Implement -mmemcpy-strategy= and -mmemset-strategy= options
[official-gcc.git] / gcc / sel-sched-ir.c
blob47e769534dbf5509b9e335a5ec9fa2dcb7edd85c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "diagnostic-core.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "insn-attr.h"
33 #include "except.h"
34 #include "recog.h"
35 #include "params.h"
36 #include "target.h"
37 #include "sched-int.h"
38 #include "ggc.h"
39 #include "tree.h"
40 #include "vec.h"
41 #include "langhooks.h"
42 #include "rtlhooks-def.h"
43 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
45 #ifdef INSN_SCHEDULING
46 #include "sel-sched-ir.h"
47 /* We don't have to use it except for sel_print_insn. */
48 #include "sel-sched-dump.h"
50 /* A vector holding bb info for whole scheduling pass. */
51 vec<sel_global_bb_info_def>
52 sel_global_bb_info = vNULL;
54 /* A vector holding bb info. */
55 vec<sel_region_bb_info_def>
56 sel_region_bb_info = vNULL;
58 /* A pool for allocating all lists. */
59 alloc_pool sched_lists_pool;
61 /* This contains information about successors for compute_av_set. */
62 struct succs_info current_succs;
64 /* Data structure to describe interaction with the generic scheduler utils. */
65 static struct common_sched_info_def sel_common_sched_info;
67 /* The loop nest being pipelined. */
68 struct loop *current_loop_nest;
70 /* LOOP_NESTS is a vector containing the corresponding loop nest for
71 each region. */
72 static vec<loop_p> loop_nests = vNULL;
74 /* Saves blocks already in loop regions, indexed by bb->index. */
75 static sbitmap bbs_in_loop_rgns = NULL;
77 /* CFG hooks that are saved before changing create_basic_block hook. */
78 static struct cfg_hooks orig_cfg_hooks;
81 /* Array containing reverse topological index of function basic blocks,
82 indexed by BB->INDEX. */
83 static int *rev_top_order_index = NULL;
85 /* Length of the above array. */
86 static int rev_top_order_index_len = -1;
88 /* A regset pool structure. */
89 static struct
91 /* The stack to which regsets are returned. */
92 regset *v;
94 /* Its pointer. */
95 int n;
97 /* Its size. */
98 int s;
100 /* In VV we save all generated regsets so that, when destructing the
101 pool, we can compare it with V and check that every regset was returned
102 back to pool. */
103 regset *vv;
105 /* The pointer of VV stack. */
106 int nn;
108 /* Its size. */
109 int ss;
111 /* The difference between allocated and returned regsets. */
112 int diff;
113 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
115 /* This represents the nop pool. */
116 static struct
118 /* The vector which holds previously emitted nops. */
119 insn_t *v;
121 /* Its pointer. */
122 int n;
124 /* Its size. */
125 int s;
126 } nop_pool = { NULL, 0, 0 };
128 /* The pool for basic block notes. */
129 static rtx_vec_t bb_note_pool;
131 /* A NOP pattern used to emit placeholder insns. */
132 rtx nop_pattern = NULL_RTX;
133 /* A special instruction that resides in EXIT_BLOCK.
134 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
135 rtx exit_insn = NULL_RTX;
137 /* TRUE if while scheduling current region, which is loop, its preheader
138 was removed. */
139 bool preheader_removed = false;
142 /* Forward static declarations. */
143 static void fence_clear (fence_t);
145 static void deps_init_id (idata_t, insn_t, bool);
146 static void init_id_from_df (idata_t, insn_t, bool);
147 static expr_t set_insn_init (expr_t, vinsn_t, int);
149 static void cfg_preds (basic_block, insn_t **, int *);
150 static void prepare_insn_expr (insn_t, int);
151 static void free_history_vect (vec<expr_history_def> &);
153 static void move_bb_info (basic_block, basic_block);
154 static void remove_empty_bb (basic_block, bool);
155 static void sel_merge_blocks (basic_block, basic_block);
156 static void sel_remove_loop_preheader (void);
157 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
159 static bool insn_is_the_only_one_in_bb_p (insn_t);
160 static void create_initial_data_sets (basic_block);
162 static void free_av_set (basic_block);
163 static void invalidate_av_set (basic_block);
164 static void extend_insn_data (void);
165 static void sel_init_new_insn (insn_t, int);
166 static void finish_insns (void);
168 /* Various list functions. */
170 /* Copy an instruction list L. */
171 ilist_t
172 ilist_copy (ilist_t l)
174 ilist_t head = NULL, *tailp = &head;
176 while (l)
178 ilist_add (tailp, ILIST_INSN (l));
179 tailp = &ILIST_NEXT (*tailp);
180 l = ILIST_NEXT (l);
183 return head;
186 /* Invert an instruction list L. */
187 ilist_t
188 ilist_invert (ilist_t l)
190 ilist_t res = NULL;
192 while (l)
194 ilist_add (&res, ILIST_INSN (l));
195 l = ILIST_NEXT (l);
198 return res;
201 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
202 void
203 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
205 bnd_t bnd;
207 _list_add (lp);
208 bnd = BLIST_BND (*lp);
210 BND_TO (bnd) = to;
211 BND_PTR (bnd) = ptr;
212 BND_AV (bnd) = NULL;
213 BND_AV1 (bnd) = NULL;
214 BND_DC (bnd) = dc;
217 /* Remove the list note pointed to by LP. */
218 void
219 blist_remove (blist_t *lp)
221 bnd_t b = BLIST_BND (*lp);
223 av_set_clear (&BND_AV (b));
224 av_set_clear (&BND_AV1 (b));
225 ilist_clear (&BND_PTR (b));
227 _list_remove (lp);
230 /* Init a fence tail L. */
231 void
232 flist_tail_init (flist_tail_t l)
234 FLIST_TAIL_HEAD (l) = NULL;
235 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
238 /* Try to find fence corresponding to INSN in L. */
239 fence_t
240 flist_lookup (flist_t l, insn_t insn)
242 while (l)
244 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
245 return FLIST_FENCE (l);
247 l = FLIST_NEXT (l);
250 return NULL;
253 /* Init the fields of F before running fill_insns. */
254 static void
255 init_fence_for_scheduling (fence_t f)
257 FENCE_BNDS (f) = NULL;
258 FENCE_PROCESSED_P (f) = false;
259 FENCE_SCHEDULED_P (f) = false;
262 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
263 static void
264 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
265 insn_t last_scheduled_insn, vec<rtx, va_gc> *executing_insns,
266 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
267 int cycle, int cycle_issued_insns, int issue_more,
268 bool starts_cycle_p, bool after_stall_p)
270 fence_t f;
272 _list_add (lp);
273 f = FLIST_FENCE (*lp);
275 FENCE_INSN (f) = insn;
277 gcc_assert (state != NULL);
278 FENCE_STATE (f) = state;
280 FENCE_CYCLE (f) = cycle;
281 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
282 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
283 FENCE_AFTER_STALL_P (f) = after_stall_p;
285 gcc_assert (dc != NULL);
286 FENCE_DC (f) = dc;
288 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
289 FENCE_TC (f) = tc;
291 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
292 FENCE_ISSUE_MORE (f) = issue_more;
293 FENCE_EXECUTING_INSNS (f) = executing_insns;
294 FENCE_READY_TICKS (f) = ready_ticks;
295 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
296 FENCE_SCHED_NEXT (f) = sched_next;
298 init_fence_for_scheduling (f);
301 /* Remove the head node of the list pointed to by LP. */
302 static void
303 flist_remove (flist_t *lp)
305 if (FENCE_INSN (FLIST_FENCE (*lp)))
306 fence_clear (FLIST_FENCE (*lp));
307 _list_remove (lp);
310 /* Clear the fence list pointed to by LP. */
311 void
312 flist_clear (flist_t *lp)
314 while (*lp)
315 flist_remove (lp);
318 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
319 void
320 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
322 def_t d;
324 _list_add (dl);
325 d = DEF_LIST_DEF (*dl);
327 d->orig_insn = original_insn;
328 d->crosses_call = crosses_call;
332 /* Functions to work with target contexts. */
334 /* Bulk target context. It is convenient for debugging purposes to ensure
335 that there are no uninitialized (null) target contexts. */
336 static tc_t bulk_tc = (tc_t) 1;
338 /* Target hooks wrappers. In the future we can provide some default
339 implementations for them. */
341 /* Allocate a store for the target context. */
342 static tc_t
343 alloc_target_context (void)
345 return (targetm.sched.alloc_sched_context
346 ? targetm.sched.alloc_sched_context () : bulk_tc);
349 /* Init target context TC.
350 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
351 Overwise, copy current backend context to TC. */
352 static void
353 init_target_context (tc_t tc, bool clean_p)
355 if (targetm.sched.init_sched_context)
356 targetm.sched.init_sched_context (tc, clean_p);
359 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
360 int init_target_context (). */
361 tc_t
362 create_target_context (bool clean_p)
364 tc_t tc = alloc_target_context ();
366 init_target_context (tc, clean_p);
367 return tc;
370 /* Copy TC to the current backend context. */
371 void
372 set_target_context (tc_t tc)
374 if (targetm.sched.set_sched_context)
375 targetm.sched.set_sched_context (tc);
378 /* TC is about to be destroyed. Free any internal data. */
379 static void
380 clear_target_context (tc_t tc)
382 if (targetm.sched.clear_sched_context)
383 targetm.sched.clear_sched_context (tc);
386 /* Clear and free it. */
387 static void
388 delete_target_context (tc_t tc)
390 clear_target_context (tc);
392 if (targetm.sched.free_sched_context)
393 targetm.sched.free_sched_context (tc);
396 /* Make a copy of FROM in TO.
397 NB: May be this should be a hook. */
398 static void
399 copy_target_context (tc_t to, tc_t from)
401 tc_t tmp = create_target_context (false);
403 set_target_context (from);
404 init_target_context (to, false);
406 set_target_context (tmp);
407 delete_target_context (tmp);
410 /* Create a copy of TC. */
411 static tc_t
412 create_copy_of_target_context (tc_t tc)
414 tc_t copy = alloc_target_context ();
416 copy_target_context (copy, tc);
418 return copy;
421 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
422 is the same as in init_target_context (). */
423 void
424 reset_target_context (tc_t tc, bool clean_p)
426 clear_target_context (tc);
427 init_target_context (tc, clean_p);
430 /* Functions to work with dependence contexts.
431 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
432 context. It accumulates information about processed insns to decide if
433 current insn is dependent on the processed ones. */
435 /* Make a copy of FROM in TO. */
436 static void
437 copy_deps_context (deps_t to, deps_t from)
439 init_deps (to, false);
440 deps_join (to, from);
443 /* Allocate store for dep context. */
444 static deps_t
445 alloc_deps_context (void)
447 return XNEW (struct deps_desc);
450 /* Allocate and initialize dep context. */
451 static deps_t
452 create_deps_context (void)
454 deps_t dc = alloc_deps_context ();
456 init_deps (dc, false);
457 return dc;
460 /* Create a copy of FROM. */
461 static deps_t
462 create_copy_of_deps_context (deps_t from)
464 deps_t to = alloc_deps_context ();
466 copy_deps_context (to, from);
467 return to;
470 /* Clean up internal data of DC. */
471 static void
472 clear_deps_context (deps_t dc)
474 free_deps (dc);
477 /* Clear and free DC. */
478 static void
479 delete_deps_context (deps_t dc)
481 clear_deps_context (dc);
482 free (dc);
485 /* Clear and init DC. */
486 static void
487 reset_deps_context (deps_t dc)
489 clear_deps_context (dc);
490 init_deps (dc, false);
493 /* This structure describes the dependence analysis hooks for advancing
494 dependence context. */
495 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
497 NULL,
499 NULL, /* start_insn */
500 NULL, /* finish_insn */
501 NULL, /* start_lhs */
502 NULL, /* finish_lhs */
503 NULL, /* start_rhs */
504 NULL, /* finish_rhs */
505 haifa_note_reg_set,
506 haifa_note_reg_clobber,
507 haifa_note_reg_use,
508 NULL, /* note_mem_dep */
509 NULL, /* note_dep */
511 0, 0, 0
514 /* Process INSN and add its impact on DC. */
515 void
516 advance_deps_context (deps_t dc, insn_t insn)
518 sched_deps_info = &advance_deps_context_sched_deps_info;
519 deps_analyze_insn (dc, insn);
523 /* Functions to work with DFA states. */
525 /* Allocate store for a DFA state. */
526 static state_t
527 state_alloc (void)
529 return xmalloc (dfa_state_size);
532 /* Allocate and initialize DFA state. */
533 static state_t
534 state_create (void)
536 state_t state = state_alloc ();
538 state_reset (state);
539 advance_state (state);
540 return state;
543 /* Free DFA state. */
544 static void
545 state_free (state_t state)
547 free (state);
550 /* Make a copy of FROM in TO. */
551 static void
552 state_copy (state_t to, state_t from)
554 memcpy (to, from, dfa_state_size);
557 /* Create a copy of FROM. */
558 static state_t
559 state_create_copy (state_t from)
561 state_t to = state_alloc ();
563 state_copy (to, from);
564 return to;
568 /* Functions to work with fences. */
570 /* Clear the fence. */
571 static void
572 fence_clear (fence_t f)
574 state_t s = FENCE_STATE (f);
575 deps_t dc = FENCE_DC (f);
576 void *tc = FENCE_TC (f);
578 ilist_clear (&FENCE_BNDS (f));
580 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
581 || (s == NULL && dc == NULL && tc == NULL));
583 free (s);
585 if (dc != NULL)
586 delete_deps_context (dc);
588 if (tc != NULL)
589 delete_target_context (tc);
590 vec_free (FENCE_EXECUTING_INSNS (f));
591 free (FENCE_READY_TICKS (f));
592 FENCE_READY_TICKS (f) = NULL;
595 /* Init a list of fences with successors of OLD_FENCE. */
596 void
597 init_fences (insn_t old_fence)
599 insn_t succ;
600 succ_iterator si;
601 bool first = true;
602 int ready_ticks_size = get_max_uid () + 1;
604 FOR_EACH_SUCC_1 (succ, si, old_fence,
605 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
608 if (first)
609 first = false;
610 else
611 gcc_assert (flag_sel_sched_pipelining_outer_loops);
613 flist_add (&fences, succ,
614 state_create (),
615 create_deps_context () /* dc */,
616 create_target_context (true) /* tc */,
617 NULL_RTX /* last_scheduled_insn */,
618 NULL, /* executing_insns */
619 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
620 ready_ticks_size,
621 NULL_RTX /* sched_next */,
622 1 /* cycle */, 0 /* cycle_issued_insns */,
623 issue_rate, /* issue_more */
624 1 /* starts_cycle_p */, 0 /* after_stall_p */);
628 /* Merges two fences (filling fields of fence F with resulting values) by
629 following rules: 1) state, target context and last scheduled insn are
630 propagated from fallthrough edge if it is available;
631 2) deps context and cycle is propagated from more probable edge;
632 3) all other fields are set to corresponding constant values.
634 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
635 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
636 and AFTER_STALL_P are the corresponding fields of the second fence. */
637 static void
638 merge_fences (fence_t f, insn_t insn,
639 state_t state, deps_t dc, void *tc,
640 rtx last_scheduled_insn, vec<rtx, va_gc> *executing_insns,
641 int *ready_ticks, int ready_ticks_size,
642 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
644 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
646 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
647 && !sched_next && !FENCE_SCHED_NEXT (f));
649 /* Check if we can decide which path fences came.
650 If we can't (or don't want to) - reset all. */
651 if (last_scheduled_insn == NULL
652 || last_scheduled_insn_old == NULL
653 /* This is a case when INSN is reachable on several paths from
654 one insn (this can happen when pipelining of outer loops is on and
655 there are two edges: one going around of inner loop and the other -
656 right through it; in such case just reset everything). */
657 || last_scheduled_insn == last_scheduled_insn_old)
659 state_reset (FENCE_STATE (f));
660 state_free (state);
662 reset_deps_context (FENCE_DC (f));
663 delete_deps_context (dc);
665 reset_target_context (FENCE_TC (f), true);
666 delete_target_context (tc);
668 if (cycle > FENCE_CYCLE (f))
669 FENCE_CYCLE (f) = cycle;
671 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
672 FENCE_ISSUE_MORE (f) = issue_rate;
673 vec_free (executing_insns);
674 free (ready_ticks);
675 if (FENCE_EXECUTING_INSNS (f))
676 FENCE_EXECUTING_INSNS (f)->block_remove (0,
677 FENCE_EXECUTING_INSNS (f)->length ());
678 if (FENCE_READY_TICKS (f))
679 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
681 else
683 edge edge_old = NULL, edge_new = NULL;
684 edge candidate;
685 succ_iterator si;
686 insn_t succ;
688 /* Find fallthrough edge. */
689 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
690 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
692 if (!candidate
693 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
694 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
696 /* No fallthrough edge leading to basic block of INSN. */
697 state_reset (FENCE_STATE (f));
698 state_free (state);
700 reset_target_context (FENCE_TC (f), true);
701 delete_target_context (tc);
703 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
704 FENCE_ISSUE_MORE (f) = issue_rate;
706 else
707 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
709 /* Would be weird if same insn is successor of several fallthrough
710 edges. */
711 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
712 != BLOCK_FOR_INSN (last_scheduled_insn_old));
714 state_free (FENCE_STATE (f));
715 FENCE_STATE (f) = state;
717 delete_target_context (FENCE_TC (f));
718 FENCE_TC (f) = tc;
720 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
721 FENCE_ISSUE_MORE (f) = issue_more;
723 else
725 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
726 state_free (state);
727 delete_target_context (tc);
729 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
730 != BLOCK_FOR_INSN (last_scheduled_insn));
733 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
734 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
735 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
737 if (succ == insn)
739 /* No same successor allowed from several edges. */
740 gcc_assert (!edge_old);
741 edge_old = si.e1;
744 /* Find edge of second predecessor (last_scheduled_insn->insn). */
745 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
746 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
748 if (succ == insn)
750 /* No same successor allowed from several edges. */
751 gcc_assert (!edge_new);
752 edge_new = si.e1;
756 /* Check if we can choose most probable predecessor. */
757 if (edge_old == NULL || edge_new == NULL)
759 reset_deps_context (FENCE_DC (f));
760 delete_deps_context (dc);
761 vec_free (executing_insns);
762 free (ready_ticks);
764 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
765 if (FENCE_EXECUTING_INSNS (f))
766 FENCE_EXECUTING_INSNS (f)->block_remove (0,
767 FENCE_EXECUTING_INSNS (f)->length ());
768 if (FENCE_READY_TICKS (f))
769 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
771 else
772 if (edge_new->probability > edge_old->probability)
774 delete_deps_context (FENCE_DC (f));
775 FENCE_DC (f) = dc;
776 vec_free (FENCE_EXECUTING_INSNS (f));
777 FENCE_EXECUTING_INSNS (f) = executing_insns;
778 free (FENCE_READY_TICKS (f));
779 FENCE_READY_TICKS (f) = ready_ticks;
780 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
781 FENCE_CYCLE (f) = cycle;
783 else
785 /* Leave DC and CYCLE untouched. */
786 delete_deps_context (dc);
787 vec_free (executing_insns);
788 free (ready_ticks);
792 /* Fill remaining invariant fields. */
793 if (after_stall_p)
794 FENCE_AFTER_STALL_P (f) = 1;
796 FENCE_ISSUED_INSNS (f) = 0;
797 FENCE_STARTS_CYCLE_P (f) = 1;
798 FENCE_SCHED_NEXT (f) = NULL;
801 /* Add a new fence to NEW_FENCES list, initializing it from all
802 other parameters. */
803 static void
804 add_to_fences (flist_tail_t new_fences, insn_t insn,
805 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
806 vec<rtx, va_gc> *executing_insns, int *ready_ticks,
807 int ready_ticks_size, rtx sched_next, int cycle,
808 int cycle_issued_insns, int issue_rate,
809 bool starts_cycle_p, bool after_stall_p)
811 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
813 if (! f)
815 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
816 last_scheduled_insn, executing_insns, ready_ticks,
817 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
818 issue_rate, starts_cycle_p, after_stall_p);
820 FLIST_TAIL_TAILP (new_fences)
821 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
823 else
825 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
826 executing_insns, ready_ticks, ready_ticks_size,
827 sched_next, cycle, issue_rate, after_stall_p);
831 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
832 void
833 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
835 fence_t f, old;
836 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
838 old = FLIST_FENCE (old_fences);
839 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
840 FENCE_INSN (FLIST_FENCE (old_fences)));
841 if (f)
843 merge_fences (f, old->insn, old->state, old->dc, old->tc,
844 old->last_scheduled_insn, old->executing_insns,
845 old->ready_ticks, old->ready_ticks_size,
846 old->sched_next, old->cycle, old->issue_more,
847 old->after_stall_p);
849 else
851 _list_add (tailp);
852 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
853 *FLIST_FENCE (*tailp) = *old;
854 init_fence_for_scheduling (FLIST_FENCE (*tailp));
856 FENCE_INSN (old) = NULL;
859 /* Add a new fence to NEW_FENCES list and initialize most of its data
860 as a clean one. */
861 void
862 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
864 int ready_ticks_size = get_max_uid () + 1;
866 add_to_fences (new_fences,
867 succ, state_create (), create_deps_context (),
868 create_target_context (true),
869 NULL_RTX, NULL,
870 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
871 NULL_RTX, FENCE_CYCLE (fence) + 1,
872 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
875 /* Add a new fence to NEW_FENCES list and initialize all of its data
876 from FENCE and SUCC. */
877 void
878 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
880 int * new_ready_ticks
881 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
883 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
884 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
885 add_to_fences (new_fences,
886 succ, state_create_copy (FENCE_STATE (fence)),
887 create_copy_of_deps_context (FENCE_DC (fence)),
888 create_copy_of_target_context (FENCE_TC (fence)),
889 FENCE_LAST_SCHEDULED_INSN (fence),
890 vec_safe_copy (FENCE_EXECUTING_INSNS (fence)),
891 new_ready_ticks,
892 FENCE_READY_TICKS_SIZE (fence),
893 FENCE_SCHED_NEXT (fence),
894 FENCE_CYCLE (fence),
895 FENCE_ISSUED_INSNS (fence),
896 FENCE_ISSUE_MORE (fence),
897 FENCE_STARTS_CYCLE_P (fence),
898 FENCE_AFTER_STALL_P (fence));
902 /* Functions to work with regset and nop pools. */
904 /* Returns the new regset from pool. It might have some of the bits set
905 from the previous usage. */
906 regset
907 get_regset_from_pool (void)
909 regset rs;
911 if (regset_pool.n != 0)
912 rs = regset_pool.v[--regset_pool.n];
913 else
914 /* We need to create the regset. */
916 rs = ALLOC_REG_SET (&reg_obstack);
918 if (regset_pool.nn == regset_pool.ss)
919 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
920 (regset_pool.ss = 2 * regset_pool.ss + 1));
921 regset_pool.vv[regset_pool.nn++] = rs;
924 regset_pool.diff++;
926 return rs;
929 /* Same as above, but returns the empty regset. */
930 regset
931 get_clear_regset_from_pool (void)
933 regset rs = get_regset_from_pool ();
935 CLEAR_REG_SET (rs);
936 return rs;
939 /* Return regset RS to the pool for future use. */
940 void
941 return_regset_to_pool (regset rs)
943 gcc_assert (rs);
944 regset_pool.diff--;
946 if (regset_pool.n == regset_pool.s)
947 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
948 (regset_pool.s = 2 * regset_pool.s + 1));
949 regset_pool.v[regset_pool.n++] = rs;
952 #ifdef ENABLE_CHECKING
953 /* This is used as a qsort callback for sorting regset pool stacks.
