Merged trunk at revision 161680 into branch.
[official-gcc.git] / gcc / cp / class.c
bloba2ed86334b5ba53d91d15fcf21833e84df45638b
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
24 /* High-level class interface. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "flags.h"
33 #include "output.h"
34 #include "toplev.h"
35 #include "target.h"
36 #include "convert.h"
37 #include "cgraph.h"
38 #include "tree-dump.h"
39 #include "splay-tree.h"
41 /* The number of nested classes being processed. If we are not in the
42 scope of any class, this is zero. */
44 int current_class_depth;
46 /* In order to deal with nested classes, we keep a stack of classes.
47 The topmost entry is the innermost class, and is the entry at index
48 CURRENT_CLASS_DEPTH */
50 typedef struct class_stack_node {
51 /* The name of the class. */
52 tree name;
54 /* The _TYPE node for the class. */
55 tree type;
57 /* The access specifier pending for new declarations in the scope of
58 this class. */
59 tree access;
61 /* If were defining TYPE, the names used in this class. */
62 splay_tree names_used;
64 /* Nonzero if this class is no longer open, because of a call to
65 push_to_top_level. */
66 size_t hidden;
67 }* class_stack_node_t;
69 typedef struct vtbl_init_data_s
71 /* The base for which we're building initializers. */
72 tree binfo;
73 /* The type of the most-derived type. */
74 tree derived;
75 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
76 unless ctor_vtbl_p is true. */
77 tree rtti_binfo;
78 /* The negative-index vtable initializers built up so far. These
79 are in order from least negative index to most negative index. */
80 VEC(constructor_elt,gc) *inits;
81 /* The binfo for the virtual base for which we're building
82 vcall offset initializers. */
83 tree vbase;
84 /* The functions in vbase for which we have already provided vcall
85 offsets. */
86 VEC(tree,gc) *fns;
87 /* The vtable index of the next vcall or vbase offset. */
88 tree index;
89 /* Nonzero if we are building the initializer for the primary
90 vtable. */
91 int primary_vtbl_p;
92 /* Nonzero if we are building the initializer for a construction
93 vtable. */
94 int ctor_vtbl_p;
95 /* True when adding vcall offset entries to the vtable. False when
96 merely computing the indices. */
97 bool generate_vcall_entries;
98 } vtbl_init_data;
100 /* The type of a function passed to walk_subobject_offsets. */
101 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
103 /* The stack itself. This is a dynamically resized array. The
104 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
105 static int current_class_stack_size;
106 static class_stack_node_t current_class_stack;
108 /* The size of the largest empty class seen in this translation unit. */
109 static GTY (()) tree sizeof_biggest_empty_class;
111 /* An array of all local classes present in this translation unit, in
112 declaration order. */
113 VEC(tree,gc) *local_classes;
115 static tree get_vfield_name (tree);
116 static void finish_struct_anon (tree);
117 static tree get_vtable_name (tree);
118 static tree get_basefndecls (tree, tree);
119 static int build_primary_vtable (tree, tree);
120 static int build_secondary_vtable (tree);
121 static void finish_vtbls (tree);
122 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
123 static void finish_struct_bits (tree);
124 static int alter_access (tree, tree, tree);
125 static void handle_using_decl (tree, tree);
126 static tree dfs_modify_vtables (tree, void *);
127 static tree modify_all_vtables (tree, tree);
128 static void determine_primary_bases (tree);
129 static void finish_struct_methods (tree);
130 static void maybe_warn_about_overly_private_class (tree);
131 static int method_name_cmp (const void *, const void *);
132 static int resort_method_name_cmp (const void *, const void *);
133 static void add_implicitly_declared_members (tree, int, int);
134 static tree fixed_type_or_null (tree, int *, int *);
135 static tree build_simple_base_path (tree expr, tree binfo);
136 static tree build_vtbl_ref_1 (tree, tree);
137 static void build_vtbl_initializer (tree, tree, tree, tree, int *,
138 VEC(constructor_elt,gc) **);
139 static int count_fields (tree);
140 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
141 static bool check_bitfield_decl (tree);
142 static void check_field_decl (tree, tree, int *, int *, int *);
143 static void check_field_decls (tree, tree *, int *, int *);
144 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
145 static void build_base_fields (record_layout_info, splay_tree, tree *);
146 static void check_methods (tree);
147 static void remove_zero_width_bit_fields (tree);
148 static void check_bases (tree, int *, int *);
149 static void check_bases_and_members (tree);
150 static tree create_vtable_ptr (tree, tree *);
151 static void include_empty_classes (record_layout_info);
152 static void layout_class_type (tree, tree *);
153 static void propagate_binfo_offsets (tree, tree);
154 static void layout_virtual_bases (record_layout_info, splay_tree);
155 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
156 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
157 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
158 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
159 static void add_vcall_offset (tree, tree, vtbl_init_data *);
160 static void layout_vtable_decl (tree, int);
161 static tree dfs_find_final_overrider_pre (tree, void *);
162 static tree dfs_find_final_overrider_post (tree, void *);
163 static tree find_final_overrider (tree, tree, tree);
164 static int make_new_vtable (tree, tree);
165 static tree get_primary_binfo (tree);
166 static int maybe_indent_hierarchy (FILE *, int, int);
167 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
168 static void dump_class_hierarchy (tree);
169 static void dump_class_hierarchy_1 (FILE *, int, tree);
170 static void dump_array (FILE *, tree);
171 static void dump_vtable (tree, tree, tree);
172 static void dump_vtt (tree, tree);
173 static void dump_thunk (FILE *, int, tree);
174 static tree build_vtable (tree, tree, tree);
175 static void initialize_vtable (tree, VEC(constructor_elt,gc) *);
176 static void layout_nonempty_base_or_field (record_layout_info,
177 tree, tree, splay_tree);
178 static tree end_of_class (tree, int);
179 static bool layout_empty_base (record_layout_info, tree, tree, splay_tree);
180 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree,
181 VEC(constructor_elt,gc) **);
182 static void dfs_accumulate_vtbl_inits (tree, tree, tree, tree, tree,
183 VEC(constructor_elt,gc) **);
184 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
185 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
186 static void clone_constructors_and_destructors (tree);
187 static tree build_clone (tree, tree);
188 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
189 static void build_ctor_vtbl_group (tree, tree);
190 static void build_vtt (tree);
191 static tree binfo_ctor_vtable (tree);
192 static void build_vtt_inits (tree, tree, VEC(constructor_elt,gc) **, tree *);
193 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
194 static tree dfs_fixup_binfo_vtbls (tree, void *);
195 static int record_subobject_offset (tree, tree, splay_tree);
196 static int check_subobject_offset (tree, tree, splay_tree);
197 static int walk_subobject_offsets (tree, subobject_offset_fn,
198 tree, splay_tree, tree, int);
199 static void record_subobject_offsets (tree, tree, splay_tree, bool);
200 static int layout_conflict_p (tree, tree, splay_tree, int);
201 static int splay_tree_compare_integer_csts (splay_tree_key k1,
202 splay_tree_key k2);
203 static void warn_about_ambiguous_bases (tree);
204 static bool type_requires_array_cookie (tree);
205 static bool contains_empty_class_p (tree);
206 static bool base_derived_from (tree, tree);
207 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
208 static tree end_of_base (tree);
209 static tree get_vcall_index (tree, tree);
211 /* Variables shared between class.c and call.c. */
213 #ifdef GATHER_STATISTICS
214 int n_vtables = 0;
215 int n_vtable_entries = 0;
216 int n_vtable_searches = 0;
217 int n_vtable_elems = 0;
218 int n_convert_harshness = 0;
219 int n_compute_conversion_costs = 0;
220 int n_inner_fields_searched = 0;
221 #endif
223 /* Convert to or from a base subobject. EXPR is an expression of type
224 `A' or `A*', an expression of type `B' or `B*' is returned. To
225 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
226 the B base instance within A. To convert base A to derived B, CODE
227 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
228 In this latter case, A must not be a morally virtual base of B.
229 NONNULL is true if EXPR is known to be non-NULL (this is only
230 needed when EXPR is of pointer type). CV qualifiers are preserved
231 from EXPR. */
233 tree
234 build_base_path (enum tree_code code,
235 tree expr,
236 tree binfo,
237 int nonnull)
239 tree v_binfo = NULL_TREE;
240 tree d_binfo = NULL_TREE;
241 tree probe;
242 tree offset;
243 tree target_type;
244 tree null_test = NULL;
245 tree ptr_target_type;
246 int fixed_type_p;
247 int want_pointer = TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE;
248 bool has_empty = false;
249 bool virtual_access;
251 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
252 return error_mark_node;
254 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
256 d_binfo = probe;
257 if (is_empty_class (BINFO_TYPE (probe)))
258 has_empty = true;
259 if (!v_binfo && BINFO_VIRTUAL_P (probe))
260 v_binfo = probe;
263 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
264 if (want_pointer)
265 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
267 gcc_assert ((code == MINUS_EXPR
268 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
269 || (code == PLUS_EXPR
270 && SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe)));
272 if (binfo == d_binfo)
273 /* Nothing to do. */
274 return expr;
276 if (code == MINUS_EXPR && v_binfo)
278 error ("cannot convert from base %qT to derived type %qT via virtual base %qT",
279 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo));
280 return error_mark_node;
283 if (!want_pointer)
284 /* This must happen before the call to save_expr. */
285 expr = cp_build_unary_op (ADDR_EXPR, expr, 0, tf_warning_or_error);
286 else
287 mark_rvalue_use (expr);
289 offset = BINFO_OFFSET (binfo);
290 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
291 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
293 /* Do we need to look in the vtable for the real offset? */
294 virtual_access = (v_binfo && fixed_type_p <= 0);
296 /* Don't bother with the calculations inside sizeof; they'll ICE if the
297 source type is incomplete and the pointer value doesn't matter. */
298 if (cp_unevaluated_operand != 0)
300 expr = build_nop (build_pointer_type (target_type), expr);
301 if (!want_pointer)
302 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
303 return expr;
306 /* Do we need to check for a null pointer? */
307 if (want_pointer && !nonnull)
309 /* If we know the conversion will not actually change the value
310 of EXPR, then we can avoid testing the expression for NULL.
311 We have to avoid generating a COMPONENT_REF for a base class
312 field, because other parts of the compiler know that such
313 expressions are always non-NULL. */
314 if (!virtual_access && integer_zerop (offset))
316 tree class_type;
317 /* TARGET_TYPE has been extracted from BINFO, and, is
318 therefore always cv-unqualified. Extract the
319 cv-qualifiers from EXPR so that the expression returned
320 matches the input. */
321 class_type = TREE_TYPE (TREE_TYPE (expr));
322 target_type
323 = cp_build_qualified_type (target_type,
324 cp_type_quals (class_type));
325 return build_nop (build_pointer_type (target_type), expr);
327 null_test = error_mark_node;
330 /* Protect against multiple evaluation if necessary. */
331 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
332 expr = save_expr (expr);
334 /* Now that we've saved expr, build the real null test. */
335 if (null_test)
337 tree zero = cp_convert (TREE_TYPE (expr), integer_zero_node);
338 null_test = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
339 expr, zero);
342 /* If this is a simple base reference, express it as a COMPONENT_REF. */
343 if (code == PLUS_EXPR && !virtual_access
344 /* We don't build base fields for empty bases, and they aren't very
345 interesting to the optimizers anyway. */
346 && !has_empty)
348 expr = cp_build_indirect_ref (expr, RO_NULL, tf_warning_or_error);
349 expr = build_simple_base_path (expr, binfo);
350 if (want_pointer)
351 expr = build_address (expr);
352 target_type = TREE_TYPE (expr);
353 goto out;
356 if (virtual_access)
358 /* Going via virtual base V_BINFO. We need the static offset
359 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
360 V_BINFO. That offset is an entry in D_BINFO's vtable. */
361 tree v_offset;
363 if (fixed_type_p < 0 && in_base_initializer)
365 /* In a base member initializer, we cannot rely on the
366 vtable being set up. We have to indirect via the
367 vtt_parm. */
368 tree t;
370 t = TREE_TYPE (TYPE_VFIELD (current_class_type));
371 t = build_pointer_type (t);
372 v_offset = convert (t, current_vtt_parm);
373 v_offset = cp_build_indirect_ref (v_offset, RO_NULL,
374 tf_warning_or_error);
376 else
377 v_offset = build_vfield_ref (cp_build_indirect_ref (expr, RO_NULL,
378 tf_warning_or_error),
379 TREE_TYPE (TREE_TYPE (expr)));
381 v_offset = build2 (POINTER_PLUS_EXPR, TREE_TYPE (v_offset),
382 v_offset, fold_convert (sizetype, BINFO_VPTR_FIELD (v_binfo)));
383 v_offset = build1 (NOP_EXPR,
384 build_pointer_type (ptrdiff_type_node),
385 v_offset);
386 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, tf_warning_or_error);
387 TREE_CONSTANT (v_offset) = 1;
389 offset = convert_to_integer (ptrdiff_type_node,
390 size_diffop_loc (input_location, offset,
391 BINFO_OFFSET (v_binfo)));
393 if (!integer_zerop (offset))
394 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
396 if (fixed_type_p < 0)
397 /* Negative fixed_type_p means this is a constructor or destructor;
398 virtual base layout is fixed in in-charge [cd]tors, but not in
399 base [cd]tors. */
400 offset = build3 (COND_EXPR, ptrdiff_type_node,
401 build2 (EQ_EXPR, boolean_type_node,
402 current_in_charge_parm, integer_zero_node),
403 v_offset,
404 convert_to_integer (ptrdiff_type_node,
405 BINFO_OFFSET (binfo)));
406 else
407 offset = v_offset;
410 target_type = cp_build_qualified_type
411 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
412 ptr_target_type = build_pointer_type (target_type);
413 if (want_pointer)
414 target_type = ptr_target_type;
416 expr = build1 (NOP_EXPR, ptr_target_type, expr);
418 if (!integer_zerop (offset))
420 offset = fold_convert (sizetype, offset);
421 if (code == MINUS_EXPR)
422 offset = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, offset);
423 expr = build2 (POINTER_PLUS_EXPR, ptr_target_type, expr, offset);
425 else
426 null_test = NULL;
428 if (!want_pointer)
429 expr = cp_build_indirect_ref (expr, RO_NULL, tf_warning_or_error);
431 out:
432 if (null_test)
433 expr = fold_build3_loc (input_location, COND_EXPR, target_type, null_test, expr,
434 fold_build1_loc (input_location, NOP_EXPR, target_type,
435 integer_zero_node));
437 return expr;
440 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
441 Perform a derived-to-base conversion by recursively building up a
442 sequence of COMPONENT_REFs to the appropriate base fields. */
444 static tree
445 build_simple_base_path (tree expr, tree binfo)
447 tree type = BINFO_TYPE (binfo);
448 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
449 tree field;
451 if (d_binfo == NULL_TREE)
453 tree temp;
455 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
457 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
458 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
459 an lvalue in the front end; only _DECLs and _REFs are lvalues
460 in the back end. */
461 temp = unary_complex_lvalue (ADDR_EXPR, expr);
462 if (temp)
463 expr = cp_build_indirect_ref (temp, RO_NULL, tf_warning_or_error);
465 return expr;
468 /* Recurse. */
469 expr = build_simple_base_path (expr, d_binfo);
471 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
472 field; field = TREE_CHAIN (field))
473 /* Is this the base field created by build_base_field? */
474 if (TREE_CODE (field) == FIELD_DECL
475 && DECL_FIELD_IS_BASE (field)
476 && TREE_TYPE (field) == type)
478 /* We don't use build_class_member_access_expr here, as that
479 has unnecessary checks, and more importantly results in
480 recursive calls to dfs_walk_once. */
481 int type_quals = cp_type_quals (TREE_TYPE (expr));
483 expr = build3 (COMPONENT_REF,
484 cp_build_qualified_type (type, type_quals),
485 expr, field, NULL_TREE);
486 expr = fold_if_not_in_template (expr);
488 /* Mark the expression const or volatile, as appropriate.
489 Even though we've dealt with the type above, we still have
490 to mark the expression itself. */
491 if (type_quals & TYPE_QUAL_CONST)
492 TREE_READONLY (expr) = 1;
493 if (type_quals & TYPE_QUAL_VOLATILE)
494 TREE_THIS_VOLATILE (expr) = 1;
496 return expr;
499 /* Didn't find the base field?!? */
500 gcc_unreachable ();
503 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
504 type is a class type or a pointer to a class type. In the former
505 case, TYPE is also a class type; in the latter it is another
506 pointer type. If CHECK_ACCESS is true, an error message is emitted
507 if TYPE is inaccessible. If OBJECT has pointer type, the value is
508 assumed to be non-NULL. */
510 tree
511 convert_to_base (tree object, tree type, bool check_access, bool nonnull,
512 tsubst_flags_t complain)
514 tree binfo;
515 tree object_type;
516 base_access access;
518 if (TYPE_PTR_P (TREE_TYPE (object)))
520 object_type = TREE_TYPE (TREE_TYPE (object));
521 type = TREE_TYPE (type);
523 else
524 object_type = TREE_TYPE (object);
526 access = check_access ? ba_check : ba_unique;
527 if (!(complain & tf_error))
528 access |= ba_quiet;
529 binfo = lookup_base (object_type, type,
530 access,
531 NULL);
532 if (!binfo || binfo == error_mark_node)
533 return error_mark_node;
535 return build_base_path (PLUS_EXPR, object, binfo, nonnull);
538 /* EXPR is an expression with unqualified class type. BASE is a base
539 binfo of that class type. Returns EXPR, converted to the BASE
540 type. This function assumes that EXPR is the most derived class;
541 therefore virtual bases can be found at their static offsets. */
543 tree
544 convert_to_base_statically (tree expr, tree base)
546 tree expr_type;
548 expr_type = TREE_TYPE (expr);
549 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
551 tree pointer_type;
553 pointer_type = build_pointer_type (expr_type);
555 /* We use fold_build2 and fold_convert below to simplify the trees
556 provided to the optimizers. It is not safe to call these functions
557 when processing a template because they do not handle C++-specific
558 trees. */
559 gcc_assert (!processing_template_decl);
560 expr = cp_build_unary_op (ADDR_EXPR, expr, /*noconvert=*/1,
561 tf_warning_or_error);
562 if (!integer_zerop (BINFO_OFFSET (base)))
563 expr = fold_build2_loc (input_location,
564 POINTER_PLUS_EXPR, pointer_type, expr,
565 fold_convert (sizetype, BINFO_OFFSET (base)));
566 expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
567 expr = build_fold_indirect_ref_loc (input_location, expr);
570 return expr;
574 tree
575 build_vfield_ref (tree datum, tree type)
577 tree vfield, vcontext;
579 if (datum == error_mark_node)
580 return error_mark_node;
582 /* First, convert to the requested type. */
583 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
584 datum = convert_to_base (datum, type, /*check_access=*/false,
585 /*nonnull=*/true, tf_warning_or_error);
587 /* Second, the requested type may not be the owner of its own vptr.
588 If not, convert to the base class that owns it. We cannot use
589 convert_to_base here, because VCONTEXT may appear more than once
590 in the inheritance hierarchy of TYPE, and thus direct conversion
591 between the types may be ambiguous. Following the path back up
592 one step at a time via primary bases avoids the problem. */
593 vfield = TYPE_VFIELD (type);
594 vcontext = DECL_CONTEXT (vfield);
595 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
597 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
598 type = TREE_TYPE (datum);
601 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
604 /* Given an object INSTANCE, return an expression which yields the
605 vtable element corresponding to INDEX. There are many special
606 cases for INSTANCE which we take care of here, mainly to avoid
607 creating extra tree nodes when we don't have to. */
609 static tree
610 build_vtbl_ref_1 (tree instance, tree idx)
612 tree aref;
613 tree vtbl = NULL_TREE;
615 /* Try to figure out what a reference refers to, and
616 access its virtual function table directly. */
618 int cdtorp = 0;
619 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
621 tree basetype = non_reference (TREE_TYPE (instance));
623 if (fixed_type && !cdtorp)
625 tree binfo = lookup_base (fixed_type, basetype,
626 ba_unique | ba_quiet, NULL);
627 if (binfo)
628 vtbl = unshare_expr (BINFO_VTABLE (binfo));
631 if (!vtbl)
632 vtbl = build_vfield_ref (instance, basetype);
634 aref = build_array_ref (input_location, vtbl, idx);
635 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
637 return aref;
640 tree
641 build_vtbl_ref (tree instance, tree idx)
643 tree aref = build_vtbl_ref_1 (instance, idx);
645 return aref;
648 /* Given a stable object pointer INSTANCE_PTR, return an expression which
649 yields a function pointer corresponding to vtable element INDEX. */
651 tree
652 build_vfn_ref (tree instance_ptr, tree idx)
654 tree aref;
656 aref = build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr, RO_NULL,
657 tf_warning_or_error),
658 idx);
660 /* When using function descriptors, the address of the
661 vtable entry is treated as a function pointer. */
662 if (TARGET_VTABLE_USES_DESCRIPTORS)
663 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
664 cp_build_unary_op (ADDR_EXPR, aref, /*noconvert=*/1,
665 tf_warning_or_error));
667 /* Remember this as a method reference, for later devirtualization. */
668 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
670 return aref;
673 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
674 for the given TYPE. */
676 static tree
677 get_vtable_name (tree type)
679 return mangle_vtbl_for_type (type);
682 /* DECL is an entity associated with TYPE, like a virtual table or an
683 implicitly generated constructor. Determine whether or not DECL
684 should have external or internal linkage at the object file
685 level. This routine does not deal with COMDAT linkage and other
686 similar complexities; it simply sets TREE_PUBLIC if it possible for
687 entities in other translation units to contain copies of DECL, in
688 the abstract. */
690 void
691 set_linkage_according_to_type (tree type, tree decl)
693 /* If TYPE involves a local class in a function with internal
694 linkage, then DECL should have internal linkage too. Other local
695 classes have no linkage -- but if their containing functions
696 have external linkage, it makes sense for DECL to have external
697 linkage too. That will allow template definitions to be merged,
698 for example. */
699 if (no_linkage_check (type, /*relaxed_p=*/true))
701 TREE_PUBLIC (decl) = 0;
702 DECL_INTERFACE_KNOWN (decl) = 1;
704 else
705 TREE_PUBLIC (decl) = 1;
708 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
709 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
710 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
712 static tree
713 build_vtable (tree class_type, tree name, tree vtable_type)
715 tree decl;
717 decl = build_lang_decl (VAR_DECL, name, vtable_type);
718 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
719 now to avoid confusion in mangle_decl. */
720 SET_DECL_ASSEMBLER_NAME (decl, name);
721 DECL_CONTEXT (decl) = class_type;
722 DECL_ARTIFICIAL (decl) = 1;
723 TREE_STATIC (decl) = 1;
724 TREE_READONLY (decl) = 1;
725 DECL_VIRTUAL_P (decl) = 1;
726 DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
727 DECL_VTABLE_OR_VTT_P (decl) = 1;
728 /* At one time the vtable info was grabbed 2 words at a time. This
729 fails on sparc unless you have 8-byte alignment. (tiemann) */
730 DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node),
731 DECL_ALIGN (decl));
732 set_linkage_according_to_type (class_type, decl);
733 /* The vtable has not been defined -- yet. */
734 DECL_EXTERNAL (decl) = 1;
735 DECL_NOT_REALLY_EXTERN (decl) = 1;
737 /* Mark the VAR_DECL node representing the vtable itself as a
738 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
739 is rather important that such things be ignored because any
740 effort to actually generate DWARF for them will run into
741 trouble when/if we encounter code like:
743 #pragma interface
744 struct S { virtual void member (); };
746 because the artificial declaration of the vtable itself (as
747 manufactured by the g++ front end) will say that the vtable is
748 a static member of `S' but only *after* the debug output for
749 the definition of `S' has already been output. This causes
750 grief because the DWARF entry for the definition of the vtable
751 will try to refer back to an earlier *declaration* of the
752 vtable as a static member of `S' and there won't be one. We
753 might be able to arrange to have the "vtable static member"
754 attached to the member list for `S' before the debug info for
755 `S' get written (which would solve the problem) but that would
756 require more intrusive changes to the g++ front end. */
757 DECL_IGNORED_P (decl) = 1;
759 return decl;
762 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
763 or even complete. If this does not exist, create it. If COMPLETE is
764 nonzero, then complete the definition of it -- that will render it
765 impossible to actually build the vtable, but is useful to get at those
766 which are known to exist in the runtime. */
768 tree
769 get_vtable_decl (tree type, int complete)
771 tree decl;
773 if (CLASSTYPE_VTABLES (type))
774 return CLASSTYPE_VTABLES (type);
776 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
777 CLASSTYPE_VTABLES (type) = decl;
779 if (complete)
781 DECL_EXTERNAL (decl) = 1;
782 cp_finish_decl (decl, NULL_TREE, false, NULL_TREE, 0);
785 return decl;
788 /* Build the primary virtual function table for TYPE. If BINFO is
789 non-NULL, build the vtable starting with the initial approximation
790 that it is the same as the one which is the head of the association
791 list. Returns a nonzero value if a new vtable is actually
792 created. */
794 static int
795 build_primary_vtable (tree binfo, tree type)
797 tree decl;
798 tree virtuals;
800 decl = get_vtable_decl (type, /*complete=*/0);
802 if (binfo)
804 if (BINFO_NEW_VTABLE_MARKED (binfo))
805 /* We have already created a vtable for this base, so there's
806 no need to do it again. */
807 return 0;
809 virtuals = copy_list (BINFO_VIRTUALS (binfo));
810 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
811 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
812 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
814 else
816 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
817 virtuals = NULL_TREE;
820 #ifdef GATHER_STATISTICS
821 n_vtables += 1;
822 n_vtable_elems += list_length (virtuals);
823 #endif
825 /* Initialize the association list for this type, based
826 on our first approximation. */
827 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
828 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
829 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
830 return 1;
833 /* Give BINFO a new virtual function table which is initialized
834 with a skeleton-copy of its original initialization. The only
835 entry that changes is the `delta' entry, so we can really
836 share a lot of structure.
838 FOR_TYPE is the most derived type which caused this table to
839 be needed.
841 Returns nonzero if we haven't met BINFO before.
843 The order in which vtables are built (by calling this function) for
844 an object must remain the same, otherwise a binary incompatibility
845 can result. */
847 static int
848 build_secondary_vtable (tree binfo)
850 if (BINFO_NEW_VTABLE_MARKED (binfo))
851 /* We already created a vtable for this base. There's no need to
852 do it again. */
853 return 0;
855 /* Remember that we've created a vtable for this BINFO, so that we
856 don't try to do so again. */
857 SET_BINFO_NEW_VTABLE_MARKED (binfo);
859 /* Make fresh virtual list, so we can smash it later. */
860 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
862 /* Secondary vtables are laid out as part of the same structure as
863 the primary vtable. */
864 BINFO_VTABLE (binfo) = NULL_TREE;
865 return 1;
868 /* Create a new vtable for BINFO which is the hierarchy dominated by
869 T. Return nonzero if we actually created a new vtable. */
871 static int
872 make_new_vtable (tree t, tree binfo)
874 if (binfo == TYPE_BINFO (t))
875 /* In this case, it is *type*'s vtable we are modifying. We start
876 with the approximation that its vtable is that of the
877 immediate base class. */
878 return build_primary_vtable (binfo, t);
879 else
880 /* This is our very own copy of `basetype' to play with. Later,
881 we will fill in all the virtual functions that override the
882 virtual functions in these base classes which are not defined
883 by the current type. */
884 return build_secondary_vtable (binfo);
887 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
888 (which is in the hierarchy dominated by T) list FNDECL as its
889 BV_FN. DELTA is the required constant adjustment from the `this'
890 pointer where the vtable entry appears to the `this' required when
891 the function is actually called. */
893 static void
894 modify_vtable_entry (tree t,
895 tree binfo,
896 tree fndecl,
897 tree delta,
898 tree *virtuals)
900 tree v;
902 v = *virtuals;
904 if (fndecl != BV_FN (v)
905 || !tree_int_cst_equal (delta, BV_DELTA (v)))
907 /* We need a new vtable for BINFO. */
908 if (make_new_vtable (t, binfo))
910 /* If we really did make a new vtable, we also made a copy
911 of the BINFO_VIRTUALS list. Now, we have to find the
912 corresponding entry in that list. */
913 *virtuals = BINFO_VIRTUALS (binfo);
914 while (BV_FN (*virtuals) != BV_FN (v))
915 *virtuals = TREE_CHAIN (*virtuals);
916 v = *virtuals;
919 BV_DELTA (v) = delta;
920 BV_VCALL_INDEX (v) = NULL_TREE;
921 BV_FN (v) = fndecl;
926 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
927 the USING_DECL naming METHOD. Returns true if the method could be
928 added to the method vec. */
930 bool
931 add_method (tree type, tree method, tree using_decl)
933 unsigned slot;
934 tree overload;
935 bool template_conv_p = false;
936 bool conv_p;
937 VEC(tree,gc) *method_vec;
938 bool complete_p;
939 bool insert_p = false;
940 tree current_fns;
941 tree fns;
943 if (method == error_mark_node)
944 return false;
946 complete_p = COMPLETE_TYPE_P (type);
947 conv_p = DECL_CONV_FN_P (method);
948 if (conv_p)
949 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
950 && DECL_TEMPLATE_CONV_FN_P (method));
952 method_vec = CLASSTYPE_METHOD_VEC (type);
953 if (!method_vec)
955 /* Make a new method vector. We start with 8 entries. We must
956 allocate at least two (for constructors and destructors), and
957 we're going to end up with an assignment operator at some
958 point as well. */
959 method_vec = VEC_alloc (tree, gc, 8);
960 /* Create slots for constructors and destructors. */
961 VEC_quick_push (tree, method_vec, NULL_TREE);
962 VEC_quick_push (tree, method_vec, NULL_TREE);
963 CLASSTYPE_METHOD_VEC (type) = method_vec;
966 /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
967 grok_special_member_properties (method);
969 /* Constructors and destructors go in special slots. */
970 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
971 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
972 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
974 slot = CLASSTYPE_DESTRUCTOR_SLOT;
976 if (TYPE_FOR_JAVA (type))
978 if (!DECL_ARTIFICIAL (method))
979 error ("Java class %qT cannot have a destructor", type);
980 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
981 error ("Java class %qT cannot have an implicit non-trivial "
982 "destructor",
983 type);
986 else
988 tree m;
990 insert_p = true;
991 /* See if we already have an entry with this name. */
992 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
993 VEC_iterate (tree, method_vec, slot, m);
994 ++slot)
996 m = OVL_CURRENT (m);
997 if (template_conv_p)
999 if (TREE_CODE (m) == TEMPLATE_DECL
1000 && DECL_TEMPLATE_CONV_FN_P (m))
1001 insert_p = false;
1002 break;
1004 if (conv_p && !DECL_CONV_FN_P (m))
1005 break;
1006 if (DECL_NAME (m) == DECL_NAME (method))
1008 insert_p = false;
1009 break;
1011 if (complete_p
1012 && !DECL_CONV_FN_P (m)
1013 && DECL_NAME (m) > DECL_NAME (method))
1014 break;
1017 current_fns = insert_p ? NULL_TREE : VEC_index (tree, method_vec, slot);
1019 /* Check to see if we've already got this method. */
1020 for (fns = current_fns; fns; fns = OVL_NEXT (fns))
1022 tree fn = OVL_CURRENT (fns);
1023 tree fn_type;
1024 tree method_type;
1025 tree parms1;
1026 tree parms2;
1028 if (TREE_CODE (fn) != TREE_CODE (method))
1029 continue;
1031 /* [over.load] Member function declarations with the
1032 same name and the same parameter types cannot be
1033 overloaded if any of them is a static member
1034 function declaration.
