* common.opt (-Wattributes): New. Default true.
[official-gcc.git] / gcc / cp / parser.c
bloba0d71b3141f9bc3a2a18309191e7dcc2579c7ec9
1 /* C++ Parser.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004,
3 2005 Free Software Foundation, Inc.
4 Written by Mark Mitchell <mark@codesourcery.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful, but
14 WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "dyn-string.h"
28 #include "varray.h"
29 #include "cpplib.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "c-pragma.h"
33 #include "decl.h"
34 #include "flags.h"
35 #include "diagnostic.h"
36 #include "toplev.h"
37 #include "output.h"
38 #include "target.h"
39 #include "c-common.h"
42 /* The lexer. */
44 /* The cp_lexer_* routines mediate between the lexer proper (in libcpp
45 and c-lex.c) and the C++ parser. */
47 /* A C++ token. */
49 typedef struct cp_token GTY (())
51 /* The kind of token. */
52 ENUM_BITFIELD (cpp_ttype) type : 8;
53 /* If this token is a keyword, this value indicates which keyword.
54 Otherwise, this value is RID_MAX. */
55 ENUM_BITFIELD (rid) keyword : 8;
56 /* Token flags. */
57 unsigned char flags;
58 /* True if this token is from a system header. */
59 BOOL_BITFIELD in_system_header : 1;
60 /* True if this token is from a context where it is implicitly extern "C" */
61 BOOL_BITFIELD implicit_extern_c : 1;
62 /* The value associated with this token, if any. */
63 tree value;
64 /* The location at which this token was found. */
65 location_t location;
66 } cp_token;
68 /* We use a stack of token pointer for saving token sets. */
69 typedef struct cp_token *cp_token_position;
70 DEF_VEC_P (cp_token_position);
71 DEF_VEC_ALLOC_P (cp_token_position,heap);
73 static const cp_token eof_token =
75 CPP_EOF, RID_MAX, 0, 0, 0, NULL_TREE,
76 #if USE_MAPPED_LOCATION
78 #else
79 {0, 0}
80 #endif
83 /* The cp_lexer structure represents the C++ lexer. It is responsible
84 for managing the token stream from the preprocessor and supplying
85 it to the parser. Tokens are never added to the cp_lexer after
86 it is created. */
88 typedef struct cp_lexer GTY (())
90 /* The memory allocated for the buffer. NULL if this lexer does not
91 own the token buffer. */
92 cp_token * GTY ((length ("%h.buffer_length"))) buffer;
93 /* If the lexer owns the buffer, this is the number of tokens in the
94 buffer. */
95 size_t buffer_length;
97 /* A pointer just past the last available token. The tokens
98 in this lexer are [buffer, last_token). */
99 cp_token_position GTY ((skip)) last_token;
101 /* The next available token. If NEXT_TOKEN is &eof_token, then there are
102 no more available tokens. */
103 cp_token_position GTY ((skip)) next_token;
105 /* A stack indicating positions at which cp_lexer_save_tokens was
106 called. The top entry is the most recent position at which we
107 began saving tokens. If the stack is non-empty, we are saving
108 tokens. */
109 VEC(cp_token_position,heap) *GTY ((skip)) saved_tokens;
111 /* True if we should output debugging information. */
112 bool debugging_p;
114 /* The next lexer in a linked list of lexers. */
115 struct cp_lexer *next;
116 } cp_lexer;
118 /* cp_token_cache is a range of tokens. There is no need to represent
119 allocate heap memory for it, since tokens are never removed from the
120 lexer's array. There is also no need for the GC to walk through
121 a cp_token_cache, since everything in here is referenced through
122 a lexer. */
124 typedef struct cp_token_cache GTY(())
126 /* The beginning of the token range. */
127 cp_token * GTY((skip)) first;
129 /* Points immediately after the last token in the range. */
130 cp_token * GTY ((skip)) last;
131 } cp_token_cache;
133 /* Prototypes. */
135 static cp_lexer *cp_lexer_new_main
136 (void);
137 static cp_lexer *cp_lexer_new_from_tokens
138 (cp_token_cache *tokens);
139 static void cp_lexer_destroy
140 (cp_lexer *);
141 static int cp_lexer_saving_tokens
142 (const cp_lexer *);
143 static cp_token_position cp_lexer_token_position
144 (cp_lexer *, bool);
145 static cp_token *cp_lexer_token_at
146 (cp_lexer *, cp_token_position);
147 static void cp_lexer_get_preprocessor_token
148 (cp_lexer *, cp_token *);
149 static inline cp_token *cp_lexer_peek_token
150 (cp_lexer *);
151 static cp_token *cp_lexer_peek_nth_token
152 (cp_lexer *, size_t);
153 static inline bool cp_lexer_next_token_is
154 (cp_lexer *, enum cpp_ttype);
155 static bool cp_lexer_next_token_is_not
156 (cp_lexer *, enum cpp_ttype);
157 static bool cp_lexer_next_token_is_keyword
158 (cp_lexer *, enum rid);
159 static cp_token *cp_lexer_consume_token
160 (cp_lexer *);
161 static void cp_lexer_purge_token
162 (cp_lexer *);
163 static void cp_lexer_purge_tokens_after
164 (cp_lexer *, cp_token_position);
165 static void cp_lexer_handle_pragma
166 (cp_lexer *);
167 static void cp_lexer_save_tokens
168 (cp_lexer *);
169 static void cp_lexer_commit_tokens
170 (cp_lexer *);
171 static void cp_lexer_rollback_tokens
172 (cp_lexer *);
173 #ifdef ENABLE_CHECKING
174 static void cp_lexer_print_token
175 (FILE *, cp_token *);
176 static inline bool cp_lexer_debugging_p
177 (cp_lexer *);
178 static void cp_lexer_start_debugging
179 (cp_lexer *) ATTRIBUTE_UNUSED;
180 static void cp_lexer_stop_debugging
181 (cp_lexer *) ATTRIBUTE_UNUSED;
182 #else
183 /* If we define cp_lexer_debug_stream to NULL it will provoke warnings
184 about passing NULL to functions that require non-NULL arguments
185 (fputs, fprintf). It will never be used, so all we need is a value
186 of the right type that's guaranteed not to be NULL. */
187 #define cp_lexer_debug_stream stdout
188 #define cp_lexer_print_token(str, tok) (void) 0
189 #define cp_lexer_debugging_p(lexer) 0
190 #endif /* ENABLE_CHECKING */
192 static cp_token_cache *cp_token_cache_new
193 (cp_token *, cp_token *);
195 /* Manifest constants. */
196 #define CP_LEXER_BUFFER_SIZE 10000
197 #define CP_SAVED_TOKEN_STACK 5
199 /* A token type for keywords, as opposed to ordinary identifiers. */
200 #define CPP_KEYWORD ((enum cpp_ttype) (N_TTYPES + 1))
202 /* A token type for template-ids. If a template-id is processed while
203 parsing tentatively, it is replaced with a CPP_TEMPLATE_ID token;
204 the value of the CPP_TEMPLATE_ID is whatever was returned by
205 cp_parser_template_id. */
206 #define CPP_TEMPLATE_ID ((enum cpp_ttype) (CPP_KEYWORD + 1))
208 /* A token type for nested-name-specifiers. If a
209 nested-name-specifier is processed while parsing tentatively, it is
210 replaced with a CPP_NESTED_NAME_SPECIFIER token; the value of the
211 CPP_NESTED_NAME_SPECIFIER is whatever was returned by
212 cp_parser_nested_name_specifier_opt. */
213 #define CPP_NESTED_NAME_SPECIFIER ((enum cpp_ttype) (CPP_TEMPLATE_ID + 1))
215 /* A token type for tokens that are not tokens at all; these are used
216 to represent slots in the array where there used to be a token
217 that has now been deleted. */
218 #define CPP_PURGED ((enum cpp_ttype) (CPP_NESTED_NAME_SPECIFIER + 1))
220 /* The number of token types, including C++-specific ones. */
221 #define N_CP_TTYPES ((int) (CPP_PURGED + 1))
223 /* Variables. */
225 #ifdef ENABLE_CHECKING
226 /* The stream to which debugging output should be written. */
227 static FILE *cp_lexer_debug_stream;
228 #endif /* ENABLE_CHECKING */
230 /* Create a new main C++ lexer, the lexer that gets tokens from the
231 preprocessor. */
233 static cp_lexer *
234 cp_lexer_new_main (void)
236 cp_token first_token;
237 cp_lexer *lexer;
238 cp_token *pos;
239 size_t alloc;
240 size_t space;
241 cp_token *buffer;
243 /* It's possible that lexing the first token will load a PCH file,
244 which is a GC collection point. So we have to grab the first
245 token before allocating any memory. Pragmas must not be deferred
246 as -fpch-preprocess can generate a pragma to load the PCH file in
247 the preprocessed output used by -save-temps. */
248 cp_lexer_get_preprocessor_token (NULL, &first_token);
250 /* Tell cpplib we want CPP_PRAGMA tokens. */
251 cpp_get_options (parse_in)->defer_pragmas = true;
253 /* Tell c_lex not to merge string constants. */
254 c_lex_return_raw_strings = true;
256 c_common_no_more_pch ();
258 /* Allocate the memory. */
259 lexer = GGC_CNEW (cp_lexer);
261 #ifdef ENABLE_CHECKING
262 /* Initially we are not debugging. */
263 lexer->debugging_p = false;
264 #endif /* ENABLE_CHECKING */
265 lexer->saved_tokens = VEC_alloc (cp_token_position, heap,
266 CP_SAVED_TOKEN_STACK);
268 /* Create the buffer. */
269 alloc = CP_LEXER_BUFFER_SIZE;
270 buffer = ggc_alloc (alloc * sizeof (cp_token));
272 /* Put the first token in the buffer. */
273 space = alloc;
274 pos = buffer;
275 *pos = first_token;
277 /* Get the remaining tokens from the preprocessor. */
278 while (pos->type != CPP_EOF)
280 pos++;
281 if (!--space)
283 space = alloc;
284 alloc *= 2;
285 buffer = ggc_realloc (buffer, alloc * sizeof (cp_token));
286 pos = buffer + space;
288 cp_lexer_get_preprocessor_token (lexer, pos);
290 lexer->buffer = buffer;
291 lexer->buffer_length = alloc - space;
292 lexer->last_token = pos;
293 lexer->next_token = lexer->buffer_length ? buffer : (cp_token *)&eof_token;
295 /* Pragma processing (via cpp_handle_deferred_pragma) may result in
296 direct calls to c_lex. Those callers all expect c_lex to do
297 string constant concatenation. */
298 c_lex_return_raw_strings = false;
300 gcc_assert (lexer->next_token->type != CPP_PURGED);
301 return lexer;
304 /* Create a new lexer whose token stream is primed with the tokens in
305 CACHE. When these tokens are exhausted, no new tokens will be read. */
307 static cp_lexer *
308 cp_lexer_new_from_tokens (cp_token_cache *cache)
310 cp_token *first = cache->first;
311 cp_token *last = cache->last;
312 cp_lexer *lexer = GGC_CNEW (cp_lexer);
314 /* We do not own the buffer. */
315 lexer->buffer = NULL;
316 lexer->buffer_length = 0;
317 lexer->next_token = first == last ? (cp_token *)&eof_token : first;
318 lexer->last_token = last;
320 lexer->saved_tokens = VEC_alloc (cp_token_position, heap,
321 CP_SAVED_TOKEN_STACK);
323 #ifdef ENABLE_CHECKING
324 /* Initially we are not debugging. */
325 lexer->debugging_p = false;
326 #endif
328 gcc_assert (lexer->next_token->type != CPP_PURGED);
329 return lexer;
332 /* Frees all resources associated with LEXER. */
334 static void
335 cp_lexer_destroy (cp_lexer *lexer)
337 if (lexer->buffer)
338 ggc_free (lexer->buffer);
339 VEC_free (cp_token_position, heap, lexer->saved_tokens);
340 ggc_free (lexer);
343 /* Returns nonzero if debugging information should be output. */
345 #ifdef ENABLE_CHECKING
347 static inline bool
348 cp_lexer_debugging_p (cp_lexer *lexer)
350 return lexer->debugging_p;
353 #endif /* ENABLE_CHECKING */
355 static inline cp_token_position
356 cp_lexer_token_position (cp_lexer *lexer, bool previous_p)
358 gcc_assert (!previous_p || lexer->next_token != &eof_token);
360 return lexer->next_token - previous_p;
363 static inline cp_token *
364 cp_lexer_token_at (cp_lexer *lexer ATTRIBUTE_UNUSED, cp_token_position pos)
366 return pos;
369 /* nonzero if we are presently saving tokens. */
371 static inline int
372 cp_lexer_saving_tokens (const cp_lexer* lexer)
374 return VEC_length (cp_token_position, lexer->saved_tokens) != 0;
377 /* Store the next token from the preprocessor in *TOKEN. Return true
378 if we reach EOF. */
380 static void
381 cp_lexer_get_preprocessor_token (cp_lexer *lexer ATTRIBUTE_UNUSED ,
382 cp_token *token)
384 static int is_extern_c = 0;
386 /* Get a new token from the preprocessor. */
387 token->type
388 = c_lex_with_flags (&token->value, &token->location, &token->flags);
389 token->in_system_header = in_system_header;
391 /* On some systems, some header files are surrounded by an
392 implicit extern "C" block. Set a flag in the token if it
393 comes from such a header. */
394 is_extern_c += pending_lang_change;
395 pending_lang_change = 0;
396 token->implicit_extern_c = is_extern_c > 0;
398 /* Check to see if this token is a keyword. */
399 if (token->type == CPP_NAME
400 && C_IS_RESERVED_WORD (token->value))
402 /* Mark this token as a keyword. */
403 token->type = CPP_KEYWORD;
404 /* Record which keyword. */
405 token->keyword = C_RID_CODE (token->value);
406 /* Update the value. Some keywords are mapped to particular
407 entities, rather than simply having the value of the
408 corresponding IDENTIFIER_NODE. For example, `__const' is
409 mapped to `const'. */
410 token->value = ridpointers[token->keyword];
412 /* Handle Objective-C++ keywords. */
413 else if (token->type == CPP_AT_NAME)
415 token->type = CPP_KEYWORD;
416 switch (C_RID_CODE (token->value))
418 /* Map 'class' to '@class', 'private' to '@private', etc. */
419 case RID_CLASS: token->keyword = RID_AT_CLASS; break;
420 case RID_PRIVATE: token->keyword = RID_AT_PRIVATE; break;
421 case RID_PROTECTED: token->keyword = RID_AT_PROTECTED; break;
422 case RID_PUBLIC: token->keyword = RID_AT_PUBLIC; break;
423 case RID_THROW: token->keyword = RID_AT_THROW; break;
424 case RID_TRY: token->keyword = RID_AT_TRY; break;
425 case RID_CATCH: token->keyword = RID_AT_CATCH; break;
426 default: token->keyword = C_RID_CODE (token->value);
429 else
430 token->keyword = RID_MAX;
433 /* Update the globals input_location and in_system_header from TOKEN. */
434 static inline void
435 cp_lexer_set_source_position_from_token (cp_token *token)
437 if (token->type != CPP_EOF)
439 input_location = token->location;
440 in_system_header = token->in_system_header;
444 /* Return a pointer to the next token in the token stream, but do not
445 consume it. */
447 static inline cp_token *
448 cp_lexer_peek_token (cp_lexer *lexer)
450 if (cp_lexer_debugging_p (lexer))
452 fputs ("cp_lexer: peeking at token: ", cp_lexer_debug_stream);
453 cp_lexer_print_token (cp_lexer_debug_stream, lexer->next_token);
454 putc ('\n', cp_lexer_debug_stream);
456 return lexer->next_token;
459 /* Return true if the next token has the indicated TYPE. */
461 static inline bool
462 cp_lexer_next_token_is (cp_lexer* lexer, enum cpp_ttype type)
464 return cp_lexer_peek_token (lexer)->type == type;
467 /* Return true if the next token does not have the indicated TYPE. */
469 static inline bool
470 cp_lexer_next_token_is_not (cp_lexer* lexer, enum cpp_ttype type)
472 return !cp_lexer_next_token_is (lexer, type);
475 /* Return true if the next token is the indicated KEYWORD. */
477 static inline bool
478 cp_lexer_next_token_is_keyword (cp_lexer* lexer, enum rid keyword)
480 cp_token *token;
482 /* Peek at the next token. */
483 token = cp_lexer_peek_token (lexer);
484 /* Check to see if it is the indicated keyword. */
485 return token->keyword == keyword;
488 /* Return a pointer to the Nth token in the token stream. If N is 1,
489 then this is precisely equivalent to cp_lexer_peek_token (except
490 that it is not inline). One would like to disallow that case, but
491 there is one case (cp_parser_nth_token_starts_template_id) where
492 the caller passes a variable for N and it might be 1. */
494 static cp_token *
495 cp_lexer_peek_nth_token (cp_lexer* lexer, size_t n)
497 cp_token *token;
499 /* N is 1-based, not zero-based. */
500 gcc_assert (n > 0 && lexer->next_token != &eof_token);
502 if (cp_lexer_debugging_p (lexer))
503 fprintf (cp_lexer_debug_stream,
504 "cp_lexer: peeking ahead %ld at token: ", (long)n);
506 --n;
507 token = lexer->next_token;
508 while (n != 0)
510 ++token;
511 if (token == lexer->last_token)
513 token = (cp_token *)&eof_token;
514 break;
517 if (token->type != CPP_PURGED)
518 --n;
521 if (cp_lexer_debugging_p (lexer))
523 cp_lexer_print_token (cp_lexer_debug_stream, token);
524 putc ('\n', cp_lexer_debug_stream);
527 return token;
530 /* Return the next token, and advance the lexer's next_token pointer
531 to point to the next non-purged token. */
533 static cp_token *
534 cp_lexer_consume_token (cp_lexer* lexer)
536 cp_token *token = lexer->next_token;
538 gcc_assert (token != &eof_token);
542 lexer->next_token++;
543 if (lexer->next_token == lexer->last_token)
545 lexer->next_token = (cp_token *)&eof_token;
546 break;
550 while (lexer->next_token->type == CPP_PURGED);
552 cp_lexer_set_source_position_from_token (token);
554 /* Provide debugging output. */
555 if (cp_lexer_debugging_p (lexer))
557 fputs ("cp_lexer: consuming token: ", cp_lexer_debug_stream);
558 cp_lexer_print_token (cp_lexer_debug_stream, token);
559 putc ('\n', cp_lexer_debug_stream);
562 return token;
565 /* Permanently remove the next token from the token stream, and
566 advance the next_token pointer to refer to the next non-purged
567 token. */
569 static void
570 cp_lexer_purge_token (cp_lexer *lexer)
572 cp_token *tok = lexer->next_token;
574 gcc_assert (tok != &eof_token);
575 tok->type = CPP_PURGED;
576 tok->location = UNKNOWN_LOCATION;
577 tok->value = NULL_TREE;
578 tok->keyword = RID_MAX;
582 tok++;
583 if (tok == lexer->last_token)
585 tok = (cp_token *)&eof_token;
586 break;
589 while (tok->type == CPP_PURGED);
590 lexer->next_token = tok;
593 /* Permanently remove all tokens after TOK, up to, but not
594 including, the token that will be returned next by
595 cp_lexer_peek_token. */
597 static void
598 cp_lexer_purge_tokens_after (cp_lexer *lexer, cp_token *tok)
600 cp_token *peek = lexer->next_token;
602 if (peek == &eof_token)
603 peek = lexer->last_token;
605 gcc_assert (tok < peek);
607 for ( tok += 1; tok != peek; tok += 1)
609 tok->type = CPP_PURGED;
610 tok->location = UNKNOWN_LOCATION;
611 tok->value = NULL_TREE;
612 tok->keyword = RID_MAX;
616 /* Consume and handle a pragma token. */
617 static void
618 cp_lexer_handle_pragma (cp_lexer *lexer)
620 cpp_string s;
621 cp_token *token = cp_lexer_consume_token (lexer);
622 gcc_assert (token->type == CPP_PRAGMA);
623 gcc_assert (token->value);
625 s.len = TREE_STRING_LENGTH (token->value);
626 s.text = (const unsigned char *) TREE_STRING_POINTER (token->value);
628 cpp_handle_deferred_pragma (parse_in, &s);
630 /* Clearing token->value here means that we will get an ICE if we
631 try to process this #pragma again (which should be impossible). */
632 token->value = NULL;
635 /* Begin saving tokens. All tokens consumed after this point will be
636 preserved. */
638 static void
639 cp_lexer_save_tokens (cp_lexer* lexer)
641 /* Provide debugging output. */
642 if (cp_lexer_debugging_p (lexer))
643 fprintf (cp_lexer_debug_stream, "cp_lexer: saving tokens\n");
645 VEC_safe_push (cp_token_position, heap,
646 lexer->saved_tokens, lexer->next_token);
649 /* Commit to the portion of the token stream most recently saved. */
651 static void
652 cp_lexer_commit_tokens (cp_lexer* lexer)
654 /* Provide debugging output. */
655 if (cp_lexer_debugging_p (lexer))
656 fprintf (cp_lexer_debug_stream, "cp_lexer: committing tokens\n");
658 VEC_pop (cp_token_position, lexer->saved_tokens);
661 /* Return all tokens saved since the last call to cp_lexer_save_tokens
662 to the token stream. Stop saving tokens. */
664 static void
665 cp_lexer_rollback_tokens (cp_lexer* lexer)
667 /* Provide debugging output. */
668 if (cp_lexer_debugging_p (lexer))
669 fprintf (cp_lexer_debug_stream, "cp_lexer: restoring tokens\n");
671 lexer->next_token = VEC_pop (cp_token_position, lexer->saved_tokens);
674 /* Print a representation of the TOKEN on the STREAM. */
676 #ifdef ENABLE_CHECKING
678 static void
679 cp_lexer_print_token (FILE * stream, cp_token *token)
681 /* We don't use cpp_type2name here because the parser defines
682 a few tokens of its own. */
683 static const char *const token_names[] = {
684 /* cpplib-defined token types */
685 #define OP(e, s) #e,
686 #define TK(e, s) #e,
687 TTYPE_TABLE
688 #undef OP
689 #undef TK
690 /* C++ parser token types - see "Manifest constants", above. */
691 "KEYWORD",
692 "TEMPLATE_ID",
693 "NESTED_NAME_SPECIFIER",
694 "PURGED"
697 /* If we have a name for the token, print it out. Otherwise, we
698 simply give the numeric code. */
699 gcc_assert (token->type < ARRAY_SIZE(token_names));
700 fputs (token_names[token->type], stream);
702 /* For some tokens, print the associated data. */
703 switch (token->type)
705 case CPP_KEYWORD:
706 /* Some keywords have a value that is not an IDENTIFIER_NODE.