954 X and XX are addresses of two regsets. They are never equal. */
955 static int
956 cmp_v_in_regset_pool (const void *x, const void *xx)
958 uintptr_t r1 = (uintptr_t) *((const regset *) x);
959 uintptr_t r2 = (uintptr_t) *((const regset *) xx);
960 if (r1 > r2)
961 return 1;
962 else if (r1 < r2)
963 return -1;
964 gcc_unreachable ();
966 #endif
968 /* Free the regset pool possibly checking for memory leaks. */
969 void
970 free_regset_pool (void)
972 #ifdef ENABLE_CHECKING
974 regset *v = regset_pool.v;
975 int i = 0;
976 int n = regset_pool.n;
978 regset *vv = regset_pool.vv;
979 int ii = 0;
980 int nn = regset_pool.nn;
982 int diff = 0;
984 gcc_assert (n <= nn);
986 /* Sort both vectors so it will be possible to compare them. */
987 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
988 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
990 while (ii < nn)
992 if (v[i] == vv[ii])
993 i++;
994 else
995 /* VV[II] was lost. */
996 diff++;
998 ii++;
1001 gcc_assert (diff == regset_pool.diff);
1003 #endif
1005 /* If not true - we have a memory leak. */
1006 gcc_assert (regset_pool.diff == 0);
1008 while (regset_pool.n)
1010 --regset_pool.n;
1011 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1014 free (regset_pool.v);
1015 regset_pool.v = NULL;
1016 regset_pool.s = 0;
1018 free (regset_pool.vv);
1019 regset_pool.vv = NULL;
1020 regset_pool.nn = 0;
1021 regset_pool.ss = 0;
1023 regset_pool.diff = 0;
1027 /* Functions to work with nop pools. NOP insns are used as temporary
1028 placeholders of the insns being scheduled to allow correct update of
1029 the data sets. When update is finished, NOPs are deleted. */
1031 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1032 nops sel-sched generates. */
1033 static vinsn_t nop_vinsn = NULL;
1035 /* Emit a nop before INSN, taking it from pool. */
1036 insn_t
1037 get_nop_from_pool (insn_t insn)
1039 insn_t nop;
1040 bool old_p = nop_pool.n != 0;
1041 int flags;
1043 if (old_p)
1044 nop = nop_pool.v[--nop_pool.n];
1045 else
1046 nop = nop_pattern;
1048 nop = emit_insn_before (nop, insn);
1050 if (old_p)
1051 flags = INSN_INIT_TODO_SSID;
1052 else
1053 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1055 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1056 sel_init_new_insn (nop, flags);
1058 return nop;
1061 /* Remove NOP from the instruction stream and return it to the pool. */
1062 void
1063 return_nop_to_pool (insn_t nop, bool full_tidying)
1065 gcc_assert (INSN_IN_STREAM_P (nop));
1066 sel_remove_insn (nop, false, full_tidying);
1068 /* We'll recycle this nop. */
1069 INSN_DELETED_P (nop) = 0;
1071 if (nop_pool.n == nop_pool.s)
1072 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
1073 (nop_pool.s = 2 * nop_pool.s + 1));
1074 nop_pool.v[nop_pool.n++] = nop;
1077 /* Free the nop pool. */
1078 void
1079 free_nop_pool (void)
1081 nop_pool.n = 0;
1082 nop_pool.s = 0;
1083 free (nop_pool.v);
1084 nop_pool.v = NULL;
1088 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1089 The callback is given two rtxes XX and YY and writes the new rtxes
1090 to NX and NY in case some needs to be skipped. */
1091 static int
1092 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1094 const_rtx x = *xx;
1095 const_rtx y = *yy;
1097 if (GET_CODE (x) == UNSPEC
1098 && (targetm.sched.skip_rtx_p == NULL
1099 || targetm.sched.skip_rtx_p (x)))
1101 *nx = XVECEXP (x, 0, 0);
1102 *ny = CONST_CAST_RTX (y);
1103 return 1;
1106 if (GET_CODE (y) == UNSPEC
1107 && (targetm.sched.skip_rtx_p == NULL
1108 || targetm.sched.skip_rtx_p (y)))
1110 *nx = CONST_CAST_RTX (x);
1111 *ny = XVECEXP (y, 0, 0);
1112 return 1;
1115 return 0;
1118 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1119 to support ia64 speculation. When changes are needed, new rtx X and new mode
1120 NMODE are written, and the callback returns true. */
1121 static int
1122 hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1123 rtx *nx, enum machine_mode* nmode)
1125 if (GET_CODE (x) == UNSPEC
1126 && targetm.sched.skip_rtx_p
1127 && targetm.sched.skip_rtx_p (x))
1129 *nx = XVECEXP (x, 0 ,0);
1130 *nmode = VOIDmode;
1131 return 1;
1134 return 0;
1137 /* Returns LHS and RHS are ok to be scheduled separately. */
1138 static bool
1139 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1141 if (lhs == NULL || rhs == NULL)
1142 return false;
1144 /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1145 to use reg, if const can be used. Moreover, scheduling const as rhs may
1146 lead to mode mismatch cause consts don't have modes but they could be
1147 merged from branches where the same const used in different modes. */
1148 if (CONSTANT_P (rhs))
1149 return false;
1151 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1152 if (COMPARISON_P (rhs))
1153 return false;
1155 /* Do not allow single REG to be an rhs. */
1156 if (REG_P (rhs))
1157 return false;
1159 /* See comment at find_used_regs_1 (*1) for explanation of this
1160 restriction. */
1161 /* FIXME: remove this later. */
1162 if (MEM_P (lhs))
1163 return false;
1165 /* This will filter all tricky things like ZERO_EXTRACT etc.
1166 For now we don't handle it. */
1167 if (!REG_P (lhs) && !MEM_P (lhs))
1168 return false;
1170 return true;
1173 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1174 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1175 used e.g. for insns from recovery blocks. */
1176 static void
1177 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1179 hash_rtx_callback_function hrcf;
1180 int insn_class;
1182 VINSN_INSN_RTX (vi) = insn;
1183 VINSN_COUNT (vi) = 0;
1184 vi->cost = -1;
1186 if (INSN_NOP_P (insn))
1187 return;
1189 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1190 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1191 else
1192 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1194 /* Hash vinsn depending on whether it is separable or not. */
1195 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1196 if (VINSN_SEPARABLE_P (vi))
1198 rtx rhs = VINSN_RHS (vi);
1200 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1201 NULL, NULL, false, hrcf);
1202 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1203 VOIDmode, NULL, NULL,
1204 false, hrcf);
1206 else
1208 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1209 NULL, NULL, false, hrcf);
1210 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1213 insn_class = haifa_classify_insn (insn);
1214 if (insn_class >= 2
1215 && (!targetm.sched.get_insn_spec_ds
1216 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1217 == 0)))
1218 VINSN_MAY_TRAP_P (vi) = true;
1219 else
1220 VINSN_MAY_TRAP_P (vi) = false;
1223 /* Indicate that VI has become the part of an rtx object. */
1224 void
1225 vinsn_attach (vinsn_t vi)
1227 /* Assert that VI is not pending for deletion. */
1228 gcc_assert (VINSN_INSN_RTX (vi));
1230 VINSN_COUNT (vi)++;
1233 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1234 VINSN_TYPE (VI). */
1235 static vinsn_t
1236 vinsn_create (insn_t insn, bool force_unique_p)
1238 vinsn_t vi = XCNEW (struct vinsn_def);
1240 vinsn_init (vi, insn, force_unique_p);
1241 return vi;
1244 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1245 the copy. */
1246 vinsn_t
1247 vinsn_copy (vinsn_t vi, bool reattach_p)
1249 rtx copy;
1250 bool unique = VINSN_UNIQUE_P (vi);
1251 vinsn_t new_vi;
1253 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1254 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1255 if (reattach_p)
1257 vinsn_detach (vi);
1258 vinsn_attach (new_vi);
1261 return new_vi;
1264 /* Delete the VI vinsn and free its data. */
1265 static void
1266 vinsn_delete (vinsn_t vi)
1268 gcc_assert (VINSN_COUNT (vi) == 0);
1270 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1272 return_regset_to_pool (VINSN_REG_SETS (vi));
1273 return_regset_to_pool (VINSN_REG_USES (vi));
1274 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1277 free (vi);
1280 /* Indicate that VI is no longer a part of some rtx object.
1281 Remove VI if it is no longer needed. */
1282 void
1283 vinsn_detach (vinsn_t vi)
1285 gcc_assert (VINSN_COUNT (vi) > 0);
1287 if (--VINSN_COUNT (vi) == 0)
1288 vinsn_delete (vi);
1291 /* Returns TRUE if VI is a branch. */
1292 bool
1293 vinsn_cond_branch_p (vinsn_t vi)
1295 insn_t insn;
1297 if (!VINSN_UNIQUE_P (vi))
1298 return false;
1300 insn = VINSN_INSN_RTX (vi);
1301 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1302 return false;
1304 return control_flow_insn_p (insn);
1307 /* Return latency of INSN. */
1308 static int
1309 sel_insn_rtx_cost (rtx insn)
1311 int cost;
1313 /* A USE insn, or something else we don't need to
1314 understand. We can't pass these directly to
1315 result_ready_cost or insn_default_latency because it will
1316 trigger a fatal error for unrecognizable insns. */
1317 if (recog_memoized (insn) < 0)
1318 cost = 0;
1319 else
1321 cost = insn_default_latency (insn);
1323 if (cost < 0)
1324 cost = 0;
1327 return cost;
1330 /* Return the cost of the VI.
1331 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1333 sel_vinsn_cost (vinsn_t vi)
1335 int cost = vi->cost;
1337 if (cost < 0)
1339 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1340 vi->cost = cost;
1343 return cost;
1347 /* Functions for insn emitting. */
1349 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1350 EXPR and SEQNO. */
1351 insn_t
1352 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1354 insn_t new_insn;
1356 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1358 new_insn = emit_insn_after (pattern, after);
1359 set_insn_init (expr, NULL, seqno);
1360 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1362 return new_insn;
1365 /* Force newly generated vinsns to be unique. */
1366 static bool init_insn_force_unique_p = false;
1368 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1369 initialize its data from EXPR and SEQNO. */
1370 insn_t
1371 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1372 insn_t after)
1374 insn_t insn;
1376 gcc_assert (!init_insn_force_unique_p);
1378 init_insn_force_unique_p = true;
1379 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1380 CANT_MOVE (insn) = 1;
1381 init_insn_force_unique_p = false;
1383 return insn;
1386 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1387 take it as a new vinsn instead of EXPR's vinsn.
1388 We simplify insns later, after scheduling region in
1389 simplify_changed_insns. */
1390 insn_t
1391 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1392 insn_t after)
1394 expr_t emit_expr;
1395 insn_t insn;
1396 int flags;
1398 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1399 seqno);
1400 insn = EXPR_INSN_RTX (emit_expr);
1401 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1403 flags = INSN_INIT_TODO_SSID;
1404 if (INSN_LUID (insn) == 0)
1405 flags |= INSN_INIT_TODO_LUID;
1406 sel_init_new_insn (insn, flags);
1408 return insn;
1411 /* Move insn from EXPR after AFTER. */
1412 insn_t
1413 sel_move_insn (expr_t expr, int seqno, insn_t after)
1415 insn_t insn = EXPR_INSN_RTX (expr);
1416 basic_block bb = BLOCK_FOR_INSN (after);
1417 insn_t next = NEXT_INSN (after);
1419 /* Assert that in move_op we disconnected this insn properly. */
1420 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1421 PREV_INSN (insn) = after;
1422 NEXT_INSN (insn) = next;
1424 NEXT_INSN (after) = insn;
1425 PREV_INSN (next) = insn;
1427 /* Update links from insn to bb and vice versa. */
1428 df_insn_change_bb (insn, bb);
1429 if (BB_END (bb) == after)
1430 BB_END (bb) = insn;
1432 prepare_insn_expr (insn, seqno);
1433 return insn;
1437 /* Functions to work with right-hand sides. */
1439 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1440 VECT and return true when found. Use NEW_VINSN for comparison only when
1441 COMPARE_VINSNS is true. Write to INDP the index on which
1442 the search has stopped, such that inserting the new element at INDP will
1443 retain VECT's sort order. */
1444 static bool
1445 find_in_history_vect_1 (vec<expr_history_def> vect,
1446 unsigned uid, vinsn_t new_vinsn,
1447 bool compare_vinsns, int *indp)
1449 expr_history_def *arr;
1450 int i, j, len = vect.length ();
1452 if (len == 0)
1454 *indp = 0;
1455 return false;
1458 arr = vect.address ();
1459 i = 0, j = len - 1;
1461 while (i <= j)
1463 unsigned auid = arr[i].uid;
1464 vinsn_t avinsn = arr[i].new_expr_vinsn;
1466 if (auid == uid
1467 /* When undoing transformation on a bookkeeping copy, the new vinsn
1468 may not be exactly equal to the one that is saved in the vector.
1469 This is because the insn whose copy we're checking was possibly
1470 substituted itself. */
1471 && (! compare_vinsns
1472 || vinsn_equal_p (avinsn, new_vinsn)))
1474 *indp = i;
1475 return true;
1477 else if (auid > uid)
1478 break;
1479 i++;
1482 *indp = i;
1483 return false;
1486 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1487 the position found or -1, if no such value is in vector.