1036 [namespace.udecl] When a using-declaration brings names
1037 from a base class into a derived class scope, member
1038 functions in the derived class override and/or hide member
1039 functions with the same name and parameter types in a base
1040 class (rather than conflicting). */
1041 fn_type = TREE_TYPE (fn);
1042 method_type = TREE_TYPE (method);
1043 parms1 = TYPE_ARG_TYPES (fn_type);
1044 parms2 = TYPE_ARG_TYPES (method_type);
1046 /* Compare the quals on the 'this' parm. Don't compare
1047 the whole types, as used functions are treated as
1048 coming from the using class in overload resolution. */
1049 if (! DECL_STATIC_FUNCTION_P (fn)
1050 && ! DECL_STATIC_FUNCTION_P (method)
1051 && TREE_TYPE (TREE_VALUE (parms1)) != error_mark_node
1052 && TREE_TYPE (TREE_VALUE (parms2)) != error_mark_node
1053 && (cp_type_quals (TREE_TYPE (TREE_VALUE (parms1)))
1054 != cp_type_quals (TREE_TYPE (TREE_VALUE (parms2)))))
1055 continue;
1057 /* For templates, the return type and template parameters
1058 must be identical. */
1059 if (TREE_CODE (fn) == TEMPLATE_DECL
1060 && (!same_type_p (TREE_TYPE (fn_type),
1061 TREE_TYPE (method_type))
1062 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1063 DECL_TEMPLATE_PARMS (method))))
1064 continue;
1066 if (! DECL_STATIC_FUNCTION_P (fn))
1067 parms1 = TREE_CHAIN (parms1);
1068 if (! DECL_STATIC_FUNCTION_P (method))
1069 parms2 = TREE_CHAIN (parms2);
1071 if (compparms (parms1, parms2)
1072 && (!DECL_CONV_FN_P (fn)
1073 || same_type_p (TREE_TYPE (fn_type),
1074 TREE_TYPE (method_type))))
1076 if (using_decl)
1078 if (DECL_CONTEXT (fn) == type)
1079 /* Defer to the local function. */
1080 return false;
1081 if (DECL_CONTEXT (fn) == DECL_CONTEXT (method))
1082 error ("repeated using declaration %q+D", using_decl);
1083 else
1084 error ("using declaration %q+D conflicts with a previous using declaration",
1085 using_decl);
1087 else
1089 error ("%q+#D cannot be overloaded", method);
1090 error ("with %q+#D", fn);
1093 /* We don't call duplicate_decls here to merge the
1094 declarations because that will confuse things if the
1095 methods have inline definitions. In particular, we
1096 will crash while processing the definitions. */
1097 return false;
1101 /* A class should never have more than one destructor. */
1102 if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1103 return false;
1105 /* Add the new binding. */
1106 overload = build_overload (method, current_fns);
1108 if (conv_p)
1109 TYPE_HAS_CONVERSION (type) = 1;
1110 else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1111 push_class_level_binding (DECL_NAME (method), overload);
1113 if (insert_p)
1115 bool reallocated;
1117 /* We only expect to add few methods in the COMPLETE_P case, so
1118 just make room for one more method in that case. */
1119 if (complete_p)
1120 reallocated = VEC_reserve_exact (tree, gc, method_vec, 1);
1121 else
1122 reallocated = VEC_reserve (tree, gc, method_vec, 1);
1123 if (reallocated)
1124 CLASSTYPE_METHOD_VEC (type) = method_vec;
1125 if (slot == VEC_length (tree, method_vec))
1126 VEC_quick_push (tree, method_vec, overload);
1127 else
1128 VEC_quick_insert (tree, method_vec, slot, overload);
1130 else
1131 /* Replace the current slot. */
1132 VEC_replace (tree, method_vec, slot, overload);
1133 return true;
1136 /* Subroutines of finish_struct. */
1138 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1139 legit, otherwise return 0. */
1141 static int
1142 alter_access (tree t, tree fdecl, tree access)
1144 tree elem;
1146 if (!DECL_LANG_SPECIFIC (fdecl))
1147 retrofit_lang_decl (fdecl);
1149 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1151 elem = purpose_member (t, DECL_ACCESS (fdecl));
1152 if (elem)
1154 if (TREE_VALUE (elem) != access)
1156 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1157 error ("conflicting access specifications for method"
1158 " %q+D, ignored", TREE_TYPE (fdecl));
1159 else
1160 error ("conflicting access specifications for field %qE, ignored",
1161 DECL_NAME (fdecl));
1163 else
1165 /* They're changing the access to the same thing they changed
1166 it to before. That's OK. */
1170 else
1172 perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl);
1173 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1174 return 1;
1176 return 0;
1179 /* Process the USING_DECL, which is a member of T. */
1181 static void
1182 handle_using_decl (tree using_decl, tree t)
1184 tree decl = USING_DECL_DECLS (using_decl);
1185 tree name = DECL_NAME (using_decl);
1186 tree access
1187 = TREE_PRIVATE (using_decl) ? access_private_node
1188 : TREE_PROTECTED (using_decl) ? access_protected_node
1189 : access_public_node;
1190 tree flist = NULL_TREE;
1191 tree old_value;
1193 gcc_assert (!processing_template_decl && decl);
1195 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false);
1196 if (old_value)
1198 if (is_overloaded_fn (old_value))
1199 old_value = OVL_CURRENT (old_value);
1201 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1202 /* OK */;
1203 else
1204 old_value = NULL_TREE;
1207 cp_emit_debug_info_for_using (decl, USING_DECL_SCOPE (using_decl));
1209 if (is_overloaded_fn (decl))
1210 flist = decl;
1212 if (! old_value)
1214 else if (is_overloaded_fn (old_value))
1216 if (flist)
1217 /* It's OK to use functions from a base when there are functions with
1218 the same name already present in the current class. */;
1219 else
1221 error ("%q+D invalid in %q#T", using_decl, t);
1222 error (" because of local method %q+#D with same name",
1223 OVL_CURRENT (old_value));
1224 return;
1227 else if (!DECL_ARTIFICIAL (old_value))
1229 error ("%q+D invalid in %q#T", using_decl, t);
1230 error (" because of local member %q+#D with same name", old_value);
1231 return;
1234 /* Make type T see field decl FDECL with access ACCESS. */
1235 if (flist)
1236 for (; flist; flist = OVL_NEXT (flist))
1238 add_method (t, OVL_CURRENT (flist), using_decl);
1239 alter_access (t, OVL_CURRENT (flist), access);
1241 else
1242 alter_access (t, decl, access);
1245 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1246 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1247 properties of the bases. */
1249 static void
1250 check_bases (tree t,
1251 int* cant_have_const_ctor_p,
1252 int* no_const_asn_ref_p)
1254 int i;
1255 int seen_non_virtual_nearly_empty_base_p;
1256 tree base_binfo;
1257 tree binfo;
1258 tree field = NULL_TREE;
1260 seen_non_virtual_nearly_empty_base_p = 0;
1262 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1263 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
1264 if (TREE_CODE (field) == FIELD_DECL)
1265 break;
1267 for (binfo = TYPE_BINFO (t), i = 0;
1268 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1270 tree basetype = TREE_TYPE (base_binfo);
1272 gcc_assert (COMPLETE_TYPE_P (basetype));
1274 /* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
1275 here because the case of virtual functions but non-virtual
1276 dtor is handled in finish_struct_1. */
1277 if (!TYPE_POLYMORPHIC_P (basetype))
1278 warning (OPT_Weffc__,
1279 "base class %q#T has a non-virtual destructor", basetype);
1281 /* If the base class doesn't have copy constructors or
1282 assignment operators that take const references, then the
1283 derived class cannot have such a member automatically
1284 generated. */
1285 if (TYPE_HAS_COPY_CTOR (basetype)
1286 && ! TYPE_HAS_CONST_COPY_CTOR (basetype))
1287 *cant_have_const_ctor_p = 1;
1288 if (TYPE_HAS_COPY_ASSIGN (basetype)
1289 && !TYPE_HAS_CONST_COPY_ASSIGN (basetype))
1290 *no_const_asn_ref_p = 1;
1292 if (BINFO_VIRTUAL_P (base_binfo))
1293 /* A virtual base does not effect nearly emptiness. */
1295 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1297 if (seen_non_virtual_nearly_empty_base_p)
1298 /* And if there is more than one nearly empty base, then the
1299 derived class is not nearly empty either. */
1300 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1301 else
1302 /* Remember we've seen one. */
1303 seen_non_virtual_nearly_empty_base_p = 1;
1305 else if (!is_empty_class (basetype))
1306 /* If the base class is not empty or nearly empty, then this
1307 class cannot be nearly empty. */
1308 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1310 /* A lot of properties from the bases also apply to the derived
1311 class. */
1312 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1313 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1314 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1315 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
1316 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (basetype)
1317 || !TYPE_HAS_COPY_ASSIGN (basetype));
1318 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (basetype)
1319 || !TYPE_HAS_COPY_CTOR (basetype));
1320 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
1321 |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (basetype);
1322 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (basetype);
1323 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1324 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1325 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1326 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype)
1327 || TYPE_HAS_COMPLEX_DFLT (basetype));
1329 /* A standard-layout class is a class that:
1331 * has no non-standard-layout base classes, */
1332 CLASSTYPE_NON_STD_LAYOUT (t) |= CLASSTYPE_NON_STD_LAYOUT (basetype);
1333 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1335 tree basefield;
1336 /* ...has no base classes of the same type as the first non-static
1337 data member... */
1338 if (field && DECL_CONTEXT (field) == t
1339 && (same_type_ignoring_top_level_qualifiers_p
1340 (TREE_TYPE (field), basetype)))
1341 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1342 else
1343 /* ...either has no non-static data members in the most-derived
1344 class and at most one base class with non-static data
1345 members, or has no base classes with non-static data
1346 members */
1347 for (basefield = TYPE_FIELDS (basetype); basefield;
1348 basefield = TREE_CHAIN (basefield))
1349 if (TREE_CODE (basefield) == FIELD_DECL)
1351 if (field)
1352 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1353 else
1354 field = basefield;
1355 break;
1361 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1362 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1363 that have had a nearly-empty virtual primary base stolen by some
1364 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1365 T. */
1367 static void
1368 determine_primary_bases (tree t)
1370 unsigned i;
1371 tree primary = NULL_TREE;
1372 tree type_binfo = TYPE_BINFO (t);
1373 tree base_binfo;
1375 /* Determine the primary bases of our bases. */
1376 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1377 base_binfo = TREE_CHAIN (base_binfo))
1379 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1381 /* See if we're the non-virtual primary of our inheritance
1382 chain. */
1383 if (!BINFO_VIRTUAL_P (base_binfo))
1385 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1386 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1388 if (parent_primary
1389 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1390 BINFO_TYPE (parent_primary)))
1391 /* We are the primary binfo. */
1392 BINFO_PRIMARY_P (base_binfo) = 1;
1394 /* Determine if we have a virtual primary base, and mark it so.
1396 if (primary && BINFO_VIRTUAL_P (primary))
1398 tree this_primary = copied_binfo (primary, base_binfo);
1400 if (BINFO_PRIMARY_P (this_primary))
1401 /* Someone already claimed this base. */
1402 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1403 else
1405 tree delta;
1407 BINFO_PRIMARY_P (this_primary) = 1;
1408 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1410 /* A virtual binfo might have been copied from within
1411 another hierarchy. As we're about to use it as a
1412 primary base, make sure the offsets match. */
1413 delta = size_diffop_loc (input_location,
1414 convert (ssizetype,
1415 BINFO_OFFSET (base_binfo)),
1416 convert (ssizetype,
1417 BINFO_OFFSET (this_primary)));
1419 propagate_binfo_offsets (this_primary, delta);
1424 /* First look for a dynamic direct non-virtual base. */
1425 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1427 tree basetype = BINFO_TYPE (base_binfo);
1429 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1431 primary = base_binfo;
1432 goto found;
1436 /* A "nearly-empty" virtual base class can be the primary base
1437 class, if no non-virtual polymorphic base can be found. Look for
1438 a nearly-empty virtual dynamic base that is not already a primary
1439 base of something in the hierarchy. If there is no such base,
1440 just pick the first nearly-empty virtual base. */
1442 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1443 base_binfo = TREE_CHAIN (base_binfo))
1444 if (BINFO_VIRTUAL_P (base_binfo)
1445 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1447 if (!BINFO_PRIMARY_P (base_binfo))
1449 /* Found one that is not primary. */
1450 primary = base_binfo;
1451 goto found;
1453 else if (!primary)
1454 /* Remember the first candidate. */
1455 primary = base_binfo;
1458 found:
1459 /* If we've got a primary base, use it. */
1460 if (primary)
1462 tree basetype = BINFO_TYPE (primary);
1464 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1465 if (BINFO_PRIMARY_P (primary))
1466 /* We are stealing a primary base. */
1467 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1468 BINFO_PRIMARY_P (primary) = 1;
1469 if (BINFO_VIRTUAL_P (primary))
1471 tree delta;
1473 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1474 /* A virtual binfo might have been copied from within
1475 another hierarchy. As we're about to use it as a primary
1476 base, make sure the offsets match. */
1477 delta = size_diffop_loc (input_location, ssize_int (0),
1478 convert (ssizetype, BINFO_OFFSET (primary)));
1480 propagate_binfo_offsets (primary, delta);
1483 primary = TYPE_BINFO (basetype);
1485 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1486 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1487 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1491 /* Update the variant types of T. */
1493 void
1494 fixup_type_variants (tree t)
1496 tree variants;
1498 if (!t)
1499 return;
1501 for (variants = TYPE_NEXT_VARIANT (t);
1502 variants;
1503 variants = TYPE_NEXT_VARIANT (variants))
1505 /* These fields are in the _TYPE part of the node, not in
1506 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1507 TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
1508 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1509 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1510 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1512 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1514 TYPE_BINFO (variants) = TYPE_BINFO (t);
1516 /* Copy whatever these are holding today. */
1517 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1518 TYPE_METHODS (variants) = TYPE_METHODS (t);
1519 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1521 /* All variants of a class have the same attributes. */
1522 TYPE_ATTRIBUTES (variants) = TYPE_ATTRIBUTES (t);
1527 /* Set memoizing fields and bits of T (and its variants) for later
1528 use. */
1530 static void
1531 finish_struct_bits (tree t)
1533 /* Fix up variants (if any). */
1534 fixup_type_variants (t);
1536 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
1537 /* For a class w/o baseclasses, 'finish_struct' has set
1538 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1539 Similarly for a class whose base classes do not have vtables.
1540 When neither of these is true, we might have removed abstract
1541 virtuals (by providing a definition), added some (by declaring
1542 new ones), or redeclared ones from a base class. We need to
1543 recalculate what's really an abstract virtual at this point (by
1544 looking in the vtables). */
1545 get_pure_virtuals (t);
1547 /* If this type has a copy constructor or a destructor, force its
1548 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1549 nonzero. This will cause it to be passed by invisible reference
1550 and prevent it from being returned in a register. */
1551 if (type_has_nontrivial_copy_init (t)
1552 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
1554 tree variants;
1555 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
1556 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
1558 SET_TYPE_MODE (variants, BLKmode);
1559 TREE_ADDRESSABLE (variants) = 1;
1564 /* Issue warnings about T having private constructors, but no friends,
1565 and so forth.
1567 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1568 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1569 non-private static member functions. */
1571 static void
1572 maybe_warn_about_overly_private_class (tree t)
1574 int has_member_fn = 0;
1575 int has_nonprivate_method = 0;
1576 tree fn;
1578 if (!warn_ctor_dtor_privacy
1579 /* If the class has friends, those entities might create and
1580 access instances, so we should not warn. */
1581 || (CLASSTYPE_FRIEND_CLASSES (t)
1582 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1583 /* We will have warned when the template was declared; there's
1584 no need to warn on every instantiation. */
1585 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1586 /* There's no reason to even consider warning about this
1587 class. */
1588 return;
1590 /* We only issue one warning, if more than one applies, because
1591 otherwise, on code like:
1593 class A {
1594 // Oops - forgot `public:'
1595 A();
1596 A(const A&);
1597 ~A();
1600 we warn several times about essentially the same problem. */
1602 /* Check to see if all (non-constructor, non-destructor) member
1603 functions are private. (Since there are no friends or
1604 non-private statics, we can't ever call any of the private member
1605 functions.) */
1606 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
1607 /* We're not interested in compiler-generated methods; they don't
1608 provide any way to call private members. */
1609 if (!DECL_ARTIFICIAL (fn))
1611 if (!TREE_PRIVATE (fn))
1613 if (DECL_STATIC_FUNCTION_P (fn))
1614 /* A non-private static member function is just like a
1615 friend; it can create and invoke private member
1616 functions, and be accessed without a class
1617 instance. */
1618 return;
1620 has_nonprivate_method = 1;
1621 /* Keep searching for a static member function. */
1623 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
1624 has_member_fn = 1;
1627 if (!has_nonprivate_method && has_member_fn)
1629 /* There are no non-private methods, and there's at least one
1630 private member function that isn't a constructor or
1631 destructor. (If all the private members are
1632 constructors/destructors we want to use the code below that
1633 issues error messages specifically referring to
1634 constructors/destructors.) */
1635 unsigned i;
1636 tree binfo = TYPE_BINFO (t);
1638 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
1639 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
1641 has_nonprivate_method = 1;
1642 break;
1644 if (!has_nonprivate_method)
1646 warning (OPT_Wctor_dtor_privacy,
1647 "all member functions in class %qT are private", t);
1648 return;
1652 /* Even if some of the member functions are non-private, the class
1653 won't be useful for much if all the constructors or destructors
1654 are private: such an object can never be created or destroyed. */
1655 fn = CLASSTYPE_DESTRUCTORS (t);
1656 if (fn && TREE_PRIVATE (fn))
1658 warning (OPT_Wctor_dtor_privacy,
1659 "%q#T only defines a private destructor and has no friends",
1661 return;
1664 /* Warn about classes that have private constructors and no friends. */
1665 if (TYPE_HAS_USER_CONSTRUCTOR (t)
1666 /* Implicitly generated constructors are always public. */
1667 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
1668 || !CLASSTYPE_LAZY_COPY_CTOR (t)))
1670 int nonprivate_ctor = 0;
1672 /* If a non-template class does not define a copy
1673 constructor, one is defined for it, enabling it to avoid
1674 this warning. For a template class, this does not
1675 happen, and so we would normally get a warning on:
1677 template <class T> class C { private: C(); };
1679 To avoid this asymmetry, we check TYPE_HAS_COPY_CTOR. All
1680 complete non-template or fully instantiated classes have this
1681 flag set. */
1682 if (!TYPE_HAS_COPY_CTOR (t))
1683 nonprivate_ctor = 1;
1684 else
1685 for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
1687 tree ctor = OVL_CURRENT (fn);
1688 /* Ideally, we wouldn't count copy constructors (or, in
1689 fact, any constructor that takes an argument of the
1690 class type as a parameter) because such things cannot
1691 be used to construct an instance of the class unless
1692 you already have one. But, for now at least, we're
1693 more generous. */
1694 if (! TREE_PRIVATE (ctor))
1696 nonprivate_ctor = 1;
1697 break;
1701 if (nonprivate_ctor == 0)
1703 warning (OPT_Wctor_dtor_privacy,
1704 "%q#T only defines private constructors and has no friends",
1706 return;
1711 static struct {
1712 gt_pointer_operator new_value;
1713 void *cookie;
1714 } resort_data;
1716 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
1718 static int
1719 method_name_cmp (const void* m1_p, const void* m2_p)
1721 const tree *const m1 = (const tree *) m1_p;
1722 const tree *const m2 = (const tree *) m2_p;
1724 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1725 return 0;
1726 if (*m1 == NULL_TREE)
1727 return -1;
1728 if (*m2 == NULL_TREE)
1729 return 1;
1730 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
1731 return -1;
1732 return 1;
1735 /* This routine compares two fields like method_name_cmp but using the
1736 pointer operator in resort_field_decl_data. */
1738 static int
1739 resort_method_name_cmp (const void* m1_p, const void* m2_p)
1741 const tree *const m1 = (const tree *) m1_p;
1742 const tree *const m2 = (const tree *) m2_p;
1743 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1744 return 0;
1745 if (*m1 == NULL_TREE)
1746 return -1;
1747 if (*m2 == NULL_TREE)
1748 return 1;
1750 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
1751 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
1752 resort_data.new_value (&d1, resort_data.cookie);
1753 resort_data.new_value (&d2, resort_data.cookie);
1754 if (d1 < d2)
1755 return -1;
1757 return 1;
1760 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
1762 void
1763 resort_type_method_vec (void* obj,
1764 void* orig_obj ATTRIBUTE_UNUSED ,
1765 gt_pointer_operator new_value,
1766 void* cookie)
1768 VEC(tree,gc) *method_vec = (VEC(tree,gc) *) obj;
1769 int len = VEC_length (tree, method_vec);
1770 size_t slot;
1771 tree fn;
1773 /* The type conversion ops have to live at the front of the vec, so we
1774 can't sort them. */
1775 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1776 VEC_iterate (tree, method_vec, slot, fn);
1777 ++slot)
1778 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1779 break;
1781 if (len - slot > 1)
1783 resort_data.new_value = new_value;
1784 resort_data.cookie = cookie;
1785 qsort (VEC_address (tree, method_vec) + slot, len - slot, sizeof (tree),
1786 resort_method_name_cmp);
1790 /* Warn about duplicate methods in fn_fields.
1792 Sort methods that are not special (i.e., constructors, destructors,
1793 and type conversion operators) so that we can find them faster in
1794 search. */
1796 static void
1797 finish_struct_methods (tree t)
1799 tree fn_fields;
1800 VEC(tree,gc) *method_vec;
1801 int slot, len;
1803 method_vec = CLASSTYPE_METHOD_VEC (t);
1804 if (!method_vec)
1805 return;
1807 len = VEC_length (tree, method_vec);
1809 /* Clear DECL_IN_AGGR_P for all functions. */
1810 for (fn_fields = TYPE_METHODS (t); fn_fields;
1811 fn_fields = TREE_CHAIN (fn_fields))
1812 DECL_IN_AGGR_P (fn_fields) = 0;
1814 /* Issue warnings about private constructors and such. If there are
1815 no methods, then some public defaults are generated. */
1816 maybe_warn_about_overly_private_class (t);
1818 /* The type conversion ops have to live at the front of the vec, so we
1819 can't sort them. */
1820 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1821 VEC_iterate (tree, method_vec, slot, fn_fields);
1822 ++slot)
1823 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
1824 break;
1825 if (len - slot > 1)
1826 qsort (VEC_address (tree, method_vec) + slot,
1827 len-slot, sizeof (tree), method_name_cmp);
1830 /* Make BINFO's vtable have N entries, including RTTI entries,
1831 vbase and vcall offsets, etc. Set its type and call the back end
1832 to lay it out. */
1834 static void
1835 layout_vtable_decl (tree binfo, int n)
1837 tree atype;
1838 tree vtable;
1840 atype = build_cplus_array_type (vtable_entry_type,
1841 build_index_type (size_int (n - 1)));
1842 layout_type (atype);
1844 /* We may have to grow the vtable. */
1845 vtable = get_vtbl_decl_for_binfo (binfo);
1846 if (!same_type_p (TREE_TYPE (vtable), atype))
1848 TREE_TYPE (vtable) = atype;
1849 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
1850 layout_decl (vtable, 0);
1854 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
1855 have the same signature. */
1858 same_signature_p (const_tree fndecl, const_tree base_fndecl)
1860 /* One destructor overrides another if they are the same kind of
1861 destructor. */
1862 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
1863 && special_function_p (base_fndecl) == special_function_p (fndecl))
1864 return 1;
1865 /* But a non-destructor never overrides a destructor, nor vice
1866 versa, nor do different kinds of destructors override
1867 one-another. For example, a complete object destructor does not
1868 override a deleting destructor. */
1869 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
1870 return 0;
1872 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
1873 || (DECL_CONV_FN_P (fndecl)
1874 && DECL_CONV_FN_P (base_fndecl)
1875 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
1876 DECL_CONV_FN_TYPE (base_fndecl))))
1878 tree types, base_types;
1879 types = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1880 base_types = TYPE_ARG_TYPES (TREE_TYPE (base_fndecl));
1881 if ((cp_type_quals (TREE_TYPE (TREE_VALUE (base_types)))
1882 == cp_type_quals (TREE_TYPE (TREE_VALUE (types))))
1883 && compparms (TREE_CHAIN (base_types), TREE_CHAIN (types)))
1884 return 1;
1886 return 0;
1889 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
1890 subobject. */
1892 static bool
1893 base_derived_from (tree derived, tree base)
1895 tree probe;
1897 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1899 if (probe == derived)
1900 return true;
1901 else if (BINFO_VIRTUAL_P (probe))
1902 /* If we meet a virtual base, we can't follow the inheritance
1903 any more. See if the complete type of DERIVED contains
1904 such a virtual base. */
1905 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
1906 != NULL_TREE);
1908 return false;
1911 typedef struct find_final_overrider_data_s {
1912 /* The function for which we are trying to find a final overrider. */
1913 tree fn;
1914 /* The base class in which the function was declared. */
1915 tree declaring_base;
1916 /* The candidate overriders. */
1917 tree candidates;
1918 /* Path to most derived. */
1919 VEC(tree,heap) *path;
1920 } find_final_overrider_data;
1922 /* Add the overrider along the current path to FFOD->CANDIDATES.
1923 Returns true if an overrider was found; false otherwise. */
1925 static bool
1926 dfs_find_final_overrider_1 (tree binfo,
1927 find_final_overrider_data *ffod,
1928 unsigned depth)
1930 tree method;
1932 /* If BINFO is not the most derived type, try a more derived class.
1933 A definition there will overrider a definition here. */
1934 if (depth)
1936 depth--;
1937 if (dfs_find_final_overrider_1
1938 (VEC_index (tree, ffod->path, depth), ffod, depth))
1939 return true;
1942 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
1943 if (method)
1945 tree *candidate = &ffod->candidates;
1947 /* Remove any candidates overridden by this new function. */
1948 while (*candidate)
1950 /* If *CANDIDATE overrides METHOD, then METHOD
1951 cannot override anything else on the list. */
1952 if (base_derived_from (TREE_VALUE (*candidate), binfo))
1953 return true;
1954 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
1955 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
1956 *candidate = TREE_CHAIN (*candidate);
1957 else
1958 candidate = &TREE_CHAIN (*candidate);
1961 /* Add the new function. */
1962 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
1963 return true;
1966 return false;
1969 /* Called from find_final_overrider via dfs_walk. */
1971 static tree
1972 dfs_find_final_overrider_pre (tree binfo, void *data)
1974 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
1976 if (binfo == ffod->declaring_base)
1977 dfs_find_final_overrider_1 (binfo, ffod, VEC_length (tree, ffod->path));
1978 VEC_safe_push (tree, heap, ffod->path, binfo);
1980 return NULL_TREE;
1983 static tree
1984 dfs_find_final_overrider_post (tree binfo ATTRIBUTE_UNUSED, void *data)
1986 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
1987 VEC_pop (tree, ffod->path);
1989 return NULL_TREE;
1992 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
1993 FN and whose TREE_VALUE is the binfo for the base where the
1994 overriding occurs. BINFO (in the hierarchy dominated by the binfo
1995 DERIVED) is the base object in which FN is declared. */
1997 static tree
1998 find_final_overrider (tree derived, tree binfo, tree fn)
2000 find_final_overrider_data ffod;
2002 /* Getting this right is a little tricky. This is valid:
2004 struct S { virtual void f (); };
2005 struct T { virtual void f (); };
2006 struct U : public S, public T { };
2008 even though calling `f' in `U' is ambiguous. But,
2010 struct R { virtual void f(); };
2011 struct S : virtual public R { virtual void f (); };
2012 struct T : virtual public R { virtual void f (); };
2013 struct U : public S, public T { };
2015 is not -- there's no way to decide whether to put `S::f' or
2016 `T::f' in the vtable for `R'.
2018 The solution is to look at all paths to BINFO. If we find
2019 different overriders along any two, then there is a problem. */
2020 if (DECL_THUNK_P (fn))
2021 fn = THUNK_TARGET (fn);
2023 /* Determine the depth of the hierarchy. */
2024 ffod.fn = fn;
2025 ffod.declaring_base = binfo;
2026 ffod.candidates = NULL_TREE;
2027 ffod.path = VEC_alloc (tree, heap, 30);
2029 dfs_walk_all (derived, dfs_find_final_overrider_pre,
2030 dfs_find_final_overrider_post, &ffod);
2032 VEC_free (tree, heap, ffod.path);
2034 /* If there was no winner, issue an error message. */
2035 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
2036 return error_mark_node;
2038 return ffod.candidates;
2041 /* Return the index of the vcall offset for FN when TYPE is used as a
2042 virtual base. */
2044 static tree
2045 get_vcall_index (tree fn, tree type)
2047 VEC(tree_pair_s,gc) *indices = CLASSTYPE_VCALL_INDICES (type);
2048 tree_pair_p p;
2049 unsigned ix;
2051 for (ix = 0; VEC_iterate (tree_pair_s, indices, ix, p); ix++)
2052 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
2053 || same_signature_p (fn, p->purpose))
2054 return p->value;
2056 /* There should always be an appropriate index. */
2057 gcc_unreachable ();
2060 /* Update an entry in the vtable for BINFO, which is in the hierarchy
2061 dominated by T. FN has been overridden in BINFO; VIRTUALS points to the
2062 corresponding position in the BINFO_VIRTUALS list. */
2064 static void
2065 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
2066 unsigned ix)
2068 tree b;
2069 tree overrider;
2070 tree delta;
2071 tree virtual_base;
2072 tree first_defn;
2073 tree overrider_fn, overrider_target;
2074 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
2075 tree over_return, base_return;
2076 bool lost = false;
2078 /* Find the nearest primary base (possibly binfo itself) which defines
2079 this function; this is the class the caller will convert to when
2080 calling FN through BINFO. */
2081 for (b = binfo; ; b = get_primary_binfo (b))
2083 gcc_assert (b);
2084 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
2085 break;
2087 /* The nearest definition is from a lost primary. */
2088 if (BINFO_LOST_PRIMARY_P (b))
2089 lost = true;
2091 first_defn = b;
2093 /* Find the final overrider. */
2094 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
2095 if (overrider == error_mark_node)
2097 error ("no unique final overrider for %qD in %qT", target_fn, t);
2098 return;
2100 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2102 /* Check for adjusting covariant return types. */
2103 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2104 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2106 if (POINTER_TYPE_P (over_return)
2107 && TREE_CODE (over_return) == TREE_CODE (base_return)
2108 && CLASS_TYPE_P (TREE_TYPE (over_return))
2109 && CLASS_TYPE_P (TREE_TYPE (base_return))
2110 /* If the overrider is invalid, don't even try. */
2111 && !DECL_INVALID_OVERRIDER_P (overrider_target))
2113 /* If FN is a covariant thunk, we must figure out the adjustment
2114 to the final base FN was converting to. As OVERRIDER_TARGET might
2115 also be converting to the return type of FN, we have to
2116 combine the two conversions here. */
2117 tree fixed_offset, virtual_offset;
2119 over_return = TREE_TYPE (over_return);
2120 base_return = TREE_TYPE (base_return);
2122 if (DECL_THUNK_P (fn))
2124 gcc_assert (DECL_RESULT_THUNK_P (fn));
2125 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2126 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2128 else
2129 fixed_offset = virtual_offset = NULL_TREE;
2131 if (virtual_offset)
2132 /* Find the equivalent binfo within the return type of the
2133 overriding function. We will want the vbase offset from
2134 there. */
2135 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2136 over_return);
2137 else if (!same_type_ignoring_top_level_qualifiers_p
2138 (over_return, base_return))
2140 /* There was no existing virtual thunk (which takes
2141 precedence). So find the binfo of the base function's
2142 return type within the overriding function's return type.