707 For example, `struct' is mapped to an INTEGER_CST. */
708 if (TREE_CODE (token->value) != IDENTIFIER_NODE)
709 break;
710 /* else fall through */
711 case CPP_NAME:
712 fputs (IDENTIFIER_POINTER (token->value), stream);
713 break;
715 case CPP_STRING:
716 case CPP_WSTRING:
717 case CPP_PRAGMA:
718 fprintf (stream, " \"%s\"", TREE_STRING_POINTER (token->value));
719 break;
721 default:
722 break;
726 /* Start emitting debugging information. */
728 static void
729 cp_lexer_start_debugging (cp_lexer* lexer)
731 lexer->debugging_p = true;
734 /* Stop emitting debugging information. */
736 static void
737 cp_lexer_stop_debugging (cp_lexer* lexer)
739 lexer->debugging_p = false;
742 #endif /* ENABLE_CHECKING */
744 /* Create a new cp_token_cache, representing a range of tokens. */
746 static cp_token_cache *
747 cp_token_cache_new (cp_token *first, cp_token *last)
749 cp_token_cache *cache = GGC_NEW (cp_token_cache);
750 cache->first = first;
751 cache->last = last;
752 return cache;
756 /* Decl-specifiers. */
758 static void clear_decl_specs
759 (cp_decl_specifier_seq *);
761 /* Set *DECL_SPECS to represent an empty decl-specifier-seq. */
763 static void
764 clear_decl_specs (cp_decl_specifier_seq *decl_specs)
766 memset (decl_specs, 0, sizeof (cp_decl_specifier_seq));
769 /* Declarators. */
771 /* Nothing other than the parser should be creating declarators;
772 declarators are a semi-syntactic representation of C++ entities.
773 Other parts of the front end that need to create entities (like
774 VAR_DECLs or FUNCTION_DECLs) should do that directly. */
776 static cp_declarator *make_call_declarator
777 (cp_declarator *, cp_parameter_declarator *, cp_cv_quals, tree);
778 static cp_declarator *make_array_declarator
779 (cp_declarator *, tree);
780 static cp_declarator *make_pointer_declarator
781 (cp_cv_quals, cp_declarator *);
782 static cp_declarator *make_reference_declarator
783 (cp_cv_quals, cp_declarator *);
784 static cp_parameter_declarator *make_parameter_declarator
785 (cp_decl_specifier_seq *, cp_declarator *, tree);
786 static cp_declarator *make_ptrmem_declarator
787 (cp_cv_quals, tree, cp_declarator *);
789 cp_declarator *cp_error_declarator;
791 /* The obstack on which declarators and related data structures are
792 allocated. */
793 static struct obstack declarator_obstack;
795 /* Alloc BYTES from the declarator memory pool. */
797 static inline void *
798 alloc_declarator (size_t bytes)
800 return obstack_alloc (&declarator_obstack, bytes);
803 /* Allocate a declarator of the indicated KIND. Clear fields that are
804 common to all declarators. */
806 static cp_declarator *
807 make_declarator (cp_declarator_kind kind)
809 cp_declarator *declarator;
811 declarator = (cp_declarator *) alloc_declarator (sizeof (cp_declarator));
812 declarator->kind = kind;
813 declarator->attributes = NULL_TREE;
814 declarator->declarator = NULL;
816 return declarator;
819 /* Make a declarator for a generalized identifier. If non-NULL, the
820 identifier is QUALIFYING_SCOPE::UNQUALIFIED_NAME; otherwise, it is
821 just UNQUALIFIED_NAME. */
823 static cp_declarator *
824 make_id_declarator (tree qualifying_scope, tree unqualified_name)
826 cp_declarator *declarator;
828 /* It is valid to write:
830 class C { void f(); };
831 typedef C D;
832 void D::f();
834 The standard is not clear about whether `typedef const C D' is
835 legal; as of 2002-09-15 the committee is considering that
836 question. EDG 3.0 allows that syntax. Therefore, we do as
837 well. */
838 if (qualifying_scope && TYPE_P (qualifying_scope))
839 qualifying_scope = TYPE_MAIN_VARIANT (qualifying_scope);
841 declarator = make_declarator (cdk_id);
842 declarator->u.id.qualifying_scope = qualifying_scope;
843 declarator->u.id.unqualified_name = unqualified_name;
844 declarator->u.id.sfk = sfk_none;
846 return declarator;
849 /* Make a declarator for a pointer to TARGET. CV_QUALIFIERS is a list
850 of modifiers such as const or volatile to apply to the pointer
851 type, represented as identifiers. */
853 cp_declarator *
854 make_pointer_declarator (cp_cv_quals cv_qualifiers, cp_declarator *target)
856 cp_declarator *declarator;
858 declarator = make_declarator (cdk_pointer);
859 declarator->declarator = target;
860 declarator->u.pointer.qualifiers = cv_qualifiers;
861 declarator->u.pointer.class_type = NULL_TREE;
863 return declarator;
866 /* Like make_pointer_declarator -- but for references. */
868 cp_declarator *
869 make_reference_declarator (cp_cv_quals cv_qualifiers, cp_declarator *target)
871 cp_declarator *declarator;
873 declarator = make_declarator (cdk_reference);
874 declarator->declarator = target;
875 declarator->u.pointer.qualifiers = cv_qualifiers;
876 declarator->u.pointer.class_type = NULL_TREE;
878 return declarator;
881 /* Like make_pointer_declarator -- but for a pointer to a non-static
882 member of CLASS_TYPE. */
884 cp_declarator *
885 make_ptrmem_declarator (cp_cv_quals cv_qualifiers, tree class_type,
886 cp_declarator *pointee)
888 cp_declarator *declarator;
890 declarator = make_declarator (cdk_ptrmem);
891 declarator->declarator = pointee;
892 declarator->u.pointer.qualifiers = cv_qualifiers;
893 declarator->u.pointer.class_type = class_type;
895 return declarator;
898 /* Make a declarator for the function given by TARGET, with the
899 indicated PARMS. The CV_QUALIFIERS aply to the function, as in
900 "const"-qualified member function. The EXCEPTION_SPECIFICATION
901 indicates what exceptions can be thrown. */
903 cp_declarator *
904 make_call_declarator (cp_declarator *target,
905 cp_parameter_declarator *parms,
906 cp_cv_quals cv_qualifiers,
907 tree exception_specification)
909 cp_declarator *declarator;
911 declarator = make_declarator (cdk_function);
912 declarator->declarator = target;
913 declarator->u.function.parameters = parms;
914 declarator->u.function.qualifiers = cv_qualifiers;
915 declarator->u.function.exception_specification = exception_specification;
917 return declarator;
920 /* Make a declarator for an array of BOUNDS elements, each of which is
921 defined by ELEMENT. */
923 cp_declarator *
924 make_array_declarator (cp_declarator *element, tree bounds)
926 cp_declarator *declarator;
928 declarator = make_declarator (cdk_array);
929 declarator->declarator = element;
930 declarator->u.array.bounds = bounds;
932 return declarator;
935 cp_parameter_declarator *no_parameters;
937 /* Create a parameter declarator with the indicated DECL_SPECIFIERS,
938 DECLARATOR and DEFAULT_ARGUMENT. */
940 cp_parameter_declarator *
941 make_parameter_declarator (cp_decl_specifier_seq *decl_specifiers,
942 cp_declarator *declarator,
943 tree default_argument)
945 cp_parameter_declarator *parameter;
947 parameter = ((cp_parameter_declarator *)
948 alloc_declarator (sizeof (cp_parameter_declarator)));
949 parameter->next = NULL;
950 if (decl_specifiers)
951 parameter->decl_specifiers = *decl_specifiers;
952 else
953 clear_decl_specs (&parameter->decl_specifiers);
954 parameter->declarator = declarator;
955 parameter->default_argument = default_argument;
956 parameter->ellipsis_p = false;
958 return parameter;
961 /* The parser. */
963 /* Overview
964 --------
966 A cp_parser parses the token stream as specified by the C++
967 grammar. Its job is purely parsing, not semantic analysis. For
968 example, the parser breaks the token stream into declarators,
969 expressions, statements, and other similar syntactic constructs.
970 It does not check that the types of the expressions on either side
971 of an assignment-statement are compatible, or that a function is
972 not declared with a parameter of type `void'.
974 The parser invokes routines elsewhere in the compiler to perform
975 semantic analysis and to build up the abstract syntax tree for the
976 code processed.
978 The parser (and the template instantiation code, which is, in a
979 way, a close relative of parsing) are the only parts of the
980 compiler that should be calling push_scope and pop_scope, or
981 related functions. The parser (and template instantiation code)
982 keeps track of what scope is presently active; everything else
983 should simply honor that. (The code that generates static
984 initializers may also need to set the scope, in order to check
985 access control correctly when emitting the initializers.)
987 Methodology
988 -----------
990 The parser is of the standard recursive-descent variety. Upcoming
991 tokens in the token stream are examined in order to determine which
992 production to use when parsing a non-terminal. Some C++ constructs
993 require arbitrary look ahead to disambiguate. For example, it is
994 impossible, in the general case, to tell whether a statement is an
995 expression or declaration without scanning the entire statement.
996 Therefore, the parser is capable of "parsing tentatively." When the
997 parser is not sure what construct comes next, it enters this mode.
998 Then, while we attempt to parse the construct, the parser queues up
999 error messages, rather than issuing them immediately, and saves the
1000 tokens it consumes. If the construct is parsed successfully, the
1001 parser "commits", i.e., it issues any queued error messages and
1002 the tokens that were being preserved are permanently discarded.
1003 If, however, the construct is not parsed successfully, the parser
1004 rolls back its state completely so that it can resume parsing using
1005 a different alternative.
1007 Future Improvements
1008 -------------------
1010 The performance of the parser could probably be improved substantially.
1011 We could often eliminate the need to parse tentatively by looking ahead
1012 a little bit. In some places, this approach might not entirely eliminate
1013 the need to parse tentatively, but it might still speed up the average
1014 case. */
1016 /* Flags that are passed to some parsing functions. These values can
1017 be bitwise-ored together. */
1019 typedef enum cp_parser_flags
1021 /* No flags. */
1022 CP_PARSER_FLAGS_NONE = 0x0,
1023 /* The construct is optional. If it is not present, then no error
1024 should be issued. */
1025 CP_PARSER_FLAGS_OPTIONAL = 0x1,
1026 /* When parsing a type-specifier, do not allow user-defined types. */
1027 CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES = 0x2
1028 } cp_parser_flags;
1030 /* The different kinds of declarators we want to parse. */
1032 typedef enum cp_parser_declarator_kind
1034 /* We want an abstract declarator. */
1035 CP_PARSER_DECLARATOR_ABSTRACT,
1036 /* We want a named declarator. */
1037 CP_PARSER_DECLARATOR_NAMED,
1038 /* We don't mind, but the name must be an unqualified-id. */
1039 CP_PARSER_DECLARATOR_EITHER
1040 } cp_parser_declarator_kind;
1042 /* The precedence values used to parse binary expressions. The minimum value
1043 of PREC must be 1, because zero is reserved to quickly discriminate
1044 binary operators from other tokens. */
1046 enum cp_parser_prec
1048 PREC_NOT_OPERATOR,
1049 PREC_LOGICAL_OR_EXPRESSION,
1050 PREC_LOGICAL_AND_EXPRESSION,
1051 PREC_INCLUSIVE_OR_EXPRESSION,
1052 PREC_EXCLUSIVE_OR_EXPRESSION,
1053 PREC_AND_EXPRESSION,
1054 PREC_EQUALITY_EXPRESSION,
1055 PREC_RELATIONAL_EXPRESSION,
1056 PREC_SHIFT_EXPRESSION,
1057 PREC_ADDITIVE_EXPRESSION,
1058 PREC_MULTIPLICATIVE_EXPRESSION,
1059 PREC_PM_EXPRESSION,
1060 NUM_PREC_VALUES = PREC_PM_EXPRESSION
1063 /* A mapping from a token type to a corresponding tree node type, with a
1064 precedence value. */
1066 typedef struct cp_parser_binary_operations_map_node
1068 /* The token type. */
1069 enum cpp_ttype token_type;
1070 /* The corresponding tree code. */
1071 enum tree_code tree_type;
1072 /* The precedence of this operator. */
1073 enum cp_parser_prec prec;
1074 } cp_parser_binary_operations_map_node;
1076 /* The status of a tentative parse. */
1078 typedef enum cp_parser_status_kind
1080 /* No errors have occurred. */
1081 CP_PARSER_STATUS_KIND_NO_ERROR,
1082 /* An error has occurred. */
1083 CP_PARSER_STATUS_KIND_ERROR,
1084 /* We are committed to this tentative parse, whether or not an error
1085 has occurred. */
1086 CP_PARSER_STATUS_KIND_COMMITTED
1087 } cp_parser_status_kind;
1089 typedef struct cp_parser_expression_stack_entry
1091 tree lhs;
1092 enum tree_code tree_type;
1093 int prec;
1094 } cp_parser_expression_stack_entry;
1096 /* The stack for storing partial expressions. We only need NUM_PREC_VALUES
1097 entries because precedence levels on the stack are monotonically
1098 increasing. */
1099 typedef struct cp_parser_expression_stack_entry
1100 cp_parser_expression_stack[NUM_PREC_VALUES];
1102 /* Context that is saved and restored when parsing tentatively. */
1103 typedef struct cp_parser_context GTY (())
1105 /* If this is a tentative parsing context, the status of the
1106 tentative parse. */
1107 enum cp_parser_status_kind status;
1108 /* If non-NULL, we have just seen a `x->' or `x.' expression. Names
1109 that are looked up in this context must be looked up both in the
1110 scope given by OBJECT_TYPE (the type of `x' or `*x') and also in
1111 the context of the containing expression. */
1112 tree object_type;
1114 /* The next parsing context in the stack. */
1115 struct cp_parser_context *next;
1116 } cp_parser_context;
1118 /* Prototypes. */
1120 /* Constructors and destructors. */
1122 static cp_parser_context *cp_parser_context_new
1123 (cp_parser_context *);
1125 /* Class variables. */
1127 static GTY((deletable)) cp_parser_context* cp_parser_context_free_list;
1129 /* The operator-precedence table used by cp_parser_binary_expression.
1130 Transformed into an associative array (binops_by_token) by
1131 cp_parser_new. */
1133 static const cp_parser_binary_operations_map_node binops[] = {
1134 { CPP_DEREF_STAR, MEMBER_REF, PREC_PM_EXPRESSION },
1135 { CPP_DOT_STAR, DOTSTAR_EXPR, PREC_PM_EXPRESSION },
1137 { CPP_MULT, MULT_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
1138 { CPP_DIV, TRUNC_DIV_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
1139 { CPP_MOD, TRUNC_MOD_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
1141 { CPP_PLUS, PLUS_EXPR, PREC_ADDITIVE_EXPRESSION },
1142 { CPP_MINUS, MINUS_EXPR, PREC_ADDITIVE_EXPRESSION },
1144 { CPP_LSHIFT, LSHIFT_EXPR, PREC_SHIFT_EXPRESSION },
1145 { CPP_RSHIFT, RSHIFT_EXPR, PREC_SHIFT_EXPRESSION },
1147 { CPP_LESS, LT_EXPR, PREC_RELATIONAL_EXPRESSION },
1148 { CPP_GREATER, GT_EXPR, PREC_RELATIONAL_EXPRESSION },
1149 { CPP_LESS_EQ, LE_EXPR, PREC_RELATIONAL_EXPRESSION },
1150 { CPP_GREATER_EQ, GE_EXPR, PREC_RELATIONAL_EXPRESSION },
1151 { CPP_MIN, MIN_EXPR, PREC_RELATIONAL_EXPRESSION },
1152 { CPP_MAX, MAX_EXPR, PREC_RELATIONAL_EXPRESSION },
1154 { CPP_EQ_EQ, EQ_EXPR, PREC_EQUALITY_EXPRESSION },
1155 { CPP_NOT_EQ, NE_EXPR, PREC_EQUALITY_EXPRESSION },
1157 { CPP_AND, BIT_AND_EXPR, PREC_AND_EXPRESSION },
1159 { CPP_XOR, BIT_XOR_EXPR, PREC_EXCLUSIVE_OR_EXPRESSION },
1161 { CPP_OR, BIT_IOR_EXPR, PREC_INCLUSIVE_OR_EXPRESSION },
1163 { CPP_AND_AND, TRUTH_ANDIF_EXPR, PREC_LOGICAL_AND_EXPRESSION },
1165 { CPP_OR_OR, TRUTH_ORIF_EXPR, PREC_LOGICAL_OR_EXPRESSION }
1168 /* The same as binops, but initialized by cp_parser_new so that
1169 binops_by_token[N].token_type == N. Used in cp_parser_binary_expression
1170 for speed. */
1171 static cp_parser_binary_operations_map_node binops_by_token[N_CP_TTYPES];
1173 /* Constructors and destructors. */
1175 /* Construct a new context. The context below this one on the stack
1176 is given by NEXT. */
1178 static cp_parser_context *
1179 cp_parser_context_new (cp_parser_context* next)
1181 cp_parser_context *context;
1183 /* Allocate the storage. */
1184 if (cp_parser_context_free_list != NULL)
1186 /* Pull the first entry from the free list. */
1187 context = cp_parser_context_free_list;
1188 cp_parser_context_free_list = context->next;
1189 memset (context, 0, sizeof (*context));
1191 else
1192 context = GGC_CNEW (cp_parser_context);
1194 /* No errors have occurred yet in this context. */
1195 context->status = CP_PARSER_STATUS_KIND_NO_ERROR;
1196 /* If this is not the bottomost context, copy information that we
1197 need from the previous context. */
1198 if (next)
1200 /* If, in the NEXT context, we are parsing an `x->' or `x.'
