmp);
3677 else
3679 loop->from[n] = info->start[n];
3680 switch (loopspec[n]->type)
3682 case GFC_SS_CONSTRUCTOR:
3683 /* The upper bound is calculated when we expand the
3684 constructor. */
3685 gcc_assert (loop->to[n] == NULL_TREE);
3686 break;
3688 case GFC_SS_SECTION:
3689 /* Use the end expression if it exists and is not constant,
3690 so that it is only evaluated once. */
3691 if (info->end[n] && !INTEGER_CST_P (info->end[n]))
3692 loop->to[n] = info->end[n];
3693 else
3694 loop->to[n] = gfc_conv_section_upper_bound (loopspec[n], n,
3695 &loop->pre);
3696 break;
3698 case GFC_SS_FUNCTION:
3699 /* The loop bound will be set when we generate the call. */
3700 gcc_assert (loop->to[n] == NULL_TREE);
3701 break;
3703 default:
3704 gcc_unreachable ();
3708 /* Transform everything so we have a simple incrementing variable. */
3709 if (integer_onep (info->stride[n]))
3710 info->delta[n] = gfc_index_zero_node;
3711 else
3713 /* Set the delta for this section. */
3714 info->delta[n] = gfc_evaluate_now (loop->from[n], &loop->pre);
3715 /* Number of iterations is (end - start + step) / step.
3716 with start = 0, this simplifies to
3717 last = end / step;
3718 for (i = 0; i<=last; i++){...}; */
3719 tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type,
3720 loop->to[n], loop->from[n]);
3721 tmp = fold_build2 (FLOOR_DIV_EXPR, gfc_array_index_type,
3722 tmp, info->stride[n]);
3723 tmp = fold_build2 (MAX_EXPR, gfc_array_index_type, tmp,
3724 build_int_cst (gfc_array_index_type, -1));
3725 loop->to[n] = gfc_evaluate_now (tmp, &loop->pre);
3726 /* Make the loop variable start at 0. */
3727 loop->from[n] = gfc_index_zero_node;
3731 /* Add all the scalar code that can be taken out of the loops.
3732 This may include calculating the loop bounds, so do it before
3733 allocating the temporary. */
3734 gfc_add_loop_ss_code (loop, loop->ss, false, where);
3736 /* If we want a temporary then create it. */
3737 if (loop->temp_ss != NULL)
3739 gcc_assert (loop->temp_ss->type == GFC_SS_TEMP);
3741 /* Make absolutely sure that this is a complete type. */
3742 if (loop->temp_ss->string_length)
3743 loop->temp_ss->data.temp.type
3744 = gfc_get_character_type_len_for_eltype
3745 (TREE_TYPE (loop->temp_ss->data.temp.type),
3746 loop->temp_ss->string_length);
3748 tmp = loop->temp_ss->data.temp.type;
3749 n = loop->temp_ss->data.temp.dimen;
3750 memset (&loop->temp_ss->data.info, 0, sizeof (gfc_ss_info));
3751 loop->temp_ss->type = GFC_SS_SECTION;
3752 loop->temp_ss->data.info.dimen = n;
3753 gfc_trans_create_temp_array (&loop->pre, &loop->post, loop,
3754 &loop->temp_ss->data.info, tmp, NULL_TREE,
3755 false, true, false, where);
3758 for (n = 0; n < loop->temp_dim; n++)
3759 loopspec[loop->order[n]] = NULL;
3761 mpz_clear (i);
3763 /* For array parameters we don't have loop variables, so don't calculate the
3764 translations. */
3765 if (loop->array_parameter)
3766 return;
3768 /* Calculate the translation from loop variables to array indices. */
3769 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
3771 if (ss->type != GFC_SS_SECTION && ss->type != GFC_SS_COMPONENT
3772 && ss->type != GFC_SS_CONSTRUCTOR)
3774 continue;
3776 info = &ss->data.info;
3778 for (n = 0; n < info->dimen; n++)
3780 /* If we are specifying the range the delta is already set. */
3781 if (loopspec[n] != ss)
3783 /* Calculate the offset relative to the loop variable.
3784 First multiply by the stride. */
3785 tmp = loop->from[n];
3786 if (!integer_onep (info->stride[n]))
3787 tmp = fold_build2 (MULT_EXPR, gfc_array_index_type,
3788 tmp, info->stride[n]);
3790 /* Then subtract this from our starting value. */
3791 tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type,
3792 info->start[n], tmp);
3794 info->delta[n] = gfc_evaluate_now (tmp, &loop->pre);
3801 /* Fills in an array descriptor, and returns the size of the array. The size
3802 will be a simple_val, ie a variable or a constant. Also calculates the
3803 offset of the base. Returns the size of the array.
3805 stride = 1;
3806 offset = 0;
3807 for (n = 0; n < rank; n++)
3809 a.lbound[n] = specified_lower_bound;
3810 offset = offset + a.lbond[n] * stride;
3811 size = 1 - lbound;
3812 a.ubound[n] = specified_upper_bound;
3813 a.stride[n] = stride;
3814 size = siz >= 0 ? ubound + size : 0; //size = ubound + 1 - lbound
3815 stride = stride * size;
3817 return (stride);
3818 } */
3819 /*GCC ARRAYS*/
3821 static tree
3822 gfc_array_init_size (tree descriptor, int rank, int corank, tree * poffset,
3823 gfc_expr ** lower, gfc_expr ** upper,
3824 stmtblock_t * pblock)
3826 tree type;
3827 tree tmp;
3828 tree size;
3829 tree offset;
3830 tree stride;
3831 tree cond;
3832 tree or_expr;
3833 tree thencase;
3834 tree elsecase;
3835 tree var;
3836 stmtblock_t thenblock;
3837 stmtblock_t elseblock;
3838 gfc_expr *ubound;
3839 gfc_se se;
3840 int n;
3842 type = TREE_TYPE (descriptor);
3844 stride = gfc_index_one_node;
3845 offset = gfc_index_zero_node;
3847 /* Set the dtype. */
3848 tmp = gfc_conv_descriptor_dtype (descriptor);
3849 gfc_add_modify (pblock, tmp, gfc_get_dtype (TREE_TYPE (descriptor)));
3851 or_expr = NULL_TREE;
3853 for (n = 0; n < rank; n++)
3855 /* We have 3 possibilities for determining the size of the array:
3856 lower == NULL => lbound = 1, ubound = upper[n]
3857 upper[n] = NULL => lbound = 1, ubound = lower[n]
3858 upper[n] != NULL => lbound = lower[n], ubound = upper[n] */
3859 ubound = upper[n];
3861 /* Set lower bound. */
3862 gfc_init_se (&se, NULL);
3863 if (lower == NULL)
3864 se.expr = gfc_index_one_node;
3865 else
3867 gcc_assert (lower[n]);
3868 if (ubound)
3870 gfc_conv_expr_type (&se, lower[n], gfc_array_index_type);
3871 gfc_add_block_to_block (pblock, &se.pre);
3873 else
3875 se.expr = gfc_index_one_node;
3876 ubound = lower[n];
3879 gfc_conv_descriptor_lbound_set (pblock, descriptor, gfc_rank_cst[n],
3880 se.expr);
3882 /* Work out the offset for this component. */
3883 tmp = fold_build2 (MULT_EXPR, gfc_array_index_type, se.expr, stride);
3884 offset = fold_build2 (MINUS_EXPR, gfc_array_index_type, offset, tmp);
3886 /* Start the calculation for the size of this dimension. */
3887 size = fold_build2 (MINUS_EXPR, gfc_array_index_type,
3888 gfc_index_one_node, se.expr);
3890 /* Set upper bound. */
3891 gfc_init_se (&se, NULL);
3892 gcc_assert (ubound);
3893 gfc_conv_expr_type (&se, ubound, gfc_array_index_type);
3894 gfc_add_block_to_block (pblock, &se.pre);
3896 gfc_conv_descriptor_ubound_set (pblock, descriptor, gfc_rank_cst[n], se.expr);
3898 /* Store the stride. */
3899 gfc_conv_descriptor_stride_set (pblock, descriptor, gfc_rank_cst[n], stride);
3901 /* Calculate the size of this dimension. */
3902 size = fold_build2 (PLUS_EXPR, gfc_array_index_type, se.expr, size);
3904 /* Check whether the size for this dimension is negative. */
3905 cond = fold_build2 (LE_EXPR, boolean_type_node, size,
3906 gfc_index_zero_node);
3907 if (n == 0)
3908 or_expr = cond;
3909 else
3910 or_expr = fold_build2 (TRUTH_OR_EXPR, boolean_type_node, or_expr, cond);
3912 size = fold_build3 (COND_EXPR, gfc_array_index_type, cond,
3913 gfc_index_zero_node, size);
3915 /* Multiply the stride by the number of elements in this dimension. */
3916 stride = fold_build2 (MULT_EXPR, gfc_array_index_type, stride, size);
3917 stride = gfc_evaluate_now (stride, pblock);
3920 for (n = rank; n < rank + corank; n++)
3922 ubound = upper[n];
3924 /* Set lower bound. */
3925 gfc_init_se (&se, NULL);
3926 if (lower == NULL || lower[n] == NULL)
3928 gcc_assert (n == rank + corank - 1);
3929 se.expr = gfc_index_one_node;
3931 else
3933 if (ubound || n == rank + corank - 1)
3935 gfc_conv_expr_type (&se, lower[n], gfc_array_index_type);
3936 gfc_add_block_to_block (pblock, &se.pre);
3938 else
3940 se.expr = gfc_index_one_node;
3941 ubound = lower[n];
3944 gfc_conv_descriptor_lbound_set (pblock, descriptor, gfc_rank_cst[n],
3945 se.expr);
3947 if (n < rank + corank - 1)
3949 gfc_init_se (&se, NULL);
3950 gcc_assert (ubound);
3951 gfc_conv_expr_type (&se, ubound, gfc_array_index_type);
3952 gfc_add_block_to_block (pblock, &se.pre);
3953 gfc_conv_descriptor_ubound_set (pblock, descriptor, gfc_rank_cst[n], se.expr);
3957 /* The stride is the number of elements in the array, so multiply by the
3958 size of an element to get the total size. */
3959 tmp = TYPE_SIZE_UNIT (gfc_get_element_type (type));
3960 size = fold_build2 (MULT_EXPR, gfc_array_index_type, stride,
3961 fold_convert (gfc_array_index_type, tmp));
3963 if (poffset != NULL)
3965 offset = gfc_evaluate_now (offset, pblock);
3966 *poffset = offset;
3969 if (integer_zerop (or_expr))
3970 return size;
3971 if (integer_onep (or_expr))
3972 return gfc_index_zero_node;
3974 var = gfc_create_var (TREE_TYPE (size), "size");
3975 gfc_start_block (&thenblock);
3976 gfc_add_modify (&thenblock, var, gfc_index_zero_node);
3977 thencase = gfc_finish_block (&thenblock);
3979 gfc_start_block (&elseblock);
3980 gfc_add_modify (&elseblock, var, size);
3981 elsecase = gfc_finish_block (&elseblock);
3983 tmp = gfc_evaluate_now (or_expr, pblock);
3984 tmp = build3_v (COND_EXPR, tmp, thencase, elsecase);
3985 gfc_add_expr_to_block (pblock, tmp);
3987 return var;
3991 /* Initializes the descriptor and generates a call to _gfor_allocate. Does
3992 the work for an ALLOCATE statement. */
3993 /*GCC ARRAYS*/
3995 bool
3996 gfc_array_allocate (gfc_se * se, gfc_expr * expr, tree pstat)
3998 tree tmp;
3999 tree pointer;
4000 tree offset;
4001 tree size;
4002 gfc_expr **lower;
4003 gfc_expr **upper;
4004 gfc_ref *ref, *prev_ref = NULL;
4005 bool allocatable_array, coarray;
4007 ref = expr->ref;
4009 /* Find the last reference in the chain. */
4010 while (ref && ref->next != NULL)
4012 gcc_assert (ref->type != REF_ARRAY || ref->u.ar.type == AR_ELEMENT
4013 || (ref->u.ar.dimen == 0 && ref->u.ar.codimen > 0));
4014 prev_ref = ref;
4015 ref = ref->next;
4018 if (ref == NULL || ref->type != REF_ARRAY)
4019 return false;
4021 if (!prev_ref)
4023 allocatable_array = expr->symtree->n.sym->attr.allocatable;
4024 coarray = expr->symtree->n.sym->attr.codimension;
4026 else
4028 allocatable_array = prev_ref->u.c.component->attr.allocatable;
4029 coarray = prev_ref->u.c.component->attr.codimension;
4032 /* Return if this is a scalar coarray. */
4033 if ((!prev_ref && !expr->symtree->n.sym->attr.dimension)
4034 || (prev_ref && !prev_ref->u.c.component->attr.dimension))
4036 gcc_assert (coarray);
4037 return false;
4040 /* Figure out the size of the array. */
4041 switch (ref->u.ar.type)
4043 case AR_ELEMENT:
4044 if (!coarray)
4046 lower = NULL;
4047 upper = ref->u.ar.start;
4048 break;
4050 /* Fall through. */
4052 case AR_SECTION:
4053 lower = ref->u.ar.start;
4054 upper = ref->u.ar.end;
4055 break;
4057 case AR_FULL:
4058 gcc_assert (ref->u.ar.as->type == AS_EXPLICIT);
4060 lower = ref->u.ar.as->lower;
4061 upper = ref->u.ar.as->upper;
4062 break;
4064 default:
4065 gcc_unreachable ();
4066 break;
4069 size = gfc_array_init_size (se->expr, ref->u.ar.as->rank,
4070 ref->u.ar.as->corank, &offset, lower, upper,
4071 &se->pre);
4073 /* Allocate memory to store the data. */
4074 pointer = gfc_conv_descriptor_data_get (se->expr);
4075 STRIP_NOPS (pointer);
4077 /* The allocate_array variants take the old pointer as first argument. */
4078 if (allocatable_array)
4079 tmp = gfc_allocate_array_with_status (&se->pre, pointer, size, pstat, expr);
4080 else
4081 tmp = gfc_allocate_with_status (&se->pre, size, pstat);
4082 tmp = fold_build2 (MODIFY_EXPR, void_type_node, pointer, tmp);
4083 gfc_add_expr_to_block (&se->pre, tmp);
4085 gfc_conv_descriptor_offset_set (&se->pre, se->expr, offset);
4087 if (expr->ts.type == BT_DERIVED
4088 && expr->ts.u.derived->attr.alloc_comp)
4090 tmp = gfc_nullify_alloc_comp (expr->ts.u.derived, se->expr,
4091 ref->u.ar.as->rank);
4092 gfc_add_expr_to_block (&se->pre, tmp);
4095 return true;
4099 /* Deallocate an array variable. Also used when an allocated variable goes
4100 out of scope. */
4101 /*GCC ARRAYS*/
4103 tree
4104 gfc_array_deallocate (tree descriptor, tree pstat, gfc_expr* expr)
4106 tree var;
4107 tree tmp;
4108 stmtblock_t block;
4110 gfc_start_block (&block);
4111 /* Get a pointer to the data. */
4112 var = gfc_conv_descriptor_data_get (descriptor);
4113 STRIP_NOPS (var);
4115 /* Parameter is the address of the data component. */
4116 tmp = gfc_deallocate_with_status (var, pstat, false, expr);
4117 gfc_add_expr_to_block (&block, tmp);
4119 /* Zero the data pointer. */
4120 tmp = fold_build2 (MODIFY_EXPR, void_type_node,
4121 var, build_int_cst (TREE_TYPE (var), 0));
4122 gfc_add_expr_to_block (&block, tmp);
4124 return gfc_finish_block (&block);
4128 /* Create an array constructor from an initialization expression.
