[NDS32] Implement bswapsi2 and bswaphi2 patterns.
[official-gcc.git] / gcc / ada / binde.adb
blob72a67161a28b1403a7d2fab50b681847e1a55034
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- B I N D E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Binderr; use Binderr;
27 with Butil; use Butil;
28 with Debug; use Debug;
29 with Fname; use Fname;
30 with Opt; use Opt;
31 with Osint;
32 with Output; use Output;
33 with Table;
35 with System.Case_Util; use System.Case_Util;
36 with System.HTable;
37 with System.OS_Lib;
39 package body Binde is
41 -- We now have Elab_New, a new elaboration-order algorithm.
43 -- However, any change to elaboration order can break some programs.
44 -- Therefore, we are keeping the old algorithm in place, to be selected
45 -- by switches.
47 -- The new algorithm has the following interesting properties:
49 -- * The static and dynamic models use the same elaboration order. The
50 -- static model might get an error, but if it does not, it will use
51 -- the same order as the dynamic model.
53 -- * Each SCC (see below) is elaborated together; that is, units from
54 -- different SCCs are not interspersed.
56 -- * In particular, this implies that if an SCC contains just a spec and
57 -- the corresponding body, and nothing else, the body will be
58 -- elaborated immediately after the spec. This is expected to result
59 -- in a better elaboration order for most programs, because in this
60 -- case, a call from outside the library unit cannot get ABE.
62 -- * Pragmas Elaborate_All (explicit and implicit) are ignored. Instead,
63 -- we behave as if every legal pragma Elaborate_All were present. That
64 -- is, if it would be legal to have "pragma Elaborate_All(Y);" on X,
65 -- then we behave as if such a pragma exists, even if it does not.
67 Do_Old : constant Boolean := False;
68 Do_New : constant Boolean := True;
69 -- True to enable the old and new algorithms, respectively. Used for
70 -- debugging/experimentation.
72 Doing_New : Boolean := False;
73 -- True if we are currently doing the new algorithm. Print certain
74 -- messages only when doing the "new" elab order algorithm, so we don't get
75 -- duplicates. And use different heuristics in Better_Choice_Optimistic.
77 -- The following data structures are used to represent the graph that is
78 -- used to determine the elaboration order (using a topological sort).
80 -- The following structures are used to record successors. If B is a
81 -- successor of A in this table, it means that A must be elaborated before
82 -- B is elaborated. For example, if Y (body) says "with X;", then Y (body)
83 -- will be a successor of X (spec), and X (spec) will be a predecessor of
84 -- Y (body).
86 -- Note that we store the successors of each unit explicitly. We don't
87 -- store the predecessors, but we store a count of them.
89 -- The basic algorithm is to first compute a directed graph of units (type
90 -- Unit_Node_Record, below), with successors as edges. A unit is "ready"
91 -- (to be chosen as the next to be elaborated) if it has no predecessors
92 -- that have not yet been chosen. We use heuristics to decide which of the
93 -- ready units should be elaborated next, and "choose" that one (which
94 -- means we append it to the elaboration-order table).
96 type Successor_Id is new Nat;
97 -- Identification of single successor entry
99 No_Successor : constant Successor_Id := 0;
100 -- Used to indicate end of list of successors
102 type Elab_All_Id is new Nat;
103 -- Identification of Elab_All entry link
105 No_Elab_All_Link : constant Elab_All_Id := 0;
106 -- Used to indicate end of list
108 -- Succ_Reason indicates the reason for a particular elaboration link
110 type Succ_Reason is
111 (Withed,
112 -- After directly with's Before, so the spec of Before must be
113 -- elaborated before After is elaborated.
115 Forced,
116 -- Before and After come from a pair of lines in the forced elaboration
117 -- order file.
119 Elab,
120 -- After directly mentions Before in a pragma Elaborate, so the body of
121 -- Before must be elaborated before After is elaborated.
123 Elab_All,
124 -- After either mentions Before directly in a pragma Elaborate_All, or
125 -- mentions a third unit, X, which itself requires that Before be
126 -- elaborated before unit X is elaborated. The Elab_All_Link list traces
127 -- the dependencies in the latter case.
129 Elab_All_Desirable,
130 -- This is just like Elab_All, except that the Elaborate_All was not
131 -- explicitly present in the source, but rather was created by the front
132 -- end, which decided that it was "desirable".
134 Elab_Desirable,
135 -- This is just like Elab, except that the Elaborate was not explicitly
136 -- present in the source, but rather was created by the front end, which
137 -- decided that it was "desirable".
139 Spec_First);
140 -- After is a body, and Before is the corresponding spec
142 -- Successor_Link contains the information for one link
144 type Successor_Link is record
145 Before : Unit_Id;
146 -- Predecessor unit
148 After : Unit_Id;
149 -- Successor unit
151 Next : Successor_Id;
152 -- Next successor on this list
154 Reason : Succ_Reason;
155 -- Reason for this link
157 Elab_Body : Boolean;
158 -- Set True if this link is needed for the special Elaborate_Body
159 -- processing described below.
161 Reason_Unit : Unit_Id;
162 -- For Reason = Elab, or Elab_All or Elab_Desirable, records the unit
163 -- containing the pragma leading to the link.
165 Elab_All_Link : Elab_All_Id;
166 -- If Reason = Elab_All or Elab_Desirable, then this points to the
167 -- first element in a list of Elab_All entries that record the with
168 -- chain resulting in this particular dependency.
169 end record;
171 -- Note on handling of Elaborate_Body. Basically, if we have a pragma
172 -- Elaborate_Body in a unit, it means that the spec and body have to be
173 -- handled as a single entity from the point of view of determining an
174 -- elaboration order. What we do is to essentially remove the body from
175 -- consideration completely, and transfer all its links (other than the
176 -- spec link) to the spec. Then when the spec gets chosen, we choose the
177 -- body right afterwards. We mark the links that get moved from the body to
178 -- the spec by setting their Elab_Body flag True, so that we can understand
179 -- what is going on.
181 Succ_First : constant := 1;
183 package Succ is new Table.Table
184 (Table_Component_Type => Successor_Link,
185 Table_Index_Type => Successor_Id,
186 Table_Low_Bound => Succ_First,
187 Table_Initial => 500,
188 Table_Increment => 200,
189 Table_Name => "Succ");
191 -- For the case of Elaborate_All, the following table is used to record
192 -- chains of with relationships that lead to the Elab_All link. These are
193 -- used solely for diagnostic purposes
195 type Elab_All_Entry is record
196 Needed_By : Unit_Name_Type;
197 -- Name of unit from which referencing unit was with'ed or otherwise
198 -- needed as a result of Elaborate_All or Elaborate_Desirable.
200 Next_Elab : Elab_All_Id;
201 -- Link to next entry on chain (No_Elab_All_Link marks end of list)
202 end record;
204 package Elab_All_Entries is new Table.Table
205 (Table_Component_Type => Elab_All_Entry,
206 Table_Index_Type => Elab_All_Id,
207 Table_Low_Bound => 1,
208 Table_Initial => 2000,
209 Table_Increment => 200,
210 Table_Name => "Elab_All_Entries");
212 type Unit_Id_Array_Ptr is access Unit_Id_Array;
214 -- A Unit_Node_Record is built for each active unit
216 type Unit_Node_Record is record
217 Successors : Successor_Id;
218 -- Pointer to list of links for successor nodes
220 Num_Pred : Int;
221 -- Number of predecessors for this unit that have not yet been chosen.
222 -- Normally non-negative, but can go negative in the case of units
223 -- chosen by the diagnose error procedure (when cycles are being removed
224 -- from the graph).
226 Nextnp : Unit_Id;
227 -- Forward pointer for list of units with no predecessors
229 Visited : Boolean;
230 -- Used in computing transitive closure for Elaborate_All and also in
231 -- locating cycles and paths in the diagnose routines.
233 Elab_Position : Nat;
234 -- Initialized to zero. Set non-zero when a unit is chosen and placed in
235 -- the elaboration order. The value represents the ordinal position in
236 -- the elaboration order.
238 -- The following are for Elab_New. We compute the strongly connected
239 -- components (SCCs) of the directed graph of units. The edges are the
240 -- Successors, which do not include pragmas Elaborate_All (explicit or
241 -- implicit) in Elab_New. In addition, we assume there is a edge
242 -- pointing from a body to its corresponding spec; this edge is not
243 -- included in Successors, because of course a spec is elaborated BEFORE
244 -- its body, not after.
246 SCC_Root : Unit_Id;
247 -- Each unit points to the root of its SCC, which is just an arbitrary
248 -- member of the SCC. Two units are in the same SCC if and only if their
249 -- SCC_Roots are equal. U is the root of its SCC if and only if
250 -- SCC(U)=U.
252 Nodes : Unit_Id_Array_Ptr;
253 -- Present only in the root of an SCC. This is the set of units in the
254 -- SCC, in no particular order.
256 SCC_Num_Pred : Int;
257 -- Present only in the root of an SCC. This is the number of predecessor
258 -- units of the SCC that are in other SCCs, and that have not yet been
259 -- chosen.
261 Validate_Seen : Boolean := False;
262 -- See procedure Validate below
263 end record;
265 package UNR is new Table.Table
266 (Table_Component_Type => Unit_Node_Record,
267 Table_Index_Type => Unit_Id,
268 Table_Low_Bound => First_Unit_Entry,
269 Table_Initial => 500,
270 Table_Increment => 200,
271 Table_Name => "UNR");
273 No_Pred : Unit_Id;
274 -- Head of list of items with no predecessors
276 Num_Left : Int;
277 -- Number of entries not yet dealt with
279 Cur_Unit : Unit_Id;
280 -- Current unit, set by Gather_Dependencies, and picked up in Build_Link to
281 -- set the Reason_Unit field of the created dependency link.
283 Num_Chosen : Nat;
284 -- Number of units chosen in the elaboration order so far
286 Diagnose_Elaboration_Problem_Called : Boolean := False;
287 -- True if Diagnose_Elaboration_Problem was called. Used in an assertion.
289 -----------------------
290 -- Local Subprograms --
291 -----------------------
293 function Debug_Flag_Older return Boolean;
294 function Debug_Flag_Old return Boolean;
295 -- True if debug flags select the old or older algorithms. Pretty much any
296 -- change to elaboration order can break some programs. For example,
297 -- programs can depend on elaboration order even without failing
298 -- access-before-elaboration checks. A trivial example is a program that
299 -- prints text during elaboration. Therefore, we have flags to revert to
300 -- the old(er) algorithms.
302 procedure Validate (Order : Unit_Id_Array; Doing_New : Boolean);
303 -- Assert that certain properties are true
305 function Better_Choice_Optimistic
306 (U1 : Unit_Id;
307 U2 : Unit_Id) return Boolean;
308 -- U1 and U2 are both permitted candidates for selection as the next unit
309 -- to be elaborated. This function determines whether U1 is a better choice
310 -- than U2, i.e. should be elaborated in preference to U2, based on a set
311 -- of heuristics that establish a friendly and predictable order (see body
312 -- for details). The result is True if U1 is a better choice than U2, and
313 -- False if it is a worse choice, or there is no preference between them.
315 function Better_Choice_Pessimistic
316 (U1 : Unit_Id;
317 U2 : Unit_Id) return Boolean;
318 -- This is like Better_Choice_Optimistic, and has the same interface, but
319 -- returns true if U1 is a worse choice than U2 in the sense of the -p
320 -- (pessimistic elaboration order) switch. We still have to obey Ada rules,
321 -- so it is not quite the direct inverse of Better_Choice_Optimistic.
323 function Better_Choice (U1 : Unit_Id; U2 : Unit_Id) return Boolean;
324 -- Calls Better_Choice_Optimistic or Better_Choice_Pessimistic as
325 -- appropriate. Also takes care of the U2 = No_Unit_Id case.
327 procedure Build_Link
328 (Before : Unit_Id;
329 After : Unit_Id;
330 R : Succ_Reason;
331 Ea_Id : Elab_All_Id := No_Elab_All_Link);
332 -- Establish a successor link, Before must be elaborated before After, and
333 -- the reason for the link is R. Ea_Id is the contents to be placed in the
334 -- Elab_All_Link of the entry.
336 procedure Choose
337 (Elab_Order : in out Unit_Id_Table;
338 Chosen : Unit_Id;
339 Msg : String);
340 -- Chosen is the next entry chosen in the elaboration order. This procedure
341 -- updates all data structures appropriately.
343 function Corresponding_Body (U : Unit_Id) return Unit_Id;
344 pragma Inline (Corresponding_Body);
345 -- Given a unit that is a spec for which there is a separate body, return
346 -- the unit id of the body. It is an error to call this routine with a unit
347 -- that is not a spec, or that does not have a separate body.
349 function Corresponding_Spec (U : Unit_Id) return Unit_Id;
350 pragma Inline (Corresponding_Spec);
351 -- Given a unit that is a body for which there is a separate spec, return
352 -- the unit id of the spec. It is an error to call this routine with a unit
353 -- that is not a body, or that does not have a separate spec.
355 procedure Diagnose_Elaboration_Problem
356 (Elab_Order : in out Unit_Id_Table);
357 pragma No_Return (Diagnose_Elaboration_Problem);
358 -- Called when no elaboration order can be found. Outputs an appropriate
359 -- diagnosis of the problem, and then abandons the bind.