2143 We cannot call lookup base here, because we're inside a
2144 dfs_walk, and will therefore clobber the BINFO_MARKED
2145 flags. Fortunately we know the covariancy is valid (it
2146 has already been checked), so we can just iterate along
2147 the binfos, which have been chained in inheritance graph
2148 order. Of course it is lame that we have to repeat the
2149 search here anyway -- we should really be caching pieces
2150 of the vtable and avoiding this repeated work. */
2151 tree thunk_binfo, base_binfo;
2153 /* Find the base binfo within the overriding function's
2154 return type. We will always find a thunk_binfo, except
2155 when the covariancy is invalid (which we will have
2156 already diagnosed). */
2157 for (base_binfo = TYPE_BINFO (base_return),
2158 thunk_binfo = TYPE_BINFO (over_return);
2159 thunk_binfo;
2160 thunk_binfo = TREE_CHAIN (thunk_binfo))
2161 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2162 BINFO_TYPE (base_binfo)))
2163 break;
2165 /* See if virtual inheritance is involved. */
2166 for (virtual_offset = thunk_binfo;
2167 virtual_offset;
2168 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2169 if (BINFO_VIRTUAL_P (virtual_offset))
2170 break;
2172 if (virtual_offset
2173 || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
2175 tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2177 if (virtual_offset)
2179 /* We convert via virtual base. Adjust the fixed
2180 offset to be from there. */
2181 offset =
2182 size_diffop (offset,
2183 convert (ssizetype,
2184 BINFO_OFFSET (virtual_offset)));
2186 if (fixed_offset)
2187 /* There was an existing fixed offset, this must be
2188 from the base just converted to, and the base the
2189 FN was thunking to. */
2190 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2191 else
2192 fixed_offset = offset;
2196 if (fixed_offset || virtual_offset)
2197 /* Replace the overriding function with a covariant thunk. We
2198 will emit the overriding function in its own slot as
2199 well. */
2200 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2201 fixed_offset, virtual_offset);
2203 else
2204 gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
2205 !DECL_THUNK_P (fn));
2207 /* Assume that we will produce a thunk that convert all the way to
2208 the final overrider, and not to an intermediate virtual base. */
2209 virtual_base = NULL_TREE;
2211 /* See if we can convert to an intermediate virtual base first, and then
2212 use the vcall offset located there to finish the conversion. */
2213 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2215 /* If we find the final overrider, then we can stop
2216 walking. */
2217 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2218 BINFO_TYPE (TREE_VALUE (overrider))))
2219 break;
2221 /* If we find a virtual base, and we haven't yet found the
2222 overrider, then there is a virtual base between the
2223 declaring base (first_defn) and the final overrider. */
2224 if (BINFO_VIRTUAL_P (b))
2226 virtual_base = b;
2227 break;
2231 if (overrider_fn != overrider_target && !virtual_base)
2233 /* The ABI specifies that a covariant thunk includes a mangling
2234 for a this pointer adjustment. This-adjusting thunks that
2235 override a function from a virtual base have a vcall
2236 adjustment. When the virtual base in question is a primary
2237 virtual base, we know the adjustments are zero, (and in the
2238 non-covariant case, we would not use the thunk).
2239 Unfortunately we didn't notice this could happen, when
2240 designing the ABI and so never mandated that such a covariant
2241 thunk should be emitted. Because we must use the ABI mandated
2242 name, we must continue searching from the binfo where we
2243 found the most recent definition of the function, towards the
2244 primary binfo which first introduced the function into the
2245 vtable. If that enters a virtual base, we must use a vcall
2246 this-adjusting thunk. Bleah! */
2247 tree probe = first_defn;
2249 while ((probe = get_primary_binfo (probe))
2250 && (unsigned) list_length (BINFO_VIRTUALS (probe)) > ix)
2251 if (BINFO_VIRTUAL_P (probe))
2252 virtual_base = probe;
2254 if (virtual_base)
2255 /* Even if we find a virtual base, the correct delta is
2256 between the overrider and the binfo we're building a vtable
2257 for. */
2258 goto virtual_covariant;
2261 /* Compute the constant adjustment to the `this' pointer. The
2262 `this' pointer, when this function is called, will point at BINFO
2263 (or one of its primary bases, which are at the same offset). */
2264 if (virtual_base)
2265 /* The `this' pointer needs to be adjusted from the declaration to
2266 the nearest virtual base. */
2267 delta = size_diffop_loc (input_location,
2268 convert (ssizetype, BINFO_OFFSET (virtual_base)),
2269 convert (ssizetype, BINFO_OFFSET (first_defn)));
2270 else if (lost)
2271 /* If the nearest definition is in a lost primary, we don't need an
2272 entry in our vtable. Except possibly in a constructor vtable,
2273 if we happen to get our primary back. In that case, the offset
2274 will be zero, as it will be a primary base. */
2275 delta = size_zero_node;
2276 else
2277 /* The `this' pointer needs to be adjusted from pointing to
2278 BINFO to pointing at the base where the final overrider
2279 appears. */
2280 virtual_covariant:
2281 delta = size_diffop_loc (input_location,
2282 convert (ssizetype,
2283 BINFO_OFFSET (TREE_VALUE (overrider))),
2284 convert (ssizetype, BINFO_OFFSET (binfo)));
2286 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2288 if (virtual_base)
2289 BV_VCALL_INDEX (*virtuals)
2290 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2291 else
2292 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2295 /* Called from modify_all_vtables via dfs_walk. */
2297 static tree
2298 dfs_modify_vtables (tree binfo, void* data)
2300 tree t = (tree) data;
2301 tree virtuals;
2302 tree old_virtuals;
2303 unsigned ix;
2305 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2306 /* A base without a vtable needs no modification, and its bases
2307 are uninteresting. */
2308 return dfs_skip_bases;
2310 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2311 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2312 /* Don't do the primary vtable, if it's new. */
2313 return NULL_TREE;
2315 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2316 /* There's no need to modify the vtable for a non-virtual primary
2317 base; we're not going to use that vtable anyhow. We do still
2318 need to do this for virtual primary bases, as they could become
2319 non-primary in a construction vtable. */
2320 return NULL_TREE;
2322 make_new_vtable (t, binfo);
2324 /* Now, go through each of the virtual functions in the virtual
2325 function table for BINFO. Find the final overrider, and update
2326 the BINFO_VIRTUALS list appropriately. */
2327 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2328 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2329 virtuals;
2330 ix++, virtuals = TREE_CHAIN (virtuals),
2331 old_virtuals = TREE_CHAIN (old_virtuals))
2332 update_vtable_entry_for_fn (t,
2333 binfo,
2334 BV_FN (old_virtuals),
2335 &virtuals, ix);
2337 return NULL_TREE;
2340 /* Update all of the primary and secondary vtables for T. Create new
2341 vtables as required, and initialize their RTTI information. Each
2342 of the functions in VIRTUALS is declared in T and may override a
2343 virtual function from a base class; find and modify the appropriate
2344 entries to point to the overriding functions. Returns a list, in
2345 declaration order, of the virtual functions that are declared in T,
2346 but do not appear in the primary base class vtable, and which
2347 should therefore be appended to the end of the vtable for T. */
2349 static tree
2350 modify_all_vtables (tree t, tree virtuals)
2352 tree binfo = TYPE_BINFO (t);
2353 tree *fnsp;
2355 /* Update all of the vtables. */
2356 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2358 /* Add virtual functions not already in our primary vtable. These
2359 will be both those introduced by this class, and those overridden
2360 from secondary bases. It does not include virtuals merely
2361 inherited from secondary bases. */
2362 for (fnsp = &virtuals; *fnsp; )
2364 tree fn = TREE_VALUE (*fnsp);
2366 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2367 || DECL_VINDEX (fn) == error_mark_node)
2369 /* We don't need to adjust the `this' pointer when
2370 calling this function. */
2371 BV_DELTA (*fnsp) = integer_zero_node;
2372 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2374 /* This is a function not already in our vtable. Keep it. */
2375 fnsp = &TREE_CHAIN (*fnsp);
2377 else
2378 /* We've already got an entry for this function. Skip it. */
2379 *fnsp = TREE_CHAIN (*fnsp);
2382 return virtuals;
2385 /* Get the base virtual function declarations in T that have the
2386 indicated NAME. */
2388 static tree
2389 get_basefndecls (tree name, tree t)
2391 tree methods;
2392 tree base_fndecls = NULL_TREE;
2393 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2394 int i;
2396 /* Find virtual functions in T with the indicated NAME. */
2397 i = lookup_fnfields_1 (t, name);
2398 if (i != -1)
2399 for (methods = VEC_index (tree, CLASSTYPE_METHOD_VEC (t), i);
2400 methods;
2401 methods = OVL_NEXT (methods))
2403 tree method = OVL_CURRENT (methods);
2405 if (TREE_CODE (method) == FUNCTION_DECL
2406 && DECL_VINDEX (method))
2407 base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
2410 if (base_fndecls)
2411 return base_fndecls;
2413 for (i = 0; i < n_baseclasses; i++)
2415 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2416 base_fndecls = chainon (get_basefndecls (name, basetype),
2417 base_fndecls);
2420 return base_fndecls;
2423 /* If this declaration supersedes the declaration of
2424 a method declared virtual in the base class, then
2425 mark this field as being virtual as well. */
2427 void
2428 check_for_override (tree decl, tree ctype)
2430 if (TREE_CODE (decl) == TEMPLATE_DECL)
2431 /* In [temp.mem] we have:
2433 A specialization of a member function template does not
2434 override a virtual function from a base class. */
2435 return;
2436 if ((DECL_DESTRUCTOR_P (decl)
2437 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2438 || DECL_CONV_FN_P (decl))
2439 && look_for_overrides (ctype, decl)
2440 && !DECL_STATIC_FUNCTION_P (decl))
2441 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2442 the error_mark_node so that we know it is an overriding
2443 function. */
2444 DECL_VINDEX (decl) = decl;
2446 if (DECL_VIRTUAL_P (decl))
2448 if (!DECL_VINDEX (decl))
2449 DECL_VINDEX (decl) = error_mark_node;
2450 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2454 /* Warn about hidden virtual functions that are not overridden in t.
2455 We know that constructors and destructors don't apply. */
2457 static void
2458 warn_hidden (tree t)
2460 VEC(tree,gc) *method_vec = CLASSTYPE_METHOD_VEC (t);
2461 tree fns;
2462 size_t i;
2464 /* We go through each separately named virtual function. */
2465 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2466 VEC_iterate (tree, method_vec, i, fns);
2467 ++i)
2469 tree fn;
2470 tree name;
2471 tree fndecl;
2472 tree base_fndecls;
2473 tree base_binfo;
2474 tree binfo;
2475 int j;
2477 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2478 have the same name. Figure out what name that is. */
2479 name = DECL_NAME (OVL_CURRENT (fns));
2480 /* There are no possibly hidden functions yet. */
2481 base_fndecls = NULL_TREE;
2482 /* Iterate through all of the base classes looking for possibly
2483 hidden functions. */
2484 for (binfo = TYPE_BINFO (t), j = 0;
2485 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2487 tree basetype = BINFO_TYPE (base_binfo);
2488 base_fndecls = chainon (get_basefndecls (name, basetype),
2489 base_fndecls);
2492 /* If there are no functions to hide, continue. */
2493 if (!base_fndecls)
2494 continue;
2496 /* Remove any overridden functions. */
2497 for (fn = fns; fn; fn = OVL_NEXT (fn))
2499 fndecl = OVL_CURRENT (fn);
2500 if (DECL_VINDEX (fndecl))
2502 tree *prev = &base_fndecls;
2504 while (*prev)
2505 /* If the method from the base class has the same
2506 signature as the method from the derived class, it
2507 has been overridden. */
2508 if (same_signature_p (fndecl, TREE_VALUE (*prev)))
2509 *prev = TREE_CHAIN (*prev);
2510 else
2511 prev = &TREE_CHAIN (*prev);
2515 /* Now give a warning for all base functions without overriders,
2516 as they are hidden. */
2517 while (base_fndecls)
2519 /* Here we know it is a hider, and no overrider exists. */
2520 warning (OPT_Woverloaded_virtual, "%q+D was hidden", TREE_VALUE (base_fndecls));
2521 warning (OPT_Woverloaded_virtual, " by %q+D", fns);
2522 base_fndecls = TREE_CHAIN (base_fndecls);
2527 /* Check for things that are invalid. There are probably plenty of other
2528 things we should check for also. */
2530 static void
2531 finish_struct_anon (tree t)
2533 tree field;
2535 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
2537 if (TREE_STATIC (field))
2538 continue;
2539 if (TREE_CODE (field) != FIELD_DECL)
2540 continue;
2542 if (DECL_NAME (field) == NULL_TREE
2543 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
2545 bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE;
2546 tree elt = TYPE_FIELDS (TREE_TYPE (field));
2547 for (; elt; elt = TREE_CHAIN (elt))
2549 /* We're generally only interested in entities the user
2550 declared, but we also find nested classes by noticing
2551 the TYPE_DECL that we create implicitly. You're
2552 allowed to put one anonymous union inside another,
2553 though, so we explicitly tolerate that. We use
2554 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2555 we also allow unnamed types used for defining fields. */
2556 if (DECL_ARTIFICIAL (elt)
2557 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2558 || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
2559 continue;
2561 if (TREE_CODE (elt) != FIELD_DECL)
2563 if (is_union)
2564 permerror (input_location, "%q+#D invalid; an anonymous union can "
2565 "only have non-static data members", elt);
2566 else
2567 permerror (input_location, "%q+#D invalid; an anonymous struct can "
2568 "only have non-static data members", elt);
2569 continue;
2572 if (TREE_PRIVATE (elt))
2574 if (is_union)
2575 permerror (input_location, "private member %q+#D in anonymous union", elt);
2576 else
2577 permerror (input_location, "private member %q+#D in anonymous struct", elt);
2579 else if (TREE_PROTECTED (elt))
2581 if (is_union)
2582 permerror (input_location, "protected member %q+#D in anonymous union", elt);
2583 else
2584 permerror (input_location, "protected member %q+#D in anonymous struct", elt);
2587 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2588 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2594 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2595 will be used later during class template instantiation.
2596 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2597 a non-static member data (FIELD_DECL), a member function
2598 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2599 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2600 When FRIEND_P is nonzero, T is either a friend class
2601 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2602 (FUNCTION_DECL, TEMPLATE_DECL). */
2604 void
2605 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
2607 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2608 if (CLASSTYPE_TEMPLATE_INFO (type))
2609 CLASSTYPE_DECL_LIST (type)
2610 = tree_cons (friend_p ? NULL_TREE : type,
2611 t, CLASSTYPE_DECL_LIST (type));
2614 /* Create default constructors, assignment operators, and so forth for
2615 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
2616 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
2617 the class cannot have a default constructor, copy constructor
2618 taking a const reference argument, or an assignment operator taking
2619 a const reference, respectively. */
2621 static void
2622 add_implicitly_declared_members (tree t,
2623 int cant_have_const_cctor,
2624 int cant_have_const_assignment)
2626 /* Destructor. */
2627 if (!CLASSTYPE_DESTRUCTORS (t))
2629 /* In general, we create destructors lazily. */
2630 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
2632 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
2633 && TYPE_FOR_JAVA (t))
2634 /* But if this is a Java class, any non-trivial destructor is
2635 invalid, even if compiler-generated. Therefore, if the
2636 destructor is non-trivial we create it now. */
2637 lazily_declare_fn (sfk_destructor, t);
2640 /* [class.ctor]
2642 If there is no user-declared constructor for a class, a default
2643 constructor is implicitly declared. */
2644 if (! TYPE_HAS_USER_CONSTRUCTOR (t))
2646 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
2647 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
2650 /* [class.ctor]
2652 If a class definition does not explicitly declare a copy
2653 constructor, one is declared implicitly. */
2654 if (! TYPE_HAS_COPY_CTOR (t) && ! TYPE_FOR_JAVA (t)
2655 && !type_has_move_constructor (t))
2657 TYPE_HAS_COPY_CTOR (t) = 1;
2658 TYPE_HAS_CONST_COPY_CTOR (t) = !cant_have_const_cctor;
2659 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
2660 if (cxx_dialect >= cxx0x)
2661 CLASSTYPE_LAZY_MOVE_CTOR (t) = 1;
2664 /* If there is no assignment operator, one will be created if and
2665 when it is needed. For now, just record whether or not the type
2666 of the parameter to the assignment operator will be a const or
2667 non-const reference. */
2668 if (!TYPE_HAS_COPY_ASSIGN (t) && !TYPE_FOR_JAVA (t)
2669 && !type_has_move_assign (t))
2671 TYPE_HAS_COPY_ASSIGN (t) = 1;
2672 TYPE_HAS_CONST_COPY_ASSIGN (t) = !cant_have_const_assignment;
2673 CLASSTYPE_LAZY_COPY_ASSIGN (t) = 1;
2674 if (cxx_dialect >= cxx0x)
2675 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 1;
2678 /* We can't be lazy about declaring functions that might override
2679 a virtual function from a base class. */
2680 if (TYPE_POLYMORPHIC_P (t)
2681 && (CLASSTYPE_LAZY_COPY_ASSIGN (t)
2682 || CLASSTYPE_LAZY_MOVE_ASSIGN (t)
2683 || CLASSTYPE_LAZY_DESTRUCTOR (t)))
2685 tree binfo = TYPE_BINFO (t);
2686 tree base_binfo;
2687 int ix;
2688 tree opname = ansi_assopname (NOP_EXPR);
2689 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ++ix)
2691 tree bv;
2692 for (bv = BINFO_VIRTUALS (base_binfo); bv; bv = TREE_CHAIN (bv))
2694 tree fn = BV_FN (bv);
2695 if (DECL_NAME (fn) == opname)
2697 if (CLASSTYPE_LAZY_COPY_ASSIGN (t))
2698 lazily_declare_fn (sfk_copy_assignment, t);
2699 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
2700 lazily_declare_fn (sfk_move_assignment, t);
2702 else if (DECL_DESTRUCTOR_P (fn)
2703 && CLASSTYPE_LAZY_DESTRUCTOR (t))
2704 lazily_declare_fn (sfk_destructor, t);
2710 /* Subroutine of finish_struct_1. Recursively count the number of fields
2711 in TYPE, including anonymous union members. */
2713 static int
2714 count_fields (tree fields)
2716 tree x;
2717 int n_fields = 0;
2718 for (x = fields; x; x = TREE_CHAIN (x))
2720 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2721 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
2722 else
2723 n_fields += 1;
2725 return n_fields;
2728 /* Subroutine of finish_struct_1. Recursively add all the fields in the
2729 TREE_LIST FIELDS to the SORTED_FIELDS_TYPE elts, starting at offset IDX. */
2731 static int
2732 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
2734 tree x;
2735 for (x = fields; x; x = TREE_CHAIN (x))
2737 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2738 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
2739 else
2740 field_vec->elts[idx++] = x;
2742 return idx;
2745 /* FIELD is a bit-field. We are finishing the processing for its
2746 enclosing type. Issue any appropriate messages and set appropriate
2747 flags. Returns false if an error has been diagnosed. */
2749 static bool
2750 check_bitfield_decl (tree field)
2752 tree type = TREE_TYPE (field);
2753 tree w;
2755 /* Extract the declared width of the bitfield, which has been
2756 temporarily stashed in DECL_INITIAL. */
2757 w = DECL_INITIAL (field);
2758 gcc_assert (w != NULL_TREE);
2759 /* Remove the bit-field width indicator so that the rest of the
2760 compiler does not treat that value as an initializer. */
2761 DECL_INITIAL (field) = NULL_TREE;
2763 /* Detect invalid bit-field type. */
2764 if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type))
2766 error ("bit-field %q+#D with non-integral type", field);
2767 w = error_mark_node;
2769 else
2771 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
2772 STRIP_NOPS (w);
2774 /* detect invalid field size. */
2775 w = integral_constant_value (w);
2777 if (TREE_CODE (w) != INTEGER_CST)
2779 error ("bit-field %q+D width not an integer constant", field);
2780 w = error_mark_node;
2782 else if (tree_int_cst_sgn (w) < 0)
2784 error ("negative width in bit-field %q+D", field);
2785 w = error_mark_node;
2787 else if (integer_zerop (w) && DECL_NAME (field) != 0)
2789 error ("zero width for bit-field %q+D", field);
2790 w = error_mark_node;
2792 else if (compare_tree_int (w, TYPE_PRECISION (type)) > 0
2793 && TREE_CODE (type) != ENUMERAL_TYPE
2794 && TREE_CODE (type) != BOOLEAN_TYPE)
2795 warning (0, "width of %q+D exceeds its type", field);
2796 else if (TREE_CODE (type) == ENUMERAL_TYPE
2797 && (0 > (compare_tree_int
2798 (w, TYPE_PRECISION (ENUM_UNDERLYING_TYPE (type))))))
2799 warning (0, "%q+D is too small to hold all values of %q#T", field, type);
2802 if (w != error_mark_node)
2804 DECL_SIZE (field) = convert (bitsizetype, w);
2805 DECL_BIT_FIELD (field) = 1;
2806 return true;
2808 else
2810 /* Non-bit-fields are aligned for their type. */
2811 DECL_BIT_FIELD (field) = 0;
2812 CLEAR_DECL_C_BIT_FIELD (field);
2813 return false;
2817 /* FIELD is a non bit-field. We are finishing the processing for its
2818 enclosing type T. Issue any appropriate messages and set appropriate
2819 flags. */
2821 static void
2822 check_field_decl (tree field,
2823 tree t,
2824 int* cant_have_const_ctor,
2825 int* no_const_asn_ref,
2826 int* any_default_members)
2828 tree type = strip_array_types (TREE_TYPE (field));
2830 /* An anonymous union cannot contain any fields which would change
2831 the settings of CANT_HAVE_CONST_CTOR and friends. */
2832 if (ANON_UNION_TYPE_P (type))
2834 /* And, we don't set TYPE_HAS_CONST_COPY_CTOR, etc., for anonymous
2835 structs. So, we recurse through their fields here. */
2836 else if (ANON_AGGR_TYPE_P (type))
2838 tree fields;
2840 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2841 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
2842 check_field_decl (fields, t, cant_have_const_ctor,
2843 no_const_asn_ref, any_default_members);
2845 /* Check members with class type for constructors, destructors,
2846 etc. */
2847 else if (CLASS_TYPE_P (type))
2849 /* Never let anything with uninheritable virtuals
2850 make it through without complaint. */
2851 abstract_virtuals_error (field, type);
2853 if (TREE_CODE (t) == UNION_TYPE)
2855 if (TYPE_NEEDS_CONSTRUCTING (type))
2856 error ("member %q+#D with constructor not allowed in union",
2857 field);
2858 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
2859 error ("member %q+#D with destructor not allowed in union", field);
2860 if (TYPE_HAS_COMPLEX_COPY_ASSIGN (type))
2861 error ("member %q+#D with copy assignment operator not allowed in union",
2862 field);
2863 /* Don't bother diagnosing move assop now; C++0x has more
2864 flexible unions. */
2866 else
2868 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
2869 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
2870 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
2871 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
2872 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (type)
2873 || !TYPE_HAS_COPY_ASSIGN (type));
2874 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (type)
2875 || !TYPE_HAS_COPY_CTOR (type));
2876 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (type);
2877 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (type);
2878 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (type)
2879 || TYPE_HAS_COMPLEX_DFLT (type));
2882 if (TYPE_HAS_COPY_CTOR (type)
2883 && !TYPE_HAS_CONST_COPY_CTOR (type))
2884 *cant_have_const_ctor = 1;
2886 if (TYPE_HAS_COPY_ASSIGN (type)
2887 && !TYPE_HAS_CONST_COPY_ASSIGN (type))
2888 *no_const_asn_ref = 1;
2890 if (DECL_INITIAL (field) != NULL_TREE)
2892 /* `build_class_init_list' does not recognize
2893 non-FIELD_DECLs. */
2894 if (TREE_CODE (t) == UNION_TYPE && any_default_members != 0)
2895 error ("multiple fields in union %qT initialized", t);
2896 *any_default_members = 1;
2900 /* Check the data members (both static and non-static), class-scoped
2901 typedefs, etc., appearing in the declaration of T. Issue
2902 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
2903 declaration order) of access declarations; each TREE_VALUE in this
2904 list is a USING_DECL.
2906 In addition, set the following flags:
2908 EMPTY_P
2909 The class is empty, i.e., contains no non-static data members.
2911 CANT_HAVE_CONST_CTOR_P
2912 This class cannot have an implicitly generated copy constructor
2913 taking a const reference.
2915 CANT_HAVE_CONST_ASN_REF
2916 This class cannot have an implicitly generated assignment
2917 operator taking a const reference.
2919 All of these flags should be initialized before calling this
2920 function.
2922 Returns a pointer to the end of the TYPE_FIELDs chain; additional
2923 fields can be added by adding to this chain. */
2925 static void
2926 check_field_decls (tree t, tree *access_decls,
2927 int *cant_have_const_ctor_p,
2928 int *no_const_asn_ref_p)
2930 tree *field;
2931 tree *next;
2932 bool has_pointers;
2933 int any_default_members;
2934 int cant_pack = 0;
2935 int field_access = -1;
2937 /* Assume there are no access declarations. */
2938 *access_decls = NULL_TREE;
2939 /* Assume this class has no pointer members. */
2940 has_pointers = false;
2941 /* Assume none of the members of this class have default
2942 initializations. */
2943 any_default_members = 0;
2945 for (field = &TYPE_FIELDS (t); *field; field = next)
2947 tree x = *field;
2948 tree type = TREE_TYPE (x);
2949 int this_field_access;
2951 next = &TREE_CHAIN (x);
2953 if (TREE_CODE (x) == USING_DECL)
2955 /* Prune the access declaration from the list of fields. */
2956 *field = TREE_CHAIN (x);
2958 /* Save the access declarations for our caller. */
2959 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
2961 /* Since we've reset *FIELD there's no reason to skip to the
2962 next field. */
2963 next = field;
2964 continue;
2967 if (TREE_CODE (x) == TYPE_DECL
2968 || TREE_CODE (x) == TEMPLATE_DECL)
2969 continue;
2971 /* If we've gotten this far, it's a data member, possibly static,
2972 or an enumerator. */
2973 DECL_CONTEXT (x) = t;
2975 /* When this goes into scope, it will be a non-local reference. */
2976 DECL_NONLOCAL (x) = 1;
2978 if (TREE_CODE (t) == UNION_TYPE)
2980 /* [class.union]
2982 If a union contains a static data member, or a member of
2983 reference type, the program is ill-formed. */
2984 if (TREE_CODE (x) == VAR_DECL)
2986 error ("%q+D may not be static because it is a member of a union", x);
2987 continue;
2989 if (TREE_CODE (type) == REFERENCE_TYPE)
2991 error ("%q+D may not have reference type %qT because"
2992 " it is a member of a union",
2993 x, type);
2994 continue;
2998 /* Perform error checking that did not get done in
2999 grokdeclarator. */
3000 if (TREE_CODE (type) == FUNCTION_TYPE)
3002 error ("field %q+D invalidly declared function type", x);
3003 type = build_pointer_type (type);
3004 TREE_TYPE (x) = type;
3006 else if (TREE_CODE (type) == METHOD_TYPE)
3008 error ("field %q+D invalidly declared method type", x);
3009 type = build_pointer_type (type);
3010 TREE_TYPE (x) = type;
3013 if (type == error_mark_node)
3014 continue;
3016 if (TREE_CODE (x) == CONST_DECL || TREE_CODE (x) == VAR_DECL)
3017 continue;
3019 /* Now it can only be a FIELD_DECL. */
3021 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
3022 CLASSTYPE_NON_AGGREGATE (t) = 1;
3024 /* A standard-layout class is a class that:
3026 has the same access control (Clause 11) for all non-static data members,
3027 ... */
3028 this_field_access = TREE_PROTECTED (x) ? 1 : TREE_PRIVATE (x) ? 2 : 0;
3029 if (field_access == -1)
3030 field_access = this_field_access;
3031 else if (this_field_access != field_access)
3032 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3034 /* If this is of reference type, check if it needs an init. */
3035 if (TREE_CODE (type) == REFERENCE_TYPE)
3037 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3038 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3039 if (DECL_INITIAL (x) == NULL_TREE)
3040 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3042 /* ARM $12.6.2: [A member initializer list] (or, for an
3043 aggregate, initialization by a brace-enclosed list) is the
3044 only way to initialize nonstatic const and reference
3045 members. */
3046 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3047 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3050 type = strip_array_types (type);
3052 if (TYPE_PACKED (t))
3054 if (!layout_pod_type_p (type) && !TYPE_PACKED (type))
3056 warning
3058 "ignoring packed attribute because of unpacked non-POD field %q+#D",
3060 cant_pack = 1;
3062 else if (DECL_C_BIT_FIELD (x)
3063 || TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
3064 DECL_PACKED (x) = 1;
3067 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
3068 /* We don't treat zero-width bitfields as making a class
3069 non-empty. */
3071 else
3073 /* The class is non-empty. */
3074 CLASSTYPE_EMPTY_P (t) = 0;
3075 /* The class is not even nearly empty. */
3076 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3077 /* If one of the data members contains an empty class,
3078 so does T. */
3079 if (CLASS_TYPE_P (type)
3080 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3081 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
3084 /* This is used by -Weffc++ (see below). Warn only for pointers
3085 to members which might hold dynamic memory. So do not warn
3086 for pointers to functions or pointers to members. */
3087 if (TYPE_PTR_P (type)
3088 && !TYPE_PTRFN_P (type)
3089 && !TYPE_PTR_TO_MEMBER_P (type))
3090 has_pointers = true;
3092 if (CLASS_TYPE_P (type))
3094 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
3095 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3096 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
3097 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3100 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
3101 CLASSTYPE_HAS_MUTABLE (t) = 1;
3103 if (! layout_pod_type_p (type))
3104 /* DR 148 now allows pointers to members (which are POD themselves),
3105 to be allowed in POD structs. */
3106 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3108 if (!std_layout_type_p (type))
3109 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3111 if (! zero_init_p (type))
3112 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
3114 /* We set DECL_C_BIT_FIELD in grokbitfield.