1201 expression, then we are parsing one in this context, too. */
1202 context->object_type = next->object_type;
1203 /* Thread the stack. */
1204 context->next = next;
1207 return context;
1210 /* The cp_parser structure represents the C++ parser. */
1212 typedef struct cp_parser GTY(())
1214 /* The lexer from which we are obtaining tokens. */
1215 cp_lexer *lexer;
1217 /* The scope in which names should be looked up. If NULL_TREE, then
1218 we look up names in the scope that is currently open in the
1219 source program. If non-NULL, this is either a TYPE or
1220 NAMESPACE_DECL for the scope in which we should look.
1222 This value is not cleared automatically after a name is looked
1223 up, so we must be careful to clear it before starting a new look
1224 up sequence. (If it is not cleared, then `X::Y' followed by `Z'
1225 will look up `Z' in the scope of `X', rather than the current
1226 scope.) Unfortunately, it is difficult to tell when name lookup
1227 is complete, because we sometimes peek at a token, look it up,
1228 and then decide not to consume it. */
1229 tree scope;
1231 /* OBJECT_SCOPE and QUALIFYING_SCOPE give the scopes in which the
1232 last lookup took place. OBJECT_SCOPE is used if an expression
1233 like "x->y" or "x.y" was used; it gives the type of "*x" or "x",
1234 respectively. QUALIFYING_SCOPE is used for an expression of the
1235 form "X::Y"; it refers to X. */
1236 tree object_scope;
1237 tree qualifying_scope;
1239 /* A stack of parsing contexts. All but the bottom entry on the
1240 stack will be tentative contexts.
1242 We parse tentatively in order to determine which construct is in
1243 use in some situations. For example, in order to determine
1244 whether a statement is an expression-statement or a
1245 declaration-statement we parse it tentatively as a
1246 declaration-statement. If that fails, we then reparse the same
1247 token stream as an expression-statement. */
1248 cp_parser_context *context;
1250 /* True if we are parsing GNU C++. If this flag is not set, then
1251 GNU extensions are not recognized. */
1252 bool allow_gnu_extensions_p;
1254 /* TRUE if the `>' token should be interpreted as the greater-than
1255 operator. FALSE if it is the end of a template-id or
1256 template-parameter-list. */
1257 bool greater_than_is_operator_p;
1259 /* TRUE if default arguments are allowed within a parameter list
1260 that starts at this point. FALSE if only a gnu extension makes
1261 them permissible. */
1262 bool default_arg_ok_p;
1264 /* TRUE if we are parsing an integral constant-expression. See
1265 [expr.const] for a precise definition. */
1266 bool integral_constant_expression_p;
1268 /* TRUE if we are parsing an integral constant-expression -- but a
1269 non-constant expression should be permitted as well. This flag
1270 is used when parsing an array bound so that GNU variable-length
1271 arrays are tolerated. */
1272 bool allow_non_integral_constant_expression_p;
1274 /* TRUE if ALLOW_NON_CONSTANT_EXPRESSION_P is TRUE and something has
1275 been seen that makes the expression non-constant. */
1276 bool non_integral_constant_expression_p;
1278 /* TRUE if local variable names and `this' are forbidden in the
1279 current context. */
1280 bool local_variables_forbidden_p;
1282 /* TRUE if the declaration we are parsing is part of a
1283 linkage-specification of the form `extern string-literal
1284 declaration'. */
1285 bool in_unbraced_linkage_specification_p;
1287 /* TRUE if we are presently parsing a declarator, after the
1288 direct-declarator. */
1289 bool in_declarator_p;
1291 /* TRUE if we are presently parsing a template-argument-list. */
1292 bool in_template_argument_list_p;
1294 /* TRUE if we are presently parsing the body of an
1295 iteration-statement. */
1296 bool in_iteration_statement_p;
1298 /* TRUE if we are presently parsing the body of a switch
1299 statement. */
1300 bool in_switch_statement_p;
1302 /* TRUE if we are parsing a type-id in an expression context. In
1303 such a situation, both "type (expr)" and "type (type)" are valid
1304 alternatives. */
1305 bool in_type_id_in_expr_p;
1307 /* TRUE if we are currently in a header file where declarations are
1308 implicitly extern "C". */
1309 bool implicit_extern_c;
1311 /* TRUE if strings in expressions should be translated to the execution
1312 character set. */
1313 bool translate_strings_p;
1315 /* If non-NULL, then we are parsing a construct where new type
1316 definitions are not permitted. The string stored here will be
1317 issued as an error message if a type is defined. */
1318 const char *type_definition_forbidden_message;
1320 /* A list of lists. The outer list is a stack, used for member
1321 functions of local classes. At each level there are two sub-list,
1322 one on TREE_VALUE and one on TREE_PURPOSE. Each of those
1323 sub-lists has a FUNCTION_DECL or TEMPLATE_DECL on their
1324 TREE_VALUE's. The functions are chained in reverse declaration
1325 order.
1327 The TREE_PURPOSE sublist contains those functions with default
1328 arguments that need post processing, and the TREE_VALUE sublist
1329 contains those functions with definitions that need post
1330 processing.
1332 These lists can only be processed once the outermost class being
1333 defined is complete. */
1334 tree unparsed_functions_queues;
1336 /* The number of classes whose definitions are currently in
1337 progress. */
1338 unsigned num_classes_being_defined;
1340 /* The number of template parameter lists that apply directly to the
1341 current declaration. */
1342 unsigned num_template_parameter_lists;
1343 } cp_parser;
1345 /* The type of a function that parses some kind of expression. */
1346 typedef tree (*cp_parser_expression_fn) (cp_parser *);
1348 /* Prototypes. */
1350 /* Constructors and destructors. */
1352 static cp_parser *cp_parser_new
1353 (void);
1355 /* Routines to parse various constructs.
1357 Those that return `tree' will return the error_mark_node (rather
1358 than NULL_TREE) if a parse error occurs, unless otherwise noted.
1359 Sometimes, they will return an ordinary node if error-recovery was
1360 attempted, even though a parse error occurred. So, to check
1361 whether or not a parse error occurred, you should always use
1362 cp_parser_error_occurred. If the construct is optional (indicated
1363 either by an `_opt' in the name of the function that does the
1364 parsing or via a FLAGS parameter), then NULL_TREE is returned if
1365 the construct is not present. */
1367 /* Lexical conventions [gram.lex] */
1369 static tree cp_parser_identifier
1370 (cp_parser *);
1371 static tree cp_parser_string_literal
1372 (cp_parser *, bool, bool);
1374 /* Basic concepts [gram.basic] */
1376 static bool cp_parser_translation_unit
1377 (cp_parser *);
1379 /* Expressions [gram.expr] */
1381 static tree cp_parser_primary_expression
1382 (cp_parser *, bool, cp_id_kind *, tree *);
1383 static tree cp_parser_id_expression
1384 (cp_parser *, bool, bool, bool *, bool);
1385 static tree cp_parser_unqualified_id
1386 (cp_parser *, bool, bool, bool);
1387 static tree cp_parser_nested_name_specifier_opt
1388 (cp_parser *, bool, bool, bool, bool);
1389 static tree cp_parser_nested_name_specifier
1390 (cp_parser *, bool, bool, bool, bool);
1391 static tree cp_parser_class_or_namespace_name
1392 (cp_parser *, bool, bool, bool, bool, bool);
1393 static tree cp_parser_postfix_expression
1394 (cp_parser *, bool, bool);
1395 static tree cp_parser_postfix_open_square_expression
1396 (cp_parser *, tree, bool);
1397 static tree cp_parser_postfix_dot_deref_expression
1398 (cp_parser *, enum cpp_ttype, tree, bool, cp_id_kind *);
1399 static tree cp_parser_parenthesized_expression_list
1400 (cp_parser *, bool, bool, bool *);
1401 static void cp_parser_pseudo_destructor_name
1402 (cp_parser *, tree *, tree *);
1403 static tree cp_parser_unary_expression
1404 (cp_parser *, bool, bool);
1405 static enum tree_code cp_parser_unary_operator
1406 (cp_token *);
1407 static tree cp_parser_new_expression
1408 (cp_parser *);
1409 static tree cp_parser_new_placement
1410 (cp_parser *);
1411 static tree cp_parser_new_type_id
1412 (cp_parser *, tree *);
1413 static cp_declarator *cp_parser_new_declarator_opt
1414 (cp_parser *);
1415 static cp_declarator *cp_parser_direct_new_declarator
1416 (cp_parser *);
1417 static tree cp_parser_new_initializer
1418 (cp_parser *);
1419 static tree cp_parser_delete_expression
1420 (cp_parser *);
1421 static tree cp_parser_cast_expression
1422 (cp_parser *, bool, bool);
1423 static tree cp_parser_binary_expression
1424 (cp_parser *, bool);
1425 static tree cp_parser_question_colon_clause
1426 (cp_parser *, tree);
1427 static tree cp_parser_assignment_expression
1428 (cp_parser *, bool);
1429 static enum tree_code cp_parser_assignment_operator_opt
1430 (cp_parser *);
1431 static tree cp_parser_expression
1432 (cp_parser *, bool);
1433 static tree cp_parser_constant_expression
1434 (cp_parser *, bool, bool *);
1435 static tree cp_parser_builtin_offsetof
1436 (cp_parser *);
1438 /* Statements [gram.stmt.stmt] */
1440 static void cp_parser_statement
1441 (cp_parser *, tree);
1442 static tree cp_parser_labeled_statement
1443 (cp_parser *, tree);
1444 static tree cp_parser_expression_statement
1445 (cp_parser *, tree);
1446 static tree cp_parser_compound_statement
1447 (cp_parser *, tree, bool);
1448 static void cp_parser_statement_seq_opt
1449 (cp_parser *, tree);
1450 static tree cp_parser_selection_statement
1451 (cp_parser *);
1452 static tree cp_parser_condition
1453 (cp_parser *);
1454 static tree cp_parser_iteration_statement
1455 (cp_parser *);
1456 static void cp_parser_for_init_statement
1457 (cp_parser *);
1458 static tree cp_parser_jump_statement
1459 (cp_parser *);
1460 static void cp_parser_declaration_statement
1461 (cp_parser *);
1463 static tree cp_parser_implicitly_scoped_statement
1464 (cp_parser *);
1465 static void cp_parser_already_scoped_statement
1466 (cp_parser *);
1468 /* Declarations [gram.dcl.dcl] */
1470 static void cp_parser_declaration_seq_opt
1471 (cp_parser *);
1472 static void cp_parser_declaration
1473 (cp_parser *);
1474 static void cp_parser_block_declaration
1475 (cp_parser *, bool);
1476 static void cp_parser_simple_declaration
1477 (cp_parser *, bool);
1478 static void cp_parser_decl_specifier_seq
1479 (cp_parser *, cp_parser_flags, cp_decl_specifier_seq *, int *);
1480 static tree cp_parser_storage_class_specifier_opt
1481 (cp_parser *);
1482 static tree cp_parser_function_specifier_opt
1483 (cp_parser *, cp_decl_specifier_seq *);
1484 static tree cp_parser_type_specifier
1485 (cp_parser *, cp_parser_flags, cp_decl_specifier_seq *, bool,
1486 int *, bool *);
1487 static tree cp_parser_simple_type_specifier
1488 (cp_parser *, cp_decl_specifier_seq *, cp_parser_flags);
1489 static tree cp_parser_type_name
1490 (cp_parser *);
1491 static tree cp_parser_elaborated_type_specifier
1492 (cp_parser *, bool, bool);
1493 static tree cp_parser_enum_specifier
1494 (cp_parser *);
1495 static void cp_parser_enumerator_list
1496 (cp_parser *, tree);
1497 static void cp_parser_enumerator_definition
1498 (cp_parser *, tree);
1499 static tree cp_parser_namespace_name
1500 (cp_parser *);
1501 static void cp_parser_namespace_definition
1502 (cp_parser *);
1503 static void cp_parser_namespace_body
1504 (cp_parser *);
1505 static tree cp_parser_qualified_namespace_specifier
1506 (cp_parser *);
1507 static void cp_parser_namespace_alias_definition
1508 (cp_parser *);
1509 static void cp_parser_using_declaration
1510 (cp_parser *);
1511 static void cp_parser_using_directive
1512 (cp_parser *);
1513 static void cp_parser_asm_definition
1514 (cp_parser *);
1515 static void cp_parser_linkage_specification
1516 (cp_parser *);
1518 /* Declarators [gram.dcl.decl] */
1520 static tree cp_parser_init_declarator
1521 (cp_parser *, cp_decl_specifier_seq *, bool, bool, int, bool *);
1522 static cp_declarator *cp_parser_declarator
1523 (cp_parser *, cp_parser_declarator_kind, int *, bool *, bool);
1524 static cp_declarator *cp_parser_direct_declarator
1525 (cp_parser *, cp_parser_declarator_kind, int *, bool);
1526 static enum tree_code cp_parser_ptr_operator
1527 (cp_parser *, tree *, cp_cv_quals *);
1528 static cp_cv_quals cp_parser_cv_qualifier_seq_opt
1529 (cp_parser *);
1530 static tree cp_parser_declarator_id
1531 (cp_parser *);
1532 static tree cp_parser_type_id
1533 (cp_parser *);
1534 static void cp_parser_type_specifier_seq
1535 (cp_parser *, bool, cp_decl_specifier_seq *);
1536 static cp_parameter_declarator *cp_parser_parameter_declaration_clause
1537 (cp_parser *);
1538 static cp_parameter_declarator *cp_parser_parameter_declaration_list
1539 (cp_parser *, bool *);
1540 static cp_parameter_declarator *cp_parser_parameter_declaration
1541 (cp_parser *, bool, bool *);
1542 static void cp_parser_function_body
1543 (cp_parser *);
1544 static tree cp_parser_initializer
1545 (cp_parser *, bool *, bool *);
1546 static tree cp_parser_initializer_clause
1547 (cp_parser *, bool *);
1548 static tree cp_parser_initializer_list
1549 (cp_parser *, bool *);
1551 static bool cp_parser_ctor_initializer_opt_and_function_body
1552 (cp_parser *);
1554 /* Classes [gram.class] */
1556 static tree cp_parser_class_name
1557 (cp_parser *, bool, bool, enum tag_types, bool, bool, bool);
1558 static tree cp_parser_class_specifier
1559 (cp_parser *);
1560 static tree cp_parser_class_head
1561 (cp_parser *, bool *, tree *);
1562 static enum tag_types cp_parser_class_key
1563 (cp_parser *);
1564 static void cp_parser_member_specification_opt
1565 (cp_parser *);
1566 static void cp_parser_member_declaration
1567 (cp_parser *);
1568 static tree cp_parser_pure_specifier
1569 (cp_parser *);
1570 static tree cp_parser_constant_initializer
1571 (cp_parser *);
1573 /* Derived classes [gram.class.derived] */
1575 static tree cp_parser_base_clause
1576 (cp_parser *);
1577 static tree cp_parser_base_specifier
1578 (cp_parser *);
1580 /* Special member functions [gram.special] */
1582 static tree cp_parser_conversion_function_id
1583 (cp_parser *);
1584 static tree cp_parser_conversion_type_id
1585 (cp_parser *);
1586 static cp_declarator *cp_parser_conversion_declarator_opt
1587 (cp_parser *);
1588 static bool cp_parser_ctor_initializer_opt
1589 (cp_parser *);
1590 static void cp_parser_mem_initializer_list
1591 (cp_parser *);
1592 static tree cp_parser_mem_initializer
1593 (cp_parser *);
1594 static tree cp_parser_mem_initializer_id
1595 (cp_parser *);
1597 /* Overloading [gram.over] */
1599 static tree cp_parser_operator_function_id
1600 (cp_parser *);
1601 static tree cp_parser_operator
1602 (cp_parser *);
1604 /* Templates [gram.temp] */
1606 static void cp_parser_template_declaration
1607 (cp_parser *, bool);
1608 static tree cp_parser_template_parameter_list
1609 (cp_parser *);
1610 static tree cp_parser_template_parameter
1611 (cp_parser *, bool *);
1612 static tree cp_parser_type_parameter
1613 (cp_parser *);
1614 static tree cp_parser_template_id
1615 (cp_parser *, bool, bool, bool);
1616 static tree cp_parser_template_name
1617 (cp_parser *, bool, bool, bool, bool *);
1618 static tree cp_parser_template_argument_list
1619 (cp_parser *);
1620 static tree cp_parser_template_argument
1621 (cp_parser *);
1622 static void cp_parser_explicit_instantiation
1623 (cp_parser *);
1624 static void cp_parser_explicit_specialization
1625 (cp_parser *);
1627 /* Exception handling [gram.exception] */
1629 static tree cp_parser_try_block
1630 (cp_parser *);
1631 static bool cp_parser_function_try_block
1632 (cp_parser *);
1633 static void cp_parser_handler_seq
1634 (cp_parser *);
1635 static void cp_parser_handler
1636 (cp_parser *);
1637 static tree cp_parser_exception_declaration
1638 (cp_parser *);
1639 static tree cp_parser_throw_expression
1640 (cp_parser *);
1641 static tree cp_parser_exception_specification_opt
1642 (cp_parser *);
1643 static tree cp_parser_type_id_list
1644 (cp_parser *);
1646 /* GNU Extensions */
1648 static tree cp_parser_asm_specification_opt
1649 (cp_parser *);
1650 static tree cp_parser_asm_operand_list
1651 (cp_parser *);
1652 static tree cp_parser_asm_clobber_list
1653 (cp_parser *);
1654 static tree cp_parser_attributes_opt
1655 (cp_parser *);
1656 static tree cp_parser_attribute_list
1657 (cp_parser *);
1658 static bool cp_parser_extension_opt
1659 (cp_parser *, int *);
1660 static void cp_parser_label_declaration
1661 (cp_parser *);
1663 /* Objective-C++ Productions */
1665 static tree cp_parser_objc_message_receiver
1666 (cp_parser *);
1667 static tree cp_parser_objc_message_args
1668 (cp_parser *);
1669 static tree cp_parser_objc_message_expression
1670 (cp_parser *);
1671 static tree cp_parser_objc_encode_expression
1672 (cp_parser *);
1673 static tree cp_parser_objc_defs_expression
1674 (cp_parser *);
1675 static tree cp_parser_objc_protocol_expression
1676 (cp_parser *);
1677 static tree cp_parser_objc_selector_expression
1678 (cp_parser *);
1679 static tree cp_parser_objc_expression
1680 (cp_parser *);
1681 static bool cp_parser_objc_selector_p
1682 (enum cpp_ttype);
1683 static tree cp_parser_objc_selector
1684 (cp_parser *);
1685 static tree cp_parser_objc_protocol_refs_opt
1686 (cp_parser *);
1687 static void cp_parser_objc_declaration
1688 (cp_parser *);
1689 static tree cp_parser_objc_statement
1690 (cp_parser *);
1692 /* Utility Routines */
1694 static tree cp_parser_lookup_name
1695 (cp_parser *, tree, enum tag_types, bool, bool, bool, bool *);
1696 static tree cp_parser_lookup_name_simple
1697 (cp_parser *, tree);
1698 static tree cp_parser_maybe_treat_template_as_class
1699 (tree, bool);
1700 static bool cp_parser_check_declarator_template_parameters
1701 (cp_parser *, cp_declarator *);
1702 static bool cp_parser_check_template_parameters
1703 (cp_parser *, unsigned);
1704 static tree cp_parser_simple_cast_expression
1705 (cp_parser *);
1706 static tree cp_parser_global_scope_opt
1707 (cp_parser *, bool);
1708 static bool cp_parser_constructor_declarator_p