361 procedure Elab_All_Links
362 (Before : Unit_Id;
363 After : Unit_Id;
364 Reason : Succ_Reason;
365 Link : Elab_All_Id);
366 -- Used to compute the transitive closure of elaboration links for an
367 -- Elaborate_All pragma (Reason = Elab_All) or for an indication of
368 -- Elaborate_All_Desirable (Reason = Elab_All_Desirable). Unit After has a
369 -- pragma Elaborate_All or the front end has determined that a reference
370 -- probably requires Elaborate_All, and unit Before must be previously
371 -- elaborated. First a link is built making sure that unit Before is
372 -- elaborated before After, then a recursive call ensures that we also
373 -- build links for any units needed by Before (i.e. these units must/should
374 -- also be elaborated before After). Link is used to build a chain of
375 -- Elab_All_Entries to explain the reason for a link. The value passed is
376 -- the chain so far.
378 procedure Elab_Error_Msg (S : Successor_Id);
379 -- Given a successor link, outputs an error message of the form
380 -- "$ must be elaborated before $ ..." where ... is the reason.
382 procedure Force_Elab_Order;
383 -- Gather dependencies from the forced elaboration order file (-f switch)
385 procedure Gather_Dependencies;
386 -- Compute dependencies, building the Succ and UNR tables
388 procedure Init;
389 -- Initialize global data structures in this package body
391 function Is_Body_Unit (U : Unit_Id) return Boolean;
392 pragma Inline (Is_Body_Unit);
393 -- Determines if given unit is a body
395 function Is_Pure_Or_Preelab_Unit (U : Unit_Id) return Boolean;
396 -- Returns True if corresponding unit is Pure or Preelaborate. Includes
397 -- dealing with testing flags on spec if it is given a body.
399 function Is_Waiting_Body (U : Unit_Id) return Boolean;
400 pragma Inline (Is_Waiting_Body);
401 -- Determines if U is a waiting body, defined as a body that has
402 -- not been elaborated, but whose spec has been elaborated.
404 function Make_Elab_All_Entry
405 (Unam : Unit_Name_Type;
406 Link : Elab_All_Id) return Elab_All_Id;
407 -- Make an Elab_All_Entries table entry with the given Unam and Link
409 function Unit_Id_Of (Uname : Unit_Name_Type) return Unit_Id;
410 -- This function uses the Info field set in the names table to obtain
411 -- the unit Id of a unit, given its name id value.
413 procedure Write_Closure (Order : Unit_Id_Array);
414 -- Write the closure. This is for the -R and -Ra switches, "list closure
415 -- display".
417 procedure Write_Dependencies;
418 -- Write out dependencies (called only if appropriate option is set)
420 procedure Write_Elab_All_Chain (S : Successor_Id);
421 -- If the reason for the link S is Elaborate_All or Elaborate_Desirable,
422 -- then this routine will output the "needed by" explanation chain.
424 procedure Write_Elab_Order (Order : Unit_Id_Array; Title : String);
425 -- Display elaboration order. This is for the -l switch. Title is a heading
426 -- to print; an empty string is passed to indicate Zero_Formatting.
428 package Elab_New is
430 -- Implementation of the new algorithm
432 procedure Write_SCC (U : Unit_Id);
433 -- Write the unit names of the units in the SCC in which U lives
435 procedure Find_Elab_Order (Elab_Order : out Unit_Id_Table);
437 Elab_Cycle_Found : Boolean := False;
438 -- Set True if Find_Elab_Order found a cycle (usually an illegal pragma
439 -- Elaborate_All, explicit or implicit).
441 function SCC (U : Unit_Id) return Unit_Id;
442 -- The root of the strongly connected component containing U
444 function SCC_Num_Pred (U : Unit_Id) return Int;
445 -- The SCC_Num_Pred of the SCC in which U lives
447 function Nodes (U : Unit_Id) return Unit_Id_Array_Ptr;
448 -- The nodes of the strongly connected component containing U
450 end Elab_New;
452 use Elab_New;
454 package Elab_Old is
456 -- Implementation of the old algorithm
458 procedure Find_Elab_Order (Elab_Order : out Unit_Id_Table);
460 end Elab_Old;
462 -- Most of the code is shared between old and new; such code is outside
463 -- packages Elab_Old and Elab_New.
465 -------------------
466 -- Better_Choice --
467 -------------------
469 function Better_Choice (U1 : Unit_Id; U2 : Unit_Id) return Boolean is
470 pragma Assert (U1 /= No_Unit_Id);
471 begin
472 if U2 = No_Unit_Id then
473 return True;
474 end if;
476 if Pessimistic_Elab_Order then
477 return Better_Choice_Pessimistic (U1, U2);
478 else
479 return Better_Choice_Optimistic (U1, U2);
480 end if;
481 end Better_Choice;
483 ------------------------------
484 -- Better_Choice_Optimistic --
485 ------------------------------
487 function Better_Choice_Optimistic
488 (U1 : Unit_Id;
489 U2 : Unit_Id) return Boolean
491 UT1 : Unit_Record renames Units.Table (U1);
492 UT2 : Unit_Record renames Units.Table (U2);
494 begin
495 if Debug_Flag_B then
496 Write_Str ("Better_Choice_Optimistic (");
497 Write_Unit_Name (UT1.Uname);
498 Write_Str (", ");
499 Write_Unit_Name (UT2.Uname);
500 Write_Line (")");
501 end if;
503 -- Note: the checks here are applied in sequence, and the ordering is
504 -- significant (i.e. the more important criteria are applied first).
506 -- Prefer a waiting body to one that is not a waiting body
508 if Is_Waiting_Body (U1) and then not Is_Waiting_Body (U2) then
509 if Debug_Flag_B then
510 Write_Line (" True: u1 is waiting body, u2 is not");
511 end if;
513 return True;
515 elsif Is_Waiting_Body (U2) and then not Is_Waiting_Body (U1) then
516 if Debug_Flag_B then
517 Write_Line (" False: u2 is waiting body, u1 is not");
518 end if;
520 return False;
522 -- Prefer a predefined unit to a non-predefined unit
524 elsif UT1.Predefined and then not UT2.Predefined then
525 if Debug_Flag_B then
526 Write_Line (" True: u1 is predefined, u2 is not");
527 end if;
529 return True;
531 elsif UT2.Predefined and then not UT1.Predefined then
532 if Debug_Flag_B then
533 Write_Line (" False: u2 is predefined, u1 is not");
534 end if;
536 return False;
538 -- Prefer an internal unit to a non-internal unit
540 elsif UT1.Internal and then not UT2.Internal then
541 if Debug_Flag_B then
542 Write_Line (" True: u1 is internal, u2 is not");
543 end if;
544 return True;
546 elsif UT2.Internal and then not UT1.Internal then
547 if Debug_Flag_B then
548 Write_Line (" False: u2 is internal, u1 is not");
549 end if;
551 return False;
553 -- Prefer a pure or preelaborated unit to one that is not. Pure should
554 -- come before preelaborated.
556 elsif Is_Pure_Or_Preelab_Unit (U1)
557 and then not
558 Is_Pure_Or_Preelab_Unit (U2)
559 then
560 if Debug_Flag_B then
561 Write_Line (" True: u1 is pure/preelab, u2 is not");
562 end if;
564 return True;
566 elsif Is_Pure_Or_Preelab_Unit (U2)
567 and then not
568 Is_Pure_Or_Preelab_Unit (U1)
569 then
570 if Debug_Flag_B then
571 Write_Line (" False: u2 is pure/preelab, u1 is not");
572 end if;
574 return False;
576 -- Prefer a body to a spec
578 elsif Is_Body_Unit (U1) and then not Is_Body_Unit (U2) then
579 if Debug_Flag_B then
580 Write_Line (" True: u1 is body, u2 is not");
581 end if;
583 return True;
585 elsif Is_Body_Unit (U2) and then not Is_Body_Unit (U1) then
586 if Debug_Flag_B then
587 Write_Line (" False: u2 is body, u1 is not");
588 end if;
590 return False;
592 -- If both are waiting bodies, then prefer the one whose spec is more
593 -- recently elaborated. Consider the following:
595 -- spec of A
596 -- spec of B
597 -- body of A or B?
599 -- The normal waiting body preference would have placed the body of A
600 -- before the spec of B if it could. Since it could not, then it must be
601 -- the case that A depends on B. It is therefore a good idea to put the
602 -- body of B first.
604 elsif Is_Waiting_Body (U1) and then Is_Waiting_Body (U2) then
605 declare
606 Result : constant Boolean :=
607 UNR.Table (Corresponding_Spec (U1)).Elab_Position >
608 UNR.Table (Corresponding_Spec (U2)).Elab_Position;
609 begin
610 if Debug_Flag_B then
611 if Result then
612 Write_Line (" True: based on waiting body elab positions");
613 else
614 Write_Line (" False: based on waiting body elab positions");
615 end if;
616 end if;
618 return Result;
619 end;
620 end if;
622 -- Remaining choice rules are disabled by Debug flag -do
624 if not Debug_Flag_Older then
626 -- The following deal with the case of specs that have been marked
627 -- as Elaborate_Body_Desirable. We generally want to delay these
628 -- specs as long as possible, so that the bodies have a better chance
629 -- of being elaborated closer to the specs.
631 -- If we have two units, one of which is a spec for which this flag
632 -- is set, and the other is not, we prefer to delay the spec for
633 -- which the flag is set.
635 if not UT1.Elaborate_Body_Desirable
636 and then UT2.Elaborate_Body_Desirable
637 then
638 if Debug_Flag_B then
639 Write_Line (" True: u1 is elab body desirable, u2 is not");
640 end if;
642 return True;
644 elsif not UT2.Elaborate_Body_Desirable
645 and then UT1.Elaborate_Body_Desirable
646 then
647 if Debug_Flag_B then
648 Write_Line (" False: u1 is elab body desirable, u2 is not");
649 end if;
651 return False;
653 -- If we have two specs that are both marked as Elaborate_Body
654 -- desirable, we prefer the one whose body is nearer to being able
655 -- to be elaborated, based on the Num_Pred count. This helps to
656 -- ensure bodies are as close to specs as possible.
658 elsif UT1.Elaborate_Body_Desirable
659 and then UT2.Elaborate_Body_Desirable
660 then
661 declare
662 Result : constant Boolean :=
663 UNR.Table (Corresponding_Body (U1)).Num_Pred <
664 UNR.Table (Corresponding_Body (U2)).Num_Pred;
665 begin
666 if Debug_Flag_B then
667 if Result then
668 Write_Line (" True based on Num_Pred compare");
669 else
670 Write_Line (" False based on Num_Pred compare");
671 end if;
672 end if;
674 return Result;
675 end;
676 end if;
677 end if;
679 -- If we have two specs in the same SCC, choose the one whose body is
680 -- closer to being ready.
682 if Doing_New
683 and then SCC (U1) = SCC (U2)
684 and then Units.Table (U1).Utype = Is_Spec
685 and then Units.Table (U2).Utype = Is_Spec
686 and then UNR.Table (Corresponding_Body (U1)).Num_Pred /=
687 UNR.Table (Corresponding_Body (U2)).Num_Pred
688 then
689 if UNR.Table (Corresponding_Body (U1)).Num_Pred <
690 UNR.Table (Corresponding_Body (U2)).Num_Pred
691 then
692 if Debug_Flag_B then
693 Write_Str (" True: same SCC; ");
694 Write_Int (UNR.Table (Corresponding_Body (U1)).Num_Pred);
695 Write_Str (" < ");
696 Write_Int (UNR.Table (Corresponding_Body (U2)).Num_Pred);
697 Write_Eol;
698 end if;
700 return True;
701 else
702 if Debug_Flag_B then
703 Write_Str (" False: same SCC; ");
704 Write_Int (UNR.Table (Corresponding_Body (U1)).Num_Pred);
705 Write_Str (" > ");
706 Write_Int (UNR.Table (Corresponding_Body (U2)).Num_Pred);
707 Write_Eol;
708 end if;
710 return False;
711 end if;
712 end if;
714 -- If we fall through, it means that no preference rule applies, so we
715 -- use alphabetical order to at least give a deterministic result.
717 if Debug_Flag_B then
718 Write_Line (" choose on alpha order");
719 end if;
721 return Uname_Less (UT1.Uname, UT2.Uname);
722 end Better_Choice_Optimistic;
724 -------------------------------
725 -- Better_Choice_Pessimistic --
726 -------------------------------
728 function Better_Choice_Pessimistic
729 (U1 : Unit_Id;
730 U2 : Unit_Id) return Boolean
732 UT1 : Unit_Record renames Units.Table (U1);
733 UT2 : Unit_Record renames Units.Table (U2);
735 begin
736 if Debug_Flag_B then
737 Write_Str ("Better_Choice_Pessimistic (");
738 Write_Unit_Name (UT1.Uname);
739 Write_Str (", ");
740 Write_Unit_Name (UT2.Uname);
741 Write_Line (")");
742 end if;
744 -- Note: the checks here are applied in sequence, and the ordering is
745 -- significant (i.e. the more important criteria are applied first).
747 -- If either unit is predefined or internal, then we use the normal
748 -- Better_Choice_Optimistic rule, since we don't want to disturb the
749 -- elaboration rules of the language with -p; same treatment for
750 -- Pure/Preelab.
752 -- Prefer a predefined unit to a non-predefined unit
754 if UT1.Predefined and then not UT2.Predefined then
755 if Debug_Flag_B then
756 Write_Line (" True: u1 is predefined, u2 is not");
757 end if;
759 return True;
761 elsif UT2.Predefined and then not UT1.Predefined then
762 if Debug_Flag_B then
763 Write_Line (" False: u2 is predefined, u1 is not");
764 end if;
766 return False;
768 -- Prefer an internal unit to a non-internal unit
770 elsif UT1.Internal and then not UT2.Internal then
771 if Debug_Flag_B then
772 Write_Line (" True: u1 is internal, u2 is not");
773 end if;
775 return True;
777 elsif UT2.Internal and then not UT1.Internal then
778 if Debug_Flag_B then
779 Write_Line (" False: u2 is internal, u1 is not");
780 end if;
782 return False;
784 -- Prefer a pure or preelaborated unit to one that is not
786 elsif Is_Pure_Or_Preelab_Unit (U1)
787 and then not
788 Is_Pure_Or_Preelab_Unit (U2)
789 then
790 if Debug_Flag_B then
791 Write_Line (" True: u1 is pure/preelab, u2 is not");
792 end if;
794 return True;
796 elsif Is_Pure_Or_Preelab_Unit (U2)
797 and then not
798 Is_Pure_Or_Preelab_Unit (U1)
799 then
800 if Debug_Flag_B then
801 Write_Line (" False: u2 is pure/preelab, u1 is not");
802 end if;
804 return False;
806 -- Prefer anything else to a waiting body. We want to make bodies wait
807 -- as long as possible, till we are forced to choose them.