4129 We assume the frontend already did any expansions and conversions. */
4131 tree
4132 gfc_conv_array_initializer (tree type, gfc_expr * expr)
4134 gfc_constructor *c;
4135 tree tmp;
4136 gfc_se se;
4137 HOST_WIDE_INT hi;
4138 unsigned HOST_WIDE_INT lo;
4139 tree index;
4140 VEC(constructor_elt,gc) *v = NULL;
4142 switch (expr->expr_type)
4144 case EXPR_CONSTANT:
4145 case EXPR_STRUCTURE:
4146 /* A single scalar or derived type value. Create an array with all
4147 elements equal to that value. */
4148 gfc_init_se (&se, NULL);
4150 if (expr->expr_type == EXPR_CONSTANT)
4151 gfc_conv_constant (&se, expr);
4152 else
4153 gfc_conv_structure (&se, expr, 1);
4155 tmp = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
4156 gcc_assert (tmp && INTEGER_CST_P (tmp));
4157 hi = TREE_INT_CST_HIGH (tmp);
4158 lo = TREE_INT_CST_LOW (tmp);
4159 lo++;
4160 if (lo == 0)
4161 hi++;
4162 /* This will probably eat buckets of memory for large arrays. */
4163 while (hi != 0 || lo != 0)
4165 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, se.expr);
4166 if (lo == 0)
4167 hi--;
4168 lo--;
4170 break;
4172 case EXPR_ARRAY:
4173 /* Create a vector of all the elements. */
4174 for (c = gfc_constructor_first (expr->value.constructor);
4175 c; c = gfc_constructor_next (c))
4177 if (c->iterator)
4179 /* Problems occur when we get something like
4180 integer :: a(lots) = (/(i, i=1, lots)/) */
4181 gfc_fatal_error ("The number of elements in the array constructor "
4182 "at %L requires an increase of the allowed %d "
4183 "upper limit. See -fmax-array-constructor "
4184 "option", &expr->where,
4185 gfc_option.flag_max_array_constructor);
4186 return NULL_TREE;
4188 if (mpz_cmp_si (c->offset, 0) != 0)
4189 index = gfc_conv_mpz_to_tree (c->offset, gfc_index_integer_kind);
4190 else
4191 index = NULL_TREE;
4193 gfc_init_se (&se, NULL);
4194 switch (c->expr->expr_type)
4196 case EXPR_CONSTANT:
4197 gfc_conv_constant (&se, c->expr);
4198 CONSTRUCTOR_APPEND_ELT (v, index, se.expr);
4199 break;
4201 case EXPR_STRUCTURE:
4202 gfc_conv_structure (&se, c->expr, 1);
4203 CONSTRUCTOR_APPEND_ELT (v, index, se.expr);
4204 break;
4207 default:
4208 /* Catch those occasional beasts that do not simplify
4209 for one reason or another, assuming that if they are
4210 standard defying the frontend will catch them. */
4211 gfc_conv_expr (&se, c->expr);
4212 CONSTRUCTOR_APPEND_ELT (v, index, se.expr);
4213 break;
4216 break;
4218 case EXPR_NULL:
4219 return gfc_build_null_descriptor (type);
4221 default:
4222 gcc_unreachable ();
4225 /* Create a constructor from the list of elements. */
4226 tmp = build_constructor (type, v);
4227 TREE_CONSTANT (tmp) = 1;
4228 return tmp;
4232 /* Generate code to evaluate non-constant array bounds. Sets *poffset and
4233 returns the size (in elements) of the array. */
4235 static tree
4236 gfc_trans_array_bounds (tree type, gfc_symbol * sym, tree * poffset,
4237 stmtblock_t * pblock)
4239 gfc_array_spec *as;
4240 tree size;
4241 tree stride;
4242 tree offset;
4243 tree ubound;
4244 tree lbound;
4245 tree tmp;
4246 gfc_se se;
4248 int dim;
4250 as = sym->as;
4252 size = gfc_index_one_node;
4253 offset = gfc_index_zero_node;
4254 for (dim = 0; dim < as->rank; dim++)
4256 /* Evaluate non-constant array bound expressions. */
4257 lbound = GFC_TYPE_ARRAY_LBOUND (type, dim);
4258 if (as->lower[dim] && !INTEGER_CST_P (lbound))
4260 gfc_init_se (&se, NULL);
4261 gfc_conv_expr_type (&se, as->lower[dim], gfc_array_index_type);
4262 gfc_add_block_to_block (pblock, &se.pre);
4263 gfc_add_modify (pblock, lbound, se.expr);
4265 ubound = GFC_TYPE_ARRAY_UBOUND (type, dim);
4266 if (as->upper[dim] && !INTEGER_CST_P (ubound))
4268 gfc_init_se (&se, NULL);
4269 gfc_conv_expr_type (&se, as->upper[dim], gfc_array_index_type);
4270 gfc_add_block_to_block (pblock, &se.pre);
4271 gfc_add_modify (pblock, ubound, se.expr);
4273 /* The offset of this dimension. offset = offset - lbound * stride. */
4274 tmp = fold_build2 (MULT_EXPR, gfc_array_index_type, lbound, size);
4275 offset = fold_build2 (MINUS_EXPR, gfc_array_index_type, offset, tmp);
4277 /* The size of this dimension, and the stride of the next. */
4278 if (dim + 1 < as->rank)
4279 stride = GFC_TYPE_ARRAY_STRIDE (type, dim + 1);
4280 else
4281 stride = GFC_TYPE_ARRAY_SIZE (type);
4283 if (ubound != NULL_TREE && !(stride && INTEGER_CST_P (stride)))
4285 /* Calculate stride = size * (ubound + 1 - lbound). */
4286 tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type,
4287 gfc_index_one_node, lbound);
4288 tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, ubound, tmp);
4289 tmp = fold_build2 (MULT_EXPR, gfc_array_index_type, size, tmp);
4290 if (stride)
4291 gfc_add_modify (pblock, stride, tmp);
4292 else
4293 stride = gfc_evaluate_now (tmp, pblock);
4295 /* Make sure that negative size arrays are translated
4296 to being zero size. */
4297 tmp = fold_build2 (GE_EXPR, boolean_type_node,
4298 stride, gfc_index_zero_node);
4299 tmp = fold_build3 (COND_EXPR, gfc_array_index_type, tmp,
4300 stride, gfc_index_zero_node);
4301 gfc_add_modify (pblock, stride, tmp);
4304 size = stride;
4307 gfc_trans_vla_type_sizes (sym, pblock);
4309 *poffset = offset;
4310 return size;
4314 /* Generate code to initialize/allocate an array variable. */
4316 tree
4317 gfc_trans_auto_array_allocation (tree decl, gfc_symbol * sym, tree fnbody)
4319 stmtblock_t block;
4320 tree type;
4321 tree tmp;
4322 tree size;
4323 tree offset;
4324 bool onstack;
4326 gcc_assert (!(sym->attr.pointer || sym->attr.allocatable));
4328 /* Do nothing for USEd variables. */
4329 if (sym->attr.use_assoc)
4330 return fnbody;
4332 type = TREE_TYPE (decl);
4333 gcc_assert (GFC_ARRAY_TYPE_P (type));
4334 onstack = TREE_CODE (type) != POINTER_TYPE;
4336 gfc_start_block (&block);
4338 /* Evaluate character string length. */
4339 if (sym->ts.type == BT_CHARACTER
4340 && onstack && !INTEGER_CST_P (sym->ts.u.cl->backend_decl))
4342 gfc_conv_string_length (sym->ts.u.cl, NULL, &block);
4344 gfc_trans_vla_type_sizes (sym, &block);
4346 /* Emit a DECL_EXPR for this variable, which will cause the
4347 gimplifier to allocate storage, and all that good stuff. */
4348 tmp = fold_build1 (DECL_EXPR, TREE_TYPE (decl), decl);
4349 gfc_add_expr_to_block (&block, tmp);
4352 if (onstack)
4354 gfc_add_expr_to_block (&block, fnbody);
4355 return gfc_finish_block (&block);
4358 type = TREE_TYPE (type);
4360 gcc_assert (!sym->attr.use_assoc);
4361 gcc_assert (!TREE_STATIC (decl));
4362 gcc_assert (!sym->module);
4364 if (sym->ts.type == BT_CHARACTER
4365 && !INTEGER_CST_P (sym->ts.u.cl->backend_decl))
4366 gfc_conv_string_length (sym->ts.u.cl, NULL, &block);
4368 size = gfc_trans_array_bounds (type, sym, &offset, &block);
4370 /* Don't actually allocate space for Cray Pointees. */
4371 if (sym->attr.cray_pointee)
4373 if (TREE_CODE (GFC_TYPE_ARRAY_OFFSET (type)) == VAR_DECL)
4374 gfc_add_modify (&block, GFC_TYPE_ARRAY_OFFSET (type), offset);
4375 gfc_add_expr_to_block (&block, fnbody);
4376 return gfc_finish_block (&block);
4379 /* The size is the number of elements in the array, so multiply by the
4380 size of an element to get the total size. */
4381 tmp = TYPE_SIZE_UNIT (gfc_get_element_type (type));
4382 size = fold_build2 (MULT_EXPR, gfc_array_index_type, size,
4383 fold_convert (gfc_array_index_type, tmp));
4385 /* Allocate memory to hold the data. */
4386 tmp = gfc_call_malloc (&block, TREE_TYPE (decl), size);
4387 gfc_add_modify (&block, decl, tmp);
4389 /* Set offset of the array. */
4390 if (TREE_CODE (GFC_TYPE_ARRAY_OFFSET (type)) == VAR_DECL)
4391 gfc_add_modify (&block, GFC_TYPE_ARRAY_OFFSET (type), offset);
4394 /* Automatic arrays should not have initializers. */
4395 gcc_assert (!sym->value);
4397 gfc_add_expr_to_block (&block, fnbody);
4399 /* Free the temporary. */
4400 tmp = gfc_call_free (convert (pvoid_type_node, decl));
4401 gfc_add_expr_to_block (&block, tmp);
4403 return gfc_finish_block (&block);
4407 /* Generate entry and exit code for g77 calling convention arrays. */
4409 tree
4410 gfc_trans_g77_array (gfc_symbol * sym, tree body)
4412 tree parm;
4413 tree type;
4414 locus loc;
4415 tree offset;
4416 tree tmp;
4417 tree stmt;
4418 stmtblock_t block;
4420 gfc_get_backend_locus (&loc);
4421 gfc_set_backend_locus (&sym->declared_at);
4423 /* Descriptor type. */
4424 parm = sym->backend_decl;
4425 type = TREE_TYPE (parm);
4426 gcc_assert (GFC_ARRAY_TYPE_P (type));
4428 gfc_start_block (&block);
4430 if (sym->ts.type == BT_CHARACTER
4431 && TREE_CODE (sym->ts.u.cl->backend_decl) == VAR_DECL)
4432 gfc_conv_string_length (sym->ts.u.cl, NULL, &block);
4434 /* Evaluate the bounds of the array. */
4435 gfc_trans_array_bounds (type, sym, &offset, &block);
4437 /* Set the offset. */
4438 if (TREE_CODE (GFC_TYPE_ARRAY_OFFSET (type)) == VAR_DECL)
4439 gfc_add_modify (&block, GFC_TYPE_ARRAY_OFFSET (type), offset);
4441 /* Set the pointer itself if we aren't using the parameter directly. */
4442 if (TREE_CODE (parm) != PARM_DECL)
4444 tmp = convert (TREE_TYPE (parm), GFC_DECL_SAVED_DESCRIPTOR (parm));
4445 gfc_add_modify (&block, parm, tmp);
4447 stmt = gfc_finish_block (&block);
4449 gfc_set_backend_locus (&loc);
4451 gfc_start_block (&block);
4453 /* Add the initialization code to the start of the function. */
4455 if (sym->attr.optional || sym->attr.not_always_present)
4457 tmp = gfc_conv_expr_present (sym);
4458 stmt = build3_v (COND_EXPR, tmp, stmt, build_empty_stmt (input_location));
4461 gfc_add_expr_to_block (&block, stmt);
4462 gfc_add_expr_to_block (&block, body);
4464 return gfc_finish_block (&block);
4468 /* Modify the descriptor of an array parameter so that it has the
4469 correct lower bound. Also move the upper bound accordingly.
