2014-07-12 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / fortran / dependency.c
blobc18482aff2e3719ccb84adfb9a58e90016793baa
1 /* Dependency analysis
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* dependency.c -- Expression dependency analysis code. */
22 /* There's probably quite a bit of duplication in this file. We currently
23 have different dependency checking functions for different types
24 if dependencies. Ideally these would probably be merged. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "gfortran.h"
30 #include "dependency.h"
31 #include "constructor.h"
32 #include "arith.h"
34 /* static declarations */
35 /* Enums */
36 enum range {LHS, RHS, MID};
38 /* Dependency types. These must be in reverse order of priority. */
39 typedef enum
41 GFC_DEP_ERROR,
42 GFC_DEP_EQUAL, /* Identical Ranges. */
43 GFC_DEP_FORWARD, /* e.g., a(1:3) = a(2:4). */
44 GFC_DEP_BACKWARD, /* e.g. a(2:4) = a(1:3). */
45 GFC_DEP_OVERLAP, /* May overlap in some other way. */
46 GFC_DEP_NODEP /* Distinct ranges. */
48 gfc_dependency;
50 /* Macros */
51 #define IS_ARRAY_EXPLICIT(as) ((as->type == AS_EXPLICIT ? 1 : 0))
53 /* Forward declarations */
55 static gfc_dependency check_section_vs_section (gfc_array_ref *,
56 gfc_array_ref *, int);
58 /* Returns 1 if the expr is an integer constant value 1, 0 if it is not or
59 def if the value could not be determined. */
61 int
62 gfc_expr_is_one (gfc_expr *expr, int def)
64 gcc_assert (expr != NULL);
66 if (expr->expr_type != EXPR_CONSTANT)
67 return def;
69 if (expr->ts.type != BT_INTEGER)
70 return def;
72 return mpz_cmp_si (expr->value.integer, 1) == 0;
75 /* Check if two array references are known to be identical. Calls
76 gfc_dep_compare_expr if necessary for comparing array indices. */
78 static bool
79 identical_array_ref (gfc_array_ref *a1, gfc_array_ref *a2)
81 int i;
83 if (a1->type == AR_FULL && a2->type == AR_FULL)
84 return true;
86 if (a1->type == AR_SECTION && a2->type == AR_SECTION)
88 gcc_assert (a1->dimen == a2->dimen);
90 for ( i = 0; i < a1->dimen; i++)
92 /* TODO: Currently, we punt on an integer array as an index. */
93 if (a1->dimen_type[i] != DIMEN_RANGE
94 || a2->dimen_type[i] != DIMEN_RANGE)
95 return false;
97 if (check_section_vs_section (a1, a2, i) != GFC_DEP_EQUAL)
98 return false;
100 return true;
103 if (a1->type == AR_ELEMENT && a2->type == AR_ELEMENT)
105 gcc_assert (a1->dimen == a2->dimen);
106 for (i = 0; i < a1->dimen; i++)
108 if (gfc_dep_compare_expr (a1->start[i], a2->start[i]) != 0)
109 return false;
111 return true;
113 return false;
118 /* Return true for identical variables, checking for references if
119 necessary. Calls identical_array_ref for checking array sections. */
121 static bool
122 are_identical_variables (gfc_expr *e1, gfc_expr *e2)
124 gfc_ref *r1, *r2;
126 if (e1->symtree->n.sym->attr.dummy && e2->symtree->n.sym->attr.dummy)
128 /* Dummy arguments: Only check for equal names. */
129 if (e1->symtree->n.sym->name != e2->symtree->n.sym->name)
130 return false;
132 else
134 /* Check for equal symbols. */
135 if (e1->symtree->n.sym != e2->symtree->n.sym)
136 return false;
139 /* Volatile variables should never compare equal to themselves. */
141 if (e1->symtree->n.sym->attr.volatile_)
142 return false;
144 r1 = e1->ref;
145 r2 = e2->ref;
147 while (r1 != NULL || r2 != NULL)
150 /* Assume the variables are not equal if one has a reference and the
151 other doesn't.
152 TODO: Handle full references like comparing a(:) to a.
155 if (r1 == NULL || r2 == NULL)
156 return false;
158 if (r1->type != r2->type)
159 return false;
161 switch (r1->type)
164 case REF_ARRAY:
165 if (!identical_array_ref (&r1->u.ar, &r2->u.ar))
166 return false;
168 break;
170 case REF_COMPONENT:
171 if (r1->u.c.component != r2->u.c.component)
172 return false;
173 break;
175 case REF_SUBSTRING:
176 if (gfc_dep_compare_expr (r1->u.ss.start, r2->u.ss.start) != 0)
177 return false;
179 /* If both are NULL, the end length compares equal, because we
180 are looking at the same variable. This can only happen for
181 assumed- or deferred-length character arguments. */
183 if (r1->u.ss.end == NULL && r2->u.ss.end == NULL)
184 break;
186 if (gfc_dep_compare_expr (r1->u.ss.end, r2->u.ss.end) != 0)
187 return false;
189 break;
191 default:
192 gfc_internal_error ("are_identical_variables: Bad type");
194 r1 = r1->next;
195 r2 = r2->next;
197 return true;
200 /* Compare two functions for equality. Returns 0 if e1==e2, -2 otherwise. If
201 impure_ok is false, only return 0 for pure functions. */
204 gfc_dep_compare_functions (gfc_expr *e1, gfc_expr *e2, bool impure_ok)
207 gfc_actual_arglist *args1;
208 gfc_actual_arglist *args2;
210 if (e1->expr_type != EXPR_FUNCTION || e2->expr_type != EXPR_FUNCTION)
211 return -2;
213 if ((e1->value.function.esym && e2->value.function.esym
214 && e1->value.function.esym == e2->value.function.esym
215 && (e1->value.function.esym->result->attr.pure || impure_ok))
216 || (e1->value.function.isym && e2->value.function.isym
217 && e1->value.function.isym == e2->value.function.isym
218 && (e1->value.function.isym->pure || impure_ok)))
220 args1 = e1->value.function.actual;
221 args2 = e2->value.function.actual;
223 /* Compare the argument lists for equality. */
224 while (args1 && args2)
226 /* Bitwise xor, since C has no non-bitwise xor operator. */
227 if ((args1->expr == NULL) ^ (args2->expr == NULL))
228 return -2;
230 if (args1->expr != NULL && args2->expr != NULL
231 && gfc_dep_compare_expr (args1->expr, args2->expr) != 0)
232 return -2;
234 args1 = args1->next;
235 args2 = args2->next;
237 return (args1 || args2) ? -2 : 0;
239 else
240 return -2;
243 /* Helper function to look through parens, unary plus and widening
244 integer conversions. */
246 static gfc_expr*
247 discard_nops (gfc_expr *e)
249 gfc_actual_arglist *arglist;
251 if (e == NULL)
252 return NULL;
254 while (true)
256 if (e->expr_type == EXPR_OP
257 && (e->value.op.op == INTRINSIC_UPLUS
258 || e->value.op.op == INTRINSIC_PARENTHESES))
260 e = e->value.op.op1;
261 continue;
264 if (e->expr_type == EXPR_FUNCTION && e->value.function.isym
265 && e->value.function.isym->id == GFC_ISYM_CONVERSION
266 && e->ts.type == BT_INTEGER)
268 arglist = e->value.function.actual;
269 if (arglist->expr->ts.type == BT_INTEGER
270 && e->ts.kind > arglist->expr->ts.kind)
272 e = arglist->expr;
273 continue;
276 break;
279 return e;
283 /* Compare two expressions. Return values:
284 * +1 if e1 > e2
285 * 0 if e1 == e2
286 * -1 if e1 < e2
287 * -2 if the relationship could not be determined
288 * -3 if e1 /= e2, but we cannot tell which one is larger.
