Implement -mmemcpy-strategy= and -mmemset-strategy= options
[official-gcc.git] / gcc / lra.c
blob30b7c0a3dd57ae77d13d24785a52b670cd3adeb5
1 /* LRA (local register allocator) driver and LRA utilities.
2 Copyright (C) 2010-2013 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* The Local Register Allocator (LRA) is a replacement of former
23 reload pass. It is focused to simplify code solving the reload
24 pass tasks, to make the code maintenance easier, and to implement new
25 perspective optimizations.
27 The major LRA design solutions are:
28 o division small manageable, separated sub-tasks
29 o reflection of all transformations and decisions in RTL as more
30 as possible
31 o insn constraints as a primary source of the info (minimizing
32 number of target-depended macros/hooks)
34 In brief LRA works by iterative insn process with the final goal is
35 to satisfy all insn and address constraints:
36 o New reload insns (in brief reloads) and reload pseudos might be
37 generated;
38 o Some pseudos might be spilled to assign hard registers to
39 new reload pseudos;
40 o Changing spilled pseudos to stack memory or their equivalences;
41 o Allocation stack memory changes the address displacement and
42 new iteration is needed.
44 Here is block diagram of LRA passes:
46 ------------------------
47 --------------- | Undo inheritance for | ---------------
48 | Memory-memory | | spilled pseudos, | | New (and old) |
49 | move coalesce |<---| splits for pseudos got |<-- | pseudos |
50 --------------- | the same hard regs, | | assignment |
51 Start | | and optional reloads | ---------------
52 | | ------------------------ ^
53 V | ---------------- |
54 ----------- V | Update virtual | |
55 | Remove |----> ------------>| register | |
56 | scratches | ^ | displacements | |
57 ----------- | ---------------- |
58 | | |
59 | V New |
60 ---------------- No ------------ pseudos -------------------
61 | Spilled pseudo | change |Constraints:| or insns | Inheritance/split |
62 | to memory |<-------| RTL |--------->| transformations |
63 | substitution | | transfor- | | in EBB scope |
64 ---------------- | mations | -------------------
65 | ------------
67 -------------------------
68 | Hard regs substitution, |
69 | devirtalization, and |------> Finish
70 | restoring scratches got |
71 | memory |
72 -------------------------
74 To speed up the process:
75 o We process only insns affected by changes on previous
76 iterations;
77 o We don't use DFA-infrastructure because it results in much slower
78 compiler speed than a special IR described below does;
79 o We use a special insn representation for quick access to insn
80 info which is always *synchronized* with the current RTL;
81 o Insn IR is minimized by memory. It is divided on three parts:
82 o one specific for each insn in RTL (only operand locations);
83 o one common for all insns in RTL with the same insn code
84 (different operand attributes from machine descriptions);
85 o one oriented for maintenance of live info (list of pseudos).
86 o Pseudo data:
87 o all insns where the pseudo is referenced;
88 o live info (conflicting hard regs, live ranges, # of
89 references etc);
90 o data used for assigning (preferred hard regs, costs etc).
92 This file contains LRA driver, LRA utility functions and data, and
93 code for dealing with scratches. */
95 #include "config.h"
96 #include "system.h"
97 #include "coretypes.h"
98 #include "tm.h"
99 #include "hard-reg-set.h"
100 #include "rtl.h"
101 #include "tm_p.h"
102 #include "regs.h"
103 #include "insn-config.h"
104 #include "insn-codes.h"
105 #include "recog.h"
106 #include "output.h"
107 #include "addresses.h"
108 #include "flags.h"
109 #include "function.h"
110 #include "expr.h"
111 #include "basic-block.h"
112 #include "except.h"
113 #include "tree-pass.h"
114 #include "timevar.h"
115 #include "target.h"
116 #include "vec.h"
117 #include "ira.h"
118 #include "lra-int.h"
119 #include "df.h"
121 /* Hard registers currently not available for allocation. It can
122 changed after some hard registers become not eliminable. */
123 HARD_REG_SET lra_no_alloc_regs;
125 static int get_new_reg_value (void);
126 static void expand_reg_info (void);
127 static void invalidate_insn_recog_data (int);
128 static int get_insn_freq (rtx);
129 static void invalidate_insn_data_regno_info (lra_insn_recog_data_t, rtx, int);
131 /* Expand all regno related info needed for LRA. */
132 static void
133 expand_reg_data (void)
135 resize_reg_info ();
136 expand_reg_info ();
137 ira_expand_reg_equiv ();
140 /* Create and return a new reg of ORIGINAL mode. If ORIGINAL is NULL
141 or of VOIDmode, use MD_MODE for the new reg. Initialize its
142 register class to RCLASS. Print message about assigning class
143 RCLASS containing new register name TITLE unless it is NULL. Use
144 attributes of ORIGINAL if it is a register. The created register
145 will have unique held value. */
147 lra_create_new_reg_with_unique_value (enum machine_mode md_mode, rtx original,
148 enum reg_class rclass, const char *title)
150 enum machine_mode mode;
151 rtx new_reg;
153 if (original == NULL_RTX || (mode = GET_MODE (original)) == VOIDmode)
154 mode = md_mode;
155 lra_assert (mode != VOIDmode);
156 new_reg = gen_reg_rtx (mode);
157 if (original == NULL_RTX || ! REG_P (original))
159 if (lra_dump_file != NULL)
160 fprintf (lra_dump_file, " Creating newreg=%i", REGNO (new_reg));
162 else
164 if (ORIGINAL_REGNO (original) >= FIRST_PSEUDO_REGISTER)
165 ORIGINAL_REGNO (new_reg) = ORIGINAL_REGNO (original);
166 REG_USERVAR_P (new_reg) = REG_USERVAR_P (original);
167 REG_POINTER (new_reg) = REG_POINTER (original);
168 REG_ATTRS (new_reg) = REG_ATTRS (original);
169 if (lra_dump_file != NULL)
170 fprintf (lra_dump_file, " Creating newreg=%i from oldreg=%i",
171 REGNO (new_reg), REGNO (original));
173 if (lra_dump_file != NULL)
175 if (title != NULL)
176 fprintf (lra_dump_file, ", assigning class %s to%s%s r%d",
177 reg_class_names[rclass], *title == '\0' ? "" : " ",
178 title, REGNO (new_reg));
179 fprintf (lra_dump_file, "\n");
181 expand_reg_data ();
182 setup_reg_classes (REGNO (new_reg), rclass, NO_REGS, rclass);
183 return new_reg;
186 /* Analogous to the previous function but also inherits value of
187 ORIGINAL. */
189 lra_create_new_reg (enum machine_mode md_mode, rtx original,
190 enum reg_class rclass, const char *title)
192 rtx new_reg;
194 new_reg
195 = lra_create_new_reg_with_unique_value (md_mode, original, rclass, title);
196 if (original != NULL_RTX && REG_P (original))
197 lra_assign_reg_val (REGNO (original), REGNO (new_reg));
198 return new_reg;
201 /* Set up for REGNO unique hold value. */
202 void
203 lra_set_regno_unique_value (int regno)
205 lra_reg_info[regno].val = get_new_reg_value ();
208 /* Invalidate INSN related info used by LRA. */
209 void
210 lra_invalidate_insn_data (rtx insn)
212 lra_invalidate_insn_regno_info (insn);
213 invalidate_insn_recog_data (INSN_UID (insn));
216 /* Mark INSN deleted and invalidate the insn related info used by
217 LRA. */
218 void
219 lra_set_insn_deleted (rtx insn)
221 lra_invalidate_insn_data (insn);
222 SET_INSN_DELETED (insn);
225 /* Delete an unneeded INSN and any previous insns who sole purpose is
226 loading data that is dead in INSN. */
227 void
228 lra_delete_dead_insn (rtx insn)
230 rtx prev = prev_real_insn (insn);
231 rtx prev_dest;
233 /* If the previous insn sets a register that dies in our insn,
234 delete it too. */
235 if (prev && GET_CODE (PATTERN (prev)) == SET
236 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
237 && reg_mentioned_p (prev_dest, PATTERN (insn))
238 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
239 && ! side_effects_p (SET_SRC (PATTERN (prev))))
240 lra_delete_dead_insn (prev);
242 lra_set_insn_deleted (insn);
245 /* Emit insn x = y + z. Return NULL if we failed to do it.
246 Otherwise, return the insn. We don't use gen_add3_insn as it might
247 clobber CC. */
248 static rtx
249 emit_add3_insn (rtx x, rtx y, rtx z)
251 rtx insn, last;
253 last = get_last_insn ();
254 insn = emit_insn (gen_rtx_SET (VOIDmode, x,
255 gen_rtx_PLUS (GET_MODE (y), y, z)));
256 if (recog_memoized (insn) < 0)
258 delete_insns_since (last);
259 insn = NULL_RTX;
261 return insn;
264 /* Emit insn x = x + y. Return the insn. We use gen_add2_insn as the
265 last resort. */
266 static rtx
267 emit_add2_insn (rtx x, rtx y)
269 rtx insn;
271 insn = emit_add3_insn (x, x, y);
272 if (insn == NULL_RTX)
274 insn = gen_add2_insn (x, y);
275 if (insn != NULL_RTX)
276 emit_insn (insn);
278 return insn;
281 /* Target checks operands through operand predicates to recognize an
282 insn. We should have a special precaution to generate add insns
283 which are frequent results of elimination.