1709 (cp_parser *, bool);
1710 static tree cp_parser_function_definition_from_specifiers_and_declarator
1711 (cp_parser *, cp_decl_specifier_seq *, tree, const cp_declarator *);
1712 static tree cp_parser_function_definition_after_declarator
1713 (cp_parser *, bool);
1714 static void cp_parser_template_declaration_after_export
1715 (cp_parser *, bool);
1716 static tree cp_parser_single_declaration
1717 (cp_parser *, bool, bool *);
1718 static tree cp_parser_functional_cast
1719 (cp_parser *, tree);
1720 static tree cp_parser_save_member_function_body
1721 (cp_parser *, cp_decl_specifier_seq *, cp_declarator *, tree);
1722 static tree cp_parser_enclosed_template_argument_list
1723 (cp_parser *);
1724 static void cp_parser_save_default_args
1725 (cp_parser *, tree);
1726 static void cp_parser_late_parsing_for_member
1727 (cp_parser *, tree);
1728 static void cp_parser_late_parsing_default_args
1729 (cp_parser *, tree);
1730 static tree cp_parser_sizeof_operand
1731 (cp_parser *, enum rid);
1732 static bool cp_parser_declares_only_class_p
1733 (cp_parser *);
1734 static void cp_parser_set_storage_class
1735 (cp_decl_specifier_seq *, cp_storage_class);
1736 static void cp_parser_set_decl_spec_type
1737 (cp_decl_specifier_seq *, tree, bool);
1738 static bool cp_parser_friend_p
1739 (const cp_decl_specifier_seq *);
1740 static cp_token *cp_parser_require
1741 (cp_parser *, enum cpp_ttype, const char *);
1742 static cp_token *cp_parser_require_keyword
1743 (cp_parser *, enum rid, const char *);
1744 static bool cp_parser_token_starts_function_definition_p
1745 (cp_token *);
1746 static bool cp_parser_next_token_starts_class_definition_p
1747 (cp_parser *);
1748 static bool cp_parser_next_token_ends_template_argument_p
1749 (cp_parser *);
1750 static bool cp_parser_nth_token_starts_template_argument_list_p
1751 (cp_parser *, size_t);
1752 static enum tag_types cp_parser_token_is_class_key
1753 (cp_token *);
1754 static void cp_parser_check_class_key
1755 (enum tag_types, tree type);
1756 static void cp_parser_check_access_in_redeclaration
1757 (tree type);
1758 static bool cp_parser_optional_template_keyword
1759 (cp_parser *);
1760 static void cp_parser_pre_parsed_nested_name_specifier
1761 (cp_parser *);
1762 static void cp_parser_cache_group
1763 (cp_parser *, enum cpp_ttype, unsigned);
1764 static void cp_parser_parse_tentatively
1765 (cp_parser *);
1766 static void cp_parser_commit_to_tentative_parse
1767 (cp_parser *);
1768 static void cp_parser_abort_tentative_parse
1769 (cp_parser *);
1770 static bool cp_parser_parse_definitely
1771 (cp_parser *);
1772 static inline bool cp_parser_parsing_tentatively
1773 (cp_parser *);
1774 static bool cp_parser_uncommitted_to_tentative_parse_p
1775 (cp_parser *);
1776 static void cp_parser_error
1777 (cp_parser *, const char *);
1778 static void cp_parser_name_lookup_error
1779 (cp_parser *, tree, tree, const char *);
1780 static bool cp_parser_simulate_error
1781 (cp_parser *);
1782 static void cp_parser_check_type_definition
1783 (cp_parser *);
1784 static void cp_parser_check_for_definition_in_return_type
1785 (cp_declarator *, tree);
1786 static void cp_parser_check_for_invalid_template_id
1787 (cp_parser *, tree);
1788 static bool cp_parser_non_integral_constant_expression
1789 (cp_parser *, const char *);
1790 static void cp_parser_diagnose_invalid_type_name
1791 (cp_parser *, tree, tree);
1792 static bool cp_parser_parse_and_diagnose_invalid_type_name
1793 (cp_parser *);
1794 static int cp_parser_skip_to_closing_parenthesis
1795 (cp_parser *, bool, bool, bool);
1796 static void cp_parser_skip_to_end_of_statement
1797 (cp_parser *);
1798 static void cp_parser_consume_semicolon_at_end_of_statement
1799 (cp_parser *);
1800 static void cp_parser_skip_to_end_of_block_or_statement
1801 (cp_parser *);
1802 static void cp_parser_skip_to_closing_brace
1803 (cp_parser *);
1804 static void cp_parser_skip_until_found
1805 (cp_parser *, enum cpp_ttype, const char *);
1806 static bool cp_parser_error_occurred
1807 (cp_parser *);
1808 static bool cp_parser_allow_gnu_extensions_p
1809 (cp_parser *);
1810 static bool cp_parser_is_string_literal
1811 (cp_token *);
1812 static bool cp_parser_is_keyword
1813 (cp_token *, enum rid);
1814 static tree cp_parser_make_typename_type
1815 (cp_parser *, tree, tree);
1817 /* Returns nonzero if we are parsing tentatively. */
1819 static inline bool
1820 cp_parser_parsing_tentatively (cp_parser* parser)
1822 return parser->context->next != NULL;
1825 /* Returns nonzero if TOKEN is a string literal. */
1827 static bool
1828 cp_parser_is_string_literal (cp_token* token)
1830 return (token->type == CPP_STRING || token->type == CPP_WSTRING);
1833 /* Returns nonzero if TOKEN is the indicated KEYWORD. */
1835 static bool
1836 cp_parser_is_keyword (cp_token* token, enum rid keyword)
1838 return token->keyword == keyword;
1841 /* A minimum or maximum operator has been seen. As these are
1842 deprecated, issue a warning. */
1844 static inline void
1845 cp_parser_warn_min_max (void)
1847 if (warn_deprecated && !in_system_header)
1848 warning (0, "minimum/maximum operators are deprecated");
1851 /* If not parsing tentatively, issue a diagnostic of the form
1852 FILE:LINE: MESSAGE before TOKEN
1853 where TOKEN is the next token in the input stream. MESSAGE
1854 (specified by the caller) is usually of the form "expected
1855 OTHER-TOKEN". */
1857 static void
1858 cp_parser_error (cp_parser* parser, const char* message)
1860 if (!cp_parser_simulate_error (parser))
1862 cp_token *token = cp_lexer_peek_token (parser->lexer);
1863 /* This diagnostic makes more sense if it is tagged to the line
1864 of the token we just peeked at. */
1865 cp_lexer_set_source_position_from_token (token);
1866 if (token->type == CPP_PRAGMA)
1868 error ("%<#pragma%> is not allowed here");
1869 cp_lexer_purge_token (parser->lexer);
1870 return;
1872 c_parse_error (message,
1873 /* Because c_parser_error does not understand
1874 CPP_KEYWORD, keywords are treated like
1875 identifiers. */
1876 (token->type == CPP_KEYWORD ? CPP_NAME : token->type),
1877 token->value);
1881 /* Issue an error about name-lookup failing. NAME is the
1882 IDENTIFIER_NODE DECL is the result of
1883 the lookup (as returned from cp_parser_lookup_name). DESIRED is
1884 the thing that we hoped to find. */
1886 static void
1887 cp_parser_name_lookup_error (cp_parser* parser,
1888 tree name,
1889 tree decl,
1890 const char* desired)
1892 /* If name lookup completely failed, tell the user that NAME was not
1893 declared. */
1894 if (decl == error_mark_node)
1896 if (parser->scope && parser->scope != global_namespace)
1897 error ("%<%D::%D%> has not been declared",
1898 parser->scope, name);
1899 else if (parser->scope == global_namespace)
1900 error ("%<::%D%> has not been declared", name);
1901 else if (parser->object_scope
1902 && !CLASS_TYPE_P (parser->object_scope))
1903 error ("request for member %qD in non-class type %qT",
1904 name, parser->object_scope);
1905 else if (parser->object_scope)
1906 error ("%<%T::%D%> has not been declared",
1907 parser->object_scope, name);
1908 else
1909 error ("%qD has not been declared", name);
1911 else if (parser->scope && parser->scope != global_namespace)
1912 error ("%<%D::%D%> %s", parser->scope, name, desired);
1913 else if (parser->scope == global_namespace)
1914 error ("%<::%D%> %s", name, desired);
1915 else
1916 error ("%qD %s", name, desired);
1919 /* If we are parsing tentatively, remember that an error has occurred
1920 during this tentative parse. Returns true if the error was
1921 simulated; false if a message should be issued by the caller. */
1923 static bool
1924 cp_parser_simulate_error (cp_parser* parser)
1926 if (cp_parser_uncommitted_to_tentative_parse_p (parser))
1928 parser->context->status = CP_PARSER_STATUS_KIND_ERROR;
1929 return true;
1931 return false;
1934 /* This function is called when a type is defined. If type
1935 definitions are forbidden at this point, an error message is
1936 issued. */
1938 static void
1939 cp_parser_check_type_definition (cp_parser* parser)
1941 /* If types are forbidden here, issue a message. */
1942 if (parser->type_definition_forbidden_message)
1943 /* Use `%s' to print the string in case there are any escape
1944 characters in the message. */
1945 error ("%s", parser->type_definition_forbidden_message);
1948 /* This function is called when the DECLARATOR is processed. The TYPE
1949 was a type defined in the decl-specifiers. If it is invalid to
1950 define a type in the decl-specifiers for DECLARATOR, an error is
1951 issued. */
1953 static void
1954 cp_parser_check_for_definition_in_return_type (cp_declarator *declarator,
1955 tree type)
1957 /* [dcl.fct] forbids type definitions in return types.
1958 Unfortunately, it's not easy to know whether or not we are
1959 processing a return type until after the fact. */
1960 while (declarator
1961 && (declarator->kind == cdk_pointer
1962 || declarator->kind == cdk_reference
1963 || declarator->kind == cdk_ptrmem))
1964 declarator = declarator->declarator;
1965 if (declarator
1966 && declarator->kind == cdk_function)
1968 error ("new types may not be defined in a return type");
1969 inform ("(perhaps a semicolon is missing after the definition of %qT)",
1970 type);
1974 /* A type-specifier (TYPE) has been parsed which cannot be followed by
1975 "<" in any valid C++ program. If the next token is indeed "<",
1976 issue a message warning the user about what appears to be an
1977 invalid attempt to form a template-id. */
1979 static void
1980 cp_parser_check_for_invalid_template_id (cp_parser* parser,
1981 tree type)
1983 cp_token_position start = 0;
1985 if (cp_lexer_next_token_is (parser->lexer, CPP_LESS))
1987 if (TYPE_P (type))
1988 error ("%qT is not a template", type);
1989 else if (TREE_CODE (type) == IDENTIFIER_NODE)
1990 error ("%qE is not a template", type);
1991 else
1992 error ("invalid template-id");
1993 /* Remember the location of the invalid "<". */
1994 if (cp_parser_uncommitted_to_tentative_parse_p (parser))
1995 start = cp_lexer_token_position (parser->lexer, true);
1996 /* Consume the "<". */
1997 cp_lexer_consume_token (parser->lexer);
1998 /* Parse the template arguments. */
1999 cp_parser_enclosed_template_argument_list (parser);
2000 /* Permanently remove the invalid template arguments so that
2001 this error message is not issued again. */
2002 if (start)
2003 cp_lexer_purge_tokens_after (parser->lexer, start);
2007 /* If parsing an integral constant-expression, issue an error message
2008 about the fact that THING appeared and return true. Otherwise,
2009 return false. In either case, set
2010 PARSER->NON_INTEGRAL_CONSTANT_EXPRESSION_P. */
2012 static bool
2013 cp_parser_non_integral_constant_expression (cp_parser *parser,
2014 const char *thing)
2016 parser->non_integral_constant_expression_p = true;
2017 if (parser->integral_constant_expression_p)
2019 if (!parser->allow_non_integral_constant_expression_p)
2021 error ("%s cannot appear in a constant-expression", thing);
2022 return true;
2025 return false;
2028 /* Emit a diagnostic for an invalid type name. SCOPE is the
2029 qualifying scope (or NULL, if none) for ID. This function commits
2030 to the current active tentative parse, if any. (Otherwise, the
2031 problematic construct might be encountered again later, resulting
2032 in duplicate error messages.) */
2034 static void
2035 cp_parser_diagnose_invalid_type_name (cp_parser *parser, tree scope, tree id)
2037 tree decl, old_scope;
2038 /* Try to lookup the identifier. */
2039 old_scope = parser->scope;
2040 parser->scope = scope;
2041 decl = cp_parser_lookup_name_simple (parser, id);
2042 parser->scope = old_scope;
2043 /* If the lookup found a template-name, it means that the user forgot
2044 to specify an argument list. Emit an useful error message. */
2045 if (TREE_CODE (decl) == TEMPLATE_DECL)
2046 error ("invalid use of template-name %qE without an argument list",
2047 decl);
2048 else if (!parser->scope)
2050 /* Issue an error message. */
2051 error ("%qE does not name a type", id);
2052 /* If we're in a template class, it's possible that the user was
2053 referring to a type from a base class. For example:
2055 template <typename T> struct A { typedef T X; };
2056 template <typename T> struct B : public A<T> { X x; };
2058 The user should have said "typename A<T>::X". */
2059 if (processing_template_decl && current_class_type
2060 && TYPE_BINFO (current_class_type))
2062 tree b;
2064 for (b = TREE_CHAIN (TYPE_BINFO (current_class_type));
2066 b = TREE_CHAIN (b))
2068 tree base_type = BINFO_TYPE (b);
2069 if (CLASS_TYPE_P (base_type)
2070 && dependent_type_p (base_type))
2072 tree field;
2073 /* Go from a particular instantiation of the
2074 template (which will have an empty TYPE_FIELDs),
2075 to the main version. */
2076 base_type = CLASSTYPE_PRIMARY_TEMPLATE_TYPE (base_type);
2077 for (field = TYPE_FIELDS (base_type);
2078 field;
2079 field = TREE_CHAIN (field))
2080 if (TREE_CODE (field) == TYPE_DECL
2081 && DECL_NAME (field) == id)
2083 inform ("(perhaps %<typename %T::%E%> was intended)",
2084 BINFO_TYPE (b), id);
2085 break;
2087 if (field)
2088 break;
2093 /* Here we diagnose qualified-ids where the scope is actually correct,
2094 but the identifier does not resolve to a valid type name. */
2095 else
2097 if (TREE_CODE (parser->scope) == NAMESPACE_DECL)
2098 error ("%qE in namespace %qE does not name a type",
2099 id, parser->scope);
2100 else if (TYPE_P (parser->scope))
2101 error ("%qE in class %qT does not name a type", id, parser->scope);
2102 else
2103 gcc_unreachable ();
2105 cp_parser_commit_to_tentative_parse (parser);
2108 /* Check for a common situation where a type-name should be present,
2109 but is not, and issue a sensible error message. Returns true if an
2110 invalid type-name was detected.
2112 The situation handled by this function are variable declarations of the
2113 form `ID a', where `ID' is an id-expression and `a' is a plain identifier.
2114 Usually, `ID' should name a type, but if we got here it means that it
2115 does not. We try to emit the best possible error message depending on
2116 how exactly the id-expression looks like.
2119 static bool
2120 cp_parser_parse_and_diagnose_invalid_type_name (cp_parser *parser)
2122 tree id;
2124 cp_parser_parse_tentatively (parser);
2125 id = cp_parser_id_expression (parser,
2126 /*template_keyword_p=*/false,
2127 /*check_dependency_p=*/true,
2128 /*template_p=*/NULL,
2129 /*declarator_p=*/true);
2130 /* After the id-expression, there should be a plain identifier,
2131 otherwise this is not a simple variable declaration. Also, if
2132 the scope is dependent, we cannot do much. */
2133 if (!cp_lexer_next_token_is (parser->lexer, CPP_NAME)
2134 || (parser->scope && TYPE_P (parser->scope)
2135 && dependent_type_p (parser->scope)))
2137 cp_parser_abort_tentative_parse (parser);
2138 return false;
2140 if (!cp_parser_parse_definitely (parser)
2141 || TREE_CODE (id) != IDENTIFIER_NODE)
2142 return false;
2144 /* Emit a diagnostic for the invalid type. */
2145 cp_parser_diagnose_invalid_type_name (parser, parser->scope, id);
2146 /* Skip to the end of the declaration; there's no point in
2147 trying to process it. */
2148 cp_parser_skip_to_end_of_block_or_statement (parser);
2149 return true;
2152 /* Consume tokens up to, and including, the next non-nested closing `)'.
2153 Returns 1 iff we found a closing `)'. RECOVERING is true, if we
2154 are doing error recovery. Returns -1 if OR_COMMA is true and we
2155 found an unnested comma. */
2157 static int
2158 cp_parser_skip_to_closing_parenthesis (cp_parser *parser,
2159 bool recovering,
2160 bool or_comma,
2161 bool consume_paren)
2163 unsigned paren_depth = 0;
2164 unsigned brace_depth = 0;
2165 int result;
2167 if (recovering && !or_comma
2168 && cp_parser_uncommitted_to_tentative_parse_p (parser))
2169 return 0;
2171 while (true)
2173 cp_token *token;
2175 /* If we've run out of tokens, then there is no closing `)'. */
2176 if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
2178 result = 0;
2179 break;
2182 token = cp_lexer_peek_token (parser->lexer);
2184 /* This matches the processing in skip_to_end_of_statement. */
2185 if (token->type == CPP_SEMICOLON && !brace_depth)
2187 result = 0;
2188 break;
2190 if (token->type == CPP_OPEN_BRACE)
2191 ++brace_depth;
2192 if (token->type == CPP_CLOSE_BRACE)
2194 if (!brace_depth--)
2196 result = 0;
2197 break;
2200 if (recovering && or_comma && token->type == CPP_COMMA
2201 && !brace_depth && !paren_depth)
2203 result = -1;
2204 break;
2207 if (!brace_depth)
2209 /* If it is an `(', we have entered another level of nesting. */
2210 if (token->type == CPP_OPEN_PAREN)
2211 ++paren_depth;
2212 /* If it is a `)', then we might be done. */
2213 else if (token->type == CPP_CLOSE_PAREN && !paren_depth--)
2215 if (consume_paren)
2216 cp_lexer_consume_token (parser->lexer);
2218 result = 1;
2219 break;
2224 /* Consume the token. */
2225 cp_lexer_consume_token (parser->lexer);
2228 return result;
2231 /* Consume tokens until we reach the end of the current statement.
2232 Normally, that will be just before consuming a `;'. However, if a
2233 non-nested `}' comes first, then we stop before consuming that. */
2235 static void
2236 cp_parser_skip_to_end_of_statement (cp_parser* parser)
2238 unsigned nesting_depth = 0;
2240 while (true)
2242 cp_token *token;
2244 /* Peek at the next token. */
2245 token = cp_lexer_peek_token (parser->lexer);
2246 /* If we've run out of tokens, stop. */
2247 if (token->type == CPP_EOF)
2248 break;
2249 /* If the next token is a `;', we have reached the end of the
2250 statement. */
2251 if (token->type == CPP_SEMICOLON && !nesting_depth)
2252 break;
2253 /* If the next token is a non-nested `}', then we have reached
2254 the end of the current block. */
2255 if (token->type == CPP_CLOSE_BRACE)
2257 /* If this is a non-nested `}', stop before consuming it.