289 REAL and COMPLEX constants are only compared for equality
290 or inequality; if they are unequal, -2 is returned in all cases. */
293 gfc_dep_compare_expr (gfc_expr *e1, gfc_expr *e2)
295 int i;
297 if (e1 == NULL && e2 == NULL)
298 return 0;
300 e1 = discard_nops (e1);
301 e2 = discard_nops (e2);
303 if (e1->expr_type == EXPR_OP && e1->value.op.op == INTRINSIC_PLUS)
305 /* Compare X+C vs. X, for INTEGER only. */
306 if (e1->value.op.op2->expr_type == EXPR_CONSTANT
307 && e1->value.op.op2->ts.type == BT_INTEGER
308 && gfc_dep_compare_expr (e1->value.op.op1, e2) == 0)
309 return mpz_sgn (e1->value.op.op2->value.integer);
311 /* Compare P+Q vs. R+S. */
312 if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_PLUS)
314 int l, r;
316 l = gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op1);
317 r = gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op2);
318 if (l == 0 && r == 0)
319 return 0;
320 if (l == 0 && r > -2)
321 return r;
322 if (l > -2 && r == 0)
323 return l;
324 if (l == 1 && r == 1)
325 return 1;
326 if (l == -1 && r == -1)
327 return -1;
329 l = gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op2);
330 r = gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op1);
331 if (l == 0 && r == 0)
332 return 0;
333 if (l == 0 && r > -2)
334 return r;
335 if (l > -2 && r == 0)
336 return l;
337 if (l == 1 && r == 1)
338 return 1;
339 if (l == -1 && r == -1)
340 return -1;
344 /* Compare X vs. X+C, for INTEGER only. */
345 if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_PLUS)
347 if (e2->value.op.op2->expr_type == EXPR_CONSTANT
348 && e2->value.op.op2->ts.type == BT_INTEGER
349 && gfc_dep_compare_expr (e1, e2->value.op.op1) == 0)
350 return -mpz_sgn (e2->value.op.op2->value.integer);
353 /* Compare X-C vs. X, for INTEGER only. */
354 if (e1->expr_type == EXPR_OP && e1->value.op.op == INTRINSIC_MINUS)
356 if (e1->value.op.op2->expr_type == EXPR_CONSTANT
357 && e1->value.op.op2->ts.type == BT_INTEGER
358 && gfc_dep_compare_expr (e1->value.op.op1, e2) == 0)
359 return -mpz_sgn (e1->value.op.op2->value.integer);
361 /* Compare P-Q vs. R-S. */
362 if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_MINUS)
364 int l, r;
366 l = gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op1);
367 r = gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op2);
368 if (l == 0 && r == 0)
369 return 0;
370 if (l > -2 && r == 0)
371 return l;
372 if (l == 0 && r > -2)
373 return -r;
374 if (l == 1 && r == -1)
375 return 1;
376 if (l == -1 && r == 1)
377 return -1;
381 /* Compare A // B vs. C // D. */
383 if (e1->expr_type == EXPR_OP && e1->value.op.op == INTRINSIC_CONCAT
384 && e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_CONCAT)
386 int l, r;
388 l = gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op1);
389 r = gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op2);
391 if (l != 0)
392 return l;
394 /* Left expressions of // compare equal, but
395 watch out for 'A ' // x vs. 'A' // x. */
396 gfc_expr *e1_left = e1->value.op.op1;
397 gfc_expr *e2_left = e2->value.op.op1;
399 if (e1_left->expr_type == EXPR_CONSTANT
400 && e2_left->expr_type == EXPR_CONSTANT
401 && e1_left->value.character.length
402 != e2_left->value.character.length)
403 return -2;
404 else
405 return r;
408 /* Compare X vs. X-C, for INTEGER only. */
409 if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_MINUS)
411 if (e2->value.op.op2->expr_type == EXPR_CONSTANT
412 && e2->value.op.op2->ts.type == BT_INTEGER
413 && gfc_dep_compare_expr (e1, e2->value.op.op1) == 0)
414 return mpz_sgn (e2->value.op.op2->value.integer);
417 if (e1->expr_type != e2->expr_type)
418 return -3;
420 switch (e1->expr_type)
422 case EXPR_CONSTANT:
423 /* Compare strings for equality. */
424 if (e1->ts.type == BT_CHARACTER && e2->ts.type == BT_CHARACTER)
425 return gfc_compare_string (e1, e2);
427 /* Compare REAL and COMPLEX constants. Because of the
428 traps and pitfalls associated with comparing
429 a + 1.0 with a + 0.5, check for equality only. */
430 if (e2->expr_type == EXPR_CONSTANT)
432 if (e1->ts.type == BT_REAL && e2->ts.type == BT_REAL)
434 if (mpfr_cmp (e1->value.real, e2->value.real) == 0)
435 return 0;
436 else
437 return -2;
439 else if (e1->ts.type == BT_COMPLEX && e2->ts.type == BT_COMPLEX)
441 if (mpc_cmp (e1->value.complex, e2->value.complex) == 0)
442 return 0;
443 else
444 return -2;
448 if (e1->ts.type != BT_INTEGER || e2->ts.type != BT_INTEGER)
449 return -2;
451 /* For INTEGER, all cases where e2 is not constant should have
452 been filtered out above. */
453 gcc_assert (e2->expr_type == EXPR_CONSTANT);
455 i = mpz_cmp (e1->value.integer, e2->value.integer);
456 if (i == 0)
457 return 0;
458 else if (i < 0)
459 return -1;
460 return 1;
462 case EXPR_VARIABLE:
463 if (are_identical_variables (e1, e2))
464 return 0;
465 else
466 return -3;
468 case EXPR_OP:
469 /* Intrinsic operators are the same if their operands are the same. */
470 if (e1->value.op.op != e2->value.op.op)
471 return -2;
472 if (e1->value.op.op2 == 0)
474 i = gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op1);
475 return i == 0 ? 0 : -2;
477 if (gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op1) == 0
478 && gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op2) == 0)
479 return 0;
480 else if (e1->value.op.op == INTRINSIC_TIMES
481 && gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op2) == 0
482 && gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op1) == 0)
483 /* Commutativity of multiplication; addition is handled above. */
484 return 0;
486 return -2;
488 case EXPR_FUNCTION:
489 return gfc_dep_compare_functions (e1, e2, false);
490 break;
492 default:
493 return -2;
498 /* Return the difference between two expressions. Integer expressions of
499 the form
501 X + constant, X - constant and constant + X
503 are handled. Return true on success, false on failure. result is assumed
504 to be uninitialized on entry, and will be initialized on success.
507 bool
508 gfc_dep_difference (gfc_expr *e1, gfc_expr *e2, mpz_t *result)
510 gfc_expr *e1_op1, *e1_op2, *e2_op1, *e2_op2;
512 if (e1 == NULL || e2 == NULL)
513 return false;
515 if (e1->ts.type != BT_INTEGER || e2->ts.type != BT_INTEGER)
516 return false;
518 e1 = discard_nops (e1);
519 e2 = discard_nops (e2);
521 /* Inizialize tentatively, clear if we don't return anything. */
522 mpz_init (*result);
524 /* Case 1: c1 - c2 = c1 - c2, trivially. */
526 if (e1->expr_type == EXPR_CONSTANT && e2->expr_type == EXPR_CONSTANT)
528 mpz_sub (*result, e1->value.integer, e2->value.integer);
529 return true;
532 if (e1->expr_type == EXPR_OP && e1->value.op.op == INTRINSIC_PLUS)
534 e1_op1 = discard_nops (e1->value.op.op1);
535 e1_op2 = discard_nops (e1->value.op.op2);
537 /* Case 2: (X + c1) - X = c1. */
538 if (e1_op2->expr_type == EXPR_CONSTANT
539 && gfc_dep_compare_expr (e1_op1, e2) == 0)
541 mpz_set (*result, e1_op2->value.integer);
542 return true;
545 /* Case 3: (c1 + X) - X = c1. */
546 if (e1_op1->expr_type == EXPR_CONSTANT
547 && gfc_dep_compare_expr (e1_op2, e2) == 0)
549 mpz_set (*result, e1_op1->value.integer);
550 return true;
553 if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_PLUS)
555 e2_op1 = discard_nops (e2->value.op.op1);
556 e2_op2 = discard_nops (e2->value.op.op2);
558 if (e1_op2->expr_type == EXPR_CONSTANT)
560 /* Case 4: X + c1 - (X + c2) = c1 - c2. */
561 if (e2_op2->expr_type == EXPR_CONSTANT
562 && gfc_dep_compare_expr (e1_op1, e2_op1) == 0)
564 mpz_sub (*result, e1_op2->value.integer,
565 e2_op2->value.integer);
566 return true;
568 /* Case 5: X + c1 - (c2 + X) = c1 - c2. */
569 if (e2_op1->expr_type == EXPR_CONSTANT
570 && gfc_dep_compare_expr (e1_op1, e2_op2) == 0)
572 mpz_sub (*result, e1_op2->value.integer,
573 e2_op1->value.integer);
574 return true;
577 else if (e1_op1->expr_type == EXPR_CONSTANT)
579 /* Case 6: c1 + X - (X + c2) = c1 - c2. */
580 if (e2_op2->expr_type == EXPR_CONSTANT
