Merged trunk at revision 161680 into branch.
[official-gcc.git] / gcc / ada / sem_ch5.adb
blob816e12b979e7076cd6f3d70cdf77703c3a3ba067
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Einfo; use Einfo;
29 with Errout; use Errout;
30 with Expander; use Expander;
31 with Exp_Util; use Exp_Util;
32 with Freeze; use Freeze;
33 with Lib; use Lib;
34 with Lib.Xref; use Lib.Xref;
35 with Namet; use Namet;
36 with Nlists; use Nlists;
37 with Nmake; use Nmake;
38 with Opt; use Opt;
39 with Rtsfind; use Rtsfind;
40 with Sem; use Sem;
41 with Sem_Aux; use Sem_Aux;
42 with Sem_Case; use Sem_Case;
43 with Sem_Ch3; use Sem_Ch3;
44 with Sem_Ch8; use Sem_Ch8;
45 with Sem_Disp; use Sem_Disp;
46 with Sem_Elab; use Sem_Elab;
47 with Sem_Eval; use Sem_Eval;
48 with Sem_Res; use Sem_Res;
49 with Sem_Type; use Sem_Type;
50 with Sem_Util; use Sem_Util;
51 with Sem_Warn; use Sem_Warn;
52 with Snames; use Snames;
53 with Stand; use Stand;
54 with Sinfo; use Sinfo;
55 with Targparm; use Targparm;
56 with Tbuild; use Tbuild;
57 with Uintp; use Uintp;
59 package body Sem_Ch5 is
61 Unblocked_Exit_Count : Nat := 0;
62 -- This variable is used when processing if statements, case statements,
63 -- and block statements. It counts the number of exit points that are not
64 -- blocked by unconditional transfer instructions: for IF and CASE, these
65 -- are the branches of the conditional; for a block, they are the statement
66 -- sequence of the block, and the statement sequences of any exception
67 -- handlers that are part of the block. When processing is complete, if
68 -- this count is zero, it means that control cannot fall through the IF,
69 -- CASE or block statement. This is used for the generation of warning
70 -- messages. This variable is recursively saved on entry to processing the
71 -- construct, and restored on exit.
73 -----------------------
74 -- Local Subprograms --
75 -----------------------
77 procedure Analyze_Iteration_Scheme (N : Node_Id);
79 ------------------------
80 -- Analyze_Assignment --
81 ------------------------
83 procedure Analyze_Assignment (N : Node_Id) is
84 Lhs : constant Node_Id := Name (N);
85 Rhs : constant Node_Id := Expression (N);
86 T1 : Entity_Id;
87 T2 : Entity_Id;
88 Decl : Node_Id;
90 procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
91 -- N is the node for the left hand side of an assignment, and it is not
92 -- a variable. This routine issues an appropriate diagnostic.
94 procedure Kill_Lhs;
95 -- This is called to kill current value settings of a simple variable
96 -- on the left hand side. We call it if we find any error in analyzing
97 -- the assignment, and at the end of processing before setting any new
98 -- current values in place.
100 procedure Set_Assignment_Type
101 (Opnd : Node_Id;
102 Opnd_Type : in out Entity_Id);
103 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type
104 -- is the nominal subtype. This procedure is used to deal with cases
105 -- where the nominal subtype must be replaced by the actual subtype.
107 -------------------------------
108 -- Diagnose_Non_Variable_Lhs --
109 -------------------------------
111 procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
112 begin
113 -- Not worth posting another error if left hand side already
114 -- flagged as being illegal in some respect.
116 if Error_Posted (N) then
117 return;
119 -- Some special bad cases of entity names
121 elsif Is_Entity_Name (N) then
122 declare
123 Ent : constant Entity_Id := Entity (N);
125 begin
126 if Ekind (Ent) = E_In_Parameter then
127 Error_Msg_N
128 ("assignment to IN mode parameter not allowed", N);
130 -- Renamings of protected private components are turned into
131 -- constants when compiling a protected function. In the case
132 -- of single protected types, the private component appears
133 -- directly.
135 elsif (Is_Prival (Ent)
136 and then
137 (Ekind (Current_Scope) = E_Function
138 or else Ekind (Enclosing_Dynamic_Scope (
139 Current_Scope)) = E_Function))
140 or else
141 (Ekind (Ent) = E_Component
142 and then Is_Protected_Type (Scope (Ent)))
143 then
144 Error_Msg_N
145 ("protected function cannot modify protected object", N);
147 elsif Ekind (Ent) = E_Loop_Parameter then
148 Error_Msg_N
149 ("assignment to loop parameter not allowed", N);
151 else
152 Error_Msg_N
153 ("left hand side of assignment must be a variable", N);
154 end if;
155 end;
157 -- For indexed components or selected components, test prefix
159 elsif Nkind (N) = N_Indexed_Component then
160 Diagnose_Non_Variable_Lhs (Prefix (N));
162 -- Another special case for assignment to discriminant
164 elsif Nkind (N) = N_Selected_Component then
165 if Present (Entity (Selector_Name (N)))
166 and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
167 then
168 Error_Msg_N
169 ("assignment to discriminant not allowed", N);
170 else
171 Diagnose_Non_Variable_Lhs (Prefix (N));
172 end if;
174 else
175 -- If we fall through, we have no special message to issue!
177 Error_Msg_N ("left hand side of assignment must be a variable", N);
178 end if;
179 end Diagnose_Non_Variable_Lhs;
181 --------------
182 -- Kill_LHS --
183 --------------
185 procedure Kill_Lhs is
186 begin
187 if Is_Entity_Name (Lhs) then
188 declare
189 Ent : constant Entity_Id := Entity (Lhs);
190 begin
191 if Present (Ent) then
192 Kill_Current_Values (Ent);
193 end if;
194 end;
195 end if;
196 end Kill_Lhs;
198 -------------------------
199 -- Set_Assignment_Type --
200 -------------------------
202 procedure Set_Assignment_Type
203 (Opnd : Node_Id;
204 Opnd_Type : in out Entity_Id)
206 begin
207 Require_Entity (Opnd);
209 -- If the assignment operand is an in-out or out parameter, then we
210 -- get the actual subtype (needed for the unconstrained case).
211 -- If the operand is the actual in an entry declaration, then within
212 -- the accept statement it is replaced with a local renaming, which
213 -- may also have an actual subtype.
215 if Is_Entity_Name (Opnd)
216 and then (Ekind (Entity (Opnd)) = E_Out_Parameter
217 or else Ekind (Entity (Opnd)) =
218 E_In_Out_Parameter
219 or else Ekind (Entity (Opnd)) =
220 E_Generic_In_Out_Parameter
221 or else
222 (Ekind (Entity (Opnd)) = E_Variable
223 and then Nkind (Parent (Entity (Opnd))) =
224 N_Object_Renaming_Declaration
225 and then Nkind (Parent (Parent (Entity (Opnd)))) =
226 N_Accept_Statement))
227 then
228 Opnd_Type := Get_Actual_Subtype (Opnd);
230 -- If assignment operand is a component reference, then we get the
231 -- actual subtype of the component for the unconstrained case.
233 elsif Nkind_In (Opnd, N_Selected_Component, N_Explicit_Dereference)
234 and then not Is_Unchecked_Union (Opnd_Type)
235 then
236 Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
238 if Present (Decl) then
239 Insert_Action (N, Decl);
240 Mark_Rewrite_Insertion (Decl);
241 Analyze (Decl);
242 Opnd_Type := Defining_Identifier (Decl);
243 Set_Etype (Opnd, Opnd_Type);
244 Freeze_Itype (Opnd_Type, N);
246 elsif Is_Constrained (Etype (Opnd)) then
247 Opnd_Type := Etype (Opnd);
248 end if;
250 -- For slice, use the constrained subtype created for the slice
252 elsif Nkind (Opnd) = N_Slice then
253 Opnd_Type := Etype (Opnd);
254 end if;
255 end Set_Assignment_Type;
257 -- Start of processing for Analyze_Assignment
259 begin
260 Mark_Coextensions (N, Rhs);
262 Analyze (Rhs);
263 Analyze (Lhs);
265 -- Start type analysis for assignment
267 T1 := Etype (Lhs);
269 -- In the most general case, both Lhs and Rhs can be overloaded, and we
270 -- must compute the intersection of the possible types on each side.
272 if Is_Overloaded (Lhs) then
273 declare
274 I : Interp_Index;
275 It : Interp;
277 begin
278 T1 := Any_Type;
279 Get_First_Interp (Lhs, I, It);
281 while Present (It.Typ) loop
282 if Has_Compatible_Type (Rhs, It.Typ) then
283 if T1 /= Any_Type then
285 -- An explicit dereference is overloaded if the prefix
286 -- is. Try to remove the ambiguity on the prefix, the
287 -- error will be posted there if the ambiguity is real.
