Merged trunk at revision 161680 into branch.
[official-gcc.git] / gcc / config / ia64 / ia64.h
blobd3821f6c6f415556c355ca5e1a87f37f76fe1b8e
1 /* Definitions of target machine GNU compiler. IA-64 version.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3 2009 Free Software Foundation, Inc.
4 Contributed by James E. Wilson <wilson@cygnus.com> and
5 David Mosberger <davidm@hpl.hp.com>.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* ??? Look at ABI group documents for list of preprocessor macros and
24 other features required for ABI compliance. */
26 /* ??? Functions containing a non-local goto target save many registers. Why?
27 See for instance execute/920428-2.c. */
30 /* Run-time target specifications */
32 /* Target CPU builtins. */
33 #define TARGET_CPU_CPP_BUILTINS() \
34 do { \
35 builtin_assert("cpu=ia64"); \
36 builtin_assert("machine=ia64"); \
37 builtin_define("__ia64"); \
38 builtin_define("__ia64__"); \
39 builtin_define("__itanium__"); \
40 if (TARGET_BIG_ENDIAN) \
41 builtin_define("__BIG_ENDIAN__"); \
42 } while (0)
44 #ifndef SUBTARGET_EXTRA_SPECS
45 #define SUBTARGET_EXTRA_SPECS
46 #endif
48 #define EXTRA_SPECS \
49 { "asm_extra", ASM_EXTRA_SPEC }, \
50 SUBTARGET_EXTRA_SPECS
52 #define CC1_SPEC "%(cc1_cpu) "
54 #define ASM_EXTRA_SPEC ""
56 /* Variables which are this size or smaller are put in the sdata/sbss
57 sections. */
58 extern unsigned int ia64_section_threshold;
60 /* If the assembler supports thread-local storage, assume that the
61 system does as well. If a particular target system has an
62 assembler that supports TLS -- but the rest of the system does not
63 support TLS -- that system should explicit define TARGET_HAVE_TLS
64 to false in its own configuration file. */
65 #if !defined(TARGET_HAVE_TLS) && defined(HAVE_AS_TLS)
66 #define TARGET_HAVE_TLS true
67 #endif
69 #define TARGET_TLS14 (ia64_tls_size == 14)
70 #define TARGET_TLS22 (ia64_tls_size == 22)
71 #define TARGET_TLS64 (ia64_tls_size == 64)
73 #define TARGET_HPUX 0
74 #define TARGET_HPUX_LD 0
76 #define TARGET_ABI_OPEN_VMS 0
78 #ifndef TARGET_ILP32
79 #define TARGET_ILP32 0
80 #endif
82 #ifndef HAVE_AS_LTOFFX_LDXMOV_RELOCS
83 #define HAVE_AS_LTOFFX_LDXMOV_RELOCS 0
84 #endif
86 /* Values for TARGET_INLINE_FLOAT_DIV, TARGET_INLINE_INT_DIV, and
87 TARGET_INLINE_SQRT. */
89 enum ia64_inline_type
91 INL_NO = 0,
92 INL_MIN_LAT = 1,
93 INL_MAX_THR = 2
96 /* Default target_flags if no switches are specified */
98 #ifndef TARGET_DEFAULT
99 #define TARGET_DEFAULT (MASK_DWARF2_ASM | MASK_FUSED_MADD)
100 #endif
102 #ifndef TARGET_CPU_DEFAULT
103 #define TARGET_CPU_DEFAULT 0
104 #endif
106 /* Which processor to schedule for. The cpu attribute defines a list
107 that mirrors this list, so changes to ia64.md must be made at the
108 same time. */
110 enum processor_type
112 PROCESSOR_ITANIUM, /* Original Itanium. */
113 PROCESSOR_ITANIUM2,
114 PROCESSOR_max
117 extern enum processor_type ia64_tune;
119 /* Sometimes certain combinations of command options do not make sense on a
120 particular target machine. You can define a macro `OVERRIDE_OPTIONS' to
121 take account of this. This macro, if defined, is executed once just after
122 all the command options have been parsed. */
124 #define OVERRIDE_OPTIONS ia64_override_options ()
126 /* Some machines may desire to change what optimizations are performed for
127 various optimization levels. This macro, if defined, is executed once just
128 after the optimization level is determined and before the remainder of the
129 command options have been parsed. Values set in this macro are used as the
130 default values for the other command line options. */
132 /* #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) */
134 /* Driver configuration */
136 /* A C string constant that tells the GCC driver program options to pass to
137 `cc1'. It can also specify how to translate options you give to GCC into
138 options for GCC to pass to the `cc1'. */
140 #undef CC1_SPEC
141 #define CC1_SPEC "%{G*}"
143 /* A C string constant that tells the GCC driver program options to pass to
144 `cc1plus'. It can also specify how to translate options you give to GCC
145 into options for GCC to pass to the `cc1plus'. */
147 /* #define CC1PLUS_SPEC "" */
149 /* Storage Layout */
151 /* Define this macro to have the value 1 if the most significant bit in a byte
152 has the lowest number; otherwise define it to have the value zero. */
154 #define BITS_BIG_ENDIAN 0
156 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
158 /* Define this macro to have the value 1 if, in a multiword object, the most
159 significant word has the lowest number. */
161 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
163 #if defined(__BIG_ENDIAN__)
164 #define LIBGCC2_WORDS_BIG_ENDIAN 1
165 #else
166 #define LIBGCC2_WORDS_BIG_ENDIAN 0
167 #endif
169 #define UNITS_PER_WORD 8
171 #define POINTER_SIZE (TARGET_ILP32 ? 32 : 64)
173 /* A C expression whose value is zero if pointers that need to be extended
174 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and one if
175 they are zero-extended and negative one if there is a ptr_extend operation.
177 You need not define this macro if the `POINTER_SIZE' is equal to the width
178 of `Pmode'. */
179 /* Need this for 32-bit pointers, see hpux.h for setting it. */
180 /* #define POINTERS_EXTEND_UNSIGNED */
182 /* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
183 which has the specified mode and signedness is to be stored in a register.
184 This macro is only called when TYPE is a scalar type. */
185 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
186 do \
188 if (GET_MODE_CLASS (MODE) == MODE_INT \
189 && GET_MODE_SIZE (MODE) < 4) \
190 (MODE) = SImode; \
192 while (0)
194 #define PARM_BOUNDARY 64
196 /* Define this macro if you wish to preserve a certain alignment for the stack
197 pointer. The definition is a C expression for the desired alignment
198 (measured in bits). */
200 #define STACK_BOUNDARY 128
202 /* Align frames on double word boundaries */
203 #ifndef IA64_STACK_ALIGN
204 #define IA64_STACK_ALIGN(LOC) (((LOC) + 15) & ~15)
205 #endif
207 #define FUNCTION_BOUNDARY 128
209 /* Optional x86 80-bit float, quad-precision 128-bit float, and quad-word
210 128-bit integers all require 128-bit alignment. */
211 #define BIGGEST_ALIGNMENT 128
213 /* If defined, a C expression to compute the alignment for a static variable.
214 TYPE is the data type, and ALIGN is the alignment that the object
215 would ordinarily have. The value of this macro is used instead of that
216 alignment to align the object. */
218 #define DATA_ALIGNMENT(TYPE, ALIGN) \
219 (TREE_CODE (TYPE) == ARRAY_TYPE \
220 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
221 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
223 /* If defined, a C expression to compute the alignment given to a constant that
224 is being placed in memory. CONSTANT is the constant and ALIGN is the
225 alignment that the object would ordinarily have. The value of this macro is
226 used instead of that alignment to align the object. */
228 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
229 (TREE_CODE (EXP) == STRING_CST \
230 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
232 #define STRICT_ALIGNMENT 1
234 /* Define this if you wish to imitate the way many other C compilers handle
235 alignment of bitfields and the structures that contain them.
236 The behavior is that the type written for a bit-field (`int', `short', or
237 other integer type) imposes an alignment for the entire structure, as if the
238 structure really did contain an ordinary field of that type. In addition,
239 the bit-field is placed within the structure so that it would fit within such
240 a field, not crossing a boundary for it. */
241 #define PCC_BITFIELD_TYPE_MATTERS 1
243 /* An integer expression for the size in bits of the largest integer machine
244 mode that should actually be used. */
246 /* Allow pairs of registers to be used, which is the intent of the default. */
247 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
249 /* By default, the C++ compiler will use function addresses in the
250 vtable entries. Setting this nonzero tells the compiler to use
251 function descriptors instead. The value of this macro says how
252 many words wide the descriptor is (normally 2). It is assumed
253 that the address of a function descriptor may be treated as a
254 pointer to a function.