4470 If the array is not packed, it will be copied into a temporary.
4471 For each dimension we set the new lower and upper bounds. Then we copy the
4472 stride and calculate the offset for this dimension. We also work out
4473 what the stride of a packed array would be, and see it the two match.
4474 If the array need repacking, we set the stride to the values we just
4475 calculated, recalculate the offset and copy the array data.
4476 Code is also added to copy the data back at the end of the function.
4479 tree
4480 gfc_trans_dummy_array_bias (gfc_symbol * sym, tree tmpdesc, tree body)
4482 tree size;
4483 tree type;
4484 tree offset;
4485 locus loc;
4486 stmtblock_t block;
4487 stmtblock_t cleanup;
4488 tree lbound;
4489 tree ubound;
4490 tree dubound;
4491 tree dlbound;
4492 tree dumdesc;
4493 tree tmp;
4494 tree stmt;
4495 tree stride, stride2;
4496 tree stmt_packed;
4497 tree stmt_unpacked;
4498 tree partial;
4499 gfc_se se;
4500 int n;
4501 int checkparm;
4502 int no_repack;
4503 bool optional_arg;
4505 /* Do nothing for pointer and allocatable arrays. */
4506 if (sym->attr.pointer || sym->attr.allocatable)
4507 return body;
4509 if (sym->attr.dummy && gfc_is_nodesc_array (sym))
4510 return gfc_trans_g77_array (sym, body);
4512 gfc_get_backend_locus (&loc);
4513 gfc_set_backend_locus (&sym->declared_at);
4515 /* Descriptor type. */
4516 type = TREE_TYPE (tmpdesc);
4517 gcc_assert (GFC_ARRAY_TYPE_P (type));
4518 dumdesc = GFC_DECL_SAVED_DESCRIPTOR (tmpdesc);
4519 dumdesc = build_fold_indirect_ref_loc (input_location,
4520 dumdesc);
4521 gfc_start_block (&block);
4523 if (sym->ts.type == BT_CHARACTER
4524 && TREE_CODE (sym->ts.u.cl->backend_decl) == VAR_DECL)
4525 gfc_conv_string_length (sym->ts.u.cl, NULL, &block);
4527 checkparm = (sym->as->type == AS_EXPLICIT
4528 && (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS));
4530 no_repack = !(GFC_DECL_PACKED_ARRAY (tmpdesc)
4531 || GFC_DECL_PARTIAL_PACKED_ARRAY (tmpdesc));
4533 if (GFC_DECL_PARTIAL_PACKED_ARRAY (tmpdesc))
4535 /* For non-constant shape arrays we only check if the first dimension
4536 is contiguous. Repacking higher dimensions wouldn't gain us
4537 anything as we still don't know the array stride. */
4538 partial = gfc_create_var (boolean_type_node, "partial");
4539 TREE_USED (partial) = 1;
4540 tmp = gfc_conv_descriptor_stride_get (dumdesc, gfc_rank_cst[0]);
4541 tmp = fold_build2 (EQ_EXPR, boolean_type_node, tmp, gfc_index_one_node);
4542 gfc_add_modify (&block, partial, tmp);
4544 else
4546 partial = NULL_TREE;
4549 /* The naming of stmt_unpacked and stmt_packed may be counter-intuitive
4550 here, however I think it does the right thing. */
4551 if (no_repack)
4553 /* Set the first stride. */
4554 stride = gfc_conv_descriptor_stride_get (dumdesc, gfc_rank_cst[0]);
4555 stride = gfc_evaluate_now (stride, &block);
4557 tmp = fold_build2 (EQ_EXPR, boolean_type_node,
4558 stride, gfc_index_zero_node);
4559 tmp = fold_build3 (COND_EXPR, gfc_array_index_type, tmp,
4560 gfc_index_one_node, stride);
4561 stride = GFC_TYPE_ARRAY_STRIDE (type, 0);
4562 gfc_add_modify (&block, stride, tmp);
4564 /* Allow the user to disable array repacking. */
4565 stmt_unpacked = NULL_TREE;
4567 else
4569 gcc_assert (integer_onep (GFC_TYPE_ARRAY_STRIDE (type, 0)));
4570 /* A library call to repack the array if necessary. */
4571 tmp = GFC_DECL_SAVED_DESCRIPTOR (tmpdesc);
4572 stmt_unpacked = build_call_expr_loc (input_location,
4573 gfor_fndecl_in_pack, 1, tmp);
4575 stride = gfc_index_one_node;
4577 if (gfc_option.warn_array_temp)
4578 gfc_warning ("Creating array temporary at %L", &loc);
4581 /* This is for the case where the array data is used directly without
4582 calling the repack function. */
4583 if (no_repack || partial != NULL_TREE)
4584 stmt_packed = gfc_conv_descriptor_data_get (dumdesc);
4585 else
4586 stmt_packed = NULL_TREE;
4588 /* Assign the data pointer. */
4589 if (stmt_packed != NULL_TREE && stmt_unpacked != NULL_TREE)
4591 /* Don't repack unknown shape arrays when the first stride is 1. */
4592 tmp = fold_build3 (COND_EXPR, TREE_TYPE (stmt_packed),
4593 partial, stmt_packed, stmt_unpacked);
4595 else
4596 tmp = stmt_packed != NULL_TREE ? stmt_packed : stmt_unpacked;
4597 gfc_add_modify (&block, tmpdesc, fold_convert (type, tmp));
4599 offset = gfc_index_zero_node;
4600 size = gfc_index_one_node;
4602 /* Evaluate the bounds of the array. */
4603 for (n = 0; n < sym->as->rank; n++)
4605 if (checkparm || !sym->as->upper[n])
4607 /* Get the bounds of the actual parameter. */
4608 dubound = gfc_conv_descriptor_ubound_get (dumdesc, gfc_rank_cst[n]);
4609 dlbound = gfc_conv_descriptor_lbound_get (dumdesc, gfc_rank_cst[n]);
4611 else
4613 dubound = NULL_TREE;
4614 dlbound = NULL_TREE;
4617 lbound = GFC_TYPE_ARRAY_LBOUND (type, n);
4618 if (!INTEGER_CST_P (lbound))
4620 gfc_init_se (&se, NULL);
4621 gfc_conv_expr_type (&se, sym->as->lower[n],
4622 gfc_array_index_type);
4623 gfc_add_block_to_block (&block, &se.pre);
4624 gfc_add_modify (&block, lbound, se.expr);
4627 ubound = GFC_TYPE_ARRAY_UBOUND (type, n);
4628 /* Set the desired upper bound. */
4629 if (sym->as->upper[n])
4631 /* We know what we want the upper bound to be. */
4632 if (!INTEGER_CST_P (ubound))
4634 gfc_init_se (&se, NULL);
4635 gfc_conv_expr_type (&se, sym->as->upper[n],
4636 gfc_array_index_type);
4637 gfc_add_block_to_block (&block, &se.pre);
4638 gfc_add_modify (&block, ubound, se.expr);
4641 /* Check the sizes match. */
4642 if (checkparm)
4644 /* Check (ubound(a) - lbound(a) == ubound(b) - lbound(b)). */
4645 char * msg;
4646 tree temp;
4648 temp = fold_build2 (MINUS_EXPR, gfc_array_index_type,
4649 ubound, lbound);
4650 temp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
4651 gfc_index_one_node, temp);
4653 stride2 = fold_build2 (MINUS_EXPR, gfc_array_index_type,
4654 dubound, dlbound);
4655 stride2 = fold_build2 (PLUS_EXPR, gfc_array_index_type,
4656 gfc_index_one_node, stride2);
4658 tmp = fold_build2 (NE_EXPR, gfc_array_index_type, temp, stride2);
4659 asprintf (&msg, "Dimension %d of array '%s' has extent "
4660 "%%ld instead of %%ld", n+1, sym->name);
4662 gfc_trans_runtime_check (true, false, tmp, &block, &loc, msg,
4663 fold_convert (long_integer_type_node, temp),
4664 fold_convert (long_integer_type_node, stride2));
4666 gfc_free (msg);
4669 else
4671 /* For assumed shape arrays move the upper bound by the same amount
4672 as the lower bound. */
4673 tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type,
4674 dubound, dlbound);
4675 tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, tmp, lbound);
4676 gfc_add_modify (&block, ubound, tmp);
4678 /* The offset of this dimension. offset = offset - lbound * stride. */
4679 tmp = fold_build2 (MULT_EXPR, gfc_array_index_type, lbound, stride);
4680 offset = fold_build2 (MINUS_EXPR, gfc_array_index_type, offset, tmp);
4682 /* The size of this dimension, and the stride of the next. */
4683 if (n + 1 < sym->as->rank)
4685 stride = GFC_TYPE_ARRAY_STRIDE (type, n + 1);
4687 if (no_repack || partial != NULL_TREE)
4689 stmt_unpacked =
4690 gfc_conv_descriptor_stride_get (dumdesc, gfc_rank_cst[n+1]);
4693 /* Figure out the stride if not a known constant. */
4694 if (!INTEGER_CST_P (stride))
4696 if (no_repack)
4697 stmt_packed = NULL_TREE;
4698 else
4700 /* Calculate stride = size * (ubound + 1 - lbound). */
4701 tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type,
4702 gfc_index_one_node, lbound);
4703 tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
4704 ubound, tmp);
4705 size = fold_build2 (MULT_EXPR, gfc_array_index_type,
4706 size, tmp);
4707 stmt_packed = size;
4710 /* Assign the stride. */
4711 if (stmt_packed != NULL_TREE && stmt_unpacked != NULL_TREE)
4712 tmp = fold_build3 (COND_EXPR, gfc_array_index_type, partial,
4713 stmt_unpacked, stmt_packed);
4714 else
4715 tmp = (stmt_packed != NULL_TREE) ? stmt_packed : stmt_unpacked;
4716 gfc_add_modify (&block, stride, tmp);
4719 else
4721 stride = GFC_TYPE_ARRAY_SIZE (type);
4723 if (stride && !INTEGER_CST_P (stride))
4725 /* Calculate size = stride * (ubound + 1 - lbound). */
4726 tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type,
4727 gfc_index_one_node, lbound);
4728 tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
4729 ubound, tmp);
4730 tmp = fold_build2 (MULT_EXPR, gfc_array_index_type,
4731 GFC_TYPE_ARRAY_STRIDE (type, n), tmp);
4732 gfc_add_modify (&block, stride, tmp);
4737 /* Set the offset. */
4738 if (TREE_CODE (GFC_TYPE_ARRAY_OFFSET (type)) == VAR_DECL)
4739 gfc_add_modify (&block, GFC_TYPE_ARRAY_OFFSET (type), offset);
4741 gfc_trans_vla_type_sizes (sym, &block);
4743 stmt = gfc_finish_block (&block);
4745 gfc_start_block (&block);
4747 /* Only do the entry/initialization code if the arg is present. */
4748 dumdesc = GFC_DECL_SAVED_DESCRIPTOR (tmpdesc);
4749 optional_arg = (sym->attr.optional
4750 || (sym->ns->proc_name->attr.entry_master
4751 && sym->attr.dummy));
4752 if (optional_arg)
4754 tmp = gfc_conv_expr_present (sym);
4755 stmt = build3_v (COND_EXPR, tmp, stmt, build_empty_stmt (input_location));
4757 gfc_add_expr_to_block (&block, stmt);
4759 /* Add the main function body. */
4760 gfc_add_expr_to_block (&block, body);
4762 /* Cleanup code. */
4763 if (!no_repack)
4765 gfc_start_block (&cleanup);
4767 if (sym->attr.intent != INTENT_IN)
4769 /* Copy the data back. */
4770 tmp = build_call_expr_loc (input_location,
4771 gfor_fndecl_in_unpack, 2, dumdesc, tmpdesc);
4772 gfc_add_expr_to_block (&cleanup, tmp);
4775 /* Free the temporary. */
4776 tmp = gfc_call_free (tmpdesc);
4777 gfc_add_expr_to_block (&cleanup, tmp);
4779 stmt = gfc_finish_block (&cleanup);
4781 /* Only do the cleanup if the array was repacked. */
4782 tmp = build_fold_indirect_ref_loc (input_location,
4783 dumdesc);
4784 tmp = gfc_conv_descriptor_data_get (tmp);
4785 tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp, tmpdesc);
4786 stmt = build3_v (COND_EXPR, tmp, stmt, build_empty_stmt (input_location));
4788 if (optional_arg)
4790 tmp = gfc_conv_expr_present (sym);
4791 stmt = build3_v (COND_EXPR, tmp, stmt,
4792 build_empty_stmt (input_location));
4794 gfc_add_expr_to_block (&block, stmt);
4796 /* We don't need to free any memory allocated by internal_pack as it will
4797 be freed at the end of the function by pop_context. */
4798 return gfc_finish_block (&block);
4802 /* Calculate the overall offset, including subreferences. */
4803 static void
4804 gfc_get_dataptr_offset (stmtblock_t *block, tree parm, tree desc, tree offset,
4805 bool subref, gfc_expr *expr)
4807 tree tmp;
4808 tree field;
4809 tree stride;
4810 tree index;
4811 gfc_ref *ref;
4812 gfc_se start;
4813 int n;
4815 /* If offset is NULL and this is not a subreferenced array, there is
4816 nothing to do. */
4817 if (offset == NULL_TREE)
4819 if (subref)
4820 offset = gfc_index_zero_node;
4821 else
4822 return;
4825 tmp = gfc_conv_array_data (desc);
4826 tmp = build_fold_indirect_ref_loc (input_location,
4827 tmp);
4828 tmp = gfc_build_array_ref (tmp, offset, NULL);
4830 /* Offset the data pointer for pointer assignments from arrays with
4831 subreferences; e.g. my_integer => my_type(:)%integer_component. */
4832 if (subref)
4834 /* Go past the array reference. */
4835 for (ref = expr->ref; ref; ref = ref->next)
4836 if (ref->type == REF_ARRAY &&
4837 ref->u.ar.type != AR_ELEMENT)
4839 ref = ref->next;
4840 break;
4843 /* Calculate the offset for each subsequent subreference. */
4844 for (; ref; ref = ref->next)
4846 switch (ref->type)
4848 case REF_COMPONENT:
4849 field = ref->u.c.component->backend_decl;
4850 gcc_assert (field && TREE_CODE (field) == FIELD_DECL);
4851 tmp = fold_build3 (COMPONENT_REF, TREE_TYPE (field),
4852 tmp, field, NULL_TREE);
4853 break;
4855 case REF_SUBSTRING:
4856 gcc_assert (TREE_CODE (TREE_TYPE (tmp)) == ARRAY_TYPE);
4857 gfc_init_se (&start, NULL);
4858 gfc_conv_expr_type (&start, ref->u.ss.start, gfc_charlen_type_node);
4859 gfc_add_block_to_block (block, &start.pre);
4860 tmp = gfc_build_array_ref (tmp, start.expr, NULL);
4861 break;
4863 case REF_ARRAY:
4864 gcc_assert (TREE_CODE (TREE_TYPE (tmp)) == ARRAY_TYPE
4865 && ref->u.ar.type == AR_ELEMENT);
4867 /* TODO - Add bounds checking. */