289 if Nkind (Lhs) = N_Explicit_Dereference then
290 declare
291 PI : Interp_Index;
292 PI1 : Interp_Index := 0;
293 PIt : Interp;
294 Found : Boolean;
296 begin
297 Found := False;
298 Get_First_Interp (Prefix (Lhs), PI, PIt);
300 while Present (PIt.Typ) loop
301 if Is_Access_Type (PIt.Typ)
302 and then Has_Compatible_Type
303 (Rhs, Designated_Type (PIt.Typ))
304 then
305 if Found then
306 PIt :=
307 Disambiguate (Prefix (Lhs),
308 PI1, PI, Any_Type);
310 if PIt = No_Interp then
311 Error_Msg_N
312 ("ambiguous left-hand side"
313 & " in assignment", Lhs);
314 exit;
315 else
316 Resolve (Prefix (Lhs), PIt.Typ);
317 end if;
319 exit;
320 else
321 Found := True;
322 PI1 := PI;
323 end if;
324 end if;
326 Get_Next_Interp (PI, PIt);
327 end loop;
328 end;
330 else
331 Error_Msg_N
332 ("ambiguous left-hand side in assignment", Lhs);
333 exit;
334 end if;
335 else
336 T1 := It.Typ;
337 end if;
338 end if;
340 Get_Next_Interp (I, It);
341 end loop;
342 end;
344 if T1 = Any_Type then
345 Error_Msg_N
346 ("no valid types for left-hand side for assignment", Lhs);
347 Kill_Lhs;
348 return;
349 end if;
350 end if;
352 -- The resulting assignment type is T1, so now we will resolve the
353 -- left hand side of the assignment using this determined type.
355 Resolve (Lhs, T1);
357 -- Cases where Lhs is not a variable
359 if not Is_Variable (Lhs) then
361 -- Ada 2005 (AI-327): Check assignment to the attribute Priority of
362 -- a protected object.
364 declare
365 Ent : Entity_Id;
366 S : Entity_Id;
368 begin
369 if Ada_Version >= Ada_05 then
371 -- Handle chains of renamings
373 Ent := Lhs;
374 while Nkind (Ent) in N_Has_Entity
375 and then Present (Entity (Ent))
376 and then Present (Renamed_Object (Entity (Ent)))
377 loop
378 Ent := Renamed_Object (Entity (Ent));
379 end loop;
381 if (Nkind (Ent) = N_Attribute_Reference
382 and then Attribute_Name (Ent) = Name_Priority)
384 -- Renamings of the attribute Priority applied to protected
385 -- objects have been previously expanded into calls to the
386 -- Get_Ceiling run-time subprogram.
388 or else
389 (Nkind (Ent) = N_Function_Call
390 and then (Entity (Name (Ent)) = RTE (RE_Get_Ceiling)
391 or else
392 Entity (Name (Ent)) = RTE (RO_PE_Get_Ceiling)))
393 then
394 -- The enclosing subprogram cannot be a protected function
396 S := Current_Scope;
397 while not (Is_Subprogram (S)
398 and then Convention (S) = Convention_Protected)
399 and then S /= Standard_Standard
400 loop
401 S := Scope (S);
402 end loop;
404 if Ekind (S) = E_Function
405 and then Convention (S) = Convention_Protected
406 then
407 Error_Msg_N
408 ("protected function cannot modify protected object",
409 Lhs);
410 end if;
412 -- Changes of the ceiling priority of the protected object
413 -- are only effective if the Ceiling_Locking policy is in
414 -- effect (AARM D.5.2 (5/2)).
416 if Locking_Policy /= 'C' then
417 Error_Msg_N ("assignment to the attribute PRIORITY has " &
418 "no effect?", Lhs);
419 Error_Msg_N ("\since no Locking_Policy has been " &
420 "specified", Lhs);
421 end if;
423 return;
424 end if;
425 end if;
426 end;
428 Diagnose_Non_Variable_Lhs (Lhs);
429 return;
431 -- Error of assigning to limited type. We do however allow this in
432 -- certain cases where the front end generates the assignments.
434 elsif Is_Limited_Type (T1)
435 and then not Assignment_OK (Lhs)
436 and then not Assignment_OK (Original_Node (Lhs))
437 and then not Is_Value_Type (T1)
438 then
439 -- CPP constructors can only be called in declarations
441 if Is_CPP_Constructor_Call (Rhs) then
442 Error_Msg_N ("invalid use of 'C'P'P constructor", Rhs);
443 else
444 Error_Msg_N
445 ("left hand of assignment must not be limited type", Lhs);
446 Explain_Limited_Type (T1, Lhs);
447 end if;
448 return;
450 -- Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
451 -- abstract. This is only checked when the assignment Comes_From_Source,
452 -- because in some cases the expander generates such assignments (such
453 -- in the _assign operation for an abstract type).
455 elsif Is_Abstract_Type (T1) and then Comes_From_Source (N) then
456 Error_Msg_N
457 ("target of assignment operation must not be abstract", Lhs);
458 end if;
460 -- Resolution may have updated the subtype, in case the left-hand
461 -- side is a private protected component. Use the correct subtype
462 -- to avoid scoping issues in the back-end.
464 T1 := Etype (Lhs);
466 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
467 -- type. For example:
469 -- limited with P;
470 -- package Pkg is
471 -- type Acc is access P.T;
472 -- end Pkg;
474 -- with Pkg; use Acc;
475 -- procedure Example is
476 -- A, B : Acc;
477 -- begin
478 -- A.all := B.all; -- ERROR
479 -- end Example;
481 if Nkind (Lhs) = N_Explicit_Dereference
482 and then Ekind (T1) = E_Incomplete_Type
483 then
484 Error_Msg_N ("invalid use of incomplete type", Lhs);
485 Kill_Lhs;
486 return;
487 end if;
489 -- Now we can complete the resolution of the right hand side
491 Set_Assignment_Type (Lhs, T1);
492 Resolve (Rhs, T1);
494 -- This is the point at which we check for an unset reference
496 Check_Unset_Reference (Rhs);
497 Check_Unprotected_Access (Lhs, Rhs);
499 -- Remaining steps are skipped if Rhs was syntactically in error
501 if Rhs = Error then
502 Kill_Lhs;
503 return;
504 end if;
506 T2 := Etype (Rhs);
508 if not Covers (T1, T2) then
509 Wrong_Type (Rhs, Etype (Lhs));
510 Kill_Lhs;
511 return;
512 end if;
514 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
515 -- types, use the non-limited view if available
517 if Nkind (Rhs) = N_Explicit_Dereference
518 and then Ekind (T2) = E_Incomplete_Type
519 and then Is_Tagged_Type (T2)
520 and then Present (Non_Limited_View (T2))
521 then
522 T2 := Non_Limited_View (T2);
523 end if;
525 Set_Assignment_Type (Rhs, T2);
527 if Total_Errors_Detected /= 0 then
528 if No (T1) then
529 T1 := Any_Type;
530 end if;
532 if No (T2) then
533 T2 := Any_Type;
534 end if;
535 end if;
537 if T1 = Any_Type or else T2 = Any_Type then
538 Kill_Lhs;
539 return;
540 end if;
542 -- If the rhs is class-wide or dynamically tagged, then require the lhs
543 -- to be class-wide. The case where the rhs is a dynamically tagged call
544 -- to a dispatching operation with a controlling access result is
545 -- excluded from this check, since the target has an access type (and
546 -- no tag propagation occurs in that case).
548 if (Is_Class_Wide_Type (T2)
549 or else (Is_Dynamically_Tagged (Rhs)
550 and then not Is_Access_Type (T1)))
551 and then not Is_Class_Wide_Type (T1)
552 then
553 Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
555 elsif Is_Class_Wide_Type (T1)
556 and then not Is_Class_Wide_Type (T2)
557 and then not Is_Tag_Indeterminate (Rhs)
558 and then not Is_Dynamically_Tagged (Rhs)
559 then
560 Error_Msg_N ("dynamically tagged expression required!", Rhs);
561 end if;
563 -- Propagate the tag from a class-wide target to the rhs when the rhs
564 -- is a tag-indeterminate call.
566 if Is_Tag_Indeterminate (Rhs) then
567 if Is_Class_Wide_Type (T1) then
568 Propagate_Tag (Lhs, Rhs);
570 elsif Nkind (Rhs) = N_Function_Call
571 and then Is_Entity_Name (Name (Rhs))
572 and then Is_Abstract_Subprogram (Entity (Name (Rhs)))
573 then
574 Error_Msg_N
575 ("call to abstract function must be dispatching", Name (Rhs));
577 elsif Nkind (Rhs) = N_Qualified_Expression
578 and then Nkind (Expression (Rhs)) = N_Function_Call
579 and then Is_Entity_Name (Name (Expression (Rhs)))
580 and then
581 Is_Abstract_Subprogram (Entity (Name (Expression (Rhs))))
582 then
583 Error_Msg_N
584 ("call to abstract function must be dispatching",
585 Name (Expression (Rhs)));
586 end if;
587 end if;
589 -- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
590 -- apply an implicit conversion of the rhs to that type to force
591 -- appropriate static and run-time accessibility checks. This applies
592 -- as well to anonymous access-to-subprogram types that are component
593 -- subtypes or formal parameters.