809 elsif Is_Waiting_Body (U1) and then not Is_Waiting_Body (U2) then
810 if Debug_Flag_B then
811 Write_Line (" False: u1 is waiting body, u2 is not");
812 end if;
814 return False;
816 elsif Is_Waiting_Body (U2) and then not Is_Waiting_Body (U1) then
817 if Debug_Flag_B then
818 Write_Line (" True: u2 is waiting body, u1 is not");
819 end if;
821 return True;
823 -- Prefer a spec to a body (this is mandatory)
825 elsif Is_Body_Unit (U1) and then not Is_Body_Unit (U2) then
826 if Debug_Flag_B then
827 Write_Line (" False: u1 is body, u2 is not");
828 end if;
830 return False;
832 elsif Is_Body_Unit (U2) and then not Is_Body_Unit (U1) then
833 if Debug_Flag_B then
834 Write_Line (" True: u2 is body, u1 is not");
835 end if;
837 return True;
839 -- If both are waiting bodies, then prefer the one whose spec is less
840 -- recently elaborated. Consider the following:
842 -- spec of A
843 -- spec of B
844 -- body of A or B?
846 -- The normal waiting body preference would have placed the body of A
847 -- before the spec of B if it could. Since it could not, then it must be
848 -- the case that A depends on B. It is therefore a good idea to put the
849 -- body of B last so that if there is an elaboration order problem, we
850 -- will find it (that's what pessimistic order is about).
852 elsif Is_Waiting_Body (U1) and then Is_Waiting_Body (U2) then
853 declare
854 Result : constant Boolean :=
855 UNR.Table (Corresponding_Spec (U1)).Elab_Position <
856 UNR.Table (Corresponding_Spec (U2)).Elab_Position;
857 begin
858 if Debug_Flag_B then
859 if Result then
860 Write_Line (" True: based on waiting body elab positions");
861 else
862 Write_Line (" False: based on waiting body elab positions");
863 end if;
864 end if;
866 return Result;
867 end;
868 end if;
870 -- Remaining choice rules are disabled by Debug flag -do
872 if not Debug_Flag_Older then
874 -- The following deal with the case of specs that have been marked as
875 -- Elaborate_Body_Desirable. In the normal case, we generally want to
876 -- delay the elaboration of these specs as long as possible, so that
877 -- bodies have better chance of being elaborated closer to the specs.
878 -- Better_Choice_Pessimistic as usual wants to do the opposite and
879 -- elaborate such specs as early as possible.
881 -- If we have two units, one of which is a spec for which this flag
882 -- is set, and the other is not, we normally prefer to delay the spec
883 -- for which the flag is set, so again Better_Choice_Pessimistic does
884 -- the opposite.
886 if not UT1.Elaborate_Body_Desirable
887 and then UT2.Elaborate_Body_Desirable
888 then
889 if Debug_Flag_B then
890 Write_Line (" False: u1 is elab body desirable, u2 is not");
891 end if;
893 return False;
895 elsif not UT2.Elaborate_Body_Desirable
896 and then UT1.Elaborate_Body_Desirable
897 then
898 if Debug_Flag_B then
899 Write_Line (" True: u1 is elab body desirable, u2 is not");
900 end if;
902 return True;
904 -- If we have two specs that are both marked as Elaborate_Body
905 -- desirable, we normally prefer the one whose body is nearer to
906 -- being able to be elaborated, based on the Num_Pred count. This
907 -- helps to ensure bodies are as close to specs as possible. As
908 -- usual, Better_Choice_Pessimistic does the opposite.
910 elsif UT1.Elaborate_Body_Desirable
911 and then UT2.Elaborate_Body_Desirable
912 then
913 declare
914 Result : constant Boolean :=
915 UNR.Table (Corresponding_Body (U1)).Num_Pred >=
916 UNR.Table (Corresponding_Body (U2)).Num_Pred;
917 begin
918 if Debug_Flag_B then
919 if Result then
920 Write_Line (" True based on Num_Pred compare");
921 else
922 Write_Line (" False based on Num_Pred compare");
923 end if;
924 end if;
926 return Result;
927 end;
928 end if;
929 end if;
931 -- If we fall through, it means that no preference rule applies, so we
932 -- use alphabetical order to at least give a deterministic result. Since
933 -- Better_Choice_Pessimistic is in the business of stirring up the
934 -- order, we will use reverse alphabetical ordering.
936 if Debug_Flag_B then
937 Write_Line (" choose on reverse alpha order");
938 end if;
940 return Uname_Less (UT2.Uname, UT1.Uname);
941 end Better_Choice_Pessimistic;
943 ----------------
944 -- Build_Link --
945 ----------------
947 procedure Build_Link
948 (Before : Unit_Id;
949 After : Unit_Id;
950 R : Succ_Reason;
951 Ea_Id : Elab_All_Id := No_Elab_All_Link)
953 Cspec : Unit_Id;
955 begin
956 Succ.Append
957 ((Before => Before,
958 After => No_Unit_Id, -- filled in below
959 Next => UNR.Table (Before).Successors,
960 Reason => R,
961 Elab_Body => False, -- set correctly below
962 Reason_Unit => Cur_Unit,
963 Elab_All_Link => Ea_Id));
964 UNR.Table (Before).Successors := Succ.Last;
966 -- Deal with special Elab_Body case. If the After of this link is
967 -- a body whose spec has Elaborate_All set, and this is not the link
968 -- directly from the body to the spec, then we make the After of the
969 -- link reference its spec instead, marking the link appropriately.
971 if Units.Table (After).Utype = Is_Body then
972 Cspec := Corresponding_Spec (After);
974 if Units.Table (Cspec).Elaborate_Body
975 and then Cspec /= Before
976 then
977 Succ.Table (Succ.Last).After := Cspec;
978 Succ.Table (Succ.Last).Elab_Body := True;
979 UNR.Table (Cspec).Num_Pred := UNR.Table (Cspec).Num_Pred + 1;
980 return;
981 end if;
982 end if;
984 -- Fall through on normal case
986 Succ.Table (Succ.Last).After := After;
987 Succ.Table (Succ.Last).Elab_Body := False;
988 UNR.Table (After).Num_Pred := UNR.Table (After).Num_Pred + 1;
989 end Build_Link;
991 ------------
992 -- Choose --
993 ------------
995 procedure Choose
996 (Elab_Order : in out Unit_Id_Table;
997 Chosen : Unit_Id;
998 Msg : String)
1000 pragma Assert (Chosen /= No_Unit_Id);
1001 S : Successor_Id;
1002 U : Unit_Id;
1004 begin
1005 if Debug_Flag_C then
1006 Write_Str ("Choosing Unit ");
1007 Write_Unit_Name (Units.Table (Chosen).Uname);
1008 Write_Str (Msg);
1009 end if;
1011 -- We shouldn't be choosing something with unelaborated predecessors,
1012 -- and we shouldn't call this twice on the same unit. But that's not
1013 -- true when this is called from Diagnose_Elaboration_Problem.
1015 if Errors_Detected = 0 then
1016 pragma Assert (UNR.Table (Chosen).Num_Pred = 0);
1017 pragma Assert (UNR.Table (Chosen).Elab_Position = 0);
1018 pragma Assert (not Doing_New or else SCC_Num_Pred (Chosen) = 0);
1019 null;
1020 end if;
1022 -- Add to elaboration order. Note that units having no elaboration code
1023 -- are not treated specially yet. The special casing of this is in
1024 -- Bindgen, where Gen_Elab_Calls skips over them. Meanwhile we need them
1025 -- here, because the object file list is also driven by the contents of
1026 -- the Elab_Order table.
1028 Append (Elab_Order, Chosen);
1030 -- Remove from No_Pred list. This is a little inefficient and may be we
1031 -- should doubly link the list, but it will do for now.
1033 if No_Pred = Chosen then
1034 No_Pred := UNR.Table (Chosen).Nextnp;
1035 else
1036 U := No_Pred;
1037 while U /= No_Unit_Id loop
1038 if UNR.Table (U).Nextnp = Chosen then
1039 UNR.Table (U).Nextnp := UNR.Table (Chosen).Nextnp;
1040 goto Done_Removal;
1041 end if;
1043 U := UNR.Table (U).Nextnp;
1044 end loop;
1046 -- Here if we didn't find it on the No_Pred list. This can happen
1047 -- only in calls from the Diagnose_Elaboration_Problem routine,
1048 -- where cycles are being removed arbitrarily from the graph.
1050 pragma Assert (Errors_Detected > 0);
1051 <<Done_Removal>> null;
1052 end if;
1054 -- For all successors, decrement the number of predecessors, and if it
1055 -- becomes zero, then add to no-predecessor list.
1057 S := UNR.Table (Chosen).Successors;
1058 while S /= No_Successor loop
1059 U := Succ.Table (S).After;
1060 UNR.Table (U).Num_Pred := UNR.Table (U).Num_Pred - 1;
1062 if Debug_Flag_N then
1063 Write_Str (" decrementing Num_Pred for unit ");
1064 Write_Unit_Name (Units.Table (U).Uname);
1065 Write_Str (" new value = ");
1066 Write_Int (UNR.Table (U).Num_Pred);
1067 Write_Eol;
1068 end if;
1070 if UNR.Table (U).Num_Pred = 0 then
1071 UNR.Table (U).Nextnp := No_Pred;
1072 No_Pred := U;
1073 end if;
1075 if Doing_New and then SCC (U) /= SCC (Chosen) then
1076 UNR.Table (SCC (U)).SCC_Num_Pred :=
1077 UNR.Table (SCC (U)).SCC_Num_Pred - 1;
1079 if Debug_Flag_N then
1080 Write_Str (" decrementing SCC_Num_Pred for unit ");
1081 Write_Unit_Name (Units.Table (U).Uname);
1082 Write_Str (" new value = ");
1083 Write_Int (SCC_Num_Pred (U));
1084 Write_Eol;
1085 end if;
1086 end if;
1088 S := Succ.Table (S).Next;
1089 end loop;
1091 -- All done, adjust number of units left count and set elaboration pos
1093 Num_Left := Num_Left - 1;
1094 Num_Chosen := Num_Chosen + 1;
1096 pragma Assert
1097 (Errors_Detected > 0 or else Num_Chosen = Last (Elab_Order));
1098 pragma Assert (Units.Last = UNR.Last);
1099 pragma Assert (Num_Chosen + Num_Left = Int (UNR.Last));
1101 if Debug_Flag_C then
1102 Write_Str (" ");
1103 Write_Int (Int (Num_Chosen));
1104 Write_Str ("+");
1105 Write_Int (Num_Left);
1106 Write_Str ("=");
1107 Write_Int (Int (UNR.Last));
1108 Write_Eol;
1109 end if;
1111 UNR.Table (Chosen).Elab_Position := Num_Chosen;
1113 -- If we just chose a spec with Elaborate_Body set, then we must
1114 -- immediately elaborate the body, before any other units.
1116 if Units.Table (Chosen).Elaborate_Body then
1118 -- If the unit is a spec only, then there is no body. This is a bit
1119 -- odd given that Elaborate_Body is here, but it is valid in an RCI
1120 -- unit, where we only have the interface in the stub bind.
1122 if Units.Table (Chosen).Utype = Is_Spec_Only
1123 and then Units.Table (Chosen).RCI
1124 then
1125 null;
1127 -- If this unit is an interface to a stand-alone library, then we
1128 -- don't want to elaborate the body -- that will happen as part of
1129 -- the library.
1131 elsif Units.Table (Chosen).SAL_Interface then
1132 null;
1134 else
1135 Choose
1136 (Elab_Order => Elab_Order,
1137 Chosen => Corresponding_Body (Chosen),
1138 Msg => " [Elaborate_Body]");
1139 end if;
1140 end if;
1141 end Choose;
1143 ------------------------
1144 -- Corresponding_Body --
1145 ------------------------
1147 -- Currently if the body and spec are separate, then they appear as two
1148 -- separate units in the same ALI file, with the body appearing first and
1149 -- the spec appearing second.
1151 function Corresponding_Body (U : Unit_Id) return Unit_Id is
1152 begin
1153 pragma Assert (Units.Table (U).Utype = Is_Spec);
1154 return U - 1;
1155 end Corresponding_Body;
1157 ------------------------
1158 -- Corresponding_Spec --
1159 ------------------------
1161 -- Currently if the body and spec are separate, then they appear as two
1162 -- separate units in the same ALI file, with the body appearing first and
1163 -- the spec appearing second.
1165 function Corresponding_Spec (U : Unit_Id) return Unit_Id is
1166 begin
1167 pragma Assert (Units.Table (U).Utype = Is_Body);
1168 return U + 1;
1169 end Corresponding_Spec;
1171 --------------------
1172 -- Debug_Flag_Old --
1173 --------------------
1175 function Debug_Flag_Old return Boolean is
1176 begin
1177 -- If the user specified both flags, we want to use the older algorithm,
1178 -- rather than some confusing mix of the two.