2258 That way, when confronted with something like:
2260 { 3 + }
2262 we stop before consuming the closing `}', even though we
2263 have not yet reached a `;'. */
2264 if (nesting_depth == 0)
2265 break;
2266 /* If it is the closing `}' for a block that we have
2267 scanned, stop -- but only after consuming the token.
2268 That way given:
2270 void f g () { ... }
2271 typedef int I;
2273 we will stop after the body of the erroneously declared
2274 function, but before consuming the following `typedef'
2275 declaration. */
2276 if (--nesting_depth == 0)
2278 cp_lexer_consume_token (parser->lexer);
2279 break;
2282 /* If it the next token is a `{', then we are entering a new
2283 block. Consume the entire block. */
2284 else if (token->type == CPP_OPEN_BRACE)
2285 ++nesting_depth;
2286 /* Consume the token. */
2287 cp_lexer_consume_token (parser->lexer);
2291 /* This function is called at the end of a statement or declaration.
2292 If the next token is a semicolon, it is consumed; otherwise, error
2293 recovery is attempted. */
2295 static void
2296 cp_parser_consume_semicolon_at_end_of_statement (cp_parser *parser)
2298 /* Look for the trailing `;'. */
2299 if (!cp_parser_require (parser, CPP_SEMICOLON, "`;'"))
2301 /* If there is additional (erroneous) input, skip to the end of
2302 the statement. */
2303 cp_parser_skip_to_end_of_statement (parser);
2304 /* If the next token is now a `;', consume it. */
2305 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
2306 cp_lexer_consume_token (parser->lexer);
2310 /* Skip tokens until we have consumed an entire block, or until we
2311 have consumed a non-nested `;'. */
2313 static void
2314 cp_parser_skip_to_end_of_block_or_statement (cp_parser* parser)
2316 unsigned nesting_depth = 0;
2318 while (true)
2320 cp_token *token;
2322 /* Peek at the next token. */
2323 token = cp_lexer_peek_token (parser->lexer);
2324 /* If we've run out of tokens, stop. */
2325 if (token->type == CPP_EOF)
2326 break;
2327 /* If the next token is a `;', we have reached the end of the
2328 statement. */
2329 if (token->type == CPP_SEMICOLON && !nesting_depth)
2331 /* Consume the `;'. */
2332 cp_lexer_consume_token (parser->lexer);
2333 break;
2335 /* Consume the token. */
2336 token = cp_lexer_consume_token (parser->lexer);
2337 /* If the next token is a non-nested `}', then we have reached
2338 the end of the current block. */
2339 if (token->type == CPP_CLOSE_BRACE
2340 && (nesting_depth == 0 || --nesting_depth == 0))
2341 break;
2342 /* If it the next token is a `{', then we are entering a new
2343 block. Consume the entire block. */
2344 if (token->type == CPP_OPEN_BRACE)
2345 ++nesting_depth;
2349 /* Skip tokens until a non-nested closing curly brace is the next
2350 token. */
2352 static void
2353 cp_parser_skip_to_closing_brace (cp_parser *parser)
2355 unsigned nesting_depth = 0;
2357 while (true)
2359 cp_token *token;
2361 /* Peek at the next token. */
2362 token = cp_lexer_peek_token (parser->lexer);
2363 /* If we've run out of tokens, stop. */
2364 if (token->type == CPP_EOF)
2365 break;
2366 /* If the next token is a non-nested `}', then we have reached
2367 the end of the current block. */
2368 if (token->type == CPP_CLOSE_BRACE && nesting_depth-- == 0)
2369 break;
2370 /* If it the next token is a `{', then we are entering a new
2371 block. Consume the entire block. */
2372 else if (token->type == CPP_OPEN_BRACE)
2373 ++nesting_depth;
2374 /* Consume the token. */
2375 cp_lexer_consume_token (parser->lexer);
2379 /* This is a simple wrapper around make_typename_type. When the id is
2380 an unresolved identifier node, we can provide a superior diagnostic
2381 using cp_parser_diagnose_invalid_type_name. */
2383 static tree
2384 cp_parser_make_typename_type (cp_parser *parser, tree scope, tree id)
2386 tree result;
2387 if (TREE_CODE (id) == IDENTIFIER_NODE)
2389 result = make_typename_type (scope, id, typename_type,
2390 /*complain=*/0);
2391 if (result == error_mark_node)
2392 cp_parser_diagnose_invalid_type_name (parser, scope, id);
2393 return result;
2395 return make_typename_type (scope, id, typename_type, tf_error);
2399 /* Create a new C++ parser. */
2401 static cp_parser *
2402 cp_parser_new (void)
2404 cp_parser *parser;
2405 cp_lexer *lexer;
2406 unsigned i;
2408 /* cp_lexer_new_main is called before calling ggc_alloc because
2409 cp_lexer_new_main might load a PCH file. */
2410 lexer = cp_lexer_new_main ();
2412 /* Initialize the binops_by_token so that we can get the tree
2413 directly from the token. */
2414 for (i = 0; i < sizeof (binops) / sizeof (binops[0]); i++)
2415 binops_by_token[binops[i].token_type] = binops[i];
2417 parser = GGC_CNEW (cp_parser);
2418 parser->lexer = lexer;
2419 parser->context = cp_parser_context_new (NULL);
2421 /* For now, we always accept GNU extensions. */
2422 parser->allow_gnu_extensions_p = 1;
2424 /* The `>' token is a greater-than operator, not the end of a
2425 template-id. */
2426 parser->greater_than_is_operator_p = true;
2428 parser->default_arg_ok_p = true;
2430 /* We are not parsing a constant-expression. */
2431 parser->integral_constant_expression_p = false;
2432 parser->allow_non_integral_constant_expression_p = false;
2433 parser->non_integral_constant_expression_p = false;
2435 /* Local variable names are not forbidden. */
2436 parser->local_variables_forbidden_p = false;
2438 /* We are not processing an `extern "C"' declaration. */
2439 parser->in_unbraced_linkage_specification_p = false;
2441 /* We are not processing a declarator. */
2442 parser->in_declarator_p = false;
2444 /* We are not processing a template-argument-list. */
2445 parser->in_template_argument_list_p = false;
2447 /* We are not in an iteration statement. */
2448 parser->in_iteration_statement_p = false;
2450 /* We are not in a switch statement. */
2451 parser->in_switch_statement_p = false;
2453 /* We are not parsing a type-id inside an expression. */
2454 parser->in_type_id_in_expr_p = false;
2456 /* Declarations aren't implicitly extern "C". */
2457 parser->implicit_extern_c = false;
2459 /* String literals should be translated to the execution character set. */
2460 parser->translate_strings_p = true;
2462 /* The unparsed function queue is empty. */
2463 parser->unparsed_functions_queues = build_tree_list (NULL_TREE, NULL_TREE);
2465 /* There are no classes being defined. */
2466 parser->num_classes_being_defined = 0;
2468 /* No template parameters apply. */
2469 parser->num_template_parameter_lists = 0;
2471 return parser;
2474 /* Create a cp_lexer structure which will emit the tokens in CACHE
2475 and push it onto the parser's lexer stack. This is used for delayed
2476 parsing of in-class method bodies and default arguments, and should
2477 not be confused with tentative parsing. */
2478 static void
2479 cp_parser_push_lexer_for_tokens (cp_parser *parser, cp_token_cache *cache)
2481 cp_lexer *lexer = cp_lexer_new_from_tokens (cache);
2482 lexer->next = parser->lexer;
2483 parser->lexer = lexer;
2485 /* Move the current source position to that of the first token in the
2486 new lexer. */
2487 cp_lexer_set_source_position_from_token (lexer->next_token);
2490 /* Pop the top lexer off the parser stack. This is never used for the
2491 "main" lexer, only for those pushed by cp_parser_push_lexer_for_tokens. */
2492 static void
2493 cp_parser_pop_lexer (cp_parser *parser)
2495 cp_lexer *lexer = parser->lexer;
2496 parser->lexer = lexer->next;
2497 cp_lexer_destroy (lexer);
2499 /* Put the current source position back where it was before this
2500 lexer was pushed. */
2501 cp_lexer_set_source_position_from_token (parser->lexer->next_token);
2504 /* Lexical conventions [gram.lex] */
2506 /* Parse an identifier. Returns an IDENTIFIER_NODE representing the
2507 identifier. */
2509 static tree
2510 cp_parser_identifier (cp_parser* parser)
2512 cp_token *token;
2514 /* Look for the identifier. */
2515 token = cp_parser_require (parser, CPP_NAME, "identifier");
2516 /* Return the value. */
2517 return token ? token->value : error_mark_node;
2520 /* Parse a sequence of adjacent string constants. Returns a
2521 TREE_STRING representing the combined, nul-terminated string
2522 constant. If TRANSLATE is true, translate the string to the
2523 execution character set. If WIDE_OK is true, a wide string is
2524 invalid here.
2526 C++98 [lex.string] says that if a narrow string literal token is
2527 adjacent to a wide string literal token, the behavior is undefined.
2528 However, C99 6.4.5p4 says that this results in a wide string literal.
2529 We follow C99 here, for consistency with the C front end.
2531 This code is largely lifted from lex_string() in c-lex.c.
2533 FUTURE: ObjC++ will need to handle @-strings here. */
2534 static tree
2535 cp_parser_string_literal (cp_parser *parser, bool translate, bool wide_ok)
2537 tree value;
2538 bool wide = false;
2539 size_t count;
2540 struct obstack str_ob;
2541 cpp_string str, istr, *strs;
2542 cp_token *tok;
2544 tok = cp_lexer_peek_token (parser->lexer);
2545 if (!cp_parser_is_string_literal (tok))
2547 cp_parser_error (parser, "expected string-literal");
2548 return error_mark_node;
2551 /* Try to avoid the overhead of creating and destroying an obstack
2552 for the common case of just one string. */
2553 if (!cp_parser_is_string_literal
2554 (cp_lexer_peek_nth_token (parser->lexer, 2)))
2556 cp_lexer_consume_token (parser->lexer);
2558 str.text = (const unsigned char *)TREE_STRING_POINTER (tok->value);
2559 str.len = TREE_STRING_LENGTH (tok->value);
2560 count = 1;
2561 if (tok->type == CPP_WSTRING)
2562 wide = true;
2564 strs = &str;
2566 else
2568 gcc_obstack_init (&str_ob);
2569 count = 0;
2573 cp_lexer_consume_token (parser->lexer);
2574 count++;
2575 str.text = (unsigned char *)TREE_STRING_POINTER (tok->value);
2576 str.len = TREE_STRING_LENGTH (tok->value);
2577 if (tok->type == CPP_WSTRING)
2578 wide = true;
2580 obstack_grow (&str_ob, &str, sizeof (cpp_string));
2582 tok = cp_lexer_peek_token (parser->lexer);
2584 while (cp_parser_is_string_literal (tok));
2586 strs = (cpp_string *) obstack_finish (&str_ob);
2589 if (wide && !wide_ok)
2591 cp_parser_error (parser, "a wide string is invalid in this context");
2592 wide = false;
2595 if ((translate ? cpp_interpret_string : cpp_interpret_string_notranslate)
2596 (parse_in, strs, count, &istr, wide))
2598 value = build_string (istr.len, (char *)istr.text);
2599 free ((void *)istr.text);
2601 TREE_TYPE (value) = wide ? wchar_array_type_node : char_array_type_node;
2602 value = fix_string_type (value);
2604 else
2605 /* cpp_interpret_string has issued an error. */
2606 value = error_mark_node;
2608 if (count > 1)
2609 obstack_free (&str_ob, 0);
2611 return value;
2615 /* Basic concepts [gram.basic] */
2617 /* Parse a translation-unit.
2619 translation-unit:
2620 declaration-seq [opt]
2622 Returns TRUE if all went well. */
2624 static bool
2625 cp_parser_translation_unit (cp_parser* parser)
2627 /* The address of the first non-permanent object on the declarator
2628 obstack. */
2629 static void *declarator_obstack_base;
2631 bool success;
2633 /* Create the declarator obstack, if necessary. */
2634 if (!cp_error_declarator)
2636 gcc_obstack_init (&declarator_obstack);
2637 /* Create the error declarator. */
2638 cp_error_declarator = make_declarator (cdk_error);
2639 /* Create the empty parameter list. */
2640 no_parameters = make_parameter_declarator (NULL, NULL, NULL_TREE);
2641 /* Remember where the base of the declarator obstack lies. */
2642 declarator_obstack_base = obstack_next_free (&declarator_obstack);
2645 while (true)
2647 cp_parser_declaration_seq_opt (parser);
2649 /* If there are no tokens left then all went well. */
2650 if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
2652 /* Get rid of the token array; we don't need it any more. */
2653 cp_lexer_destroy (parser->lexer);
2654 parser->lexer = NULL;
2656 /* This file might have been a context that's implicitly extern
2657 "C". If so, pop the lang context. (Only relevant for PCH.) */
2658 if (parser->implicit_extern_c)
2660 pop_lang_context ();
2661 parser->implicit_extern_c = false;
2664 /* Finish up. */
2665 finish_translation_unit ();
2667 success = true;
2668 break;
2670 else
2672 cp_parser_error (parser, "expected declaration");
2673 success = false;
2674 break;
2678 /* Make sure the declarator obstack was fully cleaned up. */
2679 gcc_assert (obstack_next_free (&declarator_obstack)
2680 == declarator_obstack_base);
2682 /* All went well. */
2683 return success;
2686 /* Expressions [gram.expr] */
2688 /* Parse a primary-expression.
2690 primary-expression:
2691 literal
2692 this
2693 ( expression )
2694 id-expression
2696 GNU Extensions:
2698 primary-expression:
2699 ( compound-statement )
2700 __builtin_va_arg ( assignment-expression , type-id )
2702 Objective-C++ Extension:
2704 primary-expression:
2705 objc-expression
2707 literal:
2708 __null
2710 CAST_P is true if this primary expression is the target of a cast.
2712 Returns a representation of the expression.
2714 *IDK indicates what kind of id-expression (if any) was present.
2716 *QUALIFYING_CLASS is set to a non-NULL value if the id-expression can be
2717 used as the operand of a pointer-to-member. In that case,
2718 *QUALIFYING_CLASS gives the class that is used as the qualifying
2719 class in the pointer-to-member. */
2721 static tree
2722 cp_parser_primary_expression (cp_parser *parser,
2723 bool cast_p,
2724 cp_id_kind *idk,
2725 tree *qualifying_class)
2727 cp_token *token;
2729 /* Assume the primary expression is not an id-expression. */
2730 *idk = CP_ID_KIND_NONE;
2731 /* And that it cannot be used as pointer-to-member. */
2732 *qualifying_class = NULL_TREE;
2734 /* Peek at the next token. */
2735 token = cp_lexer_peek_token (parser->lexer);
2736 switch (token->type)
2738 /* literal:
2739 integer-literal
2740 character-literal
2741 floating-literal
2742 string-literal
2743 boolean-literal */
2744 case CPP_CHAR:
2745 case CPP_WCHAR:
2746 case CPP_NUMBER:
2747 token = cp_lexer_consume_token (parser->lexer);
2748 /* Floating-point literals are only allowed in an integral
2749 constant expression if they are cast to an integral or
2750 enumeration type. */
2751 if (TREE_CODE (token->value) == REAL_CST
2752 && parser->integral_constant_expression_p
2753 && pedantic)
2755 /* CAST_P will be set even in invalid code like "int(2.7 +
2756 ...)". Therefore, we have to check that the next token
2757 is sure to end the cast. */
2758 if (cast_p)
2760 cp_token *next_token;
2762 next_token = cp_lexer_peek_token (parser->lexer);
2763 if (/* The comma at the end of an
2764 enumerator-definition. */
2765 next_token->type != CPP_COMMA
2766 /* The curly brace at the end of an enum-specifier. */
2767 && next_token->type != CPP_CLOSE_BRACE
2768 /* The end of a statement. */
2769 && next_token->type != CPP_SEMICOLON
2770 /* The end of the cast-expression. */
2771 && next_token->type != CPP_CLOSE_PAREN
2772 /* The end of an array bound. */
2773 && next_token->type != CPP_CLOSE_SQUARE)
2774 cast_p = false;
2777 /* If we are within a cast, then the constraint that the
2778 cast is to an integral or enumeration type will be
2779 checked at that point. If we are not within a cast, then
2780 this code is invalid. */
2781 if (!cast_p)
2782 cp_parser_non_integral_constant_expression
2783 (parser, "floating-point literal");
2785 return token->value;
2787 case CPP_STRING:
2788 case CPP_WSTRING:
2789 /* ??? Should wide strings be allowed when parser->translate_strings_p
2790 is false (i.e. in attributes)? If not, we can kill the third
2791 argument to cp_parser_string_literal. */
2792 return cp_parser_string_literal (parser,
2793 parser->translate_strings_p,
2794 true);
2796 case CPP_OPEN_PAREN:
2798 tree expr;
2799 bool saved_greater_than_is_operator_p;
2801 /* Consume the `('. */
2802 cp_lexer_consume_token (parser->lexer);
2803 /* Within a parenthesized expression, a `>' token is always
2804 the greater-than operator. */
2805 saved_greater_than_is_operator_p
2806 = parser->greater_than_is_operator_p;
2807 parser->greater_than_is_operator_p = true;
2808 /* If we see `( { ' then we are looking at the beginning of
2809 a GNU statement-expression. */
2810 if (cp_parser_allow_gnu_extensions_p (parser)
2811 && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
2813 /* Statement-expressions are not allowed by the standard. */
2814 if (pedantic)
2815 pedwarn ("ISO C++ forbids braced-groups within expressions");
2817 /* And they're not allowed outside of a function-body; you
2818 cannot, for example, write:
2820 int i = ({ int j = 3; j + 1; });
2822 at class or namespace scope. */
2823 if (!at_function_scope_p ())
2824 error ("statement-expressions are allowed only inside functions");
2825 /* Start the statement-expression. */
2826 expr = begin_stmt_expr ();
2827 /* Parse the compound-statement. */
2828 cp_parser_compound_statement (parser, expr, false);
2829 /* Finish up. */
2830 expr = finish_stmt_expr (expr, false);
2832 else
2834 /* Parse the parenthesized expression. */
2835 expr = cp_parser_expression (parser, cast_p);
2836 /* Let the front end know that this expression was
2837 enclosed in parentheses. This matters in case, for
2838 example, the expression is of the form `A::B', since
2839 `&A::B' might be a pointer-to-member, but `&(A::B)' is
2840 not. */
2841 finish_parenthesized_expr (expr);
2843 /* The `>' token might be the end of a template-id or
2844 template-parameter-list now. */
2845 parser->greater_than_is_operator_p
2846 = saved_greater_than_is_operator_p;
2847 /* Consume the `)'. */
2848 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
2849 cp_parser_skip_to_end_of_statement (parser);
2851 return expr;
2854 case CPP_KEYWORD:
2855 switch (token->keyword)
2857 /* These two are the boolean literals. */
2858 case RID_TRUE:
2859 cp_lexer_consume_token (parser->lexer);
2860 return boolean_true_node;
2861 case RID_FALSE:
2862 cp_lexer_consume_token (parser->lexer);
2863 return boolean_false_node;
2865 /* The `__null' literal. */
2866 case RID_NULL:
2867 cp_lexer_consume_token (parser->lexer);
2868 return null_node;
2870 /* Recognize the `this' keyword. */
2871 case RID_THIS:
2872 cp_lexer_consume_token (parser->lexer);
2873 if (parser->local_variables_forbidden_p)
2875 error ("%<this%> may not be used in this context");
2876 return error_mark_node;
2878 /* Pointers cannot appear in constant-expressions. */
2879 if (cp_parser_non_integral_constant_expression (parser,
2880 "`this'"))
2881 return error_mark_node;
2882 return finish_this_expr ();
2884 /* The `operator' keyword can be the beginning of an
2885 id-expression. */
2886 case RID_OPERATOR:
2887 goto id_expression;
2889 case RID_FUNCTION_NAME:
2890 case RID_PRETTY_FUNCTION_NAME:
2891 case RID_C99_FUNCTION_NAME:
2892 /* The symbols __FUNCTION__, __PRETTY_FUNCTION__, and
2893 __func__ are the names of variables -- but they are
2894 treated specially. Therefore, they are handled here,
2895 rather than relying on the generic id-expression logic
2896 below. Grammatically, these names are id-expressions.