256 For reasons known only to HP, the vtable entries (as opposed to
257 normal function descriptors) are 16 bytes wide in 32-bit mode as
258 well, even though the 3rd and 4th words are unused. */
259 #define TARGET_VTABLE_USES_DESCRIPTORS (TARGET_ILP32 ? 4 : 2)
261 /* Due to silliness in the HPUX linker, vtable entries must be
262 8-byte aligned even in 32-bit mode. Rather than create multiple
263 ABIs, force this restriction on everyone else too. */
264 #define TARGET_VTABLE_ENTRY_ALIGN 64
266 /* Due to the above, we need extra padding for the data entries below 0
267 to retain the alignment of the descriptors. */
268 #define TARGET_VTABLE_DATA_ENTRY_DISTANCE (TARGET_ILP32 ? 2 : 1)
270 /* Layout of Source Language Data Types */
272 #define INT_TYPE_SIZE 32
274 #define SHORT_TYPE_SIZE 16
276 #define LONG_TYPE_SIZE (TARGET_ILP32 ? 32 : 64)
278 #define LONG_LONG_TYPE_SIZE 64
280 #define FLOAT_TYPE_SIZE 32
282 #define DOUBLE_TYPE_SIZE 64
284 /* long double is XFmode normally, and TFmode for HPUX. It should be
285 TFmode for VMS as well but we only support up to DFmode now. */
286 #define LONG_DOUBLE_TYPE_SIZE \
287 (TARGET_HPUX ? 128 \
288 : TARGET_ABI_OPEN_VMS ? 64 \
289 : 80)
291 /* We always want the XFmode operations from libgcc2.c, except on VMS
292 where this yields references to unimplemented "insns". */
293 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE (TARGET_ABI_OPEN_VMS ? 64 : 80)
296 /* On HP-UX, we use the l suffix for TFmode in libgcc2.c. */
297 #define LIBGCC2_TF_CEXT l
299 #define DEFAULT_SIGNED_CHAR 1
301 /* A C expression for a string describing the name of the data type to use for
302 size values. The typedef name `size_t' is defined using the contents of the
303 string. */
304 /* ??? Needs to be defined for P64 code. */
305 /* #define SIZE_TYPE */
307 /* A C expression for a string describing the name of the data type to use for
308 the result of subtracting two pointers. The typedef name `ptrdiff_t' is
309 defined using the contents of the string. See `SIZE_TYPE' above for more
310 information. */
311 /* ??? Needs to be defined for P64 code. */
312 /* #define PTRDIFF_TYPE */
314 /* A C expression for a string describing the name of the data type to use for
315 wide characters. The typedef name `wchar_t' is defined using the contents
316 of the string. See `SIZE_TYPE' above for more information. */
317 /* #define WCHAR_TYPE */
319 /* A C expression for the size in bits of the data type for wide characters.
320 This is used in `cpp', which cannot make use of `WCHAR_TYPE'. */
321 /* #define WCHAR_TYPE_SIZE */
324 /* Register Basics */
326 /* Number of hardware registers known to the compiler.
327 We have 128 general registers, 128 floating point registers,
328 64 predicate registers, 8 branch registers, one frame pointer,
329 and several "application" registers. */
331 #define FIRST_PSEUDO_REGISTER 334
333 /* Ranges for the various kinds of registers. */
334 #define ADDL_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 3)
335 #define GR_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 127)
336 #define FR_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 255)
337 #define FP_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 254 && (REGNO) != 159)
338 #define PR_REGNO_P(REGNO) ((REGNO) >= 256 && (REGNO) <= 319)
339 #define BR_REGNO_P(REGNO) ((REGNO) >= 320 && (REGNO) <= 327)
340 #define GENERAL_REGNO_P(REGNO) \
341 (GR_REGNO_P (REGNO) || (REGNO) == FRAME_POINTER_REGNUM)
343 #define GR_REG(REGNO) ((REGNO) + 0)
344 #define FR_REG(REGNO) ((REGNO) + 128)
345 #define PR_REG(REGNO) ((REGNO) + 256)
346 #define BR_REG(REGNO) ((REGNO) + 320)
347 #define OUT_REG(REGNO) ((REGNO) + 120)
348 #define IN_REG(REGNO) ((REGNO) + 112)
349 #define LOC_REG(REGNO) ((REGNO) + 32)
351 #define AR_CCV_REGNUM 329
352 #define AR_UNAT_REGNUM 330
353 #define AR_PFS_REGNUM 331
354 #define AR_LC_REGNUM 332
355 #define AR_EC_REGNUM 333
357 #define IN_REGNO_P(REGNO) ((REGNO) >= IN_REG (0) && (REGNO) <= IN_REG (7))
358 #define LOC_REGNO_P(REGNO) ((REGNO) >= LOC_REG (0) && (REGNO) <= LOC_REG (79))
359 #define OUT_REGNO_P(REGNO) ((REGNO) >= OUT_REG (0) && (REGNO) <= OUT_REG (7))
361 #define AR_M_REGNO_P(REGNO) ((REGNO) == AR_CCV_REGNUM \
362 || (REGNO) == AR_UNAT_REGNUM)
363 #define AR_I_REGNO_P(REGNO) ((REGNO) >= AR_PFS_REGNUM \
364 && (REGNO) < FIRST_PSEUDO_REGISTER)
365 #define AR_REGNO_P(REGNO) ((REGNO) >= AR_CCV_REGNUM \
366 && (REGNO) < FIRST_PSEUDO_REGISTER)
369 /* ??? Don't really need two sets of macros. I like this one better because
370 it is less typing. */
371 #define R_GR(REGNO) GR_REG (REGNO)
372 #define R_FR(REGNO) FR_REG (REGNO)
373 #define R_PR(REGNO) PR_REG (REGNO)
374 #define R_BR(REGNO) BR_REG (REGNO)
376 /* An initializer that says which registers are used for fixed purposes all
377 throughout the compiled code and are therefore not available for general
378 allocation.
380 r0: constant 0
381 r1: global pointer (gp)
382 r12: stack pointer (sp)
383 r13: thread pointer (tp)
384 f0: constant 0.0
385 f1: constant 1.0
386 p0: constant true
387 fp: eliminable frame pointer */
389 /* The last 16 stacked regs are reserved for the 8 input and 8 output
390 registers. */
392 #define FIXED_REGISTERS \
393 { /* General registers. */ \
394 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, \
395 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
396 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
397 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
398 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
399 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
400 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
401 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
402 /* Floating-point registers. */ \
403 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
404 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
405 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
406 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
407 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
408 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
409 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
410 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
411 /* Predicate registers. */ \
412 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
413 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
414 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
415 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
416 /* Branch registers. */ \
417 0, 0, 0, 0, 0, 0, 0, 0, \
418 /*FP CCV UNAT PFS LC EC */ \
419 1, 1, 1, 1, 1, 1 \
422 /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered
423 (in general) by function calls as well as for fixed registers. This
424 macro therefore identifies the registers that are not available for
425 general allocation of values that must live across function calls. */
427 #define CALL_USED_REGISTERS \
428 { /* General registers. */ \
429 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
430 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
431 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
432 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
433 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
434 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
435 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
436 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
437 /* Floating-point registers. */ \
438 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
439 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
440 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
441 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
442 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
443 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
444 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
445 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
446 /* Predicate registers. */ \
447 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
448 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
449 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
450 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
451 /* Branch registers. */ \
452 1, 0, 0, 0, 0, 0, 1, 1, \
453 /*FP CCV UNAT PFS LC EC */ \
454 1, 1, 1, 1, 1, 1 \
457 /* Like `CALL_USED_REGISTERS' but used to overcome a historical
458 problem which makes CALL_USED_REGISTERS *always* include
459 all the FIXED_REGISTERS. Until this problem has been
460 resolved this macro can be used to overcome this situation.
461 In particular, block_propagate() requires this list
462 be accurate, or we can remove registers which should be live.
463 This macro is used in regs_invalidated_by_call. */
465 #define CALL_REALLY_USED_REGISTERS \
466 { /* General registers. */ \
467 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, \
468 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
469 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
470 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
471 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
472 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
473 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
474 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
475 /* Floating-point registers. */ \
476 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
477 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
478 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
479 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
480 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
481 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
482 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
483 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
484 /* Predicate registers. */ \
485 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
486 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
487 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
488 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
489 /* Branch registers. */ \
490 1, 0, 0, 0, 0, 0, 1, 1, \
491 /*FP CCV UNAT PFS LC EC */ \
492 0, 1, 0, 1, 0, 0 \
496 /* Define this macro if the target machine has register windows. This C
497 expression returns the register number as seen by the called function
498 corresponding to the register number OUT as seen by the calling function.
499 Return OUT if register number OUT is not an outbound register. */
501 #define INCOMING_REGNO(OUT) \
502 ((unsigned) ((OUT) - OUT_REG (0)) < 8 ? IN_REG ((OUT) - OUT_REG (0)) : (OUT))
504 /* Define this macro if the target machine has register windows. This C
505 expression returns the register number as seen by the calling function
506 corresponding to the register number IN as seen by the called function.
507 Return IN if register number IN is not an inbound register. */
509 #define OUTGOING_REGNO(IN) \
510 ((unsigned) ((IN) - IN_REG (0)) < 8 ? OUT_REG ((IN) - IN_REG (0)) : (IN))
512 /* Define this macro if the target machine has register windows. This
513 C expression returns true if the register is call-saved but is in the
514 register window. */
516 #define LOCAL_REGNO(REGNO) \
517 (IN_REGNO_P (REGNO) || LOC_REGNO_P (REGNO))
519 /* We define CCImode in ia64-modes.def so we need a selector. */
521 #define SELECT_CC_MODE(OP,X,Y) CCmode
523 /* Order of allocation of registers */
525 /* If defined, an initializer for a vector of integers, containing the numbers
526 of hard registers in the order in which GCC should prefer to use them
527 (from most preferred to least).
529 If this macro is not defined, registers are used lowest numbered first (all
530 else being equal).