3115 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3116 if (! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x))
3117 check_field_decl (x, t,
3118 cant_have_const_ctor_p,
3119 no_const_asn_ref_p,
3120 &any_default_members);
3122 /* If any field is const, the structure type is pseudo-const. */
3123 if (CP_TYPE_CONST_P (type))
3125 C_TYPE_FIELDS_READONLY (t) = 1;
3126 if (DECL_INITIAL (x) == NULL_TREE)
3127 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3129 /* ARM $12.6.2: [A member initializer list] (or, for an
3130 aggregate, initialization by a brace-enclosed list) is the
3131 only way to initialize nonstatic const and reference
3132 members. */
3133 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3134 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3136 /* A field that is pseudo-const makes the structure likewise. */
3137 else if (CLASS_TYPE_P (type))
3139 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
3140 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
3141 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
3142 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
3145 /* Core issue 80: A nonstatic data member is required to have a
3146 different name from the class iff the class has a
3147 user-declared constructor. */
3148 if (constructor_name_p (DECL_NAME (x), t)
3149 && TYPE_HAS_USER_CONSTRUCTOR (t))
3150 permerror (input_location, "field %q+#D with same name as class", x);
3153 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3154 it should also define a copy constructor and an assignment operator to
3155 implement the correct copy semantic (deep vs shallow, etc.). As it is
3156 not feasible to check whether the constructors do allocate dynamic memory
3157 and store it within members, we approximate the warning like this:
3159 -- Warn only if there are members which are pointers
3160 -- Warn only if there is a non-trivial constructor (otherwise,
3161 there cannot be memory allocated).
3162 -- Warn only if there is a non-trivial destructor. We assume that the
3163 user at least implemented the cleanup correctly, and a destructor
3164 is needed to free dynamic memory.
3166 This seems enough for practical purposes. */
3167 if (warn_ecpp
3168 && has_pointers
3169 && TYPE_HAS_USER_CONSTRUCTOR (t)
3170 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3171 && !(TYPE_HAS_COPY_CTOR (t) && TYPE_HAS_COPY_ASSIGN (t)))
3173 warning (OPT_Weffc__, "%q#T has pointer data members", t);
3175 if (! TYPE_HAS_COPY_CTOR (t))
3177 warning (OPT_Weffc__,
3178 " but does not override %<%T(const %T&)%>", t, t);
3179 if (!TYPE_HAS_COPY_ASSIGN (t))
3180 warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
3182 else if (! TYPE_HAS_COPY_ASSIGN (t))
3183 warning (OPT_Weffc__,
3184 " but does not override %<operator=(const %T&)%>", t);
3187 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3188 if (cant_pack)
3189 TYPE_PACKED (t) = 0;
3191 /* Check anonymous struct/anonymous union fields. */
3192 finish_struct_anon (t);
3194 /* We've built up the list of access declarations in reverse order.
3195 Fix that now. */
3196 *access_decls = nreverse (*access_decls);
3199 /* If TYPE is an empty class type, records its OFFSET in the table of
3200 OFFSETS. */
3202 static int
3203 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3205 splay_tree_node n;
3207 if (!is_empty_class (type))
3208 return 0;
3210 /* Record the location of this empty object in OFFSETS. */
3211 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3212 if (!n)
3213 n = splay_tree_insert (offsets,
3214 (splay_tree_key) offset,
3215 (splay_tree_value) NULL_TREE);
3216 n->value = ((splay_tree_value)
3217 tree_cons (NULL_TREE,
3218 type,
3219 (tree) n->value));
3221 return 0;
3224 /* Returns nonzero if TYPE is an empty class type and there is
3225 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3227 static int
3228 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3230 splay_tree_node n;
3231 tree t;
3233 if (!is_empty_class (type))
3234 return 0;
3236 /* Record the location of this empty object in OFFSETS. */
3237 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3238 if (!n)
3239 return 0;
3241 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3242 if (same_type_p (TREE_VALUE (t), type))
3243 return 1;
3245 return 0;
3248 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3249 F for every subobject, passing it the type, offset, and table of
3250 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3251 be traversed.
3253 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3254 than MAX_OFFSET will not be walked.
3256 If F returns a nonzero value, the traversal ceases, and that value
3257 is returned. Otherwise, returns zero. */
3259 static int
3260 walk_subobject_offsets (tree type,
3261 subobject_offset_fn f,
3262 tree offset,
3263 splay_tree offsets,
3264 tree max_offset,
3265 int vbases_p)
3267 int r = 0;
3268 tree type_binfo = NULL_TREE;
3270 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3271 stop. */
3272 if (max_offset && INT_CST_LT (max_offset, offset))
3273 return 0;
3275 if (type == error_mark_node)
3276 return 0;
3278 if (!TYPE_P (type))
3280 if (abi_version_at_least (2))
3281 type_binfo = type;
3282 type = BINFO_TYPE (type);
3285 if (CLASS_TYPE_P (type))
3287 tree field;
3288 tree binfo;
3289 int i;
3291 /* Avoid recursing into objects that are not interesting. */
3292 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3293 return 0;
3295 /* Record the location of TYPE. */
3296 r = (*f) (type, offset, offsets);
3297 if (r)
3298 return r;
3300 /* Iterate through the direct base classes of TYPE. */
3301 if (!type_binfo)
3302 type_binfo = TYPE_BINFO (type);
3303 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
3305 tree binfo_offset;
3307 if (abi_version_at_least (2)
3308 && BINFO_VIRTUAL_P (binfo))
3309 continue;
3311 if (!vbases_p
3312 && BINFO_VIRTUAL_P (binfo)
3313 && !BINFO_PRIMARY_P (binfo))
3314 continue;
3316 if (!abi_version_at_least (2))
3317 binfo_offset = size_binop (PLUS_EXPR,
3318 offset,
3319 BINFO_OFFSET (binfo));
3320 else
3322 tree orig_binfo;
3323 /* We cannot rely on BINFO_OFFSET being set for the base
3324 class yet, but the offsets for direct non-virtual
3325 bases can be calculated by going back to the TYPE. */
3326 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
3327 binfo_offset = size_binop (PLUS_EXPR,
3328 offset,
3329 BINFO_OFFSET (orig_binfo));
3332 r = walk_subobject_offsets (binfo,
3334 binfo_offset,
3335 offsets,
3336 max_offset,
3337 (abi_version_at_least (2)
3338 ? /*vbases_p=*/0 : vbases_p));
3339 if (r)
3340 return r;
3343 if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type))
3345 unsigned ix;
3346 VEC(tree,gc) *vbases;
3348 /* Iterate through the virtual base classes of TYPE. In G++
3349 3.2, we included virtual bases in the direct base class
3350 loop above, which results in incorrect results; the
3351 correct offsets for virtual bases are only known when
3352 working with the most derived type. */
3353 if (vbases_p)
3354 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
3355 VEC_iterate (tree, vbases, ix, binfo); ix++)
3357 r = walk_subobject_offsets (binfo,
3359 size_binop (PLUS_EXPR,
3360 offset,
3361 BINFO_OFFSET (binfo)),
3362 offsets,
3363 max_offset,
3364 /*vbases_p=*/0);
3365 if (r)
3366 return r;
3368 else
3370 /* We still have to walk the primary base, if it is
3371 virtual. (If it is non-virtual, then it was walked
3372 above.) */
3373 tree vbase = get_primary_binfo (type_binfo);
3375 if (vbase && BINFO_VIRTUAL_P (vbase)
3376 && BINFO_PRIMARY_P (vbase)
3377 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
3379 r = (walk_subobject_offsets
3380 (vbase, f, offset,
3381 offsets, max_offset, /*vbases_p=*/0));
3382 if (r)
3383 return r;
3388 /* Iterate through the fields of TYPE. */
3389 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3390 if (TREE_CODE (field) == FIELD_DECL && !DECL_ARTIFICIAL (field))
3392 tree field_offset;
3394 if (abi_version_at_least (2))
3395 field_offset = byte_position (field);
3396 else
3397 /* In G++ 3.2, DECL_FIELD_OFFSET was used. */
3398 field_offset = DECL_FIELD_OFFSET (field);
3400 r = walk_subobject_offsets (TREE_TYPE (field),
3402 size_binop (PLUS_EXPR,
3403 offset,
3404 field_offset),
3405 offsets,
3406 max_offset,
3407 /*vbases_p=*/1);
3408 if (r)
3409 return r;
3412 else if (TREE_CODE (type) == ARRAY_TYPE)
3414 tree element_type = strip_array_types (type);
3415 tree domain = TYPE_DOMAIN (type);
3416 tree index;
3418 /* Avoid recursing into objects that are not interesting. */
3419 if (!CLASS_TYPE_P (element_type)
3420 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
3421 return 0;
3423 /* Step through each of the elements in the array. */
3424 for (index = size_zero_node;
3425 /* G++ 3.2 had an off-by-one error here. */
3426 (abi_version_at_least (2)
3427 ? !INT_CST_LT (TYPE_MAX_VALUE (domain), index)
3428 : INT_CST_LT (index, TYPE_MAX_VALUE (domain)));
3429 index = size_binop (PLUS_EXPR, index, size_one_node))
3431 r = walk_subobject_offsets (TREE_TYPE (type),
3433 offset,
3434 offsets,
3435 max_offset,
3436 /*vbases_p=*/1);
3437 if (r)
3438 return r;
3439 offset = size_binop (PLUS_EXPR, offset,
3440 TYPE_SIZE_UNIT (TREE_TYPE (type)));
3441 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3442 there's no point in iterating through the remaining
3443 elements of the array. */
3444 if (max_offset && INT_CST_LT (max_offset, offset))
3445 break;
3449 return 0;
3452 /* Record all of the empty subobjects of TYPE (either a type or a
3453 binfo). If IS_DATA_MEMBER is true, then a non-static data member
3454 is being placed at OFFSET; otherwise, it is a base class that is
3455 being placed at OFFSET. */
3457 static void
3458 record_subobject_offsets (tree type,
3459 tree offset,
3460 splay_tree offsets,
3461 bool is_data_member)
3463 tree max_offset;
3464 /* If recording subobjects for a non-static data member or a
3465 non-empty base class , we do not need to record offsets beyond
3466 the size of the biggest empty class. Additional data members
3467 will go at the end of the class. Additional base classes will go
3468 either at offset zero (if empty, in which case they cannot
3469 overlap with offsets past the size of the biggest empty class) or
3470 at the end of the class.
3472 However, if we are placing an empty base class, then we must record
3473 all offsets, as either the empty class is at offset zero (where
3474 other empty classes might later be placed) or at the end of the
3475 class (where other objects might then be placed, so other empty
3476 subobjects might later overlap). */
3477 if (is_data_member
3478 || !is_empty_class (BINFO_TYPE (type)))
3479 max_offset = sizeof_biggest_empty_class;
3480 else
3481 max_offset = NULL_TREE;
3482 walk_subobject_offsets (type, record_subobject_offset, offset,
3483 offsets, max_offset, is_data_member);
3486 /* Returns nonzero if any of the empty subobjects of TYPE (located at
3487 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
3488 virtual bases of TYPE are examined. */
3490 static int
3491 layout_conflict_p (tree type,
3492 tree offset,
3493 splay_tree offsets,
3494 int vbases_p)
3496 splay_tree_node max_node;
3498 /* Get the node in OFFSETS that indicates the maximum offset where
3499 an empty subobject is located. */
3500 max_node = splay_tree_max (offsets);
3501 /* If there aren't any empty subobjects, then there's no point in
3502 performing this check. */
3503 if (!max_node)
3504 return 0;
3506 return walk_subobject_offsets (type, check_subobject_offset, offset,
3507 offsets, (tree) (max_node->key),
3508 vbases_p);
3511 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
3512 non-static data member of the type indicated by RLI. BINFO is the
3513 binfo corresponding to the base subobject, OFFSETS maps offsets to
3514 types already located at those offsets. This function determines
3515 the position of the DECL. */
3517 static void
3518 layout_nonempty_base_or_field (record_layout_info rli,
3519 tree decl,
3520 tree binfo,
3521 splay_tree offsets)
3523 tree offset = NULL_TREE;
3524 bool field_p;
3525 tree type;
3527 if (binfo)
3529 /* For the purposes of determining layout conflicts, we want to
3530 use the class type of BINFO; TREE_TYPE (DECL) will be the
3531 CLASSTYPE_AS_BASE version, which does not contain entries for
3532 zero-sized bases. */
3533 type = TREE_TYPE (binfo);
3534 field_p = false;
3536 else
3538 type = TREE_TYPE (decl);
3539 field_p = true;
3542 /* Try to place the field. It may take more than one try if we have
3543 a hard time placing the field without putting two objects of the
3544 same type at the same address. */
3545 while (1)
3547 struct record_layout_info_s old_rli = *rli;
3549 /* Place this field. */
3550 place_field (rli, decl);
3551 offset = byte_position (decl);
3553 /* We have to check to see whether or not there is already
3554 something of the same type at the offset we're about to use.
3555 For example, consider:
3557 struct S {};
3558 struct T : public S { int i; };
3559 struct U : public S, public T {};
3561 Here, we put S at offset zero in U. Then, we can't put T at
3562 offset zero -- its S component would be at the same address
3563 as the S we already allocated. So, we have to skip ahead.
3564 Since all data members, including those whose type is an
3565 empty class, have nonzero size, any overlap can happen only
3566 with a direct or indirect base-class -- it can't happen with
3567 a data member. */
3568 /* In a union, overlap is permitted; all members are placed at
3569 offset zero. */
3570 if (TREE_CODE (rli->t) == UNION_TYPE)
3571 break;
3572 /* G++ 3.2 did not check for overlaps when placing a non-empty
3573 virtual base. */
3574 if (!abi_version_at_least (2) && binfo && BINFO_VIRTUAL_P (binfo))
3575 break;
3576 if (layout_conflict_p (field_p ? type : binfo, offset,
3577 offsets, field_p))
3579 /* Strip off the size allocated to this field. That puts us
3580 at the first place we could have put the field with
3581 proper alignment. */
3582 *rli = old_rli;
3584 /* Bump up by the alignment required for the type. */
3585 rli->bitpos
3586 = size_binop (PLUS_EXPR, rli->bitpos,
3587 bitsize_int (binfo
3588 ? CLASSTYPE_ALIGN (type)
3589 : TYPE_ALIGN (type)));
3590 normalize_rli (rli);
3592 else
3593 /* There was no conflict. We're done laying out this field. */
3594 break;
3597 /* Now that we know where it will be placed, update its
3598 BINFO_OFFSET. */
3599 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
3600 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
3601 this point because their BINFO_OFFSET is copied from another
3602 hierarchy. Therefore, we may not need to add the entire
3603 OFFSET. */
3604 propagate_binfo_offsets (binfo,
3605 size_diffop_loc (input_location,
3606 convert (ssizetype, offset),
3607 convert (ssizetype,
3608 BINFO_OFFSET (binfo))));
3611 /* Returns true if TYPE is empty and OFFSET is nonzero. */
3613 static int
3614 empty_base_at_nonzero_offset_p (tree type,
3615 tree offset,
3616 splay_tree offsets ATTRIBUTE_UNUSED)
3618 return is_empty_class (type) && !integer_zerop (offset);
3621 /* Layout the empty base BINFO. EOC indicates the byte currently just
3622 past the end of the class, and should be correctly aligned for a
3623 class of the type indicated by BINFO; OFFSETS gives the offsets of
3624 the empty bases allocated so far. T is the most derived
3625 type. Return nonzero iff we added it at the end. */
3627 static bool
3628 layout_empty_base (record_layout_info rli, tree binfo,
3629 tree eoc, splay_tree offsets)
3631 tree alignment;
3632 tree basetype = BINFO_TYPE (binfo);
3633 bool atend = false;
3635 /* This routine should only be used for empty classes. */
3636 gcc_assert (is_empty_class (basetype));
3637 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
3639 if (!integer_zerop (BINFO_OFFSET (binfo)))
3641 if (abi_version_at_least (2))
3642 propagate_binfo_offsets
3643 (binfo, size_diffop_loc (input_location,
3644 size_zero_node, BINFO_OFFSET (binfo)));
3645 else
3646 warning (OPT_Wabi,
3647 "offset of empty base %qT may not be ABI-compliant and may"
3648 "change in a future version of GCC",
3649 BINFO_TYPE (binfo));
3652 /* This is an empty base class. We first try to put it at offset
3653 zero. */
3654 if (layout_conflict_p (binfo,
3655 BINFO_OFFSET (binfo),
3656 offsets,
3657 /*vbases_p=*/0))
3659 /* That didn't work. Now, we move forward from the next
3660 available spot in the class. */
3661 atend = true;
3662 propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
3663 while (1)
3665 if (!layout_conflict_p (binfo,
3666 BINFO_OFFSET (binfo),
3667 offsets,
3668 /*vbases_p=*/0))
3669 /* We finally found a spot where there's no overlap. */
3670 break;
3672 /* There's overlap here, too. Bump along to the next spot. */
3673 propagate_binfo_offsets (binfo, alignment);
3677 if (CLASSTYPE_USER_ALIGN (basetype))
3679 rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype));
3680 if (warn_packed)
3681 rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype));
3682 TYPE_USER_ALIGN (rli->t) = 1;
3685 return atend;
3688 /* Layout the base given by BINFO in the class indicated by RLI.
3689 *BASE_ALIGN is a running maximum of the alignments of
3690 any base class. OFFSETS gives the location of empty base
3691 subobjects. T is the most derived type. Return nonzero if the new
3692 object cannot be nearly-empty. A new FIELD_DECL is inserted at
3693 *NEXT_FIELD, unless BINFO is for an empty base class.
3695 Returns the location at which the next field should be inserted. */
3697 static tree *
3698 build_base_field (record_layout_info rli, tree binfo,
3699 splay_tree offsets, tree *next_field)
3701 tree t = rli->t;
3702 tree basetype = BINFO_TYPE (binfo);
3704 if (!COMPLETE_TYPE_P (basetype))
3705 /* This error is now reported in xref_tag, thus giving better
3706 location information. */
3707 return next_field;
3709 /* Place the base class. */
3710 if (!is_empty_class (basetype))
3712 tree decl;
3714 /* The containing class is non-empty because it has a non-empty
3715 base class. */
3716 CLASSTYPE_EMPTY_P (t) = 0;
3718 /* Create the FIELD_DECL. */
3719 decl = build_decl (input_location,
3720 FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
3721 DECL_ARTIFICIAL (decl) = 1;
3722 DECL_IGNORED_P (decl) = 1;
3723 DECL_FIELD_CONTEXT (decl) = t;
3724 if (CLASSTYPE_AS_BASE (basetype))
3726 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
3727 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
3728 DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
3729 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
3730 DECL_MODE (decl) = TYPE_MODE (basetype);
3731 DECL_FIELD_IS_BASE (decl) = 1;
3733 /* Try to place the field. It may take more than one try if we
3734 have a hard time placing the field without putting two
3735 objects of the same type at the same address. */
3736 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
3737 /* Add the new FIELD_DECL to the list of fields for T. */
3738 TREE_CHAIN (decl) = *next_field;
3739 *next_field = decl;
3740 next_field = &TREE_CHAIN (decl);
3743 else
3745 tree eoc;
3746 bool atend;
3748 /* On some platforms (ARM), even empty classes will not be
3749 byte-aligned. */
3750 eoc = round_up_loc (input_location,
3751 rli_size_unit_so_far (rli),
3752 CLASSTYPE_ALIGN_UNIT (basetype));
3753 atend = layout_empty_base (rli, binfo, eoc, offsets);
3754 /* A nearly-empty class "has no proper base class that is empty,
3755 not morally virtual, and at an offset other than zero." */
3756 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
3758 if (atend)
3759 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3760 /* The check above (used in G++ 3.2) is insufficient because
3761 an empty class placed at offset zero might itself have an
3762 empty base at a nonzero offset. */
3763 else if (walk_subobject_offsets (basetype,
3764 empty_base_at_nonzero_offset_p,
3765 size_zero_node,
3766 /*offsets=*/NULL,
3767 /*max_offset=*/NULL_TREE,
3768 /*vbases_p=*/true))
3770 if (abi_version_at_least (2))
3771 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3772 else
3773 warning (OPT_Wabi,
3774 "class %qT will be considered nearly empty in a "
3775 "future version of GCC", t);
3779 /* We do not create a FIELD_DECL for empty base classes because
3780 it might overlap some other field. We want to be able to
3781 create CONSTRUCTORs for the class by iterating over the
3782 FIELD_DECLs, and the back end does not handle overlapping
3783 FIELD_DECLs. */
3785 /* An empty virtual base causes a class to be non-empty
3786 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
3787 here because that was already done when the virtual table
3788 pointer was created. */
3791 /* Record the offsets of BINFO and its base subobjects. */
3792 record_subobject_offsets (binfo,
3793 BINFO_OFFSET (binfo),
3794 offsets,
3795 /*is_data_member=*/false);
3797 return next_field;
3800 /* Layout all of the non-virtual base classes. Record empty
3801 subobjects in OFFSETS. T is the most derived type. Return nonzero
3802 if the type cannot be nearly empty. The fields created
3803 corresponding to the base classes will be inserted at
3804 *NEXT_FIELD. */
3806 static void
3807 build_base_fields (record_layout_info rli,
3808 splay_tree offsets, tree *next_field)
3810 /* Chain to hold all the new FIELD_DECLs which stand in for base class
3811 subobjects. */
3812 tree t = rli->t;
3813 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
3814 int i;
3816 /* The primary base class is always allocated first. */
3817 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
3818 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
3819 offsets, next_field);
3821 /* Now allocate the rest of the bases. */
3822 for (i = 0; i < n_baseclasses; ++i)
3824 tree base_binfo;
3826 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
3828 /* The primary base was already allocated above, so we don't
3829 need to allocate it again here. */
3830 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
3831 continue;
3833 /* Virtual bases are added at the end (a primary virtual base
3834 will have already been added). */
3835 if (BINFO_VIRTUAL_P (base_binfo))
3836 continue;
3838 next_field = build_base_field (rli, base_binfo,
3839 offsets, next_field);
3843 /* Go through the TYPE_METHODS of T issuing any appropriate
3844 diagnostics, figuring out which methods override which other
3845 methods, and so forth. */
3847 static void
3848 check_methods (tree t)
3850 tree x;
3852 for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
3854 check_for_override (x, t);
3855 if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x))
3856 error ("initializer specified for non-virtual method %q+D", x);
3857 /* The name of the field is the original field name
3858 Save this in auxiliary field for later overloading. */
3859 if (DECL_VINDEX (x))
3861 TYPE_POLYMORPHIC_P (t) = 1;
3862 if (DECL_PURE_VIRTUAL_P (x))
3863 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
3865 /* All user-provided destructors are non-trivial.
3866 Constructors and assignment ops are handled in
3867 grok_special_member_properties. */
3868 if (DECL_DESTRUCTOR_P (x) && user_provided_p (x))
3869 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
3873 /* FN is a constructor or destructor. Clone the declaration to create
3874 a specialized in-charge or not-in-charge version, as indicated by
3875 NAME. */
3877 static tree
3878 build_clone (tree fn, tree name)
3880 tree parms;
3881 tree clone;
3883 /* Copy the function. */
3884 clone = copy_decl (fn);
3885 /* Reset the function name. */
3886 DECL_NAME (clone) = name;
3887 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
3888 /* Remember where this function came from. */
3889 DECL_ABSTRACT_ORIGIN (clone) = fn;
3890 /* Make it easy to find the CLONE given the FN. */
3891 TREE_CHAIN (clone) = TREE_CHAIN (fn);
3892 TREE_CHAIN (fn) = clone;
3894 /* If this is a template, do the rest on the DECL_TEMPLATE_RESULT. */
3895 if (TREE_CODE (clone) == TEMPLATE_DECL)
3897 tree result = build_clone (DECL_TEMPLATE_RESULT (clone), name);
3898 DECL_TEMPLATE_RESULT (clone) = result;
3899 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
3900 DECL_TI_TEMPLATE (result) = clone;
3901 TREE_TYPE (clone) = TREE_TYPE (result);
3902 return clone;
3905 DECL_CLONED_FUNCTION (clone) = fn;
3906 /* There's no pending inline data for this function. */
3907 DECL_PENDING_INLINE_INFO (clone) = NULL;
3908 DECL_PENDING_INLINE_P (clone) = 0;
3910 /* The base-class destructor is not virtual. */
3911 if (name == base_dtor_identifier)
3913 DECL_VIRTUAL_P (clone) = 0;
3914 if (TREE_CODE (clone) != TEMPLATE_DECL)
3915 DECL_VINDEX (clone) = NULL_TREE;
3918 /* If there was an in-charge parameter, drop it from the function
3919 type. */
3920 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3922 tree basetype;
3923 tree parmtypes;
3924 tree exceptions;
3926 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
3927 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
3928 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
3929 /* Skip the `this' parameter. */
3930 parmtypes = TREE_CHAIN (parmtypes);
3931 /* Skip the in-charge parameter. */
3932 parmtypes = TREE_CHAIN (parmtypes);
3933 /* And the VTT parm, in a complete [cd]tor. */
3934 if (DECL_HAS_VTT_PARM_P (fn)
3935 && ! DECL_NEEDS_VTT_PARM_P (clone))
3936 parmtypes = TREE_CHAIN (parmtypes);
3937 /* If this is subobject constructor or destructor, add the vtt
3938 parameter. */
3939 TREE_TYPE (clone)
3940 = build_method_type_directly (basetype,
3941 TREE_TYPE (TREE_TYPE (clone)),
3942 parmtypes);
3943 if (exceptions)
3944 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
3945 exceptions);
3946 TREE_TYPE (clone)
3947 = cp_build_type_attribute_variant (TREE_TYPE (clone),
3948 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
3951 /* Copy the function parameters. */
3952 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
3953 /* Remove the in-charge parameter. */
3954 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3956 TREE_CHAIN (DECL_ARGUMENTS (clone))
3957 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3958 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
3960 /* And the VTT parm, in a complete [cd]tor. */
3961 if (DECL_HAS_VTT_PARM_P (fn))
3963 if (DECL_NEEDS_VTT_PARM_P (clone))
3964 DECL_HAS_VTT_PARM_P (clone) = 1;
3965 else
3967 TREE_CHAIN (DECL_ARGUMENTS (clone))
3968 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3969 DECL_HAS_VTT_PARM_P (clone) = 0;
3973 for (parms = DECL_ARGUMENTS (clone); parms; parms = TREE_CHAIN (parms))
3975 DECL_CONTEXT (parms) = clone;
3976 cxx_dup_lang_specific_decl (parms);
3979 /* Create the RTL for this function. */
3980 SET_DECL_RTL (clone, NULL);
3981 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
3983 if (pch_file)
3984 note_decl_for_pch (clone);
3986 return clone;
3989 /* Implementation of DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P, do
3990 not invoke this function directly.
3992 For a non-thunk function, returns the address of the slot for storing
3993 the function it is a clone of. Otherwise returns NULL_TREE.
3995 If JUST_TESTING, looks through TEMPLATE_DECL and returns NULL if
3996 cloned_function is unset. This is to support the separate
3997 DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P modes; using the latter
3998 on a template makes sense, but not the former. */
4000 tree *
4001 decl_cloned_function_p (const_tree decl, bool just_testing)
4003 tree *ptr;
4004 if (just_testing)
4005 decl = STRIP_TEMPLATE (decl);
4007 if (TREE_CODE (decl) != FUNCTION_DECL
4008 || !DECL_LANG_SPECIFIC (decl)
4009 || DECL_LANG_SPECIFIC (decl)->u.fn.thunk_p)
4011 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4012 if (!just_testing)
4013 lang_check_failed (__FILE__, __LINE__, __FUNCTION__);
4014 else
4015 #endif
4016 return NULL;
4019 ptr = &DECL_LANG_SPECIFIC (decl)->u.fn.u5.cloned_function;
4020 if (just_testing && *ptr == NULL_TREE)
4021 return NULL;
4022 else
4023 return ptr;
4026 /* Produce declarations for all appropriate clones of FN. If
4027 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
4028 CLASTYPE_METHOD_VEC as well. */
4030 void
4031 clone_function_decl (tree fn, int update_method_vec_p)
4033 tree clone;
4035 /* Avoid inappropriate cloning. */
4036 if (TREE_CHAIN (fn)
4037 && DECL_CLONED_FUNCTION_P (TREE_CHAIN (fn)))
4038 return;
4040 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
4042 /* For each constructor, we need two variants: an in-charge version
4043 and a not-in-charge version. */
4044 clone = build_clone (fn, complete_ctor_identifier);
4045 if (update_method_vec_p)
4046 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4047 clone = build_clone (fn, base_ctor_identifier);
4048 if (update_method_vec_p)
4049 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4051 else
4053 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
4055 /* For each destructor, we need three variants: an in-charge
4056 version, a not-in-charge version, and an in-charge deleting
4057 version. We clone the deleting version first because that
4058 means it will go second on the TYPE_METHODS list -- and that
4059 corresponds to the correct layout order in the virtual
4060 function table.