285 Emit insns for x = y + z. X can be used to store intermediate
286 values and should be not in Y and Z when we use X to store an
287 intermediate value. Y + Z should form [base] [+ index[ * scale]] [
288 + disp] where base and index are registers, disp and scale are
289 constants. Y should contain base if it is present, Z should
290 contain disp if any. index[*scale] can be part of Y or Z. */
291 void
292 lra_emit_add (rtx x, rtx y, rtx z)
294 int old;
295 rtx insn, last;
296 rtx a1, a2, base, index, disp, scale, index_scale;
297 bool ok_p;
299 insn = emit_add3_insn (x, y, z);
300 old = max_reg_num ();
301 if (insn != NULL_RTX)
303 else
305 disp = a2 = NULL_RTX;
306 if (GET_CODE (y) == PLUS)
308 a1 = XEXP (y, 0);
309 a2 = XEXP (y, 1);
310 disp = z;
312 else
314 a1 = y;
315 if (CONSTANT_P (z))
316 disp = z;
317 else
318 a2 = z;
320 index_scale = scale = NULL_RTX;
321 if (GET_CODE (a1) == MULT)
323 index_scale = a1;
324 index = XEXP (a1, 0);
325 scale = XEXP (a1, 1);
326 base = a2;
328 else if (a2 != NULL_RTX && GET_CODE (a2) == MULT)
330 index_scale = a2;
331 index = XEXP (a2, 0);
332 scale = XEXP (a2, 1);
333 base = a1;
335 else
337 base = a1;
338 index = a2;
340 if (! REG_P (base)
341 || (index != NULL_RTX && ! REG_P (index))
342 || (disp != NULL_RTX && ! CONSTANT_P (disp))
343 || (scale != NULL_RTX && ! CONSTANT_P (scale)))
345 /* Probably we have no 3 op add. Last chance is to use 2-op
346 add insn. To succeed, don't move Z to X as an address
347 segment always comes in Y. Otherwise, we might fail when
348 adding the address segment to register. */
349 lra_assert (x != y && x != z);
350 emit_move_insn (x, y);
351 insn = emit_add2_insn (x, z);
352 lra_assert (insn != NULL_RTX);
354 else
356 if (index_scale == NULL_RTX)
357 index_scale = index;
358 if (disp == NULL_RTX)
360 /* Generate x = index_scale; x = x + base. */
361 lra_assert (index_scale != NULL_RTX && base != NULL_RTX);
362 emit_move_insn (x, index_scale);
363 insn = emit_add2_insn (x, base);
364 lra_assert (insn != NULL_RTX);
366 else if (scale == NULL_RTX)
368 /* Try x = base + disp. */
369 lra_assert (base != NULL_RTX);
370 last = get_last_insn ();
371 insn = emit_move_insn (x, gen_rtx_PLUS (GET_MODE (base),
372 base, disp));
373 if (recog_memoized (insn) < 0)
375 delete_insns_since (last);
376 /* Generate x = disp; x = x + base. */
377 emit_move_insn (x, disp);
378 insn = emit_add2_insn (x, base);
379 lra_assert (insn != NULL_RTX);
381 /* Generate x = x + index. */
382 if (index != NULL_RTX)
384 insn = emit_add2_insn (x, index);
385 lra_assert (insn != NULL_RTX);
388 else
390 /* Try x = index_scale; x = x + disp; x = x + base. */
391 last = get_last_insn ();
392 insn = emit_move_insn (x, index_scale);
393 ok_p = false;
394 if (recog_memoized (insn) >= 0)
396 insn = emit_add2_insn (x, disp);
397 if (insn != NULL_RTX)
399 insn = emit_add2_insn (x, disp);
400 if (insn != NULL_RTX)
401 ok_p = true;
404 if (! ok_p)
406 delete_insns_since (last);
407 /* Generate x = disp; x = x + base; x = x + index_scale. */
408 emit_move_insn (x, disp);
409 insn = emit_add2_insn (x, base);
410 lra_assert (insn != NULL_RTX);
411 insn = emit_add2_insn (x, index_scale);
412 lra_assert (insn != NULL_RTX);
417 /* Functions emit_... can create pseudos -- so expand the pseudo
418 data. */
419 if (old != max_reg_num ())
420 expand_reg_data ();
423 /* The number of emitted reload insns so far. */
424 int lra_curr_reload_num;
426 /* Emit x := y, processing special case when y = u + v or y = u + v *
427 scale + w through emit_add (Y can be an address which is base +
428 index reg * scale + displacement in general case). X may be used
429 as intermediate result therefore it should be not in Y. */
430 void
431 lra_emit_move (rtx x, rtx y)
433 int old;
435 if (GET_CODE (y) != PLUS)
437 if (rtx_equal_p (x, y))
438 return;
439 old = max_reg_num ();
440 emit_move_insn (x, y);
441 if (REG_P (x))
442 lra_reg_info[ORIGINAL_REGNO (x)].last_reload = ++lra_curr_reload_num;
443 /* Function emit_move can create pseudos -- so expand the pseudo
444 data. */
445 if (old != max_reg_num ())
446 expand_reg_data ();
447 return;
449 lra_emit_add (x, XEXP (y, 0), XEXP (y, 1));
452 /* Update insn operands which are duplication of operands whose
453 numbers are in array of NOPS (with end marker -1). The insn is
454 represented by its LRA internal representation ID. */
455 void
456 lra_update_dups (lra_insn_recog_data_t id, signed char *nops)
458 int i, j, nop;
459 struct lra_static_insn_data *static_id = id->insn_static_data;
461 for (i = 0; i < static_id->n_dups; i++)
462 for (j = 0; (nop = nops[j]) >= 0; j++)
463 if (static_id->dup_num[i] == nop)
464 *id->dup_loc[i] = *id->operand_loc[nop];
469 /* This page contains code dealing with info about registers in the
470 insns. */
472 /* Pools for insn reg info. */
473 static alloc_pool insn_reg_pool;
475 /* Initiate pool for insn reg info. */
476 static void
477 init_insn_regs (void)
479 insn_reg_pool
480 = create_alloc_pool ("insn regs", sizeof (struct lra_insn_reg), 100);
483 /* Create LRA insn related info about referenced REGNO with TYPE
484 (in/out/inout), biggest reference mode MODE, flag that it is
485 reference through subreg (SUBREG_P), flag that is early clobbered
486 in the insn (EARLY_CLOBBER), and reference to the next insn reg
487 info (NEXT). */
488 static struct lra_insn_reg *
489 new_insn_reg (int regno, enum op_type type, enum machine_mode mode,
490 bool subreg_p, bool early_clobber, struct lra_insn_reg *next)
492 struct lra_insn_reg *ir;
494 ir = (struct lra_insn_reg *) pool_alloc (insn_reg_pool);
495 ir->type = type;
496 ir->biggest_mode = mode;
497 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (lra_reg_info[regno].biggest_mode))
498 lra_reg_info[regno].biggest_mode = mode;
499 ir->subreg_p = subreg_p;
500 ir->early_clobber = early_clobber;
501 ir->regno = regno;
502 ir->next = next;
503 return ir;
506 /* Free insn reg info IR. */
507 static void
508 free_insn_reg (struct lra_insn_reg *ir)
510 pool_free (insn_reg_pool, ir);
513 /* Free insn reg info list IR. */
514 static void
515 free_insn_regs (struct lra_insn_reg *ir)
517 struct lra_insn_reg *next_ir;
519 for (; ir != NULL; ir = next_ir)
521 next_ir = ir->next;
522 free_insn_reg (ir);
526 /* Finish pool for insn reg info. */
527 static void
528 finish_insn_regs (void)
530 free_alloc_pool (insn_reg_pool);
535 /* This page contains code dealing LRA insn info (or in other words
536 LRA internal insn representation). */
538 struct target_lra_int default_target_lra_int;
539 #if SWITCHABLE_TARGET
540 struct target_lra_int *this_target_lra_int = &default_target_lra_int;
541 #endif
543 /* Map INSN_CODE -> the static insn data. This info is valid during
544 all translation unit. */
545 struct lra_static_insn_data *insn_code_data[LAST_INSN_CODE];
547 /* Debug insns are represented as a special insn with one input
548 operand which is RTL expression in var_location. */
550 /* The following data are used as static insn operand data for all
551 debug insns. If structure lra_operand_data is changed, the
552 initializer should be changed too. */
553 static struct lra_operand_data debug_operand_data =
555 NULL, /* alternative */
556 VOIDmode, /* We are not interesting in the operand mode. */
557 OP_IN,
558 0, 0, 0, 0
561 /* The following data are used as static insn data for all debug
562 insns. If structure lra_static_insn_data is changed, the
563 initializer should be changed too. */
564 static struct lra_static_insn_data debug_insn_static_data =
566 &debug_operand_data,
567 0, /* Duplication operands #. */
568 -1, /* Commutative operand #. */
569 1, /* Operands #. There is only one operand which is debug RTL
570 expression. */
571 0, /* Duplications #. */
572 0, /* Alternatives #. We are not interesting in alternatives
573 because we does not proceed debug_insns for reloads. */
574 NULL, /* Hard registers referenced in machine description. */
575 NULL /* Descriptions of operands in alternatives. */
578 /* Called once per compiler work to initialize some LRA data related
579 to insns. */
580 static void
581 init_insn_code_data_once (void)
583 memset (insn_code_data, 0, sizeof (insn_code_data));
584 memset (op_alt_data, 0, sizeof (op_alt_data));
587 /* Called once per compiler work to finalize some LRA data related to
588 insns. */
589 static void
590 finish_insn_code_data_once (void)
592 int i;
594 for (i = 0; i < LAST_INSN_CODE; i++)
596 if (insn_code_data[i] != NULL)
597 free (insn_code_data[i]);
598 if (op_alt_data[i] != NULL)
599 free (op_alt_data[i]);
603 /* Initialize LRA info about operands in insn alternatives. */
604 static void
605 init_op_alt_data (void)
607 int i;
609 for (i = 0; i < LAST_INSN_CODE; i++)
610 if (op_alt_data[i] != NULL)
612 free (op_alt_data[i]);