532 One use of this macro is on machines where the highest numbered registers
533 must always be saved and the save-multiple-registers instruction supports
534 only sequences of consecutive registers. On such machines, define
535 `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
536 allocatable register first. */
538 /* ??? Should the GR return value registers come before or after the rest
539 of the caller-save GRs? */
541 #define REG_ALLOC_ORDER \
543 /* Caller-saved general registers. */ \
544 R_GR (14), R_GR (15), R_GR (16), R_GR (17), \
545 R_GR (18), R_GR (19), R_GR (20), R_GR (21), R_GR (22), R_GR (23), \
546 R_GR (24), R_GR (25), R_GR (26), R_GR (27), R_GR (28), R_GR (29), \
547 R_GR (30), R_GR (31), \
548 /* Output registers. */ \
549 R_GR (120), R_GR (121), R_GR (122), R_GR (123), R_GR (124), R_GR (125), \
550 R_GR (126), R_GR (127), \
551 /* Caller-saved general registers, also used for return values. */ \
552 R_GR (8), R_GR (9), R_GR (10), R_GR (11), \
553 /* addl caller-saved general registers. */ \
554 R_GR (2), R_GR (3), \
555 /* Caller-saved FP registers. */ \
556 R_FR (6), R_FR (7), \
557 /* Caller-saved FP registers, used for parameters and return values. */ \
558 R_FR (8), R_FR (9), R_FR (10), R_FR (11), \
559 R_FR (12), R_FR (13), R_FR (14), R_FR (15), \
560 /* Rotating caller-saved FP registers. */ \
561 R_FR (32), R_FR (33), R_FR (34), R_FR (35), \
562 R_FR (36), R_FR (37), R_FR (38), R_FR (39), R_FR (40), R_FR (41), \
563 R_FR (42), R_FR (43), R_FR (44), R_FR (45), R_FR (46), R_FR (47), \
564 R_FR (48), R_FR (49), R_FR (50), R_FR (51), R_FR (52), R_FR (53), \
565 R_FR (54), R_FR (55), R_FR (56), R_FR (57), R_FR (58), R_FR (59), \
566 R_FR (60), R_FR (61), R_FR (62), R_FR (63), R_FR (64), R_FR (65), \
567 R_FR (66), R_FR (67), R_FR (68), R_FR (69), R_FR (70), R_FR (71), \
568 R_FR (72), R_FR (73), R_FR (74), R_FR (75), R_FR (76), R_FR (77), \
569 R_FR (78), R_FR (79), R_FR (80), R_FR (81), R_FR (82), R_FR (83), \
570 R_FR (84), R_FR (85), R_FR (86), R_FR (87), R_FR (88), R_FR (89), \
571 R_FR (90), R_FR (91), R_FR (92), R_FR (93), R_FR (94), R_FR (95), \
572 R_FR (96), R_FR (97), R_FR (98), R_FR (99), R_FR (100), R_FR (101), \
573 R_FR (102), R_FR (103), R_FR (104), R_FR (105), R_FR (106), R_FR (107), \
574 R_FR (108), R_FR (109), R_FR (110), R_FR (111), R_FR (112), R_FR (113), \
575 R_FR (114), R_FR (115), R_FR (116), R_FR (117), R_FR (118), R_FR (119), \
576 R_FR (120), R_FR (121), R_FR (122), R_FR (123), R_FR (124), R_FR (125), \
577 R_FR (126), R_FR (127), \
578 /* Caller-saved predicate registers. */ \
579 R_PR (6), R_PR (7), R_PR (8), R_PR (9), R_PR (10), R_PR (11), \
580 R_PR (12), R_PR (13), R_PR (14), R_PR (15), \
581 /* Rotating caller-saved predicate registers. */ \
582 R_PR (16), R_PR (17), \
583 R_PR (18), R_PR (19), R_PR (20), R_PR (21), R_PR (22), R_PR (23), \
584 R_PR (24), R_PR (25), R_PR (26), R_PR (27), R_PR (28), R_PR (29), \
585 R_PR (30), R_PR (31), R_PR (32), R_PR (33), R_PR (34), R_PR (35), \
586 R_PR (36), R_PR (37), R_PR (38), R_PR (39), R_PR (40), R_PR (41), \
587 R_PR (42), R_PR (43), R_PR (44), R_PR (45), R_PR (46), R_PR (47), \
588 R_PR (48), R_PR (49), R_PR (50), R_PR (51), R_PR (52), R_PR (53), \
589 R_PR (54), R_PR (55), R_PR (56), R_PR (57), R_PR (58), R_PR (59), \
590 R_PR (60), R_PR (61), R_PR (62), R_PR (63), \
591 /* Caller-saved branch registers. */ \
592 R_BR (6), R_BR (7), \
594 /* Stacked callee-saved general registers. */ \
595 R_GR (32), R_GR (33), R_GR (34), R_GR (35), \
596 R_GR (36), R_GR (37), R_GR (38), R_GR (39), R_GR (40), R_GR (41), \
597 R_GR (42), R_GR (43), R_GR (44), R_GR (45), R_GR (46), R_GR (47), \
598 R_GR (48), R_GR (49), R_GR (50), R_GR (51), R_GR (52), R_GR (53), \
599 R_GR (54), R_GR (55), R_GR (56), R_GR (57), R_GR (58), R_GR (59), \
600 R_GR (60), R_GR (61), R_GR (62), R_GR (63), R_GR (64), R_GR (65), \
601 R_GR (66), R_GR (67), R_GR (68), R_GR (69), R_GR (70), R_GR (71), \
602 R_GR (72), R_GR (73), R_GR (74), R_GR (75), R_GR (76), R_GR (77), \
603 R_GR (78), R_GR (79), R_GR (80), R_GR (81), R_GR (82), R_GR (83), \
604 R_GR (84), R_GR (85), R_GR (86), R_GR (87), R_GR (88), R_GR (89), \
605 R_GR (90), R_GR (91), R_GR (92), R_GR (93), R_GR (94), R_GR (95), \
606 R_GR (96), R_GR (97), R_GR (98), R_GR (99), R_GR (100), R_GR (101), \
607 R_GR (102), R_GR (103), R_GR (104), R_GR (105), R_GR (106), R_GR (107), \
608 R_GR (108), \
609 /* Input registers. */ \
610 R_GR (112), R_GR (113), R_GR (114), R_GR (115), R_GR (116), R_GR (117), \
611 R_GR (118), R_GR (119), \
612 /* Callee-saved general registers. */ \
613 R_GR (4), R_GR (5), R_GR (6), R_GR (7), \
614 /* Callee-saved FP registers. */ \
615 R_FR (2), R_FR (3), R_FR (4), R_FR (5), R_FR (16), R_FR (17), \
616 R_FR (18), R_FR (19), R_FR (20), R_FR (21), R_FR (22), R_FR (23), \
617 R_FR (24), R_FR (25), R_FR (26), R_FR (27), R_FR (28), R_FR (29), \
618 R_FR (30), R_FR (31), \
619 /* Callee-saved predicate registers. */ \
620 R_PR (1), R_PR (2), R_PR (3), R_PR (4), R_PR (5), \
621 /* Callee-saved branch registers. */ \
622 R_BR (1), R_BR (2), R_BR (3), R_BR (4), R_BR (5), \
624 /* ??? Stacked registers reserved for fp, rp, and ar.pfs. */ \
625 R_GR (109), R_GR (110), R_GR (111), \
627 /* Special general registers. */ \
628 R_GR (0), R_GR (1), R_GR (12), R_GR (13), \
629 /* Special FP registers. */ \
630 R_FR (0), R_FR (1), \
631 /* Special predicate registers. */ \
632 R_PR (0), \
633 /* Special branch registers. */ \
634 R_BR (0), \
635 /* Other fixed registers. */ \
636 FRAME_POINTER_REGNUM, \
637 AR_CCV_REGNUM, AR_UNAT_REGNUM, AR_PFS_REGNUM, AR_LC_REGNUM, \
638 AR_EC_REGNUM \
641 /* How Values Fit in Registers */
643 /* A C expression for the number of consecutive hard registers, starting at
644 register number REGNO, required to hold a value of mode MODE. */
646 /* ??? We say that BImode PR values require two registers. This allows us to
647 easily store the normal and inverted values. We use CCImode to indicate
648 a single predicate register. */
650 #define HARD_REGNO_NREGS(REGNO, MODE) \
651 ((REGNO) == PR_REG (0) && (MODE) == DImode ? 64 \
652 : PR_REGNO_P (REGNO) && (MODE) == BImode ? 2 \
653 : PR_REGNO_P (REGNO) && (MODE) == CCImode ? 1 \
654 : FR_REGNO_P (REGNO) && (MODE) == XFmode ? 1 \
655 : FR_REGNO_P (REGNO) && (MODE) == RFmode ? 1 \
656 : FR_REGNO_P (REGNO) && (MODE) == XCmode ? 2 \
657 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
659 /* A C expression that is nonzero if it is permissible to store a value of mode
660 MODE in hard register number REGNO (or in several registers starting with
661 that one). */
663 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
664 (FR_REGNO_P (REGNO) ? \
665 GET_MODE_CLASS (MODE) != MODE_CC && \
666 (MODE) != BImode && \
667 (MODE) != TFmode \
668 : PR_REGNO_P (REGNO) ? \
669 (MODE) == BImode || GET_MODE_CLASS (MODE) == MODE_CC \
670 : GR_REGNO_P (REGNO) ? \
671 (MODE) != CCImode && (MODE) != XFmode && (MODE) != XCmode && (MODE) != RFmode \
672 : AR_REGNO_P (REGNO) ? (MODE) == DImode \
673 : BR_REGNO_P (REGNO) ? (MODE) == DImode \
674 : 0)
676 /* A C expression that is nonzero if it is desirable to choose register
677 allocation so as to avoid move instructions between a value of mode MODE1
678 and a value of mode MODE2.
680 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
681 ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
682 zero. */
683 /* Don't tie integer and FP modes, as that causes us to get integer registers
684 allocated for FP instructions. XFmode only supported in FP registers so
685 we can't tie it with any other modes. */
686 #define MODES_TIEABLE_P(MODE1, MODE2) \
687 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
688 && ((((MODE1) == XFmode) || ((MODE1) == XCmode) || ((MODE1) == RFmode)) \
689 == (((MODE2) == XFmode) || ((MODE2) == XCmode) || ((MODE2) == RFmode))) \
690 && (((MODE1) == BImode) == ((MODE2) == BImode)))
692 /* Specify the modes required to caller save a given hard regno.