4062 For a non-virtual destructor, we do not build a deleting
4063 destructor. */
4064 if (DECL_VIRTUAL_P (fn))
4066 clone = build_clone (fn, deleting_dtor_identifier);
4067 if (update_method_vec_p)
4068 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4070 clone = build_clone (fn, complete_dtor_identifier);
4071 if (update_method_vec_p)
4072 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4073 clone = build_clone (fn, base_dtor_identifier);
4074 if (update_method_vec_p)
4075 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4078 /* Note that this is an abstract function that is never emitted. */
4079 DECL_ABSTRACT (fn) = 1;
4082 /* DECL is an in charge constructor, which is being defined. This will
4083 have had an in class declaration, from whence clones were
4084 declared. An out-of-class definition can specify additional default
4085 arguments. As it is the clones that are involved in overload
4086 resolution, we must propagate the information from the DECL to its
4087 clones. */
4089 void
4090 adjust_clone_args (tree decl)
4092 tree clone;
4094 for (clone = TREE_CHAIN (decl); clone && DECL_CLONED_FUNCTION_P (clone);
4095 clone = TREE_CHAIN (clone))
4097 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
4098 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
4099 tree decl_parms, clone_parms;
4101 clone_parms = orig_clone_parms;
4103 /* Skip the 'this' parameter. */
4104 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
4105 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4107 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
4108 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4109 if (DECL_HAS_VTT_PARM_P (decl))
4110 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4112 clone_parms = orig_clone_parms;
4113 if (DECL_HAS_VTT_PARM_P (clone))
4114 clone_parms = TREE_CHAIN (clone_parms);
4116 for (decl_parms = orig_decl_parms; decl_parms;
4117 decl_parms = TREE_CHAIN (decl_parms),
4118 clone_parms = TREE_CHAIN (clone_parms))
4120 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
4121 TREE_TYPE (clone_parms)));
4123 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
4125 /* A default parameter has been added. Adjust the
4126 clone's parameters. */
4127 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4128 tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (clone));
4129 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4130 tree type;
4132 clone_parms = orig_decl_parms;
4134 if (DECL_HAS_VTT_PARM_P (clone))
4136 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
4137 TREE_VALUE (orig_clone_parms),
4138 clone_parms);
4139 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
4141 type = build_method_type_directly (basetype,
4142 TREE_TYPE (TREE_TYPE (clone)),
4143 clone_parms);
4144 if (exceptions)
4145 type = build_exception_variant (type, exceptions);
4146 if (attrs)
4147 type = cp_build_type_attribute_variant (type, attrs);
4148 TREE_TYPE (clone) = type;
4150 clone_parms = NULL_TREE;
4151 break;
4154 gcc_assert (!clone_parms);
4158 /* For each of the constructors and destructors in T, create an
4159 in-charge and not-in-charge variant. */
4161 static void
4162 clone_constructors_and_destructors (tree t)
4164 tree fns;
4166 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4167 out now. */
4168 if (!CLASSTYPE_METHOD_VEC (t))
4169 return;
4171 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4172 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4173 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4174 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4177 /* Returns true iff class T has a user-defined constructor other than
4178 the default constructor. */
4180 bool
4181 type_has_user_nondefault_constructor (tree t)
4183 tree fns;
4185 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4186 return false;
4188 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4190 tree fn = OVL_CURRENT (fns);
4191 if (!DECL_ARTIFICIAL (fn)
4192 && (TREE_CODE (fn) == TEMPLATE_DECL
4193 || (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn))
4194 != NULL_TREE)))
4195 return true;
4198 return false;
4201 /* Returns the defaulted constructor if T has one. Otherwise, returns
4202 NULL_TREE. */
4204 tree
4205 in_class_defaulted_default_constructor (tree t)
4207 tree fns, args;
4209 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4210 return NULL_TREE;
4212 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4214 tree fn = OVL_CURRENT (fns);
4216 if (DECL_DEFAULTED_IN_CLASS_P (fn))
4218 args = FUNCTION_FIRST_USER_PARMTYPE (fn);
4219 while (args && TREE_PURPOSE (args))
4220 args = TREE_CHAIN (args);
4221 if (!args || args == void_list_node)
4222 return fn;
4226 return NULL_TREE;
4229 /* Returns true iff FN is a user-provided function, i.e. user-declared
4230 and not defaulted at its first declaration; or explicit, private,
4231 protected, or non-const. */
4233 bool
4234 user_provided_p (tree fn)
4236 if (TREE_CODE (fn) == TEMPLATE_DECL)
4237 return true;
4238 else
4239 return (!DECL_ARTIFICIAL (fn)
4240 && !DECL_DEFAULTED_IN_CLASS_P (fn));
4243 /* Returns true iff class T has a user-provided constructor. */
4245 bool
4246 type_has_user_provided_constructor (tree t)
4248 tree fns;
4250 if (!CLASS_TYPE_P (t))
4251 return false;
4253 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4254 return false;
4256 /* This can happen in error cases; avoid crashing. */
4257 if (!CLASSTYPE_METHOD_VEC (t))
4258 return false;
4260 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4261 if (user_provided_p (OVL_CURRENT (fns)))
4262 return true;
4264 return false;
4267 /* Returns true iff class T has a user-provided default constructor. */
4269 bool
4270 type_has_user_provided_default_constructor (tree t)
4272 tree fns;
4274 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4275 return false;
4277 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4279 tree fn = OVL_CURRENT (fns);
4280 if (TREE_CODE (fn) == FUNCTION_DECL
4281 && user_provided_p (fn)
4282 && sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (fn)))
4283 return true;
4286 return false;
4289 /* Returns true iff class TYPE has a virtual destructor. */
4291 bool
4292 type_has_virtual_destructor (tree type)
4294 tree dtor;
4296 if (!CLASS_TYPE_P (type))
4297 return false;
4299 gcc_assert (COMPLETE_TYPE_P (type));
4300 dtor = CLASSTYPE_DESTRUCTORS (type);
4301 return (dtor && DECL_VIRTUAL_P (dtor));
4304 /* Returns true iff class T has a move constructor. */
4306 bool
4307 type_has_move_constructor (tree t)
4309 tree fns;
4311 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
4313 gcc_assert (COMPLETE_TYPE_P (t));
4314 lazily_declare_fn (sfk_move_constructor, t);
4317 if (!CLASSTYPE_METHOD_VEC (t))
4318 return false;
4320 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4321 if (move_fn_p (OVL_CURRENT (fns)))
4322 return true;
4324 return false;
4327 /* Returns true iff class T has a move assignment operator. */
4329 bool
4330 type_has_move_assign (tree t)
4332 tree fns;
4334 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
4336 gcc_assert (COMPLETE_TYPE_P (t));
4337 lazily_declare_fn (sfk_move_assignment, t);
4340 for (fns = lookup_fnfields_slot (t, ansi_assopname (NOP_EXPR));
4341 fns; fns = OVL_NEXT (fns))
4342 if (move_fn_p (OVL_CURRENT (fns)))
4343 return true;
4345 return false;
4348 /* Remove all zero-width bit-fields from T. */
4350 static void
4351 remove_zero_width_bit_fields (tree t)
4353 tree *fieldsp;
4355 fieldsp = &TYPE_FIELDS (t);
4356 while (*fieldsp)
4358 if (TREE_CODE (*fieldsp) == FIELD_DECL
4359 && DECL_C_BIT_FIELD (*fieldsp)
4360 /* We should not be confused by the fact that grokbitfield
4361 temporarily sets the width of the bit field into
4362 DECL_INITIAL (*fieldsp).
4363 check_bitfield_decl eventually sets DECL_SIZE (*fieldsp)
4364 to that width. */
4365 && integer_zerop (DECL_SIZE (*fieldsp)))
4366 *fieldsp = TREE_CHAIN (*fieldsp);
4367 else
4368 fieldsp = &TREE_CHAIN (*fieldsp);
4372 /* Returns TRUE iff we need a cookie when dynamically allocating an
4373 array whose elements have the indicated class TYPE. */
4375 static bool
4376 type_requires_array_cookie (tree type)
4378 tree fns;
4379 bool has_two_argument_delete_p = false;
4381 gcc_assert (CLASS_TYPE_P (type));
4383 /* If there's a non-trivial destructor, we need a cookie. In order
4384 to iterate through the array calling the destructor for each
4385 element, we'll have to know how many elements there are. */
4386 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
4387 return true;
4389 /* If the usual deallocation function is a two-argument whose second
4390 argument is of type `size_t', then we have to pass the size of
4391 the array to the deallocation function, so we will need to store
4392 a cookie. */
4393 fns = lookup_fnfields (TYPE_BINFO (type),
4394 ansi_opname (VEC_DELETE_EXPR),
4395 /*protect=*/0);
4396 /* If there are no `operator []' members, or the lookup is
4397 ambiguous, then we don't need a cookie. */
4398 if (!fns || fns == error_mark_node)
4399 return false;
4400 /* Loop through all of the functions. */
4401 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
4403 tree fn;
4404 tree second_parm;
4406 /* Select the current function. */
4407 fn = OVL_CURRENT (fns);
4408 /* See if this function is a one-argument delete function. If
4409 it is, then it will be the usual deallocation function. */
4410 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
4411 if (second_parm == void_list_node)
4412 return false;
4413 /* Do not consider this function if its second argument is an
4414 ellipsis. */
4415 if (!second_parm)
4416 continue;
4417 /* Otherwise, if we have a two-argument function and the second
4418 argument is `size_t', it will be the usual deallocation
4419 function -- unless there is one-argument function, too. */
4420 if (TREE_CHAIN (second_parm) == void_list_node
4421 && same_type_p (TREE_VALUE (second_parm), size_type_node))
4422 has_two_argument_delete_p = true;
4425 return has_two_argument_delete_p;
4428 /* Check the validity of the bases and members declared in T. Add any
4429 implicitly-generated functions (like copy-constructors and
4430 assignment operators). Compute various flag bits (like
4431 CLASSTYPE_NON_LAYOUT_POD_T) for T. This routine works purely at the C++
4432 level: i.e., independently of the ABI in use. */
4434 static void
4435 check_bases_and_members (tree t)
4437 /* Nonzero if the implicitly generated copy constructor should take
4438 a non-const reference argument. */
4439 int cant_have_const_ctor;
4440 /* Nonzero if the implicitly generated assignment operator
4441 should take a non-const reference argument. */
4442 int no_const_asn_ref;
4443 tree access_decls;
4444 bool saved_complex_asn_ref;
4445 bool saved_nontrivial_dtor;
4446 tree fn;
4448 /* By default, we use const reference arguments and generate default
4449 constructors. */
4450 cant_have_const_ctor = 0;
4451 no_const_asn_ref = 0;
4453 /* Check all the base-classes. */
4454 check_bases (t, &cant_have_const_ctor,
4455 &no_const_asn_ref);
4457 /* Check all the method declarations. */
4458 check_methods (t);
4460 /* Save the initial values of these flags which only indicate whether
4461 or not the class has user-provided functions. As we analyze the
4462 bases and members we can set these flags for other reasons. */
4463 saved_complex_asn_ref = TYPE_HAS_COMPLEX_COPY_ASSIGN (t);
4464 saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
4466 /* Check all the data member declarations. We cannot call
4467 check_field_decls until we have called check_bases check_methods,
4468 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
4469 being set appropriately. */
4470 check_field_decls (t, &access_decls,
4471 &cant_have_const_ctor,
4472 &no_const_asn_ref);
4474 /* A nearly-empty class has to be vptr-containing; a nearly empty
4475 class contains just a vptr. */
4476 if (!TYPE_CONTAINS_VPTR_P (t))
4477 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4479 /* Do some bookkeeping that will guide the generation of implicitly
4480 declared member functions. */
4481 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
4482 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
4483 /* We need to call a constructor for this class if it has a
4484 user-provided constructor, or if the default constructor is going
4485 to initialize the vptr. (This is not an if-and-only-if;
4486 TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
4487 themselves need constructing.) */
4488 TYPE_NEEDS_CONSTRUCTING (t)
4489 |= (type_has_user_provided_constructor (t) || TYPE_CONTAINS_VPTR_P (t));
4490 /* [dcl.init.aggr]
4492 An aggregate is an array or a class with no user-provided
4493 constructors ... and no virtual functions.
4495 Again, other conditions for being an aggregate are checked
4496 elsewhere. */
4497 CLASSTYPE_NON_AGGREGATE (t)
4498 |= (type_has_user_provided_constructor (t) || TYPE_POLYMORPHIC_P (t));
4499 /* This is the C++98/03 definition of POD; it changed in C++0x, but we
4500 retain the old definition internally for ABI reasons. */
4501 CLASSTYPE_NON_LAYOUT_POD_P (t)
4502 |= (CLASSTYPE_NON_AGGREGATE (t)
4503 || saved_nontrivial_dtor || saved_complex_asn_ref);
4504 CLASSTYPE_NON_STD_LAYOUT (t) |= TYPE_CONTAINS_VPTR_P (t);
4505 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
4506 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
4507 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_CONTAINS_VPTR_P (t);
4509 /* If the class has no user-declared constructor, but does have
4510 non-static const or reference data members that can never be
4511 initialized, issue a warning. */
4512 if (warn_uninitialized
4513 /* Classes with user-declared constructors are presumed to
4514 initialize these members. */
4515 && !TYPE_HAS_USER_CONSTRUCTOR (t)
4516 /* Aggregates can be initialized with brace-enclosed
4517 initializers. */
4518 && CLASSTYPE_NON_AGGREGATE (t))
4520 tree field;
4522 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
4524 tree type;
4526 if (TREE_CODE (field) != FIELD_DECL)
4527 continue;
4529 type = TREE_TYPE (field);
4530 if (TREE_CODE (type) == REFERENCE_TYPE)
4531 warning (OPT_Wuninitialized, "non-static reference %q+#D "
4532 "in class without a constructor", field);
4533 else if (CP_TYPE_CONST_P (type)
4534 && (!CLASS_TYPE_P (type)
4535 || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
4536 warning (OPT_Wuninitialized, "non-static const member %q+#D "
4537 "in class without a constructor", field);
4541 /* Synthesize any needed methods. */
4542 add_implicitly_declared_members (t,
4543 cant_have_const_ctor,
4544 no_const_asn_ref);
4546 /* Check defaulted declarations here so we have cant_have_const_ctor
4547 and don't need to worry about clones. */
4548 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
4549 if (DECL_DEFAULTED_IN_CLASS_P (fn))
4551 int copy = copy_fn_p (fn);
4552 if (copy > 0)
4554 bool imp_const_p
4555 = (DECL_CONSTRUCTOR_P (fn) ? !cant_have_const_ctor
4556 : !no_const_asn_ref);
4557 bool fn_const_p = (copy == 2);
4559 if (fn_const_p && !imp_const_p)
4560 /* If the function is defaulted outside the class, we just
4561 give the synthesis error. */
4562 error ("%q+D declared to take const reference, but implicit "
4563 "declaration would take non-const", fn);
4564 else if (imp_const_p && !fn_const_p)
4565 error ("%q+D declared to take non-const reference cannot be "
4566 "defaulted in the class body", fn);
4568 defaulted_late_check (fn);
4571 if (LAMBDA_TYPE_P (t))
4573 /* "The closure type associated with a lambda-expression has a deleted
4574 default constructor and a deleted copy assignment operator." */
4575 TYPE_NEEDS_CONSTRUCTING (t) = 1;
4576 TYPE_HAS_COMPLEX_DFLT (t) = 1;
4577 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
4578 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 0;
4580 /* "This class type is not an aggregate." */
4581 CLASSTYPE_NON_AGGREGATE (t) = 1;
4584 /* Create the in-charge and not-in-charge variants of constructors
4585 and destructors. */
4586 clone_constructors_and_destructors (t);
4588 /* Process the using-declarations. */
4589 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
4590 handle_using_decl (TREE_VALUE (access_decls), t);
4592 /* Build and sort the CLASSTYPE_METHOD_VEC. */
4593 finish_struct_methods (t);
4595 /* Figure out whether or not we will need a cookie when dynamically
4596 allocating an array of this type. */
4597 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
4598 = type_requires_array_cookie (t);
4601 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
4602 accordingly. If a new vfield was created (because T doesn't have a
4603 primary base class), then the newly created field is returned. It
4604 is not added to the TYPE_FIELDS list; it is the caller's
4605 responsibility to do that. Accumulate declared virtual functions
4606 on VIRTUALS_P. */
4608 static tree
4609 create_vtable_ptr (tree t, tree* virtuals_p)
4611 tree fn;
4613 /* Collect the virtual functions declared in T. */
4614 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
4615 if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
4616 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
4618 tree new_virtual = make_node (TREE_LIST);
4620 BV_FN (new_virtual) = fn;
4621 BV_DELTA (new_virtual) = integer_zero_node;
4622 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
4624 TREE_CHAIN (new_virtual) = *virtuals_p;
4625 *virtuals_p = new_virtual;
4628 /* If we couldn't find an appropriate base class, create a new field
4629 here. Even if there weren't any new virtual functions, we might need a
4630 new virtual function table if we're supposed to include vptrs in
4631 all classes that need them. */
4632 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
4634 /* We build this decl with vtbl_ptr_type_node, which is a
4635 `vtable_entry_type*'. It might seem more precise to use
4636 `vtable_entry_type (*)[N]' where N is the number of virtual
4637 functions. However, that would require the vtable pointer in
4638 base classes to have a different type than the vtable pointer
4639 in derived classes. We could make that happen, but that
4640 still wouldn't solve all the problems. In particular, the
4641 type-based alias analysis code would decide that assignments
4642 to the base class vtable pointer can't alias assignments to
4643 the derived class vtable pointer, since they have different
4644 types. Thus, in a derived class destructor, where the base
4645 class constructor was inlined, we could generate bad code for
4646 setting up the vtable pointer.
4648 Therefore, we use one type for all vtable pointers. We still
4649 use a type-correct type; it's just doesn't indicate the array
4650 bounds. That's better than using `void*' or some such; it's
4651 cleaner, and it let's the alias analysis code know that these
4652 stores cannot alias stores to void*! */
4653 tree field;
4655 field = build_decl (input_location,
4656 FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
4657 DECL_VIRTUAL_P (field) = 1;
4658 DECL_ARTIFICIAL (field) = 1;
4659 DECL_FIELD_CONTEXT (field) = t;
4660 DECL_FCONTEXT (field) = t;
4661 if (TYPE_PACKED (t))
4662 DECL_PACKED (field) = 1;
4664 TYPE_VFIELD (t) = field;
4666 /* This class is non-empty. */
4667 CLASSTYPE_EMPTY_P (t) = 0;
4669 return field;
4672 return NULL_TREE;
4675 /* Add OFFSET to all base types of BINFO which is a base in the
4676 hierarchy dominated by T.
4678 OFFSET, which is a type offset, is number of bytes. */
4680 static void
4681 propagate_binfo_offsets (tree binfo, tree offset)
4683 int i;
4684 tree primary_binfo;
4685 tree base_binfo;
4687 /* Update BINFO's offset. */
4688 BINFO_OFFSET (binfo)
4689 = convert (sizetype,
4690 size_binop (PLUS_EXPR,
4691 convert (ssizetype, BINFO_OFFSET (binfo)),
4692 offset));
4694 /* Find the primary base class. */
4695 primary_binfo = get_primary_binfo (binfo);
4697 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
4698 propagate_binfo_offsets (primary_binfo, offset);
4700 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
4701 downwards. */
4702 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4704 /* Don't do the primary base twice. */
4705 if (base_binfo == primary_binfo)
4706 continue;
4708 if (BINFO_VIRTUAL_P (base_binfo))
4709 continue;
4711 propagate_binfo_offsets (base_binfo, offset);
4715 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
4716 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
4717 empty subobjects of T. */
4719 static void
4720 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
4722 tree vbase;
4723 tree t = rli->t;
4724 bool first_vbase = true;
4725 tree *next_field;
4727 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
4728 return;
4730 if (!abi_version_at_least(2))
4732 /* In G++ 3.2, we incorrectly rounded the size before laying out
4733 the virtual bases. */
4734 finish_record_layout (rli, /*free_p=*/false);
4735 #ifdef STRUCTURE_SIZE_BOUNDARY
4736 /* Packed structures don't need to have minimum size. */
4737 if (! TYPE_PACKED (t))
4738 TYPE_ALIGN (t) = MAX (TYPE_ALIGN (t), (unsigned) STRUCTURE_SIZE_BOUNDARY);
4739 #endif
4740 rli->offset = TYPE_SIZE_UNIT (t);
4741 rli->bitpos = bitsize_zero_node;
4742 rli->record_align = TYPE_ALIGN (t);
4745 /* Find the last field. The artificial fields created for virtual
4746 bases will go after the last extant field to date. */
4747 next_field = &TYPE_FIELDS (t);
4748 while (*next_field)
4749 next_field = &TREE_CHAIN (*next_field);
4751 /* Go through the virtual bases, allocating space for each virtual
4752 base that is not already a primary base class. These are
4753 allocated in inheritance graph order. */
4754 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
4756 if (!BINFO_VIRTUAL_P (vbase))
4757 continue;
4759 if (!BINFO_PRIMARY_P (vbase))
4761 tree basetype = TREE_TYPE (vbase);
4763 /* This virtual base is not a primary base of any class in the
4764 hierarchy, so we have to add space for it. */
4765 next_field = build_base_field (rli, vbase,
4766 offsets, next_field);
4768 /* If the first virtual base might have been placed at a
4769 lower address, had we started from CLASSTYPE_SIZE, rather
4770 than TYPE_SIZE, issue a warning. There can be both false
4771 positives and false negatives from this warning in rare
4772 cases; to deal with all the possibilities would probably
4773 require performing both layout algorithms and comparing
4774 the results which is not particularly tractable. */
4775 if (warn_abi
4776 && first_vbase
4777 && (tree_int_cst_lt
4778 (size_binop (CEIL_DIV_EXPR,
4779 round_up_loc (input_location,
4780 CLASSTYPE_SIZE (t),
4781 CLASSTYPE_ALIGN (basetype)),
4782 bitsize_unit_node),
4783 BINFO_OFFSET (vbase))))
4784 warning (OPT_Wabi,
4785 "offset of virtual base %qT is not ABI-compliant and "
4786 "may change in a future version of GCC",
4787 basetype);
4789 first_vbase = false;
4794 /* Returns the offset of the byte just past the end of the base class
4795 BINFO. */
4797 static tree
4798 end_of_base (tree binfo)
4800 tree size;
4802 if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
4803 size = TYPE_SIZE_UNIT (char_type_node);
4804 else if (is_empty_class (BINFO_TYPE (binfo)))
4805 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
4806 allocate some space for it. It cannot have virtual bases, so
4807 TYPE_SIZE_UNIT is fine. */
4808 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4809 else
4810 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4812 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
4815 /* Returns the offset of the byte just past the end of the base class
4816 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
4817 only non-virtual bases are included. */
4819 static tree
4820 end_of_class (tree t, int include_virtuals_p)
4822 tree result = size_zero_node;
4823 VEC(tree,gc) *vbases;
4824 tree binfo;
4825 tree base_binfo;
4826 tree offset;
4827 int i;
4829 for (binfo = TYPE_BINFO (t), i = 0;
4830 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4832 if (!include_virtuals_p
4833 && BINFO_VIRTUAL_P (base_binfo)
4834 && (!BINFO_PRIMARY_P (base_binfo)
4835 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
4836 continue;
4838 offset = end_of_base (base_binfo);
4839 if (INT_CST_LT_UNSIGNED (result, offset))
4840 result = offset;
4843 /* G++ 3.2 did not check indirect virtual bases. */
4844 if (abi_version_at_least (2) && include_virtuals_p)
4845 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
4846 VEC_iterate (tree, vbases, i, base_binfo); i++)
4848 offset = end_of_base (base_binfo);
4849 if (INT_CST_LT_UNSIGNED (result, offset))
4850 result = offset;
4853 return result;
4856 /* Warn about bases of T that are inaccessible because they are
4857 ambiguous. For example:
4859 struct S {};
4860 struct T : public S {};
4861 struct U : public S, public T {};
4863 Here, `(S*) new U' is not allowed because there are two `S'
4864 subobjects of U. */
4866 static void
4867 warn_about_ambiguous_bases (tree t)
4869 int i;
4870 VEC(tree,gc) *vbases;
4871 tree basetype;
4872 tree binfo;
4873 tree base_binfo;
4875 /* If there are no repeated bases, nothing can be ambiguous. */
4876 if (!CLASSTYPE_REPEATED_BASE_P (t))
4877 return;
4879 /* Check direct bases. */
4880 for (binfo = TYPE_BINFO (t), i = 0;
4881 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4883 basetype = BINFO_TYPE (base_binfo);
4885 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
4886 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
4887 basetype, t);
4890 /* Check for ambiguous virtual bases. */
4891 if (extra_warnings)
4892 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
4893 VEC_iterate (tree, vbases, i, binfo); i++)
4895 basetype = BINFO_TYPE (binfo);
4897 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
4898 warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due to ambiguity",
4899 basetype, t);
4903 /* Compare two INTEGER_CSTs K1 and K2. */
4905 static int
4906 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
4908 return tree_int_cst_compare ((tree) k1, (tree) k2);
4911 /* Increase the size indicated in RLI to account for empty classes
4912 that are "off the end" of the class. */
4914 static void
4915 include_empty_classes (record_layout_info rli)
4917 tree eoc;
4918 tree rli_size;
4920 /* It might be the case that we grew the class to allocate a
4921 zero-sized base class. That won't be reflected in RLI, yet,
4922 because we are willing to overlay multiple bases at the same
4923 offset. However, now we need to make sure that RLI is big enough
4924 to reflect the entire class. */
4925 eoc = end_of_class (rli->t,
4926 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
4927 rli_size = rli_size_unit_so_far (rli);
4928 if (TREE_CODE (rli_size) == INTEGER_CST
4929 && INT_CST_LT_UNSIGNED (rli_size, eoc))
4931 if (!abi_version_at_least (2))
4932 /* In version 1 of the ABI, the size of a class that ends with
4933 a bitfield was not rounded up to a whole multiple of a
4934 byte. Because rli_size_unit_so_far returns only the number
4935 of fully allocated bytes, any extra bits were not included
4936 in the size. */
4937 rli->bitpos = round_down (rli->bitpos, BITS_PER_UNIT);
4938 else
4939 /* The size should have been rounded to a whole byte. */
4940 gcc_assert (tree_int_cst_equal
4941 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
4942 rli->bitpos
4943 = size_binop (PLUS_EXPR,
4944 rli->bitpos,
4945 size_binop (MULT_EXPR,
4946 convert (bitsizetype,
4947 size_binop (MINUS_EXPR,
4948 eoc, rli_size)),
4949 bitsize_int (BITS_PER_UNIT)));
4950 normalize_rli (rli);
4954 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
4955 BINFO_OFFSETs for all of the base-classes. Position the vtable
4956 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
4958 static void
4959 layout_class_type (tree t, tree *virtuals_p)
4961 tree non_static_data_members;
4962 tree field;
4963 tree vptr;
4964 record_layout_info rli;
4965 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
4966 types that appear at that offset. */
4967 splay_tree empty_base_offsets;
4968 /* True if the last field layed out was a bit-field. */
4969 bool last_field_was_bitfield = false;
4970 /* The location at which the next field should be inserted. */
4971 tree *next_field;
4972 /* T, as a base class. */
4973 tree base_t;
4975 /* Keep track of the first non-static data member. */
4976 non_static_data_members = TYPE_FIELDS (t);
4978 /* Start laying out the record. */
4979 rli = start_record_layout (t);
4981 /* Mark all the primary bases in the hierarchy. */
4982 determine_primary_bases (t);
4984 /* Create a pointer to our virtual function table. */
4985 vptr = create_vtable_ptr (t, virtuals_p);
4987 /* The vptr is always the first thing in the class. */
4988 if (vptr)
4990 TREE_CHAIN (vptr) = TYPE_FIELDS (t);
4991 TYPE_FIELDS (t) = vptr;
4992 next_field = &TREE_CHAIN (vptr);
4993 place_field (rli, vptr);
4995 else
4996 next_field = &TYPE_FIELDS (t);
4998 /* Build FIELD_DECLs for all of the non-virtual base-types. */
4999 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
5000 NULL, NULL);
5001 build_base_fields (rli, empty_base_offsets, next_field);
5003 /* Layout the non-static data members. */
5004 for (field = non_static_data_members; field; field = TREE_CHAIN (field))
5006 tree type;
5007 tree padding;
5009 /* We still pass things that aren't non-static data members to
5010 the back end, in case it wants to do something with them. */
5011 if (TREE_CODE (field) != FIELD_DECL)
5013 place_field (rli, field);
5014 /* If the static data member has incomplete type, keep track
5015 of it so that it can be completed later. (The handling
5016 of pending statics in finish_record_layout is
5017 insufficient; consider:
5019 struct S1;
5020 struct S2 { static S1 s1; };
5022 At this point, finish_record_layout will be called, but
5023 S1 is still incomplete.) */
5024 if (TREE_CODE (field) == VAR_DECL)
5026 maybe_register_incomplete_var (field);
5027 /* The visibility of static data members is determined
5028 at their point of declaration, not their point of
5029 definition. */
5030 determine_visibility (field);
5032 continue;
5035 type = TREE_TYPE (field);
5036 if (type == error_mark_node)
5037 continue;
5039 padding = NULL_TREE;
5041 /* If this field is a bit-field whose width is greater than its
5042 type, then there are some special rules for allocating
5043 it. */
5044 if (DECL_C_BIT_FIELD (field)
5045 && INT_CST_LT (TYPE_SIZE (type), DECL_SIZE (field)))
5047 unsigned int itk;
5048 tree integer_type;
5049 bool was_unnamed_p = false;
5050 /* We must allocate the bits as if suitably aligned for the
5051 longest integer type that fits in this many bits. type
5052 of the field. Then, we are supposed to use the left over
5053 bits as additional padding. */
5054 for (itk = itk_char; itk != itk_none; ++itk)
5055 if (integer_types[itk] != NULL_TREE
5056 && (INT_CST_LT (size_int (MAX_FIXED_MODE_SIZE),
5057 TYPE_SIZE (integer_types[itk]))
5058 || INT_CST_LT (DECL_SIZE (field),
5059 TYPE_SIZE (integer_types[itk]))))
5060 break;
5062 /* ITK now indicates a type that is too large for the
5063 field. We have to back up by one to find the largest
5064 type that fits. */
5067 --itk;
5068 integer_type = integer_types[itk];
5069 } while (itk > 0 && integer_type == NULL_TREE);
5071 /* Figure out how much additional padding is required. GCC
5072 3.2 always created a padding field, even if it had zero
5073 width. */
5074 if (!abi_version_at_least (2)
5075 || INT_CST_LT (TYPE_SIZE (integer_type), DECL_SIZE (field)))
5077 if (abi_version_at_least (2) && TREE_CODE (t) == UNION_TYPE)
5078 /* In a union, the padding field must have the full width
5079 of the bit-field; all fields start at offset zero. */
5080 padding = DECL_SIZE (field);
5081 else
5083 if (TREE_CODE (t) == UNION_TYPE)
5084 warning (OPT_Wabi, "size assigned to %qT may not be "
5085 "ABI-compliant and may change in a future "
5086 "version of GCC",
5088 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
5089 TYPE_SIZE (integer_type));
5092 #ifdef PCC_BITFIELD_TYPE_MATTERS
5093 /* An unnamed bitfield does not normally affect the
5094 alignment of the containing class on a target where
5095 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
5096 make any exceptions for unnamed bitfields when the
5097 bitfields are longer than their types. Therefore, we
5098 temporarily give the field a name. */
5099 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
5101 was_unnamed_p = true;
5102 DECL_NAME (field) = make_anon_name ();
5104 #endif
5105 DECL_SIZE (field) = TYPE_SIZE (integer_type);
5106 DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
5107 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
5108 layout_nonempty_base_or_field (rli, field, NULL_TREE,
5109 empty_base_offsets);
5110 if (was_unnamed_p)
5111 DECL_NAME (field) = NULL_TREE;
5112 /* Now that layout has been performed, set the size of the
5113 field to the size of its declared type; the rest of the
5114 field is effectively invisible. */
5115 DECL_SIZE (field) = TYPE_SIZE (type);
5116 /* We must also reset the DECL_MODE of the field. */
5117 if (abi_version_at_least (2))
5118 DECL_MODE (field) = TYPE_MODE (type);
5119 else if (warn_abi
5120 && DECL_MODE (field) != TYPE_MODE (type))
5121 /* Versions of G++ before G++ 3.4 did not reset the
5122 DECL_MODE. */
5123 warning (OPT_Wabi,
5124 "the offset of %qD may not be ABI-compliant and may "
5125 "change in a future version of GCC", field);
5127 else
5128 layout_nonempty_base_or_field (rli, field, NULL_TREE,
5129 empty_base_offsets);
5131 /* Remember the location of any empty classes in FIELD. */
5132 if (abi_version_at_least (2))
5133 record_subobject_offsets (TREE_TYPE (field),
5134 byte_position(field),
5135 empty_base_offsets,
5136 /*is_data_member=*/true);
5138 /* If a bit-field does not immediately follow another bit-field,
5139 and yet it starts in the middle of a byte, we have failed to
5140 comply with the ABI. */
5141 if (warn_abi
5142 && DECL_C_BIT_FIELD (field)
5143 /* The TREE_NO_WARNING flag gets set by Objective-C when
5144 laying out an Objective-C class. The ObjC ABI differs
5145 from the C++ ABI, and so we do not want a warning
5146 here. */
5147 && !TREE_NO_WARNING (field)
5148 && !last_field_was_bitfield
5149 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
5150 DECL_FIELD_BIT_OFFSET (field),
5151 bitsize_unit_node)))
5152 warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
5153 "change in a future version of GCC", field);
5155 /* G++ used to use DECL_FIELD_OFFSET as if it were the byte
5156 offset of the field. */
5157 if (warn_abi
5158 && !abi_version_at_least (2)
5159 && !tree_int_cst_equal (DECL_FIELD_OFFSET (field),
5160 byte_position (field))
5161 && contains_empty_class_p (TREE_TYPE (field)))
5162 warning (OPT_Wabi, "%q+D contains empty classes which may cause base "
5163 "classes to be placed at different locations in a "
5164 "future version of GCC", field);
5166 /* The middle end uses the type of expressions to determine the
5167 possible range of expression values. In order to optimize
5168 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
5169 must be made aware of the width of "i", via its type.