595 if Ada_Version >= Ada_05
596 and then Is_Access_Type (T1)
597 then
598 if Is_Local_Anonymous_Access (T1)
599 or else Ekind (T2) = E_Anonymous_Access_Subprogram_Type
600 then
601 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
602 Analyze_And_Resolve (Rhs, T1);
603 end if;
604 end if;
606 -- Ada 2005 (AI-231): Assignment to not null variable
608 if Ada_Version >= Ada_05
609 and then Can_Never_Be_Null (T1)
610 and then not Assignment_OK (Lhs)
611 then
612 -- Case where we know the right hand side is null
614 if Known_Null (Rhs) then
615 Apply_Compile_Time_Constraint_Error
616 (N => Rhs,
617 Msg => "(Ada 2005) null not allowed in null-excluding objects?",
618 Reason => CE_Null_Not_Allowed);
620 -- We still mark this as a possible modification, that's necessary
621 -- to reset Is_True_Constant, and desirable for xref purposes.
623 Note_Possible_Modification (Lhs, Sure => True);
624 return;
626 -- If we know the right hand side is non-null, then we convert to the
627 -- target type, since we don't need a run time check in that case.
629 elsif not Can_Never_Be_Null (T2) then
630 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
631 Analyze_And_Resolve (Rhs, T1);
632 end if;
633 end if;
635 if Is_Scalar_Type (T1) then
636 Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
638 -- For array types, verify that lengths match. If the right hand side
639 -- if a function call that has been inlined, the assignment has been
640 -- rewritten as a block, and the constraint check will be applied to the
641 -- assignment within the block.
643 elsif Is_Array_Type (T1)
644 and then
645 (Nkind (Rhs) /= N_Type_Conversion
646 or else Is_Constrained (Etype (Rhs)))
647 and then
648 (Nkind (Rhs) /= N_Function_Call
649 or else Nkind (N) /= N_Block_Statement)
650 then
651 -- Assignment verifies that the length of the Lsh and Rhs are equal,
652 -- but of course the indices do not have to match. If the right-hand
653 -- side is a type conversion to an unconstrained type, a length check
654 -- is performed on the expression itself during expansion. In rare
655 -- cases, the redundant length check is computed on an index type
656 -- with a different representation, triggering incorrect code in
657 -- the back end.
659 Apply_Length_Check (Rhs, Etype (Lhs));
661 else
662 -- Discriminant checks are applied in the course of expansion
664 null;
665 end if;
667 -- Note: modifications of the Lhs may only be recorded after
668 -- checks have been applied.
670 Note_Possible_Modification (Lhs, Sure => True);
672 -- ??? a real accessibility check is needed when ???
674 -- Post warning for redundant assignment or variable to itself
676 if Warn_On_Redundant_Constructs
678 -- We only warn for source constructs
680 and then Comes_From_Source (N)
682 -- Where the object is the same on both sides
684 and then Same_Object (Lhs, Original_Node (Rhs))
686 -- But exclude the case where the right side was an operation
687 -- that got rewritten (e.g. JUNK + K, where K was known to be
688 -- zero). We don't want to warn in such a case, since it is
689 -- reasonable to write such expressions especially when K is
690 -- defined symbolically in some other package.
692 and then Nkind (Original_Node (Rhs)) not in N_Op
693 then
694 if Nkind (Lhs) in N_Has_Entity then
695 Error_Msg_NE -- CODEFIX
696 ("?useless assignment of & to itself!", N, Entity (Lhs));
697 else
698 Error_Msg_N -- CODEFIX
699 ("?useless assignment of object to itself!", N);
700 end if;
701 end if;
703 -- Check for non-allowed composite assignment
705 if not Support_Composite_Assign_On_Target
706 and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
707 and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
708 then
709 Error_Msg_CRT ("composite assignment", N);
710 end if;
712 -- Check elaboration warning for left side if not in elab code
714 if not In_Subprogram_Or_Concurrent_Unit then
715 Check_Elab_Assign (Lhs);
716 end if;
718 -- Set Referenced_As_LHS if appropriate. We only set this flag if the
719 -- assignment is a source assignment in the extended main source unit.
720 -- We are not interested in any reference information outside this
721 -- context, or in compiler generated assignment statements.
723 if Comes_From_Source (N)
724 and then In_Extended_Main_Source_Unit (Lhs)
725 then
726 Set_Referenced_Modified (Lhs, Out_Param => False);
727 end if;
729 -- Final step. If left side is an entity, then we may be able to
730 -- reset the current tracked values to new safe values. We only have
731 -- something to do if the left side is an entity name, and expansion
732 -- has not modified the node into something other than an assignment,
733 -- and of course we only capture values if it is safe to do so.
735 if Is_Entity_Name (Lhs)
736 and then Nkind (N) = N_Assignment_Statement
737 then
738 declare
739 Ent : constant Entity_Id := Entity (Lhs);
741 begin
742 if Safe_To_Capture_Value (N, Ent) then
744 -- If simple variable on left side, warn if this assignment
745 -- blots out another one (rendering it useless) and note
746 -- location of assignment in case no one references value.
747 -- We only do this for source assignments, otherwise we can
748 -- generate bogus warnings when an assignment is rewritten as
749 -- another assignment, and gets tied up with itself.
751 -- Note: we don't use Record_Last_Assignment here, because we
752 -- have lots of other stuff to do under control of this test.
754 if Warn_On_Modified_Unread
755 and then Is_Assignable (Ent)
756 and then Comes_From_Source (N)
757 and then In_Extended_Main_Source_Unit (Ent)
758 then
759 Warn_On_Useless_Assignment (Ent, N);
760 Set_Last_Assignment (Ent, Lhs);
761 end if;
763 -- If we are assigning an access type and the left side is an
764 -- entity, then make sure that the Is_Known_[Non_]Null flags
765 -- properly reflect the state of the entity after assignment.
767 if Is_Access_Type (T1) then
768 if Known_Non_Null (Rhs) then
769 Set_Is_Known_Non_Null (Ent, True);
771 elsif Known_Null (Rhs)
772 and then not Can_Never_Be_Null (Ent)
773 then
774 Set_Is_Known_Null (Ent, True);
776 else
777 Set_Is_Known_Null (Ent, False);
779 if not Can_Never_Be_Null (Ent) then
780 Set_Is_Known_Non_Null (Ent, False);
781 end if;
782 end if;
784 -- For discrete types, we may be able to set the current value
785 -- if the value is known at compile time.
787 elsif Is_Discrete_Type (T1)
788 and then Compile_Time_Known_Value (Rhs)
789 then
790 Set_Current_Value (Ent, Rhs);
791 else
792 Set_Current_Value (Ent, Empty);
793 end if;
795 -- If not safe to capture values, kill them
797 else
798 Kill_Lhs;
799 end if;
800 end;
801 end if;
802 end Analyze_Assignment;
804 -----------------------------
805 -- Analyze_Block_Statement --
806 -----------------------------
808 procedure Analyze_Block_Statement (N : Node_Id) is
809 Decls : constant List_Id := Declarations (N);
810 Id : constant Node_Id := Identifier (N);
811 HSS : constant Node_Id := Handled_Statement_Sequence (N);
813 begin
814 -- If no handled statement sequence is present, things are really
815 -- messed up, and we just return immediately (this is a defence
816 -- against previous errors).
818 if No (HSS) then
819 return;
820 end if;
822 -- Normal processing with HSS present
824 declare
825 EH : constant List_Id := Exception_Handlers (HSS);
826 Ent : Entity_Id := Empty;
827 S : Entity_Id;
829 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
830 -- Recursively save value of this global, will be restored on exit
832 begin
833 -- Initialize unblocked exit count for statements of begin block
834 -- plus one for each exception handler that is present.
836 Unblocked_Exit_Count := 1;
838 if Present (EH) then
839 Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
840 end if;
842 -- If a label is present analyze it and mark it as referenced
844 if Present (Id) then
845 Analyze (Id);
846 Ent := Entity (Id);
848 -- An error defense. If we have an identifier, but no entity,
849 -- then something is wrong. If we have previous errors, then
850 -- just remove the identifier and continue, otherwise raise
851 -- an exception.
853 if No (Ent) then
854 if Total_Errors_Detected /= 0 then
855 Set_Identifier (N, Empty);
856 else
857 raise Program_Error;
858 end if;
860 else
861 Set_Ekind (Ent, E_Block);
862 Generate_Reference (Ent, N, ' ');
863 Generate_Definition (Ent);
865 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
866 Set_Label_Construct (Parent (Ent), N);
867 end if;
868 end if;
869 end if;
871 -- If no entity set, create a label entity
873 if No (Ent) then
874 Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
875 Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
876 Set_Parent (Ent, N);
877 end if;
879 Set_Etype (Ent, Standard_Void_Type);
880 Set_Block_Node (Ent, Identifier (N));
881 Push_Scope (Ent);
883 if Present (Decls) then
884 Analyze_Declarations (Decls);
885 Check_Completion;
886 Inspect_Deferred_Constant_Completion (Decls);
887 end if;
889 Analyze (HSS);
890 Process_End_Label (HSS, 'e', Ent);
892 -- If exception handlers are present, then we indicate that
893 -- enclosing scopes contain a block with handlers. We only
894 -- need to mark non-generic scopes.