581 && gfc_dep_compare_expr (e1_op2, e2_op1) == 0)
583 mpz_sub (*result, e1_op1->value.integer,
584 e2_op2->value.integer);
585 return true;
587 /* Case 7: c1 + X - (c2 + X) = c1 - c2. */
588 if (e2_op1->expr_type == EXPR_CONSTANT
589 && gfc_dep_compare_expr (e1_op2, e2_op2) == 0)
591 mpz_sub (*result, e1_op1->value.integer,
592 e2_op1->value.integer);
593 return true;
598 if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_MINUS)
600 e2_op1 = discard_nops (e2->value.op.op1);
601 e2_op2 = discard_nops (e2->value.op.op2);
603 if (e1_op2->expr_type == EXPR_CONSTANT)
605 /* Case 8: X + c1 - (X - c2) = c1 + c2. */
606 if (e2_op2->expr_type == EXPR_CONSTANT
607 && gfc_dep_compare_expr (e1_op1, e2_op1) == 0)
609 mpz_add (*result, e1_op2->value.integer,
610 e2_op2->value.integer);
611 return true;
614 if (e1_op1->expr_type == EXPR_CONSTANT)
616 /* Case 9: c1 + X - (X - c2) = c1 + c2. */
617 if (e2_op2->expr_type == EXPR_CONSTANT
618 && gfc_dep_compare_expr (e1_op2, e2_op1) == 0)
620 mpz_add (*result, e1_op1->value.integer,
621 e2_op2->value.integer);
622 return true;
628 if (e1->expr_type == EXPR_OP && e1->value.op.op == INTRINSIC_MINUS)
630 e1_op1 = discard_nops (e1->value.op.op1);
631 e1_op2 = discard_nops (e1->value.op.op2);
633 if (e1_op2->expr_type == EXPR_CONSTANT)
635 /* Case 10: (X - c1) - X = -c1 */
637 if (gfc_dep_compare_expr (e1_op1, e2) == 0)
639 mpz_neg (*result, e1_op2->value.integer);
640 return true;
643 if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_PLUS)
645 e2_op1 = discard_nops (e2->value.op.op1);
646 e2_op2 = discard_nops (e2->value.op.op2);
648 /* Case 11: (X - c1) - (X + c2) = -( c1 + c2). */
649 if (e2_op2->expr_type == EXPR_CONSTANT
650 && gfc_dep_compare_expr (e1_op1, e2_op1) == 0)
652 mpz_add (*result, e1_op2->value.integer,
653 e2_op2->value.integer);
654 mpz_neg (*result, *result);
655 return true;
658 /* Case 12: X - c1 - (c2 + X) = - (c1 + c2). */
659 if (e2_op1->expr_type == EXPR_CONSTANT
660 && gfc_dep_compare_expr (e1_op1, e2_op2) == 0)
662 mpz_add (*result, e1_op2->value.integer,
663 e2_op1->value.integer);
664 mpz_neg (*result, *result);
665 return true;
669 if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_MINUS)
671 e2_op1 = discard_nops (e2->value.op.op1);
672 e2_op2 = discard_nops (e2->value.op.op2);
674 /* Case 13: (X - c1) - (X - c2) = c2 - c1. */
675 if (e2_op2->expr_type == EXPR_CONSTANT
676 && gfc_dep_compare_expr (e1_op1, e2_op1) == 0)
678 mpz_sub (*result, e2_op2->value.integer,
679 e1_op2->value.integer);
680 return true;
684 if (e1_op1->expr_type == EXPR_CONSTANT)
686 if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_MINUS)
688 e2_op1 = discard_nops (e2->value.op.op1);
689 e2_op2 = discard_nops (e2->value.op.op2);
691 /* Case 14: (c1 - X) - (c2 - X) == c1 - c2. */
692 if (gfc_dep_compare_expr (e1_op2, e2_op2) == 0)
694 mpz_sub (*result, e1_op1->value.integer,
695 e2_op1->value.integer);
696 return true;
703 if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_PLUS)
705 e2_op1 = discard_nops (e2->value.op.op1);
706 e2_op2 = discard_nops (e2->value.op.op2);
708 /* Case 15: X - (X + c2) = -c2. */
709 if (e2_op2->expr_type == EXPR_CONSTANT
710 && gfc_dep_compare_expr (e1, e2_op1) == 0)
712 mpz_neg (*result, e2_op2->value.integer);
713 return true;
715 /* Case 16: X - (c2 + X) = -c2. */
716 if (e2_op1->expr_type == EXPR_CONSTANT
717 && gfc_dep_compare_expr (e1, e2_op2) == 0)
719 mpz_neg (*result, e2_op1->value.integer);
720 return true;
724 if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_MINUS)
726 e2_op1 = discard_nops (e2->value.op.op1);
727 e2_op2 = discard_nops (e2->value.op.op2);
729 /* Case 17: X - (X - c2) = c2. */
730 if (e2_op2->expr_type == EXPR_CONSTANT
731 && gfc_dep_compare_expr (e1, e2_op1) == 0)
733 mpz_set (*result, e2_op2->value.integer);
734 return true;
738 if (gfc_dep_compare_expr (e1, e2) == 0)
740 /* Case 18: X - X = 0. */
741 mpz_set_si (*result, 0);
742 return true;
745 mpz_clear (*result);
746 return false;
749 /* Returns 1 if the two ranges are the same and 0 if they are not (or if the
750 results are indeterminate). 'n' is the dimension to compare. */
752 static int
753 is_same_range (gfc_array_ref *ar1, gfc_array_ref *ar2, int n)
755 gfc_expr *e1;
756 gfc_expr *e2;
757 int i;
759 /* TODO: More sophisticated range comparison. */
760 gcc_assert (ar1 && ar2);
762 gcc_assert (ar1->dimen_type[n] == ar2->dimen_type[n]);
764 e1 = ar1->stride[n];
765 e2 = ar2->stride[n];
766 /* Check for mismatching strides. A NULL stride means a stride of 1. */
767 if (e1 && !e2)
769 i = gfc_expr_is_one (e1, -1);
770 if (i == -1 || i == 0)
771 return 0;
773 else if (e2 && !e1)
775 i = gfc_expr_is_one (e2, -1);
776 if (i == -1 || i == 0)
777 return 0;
779 else if (e1 && e2)
781 i = gfc_dep_compare_expr (e1, e2);
782 if (i != 0)
783 return 0;
785 /* The strides match. */
787 /* Check the range start. */
788 e1 = ar1->start[n];
789 e2 = ar2->start[n];
790 if (e1 || e2)
792 /* Use the bound of the array if no bound is specified. */
793 if (ar1->as && !e1)
794 e1 = ar1->as->lower[n];
796 if (ar2->as && !e2)
797 e2 = ar2->as->lower[n];
799 /* Check we have values for both. */
800 if (!(e1 && e2))
801 return 0;
803 i = gfc_dep_compare_expr (e1, e2);
804 if (i != 0)
805 return 0;
808 /* Check the range end. */
809 e1 = ar1->end[n];
810 e2 = ar2->end[n];
811 if (e1 || e2)
813 /* Use the bound of the array if no bound is specified. */
814 if (ar1->as && !e1)
815 e1 = ar1->as->upper[n];
817 if (ar2->as && !e2)
818 e2 = ar2->as->upper[n];
820 /* Check we have values for both. */
821 if (!(e1 && e2))
822 return 0;
824 i = gfc_dep_compare_expr (e1, e2);
825 if (i != 0)
826 return 0;
829 return 1;
833 /* Some array-returning intrinsics can be implemented by reusing the
834 data from one of the array arguments. For example, TRANSPOSE does
835 not necessarily need to allocate new data: it can be implemented
836 by copying the original array's descriptor and simply swapping the
837 two dimension specifications.
839 If EXPR is a call to such an intrinsic, return the argument
840 whose data can be reused, otherwise return NULL. */
842 gfc_expr *
843 gfc_get_noncopying_intrinsic_argument (gfc_expr *expr)
845 if (expr->expr_type != EXPR_FUNCTION || !expr->value.function.isym)
846 return NULL;
848 switch (expr->value.function.isym->id)
850 case GFC_ISYM_TRANSPOSE:
851 return expr->value.function.actual->expr;
853 default:
854 return NULL;
859 /* Return true if the result of reference REF can only be constructed
860 using a temporary array. */
862 bool
863 gfc_ref_needs_temporary_p (gfc_ref *ref)
865 int n;
866 bool subarray_p;
868 subarray_p = false;
869 for (; ref; ref = ref->next)
870 switch (ref->type)
872 case REF_ARRAY:
873 /* Vector dimensions are generally not monotonic and must be
874 handled using a temporary. */
875 if (ref->u.ar.type == AR_SECTION)
876 for (n = 0; n < ref->u.ar.dimen; n++)
877 if (ref->u.ar.dimen_type[n] == DIMEN_VECTOR)
878 return true;
880 subarray_p = true;
881 break;
883 case REF_SUBSTRING:
884 /* Within an array reference, character substrings generally
885 need a temporary. Character array strides are expressed as
886 multiples of the element size (consistent with other array
887 types), not in characters. */
888 return subarray_p;
890 case REF_COMPONENT:
891 break;
894 return false;
898 static int
899 gfc_is_data_pointer (gfc_expr *e)
901 gfc_ref *ref;
903 if (e->expr_type != EXPR_VARIABLE && e->expr_type != EXPR_FUNCTION)
904 return 0;
906 /* No subreference if it is a function */
907 gcc_assert (e->expr_type == EXPR_VARIABLE || !e->ref);
909 if (e->symtree->n.sym->attr.pointer)
910 return 1;
912 for (ref = e->ref; ref; ref = ref->next)
913 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
914 return 1;
916 return 0;
920 /* Return true if array variable VAR could be passed to the same function
921 as argument EXPR without interfering with EXPR. INTENT is the intent
922 of VAR.