693 We need to ensure floating pt regs are not saved as DImode. */
695 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
696 ((FR_REGNO_P (REGNO) && (NREGS) == 1) ? RFmode \
697 : choose_hard_reg_mode ((REGNO), (NREGS), false))
699 /* Handling Leaf Functions */
701 /* A C initializer for a vector, indexed by hard register number, which
702 contains 1 for a register that is allowable in a candidate for leaf function
703 treatment. */
704 /* ??? This might be useful. */
705 /* #define LEAF_REGISTERS */
707 /* A C expression whose value is the register number to which REGNO should be
708 renumbered, when a function is treated as a leaf function. */
709 /* ??? This might be useful. */
710 /* #define LEAF_REG_REMAP(REGNO) */
713 /* Register Classes */
715 /* An enumeral type that must be defined with all the register class names as
716 enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
717 register class, followed by one more enumeral value, `LIM_REG_CLASSES',
718 which is not a register class but rather tells how many classes there
719 are. */
720 /* ??? When compiling without optimization, it is possible for the only use of
721 a pseudo to be a parameter load from the stack with a REG_EQUIV note.
722 Regclass handles this case specially and does not assign any costs to the
723 pseudo. The pseudo then ends up using the last class before ALL_REGS.
724 Thus we must not let either PR_REGS or BR_REGS be the last class. The
725 testcase for this is gcc.c-torture/execute/va-arg-7.c. */
726 enum reg_class
728 NO_REGS,
729 PR_REGS,
730 BR_REGS,
731 AR_M_REGS,
732 AR_I_REGS,
733 ADDL_REGS,
734 GR_REGS,
735 FP_REGS,
736 FR_REGS,
737 GR_AND_BR_REGS,
738 GR_AND_FR_REGS,
739 ALL_REGS,
740 LIM_REG_CLASSES
743 #define GENERAL_REGS GR_REGS
745 /* The number of distinct register classes. */
746 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
748 /* An initializer containing the names of the register classes as C string
749 constants. These names are used in writing some of the debugging dumps. */
750 #define REG_CLASS_NAMES \
751 { "NO_REGS", "PR_REGS", "BR_REGS", "AR_M_REGS", "AR_I_REGS", \
752 "ADDL_REGS", "GR_REGS", "FP_REGS", "FR_REGS", \
753 "GR_AND_BR_REGS", "GR_AND_FR_REGS", "ALL_REGS" }
755 /* An initializer containing the contents of the register classes, as integers
756 which are bit masks. The Nth integer specifies the contents of class N.
757 The way the integer MASK is interpreted is that register R is in the class
758 if `MASK & (1 << R)' is 1. */
759 #define REG_CLASS_CONTENTS \
761 /* NO_REGS. */ \
762 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
763 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
764 0x00000000, 0x00000000, 0x0000 }, \
765 /* PR_REGS. */ \
766 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
767 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
768 0xFFFFFFFF, 0xFFFFFFFF, 0x0000 }, \
769 /* BR_REGS. */ \
770 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
771 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
772 0x00000000, 0x00000000, 0x00FF }, \
773 /* AR_M_REGS. */ \
774 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
775 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
776 0x00000000, 0x00000000, 0x0600 }, \
777 /* AR_I_REGS. */ \
778 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
779 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
780 0x00000000, 0x00000000, 0x3800 }, \
781 /* ADDL_REGS. */ \
782 { 0x0000000F, 0x00000000, 0x00000000, 0x00000000, \
783 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
784 0x00000000, 0x00000000, 0x0000 }, \
785 /* GR_REGS. */ \
786 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
787 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
788 0x00000000, 0x00000000, 0x0100 }, \
789 /* FP_REGS. */ \
790 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
791 0x7FFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF, \
792 0x00000000, 0x00000000, 0x0000 }, \
793 /* FR_REGS. */ \
794 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
795 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
796 0x00000000, 0x00000000, 0x0000 }, \
797 /* GR_AND_BR_REGS. */ \
798 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
799 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
800 0x00000000, 0x00000000, 0x01FF }, \
801 /* GR_AND_FR_REGS. */ \
802 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
803 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
804 0x00000000, 0x00000000, 0x0100 }, \
805 /* ALL_REGS. */ \
806 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
807 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
808 0xFFFFFFFF, 0xFFFFFFFF, 0x3FFF }, \
811 /* The following macro defines cover classes for Integrated Register
812 Allocator. Cover classes is a set of non-intersected register
813 classes covering all hard registers used for register allocation
814 purpose. Any move between two registers of a cover class should be
815 cheaper than load or store of the registers. The macro value is
816 array of register classes with LIM_REG_CLASSES used as the end
817 marker. */
819 #define IRA_COVER_CLASSES \
821 PR_REGS, BR_REGS, AR_M_REGS, AR_I_REGS, GR_REGS, FR_REGS, LIM_REG_CLASSES \
824 /* A C expression whose value is a register class containing hard register
825 REGNO. In general there is more than one such class; choose a class which
826 is "minimal", meaning that no smaller class also contains the register. */
827 /* The NO_REGS case is primarily for the benefit of rws_access_reg, which
828 may call here with private (invalid) register numbers, such as
829 REG_VOLATILE. */
830 #define REGNO_REG_CLASS(REGNO) \
831 (ADDL_REGNO_P (REGNO) ? ADDL_REGS \
832 : GENERAL_REGNO_P (REGNO) ? GR_REGS \
833 : FR_REGNO_P (REGNO) ? (REGNO) != R_FR (31) \
834 && (REGNO) != R_FR(127) ? FP_REGS : FR_REGS \
835 : PR_REGNO_P (REGNO) ? PR_REGS \
836 : BR_REGNO_P (REGNO) ? BR_REGS \
837 : AR_M_REGNO_P (REGNO) ? AR_M_REGS \
838 : AR_I_REGNO_P (REGNO) ? AR_I_REGS \
839 : NO_REGS)
841 /* A macro whose definition is the name of the class to which a valid base
842 register must belong. A base register is one used in an address which is
843 the register value plus a displacement. */
844 #define BASE_REG_CLASS GENERAL_REGS
846 /* A macro whose definition is the name of the class to which a valid index
847 register must belong. An index register is one used in an address where its
848 value is either multiplied by a scale factor or added to another register
849 (as well as added to a displacement). This is needed for POST_MODIFY. */
850 #define INDEX_REG_CLASS GENERAL_REGS
852 /* A C expression which is nonzero if register number NUM is suitable for use
853 as a base register in operand addresses. It may be either a suitable hard
854 register or a pseudo register that has been allocated such a hard reg. */
855 #define REGNO_OK_FOR_BASE_P(REGNO) \
856 (GENERAL_REGNO_P (REGNO) || GENERAL_REGNO_P (reg_renumber[REGNO]))
858 /* A C expression which is nonzero if register number NUM is suitable for use
859 as an index register in operand addresses. It may be either a suitable hard
860 register or a pseudo register that has been allocated such a hard reg.
861 This is needed for POST_MODIFY. */
862 #define REGNO_OK_FOR_INDEX_P(NUM) REGNO_OK_FOR_BASE_P (NUM)
864 /* A C expression that places additional restrictions on the register class to
865 use when it is necessary to copy value X into a register in class CLASS.
866 The value is a register class; perhaps CLASS, or perhaps another, smaller
867 class. */
869 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
870 ia64_preferred_reload_class (X, CLASS)
872 /* You should define this macro to indicate to the reload phase that it may
873 need to allocate at least one register for a reload in addition to the
874 register to contain the data. Specifically, if copying X to a register
875 CLASS in MODE requires an intermediate register, you should define this
876 to return the largest register class all of whose registers can be used
877 as intermediate registers or scratch registers. */
879 #define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
880 ia64_secondary_reload_class (CLASS, MODE, X)
882 /* Certain machines have the property that some registers cannot be copied to
883 some other registers without using memory. Define this macro on those
884 machines to be a C expression that is nonzero if objects of mode M in
885 registers of CLASS1 can only be copied to registers of class CLASS2 by
886 storing a register of CLASS1 into memory and loading that memory location
887 into a register of CLASS2. */
889 #if 0
890 /* ??? May need this, but since we've disallowed XFmode in GR_REGS,
891 I'm not quite sure how it could be invoked. The normal problems
892 with unions should be solved with the addressof fiddling done by
893 movxf and friends. */
894 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
895 (((MODE) == XFmode || (MODE) == XCmode) \
896 && (((CLASS1) == GR_REGS && (CLASS2) == FR_REGS) \
897 || ((CLASS1) == FR_REGS && (CLASS2) == GR_REGS)))
898 #endif
900 /* A C expression for the maximum number of consecutive registers of
901 class CLASS needed to hold a value of mode MODE.
902 This is closely related to the macro `HARD_REGNO_NREGS'. */
904 #define CLASS_MAX_NREGS(CLASS, MODE) \
905 ((MODE) == BImode && (CLASS) == PR_REGS ? 2 \
906 : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == XFmode) ? 1 \
907 : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == RFmode) ? 1 \
908 : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == XCmode) ? 2 \
909 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
911 /* In BR regs, we can't change the DImode at all.