4868 stride = gfc_index_one_node;
4869 index = gfc_index_zero_node;
4870 for (n = 0; n < ref->u.ar.dimen; n++)
4872 tree itmp;
4873 tree jtmp;
4875 /* Update the index. */
4876 gfc_init_se (&start, NULL);
4877 gfc_conv_expr_type (&start, ref->u.ar.start[n], gfc_array_index_type);
4878 itmp = gfc_evaluate_now (start.expr, block);
4879 gfc_init_se (&start, NULL);
4880 gfc_conv_expr_type (&start, ref->u.ar.as->lower[n], gfc_array_index_type);
4881 jtmp = gfc_evaluate_now (start.expr, block);
4882 itmp = fold_build2 (MINUS_EXPR, gfc_array_index_type, itmp, jtmp);
4883 itmp = fold_build2 (MULT_EXPR, gfc_array_index_type, itmp, stride);
4884 index = fold_build2 (PLUS_EXPR, gfc_array_index_type, itmp, index);
4885 index = gfc_evaluate_now (index, block);
4887 /* Update the stride. */
4888 gfc_init_se (&start, NULL);
4889 gfc_conv_expr_type (&start, ref->u.ar.as->upper[n], gfc_array_index_type);
4890 itmp = fold_build2 (MINUS_EXPR, gfc_array_index_type, start.expr, jtmp);
4891 itmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
4892 gfc_index_one_node, itmp);
4893 stride = fold_build2 (MULT_EXPR, gfc_array_index_type, stride, itmp);
4894 stride = gfc_evaluate_now (stride, block);
4897 /* Apply the index to obtain the array element. */
4898 tmp = gfc_build_array_ref (tmp, index, NULL);
4899 break;
4901 default:
4902 gcc_unreachable ();
4903 break;
4908 /* Set the target data pointer. */
4909 offset = gfc_build_addr_expr (gfc_array_dataptr_type (desc), tmp);
4910 gfc_conv_descriptor_data_set (block, parm, offset);
4914 /* gfc_conv_expr_descriptor needs the string length an expression
4915 so that the size of the temporary can be obtained. This is done
4916 by adding up the string lengths of all the elements in the
4917 expression. Function with non-constant expressions have their
4918 string lengths mapped onto the actual arguments using the
4919 interface mapping machinery in trans-expr.c. */
4920 static void
4921 get_array_charlen (gfc_expr *expr, gfc_se *se)
4923 gfc_interface_mapping mapping;
4924 gfc_formal_arglist *formal;
4925 gfc_actual_arglist *arg;
4926 gfc_se tse;
4928 if (expr->ts.u.cl->length
4929 && gfc_is_constant_expr (expr->ts.u.cl->length))
4931 if (!expr->ts.u.cl->backend_decl)
4932 gfc_conv_string_length (expr->ts.u.cl, expr, &se->pre);
4933 return;
4936 switch (expr->expr_type)
4938 case EXPR_OP:
4939 get_array_charlen (expr->value.op.op1, se);
4941 /* For parentheses the expression ts.u.cl is identical. */
4942 if (expr->value.op.op == INTRINSIC_PARENTHESES)
4943 return;
4945 expr->ts.u.cl->backend_decl =
4946 gfc_create_var (gfc_charlen_type_node, "sln");
4948 if (expr->value.op.op2)
4950 get_array_charlen (expr->value.op.op2, se);
4952 gcc_assert (expr->value.op.op == INTRINSIC_CONCAT);
4954 /* Add the string lengths and assign them to the expression
4955 string length backend declaration. */
4956 gfc_add_modify (&se->pre, expr->ts.u.cl->backend_decl,
4957 fold_build2 (PLUS_EXPR, gfc_charlen_type_node,
4958 expr->value.op.op1->ts.u.cl->backend_decl,
4959 expr->value.op.op2->ts.u.cl->backend_decl));
4961 else
4962 gfc_add_modify (&se->pre, expr->ts.u.cl->backend_decl,
4963 expr->value.op.op1->ts.u.cl->backend_decl);
4964 break;
4966 case EXPR_FUNCTION:
4967 if (expr->value.function.esym == NULL
4968 || expr->ts.u.cl->length->expr_type == EXPR_CONSTANT)
4970 gfc_conv_string_length (expr->ts.u.cl, expr, &se->pre);
4971 break;
4974 /* Map expressions involving the dummy arguments onto the actual
4975 argument expressions. */
4976 gfc_init_interface_mapping (&mapping);
4977 formal = expr->symtree->n.sym->formal;
4978 arg = expr->value.function.actual;
4980 /* Set se = NULL in the calls to the interface mapping, to suppress any
4981 backend stuff. */
4982 for (; arg != NULL; arg = arg->next, formal = formal ? formal->next : NULL)
4984 if (!arg->expr)
4985 continue;
4986 if (formal->sym)
4987 gfc_add_interface_mapping (&mapping, formal->sym, NULL, arg->expr);
4990 gfc_init_se (&tse, NULL);
4992 /* Build the expression for the character length and convert it. */
4993 gfc_apply_interface_mapping (&mapping, &tse, expr->ts.u.cl->length);
4995 gfc_add_block_to_block (&se->pre, &tse.pre);
4996 gfc_add_block_to_block (&se->post, &tse.post);
4997 tse.expr = fold_convert (gfc_charlen_type_node, tse.expr);
4998 tse.expr = fold_build2 (MAX_EXPR, gfc_charlen_type_node, tse.expr,
4999 build_int_cst (gfc_charlen_type_node, 0));
5000 expr->ts.u.cl->backend_decl = tse.expr;
5001 gfc_free_interface_mapping (&mapping);
5002 break;
5004 default:
5005 gfc_conv_string_length (expr->ts.u.cl, expr, &se->pre);
5006 break;
5012 /* Convert an array for passing as an actual argument. Expressions and
5013 vector subscripts are evaluated and stored in a temporary, which is then
5014 passed. For whole arrays the descriptor is passed. For array sections
5015 a modified copy of the descriptor is passed, but using the original data.
5017 This function is also used for array pointer assignments, and there
5018 are three cases:
5020 - se->want_pointer && !se->direct_byref
5021 EXPR is an actual argument. On exit, se->expr contains a
5022 pointer to the array descriptor.
5024 - !se->want_pointer && !se->direct_byref
5025 EXPR is an actual argument to an intrinsic function or the
5026 left-hand side of a pointer assignment. On exit, se->expr
5027 contains the descriptor for EXPR.
5029 - !se->want_pointer && se->direct_byref
5030 EXPR is the right-hand side of a pointer assignment and
5031 se->expr is the descriptor for the previously-evaluated
5032 left-hand side. The function creates an assignment from
5033 EXPR to se->expr. */
5035 void
5036 gfc_conv_expr_descriptor (gfc_se * se, gfc_expr * expr, gfc_ss * ss)
5038 gfc_loopinfo loop;
5039 gfc_ss *secss;
5040 gfc_ss_info *info;
5041 int need_tmp;
5042 int n;
5043 tree tmp;
5044 tree desc;
5045 stmtblock_t block;
5046 tree start;
5047 tree offset;
5048 int full;
5049 bool subref_array_target = false;
5051 gcc_assert (ss != gfc_ss_terminator);
5053 /* Special case things we know we can pass easily. */
5054 switch (expr->expr_type)
5056 case EXPR_VARIABLE:
5057 /* If we have a linear array section, we can pass it directly.
5058 Otherwise we need to copy it into a temporary. */
5060 /* Find the SS for the array section. */
5061 secss = ss;
5062 while (secss != gfc_ss_terminator && secss->type != GFC_SS_SECTION)
5063 secss = secss->next;
5065 gcc_assert (secss != gfc_ss_terminator);
5066 info = &secss->data.info;
5068 /* Get the descriptor for the array. */
5069 gfc_conv_ss_descriptor (&se->pre, secss, 0);
5070 desc = info->descriptor;
5072 subref_array_target = se->direct_byref && is_subref_array (expr);
5073 need_tmp = gfc_ref_needs_temporary_p (expr->ref)
5074 && !subref_array_target;
5076 if (need_tmp)
5077 full = 0;
5078 else if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc)))
5080 /* Create a new descriptor if the array doesn't have one. */
5081 full = 0;
5083 else if (info->ref->u.ar.type == AR_FULL)
5084 full = 1;
5085 else if (se->direct_byref)
5086 full = 0;
5087 else
5088 full = gfc_full_array_ref_p (info->ref, NULL);
5090 if (full)
5092 if (se->direct_byref)
5094 /* Copy the descriptor for pointer assignments. */
5095 gfc_add_modify (&se->pre, se->expr, desc);
5097 /* Add any offsets from subreferences. */
5098 gfc_get_dataptr_offset (&se->pre, se->expr, desc, NULL_TREE,
5099 subref_array_target, expr);
5101 else if (se->want_pointer)
5103 /* We pass full arrays directly. This means that pointers and
5104 allocatable arrays should also work. */
5105 se->expr = gfc_build_addr_expr (NULL_TREE, desc);
5107 else
5109 se->expr = desc;
5112 if (expr->ts.type == BT_CHARACTER)
5113 se->string_length = gfc_get_expr_charlen (expr);
5115 return;
5117 break;
5119 case EXPR_FUNCTION:
5120 /* A transformational function return value will be a temporary
5121 array descriptor. We still need to go through the scalarizer
5122 to create the descriptor. Elemental functions ar handled as
5123 arbitrary expressions, i.e. copy to a temporary. */
5124 secss = ss;
5125 /* Look for the SS for this function. */
5126 while (secss != gfc_ss_terminator
5127 && (secss->type != GFC_SS_FUNCTION || secss->expr != expr))
5128 secss = secss->next;
5130 if (se->direct_byref)
5132 gcc_assert (secss != gfc_ss_terminator);
5134 /* For pointer assignments pass the descriptor directly. */
5135 se->ss = secss;
5136 se->expr = gfc_build_addr_expr (NULL_TREE, se->expr);
5137 gfc_conv_expr (se, expr);
5138 return;
5141 if (secss == gfc_ss_terminator)
5143 /* Elemental function. */
5144 need_tmp = 1;
5145 if (expr->ts.type == BT_CHARACTER
5146 && expr->ts.u.cl->length->expr_type != EXPR_CONSTANT)
5147 get_array_charlen (expr, se);
5149 info = NULL;
5151 else
5153 /* Transformational function. */
5154 info = &secss->data.info;
5155 need_tmp = 0;
5157 break;
5159 case EXPR_ARRAY:
5160 /* Constant array constructors don't need a temporary. */
5161 if (ss->type == GFC_SS_CONSTRUCTOR
5162 && expr->ts.type != BT_CHARACTER
5163 && gfc_constant_array_constructor_p (expr->value.constructor))
5165 need_tmp = 0;
5166 info = &ss->data.info;
5167 secss = ss;
5169 else
5171 need_tmp = 1;
5172 secss = NULL;
5173 info = NULL;
5175 break;
5177 default:
5178 /* Something complicated. Copy it into a temporary. */
5179 need_tmp = 1;
5180 secss = NULL;
5181 info = NULL;
5182 break;
5185 gfc_init_loopinfo (&loop);
5187 /* Associate the SS with the loop. */
5188 gfc_add_ss_to_loop (&loop, ss);
5190 /* Tell the scalarizer not to bother creating loop variables, etc. */
5191 if (!need_tmp)
5192 loop.array_parameter = 1;
5193 else
5194 /* The right-hand side of a pointer assignment mustn't use a temporary. */
5195 gcc_assert (!se->direct_byref);
5197 /* Setup the scalarizing loops and bounds. */
5198 gfc_conv_ss_startstride (&loop);
5200 if (need_tmp)
5202 /* Tell the scalarizer to make a temporary. */
5203 loop.temp_ss = gfc_get_ss ();
5204 loop.temp_ss->type = GFC_SS_TEMP;
5205 loop.temp_ss->next = gfc_ss_terminator;
5207 if (expr->ts.type == BT_CHARACTER
5208 && !expr->ts.u.cl->backend_decl)
5209 get_array_charlen (expr, se);
5211 loop.temp_ss->data.temp.type = gfc_typenode_for_spec (&expr->ts);
5213 if (expr->ts.type == BT_CHARACTER)
5214 loop.temp_ss->string_length = expr->ts.u.cl->backend_decl;
5215 else
5216 loop.temp_ss->string_length = NULL;
5218 se->string_length = loop.temp_ss->string_length;
5219 loop.temp_ss->data.temp.dimen = loop.dimen;
5220 gfc_add_ss_to_loop (&loop, loop.temp_ss);
5223 gfc_conv_loop_setup (&loop, & expr->where);
5225 if (need_tmp)
5227 /* Copy into a temporary and pass that. We don't need to copy the data
5228 back because expressions and vector subscripts must be INTENT_IN. */
5229 /* TODO: Optimize passing function return values. */
5230 gfc_se lse;
5231 gfc_se rse;
5233 /* Start the copying loops. */
5234 gfc_mark_ss_chain_used (loop.temp_ss, 1);
5235 gfc_mark_ss_chain_used (ss, 1);
5236 gfc_start_scalarized_body (&loop, &block);
5238 /* Copy each data element. */
5239 gfc_init_se (&lse, NULL);
5240 gfc_copy_loopinfo_to_se (&lse, &loop);
5241 gfc_init_se (&rse, NULL);
5242 gfc_copy_loopinfo_to_se (&rse, &loop);
5244 lse.ss = loop.temp_ss;
5245 rse.ss = ss;
5247 gfc_conv_scalarized_array_ref (&lse, NULL);
5248 if (expr->ts.type == BT_CHARACTER)
5250 gfc_conv_expr (&rse, expr);
5251 if (POINTER_TYPE_P (TREE_TYPE (rse.expr)))
5252 rse.expr = build_fold_indirect_ref_loc (input_location,
5253 rse.expr);
5255 else
5256 gfc_conv_expr_val (&rse, expr);
5258 gfc_add_block_to_block (&block, &rse.pre);
5259 gfc_add_block_to_block (&block, &lse.pre);
5261 lse.string_length = rse.string_length;
5262 tmp = gfc_trans_scalar_assign (&lse, &rse, expr->ts, true,
5263 expr->expr_type == EXPR_VARIABLE, true);
5264 gfc_add_expr_to_block (&block, tmp);
5266 /* Finish the copying loops. */
5267 gfc_trans_scalarizing_loops (&loop, &block);
5269 desc = loop.temp_ss->data.info.descriptor;
5271 else if (expr->expr_type == EXPR_FUNCTION)
5273 desc = info->descriptor;
5274 se->string_length = ss->string_length;
5276 else
5278 /* We pass sections without copying to a temporary. Make a new
5279 descriptor and point it at the section we want. The loop variable
5280 limits will be the limits of the section.