613 op_alt_data[i] = NULL;
617 /* Return static insn data, allocate and setup if necessary. Although
618 dup_num is static data (it depends only on icode), to set it up we
619 need to extract insn first. So recog_data should be valid for
620 normal insn (ICODE >= 0) before the call. */
621 static struct lra_static_insn_data *
622 get_static_insn_data (int icode, int nop, int ndup, int nalt)
624 struct lra_static_insn_data *data;
625 size_t n_bytes;
627 lra_assert (icode < LAST_INSN_CODE);
628 if (icode >= 0 && (data = insn_code_data[icode]) != NULL)
629 return data;
630 lra_assert (nop >= 0 && ndup >= 0 && nalt >= 0);
631 n_bytes = sizeof (struct lra_static_insn_data)
632 + sizeof (struct lra_operand_data) * nop
633 + sizeof (int) * ndup;
634 data = XNEWVAR (struct lra_static_insn_data, n_bytes);
635 data->n_operands = nop;
636 data->n_dups = ndup;
637 data->n_alternatives = nalt;
638 data->operand = ((struct lra_operand_data *)
639 ((char *) data + sizeof (struct lra_static_insn_data)));
640 data->dup_num = ((int *) ((char *) data->operand
641 + sizeof (struct lra_operand_data) * nop));
642 if (icode >= 0)
644 int i;
646 insn_code_data[icode] = data;
647 for (i = 0; i < nop; i++)
649 data->operand[i].constraint
650 = insn_data[icode].operand[i].constraint;
651 data->operand[i].mode = insn_data[icode].operand[i].mode;
652 data->operand[i].strict_low = insn_data[icode].operand[i].strict_low;
653 data->operand[i].is_operator
654 = insn_data[icode].operand[i].is_operator;
655 data->operand[i].type
656 = (data->operand[i].constraint[0] == '=' ? OP_OUT
657 : data->operand[i].constraint[0] == '+' ? OP_INOUT
658 : OP_IN);
659 data->operand[i].is_address = false;
661 for (i = 0; i < ndup; i++)
662 data->dup_num[i] = recog_data.dup_num[i];
664 return data;
667 /* The current length of the following array. */
668 int lra_insn_recog_data_len;
670 /* Map INSN_UID -> the insn recog data (NULL if unknown). */
671 lra_insn_recog_data_t *lra_insn_recog_data;
673 /* Initialize LRA data about insns. */
674 static void
675 init_insn_recog_data (void)
677 lra_insn_recog_data_len = 0;
678 lra_insn_recog_data = NULL;
679 init_insn_regs ();
682 /* Expand, if necessary, LRA data about insns. */
683 static void
684 check_and_expand_insn_recog_data (int index)
686 int i, old;
688 if (lra_insn_recog_data_len > index)
689 return;
690 old = lra_insn_recog_data_len;
691 lra_insn_recog_data_len = index * 3 / 2 + 1;
692 lra_insn_recog_data = XRESIZEVEC (lra_insn_recog_data_t,
693 lra_insn_recog_data,
694 lra_insn_recog_data_len);
695 for (i = old; i < lra_insn_recog_data_len; i++)
696 lra_insn_recog_data[i] = NULL;
699 /* Finish LRA DATA about insn. */
700 static void
701 free_insn_recog_data (lra_insn_recog_data_t data)
703 if (data->operand_loc != NULL)
704 free (data->operand_loc);
705 if (data->dup_loc != NULL)
706 free (data->dup_loc);
707 if (data->arg_hard_regs != NULL)
708 free (data->arg_hard_regs);
709 if (HAVE_ATTR_enabled && data->alternative_enabled_p != NULL)
710 free (data->alternative_enabled_p);
711 if (data->icode < 0 && NONDEBUG_INSN_P (data->insn))
713 if (data->insn_static_data->operand_alternative != NULL)
714 free (data->insn_static_data->operand_alternative);
715 free_insn_regs (data->insn_static_data->hard_regs);
716 free (data->insn_static_data);
718 free_insn_regs (data->regs);
719 data->regs = NULL;
720 free (data);
723 /* Finish LRA data about all insns. */
724 static void
725 finish_insn_recog_data (void)
727 int i;
728 lra_insn_recog_data_t data;
730 for (i = 0; i < lra_insn_recog_data_len; i++)
731 if ((data = lra_insn_recog_data[i]) != NULL)
732 free_insn_recog_data (data);
733 finish_insn_regs ();
734 free (lra_insn_recog_data);
737 /* Setup info about operands in alternatives of LRA DATA of insn. */
738 static void
739 setup_operand_alternative (lra_insn_recog_data_t data)
741 int i, nop, nalt;
742 int icode = data->icode;
743 struct lra_static_insn_data *static_data = data->insn_static_data;
745 if (icode >= 0
746 && (static_data->operand_alternative = op_alt_data[icode]) != NULL)
747 return;
748 static_data->commutative = -1;
749 nop = static_data->n_operands;
750 if (nop == 0)
752 static_data->operand_alternative = NULL;
753 return;
755 nalt = static_data->n_alternatives;
756 static_data->operand_alternative = XNEWVEC (struct operand_alternative,
757 nalt * nop);
758 memset (static_data->operand_alternative, 0,
759 nalt * nop * sizeof (struct operand_alternative));
760 if (icode >= 0)
761 op_alt_data[icode] = static_data->operand_alternative;
762 for (i = 0; i < nop; i++)
764 int j;
765 struct operand_alternative *op_alt_start, *op_alt;
766 const char *p = static_data->operand[i].constraint;
768 static_data->operand[i].early_clobber = 0;
769 op_alt_start = &static_data->operand_alternative[i];
771 for (j = 0; j < nalt; j++)
773 op_alt = op_alt_start + j * nop;
774 op_alt->cl = NO_REGS;
775 op_alt->constraint = p;
776 op_alt->matches = -1;
777 op_alt->matched = -1;
779 if (*p == '\0' || *p == ',')
781 op_alt->anything_ok = 1;
782 continue;
785 for (;;)
787 char c = *p;
788 if (c == '#')
790 c = *++p;
791 while (c != ',' && c != '\0');
792 if (c == ',' || c == '\0')
794 p++;
795 break;
798 switch (c)
800 case '=': case '+': case '*':
801 case 'E': case 'F': case 'G': case 'H':
802 case 's': case 'i': case 'n':
803 case 'I': case 'J': case 'K': case 'L':
804 case 'M': case 'N': case 'O': case 'P':
805 /* These don't say anything we care about. */
806 break;
808 case '%':
809 /* We currently only support one commutative pair of
810 operands. */
811 if (static_data->commutative < 0)
812 static_data->commutative = i;
813 else
814 lra_assert (data->icode < 0); /* Asm */
816 /* The last operand should not be marked
817 commutative. */
818 lra_assert (i != nop - 1);
819 break;
821 case '?':
822 op_alt->reject += LRA_LOSER_COST_FACTOR;
823 break;
824 case '!':
825 op_alt->reject += LRA_MAX_REJECT;
826 break;
827 case '&':
828 op_alt->earlyclobber = 1;
829 static_data->operand[i].early_clobber = 1;
830 break;
832 case '0': case '1': case '2': case '3': case '4':
833 case '5': case '6': case '7': case '8': case '9':
835 char *end;
836 op_alt->matches = strtoul (p, &end, 10);
837 static_data->operand_alternative
838 [j * nop + op_alt->matches].matched = i;
839 p = end;
841 continue;
843 case TARGET_MEM_CONSTRAINT:
844 op_alt->memory_ok = 1;
845 break;
846 case '<':
847 op_alt->decmem_ok = 1;
848 break;
849 case '>':
850 op_alt->incmem_ok = 1;
851 break;
852 case 'V':
853 op_alt->nonoffmem_ok = 1;
854 break;
855 case 'o':
856 op_alt->offmem_ok = 1;
857 break;
858 case 'X':
859 op_alt->anything_ok = 1;
860 break;
862 case 'p':
863 static_data->operand[i].is_address = true;
864 op_alt->is_address = 1;
865 op_alt->cl = (reg_class_subunion[(int) op_alt->cl]
866 [(int) base_reg_class (VOIDmode,
867 ADDR_SPACE_GENERIC,
868 ADDRESS, SCRATCH)]);
869 break;
871 case 'g':
872 case 'r':
873 op_alt->cl =
874 reg_class_subunion[(int) op_alt->cl][(int) GENERAL_REGS];
875 break;
877 default:
878 if (EXTRA_MEMORY_CONSTRAINT (c, p))
880 op_alt->memory_ok = 1;
881 break;
883 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
885 static_data->operand[i].is_address = true;
886 op_alt->is_address = 1;
887 op_alt->cl
888 = (reg_class_subunion
889 [(int) op_alt->cl]
890 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
891 ADDRESS, SCRATCH)]);
892 break;
895 op_alt->cl
896 = (reg_class_subunion
897 [(int) op_alt->cl]
898 [(int)
899 REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
900 break;
902 p += CONSTRAINT_LEN (c, p);
908 /* Recursively process X and collect info about registers, which are
909 not the insn operands, in X with TYPE (in/out/inout) and flag that
910 it is early clobbered in the insn (EARLY_CLOBBER) and add the info
911 to LIST. X is a part of insn given by DATA. Return the result
912 list. */
913 static struct lra_insn_reg *
914 collect_non_operand_hard_regs (rtx *x, lra_insn_recog_data_t data,
915 struct lra_insn_reg *list,
916 enum op_type type, bool early_clobber)
918 int i, j, regno, last;
919 bool subreg_p;
920 enum machine_mode mode;
921 struct lra_insn_reg *curr;
922 rtx op = *x;
923 enum rtx_code code = GET_CODE (op);
924 const char *fmt = GET_RTX_FORMAT (code);
926 for (i = 0; i < data->insn_static_data->n_operands; i++)
927 if (x == data->operand_loc[i])
928 /* It is an operand loc. Stop here. */
929 return list;
930 for (i = 0; i < data->insn_static_data->n_dups; i++)
931 if (x == data->dup_loc[i])
932 /* It is a dup loc. Stop here. */
933 return list;
934 mode = GET_MODE (op);
935 subreg_p = false;
936 if (code == SUBREG)
938 op = SUBREG_REG (op);
939 code = GET_CODE (op);
940 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (op)))
942 mode = GET_MODE (op);