912 In FP regs, we can't change FP values to integer values and vice versa,
913 but we can change e.g. DImode to SImode, and V2SFmode into DImode. */
915 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
916 (reg_classes_intersect_p (CLASS, BR_REGS) \
917 ? (FROM) != (TO) \
918 : (SCALAR_FLOAT_MODE_P (FROM) != SCALAR_FLOAT_MODE_P (TO) \
919 ? reg_classes_intersect_p (CLASS, FR_REGS) \
920 : 0))
922 /* Basic Stack Layout */
924 /* Define this macro if pushing a word onto the stack moves the stack pointer
925 to a smaller address. */
926 #define STACK_GROWS_DOWNWARD 1
928 /* Define this macro to nonzero if the addresses of local variable slots
929 are at negative offsets from the frame pointer. */
930 #define FRAME_GROWS_DOWNWARD 0
932 /* Offset from the frame pointer to the first local variable slot to
933 be allocated. */
934 #define STARTING_FRAME_OFFSET 0
936 /* Offset from the stack pointer register to the first location at which
937 outgoing arguments are placed. If not specified, the default value of zero
938 is used. This is the proper value for most machines. */
939 /* IA64 has a 16 byte scratch area that is at the bottom of the stack. */
940 #define STACK_POINTER_OFFSET 16
942 /* Offset from the argument pointer register to the first argument's address.
943 On some machines it may depend on the data type of the function. */
944 #define FIRST_PARM_OFFSET(FUNDECL) 0
946 /* A C expression whose value is RTL representing the value of the return
947 address for the frame COUNT steps up from the current frame, after the
948 prologue. */
950 /* ??? Frames other than zero would likely require interpreting the frame
951 unwind info, so we don't try to support them. We would also need to define
952 DYNAMIC_CHAIN_ADDRESS and SETUP_FRAME_ADDRESS (for the reg stack flush). */
954 #define RETURN_ADDR_RTX(COUNT, FRAME) \
955 ia64_return_addr_rtx (COUNT, FRAME)
957 /* A C expression whose value is RTL representing the location of the incoming
958 return address at the beginning of any function, before the prologue. This
959 RTL is either a `REG', indicating that the return value is saved in `REG',
960 or a `MEM' representing a location in the stack. This enables DWARF2
961 unwind info for C++ EH. */
962 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, BR_REG (0))
964 /* A C expression whose value is an integer giving the offset, in bytes, from
965 the value of the stack pointer register to the top of the stack frame at the
966 beginning of any function, before the prologue. The top of the frame is
967 defined to be the value of the stack pointer in the previous frame, just
968 before the call instruction. */
969 /* The CFA is past the red zone, not at the entry-point stack
970 pointer. */
971 #define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
973 /* We shorten debug info by using CFA-16 as DW_AT_frame_base. */
974 #define CFA_FRAME_BASE_OFFSET(FUNDECL) (-INCOMING_FRAME_SP_OFFSET)
977 /* Register That Address the Stack Frame. */
979 /* The register number of the stack pointer register, which must also be a
980 fixed register according to `FIXED_REGISTERS'. On most machines, the
981 hardware determines which register this is. */
983 #define STACK_POINTER_REGNUM 12
985 /* The register number of the frame pointer register, which is used to access
986 automatic variables in the stack frame. On some machines, the hardware
987 determines which register this is. On other machines, you can choose any
988 register you wish for this purpose. */
990 #define FRAME_POINTER_REGNUM 328
992 /* Base register for access to local variables of the function. */
993 #define HARD_FRAME_POINTER_REGNUM LOC_REG (79)
995 /* The register number of the arg pointer register, which is used to access the
996 function's argument list. */
997 /* r0 won't otherwise be used, so put the always eliminated argument pointer
998 in it. */
999 #define ARG_POINTER_REGNUM R_GR(0)
1001 /* Due to the way varargs and argument spilling happens, the argument
1002 pointer is not 16-byte aligned like the stack pointer. */
1003 #define INIT_EXPANDERS \
1004 do { \
1005 ia64_init_expanders (); \
1006 if (crtl->emit.regno_pointer_align) \
1007 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = 64; \
1008 } while (0)
1010 /* Register numbers used for passing a function's static chain pointer. */
1011 /* ??? The ABI sez the static chain should be passed as a normal parameter. */
1012 #define STATIC_CHAIN_REGNUM 15
1014 /* Eliminating the Frame Pointer and the Arg Pointer */
1016 /* Show we can debug even without a frame pointer. */
1017 #define CAN_DEBUG_WITHOUT_FP
1019 /* If defined, this macro specifies a table of register pairs used to eliminate
1020 unneeded registers that point into the stack frame. */
1022 #define ELIMINABLE_REGS \
1024 {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1025 {ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1026 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1027 {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1030 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
1031 specifies the initial difference between the specified pair of
1032 registers. This macro must be defined if `ELIMINABLE_REGS' is
1033 defined. */
1034 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1035 ((OFFSET) = ia64_initial_elimination_offset ((FROM), (TO)))
1037 /* Passing Function Arguments on the Stack */
1039 /* If defined, the maximum amount of space required for outgoing arguments will
1040 be computed and placed into the variable
1041 `crtl->outgoing_args_size'. */
1043 #define ACCUMULATE_OUTGOING_ARGS 1
1046 /* Function Arguments in Registers */
1048 #define MAX_ARGUMENT_SLOTS 8
1049 #define MAX_INT_RETURN_SLOTS 4
1050 #define GR_ARG_FIRST IN_REG (0)
1051 #define GR_RET_FIRST GR_REG (8)
1052 #define GR_RET_LAST GR_REG (11)
1053 #define FR_ARG_FIRST FR_REG (8)
1054 #define FR_RET_FIRST FR_REG (8)
1055 #define FR_RET_LAST FR_REG (15)
1056 #define AR_ARG_FIRST OUT_REG (0)
1058 /* A C expression that controls whether a function argument is passed in a
1059 register, and which register. */
1061 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1062 ia64_function_arg (&CUM, MODE, TYPE, NAMED, 0)
1064 /* Define this macro if the target machine has "register windows", so that the
1065 register in which a function sees an arguments is not necessarily the same
1066 as the one in which the caller passed the argument. */
1068 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1069 ia64_function_arg (&CUM, MODE, TYPE, NAMED, 1)
1071 /* A C type for declaring a variable that is used as the first argument of
1072 `FUNCTION_ARG' and other related values. For some target machines, the type
1073 `int' suffices and can hold the number of bytes of argument so far. */
1075 enum ivms_arg_type {I64, FF, FD, FG, FS, FT};
1076 /* VMS floating point formats VAX F, VAX D, VAX G, IEEE S, IEEE T. */
1078 typedef struct ia64_args
1080 int words; /* # words of arguments so far */
1081 int int_regs; /* # GR registers used so far */
1082 int fp_regs; /* # FR registers used so far */
1083 int prototype; /* whether function prototyped */
1084 enum ivms_arg_type atypes[8]; /* which VMS float type or if not float */
1085 } CUMULATIVE_ARGS;
1087 /* A C statement (sans semicolon) for initializing the variable CUM for the
1088 state at the beginning of the argument list. */
1090 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1091 do { \
1092 (CUM).words = 0; \
1093 (CUM).int_regs = 0; \
1094 (CUM).fp_regs = 0; \
1095 (CUM).prototype = ((FNTYPE) && TYPE_ARG_TYPES (FNTYPE)) || (LIBNAME); \
1096 (CUM).atypes[0] = (CUM).atypes[1] = (CUM).atypes[2] = I64; \
1097 (CUM).atypes[3] = (CUM).atypes[4] = (CUM).atypes[5] = I64; \
1098 (CUM).atypes[6] = (CUM).atypes[7] = I64; \
1099 } while (0)
1101 /* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1102 arguments for the function being compiled. If this macro is undefined,
1103 `INIT_CUMULATIVE_ARGS' is used instead. */
1105 /* We set prototype to true so that we never try to return a PARALLEL from
1106 function_arg. */
1107 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1108 do { \
1109 (CUM).words = 0; \
1110 (CUM).int_regs = 0; \
1111 (CUM).fp_regs = 0; \
1112 (CUM).prototype = 1; \
1113 (CUM).atypes[0] = (CUM).atypes[1] = (CUM).atypes[2] = I64; \
1114 (CUM).atypes[3] = (CUM).atypes[4] = (CUM).atypes[5] = I64; \
1115 (CUM).atypes[6] = (CUM).atypes[7] = I64; \
1116 } while (0)
1118 /* A C statement (sans semicolon) to update the summarizer variable CUM to
1119 advance past an argument in the argument list. The values MODE, TYPE and
1120 NAMED describe that argument. Once this is done, the variable CUM is
1121 suitable for analyzing the *following* argument with `FUNCTION_ARG'. */
1123 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1124 ia64_function_arg_advance (&CUM, MODE, TYPE, NAMED)
1126 /* If defined, a C expression that gives the alignment boundary, in bits, of an
1127 argument with the specified mode and type. */
1129 /* Return the alignment boundary in bits for an argument with a specified
1130 mode and type. */
1132 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1133 ia64_function_arg_boundary (MODE, TYPE)
1135 /* A C expression that is nonzero if REGNO is the number of a hard register in
1136 which function arguments are sometimes passed. This does *not* include
1137 implicit arguments such as the static chain and the structure-value address.
1138 On many machines, no registers can be used for this purpose since all
1139 function arguments are pushed on the stack. */
1140 #define FUNCTION_ARG_REGNO_P(REGNO) \
1141 (((REGNO) >= AR_ARG_FIRST && (REGNO) < (AR_ARG_FIRST + MAX_ARGUMENT_SLOTS)) \
1142 || ((REGNO) >= FR_ARG_FIRST && (REGNO) < (FR_ARG_FIRST + MAX_ARGUMENT_SLOTS)))
1145 /* How Large Values are Returned */
1147 #define DEFAULT_PCC_STRUCT_RETURN 0
1150 /* Caller-Saves Register Allocation */
1152 /* A C expression to determine whether it is worthwhile to consider placing a
1153 pseudo-register in a call-clobbered hard register and saving and restoring
1154 it around each function call. The expression should be 1 when this is worth
1155 doing, and 0 otherwise.