1488 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1490 find_in_history_vect (vec<expr_history_def> vect, rtx insn,
1491 vinsn_t new_vinsn, bool originators_p)
1493 int ind;
1495 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1496 false, &ind))
1497 return ind;
1499 if (INSN_ORIGINATORS (insn) && originators_p)
1501 unsigned uid;
1502 bitmap_iterator bi;
1504 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1505 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1506 return ind;
1509 return -1;
1512 /* Insert new element in a sorted history vector pointed to by PVECT,
1513 if it is not there already. The element is searched using
1514 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1515 the history of a transformation. */
1516 void
1517 insert_in_history_vect (vec<expr_history_def> *pvect,
1518 unsigned uid, enum local_trans_type type,
1519 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1520 ds_t spec_ds)
1522 vec<expr_history_def> vect = *pvect;
1523 expr_history_def temp;
1524 bool res;
1525 int ind;
1527 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1529 if (res)
1531 expr_history_def *phist = &vect[ind];
1533 /* It is possible that speculation types of expressions that were
1534 propagated through different paths will be different here. In this
1535 case, merge the status to get the correct check later. */
1536 if (phist->spec_ds != spec_ds)
1537 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1538 return;
1541 temp.uid = uid;
1542 temp.old_expr_vinsn = old_expr_vinsn;
1543 temp.new_expr_vinsn = new_expr_vinsn;
1544 temp.spec_ds = spec_ds;
1545 temp.type = type;
1547 vinsn_attach (old_expr_vinsn);
1548 vinsn_attach (new_expr_vinsn);
1549 vect.safe_insert (ind, temp);
1550 *pvect = vect;
1553 /* Free history vector PVECT. */
1554 static void
1555 free_history_vect (vec<expr_history_def> &pvect)
1557 unsigned i;
1558 expr_history_def *phist;
1560 if (! pvect.exists ())
1561 return;
1563 for (i = 0; pvect.iterate (i, &phist); i++)
1565 vinsn_detach (phist->old_expr_vinsn);
1566 vinsn_detach (phist->new_expr_vinsn);
1569 pvect.release ();
1572 /* Merge vector FROM to PVECT. */
1573 static void
1574 merge_history_vect (vec<expr_history_def> *pvect,
1575 vec<expr_history_def> from)
1577 expr_history_def *phist;
1578 int i;
1580 /* We keep this vector sorted. */
1581 for (i = 0; from.iterate (i, &phist); i++)
1582 insert_in_history_vect (pvect, phist->uid, phist->type,
1583 phist->old_expr_vinsn, phist->new_expr_vinsn,
1584 phist->spec_ds);
1587 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1588 bool
1589 vinsn_equal_p (vinsn_t x, vinsn_t y)
1591 rtx_equal_p_callback_function repcf;
1593 if (x == y)
1594 return true;
1596 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1597 return false;
1599 if (VINSN_HASH (x) != VINSN_HASH (y))
1600 return false;
1602 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1603 if (VINSN_SEPARABLE_P (x))
1605 /* Compare RHSes of VINSNs. */
1606 gcc_assert (VINSN_RHS (x));
1607 gcc_assert (VINSN_RHS (y));
1609 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1612 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1616 /* Functions for working with expressions. */
1618 /* Initialize EXPR. */
1619 static void
1620 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1621 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1622 ds_t spec_to_check_ds, int orig_sched_cycle,
1623 vec<expr_history_def> history,
1624 signed char target_available,
1625 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1626 bool cant_move)
1628 vinsn_attach (vi);
1630 EXPR_VINSN (expr) = vi;
1631 EXPR_SPEC (expr) = spec;
1632 EXPR_USEFULNESS (expr) = use;
1633 EXPR_PRIORITY (expr) = priority;
1634 EXPR_PRIORITY_ADJ (expr) = 0;
1635 EXPR_SCHED_TIMES (expr) = sched_times;
1636 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1637 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1638 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1639 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1641 if (history.exists ())
1642 EXPR_HISTORY_OF_CHANGES (expr) = history;
1643 else
1644 EXPR_HISTORY_OF_CHANGES (expr).create (0);
1646 EXPR_TARGET_AVAILABLE (expr) = target_available;
1647 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1648 EXPR_WAS_RENAMED (expr) = was_renamed;
1649 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1650 EXPR_CANT_MOVE (expr) = cant_move;
1653 /* Make a copy of the expr FROM into the expr TO. */
1654 void
1655 copy_expr (expr_t to, expr_t from)
1657 vec<expr_history_def> temp = vNULL;
1659 if (EXPR_HISTORY_OF_CHANGES (from).exists ())
1661 unsigned i;
1662 expr_history_def *phist;
1664 temp = EXPR_HISTORY_OF_CHANGES (from).copy ();
1665 for (i = 0;
1666 temp.iterate (i, &phist);
1667 i++)
1669 vinsn_attach (phist->old_expr_vinsn);
1670 vinsn_attach (phist->new_expr_vinsn);
1674 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1675 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1676 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1677 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1678 EXPR_ORIG_SCHED_CYCLE (from), temp,
1679 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1680 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1681 EXPR_CANT_MOVE (from));
1684 /* Same, but the final expr will not ever be in av sets, so don't copy
1685 "uninteresting" data such as bitmap cache. */
1686 void
1687 copy_expr_onside (expr_t to, expr_t from)
1689 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1690 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1691 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0,
1692 vNULL,
1693 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1694 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1695 EXPR_CANT_MOVE (from));
1698 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1699 initializing new insns. */
1700 static void
1701 prepare_insn_expr (insn_t insn, int seqno)
1703 expr_t expr = INSN_EXPR (insn);
1704 ds_t ds;
1706 INSN_SEQNO (insn) = seqno;
1707 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1708 EXPR_SPEC (expr) = 0;
1709 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1710 EXPR_WAS_SUBSTITUTED (expr) = 0;
1711 EXPR_WAS_RENAMED (expr) = 0;
1712 EXPR_TARGET_AVAILABLE (expr) = 1;
1713 INSN_LIVE_VALID_P (insn) = false;
1715 /* ??? If this expression is speculative, make its dependence
1716 as weak as possible. We can filter this expression later
1717 in process_spec_exprs, because we do not distinguish
1718 between the status we got during compute_av_set and the
1719 existing status. To be fixed. */
1720 ds = EXPR_SPEC_DONE_DS (expr);
1721 if (ds)
1722 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1724 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1727 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1728 is non-null when expressions are merged from different successors at
1729 a split point. */
1730 static void
1731 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1733 if (EXPR_TARGET_AVAILABLE (to) < 0
1734 || EXPR_TARGET_AVAILABLE (from) < 0)
1735 EXPR_TARGET_AVAILABLE (to) = -1;
1736 else
1738 /* We try to detect the case when one of the expressions
1739 can only be reached through another one. In this case,
1740 we can do better. */
1741 if (split_point == NULL)
1743 int toind, fromind;
1745 toind = EXPR_ORIG_BB_INDEX (to);
1746 fromind = EXPR_ORIG_BB_INDEX (from);
1748 if (toind && toind == fromind)
1749 /* Do nothing -- everything is done in
1750 merge_with_other_exprs. */
1752 else
1753 EXPR_TARGET_AVAILABLE (to) = -1;
1755 else if (EXPR_TARGET_AVAILABLE (from) == 0
1756 && EXPR_LHS (from)
1757 && REG_P (EXPR_LHS (from))
1758 && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1759 EXPR_TARGET_AVAILABLE (to) = -1;
1760 else
1761 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1765 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1766 is non-null when expressions are merged from different successors at
1767 a split point. */
1768 static void
1769 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1771 ds_t old_to_ds, old_from_ds;
1773 old_to_ds = EXPR_SPEC_DONE_DS (to);
1774 old_from_ds = EXPR_SPEC_DONE_DS (from);
1776 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1777 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1778 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1780 /* When merging e.g. control & data speculative exprs, or a control
1781 speculative with a control&data speculative one, we really have
1782 to change vinsn too. Also, when speculative status is changed,
1783 we also need to record this as a transformation in expr's history. */
1784 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1786 old_to_ds = ds_get_speculation_types (old_to_ds);
1787 old_from_ds = ds_get_speculation_types (old_from_ds);
1789 if (old_to_ds != old_from_ds)
1791 ds_t record_ds;
1793 /* When both expressions are speculative, we need to change
1794 the vinsn first. */
1795 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1797 int res;
1799 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1800 gcc_assert (res >= 0);
1803 if (split_point != NULL)
1805 /* Record the change with proper status. */
1806 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1807 record_ds &= ~(old_to_ds & SPECULATIVE);
1808 record_ds &= ~(old_from_ds & SPECULATIVE);
1810 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1811 INSN_UID (split_point), TRANS_SPECULATION,
1812 EXPR_VINSN (from), EXPR_VINSN (to),
1813 record_ds);
1820 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1821 this is done along different paths. */
1822 void
1823 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1825 /* Choose the maximum of the specs of merged exprs. This is required
1826 for correctness of bookkeeping. */
1827 if (EXPR_SPEC (to) < EXPR_SPEC (from))
1828 EXPR_SPEC (to) = EXPR_SPEC (from);
1830 if (split_point)
1831 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1832 else
1833 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1834 EXPR_USEFULNESS (from));
1836 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1837 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1839 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1840 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1842 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1843 EXPR_ORIG_BB_INDEX (to) = 0;
1845 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1846 EXPR_ORIG_SCHED_CYCLE (from));
1848 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1849 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1850 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1852 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1853 EXPR_HISTORY_OF_CHANGES (from));
1854 update_target_availability (to, from, split_point);
1855 update_speculative_bits (to, from, split_point);
1858 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1859 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1860 are merged from different successors at a split point. */
1861 void
1862 merge_expr (expr_t to, expr_t from, insn_t split_point)
1864 vinsn_t to_vi = EXPR_VINSN (to);
1865 vinsn_t from_vi = EXPR_VINSN (from);
1867 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1869 /* Make sure that speculative pattern is propagated into exprs that
1870 have non-speculative one. This will provide us with consistent
1871 speculative bits and speculative patterns inside expr. */
1872 if ((EXPR_SPEC_DONE_DS (from) != 0
1873 && EXPR_SPEC_DONE_DS (to) == 0)
1874 /* Do likewise for volatile insns, so that we always retain
1875 the may_trap_p bit on the resulting expression. */
1876 || (VINSN_MAY_TRAP_P (EXPR_VINSN (from))
1877 && !VINSN_MAY_TRAP_P (EXPR_VINSN (to))))
1878 change_vinsn_in_expr (to, EXPR_VINSN (from));
1880 merge_expr_data (to, from, split_point);
1881 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1884 /* Clear the information of this EXPR. */
1885 void
1886 clear_expr (expr_t expr)
1889 vinsn_detach (EXPR_VINSN (expr));
1890 EXPR_VINSN (expr) = NULL;
1892 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1895 /* For a given LV_SET, mark EXPR having unavailable target register. */
1896 static void
1897 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1899 if (EXPR_SEPARABLE_P (expr))
1901 if (REG_P (EXPR_LHS (expr))
1902 && register_unavailable_p (lv_set, EXPR_LHS (expr)))
1904 /* If it's an insn like r1 = use (r1, ...), and it exists in
1905 different forms in each of the av_sets being merged, we can't say
1906 whether original destination register is available or not.
1907 However, this still works if destination register is not used
1908 in the original expression: if the branch at which LV_SET we're
1909 looking here is not actually 'other branch' in sense that same
1910 expression is available through it (but it can't be determined
1911 at computation stage because of transformations on one of the
1912 branches), it still won't affect the availability.
1913 Liveness of a register somewhere on a code motion path means
1914 it's either read somewhere on a codemotion path, live on
1915 'other' branch, live at the point immediately following
1916 the original operation, or is read by the original operation.
1917 The latter case is filtered out in the condition below.
1918 It still doesn't cover the case when register is defined and used
1919 somewhere within the code motion path, and in this case we could
1920 miss a unifying code motion along both branches using a renamed
1921 register, but it won't affect a code correctness since upon
1922 an actual code motion a bookkeeping code would be generated. */
1923 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1924 EXPR_LHS (expr)))
1925 EXPR_TARGET_AVAILABLE (expr) = -1;
1926 else
1927 EXPR_TARGET_AVAILABLE (expr) = false;
1930 else
1932 unsigned regno;
1933 reg_set_iterator rsi;
1935 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1936 0, regno, rsi)
1937 if (bitmap_bit_p (lv_set, regno))
1939 EXPR_TARGET_AVAILABLE (expr) = false;
1940 break;
1943 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1944 0, regno, rsi)
1945 if (bitmap_bit_p (lv_set, regno))
1947 EXPR_TARGET_AVAILABLE (expr) = false;
1948 break;
1953 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1954 or dependence status have changed, 2 when also the target register
1955 became unavailable, 0 if nothing had to be changed. */
1957 speculate_expr (expr_t expr, ds_t ds)
1959 int res;
1960 rtx orig_insn_rtx;
1961 rtx spec_pat;
1962 ds_t target_ds, current_ds;
1964 /* Obtain the status we need to put on EXPR. */
1965 target_ds = (ds & SPECULATIVE);
1966 current_ds = EXPR_SPEC_DONE_DS (expr);
1967 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1969 orig_insn_rtx = EXPR_INSN_RTX (expr);
1971 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1973 switch (res)
1975 case 0:
1976 EXPR_SPEC_DONE_DS (expr) = ds;
1977 return current_ds != ds ? 1 : 0;
1979 case 1:
1981 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1982 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1984 change_vinsn_in_expr (expr, spec_vinsn);
1985 EXPR_SPEC_DONE_DS (expr) = ds;
1986 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1988 /* Do not allow clobbering the address register of speculative
1989 insns. */
1990 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1991 expr_dest_reg (expr)))
1993 EXPR_TARGET_AVAILABLE (expr) = false;
1994 return 2;
1997 return 1;
2000 case -1:
2001 return -1;
2003 default:
2004 gcc_unreachable ();
2005 return -1;
2009 /* Return a destination register, if any, of EXPR. */
2011 expr_dest_reg (expr_t expr)
2013 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2015 if (dest != NULL_RTX && REG_P (dest))
2016 return dest;
2018 return NULL_RTX;
2021 /* Returns the REGNO of the R's destination. */
2022 unsigned
2023 expr_dest_regno (expr_t expr)
2025 rtx dest = expr_dest_reg (expr);
2027 gcc_assert (dest != NULL_RTX);
2028 return REGNO (dest);
2031 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2032 AV_SET having unavailable target register. */
2033 void
2034 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2036 expr_t expr;
2037 av_set_iterator avi;
2039 FOR_EACH_EXPR (expr, avi, join_set)
2040 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2041 set_unavailable_target_for_expr (expr, lv_set);
2045 /* Returns true if REG (at least partially) is present in REGS. */
2046 bool
2047 register_unavailable_p (regset regs, rtx reg)
2049 unsigned regno, end_regno;
2051 regno = REGNO (reg);
2052 if (bitmap_bit_p (regs, regno))
2053 return true;
2055 end_regno = END_REGNO (reg);
2057 while (++regno < end_regno)
2058 if (bitmap_bit_p (regs, regno))
2059 return true;
2061 return false;
2064 /* Av set functions. */
2066 /* Add a new element to av set SETP.
2067 Return the element added. */
2068 static av_set_t
2069 av_set_add_element (av_set_t *setp)
2071 /* Insert at the beginning of the list. */
2072 _list_add (setp);
2073 return *setp;
2076 /* Add EXPR to SETP. */
2077 void
2078 av_set_add (av_set_t *setp, expr_t expr)
2080 av_set_t elem;
2082 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2083 elem = av_set_add_element (setp);
2084 copy_expr (_AV_SET_EXPR (elem), expr);
2087 /* Same, but do not copy EXPR. */
2088 static void
2089 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2091 av_set_t elem;
2093 elem = av_set_add_element (setp);
2094 *_AV_SET_EXPR (elem) = *expr;
2097 /* Remove expr pointed to by IP from the av_set. */
2098 void
2099 av_set_iter_remove (av_set_iterator *ip)
2101 clear_expr (_AV_SET_EXPR (*ip->lp));
2102 _list_iter_remove (ip);
2105 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2106 sense of vinsn_equal_p function. Return NULL if no such expr is
2107 in SET was found. */
2108 expr_t
2109 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2111 expr_t expr;
2112 av_set_iterator i;
2114 FOR_EACH_EXPR (expr, i, set)
2115 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2116 return expr;
2117 return NULL;
2120 /* Same, but also remove the EXPR found. */
2121 static expr_t
2122 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2124 expr_t expr;
2125 av_set_iterator i;
2127 FOR_EACH_EXPR_1 (expr, i, setp)
2128 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2130 _list_iter_remove_nofree (&i);
2131 return expr;
2133 return NULL;
2136 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2137 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2138 Returns NULL if no such expr is in SET was found. */
2139 static expr_t
2140 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2142 expr_t cur_expr;
2143 av_set_iterator i;
2145 FOR_EACH_EXPR (cur_expr, i, set)
2147 if (cur_expr == expr)
2148 continue;
2149 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2150 return cur_expr;
2153 return NULL;
2156 /* If other expression is already in AVP, remove one of them. */
2157 expr_t
2158 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2160 expr_t expr2;
2162 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2163 if (expr2 != NULL)
2165 /* Reset target availability on merge, since taking it only from one
2166 of the exprs would be controversial for different code. */
2167 EXPR_TARGET_AVAILABLE (expr2) = -1;
2168 EXPR_USEFULNESS (expr2) = 0;
2170 merge_expr (expr2, expr, NULL);
2172 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2173 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2175 av_set_iter_remove (ip);
2176 return expr2;
2179 return expr;
2182 /* Return true if there is an expr that correlates to VI in SET. */
2183 bool
2184 av_set_is_in_p (av_set_t set, vinsn_t vi)
2186 return av_set_lookup (set, vi) != NULL;
2189 /* Return a copy of SET. */
2190 av_set_t
2191 av_set_copy (av_set_t set)
2193 expr_t expr;
2194 av_set_iterator i;
2195 av_set_t res = NULL;
2197 FOR_EACH_EXPR (expr, i, set)
2198 av_set_add (&res, expr);
2200 return res;
2203 /* Join two av sets that do not have common elements by attaching second set
2204 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2205 _AV_SET_NEXT of first set's last element). */
2206 static void
2207 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2209 gcc_assert (*to_tailp == NULL);
2210 *to_tailp = *fromp;
2211 *fromp = NULL;
2214 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2215 pointed to by FROMP afterwards. */
2216 void
2217 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2219 expr_t expr1;
2220 av_set_iterator i;
2222 /* Delete from TOP all exprs, that present in FROMP. */
2223 FOR_EACH_EXPR_1 (expr1, i, top)
2225 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2227 if (expr2)
2229 merge_expr (expr2, expr1, insn);
2230 av_set_iter_remove (&i);
2234 join_distinct_sets (i.lp, fromp);
2237 /* Same as above, but also update availability of target register in
2238 TOP judging by TO_LV_SET and FROM_LV_SET. */
2239 void
2240 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2241 regset from_lv_set, insn_t insn)
2243 expr_t expr1;
2244 av_set_iterator i;
2245 av_set_t *to_tailp, in_both_set = NULL;
2247 /* Delete from TOP all expres, that present in FROMP. */
2248 FOR_EACH_EXPR_1 (expr1, i, top)
2250 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2252 if (expr2)
2254 /* It may be that the expressions have different destination
2255 registers, in which case we need to check liveness here. */
2256 if (EXPR_SEPARABLE_P (expr1))
2258 int regno1 = (REG_P (EXPR_LHS (expr1))
2259 ? (int) expr_dest_regno (expr1) : -1);
2260 int regno2 = (REG_P (EXPR_LHS (expr2))
2261 ? (int) expr_dest_regno (expr2) : -1);
2263 /* ??? We don't have a way to check restrictions for
2264 *other* register on the current path, we did it only
2265 for the current target register. Give up. */
2266 if (regno1 != regno2)
2267 EXPR_TARGET_AVAILABLE (expr2) = -1;
2269 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2270 EXPR_TARGET_AVAILABLE (expr2) = -1;
2272 merge_expr (expr2, expr1, insn);
2273 av_set_add_nocopy (&in_both_set, expr2);
2274 av_set_iter_remove (&i);
2276 else
2277 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2278 FROM_LV_SET. */
2279 set_unavailable_target_for_expr (expr1, from_lv_set);
2281 to_tailp = i.lp;
2283 /* These expressions are not present in TOP. Check liveness
2284 restrictions on TO_LV_SET. */
2285 FOR_EACH_EXPR (expr1, i, *fromp)
2286 set_unavailable_target_for_expr (expr1, to_lv_set);
2288 join_distinct_sets (i.lp, &in_both_set);
2289 join_distinct_sets (to_tailp, fromp);
2292 /* Clear av_set pointed to by SETP. */
2293 void
2294 av_set_clear (av_set_t *setp)
2296 expr_t expr;
2297 av_set_iterator i;
2299 FOR_EACH_EXPR_1 (expr, i, setp)
2300 av_set_iter_remove (&i);
2302 gcc_assert (*setp == NULL);
2305 /* Leave only one non-speculative element in the SETP. */
2306 void
2307 av_set_leave_one_nonspec (av_set_t *setp)
2309 expr_t expr;
2310 av_set_iterator i;
2311 bool has_one_nonspec = false;
2313 /* Keep all speculative exprs, and leave one non-speculative
2314 (the first one). */
2315 FOR_EACH_EXPR_1 (expr, i, setp)
2317 if (!EXPR_SPEC_DONE_DS (expr))
2319 if (has_one_nonspec)
2320 av_set_iter_remove (&i);
2321 else
2322 has_one_nonspec = true;
2327 /* Return the N'th element of the SET. */
2328 expr_t
2329 av_set_element (av_set_t set, int n)
2331 expr_t expr;
2332 av_set_iterator i;
2334 FOR_EACH_EXPR (expr, i, set)
2335 if (n-- == 0)
2336 return expr;
2338 gcc_unreachable ();
2339 return NULL;
2342 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2343 void
2344 av_set_substract_cond_branches (av_set_t *avp)
2346 av_set_iterator i;
2347 expr_t expr;
2349 FOR_EACH_EXPR_1 (expr, i, avp)
2350 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2351 av_set_iter_remove (&i);
2354 /* Multiplies usefulness attribute of each member of av-set *AVP by
2355 value PROB / ALL_PROB. */
2356 void
2357 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2359 av_set_iterator i;
2360 expr_t expr;
2362 FOR_EACH_EXPR (expr, i, av)
2363 EXPR_USEFULNESS (expr) = (all_prob
2364 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2365 : 0);
2368 /* Leave in AVP only those expressions, which are present in AV,
2369 and return it, merging history expressions. */
2370 void
2371 av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2373 av_set_iterator i;
2374 expr_t expr, expr2;
2376 FOR_EACH_EXPR_1 (expr, i, avp)
2377 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2378 av_set_iter_remove (&i);
2379 else
2380 /* When updating av sets in bookkeeping blocks, we can add more insns
2381 there which will be transformed but the upper av sets will not
2382 reflect those transformations. We then fail to undo those
2383 when searching for such insns. So merge the history saved
2384 in the av set of the block we are processing. */
2385 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2386 EXPR_HISTORY_OF_CHANGES (expr2));
2391 /* Dependence hooks to initialize insn data. */
2393 /* This is used in hooks callable from dependence analysis when initializing
2394 instruction's data. */
2395 static struct
2397 /* Where the dependence was found (lhs/rhs). */
2398 deps_where_t where;
2400 /* The actual data object to initialize. */
2401 idata_t id;
2403 /* True when the insn should not be made clonable. */
2404 bool force_unique_p;
2406 /* True when insn should be treated as of type USE, i.e. never renamed. */
2407 bool force_use_p;
2408 } deps_init_id_data;
2411 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2412 clonable. */
2413 static void
2414 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2416 int type;
2418 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2419 That clonable insns which can be separated into lhs and rhs have type SET.