943 if (GET_MODE_SIZE (mode) > REGMODE_NATURAL_SIZE (mode))
944 subreg_p = true;
947 if (REG_P (op))
949 if ((regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER)
950 return list;
951 for (last = regno + hard_regno_nregs[regno][mode];
952 regno < last;
953 regno++)
954 if (! TEST_HARD_REG_BIT (lra_no_alloc_regs, regno)
955 || TEST_HARD_REG_BIT (eliminable_regset, regno))
957 for (curr = list; curr != NULL; curr = curr->next)
958 if (curr->regno == regno && curr->subreg_p == subreg_p
959 && curr->biggest_mode == mode)
961 if (curr->type != type)
962 curr->type = OP_INOUT;
963 if (curr->early_clobber != early_clobber)
964 curr->early_clobber = true;
965 break;
967 if (curr == NULL)
969 /* This is a new hard regno or the info can not be
970 integrated into the found structure. */
971 #ifdef STACK_REGS
972 early_clobber
973 = (early_clobber
974 /* This clobber is to inform popping floating
975 point stack only. */
976 && ! (FIRST_STACK_REG <= regno
977 && regno <= LAST_STACK_REG));
978 #endif
979 list = new_insn_reg (regno, type, mode, subreg_p,
980 early_clobber, list);
983 return list;
985 switch (code)
987 case SET:
988 list = collect_non_operand_hard_regs (&SET_DEST (op), data,
989 list, OP_OUT, false);
990 list = collect_non_operand_hard_regs (&SET_SRC (op), data,
991 list, OP_IN, false);
992 break;
993 case CLOBBER:
994 /* We treat clobber of non-operand hard registers as early
995 clobber (the behavior is expected from asm). */
996 list = collect_non_operand_hard_regs (&XEXP (op, 0), data,
997 list, OP_OUT, true);
998 break;
999 case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
1000 list = collect_non_operand_hard_regs (&XEXP (op, 0), data,
1001 list, OP_INOUT, false);
1002 break;
1003 case PRE_MODIFY: case POST_MODIFY:
1004 list = collect_non_operand_hard_regs (&XEXP (op, 0), data,
1005 list, OP_INOUT, false);
1006 list = collect_non_operand_hard_regs (&XEXP (op, 1), data,
1007 list, OP_IN, false);
1008 break;
1009 default:
1010 fmt = GET_RTX_FORMAT (code);
1011 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1013 if (fmt[i] == 'e')
1014 list = collect_non_operand_hard_regs (&XEXP (op, i), data,
1015 list, OP_IN, false);
1016 else if (fmt[i] == 'E')
1017 for (j = XVECLEN (op, i) - 1; j >= 0; j--)
1018 list = collect_non_operand_hard_regs (&XVECEXP (op, i, j), data,
1019 list, OP_IN, false);
1022 return list;
1025 /* Set up and return info about INSN. Set up the info if it is not set up
1026 yet. */
1027 lra_insn_recog_data_t
1028 lra_set_insn_recog_data (rtx insn)
1030 lra_insn_recog_data_t data;
1031 int i, n, icode;
1032 rtx **locs;
1033 unsigned int uid = INSN_UID (insn);
1034 struct lra_static_insn_data *insn_static_data;
1036 check_and_expand_insn_recog_data (uid);
1037 if (DEBUG_INSN_P (insn))
1038 icode = -1;
1039 else
1041 icode = INSN_CODE (insn);
1042 if (icode < 0)
1043 /* It might be a new simple insn which is not recognized yet. */
1044 INSN_CODE (insn) = icode = recog_memoized (insn);
1046 data = XNEW (struct lra_insn_recog_data);
1047 lra_insn_recog_data[uid] = data;
1048 data->insn = insn;
1049 data->used_insn_alternative = -1;
1050 data->icode = icode;
1051 data->regs = NULL;
1052 if (DEBUG_INSN_P (insn))
1054 data->insn_static_data = &debug_insn_static_data;
1055 data->dup_loc = NULL;
1056 data->arg_hard_regs = NULL;
1057 data->alternative_enabled_p = NULL;
1058 data->operand_loc = XNEWVEC (rtx *, 1);
1059 data->operand_loc[0] = &INSN_VAR_LOCATION_LOC (insn);
1060 return data;
1062 if (icode < 0)
1064 int nop;
1065 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1066 const char *constraints[MAX_RECOG_OPERANDS];
1068 nop = asm_noperands (PATTERN (insn));
1069 data->operand_loc = data->dup_loc = NULL;
1070 if (nop < 0)
1071 /* Its is a special insn like USE or CLOBBER. */
1072 data->insn_static_data = insn_static_data
1073 = get_static_insn_data (-1, 0, 0, 1);
1074 else
1076 /* expand_asm_operands makes sure there aren't too many
1077 operands. */
1078 lra_assert (nop <= MAX_RECOG_OPERANDS);
1079 if (nop != 0)
1080 data->operand_loc = XNEWVEC (rtx *, nop);
1081 /* Now get the operand values and constraints out of the
1082 insn. */
1083 decode_asm_operands (PATTERN (insn), NULL,
1084 data->operand_loc,
1085 constraints, operand_mode, NULL);
1086 n = 1;
1087 if (nop > 0)
1089 const char *p = recog_data.constraints[0];
1091 for (p = constraints[0]; *p; p++)
1092 n += *p == ',';
1094 data->insn_static_data = insn_static_data
1095 = get_static_insn_data (-1, nop, 0, n);
1096 for (i = 0; i < nop; i++)
1098 insn_static_data->operand[i].mode = operand_mode[i];
1099 insn_static_data->operand[i].constraint = constraints[i];
1100 insn_static_data->operand[i].strict_low = false;
1101 insn_static_data->operand[i].is_operator = false;
1102 insn_static_data->operand[i].is_address = false;
1105 for (i = 0; i < insn_static_data->n_operands; i++)
1106 insn_static_data->operand[i].type
1107 = (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
1108 : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
1109 : OP_IN);
1110 data->alternative_enabled_p = NULL;
1112 else
1114 insn_extract (insn);
1115 data->insn_static_data = insn_static_data
1116 = get_static_insn_data (icode, insn_data[icode].n_operands,
1117 insn_data[icode].n_dups,
1118 insn_data[icode].n_alternatives);
1119 n = insn_static_data->n_operands;
1120 if (n == 0)
1121 locs = NULL;
1122 else
1124 locs = XNEWVEC (rtx *, n);
1125 memcpy (locs, recog_data.operand_loc, n * sizeof (rtx *));
1127 data->operand_loc = locs;
1128 n = insn_static_data->n_dups;
1129 if (n == 0)
1130 locs = NULL;
1131 else
1133 locs = XNEWVEC (rtx *, n);
1134 memcpy (locs, recog_data.dup_loc, n * sizeof (rtx *));
1136 data->dup_loc = locs;
1137 if (HAVE_ATTR_enabled)
1139 bool *bp;
1141 n = insn_static_data->n_alternatives;
1142 lra_assert (n >= 0);
1143 data->alternative_enabled_p = bp = XNEWVEC (bool, n);
1144 /* Cache the insn because we don't want to call extract_insn
1145 from get_attr_enabled as extract_insn modifies
1146 which_alternative. The attribute enabled should not depend
1147 on insn operands, operand modes, operand types, and operand
1148 constraints. It should depend on the architecture. If it
1149 is not true, we should rewrite this file code to use
1150 extract_insn instead of less expensive insn_extract. */
1151 recog_data.insn = insn;
1152 for (i = 0; i < n; i++)
1154 which_alternative = i;
1155 bp[i] = get_attr_enabled (insn);
1159 if (GET_CODE (PATTERN (insn)) == CLOBBER || GET_CODE (PATTERN (insn)) == USE)
1160 insn_static_data->hard_regs = NULL;
1161 else
1162 insn_static_data->hard_regs
1163 = collect_non_operand_hard_regs (&PATTERN (insn), data,
1164 NULL, OP_IN, false);
1165 setup_operand_alternative (data);
1166 data->arg_hard_regs = NULL;
1167 if (CALL_P (insn))
1169 rtx link;
1170 int n_hard_regs, regno, arg_hard_regs[FIRST_PSEUDO_REGISTER];
1172 n_hard_regs = 0;
1173 /* Finding implicit hard register usage. We believe it will be
1174 not changed whatever transformations are used. Call insns
1175 are such example. */
1176 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1177 link != NULL_RTX;
1178 link = XEXP (link, 1))
1179 if (GET_CODE (XEXP (link, 0)) == USE
1180 && REG_P (XEXP (XEXP (link, 0), 0)))
1182 regno = REGNO (XEXP (XEXP (link, 0), 0));
1183 lra_assert (regno < FIRST_PSEUDO_REGISTER);
1184 /* It is an argument register. */
1185 for (i = (hard_regno_nregs
1186 [regno][GET_MODE (XEXP (XEXP (link, 0), 0))]) - 1;
1187 i >= 0;
1188 i--)
1189 arg_hard_regs[n_hard_regs++] = regno + i;
1191 if (n_hard_regs != 0)
1193 arg_hard_regs[n_hard_regs++] = -1;
1194 data->arg_hard_regs = XNEWVEC (int, n_hard_regs);
1195 memcpy (data->arg_hard_regs, arg_hard_regs,
1196 sizeof (int) * n_hard_regs);
1199 /* Some output operand can be recognized only from the context not
1200 from the constraints which are empty in this case. Call insn may
1201 contain a hard register in set destination with empty constraint
1202 and extract_insn treats them as an input. */
1203 for (i = 0; i < insn_static_data->n_operands; i++)
1205 int j;
1206 rtx pat, set;
1207 struct lra_operand_data *operand = &insn_static_data->operand[i];
1209 /* ??? Should we treat 'X' the same way. It looks to me that
1210 'X' means anything and empty constraint means we do not
1211 care. */
1212 if (operand->type != OP_IN || *operand->constraint != '\0'
1213 || operand->is_operator)
1214 continue;
1215 pat = PATTERN (insn);
1216 if (GET_CODE (pat) == SET)
1218 if (data->operand_loc[i] != &SET_DEST (pat))
1219 continue;
1221 else if (GET_CODE (pat) == PARALLEL)
1223 for (j = XVECLEN (pat, 0) - 1; j >= 0; j--)
1225 set = XVECEXP (PATTERN (insn), 0, j);
1226 if (GET_CODE (set) == SET
1227 && &SET_DEST (set) == data->operand_loc[i])
1228 break;
1230 if (j < 0)
1231 continue;