1157 If you don't define this macro, a default is used which is good on most
1158 machines: `4 * CALLS < REFS'. */
1159 /* ??? Investigate. */
1160 /* #define CALLER_SAVE_PROFITABLE(REFS, CALLS) */
1163 /* Function Entry and Exit */
1165 /* Define this macro as a C expression that is nonzero if the return
1166 instruction or the function epilogue ignores the value of the stack pointer;
1167 in other words, if it is safe to delete an instruction to adjust the stack
1168 pointer before a return from the function. */
1170 #define EXIT_IGNORE_STACK 1
1172 /* Define this macro as a C expression that is nonzero for registers
1173 used by the epilogue or the `return' pattern. */
1175 #define EPILOGUE_USES(REGNO) ia64_epilogue_uses (REGNO)
1177 /* Nonzero for registers used by the exception handling mechanism. */
1179 #define EH_USES(REGNO) ia64_eh_uses (REGNO)
1181 /* Output part N of a function descriptor for DECL. For ia64, both
1182 words are emitted with a single relocation, so ignore N > 0. */
1183 #define ASM_OUTPUT_FDESC(FILE, DECL, PART) \
1184 do { \
1185 if ((PART) == 0) \
1187 if (TARGET_ILP32) \
1188 fputs ("\tdata8.ua @iplt(", FILE); \
1189 else \
1190 fputs ("\tdata16.ua @iplt(", FILE); \
1191 mark_decl_referenced (DECL); \
1192 assemble_name (FILE, XSTR (XEXP (DECL_RTL (DECL), 0), 0)); \
1193 fputs (")\n", FILE); \
1194 if (TARGET_ILP32) \
1195 fputs ("\tdata8.ua 0\n", FILE); \
1197 } while (0)
1199 /* Generating Code for Profiling. */
1201 /* A C statement or compound statement to output to FILE some assembler code to
1202 call the profiling subroutine `mcount'. */
1204 #undef FUNCTION_PROFILER
1205 #define FUNCTION_PROFILER(FILE, LABELNO) \
1206 ia64_output_function_profiler(FILE, LABELNO)
1208 /* Neither hpux nor linux use profile counters. */
1209 #define NO_PROFILE_COUNTERS 1
1211 /* Trampolines for Nested Functions. */
1213 /* We need 32 bytes, so we can save the sp, ar.rnat, ar.bsp, and ar.pfs of
1214 the function containing a non-local goto target. */
1216 #define STACK_SAVEAREA_MODE(LEVEL) \
1217 ((LEVEL) == SAVE_NONLOCAL ? OImode : Pmode)
1219 /* A C expression for the size in bytes of the trampoline, as an integer. */
1221 #define TRAMPOLINE_SIZE 32
1223 /* Alignment required for trampolines, in bits. */
1225 #define TRAMPOLINE_ALIGNMENT 64
1227 /* Addressing Modes */
1229 /* Define this macro if the machine supports post-increment addressing. */
1231 #define HAVE_POST_INCREMENT 1
1232 #define HAVE_POST_DECREMENT 1
1233 #define HAVE_POST_MODIFY_DISP 1
1234 #define HAVE_POST_MODIFY_REG 1
1236 /* A C expression that is 1 if the RTX X is a constant which is a valid
1237 address. */
1239 #define CONSTANT_ADDRESS_P(X) 0
1241 /* The max number of registers that can appear in a valid memory address. */
1243 #define MAX_REGS_PER_ADDRESS 2
1245 /* A C compound statement with a conditional `goto LABEL;' executed if X (an
1246 RTX) is a legitimate memory address on the target machine for a memory
1247 operand of mode MODE. */
1249 #define LEGITIMATE_ADDRESS_REG(X) \
1250 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1251 || (GET_CODE (X) == SUBREG && GET_CODE (XEXP (X, 0)) == REG \
1252 && REG_OK_FOR_BASE_P (XEXP (X, 0))))
1254 #define LEGITIMATE_ADDRESS_DISP(R, X) \
1255 (GET_CODE (X) == PLUS \
1256 && rtx_equal_p (R, XEXP (X, 0)) \
1257 && (LEGITIMATE_ADDRESS_REG (XEXP (X, 1)) \
1258 || (GET_CODE (XEXP (X, 1)) == CONST_INT \
1259 && INTVAL (XEXP (X, 1)) >= -256 \
1260 && INTVAL (XEXP (X, 1)) < 256)))
1262 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
1263 do { \
1264 if (LEGITIMATE_ADDRESS_REG (X)) \
1265 goto LABEL; \
1266 else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == POST_DEC) \
1267 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1268 && XEXP (X, 0) != arg_pointer_rtx) \
1269 goto LABEL; \
1270 else if (GET_CODE (X) == POST_MODIFY \
1271 && LEGITIMATE_ADDRESS_REG (XEXP (X, 0)) \
1272 && XEXP (X, 0) != arg_pointer_rtx \
1273 && LEGITIMATE_ADDRESS_DISP (XEXP (X, 0), XEXP (X, 1))) \
1274 goto LABEL; \
1275 } while (0)
1277 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1278 use as a base register. */
1280 #ifdef REG_OK_STRICT
1281 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1282 #else
1283 #define REG_OK_FOR_BASE_P(X) \
1284 (GENERAL_REGNO_P (REGNO (X)) || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1285 #endif
1287 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1288 use as an index register. This is needed for POST_MODIFY. */
1290 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1292 /* A C expression that is nonzero if X is a legitimate constant for an
1293 immediate operand on the target machine. */
1295 #define LEGITIMATE_CONSTANT_P(X) ia64_legitimate_constant_p (X)
1297 /* Condition Code Status */
1299 /* One some machines not all possible comparisons are defined, but you can
1300 convert an invalid comparison into a valid one. */
1301 /* ??? Investigate. See the alpha definition. */
1302 /* #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) */
1305 /* Describing Relative Costs of Operations */
1307 /* A C expression for the cost of moving data of mode M between a
1308 register and memory. */
1309 #define MEMORY_MOVE_COST(MODE,CLASS,IN) \
1310 ((CLASS) == GENERAL_REGS || (CLASS) == FR_REGS || (CLASS) == FP_REGS \
1311 || (CLASS) == GR_AND_FR_REGS ? 4 : 10)
1313 /* A C expression for the cost of a branch instruction. A value of 1 is the
1314 default; other values are interpreted relative to that. Used by the
1315 if-conversion code as max instruction count. */
1316 /* ??? This requires investigation. The primary effect might be how
1317 many additional insn groups we run into, vs how good the dynamic
1318 branch predictor is. */
1320 #define BRANCH_COST(speed_p, predictable_p) 6
1322 /* Define this macro as a C expression which is nonzero if accessing less than
1323 a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1324 word of memory. */
1326 #define SLOW_BYTE_ACCESS 1
1328 /* Define this macro if it is as good or better to call a constant function
1329 address than to call an address kept in a register.