2420 Other clonable insns have type USE. */
2421 type = GET_CODE (insn);
2423 /* Only regular insns could be cloned. */
2424 if (type == INSN && !force_unique_p)
2425 type = SET;
2426 else if (type == JUMP_INSN && simplejump_p (insn))
2427 type = PC;
2428 else if (type == DEBUG_INSN)
2429 type = !force_unique_p ? USE : INSN;
2431 IDATA_TYPE (id) = type;
2432 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2433 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2434 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2437 /* Start initializing insn data. */
2438 static void
2439 deps_init_id_start_insn (insn_t insn)
2441 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2443 setup_id_for_insn (deps_init_id_data.id, insn,
2444 deps_init_id_data.force_unique_p);
2445 deps_init_id_data.where = DEPS_IN_INSN;
2448 /* Start initializing lhs data. */
2449 static void
2450 deps_init_id_start_lhs (rtx lhs)
2452 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2453 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2455 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2457 IDATA_LHS (deps_init_id_data.id) = lhs;
2458 deps_init_id_data.where = DEPS_IN_LHS;
2462 /* Finish initializing lhs data. */
2463 static void
2464 deps_init_id_finish_lhs (void)
2466 deps_init_id_data.where = DEPS_IN_INSN;
2469 /* Note a set of REGNO. */
2470 static void
2471 deps_init_id_note_reg_set (int regno)
2473 haifa_note_reg_set (regno);
2475 if (deps_init_id_data.where == DEPS_IN_RHS)
2476 deps_init_id_data.force_use_p = true;
2478 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2479 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2481 #ifdef STACK_REGS
2482 /* Make instructions that set stack registers to be ineligible for
2483 renaming to avoid issues with find_used_regs. */
2484 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2485 deps_init_id_data.force_use_p = true;
2486 #endif
2489 /* Note a clobber of REGNO. */
2490 static void
2491 deps_init_id_note_reg_clobber (int regno)
2493 haifa_note_reg_clobber (regno);
2495 if (deps_init_id_data.where == DEPS_IN_RHS)
2496 deps_init_id_data.force_use_p = true;
2498 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2499 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2502 /* Note a use of REGNO. */
2503 static void
2504 deps_init_id_note_reg_use (int regno)
2506 haifa_note_reg_use (regno);
2508 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2509 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2512 /* Start initializing rhs data. */
2513 static void
2514 deps_init_id_start_rhs (rtx rhs)
2516 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2518 /* And there was no sel_deps_reset_to_insn (). */
2519 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2521 IDATA_RHS (deps_init_id_data.id) = rhs;
2522 deps_init_id_data.where = DEPS_IN_RHS;
2526 /* Finish initializing rhs data. */
2527 static void
2528 deps_init_id_finish_rhs (void)
2530 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2531 || deps_init_id_data.where == DEPS_IN_INSN);
2532 deps_init_id_data.where = DEPS_IN_INSN;
2535 /* Finish initializing insn data. */
2536 static void
2537 deps_init_id_finish_insn (void)
2539 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2541 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2543 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2544 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2546 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2547 || deps_init_id_data.force_use_p)
2549 /* This should be a USE, as we don't want to schedule its RHS
2550 separately. However, we still want to have them recorded
2551 for the purposes of substitution. That's why we don't
2552 simply call downgrade_to_use () here. */
2553 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2554 gcc_assert (!lhs == !rhs);
2556 IDATA_TYPE (deps_init_id_data.id) = USE;
2560 deps_init_id_data.where = DEPS_IN_NOWHERE;
2563 /* This is dependence info used for initializing insn's data. */
2564 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2566 /* This initializes most of the static part of the above structure. */
2567 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2569 NULL,
2571 deps_init_id_start_insn,
2572 deps_init_id_finish_insn,
2573 deps_init_id_start_lhs,
2574 deps_init_id_finish_lhs,
2575 deps_init_id_start_rhs,
2576 deps_init_id_finish_rhs,
2577 deps_init_id_note_reg_set,
2578 deps_init_id_note_reg_clobber,
2579 deps_init_id_note_reg_use,
2580 NULL, /* note_mem_dep */
2581 NULL, /* note_dep */
2583 0, /* use_cselib */
2584 0, /* use_deps_list */
2585 0 /* generate_spec_deps */
2588 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2589 we don't actually need information about lhs and rhs. */
2590 static void
2591 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2593 rtx pat = PATTERN (insn);
2595 if (NONJUMP_INSN_P (insn)
2596 && GET_CODE (pat) == SET
2597 && !force_unique_p)
2599 IDATA_RHS (id) = SET_SRC (pat);
2600 IDATA_LHS (id) = SET_DEST (pat);
2602 else
2603 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2606 /* Possibly downgrade INSN to USE. */
2607 static void
2608 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2610 bool must_be_use = false;
2611 unsigned uid = INSN_UID (insn);
2612 df_ref *rec;
2613 rtx lhs = IDATA_LHS (id);
2614 rtx rhs = IDATA_RHS (id);
2616 /* We downgrade only SETs. */
2617 if (IDATA_TYPE (id) != SET)
2618 return;
2620 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2622 IDATA_TYPE (id) = USE;
2623 return;
2626 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2628 df_ref def = *rec;
2630 if (DF_REF_INSN (def)
2631 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2632 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2634 must_be_use = true;
2635 break;
2638 #ifdef STACK_REGS
2639 /* Make instructions that set stack registers to be ineligible for
2640 renaming to avoid issues with find_used_regs. */
2641 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2643 must_be_use = true;
2644 break;
2646 #endif
2649 if (must_be_use)
2650 IDATA_TYPE (id) = USE;
2653 /* Setup register sets describing INSN in ID. */
2654 static void
2655 setup_id_reg_sets (idata_t id, insn_t insn)
2657 unsigned uid = INSN_UID (insn);
2658 df_ref *rec;
2659 regset tmp = get_clear_regset_from_pool ();
2661 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2663 df_ref def = *rec;
2664 unsigned int regno = DF_REF_REGNO (def);
2666 /* Post modifies are treated like clobbers by sched-deps.c. */
2667 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2668 | DF_REF_PRE_POST_MODIFY)))
2669 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2670 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2672 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2674 #ifdef STACK_REGS
2675 /* For stack registers, treat writes to them as writes
2676 to the first one to be consistent with sched-deps.c. */
2677 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2678 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2679 #endif
2681 /* Mark special refs that generate read/write def pair. */
2682 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2683 || regno == STACK_POINTER_REGNUM)
2684 bitmap_set_bit (tmp, regno);
2687 for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2689 df_ref use = *rec;
2690 unsigned int regno = DF_REF_REGNO (use);
2692 /* When these refs are met for the first time, skip them, as
2693 these uses are just counterparts of some defs. */
2694 if (bitmap_bit_p (tmp, regno))
2695 bitmap_clear_bit (tmp, regno);
2696 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2698 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2700 #ifdef STACK_REGS
2701 /* For stack registers, treat reads from them as reads from
2702 the first one to be consistent with sched-deps.c. */
2703 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2704 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2705 #endif
2709 return_regset_to_pool (tmp);
2712 /* Initialize instruction data for INSN in ID using DF's data. */
2713 static void
2714 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2716 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2718 setup_id_for_insn (id, insn, force_unique_p);
2719 setup_id_lhs_rhs (id, insn, force_unique_p);
2721 if (INSN_NOP_P (insn))
2722 return;
2724 maybe_downgrade_id_to_use (id, insn);
2725 setup_id_reg_sets (id, insn);
2728 /* Initialize instruction data for INSN in ID. */
2729 static void
2730 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2732 struct deps_desc _dc, *dc = &_dc;
2734 deps_init_id_data.where = DEPS_IN_NOWHERE;
2735 deps_init_id_data.id = id;
2736 deps_init_id_data.force_unique_p = force_unique_p;
2737 deps_init_id_data.force_use_p = false;
2739 init_deps (dc, false);
2741 memcpy (&deps_init_id_sched_deps_info,
2742 &const_deps_init_id_sched_deps_info,
2743 sizeof (deps_init_id_sched_deps_info));
2745 if (spec_info != NULL)
2746 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2748 sched_deps_info = &deps_init_id_sched_deps_info;
2750 deps_analyze_insn (dc, insn);
2752 free_deps (dc);
2754 deps_init_id_data.id = NULL;
2758 struct sched_scan_info_def
2760 /* This hook notifies scheduler frontend to extend its internal per basic
2761 block data structures. This hook should be called once before a series of
2762 calls to bb_init (). */
2763 void (*extend_bb) (void);
2765 /* This hook makes scheduler frontend to initialize its internal data
2766 structures for the passed basic block. */
2767 void (*init_bb) (basic_block);
2769 /* This hook notifies scheduler frontend to extend its internal per insn data
2770 structures. This hook should be called once before a series of calls to
2771 insn_init (). */
2772 void (*extend_insn) (void);
2774 /* This hook makes scheduler frontend to initialize its internal data
2775 structures for the passed insn. */
2776 void (*init_insn) (rtx);
2779 /* A driver function to add a set of basic blocks (BBS) to the
2780 scheduling region. */
2781 static void
2782 sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2784 unsigned i;
2785 basic_block bb;
2787 if (ssi->extend_bb)
2788 ssi->extend_bb ();
2790 if (ssi->init_bb)
2791 FOR_EACH_VEC_ELT (bbs, i, bb)
2792 ssi->init_bb (bb);
2794 if (ssi->extend_insn)
2795 ssi->extend_insn ();
2797 if (ssi->init_insn)
2798 FOR_EACH_VEC_ELT (bbs, i, bb)
2800 rtx insn;
2802 FOR_BB_INSNS (bb, insn)
2803 ssi->init_insn (insn);
2807 /* Implement hooks for collecting fundamental insn properties like if insn is
2808 an ASM or is within a SCHED_GROUP. */
2810 /* True when a "one-time init" data for INSN was already inited. */
2811 static bool
2812 first_time_insn_init (insn_t insn)
2814 return INSN_LIVE (insn) == NULL;
2817 /* Hash an entry in a transformed_insns hashtable. */
2818 static hashval_t
2819 hash_transformed_insns (const void *p)
2821 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2824 /* Compare the entries in a transformed_insns hashtable. */
2825 static int
2826 eq_transformed_insns (const void *p, const void *q)
2828 rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2829 rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2831 if (INSN_UID (i1) == INSN_UID (i2))
2832 return 1;
2833 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2836 /* Free an entry in a transformed_insns hashtable. */
2837 static void
2838 free_transformed_insns (void *p)
2840 struct transformed_insns *pti = (struct transformed_insns *) p;
2842 vinsn_detach (pti->vinsn_old);
2843 vinsn_detach (pti->vinsn_new);
2844 free (pti);
2847 /* Init the s_i_d data for INSN which should be inited just once, when
2848 we first see the insn. */
2849 static void
2850 init_first_time_insn_data (insn_t insn)
2852 /* This should not be set if this is the first time we init data for
2853 insn. */
2854 gcc_assert (first_time_insn_init (insn));
2856 /* These are needed for nops too. */
2857 INSN_LIVE (insn) = get_regset_from_pool ();
2858 INSN_LIVE_VALID_P (insn) = false;
2860 if (!INSN_NOP_P (insn))
2862 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2863 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2864 INSN_TRANSFORMED_INSNS (insn)
2865 = htab_create (16, hash_transformed_insns,
2866 eq_transformed_insns, free_transformed_insns);
2867 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2871 /* Free almost all above data for INSN that is scheduled already.
2872 Used for extra-large basic blocks. */
2873 void
2874 free_data_for_scheduled_insn (insn_t insn)
2876 gcc_assert (! first_time_insn_init (insn));
2878 if (! INSN_ANALYZED_DEPS (insn))
2879 return;
2881 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2882 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2883 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2885 /* This is allocated only for bookkeeping insns. */
2886 if (INSN_ORIGINATORS (insn))
2887 BITMAP_FREE (INSN_ORIGINATORS (insn));
2888 free_deps (&INSN_DEPS_CONTEXT (insn));
2890 INSN_ANALYZED_DEPS (insn) = NULL;
2892 /* Clear the readonly flag so we would ICE when trying to recalculate
2893 the deps context (as we believe that it should not happen). */
2894 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2897 /* Free the same data as above for INSN. */
2898 static void
2899 free_first_time_insn_data (insn_t insn)
2901 gcc_assert (! first_time_insn_init (insn));
2903 free_data_for_scheduled_insn (insn);
2904 return_regset_to_pool (INSN_LIVE (insn));
2905 INSN_LIVE (insn) = NULL;
2906 INSN_LIVE_VALID_P (insn) = false;
2909 /* Initialize region-scope data structures for basic blocks. */
2910 static void
2911 init_global_and_expr_for_bb (basic_block bb)
2913 if (sel_bb_empty_p (bb))
2914 return;
2916 invalidate_av_set (bb);
2919 /* Data for global dependency analysis (to initialize CANT_MOVE and
2920 SCHED_GROUP_P). */
2921 static struct
2923 /* Previous insn. */
2924 insn_t prev_insn;
2925 } init_global_data;
2927 /* Determine if INSN is in the sched_group, is an asm or should not be
2928 cloned. After that initialize its expr. */
2929 static void
2930 init_global_and_expr_for_insn (insn_t insn)
2932 if (LABEL_P (insn))
2933 return;
2935 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2937 init_global_data.prev_insn = NULL_RTX;
2938 return;
2941 gcc_assert (INSN_P (insn));
2943 if (SCHED_GROUP_P (insn))
2944 /* Setup a sched_group. */
2946 insn_t prev_insn = init_global_data.prev_insn;
2948 if (prev_insn)
2949 INSN_SCHED_NEXT (prev_insn) = insn;
2951 init_global_data.prev_insn = insn;
2953 else
2954 init_global_data.prev_insn = NULL_RTX;
2956 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2957 || asm_noperands (PATTERN (insn)) >= 0)
2958 /* Mark INSN as an asm. */
2959 INSN_ASM_P (insn) = true;
2962 bool force_unique_p;
2963 ds_t spec_done_ds;
2965 /* Certain instructions cannot be cloned, and frame related insns and
2966 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2967 their block. */
2968 if (prologue_epilogue_contains (insn))
2970 if (RTX_FRAME_RELATED_P (insn))
2971 CANT_MOVE (insn) = 1;
2972 else
2974 rtx note;
2975 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2976 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2977 && ((enum insn_note) INTVAL (XEXP (note, 0))
2978 == NOTE_INSN_EPILOGUE_BEG))
2980 CANT_MOVE (insn) = 1;
2981 break;
2984 force_unique_p = true;
2986 else
2987 if (CANT_MOVE (insn)
2988 || INSN_ASM_P (insn)
2989 || SCHED_GROUP_P (insn)
2990 || CALL_P (insn)
2991 /* Exception handling insns are always unique. */
2992 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
2993 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
2994 || control_flow_insn_p (insn)
2995 || volatile_insn_p (PATTERN (insn))
2996 || (targetm.cannot_copy_insn_p
2997 && targetm.cannot_copy_insn_p (insn)))
2998 force_unique_p = true;
2999 else
3000 force_unique_p = false;
3002 if (targetm.sched.get_insn_spec_ds)
3004 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
3005 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
3007 else
3008 spec_done_ds = 0;
3010 /* Initialize INSN's expr. */
3011 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3012 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
3013 spec_done_ds, 0, 0, vNULL, true,
3014 false, false, false, CANT_MOVE (insn));
3017 init_first_time_insn_data (insn);
3020 /* Scan the region and initialize instruction data for basic blocks BBS. */
3021 void
3022 sel_init_global_and_expr (bb_vec_t bbs)
3024 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
3025 const struct sched_scan_info_def ssi =
3027 NULL, /* extend_bb */
3028 init_global_and_expr_for_bb, /* init_bb */
3029 extend_insn_data, /* extend_insn */
3030 init_global_and_expr_for_insn /* init_insn */
3033 sched_scan (&ssi, bbs);
3036 /* Finalize region-scope data structures for basic blocks. */
3037 static void
3038 finish_global_and_expr_for_bb (basic_block bb)
3040 av_set_clear (&BB_AV_SET (bb));
3041 BB_AV_LEVEL (bb) = 0;
3044 /* Finalize INSN's data. */
3045 static void
3046 finish_global_and_expr_insn (insn_t insn)
3048 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3049 return;
3051 gcc_assert (INSN_P (insn));
3053 if (INSN_LUID (insn) > 0)
3055 free_first_time_insn_data (insn);
3056 INSN_WS_LEVEL (insn) = 0;
3057 CANT_MOVE (insn) = 0;
3059 /* We can no longer assert this, as vinsns of this insn could be
3060 easily live in other insn's caches. This should be changed to
3061 a counter-like approach among all vinsns. */
3062 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3063 clear_expr (INSN_EXPR (insn));
3067 /* Finalize per instruction data for the whole region. */
3068 void
3069 sel_finish_global_and_expr (void)
3072 bb_vec_t bbs;
3073 int i;
3075 bbs.create (current_nr_blocks);
3077 for (i = 0; i < current_nr_blocks; i++)
3078 bbs.quick_push (BASIC_BLOCK (BB_TO_BLOCK (i)));
3080 /* Clear AV_SETs and INSN_EXPRs. */
3082 const struct sched_scan_info_def ssi =
3084 NULL, /* extend_bb */
3085 finish_global_and_expr_for_bb, /* init_bb */
3086 NULL, /* extend_insn */
3087 finish_global_and_expr_insn /* init_insn */
3090 sched_scan (&ssi, bbs);
3093 bbs.release ();
3096 finish_insns ();
3100 /* In the below hooks, we merely calculate whether or not a dependence
3101 exists, and in what part of insn. However, we will need more data
3102 when we'll start caching dependence requests. */
3104 /* Container to hold information for dependency analysis. */
3105 static struct
3107 deps_t dc;
3109 /* A variable to track which part of rtx we are scanning in
3110 sched-deps.c: sched_analyze_insn (). */
3111 deps_where_t where;
3113 /* Current producer. */
3114 insn_t pro;
3116 /* Current consumer. */
3117 vinsn_t con;
3119 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3120 X is from { INSN, LHS, RHS }. */
3121 ds_t has_dep_p[DEPS_IN_NOWHERE];
3122 } has_dependence_data;
3124 /* Start analyzing dependencies of INSN. */
3125 static void
3126 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3128 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3130 has_dependence_data.where = DEPS_IN_INSN;
3133 /* Finish analyzing dependencies of an insn. */
3134 static void
3135 has_dependence_finish_insn (void)
3137 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3139 has_dependence_data.where = DEPS_IN_NOWHERE;
3142 /* Start analyzing dependencies of LHS. */
3143 static void
3144 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3146 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3148 if (VINSN_LHS (has_dependence_data.con) != NULL)
3149 has_dependence_data.where = DEPS_IN_LHS;
3152 /* Finish analyzing dependencies of an lhs. */
3153 static void
3154 has_dependence_finish_lhs (void)
3156 has_dependence_data.where = DEPS_IN_INSN;
3159 /* Start analyzing dependencies of RHS. */
3160 static void
3161 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3163 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3165 if (VINSN_RHS (has_dependence_data.con) != NULL)
3166 has_dependence_data.where = DEPS_IN_RHS;
3169 /* Start analyzing dependencies of an rhs. */
3170 static void
3171 has_dependence_finish_rhs (void)
3173 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3174 || has_dependence_data.where == DEPS_IN_INSN);
3176 has_dependence_data.where = DEPS_IN_INSN;
3179 /* Note a set of REGNO. */
3180 static void
3181 has_dependence_note_reg_set (int regno)
3183 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3185 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3186 VINSN_INSN_RTX
3187 (has_dependence_data.con)))
3189 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3191 if (reg_last->sets != NULL
3192 || reg_last->clobbers != NULL)
3193 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3195 if (reg_last->uses || reg_last->implicit_sets)
3196 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3200 /* Note a clobber of REGNO. */
3201 static void
3202 has_dependence_note_reg_clobber (int regno)
3204 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3206 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3207 VINSN_INSN_RTX
3208 (has_dependence_data.con)))
3210 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3212 if (reg_last->sets)
3213 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3215 if (reg_last->uses || reg_last->implicit_sets)
3216 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3220 /* Note a use of REGNO. */
3221 static void
3222 has_dependence_note_reg_use (int regno)
3224 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3226 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3227 VINSN_INSN_RTX
3228 (has_dependence_data.con)))
3230 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3232 if (reg_last->sets)
3233 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3235 if (reg_last->clobbers || reg_last->implicit_sets)
3236 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3238 /* Merge BE_IN_SPEC bits into *DSP when the dependency producer
3239 is actually a check insn. We need to do this for any register
3240 read-read dependency with the check unless we track properly
3241 all registers written by BE_IN_SPEC-speculated insns, as
3242 we don't have explicit dependence lists. See PR 53975. */
3243 if (reg_last->uses)
3245 ds_t pro_spec_checked_ds;
3247 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3248 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3250 if (pro_spec_checked_ds != 0)
3251 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3252 NULL_RTX, NULL_RTX);
3257 /* Note a memory dependence. */
3258 static void
3259 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3260 rtx pending_mem ATTRIBUTE_UNUSED,
3261 insn_t pending_insn ATTRIBUTE_UNUSED,
3262 ds_t ds ATTRIBUTE_UNUSED)
3264 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3265 VINSN_INSN_RTX (has_dependence_data.con)))
3267 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3269 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3273 /* Note a dependence. */
3274 static void
3275 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3276 ds_t ds ATTRIBUTE_UNUSED)
3278 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3279 VINSN_INSN_RTX (has_dependence_data.con)))
3281 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3283 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3287 /* Mark the insn as having a hard dependence that prevents speculation. */
3288 void
3289 sel_mark_hard_insn (rtx insn)
3291 int i;
3293 /* Only work when we're in has_dependence_p mode.