1233 else
1234 continue;
1235 operand->type = OP_OUT;
1237 return data;
1240 /* Return info about insn give by UID. The info should be already set
1241 up. */
1242 static lra_insn_recog_data_t
1243 get_insn_recog_data_by_uid (int uid)
1245 lra_insn_recog_data_t data;
1247 data = lra_insn_recog_data[uid];
1248 lra_assert (data != NULL);
1249 return data;
1252 /* Invalidate all info about insn given by its UID. */
1253 static void
1254 invalidate_insn_recog_data (int uid)
1256 lra_insn_recog_data_t data;
1258 data = lra_insn_recog_data[uid];
1259 lra_assert (data != NULL);
1260 free_insn_recog_data (data);
1261 lra_insn_recog_data[uid] = NULL;
1264 /* Update all the insn info about INSN. It is usually called when
1265 something in the insn was changed. Return the updated info. */
1266 lra_insn_recog_data_t
1267 lra_update_insn_recog_data (rtx insn)
1269 lra_insn_recog_data_t data;
1270 int n;
1271 unsigned int uid = INSN_UID (insn);
1272 struct lra_static_insn_data *insn_static_data;
1274 check_and_expand_insn_recog_data (uid);
1275 if ((data = lra_insn_recog_data[uid]) != NULL
1276 && data->icode != INSN_CODE (insn))
1278 invalidate_insn_data_regno_info (data, insn, get_insn_freq (insn));
1279 invalidate_insn_recog_data (uid);
1280 data = NULL;
1282 if (data == NULL)
1283 return lra_get_insn_recog_data (insn);
1284 insn_static_data = data->insn_static_data;
1285 data->used_insn_alternative = -1;
1286 if (DEBUG_INSN_P (insn))
1287 return data;
1288 if (data->icode < 0)
1290 int nop;
1291 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1292 const char *constraints[MAX_RECOG_OPERANDS];
1294 nop = asm_noperands (PATTERN (insn));
1295 if (nop >= 0)
1297 lra_assert (nop == data->insn_static_data->n_operands);
1298 /* Now get the operand values and constraints out of the
1299 insn. */
1300 decode_asm_operands (PATTERN (insn), NULL,
1301 data->operand_loc,
1302 constraints, operand_mode, NULL);
1303 #ifdef ENABLE_CHECKING
1305 int i;
1307 for (i = 0; i < nop; i++)
1308 lra_assert
1309 (insn_static_data->operand[i].mode == operand_mode[i]
1310 && insn_static_data->operand[i].constraint == constraints[i]
1311 && ! insn_static_data->operand[i].is_operator);
1313 #endif
1315 #ifdef ENABLE_CHECKING
1317 int i;
1319 for (i = 0; i < insn_static_data->n_operands; i++)
1320 lra_assert
1321 (insn_static_data->operand[i].type
1322 == (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
1323 : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
1324 : OP_IN));
1326 #endif
1328 else
1330 insn_extract (insn);
1331 n = insn_static_data->n_operands;
1332 if (n != 0)
1333 memcpy (data->operand_loc, recog_data.operand_loc, n * sizeof (rtx *));
1334 n = insn_static_data->n_dups;
1335 if (n != 0)
1336 memcpy (data->dup_loc, recog_data.dup_loc, n * sizeof (rtx *));
1337 #if HAVE_ATTR_enabled
1338 #ifdef ENABLE_CHECKING
1340 int i;
1341 bool *bp;
1343 n = insn_static_data->n_alternatives;
1344 bp = data->alternative_enabled_p;
1345 lra_assert (n >= 0 && bp != NULL);
1346 /* Cache the insn to prevent extract_insn call from
1347 get_attr_enabled. */
1348 recog_data.insn = insn;
1349 for (i = 0; i < n; i++)
1351 which_alternative = i;
1352 lra_assert (bp[i] == get_attr_enabled (insn));
1355 #endif
1356 #endif
1358 return data;
1361 /* Set up that INSN is using alternative ALT now. */
1362 void
1363 lra_set_used_insn_alternative (rtx insn, int alt)
1365 lra_insn_recog_data_t data;
1367 data = lra_get_insn_recog_data (insn);
1368 data->used_insn_alternative = alt;
1371 /* Set up that insn with UID is using alternative ALT now. The insn
1372 info should be already set up. */
1373 void
1374 lra_set_used_insn_alternative_by_uid (int uid, int alt)
1376 lra_insn_recog_data_t data;
1378 check_and_expand_insn_recog_data (uid);
1379 data = lra_insn_recog_data[uid];
1380 lra_assert (data != NULL);
1381 data->used_insn_alternative = alt;
1386 /* This page contains code dealing with common register info and
1387 pseudo copies. */
1389 /* The size of the following array. */
1390 static int reg_info_size;
1391 /* Common info about each register. */
1392 struct lra_reg *lra_reg_info;
1394 /* Last register value. */
1395 static int last_reg_value;
1397 /* Return new register value. */
1398 static int
1399 get_new_reg_value (void)
1401 return ++last_reg_value;
1404 /* Pools for copies. */
1405 static alloc_pool copy_pool;
1407 /* Vec referring to pseudo copies. */
1408 static vec<lra_copy_t> copy_vec;
1410 /* Initialize I-th element of lra_reg_info. */
1411 static inline void
1412 initialize_lra_reg_info_element (int i)
1414 bitmap_initialize (&lra_reg_info[i].insn_bitmap, &reg_obstack);
1415 #ifdef STACK_REGS
1416 lra_reg_info[i].no_stack_p = false;
1417 #endif
1418 CLEAR_HARD_REG_SET (lra_reg_info[i].conflict_hard_regs);
1419 lra_reg_info[i].preferred_hard_regno1 = -1;
1420 lra_reg_info[i].preferred_hard_regno2 = -1;
1421 lra_reg_info[i].preferred_hard_regno_profit1 = 0;
1422 lra_reg_info[i].preferred_hard_regno_profit2 = 0;
1423 lra_reg_info[i].biggest_mode = VOIDmode;
1424 lra_reg_info[i].live_ranges = NULL;
1425 lra_reg_info[i].nrefs = lra_reg_info[i].freq = 0;
1426 lra_reg_info[i].last_reload = 0;
1427 lra_reg_info[i].restore_regno = -1;
1428 lra_reg_info[i].val = get_new_reg_value ();
1429 lra_reg_info[i].offset = 0;
1430 lra_reg_info[i].copies = NULL;
1433 /* Initialize common reg info and copies. */
1434 static void
1435 init_reg_info (void)
1437 int i;
1439 last_reg_value = 0;
1440 reg_info_size = max_reg_num () * 3 / 2 + 1;
1441 lra_reg_info = XNEWVEC (struct lra_reg, reg_info_size);
1442 for (i = 0; i < reg_info_size; i++)
1443 initialize_lra_reg_info_element (i);
1444 copy_pool
1445 = create_alloc_pool ("lra copies", sizeof (struct lra_copy), 100);
1446 copy_vec.create (100);
1450 /* Finish common reg info and copies. */
1451 static void
1452 finish_reg_info (void)
1454 int i;
1456 for (i = 0; i < reg_info_size; i++)
1457 bitmap_clear (&lra_reg_info[i].insn_bitmap);
1458 free (lra_reg_info);
1459 reg_info_size = 0;
1460 free_alloc_pool (copy_pool);
1461 copy_vec.release ();
1464 /* Expand common reg info if it is necessary. */
1465 static void
1466 expand_reg_info (void)
1468 int i, old = reg_info_size;
1470 if (reg_info_size > max_reg_num ())
1471 return;
1472 reg_info_size = max_reg_num () * 3 / 2 + 1;
1473 lra_reg_info = XRESIZEVEC (struct lra_reg, lra_reg_info, reg_info_size);
1474 for (i = old; i < reg_info_size; i++)
1475 initialize_lra_reg_info_element (i);
1478 /* Free all copies. */
1479 void
1480 lra_free_copies (void)
1482 lra_copy_t cp;
1484 while (copy_vec.length () != 0)
1486 cp = copy_vec.pop ();
1487 lra_reg_info[cp->regno1].copies = lra_reg_info[cp->regno2].copies = NULL;
1488 pool_free (copy_pool, cp);
1492 /* Create copy of two pseudos REGNO1 and REGNO2. The copy execution
1493 frequency is FREQ. */
1494 void
1495 lra_create_copy (int regno1, int regno2, int freq)
1497 bool regno1_dest_p;
1498 lra_copy_t cp;
1500 lra_assert (regno1 != regno2);
1501 regno1_dest_p = true;
1502 if (regno1 > regno2)
1504 int temp = regno2;
1506 regno1_dest_p = false;
1507 regno2 = regno1;
1508 regno1 = temp;
1510 cp = (lra_copy_t) pool_alloc (copy_pool);
1511 copy_vec.safe_push (cp);
1512 cp->regno1_dest_p = regno1_dest_p;
1513 cp->freq = freq;
1514 cp->regno1 = regno1;
1515 cp->regno2 = regno2;
1516 cp->regno1_next = lra_reg_info[regno1].copies;
1517 lra_reg_info[regno1].copies = cp;
1518 cp->regno2_next = lra_reg_info[regno2].copies;
1519 lra_reg_info[regno2].copies = cp;
1520 if (lra_dump_file != NULL)
1521 fprintf (lra_dump_file, " Creating copy r%d%sr%d@%d\n",
1522 regno1, regno1_dest_p ? "<-" : "->", regno2, freq);
1525 /* Return N-th (0, 1, ...) copy. If there is no copy, return
1526 NULL. */
1527 lra_copy_t
1528 lra_get_copy (int n)
1530 if (n >= (int) copy_vec.length ())
1531 return NULL;
1532 return copy_vec[n];
1537 /* This page contains code dealing with info about registers in
1538 insns. */
1540 /* Process X of insn UID recursively and add info (operand type is
1541 given by TYPE, flag of that it is early clobber is EARLY_CLOBBER)
1542 about registers in X to the insn DATA. */
1543 static void
1544 add_regs_to_insn_regno_info (lra_insn_recog_data_t data, rtx x, int uid,
1545 enum op_type type, bool early_clobber)
1547 int i, j, regno;
1548 bool subreg_p;
1549 enum machine_mode mode;
1550 const char *fmt;
1551 enum rtx_code code;
1552 struct lra_insn_reg *curr;
1554 code = GET_CODE (x);
1555 mode = GET_MODE (x);
1556 subreg_p = false;
1557 if (GET_CODE (x) == SUBREG)
1559 x = SUBREG_REG (x);
1560 code = GET_CODE (x);
1561 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
1563 mode = GET_MODE (x);
1564 if (GET_MODE_SIZE (mode) > REGMODE_NATURAL_SIZE (mode))
1565 subreg_p = true;
1568 if (REG_P (x))
1570 regno = REGNO (x);