1331 Indirect function calls are more expensive that direct function calls, so
1332 don't cse function addresses. */
1334 #define NO_FUNCTION_CSE
1337 /* Dividing the output into sections. */
1339 /* A C expression whose value is a string containing the assembler operation
1340 that should precede instructions and read-only data. */
1342 #define TEXT_SECTION_ASM_OP "\t.text"
1344 /* A C expression whose value is a string containing the assembler operation to
1345 identify the following data as writable initialized data. */
1347 #define DATA_SECTION_ASM_OP "\t.data"
1349 /* If defined, a C expression whose value is a string containing the assembler
1350 operation to identify the following data as uninitialized global data. */
1352 #define BSS_SECTION_ASM_OP "\t.bss"
1354 #define IA64_DEFAULT_GVALUE 8
1356 /* Position Independent Code. */
1358 /* The register number of the register used to address a table of static data
1359 addresses in memory. */
1361 /* ??? Should modify ia64.md to use pic_offset_table_rtx instead of
1362 gen_rtx_REG (DImode, 1). */
1364 /* ??? Should we set flag_pic? Probably need to define
1365 LEGITIMIZE_PIC_OPERAND_P to make that work. */
1367 #define PIC_OFFSET_TABLE_REGNUM GR_REG (1)
1369 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM' is
1370 clobbered by calls. */
1372 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1375 /* The Overall Framework of an Assembler File. */
1377 /* A C string constant describing how to begin a comment in the target
1378 assembler language. The compiler assumes that the comment will end at the
1379 end of the line. */
1381 #define ASM_COMMENT_START "//"
1383 /* A C string constant for text to be output before each `asm' statement or
1384 group of consecutive ones. */
1386 #define ASM_APP_ON (TARGET_GNU_AS ? "#APP\n" : "//APP\n")
1388 /* A C string constant for text to be output after each `asm' statement or
1389 group of consecutive ones. */
1391 #define ASM_APP_OFF (TARGET_GNU_AS ? "#NO_APP\n" : "//NO_APP\n")
1393 /* Output of Uninitialized Variables. */
1395 /* This is all handled by svr4.h. */
1398 /* Output and Generation of Labels. */
1400 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
1401 assembler definition of a label named NAME. */
1403 /* See the ASM_OUTPUT_LABELREF definition in sysv4.h for an explanation of
1404 why ia64_asm_output_label exists. */
1406 extern int ia64_asm_output_label;
1407 #define ASM_OUTPUT_LABEL(STREAM, NAME) \
1408 do { \
1409 ia64_asm_output_label = 1; \
1410 assemble_name (STREAM, NAME); \
1411 fputs (":\n", STREAM); \
1412 ia64_asm_output_label = 0; \
1413 } while (0)
1415 /* Globalizing directive for a label. */
1416 #define GLOBAL_ASM_OP "\t.global "
1418 /* A C statement (sans semicolon) to output to the stdio stream STREAM any text
1419 necessary for declaring the name of an external symbol named NAME which is
1420 referenced in this compilation but not defined. */
1422 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1423 ia64_asm_output_external (FILE, DECL, NAME)
1425 /* A C statement to store into the string STRING a label whose name is made
1426 from the string PREFIX and the number NUM. */
1428 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1429 do { \
1430 sprintf (LABEL, "*.%s%d", PREFIX, NUM); \
1431 } while (0)
1433 /* ??? Not sure if using a ? in the name for Intel as is safe. */
1435 #define ASM_PN_FORMAT (TARGET_GNU_AS ? "%s.%lu" : "%s?%lu")
1437 /* A C statement to output to the stdio stream STREAM assembler code which
1438 defines (equates) the symbol NAME to have the value VALUE. */
1440 #define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
1441 do { \
1442 assemble_name (STREAM, NAME); \
1443 fputs (" = ", STREAM); \
1444 if (ISDIGIT (*VALUE)) \
1445 ia64_asm_output_label = 1; \
1446 assemble_name (STREAM, VALUE); \
1447 fputc ('\n', STREAM); \
1448 ia64_asm_output_label = 0; \
1449 } while (0)
1452 /* Macros Controlling Initialization Routines. */
1454 /* This is handled by svr4.h and sysv4.h. */
1457 /* Output of Assembler Instructions. */
1459 /* A C initializer containing the assembler's names for the machine registers,
1460 each one as a C string constant. */
1462 #define REGISTER_NAMES \
1464 /* General registers. */ \
1465 "ap", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
1466 "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", \
1467 "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", \
1468 "r30", "r31", \
1469 /* Local registers. */ \
1470 "loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7", \
1471 "loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15", \
1472 "loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23", \
1473 "loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31", \
1474 "loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39", \
1475 "loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47", \
1476 "loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55", \
1477 "loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63", \
1478 "loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71", \
1479 "loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79", \
1480 /* Input registers. */ \
1481 "in0", "in1", "in2", "in3", "in4", "in5", "in6", "in7", \
1482 /* Output registers. */ \
1483 "out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7", \
1484 /* Floating-point registers. */ \
1485 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", \
1486 "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", \
1487 "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", \
1488 "f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", \
1489 "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49", \
1490 "f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59", \
1491 "f60", "f61", "f62", "f63", "f64", "f65", "f66", "f67", "f68", "f69", \
1492 "f70", "f71", "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79", \
1493 "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", "f88", "f89", \
1494 "f90", "f91", "f92", "f93", "f94", "f95", "f96", "f97", "f98", "f99", \
1495 "f100","f101","f102","f103","f104","f105","f106","f107","f108","f109",\
1496 "f110","f111","f112","f113","f114","f115","f116","f117","f118","f119",\
1497 "f120","f121","f122","f123","f124","f125","f126","f127", \
1498 /* Predicate registers. */ \
1499 "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8", "p9", \
1500 "p10", "p11", "p12", "p13", "p14", "p15", "p16", "p17", "p18", "p19", \
1501 "p20", "p21", "p22", "p23", "p24", "p25", "p26", "p27", "p28", "p29", \
1502 "p30", "p31", "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39", \
1503 "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", "p48", "p49", \
1504 "p50", "p51", "p52", "p53", "p54", "p55", "p56", "p57", "p58", "p59", \
1505 "p60", "p61", "p62", "p63", \
1506 /* Branch registers. */ \
1507 "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", \
1508 /* Frame pointer. Application registers. */ \
1509 "sfp", "ar.ccv", "ar.unat", "ar.pfs", "ar.lc", "ar.ec", \
1512 /* If defined, a C initializer for an array of structures containing a name and
1513 a register number. This macro defines additional names for hard registers,
1514 thus allowing the `asm' option in declarations to refer to registers using
1515 alternate names. */
1517 #define ADDITIONAL_REGISTER_NAMES \
1519 { "gp", R_GR (1) }, \
1520 { "sp", R_GR (12) }, \
1521 { "in0", IN_REG (0) }, \
1522 { "in1", IN_REG (1) }, \
1523 { "in2", IN_REG (2) }, \
1524 { "in3", IN_REG (3) }, \
1525 { "in4", IN_REG (4) }, \
1526 { "in5", IN_REG (5) }, \
1527 { "in6", IN_REG (6) }, \
1528 { "in7", IN_REG (7) }, \
1529 { "out0", OUT_REG (0) }, \
1530 { "out1", OUT_REG (1) }, \
1531 { "out2", OUT_REG (2) }, \
1532 { "out3", OUT_REG (3) }, \
1533 { "out4", OUT_REG (4) }, \
1534 { "out5", OUT_REG (5) }, \
1535 { "out6", OUT_REG (6) }, \
1536 { "out7", OUT_REG (7) }, \
1537 { "loc0", LOC_REG (0) }, \
1538 { "loc1", LOC_REG (1) }, \
1539 { "loc2", LOC_REG (2) }, \
1540 { "loc3", LOC_REG (3) }, \
1541 { "loc4", LOC_REG (4) }, \
1542 { "loc5", LOC_REG (5) }, \
1543 { "loc6", LOC_REG (6) }, \
1544 { "loc7", LOC_REG (7) }, \
1545 { "loc8", LOC_REG (8) }, \
1546 { "loc9", LOC_REG (9) }, \
1547 { "loc10", LOC_REG (10) }, \
1548 { "loc11", LOC_REG (11) }, \
1549 { "loc12", LOC_REG (12) }, \
1550 { "loc13", LOC_REG (13) }, \
1551 { "loc14", LOC_REG (14) }, \
1552 { "loc15", LOC_REG (15) }, \
1553 { "loc16", LOC_REG (16) }, \
1554 { "loc17", LOC_REG (17) }, \
1555 { "loc18", LOC_REG (18) }, \
1556 { "loc19", LOC_REG (19) }, \
1557 { "loc20", LOC_REG (20) }, \
1558 { "loc21", LOC_REG (21) }, \
1559 { "loc22", LOC_REG (22) }, \
1560 { "loc23", LOC_REG (23) }, \
1561 { "loc24", LOC_REG (24) }, \
1562 { "loc25", LOC_REG (25) }, \
1563 { "loc26", LOC_REG (26) }, \
1564 { "loc27", LOC_REG (27) }, \
1565 { "loc28", LOC_REG (28) }, \
1566 { "loc29", LOC_REG (29) }, \
1567 { "loc30", LOC_REG (30) }, \
1568 { "loc31", LOC_REG (31) }, \
1569 { "loc32", LOC_REG (32) }, \
1570 { "loc33", LOC_REG (33) }, \
1571 { "loc34", LOC_REG (34) }, \
1572 { "loc35", LOC_REG (35) }, \
1573 { "loc36", LOC_REG (36) }, \
1574 { "loc37", LOC_REG (37) }, \
1575 { "loc38", LOC_REG (38) }, \
1576 { "loc39", LOC_REG (39) }, \
1577 { "loc40", LOC_REG (40) }, \
1578 { "loc41", LOC_REG (41) }, \
1579 { "loc42", LOC_REG (42) }, \
1580 { "loc43", LOC_REG (43) }, \
1581 { "loc44", LOC_REG (44) }, \
1582 { "loc45", LOC_REG (45) }, \
1583 { "loc46", LOC_REG (46) }, \
1584 { "loc47", LOC_REG (47) }, \
1585 { "loc48", LOC_REG (48) }, \
1586 { "loc49", LOC_REG (49) }, \
1587 { "loc50", LOC_REG (50) }, \
1588 { "loc51", LOC_REG (51) }, \
1589 { "loc52", LOC_REG (52) }, \
1590 { "loc53", LOC_REG (53) }, \
1591 { "loc54", LOC_REG (54) }, \
1592 { "loc55", LOC_REG (55) }, \
1593 { "loc56", LOC_REG (56) }, \
1594 { "loc57", LOC_REG (57) }, \
1595 { "loc58", LOC_REG (58) }, \
1596 { "loc59", LOC_REG (59) }, \
1597 { "loc60", LOC_REG (60) }, \
1598 { "loc61", LOC_REG (61) }, \
1599 { "loc62", LOC_REG (62) }, \
1600 { "loc63", LOC_REG (63) }, \
1601 { "loc64", LOC_REG (64) }, \
1602 { "loc65", LOC_REG (65) }, \
1603 { "loc66", LOC_REG (66) }, \
1604 { "loc67", LOC_REG (67) }, \
1605 { "loc68", LOC_REG (68) }, \
1606 { "loc69", LOC_REG (69) }, \
1607 { "loc70", LOC_REG (70) }, \
1608 { "loc71", LOC_REG (71) }, \
1609 { "loc72", LOC_REG (72) }, \
1610 { "loc73", LOC_REG (73) }, \
1611 { "loc74", LOC_REG (74) }, \
1612 { "loc75", LOC_REG (75) }, \
1613 { "loc76", LOC_REG (76) }, \
1614 { "loc77", LOC_REG (77) }, \
1615 { "loc78", LOC_REG (78) }, \
1616 { "loc79", LOC_REG (79) }, \
1619 /* A C compound statement to output to stdio stream STREAM the assembler syntax
1620 for an instruction operand X. X is an RTL expression. */
1622 #define PRINT_OPERAND(STREAM, X, CODE) \
1623 ia64_print_operand (STREAM, X, CODE)
1625 /* A C expression which evaluates to true if CODE is a valid punctuation
1626 character for use in the `PRINT_OPERAND' macro. */
1628 /* ??? Keep this around for now, as we might need it later. */
1630 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1631 ((CODE) == '+' || (CODE) == ',')
1633 /* A C compound statement to output to stdio stream STREAM the assembler syntax
1634 for an instruction operand that is a memory reference whose address is X. X
1635 is an RTL expression. */
1637 #define PRINT_OPERAND_ADDRESS(STREAM, X) \
1638 ia64_print_operand_address (STREAM, X)
1640 /* If defined, C string expressions to be used for the `%R', `%L', `%U', and
1641 `%I' options of `asm_fprintf' (see `final.c'). */
1643 #define REGISTER_PREFIX ""
1644 #define LOCAL_LABEL_PREFIX "."