5281 A function may decide to repack the array to speed up access, but
5282 we're not bothered about that here. */
5283 int dim, ndim;
5284 tree parm;
5285 tree parmtype;
5286 tree stride;
5287 tree from;
5288 tree to;
5289 tree base;
5291 /* Set the string_length for a character array. */
5292 if (expr->ts.type == BT_CHARACTER)
5293 se->string_length = gfc_get_expr_charlen (expr);
5295 desc = info->descriptor;
5296 gcc_assert (secss && secss != gfc_ss_terminator);
5297 if (se->direct_byref)
5299 /* For pointer assignments we fill in the destination. */
5300 parm = se->expr;
5301 parmtype = TREE_TYPE (parm);
5303 else
5305 /* Otherwise make a new one. */
5306 parmtype = gfc_get_element_type (TREE_TYPE (desc));
5307 parmtype = gfc_get_array_type_bounds (parmtype, loop.dimen, 0,
5308 loop.from, loop.to, 0,
5309 GFC_ARRAY_UNKNOWN, false);
5310 parm = gfc_create_var (parmtype, "parm");
5313 offset = gfc_index_zero_node;
5314 dim = 0;
5316 /* The following can be somewhat confusing. We have two
5317 descriptors, a new one and the original array.
5318 {parm, parmtype, dim} refer to the new one.
5319 {desc, type, n, secss, loop} refer to the original, which maybe
5320 a descriptorless array.
5321 The bounds of the scalarization are the bounds of the section.
5322 We don't have to worry about numeric overflows when calculating
5323 the offsets because all elements are within the array data. */
5325 /* Set the dtype. */
5326 tmp = gfc_conv_descriptor_dtype (parm);
5327 gfc_add_modify (&loop.pre, tmp, gfc_get_dtype (parmtype));
5329 /* Set offset for assignments to pointer only to zero if it is not
5330 the full array. */
5331 if (se->direct_byref
5332 && info->ref && info->ref->u.ar.type != AR_FULL)
5333 base = gfc_index_zero_node;
5334 else if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc)))
5335 base = gfc_evaluate_now (gfc_conv_array_offset (desc), &loop.pre);
5336 else
5337 base = NULL_TREE;
5339 ndim = info->ref ? info->ref->u.ar.dimen : info->dimen;
5340 for (n = 0; n < ndim; n++)
5342 stride = gfc_conv_array_stride (desc, n);
5344 /* Work out the offset. */
5345 if (info->ref
5346 && info->ref->u.ar.dimen_type[n] == DIMEN_ELEMENT)
5348 gcc_assert (info->subscript[n]
5349 && info->subscript[n]->type == GFC_SS_SCALAR);
5350 start = info->subscript[n]->data.scalar.expr;
5352 else
5354 /* Check we haven't somehow got out of sync. */
5355 gcc_assert (info->dim[dim] == n);
5357 /* Evaluate and remember the start of the section. */
5358 start = info->start[dim];
5359 stride = gfc_evaluate_now (stride, &loop.pre);
5362 tmp = gfc_conv_array_lbound (desc, n);
5363 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), start, tmp);
5365 tmp = fold_build2 (MULT_EXPR, TREE_TYPE (tmp), tmp, stride);
5366 offset = fold_build2 (PLUS_EXPR, TREE_TYPE (tmp), offset, tmp);
5368 if (info->ref
5369 && info->ref->u.ar.dimen_type[n] == DIMEN_ELEMENT)
5371 /* For elemental dimensions, we only need the offset. */
5372 continue;
5375 /* Vector subscripts need copying and are handled elsewhere. */
5376 if (info->ref)
5377 gcc_assert (info->ref->u.ar.dimen_type[n] == DIMEN_RANGE);
5379 /* Set the new lower bound. */
5380 from = loop.from[dim];
5381 to = loop.to[dim];
5383 /* If we have an array section or are assigning make sure that
5384 the lower bound is 1. References to the full
5385 array should otherwise keep the original bounds. */
5386 if ((!info->ref
5387 || info->ref->u.ar.type != AR_FULL)
5388 && !integer_onep (from))
5390 tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type,
5391 gfc_index_one_node, from);
5392 to = fold_build2 (PLUS_EXPR, gfc_array_index_type, to, tmp);
5393 from = gfc_index_one_node;
5395 gfc_conv_descriptor_lbound_set (&loop.pre, parm,
5396 gfc_rank_cst[dim], from);
5398 /* Set the new upper bound. */
5399 gfc_conv_descriptor_ubound_set (&loop.pre, parm,
5400 gfc_rank_cst[dim], to);
5402 /* Multiply the stride by the section stride to get the
5403 total stride. */
5404 stride = fold_build2 (MULT_EXPR, gfc_array_index_type,
5405 stride, info->stride[dim]);
5407 if (se->direct_byref
5408 && info->ref
5409 && info->ref->u.ar.type != AR_FULL)
5411 base = fold_build2 (MINUS_EXPR, TREE_TYPE (base),
5412 base, stride);
5414 else if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc)))
5416 tmp = gfc_conv_array_lbound (desc, n);
5417 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (base),
5418 tmp, loop.from[dim]);
5419 tmp = fold_build2 (MULT_EXPR, TREE_TYPE (base),
5420 tmp, gfc_conv_array_stride (desc, n));
5421 base = fold_build2 (PLUS_EXPR, TREE_TYPE (base),
5422 tmp, base);
5425 /* Store the new stride. */
5426 gfc_conv_descriptor_stride_set (&loop.pre, parm,
5427 gfc_rank_cst[dim], stride);
5429 dim++;
5432 if (se->data_not_needed)
5433 gfc_conv_descriptor_data_set (&loop.pre, parm,
5434 gfc_index_zero_node);
5435 else
5436 /* Point the data pointer at the 1st element in the section. */
5437 gfc_get_dataptr_offset (&loop.pre, parm, desc, offset,
5438 subref_array_target, expr);
5440 if ((se->direct_byref || GFC_ARRAY_TYPE_P (TREE_TYPE (desc)))
5441 && !se->data_not_needed)
5443 /* Set the offset. */
5444 gfc_conv_descriptor_offset_set (&loop.pre, parm, base);
5446 else
5448 /* Only the callee knows what the correct offset it, so just set
5449 it to zero here. */
5450 gfc_conv_descriptor_offset_set (&loop.pre, parm, gfc_index_zero_node);
5452 desc = parm;
5455 if (!se->direct_byref)
5457 /* Get a pointer to the new descriptor. */
5458 if (se->want_pointer)
5459 se->expr = gfc_build_addr_expr (NULL_TREE, desc);
5460 else
5461 se->expr = desc;
5464 gfc_add_block_to_block (&se->pre, &loop.pre);
5465 gfc_add_block_to_block (&se->post, &loop.post);
5467 /* Cleanup the scalarizer. */
5468 gfc_cleanup_loop (&loop);
5471 /* Helper function for gfc_conv_array_parameter if array size needs to be
5472 computed. */
5474 static void
5475 array_parameter_size (tree desc, gfc_expr *expr, tree *size)
5477 tree elem;
5478 if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc)))
5479 *size = GFC_TYPE_ARRAY_SIZE (TREE_TYPE (desc));
5480 else if (expr->rank > 1)
5481 *size = build_call_expr_loc (input_location,
5482 gfor_fndecl_size0, 1,
5483 gfc_build_addr_expr (NULL, desc));
5484 else
5486 tree ubound = gfc_conv_descriptor_ubound_get (desc, gfc_index_zero_node);
5487 tree lbound = gfc_conv_descriptor_lbound_get (desc, gfc_index_zero_node);
5489 *size = fold_build2 (MINUS_EXPR, gfc_array_index_type, ubound, lbound);
5490 *size = fold_build2 (PLUS_EXPR, gfc_array_index_type, *size,
5491 gfc_index_one_node);
5492 *size = fold_build2 (MAX_EXPR, gfc_array_index_type, *size,
5493 gfc_index_zero_node);
5495 elem = TYPE_SIZE_UNIT (gfc_get_element_type (TREE_TYPE (desc)));
5496 *size = fold_build2 (MULT_EXPR, gfc_array_index_type, *size,
5497 fold_convert (gfc_array_index_type, elem));
5500 /* Convert an array for passing as an actual parameter. */
5501 /* TODO: Optimize passing g77 arrays. */
5503 void
5504 gfc_conv_array_parameter (gfc_se * se, gfc_expr * expr, gfc_ss * ss, bool g77,
5505 const gfc_symbol *fsym, const char *proc_name,
5506 tree *size)
5508 tree ptr;
5509 tree desc;
5510 tree tmp = NULL_TREE;
5511 tree stmt;
5512 tree parent = DECL_CONTEXT (current_function_decl);
5513 bool full_array_var;
5514 bool this_array_result;
5515 bool contiguous;
5516 bool no_pack;
5517 bool array_constructor;
5518 bool good_allocatable;
5519 bool ultimate_ptr_comp;
5520 bool ultimate_alloc_comp;
5521 gfc_symbol *sym;
5522 stmtblock_t block;
5523 gfc_ref *ref;
5525 ultimate_ptr_comp = false;
5526 ultimate_alloc_comp = false;
5528 for (ref = expr->ref; ref; ref = ref->next)
5530 if (ref->next == NULL)
5531 break;
5533 if (ref->type == REF_COMPONENT)
5535 ultimate_ptr_comp = ref->u.c.component->attr.pointer;
5536 ultimate_alloc_comp = ref->u.c.component->attr.allocatable;
5540 full_array_var = false;
5541 contiguous = false;
5543 if (expr->expr_type == EXPR_VARIABLE && ref && !ultimate_ptr_comp)
5544 full_array_var = gfc_full_array_ref_p (ref, &contiguous);
5546 sym = full_array_var ? expr->symtree->n.sym : NULL;
5548 /* The symbol should have an array specification. */
5549 gcc_assert (!sym || sym->as || ref->u.ar.as);
5551 if (expr->expr_type == EXPR_ARRAY && expr->ts.type == BT_CHARACTER)
5553 get_array_ctor_strlen (&se->pre, expr->value.constructor, &tmp);
5554 expr->ts.u.cl->backend_decl = tmp;
5555 se->string_length = tmp;
5558 /* Is this the result of the enclosing procedure? */
5559 this_array_result = (full_array_var && sym->attr.flavor == FL_PROCEDURE);
5560 if (this_array_result
5561 && (sym->backend_decl != current_function_decl)
5562 && (sym->backend_decl != parent))
5563 this_array_result = false;
5565 /* Passing address of the array if it is not pointer or assumed-shape. */
5566 if (full_array_var && g77 && !this_array_result)
5568 tmp = gfc_get_symbol_decl (sym);
5570 if (sym->ts.type == BT_CHARACTER)
5571 se->string_length = sym->ts.u.cl->backend_decl;
5573 if (sym->ts.type == BT_DERIVED)
5575 gfc_conv_expr_descriptor (se, expr, ss);
5576 se->expr = gfc_conv_array_data (se->expr);
5577 return;
5580 if (!sym->attr.pointer
5581 && sym->as
5582 && sym->as->type != AS_ASSUMED_SHAPE
5583 && !sym->attr.allocatable)
5585 /* Some variables are declared directly, others are declared as
5586 pointers and allocated on the heap. */
5587 if (sym->attr.dummy || POINTER_TYPE_P (TREE_TYPE (tmp)))
5588 se->expr = tmp;
5589 else
5590 se->expr = gfc_build_addr_expr (NULL_TREE, tmp);
5591 if (size)
5592 array_parameter_size (tmp, expr, size);
5593 return;
5596 if (sym->attr.allocatable)
5598 if (sym->attr.dummy || sym->attr.result)
5600 gfc_conv_expr_descriptor (se, expr, ss);
5601 tmp = se->expr;
5603 if (size)
5604 array_parameter_size (tmp, expr, size);
5605 se->expr = gfc_conv_array_data (tmp);
5606 return;
5610 /* A convenient reduction in scope. */
5611 contiguous = g77 && !this_array_result && contiguous;
5613 /* There is no need to pack and unpack the array, if it is contiguous
5614 and not a deferred- or assumed-shape array, or if it is simply
5615 contiguous. */
5616 no_pack = ((sym && sym->as
5617 && !sym->attr.pointer
5618 && sym->as->type != AS_DEFERRED
5619 && sym->as->type != AS_ASSUMED_SHAPE)
5621 (ref && ref->u.ar.as
5622 && ref->u.ar.as->type != AS_DEFERRED
5623 && ref->u.ar.as->type != AS_ASSUMED_SHAPE)
5625 gfc_is_simply_contiguous (expr, false));
5627 no_pack = contiguous && no_pack;
5629 /* Array constructors are always contiguous and do not need packing. */
5630 array_constructor = g77 && !this_array_result && expr->expr_type == EXPR_ARRAY;
5632 /* Same is true of contiguous sections from allocatable variables. */
5633 good_allocatable = contiguous
5634 && expr->symtree
5635 && expr->symtree->n.sym->attr.allocatable;
5637 /* Or ultimate allocatable components. */
5638 ultimate_alloc_comp = contiguous && ultimate_alloc_comp;