924 This is considerably less conservative than other dependencies
925 because many function arguments will already be copied into a
926 temporary. */
928 static int
929 gfc_check_argument_var_dependency (gfc_expr *var, sym_intent intent,
930 gfc_expr *expr, gfc_dep_check elemental)
932 gfc_expr *arg;
934 gcc_assert (var->expr_type == EXPR_VARIABLE);
935 gcc_assert (var->rank > 0);
937 switch (expr->expr_type)
939 case EXPR_VARIABLE:
940 /* In case of elemental subroutines, there is no dependency
941 between two same-range array references. */
942 if (gfc_ref_needs_temporary_p (expr->ref)
943 || gfc_check_dependency (var, expr, elemental == NOT_ELEMENTAL))
945 if (elemental == ELEM_DONT_CHECK_VARIABLE)
947 /* Too many false positive with pointers. */
948 if (!gfc_is_data_pointer (var) && !gfc_is_data_pointer (expr))
950 /* Elemental procedures forbid unspecified intents,
951 and we don't check dependencies for INTENT_IN args. */
952 gcc_assert (intent == INTENT_OUT || intent == INTENT_INOUT);
954 /* We are told not to check dependencies.
955 We do it, however, and issue a warning in case we find one.
956 If a dependency is found in the case
957 elemental == ELEM_CHECK_VARIABLE, we will generate
958 a temporary, so we don't need to bother the user. */
959 gfc_warning ("INTENT(%s) actual argument at %L might "
960 "interfere with actual argument at %L.",
961 intent == INTENT_OUT ? "OUT" : "INOUT",
962 &var->where, &expr->where);
964 return 0;
966 else
967 return 1;
969 return 0;
971 case EXPR_ARRAY:
972 /* the scalarizer always generates a temporary for array constructors,
973 so there is no dependency. */
974 return 0;
976 case EXPR_FUNCTION:
977 if (intent != INTENT_IN)
979 arg = gfc_get_noncopying_intrinsic_argument (expr);
980 if (arg != NULL)
981 return gfc_check_argument_var_dependency (var, intent, arg,
982 NOT_ELEMENTAL);
985 if (elemental != NOT_ELEMENTAL)
987 if ((expr->value.function.esym
988 && expr->value.function.esym->attr.elemental)
989 || (expr->value.function.isym
990 && expr->value.function.isym->elemental))
991 return gfc_check_fncall_dependency (var, intent, NULL,
992 expr->value.function.actual,
993 ELEM_CHECK_VARIABLE);
995 if (gfc_inline_intrinsic_function_p (expr))
997 /* The TRANSPOSE case should have been caught in the
998 noncopying intrinsic case above. */
999 gcc_assert (expr->value.function.isym->id != GFC_ISYM_TRANSPOSE);
1001 return gfc_check_fncall_dependency (var, intent, NULL,
1002 expr->value.function.actual,
1003 ELEM_CHECK_VARIABLE);
1006 return 0;
1008 case EXPR_OP:
1009 /* In case of non-elemental procedures, there is no need to catch
1010 dependencies, as we will make a temporary anyway. */
1011 if (elemental)
1013 /* If the actual arg EXPR is an expression, we need to catch
1014 a dependency between variables in EXPR and VAR,
1015 an intent((IN)OUT) variable. */
1016 if (expr->value.op.op1
1017 && gfc_check_argument_var_dependency (var, intent,
1018 expr->value.op.op1,
1019 ELEM_CHECK_VARIABLE))
1020 return 1;
1021 else if (expr->value.op.op2
1022 && gfc_check_argument_var_dependency (var, intent,
1023 expr->value.op.op2,
1024 ELEM_CHECK_VARIABLE))
1025 return 1;
1027 return 0;
1029 default:
1030 return 0;
1035 /* Like gfc_check_argument_var_dependency, but extended to any
1036 array expression OTHER, not just variables. */
1038 static int
1039 gfc_check_argument_dependency (gfc_expr *other, sym_intent intent,
1040 gfc_expr *expr, gfc_dep_check elemental)
1042 switch (other->expr_type)
1044 case EXPR_VARIABLE:
1045 return gfc_check_argument_var_dependency (other, intent, expr, elemental);
1047 case EXPR_FUNCTION:
1048 other = gfc_get_noncopying_intrinsic_argument (other);
1049 if (other != NULL)
1050 return gfc_check_argument_dependency (other, INTENT_IN, expr,
1051 NOT_ELEMENTAL);
1053 return 0;
1055 default:
1056 return 0;
1061 /* Like gfc_check_argument_dependency, but check all the arguments in ACTUAL.
1062 FNSYM is the function being called, or NULL if not known. */
1065 gfc_check_fncall_dependency (gfc_expr *other, sym_intent intent,
1066 gfc_symbol *fnsym, gfc_actual_arglist *actual,
1067 gfc_dep_check elemental)
1069 gfc_formal_arglist *formal;
1070 gfc_expr *expr;
1072 formal = fnsym ? gfc_sym_get_dummy_args (fnsym) : NULL;
1073 for (; actual; actual = actual->next, formal = formal ? formal->next : NULL)
1075 expr = actual->expr;
1077 /* Skip args which are not present. */
1078 if (!expr)
1079 continue;
1081 /* Skip other itself. */
1082 if (expr == other)
1083 continue;
1085 /* Skip intent(in) arguments if OTHER itself is intent(in). */
1086 if (formal && intent == INTENT_IN
1087 && formal->sym->attr.intent == INTENT_IN)
1088 continue;
1090 if (gfc_check_argument_dependency (other, intent, expr, elemental))
1091 return 1;
1094 return 0;
1098 /* Return 1 if e1 and e2 are equivalenced arrays, either
1099 directly or indirectly; i.e., equivalence (a,b) for a and b
1100 or equivalence (a,c),(b,c). This function uses the equiv_
1101 lists, generated in trans-common(add_equivalences), that are
1102 guaranteed to pick up indirect equivalences. We explicitly
1103 check for overlap using the offset and length of the equivalence.
1104 This function is symmetric.
1105 TODO: This function only checks whether the full top-level
1106 symbols overlap. An improved implementation could inspect
1107 e1->ref and e2->ref to determine whether the actually accessed
1108 portions of these variables/arrays potentially overlap. */
1111 gfc_are_equivalenced_arrays (gfc_expr *e1, gfc_expr *e2)
1113 gfc_equiv_list *l;
1114 gfc_equiv_info *s, *fl1, *fl2;
1116 gcc_assert (e1->expr_type == EXPR_VARIABLE
1117 && e2->expr_type == EXPR_VARIABLE);
1119 if (!e1->symtree->n.sym->attr.in_equivalence
1120 || !e2->symtree->n.sym->attr.in_equivalence|| !e1->rank || !e2->rank)
1121 return 0;
1123 if (e1->symtree->n.sym->ns
1124 && e1->symtree->n.sym->ns != gfc_current_ns)
1125 l = e1->symtree->n.sym->ns->equiv_lists;
1126 else
1127 l = gfc_current_ns->equiv_lists;
1129 /* Go through the equiv_lists and return 1 if the variables
1130 e1 and e2 are members of the same group and satisfy the
1131 requirement on their relative offsets. */
1132 for (; l; l = l->next)
1134 fl1 = NULL;
1135 fl2 = NULL;
1136 for (s = l->equiv; s; s = s->next)
1138 if (s->sym == e1->symtree->n.sym)
1140 fl1 = s;
1141 if (fl2)
1142 break;
1144 if (s->sym == e2->symtree->n.sym)
1146 fl2 = s;
1147 if (fl1)
1148 break;
1152 if (s)
1154 /* Can these lengths be zero? */
1155 if (fl1->length <= 0 || fl2->length <= 0)
1156 return 1;
1157 /* These can't overlap if [f11,fl1+length] is before
1158 [fl2,fl2+length], or [fl2,fl2+length] is before
1159 [fl1,fl1+length], otherwise they do overlap. */
1160 if (fl1->offset + fl1->length > fl2->offset
1161 && fl2->offset + fl2->length > fl1->offset)
1162 return 1;
1165 return 0;
1169 /* Return true if there is no possibility of aliasing because of a type
1170 mismatch between all the possible pointer references and the
1171 potential target. Note that this function is asymmetric in the
1172 arguments and so must be called twice with the arguments exchanged. */
1174 static bool
1175 check_data_pointer_types (gfc_expr *expr1, gfc_expr *expr2)
1177 gfc_component *cm1;
1178 gfc_symbol *sym1;
1179 gfc_symbol *sym2;
1180 gfc_ref *ref1;
1181 bool seen_component_ref;
1183 if (expr1->expr_type != EXPR_VARIABLE
1184 || expr2->expr_type != EXPR_VARIABLE)
1185 return false;
1187 sym1 = expr1->symtree->n.sym;
1188 sym2 = expr2->symtree->n.sym;
1190 /* Keep it simple for now. */
1191 if (sym1->ts.type == BT_DERIVED && sym2->ts.type == BT_DERIVED)
1192 return false;
1194 if (sym1->attr.pointer)
1196 if (gfc_compare_types (&sym1->ts, &sym2->ts))
1197 return false;
1200 /* This is a conservative check on the components of the derived type
1201 if no component references have been seen. Since we will not dig
1202 into the components of derived type components, we play it safe by
1203 returning false. First we check the reference chain and then, if
1204 no component references have been seen, the components. */
1205 seen_component_ref = false;
1206 if (sym1->ts.type == BT_DERIVED)
1208 for (ref1 = expr1->ref; ref1; ref1 = ref1->next)
1210 if (ref1->type != REF_COMPONENT)
1211 continue;
1213 if (ref1->u.c.component->ts.type == BT_DERIVED)
1214 return false;