1571 if (regno < FIRST_PSEUDO_REGISTER
1572 && TEST_HARD_REG_BIT (lra_no_alloc_regs, regno)
1573 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
1574 return;
1575 expand_reg_info ();
1576 if (bitmap_set_bit (&lra_reg_info[regno].insn_bitmap, uid))
1578 data->regs = new_insn_reg (regno, type, mode, subreg_p,
1579 early_clobber, data->regs);
1580 return;
1582 else
1584 for (curr = data->regs; curr != NULL; curr = curr->next)
1585 if (curr->regno == regno)
1587 if (curr->subreg_p != subreg_p || curr->biggest_mode != mode)
1588 /* The info can not be integrated into the found
1589 structure. */
1590 data->regs = new_insn_reg (regno, type, mode, subreg_p,
1591 early_clobber, data->regs);
1592 else
1594 if (curr->type != type)
1595 curr->type = OP_INOUT;
1596 if (curr->early_clobber != early_clobber)
1597 curr->early_clobber = true;
1599 return;
1601 gcc_unreachable ();
1605 switch (code)
1607 case SET:
1608 add_regs_to_insn_regno_info (data, SET_DEST (x), uid, OP_OUT, false);
1609 add_regs_to_insn_regno_info (data, SET_SRC (x), uid, OP_IN, false);
1610 break;
1611 case CLOBBER:
1612 /* We treat clobber of non-operand hard registers as early
1613 clobber (the behavior is expected from asm). */
1614 add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_OUT, true);
1615 break;
1616 case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
1617 add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_INOUT, false);
1618 break;
1619 case PRE_MODIFY: case POST_MODIFY:
1620 add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_INOUT, false);
1621 add_regs_to_insn_regno_info (data, XEXP (x, 1), uid, OP_IN, false);
1622 break;
1623 default:
1624 if ((code != PARALLEL && code != EXPR_LIST) || type != OP_OUT)
1625 /* Some targets place small structures in registers for return
1626 values of functions, and those registers are wrapped in
1627 PARALLEL that we may see as the destination of a SET. Here
1628 is an example:
1630 (call_insn 13 12 14 2 (set (parallel:BLK [
1631 (expr_list:REG_DEP_TRUE (reg:DI 0 ax)
1632 (const_int 0 [0]))
1633 (expr_list:REG_DEP_TRUE (reg:DI 1 dx)
1634 (const_int 8 [0x8]))
1636 (call (mem:QI (symbol_ref:DI (... */
1637 type = OP_IN;
1638 fmt = GET_RTX_FORMAT (code);
1639 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1641 if (fmt[i] == 'e')
1642 add_regs_to_insn_regno_info (data, XEXP (x, i), uid, type, false);
1643 else if (fmt[i] == 'E')
1645 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1646 add_regs_to_insn_regno_info (data, XVECEXP (x, i, j), uid,
1647 type, false);
1653 /* Return execution frequency of INSN. */
1654 static int
1655 get_insn_freq (rtx insn)
1657 basic_block bb = BLOCK_FOR_INSN (insn);
1659 gcc_checking_assert (bb != NULL);
1660 return REG_FREQ_FROM_BB (bb);
1663 /* Invalidate all reg info of INSN with DATA and execution frequency
1664 FREQ. Update common info about the invalidated registers. */
1665 static void
1666 invalidate_insn_data_regno_info (lra_insn_recog_data_t data, rtx insn,
1667 int freq)
1669 int uid;
1670 bool debug_p;
1671 unsigned int i;
1672 struct lra_insn_reg *ir, *next_ir;
1674 uid = INSN_UID (insn);
1675 debug_p = DEBUG_INSN_P (insn);
1676 for (ir = data->regs; ir != NULL; ir = next_ir)
1678 i = ir->regno;
1679 next_ir = ir->next;
1680 free_insn_reg (ir);
1681 bitmap_clear_bit (&lra_reg_info[i].insn_bitmap, uid);
1682 if (i >= FIRST_PSEUDO_REGISTER && ! debug_p)
1684 lra_reg_info[i].nrefs--;
1685 lra_reg_info[i].freq -= freq;
1686 lra_assert (lra_reg_info[i].nrefs >= 0 && lra_reg_info[i].freq >= 0);
1689 data->regs = NULL;
1692 /* Invalidate all reg info of INSN. Update common info about the
1693 invalidated registers. */
1694 void
1695 lra_invalidate_insn_regno_info (rtx insn)
1697 invalidate_insn_data_regno_info (lra_get_insn_recog_data (insn), insn,
1698 get_insn_freq (insn));
1701 /* Update common reg info from reg info of insn given by its DATA and
1702 execution frequency FREQ. */
1703 static void
1704 setup_insn_reg_info (lra_insn_recog_data_t data, int freq)
1706 unsigned int i;
1707 struct lra_insn_reg *ir;
1709 for (ir = data->regs; ir != NULL; ir = ir->next)
1710 if ((i = ir->regno) >= FIRST_PSEUDO_REGISTER)
1712 lra_reg_info[i].nrefs++;
1713 lra_reg_info[i].freq += freq;
1717 /* Set up insn reg info of INSN. Update common reg info from reg info
1718 of INSN. */
1719 void
1720 lra_update_insn_regno_info (rtx insn)
1722 int i, uid, freq;
1723 lra_insn_recog_data_t data;
1724 struct lra_static_insn_data *static_data;
1725 enum rtx_code code;
1727 if (! INSN_P (insn))
1728 return;
1729 data = lra_get_insn_recog_data (insn);
1730 static_data = data->insn_static_data;
1731 freq = get_insn_freq (insn);
1732 invalidate_insn_data_regno_info (data, insn, freq);
1733 uid = INSN_UID (insn);
1734 for (i = static_data->n_operands - 1; i >= 0; i--)
1735 add_regs_to_insn_regno_info (data, *data->operand_loc[i], uid,
1736 static_data->operand[i].type,
1737 static_data->operand[i].early_clobber);
1738 if ((code = GET_CODE (PATTERN (insn))) == CLOBBER || code == USE)
1739 add_regs_to_insn_regno_info (data, XEXP (PATTERN (insn), 0), uid,
1740 code == USE ? OP_IN : OP_OUT, false);
1741 if (NONDEBUG_INSN_P (insn))
1742 setup_insn_reg_info (data, freq);
1745 /* Return reg info of insn given by it UID. */
1746 struct lra_insn_reg *
1747 lra_get_insn_regs (int uid)
1749 lra_insn_recog_data_t data;
1751 data = get_insn_recog_data_by_uid (uid);
1752 return data->regs;
1757 /* This page contains code dealing with stack of the insns which
1758 should be processed by the next constraint pass. */
1760 /* Bitmap used to put an insn on the stack only in one exemplar. */
1761 static sbitmap lra_constraint_insn_stack_bitmap;
1763 /* The stack itself. */
1764 vec<rtx> lra_constraint_insn_stack;
1766 /* Put INSN on the stack. If ALWAYS_UPDATE is true, always update the reg
1767 info for INSN, otherwise only update it if INSN is not already on the
1768 stack. */
1769 static inline void
1770 lra_push_insn_1 (rtx insn, bool always_update)
1772 unsigned int uid = INSN_UID (insn);
1773 if (always_update)
1774 lra_update_insn_regno_info (insn);
1775 if (uid >= SBITMAP_SIZE (lra_constraint_insn_stack_bitmap))
1776 lra_constraint_insn_stack_bitmap =
1777 sbitmap_resize (lra_constraint_insn_stack_bitmap, 3 * uid / 2, 0);
1778 if (bitmap_bit_p (lra_constraint_insn_stack_bitmap, uid))
1779 return;
1780 bitmap_set_bit (lra_constraint_insn_stack_bitmap, uid);
1781 if (! always_update)
1782 lra_update_insn_regno_info (insn);
1783 lra_constraint_insn_stack.safe_push (insn);
1786 /* Put INSN on the stack. */
1787 void
1788 lra_push_insn (rtx insn)
1790 lra_push_insn_1 (insn, false);
1793 /* Put INSN on the stack and update its reg info. */
1794 void
1795 lra_push_insn_and_update_insn_regno_info (rtx insn)
1797 lra_push_insn_1 (insn, true);
1800 /* Put insn with UID on the stack. */
1801 void
1802 lra_push_insn_by_uid (unsigned int uid)
1804 lra_push_insn (lra_insn_recog_data[uid]->insn);
1807 /* Take the last-inserted insns off the stack and return it. */
1809 lra_pop_insn (void)
1811 rtx insn = lra_constraint_insn_stack.pop ();
1812 bitmap_clear_bit (lra_constraint_insn_stack_bitmap, INSN_UID (insn));
1813 return insn;
1816 /* Return the current size of the insn stack. */
1817 unsigned int
1818 lra_insn_stack_length (void)
1820 return lra_constraint_insn_stack.length ();
1823 /* Push insns FROM to TO (excluding it) going in reverse order. */
1824 static void
1825 push_insns (rtx from, rtx to)
1827 rtx insn;
1829 if (from == NULL_RTX)
1830 return;
1831 for (insn = from; insn != to; insn = PREV_INSN (insn))
1832 if (INSN_P (insn))
1833 lra_push_insn (insn);
1836 /* Emit insns BEFORE before INSN and insns AFTER after INSN. Put the
1837 insns onto the stack. Print about emitting the insns with
1838 TITLE. */
1839 void
1840 lra_process_new_insns (rtx insn, rtx before, rtx after, const char *title)
1842 rtx last;
1844 if (lra_dump_file != NULL && (before != NULL_RTX || after != NULL_RTX))
1846 dump_insn_slim (lra_dump_file, insn);
1847 if (before != NULL_RTX)
1849 fprintf (lra_dump_file," %s before:\n", title);
1850 dump_rtl_slim (lra_dump_file, before, NULL_RTX, -1, 0);
1852 if (after != NULL_RTX)
1854 fprintf (lra_dump_file, " %s after:\n", title);
1855 dump_rtl_slim (lra_dump_file, after, NULL_RTX, -1, 0);
1857 fprintf (lra_dump_file, "\n");
1859 if (before != NULL_RTX)
1861 emit_insn_before (before, insn);
1862 push_insns (PREV_INSN (insn), PREV_INSN (before));
1864 if (after != NULL_RTX)
1866 for (last = after; NEXT_INSN (last) != NULL_RTX; last = NEXT_INSN (last))
1868 emit_insn_after (after, insn);
1869 push_insns (last, insn);
1875 /* This page contains code dealing with scratches (changing them onto
1876 pseudos and restoring them from the pseudos).