1180 return Debug_Flag_P and not Debug_Flag_O;
1181 end Debug_Flag_Old;
1183 ----------------------
1184 -- Debug_Flag_Older --
1185 ----------------------
1187 function Debug_Flag_Older return Boolean is
1188 begin
1189 return Debug_Flag_O;
1190 end Debug_Flag_Older;
1192 ----------------------------------
1193 -- Diagnose_Elaboration_Problem --
1194 ----------------------------------
1196 procedure Diagnose_Elaboration_Problem
1197 (Elab_Order : in out Unit_Id_Table)
1199 function Find_Path
1200 (Ufrom : Unit_Id;
1201 Uto : Unit_Id;
1202 ML : Nat) return Boolean;
1203 -- Recursive routine used to find a path from node Ufrom to node Uto.
1204 -- If a path exists, returns True and outputs an appropriate set of
1205 -- error messages giving the path. Also calls Choose for each of the
1206 -- nodes so that they get removed from the remaining set. There are
1207 -- two cases of calls, either Ufrom = Uto for an attempt to find a
1208 -- cycle, or Ufrom is a spec and Uto the corresponding body for the
1209 -- case of an unsatisfiable Elaborate_Body pragma. ML is the minimum
1210 -- acceptable length for a path.
1212 ---------------
1213 -- Find_Path --
1214 ---------------
1216 function Find_Path
1217 (Ufrom : Unit_Id;
1218 Uto : Unit_Id;
1219 ML : Nat) return Boolean
1221 function Find_Link (U : Unit_Id; PL : Nat) return Boolean;
1222 -- This is the inner recursive routine, it determines if a path
1223 -- exists from U to Uto, and if so returns True and outputs the
1224 -- appropriate set of error messages. PL is the path length
1226 ---------------
1227 -- Find_Link --
1228 ---------------
1230 function Find_Link (U : Unit_Id; PL : Nat) return Boolean is
1231 S : Successor_Id;
1233 begin
1234 -- Recursion ends if we are at terminating node and the path is
1235 -- sufficiently long, generate error message and return True.
1237 if U = Uto and then PL >= ML then
1238 Choose (Elab_Order, U, " [Find_Link: base]");
1239 return True;
1241 -- All done if already visited
1243 elsif UNR.Table (U).Visited then
1244 return False;
1246 -- Otherwise mark as visited and look at all successors
1248 else
1249 UNR.Table (U).Visited := True;
1251 S := UNR.Table (U).Successors;
1252 while S /= No_Successor loop
1253 if Find_Link (Succ.Table (S).After, PL + 1) then
1254 Elab_Error_Msg (S);
1255 Choose (Elab_Order, U, " [Find_Link: recursive]");
1256 return True;
1257 end if;
1259 S := Succ.Table (S).Next;
1260 end loop;
1262 -- Falling through means this does not lead to a path
1264 return False;
1265 end if;
1266 end Find_Link;
1268 -- Start of processing for Find_Path
1270 begin
1271 -- Initialize all non-chosen nodes to not visited yet
1273 for U in Units.First .. Units.Last loop
1274 UNR.Table (U).Visited := UNR.Table (U).Elab_Position /= 0;
1275 end loop;
1277 -- Now try to find the path
1279 return Find_Link (Ufrom, 0);
1280 end Find_Path;
1282 -- Start of processing for Diagnose_Elaboration_Problem
1284 begin
1285 Diagnose_Elaboration_Problem_Called := True;
1286 Set_Standard_Error;
1288 -- Output state of things if debug flag N set
1290 if Debug_Flag_N then
1291 declare
1292 NP : Int;
1294 begin
1295 Write_Eol;
1296 Write_Eol;
1297 Write_Line ("Diagnose_Elaboration_Problem called");
1298 Write_Line ("List of remaining unchosen units and predecessors");
1300 for U in Units.First .. Units.Last loop
1301 if UNR.Table (U).Elab_Position = 0 then
1302 NP := UNR.Table (U).Num_Pred;
1303 Write_Eol;
1304 Write_Str (" Unchosen unit: #");
1305 Write_Int (Int (U));
1306 Write_Str (" ");
1307 Write_Unit_Name (Units.Table (U).Uname);
1308 Write_Str (" (Num_Pred = ");
1309 Write_Int (NP);
1310 Write_Line (")");
1312 if NP = 0 then
1313 if Units.Table (U).Elaborate_Body then
1314 Write_Line
1315 (" (not chosen because of Elaborate_Body)");
1316 else
1317 Write_Line (" ****************** why not chosen?");
1318 end if;
1319 end if;
1321 -- Search links list to find unchosen predecessors
1323 for S in Succ.First .. Succ.Last loop
1324 declare
1325 SL : Successor_Link renames Succ.Table (S);
1327 begin
1328 if SL.After = U
1329 and then UNR.Table (SL.Before).Elab_Position = 0
1330 then
1331 Write_Str (" unchosen predecessor: #");
1332 Write_Int (Int (SL.Before));
1333 Write_Str (" ");
1334 Write_Unit_Name (Units.Table (SL.Before).Uname);
1335 Write_Eol;
1336 NP := NP - 1;
1337 end if;
1338 end;
1339 end loop;
1341 if NP /= 0 then
1342 Write_Line (" **************** Num_Pred value wrong!");
1343 end if;
1344 end if;
1345 end loop;
1346 end;
1347 end if;
1349 -- Output the header for the error, and manually increment the error
1350 -- count. We are using Error_Msg_Output rather than Error_Msg here for
1351 -- two reasons:
1353 -- This is really only one error, not one for each line
1354 -- We want this output on standard output since it is voluminous
1356 -- But we do need to deal with the error count manually in this case
1358 Errors_Detected := Errors_Detected + 1;
1359 Error_Msg_Output ("elaboration circularity detected", Info => False);
1361 -- Try to find cycles starting with any of the remaining nodes that have
1362 -- not yet been chosen. There must be at least one (there is some reason
1363 -- we are being called).
1365 for U in Units.First .. Units.Last loop
1366 if UNR.Table (U).Elab_Position = 0 then
1367 if Find_Path (U, U, 1) then
1368 raise Unrecoverable_Error;
1369 end if;
1370 end if;
1371 end loop;
1373 -- We should never get here, since we were called for some reason, and
1374 -- we should have found and eliminated at least one bad path.
1376 raise Program_Error;
1377 end Diagnose_Elaboration_Problem;
1379 --------------------
1380 -- Elab_All_Links --
1381 --------------------
1383 procedure Elab_All_Links
1384 (Before : Unit_Id;
1385 After : Unit_Id;
1386 Reason : Succ_Reason;
1387 Link : Elab_All_Id)
1389 begin
1390 if UNR.Table (Before).Visited then
1391 return;
1392 end if;
1394 -- Build the direct link for Before
1396 UNR.Table (Before).Visited := True;
1397 Build_Link (Before, After, Reason, Link);
1399 -- Process all units with'ed by Before recursively
1401 for W in Units.Table (Before).First_With ..
1402 Units.Table (Before).Last_With
1403 loop
1404 -- Skip if this with is an interface to a stand-alone library. Skip
1405 -- also if no ALI file for this WITH, happens for language defined
1406 -- generics while bootstrapping the compiler (see body of routine
1407 -- Lib.Writ.Write_With_Lines). Finally, skip if it is a limited with
1408 -- clause, which does not impose an elaboration link.
1410 if not Withs.Table (W).SAL_Interface
1411 and then Withs.Table (W).Afile /= No_File
1412 and then not Withs.Table (W).Limited_With
1413 then
1414 declare
1415 Info : constant Int :=
1416 Get_Name_Table_Int (Withs.Table (W).Uname);
1418 begin
1419 -- If the unit is unknown, for some unknown reason, fail
1420 -- graciously explaining that the unit is unknown. Without
1421 -- this check, gnatbind will crash in Unit_Id_Of.
1423 if Info = 0 or else Unit_Id (Info) = No_Unit_Id then
1424 declare
1425 Withed : String :=
1426 Get_Name_String (Withs.Table (W).Uname);
1427 Last_Withed : Natural := Withed'Last;
1428 Withing : String :=
1429 Get_Name_String
1430 (Units.Table (Before).Uname);
1431 Last_Withing : Natural := Withing'Last;
1432 Spec_Body : String := " (Spec)";
1434 begin
1435 To_Mixed (Withed);
1436 To_Mixed (Withing);
1438 if Last_Withed > 2
1439 and then Withed (Last_Withed - 1) = '%'
1440 then
1441 Last_Withed := Last_Withed - 2;
1442 end if;
1444 if Last_Withing > 2
1445 and then Withing (Last_Withing - 1) = '%'
1446 then
1447 Last_Withing := Last_Withing - 2;
1448 end if;
1450 if Units.Table (Before).Utype = Is_Body
1451 or else Units.Table (Before).Utype = Is_Body_Only
1452 then
1453 Spec_Body := " (Body)";
1454 end if;
1456 Osint.Fail
1457 ("could not find unit "
1458 & Withed (Withed'First .. Last_Withed) & " needed by "
1459 & Withing (Withing'First .. Last_Withing) & Spec_Body);
1460 end;
1461 end if;
1463 Elab_All_Links
1464 (Unit_Id_Of (Withs.Table (W).Uname),
1465 After,
1466 Reason,
1467 Make_Elab_All_Entry (Withs.Table (W).Uname, Link));
1468 end;
1469 end if;
1470 end loop;
1472 -- Process corresponding body, if there is one
1474 if Units.Table (Before).Utype = Is_Spec then
1475 Elab_All_Links
1476 (Corresponding_Body (Before),
1477 After, Reason,
1478 Make_Elab_All_Entry
1479 (Units.Table (Corresponding_Body (Before)).Uname, Link));
1480 end if;
1481 end Elab_All_Links;
1483 --------------------
1484 -- Elab_Error_Msg --
1485 --------------------
1487 procedure Elab_Error_Msg (S : Successor_Id) is
1488 SL : Successor_Link renames Succ.Table (S);
1490 begin
1491 -- Nothing to do if internal unit involved and no -da flag
1493 if not Debug_Flag_A
1494 and then
1495 (Is_Internal_File_Name (Units.Table (SL.Before).Sfile)
1496 or else
1497 Is_Internal_File_Name (Units.Table (SL.After).Sfile))
1498 then
1499 return;
1500 end if;
1502 -- Here we want to generate output
1504 Error_Msg_Unit_1 := Units.Table (SL.Before).Uname;
1506 if SL.Elab_Body then
1507 Error_Msg_Unit_2 := Units.Table (Corresponding_Body (SL.After)).Uname;
1508 else
1509 Error_Msg_Unit_2 := Units.Table (SL.After).Uname;
1510 end if;
1512 Error_Msg_Output (" $ must be elaborated before $", Info => True);
1514 Error_Msg_Unit_1 := Units.Table (SL.Reason_Unit).Uname;
1516 case SL.Reason is
1517 when Withed =>
1518 Error_Msg_Output
1519 (" reason: with clause",
1520 Info => True);
1522 when Forced =>
1523 Error_Msg_Output
1524 (" reason: forced by -f switch",
1525 Info => True);
1527 when Elab =>
1528 Error_Msg_Output
1529 (" reason: pragma Elaborate in unit $",
1530 Info => True);
1532 when Elab_All =>
1533 Error_Msg_Output
1534 (" reason: pragma Elaborate_All in unit $",
1535 Info => True);
1537 when Elab_All_Desirable =>
1538 Error_Msg_Output
1539 (" reason: implicit Elaborate_All in unit $",
1540 Info => True);
1542 Error_Msg_Output
1543 (" recompile $ with -gnatel for full details",
1544 Info => True);
1546 when Elab_Desirable =>
1547 Error_Msg_Output
1548 (" reason: implicit Elaborate in unit $",
1549 Info => True);
1551 Error_Msg_Output
1552 (" recompile $ with -gnatel for full details",
1553 Info => True);
1555 when Spec_First =>
1556 Error_Msg_Output
1557 (" reason: spec always elaborated before body",
1558 Info => True);
1559 end case;
1561 Write_Elab_All_Chain (S);
1563 if SL.Elab_Body then
1564 Error_Msg_Unit_1 := Units.Table (SL.Before).Uname;
1565 Error_Msg_Unit_2 := Units.Table (SL.After).Uname;
1566 Error_Msg_Output
1567 (" $ must therefore be elaborated before $", True);
1569 Error_Msg_Unit_1 := Units.Table (SL.After).Uname;
1570 Error_Msg_Output
1571 (" (because $ has a pragma Elaborate_Body)", True);
1572 end if;
1574 if not Zero_Formatting then
1575 Write_Eol;
1576 end if;
1577 end Elab_Error_Msg;
1579 ---------------------
1580 -- Find_Elab_Order --
1581 ---------------------
1583 procedure Find_Elab_Order
1584 (Elab_Order : out Unit_Id_Table;
1585 First_Main_Lib_File : File_Name_Type)
1587 function Num_Spec_Body_Pairs (Order : Unit_Id_Array) return Nat;
1588 -- Number of cases where the body of a unit immediately follows the
1589 -- corresponding spec. Such cases are good, because calls to that unit
1590 -- from outside can't get ABE.