5640 if (no_pack || array_constructor || good_allocatable || ultimate_alloc_comp)
5642 gfc_conv_expr_descriptor (se, expr, ss);
5643 if (expr->ts.type == BT_CHARACTER)
5644 se->string_length = expr->ts.u.cl->backend_decl;
5645 if (size)
5646 array_parameter_size (se->expr, expr, size);
5647 se->expr = gfc_conv_array_data (se->expr);
5648 return;
5651 if (this_array_result)
5653 /* Result of the enclosing function. */
5654 gfc_conv_expr_descriptor (se, expr, ss);
5655 if (size)
5656 array_parameter_size (se->expr, expr, size);
5657 se->expr = gfc_build_addr_expr (NULL_TREE, se->expr);
5659 if (g77 && TREE_TYPE (TREE_TYPE (se->expr)) != NULL_TREE
5660 && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (TREE_TYPE (se->expr))))
5661 se->expr = gfc_conv_array_data (build_fold_indirect_ref_loc (input_location,
5662 se->expr));
5664 return;
5666 else
5668 /* Every other type of array. */
5669 se->want_pointer = 1;
5670 gfc_conv_expr_descriptor (se, expr, ss);
5671 if (size)
5672 array_parameter_size (build_fold_indirect_ref_loc (input_location,
5673 se->expr),
5674 expr, size);
5677 /* Deallocate the allocatable components of structures that are
5678 not variable. */
5679 if (expr->ts.type == BT_DERIVED
5680 && expr->ts.u.derived->attr.alloc_comp
5681 && expr->expr_type != EXPR_VARIABLE)
5683 tmp = build_fold_indirect_ref_loc (input_location,
5684 se->expr);
5685 tmp = gfc_deallocate_alloc_comp (expr->ts.u.derived, tmp, expr->rank);
5686 gfc_add_expr_to_block (&se->post, tmp);
5689 if (g77 || (fsym && fsym->attr.contiguous
5690 && !gfc_is_simply_contiguous (expr, false)))
5692 tree origptr = NULL_TREE;
5694 desc = se->expr;
5696 /* For contiguous arrays, save the original value of the descriptor. */
5697 if (!g77)
5699 origptr = gfc_create_var (pvoid_type_node, "origptr");
5700 tmp = build_fold_indirect_ref_loc (input_location, desc);
5701 tmp = gfc_conv_array_data (tmp);
5702 tmp = fold_build2 (MODIFY_EXPR, TREE_TYPE (origptr), origptr,
5703 fold_convert (TREE_TYPE (origptr), tmp));
5704 gfc_add_expr_to_block (&se->pre, tmp);
5707 /* Repack the array. */
5708 if (gfc_option.warn_array_temp)
5710 if (fsym)
5711 gfc_warning ("Creating array temporary at %L for argument '%s'",
5712 &expr->where, fsym->name);
5713 else
5714 gfc_warning ("Creating array temporary at %L", &expr->where);
5717 ptr = build_call_expr_loc (input_location,
5718 gfor_fndecl_in_pack, 1, desc);
5720 if (fsym && fsym->attr.optional && sym && sym->attr.optional)
5722 tmp = gfc_conv_expr_present (sym);
5723 ptr = build3 (COND_EXPR, TREE_TYPE (se->expr), tmp,
5724 fold_convert (TREE_TYPE (se->expr), ptr),
5725 fold_convert (TREE_TYPE (se->expr), null_pointer_node));
5728 ptr = gfc_evaluate_now (ptr, &se->pre);
5730 /* Use the packed data for the actual argument, except for contiguous arrays,
5731 where the descriptor's data component is set. */
5732 if (g77)
5733 se->expr = ptr;
5734 else
5736 tmp = build_fold_indirect_ref_loc (input_location, desc);
5737 gfc_conv_descriptor_data_set (&se->pre, tmp, ptr);
5740 if (gfc_option.rtcheck & GFC_RTCHECK_ARRAY_TEMPS)
5742 char * msg;
5744 if (fsym && proc_name)
5745 asprintf (&msg, "An array temporary was created for argument "
5746 "'%s' of procedure '%s'", fsym->name, proc_name);
5747 else
5748 asprintf (&msg, "An array temporary was created");
5750 tmp = build_fold_indirect_ref_loc (input_location,
5751 desc);
5752 tmp = gfc_conv_array_data (tmp);
5753 tmp = fold_build2 (NE_EXPR, boolean_type_node,
5754 fold_convert (TREE_TYPE (tmp), ptr), tmp);
5756 if (fsym && fsym->attr.optional && sym && sym->attr.optional)
5757 tmp = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
5758 gfc_conv_expr_present (sym), tmp);
5760 gfc_trans_runtime_check (false, true, tmp, &se->pre,
5761 &expr->where, msg);
5762 gfc_free (msg);
5765 gfc_start_block (&block);
5767 /* Copy the data back. */
5768 if (fsym == NULL || fsym->attr.intent != INTENT_IN)
5770 tmp = build_call_expr_loc (input_location,
5771 gfor_fndecl_in_unpack, 2, desc, ptr);
5772 gfc_add_expr_to_block (&block, tmp);
5775 /* Free the temporary. */
5776 tmp = gfc_call_free (convert (pvoid_type_node, ptr));
5777 gfc_add_expr_to_block (&block, tmp);
5779 stmt = gfc_finish_block (&block);
5781 gfc_init_block (&block);
5782 /* Only if it was repacked. This code needs to be executed before the
5783 loop cleanup code. */
5784 tmp = build_fold_indirect_ref_loc (input_location,
5785 desc);
5786 tmp = gfc_conv_array_data (tmp);
5787 tmp = fold_build2 (NE_EXPR, boolean_type_node,
5788 fold_convert (TREE_TYPE (tmp), ptr), tmp);
5790 if (fsym && fsym->attr.optional && sym && sym->attr.optional)
5791 tmp = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
5792 gfc_conv_expr_present (sym), tmp);
5794 tmp = build3_v (COND_EXPR, tmp, stmt, build_empty_stmt (input_location));
5796 gfc_add_expr_to_block (&block, tmp);
5797 gfc_add_block_to_block (&block, &se->post);
5799 gfc_init_block (&se->post);
5801 /* Reset the descriptor pointer. */
5802 if (!g77)
5804 tmp = build_fold_indirect_ref_loc (input_location, desc);
5805 gfc_conv_descriptor_data_set (&se->post, tmp, origptr);
5808 gfc_add_block_to_block (&se->post, &block);
5813 /* Generate code to deallocate an array, if it is allocated. */
5815 tree
5816 gfc_trans_dealloc_allocated (tree descriptor)
5818 tree tmp;
5819 tree var;
5820 stmtblock_t block;
5822 gfc_start_block (&block);
5824 var = gfc_conv_descriptor_data_get (descriptor);
5825 STRIP_NOPS (var);
5827 /* Call array_deallocate with an int * present in the second argument.
5828 Although it is ignored here, it's presence ensures that arrays that
5829 are already deallocated are ignored. */
5830 tmp = gfc_deallocate_with_status (var, NULL_TREE, true, NULL);
5831 gfc_add_expr_to_block (&block, tmp);
5833 /* Zero the data pointer. */
5834 tmp = fold_build2 (MODIFY_EXPR, void_type_node,
5835 var, build_int_cst (TREE_TYPE (var), 0));
5836 gfc_add_expr_to_block (&block, tmp);
5838 return gfc_finish_block (&block);
5842 /* This helper function calculates the size in words of a full array. */
5844 static tree
5845 get_full_array_size (stmtblock_t *block, tree decl, int rank)
5847 tree idx;
5848 tree nelems;
5849 tree tmp;
5850 idx = gfc_rank_cst[rank - 1];
5851 nelems = gfc_conv_descriptor_ubound_get (decl, idx);
5852 tmp = gfc_conv_descriptor_lbound_get (decl, idx);
5853 tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type, nelems, tmp);
5854 tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
5855 tmp, gfc_index_one_node);
5856 tmp = gfc_evaluate_now (tmp, block);
5858 nelems = gfc_conv_descriptor_stride_get (decl, idx);
5859 tmp = fold_build2 (MULT_EXPR, gfc_array_index_type, nelems, tmp);
5860 return gfc_evaluate_now (tmp, block);
5864 /* Allocate dest to the same size as src, and copy src -> dest.
5865 If no_malloc is set, only the copy is done. */
5867 static tree
5868 duplicate_allocatable(tree dest, tree src, tree type, int rank,
5869 bool no_malloc)
5871 tree tmp;
5872 tree size;
5873 tree nelems;
5874 tree null_cond;
5875 tree null_data;
5876 stmtblock_t block;
5878 /* If the source is null, set the destination to null. Then,
5879 allocate memory to the destination. */
5880 gfc_init_block (&block);
5882 if (rank == 0)
5884 tmp = null_pointer_node;
5885 tmp = fold_build2 (MODIFY_EXPR, type, dest, tmp);
5886 gfc_add_expr_to_block (&block, tmp);
5887 null_data = gfc_finish_block (&block);
5889 gfc_init_block (&block);
5890 size = TYPE_SIZE_UNIT (type);
5891 if (!no_malloc)
5893 tmp = gfc_call_malloc (&block, type, size);
5894 tmp = fold_build2 (MODIFY_EXPR, void_type_node, dest,
5895 fold_convert (type, tmp));
5896 gfc_add_expr_to_block (&block, tmp);
5899 tmp = built_in_decls[BUILT_IN_MEMCPY];
5900 tmp = build_call_expr_loc (input_location, tmp, 3,
5901 dest, src, size);
5903 else
5905 gfc_conv_descriptor_data_set (&block, dest, null_pointer_node);
5906 null_data = gfc_finish_block (&block);
5908 gfc_init_block (&block);
5909 nelems = get_full_array_size (&block, src, rank);
5910 tmp = fold_convert (gfc_array_index_type,
5911 TYPE_SIZE_UNIT (gfc_get_element_type (type)));
5912 size = fold_build2 (MULT_EXPR, gfc_array_index_type, nelems, tmp);
5913 if (!no_malloc)
5915 tmp = TREE_TYPE (gfc_conv_descriptor_data_get (src));
5916 tmp = gfc_call_malloc (&block, tmp, size);
5917 gfc_conv_descriptor_data_set (&block, dest, tmp);
5920 /* We know the temporary and the value will be the same length,
5921 so can use memcpy. */
5922 tmp = built_in_decls[BUILT_IN_MEMCPY];
5923 tmp = build_call_expr_loc (input_location,
5924 tmp, 3, gfc_conv_descriptor_data_get (dest),
5925 gfc_conv_descriptor_data_get (src), size);
5928 gfc_add_expr_to_block (&block, tmp);
5929 tmp = gfc_finish_block (&block);
5931 /* Null the destination if the source is null; otherwise do
5932 the allocate and copy. */
5933 if (rank == 0)
5934 null_cond = src;
5935 else
5936 null_cond = gfc_conv_descriptor_data_get (src);
5938 null_cond = convert (pvoid_type_node, null_cond);
5939 null_cond = fold_build2 (NE_EXPR, boolean_type_node,
5940 null_cond, null_pointer_node);
5941 return build3_v (COND_EXPR, null_cond, tmp, null_data);
5945 /* Allocate dest to the same size as src, and copy data src -> dest. */
5947 tree
5948 gfc_duplicate_allocatable (tree dest, tree src, tree type, int rank)
5950 return duplicate_allocatable(dest, src, type, rank, false);
5954 /* Copy data src -> dest. */
5956 tree
5957 gfc_copy_allocatable_data (tree dest, tree src, tree type, int rank)
5959 return duplicate_allocatable(dest, src, type, rank, true);
5963 /* Recursively traverse an object of derived type, generating code to
5964 deallocate, nullify or copy allocatable components. This is the work horse
5965 function for the functions named in this enum. */
5967 enum {DEALLOCATE_ALLOC_COMP = 1, NULLIFY_ALLOC_COMP, COPY_ALLOC_COMP,
5968 COPY_ONLY_ALLOC_COMP};
5970 static tree
5971 structure_alloc_comps (gfc_symbol * der_type, tree decl,
5972 tree dest, int rank, int purpose)
5974 gfc_component *c;
5975 gfc_loopinfo loop;
5976 stmtblock_t fnblock;
5977 stmtblock_t loopbody;
5978 tree decl_type;
5979 tree tmp;
5980 tree comp;
5981 tree dcmp;
5982 tree nelems;
5983 tree index;
5984 tree var;
5985 tree cdecl;
5986 tree ctype;
5987 tree vref, dref;
5988 tree null_cond = NULL_TREE;
5990 gfc_init_block (&fnblock);
5992 decl_type = TREE_TYPE (decl);
5994 if ((POINTER_TYPE_P (decl_type) && rank != 0)
5995 || (TREE_CODE (decl_type) == REFERENCE_TYPE && rank == 0))
5997 decl = build_fold_indirect_ref_loc (input_location,
5998 decl);
6000 /* Just in case in gets dereferenced. */
6001 decl_type = TREE_TYPE (decl);
6003 /* If this an array of derived types with allocatable components
6004 build a loop and recursively call this function. */
6005 if (TREE_CODE (decl_type) == ARRAY_TYPE
6006 || GFC_DESCRIPTOR_TYPE_P (decl_type))
6008 tmp = gfc_conv_array_data (decl);
6009 var = build_fold_indirect_ref_loc (input_location,
6010 tmp);