896 if Present (EH) then
897 S := Scope (Ent);
898 loop
899 Set_Has_Nested_Block_With_Handler (S);
900 exit when Is_Overloadable (S)
901 or else Ekind (S) = E_Package
902 or else Is_Generic_Unit (S);
903 S := Scope (S);
904 end loop;
905 end if;
907 Check_References (Ent);
908 Warn_On_Useless_Assignments (Ent);
909 End_Scope;
911 if Unblocked_Exit_Count = 0 then
912 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
913 Check_Unreachable_Code (N);
914 else
915 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
916 end if;
917 end;
918 end Analyze_Block_Statement;
920 ----------------------------
921 -- Analyze_Case_Statement --
922 ----------------------------
924 procedure Analyze_Case_Statement (N : Node_Id) is
925 Exp : Node_Id;
926 Exp_Type : Entity_Id;
927 Exp_Btype : Entity_Id;
928 Last_Choice : Nat;
929 Dont_Care : Boolean;
930 Others_Present : Boolean;
932 pragma Warnings (Off, Last_Choice);
933 pragma Warnings (Off, Dont_Care);
934 -- Don't care about assigned values
936 Statements_Analyzed : Boolean := False;
937 -- Set True if at least some statement sequences get analyzed.
938 -- If False on exit, means we had a serious error that prevented
939 -- full analysis of the case statement, and as a result it is not
940 -- a good idea to output warning messages about unreachable code.
942 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
943 -- Recursively save value of this global, will be restored on exit
945 procedure Non_Static_Choice_Error (Choice : Node_Id);
946 -- Error routine invoked by the generic instantiation below when
947 -- the case statement has a non static choice.
949 procedure Process_Statements (Alternative : Node_Id);
950 -- Analyzes all the statements associated with a case alternative.
951 -- Needed by the generic instantiation below.
953 package Case_Choices_Processing is new
954 Generic_Choices_Processing
955 (Get_Alternatives => Alternatives,
956 Get_Choices => Discrete_Choices,
957 Process_Empty_Choice => No_OP,
958 Process_Non_Static_Choice => Non_Static_Choice_Error,
959 Process_Associated_Node => Process_Statements);
960 use Case_Choices_Processing;
961 -- Instantiation of the generic choice processing package
963 -----------------------------
964 -- Non_Static_Choice_Error --
965 -----------------------------
967 procedure Non_Static_Choice_Error (Choice : Node_Id) is
968 begin
969 Flag_Non_Static_Expr
970 ("choice given in case statement is not static!", Choice);
971 end Non_Static_Choice_Error;
973 ------------------------
974 -- Process_Statements --
975 ------------------------
977 procedure Process_Statements (Alternative : Node_Id) is
978 Choices : constant List_Id := Discrete_Choices (Alternative);
979 Ent : Entity_Id;
981 begin
982 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
983 Statements_Analyzed := True;
985 -- An interesting optimization. If the case statement expression
986 -- is a simple entity, then we can set the current value within
987 -- an alternative if the alternative has one possible value.
989 -- case N is
990 -- when 1 => alpha
991 -- when 2 | 3 => beta
992 -- when others => gamma
994 -- Here we know that N is initially 1 within alpha, but for beta
995 -- and gamma, we do not know anything more about the initial value.
997 if Is_Entity_Name (Exp) then
998 Ent := Entity (Exp);
1000 if Ekind_In (Ent, E_Variable,
1001 E_In_Out_Parameter,
1002 E_Out_Parameter)
1003 then
1004 if List_Length (Choices) = 1
1005 and then Nkind (First (Choices)) in N_Subexpr
1006 and then Compile_Time_Known_Value (First (Choices))
1007 then
1008 Set_Current_Value (Entity (Exp), First (Choices));
1009 end if;
1011 Analyze_Statements (Statements (Alternative));
1013 -- After analyzing the case, set the current value to empty
1014 -- since we won't know what it is for the next alternative
1015 -- (unless reset by this same circuit), or after the case.
1017 Set_Current_Value (Entity (Exp), Empty);
1018 return;
1019 end if;
1020 end if;
1022 -- Case where expression is not an entity name of a variable
1024 Analyze_Statements (Statements (Alternative));
1025 end Process_Statements;
1027 -- Table to record choices. Put after subprograms since we make
1028 -- a call to Number_Of_Choices to get the right number of entries.
1030 Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N));
1031 pragma Warnings (Off, Case_Table);
1033 -- Start of processing for Analyze_Case_Statement
1035 begin
1036 Unblocked_Exit_Count := 0;
1037 Exp := Expression (N);
1038 Analyze (Exp);
1040 -- The expression must be of any discrete type. In rare cases, the
1041 -- expander constructs a case statement whose expression has a private
1042 -- type whose full view is discrete. This can happen when generating
1043 -- a stream operation for a variant type after the type is frozen,
1044 -- when the partial of view of the type of the discriminant is private.
1045 -- In that case, use the full view to analyze case alternatives.
1047 if not Is_Overloaded (Exp)
1048 and then not Comes_From_Source (N)
1049 and then Is_Private_Type (Etype (Exp))
1050 and then Present (Full_View (Etype (Exp)))
1051 and then Is_Discrete_Type (Full_View (Etype (Exp)))
1052 then
1053 Resolve (Exp, Etype (Exp));
1054 Exp_Type := Full_View (Etype (Exp));
1056 else
1057 Analyze_And_Resolve (Exp, Any_Discrete);
1058 Exp_Type := Etype (Exp);
1059 end if;
1061 Check_Unset_Reference (Exp);
1062 Exp_Btype := Base_Type (Exp_Type);
1064 -- The expression must be of a discrete type which must be determinable
1065 -- independently of the context in which the expression occurs, but
1066 -- using the fact that the expression must be of a discrete type.
1067 -- Moreover, the type this expression must not be a character literal
1068 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
1070 -- If error already reported by Resolve, nothing more to do
1072 if Exp_Btype = Any_Discrete
1073 or else Exp_Btype = Any_Type
1074 then
1075 return;
1077 elsif Exp_Btype = Any_Character then
1078 Error_Msg_N
1079 ("character literal as case expression is ambiguous", Exp);
1080 return;
1082 elsif Ada_Version = Ada_83
1083 and then (Is_Generic_Type (Exp_Btype)
1084 or else Is_Generic_Type (Root_Type (Exp_Btype)))
1085 then
1086 Error_Msg_N
1087 ("(Ada 83) case expression cannot be of a generic type", Exp);
1088 return;
1089 end if;
1091 -- If the case expression is a formal object of mode in out, then
1092 -- treat it as having a nonstatic subtype by forcing use of the base
1093 -- type (which has to get passed to Check_Case_Choices below). Also
1094 -- use base type when the case expression is parenthesized.
1096 if Paren_Count (Exp) > 0
1097 or else (Is_Entity_Name (Exp)
1098 and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
1099 then
1100 Exp_Type := Exp_Btype;
1101 end if;
1103 -- Call instantiated Analyze_Choices which does the rest of the work
1105 Analyze_Choices
1106 (N, Exp_Type, Case_Table, Last_Choice, Dont_Care, Others_Present);
1108 if Exp_Type = Universal_Integer and then not Others_Present then
1109 Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
1110 end if;
1112 -- If all our exits were blocked by unconditional transfers of control,
1113 -- then the entire CASE statement acts as an unconditional transfer of
1114 -- control, so treat it like one, and check unreachable code. Skip this
1115 -- test if we had serious errors preventing any statement analysis.
1117 if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
1118 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1119 Check_Unreachable_Code (N);
1120 else
1121 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1122 end if;
1124 if not Expander_Active
1125 and then Compile_Time_Known_Value (Expression (N))
1126 and then Serious_Errors_Detected = 0
1127 then
1128 declare
1129 Chosen : constant Node_Id := Find_Static_Alternative (N);
1130 Alt : Node_Id;
1132 begin
1133 Alt := First (Alternatives (N));
1134 while Present (Alt) loop
1135 if Alt /= Chosen then
1136 Remove_Warning_Messages (Statements (Alt));
1137 end if;
1139 Next (Alt);
1140 end loop;
1141 end;
1142 end if;
1143 end Analyze_Case_Statement;
1145 ----------------------------
1146 -- Analyze_Exit_Statement --
1147 ----------------------------
1149 -- If the exit includes a name, it must be the name of a currently open
1150 -- loop. Otherwise there must be an innermost open loop on the stack,
1151 -- to which the statement implicitly refers.