3294 ??? This is a hack, this should actually be a hook. */
3295 if (!has_dependence_data.dc || !has_dependence_data.pro)
3296 return;
3298 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3299 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3301 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3302 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3305 /* This structure holds the hooks for the dependency analysis used when
3306 actually processing dependencies in the scheduler. */
3307 static struct sched_deps_info_def has_dependence_sched_deps_info;
3309 /* This initializes most of the fields of the above structure. */
3310 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3312 NULL,
3314 has_dependence_start_insn,
3315 has_dependence_finish_insn,
3316 has_dependence_start_lhs,
3317 has_dependence_finish_lhs,
3318 has_dependence_start_rhs,
3319 has_dependence_finish_rhs,
3320 has_dependence_note_reg_set,
3321 has_dependence_note_reg_clobber,
3322 has_dependence_note_reg_use,
3323 has_dependence_note_mem_dep,
3324 has_dependence_note_dep,
3326 0, /* use_cselib */
3327 0, /* use_deps_list */
3328 0 /* generate_spec_deps */
3331 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3332 static void
3333 setup_has_dependence_sched_deps_info (void)
3335 memcpy (&has_dependence_sched_deps_info,
3336 &const_has_dependence_sched_deps_info,
3337 sizeof (has_dependence_sched_deps_info));
3339 if (spec_info != NULL)
3340 has_dependence_sched_deps_info.generate_spec_deps = 1;
3342 sched_deps_info = &has_dependence_sched_deps_info;
3345 /* Remove all dependences found and recorded in has_dependence_data array. */
3346 void
3347 sel_clear_has_dependence (void)
3349 int i;
3351 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3352 has_dependence_data.has_dep_p[i] = 0;
3355 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3356 to the dependence information array in HAS_DEP_PP. */
3357 ds_t
3358 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3360 int i;
3361 ds_t ds;
3362 struct deps_desc *dc;
3364 if (INSN_SIMPLEJUMP_P (pred))
3365 /* Unconditional jump is just a transfer of control flow.
3366 Ignore it. */
3367 return false;
3369 dc = &INSN_DEPS_CONTEXT (pred);
3371 /* We init this field lazily. */
3372 if (dc->reg_last == NULL)
3373 init_deps_reg_last (dc);
3375 if (!dc->readonly)
3377 has_dependence_data.pro = NULL;
3378 /* Initialize empty dep context with information about PRED. */
3379 advance_deps_context (dc, pred);
3380 dc->readonly = 1;
3383 has_dependence_data.where = DEPS_IN_NOWHERE;
3384 has_dependence_data.pro = pred;
3385 has_dependence_data.con = EXPR_VINSN (expr);
3386 has_dependence_data.dc = dc;
3388 sel_clear_has_dependence ();
3390 /* Now catch all dependencies that would be generated between PRED and
3391 INSN. */
3392 setup_has_dependence_sched_deps_info ();
3393 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3394 has_dependence_data.dc = NULL;
3396 /* When a barrier was found, set DEPS_IN_INSN bits. */
3397 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3398 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3399 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3400 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3402 /* Do not allow stores to memory to move through checks. Currently
3403 we don't move this to sched-deps.c as the check doesn't have
3404 obvious places to which this dependence can be attached.
3405 FIMXE: this should go to a hook. */
3406 if (EXPR_LHS (expr)
3407 && MEM_P (EXPR_LHS (expr))
3408 && sel_insn_is_speculation_check (pred))
3409 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3411 *has_dep_pp = has_dependence_data.has_dep_p;
3412 ds = 0;
3413 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3414 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3415 NULL_RTX, NULL_RTX);
3417 return ds;
3421 /* Dependence hooks implementation that checks dependence latency constraints
3422 on the insns being scheduled. The entry point for these routines is
3423 tick_check_p predicate. */
3425 static struct
3427 /* An expr we are currently checking. */
3428 expr_t expr;
3430 /* A minimal cycle for its scheduling. */
3431 int cycle;
3433 /* Whether we have seen a true dependence while checking. */
3434 bool seen_true_dep_p;
3435 } tick_check_data;
3437 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3438 on PRO with status DS and weight DW. */
3439 static void
3440 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3442 expr_t con_expr = tick_check_data.expr;
3443 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3445 if (con_insn != pro_insn)
3447 enum reg_note dt;
3448 int tick;
3450 if (/* PROducer was removed from above due to pipelining. */
3451 !INSN_IN_STREAM_P (pro_insn)
3452 /* Or PROducer was originally on the next iteration regarding the
3453 CONsumer. */
3454 || (INSN_SCHED_TIMES (pro_insn)
3455 - EXPR_SCHED_TIMES (con_expr)) > 1)
3456 /* Don't count this dependence. */
3457 return;
3459 dt = ds_to_dt (ds);
3460 if (dt == REG_DEP_TRUE)
3461 tick_check_data.seen_true_dep_p = true;
3463 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3466 dep_def _dep, *dep = &_dep;
3468 init_dep (dep, pro_insn, con_insn, dt);
3470 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3473 /* When there are several kinds of dependencies between pro and con,
3474 only REG_DEP_TRUE should be taken into account. */
3475 if (tick > tick_check_data.cycle
3476 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3477 tick_check_data.cycle = tick;
3481 /* An implementation of note_dep hook. */
3482 static void
3483 tick_check_note_dep (insn_t pro, ds_t ds)
3485 tick_check_dep_with_dw (pro, ds, 0);
3488 /* An implementation of note_mem_dep hook. */
3489 static void
3490 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3492 dw_t dw;
3494 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3495 ? estimate_dep_weak (mem1, mem2)
3496 : 0);
3498 tick_check_dep_with_dw (pro, ds, dw);
3501 /* This structure contains hooks for dependence analysis used when determining
3502 whether an insn is ready for scheduling. */
3503 static struct sched_deps_info_def tick_check_sched_deps_info =
3505 NULL,
3507 NULL,
3508 NULL,
3509 NULL,
3510 NULL,
3511 NULL,
3512 NULL,
3513 haifa_note_reg_set,
3514 haifa_note_reg_clobber,
3515 haifa_note_reg_use,
3516 tick_check_note_mem_dep,
3517 tick_check_note_dep,
3519 0, 0, 0
3522 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3523 scheduled. Return 0 if all data from producers in DC is ready. */
3525 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3527 int cycles_left;
3528 /* Initialize variables. */
3529 tick_check_data.expr = expr;
3530 tick_check_data.cycle = 0;
3531 tick_check_data.seen_true_dep_p = false;
3532 sched_deps_info = &tick_check_sched_deps_info;
3534 gcc_assert (!dc->readonly);
3535 dc->readonly = 1;
3536 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3537 dc->readonly = 0;
3539 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3541 return cycles_left >= 0 ? cycles_left : 0;
3545 /* Functions to work with insns. */
3547 /* Returns true if LHS of INSN is the same as DEST of an insn
3548 being moved. */
3549 bool
3550 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3552 rtx lhs = INSN_LHS (insn);
3554 if (lhs == NULL || dest == NULL)
3555 return false;
3557 return rtx_equal_p (lhs, dest);
3560 /* Return s_i_d entry of INSN. Callable from debugger. */
3561 sel_insn_data_def
3562 insn_sid (insn_t insn)
3564 return *SID (insn);
3567 /* True when INSN is a speculative check. We can tell this by looking
3568 at the data structures of the selective scheduler, not by examining
3569 the pattern. */
3570 bool
3571 sel_insn_is_speculation_check (rtx insn)
3573 return s_i_d.exists () && !! INSN_SPEC_CHECKED_DS (insn);
3576 /* Extracts machine mode MODE and destination location DST_LOC
3577 for given INSN. */
3578 void
3579 get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3581 rtx pat = PATTERN (insn);
3583 gcc_assert (dst_loc);
3584 gcc_assert (GET_CODE (pat) == SET);
3586 *dst_loc = SET_DEST (pat);
3588 gcc_assert (*dst_loc);
3589 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3591 if (mode)
3592 *mode = GET_MODE (*dst_loc);
3595 /* Returns true when moving through JUMP will result in bookkeeping
3596 creation. */
3597 bool
3598 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3600 insn_t succ;
3601 succ_iterator si;
3603 FOR_EACH_SUCC (succ, si, jump)
3604 if (sel_num_cfg_preds_gt_1 (succ))
3605 return true;
3607 return false;
3610 /* Return 'true' if INSN is the only one in its basic block. */
3611 static bool
3612 insn_is_the_only_one_in_bb_p (insn_t insn)
3614 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3617 #ifdef ENABLE_CHECKING
3618 /* Check that the region we're scheduling still has at most one
3619 backedge. */
3620 static void
3621 verify_backedges (void)
3623 if (pipelining_p)
3625 int i, n = 0;
3626 edge e;
3627 edge_iterator ei;
3629 for (i = 0; i < current_nr_blocks; i++)
3630 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3631 if (in_current_region_p (e->dest)
3632 && BLOCK_TO_BB (e->dest->index) < i)
3633 n++;
3635 gcc_assert (n <= 1);
3638 #endif
3641 /* Functions to work with control flow. */
3643 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3644 are sorted in topological order (it might have been invalidated by
3645 redirecting an edge). */
3646 static void
3647 sel_recompute_toporder (void)
3649 int i, n, rgn;
3650 int *postorder, n_blocks;
3652 postorder = XALLOCAVEC (int, n_basic_blocks);
3653 n_blocks = post_order_compute (postorder, false, false);
3655 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3656 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3657 if (CONTAINING_RGN (postorder[i]) == rgn)
3659 BLOCK_TO_BB (postorder[i]) = n;
3660 BB_TO_BLOCK (n) = postorder[i];
3661 n++;
3664 /* Assert that we updated info for all blocks. We may miss some blocks if
3665 this function is called when redirecting an edge made a block
3666 unreachable, but that block is not deleted yet. */
3667 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3670 /* Tidy the possibly empty block BB. */
3671 static bool
3672 maybe_tidy_empty_bb (basic_block bb)
3674 basic_block succ_bb, pred_bb, note_bb;
3675 vec<basic_block> dom_bbs;
3676 edge e;
3677 edge_iterator ei;
3678 bool rescan_p;
3680 /* Keep empty bb only if this block immediately precedes EXIT and
3681 has incoming non-fallthrough edge, or it has no predecessors or
3682 successors. Otherwise remove it. */
3683 if (!sel_bb_empty_p (bb)
3684 || (single_succ_p (bb)
3685 && single_succ (bb) == EXIT_BLOCK_PTR
3686 && (!single_pred_p (bb)
3687 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3688 || EDGE_COUNT (bb->preds) == 0
3689 || EDGE_COUNT (bb->succs) == 0)
3690 return false;
3692 /* Do not attempt to redirect complex edges. */
3693 FOR_EACH_EDGE (e, ei, bb->preds)
3694 if (e->flags & EDGE_COMPLEX)
3695 return false;
3696 else if (e->flags & EDGE_FALLTHRU)
3698 rtx note;
3699 /* If prev bb ends with asm goto, see if any of the
3700 ASM_OPERANDS_LABELs don't point to the fallthru
3701 label. Do not attempt to redirect it in that case. */
3702 if (JUMP_P (BB_END (e->src))
3703 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
3705 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
3707 for (i = 0; i < n; ++i)
3708 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (bb))
3709 return false;
3713 free_data_sets (bb);
3715 /* Do not delete BB if it has more than one successor.
3716 That can occur when we moving a jump. */
3717 if (!single_succ_p (bb))
3719 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3720 sel_merge_blocks (bb->prev_bb, bb);
3721 return true;
3724 succ_bb = single_succ (bb);
3725 rescan_p = true;
3726 pred_bb = NULL;
3727 dom_bbs.create (0);
3729 /* Save a pred/succ from the current region to attach the notes to. */
3730 note_bb = NULL;
3731 FOR_EACH_EDGE (e, ei, bb->preds)
3732 if (in_current_region_p (e->src))
3734 note_bb = e->src;
3735 break;
3737 if (note_bb == NULL)
3738 note_bb = succ_bb;
3740 /* Redirect all non-fallthru edges to the next bb. */
3741 while (rescan_p)
3743 rescan_p = false;
3745 FOR_EACH_EDGE (e, ei, bb->preds)
3747 pred_bb = e->src;
3749 if (!(e->flags & EDGE_FALLTHRU))
3751 /* We can not invalidate computed topological order by moving
3752 the edge destination block (E->SUCC) along a fallthru edge.
3754 We will update dominators here only when we'll get
3755 an unreachable block when redirecting, otherwise
3756 sel_redirect_edge_and_branch will take care of it. */
3757 if (e->dest != bb
3758 && single_pred_p (e->dest))
3759 dom_bbs.safe_push (e->dest);
3760 sel_redirect_edge_and_branch (e, succ_bb);
3761 rescan_p = true;
3762 break;
3764 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3765 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3766 still have to adjust it. */
3767 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3769 /* If possible, try to remove the unneeded conditional jump. */
3770 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3771 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3773 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3774 tidy_fallthru_edge (e);
3776 else
3777 sel_redirect_edge_and_branch (e, succ_bb);
3778 rescan_p = true;
3779 break;
3784 if (can_merge_blocks_p (bb->prev_bb, bb))
3785 sel_merge_blocks (bb->prev_bb, bb);
3786 else
3788 /* This is a block without fallthru predecessor. Just delete it. */
3789 gcc_assert (note_bb);
3790 move_bb_info (note_bb, bb);
3791 remove_empty_bb (bb, true);
3794 if (!dom_bbs.is_empty ())
3796 dom_bbs.safe_push (succ_bb);
3797 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3798 dom_bbs.release ();
3801 return true;
3804 /* Tidy the control flow after we have removed original insn from
3805 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3806 is true, also try to optimize control flow on non-empty blocks. */
3807 bool
3808 tidy_control_flow (basic_block xbb, bool full_tidying)
3810 bool changed = true;
3811 insn_t first, last;
3813 /* First check whether XBB is empty. */
3814 changed = maybe_tidy_empty_bb (xbb);
3815 if (changed || !full_tidying)
3816 return changed;
3818 /* Check if there is a unnecessary jump after insn left. */
3819 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3820 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3821 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3823 if (sel_remove_insn (BB_END (xbb), false, false))
3824 return true;
3825 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3828 first = sel_bb_head (xbb);
3829 last = sel_bb_end (xbb);
3830 if (MAY_HAVE_DEBUG_INSNS)
3832 if (first != last && DEBUG_INSN_P (first))
3834 first = NEXT_INSN (first);
3835 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3837 if (first != last && DEBUG_INSN_P (last))
3839 last = PREV_INSN (last);
3840 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3842 /* Check if there is an unnecessary jump in previous basic block leading
3843 to next basic block left after removing INSN from stream.
3844 If it is so, remove that jump and redirect edge to current
3845 basic block (where there was INSN before deletion). This way
3846 when NOP will be deleted several instructions later with its
3847 basic block we will not get a jump to next instruction, which
3848 can be harmful. */
3849 if (first == last
3850 && !sel_bb_empty_p (xbb)
3851 && INSN_NOP_P (last)
3852 /* Flow goes fallthru from current block to the next. */
3853 && EDGE_COUNT (xbb->succs) == 1
3854 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3855 /* When successor is an EXIT block, it may not be the next block. */
3856 && single_succ (xbb) != EXIT_BLOCK_PTR
3857 /* And unconditional jump in previous basic block leads to
3858 next basic block of XBB and this jump can be safely removed. */
3859 && in_current_region_p (xbb->prev_bb)
3860 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3861 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3862 /* Also this jump is not at the scheduling boundary. */
3863 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3865 bool recompute_toporder_p;
3866 /* Clear data structures of jump - jump itself will be removed
3867 by sel_redirect_edge_and_branch. */
3868 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3869 recompute_toporder_p
3870 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3872 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3874 /* It can turn out that after removing unused jump, basic block
3875 that contained that jump, becomes empty too. In such case
3876 remove it too. */
3877 if (sel_bb_empty_p (xbb->prev_bb))
3878 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3879 if (recompute_toporder_p)
3880 sel_recompute_toporder ();
3883 #ifdef ENABLE_CHECKING
3884 verify_backedges ();
3885 verify_dominators (CDI_DOMINATORS);
3886 #endif
3888 return changed;
3891 /* Purge meaningless empty blocks in the middle of a region. */
3892 void
3893 purge_empty_blocks (void)
3895 int i;
3897 /* Do not attempt to delete the first basic block in the region. */
3898 for (i = 1; i < current_nr_blocks; )
3900 basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
3902 if (maybe_tidy_empty_bb (b))
3903 continue;
3905 i++;
3909 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3910 do not delete insn's data, because it will be later re-emitted.
3911 Return true if we have removed some blocks afterwards. */
3912 bool
3913 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3915 basic_block bb = BLOCK_FOR_INSN (insn);
3917 gcc_assert (INSN_IN_STREAM_P (insn));
3919 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3921 expr_t expr;
3922 av_set_iterator i;
3924 /* When we remove a debug insn that is head of a BB, it remains
3925 in the AV_SET of the block, but it shouldn't. */
3926 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3927 if (EXPR_INSN_RTX (expr) == insn)
3929 av_set_iter_remove (&i);
3930 break;
3934 if (only_disconnect)
3935 remove_insn (insn);
3936 else
3938 delete_insn (insn);
3939 clear_expr (INSN_EXPR (insn));
3942 /* It is necessary to NULL these fields in case we are going to re-insert
3943 INSN into the insns stream, as will usually happen in the ONLY_DISCONNECT
3944 case, but also for NOPs that we will return to the nop pool. */
3945 PREV_INSN (insn) = NULL_RTX;
3946 NEXT_INSN (insn) = NULL_RTX;
3947 set_block_for_insn (insn, NULL);
3949 return tidy_control_flow (bb, full_tidying);
3952 /* Estimate number of the insns in BB. */
3953 static int
3954 sel_estimate_number_of_insns (basic_block bb)
3956 int res = 0;
3957 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3959 for (; insn != next_tail; insn = NEXT_INSN (insn))
3960 if (NONDEBUG_INSN_P (insn))
3961 res++;
3963 return res;
3966 /* We don't need separate luids for notes or labels. */
3967 static int
3968 sel_luid_for_non_insn (rtx x)
3970 gcc_assert (NOTE_P (x) || LABEL_P (x));
3972 return -1;
3975 /* Find the proper seqno for inserting at INSN by successors.
3976 Return -1 if no successors with positive seqno exist. */
3977 static int
3978 get_seqno_by_succs (rtx insn)
3980 basic_block bb = BLOCK_FOR_INSN (insn);
3981 rtx tmp = insn, end = BB_END (bb);
3982 int seqno;
3983 insn_t succ = NULL;
3984 succ_iterator si;
3986 while (tmp != end)
3988 tmp = NEXT_INSN (tmp);
3989 if (INSN_P (tmp))
3990 return INSN_SEQNO (tmp);
3993 seqno = INT_MAX;
3995 FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
3996 if (INSN_SEQNO (succ) > 0)
3997 seqno = MIN (seqno, INSN_SEQNO (succ));
3999 if (seqno == INT_MAX)
4000 return -1;
4002 return seqno;
4005 /* Compute seqno for INSN by its preds or succs. */
4006 static int
4007 get_seqno_for_a_jump (insn_t insn)
4009 int seqno;
4011 gcc_assert (INSN_SIMPLEJUMP_P (insn));
4013 if (!sel_bb_head_p (insn))
4014 seqno = INSN_SEQNO (PREV_INSN (insn));
4015 else
4017 basic_block bb = BLOCK_FOR_INSN (insn);
4019 if (single_pred_p (bb)
4020 && !in_current_region_p (single_pred (bb)))
4022 /* We can have preds outside a region when splitting edges
4023 for pipelining of an outer loop. Use succ instead.