6012 /* Get the number of elements - 1 and set the counter. */
6013 if (GFC_DESCRIPTOR_TYPE_P (decl_type))
6015 /* Use the descriptor for an allocatable array. Since this
6016 is a full array reference, we only need the descriptor
6017 information from dimension = rank. */
6018 tmp = get_full_array_size (&fnblock, decl, rank);
6019 tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type,
6020 tmp, gfc_index_one_node);
6022 null_cond = gfc_conv_descriptor_data_get (decl);
6023 null_cond = fold_build2 (NE_EXPR, boolean_type_node, null_cond,
6024 build_int_cst (TREE_TYPE (null_cond), 0));
6026 else
6028 /* Otherwise use the TYPE_DOMAIN information. */
6029 tmp = array_type_nelts (decl_type);
6030 tmp = fold_convert (gfc_array_index_type, tmp);
6033 /* Remember that this is, in fact, the no. of elements - 1. */
6034 nelems = gfc_evaluate_now (tmp, &fnblock);
6035 index = gfc_create_var (gfc_array_index_type, "S");
6037 /* Build the body of the loop. */
6038 gfc_init_block (&loopbody);
6040 vref = gfc_build_array_ref (var, index, NULL);
6042 if (purpose == COPY_ALLOC_COMP)
6044 if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (dest)))
6046 tmp = gfc_duplicate_allocatable (dest, decl, decl_type, rank);
6047 gfc_add_expr_to_block (&fnblock, tmp);
6049 tmp = build_fold_indirect_ref_loc (input_location,
6050 gfc_conv_array_data (dest));
6051 dref = gfc_build_array_ref (tmp, index, NULL);
6052 tmp = structure_alloc_comps (der_type, vref, dref, rank, purpose);
6054 else if (purpose == COPY_ONLY_ALLOC_COMP)
6056 tmp = build_fold_indirect_ref_loc (input_location,
6057 gfc_conv_array_data (dest));
6058 dref = gfc_build_array_ref (tmp, index, NULL);
6059 tmp = structure_alloc_comps (der_type, vref, dref, rank,
6060 COPY_ALLOC_COMP);
6062 else
6063 tmp = structure_alloc_comps (der_type, vref, NULL_TREE, rank, purpose);
6065 gfc_add_expr_to_block (&loopbody, tmp);
6067 /* Build the loop and return. */
6068 gfc_init_loopinfo (&loop);
6069 loop.dimen = 1;
6070 loop.from[0] = gfc_index_zero_node;
6071 loop.loopvar[0] = index;
6072 loop.to[0] = nelems;
6073 gfc_trans_scalarizing_loops (&loop, &loopbody);
6074 gfc_add_block_to_block (&fnblock, &loop.pre);
6076 tmp = gfc_finish_block (&fnblock);
6077 if (null_cond != NULL_TREE)
6078 tmp = build3_v (COND_EXPR, null_cond, tmp,
6079 build_empty_stmt (input_location));
6081 return tmp;
6084 /* Otherwise, act on the components or recursively call self to
6085 act on a chain of components. */
6086 for (c = der_type->components; c; c = c->next)
6088 bool cmp_has_alloc_comps = (c->ts.type == BT_DERIVED)
6089 && c->ts.u.derived->attr.alloc_comp;
6090 cdecl = c->backend_decl;
6091 ctype = TREE_TYPE (cdecl);
6093 switch (purpose)
6095 case DEALLOCATE_ALLOC_COMP:
6096 /* Do not deallocate the components of ultimate pointer
6097 components. */
6098 if (cmp_has_alloc_comps && !c->attr.pointer)
6100 comp = fold_build3 (COMPONENT_REF, ctype,
6101 decl, cdecl, NULL_TREE);
6102 rank = c->as ? c->as->rank : 0;
6103 tmp = structure_alloc_comps (c->ts.u.derived, comp, NULL_TREE,
6104 rank, purpose);
6105 gfc_add_expr_to_block (&fnblock, tmp);
6108 if (c->attr.allocatable && c->attr.dimension)
6110 comp = fold_build3 (COMPONENT_REF, ctype,
6111 decl, cdecl, NULL_TREE);
6112 tmp = gfc_trans_dealloc_allocated (comp);
6113 gfc_add_expr_to_block (&fnblock, tmp);
6115 else if (c->attr.allocatable)
6117 /* Allocatable scalar components. */
6118 comp = fold_build3 (COMPONENT_REF, ctype, decl, cdecl, NULL_TREE);
6120 tmp = gfc_deallocate_with_status (comp, NULL_TREE, true, NULL);
6121 gfc_add_expr_to_block (&fnblock, tmp);
6123 tmp = fold_build2 (MODIFY_EXPR, void_type_node, comp,
6124 build_int_cst (TREE_TYPE (comp), 0));
6125 gfc_add_expr_to_block (&fnblock, tmp);
6127 else if (c->ts.type == BT_CLASS && CLASS_DATA (c)->attr.allocatable)
6129 /* Allocatable scalar CLASS components. */
6130 comp = fold_build3 (COMPONENT_REF, ctype, decl, cdecl, NULL_TREE);
6132 /* Add reference to '$data' component. */
6133 tmp = CLASS_DATA (c)->backend_decl;
6134 comp = fold_build3 (COMPONENT_REF, TREE_TYPE (tmp),
6135 comp, tmp, NULL_TREE);
6137 tmp = gfc_deallocate_with_status (comp, NULL_TREE, true, NULL);
6138 gfc_add_expr_to_block (&fnblock, tmp);
6140 tmp = fold_build2 (MODIFY_EXPR, void_type_node, comp,
6141 build_int_cst (TREE_TYPE (comp), 0));
6142 gfc_add_expr_to_block (&fnblock, tmp);
6144 break;
6146 case NULLIFY_ALLOC_COMP:
6147 if (c->attr.pointer)
6148 continue;
6149 else if (c->attr.allocatable && c->attr.dimension)
6151 comp = fold_build3 (COMPONENT_REF, ctype,
6152 decl, cdecl, NULL_TREE);
6153 gfc_conv_descriptor_data_set (&fnblock, comp, null_pointer_node);
6155 else if (c->attr.allocatable)
6157 /* Allocatable scalar components. */
6158 comp = fold_build3 (COMPONENT_REF, ctype, decl, cdecl, NULL_TREE);
6159 tmp = fold_build2 (MODIFY_EXPR, void_type_node, comp,
6160 build_int_cst (TREE_TYPE (comp), 0));
6161 gfc_add_expr_to_block (&fnblock, tmp);
6163 else if (c->ts.type == BT_CLASS && CLASS_DATA (c)->attr.allocatable)
6165 /* Allocatable scalar CLASS components. */
6166 comp = fold_build3 (COMPONENT_REF, ctype, decl, cdecl, NULL_TREE);
6167 /* Add reference to '$data' component. */
6168 tmp = CLASS_DATA (c)->backend_decl;
6169 comp = fold_build3 (COMPONENT_REF, TREE_TYPE (tmp),
6170 comp, tmp, NULL_TREE);
6171 tmp = fold_build2 (MODIFY_EXPR, void_type_node, comp,
6172 build_int_cst (TREE_TYPE (comp), 0));
6173 gfc_add_expr_to_block (&fnblock, tmp);
6175 else if (cmp_has_alloc_comps)
6177 comp = fold_build3 (COMPONENT_REF, ctype,
6178 decl, cdecl, NULL_TREE);
6179 rank = c->as ? c->as->rank : 0;
6180 tmp = structure_alloc_comps (c->ts.u.derived, comp, NULL_TREE,
6181 rank, purpose);
6182 gfc_add_expr_to_block (&fnblock, tmp);
6184 break;
6186 case COPY_ALLOC_COMP:
6187 if (c->attr.pointer)
6188 continue;
6190 /* We need source and destination components. */
6191 comp = fold_build3 (COMPONENT_REF, ctype, decl, cdecl, NULL_TREE);
6192 dcmp = fold_build3 (COMPONENT_REF, ctype, dest, cdecl, NULL_TREE);
6193 dcmp = fold_convert (TREE_TYPE (comp), dcmp);
6195 if (c->attr.allocatable && !cmp_has_alloc_comps)
6197 rank = c->as ? c->as->rank : 0;
6198 tmp = gfc_duplicate_allocatable(dcmp, comp, ctype, rank);
6199 gfc_add_expr_to_block (&fnblock, tmp);
6202 if (cmp_has_alloc_comps)
6204 rank = c->as ? c->as->rank : 0;
6205 tmp = fold_convert (TREE_TYPE (dcmp), comp);
6206 gfc_add_modify (&fnblock, dcmp, tmp);
6207 tmp = structure_alloc_comps (c->ts.u.derived, comp, dcmp,
6208 rank, purpose);
6209 gfc_add_expr_to_block (&fnblock, tmp);
6211 break;
6213 default:
6214 gcc_unreachable ();
6215 break;
6219 return gfc_finish_block (&fnblock);
6222 /* Recursively traverse an object of derived type, generating code to
6223 nullify allocatable components. */
6225 tree
6226 gfc_nullify_alloc_comp (gfc_symbol * der_type, tree decl, int rank)
6228 return structure_alloc_comps (der_type, decl, NULL_TREE, rank,
6229 NULLIFY_ALLOC_COMP);
6233 /* Recursively traverse an object of derived type, generating code to
6234 deallocate allocatable components. */
6236 tree
6237 gfc_deallocate_alloc_comp (gfc_symbol * der_type, tree decl, int rank)
6239 return structure_alloc_comps (der_type, decl, NULL_TREE, rank,
6240 DEALLOCATE_ALLOC_COMP);
6244 /* Recursively traverse an object of derived type, generating code to
6245 copy it and its allocatable components. */
6247 tree
6248 gfc_copy_alloc_comp (gfc_symbol * der_type, tree decl, tree dest, int rank)
6250 return structure_alloc_comps (der_type, decl, dest, rank, COPY_ALLOC_COMP);
6254 /* Recursively traverse an object of derived type, generating code to
6255 copy only its allocatable components. */
6257 tree
6258 gfc_copy_only_alloc_comp (gfc_symbol * der_type, tree decl, tree dest, int rank)
6260 return structure_alloc_comps (der_type, decl, dest, rank, COPY_ONLY_ALLOC_COMP);
6264 /* NULLIFY an allocatable/pointer array on function entry, free it on exit.
6265 Do likewise, recursively if necessary, with the allocatable components of
6266 derived types. */
6268 tree
6269 gfc_trans_deferred_array (gfc_symbol * sym, tree body)
6271 tree type;
6272 tree tmp;
6273 tree descriptor;
6274 stmtblock_t fnblock;
6275 locus loc;
6276 int rank;
6277 bool sym_has_alloc_comp;
6279 sym_has_alloc_comp = (sym->ts.type == BT_DERIVED)
6280 && sym->ts.u.derived->attr.alloc_comp;
6282 /* Make sure the frontend gets these right. */
6283 if (!(sym->attr.pointer || sym->attr.allocatable || sym_has_alloc_comp))
6284 fatal_error ("Possible frontend bug: Deferred array size without pointer, "
6285 "allocatable attribute or derived type without allocatable "
6286 "components.");
6288 gfc_init_block (&fnblock);
6290 gcc_assert (TREE_CODE (sym->backend_decl) == VAR_DECL
6291 || TREE_CODE (sym->backend_decl) == PARM_DECL);
6293 if (sym->ts.type == BT_CHARACTER
6294 && !INTEGER_CST_P (sym->ts.u.cl->backend_decl))
6296 gfc_conv_string_length (sym->ts.u.cl, NULL, &fnblock);
6297 gfc_trans_vla_type_sizes (sym, &fnblock);
6300 /* Dummy, use associated and result variables don't need anything special. */
6301 if (sym->attr.dummy || sym->attr.use_assoc || sym->attr.result)
6303 gfc_add_expr_to_block (&fnblock, body);
6305 return gfc_finish_block (&fnblock);
6308 gfc_get_backend_locus (&loc);
6309 gfc_set_backend_locus (&sym->declared_at);
6310 descriptor = sym->backend_decl;
6312 /* Although static, derived types with default initializers and
6313 allocatable components must not be nulled wholesale; instead they
6314 are treated component by component. */
6315 if (TREE_STATIC (descriptor) && !sym_has_alloc_comp)
6317 /* SAVEd variables are not freed on exit. */
6318 gfc_trans_static_array_pointer (sym);
6319 return body;
6322 /* Get the descriptor type. */
6323 type = TREE_TYPE (sym->backend_decl);
6325 if (sym_has_alloc_comp && !(sym->attr.pointer || sym->attr.allocatable))
6327 if (!sym->attr.save
6328 && !(TREE_STATIC (sym->backend_decl) && sym->attr.is_main_program))
6330 if (sym->value == NULL
6331 || !gfc_has_default_initializer (sym->ts.u.derived))
6333 rank = sym->as ? sym->as->rank : 0;
6334 tmp = gfc_nullify_alloc_comp (sym->ts.u.derived, descriptor, rank);
6335 gfc_add_expr_to_block (&fnblock, tmp);
6337 else
6339 tmp = gfc_init_default_dt (sym, NULL, false);
6340 gfc_add_expr_to_block (&fnblock, tmp);
6344 else if (!GFC_DESCRIPTOR_TYPE_P (type))
6346 /* If the backend_decl is not a descriptor, we must have a pointer
6347 to one. */
6348 descriptor = build_fold_indirect_ref_loc (input_location,
6349 sym->backend_decl);
6350 type = TREE_TYPE (descriptor);
6353 /* NULLIFY the data pointer. */
6354 if (GFC_DESCRIPTOR_TYPE_P (type) && !sym->attr.save)
6355 gfc_conv_descriptor_data_set (&fnblock, descriptor, null_pointer_node);
6357 gfc_add_expr_to_block (&fnblock, body);
6359 gfc_set_backend_locus (&loc);
6361 /* Allocatable arrays need to be freed when they go out of scope.