1153 procedure Analyze_Exit_Statement (N : Node_Id) is
1154 Target : constant Node_Id := Name (N);
1155 Cond : constant Node_Id := Condition (N);
1156 Scope_Id : Entity_Id;
1157 U_Name : Entity_Id;
1158 Kind : Entity_Kind;
1160 begin
1161 if No (Cond) then
1162 Check_Unreachable_Code (N);
1163 end if;
1165 if Present (Target) then
1166 Analyze (Target);
1167 U_Name := Entity (Target);
1169 if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
1170 Error_Msg_N ("invalid loop name in exit statement", N);
1171 return;
1172 else
1173 Set_Has_Exit (U_Name);
1174 end if;
1176 else
1177 U_Name := Empty;
1178 end if;
1180 for J in reverse 0 .. Scope_Stack.Last loop
1181 Scope_Id := Scope_Stack.Table (J).Entity;
1182 Kind := Ekind (Scope_Id);
1184 if Kind = E_Loop
1185 and then (No (Target) or else Scope_Id = U_Name) then
1186 Set_Has_Exit (Scope_Id);
1187 exit;
1189 elsif Kind = E_Block
1190 or else Kind = E_Loop
1191 or else Kind = E_Return_Statement
1192 then
1193 null;
1195 else
1196 Error_Msg_N
1197 ("cannot exit from program unit or accept statement", N);
1198 return;
1199 end if;
1200 end loop;
1202 -- Verify that if present the condition is a Boolean expression
1204 if Present (Cond) then
1205 Analyze_And_Resolve (Cond, Any_Boolean);
1206 Check_Unset_Reference (Cond);
1207 end if;
1209 -- Chain exit statement to associated loop entity
1211 Set_Next_Exit_Statement (N, First_Exit_Statement (Scope_Id));
1212 Set_First_Exit_Statement (Scope_Id, N);
1214 -- Since the exit may take us out of a loop, any previous assignment
1215 -- statement is not useless, so clear last assignment indications. It
1216 -- is OK to keep other current values, since if the exit statement
1217 -- does not exit, then the current values are still valid.
1219 Kill_Current_Values (Last_Assignment_Only => True);
1220 end Analyze_Exit_Statement;
1222 ----------------------------
1223 -- Analyze_Goto_Statement --
1224 ----------------------------
1226 procedure Analyze_Goto_Statement (N : Node_Id) is
1227 Label : constant Node_Id := Name (N);
1228 Scope_Id : Entity_Id;
1229 Label_Scope : Entity_Id;
1230 Label_Ent : Entity_Id;
1232 begin
1233 Check_Unreachable_Code (N);
1234 Kill_Current_Values (Last_Assignment_Only => True);
1236 Analyze (Label);
1237 Label_Ent := Entity (Label);
1239 -- Ignore previous error
1241 if Label_Ent = Any_Id then
1242 return;
1244 -- We just have a label as the target of a goto
1246 elsif Ekind (Label_Ent) /= E_Label then
1247 Error_Msg_N ("target of goto statement must be a label", Label);
1248 return;
1250 -- Check that the target of the goto is reachable according to Ada
1251 -- scoping rules. Note: the special gotos we generate for optimizing
1252 -- local handling of exceptions would violate these rules, but we mark
1253 -- such gotos as analyzed when built, so this code is never entered.
1255 elsif not Reachable (Label_Ent) then
1256 Error_Msg_N ("target of goto statement is not reachable", Label);
1257 return;
1258 end if;
1260 -- Here if goto passes initial validity checks
1262 Label_Scope := Enclosing_Scope (Label_Ent);
1264 for J in reverse 0 .. Scope_Stack.Last loop
1265 Scope_Id := Scope_Stack.Table (J).Entity;
1267 if Label_Scope = Scope_Id
1268 or else (Ekind (Scope_Id) /= E_Block
1269 and then Ekind (Scope_Id) /= E_Loop
1270 and then Ekind (Scope_Id) /= E_Return_Statement)
1271 then
1272 if Scope_Id /= Label_Scope then
1273 Error_Msg_N
1274 ("cannot exit from program unit or accept statement", N);
1275 end if;
1277 return;
1278 end if;
1279 end loop;
1281 raise Program_Error;
1282 end Analyze_Goto_Statement;
1284 --------------------------
1285 -- Analyze_If_Statement --
1286 --------------------------
1288 -- A special complication arises in the analysis of if statements
1290 -- The expander has circuitry to completely delete code that it
1291 -- can tell will not be executed (as a result of compile time known
1292 -- conditions). In the analyzer, we ensure that code that will be
1293 -- deleted in this manner is analyzed but not expanded. This is
1294 -- obviously more efficient, but more significantly, difficulties
1295 -- arise if code is expanded and then eliminated (e.g. exception
1296 -- table entries disappear). Similarly, itypes generated in deleted
1297 -- code must be frozen from start, because the nodes on which they
1298 -- depend will not be available at the freeze point.
1300 procedure Analyze_If_Statement (N : Node_Id) is
1301 E : Node_Id;
1303 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1304 -- Recursively save value of this global, will be restored on exit
1306 Save_In_Deleted_Code : Boolean;
1308 Del : Boolean := False;
1309 -- This flag gets set True if a True condition has been found,
1310 -- which means that remaining ELSE/ELSIF parts are deleted.
1312 procedure Analyze_Cond_Then (Cnode : Node_Id);
1313 -- This is applied to either the N_If_Statement node itself or
1314 -- to an N_Elsif_Part node. It deals with analyzing the condition
1315 -- and the THEN statements associated with it.
1317 -----------------------
1318 -- Analyze_Cond_Then --
1319 -----------------------
1321 procedure Analyze_Cond_Then (Cnode : Node_Id) is
1322 Cond : constant Node_Id := Condition (Cnode);
1323 Tstm : constant List_Id := Then_Statements (Cnode);
1325 begin
1326 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1327 Analyze_And_Resolve (Cond, Any_Boolean);
1328 Check_Unset_Reference (Cond);
1329 Set_Current_Value_Condition (Cnode);
1331 -- If already deleting, then just analyze then statements
1333 if Del then
1334 Analyze_Statements (Tstm);
1336 -- Compile time known value, not deleting yet
1338 elsif Compile_Time_Known_Value (Cond) then
1339 Save_In_Deleted_Code := In_Deleted_Code;
1341 -- If condition is True, then analyze the THEN statements
1342 -- and set no expansion for ELSE and ELSIF parts.
1344 if Is_True (Expr_Value (Cond)) then
1345 Analyze_Statements (Tstm);
1346 Del := True;
1347 Expander_Mode_Save_And_Set (False);
1348 In_Deleted_Code := True;
1350 -- If condition is False, analyze THEN with expansion off
1352 else -- Is_False (Expr_Value (Cond))
1353 Expander_Mode_Save_And_Set (False);
1354 In_Deleted_Code := True;
1355 Analyze_Statements (Tstm);
1356 Expander_Mode_Restore;
1357 In_Deleted_Code := Save_In_Deleted_Code;
1358 end if;
1360 -- Not known at compile time, not deleting, normal analysis
1362 else
1363 Analyze_Statements (Tstm);
1364 end if;
1365 end Analyze_Cond_Then;
1367 -- Start of Analyze_If_Statement
1369 begin
1370 -- Initialize exit count for else statements. If there is no else
1371 -- part, this count will stay non-zero reflecting the fact that the
1372 -- uncovered else case is an unblocked exit.
1374 Unblocked_Exit_Count := 1;
1375 Analyze_Cond_Then (N);
1377 -- Now to analyze the elsif parts if any are present
1379 if Present (Elsif_Parts (N)) then
1380 E := First (Elsif_Parts (N));
1381 while Present (E) loop
1382 Analyze_Cond_Then (E);
1383 Next (E);
1384 end loop;
1385 end if;
1387 if Present (Else_Statements (N)) then
1388 Analyze_Statements (Else_Statements (N));
1389 end if;
1391 -- If all our exits were blocked by unconditional transfers of control,
1392 -- then the entire IF statement acts as an unconditional transfer of
1393 -- control, so treat it like one, and check unreachable code.
1395 if Unblocked_Exit_Count = 0 then
1396 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1397 Check_Unreachable_Code (N);
1398 else
1399 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1400 end if;
1402 if Del then
1403 Expander_Mode_Restore;
1404 In_Deleted_Code := Save_In_Deleted_Code;
1405 end if;
1407 if not Expander_Active
1408 and then Compile_Time_Known_Value (Condition (N))
1409 and then Serious_Errors_Detected = 0
1410 then
1411 if Is_True (Expr_Value (Condition (N))) then
1412 Remove_Warning_Messages (Else_Statements (N));
1414 if Present (Elsif_Parts (N)) then
1415 E := First (Elsif_Parts (N));
1416 while Present (E) loop
1417 Remove_Warning_Messages (Then_Statements (E));
1418 Next (E);
1419 end loop;
1420 end if;
1422 else
1423 Remove_Warning_Messages (Then_Statements (N));
1424 end if;
1425 end if;
1426 end Analyze_If_Statement;
1428 ----------------------------------------
1429 -- Analyze_Implicit_Label_Declaration --
1430 ----------------------------------------
1432 -- An implicit label declaration is generated in the innermost
1433 -- enclosing declarative part. This is done for labels as well as
1434 -- block and loop names.
1436 -- Note: any changes in this routine may need to be reflected in
1437 -- Analyze_Label_Entity.
1439 procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
1440 Id : constant Node_Id := Defining_Identifier (N);
1441 begin
1442 Enter_Name (Id);
1443 Set_Ekind (Id, E_Label);
1444 Set_Etype (Id, Standard_Void_Type);
1445 Set_Enclosing_Scope (Id, Current_Scope);
1446 end Analyze_Implicit_Label_Declaration;
1448 ------------------------------
1449 -- Analyze_Iteration_Scheme --
1450 ------------------------------
1452 procedure Analyze_Iteration_Scheme (N : Node_Id) is
1454 procedure Process_Bounds (R : Node_Id);
1455 -- If the iteration is given by a range, create temporaries and
1456 -- assignment statements block to capture the bounds and perform
1457 -- required finalization actions in case a bound includes a function
1458 -- call that uses the temporary stack. We first pre-analyze a copy of
1459 -- the range in order to determine the expected type, and analyze and
1460 -- resolve the original bounds.