1216 if ((sym2->attr.pointer || ref1->u.c.component->attr.pointer)
1217 && gfc_compare_types (&ref1->u.c.component->ts, &sym2->ts))
1218 return false;
1220 seen_component_ref = true;
1224 if (sym1->ts.type == BT_DERIVED && !seen_component_ref)
1226 for (cm1 = sym1->ts.u.derived->components; cm1; cm1 = cm1->next)
1228 if (cm1->ts.type == BT_DERIVED)
1229 return false;
1231 if ((sym2->attr.pointer || cm1->attr.pointer)
1232 && gfc_compare_types (&cm1->ts, &sym2->ts))
1233 return false;
1237 return true;
1241 /* Return true if the statement body redefines the condition. Returns
1242 true if expr2 depends on expr1. expr1 should be a single term
1243 suitable for the lhs of an assignment. The IDENTICAL flag indicates
1244 whether array references to the same symbol with identical range
1245 references count as a dependency or not. Used for forall and where
1246 statements. Also used with functions returning arrays without a
1247 temporary. */
1250 gfc_check_dependency (gfc_expr *expr1, gfc_expr *expr2, bool identical)
1252 gfc_actual_arglist *actual;
1253 gfc_constructor *c;
1254 int n;
1256 gcc_assert (expr1->expr_type == EXPR_VARIABLE);
1258 switch (expr2->expr_type)
1260 case EXPR_OP:
1261 n = gfc_check_dependency (expr1, expr2->value.op.op1, identical);
1262 if (n)
1263 return n;
1264 if (expr2->value.op.op2)
1265 return gfc_check_dependency (expr1, expr2->value.op.op2, identical);
1266 return 0;
1268 case EXPR_VARIABLE:
1269 /* The interesting cases are when the symbols don't match. */
1270 if (expr1->symtree->n.sym != expr2->symtree->n.sym)
1272 gfc_typespec *ts1 = &expr1->symtree->n.sym->ts;
1273 gfc_typespec *ts2 = &expr2->symtree->n.sym->ts;
1275 /* Return 1 if expr1 and expr2 are equivalenced arrays. */
1276 if (gfc_are_equivalenced_arrays (expr1, expr2))
1277 return 1;
1279 /* Symbols can only alias if they have the same type. */
1280 if (ts1->type != BT_UNKNOWN && ts2->type != BT_UNKNOWN
1281 && ts1->type != BT_DERIVED && ts2->type != BT_DERIVED)
1283 if (ts1->type != ts2->type || ts1->kind != ts2->kind)
1284 return 0;
1287 /* If either variable is a pointer, assume the worst. */
1288 /* TODO: -fassume-no-pointer-aliasing */
1289 if (gfc_is_data_pointer (expr1) || gfc_is_data_pointer (expr2))
1291 if (check_data_pointer_types (expr1, expr2)
1292 && check_data_pointer_types (expr2, expr1))
1293 return 0;
1295 return 1;
1297 else
1299 gfc_symbol *sym1 = expr1->symtree->n.sym;
1300 gfc_symbol *sym2 = expr2->symtree->n.sym;
1301 if (sym1->attr.target && sym2->attr.target
1302 && ((sym1->attr.dummy && !sym1->attr.contiguous
1303 && (!sym1->attr.dimension
1304 || sym2->as->type == AS_ASSUMED_SHAPE))
1305 || (sym2->attr.dummy && !sym2->attr.contiguous
1306 && (!sym2->attr.dimension
1307 || sym2->as->type == AS_ASSUMED_SHAPE))))
1308 return 1;
1311 /* Otherwise distinct symbols have no dependencies. */
1312 return 0;
1315 if (identical)
1316 return 1;
1318 /* Identical and disjoint ranges return 0,
1319 overlapping ranges return 1. */
1320 if (expr1->ref && expr2->ref)
1321 return gfc_dep_resolver (expr1->ref, expr2->ref, NULL);
1323 return 1;
1325 case EXPR_FUNCTION:
1326 if (gfc_get_noncopying_intrinsic_argument (expr2) != NULL)
1327 identical = 1;
1329 /* Remember possible differences between elemental and
1330 transformational functions. All functions inside a FORALL
1331 will be pure. */
1332 for (actual = expr2->value.function.actual;
1333 actual; actual = actual->next)
1335 if (!actual->expr)
1336 continue;
1337 n = gfc_check_dependency (expr1, actual->expr, identical);
1338 if (n)
1339 return n;
1341 return 0;
1343 case EXPR_CONSTANT:
1344 case EXPR_NULL:
1345 return 0;
1347 case EXPR_ARRAY:
1348 /* Loop through the array constructor's elements. */
1349 for (c = gfc_constructor_first (expr2->value.constructor);
1350 c; c = gfc_constructor_next (c))
1352 /* If this is an iterator, assume the worst. */
1353 if (c->iterator)
1354 return 1;
1355 /* Avoid recursion in the common case. */
1356 if (c->expr->expr_type == EXPR_CONSTANT)
1357 continue;
1358 if (gfc_check_dependency (expr1, c->expr, 1))
1359 return 1;
1361 return 0;
1363 default:
1364 return 1;
1369 /* Determines overlapping for two array sections. */
1371 static gfc_dependency
1372 check_section_vs_section (gfc_array_ref *l_ar, gfc_array_ref *r_ar, int n)
1374 gfc_expr *l_start;
1375 gfc_expr *l_end;
1376 gfc_expr *l_stride;
1377 gfc_expr *l_lower;
1378 gfc_expr *l_upper;
1379 int l_dir;
1381 gfc_expr *r_start;
1382 gfc_expr *r_end;
1383 gfc_expr *r_stride;
1384 gfc_expr *r_lower;
1385 gfc_expr *r_upper;
1386 gfc_expr *one_expr;
1387 int r_dir;
1388 int stride_comparison;
1389 int start_comparison;
1390 mpz_t tmp;
1392 /* If they are the same range, return without more ado. */
1393 if (is_same_range (l_ar, r_ar, n))
1394 return GFC_DEP_EQUAL;
1396 l_start = l_ar->start[n];
1397 l_end = l_ar->end[n];
1398 l_stride = l_ar->stride[n];
1400 r_start = r_ar->start[n];
1401 r_end = r_ar->end[n];
1402 r_stride = r_ar->stride[n];
1404 /* If l_start is NULL take it from array specifier. */
1405 if (NULL == l_start && IS_ARRAY_EXPLICIT (l_ar->as))
1406 l_start = l_ar->as->lower[n];
1407 /* If l_end is NULL take it from array specifier. */
1408 if (NULL == l_end && IS_ARRAY_EXPLICIT (l_ar->as))
1409 l_end = l_ar->as->upper[n];
1411 /* If r_start is NULL take it from array specifier. */
1412 if (NULL == r_start && IS_ARRAY_EXPLICIT (r_ar->as))
1413 r_start = r_ar->as->lower[n];
1414 /* If r_end is NULL take it from array specifier. */
1415 if (NULL == r_end && IS_ARRAY_EXPLICIT (r_ar->as))
1416 r_end = r_ar->as->upper[n];
1418 /* Determine whether the l_stride is positive or negative. */
1419 if (!l_stride)
1420 l_dir = 1;
1421 else if (l_stride->expr_type == EXPR_CONSTANT
1422 && l_stride->ts.type == BT_INTEGER)
1423 l_dir = mpz_sgn (l_stride->value.integer);
1424 else if (l_start && l_end)
1425 l_dir = gfc_dep_compare_expr (l_end, l_start);
1426 else
1427 l_dir = -2;
1429 /* Determine whether the r_stride is positive or negative. */
1430 if (!r_stride)
1431 r_dir = 1;
1432 else if (r_stride->expr_type == EXPR_CONSTANT
1433 && r_stride->ts.type == BT_INTEGER)
1434 r_dir = mpz_sgn (r_stride->value.integer);
1435 else if (r_start && r_end)
1436 r_dir = gfc_dep_compare_expr (r_end, r_start);
1437 else
1438 r_dir = -2;
1440 /* The strides should never be zero. */
1441 if (l_dir == 0 || r_dir == 0)
1442 return GFC_DEP_OVERLAP;
1444 /* Determine the relationship between the strides. Set stride_comparison to
1445 -2 if the dependency cannot be determined
1446 -1 if l_stride < r_stride
1447 0 if l_stride == r_stride
1448 1 if l_stride > r_stride
1449 as determined by gfc_dep_compare_expr. */
1451 one_expr = gfc_get_int_expr (gfc_index_integer_kind, NULL, 1);
1453 stride_comparison = gfc_dep_compare_expr (l_stride ? l_stride : one_expr,
1454 r_stride ? r_stride : one_expr);
1456 if (l_start && r_start)
1457 start_comparison = gfc_dep_compare_expr (l_start, r_start);
1458 else
1459 start_comparison = -2;
1461 gfc_free_expr (one_expr);
1463 /* Determine LHS upper and lower bounds. */
1464 if (l_dir == 1)
1466 l_lower = l_start;
1467 l_upper = l_end;
1469 else if (l_dir == -1)
1471 l_lower = l_end;
1472 l_upper = l_start;
1474 else
1476 l_lower = NULL;
1477 l_upper = NULL;
1480 /* Determine RHS upper and lower bounds. */
1481 if (r_dir == 1)
1483 r_lower = r_start;
1484 r_upper = r_end;
1486 else if (r_dir == -1)
1488 r_lower = r_end;
1489 r_upper = r_start;
1491 else
1493 r_lower = NULL;
1494 r_upper = NULL;
1497 /* Check whether the ranges are disjoint. */
1498 if (l_upper && r_lower && gfc_dep_compare_expr (l_upper, r_lower) == -1)
1499 return GFC_DEP_NODEP;
1500 if (r_upper && l_lower && gfc_dep_compare_expr (r_upper, l_lower) == -1)
1501 return GFC_DEP_NODEP;
1503 /* Handle cases like x:y:1 vs. x:z:-1 as GFC_DEP_EQUAL. */
1504 if (l_start && r_start && gfc_dep_compare_expr (l_start, r_start) == 0)
1506 if (l_dir == 1 && r_dir == -1)
1507 return GFC_DEP_EQUAL;
1508 if (l_dir == -1 && r_dir == 1)
1509 return GFC_DEP_EQUAL;
1512 /* Handle cases like x:y:1 vs. z:y:-1 as GFC_DEP_EQUAL. */
1513 if (l_end && r_end && gfc_dep_compare_expr (l_end, r_end) == 0)
1515 if (l_dir == 1 && r_dir == -1)
1516 return GFC_DEP_EQUAL;
1517 if (l_dir == -1 && r_dir == 1)
1518 return GFC_DEP_EQUAL;
1521 /* Handle cases like x:y:2 vs. x+1:z:4 as GFC_DEP_NODEP.