2898 Consume the token. */
2899 token = cp_lexer_consume_token (parser->lexer);
2900 /* Look up the name. */
2901 return finish_fname (token->value);
2903 case RID_VA_ARG:
2905 tree expression;
2906 tree type;
2908 /* The `__builtin_va_arg' construct is used to handle
2909 `va_arg'. Consume the `__builtin_va_arg' token. */
2910 cp_lexer_consume_token (parser->lexer);
2911 /* Look for the opening `('. */
2912 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
2913 /* Now, parse the assignment-expression. */
2914 expression = cp_parser_assignment_expression (parser,
2915 /*cast_p=*/false);
2916 /* Look for the `,'. */
2917 cp_parser_require (parser, CPP_COMMA, "`,'");
2918 /* Parse the type-id. */
2919 type = cp_parser_type_id (parser);
2920 /* Look for the closing `)'. */
2921 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
2922 /* Using `va_arg' in a constant-expression is not
2923 allowed. */
2924 if (cp_parser_non_integral_constant_expression (parser,
2925 "`va_arg'"))
2926 return error_mark_node;
2927 return build_x_va_arg (expression, type);
2930 case RID_OFFSETOF:
2931 return cp_parser_builtin_offsetof (parser);
2933 /* Objective-C++ expressions. */
2934 case RID_AT_ENCODE:
2935 case RID_AT_PROTOCOL:
2936 case RID_AT_SELECTOR:
2937 return cp_parser_objc_expression (parser);
2939 default:
2940 cp_parser_error (parser, "expected primary-expression");
2941 return error_mark_node;
2944 /* An id-expression can start with either an identifier, a
2945 `::' as the beginning of a qualified-id, or the "operator"
2946 keyword. */
2947 case CPP_NAME:
2948 case CPP_SCOPE:
2949 case CPP_TEMPLATE_ID:
2950 case CPP_NESTED_NAME_SPECIFIER:
2952 tree id_expression;
2953 tree decl;
2954 const char *error_msg;
2956 id_expression:
2957 /* Parse the id-expression. */
2958 id_expression
2959 = cp_parser_id_expression (parser,
2960 /*template_keyword_p=*/false,
2961 /*check_dependency_p=*/true,
2962 /*template_p=*/NULL,
2963 /*declarator_p=*/false);
2964 if (id_expression == error_mark_node)
2965 return error_mark_node;
2966 /* If we have a template-id, then no further lookup is
2967 required. If the template-id was for a template-class, we
2968 will sometimes have a TYPE_DECL at this point. */
2969 else if (TREE_CODE (id_expression) == TEMPLATE_ID_EXPR
2970 || TREE_CODE (id_expression) == TYPE_DECL)
2971 decl = id_expression;
2972 /* Look up the name. */
2973 else
2975 bool ambiguous_p;
2977 decl = cp_parser_lookup_name (parser, id_expression,
2978 none_type,
2979 /*is_template=*/false,
2980 /*is_namespace=*/false,
2981 /*check_dependency=*/true,
2982 &ambiguous_p);
2983 /* If the lookup was ambiguous, an error will already have
2984 been issued. */
2985 if (ambiguous_p)
2986 return error_mark_node;
2988 /* In Objective-C++, an instance variable (ivar) may be preferred
2989 to whatever cp_parser_lookup_name() found. */
2990 decl = objc_lookup_ivar (decl, id_expression);
2992 /* If name lookup gives us a SCOPE_REF, then the
2993 qualifying scope was dependent. Just propagate the
2994 name. */
2995 if (TREE_CODE (decl) == SCOPE_REF)
2997 if (TYPE_P (TREE_OPERAND (decl, 0)))
2998 *qualifying_class = TREE_OPERAND (decl, 0);
2999 return decl;
3001 /* Check to see if DECL is a local variable in a context
3002 where that is forbidden. */
3003 if (parser->local_variables_forbidden_p
3004 && local_variable_p (decl))
3006 /* It might be that we only found DECL because we are
3007 trying to be generous with pre-ISO scoping rules.
3008 For example, consider:
3010 int i;
3011 void g() {
3012 for (int i = 0; i < 10; ++i) {}
3013 extern void f(int j = i);
3016 Here, name look up will originally find the out
3017 of scope `i'. We need to issue a warning message,
3018 but then use the global `i'. */
3019 decl = check_for_out_of_scope_variable (decl);
3020 if (local_variable_p (decl))
3022 error ("local variable %qD may not appear in this context",
3023 decl);
3024 return error_mark_node;
3029 decl = finish_id_expression (id_expression, decl, parser->scope,
3030 idk, qualifying_class,
3031 parser->integral_constant_expression_p,
3032 parser->allow_non_integral_constant_expression_p,
3033 &parser->non_integral_constant_expression_p,
3034 &error_msg);
3035 if (error_msg)
3036 cp_parser_error (parser, error_msg);
3037 return decl;
3040 /* Anything else is an error. */
3041 default:
3042 /* ...unless we have an Objective-C++ message or string literal, that is. */
3043 if (c_dialect_objc ()
3044 && (token->type == CPP_OPEN_SQUARE || token->type == CPP_OBJC_STRING))
3045 return cp_parser_objc_expression (parser);
3047 cp_parser_error (parser, "expected primary-expression");
3048 return error_mark_node;
3052 /* Parse an id-expression.
3054 id-expression:
3055 unqualified-id
3056 qualified-id
3058 qualified-id:
3059 :: [opt] nested-name-specifier template [opt] unqualified-id
3060 :: identifier
3061 :: operator-function-id
3062 :: template-id
3064 Return a representation of the unqualified portion of the
3065 identifier. Sets PARSER->SCOPE to the qualifying scope if there is
3066 a `::' or nested-name-specifier.
3068 Often, if the id-expression was a qualified-id, the caller will
3069 want to make a SCOPE_REF to represent the qualified-id. This
3070 function does not do this in order to avoid wastefully creating
3071 SCOPE_REFs when they are not required.
3073 If TEMPLATE_KEYWORD_P is true, then we have just seen the
3074 `template' keyword.
3076 If CHECK_DEPENDENCY_P is false, then names are looked up inside
3077 uninstantiated templates.
3079 If *TEMPLATE_P is non-NULL, it is set to true iff the
3080 `template' keyword is used to explicitly indicate that the entity
3081 named is a template.
3083 If DECLARATOR_P is true, the id-expression is appearing as part of
3084 a declarator, rather than as part of an expression. */
3086 static tree
3087 cp_parser_id_expression (cp_parser *parser,
3088 bool template_keyword_p,
3089 bool check_dependency_p,
3090 bool *template_p,
3091 bool declarator_p)
3093 bool global_scope_p;
3094 bool nested_name_specifier_p;
3096 /* Assume the `template' keyword was not used. */
3097 if (template_p)
3098 *template_p = false;
3100 /* Look for the optional `::' operator. */
3101 global_scope_p
3102 = (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false)
3103 != NULL_TREE);
3104 /* Look for the optional nested-name-specifier. */
3105 nested_name_specifier_p
3106 = (cp_parser_nested_name_specifier_opt (parser,
3107 /*typename_keyword_p=*/false,
3108 check_dependency_p,
3109 /*type_p=*/false,
3110 declarator_p)
3111 != NULL_TREE);
3112 /* If there is a nested-name-specifier, then we are looking at
3113 the first qualified-id production. */
3114 if (nested_name_specifier_p)
3116 tree saved_scope;
3117 tree saved_object_scope;
3118 tree saved_qualifying_scope;
3119 tree unqualified_id;
3120 bool is_template;
3122 /* See if the next token is the `template' keyword. */
3123 if (!template_p)
3124 template_p = &is_template;
3125 *template_p = cp_parser_optional_template_keyword (parser);
3126 /* Name lookup we do during the processing of the
3127 unqualified-id might obliterate SCOPE. */
3128 saved_scope = parser->scope;
3129 saved_object_scope = parser->object_scope;
3130 saved_qualifying_scope = parser->qualifying_scope;
3131 /* Process the final unqualified-id. */
3132 unqualified_id = cp_parser_unqualified_id (parser, *template_p,
3133 check_dependency_p,
3134 declarator_p);
3135 /* Restore the SAVED_SCOPE for our caller. */
3136 parser->scope = saved_scope;
3137 parser->object_scope = saved_object_scope;
3138 parser->qualifying_scope = saved_qualifying_scope;
3140 return unqualified_id;
3142 /* Otherwise, if we are in global scope, then we are looking at one
3143 of the other qualified-id productions. */
3144 else if (global_scope_p)
3146 cp_token *token;
3147 tree id;
3149 /* Peek at the next token. */
3150 token = cp_lexer_peek_token (parser->lexer);
3152 /* If it's an identifier, and the next token is not a "<", then
3153 we can avoid the template-id case. This is an optimization
3154 for this common case. */
3155 if (token->type == CPP_NAME
3156 && !cp_parser_nth_token_starts_template_argument_list_p
3157 (parser, 2))
3158 return cp_parser_identifier (parser);
3160 cp_parser_parse_tentatively (parser);
3161 /* Try a template-id. */
3162 id = cp_parser_template_id (parser,
3163 /*template_keyword_p=*/false,
3164 /*check_dependency_p=*/true,
3165 declarator_p);
3166 /* If that worked, we're done. */
3167 if (cp_parser_parse_definitely (parser))
3168 return id;
3170 /* Peek at the next token. (Changes in the token buffer may
3171 have invalidated the pointer obtained above.) */
3172 token = cp_lexer_peek_token (parser->lexer);
3174 switch (token->type)
3176 case CPP_NAME:
3177 return cp_parser_identifier (parser);
3179 case CPP_KEYWORD:
3180 if (token->keyword == RID_OPERATOR)
3181 return cp_parser_operator_function_id (parser);
3182 /* Fall through. */
3184 default:
3185 cp_parser_error (parser, "expected id-expression");
3186 return error_mark_node;
3189 else
3190 return cp_parser_unqualified_id (parser, template_keyword_p,
3191 /*check_dependency_p=*/true,
3192 declarator_p);
3195 /* Parse an unqualified-id.
3197 unqualified-id:
3198 identifier
3199 operator-function-id
3200 conversion-function-id
3201 ~ class-name
3202 template-id
3204 If TEMPLATE_KEYWORD_P is TRUE, we have just seen the `template'
3205 keyword, in a construct like `A::template ...'.
3207 Returns a representation of unqualified-id. For the `identifier'
3208 production, an IDENTIFIER_NODE is returned. For the `~ class-name'
3209 production a BIT_NOT_EXPR is returned; the operand of the
3210 BIT_NOT_EXPR is an IDENTIFIER_NODE for the class-name. For the
3211 other productions, see the documentation accompanying the
3212 corresponding parsing functions. If CHECK_DEPENDENCY_P is false,
3213 names are looked up in uninstantiated templates. If DECLARATOR_P
3214 is true, the unqualified-id is appearing as part of a declarator,
3215 rather than as part of an expression. */
3217 static tree
3218 cp_parser_unqualified_id (cp_parser* parser,
3219 bool template_keyword_p,
3220 bool check_dependency_p,
3221 bool declarator_p)
3223 cp_token *token;
3225 /* Peek at the next token. */
3226 token = cp_lexer_peek_token (parser->lexer);
3228 switch (token->type)
3230 case CPP_NAME:
3232 tree id;
3234 /* We don't know yet whether or not this will be a
3235 template-id. */
3236 cp_parser_parse_tentatively (parser);
3237 /* Try a template-id. */
3238 id = cp_parser_template_id (parser, template_keyword_p,
3239 check_dependency_p,
3240 declarator_p);
3241 /* If it worked, we're done. */
3242 if (cp_parser_parse_definitely (parser))
3243 return id;
3244 /* Otherwise, it's an ordinary identifier. */
3245 return cp_parser_identifier (parser);
3248 case CPP_TEMPLATE_ID:
3249 return cp_parser_template_id (parser, template_keyword_p,
3250 check_dependency_p,
3251 declarator_p);
3253 case CPP_COMPL:
3255 tree type_decl;
3256 tree qualifying_scope;
3257 tree object_scope;
3258 tree scope;
3259 bool done;
3261 /* Consume the `~' token. */
3262 cp_lexer_consume_token (parser->lexer);
3263 /* Parse the class-name. The standard, as written, seems to
3264 say that:
3266 template <typename T> struct S { ~S (); };
3267 template <typename T> S<T>::~S() {}
3269 is invalid, since `~' must be followed by a class-name, but
3270 `S<T>' is dependent, and so not known to be a class.
3271 That's not right; we need to look in uninstantiated
3272 templates. A further complication arises from:
3274 template <typename T> void f(T t) {
3275 t.T::~T();
3278 Here, it is not possible to look up `T' in the scope of `T'
3279 itself. We must look in both the current scope, and the
3280 scope of the containing complete expression.
3282 Yet another issue is:
3284 struct S {
3285 int S;
3286 ~S();
3289 S::~S() {}
3291 The standard does not seem to say that the `S' in `~S'
3292 should refer to the type `S' and not the data member
3293 `S::S'. */
3295 /* DR 244 says that we look up the name after the "~" in the
3296 same scope as we looked up the qualifying name. That idea
3297 isn't fully worked out; it's more complicated than that. */
3298 scope = parser->scope;
3299 object_scope = parser->object_scope;
3300 qualifying_scope = parser->qualifying_scope;
3302 /* If the name is of the form "X::~X" it's OK. */
3303 if (scope && TYPE_P (scope)
3304 && cp_lexer_next_token_is (parser->lexer, CPP_NAME)
3305 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
3306 == CPP_OPEN_PAREN)
3307 && (cp_lexer_peek_token (parser->lexer)->value
3308 == TYPE_IDENTIFIER (scope)))
3310 cp_lexer_consume_token (parser->lexer);
3311 return build_nt (BIT_NOT_EXPR, scope);
3314 /* If there was an explicit qualification (S::~T), first look
3315 in the scope given by the qualification (i.e., S). */
3316 done = false;
3317 type_decl = NULL_TREE;
3318 if (scope)
3320 cp_parser_parse_tentatively (parser);
3321 type_decl = cp_parser_class_name (parser,
3322 /*typename_keyword_p=*/false,
3323 /*template_keyword_p=*/false,
3324 none_type,
3325 /*check_dependency=*/false,
3326 /*class_head_p=*/false,
3327 declarator_p);
3328 if (cp_parser_parse_definitely (parser))
3329 done = true;
3331 /* In "N::S::~S", look in "N" as well. */
3332 if (!done && scope && qualifying_scope)
3334 cp_parser_parse_tentatively (parser);
3335 parser->scope = qualifying_scope;
3336 parser->object_scope = NULL_TREE;
3337 parser->qualifying_scope = NULL_TREE;
3338 type_decl
3339 = cp_parser_class_name (parser,
3340 /*typename_keyword_p=*/false,
3341 /*template_keyword_p=*/false,
3342 none_type,
3343 /*check_dependency=*/false,
3344 /*class_head_p=*/false,
3345 declarator_p);
3346 if (cp_parser_parse_definitely (parser))
3347 done = true;
3349 /* In "p->S::~T", look in the scope given by "*p" as well. */
3350 else if (!done && object_scope)
3352 cp_parser_parse_tentatively (parser);
3353 parser->scope = object_scope;
3354 parser->object_scope = NULL_TREE;
3355 parser->qualifying_scope = NULL_TREE;
3356 type_decl
3357 = cp_parser_class_name (parser,
3358 /*typename_keyword_p=*/false,
3359 /*template_keyword_p=*/false,
3360 none_type,
3361 /*check_dependency=*/false,
3362 /*class_head_p=*/false,
3363 declarator_p);
3364 if (cp_parser_parse_definitely (parser))
3365 done = true;
3367 /* Look in the surrounding context. */
3368 if (!done)
3370 parser->scope = NULL_TREE;
3371 parser->object_scope = NULL_TREE;
3372 parser->qualifying_scope = NULL_TREE;
3373 type_decl
3374 = cp_parser_class_name (parser,
3375 /*typename_keyword_p=*/false,
3376 /*template_keyword_p=*/false,
3377 none_type,
3378 /*check_dependency=*/false,
3379 /*class_head_p=*/false,
3380 declarator_p);
3382 /* If an error occurred, assume that the name of the
3383 destructor is the same as the name of the qualifying
3384 class. That allows us to keep parsing after running
3385 into ill-formed destructor names. */
3386 if (type_decl == error_mark_node && scope && TYPE_P (scope))
3387 return build_nt (BIT_NOT_EXPR, scope);
3388 else if (type_decl == error_mark_node)
3389 return error_mark_node;
3391 /* [class.dtor]
3393 A typedef-name that names a class shall not be used as the
3394 identifier in the declarator for a destructor declaration. */
3395 if (declarator_p
3396 && !DECL_IMPLICIT_TYPEDEF_P (type_decl)
3397 && !DECL_SELF_REFERENCE_P (type_decl)
3398 && !cp_parser_uncommitted_to_tentative_parse_p (parser))
3399 error ("typedef-name %qD used as destructor declarator",
3400 type_decl);
3402 return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
3405 case CPP_KEYWORD:
3406 if (token->keyword == RID_OPERATOR)
3408 tree id;
3410 /* This could be a template-id, so we try that first. */
3411 cp_parser_parse_tentatively (parser);
3412 /* Try a template-id. */
3413 id = cp_parser_template_id (parser, template_keyword_p,
3414 /*check_dependency_p=*/true,
3415 declarator_p);
3416 /* If that worked, we're done. */
3417 if (cp_parser_parse_definitely (parser))
3418 return id;
3419 /* We still don't know whether we're looking at an
3420 operator-function-id or a conversion-function-id. */
3421 cp_parser_parse_tentatively (parser);
3422 /* Try an operator-function-id. */
3423 id = cp_parser_operator_function_id (parser);
3424 /* If that didn't work, try a conversion-function-id. */
3425 if (!cp_parser_parse_definitely (parser))
3426 id = cp_parser_conversion_function_id (parser);
3428 return id;
3430 /* Fall through. */
3432 default:
3433 cp_parser_error (parser, "expected unqualified-id");
3434 return error_mark_node;
3438 /* Parse an (optional) nested-name-specifier.
3440 nested-name-specifier:
3441 class-or-namespace-name :: nested-name-specifier [opt]
3442 class-or-namespace-name :: template nested-name-specifier [opt]
3444 PARSER->SCOPE should be set appropriately before this function is
3445 called. TYPENAME_KEYWORD_P is TRUE if the `typename' keyword is in
3446 effect. TYPE_P is TRUE if we non-type bindings should be ignored
3447 in name lookups.
3449 Sets PARSER->SCOPE to the class (TYPE) or namespace
3450 (NAMESPACE_DECL) specified by the nested-name-specifier, or leaves
3451 it unchanged if there is no nested-name-specifier. Returns the new
3452 scope iff there is a nested-name-specifier, or NULL_TREE otherwise.