1462 procedure Check_Controlled_Array_Attribute (DS : Node_Id);
1463 -- If the bounds are given by a 'Range reference on a function call
1464 -- that returns a controlled array, introduce an explicit declaration
1465 -- to capture the bounds, so that the function result can be finalized
1466 -- in timely fashion.
1468 --------------------
1469 -- Process_Bounds --
1470 --------------------
1472 procedure Process_Bounds (R : Node_Id) is
1473 Loc : constant Source_Ptr := Sloc (N);
1474 R_Copy : constant Node_Id := New_Copy_Tree (R);
1475 Lo : constant Node_Id := Low_Bound (R);
1476 Hi : constant Node_Id := High_Bound (R);
1477 New_Lo_Bound : Node_Id;
1478 New_Hi_Bound : Node_Id;
1479 Typ : Entity_Id;
1480 Save_Analysis : Boolean;
1482 function One_Bound
1483 (Original_Bound : Node_Id;
1484 Analyzed_Bound : Node_Id) return Node_Id;
1485 -- Capture value of bound and return captured value
1487 ---------------
1488 -- One_Bound --
1489 ---------------
1491 function One_Bound
1492 (Original_Bound : Node_Id;
1493 Analyzed_Bound : Node_Id) return Node_Id
1495 Assign : Node_Id;
1496 Id : Entity_Id;
1497 Decl : Node_Id;
1499 begin
1500 -- If the bound is a constant or an object, no need for a separate
1501 -- declaration. If the bound is the result of previous expansion
1502 -- it is already analyzed and should not be modified. Note that
1503 -- the Bound will be resolved later, if needed, as part of the
1504 -- call to Make_Index (literal bounds may need to be resolved to
1505 -- type Integer).
1507 if Analyzed (Original_Bound) then
1508 return Original_Bound;
1510 elsif Nkind_In (Analyzed_Bound, N_Integer_Literal,
1511 N_Character_Literal)
1512 or else Is_Entity_Name (Analyzed_Bound)
1513 then
1514 Analyze_And_Resolve (Original_Bound, Typ);
1515 return Original_Bound;
1516 end if;
1518 -- Here we need to capture the value
1520 Analyze_And_Resolve (Original_Bound, Typ);
1522 Id := Make_Temporary (Loc, 'S', Original_Bound);
1524 -- Normally, the best approach is simply to generate a constant
1525 -- declaration that captures the bound. However, there is a nasty
1526 -- case where this is wrong. If the bound is complex, and has a
1527 -- possible use of the secondary stack, we need to generate a
1528 -- separate assignment statement to ensure the creation of a block
1529 -- which will release the secondary stack.
1531 -- We prefer the constant declaration, since it leaves us with a
1532 -- proper trace of the value, useful in optimizations that get rid
1533 -- of junk range checks.
1535 -- Probably we want something like the Side_Effect_Free routine
1536 -- in Exp_Util, but for now, we just optimize the cases of 'Last
1537 -- and 'First applied to an entity, since these are the important
1538 -- cases for range check optimizations.
1540 if Nkind (Original_Bound) = N_Attribute_Reference
1541 and then (Attribute_Name (Original_Bound) = Name_First
1542 or else
1543 Attribute_Name (Original_Bound) = Name_Last)
1544 and then Is_Entity_Name (Prefix (Original_Bound))
1545 then
1546 Decl :=
1547 Make_Object_Declaration (Loc,
1548 Defining_Identifier => Id,
1549 Constant_Present => True,
1550 Object_Definition => New_Occurrence_Of (Typ, Loc),
1551 Expression => Relocate_Node (Original_Bound));
1553 Insert_Before (Parent (N), Decl);
1554 Analyze (Decl);
1555 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
1556 return Expression (Decl);
1557 end if;
1559 -- Here we make a declaration with a separate assignment statement
1561 Decl :=
1562 Make_Object_Declaration (Loc,
1563 Defining_Identifier => Id,
1564 Object_Definition => New_Occurrence_Of (Typ, Loc));
1566 Insert_Before (Parent (N), Decl);
1567 Analyze (Decl);
1569 Assign :=
1570 Make_Assignment_Statement (Loc,
1571 Name => New_Occurrence_Of (Id, Loc),
1572 Expression => Relocate_Node (Original_Bound));
1574 Insert_Before (Parent (N), Assign);
1575 Analyze (Assign);
1577 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
1579 if Nkind (Assign) = N_Assignment_Statement then
1580 return Expression (Assign);
1581 else
1582 return Original_Bound;
1583 end if;
1584 end One_Bound;
1586 -- Start of processing for Process_Bounds
1588 begin
1589 -- Determine expected type of range by analyzing separate copy
1590 -- Do the analysis and resolution of the copy of the bounds with
1591 -- expansion disabled, to prevent the generation of finalization
1592 -- actions on each bound. This prevents memory leaks when the
1593 -- bounds contain calls to functions returning controlled arrays.
1595 Set_Parent (R_Copy, Parent (R));
1596 Save_Analysis := Full_Analysis;
1597 Full_Analysis := False;
1598 Expander_Mode_Save_And_Set (False);
1600 Analyze (R_Copy);
1602 if Is_Overloaded (R_Copy) then
1604 -- Apply preference rules for range of predefined integer types,
1605 -- or diagnose true ambiguity.
1607 declare
1608 I : Interp_Index;
1609 It : Interp;
1610 Found : Entity_Id := Empty;
1612 begin
1613 Get_First_Interp (R_Copy, I, It);
1614 while Present (It.Typ) loop
1615 if Is_Discrete_Type (It.Typ) then
1616 if No (Found) then
1617 Found := It.Typ;
1618 else
1619 if Scope (Found) = Standard_Standard then
1620 null;
1622 elsif Scope (It.Typ) = Standard_Standard then
1623 Found := It.Typ;
1625 else
1626 -- Both of them are user-defined
1628 Error_Msg_N
1629 ("ambiguous bounds in range of iteration",
1630 R_Copy);
1631 Error_Msg_N ("\possible interpretations:", R_Copy);
1632 Error_Msg_NE ("\\} ", R_Copy, Found);
1633 Error_Msg_NE ("\\} ", R_Copy, It.Typ);
1634 exit;
1635 end if;
1636 end if;
1637 end if;
1639 Get_Next_Interp (I, It);
1640 end loop;
1641 end;
1642 end if;
1644 Resolve (R_Copy);
1645 Expander_Mode_Restore;
1646 Full_Analysis := Save_Analysis;
1648 Typ := Etype (R_Copy);
1650 -- If the type of the discrete range is Universal_Integer, then
1651 -- the bound's type must be resolved to Integer, and any object
1652 -- used to hold the bound must also have type Integer, unless the
1653 -- literal bounds are constant-folded expressions that carry a user-
1654 -- defined type.
1656 if Typ = Universal_Integer then
1657 if Nkind (Lo) = N_Integer_Literal
1658 and then Present (Etype (Lo))
1659 and then Scope (Etype (Lo)) /= Standard_Standard
1660 then
1661 Typ := Etype (Lo);
1663 elsif Nkind (Hi) = N_Integer_Literal
1664 and then Present (Etype (Hi))
1665 and then Scope (Etype (Hi)) /= Standard_Standard
1666 then
1667 Typ := Etype (Hi);
1669 else
1670 Typ := Standard_Integer;
1671 end if;
1672 end if;
1674 Set_Etype (R, Typ);
1676 New_Lo_Bound := One_Bound (Lo, Low_Bound (R_Copy));
1677 New_Hi_Bound := One_Bound (Hi, High_Bound (R_Copy));
1679 -- Propagate staticness to loop range itself, in case the
1680 -- corresponding subtype is static.