1592 -------------------------
1593 -- Num_Spec_Body_Pairs --
1594 -------------------------
1596 function Num_Spec_Body_Pairs (Order : Unit_Id_Array) return Nat is
1597 Result : Nat := 0;
1599 begin
1600 for J in Order'First + 1 .. Order'Last loop
1601 if Units.Table (Order (J - 1)).Utype = Is_Spec
1602 and then Units.Table (Order (J)).Utype = Is_Body
1603 and then Corresponding_Spec (Order (J)) = Order (J - 1)
1604 then
1605 Result := Result + 1;
1606 end if;
1607 end loop;
1609 return Result;
1610 end Num_Spec_Body_Pairs;
1612 -- Local variables
1614 Old_Elab_Order : Unit_Id_Table;
1616 -- Start of processing for Find_Elab_Order
1618 begin
1619 -- Output warning if -p used with no -gnatE units
1621 if Pessimistic_Elab_Order
1622 and not Dynamic_Elaboration_Checks_Specified
1623 then
1624 Error_Msg ("?use of -p switch questionable");
1625 Error_Msg ("?since all units compiled with static elaboration model");
1626 end if;
1628 if Do_New and not Debug_Flag_Old and not Debug_Flag_Older then
1629 if Debug_Flag_V then
1630 Write_Line ("Doing new...");
1631 end if;
1633 Doing_New := True;
1634 Init;
1635 Elab_New.Find_Elab_Order (Elab_Order);
1636 end if;
1638 -- Elab_New does not support the pessimistic order, so if that was
1639 -- requested, use the old results. Use Elab_Old if -dp or -do was
1640 -- selected. Elab_New does not yet give proper error messages for
1641 -- illegal Elaborate_Alls, so if there is one, run Elab_Old.
1643 if Do_Old
1644 or Pessimistic_Elab_Order
1645 or Debug_Flag_Old
1646 or Debug_Flag_Older
1647 or Elab_Cycle_Found
1648 then
1649 if Debug_Flag_V then
1650 Write_Line ("Doing old...");
1651 end if;
1653 Doing_New := False;
1654 Init;
1655 Elab_Old.Find_Elab_Order (Old_Elab_Order);
1656 end if;
1658 pragma Assert (Elab_Cycle_Found <= -- implies
1659 Diagnose_Elaboration_Problem_Called);
1661 declare
1662 Old_Order : Unit_Id_Array renames
1663 Old_Elab_Order.Table (1 .. Last (Old_Elab_Order));
1664 begin
1665 if Do_Old and Do_New then
1666 declare
1667 New_Order : Unit_Id_Array renames
1668 Elab_Order.Table (1 .. Last (Elab_Order));
1669 Old_Pairs : constant Nat := Num_Spec_Body_Pairs (Old_Order);
1670 New_Pairs : constant Nat := Num_Spec_Body_Pairs (New_Order);
1672 begin
1673 Write_Line (Get_Name_String (First_Main_Lib_File));
1675 pragma Assert (Old_Order'Length = New_Order'Length);
1676 pragma Debug (Validate (Old_Order, Doing_New => False));
1677 pragma Debug (Validate (New_Order, Doing_New => True));
1679 -- Misc debug printouts that can be used for experimentation by
1680 -- changing the 'if's below.
1682 if True then
1683 if New_Order = Old_Order then
1684 Write_Line ("Elab_New: same order.");
1685 else
1686 Write_Line ("Elab_New: diff order.");
1687 end if;
1688 end if;
1690 if New_Order /= Old_Order and then False then
1691 Write_Line ("Elaboration orders differ:");
1692 Write_Elab_Order
1693 (Old_Order, Title => "OLD ELABORATION ORDER");
1694 Write_Elab_Order
1695 (New_Order, Title => "NEW ELABORATION ORDER");
1696 end if;
1698 if True then
1699 Write_Str ("Pairs: ");
1700 Write_Int (Old_Pairs);
1702 if Old_Pairs = New_Pairs then
1703 Write_Str (" = ");
1704 elsif Old_Pairs < New_Pairs then
1705 Write_Str (" < ");
1706 else
1707 Write_Str (" > ");
1708 end if;
1710 Write_Int (New_Pairs);
1711 Write_Eol;
1712 end if;
1714 if Old_Pairs /= New_Pairs and then False then
1715 Write_Str ("Pairs: ");
1716 Write_Int (Old_Pairs);
1718 if Old_Pairs < New_Pairs then
1719 Write_Str (" < ");
1720 else
1721 Write_Str (" > ");
1722 end if;
1724 Write_Int (New_Pairs);
1725 Write_Eol;
1727 if Old_Pairs /= New_Pairs and then Debug_Flag_V then
1728 Write_Elab_Order
1729 (Old_Order, Title => "OLD ELABORATION ORDER");
1730 Write_Elab_Order
1731 (New_Order, Title => "NEW ELABORATION ORDER");
1732 pragma Assert (New_Pairs >= Old_Pairs);
1733 end if;
1734 end if;
1735 end;
1736 end if;
1738 -- The Elab_New algorithm doesn't implement the -p switch, so if that
1739 -- was used, use the results from the old algorithm. Likewise if the
1740 -- user has requested the old algorithm.
1742 if Pessimistic_Elab_Order or Debug_Flag_Old or Debug_Flag_Older then
1743 pragma Assert
1744 (Last (Elab_Order) = 0
1745 or else Last (Elab_Order) = Old_Order'Last);
1747 Init (Elab_Order);
1748 Append_All (Elab_Order, Old_Order);
1749 end if;
1751 -- Now set the Elab_Positions in the Units table. It is important to
1752 -- do this late, in case we're running both Elab_New and Elab_Old.
1754 declare
1755 New_Order : Unit_Id_Array renames
1756 Elab_Order.Table (1 .. Last (Elab_Order));
1757 Units_Array : Units.Table_Type renames
1758 Units.Table (Units.First .. Units.Last);
1759 begin
1760 for J in New_Order'Range loop
1761 pragma Assert
1762 (UNR.Table (New_Order (J)).Elab_Position = J);
1763 Units_Array (New_Order (J)).Elab_Position := J;
1764 end loop;
1766 if Errors_Detected = 0 then
1768 -- Display elaboration order if -l was specified
1770 if Elab_Order_Output then
1771 if Zero_Formatting then
1772 Write_Elab_Order (New_Order, Title => "");
1773 else
1774 Write_Elab_Order
1775 (New_Order, Title => "ELABORATION ORDER");
1776 end if;
1777 end if;
1779 -- Display list of sources in the closure (except predefined
1780 -- sources) if -R was used. Include predefined sources if -Ra
1781 -- was used.
1783 if List_Closure then
1784 Write_Closure (New_Order);
1785 end if;
1786 end if;
1787 end;
1788 end;
1789 end Find_Elab_Order;
1791 ----------------------
1792 -- Force_Elab_Order --
1793 ----------------------
1795 procedure Force_Elab_Order is
1796 use System.OS_Lib;
1797 -- There is a lot of fiddly string manipulation below, because we don't
1798 -- want to depend on misc utility packages like Ada.Characters.Handling.
1800 function Get_Line return String;
1801 -- Read the next line from the file content read by Read_File. Strip
1802 -- all leading and trailing blanks. Convert "(spec)" or "(body)" to
1803 -- "%s"/"%b". Remove comments (Ada style; "--" to end of line).
1805 function Read_File (Name : String) return String_Ptr;
1806 -- Read the entire contents of the named file
1808 subtype Header_Num is Unit_Name_Type'Base range 0 .. 2**16 - 1;
1809 type Line_Number is new Nat;
1810 No_Line_Number : constant Line_Number := 0;
1811 Cur_Line_Number : Line_Number := 0;
1812 -- Current line number in the Force_Elab_Order_File.
1813 -- Incremented by Get_Line. Used in error messages.
1815 function Hash (N : Unit_Name_Type) return Header_Num;
1817 package Name_Map is new System.HTable.Simple_HTable
1818 (Header_Num => Header_Num,
1819 Element => Line_Number,
1820 No_Element => No_Line_Number,
1821 Key => Unit_Name_Type,
1822 Hash => Hash,
1823 Equal => "=");
1824 -- Name_Map contains an entry for each file name seen, mapped to the
1825 -- line number where we saw it first. This is used to give an error for
1826 -- duplicates.
1828 ----------
1829 -- Hash --
1830 ----------
1832 function Hash (N : Unit_Name_Type) return Header_Num is
1833 -- Name_Ids are already widely dispersed; no need for any actual
1834 -- hashing. Just subtract to make it zero based, and "mod" to
1835 -- bring it in range.
1836 begin
1837 return (N - Unit_Name_Type'First) mod (Header_Num'Last + 1);
1838 end Hash;
1840 ---------------
1841 -- Read_File --
1842 ---------------
1844 function Read_File (Name : String) return String_Ptr is
1846 -- All of the following calls should succeed, because we checked the
1847 -- file in Switch.B, but we double check and raise Program_Error on
1848 -- failure, just in case.
1850 F : constant File_Descriptor := Open_Read (Name, Binary);
1852 begin
1853 if F = Invalid_FD then
1854 raise Program_Error;
1855 end if;
1857 declare
1858 Len : constant Natural := Natural (File_Length (F));
1859 Result : constant String_Ptr := new String (1 .. Len);
1860 Len_Read : constant Natural :=
1861 Read (F, Result (1)'Address, Len);
1863 Status : Boolean;
1865 begin
1866 if Len_Read /= Len then
1867 raise Program_Error;
1868 end if;
1870 Close (F, Status);
1872 if not Status then
1873 raise Program_Error;
1874 end if;
1876 return Result;
1877 end;
1878 end Read_File;
1880 Cur : Positive := 1;
1881 S : String_Ptr := Read_File (Force_Elab_Order_File.all);
1883 --------------
1884 -- Get_Line --
1885 --------------
1887 function Get_Line return String is
1888 First : Positive := Cur;
1889 Last : Natural;
1891 begin
1892 Cur_Line_Number := Cur_Line_Number + 1;
1894 -- Skip to end of line
1896 while Cur <= S'Last
1897 and then S (Cur) /= ASCII.LF
1898 and then S (Cur) /= ASCII.CR
1899 loop
1900 Cur := Cur + 1;
1901 end loop;
1903 -- Strip leading blanks
1905 while First <= S'Last and then S (First) = ' ' loop
1906 First := First + 1;
1907 end loop;
1909 -- Strip trailing blanks and comment
1911 Last := Cur - 1;
1913 for J in First .. Last - 1 loop
1914 if S (J .. J + 1) = "--" then
1915 Last := J - 1;
1916 exit;
1917 end if;
1918 end loop;
1920 while Last >= First and then S (Last) = ' ' loop
1921 Last := Last - 1;
1922 end loop;
1924 -- Convert "(spec)" or "(body)" to "%s"/"%b", strip trailing blanks
1925 -- again.
1927 declare
1928 Body_String : constant String := "(body)";
1929 BL : constant Positive := Body_String'Length;
1930 Spec_String : constant String := "(spec)";
1931 SL : constant Positive := Spec_String'Length;
1933 Line : String renames S (First .. Last);
1935 Is_Body : Boolean := False;
1936 Is_Spec : Boolean := False;
1938 begin
1939 if Line'Length >= SL
1940 and then Line (Last - SL + 1 .. Last) = Spec_String
1941 then
1942 Is_Spec := True;
1943 Last := Last - SL;
1944 elsif Line'Length >= BL
1945 and then Line (Last - BL + 1 .. Last) = Body_String
1946 then
1947 Is_Body := True;
1948 Last := Last - BL;
1949 end if;
1951 while Last >= First and then S (Last) = ' ' loop
1952 Last := Last - 1;
1953 end loop;
1955 -- Skip past LF or CR/LF
1957 if Cur <= S'Last and then S (Cur) = ASCII.CR then
1958 Cur := Cur + 1;
1959 end if;
1961 if Cur <= S'Last and then S (Cur) = ASCII.LF then
1962 Cur := Cur + 1;
1963 end if;
1965 if Is_Spec then
1966 return Line (First .. Last) & "%s";
1967 elsif Is_Body then
1968 return Line (First .. Last) & "%b";
1969 else
1970 return Line;
1971 end if;
1972 end;
1973 end Get_Line;
1975 -- Local variables
1977 Empty_Name : constant Unit_Name_Type := Name_Find ("");
1978 Prev_Unit : Unit_Id := No_Unit_Id;
1980 -- Start of processing for Force_Elab_Order
1982 begin
1983 -- Loop through the file content, and build a dependency link for each
1984 -- pair of lines. Ignore lines that should be ignored.
1986 while Cur <= S'Last loop
1987 declare
1988 Uname : constant Unit_Name_Type := Name_Find (Get_Line);
1989 Error : Boolean := False;
1991 begin
1992 if Uname = Empty_Name then
1993 null; -- silently skip blank lines
1994 else
1995 declare
1996 Dup : constant Line_Number := Name_Map.Get (Uname);
1997 begin
1998 if Dup = No_Line_Number then
1999 Name_Map.Set (Uname, Cur_Line_Number);
2001 -- We don't need to give the "not present" message in
2002 -- the case of "duplicate unit", because we would have
2003 -- already given the "not present" message on the
2004 -- first occurrence.
2006 if Get_Name_Table_Int (Uname) = 0
2007 or else Unit_Id (Get_Name_Table_Int (Uname)) =
2008 No_Unit_Id
2009 then
2010 Error := True;
2011 if Doing_New then
2012 Write_Line
2013 ("""" & Get_Name_String (Uname)
2014 & """: not present; ignored");
2015 end if;
2016 end if;
2018 else
2019 Error := True;
2020 if Doing_New then
2021 Error_Msg_Nat_1 := Nat (Cur_Line_Number);
2022 Error_Msg_Unit_1 := Uname;
2023 Error_Msg_Nat_2 := Nat (Dup);
2024 Error_Msg
2025 (Force_Elab_Order_File.all
2026 & ":#: duplicate unit name $ from line #");
2027 end if;
2028 end if;
2029 end;
2031 if not Error then
2032 declare
2033 Cur_Unit : constant Unit_Id := Unit_Id_Of (Uname);
2034 begin
2035 if Is_Internal_File_Name
2036 (Units.Table (Cur_Unit).Sfile)
2037 then
2038 if Doing_New then
2039 Write_Line
2040 ("""" & Get_Name_String (Uname)
2041 & """: predefined unit ignored");
2042 end if;
2044 else
2045 if Prev_Unit /= No_Unit_Id then
2046 if Doing_New then
2047 Write_Unit_Name (Units.Table (Prev_Unit).Uname);
2048 Write_Str (" <-- ");
2049 Write_Unit_Name (Units.Table (Cur_Unit).Uname);
2050 Write_Eol;
2051 end if;
2053 Build_Link
2054 (Before => Prev_Unit,
2055 After => Cur_Unit,
2056 R => Forced);
2057 end if;
2059 Prev_Unit := Cur_Unit;
2060 end if;
2061 end;
2062 end if;
2063 end if;
2064 end;
2065 end loop;
2067 Free (S);
2068 end Force_Elab_Order;
2070 -------------------------
2071 -- Gather_Dependencies --
2072 -------------------------
2074 procedure Gather_Dependencies is
2075 Withed_Unit : Unit_Id;
2077 begin
2078 -- Loop through all units
2080 for U in Units.First .. Units.Last loop
2081 Cur_Unit := U;
2083 -- If this is not an interface to a stand-alone library and there is
2084 -- a body and a spec, then spec must be elaborated first. Note that
2085 -- the corresponding spec immediately follows the body.