1645 #define USER_LABEL_PREFIX ""
1646 #define IMMEDIATE_PREFIX ""
1649 /* Output of dispatch tables. */
1651 /* This macro should be provided on machines where the addresses in a dispatch
1652 table are relative to the table's own address. */
1654 /* ??? Depends on the pointer size. */
1656 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
1657 do { \
1658 if (TARGET_ILP32) \
1659 fprintf (STREAM, "\tdata4 @pcrel(.L%d)\n", VALUE); \
1660 else \
1661 fprintf (STREAM, "\tdata8 @pcrel(.L%d)\n", VALUE); \
1662 } while (0)
1664 /* Jump tables only need 8 byte alignment. */
1666 #define ADDR_VEC_ALIGN(ADDR_VEC) 3
1669 /* Assembler Commands for Exception Regions. */
1671 /* Select a format to encode pointers in exception handling data. CODE
1672 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1673 true if the symbol may be affected by dynamic relocations. */
1674 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1675 (((CODE) == 1 ? DW_EH_PE_textrel : DW_EH_PE_datarel) \
1676 | ((GLOBAL) ? DW_EH_PE_indirect : 0) \
1677 | (TARGET_ILP32 ? DW_EH_PE_udata4 : DW_EH_PE_udata8))
1679 /* Handle special EH pointer encodings. Absolute, pc-relative, and
1680 indirect are handled automatically. */
1681 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
1682 do { \
1683 const char *reltag = NULL; \
1684 if (((ENCODING) & 0xF0) == DW_EH_PE_textrel) \
1685 reltag = "@segrel("; \
1686 else if (((ENCODING) & 0xF0) == DW_EH_PE_datarel) \
1687 reltag = "@gprel("; \
1688 if (reltag) \
1690 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1691 fputs (reltag, FILE); \
1692 assemble_name (FILE, XSTR (ADDR, 0)); \
1693 fputc (')', FILE); \
1694 goto DONE; \
1696 } while (0)
1699 /* Assembler Commands for Alignment. */
1701 /* ??? Investigate. */
1703 /* The alignment (log base 2) to put in front of LABEL, which follows
1704 a BARRIER. */
1706 /* #define LABEL_ALIGN_AFTER_BARRIER(LABEL) */
1708 /* The desired alignment for the location counter at the beginning
1709 of a loop. */
1711 /* #define LOOP_ALIGN(LABEL) */
1713 /* Define this macro if `ASM_OUTPUT_SKIP' should not be used in the text
1714 section because it fails put zeros in the bytes that are skipped. */
1716 #define ASM_NO_SKIP_IN_TEXT 1
1718 /* A C statement to output to the stdio stream STREAM an assembler command to
1719 advance the location counter to a multiple of 2 to the POWER bytes. */
1721 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
1722 fprintf (STREAM, "\t.align %d\n", 1<<(POWER))
1725 /* Macros Affecting all Debug Formats. */
1727 /* This is handled in svr4.h and sysv4.h. */
1730 /* Specific Options for DBX Output. */
1732 /* This is handled by dbxelf.h which is included by svr4.h. */
1735 /* Open ended Hooks for DBX Output. */
1737 /* Likewise. */
1740 /* File names in DBX format. */
1742 /* Likewise. */
1745 /* Macros for SDB and Dwarf Output. */
1747 /* Define this macro if GCC should produce dwarf version 2 format debugging
1748 output in response to the `-g' option. */
1750 #define DWARF2_DEBUGGING_INFO 1
1752 /* We do not want call-frame info to be output, since debuggers are
1753 supposed to use the target unwind info. Leave this undefined it
1754 TARGET_UNWIND_INFO might ever be false. */
1756 #define DWARF2_FRAME_INFO 0
1758 #define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DWARF2_ASM)
1760 /* Use tags for debug info labels, so that they don't break instruction
1761 bundles. This also avoids getting spurious DV warnings from the
1762 assembler. This is similar to (*targetm.asm_out.internal_label), except that we
1763 add brackets around the label. */
1765 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
1766 fprintf (FILE, TARGET_GNU_AS ? "[.%s%d:]\n" : ".%s%d:\n", PREFIX, NUM)
1768 /* Use section-relative relocations for debugging offsets. Unlike other
1769 targets that fake this by putting the section VMA at 0, IA-64 has
1770 proper relocations for them. */
1771 #define ASM_OUTPUT_DWARF_OFFSET(FILE, SIZE, LABEL, SECTION) \
1772 do { \
1773 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1774 fputs ("@secrel(", FILE); \
1775 assemble_name (FILE, LABEL); \
1776 fputc (')', FILE); \
1777 } while (0)
1779 /* Emit a PC-relative relocation. */
1780 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
1781 do { \
1782 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1783 fputs ("@pcrel(", FILE); \
1784 assemble_name (FILE, LABEL); \
1785 fputc (')', FILE); \
1786 } while (0)
1788 /* Register Renaming Parameters. */
1790 /* A C expression that is nonzero if hard register number REGNO2 can be
1791 considered for use as a rename register for REGNO1 */
1793 #define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
1794 ia64_hard_regno_rename_ok((REGNO1), (REGNO2))
1797 /* Miscellaneous Parameters. */
1799 /* Flag to mark data that is in the small address area (addressable
1800 via "addl", that is, within a 2MByte offset of 0. */
1801 #define SYMBOL_FLAG_SMALL_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
1802 #define SYMBOL_REF_SMALL_ADDR_P(X) \
1803 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SMALL_ADDR) != 0)
1805 /* An alias for a machine mode name. This is the machine mode that elements of
1806 a jump-table should have. */
1808 #define CASE_VECTOR_MODE ptr_mode
1810 /* Define as C expression which evaluates to nonzero if the tablejump
1811 instruction expects the table to contain offsets from the address of the
1812 table. */
1814 #define CASE_VECTOR_PC_RELATIVE 1
1816 /* Define this macro if operations between registers with integral mode smaller
1817 than a word are always performed on the entire register. */
1819 #define WORD_REGISTER_OPERATIONS
1821 /* Define this macro to be a C expression indicating when insns that read
1822 memory in MODE, an integral mode narrower than a word, set the bits outside
1823 of MODE to be either the sign-extension or the zero-extension of the data
1824 read. */
1826 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1828 /* The maximum number of bytes that a single instruction can move quickly from
1829 memory to memory. */
1830 #define MOVE_MAX 8
1832 /* A C expression which is nonzero if on this machine it is safe to "convert"
1833 an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
1834 than INPREC) by merely operating on it as if it had only OUTPREC bits. */
1836 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1838 /* A C expression describing the value returned by a comparison operator with
1839 an integral mode and stored by a store-flag instruction (`sCOND') when the
1840 condition is true. */
1842 /* ??? Investigate using STORE_FLAG_VALUE of -1 instead of 1. */
1844 /* An alias for the machine mode for pointers. */
1846 /* ??? This would change if we had ILP32 support. */
1848 #define Pmode DImode
1850 /* An alias for the machine mode used for memory references to functions being
1851 called, in `call' RTL expressions. */
1853 #define FUNCTION_MODE Pmode
1855 /* Define this macro to handle System V style pragmas: #pragma pack and
1856 #pragma weak. Note, #pragma weak will only be supported if SUPPORT_WEAK is
1857 defined. */
1859 #define HANDLE_SYSV_PRAGMA 1
1861 /* A C expression for the maximum number of instructions to execute via
1862 conditional execution instructions instead of a branch. A value of
1863 BRANCH_COST+1 is the default if the machine does not use
1864 cc0, and 1 if it does use cc0. */
1865 /* ??? Investigate. */
1866 #define MAX_CONDITIONAL_EXECUTE 12
1868 extern int ia64_final_schedule;
1870 #define TARGET_UNWIND_INFO 1
1872 #define TARGET_UNWIND_TABLES_DEFAULT true
1874 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 15 : INVALID_REGNUM)
1876 /* This function contains machine specific function data. */
1877 struct GTY(()) machine_function
1879 /* The new stack pointer when unwinding from EH. */
1880 rtx ia64_eh_epilogue_sp;
1882 /* The new bsp value when unwinding from EH. */
1883 rtx ia64_eh_epilogue_bsp;
1885 /* The GP value save register. */
1886 rtx ia64_gp_save;
1888 /* The number of varargs registers to save. */
1889 int n_varargs;
1891 /* The number of the next unwind state to copy. */
1892 int state_num;
1895 #define DONT_USE_BUILTIN_SETJMP
1897 /* Output any profiling code before the prologue. */
1899 #undef PROFILE_BEFORE_PROLOGUE
1900 #define PROFILE_BEFORE_PROLOGUE 1
1902 /* Initialize library function table. */
1903 #undef TARGET_INIT_LIBFUNCS
1904 #define TARGET_INIT_LIBFUNCS ia64_init_libfuncs
1907 /* Switch on code for querying unit reservations. */
1908 #define CPU_UNITS_QUERY 1
1910 /* Define this to change the optimizations performed by default. */
1911 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
1912 ia64_optimization_options ((LEVEL), (SIZE))
1914 /* End of ia64.h */