1682 if New_Lo_Bound /= Lo
1683 and then Is_Static_Expression (New_Lo_Bound)
1684 then
1685 Rewrite (Low_Bound (R), New_Copy (New_Lo_Bound));
1686 end if;
1688 if New_Hi_Bound /= Hi
1689 and then Is_Static_Expression (New_Hi_Bound)
1690 then
1691 Rewrite (High_Bound (R), New_Copy (New_Hi_Bound));
1692 end if;
1693 end Process_Bounds;
1695 --------------------------------------
1696 -- Check_Controlled_Array_Attribute --
1697 --------------------------------------
1699 procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
1700 begin
1701 if Nkind (DS) = N_Attribute_Reference
1702 and then Is_Entity_Name (Prefix (DS))
1703 and then Ekind (Entity (Prefix (DS))) = E_Function
1704 and then Is_Array_Type (Etype (Entity (Prefix (DS))))
1705 and then
1706 Is_Controlled (
1707 Component_Type (Etype (Entity (Prefix (DS)))))
1708 and then Expander_Active
1709 then
1710 declare
1711 Loc : constant Source_Ptr := Sloc (N);
1712 Arr : constant Entity_Id := Etype (Entity (Prefix (DS)));
1713 Indx : constant Entity_Id :=
1714 Base_Type (Etype (First_Index (Arr)));
1715 Subt : constant Entity_Id := Make_Temporary (Loc, 'S');
1716 Decl : Node_Id;
1718 begin
1719 Decl :=
1720 Make_Subtype_Declaration (Loc,
1721 Defining_Identifier => Subt,
1722 Subtype_Indication =>
1723 Make_Subtype_Indication (Loc,
1724 Subtype_Mark => New_Reference_To (Indx, Loc),
1725 Constraint =>
1726 Make_Range_Constraint (Loc,
1727 Relocate_Node (DS))));
1728 Insert_Before (Parent (N), Decl);
1729 Analyze (Decl);
1731 Rewrite (DS,
1732 Make_Attribute_Reference (Loc,
1733 Prefix => New_Reference_To (Subt, Loc),
1734 Attribute_Name => Attribute_Name (DS)));
1735 Analyze (DS);
1736 end;
1737 end if;
1738 end Check_Controlled_Array_Attribute;
1740 -- Start of processing for Analyze_Iteration_Scheme
1742 begin
1743 -- For an infinite loop, there is no iteration scheme
1745 if No (N) then
1746 return;
1748 else
1749 declare
1750 Cond : constant Node_Id := Condition (N);
1752 begin
1753 -- For WHILE loop, verify that the condition is a Boolean
1754 -- expression and resolve and check it.
1756 if Present (Cond) then
1757 Analyze_And_Resolve (Cond, Any_Boolean);
1758 Check_Unset_Reference (Cond);
1759 Set_Current_Value_Condition (N);
1760 return;
1762 -- Else we have a FOR loop
1764 else
1765 declare
1766 LP : constant Node_Id := Loop_Parameter_Specification (N);
1767 Id : constant Entity_Id := Defining_Identifier (LP);
1768 DS : constant Node_Id := Discrete_Subtype_Definition (LP);
1770 begin
1771 Enter_Name (Id);
1773 -- We always consider the loop variable to be referenced,
1774 -- since the loop may be used just for counting purposes.
1776 Generate_Reference (Id, N, ' ');
1778 -- Check for case of loop variable hiding a local
1779 -- variable (used later on to give a nice warning
1780 -- if the hidden variable is never assigned).
1782 declare
1783 H : constant Entity_Id := Homonym (Id);
1784 begin
1785 if Present (H)
1786 and then Enclosing_Dynamic_Scope (H) =
1787 Enclosing_Dynamic_Scope (Id)
1788 and then Ekind (H) = E_Variable
1789 and then Is_Discrete_Type (Etype (H))
1790 then
1791 Set_Hiding_Loop_Variable (H, Id);
1792 end if;
1793 end;
1795 -- Now analyze the subtype definition. If it is
1796 -- a range, create temporaries for bounds.
1798 if Nkind (DS) = N_Range
1799 and then Expander_Active
1800 then
1801 Process_Bounds (DS);
1802 else
1803 Analyze (DS);
1804 end if;
1806 if DS = Error then
1807 return;
1808 end if;
1810 -- The subtype indication may denote the completion
1811 -- of an incomplete type declaration.
1813 if Is_Entity_Name (DS)
1814 and then Present (Entity (DS))
1815 and then Is_Type (Entity (DS))
1816 and then Ekind (Entity (DS)) = E_Incomplete_Type
1817 then
1818 Set_Entity (DS, Get_Full_View (Entity (DS)));
1819 Set_Etype (DS, Entity (DS));
1820 end if;
1822 if not Is_Discrete_Type (Etype (DS)) then
1823 Wrong_Type (DS, Any_Discrete);
1824 Set_Etype (DS, Any_Type);
1825 end if;
1827 Check_Controlled_Array_Attribute (DS);
1829 Make_Index (DS, LP);
1831 Set_Ekind (Id, E_Loop_Parameter);
1832 Set_Etype (Id, Etype (DS));
1834 -- Treat a range as an implicit reference to the type, to
1835 -- inhibit spurious warnings.
1837 Generate_Reference (Base_Type (Etype (DS)), N, ' ');
1838 Set_Is_Known_Valid (Id, True);
1840 -- The loop is not a declarative part, so the only entity
1841 -- declared "within" must be frozen explicitly.
1843 declare
1844 Flist : constant List_Id := Freeze_Entity (Id, Sloc (N));
1845 begin
1846 if Is_Non_Empty_List (Flist) then
1847 Insert_Actions (N, Flist);
1848 end if;
1849 end;
1851 -- Check for null or possibly null range and issue warning.
1852 -- We suppress such messages in generic templates and
1853 -- instances, because in practice they tend to be dubious
1854 -- in these cases.
1856 if Nkind (DS) = N_Range
1857 and then Comes_From_Source (N)
1858 then
1859 declare
1860 L : constant Node_Id := Low_Bound (DS);
1861 H : constant Node_Id := High_Bound (DS);
1863 begin
1864 -- If range of loop is null, issue warning
1866 if Compile_Time_Compare
1867 (L, H, Assume_Valid => True) = GT
1868 then
1869 -- Suppress the warning if inside a generic
1870 -- template or instance, since in practice
1871 -- they tend to be dubious in these cases since
1872 -- they can result from intended parametrization.
1874 if not Inside_A_Generic
1875 and then not In_Instance
1876 then
1877 -- Specialize msg if invalid values could make
1878 -- the loop non-null after all.
1880 if Compile_Time_Compare
1881 (L, H, Assume_Valid => False) = GT
1882 then
1883 Error_Msg_N
1884 ("?loop range is null, "
1885 & "loop will not execute",
1886 DS);
1888 -- Since we know the range of the loop is
1889 -- null, set the appropriate flag to remove
1890 -- the loop entirely during expansion.
1892 Set_Is_Null_Loop (Parent (N));
1894 -- Here is where the loop could execute because
1895 -- of invalid values, so issue appropriate
1896 -- message and in this case we do not set the
1897 -- Is_Null_Loop flag since the loop may execute.
1899 else
1900 Error_Msg_N
1901 ("?loop range may be null, "
1902 & "loop may not execute",
1903 DS);
1904 Error_Msg_N
1905 ("?can only execute if invalid values "
1906 & "are present",
1907 DS);
1908 end if;
1909 end if;
1911 -- In either case, suppress warnings in the body of
1912 -- the loop, since it is likely that these warnings
1913 -- will be inappropriate if the loop never actually
1914 -- executes, which is unlikely.
1916 Set_Suppress_Loop_Warnings (Parent (N));
1918 -- The other case for a warning is a reverse loop
1919 -- where the upper bound is the integer literal
1920 -- zero or one, and the lower bound can be positive.
1922 -- For example, we have
1924 -- for J in reverse N .. 1 loop
1926 -- In practice, this is very likely to be a case
1927 -- of reversing the bounds incorrectly in the range.
1929 elsif Reverse_Present (LP)
1930 and then Nkind (Original_Node (H)) =
1931 N_Integer_Literal
1932 and then (Intval (Original_Node (H)) = Uint_0
1933 or else
1934 Intval (Original_Node (H)) = Uint_1)
1935 then
1936 Error_Msg_N ("?loop range may be null", DS);
1937 Error_Msg_N ("\?bounds may be wrong way round", DS);
1938 end if;
1939 end;
1940 end if;
1941 end;
1942 end if;
1943 end;
1944 end if;
1945 end Analyze_Iteration_Scheme;
1947 -------------------
1948 -- Analyze_Label --
1949 -------------------
1951 -- Note: the semantic work required for analyzing labels (setting them as
1952 -- reachable) was done in a prepass through the statements in the block,
1953 -- so that forward gotos would be properly handled. See Analyze_Statements
1954 -- for further details. The only processing required here is to deal with
1955 -- optimizations that depend on an assumption of sequential control flow,
1956 -- since of course the occurrence of a label breaks this assumption.
1958 procedure Analyze_Label (N : Node_Id) is
1959 pragma Warnings (Off, N);
1960 begin
1961 Kill_Current_Values;
1962 end Analyze_Label;
1964 --------------------------
1965 -- Analyze_Label_Entity --
1966 --------------------------
1968 procedure Analyze_Label_Entity (E : Entity_Id) is
1969 begin
1970 Set_Ekind (E, E_Label);
1971 Set_Etype (E, Standard_Void_Type);
1972 Set_Enclosing_Scope (E, Current_Scope);
1973 Set_Reachable (E, True);
1974 end Analyze_Label_Entity;
1976 ----------------------------
1977 -- Analyze_Loop_Statement --
1978 ----------------------------
1980 procedure Analyze_Loop_Statement (N : Node_Id) is
1981 Loop_Statement : constant Node_Id := N;
1983 Id : constant Node_Id := Identifier (Loop_Statement);
1984 Iter : constant Node_Id := Iteration_Scheme (Loop_Statement);
1985 Ent : Entity_Id;
1987 begin
1988 if Present (Id) then
1990 -- Make name visible, e.g. for use in exit statements. Loop
1991 -- labels are always considered to be referenced.
1993 Analyze (Id);
1994 Ent := Entity (Id);
1996 -- Guard against serious error (typically, a scope mismatch when
1997 -- semantic analysis is requested) by creating loop entity to
1998 -- continue analysis.