2087 if not Units.Table (U).SAL_Interface
2088 and then Units.Table (U).Utype = Is_Body
2089 then
2090 Build_Link (Corresponding_Spec (U), U, Spec_First);
2091 end if;
2093 -- If this unit is not an interface to a stand-alone library, process
2094 -- WITH references for this unit ignoring interfaces to stand-alone
2095 -- libraries.
2097 if not Units.Table (U).SAL_Interface then
2098 for W in Units.Table (U).First_With ..
2099 Units.Table (U).Last_With
2100 loop
2101 if Withs.Table (W).Sfile /= No_File
2102 and then (not Withs.Table (W).SAL_Interface)
2103 then
2104 -- Check for special case of withing a unit that does not
2105 -- exist any more. If the unit was completely missing we
2106 -- would already have detected this, but a nasty case arises
2107 -- when we have a subprogram body with no spec, and some
2108 -- obsolete unit with's a previous (now disappeared) spec.
2110 if Get_Name_Table_Int (Withs.Table (W).Uname) = 0 then
2111 if Doing_New then
2112 Error_Msg_File_1 := Units.Table (U).Sfile;
2113 Error_Msg_Unit_1 := Withs.Table (W).Uname;
2114 Error_Msg ("{ depends on $ which no longer exists");
2115 end if;
2117 goto Next_With;
2118 end if;
2120 Withed_Unit := Unit_Id_Of (Withs.Table (W).Uname);
2122 -- Pragma Elaborate_All case, for this we use the recursive
2123 -- Elab_All_Links procedure to establish the links.
2125 -- Elab_New ignores Elaborate_All and Elab_All_Desirable,
2126 -- except for error messages.
2128 if Withs.Table (W).Elaborate_All and then not Doing_New then
2130 -- Reset flags used to stop multiple visits to a given
2131 -- node.
2133 for Uref in UNR.First .. UNR.Last loop
2134 UNR.Table (Uref).Visited := False;
2135 end loop;
2137 -- Now establish all the links we need
2139 Elab_All_Links
2140 (Withed_Unit, U, Elab_All,
2141 Make_Elab_All_Entry
2142 (Withs.Table (W).Uname, No_Elab_All_Link));
2144 -- Elaborate_All_Desirable case, for this we establish the
2145 -- same links as above, but with a different reason.
2147 elsif Withs.Table (W).Elab_All_Desirable
2148 and then not Doing_New
2149 then
2150 -- Reset flags used to stop multiple visits to a given
2151 -- node.
2153 for Uref in UNR.First .. UNR.Last loop
2154 UNR.Table (Uref).Visited := False;
2155 end loop;
2157 -- Now establish all the links we need
2159 Elab_All_Links
2160 (Withed_Unit, U, Elab_All_Desirable,
2161 Make_Elab_All_Entry
2162 (Withs.Table (W).Uname, No_Elab_All_Link));
2164 -- Pragma Elaborate case. We must build a link for the
2165 -- withed unit itself, and also the corresponding body if
2166 -- there is one.
2168 -- However, skip this processing if there is no ALI file for
2169 -- the WITH entry, because this means it is a generic (even
2170 -- when we fix the generics so that an ALI file is present,
2171 -- we probably still will have no ALI file for unchecked and
2172 -- other special cases).
2174 elsif Withs.Table (W).Elaborate
2175 and then Withs.Table (W).Afile /= No_File
2176 then
2177 Build_Link (Withed_Unit, U, Withed);
2179 if Units.Table (Withed_Unit).Utype = Is_Spec then
2180 Build_Link
2181 (Corresponding_Body (Withed_Unit), U, Elab);
2182 end if;
2184 -- Elaborate_Desirable case, for this we establish the same
2185 -- links as above, but with a different reason.
2187 elsif Withs.Table (W).Elab_Desirable then
2188 Build_Link (Withed_Unit, U, Withed);
2190 if Units.Table (Withed_Unit).Utype = Is_Spec then
2191 Build_Link
2192 (Corresponding_Body (Withed_Unit),
2193 U, Elab_Desirable);
2194 end if;
2196 -- A limited_with does not establish an elaboration
2197 -- dependence (that's the whole point).
2199 elsif Withs.Table (W).Limited_With then
2200 null;
2202 -- Case of normal WITH with no elaboration pragmas, just
2203 -- build the single link to the directly referenced unit
2205 else
2206 Build_Link (Withed_Unit, U, Withed);
2207 end if;
2208 end if;
2210 <<Next_With>>
2211 null;
2212 end loop;
2213 end if;
2214 end loop;
2216 -- If -f<elab_order> switch was given, take into account dependences
2217 -- specified in the file <elab_order>.
2219 if Force_Elab_Order_File /= null then
2220 Force_Elab_Order;
2221 end if;
2223 -- Output elaboration dependencies if option is set
2225 if Elab_Dependency_Output or Debug_Flag_E then
2226 if Doing_New then
2227 Write_Dependencies;
2228 end if;
2229 end if;
2230 end Gather_Dependencies;
2232 ----------
2233 -- Init --
2234 ----------
2236 procedure Init is
2237 begin
2238 Num_Chosen := 0;
2239 Num_Left := Int (Units.Last - Units.First + 1);
2240 Succ.Init;
2241 Elab_All_Entries.Init;
2242 UNR.Init;
2244 -- Initialize unit table for elaboration control
2246 for U in Units.First .. Units.Last loop
2247 UNR.Append
2248 ((Successors => No_Successor,
2249 Num_Pred => 0,
2250 Nextnp => No_Unit_Id,
2251 Visited => False,
2252 Elab_Position => 0,
2253 SCC_Root => No_Unit_Id,
2254 Nodes => null,
2255 SCC_Num_Pred => 0,
2256 Validate_Seen => False));
2257 end loop;
2258 end Init;
2260 ------------------
2261 -- Is_Body_Unit --
2262 ------------------
2264 function Is_Body_Unit (U : Unit_Id) return Boolean is
2265 begin
2266 return
2267 Units.Table (U).Utype = Is_Body
2268 or else Units.Table (U).Utype = Is_Body_Only;
2269 end Is_Body_Unit;
2271 -----------------------------
2272 -- Is_Pure_Or_Preelab_Unit --
2273 -----------------------------
2275 function Is_Pure_Or_Preelab_Unit (U : Unit_Id) return Boolean is
2276 begin
2277 -- If we have a body with separate spec, test flags on the spec
2279 if Units.Table (U).Utype = Is_Body then
2280 return
2281 Units.Table (Corresponding_Spec (U)).Preelab
2282 or else Units.Table (Corresponding_Spec (U)).Pure;
2284 -- Otherwise we have a spec or body acting as spec, test flags on unit
2286 else
2287 return Units.Table (U).Preelab or else Units.Table (U).Pure;
2288 end if;
2289 end Is_Pure_Or_Preelab_Unit;
2291 ---------------------
2292 -- Is_Waiting_Body --
2293 ---------------------
2295 function Is_Waiting_Body (U : Unit_Id) return Boolean is
2296 begin
2297 return
2298 Units.Table (U).Utype = Is_Body
2299 and then UNR.Table (Corresponding_Spec (U)).Elab_Position /= 0;
2300 end Is_Waiting_Body;
2302 -------------------------
2303 -- Make_Elab_All_Entry --
2304 -------------------------
2306 function Make_Elab_All_Entry
2307 (Unam : Unit_Name_Type;
2308 Link : Elab_All_Id) return Elab_All_Id
2310 begin
2311 Elab_All_Entries.Append ((Needed_By => Unam, Next_Elab => Link));
2312 return Elab_All_Entries.Last;
2313 end Make_Elab_All_Entry;
2315 ----------------
2316 -- Unit_Id_Of --
2317 ----------------
2319 function Unit_Id_Of (Uname : Unit_Name_Type) return Unit_Id is
2320 Info : constant Int := Get_Name_Table_Int (Uname);
2322 begin
2323 pragma Assert (Info /= 0 and then Unit_Id (Info) /= No_Unit_Id);
2324 return Unit_Id (Info);
2325 end Unit_Id_Of;
2327 --------------
2328 -- Validate --
2329 --------------
2331 procedure Validate (Order : Unit_Id_Array; Doing_New : Boolean) is
2332 Cur_SCC : Unit_Id := No_Unit_Id;
2333 OK : Boolean := True;
2334 Msg : String := "Old: ";
2336 begin
2337 if Doing_New then
2338 Msg := "New: ";
2339 end if;
2341 -- For each unit, assert that its successors are elaborated after it
2343 for J in Order'Range loop
2344 declare
2345 U : constant Unit_Id := Order (J);
2346 S : Successor_Id := UNR.Table (U).Successors;
2348 begin
2349 while S /= No_Successor loop
2350 if UNR.Table (Succ.Table (S).After).Elab_Position <=
2351 UNR.Table (U).Elab_Position
2352 then
2353 OK := False;
2354 Write_Line (Msg & " elab order failed");
2355 end if;
2357 S := Succ.Table (S).Next;
2358 end loop;
2359 end;
2360 end loop;
2362 -- An SCC of size 2 units necessarily consists of a spec and the
2363 -- corresponding body. Assert that the body is elaborated immediately
2364 -- after the spec, with nothing in between. (We only have SCCs in the
2365 -- new algorithm.)
2367 if Doing_New then
2368 for J in Order'Range loop
2369 declare
2370 U : constant Unit_Id := Order (J);
2372 begin
2373 if Nodes (U)'Length = 2 then
2374 if Units.Table (U).Utype = Is_Spec then
2375 if Order (J + 1) /= Corresponding_Body (U) then
2376 OK := False;
2377 Write_Line (Msg & "Bad spec with SCC of size 2:");
2378 Write_SCC (SCC (U));
2379 end if;
2380 end if;
2382 if Units.Table (U).Utype = Is_Body then
2383 if Order (J - 1) /= Corresponding_Spec (U) then
2384 OK := False;
2385 Write_Line (Msg & "Bad body with SCC of size 2:");
2386 Write_SCC (SCC (U));
2387 end if;
2388 end if;
2389 end if;
2390 end;
2391 end loop;
2393 -- Assert that all units of an SCC are elaborated together, with no
2394 -- units from other SCCs in between. The above spec/body case is a
2395 -- special case of this general rule.
2397 for J in Order'Range loop
2398 declare
2399 U : constant Unit_Id := Order (J);
2401 begin
2402 if SCC (U) /= Cur_SCC then
2403 Cur_SCC := SCC (U);
2404 if UNR.Table (Cur_SCC).Validate_Seen then
2405 OK := False;
2406 Write_Line (Msg & "SCC not elaborated together:");
2407 Write_SCC (Cur_SCC);
2408 end if;
2410 UNR.Table (Cur_SCC).Validate_Seen := True;
2411 end if;
2412 end;
2413 end loop;
2414 end if;
2416 pragma Assert (OK);
2417 end Validate;
2419 -------------------
2420 -- Write_Closure --
2421 -------------------
2423 procedure Write_Closure (Order : Unit_Id_Array) is
2424 package Closure_Sources is new Table.Table
2425 (Table_Component_Type => File_Name_Type,
2426 Table_Index_Type => Natural,
2427 Table_Low_Bound => 1,
2428 Table_Initial => 10,
2429 Table_Increment => 100,
2430 Table_Name => "Gnatbind.Closure_Sources");
2431 -- Table to record the sources in the closure, to avoid duplications
2433 function Put_In_Sources (S : File_Name_Type) return Boolean;
2434 -- Check if S is already in table Sources and put in Sources if it is
2435 -- not. Return False if the source is already in Sources, and True if
2436 -- it is added.
2438 --------------------
2439 -- Put_In_Sources --
2440 --------------------
2442 function Put_In_Sources (S : File_Name_Type) return Boolean is
2443 begin
2444 for J in 1 .. Closure_Sources.Last loop
2445 if Closure_Sources.Table (J) = S then
2446 return False;
2447 end if;
2448 end loop;
2450 Closure_Sources.Append (S);
2451 return True;
2452 end Put_In_Sources;
2454 -- Local variables
2456 Source : File_Name_Type;
2458 -- Start of processing for Write_Closure
2460 begin
2461 Closure_Sources.Init;
2463 if not Zero_Formatting then
2464 Write_Eol;
2465 Write_Line ("REFERENCED SOURCES");
2466 end if;
2468 for J in reverse Order'Range loop
2469 Source := Units.Table (Order (J)).Sfile;
2471 -- Do not include same source more than once
2473 if Put_In_Sources (Source)
2475 -- Do not include run-time units unless -Ra switch set
2477 and then (List_Closure_All
2478 or else not Is_Internal_File_Name (Source))
2479 then
2480 if not Zero_Formatting then
2481 Write_Str (" ");
2482 end if;
2484 Write_Line (Get_Name_String (Source));
2485 end if;
2486 end loop;
2488 -- Subunits do not appear in the elaboration table because they are
2489 -- subsumed by their parent units, but we need to list them for other
2490 -- tools. For now they are listed after other files, rather than right
2491 -- after their parent, since there is no easy link between the
2492 -- elaboration table and the ALIs table ??? As subunits may appear
2493 -- repeatedly in the list, if the parent unit appears in the context of
2494 -- several units in the closure, duplicates are suppressed.