1878 We change scratches into pseudos at the beginning of LRA to
1879 simplify dealing with them (conflicts, hard register assignments).
1881 If the pseudo denoting scratch was spilled it means that we do need
1882 a hard register for it. Such pseudos are transformed back to
1883 scratches at the end of LRA. */
1885 /* Description of location of a former scratch operand. */
1886 struct sloc
1888 rtx insn; /* Insn where the scratch was. */
1889 int nop; /* Number of the operand which was a scratch. */
1892 typedef struct sloc *sloc_t;
1894 /* Locations of the former scratches. */
1895 static vec<sloc_t> scratches;
1897 /* Bitmap of scratch regnos. */
1898 static bitmap_head scratch_bitmap;
1900 /* Bitmap of scratch operands. */
1901 static bitmap_head scratch_operand_bitmap;
1903 /* Return true if pseudo REGNO is made of SCRATCH. */
1904 bool
1905 lra_former_scratch_p (int regno)
1907 return bitmap_bit_p (&scratch_bitmap, regno);
1910 /* Return true if the operand NOP of INSN is a former scratch. */
1911 bool
1912 lra_former_scratch_operand_p (rtx insn, int nop)
1914 return bitmap_bit_p (&scratch_operand_bitmap,
1915 INSN_UID (insn) * MAX_RECOG_OPERANDS + nop) != 0;
1918 /* Change scratches onto pseudos and save their location. */
1919 static void
1920 remove_scratches (void)
1922 int i;
1923 bool insn_changed_p;
1924 basic_block bb;
1925 rtx insn, reg;
1926 sloc_t loc;
1927 lra_insn_recog_data_t id;
1928 struct lra_static_insn_data *static_id;
1930 scratches.create (get_max_uid ());
1931 bitmap_initialize (&scratch_bitmap, &reg_obstack);
1932 bitmap_initialize (&scratch_operand_bitmap, &reg_obstack);
1933 FOR_EACH_BB (bb)
1934 FOR_BB_INSNS (bb, insn)
1935 if (INSN_P (insn))
1937 id = lra_get_insn_recog_data (insn);
1938 static_id = id->insn_static_data;
1939 insn_changed_p = false;
1940 for (i = 0; i < static_id->n_operands; i++)
1941 if (GET_CODE (*id->operand_loc[i]) == SCRATCH
1942 && GET_MODE (*id->operand_loc[i]) != VOIDmode)
1944 insn_changed_p = true;
1945 *id->operand_loc[i] = reg
1946 = lra_create_new_reg (static_id->operand[i].mode,
1947 *id->operand_loc[i], ALL_REGS, NULL);
1948 add_reg_note (insn, REG_UNUSED, reg);
1949 lra_update_dup (id, i);
1950 loc = XNEW (struct sloc);
1951 loc->insn = insn;
1952 loc->nop = i;
1953 scratches.safe_push (loc);
1954 bitmap_set_bit (&scratch_bitmap, REGNO (*id->operand_loc[i]));
1955 bitmap_set_bit (&scratch_operand_bitmap,
1956 INSN_UID (insn) * MAX_RECOG_OPERANDS + i);
1957 if (lra_dump_file != NULL)
1958 fprintf (lra_dump_file,
1959 "Removing SCRATCH in insn #%u (nop %d)\n",
1960 INSN_UID (insn), i);
1962 if (insn_changed_p)
1963 /* Because we might use DF right after caller-saves sub-pass
1964 we need to keep DF info up to date. */
1965 df_insn_rescan (insn);
1969 /* Changes pseudos created by function remove_scratches onto scratches. */
1970 static void
1971 restore_scratches (void)
1973 int regno;
1974 unsigned i;
1975 sloc_t loc;
1976 rtx last = NULL_RTX;
1977 lra_insn_recog_data_t id = NULL;
1979 for (i = 0; scratches.iterate (i, &loc); i++)
1981 if (last != loc->insn)
1983 last = loc->insn;
1984 id = lra_get_insn_recog_data (last);
1986 if (REG_P (*id->operand_loc[loc->nop])
1987 && ((regno = REGNO (*id->operand_loc[loc->nop]))
1988 >= FIRST_PSEUDO_REGISTER)
1989 && lra_get_regno_hard_regno (regno) < 0)
1991 /* It should be only case when scratch register with chosen
1992 constraint 'X' did not get memory or hard register. */
1993 lra_assert (lra_former_scratch_p (regno));
1994 *id->operand_loc[loc->nop]
1995 = gen_rtx_SCRATCH (GET_MODE (*id->operand_loc[loc->nop]));
1996 lra_update_dup (id, loc->nop);
1997 if (lra_dump_file != NULL)
1998 fprintf (lra_dump_file, "Restoring SCRATCH in insn #%u(nop %d)\n",
1999 INSN_UID (loc->insn), loc->nop);
2002 for (i = 0; scratches.iterate (i, &loc); i++)
2003 free (loc);
2004 scratches.release ();
2005 bitmap_clear (&scratch_bitmap);
2006 bitmap_clear (&scratch_operand_bitmap);
2011 #ifdef ENABLE_CHECKING
2013 /* Function checks RTL for correctness. If FINAL_P is true, it is
2014 done at the end of LRA and the check is more rigorous. */
2015 static void
2016 check_rtl (bool final_p)
2018 int i;
2019 basic_block bb;
2020 rtx insn;
2021 lra_insn_recog_data_t id;
2023 lra_assert (! final_p || reload_completed);
2024 FOR_EACH_BB (bb)
2025 FOR_BB_INSNS (bb, insn)
2026 if (NONDEBUG_INSN_P (insn)
2027 && GET_CODE (PATTERN (insn)) != USE
2028 && GET_CODE (PATTERN (insn)) != CLOBBER
2029 && GET_CODE (PATTERN (insn)) != ASM_INPUT)
2031 if (final_p)
2033 extract_insn (insn);
2034 lra_assert (constrain_operands (1));
2035 continue;
2037 if (insn_invalid_p (insn, false))
2038 fatal_insn_not_found (insn);
2039 if (asm_noperands (PATTERN (insn)) >= 0)
2040 continue;
2041 id = lra_get_insn_recog_data (insn);
2042 /* The code is based on assumption that all addresses in
2043 regular instruction are legitimate before LRA. The code in
2044 lra-constraints.c is based on assumption that there is no
2045 subreg of memory as an insn operand. */
2046 for (i = 0; i < id->insn_static_data->n_operands; i++)
2048 rtx op = *id->operand_loc[i];
2050 if (MEM_P (op)
2051 && (GET_MODE (op) != BLKmode
2052 || GET_CODE (XEXP (op, 0)) != SCRATCH)
2053 && ! memory_address_p (GET_MODE (op), XEXP (op, 0))
2054 /* Some ports don't recognize the following addresses
2055 as legitimate. Although they are legitimate if
2056 they satisfies the constraints and will be checked
2057 by insn constraints which we ignore here. */
2058 && GET_CODE (XEXP (op, 0)) != UNSPEC
2059 && GET_RTX_CLASS (GET_CODE (XEXP (op, 0))) != RTX_AUTOINC)
2060 fatal_insn_not_found (insn);
2064 #endif /* #ifdef ENABLE_CHECKING */
2066 /* Determine if the current function has an exception receiver block
2067 that reaches the exit block via non-exceptional edges */
2068 static bool
2069 has_nonexceptional_receiver (void)
2071 edge e;
2072 edge_iterator ei;
2073 basic_block *tos, *worklist, bb;
2075 /* If we're not optimizing, then just err on the safe side. */
2076 if (!optimize)
2077 return true;
2079 /* First determine which blocks can reach exit via normal paths. */
2080 tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1);
2082 FOR_EACH_BB (bb)
2083 bb->flags &= ~BB_REACHABLE;
2085 /* Place the exit block on our worklist. */
2086 EXIT_BLOCK_PTR->flags |= BB_REACHABLE;
2087 *tos++ = EXIT_BLOCK_PTR;
2089 /* Iterate: find everything reachable from what we've already seen. */
2090 while (tos != worklist)
2092 bb = *--tos;
2094 FOR_EACH_EDGE (e, ei, bb->preds)
2095 if (e->flags & EDGE_ABNORMAL)
2097 free (worklist);
2098 return true;
2100 else
2102 basic_block src = e->src;
2104 if (!(src->flags & BB_REACHABLE))
2106 src->flags |= BB_REACHABLE;
2107 *tos++ = src;
2111 free (worklist);
2112 /* No exceptional block reached exit unexceptionally. */
2113 return false;
2116 #ifdef AUTO_INC_DEC
2118 /* Process recursively X of INSN and add REG_INC notes if necessary. */
2119 static void
2120 add_auto_inc_notes (rtx insn, rtx x)
2122 enum rtx_code code = GET_CODE (x);
2123 const char *fmt;
2124 int i, j;
2126 if (code == MEM && auto_inc_p (XEXP (x, 0)))
2128 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
2129 return;
2132 /* Scan all X sub-expressions. */
2133 fmt = GET_RTX_FORMAT (code);
2134 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2136 if (fmt[i] == 'e')
2137 add_auto_inc_notes (insn, XEXP (x, i));
2138 else if (fmt[i] == 'E')
2139 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2140 add_auto_inc_notes (insn, XVECEXP (x, i, j));
2144 #endif
2146 /* Remove all REG_DEAD and REG_UNUSED notes and regenerate REG_INC.