2000 if No (Ent) then
2001 if Total_Errors_Detected /= 0 then
2002 Ent :=
2003 New_Internal_Entity
2004 (E_Loop, Current_Scope, Sloc (Loop_Statement), 'L');
2005 else
2006 raise Program_Error;
2007 end if;
2009 else
2010 Generate_Reference (Ent, Loop_Statement, ' ');
2011 Generate_Definition (Ent);
2013 -- If we found a label, mark its type. If not, ignore it, since it
2014 -- means we have a conflicting declaration, which would already
2015 -- have been diagnosed at declaration time. Set Label_Construct
2016 -- of the implicit label declaration, which is not created by the
2017 -- parser for generic units.
2019 if Ekind (Ent) = E_Label then
2020 Set_Ekind (Ent, E_Loop);
2022 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
2023 Set_Label_Construct (Parent (Ent), Loop_Statement);
2024 end if;
2025 end if;
2026 end if;
2028 -- Case of no identifier present
2030 else
2031 Ent :=
2032 New_Internal_Entity
2033 (E_Loop, Current_Scope, Sloc (Loop_Statement), 'L');
2034 Set_Etype (Ent, Standard_Void_Type);
2035 Set_Parent (Ent, Loop_Statement);
2036 end if;
2038 -- Kill current values on entry to loop, since statements in body of
2039 -- loop may have been executed before the loop is entered. Similarly we
2040 -- kill values after the loop, since we do not know that the body of the
2041 -- loop was executed.
2043 Kill_Current_Values;
2044 Push_Scope (Ent);
2045 Analyze_Iteration_Scheme (Iter);
2046 Analyze_Statements (Statements (Loop_Statement));
2047 Process_End_Label (Loop_Statement, 'e', Ent);
2048 End_Scope;
2049 Kill_Current_Values;
2051 -- Check for infinite loop. Skip check for generated code, since it
2052 -- justs waste time and makes debugging the routine called harder.
2054 -- Note that we have to wait till the body of the loop is fully analyzed
2055 -- before making this call, since Check_Infinite_Loop_Warning relies on
2056 -- being able to use semantic visibility information to find references.
2058 if Comes_From_Source (N) then
2059 Check_Infinite_Loop_Warning (N);
2060 end if;
2062 -- Code after loop is unreachable if the loop has no WHILE or FOR
2063 -- and contains no EXIT statements within the body of the loop.
2065 if No (Iter) and then not Has_Exit (Ent) then
2066 Check_Unreachable_Code (N);
2067 end if;
2068 end Analyze_Loop_Statement;
2070 ----------------------------
2071 -- Analyze_Null_Statement --
2072 ----------------------------
2074 -- Note: the semantics of the null statement is implemented by a single
2075 -- null statement, too bad everything isn't as simple as this!
2077 procedure Analyze_Null_Statement (N : Node_Id) is
2078 pragma Warnings (Off, N);
2079 begin
2080 null;
2081 end Analyze_Null_Statement;
2083 ------------------------
2084 -- Analyze_Statements --
2085 ------------------------
2087 procedure Analyze_Statements (L : List_Id) is
2088 S : Node_Id;
2089 Lab : Entity_Id;
2091 begin
2092 -- The labels declared in the statement list are reachable from
2093 -- statements in the list. We do this as a prepass so that any
2094 -- goto statement will be properly flagged if its target is not
2095 -- reachable. This is not required, but is nice behavior!
2097 S := First (L);
2098 while Present (S) loop
2099 if Nkind (S) = N_Label then
2100 Analyze (Identifier (S));
2101 Lab := Entity (Identifier (S));
2103 -- If we found a label mark it as reachable
2105 if Ekind (Lab) = E_Label then
2106 Generate_Definition (Lab);
2107 Set_Reachable (Lab);
2109 if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
2110 Set_Label_Construct (Parent (Lab), S);
2111 end if;
2113 -- If we failed to find a label, it means the implicit declaration
2114 -- of the label was hidden. A for-loop parameter can do this to
2115 -- a label with the same name inside the loop, since the implicit
2116 -- label declaration is in the innermost enclosing body or block
2117 -- statement.
2119 else
2120 Error_Msg_Sloc := Sloc (Lab);
2121 Error_Msg_N
2122 ("implicit label declaration for & is hidden#",
2123 Identifier (S));
2124 end if;
2125 end if;
2127 Next (S);
2128 end loop;
2130 -- Perform semantic analysis on all statements
2132 Conditional_Statements_Begin;
2134 S := First (L);
2135 while Present (S) loop
2136 Analyze (S);
2137 Next (S);
2138 end loop;
2140 Conditional_Statements_End;
2142 -- Make labels unreachable. Visibility is not sufficient, because
2143 -- labels in one if-branch for example are not reachable from the
2144 -- other branch, even though their declarations are in the enclosing
2145 -- declarative part.
2147 S := First (L);
2148 while Present (S) loop
2149 if Nkind (S) = N_Label then
2150 Set_Reachable (Entity (Identifier (S)), False);
2151 end if;
2153 Next (S);
2154 end loop;
2155 end Analyze_Statements;
2157 ----------------------------
2158 -- Check_Unreachable_Code --
2159 ----------------------------
2161 procedure Check_Unreachable_Code (N : Node_Id) is
2162 Error_Loc : Source_Ptr;
2163 P : Node_Id;
2165 begin
2166 if Is_List_Member (N)
2167 and then Comes_From_Source (N)
2168 then
2169 declare
2170 Nxt : Node_Id;
2172 begin
2173 Nxt := Original_Node (Next (N));
2175 -- If a label follows us, then we never have dead code, since
2176 -- someone could branch to the label, so we just ignore it.
2178 if Nkind (Nxt) = N_Label then
2179 return;
2181 -- Otherwise see if we have a real statement following us
2183 elsif Present (Nxt)
2184 and then Comes_From_Source (Nxt)
2185 and then Is_Statement (Nxt)
2186 then
2187 -- Special very annoying exception. If we have a return that
2188 -- follows a raise, then we allow it without a warning, since
2189 -- the Ada RM annoyingly requires a useless return here!
2191 if Nkind (Original_Node (N)) /= N_Raise_Statement
2192 or else Nkind (Nxt) /= N_Simple_Return_Statement
2193 then
2194 -- The rather strange shenanigans with the warning message
2195 -- here reflects the fact that Kill_Dead_Code is very good
2196 -- at removing warnings in deleted code, and this is one
2197 -- warning we would prefer NOT to have removed.
2199 Error_Loc := Sloc (Nxt);
2201 -- If we have unreachable code, analyze and remove the
2202 -- unreachable code, since it is useless and we don't
2203 -- want to generate junk warnings.
2205 -- We skip this step if we are not in code generation mode.
2206 -- This is the one case where we remove dead code in the
2207 -- semantics as opposed to the expander, and we do not want
2208 -- to remove code if we are not in code generation mode,
2209 -- since this messes up the ASIS trees.
2211 -- Note that one might react by moving the whole circuit to
2212 -- exp_ch5, but then we lose the warning in -gnatc mode.
2214 if Operating_Mode = Generate_Code then
2215 loop
2216 Nxt := Next (N);
2218 -- Quit deleting when we have nothing more to delete
2219 -- or if we hit a label (since someone could transfer
2220 -- control to a label, so we should not delete it).
2222 exit when No (Nxt) or else Nkind (Nxt) = N_Label;
2224 -- Statement/declaration is to be deleted
2226 Analyze (Nxt);
2227 Remove (Nxt);
2228 Kill_Dead_Code (Nxt);
2229 end loop;
2230 end if;
2232 -- Now issue the warning
2234 Error_Msg ("?unreachable code!", Error_Loc);
2235 end if;
2237 -- If the unconditional transfer of control instruction is
2238 -- the last statement of a sequence, then see if our parent
2239 -- is one of the constructs for which we count unblocked exits,
2240 -- and if so, adjust the count.
2242 else
2243 P := Parent (N);
2245 -- Statements in THEN part or ELSE part of IF statement
2247 if Nkind (P) = N_If_Statement then
2248 null;
2250 -- Statements in ELSIF part of an IF statement
2252 elsif Nkind (P) = N_Elsif_Part then
2253 P := Parent (P);
2254 pragma Assert (Nkind (P) = N_If_Statement);
2256 -- Statements in CASE statement alternative
2258 elsif Nkind (P) = N_Case_Statement_Alternative then
2259 P := Parent (P);
2260 pragma Assert (Nkind (P) = N_Case_Statement);
2262 -- Statements in body of block
2264 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
2265 and then Nkind (Parent (P)) = N_Block_Statement
2266 then
2267 null;
2269 -- Statements in exception handler in a block
2271 elsif Nkind (P) = N_Exception_Handler
2272 and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
2273 and then Nkind (Parent (Parent (P))) = N_Block_Statement
2274 then
2275 null;
2277 -- None of these cases, so return
2279 else
2280 return;
2281 end if;
2283 -- This was one of the cases we are looking for (i.e. the
2284 -- parent construct was IF, CASE or block) so decrement count.
2286 Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
2287 end if;
2288 end;
2289 end if;
2290 end Check_Unreachable_Code;
2292 end Sem_Ch5;