4024 There should be only one of them. */
4025 insn_t succ = NULL;
4026 succ_iterator si;
4027 bool first = true;
4029 gcc_assert (flag_sel_sched_pipelining_outer_loops
4030 && current_loop_nest);
4031 FOR_EACH_SUCC_1 (succ, si, insn,
4032 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4034 gcc_assert (first);
4035 first = false;
4038 gcc_assert (succ != NULL);
4039 seqno = INSN_SEQNO (succ);
4041 else
4043 insn_t *preds;
4044 int n;
4046 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
4048 gcc_assert (n > 0);
4049 /* For one predecessor, use simple method. */
4050 if (n == 1)
4051 seqno = INSN_SEQNO (preds[0]);
4052 else
4053 seqno = get_seqno_by_preds (insn);
4055 free (preds);
4059 /* We were unable to find a good seqno among preds. */
4060 if (seqno < 0)
4061 seqno = get_seqno_by_succs (insn);
4063 gcc_assert (seqno >= 0);
4065 return seqno;
4068 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
4069 with positive seqno exist. */
4071 get_seqno_by_preds (rtx insn)
4073 basic_block bb = BLOCK_FOR_INSN (insn);
4074 rtx tmp = insn, head = BB_HEAD (bb);
4075 insn_t *preds;
4076 int n, i, seqno;
4078 while (tmp != head)
4080 tmp = PREV_INSN (tmp);
4081 if (INSN_P (tmp))
4082 return INSN_SEQNO (tmp);
4085 cfg_preds (bb, &preds, &n);
4086 for (i = 0, seqno = -1; i < n; i++)
4087 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4089 return seqno;
4094 /* Extend pass-scope data structures for basic blocks. */
4095 void
4096 sel_extend_global_bb_info (void)
4098 sel_global_bb_info.safe_grow_cleared (last_basic_block);
4101 /* Extend region-scope data structures for basic blocks. */
4102 static void
4103 extend_region_bb_info (void)
4105 sel_region_bb_info.safe_grow_cleared (last_basic_block);
4108 /* Extend all data structures to fit for all basic blocks. */
4109 static void
4110 extend_bb_info (void)
4112 sel_extend_global_bb_info ();
4113 extend_region_bb_info ();
4116 /* Finalize pass-scope data structures for basic blocks. */
4117 void
4118 sel_finish_global_bb_info (void)
4120 sel_global_bb_info.release ();
4123 /* Finalize region-scope data structures for basic blocks. */
4124 static void
4125 finish_region_bb_info (void)
4127 sel_region_bb_info.release ();
4131 /* Data for each insn in current region. */
4132 vec<sel_insn_data_def> s_i_d = vNULL;
4134 /* Extend data structures for insns from current region. */
4135 static void
4136 extend_insn_data (void)
4138 int reserve;
4140 sched_extend_target ();
4141 sched_deps_init (false);
4143 /* Extend data structures for insns from current region. */
4144 reserve = (sched_max_luid + 1 - s_i_d.length ());
4145 if (reserve > 0 && ! s_i_d.space (reserve))
4147 int size;
4149 if (sched_max_luid / 2 > 1024)
4150 size = sched_max_luid + 1024;
4151 else
4152 size = 3 * sched_max_luid / 2;
4155 s_i_d.safe_grow_cleared (size);
4159 /* Finalize data structures for insns from current region. */
4160 static void
4161 finish_insns (void)
4163 unsigned i;
4165 /* Clear here all dependence contexts that may have left from insns that were
4166 removed during the scheduling. */
4167 for (i = 0; i < s_i_d.length (); i++)
4169 sel_insn_data_def *sid_entry = &s_i_d[i];
4171 if (sid_entry->live)
4172 return_regset_to_pool (sid_entry->live);
4173 if (sid_entry->analyzed_deps)
4175 BITMAP_FREE (sid_entry->analyzed_deps);
4176 BITMAP_FREE (sid_entry->found_deps);
4177 htab_delete (sid_entry->transformed_insns);
4178 free_deps (&sid_entry->deps_context);
4180 if (EXPR_VINSN (&sid_entry->expr))
4182 clear_expr (&sid_entry->expr);
4184 /* Also, clear CANT_MOVE bit here, because we really don't want it
4185 to be passed to the next region. */
4186 CANT_MOVE_BY_LUID (i) = 0;
4190 s_i_d.release ();
4193 /* A proxy to pass initialization data to init_insn (). */
4194 static sel_insn_data_def _insn_init_ssid;
4195 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4197 /* If true create a new vinsn. Otherwise use the one from EXPR. */
4198 static bool insn_init_create_new_vinsn_p;
4200 /* Set all necessary data for initialization of the new insn[s]. */
4201 static expr_t
4202 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4204 expr_t x = &insn_init_ssid->expr;
4206 copy_expr_onside (x, expr);
4207 if (vi != NULL)
4209 insn_init_create_new_vinsn_p = false;
4210 change_vinsn_in_expr (x, vi);
4212 else
4213 insn_init_create_new_vinsn_p = true;
4215 insn_init_ssid->seqno = seqno;
4216 return x;
4219 /* Init data for INSN. */
4220 static void
4221 init_insn_data (insn_t insn)
4223 expr_t expr;
4224 sel_insn_data_t ssid = insn_init_ssid;
4226 /* The fields mentioned below are special and hence are not being
4227 propagated to the new insns. */
4228 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4229 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4230 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4232 expr = INSN_EXPR (insn);
4233 copy_expr (expr, &ssid->expr);
4234 prepare_insn_expr (insn, ssid->seqno);
4236 if (insn_init_create_new_vinsn_p)
4237 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4239 if (first_time_insn_init (insn))
4240 init_first_time_insn_data (insn);
4243 /* This is used to initialize spurious jumps generated by
4244 sel_redirect_edge (). */
4245 static void
4246 init_simplejump_data (insn_t insn)
4248 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4249 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0,
4250 vNULL, true, false, false,
4251 false, true);
4252 INSN_SEQNO (insn) = get_seqno_for_a_jump (insn);
4253 init_first_time_insn_data (insn);
4256 /* Perform deferred initialization of insns. This is used to process
4257 a new jump that may be created by redirect_edge. */
4258 void
4259 sel_init_new_insn (insn_t insn, int flags)
4261 /* We create data structures for bb when the first insn is emitted in it. */
4262 if (INSN_P (insn)
4263 && INSN_IN_STREAM_P (insn)
4264 && insn_is_the_only_one_in_bb_p (insn))
4266 extend_bb_info ();
4267 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4270 if (flags & INSN_INIT_TODO_LUID)
4272 sched_extend_luids ();
4273 sched_init_insn_luid (insn);
4276 if (flags & INSN_INIT_TODO_SSID)
4278 extend_insn_data ();
4279 init_insn_data (insn);
4280 clear_expr (&insn_init_ssid->expr);
4283 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4285 extend_insn_data ();
4286 init_simplejump_data (insn);
4289 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4290 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4294 /* Functions to init/finish work with lv sets. */
4296 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4297 static void
4298 init_lv_set (basic_block bb)
4300 gcc_assert (!BB_LV_SET_VALID_P (bb));
4302 BB_LV_SET (bb) = get_regset_from_pool ();
4303 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4304 BB_LV_SET_VALID_P (bb) = true;
4307 /* Copy liveness information to BB from FROM_BB. */
4308 static void
4309 copy_lv_set_from (basic_block bb, basic_block from_bb)
4311 gcc_assert (!BB_LV_SET_VALID_P (bb));
4313 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4314 BB_LV_SET_VALID_P (bb) = true;
4317 /* Initialize lv set of all bb headers. */
4318 void
4319 init_lv_sets (void)
4321 basic_block bb;
4323 /* Initialize of LV sets. */
4324 FOR_EACH_BB (bb)
4325 init_lv_set (bb);
4327 /* Don't forget EXIT_BLOCK. */
4328 init_lv_set (EXIT_BLOCK_PTR);
4331 /* Release lv set of HEAD. */
4332 static void
4333 free_lv_set (basic_block bb)
4335 gcc_assert (BB_LV_SET (bb) != NULL);
4337 return_regset_to_pool (BB_LV_SET (bb));
4338 BB_LV_SET (bb) = NULL;
4339 BB_LV_SET_VALID_P (bb) = false;
4342 /* Finalize lv sets of all bb headers. */
4343 void
4344 free_lv_sets (void)
4346 basic_block bb;
4348 /* Don't forget EXIT_BLOCK. */
4349 free_lv_set (EXIT_BLOCK_PTR);
4351 /* Free LV sets. */
4352 FOR_EACH_BB (bb)
4353 if (BB_LV_SET (bb))
4354 free_lv_set (bb);
4357 /* Mark AV_SET for BB as invalid, so this set will be updated the next time
4358 compute_av() processes BB. This function is called when creating new basic
4359 blocks, as well as for blocks (either new or existing) where new jumps are
4360 created when the control flow is being updated. */
4361 static void
4362 invalidate_av_set (basic_block bb)
4364 BB_AV_LEVEL (bb) = -1;
4367 /* Create initial data sets for BB (they will be invalid). */
4368 static void
4369 create_initial_data_sets (basic_block bb)
4371 if (BB_LV_SET (bb))
4372 BB_LV_SET_VALID_P (bb) = false;
4373 else
4374 BB_LV_SET (bb) = get_regset_from_pool ();
4375 invalidate_av_set (bb);
4378 /* Free av set of BB. */
4379 static void
4380 free_av_set (basic_block bb)
4382 av_set_clear (&BB_AV_SET (bb));
4383 BB_AV_LEVEL (bb) = 0;
4386 /* Free data sets of BB. */
4387 void
4388 free_data_sets (basic_block bb)
4390 free_lv_set (bb);
4391 free_av_set (bb);
4394 /* Exchange lv sets of TO and FROM. */
4395 static void
4396 exchange_lv_sets (basic_block to, basic_block from)
4399 regset to_lv_set = BB_LV_SET (to);
4401 BB_LV_SET (to) = BB_LV_SET (from);
4402 BB_LV_SET (from) = to_lv_set;
4406 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4408 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4409 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4414 /* Exchange av sets of TO and FROM. */
4415 static void
4416 exchange_av_sets (basic_block to, basic_block from)
4419 av_set_t to_av_set = BB_AV_SET (to);
4421 BB_AV_SET (to) = BB_AV_SET (from);
4422 BB_AV_SET (from) = to_av_set;
4426 int to_av_level = BB_AV_LEVEL (to);
4428 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4429 BB_AV_LEVEL (from) = to_av_level;
4433 /* Exchange data sets of TO and FROM. */
4434 void
4435 exchange_data_sets (basic_block to, basic_block from)
4437 exchange_lv_sets (to, from);
4438 exchange_av_sets (to, from);
4441 /* Copy data sets of FROM to TO. */
4442 void
4443 copy_data_sets (basic_block to, basic_block from)
4445 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4446 gcc_assert (BB_AV_SET (to) == NULL);
4448 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4449 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4451 if (BB_AV_SET_VALID_P (from))
4453 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4455 if (BB_LV_SET_VALID_P (from))
4457 gcc_assert (BB_LV_SET (to) != NULL);
4458 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4462 /* Return an av set for INSN, if any. */
4463 av_set_t
4464 get_av_set (insn_t insn)
4466 av_set_t av_set;
4468 gcc_assert (AV_SET_VALID_P (insn));
4470 if (sel_bb_head_p (insn))
4471 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4472 else
4473 av_set = NULL;
4475 return av_set;
4478 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4480 get_av_level (insn_t insn)
4482 int av_level;
4484 gcc_assert (INSN_P (insn));
4486 if (sel_bb_head_p (insn))
4487 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4488 else
4489 av_level = INSN_WS_LEVEL (insn);
4491 return av_level;
4496 /* Variables to work with control-flow graph. */
4498 /* The basic block that already has been processed by the sched_data_update (),
4499 but hasn't been in sel_add_bb () yet. */
4500 static vec<basic_block>
4501 last_added_blocks = vNULL;
4503 /* A pool for allocating successor infos. */
4504 static struct
4506 /* A stack for saving succs_info structures. */
4507 struct succs_info *stack;
4509 /* Its size. */
4510 int size;
4512 /* Top of the stack. */
4513 int top;
4515 /* Maximal value of the top. */
4516 int max_top;
4517 } succs_info_pool;
4519 /* Functions to work with control-flow graph. */
4521 /* Return basic block note of BB. */
4522 insn_t
4523 sel_bb_head (basic_block bb)
4525 insn_t head;
4527 if (bb == EXIT_BLOCK_PTR)
4529 gcc_assert (exit_insn != NULL_RTX);
4530 head = exit_insn;
4532 else
4534 insn_t note;
4536 note = bb_note (bb);
4537 head = next_nonnote_insn (note);
4539 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4540 head = NULL_RTX;
4543 return head;
4546 /* Return true if INSN is a basic block header. */
4547 bool
4548 sel_bb_head_p (insn_t insn)
4550 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4553 /* Return last insn of BB. */
4554 insn_t
4555 sel_bb_end (basic_block bb)
4557 if (sel_bb_empty_p (bb))
4558 return NULL_RTX;
4560 gcc_assert (bb != EXIT_BLOCK_PTR);
4562 return BB_END (bb);
4565 /* Return true if INSN is the last insn in its basic block. */
4566 bool
4567 sel_bb_end_p (insn_t insn)
4569 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4572 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4573 bool
4574 sel_bb_empty_p (basic_block bb)
4576 return sel_bb_head (bb) == NULL;
4579 /* True when BB belongs to the current scheduling region. */
4580 bool
4581 in_current_region_p (basic_block bb)
4583 if (bb->index < NUM_FIXED_BLOCKS)
4584 return false;
4586 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4589 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4590 basic_block
4591 fallthru_bb_of_jump (rtx jump)
4593 if (!JUMP_P (jump))
4594 return NULL;
4596 if (!any_condjump_p (jump))
4597 return NULL;
4599 /* A basic block that ends with a conditional jump may still have one successor
4600 (and be followed by a barrier), we are not interested. */
4601 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4602 return NULL;
4604 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4607 /* Remove all notes from BB. */
4608 static void
4609 init_bb (basic_block bb)
4611 remove_notes (bb_note (bb), BB_END (bb));
4612 BB_NOTE_LIST (bb) = note_list;
4615 void
4616 sel_init_bbs (bb_vec_t bbs)
4618 const struct sched_scan_info_def ssi =
4620 extend_bb_info, /* extend_bb */
4621 init_bb, /* init_bb */
4622 NULL, /* extend_insn */
4623 NULL /* init_insn */
4626 sched_scan (&ssi, bbs);
4629 /* Restore notes for the whole region. */
4630 static void
4631 sel_restore_notes (void)
4633 int bb;
4634 insn_t insn;
4636 for (bb = 0; bb < current_nr_blocks; bb++)
4638 basic_block first, last;
4640 first = EBB_FIRST_BB (bb);
4641 last = EBB_LAST_BB (bb)->next_bb;
4645 note_list = BB_NOTE_LIST (first);
4646 restore_other_notes (NULL, first);
4647 BB_NOTE_LIST (first) = NULL_RTX;
4649 FOR_BB_INSNS (first, insn)
4650 if (NONDEBUG_INSN_P (insn))
4651 reemit_notes (insn);
4653 first = first->next_bb;
4655 while (first != last);
4659 /* Free per-bb data structures. */
4660 void
4661 sel_finish_bbs (void)
4663 sel_restore_notes ();
4665 /* Remove current loop preheader from this loop. */
4666 if (current_loop_nest)
4667 sel_remove_loop_preheader ();
4669 finish_region_bb_info ();
4672 /* Return true if INSN has a single successor of type FLAGS. */
4673 bool
4674 sel_insn_has_single_succ_p (insn_t insn, int flags)
4676 insn_t succ;
4677 succ_iterator si;
4678 bool first_p = true;
4680 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4682 if (first_p)
4683 first_p = false;
4684 else
4685 return false;
4688 return true;
4691 /* Allocate successor's info. */
4692 static struct succs_info *
4693 alloc_succs_info (void)
4695 if (succs_info_pool.top == succs_info_pool.max_top)
4697 int i;
4699 if (++succs_info_pool.max_top >= succs_info_pool.size)
4700 gcc_unreachable ();
4702 i = ++succs_info_pool.top;
4703 succs_info_pool.stack[i].succs_ok.create (10);
4704 succs_info_pool.stack[i].succs_other.create (10);
4705 succs_info_pool.stack[i].probs_ok.create (10);
4707 else
4708 succs_info_pool.top++;
4710 return &succs_info_pool.stack[succs_info_pool.top];
4713 /* Free successor's info. */
4714 void
4715 free_succs_info (struct succs_info * sinfo)
4717 gcc_assert (succs_info_pool.top >= 0
4718 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4719 succs_info_pool.top--;
4721 /* Clear stale info. */
4722 sinfo->succs_ok.block_remove (0, sinfo->succs_ok.length ());
4723 sinfo->succs_other.block_remove (0, sinfo->succs_other.length ());
4724 sinfo->probs_ok.block_remove (0, sinfo->probs_ok.length ());
4725 sinfo->all_prob = 0;
4726 sinfo->succs_ok_n = 0;
4727 sinfo->all_succs_n = 0;
4730 /* Compute successor info for INSN. FLAGS are the flags passed
4731 to the FOR_EACH_SUCC_1 iterator. */
4732 struct succs_info *
4733 compute_succs_info (insn_t insn, short flags)
4735 succ_iterator si;
4736 insn_t succ;
4737 struct succs_info *sinfo = alloc_succs_info ();
4739 /* Traverse *all* successors and decide what to do with each. */
4740 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4742 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4743 perform code motion through inner loops. */
4744 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4746 if (current_flags & flags)
4748 sinfo->succs_ok.safe_push (succ);
4749 sinfo->probs_ok.safe_push (
4750 /* FIXME: Improve calculation when skipping
4751 inner loop to exits. */
4752 si.bb_end ? si.e1->probability : REG_BR_PROB_BASE);
4753 sinfo->succs_ok_n++;
4755 else
4756 sinfo->succs_other.safe_push (succ);
4758 /* Compute all_prob. */
4759 if (!si.bb_end)
4760 sinfo->all_prob = REG_BR_PROB_BASE;
4761 else
4762 sinfo->all_prob += si.e1->probability;
4764 sinfo->all_succs_n++;
4767 return sinfo;
4770 /* Return the predecessors of BB in PREDS and their number in N.
4771 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4772 static void
4773 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4775 edge e;
4776 edge_iterator ei;
4778 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4780 FOR_EACH_EDGE (e, ei, bb->preds)
4782 basic_block pred_bb = e->src;
4783 insn_t bb_end = BB_END (pred_bb);
4785 if (!in_current_region_p (pred_bb))
4787 gcc_assert (flag_sel_sched_pipelining_outer_loops
4788 && current_loop_nest);
4789 continue;
4792 if (sel_bb_empty_p (pred_bb))
4793 cfg_preds_1 (pred_bb, preds, n, size);
4794 else
4796 if (*n == *size)
4797 *preds = XRESIZEVEC (insn_t, *preds,
4798 (*size = 2 * *size + 1));
4799 (*preds)[(*n)++] = bb_end;
4803 gcc_assert (*n != 0
4804 || (flag_sel_sched_pipelining_outer_loops
4805 && current_loop_nest));
4808 /* Find all predecessors of BB and record them in PREDS and their number
4809 in N. Empty blocks are skipped, and only normal (forward in-region)
4810 edges are processed. */
4811 static void
4812 cfg_preds (basic_block bb, insn_t **preds, int *n)
4814 int size = 0;
4816 *preds = NULL;
4817 *n = 0;
4818 cfg_preds_1 (bb, preds, n, &size);
4821 /* Returns true if we are moving INSN through join point. */
4822 bool
4823 sel_num_cfg_preds_gt_1 (insn_t insn)
4825 basic_block bb;
4827 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4828 return false;
4830 bb = BLOCK_FOR_INSN (insn);
4832 while (1)
4834 if (EDGE_COUNT (bb->preds) > 1)
4835 return true;
4837 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4838 bb = EDGE_PRED (bb, 0)->src;
4840 if (!sel_bb_empty_p (bb))
4841 break;
4844 return false;
4847 /* Returns true when BB should be the end of an ebb. Adapted from the
4848 code in sched-ebb.c. */
4849 bool
4850 bb_ends_ebb_p (basic_block bb)
4852 basic_block next_bb = bb_next_bb (bb);
4853 edge e;
4855 if (next_bb == EXIT_BLOCK_PTR
4856 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4857 || (LABEL_P (BB_HEAD (next_bb))
4858 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4859 Work around that. */
4860 && !single_pred_p (next_bb)))
4861 return true;
4863 if (!in_current_region_p (next_bb))
4864 return true;
4866 e = find_fallthru_edge (bb->succs);
4867 if (e)
4869 gcc_assert (e->dest == next_bb);
4871 return false;
4874 return true;
4877 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4878 successor of INSN. */
4879 bool
4880 in_same_ebb_p (insn_t insn, insn_t succ)
4882 basic_block ptr = BLOCK_FOR_INSN (insn);
4884 for(;;)
4886 if (ptr == BLOCK_FOR_INSN (succ))
4887 return true;
4889 if (bb_ends_ebb_p (ptr))
4890 return false;
4892 ptr = bb_next_bb (ptr);
4895 gcc_unreachable ();
4896 return false;
4899 /* Recomputes the reverse topological order for the function and
4900 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4901 modified appropriately. */
4902 static void
4903 recompute_rev_top_order (void)
4905 int *postorder;
4906 int n_blocks, i;
4908 if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4910 rev_top_order_index_len = last_basic_block;
4911 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4912 rev_top_order_index_len);
4915 postorder = XNEWVEC (int, n_basic_blocks);
4917 n_blocks = post_order_compute (postorder, true, false);
4918 gcc_assert (n_basic_blocks == n_blocks);
4920 /* Build reverse function: for each basic block with BB->INDEX == K
4921 rev_top_order_index[K] is it's reverse topological sort number. */
4922 for (i = 0; i < n_blocks; i++)
4924 gcc_assert (postorder[i] < rev_top_order_index_len);
4925 rev_top_order_index[postorder[i]] = i;
4928 free (postorder);
4931 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4932 void
4933 clear_outdated_rtx_info (basic_block bb)
4935 rtx insn;
4937 FOR_BB_INSNS (bb, insn)
4938 if (INSN_P (insn))
4940 SCHED_GROUP_P (insn) = 0;
4941 INSN_AFTER_STALL_P (insn) = 0;
4942 INSN_SCHED_TIMES (insn) = 0;
4943 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4945 /* We cannot use the changed caches, as previously we could ignore
4946 the LHS dependence due to enabled renaming and transform
4947 the expression, and currently we'll be unable to do this. */
4948 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4952 /* Add BB_NOTE to the pool of available basic block notes. */
4953 static void
4954 return_bb_to_pool (basic_block bb)
4956 rtx note = bb_note (bb);
4958 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4959 && bb->aux == NULL);
4961 /* It turns out that current cfg infrastructure does not support
4962 reuse of basic blocks. Don't bother for now. */
4963 /*bb_note_pool.safe_push (note);*/
4966 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4967 static rtx
4968 get_bb_note_from_pool (void)
4970 if (bb_note_pool.is_empty ())
4971 return NULL_RTX;
4972 else
4974 rtx note = bb_note_pool.pop ();
4976 PREV_INSN (note) = NULL_RTX;
4977 NEXT_INSN (note) = NULL_RTX;
4979 return note;
4983 /* Free bb_note_pool. */
4984 void
4985 free_bb_note_pool (void)
4987 bb_note_pool.release ();
4990 /* Setup scheduler pool and successor structure. */
4991 void
4992 alloc_sched_pools (void)
4994 int succs_size;
4996 succs_size = MAX_WS + 1;
4997 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
4998 succs_info_pool.size = succs_size;
4999 succs_info_pool.top = -1;
5000 succs_info_pool.max_top = -1;
5002 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
5003 sizeof (struct _list_node), 500);
5006 /* Free the pools. */
5007 void
5008 free_sched_pools (void)
5010 int i;
5012 free_alloc_pool (sched_lists_pool);
5013 gcc_assert (succs_info_pool.top == -1);
5014 for (i = 0; i <= succs_info_pool.max_top; i++)
5016 succs_info_pool.stack[i].succs_ok.release ();
5017 succs_info_pool.stack[i].succs_other.release ();
5018 succs_info_pool.stack[i].probs_ok.release ();
5020 free (succs_info_pool.stack);
5024 /* Returns a position in RGN where BB can be inserted retaining
5025 topological order. */
5026 static int
5027 find_place_to_insert_bb (basic_block bb, int rgn)
5029 bool has_preds_outside_rgn = false;
5030 edge e;
5031 edge_iterator ei;
5033 /* Find whether we have preds outside the region. */
5034 FOR_EACH_EDGE (e, ei, bb->preds)
5035 if (!in_current_region_p (e->src))
5037 has_preds_outside_rgn = true;
5038 break;
5041 /* Recompute the top order -- needed when we have > 1 pred
5042 and in case we don't have preds outside. */
5043 if (flag_sel_sched_pipelining_outer_loops
5044 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5046 int i, bbi = bb->index, cur_bbi;
5048 recompute_rev_top_order ();
5049 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5051 cur_bbi = BB_TO_BLOCK (i);
5052 if (rev_top_order_index[bbi]
5053 < rev_top_order_index[cur_bbi])
5054 break;
5057 /* We skipped the right block, so we increase i. We accommodate
5058 it for increasing by step later, so we decrease i. */
5059 return (i + 1) - 1;
5061 else if (has_preds_outside_rgn)
5063 /* This is the case when we generate an extra empty block
5064 to serve as region head during pipelining. */
5065 e = EDGE_SUCC (bb, 0);
5066 gcc_assert (EDGE_COUNT (bb->succs) == 1
5067 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5068 && (BLOCK_TO_BB (e->dest->index) == 0));
5069 return -1;
5072 /* We don't have preds outside the region. We should have
5073 the only pred, because the multiple preds case comes from
5074 the pipelining of outer loops, and that is handled above.