5171 Because C++ does not have integer types of arbitrary width,
5172 we must (for the purposes of the front end) convert from the
5173 type assigned here to the declared type of the bitfield
5174 whenever a bitfield expression is used as an rvalue.
5175 Similarly, when assigning a value to a bitfield, the value
5176 must be converted to the type given the bitfield here. */
5177 if (DECL_C_BIT_FIELD (field))
5179 unsigned HOST_WIDE_INT width;
5180 tree ftype = TREE_TYPE (field);
5181 width = tree_low_cst (DECL_SIZE (field), /*unsignedp=*/1);
5182 if (width != TYPE_PRECISION (ftype))
5184 TREE_TYPE (field)
5185 = c_build_bitfield_integer_type (width,
5186 TYPE_UNSIGNED (ftype));
5187 TREE_TYPE (field)
5188 = cp_build_qualified_type (TREE_TYPE (field),
5189 cp_type_quals (ftype));
5193 /* If we needed additional padding after this field, add it
5194 now. */
5195 if (padding)
5197 tree padding_field;
5199 padding_field = build_decl (input_location,
5200 FIELD_DECL,
5201 NULL_TREE,
5202 char_type_node);
5203 DECL_BIT_FIELD (padding_field) = 1;
5204 DECL_SIZE (padding_field) = padding;
5205 DECL_CONTEXT (padding_field) = t;
5206 DECL_ARTIFICIAL (padding_field) = 1;
5207 DECL_IGNORED_P (padding_field) = 1;
5208 layout_nonempty_base_or_field (rli, padding_field,
5209 NULL_TREE,
5210 empty_base_offsets);
5213 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
5216 if (abi_version_at_least (2) && !integer_zerop (rli->bitpos))
5218 /* Make sure that we are on a byte boundary so that the size of
5219 the class without virtual bases will always be a round number
5220 of bytes. */
5221 rli->bitpos = round_up_loc (input_location, rli->bitpos, BITS_PER_UNIT);
5222 normalize_rli (rli);
5225 /* G++ 3.2 does not allow virtual bases to be overlaid with tail
5226 padding. */
5227 if (!abi_version_at_least (2))
5228 include_empty_classes(rli);
5230 /* Delete all zero-width bit-fields from the list of fields. Now
5231 that the type is laid out they are no longer important. */
5232 remove_zero_width_bit_fields (t);
5234 /* Create the version of T used for virtual bases. We do not use
5235 make_class_type for this version; this is an artificial type. For
5236 a POD type, we just reuse T. */
5237 if (CLASSTYPE_NON_LAYOUT_POD_P (t) || CLASSTYPE_EMPTY_P (t))
5239 base_t = make_node (TREE_CODE (t));
5241 /* Set the size and alignment for the new type. In G++ 3.2, all
5242 empty classes were considered to have size zero when used as
5243 base classes. */
5244 if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t))
5246 TYPE_SIZE (base_t) = bitsize_zero_node;
5247 TYPE_SIZE_UNIT (base_t) = size_zero_node;
5248 if (warn_abi && !integer_zerop (rli_size_unit_so_far (rli)))
5249 warning (OPT_Wabi,
5250 "layout of classes derived from empty class %qT "
5251 "may change in a future version of GCC",
5254 else
5256 tree eoc;
5258 /* If the ABI version is not at least two, and the last
5259 field was a bit-field, RLI may not be on a byte
5260 boundary. In particular, rli_size_unit_so_far might
5261 indicate the last complete byte, while rli_size_so_far
5262 indicates the total number of bits used. Therefore,
5263 rli_size_so_far, rather than rli_size_unit_so_far, is
5264 used to compute TYPE_SIZE_UNIT. */
5265 eoc = end_of_class (t, /*include_virtuals_p=*/0);
5266 TYPE_SIZE_UNIT (base_t)
5267 = size_binop (MAX_EXPR,
5268 convert (sizetype,
5269 size_binop (CEIL_DIV_EXPR,
5270 rli_size_so_far (rli),
5271 bitsize_int (BITS_PER_UNIT))),
5272 eoc);
5273 TYPE_SIZE (base_t)
5274 = size_binop (MAX_EXPR,
5275 rli_size_so_far (rli),
5276 size_binop (MULT_EXPR,
5277 convert (bitsizetype, eoc),
5278 bitsize_int (BITS_PER_UNIT)));
5280 TYPE_ALIGN (base_t) = rli->record_align;
5281 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
5283 /* Copy the fields from T. */
5284 next_field = &TYPE_FIELDS (base_t);
5285 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5286 if (TREE_CODE (field) == FIELD_DECL)
5288 *next_field = build_decl (input_location,
5289 FIELD_DECL,
5290 DECL_NAME (field),
5291 TREE_TYPE (field));
5292 DECL_CONTEXT (*next_field) = base_t;
5293 DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
5294 DECL_FIELD_BIT_OFFSET (*next_field)
5295 = DECL_FIELD_BIT_OFFSET (field);
5296 DECL_SIZE (*next_field) = DECL_SIZE (field);
5297 DECL_MODE (*next_field) = DECL_MODE (field);
5298 next_field = &TREE_CHAIN (*next_field);
5301 /* Record the base version of the type. */
5302 CLASSTYPE_AS_BASE (t) = base_t;
5303 TYPE_CONTEXT (base_t) = t;
5305 else
5306 CLASSTYPE_AS_BASE (t) = t;
5308 /* Every empty class contains an empty class. */
5309 if (CLASSTYPE_EMPTY_P (t))
5310 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
5312 /* Set the TYPE_DECL for this type to contain the right
5313 value for DECL_OFFSET, so that we can use it as part
5314 of a COMPONENT_REF for multiple inheritance. */
5315 layout_decl (TYPE_MAIN_DECL (t), 0);
5317 /* Now fix up any virtual base class types that we left lying
5318 around. We must get these done before we try to lay out the
5319 virtual function table. As a side-effect, this will remove the
5320 base subobject fields. */
5321 layout_virtual_bases (rli, empty_base_offsets);
5323 /* Make sure that empty classes are reflected in RLI at this
5324 point. */
5325 include_empty_classes(rli);
5327 /* Make sure not to create any structures with zero size. */
5328 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
5329 place_field (rli,
5330 build_decl (input_location,
5331 FIELD_DECL, NULL_TREE, char_type_node));
5333 /* If this is a non-POD, declaring it packed makes a difference to how it
5334 can be used as a field; don't let finalize_record_size undo it. */
5335 if (TYPE_PACKED (t) && !layout_pod_type_p (t))
5336 rli->packed_maybe_necessary = true;
5338 /* Let the back end lay out the type. */
5339 finish_record_layout (rli, /*free_p=*/true);
5341 /* Warn about bases that can't be talked about due to ambiguity. */
5342 warn_about_ambiguous_bases (t);
5344 /* Now that we're done with layout, give the base fields the real types. */
5345 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5346 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
5347 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
5349 /* Clean up. */
5350 splay_tree_delete (empty_base_offsets);
5352 if (CLASSTYPE_EMPTY_P (t)
5353 && tree_int_cst_lt (sizeof_biggest_empty_class,
5354 TYPE_SIZE_UNIT (t)))
5355 sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
5358 /* Determine the "key method" for the class type indicated by TYPE,
5359 and set CLASSTYPE_KEY_METHOD accordingly. */
5361 void
5362 determine_key_method (tree type)
5364 tree method;
5366 if (TYPE_FOR_JAVA (type)
5367 || processing_template_decl
5368 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
5369 || CLASSTYPE_INTERFACE_KNOWN (type))
5370 return;
5372 /* The key method is the first non-pure virtual function that is not
5373 inline at the point of class definition. On some targets the
5374 key function may not be inline; those targets should not call
5375 this function until the end of the translation unit. */
5376 for (method = TYPE_METHODS (type); method != NULL_TREE;
5377 method = TREE_CHAIN (method))
5378 if (DECL_VINDEX (method) != NULL_TREE
5379 && ! DECL_DECLARED_INLINE_P (method)
5380 && ! DECL_PURE_VIRTUAL_P (method))
5382 CLASSTYPE_KEY_METHOD (type) = method;
5383 break;
5386 return;
5389 /* Perform processing required when the definition of T (a class type)
5390 is complete. */
5392 void
5393 finish_struct_1 (tree t)
5395 tree x;
5396 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
5397 tree virtuals = NULL_TREE;
5398 int n_fields = 0;
5400 if (COMPLETE_TYPE_P (t))
5402 gcc_assert (MAYBE_CLASS_TYPE_P (t));
5403 error ("redefinition of %q#T", t);
5404 popclass ();
5405 return;
5408 /* If this type was previously laid out as a forward reference,
5409 make sure we lay it out again. */
5410 TYPE_SIZE (t) = NULL_TREE;
5411 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
5413 /* Make assumptions about the class; we'll reset the flags if
5414 necessary. */
5415 CLASSTYPE_EMPTY_P (t) = 1;
5416 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
5417 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
5419 /* Do end-of-class semantic processing: checking the validity of the
5420 bases and members and add implicitly generated methods. */
5421 check_bases_and_members (t);
5423 /* Find the key method. */
5424 if (TYPE_CONTAINS_VPTR_P (t))
5426 /* The Itanium C++ ABI permits the key method to be chosen when
5427 the class is defined -- even though the key method so
5428 selected may later turn out to be an inline function. On
5429 some systems (such as ARM Symbian OS) the key method cannot
5430 be determined until the end of the translation unit. On such
5431 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
5432 will cause the class to be added to KEYED_CLASSES. Then, in
5433 finish_file we will determine the key method. */
5434 if (targetm.cxx.key_method_may_be_inline ())
5435 determine_key_method (t);
5437 /* If a polymorphic class has no key method, we may emit the vtable
5438 in every translation unit where the class definition appears. */
5439 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
5440 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
5443 /* Layout the class itself. */
5444 layout_class_type (t, &virtuals);
5445 if (CLASSTYPE_AS_BASE (t) != t)
5446 /* We use the base type for trivial assignments, and hence it
5447 needs a mode. */
5448 compute_record_mode (CLASSTYPE_AS_BASE (t));
5450 virtuals = modify_all_vtables (t, nreverse (virtuals));
5452 /* If necessary, create the primary vtable for this class. */
5453 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
5455 /* We must enter these virtuals into the table. */
5456 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
5457 build_primary_vtable (NULL_TREE, t);
5458 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
5459 /* Here we know enough to change the type of our virtual
5460 function table, but we will wait until later this function. */
5461 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
5464 if (TYPE_CONTAINS_VPTR_P (t))
5466 int vindex;
5467 tree fn;
5469 if (BINFO_VTABLE (TYPE_BINFO (t)))
5470 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
5471 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
5472 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
5474 /* Add entries for virtual functions introduced by this class. */
5475 BINFO_VIRTUALS (TYPE_BINFO (t))
5476 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
5478 /* Set DECL_VINDEX for all functions declared in this class. */
5479 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
5481 fn = TREE_CHAIN (fn),
5482 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
5483 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
5485 tree fndecl = BV_FN (fn);
5487 if (DECL_THUNK_P (fndecl))
5488 /* A thunk. We should never be calling this entry directly
5489 from this vtable -- we'd use the entry for the non
5490 thunk base function. */
5491 DECL_VINDEX (fndecl) = NULL_TREE;
5492 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
5493 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
5497 finish_struct_bits (t);
5499 /* Complete the rtl for any static member objects of the type we're
5500 working on. */
5501 for (x = TYPE_FIELDS (t); x; x = TREE_CHAIN (x))
5502 if (TREE_CODE (x) == VAR_DECL && TREE_STATIC (x)
5503 && TREE_TYPE (x) != error_mark_node
5504 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
5505 DECL_MODE (x) = TYPE_MODE (t);
5507 /* Done with FIELDS...now decide whether to sort these for
5508 faster lookups later.
5510 We use a small number because most searches fail (succeeding
5511 ultimately as the search bores through the inheritance
5512 hierarchy), and we want this failure to occur quickly. */
5514 n_fields = count_fields (TYPE_FIELDS (t));
5515 if (n_fields > 7)
5517 struct sorted_fields_type *field_vec = ggc_alloc_sorted_fields_type
5518 (sizeof (struct sorted_fields_type) + n_fields * sizeof (tree));
5519 field_vec->len = n_fields;
5520 add_fields_to_record_type (TYPE_FIELDS (t), field_vec, 0);
5521 qsort (field_vec->elts, n_fields, sizeof (tree),
5522 field_decl_cmp);
5523 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
5526 /* Complain if one of the field types requires lower visibility. */
5527 constrain_class_visibility (t);
5529 /* Make the rtl for any new vtables we have created, and unmark
5530 the base types we marked. */
5531 finish_vtbls (t);
5533 /* Build the VTT for T. */
5534 build_vtt (t);
5536 /* This warning does not make sense for Java classes, since they
5537 cannot have destructors. */
5538 if (!TYPE_FOR_JAVA (t) && warn_nonvdtor && TYPE_POLYMORPHIC_P (t))
5540 tree dtor;
5542 dtor = CLASSTYPE_DESTRUCTORS (t);
5543 if (/* An implicitly declared destructor is always public. And,
5544 if it were virtual, we would have created it by now. */
5545 !dtor
5546 || (!DECL_VINDEX (dtor)
5547 && (/* public non-virtual */
5548 (!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
5549 || (/* non-public non-virtual with friends */
5550 (TREE_PRIVATE (dtor) || TREE_PROTECTED (dtor))
5551 && (CLASSTYPE_FRIEND_CLASSES (t)
5552 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))))))
5553 warning (OPT_Wnon_virtual_dtor,
5554 "%q#T has virtual functions and accessible"
5555 " non-virtual destructor", t);
5558 complete_vars (t);
5560 if (warn_overloaded_virtual)
5561 warn_hidden (t);
5563 /* Class layout, assignment of virtual table slots, etc., is now
5564 complete. Give the back end a chance to tweak the visibility of
5565 the class or perform any other required target modifications. */
5566 targetm.cxx.adjust_class_at_definition (t);
5568 maybe_suppress_debug_info (t);
5570 dump_class_hierarchy (t);
5572 /* Finish debugging output for this type. */
5573 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
5576 /* When T was built up, the member declarations were added in reverse
5577 order. Rearrange them to declaration order. */
5579 void
5580 unreverse_member_declarations (tree t)
5582 tree next;
5583 tree prev;
5584 tree x;
5586 /* The following lists are all in reverse order. Put them in
5587 declaration order now. */
5588 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
5589 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
5591 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
5592 reverse order, so we can't just use nreverse. */
5593 prev = NULL_TREE;
5594 for (x = TYPE_FIELDS (t);
5595 x && TREE_CODE (x) != TYPE_DECL;
5596 x = next)
5598 next = TREE_CHAIN (x);
5599 TREE_CHAIN (x) = prev;
5600 prev = x;
5602 if (prev)
5604 TREE_CHAIN (TYPE_FIELDS (t)) = x;
5605 if (prev)
5606 TYPE_FIELDS (t) = prev;
5610 tree
5611 finish_struct (tree t, tree attributes)
5613 location_t saved_loc = input_location;
5615 /* Now that we've got all the field declarations, reverse everything
5616 as necessary. */
5617 unreverse_member_declarations (t);
5619 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
5621 /* Nadger the current location so that diagnostics point to the start of
5622 the struct, not the end. */
5623 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
5625 if (processing_template_decl)
5627 tree x;
5629 finish_struct_methods (t);
5630 TYPE_SIZE (t) = bitsize_zero_node;
5631 TYPE_SIZE_UNIT (t) = size_zero_node;
5633 /* We need to emit an error message if this type was used as a parameter
5634 and it is an abstract type, even if it is a template. We construct
5635 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
5636 account and we call complete_vars with this type, which will check
5637 the PARM_DECLS. Note that while the type is being defined,
5638 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
5639 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
5640 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
5641 for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
5642 if (DECL_PURE_VIRTUAL_P (x))
5643 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
5644 complete_vars (t);
5646 /* Remember current #pragma pack value. */
5647 TYPE_PRECISION (t) = maximum_field_alignment;
5649 else
5650 finish_struct_1 (t);
5652 input_location = saved_loc;
5654 TYPE_BEING_DEFINED (t) = 0;
5656 if (current_class_type)
5657 popclass ();
5658 else
5659 error ("trying to finish struct, but kicked out due to previous parse errors");
5661 if (processing_template_decl && at_function_scope_p ())
5662 add_stmt (build_min (TAG_DEFN, t));
5664 return t;
5667 /* Return the dynamic type of INSTANCE, if known.
5668 Used to determine whether the virtual function table is needed
5669 or not.
5671 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5672 of our knowledge of its type. *NONNULL should be initialized
5673 before this function is called. */
5675 static tree
5676 fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
5678 #define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
5680 switch (TREE_CODE (instance))
5682 case INDIRECT_REF:
5683 if (POINTER_TYPE_P (TREE_TYPE (instance)))
5684 return NULL_TREE;
5685 else
5686 return RECUR (TREE_OPERAND (instance, 0));
5688 case CALL_EXPR:
5689 /* This is a call to a constructor, hence it's never zero. */
5690 if (TREE_HAS_CONSTRUCTOR (instance))
5692 if (nonnull)
5693 *nonnull = 1;
5694 return TREE_TYPE (instance);
5696 return NULL_TREE;
5698 case SAVE_EXPR:
5699 /* This is a call to a constructor, hence it's never zero. */
5700 if (TREE_HAS_CONSTRUCTOR (instance))
5702 if (nonnull)
5703 *nonnull = 1;
5704 return TREE_TYPE (instance);
5706 return RECUR (TREE_OPERAND (instance, 0));
5708 case POINTER_PLUS_EXPR:
5709 case PLUS_EXPR:
5710 case MINUS_EXPR:
5711 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
5712 return RECUR (TREE_OPERAND (instance, 0));
5713 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
5714 /* Propagate nonnull. */
5715 return RECUR (TREE_OPERAND (instance, 0));
5717 return NULL_TREE;
5719 CASE_CONVERT:
5720 return RECUR (TREE_OPERAND (instance, 0));
5722 case ADDR_EXPR:
5723 instance = TREE_OPERAND (instance, 0);
5724 if (nonnull)
5726 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
5727 with a real object -- given &p->f, p can still be null. */
5728 tree t = get_base_address (instance);
5729 /* ??? Probably should check DECL_WEAK here. */
5730 if (t && DECL_P (t))
5731 *nonnull = 1;
5733 return RECUR (instance);
5735 case COMPONENT_REF:
5736 /* If this component is really a base class reference, then the field
5737 itself isn't definitive. */
5738 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
5739 return RECUR (TREE_OPERAND (instance, 0));
5740 return RECUR (TREE_OPERAND (instance, 1));
5742 case VAR_DECL:
5743 case FIELD_DECL:
5744 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
5745 && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance))))
5747 if (nonnull)
5748 *nonnull = 1;
5749 return TREE_TYPE (TREE_TYPE (instance));
5751 /* fall through... */
5752 case TARGET_EXPR:
5753 case PARM_DECL:
5754 case RESULT_DECL:
5755 if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance)))
5757 if (nonnull)
5758 *nonnull = 1;
5759 return TREE_TYPE (instance);
5761 else if (instance == current_class_ptr)
5763 if (nonnull)
5764 *nonnull = 1;
5766 /* if we're in a ctor or dtor, we know our type. */
5767 if (DECL_LANG_SPECIFIC (current_function_decl)
5768 && (DECL_CONSTRUCTOR_P (current_function_decl)
5769 || DECL_DESTRUCTOR_P (current_function_decl)))
5771 if (cdtorp)
5772 *cdtorp = 1;
5773 return TREE_TYPE (TREE_TYPE (instance));
5776 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
5778 /* We only need one hash table because it is always left empty. */
5779 static htab_t ht;
5780 if (!ht)
5781 ht = htab_create (37,
5782 htab_hash_pointer,
5783 htab_eq_pointer,
5784 /*htab_del=*/NULL);
5786 /* Reference variables should be references to objects. */
5787 if (nonnull)
5788 *nonnull = 1;
5790 /* Enter the INSTANCE in a table to prevent recursion; a
5791 variable's initializer may refer to the variable
5792 itself. */
5793 if (TREE_CODE (instance) == VAR_DECL
5794 && DECL_INITIAL (instance)
5795 && !htab_find (ht, instance))
5797 tree type;
5798 void **slot;
5800 slot = htab_find_slot (ht, instance, INSERT);
5801 *slot = instance;
5802 type = RECUR (DECL_INITIAL (instance));
5803 htab_remove_elt (ht, instance);
5805 return type;
5808 return NULL_TREE;
5810 default:
5811 return NULL_TREE;
5813 #undef RECUR
5816 /* Return nonzero if the dynamic type of INSTANCE is known, and
5817 equivalent to the static type. We also handle the case where
5818 INSTANCE is really a pointer. Return negative if this is a
5819 ctor/dtor. There the dynamic type is known, but this might not be
5820 the most derived base of the original object, and hence virtual
5821 bases may not be layed out according to this type.
5823 Used to determine whether the virtual function table is needed
5824 or not.
5826 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5827 of our knowledge of its type. *NONNULL should be initialized
5828 before this function is called. */
5831 resolves_to_fixed_type_p (tree instance, int* nonnull)
5833 tree t = TREE_TYPE (instance);
5834 int cdtorp = 0;
5835 tree fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
5836 if (fixed == NULL_TREE)
5837 return 0;
5838 if (POINTER_TYPE_P (t))
5839 t = TREE_TYPE (t);
5840 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
5841 return 0;
5842 return cdtorp ? -1 : 1;
5846 void
5847 init_class_processing (void)
5849 current_class_depth = 0;
5850 current_class_stack_size = 10;
5851 current_class_stack
5852 = XNEWVEC (struct class_stack_node, current_class_stack_size);
5853 local_classes = VEC_alloc (tree, gc, 8);
5854 sizeof_biggest_empty_class = size_zero_node;
5856 ridpointers[(int) RID_PUBLIC] = access_public_node;
5857 ridpointers[(int) RID_PRIVATE] = access_private_node;
5858 ridpointers[(int) RID_PROTECTED] = access_protected_node;
5861 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
5863 static void
5864 restore_class_cache (void)
5866 tree type;
5868 /* We are re-entering the same class we just left, so we don't
5869 have to search the whole inheritance matrix to find all the
5870 decls to bind again. Instead, we install the cached
5871 class_shadowed list and walk through it binding names. */
5872 push_binding_level (previous_class_level);
5873 class_binding_level = previous_class_level;
5874 /* Restore IDENTIFIER_TYPE_VALUE. */
5875 for (type = class_binding_level->type_shadowed;
5876 type;
5877 type = TREE_CHAIN (type))
5878 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
5881 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
5882 appropriate for TYPE.
5884 So that we may avoid calls to lookup_name, we cache the _TYPE
5885 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
5887 For multiple inheritance, we perform a two-pass depth-first search
5888 of the type lattice. */
5890 void
5891 pushclass (tree type)
5893 class_stack_node_t csn;
5895 type = TYPE_MAIN_VARIANT (type);
5897 /* Make sure there is enough room for the new entry on the stack. */
5898 if (current_class_depth + 1 >= current_class_stack_size)
5900 current_class_stack_size *= 2;
5901 current_class_stack
5902 = XRESIZEVEC (struct class_stack_node, current_class_stack,
5903 current_class_stack_size);
5906 /* Insert a new entry on the class stack. */
5907 csn = current_class_stack + current_class_depth;
5908 csn->name = current_class_name;
5909 csn->type = current_class_type;
5910 csn->access = current_access_specifier;
5911 csn->names_used = 0;
5912 csn->hidden = 0;
5913 current_class_depth++;
5915 /* Now set up the new type. */
5916 current_class_name = TYPE_NAME (type);
5917 if (TREE_CODE (current_class_name) == TYPE_DECL)
5918 current_class_name = DECL_NAME (current_class_name);
5919 current_class_type = type;
5921 /* By default, things in classes are private, while things in
5922 structures or unions are public. */
5923 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
5924 ? access_private_node
5925 : access_public_node);
5927 if (previous_class_level
5928 && type != previous_class_level->this_entity
5929 && current_class_depth == 1)
5931 /* Forcibly remove any old class remnants. */
5932 invalidate_class_lookup_cache ();
5935 if (!previous_class_level
5936 || type != previous_class_level->this_entity
5937 || current_class_depth > 1)
5938 pushlevel_class ();
5939 else
5940 restore_class_cache ();
5943 /* When we exit a toplevel class scope, we save its binding level so
5944 that we can restore it quickly. Here, we've entered some other
5945 class, so we must invalidate our cache. */
5947 void
5948 invalidate_class_lookup_cache (void)
5950 previous_class_level = NULL;
5953 /* Get out of the current class scope. If we were in a class scope
5954 previously, that is the one popped to. */
5956 void
5957 popclass (void)
5959 poplevel_class ();
5961 current_class_depth--;
5962 current_class_name = current_class_stack[current_class_depth].name;
5963 current_class_type = current_class_stack[current_class_depth].type;
5964 current_access_specifier = current_class_stack[current_class_depth].access;
5965 if (current_class_stack[current_class_depth].names_used)
5966 splay_tree_delete (current_class_stack[current_class_depth].names_used);
5969 /* Mark the top of the class stack as hidden. */
5971 void
5972 push_class_stack (void)
5974 if (current_class_depth)
5975 ++current_class_stack[current_class_depth - 1].hidden;
5978 /* Mark the top of the class stack as un-hidden. */
5980 void
5981 pop_class_stack (void)
5983 if (current_class_depth)
5984 --current_class_stack[current_class_depth - 1].hidden;
5987 /* Returns 1 if the class type currently being defined is either T or
5988 a nested type of T. */
5990 bool
5991 currently_open_class (tree t)
5993 int i;
5995 if (!CLASS_TYPE_P (t))
5996 return false;
5998 t = TYPE_MAIN_VARIANT (t);
6000 /* We start looking from 1 because entry 0 is from global scope,
6001 and has no type. */
6002 for (i = current_class_depth; i > 0; --i)
6004 tree c;
6005 if (i == current_class_depth)
6006 c = current_class_type;
6007 else
6009 if (current_class_stack[i].hidden)
6010 break;
6011 c = current_class_stack[i].type;
6013 if (!c)
6014 continue;
6015 if (same_type_p (c, t))
6016 return true;
6018 return false;
6021 /* If either current_class_type or one of its enclosing classes are derived
6022 from T, return the appropriate type. Used to determine how we found
6023 something via unqualified lookup. */
6025 tree
6026 currently_open_derived_class (tree t)
6028 int i;
6030 /* The bases of a dependent type are unknown. */
6031 if (dependent_type_p (t))
6032 return NULL_TREE;
6034 if (!current_class_type)
6035 return NULL_TREE;
6037 if (DERIVED_FROM_P (t, current_class_type))
6038 return current_class_type;
6040 for (i = current_class_depth - 1; i > 0; --i)
6042 if (current_class_stack[i].hidden)
6043 break;
6044 if (DERIVED_FROM_P (t, current_class_stack[i].type))
6045 return current_class_stack[i].type;
6048 return NULL_TREE;
6051 /* Returns the innermost class type which is not a lambda closure type. */
6053 tree
6054 current_nonlambda_class_type (void)
6056 int i;
6058 /* We start looking from 1 because entry 0 is from global scope,
6059 and has no type. */
6060 for (i = current_class_depth; i > 0; --i)
6062 tree c;
6063 if (i == current_class_depth)
6064 c = current_class_type;
6065 else
6067 if (current_class_stack[i].hidden)
6068 break;
6069 c = current_class_stack[i].type;
6071 if (!c)
6072 continue;
6073 if (!LAMBDA_TYPE_P (c))
6074 return c;
6076 return NULL_TREE;
6079 /* When entering a class scope, all enclosing class scopes' names with
6080 static meaning (static variables, static functions, types and
6081 enumerators) have to be visible. This recursive function calls
6082 pushclass for all enclosing class contexts until global or a local
6083 scope is reached. TYPE is the enclosed class. */
6085 void
6086 push_nested_class (tree type)
6088 /* A namespace might be passed in error cases, like A::B:C. */
6089 if (type == NULL_TREE
6090 || !CLASS_TYPE_P (type))
6091 return;
6093 push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));
6095 pushclass (type);
6098 /* Undoes a push_nested_class call. */
6100 void
6101 pop_nested_class (void)
6103 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
6105 popclass ();
6106 if (context && CLASS_TYPE_P (context))
6107 pop_nested_class ();
6110 /* Returns the number of extern "LANG" blocks we are nested within. */
6113 current_lang_depth (void)
6115 return VEC_length (tree, current_lang_base);
6118 /* Set global variables CURRENT_LANG_NAME to appropriate value
6119 so that behavior of name-mangling machinery is correct. */
6121 void
6122 push_lang_context (tree name)
6124 VEC_safe_push (tree, gc, current_lang_base, current_lang_name);
6126 if (name == lang_name_cplusplus)
6128 current_lang_name = name;
6130 else if (name == lang_name_java)
6132 current_lang_name = name;
6133 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
6134 (See record_builtin_java_type in decl.c.) However, that causes
6135 incorrect debug entries if these types are actually used.
6136 So we re-enable debug output after extern "Java". */
6137 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
6138 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
6139 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
6140 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
6141 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
6142 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
6143 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
6144 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
6146 else if (name == lang_name_c)
6148 current_lang_name = name;
6150 else
6151 error ("language string %<\"%E\"%> not recognized", name);
6154 /* Get out of the current language scope. */
6156 void
6157 pop_lang_context (void)
6159 current_lang_name = VEC_pop (tree, current_lang_base);
6162 /* Type instantiation routines. */
6164 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
6165 matches the TARGET_TYPE. If there is no satisfactory match, return
6166 error_mark_node, and issue an error & warning messages under
6167 control of FLAGS. Permit pointers to member function if FLAGS
6168 permits. If TEMPLATE_ONLY, the name of the overloaded function was
6169 a template-id, and EXPLICIT_TARGS are the explicitly provided
6170 template arguments.
6172 If OVERLOAD is for one or more member functions, then ACCESS_PATH
6173 is the base path used to reference those member functions. If
6174 TF_NO_ACCESS_CONTROL is not set in FLAGS, and the address is
6175 resolved to a member function, access checks will be performed and
6176 errors issued if appropriate. */
6178 static tree
6179 resolve_address_of_overloaded_function (tree target_type,
6180 tree overload,
6181 tsubst_flags_t flags,
6182 bool template_only,
6183 tree explicit_targs,
6184 tree access_path)
6186 /* Here's what the standard says:
6188 [over.over]
6190 If the name is a function template, template argument deduction
6191 is done, and if the argument deduction succeeds, the deduced
6192 arguments are used to generate a single template function, which
6193 is added to the set of overloaded functions considered.