2496 for J in Sdep.First .. Sdep.Last loop
2497 Source := Sdep.Table (J).Sfile;
2499 if Sdep.Table (J).Subunit_Name /= No_Name
2500 and then Put_In_Sources (Source)
2501 and then not Is_Internal_File_Name (Source)
2502 then
2503 if not Zero_Formatting then
2504 Write_Str (" ");
2505 end if;
2507 Write_Line (Get_Name_String (Source));
2508 end if;
2509 end loop;
2511 if not Zero_Formatting then
2512 Write_Eol;
2513 end if;
2514 end Write_Closure;
2516 ------------------------
2517 -- Write_Dependencies --
2518 ------------------------
2520 procedure Write_Dependencies is
2521 begin
2522 if not Zero_Formatting then
2523 Write_Eol;
2524 Write_Line (" ELABORATION ORDER DEPENDENCIES");
2525 Write_Eol;
2526 end if;
2528 Info_Prefix_Suppress := True;
2530 for S in Succ_First .. Succ.Last loop
2531 Elab_Error_Msg (S);
2532 end loop;
2534 Info_Prefix_Suppress := False;
2536 if not Zero_Formatting then
2537 Write_Eol;
2538 end if;
2539 end Write_Dependencies;
2541 --------------------------
2542 -- Write_Elab_All_Chain --
2543 --------------------------
2545 procedure Write_Elab_All_Chain (S : Successor_Id) is
2546 ST : constant Successor_Link := Succ.Table (S);
2547 After : constant Unit_Name_Type := Units.Table (ST.After).Uname;
2549 L : Elab_All_Id;
2550 Nam : Unit_Name_Type;
2552 First_Name : Boolean := True;
2554 begin
2555 if ST.Reason in Elab_All .. Elab_All_Desirable then
2556 L := ST.Elab_All_Link;
2557 while L /= No_Elab_All_Link loop
2558 Nam := Elab_All_Entries.Table (L).Needed_By;
2559 Error_Msg_Unit_1 := Nam;
2560 Error_Msg_Output (" $", Info => True);
2562 Get_Name_String (Nam);
2564 if Name_Buffer (Name_Len) = 'b' then
2565 if First_Name then
2566 Error_Msg_Output
2567 (" must be elaborated along with its spec:",
2568 Info => True);
2570 else
2571 Error_Msg_Output
2572 (" which must be elaborated along with its "
2573 & "spec:",
2574 Info => True);
2575 end if;
2577 else
2578 if First_Name then
2579 Error_Msg_Output
2580 (" is withed by:",
2581 Info => True);
2583 else
2584 Error_Msg_Output
2585 (" which is withed by:",
2586 Info => True);
2587 end if;
2588 end if;
2590 First_Name := False;
2592 L := Elab_All_Entries.Table (L).Next_Elab;
2593 end loop;
2595 Error_Msg_Unit_1 := After;
2596 Error_Msg_Output (" $", Info => True);
2597 end if;
2598 end Write_Elab_All_Chain;
2600 ----------------------
2601 -- Write_Elab_Order --
2602 ----------------------
2604 procedure Write_Elab_Order
2605 (Order : Unit_Id_Array; Title : String)
2607 begin
2608 if Title /= "" then
2609 Write_Eol;
2610 Write_Line (Title);
2611 end if;
2613 for J in Order'Range loop
2614 if not Units.Table (Order (J)).SAL_Interface then
2615 if not Zero_Formatting then
2616 Write_Str (" ");
2617 end if;
2619 Write_Unit_Name (Units.Table (Order (J)).Uname);
2620 Write_Eol;
2621 end if;
2622 end loop;
2624 if Title /= "" then
2625 Write_Eol;
2626 end if;
2627 end Write_Elab_Order;
2629 --------------
2630 -- Elab_New --
2631 --------------
2633 package body Elab_New is
2635 generic
2636 type Node is (<>);
2637 First_Node : Node;
2638 Last_Node : Node;
2639 type Node_Array is array (Pos range <>) of Node;
2640 with function Successors (N : Node) return Node_Array;
2641 with procedure Create_SCC (Root : Node; Nodes : Node_Array);
2643 procedure Compute_Strongly_Connected_Components;
2644 -- Compute SCCs for a directed graph. The nodes in the graph are all
2645 -- values of type Node in the range First_Node .. Last_Node.
2646 -- Successors(N) returns the nodes pointed to by the edges emanating
2647 -- from N. Create_SCC is a callback that is called once for each SCC,
2648 -- passing in the Root node for that SCC (which is an arbitrary node in
2649 -- the SCC used as a representative of that SCC), and the set of Nodes
2650 -- in that SCC.
2652 -- This is generic, in case we want to use it elsewhere; then we could
2653 -- move this into a separate library unit. Unfortunately, it's not as
2654 -- generic as one might like. Ideally, we would have "type Node is
2655 -- private;", and pass in iterators to iterate over all nodes, and over
2656 -- the successors of a given node. However, that leads to using advanced
2657 -- features of Ada that are not allowed in the compiler and binder for
2658 -- bootstrapping reasons. It also leads to trampolines, which are not
2659 -- allowed in the compiler and binder. Restricting Node to be discrete
2660 -- allows us to iterate over all nodes with a 'for' loop, and allows us
2661 -- to attach temporary information to nodes by having an array indexed
2662 -- by Node.
2664 procedure Compute_Unit_SCCs;
2665 -- Use the above generic procedure to compute the SCCs for the graph of
2666 -- units. Store in each Unit_Node_Record the SCC_Root and Nodes
2667 -- components. Also initialize the SCC_Num_Pred components.
2669 procedure Find_Elab_All_Errors;
2670 -- Generate an error for illegal Elaborate_All pragmas (explicit or
2671 -- implicit). A pragma Elaborate_All (Y) on unit X is legal if and only
2672 -- if X and Y are in different SCCs.
2674 -------------------------------------------
2675 -- Compute_Strongly_Connected_Components --
2676 -------------------------------------------
2678 procedure Compute_Strongly_Connected_Components is
2680 -- This uses Tarjan's algorithm for finding SCCs. Comments here are
2681 -- intended to tell what it does, but if you want to know how it
2682 -- works, you have to look it up. Please do not modify this code
2683 -- without reading up on Tarjan's algorithm.
2685 subtype Node_Index is Nat;
2686 No_Index : constant Node_Index := 0;
2688 Num_Nodes : constant Nat :=
2689 Node'Pos (Last_Node) - Node'Pos (First_Node) + 1;
2690 Stack : Node_Array (1 .. Num_Nodes);
2691 Top : Node_Index := 0;
2692 -- Stack of nodes, pushed when first visited. All nodes of an SCC are
2693 -- popped at once when the SCC is found.
2695 subtype Valid_Node is Node range First_Node .. Last_Node;
2696 Node_Indices : array (Valid_Node) of Node_Index :=
2697 (others => No_Index);
2698 -- Each node has an "index", which is the sequential number in the
2699 -- order in which they are visited in the recursive walk. No_Index
2700 -- means "not yet visited"; we want to avoid walking any node more
2701 -- than once.
2703 Index : Node_Index := 1;
2704 -- Next value to be assigned to a node index
2706 Low_Links : array (Valid_Node) of Node_Index;
2707 -- Low_Links (N) is the smallest index of nodes reachable from N
2709 On_Stack : array (Valid_Node) of Boolean := (others => False);
2710 -- True if the node is currently on the stack
2712 procedure Walk (N : Valid_Node);
2713 -- Recursive depth-first graph walk, with the node index used to
2714 -- avoid visiting a node more than once.
2716 ----------
2717 -- Walk --
2718 ----------
2720 procedure Walk (N : Valid_Node) is
2721 Stack_Position_Of_N : constant Pos := Top + 1;
2722 S : constant Node_Array := Successors (N);
2724 begin
2725 -- Assign the index and low link, increment Index for next call to
2726 -- Walk.
2728 Node_Indices (N) := Index;
2729 Low_Links (N) := Index;
2730 Index := Index + 1;
2732 -- Push it on the stack:
2734 Top := Stack_Position_Of_N;
2735 Stack (Top) := N;
2736 On_Stack (N) := True;
2738 -- Walk not-yet-visited subnodes, and update low link for visited
2739 -- ones as appropriate.
2741 for J in S'Range loop
2742 if Node_Indices (S (J)) = No_Index then
2743 Walk (S (J));
2744 Low_Links (N) :=
2745 Node_Index'Min (Low_Links (N), Low_Links (S (J)));
2746 elsif On_Stack (S (J)) then
2747 Low_Links (N) :=
2748 Node_Index'Min (Low_Links (N), Node_Indices (S (J)));
2749 end if;
2750 end loop;
2752 -- If the index is (still) equal to the low link, we've found an
2753 -- SCC. Pop the whole SCC off the stack, and call Create_SCC.
2755 if Low_Links (N) = Node_Indices (N) then
2756 declare
2757 SCC : Node_Array renames
2758 Stack (Stack_Position_Of_N .. Top);
2759 pragma Assert (SCC'Length >= 1);
2760 pragma Assert (SCC (SCC'First) = N);
2762 begin
2763 for J in SCC'Range loop
2764 On_Stack (SCC (J)) := False;
2765 end loop;
2767 Create_SCC (Root => N, Nodes => SCC);
2768 pragma Assert (Top - SCC'Length = Stack_Position_Of_N - 1);
2769 Top := Stack_Position_Of_N - 1; -- pop all
2770 end;
2771 end if;
2772 end Walk;
2774 -- Start of processing for Compute_Strongly_Connected_Components
2776 begin
2777 -- Walk all the nodes that have not yet been walked
2779 for N in Valid_Node loop
2780 if Node_Indices (N) = No_Index then
2781 Walk (N);
2782 end if;
2783 end loop;
2784 end Compute_Strongly_Connected_Components;
2786 -----------------------
2787 -- Compute_Unit_SCCs --
2788 -----------------------
2790 procedure Compute_Unit_SCCs is
2791 function Successors (U : Unit_Id) return Unit_Id_Array;
2792 -- Return all the units that must be elaborated after U. In addition,
2793 -- if U is a body, include the corresponding spec; this ensures that
2794 -- a spec/body pair are always in the same SCC.
2796 procedure Create_SCC (Root : Unit_Id; Nodes : Unit_Id_Array);
2797 -- Set Nodes of the Root, and set SCC_Root of all the Nodes
2799 procedure Init_SCC_Num_Pred (U : Unit_Id);
2800 -- Initialize the SCC_Num_Pred fields, so that the root of each SCC
2801 -- has a count of the number of successors of all the units in the
2802 -- SCC, but only for successors outside the SCC.
2804 procedure Compute_SCCs is new Compute_Strongly_Connected_Components
2805 (Node => Unit_Id,
2806 First_Node => Units.First,
2807 Last_Node => Units.Last,
2808 Node_Array => Unit_Id_Array,
2809 Successors => Successors,
2810 Create_SCC => Create_SCC);
2812 ----------------
2813 -- Create_SCC --
2814 ----------------
2816 procedure Create_SCC (Root : Unit_Id; Nodes : Unit_Id_Array) is
2817 begin
2818 if Debug_Flag_V then
2819 Write_Str ("Root = ");
2820 Write_Int (Int (Root));
2821 Write_Str (" ");
2822 Write_Unit_Name (Units.Table (Root).Uname);
2823 Write_Str (" -- ");
2824 Write_Int (Nodes'Length);
2825 Write_Line (" units:");
2827 for J in Nodes'Range loop
2828 Write_Str (" ");
2829 Write_Int (Int (Nodes (J)));
2830 Write_Str (" ");
2831 Write_Unit_Name (Units.Table (Nodes (J)).Uname);
2832 Write_Eol;
2833 end loop;
2834 end if;
2836 pragma Assert (Nodes (Nodes'First) = Root);
2837 pragma Assert (UNR.Table (Root).Nodes = null);
2838 UNR.Table (Root).Nodes := new Unit_Id_Array'(Nodes);
2840 for J in Nodes'Range loop
2841 pragma Assert (SCC (Nodes (J)) = No_Unit_Id);
2842 UNR.Table (Nodes (J)).SCC_Root := Root;
2843 end loop;
2844 end Create_SCC;
2846 ----------------
2847 -- Successors --
2848 ----------------
2850 function Successors (U : Unit_Id) return Unit_Id_Array is
2851 S : Successor_Id := UNR.Table (U).Successors;
2852 Tab : Unit_Id_Table;
2854 begin
2855 -- Pretend that a spec is a successor of its body (even though it
2856 -- isn't), just so both get included.