3454 If IS_DECLARATION is TRUE, the nested-name-specifier is known to be
3455 part of a declaration and/or decl-specifier. */
3457 static tree
3458 cp_parser_nested_name_specifier_opt (cp_parser *parser,
3459 bool typename_keyword_p,
3460 bool check_dependency_p,
3461 bool type_p,
3462 bool is_declaration)
3464 bool success = false;
3465 tree access_check = NULL_TREE;
3466 cp_token_position start = 0;
3467 cp_token *token;
3469 /* If the next token corresponds to a nested name specifier, there
3470 is no need to reparse it. However, if CHECK_DEPENDENCY_P is
3471 false, it may have been true before, in which case something
3472 like `A<X>::B<Y>::C' may have resulted in a nested-name-specifier
3473 of `A<X>::', where it should now be `A<X>::B<Y>::'. So, when
3474 CHECK_DEPENDENCY_P is false, we have to fall through into the
3475 main loop. */
3476 if (check_dependency_p
3477 && cp_lexer_next_token_is (parser->lexer, CPP_NESTED_NAME_SPECIFIER))
3479 cp_parser_pre_parsed_nested_name_specifier (parser);
3480 return parser->scope;
3483 /* Remember where the nested-name-specifier starts. */
3484 if (cp_parser_uncommitted_to_tentative_parse_p (parser))
3485 start = cp_lexer_token_position (parser->lexer, false);
3487 push_deferring_access_checks (dk_deferred);
3489 while (true)
3491 tree new_scope;
3492 tree old_scope;
3493 tree saved_qualifying_scope;
3494 bool template_keyword_p;
3496 /* Spot cases that cannot be the beginning of a
3497 nested-name-specifier. */
3498 token = cp_lexer_peek_token (parser->lexer);
3500 /* If the next token is CPP_NESTED_NAME_SPECIFIER, just process
3501 the already parsed nested-name-specifier. */
3502 if (token->type == CPP_NESTED_NAME_SPECIFIER)
3504 /* Grab the nested-name-specifier and continue the loop. */
3505 cp_parser_pre_parsed_nested_name_specifier (parser);
3506 success = true;
3507 continue;
3510 /* Spot cases that cannot be the beginning of a
3511 nested-name-specifier. On the second and subsequent times
3512 through the loop, we look for the `template' keyword. */
3513 if (success && token->keyword == RID_TEMPLATE)
3515 /* A template-id can start a nested-name-specifier. */
3516 else if (token->type == CPP_TEMPLATE_ID)
3518 else
3520 /* If the next token is not an identifier, then it is
3521 definitely not a class-or-namespace-name. */
3522 if (token->type != CPP_NAME)
3523 break;
3524 /* If the following token is neither a `<' (to begin a
3525 template-id), nor a `::', then we are not looking at a
3526 nested-name-specifier. */
3527 token = cp_lexer_peek_nth_token (parser->lexer, 2);
3528 if (token->type != CPP_SCOPE
3529 && !cp_parser_nth_token_starts_template_argument_list_p
3530 (parser, 2))
3531 break;
3534 /* The nested-name-specifier is optional, so we parse
3535 tentatively. */
3536 cp_parser_parse_tentatively (parser);
3538 /* Look for the optional `template' keyword, if this isn't the
3539 first time through the loop. */
3540 if (success)
3541 template_keyword_p = cp_parser_optional_template_keyword (parser);
3542 else
3543 template_keyword_p = false;
3545 /* Save the old scope since the name lookup we are about to do
3546 might destroy it. */
3547 old_scope = parser->scope;
3548 saved_qualifying_scope = parser->qualifying_scope;
3549 /* In a declarator-id like "X<T>::I::Y<T>" we must be able to
3550 look up names in "X<T>::I" in order to determine that "Y" is
3551 a template. So, if we have a typename at this point, we make
3552 an effort to look through it. */
3553 if (is_declaration
3554 && !typename_keyword_p
3555 && parser->scope
3556 && TREE_CODE (parser->scope) == TYPENAME_TYPE)
3557 parser->scope = resolve_typename_type (parser->scope,
3558 /*only_current_p=*/false);
3559 /* Parse the qualifying entity. */
3560 new_scope
3561 = cp_parser_class_or_namespace_name (parser,
3562 typename_keyword_p,
3563 template_keyword_p,
3564 check_dependency_p,
3565 type_p,
3566 is_declaration);
3567 /* Look for the `::' token. */
3568 cp_parser_require (parser, CPP_SCOPE, "`::'");
3570 /* If we found what we wanted, we keep going; otherwise, we're
3571 done. */
3572 if (!cp_parser_parse_definitely (parser))
3574 bool error_p = false;
3576 /* Restore the OLD_SCOPE since it was valid before the
3577 failed attempt at finding the last
3578 class-or-namespace-name. */
3579 parser->scope = old_scope;
3580 parser->qualifying_scope = saved_qualifying_scope;
3581 /* If the next token is an identifier, and the one after
3582 that is a `::', then any valid interpretation would have
3583 found a class-or-namespace-name. */
3584 while (cp_lexer_next_token_is (parser->lexer, CPP_NAME)
3585 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
3586 == CPP_SCOPE)
3587 && (cp_lexer_peek_nth_token (parser->lexer, 3)->type
3588 != CPP_COMPL))
3590 token = cp_lexer_consume_token (parser->lexer);
3591 if (!error_p)
3593 tree decl;
3595 decl = cp_parser_lookup_name_simple (parser, token->value);
3596 if (TREE_CODE (decl) == TEMPLATE_DECL)
3597 error ("%qD used without template parameters", decl);
3598 else
3599 cp_parser_name_lookup_error
3600 (parser, token->value, decl,
3601 "is not a class or namespace");
3602 parser->scope = NULL_TREE;
3603 error_p = true;
3604 /* Treat this as a successful nested-name-specifier
3605 due to:
3607 [basic.lookup.qual]
3609 If the name found is not a class-name (clause
3610 _class_) or namespace-name (_namespace.def_), the
3611 program is ill-formed. */
3612 success = true;
3614 cp_lexer_consume_token (parser->lexer);
3616 break;
3619 /* We've found one valid nested-name-specifier. */
3620 success = true;
3621 /* Make sure we look in the right scope the next time through
3622 the loop. */
3623 parser->scope = (TREE_CODE (new_scope) == TYPE_DECL
3624 ? TREE_TYPE (new_scope)
3625 : new_scope);
3626 /* If it is a class scope, try to complete it; we are about to
3627 be looking up names inside the class. */
3628 if (TYPE_P (parser->scope)
3629 /* Since checking types for dependency can be expensive,
3630 avoid doing it if the type is already complete. */
3631 && !COMPLETE_TYPE_P (parser->scope)
3632 /* Do not try to complete dependent types. */
3633 && !dependent_type_p (parser->scope))
3634 complete_type (parser->scope);
3637 /* Retrieve any deferred checks. Do not pop this access checks yet
3638 so the memory will not be reclaimed during token replacing below. */
3639 access_check = get_deferred_access_checks ();
3641 /* If parsing tentatively, replace the sequence of tokens that makes
3642 up the nested-name-specifier with a CPP_NESTED_NAME_SPECIFIER
3643 token. That way, should we re-parse the token stream, we will
3644 not have to repeat the effort required to do the parse, nor will
3645 we issue duplicate error messages. */
3646 if (success && start)
3648 cp_token *token = cp_lexer_token_at (parser->lexer, start);
3650 /* Reset the contents of the START token. */
3651 token->type = CPP_NESTED_NAME_SPECIFIER;
3652 token->value = build_tree_list (access_check, parser->scope);
3653 TREE_TYPE (token->value) = parser->qualifying_scope;
3654 token->keyword = RID_MAX;
3656 /* Purge all subsequent tokens. */
3657 cp_lexer_purge_tokens_after (parser->lexer, start);
3660 pop_deferring_access_checks ();
3661 return success ? parser->scope : NULL_TREE;
3664 /* Parse a nested-name-specifier. See
3665 cp_parser_nested_name_specifier_opt for details. This function
3666 behaves identically, except that it will an issue an error if no
3667 nested-name-specifier is present, and it will return
3668 ERROR_MARK_NODE, rather than NULL_TREE, if no nested-name-specifier
3669 is present. */
3671 static tree
3672 cp_parser_nested_name_specifier (cp_parser *parser,
3673 bool typename_keyword_p,
3674 bool check_dependency_p,
3675 bool type_p,
3676 bool is_declaration)
3678 tree scope;
3680 /* Look for the nested-name-specifier. */
3681 scope = cp_parser_nested_name_specifier_opt (parser,
3682 typename_keyword_p,
3683 check_dependency_p,
3684 type_p,
3685 is_declaration);
3686 /* If it was not present, issue an error message. */
3687 if (!scope)
3689 cp_parser_error (parser, "expected nested-name-specifier");
3690 parser->scope = NULL_TREE;
3691 return error_mark_node;
3694 return scope;
3697 /* Parse a class-or-namespace-name.
3699 class-or-namespace-name:
3700 class-name
3701 namespace-name
3703 TYPENAME_KEYWORD_P is TRUE iff the `typename' keyword is in effect.
3704 TEMPLATE_KEYWORD_P is TRUE iff the `template' keyword is in effect.
3705 CHECK_DEPENDENCY_P is FALSE iff dependent names should be looked up.
3706 TYPE_P is TRUE iff the next name should be taken as a class-name,
3707 even the same name is declared to be another entity in the same
3708 scope.
3710 Returns the class (TYPE_DECL) or namespace (NAMESPACE_DECL)
3711 specified by the class-or-namespace-name. If neither is found the
3712 ERROR_MARK_NODE is returned. */
3714 static tree
3715 cp_parser_class_or_namespace_name (cp_parser *parser,
3716 bool typename_keyword_p,
3717 bool template_keyword_p,
3718 bool check_dependency_p,
3719 bool type_p,
3720 bool is_declaration)
3722 tree saved_scope;
3723 tree saved_qualifying_scope;
3724 tree saved_object_scope;
3725 tree scope;
3726 bool only_class_p;
3728 /* Before we try to parse the class-name, we must save away the
3729 current PARSER->SCOPE since cp_parser_class_name will destroy
3730 it. */
3731 saved_scope = parser->scope;
3732 saved_qualifying_scope = parser->qualifying_scope;
3733 saved_object_scope = parser->object_scope;
3734 /* Try for a class-name first. If the SAVED_SCOPE is a type, then
3735 there is no need to look for a namespace-name. */
3736 only_class_p = template_keyword_p || (saved_scope && TYPE_P (saved_scope));
3737 if (!only_class_p)
3738 cp_parser_parse_tentatively (parser);
3739 scope = cp_parser_class_name (parser,
3740 typename_keyword_p,
3741 template_keyword_p,
3742 type_p ? class_type : none_type,
3743 check_dependency_p,
3744 /*class_head_p=*/false,
3745 is_declaration);
3746 /* If that didn't work, try for a namespace-name. */
3747 if (!only_class_p && !cp_parser_parse_definitely (parser))
3749 /* Restore the saved scope. */
3750 parser->scope = saved_scope;
3751 parser->qualifying_scope = saved_qualifying_scope;
3752 parser->object_scope = saved_object_scope;
3753 /* If we are not looking at an identifier followed by the scope
3754 resolution operator, then this is not part of a
3755 nested-name-specifier. (Note that this function is only used
3756 to parse the components of a nested-name-specifier.) */
3757 if (cp_lexer_next_token_is_not (parser->lexer, CPP_NAME)
3758 || cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_SCOPE)
3759 return error_mark_node;
3760 scope = cp_parser_namespace_name (parser);
3763 return scope;
3766 /* Parse a postfix-expression.
3768 postfix-expression:
3769 primary-expression
3770 postfix-expression [ expression ]
3771 postfix-expression ( expression-list [opt] )
3772 simple-type-specifier ( expression-list [opt] )
3773 typename :: [opt] nested-name-specifier identifier
3774 ( expression-list [opt] )
3775 typename :: [opt] nested-name-specifier template [opt] template-id
3776 ( expression-list [opt] )
3777 postfix-expression . template [opt] id-expression
3778 postfix-expression -> template [opt] id-expression
3779 postfix-expression . pseudo-destructor-name
3780 postfix-expression -> pseudo-destructor-name
3781 postfix-expression ++
3782 postfix-expression --
3783 dynamic_cast < type-id > ( expression )
3784 static_cast < type-id > ( expression )
3785 reinterpret_cast < type-id > ( expression )
3786 const_cast < type-id > ( expression )
3787 typeid ( expression )
3788 typeid ( type-id )
3790 GNU Extension:
3792 postfix-expression:
3793 ( type-id ) { initializer-list , [opt] }
3795 This extension is a GNU version of the C99 compound-literal
3796 construct. (The C99 grammar uses `type-name' instead of `type-id',
3797 but they are essentially the same concept.)
3799 If ADDRESS_P is true, the postfix expression is the operand of the
3800 `&' operator. CAST_P is true if this expression is the target of a
3801 cast.
3803 Returns a representation of the expression. */
3805 static tree
3806 cp_parser_postfix_expression (cp_parser *parser, bool address_p, bool cast_p)
3808 cp_token *token;
3809 enum rid keyword;
3810 cp_id_kind idk = CP_ID_KIND_NONE;
3811 tree postfix_expression = NULL_TREE;
3812 /* Non-NULL only if the current postfix-expression can be used to
3813 form a pointer-to-member. In that case, QUALIFYING_CLASS is the
3814 class used to qualify the member. */
3815 tree qualifying_class = NULL_TREE;
3817 /* Peek at the next token. */
3818 token = cp_lexer_peek_token (parser->lexer);
3819 /* Some of the productions are determined by keywords. */
3820 keyword = token->keyword;
3821 switch (keyword)
3823 case RID_DYNCAST:
3824 case RID_STATCAST:
3825 case RID_REINTCAST:
3826 case RID_CONSTCAST:
3828 tree type;
3829 tree expression;
3830 const char *saved_message;
3832 /* All of these can be handled in the same way from the point
3833 of view of parsing. Begin by consuming the token
3834 identifying the cast. */
3835 cp_lexer_consume_token (parser->lexer);
3837 /* New types cannot be defined in the cast. */
3838 saved_message = parser->type_definition_forbidden_message;
3839 parser->type_definition_forbidden_message
3840 = "types may not be defined in casts";
3842 /* Look for the opening `<'. */
3843 cp_parser_require (parser, CPP_LESS, "`<'");
3844 /* Parse the type to which we are casting. */
3845 type = cp_parser_type_id (parser);
3846 /* Look for the closing `>'. */
3847 cp_parser_require (parser, CPP_GREATER, "`>'");
3848 /* Restore the old message. */
3849 parser->type_definition_forbidden_message = saved_message;
3851 /* And the expression which is being cast. */
3852 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
3853 expression = cp_parser_expression (parser, /*cast_p=*/true);
3854 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3856 /* Only type conversions to integral or enumeration types
3857 can be used in constant-expressions. */
3858 if (parser->integral_constant_expression_p
3859 && !dependent_type_p (type)
3860 && !INTEGRAL_OR_ENUMERATION_TYPE_P (type)
3861 && (cp_parser_non_integral_constant_expression
3862 (parser,
3863 "a cast to a type other than an integral or "
3864 "enumeration type")))
3865 return error_mark_node;
3867 switch (keyword)
3869 case RID_DYNCAST:
3870 postfix_expression
3871 = build_dynamic_cast (type, expression);
3872 break;
3873 case RID_STATCAST:
3874 postfix_expression
3875 = build_static_cast (type, expression);
3876 break;
3877 case RID_REINTCAST:
3878 postfix_expression
3879 = build_reinterpret_cast (type, expression);
3880 break;
3881 case RID_CONSTCAST:
3882 postfix_expression
3883 = build_const_cast (type, expression);
3884 break;
3885 default:
3886 gcc_unreachable ();
3889 break;
3891 case RID_TYPEID:
3893 tree type;
3894 const char *saved_message;
3895 bool saved_in_type_id_in_expr_p;
3897 /* Consume the `typeid' token. */
3898 cp_lexer_consume_token (parser->lexer);
3899 /* Look for the `(' token. */
3900 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
3901 /* Types cannot be defined in a `typeid' expression. */
3902 saved_message = parser->type_definition_forbidden_message;
3903 parser->type_definition_forbidden_message
3904 = "types may not be defined in a `typeid\' expression";
3905 /* We can't be sure yet whether we're looking at a type-id or an
3906 expression. */
3907 cp_parser_parse_tentatively (parser);
3908 /* Try a type-id first. */
3909 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
3910 parser->in_type_id_in_expr_p = true;
3911 type = cp_parser_type_id (parser);
3912 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
3913 /* Look for the `)' token. Otherwise, we can't be sure that
3914 we're not looking at an expression: consider `typeid (int
3915 (3))', for example. */
3916 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3917 /* If all went well, simply lookup the type-id. */
3918 if (cp_parser_parse_definitely (parser))
3919 postfix_expression = get_typeid (type);
3920 /* Otherwise, fall back to the expression variant. */
3921 else
3923 tree expression;
3925 /* Look for an expression. */
3926 expression = cp_parser_expression (parser, /*cast_p=*/false);
3927 /* Compute its typeid. */
3928 postfix_expression = build_typeid (expression);
3929 /* Look for the `)' token. */
3930 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3932 /* `typeid' may not appear in an integral constant expression. */
3933 if (cp_parser_non_integral_constant_expression(parser,
3934 "`typeid' operator"))
3935 return error_mark_node;
3936 /* Restore the saved message. */
3937 parser->type_definition_forbidden_message = saved_message;
3939 break;
3941 case RID_TYPENAME:
3943 bool template_p = false;
3944 tree id;
3945 tree type;
3946 tree scope;
3948 /* Consume the `typename' token. */
3949 cp_lexer_consume_token (parser->lexer);
3950 /* Look for the optional `::' operator. */
3951 cp_parser_global_scope_opt (parser,
3952 /*current_scope_valid_p=*/false);
3953 /* Look for the nested-name-specifier. In case of error here,
3954 consume the trailing id to avoid subsequent error messages
3955 for usual cases. */
3956 scope = cp_parser_nested_name_specifier (parser,
3957 /*typename_keyword_p=*/true,
3958 /*check_dependency_p=*/true,
3959 /*type_p=*/true,
3960 /*is_declaration=*/true);
3962 /* Look for the optional `template' keyword. */
3963 template_p = cp_parser_optional_template_keyword (parser);
3964 /* We don't know whether we're looking at a template-id or an
3965 identifier. */
3966 cp_parser_parse_tentatively (parser);
3967 /* Try a template-id. */
3968 id = cp_parser_template_id (parser, template_p,
3969 /*check_dependency_p=*/true,
3970 /*is_declaration=*/true);
3971 /* If that didn't work, try an identifier. */
3972 if (!cp_parser_parse_definitely (parser))
3973 id = cp_parser_identifier (parser);
3975 /* Don't process id if nested name specifier is invalid. */
3976 if (scope == error_mark_node)
3977 return error_mark_node;
3978 /* If we look up a template-id in a non-dependent qualifying
3979 scope, there's no need to create a dependent type. */
3980 else if (TREE_CODE (id) == TYPE_DECL
3981 && !dependent_type_p (parser->scope))
3982 type = TREE_TYPE (id);
3983 /* Create a TYPENAME_TYPE to represent the type to which the
3984 functional cast is being performed. */
3985 else
3986 type = make_typename_type (parser->scope, id,
3987 typename_type,
3988 /*complain=*/1);
3990 postfix_expression = cp_parser_functional_cast (parser, type);
3992 break;
3994 default:
3996 tree type;
3998 /* If the next thing is a simple-type-specifier, we may be
3999 looking at a functional cast. We could also be looking at
4000 an id-expression. So, we try the functional cast, and if
4001 that doesn't work we fall back to the primary-expression. */
4002 cp_parser_parse_tentatively (parser);
4003 /* Look for the simple-type-specifier. */
4004 type = cp_parser_simple_type_specifier (parser,
4005 /*decl_specs=*/NULL,
4006 CP_PARSER_FLAGS_NONE);
4007 /* Parse the cast itself. */
4008 if (!cp_parser_error_occurred (parser))
4009 postfix_expression
4010 = cp_parser_functional_cast (parser, type);
4011 /* If that worked, we're done. */
4012 if (cp_parser_parse_definitely (parser))
4013 break;
4015 /* If the functional-cast didn't work out, try a
4016 compound-literal. */
4017 if (cp_parser_allow_gnu_extensions_p (parser)
4018 && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
4020 tree initializer_list = NULL_TREE;
4021 bool saved_in_type_id_in_expr_p;
4023 cp_parser_parse_tentatively (parser);
4024 /* Consume the `('. */
4025 cp_lexer_consume_token (parser->lexer);
4026 /* Parse the type. */
4027 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
4028 parser->in_type_id_in_expr_p = true;
4029 type = cp_parser_type_id (parser);
4030 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
4031 /* Look for the `)'. */
4032 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
4033 /* Look for the `{'. */
4034 cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
4035 /* If things aren't going well, there's no need to
4036 keep going. */
4037 if (!cp_parser_error_occurred (parser))
4039 bool non_constant_p;
4040 /* Parse the initializer-list. */
4041 initializer_list
4042 = cp_parser_initializer_list (parser, &non_constant_p);
4043 /* Allow a trailing `,'. */
4044 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
4045 cp_lexer_consume_token (parser->lexer);
4046 /* Look for the final `}'. */
4047 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
4049 /* If that worked, we're definitely looking at a
4050 compound-literal expression. */
4051 if (cp_parser_parse_definitely (parser))
4053 /* Warn the user that a compound literal is not
4054 allowed in standard C++. */
4055 if (pedantic)
4056 pedwarn ("ISO C++ forbids compound-literals");
4057 /* Form the representation of the compound-literal. */
4058 postfix_expression
4059 = finish_compound_literal (type, initializer_list);
4060 break;
4064 /* It must be a primary-expression. */
4065 postfix_expression = cp_parser_primary_expression (parser,
4066 cast_p,
4067 &idk,
4068 &qualifying_class);
4070 break;
4073 /* If we were avoiding committing to the processing of a
4074 qualified-id until we knew whether or not we had a
4075 pointer-to-member, we now know. */
4076 if (qualifying_class)
4078 bool done;
4080 /* Peek at the next token. */
4081 token = cp_lexer_peek_token (parser->lexer);
4082 done = (token->type != CPP_OPEN_SQUARE
4083 && token->type != CPP_OPEN_PAREN
4084 && token->type != CPP_DOT
4085 && token->type != CPP_DEREF
4086 && token->type != CPP_PLUS_PLUS
4087 && token->type != CPP_MINUS_MINUS);
4089 postfix_expression = finish_qualified_id_expr (qualifying_class,
4090 postfix_expression,
4091 done,
4092 address_p);
4093 if (done)
4094 return postfix_expression;
4097 /* Keep looping until the postfix-expression is complete. */
4098 while (true)
4100 if (idk == CP_ID_KIND_UNQUALIFIED
4101 && TREE_CODE (postfix_expression) == IDENTIFIER_NODE
4102 && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
4103 /* It is not a Koenig lookup function call. */
4104 postfix_expression
4105 = unqualified_name_lookup_error (postfix_expression);
4107 /* Peek at the next token. */
4108 token = cp_lexer_peek_token (parser->lexer);
4110 switch (token->type)
4112 case CPP_OPEN_SQUARE:
4113 postfix_expression
4114 = cp_parser_postfix_open_square_expression (parser,
4115 postfix_expression,
4116 false);
4117 idk = CP_ID_KIND_NONE;
4118 break;
4120 case CPP_OPEN_PAREN:
4121 /* postfix-expression ( expression-list [opt] ) */
4123 bool koenig_p;
4124 tree args = (cp_parser_parenthesized_expression_list
4125 (parser, false,
4126 /*cast_p=*/false,
4127 /*non_constant_p=*/NULL));
4129 if (args == error_mark_node)
4131 postfix_expression = error_mark_node;
4132 break;
4135 /* Function calls are not permitted in
4136 constant-expressions. */
4137 if (! builtin_valid_in_constant_expr_p (postfix_expression)
4138 && cp_parser_non_integral_constant_expression (parser,
4139 "a function call"))
4141 postfix_expression = error_mark_node;
4142 break;
4145 koenig_p = false;
4146 if (idk == CP_ID_KIND_UNQUALIFIED)
4148 if (TREE_CODE (postfix_expression) == IDENTIFIER_NODE)
4150 if (args)
4152 koenig_p = true;
4153 postfix_expression
4154 = perform_koenig_lookup (postfix_expression, args);
4156 else
4157 postfix_expression
4158 = unqualified_fn_lookup_error (postfix_expression);
4160 /* We do not perform argument-dependent lookup if
4161 normal lookup finds a non-function, in accordance
4162 with the expected resolution of DR 218. */
4163 else if (args && is_overloaded_fn (postfix_expression))
4165 tree fn = get_first_fn (postfix_expression);
4167 if (TREE_CODE (fn) == TEMPLATE_ID_EXPR)
4168 fn = OVL_CURRENT (TREE_OPERAND (fn, 0));
4170 /* Only do argument dependent lookup if regular
4171 lookup does not find a set of member functions.