6195 Non-member functions and static member functions match targets of
6196 type "pointer-to-function" or "reference-to-function." Nonstatic
6197 member functions match targets of type "pointer-to-member
6198 function;" the function type of the pointer to member is used to
6199 select the member function from the set of overloaded member
6200 functions. If a nonstatic member function is selected, the
6201 reference to the overloaded function name is required to have the
6202 form of a pointer to member as described in 5.3.1.
6204 If more than one function is selected, any template functions in
6205 the set are eliminated if the set also contains a non-template
6206 function, and any given template function is eliminated if the
6207 set contains a second template function that is more specialized
6208 than the first according to the partial ordering rules 14.5.5.2.
6209 After such eliminations, if any, there shall remain exactly one
6210 selected function. */
6212 int is_ptrmem = 0;
6213 /* We store the matches in a TREE_LIST rooted here. The functions
6214 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
6215 interoperability with most_specialized_instantiation. */
6216 tree matches = NULL_TREE;
6217 tree fn;
6218 tree target_fn_type;
6220 /* By the time we get here, we should be seeing only real
6221 pointer-to-member types, not the internal POINTER_TYPE to
6222 METHOD_TYPE representation. */
6223 gcc_assert (TREE_CODE (target_type) != POINTER_TYPE
6224 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
6226 gcc_assert (is_overloaded_fn (overload));
6228 /* Check that the TARGET_TYPE is reasonable. */
6229 if (TYPE_PTRFN_P (target_type))
6230 /* This is OK. */;
6231 else if (TYPE_PTRMEMFUNC_P (target_type))
6232 /* This is OK, too. */
6233 is_ptrmem = 1;
6234 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
6235 /* This is OK, too. This comes from a conversion to reference
6236 type. */
6237 target_type = build_reference_type (target_type);
6238 else
6240 if (flags & tf_error)
6241 error ("cannot resolve overloaded function %qD based on"
6242 " conversion to type %qT",
6243 DECL_NAME (OVL_FUNCTION (overload)), target_type);
6244 return error_mark_node;
6247 /* Non-member functions and static member functions match targets of type
6248 "pointer-to-function" or "reference-to-function." Nonstatic member
6249 functions match targets of type "pointer-to-member-function;" the
6250 function type of the pointer to member is used to select the member
6251 function from the set of overloaded member functions.
6253 So figure out the FUNCTION_TYPE that we want to match against. */
6254 target_fn_type = static_fn_type (target_type);
6256 /* If we can find a non-template function that matches, we can just
6257 use it. There's no point in generating template instantiations
6258 if we're just going to throw them out anyhow. But, of course, we
6259 can only do this when we don't *need* a template function. */
6260 if (!template_only)
6262 tree fns;
6264 for (fns = overload; fns; fns = OVL_NEXT (fns))
6266 tree fn = OVL_CURRENT (fns);
6268 if (TREE_CODE (fn) == TEMPLATE_DECL)
6269 /* We're not looking for templates just yet. */
6270 continue;
6272 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
6273 != is_ptrmem)
6274 /* We're looking for a non-static member, and this isn't
6275 one, or vice versa. */
6276 continue;
6278 /* Ignore functions which haven't been explicitly
6279 declared. */
6280 if (DECL_ANTICIPATED (fn))
6281 continue;
6283 /* See if there's a match. */
6284 if (same_type_p (target_fn_type, static_fn_type (fn)))
6285 matches = tree_cons (fn, NULL_TREE, matches);
6289 /* Now, if we've already got a match (or matches), there's no need
6290 to proceed to the template functions. But, if we don't have a
6291 match we need to look at them, too. */
6292 if (!matches)
6294 tree target_arg_types;
6295 tree target_ret_type;
6296 tree fns;
6297 tree *args;
6298 unsigned int nargs, ia;
6299 tree arg;
6301 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
6302 target_ret_type = TREE_TYPE (target_fn_type);
6304 nargs = list_length (target_arg_types);
6305 args = XALLOCAVEC (tree, nargs);
6306 for (arg = target_arg_types, ia = 0;
6307 arg != NULL_TREE && arg != void_list_node;
6308 arg = TREE_CHAIN (arg), ++ia)
6309 args[ia] = TREE_VALUE (arg);
6310 nargs = ia;
6312 for (fns = overload; fns; fns = OVL_NEXT (fns))
6314 tree fn = OVL_CURRENT (fns);
6315 tree instantiation;
6316 tree targs;
6318 if (TREE_CODE (fn) != TEMPLATE_DECL)
6319 /* We're only looking for templates. */
6320 continue;
6322 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
6323 != is_ptrmem)
6324 /* We're not looking for a non-static member, and this is
6325 one, or vice versa. */
6326 continue;
6328 /* Try to do argument deduction. */
6329 targs = make_tree_vec (DECL_NTPARMS (fn));
6330 if (fn_type_unification (fn, explicit_targs, targs, args, nargs,
6331 target_ret_type, DEDUCE_EXACT,
6332 LOOKUP_NORMAL))
6333 /* Argument deduction failed. */
6334 continue;
6336 /* Instantiate the template. */
6337 instantiation = instantiate_template (fn, targs, flags);
6338 if (instantiation == error_mark_node)
6339 /* Instantiation failed. */
6340 continue;
6342 /* See if there's a match. */
6343 if (same_type_p (target_fn_type, static_fn_type (instantiation)))
6344 matches = tree_cons (instantiation, fn, matches);
6347 /* Now, remove all but the most specialized of the matches. */
6348 if (matches)
6350 tree match = most_specialized_instantiation (matches);
6352 if (match != error_mark_node)
6353 matches = tree_cons (TREE_PURPOSE (match),
6354 NULL_TREE,
6355 NULL_TREE);
6359 /* Now we should have exactly one function in MATCHES. */
6360 if (matches == NULL_TREE)
6362 /* There were *no* matches. */
6363 if (flags & tf_error)
6365 error ("no matches converting function %qD to type %q#T",
6366 DECL_NAME (OVL_CURRENT (overload)),
6367 target_type);
6369 /* print_candidates expects a chain with the functions in
6370 TREE_VALUE slots, so we cons one up here (we're losing anyway,
6371 so why be clever?). */
6372 for (; overload; overload = OVL_NEXT (overload))
6373 matches = tree_cons (NULL_TREE, OVL_CURRENT (overload),
6374 matches);
6376 print_candidates (matches);
6378 return error_mark_node;
6380 else if (TREE_CHAIN (matches))
6382 /* There were too many matches. First check if they're all
6383 the same function. */
6384 tree match;
6386 fn = TREE_PURPOSE (matches);
6387 for (match = TREE_CHAIN (matches); match; match = TREE_CHAIN (match))
6388 if (!decls_match (fn, TREE_PURPOSE (match)))
6389 break;
6391 if (match)
6393 if (flags & tf_error)
6395 error ("converting overloaded function %qD to type %q#T is ambiguous",
6396 DECL_NAME (OVL_FUNCTION (overload)),
6397 target_type);
6399 /* Since print_candidates expects the functions in the
6400 TREE_VALUE slot, we flip them here. */
6401 for (match = matches; match; match = TREE_CHAIN (match))
6402 TREE_VALUE (match) = TREE_PURPOSE (match);
6404 print_candidates (matches);
6407 return error_mark_node;
6411 /* Good, exactly one match. Now, convert it to the correct type. */
6412 fn = TREE_PURPOSE (matches);
6414 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
6415 && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
6417 static int explained;
6419 if (!(flags & tf_error))
6420 return error_mark_node;
6422 permerror (input_location, "assuming pointer to member %qD", fn);
6423 if (!explained)
6425 inform (input_location, "(a pointer to member can only be formed with %<&%E%>)", fn);
6426 explained = 1;
6430 /* If we're doing overload resolution purely for the purpose of
6431 determining conversion sequences, we should not consider the
6432 function used. If this conversion sequence is selected, the
6433 function will be marked as used at this point. */
6434 if (!(flags & tf_conv))
6436 /* Make =delete work with SFINAE. */
6437 if (DECL_DELETED_FN (fn) && !(flags & tf_error))
6438 return error_mark_node;
6440 mark_used (fn);
6443 /* We could not check access to member functions when this
6444 expression was originally created since we did not know at that
6445 time to which function the expression referred. */
6446 if (!(flags & tf_no_access_control)
6447 && DECL_FUNCTION_MEMBER_P (fn))
6449 gcc_assert (access_path);
6450 perform_or_defer_access_check (access_path, fn, fn);
6453 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
6454 return cp_build_unary_op (ADDR_EXPR, fn, 0, flags);
6455 else
6457 /* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op
6458 will mark the function as addressed, but here we must do it
6459 explicitly. */
6460 cxx_mark_addressable (fn);
6462 return fn;
6466 /* This function will instantiate the type of the expression given in
6467 RHS to match the type of LHSTYPE. If errors exist, then return
6468 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
6469 we complain on errors. If we are not complaining, never modify rhs,
6470 as overload resolution wants to try many possible instantiations, in
6471 the hope that at least one will work.
6473 For non-recursive calls, LHSTYPE should be a function, pointer to
6474 function, or a pointer to member function. */
6476 tree
6477 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
6479 tsubst_flags_t flags_in = flags;
6480 tree access_path = NULL_TREE;
6482 flags &= ~tf_ptrmem_ok;
6484 if (lhstype == unknown_type_node)
6486 if (flags & tf_error)
6487 error ("not enough type information");
6488 return error_mark_node;
6491 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
6493 if (same_type_p (lhstype, TREE_TYPE (rhs)))
6494 return rhs;
6495 if (flag_ms_extensions
6496 && TYPE_PTRMEMFUNC_P (lhstype)
6497 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
6498 /* Microsoft allows `A::f' to be resolved to a
6499 pointer-to-member. */
6501 else
6503 if (flags & tf_error)
6504 error ("argument of type %qT does not match %qT",
6505 TREE_TYPE (rhs), lhstype);
6506 return error_mark_node;
6510 if (TREE_CODE (rhs) == BASELINK)
6512 access_path = BASELINK_ACCESS_BINFO (rhs);
6513 rhs = BASELINK_FUNCTIONS (rhs);
6516 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
6517 deduce any type information. */
6518 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
6520 if (flags & tf_error)
6521 error ("not enough type information");
6522 return error_mark_node;
6525 /* There only a few kinds of expressions that may have a type
6526 dependent on overload resolution. */
6527 gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
6528 || TREE_CODE (rhs) == COMPONENT_REF
6529 || really_overloaded_fn (rhs)
6530 || (flag_ms_extensions && TREE_CODE (rhs) == FUNCTION_DECL));
6532 /* This should really only be used when attempting to distinguish
6533 what sort of a pointer to function we have. For now, any
6534 arithmetic operation which is not supported on pointers
6535 is rejected as an error. */
6537 switch (TREE_CODE (rhs))
6539 case COMPONENT_REF:
6541 tree member = TREE_OPERAND (rhs, 1);
6543 member = instantiate_type (lhstype, member, flags);
6544 if (member != error_mark_node
6545 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
6546 /* Do not lose object's side effects. */
6547 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
6548 TREE_OPERAND (rhs, 0), member);
6549 return member;
6552 case OFFSET_REF:
6553 rhs = TREE_OPERAND (rhs, 1);
6554 if (BASELINK_P (rhs))
6555 return instantiate_type (lhstype, rhs, flags_in);
6557 /* This can happen if we are forming a pointer-to-member for a
6558 member template. */
6559 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
6561 /* Fall through. */
6563 case TEMPLATE_ID_EXPR:
6565 tree fns = TREE_OPERAND (rhs, 0);
6566 tree args = TREE_OPERAND (rhs, 1);
6568 return
6569 resolve_address_of_overloaded_function (lhstype, fns, flags_in,
6570 /*template_only=*/true,
6571 args, access_path);
6574 case OVERLOAD:
6575 case FUNCTION_DECL:
6576 return
6577 resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
6578 /*template_only=*/false,
6579 /*explicit_targs=*/NULL_TREE,
6580 access_path);
6582 case ADDR_EXPR:
6584 if (PTRMEM_OK_P (rhs))
6585 flags |= tf_ptrmem_ok;
6587 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
6590 case ERROR_MARK:
6591 return error_mark_node;
6593 default:
6594 gcc_unreachable ();
6596 return error_mark_node;
6599 /* Return the name of the virtual function pointer field
6600 (as an IDENTIFIER_NODE) for the given TYPE. Note that
6601 this may have to look back through base types to find the
6602 ultimate field name. (For single inheritance, these could
6603 all be the same name. Who knows for multiple inheritance). */
6605 static tree
6606 get_vfield_name (tree type)
6608 tree binfo, base_binfo;
6609 char *buf;
6611 for (binfo = TYPE_BINFO (type);
6612 BINFO_N_BASE_BINFOS (binfo);
6613 binfo = base_binfo)
6615 base_binfo = BINFO_BASE_BINFO (binfo, 0);
6617 if (BINFO_VIRTUAL_P (base_binfo)
6618 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
6619 break;
6622 type = BINFO_TYPE (binfo);
6623 buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
6624 + TYPE_NAME_LENGTH (type) + 2);
6625 sprintf (buf, VFIELD_NAME_FORMAT,
6626 IDENTIFIER_POINTER (constructor_name (type)));
6627 return get_identifier (buf);
6630 void
6631 print_class_statistics (void)
6633 #ifdef GATHER_STATISTICS
6634 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
6635 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
6636 if (n_vtables)
6638 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
6639 n_vtables, n_vtable_searches);
6640 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
6641 n_vtable_entries, n_vtable_elems);
6643 #endif
6646 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
6647 according to [class]:
6648 The class-name is also inserted
6649 into the scope of the class itself. For purposes of access checking,
6650 the inserted class name is treated as if it were a public member name. */
6652 void
6653 build_self_reference (void)
6655 tree name = constructor_name (current_class_type);
6656 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
6657 tree saved_cas;
6659 DECL_NONLOCAL (value) = 1;
6660 DECL_CONTEXT (value) = current_class_type;
6661 DECL_ARTIFICIAL (value) = 1;
6662 SET_DECL_SELF_REFERENCE_P (value);
6663 cp_set_underlying_type (value);
6665 if (processing_template_decl)
6666 value = push_template_decl (value);
6668 saved_cas = current_access_specifier;
6669 current_access_specifier = access_public_node;
6670 finish_member_declaration (value);
6671 current_access_specifier = saved_cas;
6674 /* Returns 1 if TYPE contains only padding bytes. */
6677 is_empty_class (tree type)
6679 if (type == error_mark_node)
6680 return 0;
6682 if (! CLASS_TYPE_P (type))
6683 return 0;
6685 /* In G++ 3.2, whether or not a class was empty was determined by
6686 looking at its size. */
6687 if (abi_version_at_least (2))
6688 return CLASSTYPE_EMPTY_P (type);
6689 else
6690 return integer_zerop (CLASSTYPE_SIZE (type));
6693 /* Returns true if TYPE contains an empty class. */
6695 static bool
6696 contains_empty_class_p (tree type)
6698 if (is_empty_class (type))
6699 return true;
6700 if (CLASS_TYPE_P (type))
6702 tree field;
6703 tree binfo;
6704 tree base_binfo;
6705 int i;
6707 for (binfo = TYPE_BINFO (type), i = 0;
6708 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
6709 if (contains_empty_class_p (BINFO_TYPE (base_binfo)))
6710 return true;
6711 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
6712 if (TREE_CODE (field) == FIELD_DECL
6713 && !DECL_ARTIFICIAL (field)
6714 && is_empty_class (TREE_TYPE (field)))
6715 return true;
6717 else if (TREE_CODE (type) == ARRAY_TYPE)
6718 return contains_empty_class_p (TREE_TYPE (type));
6719 return false;
6722 /* Returns true if TYPE contains no actual data, just various
6723 possible combinations of empty classes. */
6725 bool
6726 is_really_empty_class (tree type)
6728 if (is_empty_class (type))
6729 return true;
6730 if (CLASS_TYPE_P (type))
6732 tree field;
6733 tree binfo;
6734 tree base_binfo;
6735 int i;
6737 for (binfo = TYPE_BINFO (type), i = 0;
6738 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
6739 if (!is_really_empty_class (BINFO_TYPE (base_binfo)))
6740 return false;
6741 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
6742 if (TREE_CODE (field) == FIELD_DECL
6743 && !DECL_ARTIFICIAL (field)
6744 && !is_really_empty_class (TREE_TYPE (field)))
6745 return false;
6746 return true;
6748 else if (TREE_CODE (type) == ARRAY_TYPE)
6749 return is_really_empty_class (TREE_TYPE (type));
6750 return false;
6753 /* Note that NAME was looked up while the current class was being
6754 defined and that the result of that lookup was DECL. */
6756 void
6757 maybe_note_name_used_in_class (tree name, tree decl)
6759 splay_tree names_used;
6761 /* If we're not defining a class, there's nothing to do. */
6762 if (!(innermost_scope_kind() == sk_class
6763 && TYPE_BEING_DEFINED (current_class_type)
6764 && !LAMBDA_TYPE_P (current_class_type)))
6765 return;
6767 /* If there's already a binding for this NAME, then we don't have
6768 anything to worry about. */
6769 if (lookup_member (current_class_type, name,
6770 /*protect=*/0, /*want_type=*/false))
6771 return;
6773 if (!current_class_stack[current_class_depth - 1].names_used)
6774 current_class_stack[current_class_depth - 1].names_used
6775 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
6776 names_used = current_class_stack[current_class_depth - 1].names_used;
6778 splay_tree_insert (names_used,
6779 (splay_tree_key) name,
6780 (splay_tree_value) decl);
6783 /* Note that NAME was declared (as DECL) in the current class. Check
6784 to see that the declaration is valid. */
6786 void
6787 note_name_declared_in_class (tree name, tree decl)
6789 splay_tree names_used;
6790 splay_tree_node n;
6792 /* Look to see if we ever used this name. */
6793 names_used
6794 = current_class_stack[current_class_depth - 1].names_used;
6795 if (!names_used)
6796 return;
6798 n = splay_tree_lookup (names_used, (splay_tree_key) name);
6799 if (n)
6801 /* [basic.scope.class]
6803 A name N used in a class S shall refer to the same declaration
6804 in its context and when re-evaluated in the completed scope of
6805 S. */
6806 permerror (input_location, "declaration of %q#D", decl);
6807 permerror (input_location, "changes meaning of %qD from %q+#D",
6808 DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
6812 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
6813 Secondary vtables are merged with primary vtables; this function
6814 will return the VAR_DECL for the primary vtable. */
6816 tree
6817 get_vtbl_decl_for_binfo (tree binfo)
6819 tree decl;
6821 decl = BINFO_VTABLE (binfo);
6822 if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
6824 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
6825 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
6827 if (decl)
6828 gcc_assert (TREE_CODE (decl) == VAR_DECL);
6829 return decl;
6833 /* Returns the binfo for the primary base of BINFO. If the resulting
6834 BINFO is a virtual base, and it is inherited elsewhere in the
6835 hierarchy, then the returned binfo might not be the primary base of
6836 BINFO in the complete object. Check BINFO_PRIMARY_P or
6837 BINFO_LOST_PRIMARY_P to be sure. */
6839 static tree
6840 get_primary_binfo (tree binfo)
6842 tree primary_base;
6844 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
6845 if (!primary_base)
6846 return NULL_TREE;
6848 return copied_binfo (primary_base, binfo);
6851 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
6853 static int
6854 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
6856 if (!indented_p)
6857 fprintf (stream, "%*s", indent, "");
6858 return 1;
6861 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
6862 INDENT should be zero when called from the top level; it is
6863 incremented recursively. IGO indicates the next expected BINFO in
6864 inheritance graph ordering. */
6866 static tree
6867 dump_class_hierarchy_r (FILE *stream,
6868 int flags,
6869 tree binfo,
6870 tree igo,
6871 int indent)
6873 int indented = 0;
6874 tree base_binfo;
6875 int i;
6877 indented = maybe_indent_hierarchy (stream, indent, 0);
6878 fprintf (stream, "%s (0x%lx) ",
6879 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
6880 (unsigned long) binfo);
6881 if (binfo != igo)
6883 fprintf (stream, "alternative-path\n");
6884 return igo;
6886 igo = TREE_CHAIN (binfo);
6888 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
6889 tree_low_cst (BINFO_OFFSET (binfo), 0));
6890 if (is_empty_class (BINFO_TYPE (binfo)))
6891 fprintf (stream, " empty");
6892 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
6893 fprintf (stream, " nearly-empty");
6894 if (BINFO_VIRTUAL_P (binfo))
6895 fprintf (stream, " virtual");
6896 fprintf (stream, "\n");
6898 indented = 0;
6899 if (BINFO_PRIMARY_P (binfo))
6901 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6902 fprintf (stream, " primary-for %s (0x%lx)",
6903 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
6904 TFF_PLAIN_IDENTIFIER),
6905 (unsigned long)BINFO_INHERITANCE_CHAIN (binfo));
6907 if (BINFO_LOST_PRIMARY_P (binfo))
6909 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6910 fprintf (stream, " lost-primary");
6912 if (indented)
6913 fprintf (stream, "\n");
6915 if (!(flags & TDF_SLIM))
6917 int indented = 0;
6919 if (BINFO_SUBVTT_INDEX (binfo))
6921 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6922 fprintf (stream, " subvttidx=%s",
6923 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
6924 TFF_PLAIN_IDENTIFIER));
6926 if (BINFO_VPTR_INDEX (binfo))
6928 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6929 fprintf (stream, " vptridx=%s",
6930 expr_as_string (BINFO_VPTR_INDEX (binfo),
6931 TFF_PLAIN_IDENTIFIER));
6933 if (BINFO_VPTR_FIELD (binfo))
6935 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6936 fprintf (stream, " vbaseoffset=%s",
6937 expr_as_string (BINFO_VPTR_FIELD (binfo),
6938 TFF_PLAIN_IDENTIFIER));
6940 if (BINFO_VTABLE (binfo))
6942 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6943 fprintf (stream, " vptr=%s",
6944 expr_as_string (BINFO_VTABLE (binfo),
6945 TFF_PLAIN_IDENTIFIER));
6948 if (indented)
6949 fprintf (stream, "\n");
6952 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
6953 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
6955 return igo;
6958 /* Dump the BINFO hierarchy for T. */
6960 static void
6961 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
6963 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
6964 fprintf (stream, " size=%lu align=%lu\n",
6965 (unsigned long)(tree_low_cst (TYPE_SIZE (t), 0) / BITS_PER_UNIT),
6966 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
6967 fprintf (stream, " base size=%lu base align=%lu\n",
6968 (unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t)), 0)
6969 / BITS_PER_UNIT),
6970 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
6971 / BITS_PER_UNIT));
6972 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
6973 fprintf (stream, "\n");
6976 /* Debug interface to hierarchy dumping. */
6978 void
6979 debug_class (tree t)
6981 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
6984 static void
6985 dump_class_hierarchy (tree t)
6987 int flags;
6988 FILE *stream = dump_begin (TDI_class, &flags);
6990 if (stream)
6992 dump_class_hierarchy_1 (stream, flags, t);
6993 dump_end (TDI_class, stream);
6997 static void
6998 dump_array (FILE * stream, tree decl)
7000 tree value;
7001 unsigned HOST_WIDE_INT ix;
7002 HOST_WIDE_INT elt;
7003 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
7005 elt = (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))), 0)
7006 / BITS_PER_UNIT);
7007 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
7008 fprintf (stream, " %s entries",
7009 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
7010 TFF_PLAIN_IDENTIFIER));
7011 fprintf (stream, "\n");
7013 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
7014 ix, value)
7015 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
7016 expr_as_string (value, TFF_PLAIN_IDENTIFIER));
7019 static void
7020 dump_vtable (tree t, tree binfo, tree vtable)
7022 int flags;
7023 FILE *stream = dump_begin (TDI_class, &flags);
7025 if (!stream)
7026 return;
7028 if (!(flags & TDF_SLIM))
7030 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
7032 fprintf (stream, "%s for %s",
7033 ctor_vtbl_p ? "Construction vtable" : "Vtable",
7034 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
7035 if (ctor_vtbl_p)
7037 if (!BINFO_VIRTUAL_P (binfo))
7038 fprintf (stream, " (0x%lx instance)", (unsigned long)binfo);
7039 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
7041 fprintf (stream, "\n");
7042 dump_array (stream, vtable);
7043 fprintf (stream, "\n");
7046 dump_end (TDI_class, stream);
7049 static void
7050 dump_vtt (tree t, tree vtt)
7052 int flags;
7053 FILE *stream = dump_begin (TDI_class, &flags);
7055 if (!stream)
7056 return;
7058 if (!(flags & TDF_SLIM))
7060 fprintf (stream, "VTT for %s\n",
7061 type_as_string (t, TFF_PLAIN_IDENTIFIER));
7062 dump_array (stream, vtt);
7063 fprintf (stream, "\n");
7066 dump_end (TDI_class, stream);
7069 /* Dump a function or thunk and its thunkees. */
7071 static void
7072 dump_thunk (FILE *stream, int indent, tree thunk)
7074 static const char spaces[] = " ";
7075 tree name = DECL_NAME (thunk);
7076 tree thunks;
7078 fprintf (stream, "%.*s%p %s %s", indent, spaces,
7079 (void *)thunk,
7080 !DECL_THUNK_P (thunk) ? "function"
7081 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
7082 name ? IDENTIFIER_POINTER (name) : "<unset>");
7083 if (DECL_THUNK_P (thunk))
7085 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
7086 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
7088 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
7089 if (!virtual_adjust)
7090 /*NOP*/;
7091 else if (DECL_THIS_THUNK_P (thunk))
7092 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
7093 tree_low_cst (virtual_adjust, 0));
7094 else
7095 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
7096 tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust), 0),
7097 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
7098 if (THUNK_ALIAS (thunk))
7099 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
7101 fprintf (stream, "\n");
7102 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
7103 dump_thunk (stream, indent + 2, thunks);
7106 /* Dump the thunks for FN. */
7108 void
7109 debug_thunks (tree fn)
7111 dump_thunk (stderr, 0, fn);
7114 /* Virtual function table initialization. */
7116 /* Create all the necessary vtables for T and its base classes. */
7118 static void
7119 finish_vtbls (tree t)
7121 tree vbase;
7122 VEC(constructor_elt,gc) *v = NULL;
7123 tree vtable = BINFO_VTABLE (TYPE_BINFO (t));
7125 /* We lay out the primary and secondary vtables in one contiguous
7126 vtable. The primary vtable is first, followed by the non-virtual
7127 secondary vtables in inheritance graph order. */
7128 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t), TYPE_BINFO (t),
7129 vtable, t, &v);
7131 /* Then come the virtual bases, also in inheritance graph order. */
7132 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
7134 if (!BINFO_VIRTUAL_P (vbase))
7135 continue;
7136 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), vtable, t, &v);
7139 if (BINFO_VTABLE (TYPE_BINFO (t)))
7140 initialize_vtable (TYPE_BINFO (t), v);
7143 /* Initialize the vtable for BINFO with the INITS. */
7145 static void
7146 initialize_vtable (tree binfo, VEC(constructor_elt,gc) *inits)
7148 tree decl;
7150 layout_vtable_decl (binfo, VEC_length (constructor_elt, inits));
7151 decl = get_vtbl_decl_for_binfo (binfo);
7152 initialize_artificial_var (decl, inits);
7153 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
7156 /* Build the VTT (virtual table table) for T.
7157 A class requires a VTT if it has virtual bases.
7159 This holds
7160 1 - primary virtual pointer for complete object T
7161 2 - secondary VTTs for each direct non-virtual base of T which requires a
7163 3 - secondary virtual pointers for each direct or indirect base of T which
7164 has virtual bases or is reachable via a virtual path from T.
7165 4 - secondary VTTs for each direct or indirect virtual base of T.
7167 Secondary VTTs look like complete object VTTs without part 4. */
7169 static void
7170 build_vtt (tree t)
7172 tree type;
7173 tree vtt;
7174 tree index;
7175 VEC(constructor_elt,gc) *inits;
7177 /* Build up the initializers for the VTT. */
7178 inits = NULL;
7179 index = size_zero_node;
7180 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
7182 /* If we didn't need a VTT, we're done. */
7183 if (!inits)
7184 return;
7186 /* Figure out the type of the VTT. */
7187 type = build_index_type (size_int (VEC_length (constructor_elt, inits) - 1));
7188 type = build_cplus_array_type (const_ptr_type_node, type);
7190 /* Now, build the VTT object itself. */
7191 vtt = build_vtable (t, mangle_vtt_for_type (t), type);
7192 initialize_artificial_var (vtt, inits);
7193 /* Add the VTT to the vtables list. */
7194 TREE_CHAIN (vtt) = TREE_CHAIN (CLASSTYPE_VTABLES (t));
7195 TREE_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
7197 dump_vtt (t, vtt);
7200 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
7201 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
7202 and CHAIN the vtable pointer for this binfo after construction is
7203 complete. VALUE can also be another BINFO, in which case we recurse. */
7205 static tree
7206 binfo_ctor_vtable (tree binfo)
7208 tree vt;
7210 while (1)
7212 vt = BINFO_VTABLE (binfo);
7213 if (TREE_CODE (vt) == TREE_LIST)
7214 vt = TREE_VALUE (vt);
7215 if (TREE_CODE (vt) == TREE_BINFO)
7216 binfo = vt;
7217 else
7218 break;
7221 return vt;
7224 /* Data for secondary VTT initialization. */
7225 typedef struct secondary_vptr_vtt_init_data_s
7227 /* Is this the primary VTT? */
7228 bool top_level_p;
7230 /* Current index into the VTT. */
7231 tree index;
7233 /* Vector of initializers built up. */
7234 VEC(constructor_elt,gc) *inits;
7236 /* The type being constructed by this secondary VTT. */
7237 tree type_being_constructed;
7238 } secondary_vptr_vtt_init_data;
7240 /* Recursively build the VTT-initializer for BINFO (which is in the
7241 hierarchy dominated by T). INITS points to the end of the initializer
7242 list to date. INDEX is the VTT index where the next element will be
7243 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
7244 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
7245 for virtual bases of T. When it is not so, we build the constructor
7246 vtables for the BINFO-in-T variant. */
7248 static void
7249 build_vtt_inits (tree binfo, tree t, VEC(constructor_elt,gc) **inits, tree *index)
7251 int i;
7252 tree b;
7253 tree init;
7254 secondary_vptr_vtt_init_data data;
7255 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
7257 /* We only need VTTs for subobjects with virtual bases. */
7258 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
7259 return;
7261 /* We need to use a construction vtable if this is not the primary
7262 VTT. */
7263 if (!top_level_p)
7265 build_ctor_vtbl_group (binfo, t);
7267 /* Record the offset in the VTT where this sub-VTT can be found. */
7268 BINFO_SUBVTT_INDEX (binfo) = *index;
7271 /* Add the address of the primary vtable for the complete object. */
7272 init = binfo_ctor_vtable (binfo);
7273 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
7274 if (top_level_p)
7276 gcc_assert (!BINFO_VPTR_INDEX (binfo));
7277 BINFO_VPTR_INDEX (binfo) = *index;
7279 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
7281 /* Recursively add the secondary VTTs for non-virtual bases. */
7282 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
7283 if (!BINFO_VIRTUAL_P (b))
7284 build_vtt_inits (b, t, inits, index);
7286 /* Add secondary virtual pointers for all subobjects of BINFO with
7287 either virtual bases or reachable along a virtual path, except
7288 subobjects that are non-virtual primary bases. */
7289 data.top_level_p = top_level_p;
7290 data.index = *index;
7291 data.inits = *inits;
7292 data.type_being_constructed = BINFO_TYPE (binfo);
7294 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
7296 *index = data.index;
7298 /* data.inits might have grown as we added secondary virtual pointers.