5075 Just take the bbi of this single pred. */
5076 if (EDGE_COUNT (bb->succs) > 0)
5078 int pred_bbi;
5080 gcc_assert (EDGE_COUNT (bb->preds) == 1);
5082 pred_bbi = EDGE_PRED (bb, 0)->src->index;
5083 return BLOCK_TO_BB (pred_bbi);
5085 else
5086 /* BB has no successors. It is safe to put it in the end. */
5087 return current_nr_blocks - 1;
5090 /* Deletes an empty basic block freeing its data. */
5091 static void
5092 delete_and_free_basic_block (basic_block bb)
5094 gcc_assert (sel_bb_empty_p (bb));
5096 if (BB_LV_SET (bb))
5097 free_lv_set (bb);
5099 bitmap_clear_bit (blocks_to_reschedule, bb->index);
5101 /* Can't assert av_set properties because we use sel_aremove_bb
5102 when removing loop preheader from the region. At the point of
5103 removing the preheader we already have deallocated sel_region_bb_info. */
5104 gcc_assert (BB_LV_SET (bb) == NULL
5105 && !BB_LV_SET_VALID_P (bb)
5106 && BB_AV_LEVEL (bb) == 0
5107 && BB_AV_SET (bb) == NULL);
5109 delete_basic_block (bb);
5112 /* Add BB to the current region and update the region data. */
5113 static void
5114 add_block_to_current_region (basic_block bb)
5116 int i, pos, bbi = -2, rgn;
5118 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5119 bbi = find_place_to_insert_bb (bb, rgn);
5120 bbi += 1;
5121 pos = RGN_BLOCKS (rgn) + bbi;
5123 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5124 && ebb_head[bbi] == pos);
5126 /* Make a place for the new block. */
5127 extend_regions ();
5129 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5130 BLOCK_TO_BB (rgn_bb_table[i])++;
5132 memmove (rgn_bb_table + pos + 1,
5133 rgn_bb_table + pos,
5134 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5136 /* Initialize data for BB. */
5137 rgn_bb_table[pos] = bb->index;
5138 BLOCK_TO_BB (bb->index) = bbi;
5139 CONTAINING_RGN (bb->index) = rgn;
5141 RGN_NR_BLOCKS (rgn)++;
5143 for (i = rgn + 1; i <= nr_regions; i++)
5144 RGN_BLOCKS (i)++;
5147 /* Remove BB from the current region and update the region data. */
5148 static void
5149 remove_bb_from_region (basic_block bb)
5151 int i, pos, bbi = -2, rgn;
5153 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5154 bbi = BLOCK_TO_BB (bb->index);
5155 pos = RGN_BLOCKS (rgn) + bbi;
5157 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5158 && ebb_head[bbi] == pos);
5160 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5161 BLOCK_TO_BB (rgn_bb_table[i])--;
5163 memmove (rgn_bb_table + pos,
5164 rgn_bb_table + pos + 1,
5165 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5167 RGN_NR_BLOCKS (rgn)--;
5168 for (i = rgn + 1; i <= nr_regions; i++)
5169 RGN_BLOCKS (i)--;
5172 /* Add BB to the current region and update all data. If BB is NULL, add all
5173 blocks from last_added_blocks vector. */
5174 static void
5175 sel_add_bb (basic_block bb)
5177 /* Extend luids so that new notes will receive zero luids. */
5178 sched_extend_luids ();
5179 sched_init_bbs ();
5180 sel_init_bbs (last_added_blocks);
5182 /* When bb is passed explicitly, the vector should contain
5183 the only element that equals to bb; otherwise, the vector
5184 should not be NULL. */
5185 gcc_assert (last_added_blocks.exists ());
5187 if (bb != NULL)
5189 gcc_assert (last_added_blocks.length () == 1
5190 && last_added_blocks[0] == bb);
5191 add_block_to_current_region (bb);
5193 /* We associate creating/deleting data sets with the first insn
5194 appearing / disappearing in the bb. */
5195 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5196 create_initial_data_sets (bb);
5198 last_added_blocks.release ();
5200 else
5201 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5203 int i;
5204 basic_block temp_bb = NULL;
5206 for (i = 0;
5207 last_added_blocks.iterate (i, &bb); i++)
5209 add_block_to_current_region (bb);
5210 temp_bb = bb;
5213 /* We need to fetch at least one bb so we know the region
5214 to update. */
5215 gcc_assert (temp_bb != NULL);
5216 bb = temp_bb;
5218 last_added_blocks.release ();
5221 rgn_setup_region (CONTAINING_RGN (bb->index));
5224 /* Remove BB from the current region and update all data.
5225 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5226 static void
5227 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5229 unsigned idx = bb->index;
5231 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5233 remove_bb_from_region (bb);
5234 return_bb_to_pool (bb);
5235 bitmap_clear_bit (blocks_to_reschedule, idx);
5237 if (remove_from_cfg_p)
5239 basic_block succ = single_succ (bb);
5240 delete_and_free_basic_block (bb);
5241 set_immediate_dominator (CDI_DOMINATORS, succ,
5242 recompute_dominator (CDI_DOMINATORS, succ));
5245 rgn_setup_region (CONTAINING_RGN (idx));
5248 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5249 static void
5250 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5252 if (in_current_region_p (merge_bb))
5253 concat_note_lists (BB_NOTE_LIST (empty_bb),
5254 &BB_NOTE_LIST (merge_bb));
5255 BB_NOTE_LIST (empty_bb) = NULL_RTX;
5259 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5260 region, but keep it in CFG. */
5261 static void
5262 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5264 /* The block should contain just a note or a label.
5265 We try to check whether it is unused below. */
5266 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5267 || LABEL_P (BB_HEAD (empty_bb)));
5269 /* If basic block has predecessors or successors, redirect them. */
5270 if (remove_from_cfg_p
5271 && (EDGE_COUNT (empty_bb->preds) > 0
5272 || EDGE_COUNT (empty_bb->succs) > 0))
5274 basic_block pred;
5275 basic_block succ;
5277 /* We need to init PRED and SUCC before redirecting edges. */
5278 if (EDGE_COUNT (empty_bb->preds) > 0)
5280 edge e;
5282 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5284 e = EDGE_PRED (empty_bb, 0);
5285 gcc_assert (e->src == empty_bb->prev_bb
5286 && (e->flags & EDGE_FALLTHRU));
5288 pred = empty_bb->prev_bb;
5290 else
5291 pred = NULL;
5293 if (EDGE_COUNT (empty_bb->succs) > 0)
5295 /* We do not check fallthruness here as above, because
5296 after removing a jump the edge may actually be not fallthru. */
5297 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5298 succ = EDGE_SUCC (empty_bb, 0)->dest;
5300 else
5301 succ = NULL;
5303 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5305 edge e = EDGE_PRED (empty_bb, 0);
5307 if (e->flags & EDGE_FALLTHRU)
5308 redirect_edge_succ_nodup (e, succ);
5309 else
5310 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5313 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5315 edge e = EDGE_SUCC (empty_bb, 0);
5317 if (find_edge (pred, e->dest) == NULL)
5318 redirect_edge_pred (e, pred);
5322 /* Finish removing. */
5323 sel_remove_bb (empty_bb, remove_from_cfg_p);
5326 /* An implementation of create_basic_block hook, which additionally updates
5327 per-bb data structures. */
5328 static basic_block
5329 sel_create_basic_block (void *headp, void *endp, basic_block after)
5331 basic_block new_bb;
5332 insn_t new_bb_note;
5334 gcc_assert (flag_sel_sched_pipelining_outer_loops
5335 || !last_added_blocks.exists ());
5337 new_bb_note = get_bb_note_from_pool ();
5339 if (new_bb_note == NULL_RTX)
5340 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5341 else
5343 new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5344 new_bb_note, after);
5345 new_bb->aux = NULL;
5348 last_added_blocks.safe_push (new_bb);
5350 return new_bb;
5353 /* Implement sched_init_only_bb (). */
5354 static void
5355 sel_init_only_bb (basic_block bb, basic_block after)
5357 gcc_assert (after == NULL);
5359 extend_regions ();
5360 rgn_make_new_region_out_of_new_block (bb);
5363 /* Update the latch when we've splitted or merged it from FROM block to TO.
5364 This should be checked for all outer loops, too. */
5365 static void
5366 change_loops_latches (basic_block from, basic_block to)
5368 gcc_assert (from != to);
5370 if (current_loop_nest)
5372 struct loop *loop;
5374 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5375 if (considered_for_pipelining_p (loop) && loop->latch == from)
5377 gcc_assert (loop == current_loop_nest);
5378 loop->latch = to;
5379 gcc_assert (loop_latch_edge (loop));
5384 /* Splits BB on two basic blocks, adding it to the region and extending
5385 per-bb data structures. Returns the newly created bb. */
5386 static basic_block
5387 sel_split_block (basic_block bb, rtx after)
5389 basic_block new_bb;
5390 insn_t insn;
5392 new_bb = sched_split_block_1 (bb, after);
5393 sel_add_bb (new_bb);
5395 /* This should be called after sel_add_bb, because this uses
5396 CONTAINING_RGN for the new block, which is not yet initialized.
5397 FIXME: this function may be a no-op now. */
5398 change_loops_latches (bb, new_bb);
5400 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5401 FOR_BB_INSNS (new_bb, insn)
5402 if (INSN_P (insn))
5403 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5405 if (sel_bb_empty_p (bb))
5407 gcc_assert (!sel_bb_empty_p (new_bb));
5409 /* NEW_BB has data sets that need to be updated and BB holds
5410 data sets that should be removed. Exchange these data sets
5411 so that we won't lose BB's valid data sets. */
5412 exchange_data_sets (new_bb, bb);
5413 free_data_sets (bb);
5416 if (!sel_bb_empty_p (new_bb)
5417 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5418 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5420 return new_bb;
5423 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5424 Otherwise returns NULL. */
5425 static rtx
5426 check_for_new_jump (basic_block bb, int prev_max_uid)
5428 rtx end;
5430 end = sel_bb_end (bb);
5431 if (end && INSN_UID (end) >= prev_max_uid)
5432 return end;
5433 return NULL;
5436 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5437 New means having UID at least equal to PREV_MAX_UID. */
5438 static rtx
5439 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5441 rtx jump;
5443 /* Return immediately if no new insns were emitted. */
5444 if (get_max_uid () == prev_max_uid)
5445 return NULL;
5447 /* Now check both blocks for new jumps. It will ever be only one. */
5448 if ((jump = check_for_new_jump (from, prev_max_uid)))
5449 return jump;
5451 if (jump_bb != NULL
5452 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5453 return jump;
5454 return NULL;
5457 /* Splits E and adds the newly created basic block to the current region.
5458 Returns this basic block. */
5459 basic_block
5460 sel_split_edge (edge e)
5462 basic_block new_bb, src, other_bb = NULL;
5463 int prev_max_uid;
5464 rtx jump;
5466 src = e->src;
5467 prev_max_uid = get_max_uid ();
5468 new_bb = split_edge (e);
5470 if (flag_sel_sched_pipelining_outer_loops
5471 && current_loop_nest)
5473 int i;
5474 basic_block bb;
5476 /* Some of the basic blocks might not have been added to the loop.
5477 Add them here, until this is fixed in force_fallthru. */
5478 for (i = 0;
5479 last_added_blocks.iterate (i, &bb); i++)
5480 if (!bb->loop_father)
5482 add_bb_to_loop (bb, e->dest->loop_father);
5484 gcc_assert (!other_bb && (new_bb->index != bb->index));
5485 other_bb = bb;
5489 /* Add all last_added_blocks to the region. */
5490 sel_add_bb (NULL);
5492 jump = find_new_jump (src, new_bb, prev_max_uid);
5493 if (jump)
5494 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5496 /* Put the correct lv set on this block. */
5497 if (other_bb && !sel_bb_empty_p (other_bb))
5498 compute_live (sel_bb_head (other_bb));
5500 return new_bb;
5503 /* Implement sched_create_empty_bb (). */
5504 static basic_block
5505 sel_create_empty_bb (basic_block after)
5507 basic_block new_bb;
5509 new_bb = sched_create_empty_bb_1 (after);
5511 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5512 later. */
5513 gcc_assert (last_added_blocks.length () == 1
5514 && last_added_blocks[0] == new_bb);
5516 last_added_blocks.release ();
5517 return new_bb;
5520 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5521 will be splitted to insert a check. */
5522 basic_block
5523 sel_create_recovery_block (insn_t orig_insn)
5525 basic_block first_bb, second_bb, recovery_block;
5526 basic_block before_recovery = NULL;
5527 rtx jump;
5529 first_bb = BLOCK_FOR_INSN (orig_insn);
5530 if (sel_bb_end_p (orig_insn))
5532 /* Avoid introducing an empty block while splitting. */
5533 gcc_assert (single_succ_p (first_bb));
5534 second_bb = single_succ (first_bb);
5536 else
5537 second_bb = sched_split_block (first_bb, orig_insn);
5539 recovery_block = sched_create_recovery_block (&before_recovery);
5540 if (before_recovery)
5541 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR);
5543 gcc_assert (sel_bb_empty_p (recovery_block));
5544 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5545 if (current_loops != NULL)
5546 add_bb_to_loop (recovery_block, first_bb->loop_father);
5548 sel_add_bb (recovery_block);
5550 jump = BB_END (recovery_block);
5551 gcc_assert (sel_bb_head (recovery_block) == jump);
5552 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5554 return recovery_block;
5557 /* Merge basic block B into basic block A. */
5558 static void
5559 sel_merge_blocks (basic_block a, basic_block b)
5561 gcc_assert (sel_bb_empty_p (b)
5562 && EDGE_COUNT (b->preds) == 1
5563 && EDGE_PRED (b, 0)->src == b->prev_bb);
5565 move_bb_info (b->prev_bb, b);
5566 remove_empty_bb (b, false);
5567 merge_blocks (a, b);
5568 change_loops_latches (b, a);
5571 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5572 data structures for possibly created bb and insns. Returns the newly
5573 added bb or NULL, when a bb was not needed. */
5574 void
5575 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5577 basic_block jump_bb, src, orig_dest = e->dest;
5578 int prev_max_uid;
5579 rtx jump;
5581 /* This function is now used only for bookkeeping code creation, where
5582 we'll never get the single pred of orig_dest block and thus will not
5583 hit unreachable blocks when updating dominator info. */
5584 gcc_assert (!sel_bb_empty_p (e->src)
5585 && !single_pred_p (orig_dest));
5586 src = e->src;
5587 prev_max_uid = get_max_uid ();
5588 jump_bb = redirect_edge_and_branch_force (e, to);
5590 if (jump_bb != NULL)
5591 sel_add_bb (jump_bb);
5593 /* This function could not be used to spoil the loop structure by now,
5594 thus we don't care to update anything. But check it to be sure. */
5595 if (current_loop_nest
5596 && pipelining_p)
5597 gcc_assert (loop_latch_edge (current_loop_nest));
5599 jump = find_new_jump (src, jump_bb, prev_max_uid);
5600 if (jump)
5601 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5602 set_immediate_dominator (CDI_DOMINATORS, to,
5603 recompute_dominator (CDI_DOMINATORS, to));
5604 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5605 recompute_dominator (CDI_DOMINATORS, orig_dest));
5608 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5609 redirected edge are in reverse topological order. */
5610 bool
5611 sel_redirect_edge_and_branch (edge e, basic_block to)
5613 bool latch_edge_p;
5614 basic_block src, orig_dest = e->dest;
5615 int prev_max_uid;
5616 rtx jump;
5617 edge redirected;
5618 bool recompute_toporder_p = false;
5619 bool maybe_unreachable = single_pred_p (orig_dest);
5621 latch_edge_p = (pipelining_p
5622 && current_loop_nest
5623 && e == loop_latch_edge (current_loop_nest));
5625 src = e->src;
5626 prev_max_uid = get_max_uid ();
5628 redirected = redirect_edge_and_branch (e, to);
5630 gcc_assert (redirected && !last_added_blocks.exists ());
5632 /* When we've redirected a latch edge, update the header. */
5633 if (latch_edge_p)
5635 current_loop_nest->header = to;
5636 gcc_assert (loop_latch_edge (current_loop_nest));
5639 /* In rare situations, the topological relation between the blocks connected
5640 by the redirected edge can change (see PR42245 for an example). Update
5641 block_to_bb/bb_to_block. */
5642 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5643 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5644 recompute_toporder_p = true;
5646 jump = find_new_jump (src, NULL, prev_max_uid);
5647 if (jump)
5648 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5650 /* Only update dominator info when we don't have unreachable blocks.