2147 We change pseudos by hard registers without notification of DF and
2148 that can make the notes obsolete. DF-infrastructure does not deal
2149 with REG_INC notes -- so we should regenerate them here. */
2150 static void
2151 update_inc_notes (void)
2153 rtx *pnote;
2154 basic_block bb;
2155 rtx insn;
2157 FOR_EACH_BB (bb)
2158 FOR_BB_INSNS (bb, insn)
2159 if (NONDEBUG_INSN_P (insn))
2161 pnote = &REG_NOTES (insn);
2162 while (*pnote != 0)
2164 if (REG_NOTE_KIND (*pnote) == REG_INC)
2165 *pnote = XEXP (*pnote, 1);
2166 else
2167 pnote = &XEXP (*pnote, 1);
2169 #ifdef AUTO_INC_DEC
2170 add_auto_inc_notes (insn, PATTERN (insn));
2171 #endif
2175 /* Set to 1 while in lra. */
2176 int lra_in_progress;
2178 /* Start of pseudo regnos before the LRA. */
2179 int lra_new_regno_start;
2181 /* Start of reload pseudo regnos before the new spill pass. */
2182 int lra_constraint_new_regno_start;
2184 /* Inheritance pseudo regnos before the new spill pass. */
2185 bitmap_head lra_inheritance_pseudos;
2187 /* Split regnos before the new spill pass. */
2188 bitmap_head lra_split_regs;
2190 /* Reload pseudo regnos before the new assignmnet pass which still can
2191 be spilled after the assinment pass as memory is also accepted in
2192 insns for the reload pseudos. */
2193 bitmap_head lra_optional_reload_pseudos;
2195 /* Pseudo regnos used for subreg reloads before the new assignment
2196 pass. Such pseudos still can be spilled after the assinment
2197 pass. */
2198 bitmap_head lra_subreg_reload_pseudos;
2200 /* First UID of insns generated before a new spill pass. */
2201 int lra_constraint_new_insn_uid_start;
2203 /* File used for output of LRA debug information. */
2204 FILE *lra_dump_file;
2206 /* True if we should try spill into registers of different classes
2207 instead of memory. */
2208 bool lra_reg_spill_p;
2210 /* Set up value LRA_REG_SPILL_P. */
2211 static void
2212 setup_reg_spill_flag (void)
2214 int cl, mode;
2216 if (targetm.spill_class != NULL)
2217 for (cl = 0; cl < (int) LIM_REG_CLASSES; cl++)
2218 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
2219 if (targetm.spill_class ((enum reg_class) cl,
2220 (enum machine_mode) mode) != NO_REGS)
2222 lra_reg_spill_p = true;
2223 return;
2225 lra_reg_spill_p = false;
2228 /* True if the current function is too big to use regular algorithms
2229 in LRA. In other words, we should use simpler and faster algorithms
2230 in LRA. It also means we should not worry about generation code
2231 for caller saves. The value is set up in IRA. */
2232 bool lra_simple_p;
2234 /* Major LRA entry function. F is a file should be used to dump LRA
2235 debug info. */
2236 void
2237 lra (FILE *f)
2239 int i;
2240 bool live_p, scratch_p, inserted_p;
2242 lra_dump_file = f;
2244 timevar_push (TV_LRA);
2246 /* Make sure that the last insn is a note. Some subsequent passes
2247 need it. */
2248 emit_note (NOTE_INSN_DELETED);
2250 COPY_HARD_REG_SET (lra_no_alloc_regs, ira_no_alloc_regs);
2252 init_reg_info ();
2253 expand_reg_info ();
2255 init_insn_recog_data ();
2257 #ifdef ENABLE_CHECKING
2258 check_rtl (false);
2259 #endif
2261 lra_live_range_iter = lra_coalesce_iter = 0;
2262 lra_constraint_iter = lra_constraint_iter_after_spill = 0;
2263 lra_inheritance_iter = lra_undo_inheritance_iter = 0;
2265 setup_reg_spill_flag ();
2267 /* We can not set up reload_in_progress because it prevents new
2268 pseudo creation. */
2269 lra_in_progress = 1;
2271 /* Function remove_scratches can creates new pseudos for clobbers --
2272 so set up lra_constraint_new_regno_start before its call to
2273 permit changing reg classes for pseudos created by this
2274 simplification. */
2275 lra_constraint_new_regno_start = lra_new_regno_start = max_reg_num ();
2276 remove_scratches ();
2277 scratch_p = lra_constraint_new_regno_start != max_reg_num ();
2279 /* A function that has a non-local label that can reach the exit
2280 block via non-exceptional paths must save all call-saved
2281 registers. */
2282 if (cfun->has_nonlocal_label && has_nonexceptional_receiver ())
2283 crtl->saves_all_registers = 1;
2285 if (crtl->saves_all_registers)
2286 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2287 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
2288 df_set_regs_ever_live (i, true);
2290 /* We don't DF from now and avoid its using because it is to
2291 expensive when a lot of RTL changes are made. */
2292 df_set_flags (DF_NO_INSN_RESCAN);
2293 lra_constraint_insn_stack.create (get_max_uid ());
2294 lra_constraint_insn_stack_bitmap = sbitmap_alloc (get_max_uid ());
2295 bitmap_clear (lra_constraint_insn_stack_bitmap);
2296 lra_live_ranges_init ();
2297 lra_constraints_init ();
2298 lra_curr_reload_num = 0;
2299 push_insns (get_last_insn (), NULL_RTX);
2300 /* It is needed for the 1st coalescing. */
2301 lra_constraint_new_insn_uid_start = get_max_uid ();
2302 bitmap_initialize (&lra_inheritance_pseudos, &reg_obstack);
2303 bitmap_initialize (&lra_split_regs, &reg_obstack);
2304 bitmap_initialize (&lra_optional_reload_pseudos, &reg_obstack);
2305 bitmap_initialize (&lra_subreg_reload_pseudos, &reg_obstack);
2306 live_p = false;
2307 if (get_frame_size () != 0 && crtl->stack_alignment_needed)
2308 /* If we have a stack frame, we must align it now. The stack size
2309 may be a part of the offset computation for register
2310 elimination. */
2311 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
2312 for (;;)
2314 for (;;)
2316 /* We should try to assign hard registers to scratches even
2317 if there were no RTL transformations in
2318 lra_constraints. */
2319 if (! lra_constraints (lra_constraint_iter == 0)
2320 && (lra_constraint_iter > 1
2321 || (! scratch_p && ! caller_save_needed)))
2322 break;
2323 /* Constraint transformations may result in that eliminable
2324 hard regs become uneliminable and pseudos which use them
2325 should be spilled. It is better to do it before pseudo
2326 assignments.
2328 For example, rs6000 can make
2329 RS6000_PIC_OFFSET_TABLE_REGNUM uneliminable if we started
2330 to use a constant pool. */
2331 lra_eliminate (false);
2332 /* Do inheritance only for regular algorithms. */
2333 if (! lra_simple_p)
2334 lra_inheritance ();
2335 if (live_p)
2336 lra_clear_live_ranges ();
2337 /* We need live ranges for lra_assign -- so build them. */
2338 lra_create_live_ranges (true);
2339 live_p = true;
2340 /* If we don't spill non-reload and non-inheritance pseudos,
2341 there is no sense to run memory-memory move coalescing.
2342 If inheritance pseudos were spilled, the memory-memory
2343 moves involving them will be removed by pass undoing
2344 inheritance. */
2345 if (lra_simple_p)
2346 lra_assign ();
2347 else
2349 bool spill_p = !lra_assign ();
2351 if (lra_undo_inheritance ())
2352 live_p = false;
2353 if (spill_p)
2355 if (! live_p)
2357 lra_create_live_ranges (true);
2358 live_p = true;
2360 if (lra_coalesce ())
2361 live_p = false;
2363 if (! live_p)
2364 lra_clear_live_ranges ();
2366 bitmap_clear (&lra_optional_reload_pseudos);
2368 bitmap_clear (&lra_subreg_reload_pseudos);
2369 bitmap_clear (&lra_inheritance_pseudos);
2370 bitmap_clear (&lra_split_regs);
2371 if (! lra_need_for_spills_p ())
2372 break;
2373 if (! live_p)
2375 /* We need full live info for spilling pseudos into
2376 registers instead of memory. */
2377 lra_create_live_ranges (lra_reg_spill_p);
2378 live_p = true;
2380 lra_spill ();
2381 /* Assignment of stack slots changes elimination offsets for
2382 some eliminations. So update the offsets here. */
2383 lra_eliminate (false);
2384 lra_constraint_new_regno_start = max_reg_num ();
2385 lra_constraint_new_insn_uid_start = get_max_uid ();
2386 lra_constraint_iter_after_spill = 0;
2388 restore_scratches ();
2389 lra_eliminate (true);
2390 lra_final_code_change ();
2391 lra_in_progress = 0;
2392 if (live_p)
2393 lra_clear_live_ranges ();
2394 lra_live_ranges_finish ();
2395 lra_constraints_finish ();
2396 finish_reg_info ();
2397 sbitmap_free (lra_constraint_insn_stack_bitmap);
2398 lra_constraint_insn_stack.release ();
2399 finish_insn_recog_data ();
2400 regstat_free_n_sets_and_refs ();
2401 regstat_free_ri ();
2402 reload_completed = 1;
2403 update_inc_notes ();
2405 inserted_p = fixup_abnormal_edges ();
2407 /* We've possibly turned single trapping insn into multiple ones. */
2408 if (cfun->can_throw_non_call_exceptions)
2410 sbitmap blocks;
2411 blocks = sbitmap_alloc (last_basic_block);
2412 bitmap_ones (blocks);
2413 find_many_sub_basic_blocks (blocks);
2414 sbitmap_free (blocks);
2417 if (inserted_p)
2418 commit_edge_insertions ();
2420 /* Replacing pseudos with their memory equivalents might have
2421 created shared rtx. Subsequent passes would get confused
2422 by this, so unshare everything here. */
2423 unshare_all_rtl_again (get_insns ());
2425 #ifdef ENABLE_CHECKING
2426 check_rtl (true);
2427 #endif
2429 timevar_pop (TV_LRA);
2432 /* Called once per compiler to initialize LRA data once. */
2433 void
2434 lra_init_once (void)
2436 init_insn_code_data_once ();
2439 /* Initialize LRA whenever register-related information is changed. */
2440 void
2441 lra_init (void)
2443 init_op_alt_data ();
2446 /* Called once per compiler to finish LRA data which are initialize
2447 once. */
2448 void
2449 lra_finish_once (void)
2451 finish_insn_code_data_once ();