1522 There is no dependency if the remainder of
1523 (l_start - r_start) / gcd(l_stride, r_stride) is
1524 nonzero.
1525 TODO:
1526 - Cases like a(1:4:2) = a(2:3) are still not handled.
1529 #define IS_CONSTANT_INTEGER(a) ((a) && ((a)->expr_type == EXPR_CONSTANT) \
1530 && (a)->ts.type == BT_INTEGER)
1532 if (IS_CONSTANT_INTEGER (l_stride) && IS_CONSTANT_INTEGER (r_stride)
1533 && gfc_dep_difference (l_start, r_start, &tmp))
1535 mpz_t gcd;
1536 int result;
1538 mpz_init (gcd);
1539 mpz_gcd (gcd, l_stride->value.integer, r_stride->value.integer);
1541 mpz_fdiv_r (tmp, tmp, gcd);
1542 result = mpz_cmp_si (tmp, 0L);
1544 mpz_clear (gcd);
1545 mpz_clear (tmp);
1547 if (result != 0)
1548 return GFC_DEP_NODEP;
1551 #undef IS_CONSTANT_INTEGER
1553 /* Check for forward dependencies x:y vs. x+1:z and x:y:z vs. x:y:z+1. */
1555 if (l_dir == 1 && r_dir == 1 &&
1556 (start_comparison == 0 || start_comparison == -1)
1557 && (stride_comparison == 0 || stride_comparison == -1))
1558 return GFC_DEP_FORWARD;
1560 /* Check for forward dependencies x:y:-1 vs. x-1:z:-1 and
1561 x:y:-1 vs. x:y:-2. */
1562 if (l_dir == -1 && r_dir == -1 &&
1563 (start_comparison == 0 || start_comparison == 1)
1564 && (stride_comparison == 0 || stride_comparison == 1))
1565 return GFC_DEP_FORWARD;
1567 if (stride_comparison == 0 || stride_comparison == -1)
1569 if (l_start && IS_ARRAY_EXPLICIT (l_ar->as))
1572 /* Check for a(low:y:s) vs. a(z:x:s) or
1573 a(low:y:s) vs. a(z:x:s+1) where a has a lower bound
1574 of low, which is always at least a forward dependence. */
1576 if (r_dir == 1
1577 && gfc_dep_compare_expr (l_start, l_ar->as->lower[n]) == 0)
1578 return GFC_DEP_FORWARD;
1582 if (stride_comparison == 0 || stride_comparison == 1)
1584 if (l_start && IS_ARRAY_EXPLICIT (l_ar->as))
1587 /* Check for a(high:y:-s) vs. a(z:x:-s) or
1588 a(high:y:-s vs. a(z:x:-s-1) where a has a higher bound
1589 of high, which is always at least a forward dependence. */
1591 if (r_dir == -1
1592 && gfc_dep_compare_expr (l_start, l_ar->as->upper[n]) == 0)
1593 return GFC_DEP_FORWARD;
1598 if (stride_comparison == 0)
1600 /* From here, check for backwards dependencies. */
1601 /* x+1:y vs. x:z. */
1602 if (l_dir == 1 && r_dir == 1 && start_comparison == 1)
1603 return GFC_DEP_BACKWARD;
1605 /* x-1:y:-1 vs. x:z:-1. */
1606 if (l_dir == -1 && r_dir == -1 && start_comparison == -1)
1607 return GFC_DEP_BACKWARD;
1610 return GFC_DEP_OVERLAP;
1614 /* Determines overlapping for a single element and a section. */
1616 static gfc_dependency
1617 gfc_check_element_vs_section( gfc_ref *lref, gfc_ref *rref, int n)
1619 gfc_array_ref *ref;
1620 gfc_expr *elem;
1621 gfc_expr *start;
1622 gfc_expr *end;
1623 gfc_expr *stride;
1624 int s;
1626 elem = lref->u.ar.start[n];
1627 if (!elem)
1628 return GFC_DEP_OVERLAP;
1630 ref = &rref->u.ar;
1631 start = ref->start[n] ;
1632 end = ref->end[n] ;
1633 stride = ref->stride[n];
1635 if (!start && IS_ARRAY_EXPLICIT (ref->as))
1636 start = ref->as->lower[n];
1637 if (!end && IS_ARRAY_EXPLICIT (ref->as))
1638 end = ref->as->upper[n];
1640 /* Determine whether the stride is positive or negative. */
1641 if (!stride)
1642 s = 1;
1643 else if (stride->expr_type == EXPR_CONSTANT
1644 && stride->ts.type == BT_INTEGER)
1645 s = mpz_sgn (stride->value.integer);
1646 else
1647 s = -2;
1649 /* Stride should never be zero. */
1650 if (s == 0)
1651 return GFC_DEP_OVERLAP;
1653 /* Positive strides. */
1654 if (s == 1)
1656 /* Check for elem < lower. */
1657 if (start && gfc_dep_compare_expr (elem, start) == -1)
1658 return GFC_DEP_NODEP;
1659 /* Check for elem > upper. */
1660 if (end && gfc_dep_compare_expr (elem, end) == 1)
1661 return GFC_DEP_NODEP;
1663 if (start && end)
1665 s = gfc_dep_compare_expr (start, end);
1666 /* Check for an empty range. */
1667 if (s == 1)
1668 return GFC_DEP_NODEP;
1669 if (s == 0 && gfc_dep_compare_expr (elem, start) == 0)
1670 return GFC_DEP_EQUAL;
1673 /* Negative strides. */
1674 else if (s == -1)
1676 /* Check for elem > upper. */
1677 if (end && gfc_dep_compare_expr (elem, start) == 1)
1678 return GFC_DEP_NODEP;
1679 /* Check for elem < lower. */
1680 if (start && gfc_dep_compare_expr (elem, end) == -1)
1681 return GFC_DEP_NODEP;
1683 if (start && end)
1685 s = gfc_dep_compare_expr (start, end);
1686 /* Check for an empty range. */
1687 if (s == -1)
1688 return GFC_DEP_NODEP;
1689 if (s == 0 && gfc_dep_compare_expr (elem, start) == 0)
1690 return GFC_DEP_EQUAL;
1693 /* Unknown strides. */
1694 else
1696 if (!start || !end)
1697 return GFC_DEP_OVERLAP;
1698 s = gfc_dep_compare_expr (start, end);
1699 if (s <= -2)
1700 return GFC_DEP_OVERLAP;
1701 /* Assume positive stride. */
1702 if (s == -1)
1704 /* Check for elem < lower. */
1705 if (gfc_dep_compare_expr (elem, start) == -1)
1706 return GFC_DEP_NODEP;
1707 /* Check for elem > upper. */
1708 if (gfc_dep_compare_expr (elem, end) == 1)
1709 return GFC_DEP_NODEP;
1711 /* Assume negative stride. */
1712 else if (s == 1)
1714 /* Check for elem > upper. */
1715 if (gfc_dep_compare_expr (elem, start) == 1)
1716 return GFC_DEP_NODEP;
1717 /* Check for elem < lower. */
1718 if (gfc_dep_compare_expr (elem, end) == -1)
1719 return GFC_DEP_NODEP;
1721 /* Equal bounds. */
1722 else if (s == 0)
1724 s = gfc_dep_compare_expr (elem, start);
1725 if (s == 0)
1726 return GFC_DEP_EQUAL;
1727 if (s == 1 || s == -1)
1728 return GFC_DEP_NODEP;
1732 return GFC_DEP_OVERLAP;
1736 /* Traverse expr, checking all EXPR_VARIABLE symbols for their
1737 forall_index attribute. Return true if any variable may be
1738 being used as a FORALL index. Its safe to pessimistically
1739 return true, and assume a dependency. */
1741 static bool
1742 contains_forall_index_p (gfc_expr *expr)
1744 gfc_actual_arglist *arg;
1745 gfc_constructor *c;
1746 gfc_ref *ref;
1747 int i;
1749 if (!expr)
1750 return false;
1752 switch (expr->expr_type)
1754 case EXPR_VARIABLE:
1755 if (expr->symtree->n.sym->forall_index)
1756 return true;
1757 break;
1759 case EXPR_OP:
1760 if (contains_forall_index_p (expr->value.op.op1)
1761 || contains_forall_index_p (expr->value.op.op2))
1762 return true;
1763 break;
1765 case EXPR_FUNCTION:
1766 for (arg = expr->value.function.actual; arg; arg = arg->next)
1767 if (contains_forall_index_p (arg->expr))
1768 return true;
1769 break;
1771 case EXPR_CONSTANT:
1772 case EXPR_NULL:
1773 case EXPR_SUBSTRING:
1774 break;
1776 case EXPR_STRUCTURE:
1777 case EXPR_ARRAY:
1778 for (c = gfc_constructor_first (expr->value.constructor);
1779 c; gfc_constructor_next (c))