6362 The allocatable components of pointers must not be touched. */
6363 if (sym_has_alloc_comp && !(sym->attr.function || sym->attr.result)
6364 && !sym->attr.pointer && !sym->attr.save)
6366 int rank;
6367 rank = sym->as ? sym->as->rank : 0;
6368 tmp = gfc_deallocate_alloc_comp (sym->ts.u.derived, descriptor, rank);
6369 gfc_add_expr_to_block (&fnblock, tmp);
6372 if (sym->attr.allocatable && sym->attr.dimension
6373 && !sym->attr.save && !sym->attr.result)
6375 tmp = gfc_trans_dealloc_allocated (sym->backend_decl);
6376 gfc_add_expr_to_block (&fnblock, tmp);
6379 return gfc_finish_block (&fnblock);
6382 /************ Expression Walking Functions ******************/
6384 /* Walk a variable reference.
6386 Possible extension - multiple component subscripts.
6387 x(:,:) = foo%a(:)%b(:)
6388 Transforms to
6389 forall (i=..., j=...)
6390 x(i,j) = foo%a(j)%b(i)
6391 end forall
6392 This adds a fair amount of complexity because you need to deal with more
6393 than one ref. Maybe handle in a similar manner to vector subscripts.
6394 Maybe not worth the effort. */
6397 static gfc_ss *
6398 gfc_walk_variable_expr (gfc_ss * ss, gfc_expr * expr)
6400 gfc_ref *ref;
6401 gfc_array_ref *ar;
6402 gfc_ss *newss;
6403 int n;
6405 for (ref = expr->ref; ref; ref = ref->next)
6406 if (ref->type == REF_ARRAY && ref->u.ar.type != AR_ELEMENT)
6407 break;
6409 for (; ref; ref = ref->next)
6411 if (ref->type == REF_SUBSTRING)
6413 newss = gfc_get_ss ();
6414 newss->type = GFC_SS_SCALAR;
6415 newss->expr = ref->u.ss.start;
6416 newss->next = ss;
6417 ss = newss;
6419 newss = gfc_get_ss ();
6420 newss->type = GFC_SS_SCALAR;
6421 newss->expr = ref->u.ss.end;
6422 newss->next = ss;
6423 ss = newss;
6426 /* We're only interested in array sections from now on. */
6427 if (ref->type != REF_ARRAY)
6428 continue;
6430 ar = &ref->u.ar;
6432 if (ar->as->rank == 0)
6434 /* Scalar coarray. */
6435 continue;
6438 switch (ar->type)
6440 case AR_ELEMENT:
6441 for (n = 0; n < ar->dimen; n++)
6443 newss = gfc_get_ss ();
6444 newss->type = GFC_SS_SCALAR;
6445 newss->expr = ar->start[n];
6446 newss->next = ss;
6447 ss = newss;
6449 break;
6451 case AR_FULL:
6452 newss = gfc_get_ss ();
6453 newss->type = GFC_SS_SECTION;
6454 newss->expr = expr;
6455 newss->next = ss;
6456 newss->data.info.dimen = ar->as->rank;
6457 newss->data.info.ref = ref;
6459 /* Make sure array is the same as array(:,:), this way
6460 we don't need to special case all the time. */
6461 ar->dimen = ar->as->rank;
6462 for (n = 0; n < ar->dimen; n++)
6464 newss->data.info.dim[n] = n;
6465 ar->dimen_type[n] = DIMEN_RANGE;
6467 gcc_assert (ar->start[n] == NULL);
6468 gcc_assert (ar->end[n] == NULL);
6469 gcc_assert (ar->stride[n] == NULL);
6471 ss = newss;
6472 break;
6474 case AR_SECTION:
6475 newss = gfc_get_ss ();
6476 newss->type = GFC_SS_SECTION;
6477 newss->expr = expr;
6478 newss->next = ss;
6479 newss->data.info.dimen = 0;
6480 newss->data.info.ref = ref;
6482 /* We add SS chains for all the subscripts in the section. */
6483 for (n = 0; n < ar->dimen; n++)
6485 gfc_ss *indexss;
6487 switch (ar->dimen_type[n])
6489 case DIMEN_ELEMENT:
6490 /* Add SS for elemental (scalar) subscripts. */
6491 gcc_assert (ar->start[n]);
6492 indexss = gfc_get_ss ();
6493 indexss->type = GFC_SS_SCALAR;
6494 indexss->expr = ar->start[n];
6495 indexss->next = gfc_ss_terminator;
6496 indexss->loop_chain = gfc_ss_terminator;
6497 newss->data.info.subscript[n] = indexss;
6498 break;
6500 case DIMEN_RANGE:
6501 /* We don't add anything for sections, just remember this
6502 dimension for later. */
6503 newss->data.info.dim[newss->data.info.dimen] = n;
6504 newss->data.info.dimen++;
6505 break;
6507 case DIMEN_VECTOR:
6508 /* Create a GFC_SS_VECTOR index in which we can store
6509 the vector's descriptor. */
6510 indexss = gfc_get_ss ();
6511 indexss->type = GFC_SS_VECTOR;
6512 indexss->expr = ar->start[n];
6513 indexss->next = gfc_ss_terminator;
6514 indexss->loop_chain = gfc_ss_terminator;
6515 newss->data.info.subscript[n] = indexss;
6516 newss->data.info.dim[newss->data.info.dimen] = n;
6517 newss->data.info.dimen++;
6518 break;
6520 default:
6521 /* We should know what sort of section it is by now. */
6522 gcc_unreachable ();
6525 /* We should have at least one non-elemental dimension. */
6526 gcc_assert (newss->data.info.dimen > 0);
6527 ss = newss;
6528 break;
6530 default:
6531 /* We should know what sort of section it is by now. */
6532 gcc_unreachable ();
6536 return ss;
6540 /* Walk an expression operator. If only one operand of a binary expression is
6541 scalar, we must also add the scalar term to the SS chain. */
6543 static gfc_ss *
6544 gfc_walk_op_expr (gfc_ss * ss, gfc_expr * expr)
6546 gfc_ss *head;
6547 gfc_ss *head2;
6548 gfc_ss *newss;
6550 head = gfc_walk_subexpr (ss, expr->value.op.op1);
6551 if (expr->value.op.op2 == NULL)
6552 head2 = head;
6553 else
6554 head2 = gfc_walk_subexpr (head, expr->value.op.op2);
6556 /* All operands are scalar. Pass back and let the caller deal with it. */
6557 if (head2 == ss)
6558 return head2;
6560 /* All operands require scalarization. */
6561 if (head != ss && (expr->value.op.op2 == NULL || head2 != head))
6562 return head2;
6564 /* One of the operands needs scalarization, the other is scalar.
6565 Create a gfc_ss for the scalar expression. */
6566 newss = gfc_get_ss ();
6567 newss->type = GFC_SS_SCALAR;
6568 if (head == ss)
6570 /* First operand is scalar. We build the chain in reverse order, so
6571 add the scalar SS after the second operand. */
6572 head = head2;
6573 while (head && head->next != ss)
6574 head = head->next;
6575 /* Check we haven't somehow broken the chain. */
6576 gcc_assert (head);
6577 newss->next = ss;
6578 head->next = newss;
6579 newss->expr = expr->value.op.op1;
6581 else /* head2 == head */
6583 gcc_assert (head2 == head);
6584 /* Second operand is scalar. */
6585 newss->next = head2;
6586 head2 = newss;
6587 newss->expr = expr->value.op.op2;
6590 return head2;
6594 /* Reverse a SS chain. */
6596 gfc_ss *
6597 gfc_reverse_ss (gfc_ss * ss)
6599 gfc_ss *next;
6600 gfc_ss *head;
6602 gcc_assert (ss != NULL);
6604 head = gfc_ss_terminator;
6605 while (ss != gfc_ss_terminator)
6607 next = ss->next;
6608 /* Check we didn't somehow break the chain. */
6609 gcc_assert (next != NULL);
6610 ss->next = head;
6611 head = ss;
6612 ss = next;
6615 return (head);
6619 /* Walk the arguments of an elemental function. */
6621 gfc_ss *
6622 gfc_walk_elemental_function_args (gfc_ss * ss, gfc_actual_arglist *arg,
6623 gfc_ss_type type)
6625 int scalar;
6626 gfc_ss *head;
6627 gfc_ss *tail;
6628 gfc_ss *newss;
6630 head = gfc_ss_terminator;
6631 tail = NULL;
6632 scalar = 1;
6633 for (; arg; arg = arg->next)
6635 if (!arg->expr)
6636 continue;
6638 newss = gfc_walk_subexpr (head, arg->expr);
6639 if (newss == head)
6641 /* Scalar argument. */
6642 newss = gfc_get_ss ();
6643 newss->type = type;
6644 newss->expr = arg->expr;
6645 newss->next = head;
6647 else
6648 scalar = 0;
6650 head = newss;
6651 if (!tail)
6653 tail = head;
6654 while (tail->next != gfc_ss_terminator)
6655 tail = tail->next;
6659 if (scalar)
6661 /* If all the arguments are scalar we don't need the argument SS. */
6662 gfc_free_ss_chain (head);
6663 /* Pass it back. */
6664 return ss;
6667 /* Add it onto the existing chain. */
6668 tail->next = ss;
6669 return head;
6673 /* Walk a function call. Scalar functions are passed back, and taken out of
6674 scalarization loops. For elemental functions we walk their arguments.
6675 The result of functions returning arrays is stored in a temporary outside
6676 the loop, so that the function is only called once. Hence we do not need
6677 to walk their arguments. */
6679 static gfc_ss *
6680 gfc_walk_function_expr (gfc_ss * ss, gfc_expr * expr)
6682 gfc_ss *newss;
6683 gfc_intrinsic_sym *isym;
6684 gfc_symbol *sym;
6685 gfc_component *comp = NULL;
6687 isym = expr->value.function.isym;
6689 /* Handle intrinsic functions separately. */
6690 if (isym)
6691 return gfc_walk_intrinsic_function (ss, expr, isym);
6693 sym = expr->value.function.esym;
6694 if (!sym)
6695 sym = expr->symtree->n.sym;
6697 /* A function that returns arrays. */
6698 gfc_is_proc_ptr_comp (expr, &comp);
6699 if ((!comp && gfc_return_by_reference (sym) && sym->result->attr.dimension)
6700 || (comp && comp->attr.dimension))
6702 newss = gfc_get_ss ();
6703 newss->type = GFC_SS_FUNCTION;
6704 newss->expr = expr;
6705 newss->next = ss;
6706 newss->data.info.dimen = expr->rank;
6707 return newss;
6710 /* Walk the parameters of an elemental function. For now we always pass
6711 by reference. */
6712 if (sym->attr.elemental)
6713 return gfc_walk_elemental_function_args (ss, expr->value.function.actual,
6714 GFC_SS_REFERENCE);
6716 /* Scalar functions are OK as these are evaluated outside the scalarization
6717 loop. Pass back and let the caller deal with it. */
6718 return ss;
6722 /* An array temporary is constructed for array constructors. */
6724 static gfc_ss *
6725 gfc_walk_array_constructor (gfc_ss * ss, gfc_expr * expr)
6727 gfc_ss *newss;
6728 int n;
6730 newss = gfc_get_ss ();
6731 newss->type = GFC_SS_CONSTRUCTOR;
6732 newss->expr = expr;
6733 newss->next = ss;
6734 newss->data.info.dimen = expr->rank;
6735 for (n = 0; n < expr->rank; n++)
6736 newss->data.info.dim[n] = n;
6738 return newss;
6742 /* Walk an expression. Add walked expressions to the head of the SS chain.
6743 A wholly scalar expression will not be added. */
6745 static gfc_ss *
6746 gfc_walk_subexpr (gfc_ss * ss, gfc_expr * expr)
6748 gfc_ss *head;
6750 switch (expr->expr_type)
6752 case EXPR_VARIABLE:
6753 head = gfc_walk_variable_expr (ss, expr);
6754 return head;
6756 case EXPR_OP:
6757 head = gfc_walk_op_expr (ss, expr);
6758 return head;
6760 case EXPR_FUNCTION:
6761 head = gfc_walk_function_expr (ss, expr);
6762 return head;
6764 case EXPR_CONSTANT:
6765 case EXPR_NULL:
6766 case EXPR_STRUCTURE:
6767 /* Pass back and let the caller deal with it. */
6768 break;
6770 case EXPR_ARRAY:
6771 head = gfc_walk_array_constructor (ss, expr);
6772 return head;
6774 case EXPR_SUBSTRING:
6775 /* Pass back and let the caller deal with it. */
6776 break;
6778 default:
6779 internal_error ("bad expression type during walk (%d)",
6780 expr->expr_type);
6782 return ss;
6786 /* Entry point for expression walking.
6787 A return value equal to the passed chain means this is
6788 a scalar expression. It is up to the caller to take whatever action is
6789 necessary to translate these. */
6791 gfc_ss *
6792 gfc_walk_expr (gfc_expr * expr)
6794 gfc_ss *res;
6796 res = gfc_walk_subexpr (gfc_ss_terminator, expr);
6797 return gfc_reverse_ss (res);