7299 Make sure our caller knows about the new vector. */
7300 *inits = data.inits;
7302 if (top_level_p)
7303 /* Add the secondary VTTs for virtual bases in inheritance graph
7304 order. */
7305 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
7307 if (!BINFO_VIRTUAL_P (b))
7308 continue;
7310 build_vtt_inits (b, t, inits, index);
7312 else
7313 /* Remove the ctor vtables we created. */
7314 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
7317 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
7318 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
7320 static tree
7321 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
7323 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
7325 /* We don't care about bases that don't have vtables. */
7326 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
7327 return dfs_skip_bases;
7329 /* We're only interested in proper subobjects of the type being
7330 constructed. */
7331 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
7332 return NULL_TREE;
7334 /* We're only interested in bases with virtual bases or reachable
7335 via a virtual path from the type being constructed. */
7336 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
7337 || binfo_via_virtual (binfo, data->type_being_constructed)))
7338 return dfs_skip_bases;
7340 /* We're not interested in non-virtual primary bases. */
7341 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
7342 return NULL_TREE;
7344 /* Record the index where this secondary vptr can be found. */
7345 if (data->top_level_p)
7347 gcc_assert (!BINFO_VPTR_INDEX (binfo));
7348 BINFO_VPTR_INDEX (binfo) = data->index;
7350 if (BINFO_VIRTUAL_P (binfo))
7352 /* It's a primary virtual base, and this is not a
7353 construction vtable. Find the base this is primary of in
7354 the inheritance graph, and use that base's vtable
7355 now. */
7356 while (BINFO_PRIMARY_P (binfo))
7357 binfo = BINFO_INHERITANCE_CHAIN (binfo);
7361 /* Add the initializer for the secondary vptr itself. */
7362 CONSTRUCTOR_APPEND_ELT (data->inits, NULL_TREE, binfo_ctor_vtable (binfo));
7364 /* Advance the vtt index. */
7365 data->index = size_binop (PLUS_EXPR, data->index,
7366 TYPE_SIZE_UNIT (ptr_type_node));
7368 return NULL_TREE;
7371 /* Called from build_vtt_inits via dfs_walk. After building
7372 constructor vtables and generating the sub-vtt from them, we need
7373 to restore the BINFO_VTABLES that were scribbled on. DATA is the
7374 binfo of the base whose sub vtt was generated. */
7376 static tree
7377 dfs_fixup_binfo_vtbls (tree binfo, void* data)
7379 tree vtable = BINFO_VTABLE (binfo);
7381 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
7382 /* If this class has no vtable, none of its bases do. */
7383 return dfs_skip_bases;
7385 if (!vtable)
7386 /* This might be a primary base, so have no vtable in this
7387 hierarchy. */
7388 return NULL_TREE;
7390 /* If we scribbled the construction vtable vptr into BINFO, clear it
7391 out now. */
7392 if (TREE_CODE (vtable) == TREE_LIST
7393 && (TREE_PURPOSE (vtable) == (tree) data))
7394 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
7396 return NULL_TREE;
7399 /* Build the construction vtable group for BINFO which is in the
7400 hierarchy dominated by T. */
7402 static void
7403 build_ctor_vtbl_group (tree binfo, tree t)
7405 tree type;
7406 tree vtbl;
7407 tree id;
7408 tree vbase;
7409 VEC(constructor_elt,gc) *v;
7411 /* See if we've already created this construction vtable group. */
7412 id = mangle_ctor_vtbl_for_type (t, binfo);
7413 if (IDENTIFIER_GLOBAL_VALUE (id))
7414 return;
7416 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
7417 /* Build a version of VTBL (with the wrong type) for use in
7418 constructing the addresses of secondary vtables in the
7419 construction vtable group. */
7420 vtbl = build_vtable (t, id, ptr_type_node);
7421 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
7423 v = NULL;
7424 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
7425 binfo, vtbl, t, &v);
7427 /* Add the vtables for each of our virtual bases using the vbase in T
7428 binfo. */
7429 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
7430 vbase;
7431 vbase = TREE_CHAIN (vbase))
7433 tree b;
7435 if (!BINFO_VIRTUAL_P (vbase))
7436 continue;
7437 b = copied_binfo (vbase, binfo);
7439 accumulate_vtbl_inits (b, vbase, binfo, vtbl, t, &v);
7442 /* Figure out the type of the construction vtable. */
7443 type = build_index_type (size_int (VEC_length (constructor_elt, v) - 1));
7444 type = build_cplus_array_type (vtable_entry_type, type);
7445 layout_type (type);
7446 TREE_TYPE (vtbl) = type;
7447 DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
7448 layout_decl (vtbl, 0);
7450 /* Initialize the construction vtable. */
7451 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
7452 initialize_artificial_var (vtbl, v);
7453 dump_vtable (t, binfo, vtbl);
7456 /* Add the vtbl initializers for BINFO (and its bases other than
7457 non-virtual primaries) to the list of INITS. BINFO is in the
7458 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
7459 the constructor the vtbl inits should be accumulated for. (If this
7460 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
7461 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
7462 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
7463 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
7464 but are not necessarily the same in terms of layout. */
7466 static void
7467 accumulate_vtbl_inits (tree binfo,
7468 tree orig_binfo,
7469 tree rtti_binfo,
7470 tree vtbl,
7471 tree t,
7472 VEC(constructor_elt,gc) **inits)
7474 int i;
7475 tree base_binfo;
7476 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7478 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
7480 /* If it doesn't have a vptr, we don't do anything. */
7481 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
7482 return;
7484 /* If we're building a construction vtable, we're not interested in
7485 subobjects that don't require construction vtables. */
7486 if (ctor_vtbl_p
7487 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
7488 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
7489 return;
7491 /* Build the initializers for the BINFO-in-T vtable. */
7492 dfs_accumulate_vtbl_inits (binfo, orig_binfo, rtti_binfo, vtbl, t, inits);
7494 /* Walk the BINFO and its bases. We walk in preorder so that as we
7495 initialize each vtable we can figure out at what offset the
7496 secondary vtable lies from the primary vtable. We can't use
7497 dfs_walk here because we need to iterate through bases of BINFO
7498 and RTTI_BINFO simultaneously. */
7499 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7501 /* Skip virtual bases. */
7502 if (BINFO_VIRTUAL_P (base_binfo))
7503 continue;
7504 accumulate_vtbl_inits (base_binfo,
7505 BINFO_BASE_BINFO (orig_binfo, i),
7506 rtti_binfo, vtbl, t,
7507 inits);
7511 /* Called from accumulate_vtbl_inits. Adds the initializers for the
7512 BINFO vtable to L. */
7514 static void
7515 dfs_accumulate_vtbl_inits (tree binfo,
7516 tree orig_binfo,
7517 tree rtti_binfo,
7518 tree orig_vtbl,
7519 tree t,
7520 VEC(constructor_elt,gc) **l)
7522 tree vtbl = NULL_TREE;
7523 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7524 int n_inits;
7526 if (ctor_vtbl_p
7527 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
7529 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
7530 primary virtual base. If it is not the same primary in
7531 the hierarchy of T, we'll need to generate a ctor vtable
7532 for it, to place at its location in T. If it is the same
7533 primary, we still need a VTT entry for the vtable, but it
7534 should point to the ctor vtable for the base it is a
7535 primary for within the sub-hierarchy of RTTI_BINFO.
7537 There are three possible cases:
7539 1) We are in the same place.
7540 2) We are a primary base within a lost primary virtual base of
7541 RTTI_BINFO.
7542 3) We are primary to something not a base of RTTI_BINFO. */
7544 tree b;
7545 tree last = NULL_TREE;
7547 /* First, look through the bases we are primary to for RTTI_BINFO
7548 or a virtual base. */
7549 b = binfo;
7550 while (BINFO_PRIMARY_P (b))
7552 b = BINFO_INHERITANCE_CHAIN (b);
7553 last = b;
7554 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
7555 goto found;
7557 /* If we run out of primary links, keep looking down our
7558 inheritance chain; we might be an indirect primary. */
7559 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
7560 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
7561 break;
7562 found:
7564 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
7565 base B and it is a base of RTTI_BINFO, this is case 2. In
7566 either case, we share our vtable with LAST, i.e. the
7567 derived-most base within B of which we are a primary. */
7568 if (b == rtti_binfo
7569 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
7570 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
7571 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
7572 binfo_ctor_vtable after everything's been set up. */
7573 vtbl = last;
7575 /* Otherwise, this is case 3 and we get our own. */
7577 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
7578 return;
7580 n_inits = VEC_length (constructor_elt, *l);
7582 if (!vtbl)
7584 tree index;
7585 int non_fn_entries;
7587 /* Add the initializer for this vtable. */
7588 build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
7589 &non_fn_entries, l);
7591 /* Figure out the position to which the VPTR should point. */
7592 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, orig_vtbl);
7593 index = size_binop (PLUS_EXPR,
7594 size_int (non_fn_entries),
7595 size_int (n_inits));
7596 index = size_binop (MULT_EXPR,
7597 TYPE_SIZE_UNIT (vtable_entry_type),
7598 index);
7599 vtbl = build2 (POINTER_PLUS_EXPR, TREE_TYPE (vtbl), vtbl, index);
7602 if (ctor_vtbl_p)
7603 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
7604 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
7605 straighten this out. */
7606 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
7607 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
7608 /* Throw away any unneeded intializers. */
7609 VEC_truncate (constructor_elt, *l, n_inits);
7610 else
7611 /* For an ordinary vtable, set BINFO_VTABLE. */
7612 BINFO_VTABLE (binfo) = vtbl;
7615 static GTY(()) tree abort_fndecl_addr;
7617 /* Construct the initializer for BINFO's virtual function table. BINFO
7618 is part of the hierarchy dominated by T. If we're building a
7619 construction vtable, the ORIG_BINFO is the binfo we should use to
7620 find the actual function pointers to put in the vtable - but they
7621 can be overridden on the path to most-derived in the graph that
7622 ORIG_BINFO belongs. Otherwise,
7623 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
7624 BINFO that should be indicated by the RTTI information in the
7625 vtable; it will be a base class of T, rather than T itself, if we
7626 are building a construction vtable.
7628 The value returned is a TREE_LIST suitable for wrapping in a
7629 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
7630 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
7631 number of non-function entries in the vtable.
7633 It might seem that this function should never be called with a
7634 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
7635 base is always subsumed by a derived class vtable. However, when
7636 we are building construction vtables, we do build vtables for
7637 primary bases; we need these while the primary base is being
7638 constructed. */
7640 static void
7641 build_vtbl_initializer (tree binfo,
7642 tree orig_binfo,
7643 tree t,
7644 tree rtti_binfo,
7645 int* non_fn_entries_p,
7646 VEC(constructor_elt,gc) **inits)
7648 tree v, b;
7649 vtbl_init_data vid;
7650 unsigned ix, jx;
7651 tree vbinfo;
7652 VEC(tree,gc) *vbases;
7653 constructor_elt *e;
7655 /* Initialize VID. */
7656 memset (&vid, 0, sizeof (vid));
7657 vid.binfo = binfo;
7658 vid.derived = t;
7659 vid.rtti_binfo = rtti_binfo;
7660 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
7661 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7662 vid.generate_vcall_entries = true;
7663 /* The first vbase or vcall offset is at index -3 in the vtable. */
7664 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
7666 /* Add entries to the vtable for RTTI. */
7667 build_rtti_vtbl_entries (binfo, &vid);
7669 /* Create an array for keeping track of the functions we've
7670 processed. When we see multiple functions with the same
7671 signature, we share the vcall offsets. */
7672 vid.fns = VEC_alloc (tree, gc, 32);
7673 /* Add the vcall and vbase offset entries. */
7674 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
7676 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
7677 build_vbase_offset_vtbl_entries. */
7678 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
7679 VEC_iterate (tree, vbases, ix, vbinfo); ix++)
7680 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
7682 /* If the target requires padding between data entries, add that now. */
7683 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
7685 int n_entries = VEC_length (constructor_elt, vid.inits);
7687 VEC_safe_grow (constructor_elt, gc, vid.inits,
7688 TARGET_VTABLE_DATA_ENTRY_DISTANCE * n_entries);
7690 /* Move data entries into their new positions and add padding
7691 after the new positions. Iterate backwards so we don't
7692 overwrite entries that we would need to process later. */
7693 for (ix = n_entries - 1;
7694 VEC_iterate (constructor_elt, vid.inits, ix, e);
7695 ix--)
7697 int j;
7698 int new_position = (TARGET_VTABLE_DATA_ENTRY_DISTANCE * ix
7699 + (TARGET_VTABLE_DATA_ENTRY_DISTANCE - 1));
7701 VEC_replace (constructor_elt, vid.inits, new_position, e);
7703 for (j = 1; j < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++j)
7705 constructor_elt *f = VEC_index (constructor_elt, vid.inits,
7706 new_position - j);
7707 f->index = NULL_TREE;
7708 f->value = build1 (NOP_EXPR, vtable_entry_type,
7709 null_pointer_node);
7714 if (non_fn_entries_p)
7715 *non_fn_entries_p = VEC_length (constructor_elt, vid.inits);
7717 /* The initializers for virtual functions were built up in reverse
7718 order. Straighten them out and add them to the running list in one
7719 step. */
7720 jx = VEC_length (constructor_elt, *inits);
7721 VEC_safe_grow (constructor_elt, gc, *inits,
7722 (jx + VEC_length (constructor_elt, vid.inits)));
7724 for (ix = VEC_length (constructor_elt, vid.inits) - 1;
7725 VEC_iterate (constructor_elt, vid.inits, ix, e);
7726 ix--, jx++)
7727 VEC_replace (constructor_elt, *inits, jx, e);
7729 /* Go through all the ordinary virtual functions, building up
7730 initializers. */
7731 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
7733 tree delta;
7734 tree vcall_index;
7735 tree fn, fn_original;
7736 tree init = NULL_TREE;
7738 fn = BV_FN (v);
7739 fn_original = fn;
7740 if (DECL_THUNK_P (fn))
7742 if (!DECL_NAME (fn))
7743 finish_thunk (fn);
7744 if (THUNK_ALIAS (fn))
7746 fn = THUNK_ALIAS (fn);
7747 BV_FN (v) = fn;
7749 fn_original = THUNK_TARGET (fn);
7752 /* If the only definition of this function signature along our
7753 primary base chain is from a lost primary, this vtable slot will
7754 never be used, so just zero it out. This is important to avoid
7755 requiring extra thunks which cannot be generated with the function.
7757 We first check this in update_vtable_entry_for_fn, so we handle
7758 restored primary bases properly; we also need to do it here so we
7759 zero out unused slots in ctor vtables, rather than filling them
7760 with erroneous values (though harmless, apart from relocation
7761 costs). */
7762 for (b = binfo; ; b = get_primary_binfo (b))
7764 /* We found a defn before a lost primary; go ahead as normal. */
7765 if (look_for_overrides_here (BINFO_TYPE (b), fn_original))
7766 break;
7768 /* The nearest definition is from a lost primary; clear the
7769 slot. */
7770 if (BINFO_LOST_PRIMARY_P (b))
7772 init = size_zero_node;
7773 break;
7777 if (! init)
7779 /* Pull the offset for `this', and the function to call, out of
7780 the list. */
7781 delta = BV_DELTA (v);
7782 vcall_index = BV_VCALL_INDEX (v);
7784 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
7785 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
7787 /* You can't call an abstract virtual function; it's abstract.
7788 So, we replace these functions with __pure_virtual. */
7789 if (DECL_PURE_VIRTUAL_P (fn_original))
7791 fn = abort_fndecl;
7792 if (abort_fndecl_addr == NULL)
7793 abort_fndecl_addr = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
7794 init = abort_fndecl_addr;
7796 else
7798 if (!integer_zerop (delta) || vcall_index)
7800 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
7801 if (!DECL_NAME (fn))
7802 finish_thunk (fn);
7804 /* Take the address of the function, considering it to be of an
7805 appropriate generic type. */
7806 init = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
7810 /* And add it to the chain of initializers. */
7811 if (TARGET_VTABLE_USES_DESCRIPTORS)
7813 int i;
7814 if (init == size_zero_node)
7815 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7816 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
7817 else
7818 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7820 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
7821 TREE_OPERAND (init, 0),
7822 build_int_cst (NULL_TREE, i));
7823 TREE_CONSTANT (fdesc) = 1;
7825 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, fdesc);
7828 else
7829 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
7833 /* Adds to vid->inits the initializers for the vbase and vcall
7834 offsets in BINFO, which is in the hierarchy dominated by T. */
7836 static void
7837 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
7839 tree b;
7841 /* If this is a derived class, we must first create entries
7842 corresponding to the primary base class. */
7843 b = get_primary_binfo (binfo);
7844 if (b)
7845 build_vcall_and_vbase_vtbl_entries (b, vid);
7847 /* Add the vbase entries for this base. */
7848 build_vbase_offset_vtbl_entries (binfo, vid);
7849 /* Add the vcall entries for this base. */
7850 build_vcall_offset_vtbl_entries (binfo, vid);
7853 /* Returns the initializers for the vbase offset entries in the vtable
7854 for BINFO (which is part of the class hierarchy dominated by T), in
7855 reverse order. VBASE_OFFSET_INDEX gives the vtable index
7856 where the next vbase offset will go. */
7858 static void
7859 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7861 tree vbase;
7862 tree t;
7863 tree non_primary_binfo;
7865 /* If there are no virtual baseclasses, then there is nothing to
7866 do. */
7867 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
7868 return;
7870 t = vid->derived;
7872 /* We might be a primary base class. Go up the inheritance hierarchy
7873 until we find the most derived class of which we are a primary base:
7874 it is the offset of that which we need to use. */
7875 non_primary_binfo = binfo;
7876 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
7878 tree b;
7880 /* If we have reached a virtual base, then it must be a primary
7881 base (possibly multi-level) of vid->binfo, or we wouldn't
7882 have called build_vcall_and_vbase_vtbl_entries for it. But it
7883 might be a lost primary, so just skip down to vid->binfo. */
7884 if (BINFO_VIRTUAL_P (non_primary_binfo))
7886 non_primary_binfo = vid->binfo;
7887 break;
7890 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
7891 if (get_primary_binfo (b) != non_primary_binfo)
7892 break;
7893 non_primary_binfo = b;
7896 /* Go through the virtual bases, adding the offsets. */
7897 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
7898 vbase;
7899 vbase = TREE_CHAIN (vbase))
7901 tree b;
7902 tree delta;
7904 if (!BINFO_VIRTUAL_P (vbase))
7905 continue;
7907 /* Find the instance of this virtual base in the complete
7908 object. */
7909 b = copied_binfo (vbase, binfo);
7911 /* If we've already got an offset for this virtual base, we
7912 don't need another one. */
7913 if (BINFO_VTABLE_PATH_MARKED (b))
7914 continue;
7915 BINFO_VTABLE_PATH_MARKED (b) = 1;
7917 /* Figure out where we can find this vbase offset. */
7918 delta = size_binop (MULT_EXPR,
7919 vid->index,
7920 convert (ssizetype,
7921 TYPE_SIZE_UNIT (vtable_entry_type)));
7922 if (vid->primary_vtbl_p)
7923 BINFO_VPTR_FIELD (b) = delta;
7925 if (binfo != TYPE_BINFO (t))
7926 /* The vbase offset had better be the same. */
7927 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
7929 /* The next vbase will come at a more negative offset. */
7930 vid->index = size_binop (MINUS_EXPR, vid->index,
7931 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
7933 /* The initializer is the delta from BINFO to this virtual base.
7934 The vbase offsets go in reverse inheritance-graph order, and
7935 we are walking in inheritance graph order so these end up in
7936 the right order. */
7937 delta = size_diffop_loc (input_location,
7938 BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
7940 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE,
7941 fold_build1_loc (input_location, NOP_EXPR,
7942 vtable_entry_type, delta));
7946 /* Adds the initializers for the vcall offset entries in the vtable
7947 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
7948 to VID->INITS. */
7950 static void
7951 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7953 /* We only need these entries if this base is a virtual base. We
7954 compute the indices -- but do not add to the vtable -- when
7955 building the main vtable for a class. */
7956 if (binfo == TYPE_BINFO (vid->derived)
7957 || (BINFO_VIRTUAL_P (binfo)
7958 /* If BINFO is RTTI_BINFO, then (since BINFO does not
7959 correspond to VID->DERIVED), we are building a primary
7960 construction virtual table. Since this is a primary
7961 virtual table, we do not need the vcall offsets for
7962 BINFO. */
7963 && binfo != vid->rtti_binfo))
7965 /* We need a vcall offset for each of the virtual functions in this
7966 vtable. For example:
7968 class A { virtual void f (); };
7969 class B1 : virtual public A { virtual void f (); };
7970 class B2 : virtual public A { virtual void f (); };
7971 class C: public B1, public B2 { virtual void f (); };
7973 A C object has a primary base of B1, which has a primary base of A. A
7974 C also has a secondary base of B2, which no longer has a primary base
7975 of A. So the B2-in-C construction vtable needs a secondary vtable for
7976 A, which will adjust the A* to a B2* to call f. We have no way of
7977 knowing what (or even whether) this offset will be when we define B2,
7978 so we store this "vcall offset" in the A sub-vtable and look it up in
7979 a "virtual thunk" for B2::f.
7981 We need entries for all the functions in our primary vtable and
7982 in our non-virtual bases' secondary vtables. */
7983 vid->vbase = binfo;
7984 /* If we are just computing the vcall indices -- but do not need
7985 the actual entries -- not that. */
7986 if (!BINFO_VIRTUAL_P (binfo))
7987 vid->generate_vcall_entries = false;
7988 /* Now, walk through the non-virtual bases, adding vcall offsets. */
7989 add_vcall_offset_vtbl_entries_r (binfo, vid);
7993 /* Build vcall offsets, starting with those for BINFO. */
7995 static void
7996 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
7998 int i;
7999 tree primary_binfo;
8000 tree base_binfo;
8002 /* Don't walk into virtual bases -- except, of course, for the
8003 virtual base for which we are building vcall offsets. Any
8004 primary virtual base will have already had its offsets generated
8005 through the recursion in build_vcall_and_vbase_vtbl_entries. */
8006 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
8007 return;
8009 /* If BINFO has a primary base, process it first. */
8010 primary_binfo = get_primary_binfo (binfo);
8011 if (primary_binfo)
8012 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
8014 /* Add BINFO itself to the list. */
8015 add_vcall_offset_vtbl_entries_1 (binfo, vid);
8017 /* Scan the non-primary bases of BINFO. */
8018 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
8019 if (base_binfo != primary_binfo)
8020 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
8023 /* Called from build_vcall_offset_vtbl_entries_r. */
8025 static void
8026 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
8028 /* Make entries for the rest of the virtuals. */
8029 if (abi_version_at_least (2))
8031 tree orig_fn;
8033 /* The ABI requires that the methods be processed in declaration
8034 order. G++ 3.2 used the order in the vtable. */
8035 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
8036 orig_fn;
8037 orig_fn = TREE_CHAIN (orig_fn))
8038 if (DECL_VINDEX (orig_fn))
8039 add_vcall_offset (orig_fn, binfo, vid);
8041 else
8043 tree derived_virtuals;
8044 tree base_virtuals;
8045 tree orig_virtuals;
8046 /* If BINFO is a primary base, the most derived class which has
8047 BINFO as a primary base; otherwise, just BINFO. */
8048 tree non_primary_binfo;
8050 /* We might be a primary base class. Go up the inheritance hierarchy
8051 until we find the most derived class of which we are a primary base:
8052 it is the BINFO_VIRTUALS there that we need to consider. */
8053 non_primary_binfo = binfo;
8054 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
8056 tree b;
8058 /* If we have reached a virtual base, then it must be vid->vbase,
8059 because we ignore other virtual bases in
8060 add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
8061 base (possibly multi-level) of vid->binfo, or we wouldn't
8062 have called build_vcall_and_vbase_vtbl_entries for it. But it
8063 might be a lost primary, so just skip down to vid->binfo. */
8064 if (BINFO_VIRTUAL_P (non_primary_binfo))
8066 gcc_assert (non_primary_binfo == vid->vbase);
8067 non_primary_binfo = vid->binfo;
8068 break;
8071 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
8072 if (get_primary_binfo (b) != non_primary_binfo)
8073 break;
8074 non_primary_binfo = b;
8077 if (vid->ctor_vtbl_p)
8078 /* For a ctor vtable we need the equivalent binfo within the hierarchy
8079 where rtti_binfo is the most derived type. */
8080 non_primary_binfo
8081 = original_binfo (non_primary_binfo, vid->rtti_binfo);
8083 for (base_virtuals = BINFO_VIRTUALS (binfo),
8084 derived_virtuals = BINFO_VIRTUALS (non_primary_binfo),
8085 orig_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
8086 base_virtuals;
8087 base_virtuals = TREE_CHAIN (base_virtuals),
8088 derived_virtuals = TREE_CHAIN (derived_virtuals),
8089 orig_virtuals = TREE_CHAIN (orig_virtuals))
8091 tree orig_fn;
8093 /* Find the declaration that originally caused this function to
8094 be present in BINFO_TYPE (binfo). */
8095 orig_fn = BV_FN (orig_virtuals);
8097 /* When processing BINFO, we only want to generate vcall slots for
8098 function slots introduced in BINFO. So don't try to generate
8099 one if the function isn't even defined in BINFO. */
8100 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), DECL_CONTEXT (orig_fn)))
8101 continue;
8103 add_vcall_offset (orig_fn, binfo, vid);
8108 /* Add a vcall offset entry for ORIG_FN to the vtable. */
8110 static void
8111 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
8113 size_t i;
8114 tree vcall_offset;
8115 tree derived_entry;
8117 /* If there is already an entry for a function with the same
8118 signature as FN, then we do not need a second vcall offset.
8119 Check the list of functions already present in the derived
8120 class vtable. */
8121 for (i = 0; VEC_iterate (tree, vid->fns, i, derived_entry); ++i)
8123 if (same_signature_p (derived_entry, orig_fn)
8124 /* We only use one vcall offset for virtual destructors,
8125 even though there are two virtual table entries. */
8126 || (DECL_DESTRUCTOR_P (derived_entry)
8127 && DECL_DESTRUCTOR_P (orig_fn)))
8128 return;
8131 /* If we are building these vcall offsets as part of building
8132 the vtable for the most derived class, remember the vcall
8133 offset. */
8134 if (vid->binfo == TYPE_BINFO (vid->derived))
8136 tree_pair_p elt = VEC_safe_push (tree_pair_s, gc,
8137 CLASSTYPE_VCALL_INDICES (vid->derived),
8138 NULL);
8139 elt->purpose = orig_fn;
8140 elt->value = vid->index;
8143 /* The next vcall offset will be found at a more negative
8144 offset. */
8145 vid->index = size_binop (MINUS_EXPR, vid->index,
8146 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
8148 /* Keep track of this function. */
8149 VEC_safe_push (tree, gc, vid->fns, orig_fn);
8151 if (vid->generate_vcall_entries)
8153 tree base;
8154 tree fn;
8156 /* Find the overriding function. */
8157 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
8158 if (fn == error_mark_node)
8159 vcall_offset = build1 (NOP_EXPR, vtable_entry_type,
8160 integer_zero_node);
8161 else
8163 base = TREE_VALUE (fn);
8165 /* The vbase we're working on is a primary base of
8166 vid->binfo. But it might be a lost primary, so its
8167 BINFO_OFFSET might be wrong, so we just use the
8168 BINFO_OFFSET from vid->binfo. */
8169 vcall_offset = size_diffop_loc (input_location,
8170 BINFO_OFFSET (base),
8171 BINFO_OFFSET (vid->binfo));
8172 vcall_offset = fold_build1_loc (input_location,
8173 NOP_EXPR, vtable_entry_type,
8174 vcall_offset);
8176 /* Add the initializer to the vtable. */
8177 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, vcall_offset);
8181 /* Return vtbl initializers for the RTTI entries corresponding to the
8182 BINFO's vtable. The RTTI entries should indicate the object given
8183 by VID->rtti_binfo. */
8185 static void
8186 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
8188 tree b;
8189 tree t;
8190 tree offset;
8191 tree decl;
8192 tree init;
8194 t = BINFO_TYPE (vid->rtti_binfo);
8196 /* To find the complete object, we will first convert to our most
8197 primary base, and then add the offset in the vtbl to that value. */
8198 b = binfo;
8199 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
8200 && !BINFO_LOST_PRIMARY_P (b))
8202 tree primary_base;
8204 primary_base = get_primary_binfo (b);
8205 gcc_assert (BINFO_PRIMARY_P (primary_base)
8206 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
8207 b = primary_base;
8209 offset = size_diffop_loc (input_location,
8210 BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
8212 /* The second entry is the address of the typeinfo object. */
8213 if (flag_rtti)
8214 decl = build_address (get_tinfo_decl (t));
8215 else
8216 decl = integer_zero_node;
8218 /* Convert the declaration to a type that can be stored in the
8219 vtable. */
8220 init = build_nop (vfunc_ptr_type_node, decl);
8221 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
8223 /* Add the offset-to-top entry. It comes earlier in the vtable than
8224 the typeinfo entry. Convert the offset to look like a
8225 function pointer, so that we can put it in the vtable. */
8226 init = build_nop (vfunc_ptr_type_node, offset);
8227 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
8230 /* Fold a OBJ_TYPE_REF expression to the address of a function.
8231 KNOWN_TYPE carries the true type of OBJ_TYPE_REF_OBJECT(REF). */
8233 tree
8234 cp_fold_obj_type_ref (tree ref, tree known_type)
8236 HOST_WIDE_INT index = tree_low_cst (OBJ_TYPE_REF_TOKEN (ref), 1);
8237 HOST_WIDE_INT i = 0;
8238 tree v = BINFO_VIRTUALS (TYPE_BINFO (known_type));
8239 tree fndecl;
8241 while (i != index)
8243 i += (TARGET_VTABLE_USES_DESCRIPTORS
8244 ? TARGET_VTABLE_USES_DESCRIPTORS : 1);
8245 v = TREE_CHAIN (v);
8248 fndecl = BV_FN (v);
8250 #ifdef ENABLE_CHECKING
8251 gcc_assert (tree_int_cst_equal (OBJ_TYPE_REF_TOKEN (ref),
8252 DECL_VINDEX (fndecl)));
8253 #endif
8255 cgraph_node (fndecl)->local.vtable_method = true;
8257 return build_address (fndecl);
8260 #include "gt-cp-class.h"