1780 if (contains_forall_index_p (c->expr))
1781 return true;
1782 break;
1784 default:
1785 gcc_unreachable ();
1788 for (ref = expr->ref; ref; ref = ref->next)
1789 switch (ref->type)
1791 case REF_ARRAY:
1792 for (i = 0; i < ref->u.ar.dimen; i++)
1793 if (contains_forall_index_p (ref->u.ar.start[i])
1794 || contains_forall_index_p (ref->u.ar.end[i])
1795 || contains_forall_index_p (ref->u.ar.stride[i]))
1796 return true;
1797 break;
1799 case REF_COMPONENT:
1800 break;
1802 case REF_SUBSTRING:
1803 if (contains_forall_index_p (ref->u.ss.start)
1804 || contains_forall_index_p (ref->u.ss.end))
1805 return true;
1806 break;
1808 default:
1809 gcc_unreachable ();
1812 return false;
1815 /* Determines overlapping for two single element array references. */
1817 static gfc_dependency
1818 gfc_check_element_vs_element (gfc_ref *lref, gfc_ref *rref, int n)
1820 gfc_array_ref l_ar;
1821 gfc_array_ref r_ar;
1822 gfc_expr *l_start;
1823 gfc_expr *r_start;
1824 int i;
1826 l_ar = lref->u.ar;
1827 r_ar = rref->u.ar;
1828 l_start = l_ar.start[n] ;
1829 r_start = r_ar.start[n] ;
1830 i = gfc_dep_compare_expr (r_start, l_start);
1831 if (i == 0)
1832 return GFC_DEP_EQUAL;
1834 /* Treat two scalar variables as potentially equal. This allows
1835 us to prove that a(i,:) and a(j,:) have no dependency. See
1836 Gerald Roth, "Evaluation of Array Syntax Dependence Analysis",
1837 Proceedings of the International Conference on Parallel and
1838 Distributed Processing Techniques and Applications (PDPTA2001),
1839 Las Vegas, Nevada, June 2001. */
1840 /* However, we need to be careful when either scalar expression
1841 contains a FORALL index, as these can potentially change value
1842 during the scalarization/traversal of this array reference. */
1843 if (contains_forall_index_p (r_start) || contains_forall_index_p (l_start))
1844 return GFC_DEP_OVERLAP;
1846 if (i > -2)
1847 return GFC_DEP_NODEP;
1848 return GFC_DEP_EQUAL;
1852 /* Determine if an array ref, usually an array section specifies the
1853 entire array. In addition, if the second, pointer argument is
1854 provided, the function will return true if the reference is
1855 contiguous; eg. (:, 1) gives true but (1,:) gives false. */
1857 bool
1858 gfc_full_array_ref_p (gfc_ref *ref, bool *contiguous)
1860 int i;
1861 int n;
1862 bool lbound_OK = true;
1863 bool ubound_OK = true;
1865 if (contiguous)
1866 *contiguous = false;
1868 if (ref->type != REF_ARRAY)
1869 return false;
1871 if (ref->u.ar.type == AR_FULL)
1873 if (contiguous)
1874 *contiguous = true;
1875 return true;
1878 if (ref->u.ar.type != AR_SECTION)
1879 return false;
1880 if (ref->next)
1881 return false;
1883 for (i = 0; i < ref->u.ar.dimen; i++)
1885 /* If we have a single element in the reference, for the reference
1886 to be full, we need to ascertain that the array has a single
1887 element in this dimension and that we actually reference the
1888 correct element. */
1889 if (ref->u.ar.dimen_type[i] == DIMEN_ELEMENT)
1891 /* This is unconditionally a contiguous reference if all the
1892 remaining dimensions are elements. */
1893 if (contiguous)
1895 *contiguous = true;
1896 for (n = i + 1; n < ref->u.ar.dimen; n++)
1897 if (ref->u.ar.dimen_type[n] != DIMEN_ELEMENT)
1898 *contiguous = false;
1901 if (!ref->u.ar.as
1902 || !ref->u.ar.as->lower[i]
1903 || !ref->u.ar.as->upper[i]
1904 || gfc_dep_compare_expr (ref->u.ar.as->lower[i],
1905 ref->u.ar.as->upper[i])
1906 || !ref->u.ar.start[i]
1907 || gfc_dep_compare_expr (ref->u.ar.start[i],
1908 ref->u.ar.as->lower[i]))
1909 return false;
1910 else
1911 continue;
1914 /* Check the lower bound. */
1915 if (ref->u.ar.start[i]
1916 && (!ref->u.ar.as
1917 || !ref->u.ar.as->lower[i]
1918 || gfc_dep_compare_expr (ref->u.ar.start[i],
1919 ref->u.ar.as->lower[i])))
1920 lbound_OK = false;
1921 /* Check the upper bound. */
1922 if (ref->u.ar.end[i]
1923 && (!ref->u.ar.as
1924 || !ref->u.ar.as->upper[i]
1925 || gfc_dep_compare_expr (ref->u.ar.end[i],
1926 ref->u.ar.as->upper[i])))
1927 ubound_OK = false;
1928 /* Check the stride. */
1929 if (ref->u.ar.stride[i]
1930 && !gfc_expr_is_one (ref->u.ar.stride[i], 0))
1931 return false;
1933 /* This is unconditionally a contiguous reference as long as all
1934 the subsequent dimensions are elements. */
1935 if (contiguous)
1937 *contiguous = true;
1938 for (n = i + 1; n < ref->u.ar.dimen; n++)
1939 if (ref->u.ar.dimen_type[n] != DIMEN_ELEMENT)
1940 *contiguous = false;
1943 if (!lbound_OK || !ubound_OK)
1944 return false;
1946 return true;
1950 /* Determine if a full array is the same as an array section with one
1951 variable limit. For this to be so, the strides must both be unity
1952 and one of either start == lower or end == upper must be true. */
1954 static bool
1955 ref_same_as_full_array (gfc_ref *full_ref, gfc_ref *ref)
1957 int i;
1958 bool upper_or_lower;
1960 if (full_ref->type != REF_ARRAY)
1961 return false;
1962 if (full_ref->u.ar.type != AR_FULL)
1963 return false;
1964 if (ref->type != REF_ARRAY)
1965 return false;
1966 if (ref->u.ar.type != AR_SECTION)
1967 return false;
1969 for (i = 0; i < ref->u.ar.dimen; i++)
1971 /* If we have a single element in the reference, we need to check
1972 that the array has a single element and that we actually reference
1973 the correct element. */
1974 if (ref->u.ar.dimen_type[i] == DIMEN_ELEMENT)
1976 if (!full_ref->u.ar.as
1977 || !full_ref->u.ar.as->lower[i]
1978 || !full_ref->u.ar.as->upper[i]
1979 || gfc_dep_compare_expr (full_ref->u.ar.as->lower[i],
1980 full_ref->u.ar.as->upper[i])
1981 || !ref->u.ar.start[i]
1982 || gfc_dep_compare_expr (ref->u.ar.start[i],
1983 full_ref->u.ar.as->lower[i]))
1984 return false;
1987 /* Check the strides. */
1988 if (full_ref->u.ar.stride[i] && !gfc_expr_is_one (full_ref->u.ar.stride[i], 0))
1989 return false;
1990 if (ref->u.ar.stride[i] && !gfc_expr_is_one (ref->u.ar.stride[i], 0))
1991 return false;
1993 upper_or_lower = false;
1994 /* Check the lower bound. */
1995 if (ref->u.ar.start[i]
1996 && (ref->u.ar.as
1997 && full_ref->u.ar.as->lower[i]
1998 && gfc_dep_compare_expr (ref->u.ar.start[i],
1999 full_ref->u.ar.as->lower[i]) == 0))
2000 upper_or_lower = true;
2001 /* Check the upper bound. */
2002 if (ref->u.ar.end[i]
2003 && (ref->u.ar.as
2004 && full_ref->u.ar.as->upper[i]
2005 && gfc_dep_compare_expr (ref->u.ar.end[i],
2006 full_ref->u.ar.as->upper[i]) == 0))
2007 upper_or_lower = true;
2008 if (!upper_or_lower)
2009 return false;
2011 return true;
2015 /* Finds if two array references are overlapping or not.