2858 if Units.Table (U).Utype = Is_Body then
2859 Append (Tab, Corresponding_Spec (U));
2860 end if;
2862 -- Now include the real successors
2864 while S /= No_Successor loop
2865 pragma Assert (Succ.Table (S).Before = U);
2866 Append (Tab, Succ.Table (S).After);
2867 S := Succ.Table (S).Next;
2868 end loop;
2870 declare
2871 Result : constant Unit_Id_Array := Tab.Table (1 .. Last (Tab));
2873 begin
2874 Free (Tab);
2875 return Result;
2876 end;
2877 end Successors;
2879 -----------------------
2880 -- Init_SCC_Num_Pred --
2881 -----------------------
2883 procedure Init_SCC_Num_Pred (U : Unit_Id) is
2884 begin
2885 if UNR.Table (U).Visited then
2886 return;
2887 end if;
2889 UNR.Table (U).Visited := True;
2891 declare
2892 S : Successor_Id := UNR.Table (U).Successors;
2894 begin
2895 while S /= No_Successor loop
2896 pragma Assert (Succ.Table (S).Before = U);
2897 Init_SCC_Num_Pred (Succ.Table (S).After);
2899 if SCC (U) /= SCC (Succ.Table (S).After) then
2900 UNR.Table (SCC (Succ.Table (S).After)).SCC_Num_Pred :=
2901 UNR.Table (SCC (Succ.Table (S).After)).SCC_Num_Pred + 1;
2902 end if;
2904 S := Succ.Table (S).Next;
2905 end loop;
2906 end;
2907 end Init_SCC_Num_Pred;
2909 -- Start of processing for Compute_Unit_SCCs
2911 begin
2912 Compute_SCCs;
2914 for Uref in UNR.First .. UNR.Last loop
2915 pragma Assert (not UNR.Table (Uref).Visited);
2916 null;
2917 end loop;
2919 for Uref in UNR.First .. UNR.Last loop
2920 Init_SCC_Num_Pred (Uref);
2921 end loop;
2923 -- Assert that SCC_Root of all units has been set to a valid unit,
2924 -- and that SCC_Num_Pred has not been modified in non-root units.
2926 for Uref in UNR.First .. UNR.Last loop
2927 pragma Assert (UNR.Table (Uref).SCC_Root /= No_Unit_Id);
2928 pragma Assert (UNR.Table (Uref).SCC_Root in UNR.First .. UNR.Last);
2930 if SCC (Uref) /= Uref then
2931 pragma Assert (UNR.Table (Uref).SCC_Num_Pred = 0);
2932 null;
2933 end if;
2934 end loop;
2935 end Compute_Unit_SCCs;
2937 --------------------------
2938 -- Find_Elab_All_Errors --
2939 --------------------------
2941 procedure Find_Elab_All_Errors is
2942 Withed_Unit : Unit_Id;
2944 begin
2945 for U in Units.First .. Units.Last loop
2947 -- If this unit is not an interface to a stand-alone library,
2948 -- process WITH references for this unit ignoring interfaces to
2949 -- stand-alone libraries.
2951 if not Units.Table (U).SAL_Interface then
2952 for W in Units.Table (U).First_With ..
2953 Units.Table (U).Last_With
2954 loop
2955 if Withs.Table (W).Sfile /= No_File
2956 and then (not Withs.Table (W).SAL_Interface)
2957 then
2958 -- Check for special case of withing a unit that does not
2959 -- exist any more.
2961 if Get_Name_Table_Int (Withs.Table (W).Uname) = 0 then
2962 goto Next_With;
2963 end if;
2965 Withed_Unit := Unit_Id_Of (Withs.Table (W).Uname);
2967 -- If it's Elaborate_All or Elab_All_Desirable, check
2968 -- that the withER and withEE are not in the same SCC.
2970 if Withs.Table (W).Elaborate_All
2971 or else Withs.Table (W).Elab_All_Desirable
2972 then
2973 if SCC (U) = SCC (Withed_Unit) then
2974 Elab_Cycle_Found := True; -- ???
2976 -- We could probably give better error messages
2977 -- than Elab_Old here, but for now, to avoid
2978 -- disruption, we don't give any error here.
2979 -- Instead, we set the Elab_Cycle_Found flag above,
2980 -- and then run the Elab_Old algorithm to issue the
2981 -- error message. Ideally, we would like to print
2982 -- multiple errors rather than stopping after the
2983 -- first cycle.
2985 if False then
2986 Error_Msg_Output
2987 ("illegal pragma Elaborate_All",
2988 Info => False);
2989 end if;
2990 end if;
2991 end if;
2992 end if;
2994 <<Next_With>>
2995 null;
2996 end loop;
2997 end if;
2998 end loop;
2999 end Find_Elab_All_Errors;
3001 ---------------------
3002 -- Find_Elab_Order --
3003 ---------------------
3005 procedure Find_Elab_Order (Elab_Order : out Unit_Id_Table) is
3006 Best_So_Far : Unit_Id;
3007 U : Unit_Id;
3009 begin
3010 -- Gather dependencies and output them if option set
3012 Gather_Dependencies;
3014 Compute_Unit_SCCs;
3016 -- Initialize the no-predecessor list
3018 No_Pred := No_Unit_Id;
3019 for U in UNR.First .. UNR.Last loop
3020 if UNR.Table (U).Num_Pred = 0 then
3021 UNR.Table (U).Nextnp := No_Pred;
3022 No_Pred := U;
3023 end if;
3024 end loop;
3026 -- OK, now we determine the elaboration order proper. All we do is to
3027 -- select the best choice from the no-predecessor list until all the
3028 -- nodes have been chosen.
3030 Outer : loop
3031 if Debug_Flag_N then
3032 Write_Line ("Outer loop");
3033 end if;
3035 -- If there are no nodes with predecessors, then either we are
3036 -- done, as indicated by Num_Left being set to zero, or we have
3037 -- a circularity. In the latter case, diagnose the circularity,
3038 -- removing it from the graph and continue.
3039 -- ????But Diagnose_Elaboration_Problem always raises an
3040 -- exception, so the loop never goes around more than once.
3042 Get_No_Pred : while No_Pred = No_Unit_Id loop
3043 exit Outer when Num_Left < 1;
3044 Diagnose_Elaboration_Problem (Elab_Order);
3045 end loop Get_No_Pred;
3047 U := No_Pred;
3048 Best_So_Far := No_Unit_Id;
3050 -- Loop to choose best entry in No_Pred list
3052 No_Pred_Search : loop
3053 if Debug_Flag_N then
3054 Write_Str (" considering choice of ");
3055 Write_Unit_Name (Units.Table (U).Uname);
3056 Write_Eol;
3058 if Units.Table (U).Elaborate_Body then
3059 Write_Str
3060 (" Elaborate_Body = True, Num_Pred for body = ");
3061 Write_Int
3062 (UNR.Table (Corresponding_Body (U)).Num_Pred);
3063 else
3064 Write_Str
3065 (" Elaborate_Body = False");
3066 end if;
3068 Write_Eol;
3069 end if;
3071 -- Don't even consider units whose SCC is not ready. This
3072 -- ensures that all units of an SCC will be elaborated
3073 -- together, with no other units in between.
3075 if SCC_Num_Pred (U) = 0
3076 and then Better_Choice (U, Best_So_Far)
3077 then
3078 if Debug_Flag_N then
3079 Write_Line (" tentatively chosen (best so far)");
3080 end if;
3082 Best_So_Far := U;
3083 else
3084 if Debug_Flag_N then
3085 Write_Line (" SCC not ready");
3086 end if;
3087 end if;
3089 U := UNR.Table (U).Nextnp;
3090 exit No_Pred_Search when U = No_Unit_Id;
3091 end loop No_Pred_Search;
3093 -- If there are no units on the No_Pred list whose SCC is ready,
3094 -- there must be a cycle. Defer to Elab_Old to print an error
3095 -- message.
3097 if Best_So_Far = No_Unit_Id then
3098 Elab_Cycle_Found := True;
3099 return;
3100 end if;
3102 -- Choose the best candidate found
3104 Choose (Elab_Order, Best_So_Far, " [Best_So_Far]");
3106 -- If it's a spec with a body, and the body is not yet chosen,
3107 -- choose the body if possible. The case where the body is
3108 -- already chosen is Elaborate_Body; the above call to Choose
3109 -- the spec will also Choose the body.
3111 if Units.Table (Best_So_Far).Utype = Is_Spec
3112 and then UNR.Table
3113 (Corresponding_Body (Best_So_Far)).Elab_Position = 0
3114 then
3115 declare
3116 Choose_The_Body : constant Boolean :=
3117 UNR.Table (Corresponding_Body
3118 (Best_So_Far)).Num_Pred = 0;
3120 begin
3121 if Debug_Flag_B then
3122 Write_Str ("Can we choose the body?... ");
3124 if Choose_The_Body then
3125 Write_Line ("Yes!");
3126 else
3127 Write_Line ("No.");
3128 end if;
3129 end if;
3131 if Choose_The_Body then
3132 Choose
3133 (Elab_Order => Elab_Order,
3134 Chosen => Corresponding_Body (Best_So_Far),
3135 Msg => " [body]");
3136 end if;
3137 end;
3138 end if;
3140 -- Finally, choose all the rest of the units in the same SCC as
3141 -- Best_So_Far. If it hasn't been chosen (Elab_Position = 0), and
3142 -- it's ready to be chosen (Num_Pred = 0), then we can choose it.
3144 loop
3145 declare
3146 Chose_One_Or_More : Boolean := False;
3147 SCC : Unit_Id_Array renames Nodes (Best_So_Far).all;
3149 begin
3150 for J in SCC'Range loop
3151 if UNR.Table (SCC (J)).Elab_Position = 0
3152 and then UNR.Table (SCC (J)).Num_Pred = 0
3153 then
3154 Chose_One_Or_More := True;
3155 Choose (Elab_Order, SCC (J), " [same SCC]");
3156 end if;
3157 end loop;
3159 exit when not Chose_One_Or_More;
3160 end;
3161 end loop;
3162 end loop Outer;
3164 Find_Elab_All_Errors;
3165 end Find_Elab_Order;
3167 -----------
3168 -- Nodes --
3169 -----------
3171 function Nodes (U : Unit_Id) return Unit_Id_Array_Ptr is
3172 begin
3173 return UNR.Table (SCC (U)).Nodes;
3174 end Nodes;
3176 ---------
3177 -- SCC --
3178 ---------
3180 function SCC (U : Unit_Id) return Unit_Id is
3181 begin
3182 return UNR.Table (U).SCC_Root;
3183 end SCC;
3185 ------------------
3186 -- SCC_Num_Pred --
3187 ------------------
3189 function SCC_Num_Pred (U : Unit_Id) return Int is
3190 begin
3191 return UNR.Table (SCC (U)).SCC_Num_Pred;
3192 end SCC_Num_Pred;
3194 ---------------
3195 -- Write_SCC --
3196 ---------------
3198 procedure Write_SCC (U : Unit_Id) is
3199 pragma Assert (SCC (U) = U);
3200 begin
3201 for J in Nodes (U)'Range loop
3202 Write_Int (UNR.Table (Nodes (U) (J)).Elab_Position);
3203 Write_Str (". ");
3204 Write_Unit_Name (Units.Table (Nodes (U) (J)).Uname);
3205 Write_Eol;
3206 end loop;
3208 Write_Eol;
3209 end Write_SCC;
3211 end Elab_New;
3213 --------------
3214 -- Elab_Old --
3215 --------------
3217 package body Elab_Old is
3219 ---------------------
3220 -- Find_Elab_Order --
3221 ---------------------
3223 procedure Find_Elab_Order (Elab_Order : out Unit_Id_Table) is
3224 Best_So_Far : Unit_Id;
3225 U : Unit_Id;
3227 begin
3228 -- Gather dependencies and output them if option set
3230 Gather_Dependencies;
3232 -- Initialize the no-predecessor list
3234 No_Pred := No_Unit_Id;
3235 for U in UNR.First .. UNR.Last loop
3236 if UNR.Table (U).Num_Pred = 0 then
3237 UNR.Table (U).Nextnp := No_Pred;
3238 No_Pred := U;
3239 end if;
3240 end loop;
3242 -- OK, now we determine the elaboration order proper. All we do is to
3243 -- select the best choice from the no-predecessor list until all the
3244 -- nodes have been chosen.
3246 Outer : loop
3248 -- If there are no nodes with predecessors, then either we are
3249 -- done, as indicated by Num_Left being set to zero, or we have
3250 -- a circularity. In the latter case, diagnose the circularity,
3251 -- removing it from the graph and continue.
3252 -- ????But Diagnose_Elaboration_Problem always raises an
3253 -- exception, so the loop never goes around more than once.
3255 Get_No_Pred : while No_Pred = No_Unit_Id loop
3256 exit Outer when Num_Left < 1;
3257 Diagnose_Elaboration_Problem (Elab_Order);
3258 end loop Get_No_Pred;
3260 U := No_Pred;
3261 Best_So_Far := No_Unit_Id;
3263 -- Loop to choose best entry in No_Pred list
3265 No_Pred_Search : loop
3266 if Debug_Flag_N then
3267 Write_Str (" considering choice of ");
3268 Write_Unit_Name (Units.Table (U).Uname);
3269 Write_Eol;
3271 if Units.Table (U).Elaborate_Body then
3272 Write_Str
3273 (" Elaborate_Body = True, Num_Pred for body = ");
3274 Write_Int
3275 (UNR.Table (Corresponding_Body (U)).Num_Pred);
3276 else
3277 Write_Str
3278 (" Elaborate_Body = False");
3279 end if;
3281 Write_Eol;
3282 end if;
3284 -- This is a candididate to be considered for choice
3286 if Better_Choice (U, Best_So_Far) then
3287 if Debug_Flag_N then
3288 Write_Line (" tentatively chosen (best so far)");
3289 end if;
3291 Best_So_Far := U;
3292 end if;
3294 U := UNR.Table (U).Nextnp;
3295 exit No_Pred_Search when U = No_Unit_Id;
3296 end loop No_Pred_Search;
3298 -- Choose the best candidate found
3300 Choose (Elab_Order, Best_So_Far, " [Elab_Old Best_So_Far]");
3301 end loop Outer;
3302 end Find_Elab_Order;
3304 end Elab_Old;
3306 end Binde;