5651 Otherwise we'll update in maybe_tidy_empty_bb. */
5652 if (!maybe_unreachable)
5654 set_immediate_dominator (CDI_DOMINATORS, to,
5655 recompute_dominator (CDI_DOMINATORS, to));
5656 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5657 recompute_dominator (CDI_DOMINATORS, orig_dest));
5659 return recompute_toporder_p;
5662 /* This variable holds the cfg hooks used by the selective scheduler. */
5663 static struct cfg_hooks sel_cfg_hooks;
5665 /* Register sel-sched cfg hooks. */
5666 void
5667 sel_register_cfg_hooks (void)
5669 sched_split_block = sel_split_block;
5671 orig_cfg_hooks = get_cfg_hooks ();
5672 sel_cfg_hooks = orig_cfg_hooks;
5674 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5676 set_cfg_hooks (sel_cfg_hooks);
5678 sched_init_only_bb = sel_init_only_bb;
5679 sched_split_block = sel_split_block;
5680 sched_create_empty_bb = sel_create_empty_bb;
5683 /* Unregister sel-sched cfg hooks. */
5684 void
5685 sel_unregister_cfg_hooks (void)
5687 sched_create_empty_bb = NULL;
5688 sched_split_block = NULL;
5689 sched_init_only_bb = NULL;
5691 set_cfg_hooks (orig_cfg_hooks);
5695 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5696 LABEL is where this jump should be directed. */
5698 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5700 rtx insn_rtx;
5702 gcc_assert (!INSN_P (pattern));
5704 start_sequence ();
5706 if (label == NULL_RTX)
5707 insn_rtx = emit_insn (pattern);
5708 else if (DEBUG_INSN_P (label))
5709 insn_rtx = emit_debug_insn (pattern);
5710 else
5712 insn_rtx = emit_jump_insn (pattern);
5713 JUMP_LABEL (insn_rtx) = label;
5714 ++LABEL_NUSES (label);
5717 end_sequence ();
5719 sched_extend_luids ();
5720 sched_extend_target ();
5721 sched_deps_init (false);
5723 /* Initialize INSN_CODE now. */
5724 recog_memoized (insn_rtx);
5725 return insn_rtx;
5728 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5729 must not be clonable. */
5730 vinsn_t
5731 create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5733 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5735 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5736 return vinsn_create (insn_rtx, force_unique_p);
5739 /* Create a copy of INSN_RTX. */
5741 create_copy_of_insn_rtx (rtx insn_rtx)
5743 rtx res, link;
5745 if (DEBUG_INSN_P (insn_rtx))
5746 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5747 insn_rtx);
5749 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5751 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5752 NULL_RTX);
5754 /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5755 since mark_jump_label will make them. REG_LABEL_TARGETs are created
5756 there too, but are supposed to be sticky, so we copy them. */
5757 for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5758 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5759 && REG_NOTE_KIND (link) != REG_EQUAL
5760 && REG_NOTE_KIND (link) != REG_EQUIV)
5762 if (GET_CODE (link) == EXPR_LIST)
5763 add_reg_note (res, REG_NOTE_KIND (link),
5764 copy_insn_1 (XEXP (link, 0)));
5765 else
5766 add_reg_note (res, REG_NOTE_KIND (link), XEXP (link, 0));
5769 return res;
5772 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5773 void
5774 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5776 vinsn_detach (EXPR_VINSN (expr));
5778 EXPR_VINSN (expr) = new_vinsn;
5779 vinsn_attach (new_vinsn);
5782 /* Helpers for global init. */
5783 /* This structure is used to be able to call existing bundling mechanism
5784 and calculate insn priorities. */
5785 static struct haifa_sched_info sched_sel_haifa_sched_info =
5787 NULL, /* init_ready_list */
5788 NULL, /* can_schedule_ready_p */
5789 NULL, /* schedule_more_p */
5790 NULL, /* new_ready */
5791 NULL, /* rgn_rank */
5792 sel_print_insn, /* rgn_print_insn */
5793 contributes_to_priority,
5794 NULL, /* insn_finishes_block_p */
5796 NULL, NULL,
5797 NULL, NULL,
5798 0, 0,
5800 NULL, /* add_remove_insn */
5801 NULL, /* begin_schedule_ready */
5802 NULL, /* begin_move_insn */
5803 NULL, /* advance_target_bb */
5805 NULL,
5806 NULL,
5808 SEL_SCHED | NEW_BBS
5811 /* Setup special insns used in the scheduler. */
5812 void
5813 setup_nop_and_exit_insns (void)
5815 gcc_assert (nop_pattern == NULL_RTX
5816 && exit_insn == NULL_RTX);
5818 nop_pattern = constm1_rtx;
5820 start_sequence ();
5821 emit_insn (nop_pattern);
5822 exit_insn = get_insns ();
5823 end_sequence ();
5824 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR);
5827 /* Free special insns used in the scheduler. */
5828 void
5829 free_nop_and_exit_insns (void)
5831 exit_insn = NULL_RTX;
5832 nop_pattern = NULL_RTX;
5835 /* Setup a special vinsn used in new insns initialization. */
5836 void
5837 setup_nop_vinsn (void)
5839 nop_vinsn = vinsn_create (exit_insn, false);
5840 vinsn_attach (nop_vinsn);
5843 /* Free a special vinsn used in new insns initialization. */
5844 void
5845 free_nop_vinsn (void)
5847 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5848 vinsn_detach (nop_vinsn);
5849 nop_vinsn = NULL;
5852 /* Call a set_sched_flags hook. */
5853 void
5854 sel_set_sched_flags (void)
5856 /* ??? This means that set_sched_flags were called, and we decided to
5857 support speculation. However, set_sched_flags also modifies flags
5858 on current_sched_info, doing this only at global init. And we
5859 sometimes change c_s_i later. So put the correct flags again. */
5860 if (spec_info && targetm.sched.set_sched_flags)
5861 targetm.sched.set_sched_flags (spec_info);
5864 /* Setup pointers to global sched info structures. */
5865 void
5866 sel_setup_sched_infos (void)
5868 rgn_setup_common_sched_info ();
5870 memcpy (&sel_common_sched_info, common_sched_info,
5871 sizeof (sel_common_sched_info));
5873 sel_common_sched_info.fix_recovery_cfg = NULL;
5874 sel_common_sched_info.add_block = NULL;
5875 sel_common_sched_info.estimate_number_of_insns
5876 = sel_estimate_number_of_insns;
5877 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5878 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5880 common_sched_info = &sel_common_sched_info;
5882 current_sched_info = &sched_sel_haifa_sched_info;
5883 current_sched_info->sched_max_insns_priority =
5884 get_rgn_sched_max_insns_priority ();
5886 sel_set_sched_flags ();
5890 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5891 *BB_ORD_INDEX after that is increased. */
5892 static void
5893 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5895 RGN_NR_BLOCKS (rgn) += 1;
5896 RGN_DONT_CALC_DEPS (rgn) = 0;
5897 RGN_HAS_REAL_EBB (rgn) = 0;
5898 CONTAINING_RGN (bb->index) = rgn;
5899 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5900 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5901 (*bb_ord_index)++;
5903 /* FIXME: it is true only when not scheduling ebbs. */
5904 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5907 /* Functions to support pipelining of outer loops. */
5909 /* Creates a new empty region and returns it's number. */
5910 static int
5911 sel_create_new_region (void)
5913 int new_rgn_number = nr_regions;
5915 RGN_NR_BLOCKS (new_rgn_number) = 0;
5917 /* FIXME: This will work only when EBBs are not created. */
5918 if (new_rgn_number != 0)
5919 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5920 RGN_NR_BLOCKS (new_rgn_number - 1);
5921 else
5922 RGN_BLOCKS (new_rgn_number) = 0;
5924 /* Set the blocks of the next region so the other functions may
5925 calculate the number of blocks in the region. */
5926 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5927 RGN_NR_BLOCKS (new_rgn_number);
5929 nr_regions++;
5931 return new_rgn_number;
5934 /* If X has a smaller topological sort number than Y, returns -1;
5935 if greater, returns 1. */
5936 static int
5937 bb_top_order_comparator (const void *x, const void *y)
5939 basic_block bb1 = *(const basic_block *) x;
5940 basic_block bb2 = *(const basic_block *) y;
5942 gcc_assert (bb1 == bb2
5943 || rev_top_order_index[bb1->index]
5944 != rev_top_order_index[bb2->index]);
5946 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5947 bbs with greater number should go earlier. */
5948 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5949 return -1;
5950 else
5951 return 1;
5954 /* Create a region for LOOP and return its number. If we don't want
5955 to pipeline LOOP, return -1. */
5956 static int
5957 make_region_from_loop (struct loop *loop)
5959 unsigned int i;
5960 int new_rgn_number = -1;
5961 struct loop *inner;
5963 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5964 int bb_ord_index = 0;
5965 basic_block *loop_blocks;
5966 basic_block preheader_block;
5968 if (loop->num_nodes
5969 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5970 return -1;
5972 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5973 for (inner = loop->inner; inner; inner = inner->inner)
5974 if (flow_bb_inside_loop_p (inner, loop->latch))
5975 return -1;
5977 loop->ninsns = num_loop_insns (loop);
5978 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5979 return -1;
5981 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5983 for (i = 0; i < loop->num_nodes; i++)
5984 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5986 free (loop_blocks);
5987 return -1;
5990 preheader_block = loop_preheader_edge (loop)->src;
5991 gcc_assert (preheader_block);
5992 gcc_assert (loop_blocks[0] == loop->header);
5994 new_rgn_number = sel_create_new_region ();
5996 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
5997 bitmap_set_bit (bbs_in_loop_rgns, preheader_block->index);
5999 for (i = 0; i < loop->num_nodes; i++)
6001 /* Add only those blocks that haven't been scheduled in the inner loop.
6002 The exception is the basic blocks with bookkeeping code - they should
6003 be added to the region (and they actually don't belong to the loop
6004 body, but to the region containing that loop body). */
6006 gcc_assert (new_rgn_number >= 0);
6008 if (! bitmap_bit_p (bbs_in_loop_rgns, loop_blocks[i]->index))
6010 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
6011 new_rgn_number);
6012 bitmap_set_bit (bbs_in_loop_rgns, loop_blocks[i]->index);
6016 free (loop_blocks);
6017 MARK_LOOP_FOR_PIPELINING (loop);
6019 return new_rgn_number;
6022 /* Create a new region from preheader blocks LOOP_BLOCKS. */
6023 void
6024 make_region_from_loop_preheader (vec<basic_block> *&loop_blocks)
6026 unsigned int i;
6027 int new_rgn_number = -1;
6028 basic_block bb;
6030 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6031 int bb_ord_index = 0;
6033 new_rgn_number = sel_create_new_region ();
6035 FOR_EACH_VEC_ELT (*loop_blocks, i, bb)
6037 gcc_assert (new_rgn_number >= 0);
6039 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6042 vec_free (loop_blocks);
6046 /* Create region(s) from loop nest LOOP, such that inner loops will be
6047 pipelined before outer loops. Returns true when a region for LOOP
6048 is created. */
6049 static bool
6050 make_regions_from_loop_nest (struct loop *loop)
6052 struct loop *cur_loop;
6053 int rgn_number;
6055 /* Traverse all inner nodes of the loop. */
6056 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
6057 if (! bitmap_bit_p (bbs_in_loop_rgns, cur_loop->header->index))
6058 return false;
6060 /* At this moment all regular inner loops should have been pipelined.
6061 Try to create a region from this loop. */
6062 rgn_number = make_region_from_loop (loop);
6064 if (rgn_number < 0)
6065 return false;
6067 loop_nests.safe_push (loop);
6068 return true;
6071 /* Initalize data structures needed. */
6072 void
6073 sel_init_pipelining (void)
6075 /* Collect loop information to be used in outer loops pipelining. */
6076 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6077 | LOOPS_HAVE_FALLTHRU_PREHEADERS
6078 | LOOPS_HAVE_RECORDED_EXITS
6079 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6080 current_loop_nest = NULL;
6082 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block);
6083 bitmap_clear (bbs_in_loop_rgns);
6085 recompute_rev_top_order ();
6088 /* Returns a struct loop for region RGN. */
6089 loop_p
6090 get_loop_nest_for_rgn (unsigned int rgn)
6092 /* Regions created with extend_rgns don't have corresponding loop nests,
6093 because they don't represent loops. */
6094 if (rgn < loop_nests.length ())
6095 return loop_nests[rgn];
6096 else
6097 return NULL;
6100 /* True when LOOP was included into pipelining regions. */
6101 bool
6102 considered_for_pipelining_p (struct loop *loop)
6104 if (loop_depth (loop) == 0)
6105 return false;
6107 /* Now, the loop could be too large or irreducible. Check whether its
6108 region is in LOOP_NESTS.
6109 We determine the region number of LOOP as the region number of its
6110 latch. We can't use header here, because this header could be
6111 just removed preheader and it will give us the wrong region number.
6112 Latch can't be used because it could be in the inner loop too. */
6113 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
6115 int rgn = CONTAINING_RGN (loop->latch->index);
6117 gcc_assert ((unsigned) rgn < loop_nests.length ());
6118 return true;
6121 return false;
6124 /* Makes regions from the rest of the blocks, after loops are chosen
6125 for pipelining. */
6126 static void
6127 make_regions_from_the_rest (void)
6129 int cur_rgn_blocks;
6130 int *loop_hdr;
6131 int i;
6133 basic_block bb;
6134 edge e;
6135 edge_iterator ei;
6136 int *degree;
6138 /* Index in rgn_bb_table where to start allocating new regions. */
6139 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
6141 /* Make regions from all the rest basic blocks - those that don't belong to
6142 any loop or belong to irreducible loops. Prepare the data structures
6143 for extend_rgns. */
6145 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6146 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6147 loop. */
6148 loop_hdr = XNEWVEC (int, last_basic_block);
6149 degree = XCNEWVEC (int, last_basic_block);
6152 /* For each basic block that belongs to some loop assign the number
6153 of innermost loop it belongs to. */
6154 for (i = 0; i < last_basic_block; i++)
6155 loop_hdr[i] = -1;
6157 FOR_EACH_BB (bb)
6159 if (bb->loop_father && !bb->loop_father->num == 0
6160 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6161 loop_hdr[bb->index] = bb->loop_father->num;
6164 /* For each basic block degree is calculated as the number of incoming
6165 edges, that are going out of bbs that are not yet scheduled.
6166 The basic blocks that are scheduled have degree value of zero. */
6167 FOR_EACH_BB (bb)
6169 degree[bb->index] = 0;
6171 if (!bitmap_bit_p (bbs_in_loop_rgns, bb->index))
6173 FOR_EACH_EDGE (e, ei, bb->preds)
6174 if (!bitmap_bit_p (bbs_in_loop_rgns, e->src->index))
6175 degree[bb->index]++;
6177 else
6178 degree[bb->index] = -1;
6181 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6183 /* Any block that did not end up in a region is placed into a region
6184 by itself. */
6185 FOR_EACH_BB (bb)
6186 if (degree[bb->index] >= 0)
6188 rgn_bb_table[cur_rgn_blocks] = bb->index;
6189 RGN_NR_BLOCKS (nr_regions) = 1;
6190 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6191 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6192 RGN_HAS_REAL_EBB (nr_regions) = 0;
6193 CONTAINING_RGN (bb->index) = nr_regions++;
6194 BLOCK_TO_BB (bb->index) = 0;
6197 free (degree);
6198 free (loop_hdr);
6201 /* Free data structures used in pipelining of loops. */
6202 void sel_finish_pipelining (void)
6204 loop_iterator li;
6205 struct loop *loop;
6207 /* Release aux fields so we don't free them later by mistake. */
6208 FOR_EACH_LOOP (li, loop, 0)
6209 loop->aux = NULL;
6211 loop_optimizer_finalize ();
6213 loop_nests.release ();
6215 free (rev_top_order_index);
6216 rev_top_order_index = NULL;
6219 /* This function replaces the find_rgns when
6220 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6221 void
6222 sel_find_rgns (void)
6224 sel_init_pipelining ();
6225 extend_regions ();
6227 if (current_loops)
6229 loop_p loop;
6230 loop_iterator li;
6232 FOR_EACH_LOOP (li, loop, (flag_sel_sched_pipelining_outer_loops
6233 ? LI_FROM_INNERMOST
6234 : LI_ONLY_INNERMOST))
6235 make_regions_from_loop_nest (loop);
6238 /* Make regions from all the rest basic blocks and schedule them.
6239 These blocks include blocks that don't belong to any loop or belong
6240 to irreducible loops. */
6241 make_regions_from_the_rest ();
6243 /* We don't need bbs_in_loop_rgns anymore. */
6244 sbitmap_free (bbs_in_loop_rgns);
6245 bbs_in_loop_rgns = NULL;
6248 /* Add the preheader blocks from previous loop to current region taking
6249 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
6250 This function is only used with -fsel-sched-pipelining-outer-loops. */
6251 void
6252 sel_add_loop_preheaders (bb_vec_t *bbs)
6254 int i;
6255 basic_block bb;
6256 vec<basic_block> *preheader_blocks
6257 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6259 if (!preheader_blocks)
6260 return;
6262 for (i = 0; preheader_blocks->iterate (i, &bb); i++)
6264 bbs->safe_push (bb);
6265 last_added_blocks.safe_push (bb);
6266 sel_add_bb (bb);
6269 vec_free (preheader_blocks);
6272 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6273 Please note that the function should also work when pipelining_p is
6274 false, because it is used when deciding whether we should or should
6275 not reschedule pipelined code. */
6276 bool
6277 sel_is_loop_preheader_p (basic_block bb)
6279 if (current_loop_nest)
6281 struct loop *outer;
6283 if (preheader_removed)
6284 return false;
6286 /* Preheader is the first block in the region. */
6287 if (BLOCK_TO_BB (bb->index) == 0)
6288 return true;
6290 /* We used to find a preheader with the topological information.
6291 Check that the above code is equivalent to what we did before. */
6293 if (in_current_region_p (current_loop_nest->header))
6294 gcc_assert (!(BLOCK_TO_BB (bb->index)
6295 < BLOCK_TO_BB (current_loop_nest->header->index)));
6297 /* Support the situation when the latch block of outer loop
6298 could be from here. */
6299 for (outer = loop_outer (current_loop_nest);
6300 outer;
6301 outer = loop_outer (outer))
6302 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6303 gcc_unreachable ();
6306 return false;
6309 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6310 can be removed, making the corresponding edge fallthrough (assuming that
6311 all basic blocks between JUMP_BB and DEST_BB are empty). */
6312 static bool
6313 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6315 if (!onlyjump_p (BB_END (jump_bb))
6316 || tablejump_p (BB_END (jump_bb), NULL, NULL))
6317 return false;
6319 /* Several outgoing edges, abnormal edge or destination of jump is
6320 not DEST_BB. */
6321 if (EDGE_COUNT (jump_bb->succs) != 1
6322 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6323 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6324 return false;
6326 /* If not anything of the upper. */
6327 return true;
6330 /* Removes the loop preheader from the current region and saves it in
6331 PREHEADER_BLOCKS of the father loop, so they will be added later to
6332 region that represents an outer loop. */
6333 static void
6334 sel_remove_loop_preheader (void)
6336 int i, old_len;
6337 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6338 basic_block bb;
6339 bool all_empty_p = true;
6340 vec<basic_block> *preheader_blocks
6341 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6343 vec_check_alloc (preheader_blocks, 0);
6345 gcc_assert (current_loop_nest);
6346 old_len = preheader_blocks->length ();
6348 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6349 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6351 bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6353 /* If the basic block belongs to region, but doesn't belong to
6354 corresponding loop, then it should be a preheader. */
6355 if (sel_is_loop_preheader_p (bb))
6357 preheader_blocks->safe_push (bb);
6358 if (BB_END (bb) != bb_note (bb))
6359 all_empty_p = false;
6363 /* Remove these blocks only after iterating over the whole region. */
6364 for (i = preheader_blocks->length () - 1; i >= old_len; i--)
6366 bb = (*preheader_blocks)[i];
6367 sel_remove_bb (bb, false);
6370 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6372 if (!all_empty_p)
6373 /* Immediately create new region from preheader. */
6374 make_region_from_loop_preheader (preheader_blocks);
6375 else
6377 /* If all preheader blocks are empty - dont create new empty region.
6378 Instead, remove them completely. */
6379 FOR_EACH_VEC_ELT (*preheader_blocks, i, bb)
6381 edge e;
6382 edge_iterator ei;
6383 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6385 /* Redirect all incoming edges to next basic block. */
6386 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6388 if (! (e->flags & EDGE_FALLTHRU))
6389 redirect_edge_and_branch (e, bb->next_bb);
6390 else
6391 redirect_edge_succ (e, bb->next_bb);
6393 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6394 delete_and_free_basic_block (bb);
6396 /* Check if after deleting preheader there is a nonconditional
6397 jump in PREV_BB that leads to the next basic block NEXT_BB.
6398 If it is so - delete this jump and clear data sets of its
6399 basic block if it becomes empty. */
6400 if (next_bb->prev_bb == prev_bb
6401 && prev_bb != ENTRY_BLOCK_PTR
6402 && bb_has_removable_jump_to_p (prev_bb, next_bb))
6404 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6405 if (BB_END (prev_bb) == bb_note (prev_bb))
6406 free_data_sets (prev_bb);
6409 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6410 recompute_dominator (CDI_DOMINATORS,
6411 next_bb));
6414 vec_free (preheader_blocks);
6416 else
6417 /* Store preheader within the father's loop structure. */
6418 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6419 preheader_blocks);
6421 #endif