2016 Return value
2017 2 : array references are overlapping but reversal of one or
2018 more dimensions will clear the dependency.
2019 1 : array references are overlapping.
2020 0 : array references are identical or not overlapping. */
2023 gfc_dep_resolver (gfc_ref *lref, gfc_ref *rref, gfc_reverse *reverse)
2025 int n;
2026 int m;
2027 gfc_dependency fin_dep;
2028 gfc_dependency this_dep;
2030 this_dep = GFC_DEP_ERROR;
2031 fin_dep = GFC_DEP_ERROR;
2032 /* Dependencies due to pointers should already have been identified.
2033 We only need to check for overlapping array references. */
2035 while (lref && rref)
2037 /* We're resolving from the same base symbol, so both refs should be
2038 the same type. We traverse the reference chain until we find ranges
2039 that are not equal. */
2040 gcc_assert (lref->type == rref->type);
2041 switch (lref->type)
2043 case REF_COMPONENT:
2044 /* The two ranges can't overlap if they are from different
2045 components. */
2046 if (lref->u.c.component != rref->u.c.component)
2047 return 0;
2048 break;
2050 case REF_SUBSTRING:
2051 /* Substring overlaps are handled by the string assignment code
2052 if there is not an underlying dependency. */
2053 return (fin_dep == GFC_DEP_OVERLAP) ? 1 : 0;
2055 case REF_ARRAY:
2057 if (ref_same_as_full_array (lref, rref))
2058 return 0;
2060 if (ref_same_as_full_array (rref, lref))
2061 return 0;
2063 if (lref->u.ar.dimen != rref->u.ar.dimen)
2065 if (lref->u.ar.type == AR_FULL)
2066 fin_dep = gfc_full_array_ref_p (rref, NULL) ? GFC_DEP_EQUAL
2067 : GFC_DEP_OVERLAP;
2068 else if (rref->u.ar.type == AR_FULL)
2069 fin_dep = gfc_full_array_ref_p (lref, NULL) ? GFC_DEP_EQUAL
2070 : GFC_DEP_OVERLAP;
2071 else
2072 return 1;
2073 break;
2076 /* Index for the reverse array. */
2077 m = -1;
2078 for (n=0; n < lref->u.ar.dimen; n++)
2080 /* Handle dependency when either of array reference is vector
2081 subscript. There is no dependency if the vector indices
2082 are equal or if indices are known to be different in a
2083 different dimension. */
2084 if (lref->u.ar.dimen_type[n] == DIMEN_VECTOR
2085 || rref->u.ar.dimen_type[n] == DIMEN_VECTOR)
2087 if (lref->u.ar.dimen_type[n] == DIMEN_VECTOR
2088 && rref->u.ar.dimen_type[n] == DIMEN_VECTOR
2089 && gfc_dep_compare_expr (lref->u.ar.start[n],
2090 rref->u.ar.start[n]) == 0)
2091 this_dep = GFC_DEP_EQUAL;
2092 else
2093 this_dep = GFC_DEP_OVERLAP;
2095 goto update_fin_dep;
2098 if (lref->u.ar.dimen_type[n] == DIMEN_RANGE
2099 && rref->u.ar.dimen_type[n] == DIMEN_RANGE)
2100 this_dep = check_section_vs_section (&lref->u.ar, &rref->u.ar, n);
2101 else if (lref->u.ar.dimen_type[n] == DIMEN_ELEMENT
2102 && rref->u.ar.dimen_type[n] == DIMEN_RANGE)
2103 this_dep = gfc_check_element_vs_section (lref, rref, n);
2104 else if (rref->u.ar.dimen_type[n] == DIMEN_ELEMENT
2105 && lref->u.ar.dimen_type[n] == DIMEN_RANGE)
2106 this_dep = gfc_check_element_vs_section (rref, lref, n);
2107 else
2109 gcc_assert (rref->u.ar.dimen_type[n] == DIMEN_ELEMENT
2110 && lref->u.ar.dimen_type[n] == DIMEN_ELEMENT);
2111 this_dep = gfc_check_element_vs_element (rref, lref, n);
2114 /* If any dimension doesn't overlap, we have no dependency. */
2115 if (this_dep == GFC_DEP_NODEP)
2116 return 0;
2118 /* Now deal with the loop reversal logic: This only works on
2119 ranges and is activated by setting
2120 reverse[n] == GFC_ENABLE_REVERSE
2121 The ability to reverse or not is set by previous conditions
2122 in this dimension. If reversal is not activated, the
2123 value GFC_DEP_BACKWARD is reset to GFC_DEP_OVERLAP. */
2125 /* Get the indexing right for the scalarizing loop. If this
2126 is an element, there is no corresponding loop. */
2127 if (lref->u.ar.dimen_type[n] != DIMEN_ELEMENT)
2128 m++;
2130 if (rref->u.ar.dimen_type[n] == DIMEN_RANGE
2131 && lref->u.ar.dimen_type[n] == DIMEN_RANGE)
2133 /* Set reverse if backward dependence and not inhibited. */
2134 if (reverse && reverse[m] == GFC_ENABLE_REVERSE)
2135 reverse[m] = (this_dep == GFC_DEP_BACKWARD) ?
2136 GFC_REVERSE_SET : reverse[m];
2138 /* Set forward if forward dependence and not inhibited. */
2139 if (reverse && reverse[m] == GFC_ENABLE_REVERSE)
2140 reverse[m] = (this_dep == GFC_DEP_FORWARD) ?
2141 GFC_FORWARD_SET : reverse[m];
2143 /* Flag up overlap if dependence not compatible with
2144 the overall state of the expression. */
2145 if (reverse && reverse[m] == GFC_REVERSE_SET
2146 && this_dep == GFC_DEP_FORWARD)
2148 reverse[m] = GFC_INHIBIT_REVERSE;
2149 this_dep = GFC_DEP_OVERLAP;
2151 else if (reverse && reverse[m] == GFC_FORWARD_SET
2152 && this_dep == GFC_DEP_BACKWARD)
2154 reverse[m] = GFC_INHIBIT_REVERSE;
2155 this_dep = GFC_DEP_OVERLAP;
2158 /* If no intention of reversing or reversing is explicitly
2159 inhibited, convert backward dependence to overlap. */
2160 if ((reverse == NULL && this_dep == GFC_DEP_BACKWARD)
2161 || (reverse != NULL && reverse[m] == GFC_INHIBIT_REVERSE))
2162 this_dep = GFC_DEP_OVERLAP;
2165 /* Overlap codes are in order of priority. We only need to
2166 know the worst one.*/
2168 update_fin_dep:
2169 if (this_dep > fin_dep)
2170 fin_dep = this_dep;
2173 /* If this is an equal element, we have to keep going until we find
2174 the "real" array reference. */
2175 if (lref->u.ar.type == AR_ELEMENT
2176 && rref->u.ar.type == AR_ELEMENT
2177 && fin_dep == GFC_DEP_EQUAL)
2178 break;
2180 /* Exactly matching and forward overlapping ranges don't cause a
2181 dependency. */
2182 if (fin_dep < GFC_DEP_BACKWARD)
2183 return 0;
2185 /* Keep checking. We only have a dependency if
2186 subsequent references also overlap. */
2187 break;
2189 default:
2190 gcc_unreachable ();
2192 lref = lref->next;
2193 rref = rref->next;
2196 /* If we haven't seen any array refs then something went wrong. */
2197 gcc_assert (fin_dep != GFC_DEP_ERROR);
2199 /* Assume the worst if we nest to different depths. */
2200 if (lref || rref)
2201 return 1;
2203 return fin_dep == GFC_DEP_OVERLAP;