4172 [basic.lookup.koenig]/2a */
4173 if (!DECL_FUNCTION_MEMBER_P (fn))
4175 koenig_p = true;
4176 postfix_expression
4177 = perform_koenig_lookup (postfix_expression, args);
4182 if (TREE_CODE (postfix_expression) == COMPONENT_REF)
4184 tree instance = TREE_OPERAND (postfix_expression, 0);
4185 tree fn = TREE_OPERAND (postfix_expression, 1);
4187 if (processing_template_decl
4188 && (type_dependent_expression_p (instance)
4189 || (!BASELINK_P (fn)
4190 && TREE_CODE (fn) != FIELD_DECL)
4191 || type_dependent_expression_p (fn)
4192 || any_type_dependent_arguments_p (args)))
4194 postfix_expression
4195 = build_min_nt (CALL_EXPR, postfix_expression,
4196 args, NULL_TREE);
4197 break;
4200 if (BASELINK_P (fn))
4201 postfix_expression
4202 = (build_new_method_call
4203 (instance, fn, args, NULL_TREE,
4204 (idk == CP_ID_KIND_QUALIFIED
4205 ? LOOKUP_NONVIRTUAL : LOOKUP_NORMAL)));
4206 else
4207 postfix_expression
4208 = finish_call_expr (postfix_expression, args,
4209 /*disallow_virtual=*/false,
4210 /*koenig_p=*/false);
4212 else if (TREE_CODE (postfix_expression) == OFFSET_REF
4213 || TREE_CODE (postfix_expression) == MEMBER_REF
4214 || TREE_CODE (postfix_expression) == DOTSTAR_EXPR)
4215 postfix_expression = (build_offset_ref_call_from_tree
4216 (postfix_expression, args));
4217 else if (idk == CP_ID_KIND_QUALIFIED)
4218 /* A call to a static class member, or a namespace-scope
4219 function. */
4220 postfix_expression
4221 = finish_call_expr (postfix_expression, args,
4222 /*disallow_virtual=*/true,
4223 koenig_p);
4224 else
4225 /* All other function calls. */
4226 postfix_expression
4227 = finish_call_expr (postfix_expression, args,
4228 /*disallow_virtual=*/false,
4229 koenig_p);
4231 /* The POSTFIX_EXPRESSION is certainly no longer an id. */
4232 idk = CP_ID_KIND_NONE;
4234 break;
4236 case CPP_DOT:
4237 case CPP_DEREF:
4238 /* postfix-expression . template [opt] id-expression
4239 postfix-expression . pseudo-destructor-name
4240 postfix-expression -> template [opt] id-expression
4241 postfix-expression -> pseudo-destructor-name */
4243 /* Consume the `.' or `->' operator. */
4244 cp_lexer_consume_token (parser->lexer);
4246 postfix_expression
4247 = cp_parser_postfix_dot_deref_expression (parser, token->type,
4248 postfix_expression,
4249 false, &idk);
4250 break;
4252 case CPP_PLUS_PLUS:
4253 /* postfix-expression ++ */
4254 /* Consume the `++' token. */
4255 cp_lexer_consume_token (parser->lexer);
4256 /* Generate a representation for the complete expression. */
4257 postfix_expression
4258 = finish_increment_expr (postfix_expression,
4259 POSTINCREMENT_EXPR);
4260 /* Increments may not appear in constant-expressions. */
4261 if (cp_parser_non_integral_constant_expression (parser,
4262 "an increment"))
4263 postfix_expression = error_mark_node;
4264 idk = CP_ID_KIND_NONE;
4265 break;
4267 case CPP_MINUS_MINUS:
4268 /* postfix-expression -- */
4269 /* Consume the `--' token. */
4270 cp_lexer_consume_token (parser->lexer);
4271 /* Generate a representation for the complete expression. */
4272 postfix_expression
4273 = finish_increment_expr (postfix_expression,
4274 POSTDECREMENT_EXPR);
4275 /* Decrements may not appear in constant-expressions. */
4276 if (cp_parser_non_integral_constant_expression (parser,
4277 "a decrement"))
4278 postfix_expression = error_mark_node;
4279 idk = CP_ID_KIND_NONE;
4280 break;
4282 default:
4283 return postfix_expression;
4287 /* We should never get here. */
4288 gcc_unreachable ();
4289 return error_mark_node;
4292 /* A subroutine of cp_parser_postfix_expression that also gets hijacked
4293 by cp_parser_builtin_offsetof. We're looking for
4295 postfix-expression [ expression ]
4297 FOR_OFFSETOF is set if we're being called in that context, which
4298 changes how we deal with integer constant expressions. */
4300 static tree
4301 cp_parser_postfix_open_square_expression (cp_parser *parser,
4302 tree postfix_expression,
4303 bool for_offsetof)
4305 tree index;
4307 /* Consume the `[' token. */
4308 cp_lexer_consume_token (parser->lexer);
4310 /* Parse the index expression. */
4311 /* ??? For offsetof, there is a question of what to allow here. If
4312 offsetof is not being used in an integral constant expression context,
4313 then we *could* get the right answer by computing the value at runtime.
4314 If we are in an integral constant expression context, then we might
4315 could accept any constant expression; hard to say without analysis.
4316 Rather than open the barn door too wide right away, allow only integer
4317 constant expressions here. */
4318 if (for_offsetof)
4319 index = cp_parser_constant_expression (parser, false, NULL);
4320 else
4321 index = cp_parser_expression (parser, /*cast_p=*/false);
4323 /* Look for the closing `]'. */
4324 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
4326 /* Build the ARRAY_REF. */
4327 postfix_expression = grok_array_decl (postfix_expression, index);
4329 /* When not doing offsetof, array references are not permitted in
4330 constant-expressions. */
4331 if (!for_offsetof
4332 && (cp_parser_non_integral_constant_expression
4333 (parser, "an array reference")))
4334 postfix_expression = error_mark_node;
4336 return postfix_expression;
4339 /* A subroutine of cp_parser_postfix_expression that also gets hijacked
4340 by cp_parser_builtin_offsetof. We're looking for
4342 postfix-expression . template [opt] id-expression
4343 postfix-expression . pseudo-destructor-name
4344 postfix-expression -> template [opt] id-expression
4345 postfix-expression -> pseudo-destructor-name
4347 FOR_OFFSETOF is set if we're being called in that context. That sorta
4348 limits what of the above we'll actually accept, but nevermind.
4349 TOKEN_TYPE is the "." or "->" token, which will already have been
4350 removed from the stream. */
4352 static tree
4353 cp_parser_postfix_dot_deref_expression (cp_parser *parser,
4354 enum cpp_ttype token_type,
4355 tree postfix_expression,
4356 bool for_offsetof, cp_id_kind *idk)
4358 tree name;
4359 bool dependent_p;
4360 bool template_p;
4361 bool pseudo_destructor_p;
4362 tree scope = NULL_TREE;
4364 /* If this is a `->' operator, dereference the pointer. */
4365 if (token_type == CPP_DEREF)
4366 postfix_expression = build_x_arrow (postfix_expression);
4367 /* Check to see whether or not the expression is type-dependent. */
4368 dependent_p = type_dependent_expression_p (postfix_expression);
4369 /* The identifier following the `->' or `.' is not qualified. */
4370 parser->scope = NULL_TREE;
4371 parser->qualifying_scope = NULL_TREE;
4372 parser->object_scope = NULL_TREE;
4373 *idk = CP_ID_KIND_NONE;
4374 /* Enter the scope corresponding to the type of the object
4375 given by the POSTFIX_EXPRESSION. */
4376 if (!dependent_p && TREE_TYPE (postfix_expression) != NULL_TREE)
4378 scope = TREE_TYPE (postfix_expression);
4379 /* According to the standard, no expression should ever have
4380 reference type. Unfortunately, we do not currently match
4381 the standard in this respect in that our internal representation
4382 of an expression may have reference type even when the standard
4383 says it does not. Therefore, we have to manually obtain the
4384 underlying type here. */
4385 scope = non_reference (scope);
4386 /* The type of the POSTFIX_EXPRESSION must be complete. */
4387 scope = complete_type_or_else (scope, NULL_TREE);
4388 /* Let the name lookup machinery know that we are processing a
4389 class member access expression. */
4390 parser->context->object_type = scope;
4391 /* If something went wrong, we want to be able to discern that case,
4392 as opposed to the case where there was no SCOPE due to the type
4393 of expression being dependent. */
4394 if (!scope)
4395 scope = error_mark_node;
4396 /* If the SCOPE was erroneous, make the various semantic analysis
4397 functions exit quickly -- and without issuing additional error
4398 messages. */
4399 if (scope == error_mark_node)
4400 postfix_expression = error_mark_node;
4403 /* Assume this expression is not a pseudo-destructor access. */
4404 pseudo_destructor_p = false;
4406 /* If the SCOPE is a scalar type, then, if this is a valid program,
4407 we must be looking at a pseudo-destructor-name. */
4408 if (scope && SCALAR_TYPE_P (scope))
4410 tree s;
4411 tree type;
4413 cp_parser_parse_tentatively (parser);
4414 /* Parse the pseudo-destructor-name. */
4415 s = NULL_TREE;
4416 cp_parser_pseudo_destructor_name (parser, &s, &type);
4417 if (cp_parser_parse_definitely (parser))
4419 pseudo_destructor_p = true;
4420 postfix_expression
4421 = finish_pseudo_destructor_expr (postfix_expression,
4422 s, TREE_TYPE (type));
4426 if (!pseudo_destructor_p)
4428 /* If the SCOPE is not a scalar type, we are looking at an
4429 ordinary class member access expression, rather than a
4430 pseudo-destructor-name. */
4431 template_p = cp_parser_optional_template_keyword (parser);
4432 /* Parse the id-expression. */
4433 name = cp_parser_id_expression (parser, template_p,
4434 /*check_dependency_p=*/true,
4435 /*template_p=*/NULL,
4436 /*declarator_p=*/false);
4437 /* In general, build a SCOPE_REF if the member name is qualified.
4438 However, if the name was not dependent and has already been
4439 resolved; there is no need to build the SCOPE_REF. For example;
4441 struct X { void f(); };
4442 template <typename T> void f(T* t) { t->X::f(); }
4444 Even though "t" is dependent, "X::f" is not and has been resolved
4445 to a BASELINK; there is no need to include scope information. */
4447 /* But we do need to remember that there was an explicit scope for
4448 virtual function calls. */
4449 if (parser->scope)
4450 *idk = CP_ID_KIND_QUALIFIED;
4452 /* If the name is a template-id that names a type, we will get a
4453 TYPE_DECL here. That is invalid code. */
4454 if (TREE_CODE (name) == TYPE_DECL)
4456 error ("invalid use of %qD", name);
4457 postfix_expression = error_mark_node;
4459 else
4461 if (name != error_mark_node && !BASELINK_P (name) && parser->scope)
4463 name = build_nt (SCOPE_REF, parser->scope, name);
4464 parser->scope = NULL_TREE;
4465 parser->qualifying_scope = NULL_TREE;
4466 parser->object_scope = NULL_TREE;
4468 if (scope && name && BASELINK_P (name))
4469 adjust_result_of_qualified_name_lookup
4470 (name, BINFO_TYPE (BASELINK_BINFO (name)), scope);
4471 postfix_expression
4472 = finish_class_member_access_expr (postfix_expression, name);
4476 /* We no longer need to look up names in the scope of the object on
4477 the left-hand side of the `.' or `->' operator. */
4478 parser->context->object_type = NULL_TREE;
4480 /* Outside of offsetof, these operators may not appear in
4481 constant-expressions. */
4482 if (!for_offsetof
4483 && (cp_parser_non_integral_constant_expression
4484 (parser, token_type == CPP_DEREF ? "'->'" : "`.'")))
4485 postfix_expression = error_mark_node;
4487 return postfix_expression;
4490 /* Parse a parenthesized expression-list.
4492 expression-list:
4493 assignment-expression
4494 expression-list, assignment-expression
4496 attribute-list:
4497 expression-list
4498 identifier
4499 identifier, expression-list
4501 CAST_P is true if this expression is the target of a cast.
4503 Returns a TREE_LIST. The TREE_VALUE of each node is a
4504 representation of an assignment-expression. Note that a TREE_LIST
4505 is returned even if there is only a single expression in the list.
4506 error_mark_node is returned if the ( and or ) are
4507 missing. NULL_TREE is returned on no expressions. The parentheses
4508 are eaten. IS_ATTRIBUTE_LIST is true if this is really an attribute
4509 list being parsed. If NON_CONSTANT_P is non-NULL, *NON_CONSTANT_P
4510 indicates whether or not all of the expressions in the list were
4511 constant. */
4513 static tree
4514 cp_parser_parenthesized_expression_list (cp_parser* parser,
4515 bool is_attribute_list,
4516 bool cast_p,
4517 bool *non_constant_p)
4519 tree expression_list = NULL_TREE;
4520 bool fold_expr_p = is_attribute_list;
4521 tree identifier = NULL_TREE;
4523 /* Assume all the expressions will be constant. */
4524 if (non_constant_p)
4525 *non_constant_p = false;
4527 if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
4528 return error_mark_node;
4530 /* Consume expressions until there are no more. */
4531 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
4532 while (true)
4534 tree expr;
4536 /* At the beginning of attribute lists, check to see if the
4537 next token is an identifier. */
4538 if (is_attribute_list
4539 && cp_lexer_peek_token (parser->lexer)->type == CPP_NAME)
4541 cp_token *token;
4543 /* Consume the identifier. */
4544 token = cp_lexer_consume_token (parser->lexer);
4545 /* Save the identifier. */
4546 identifier = token->value;
4548 else
4550 /* Parse the next assignment-expression. */
4551 if (non_constant_p)
4553 bool expr_non_constant_p;
4554 expr = (cp_parser_constant_expression
4555 (parser, /*allow_non_constant_p=*/true,
4556 &expr_non_constant_p));
4557 if (expr_non_constant_p)
4558 *non_constant_p = true;
4560 else
4561 expr = cp_parser_assignment_expression (parser, cast_p);
4563 if (fold_expr_p)
4564 expr = fold_non_dependent_expr (expr);
4566 /* Add it to the list. We add error_mark_node
4567 expressions to the list, so that we can still tell if
4568 the correct form for a parenthesized expression-list
4569 is found. That gives better errors. */
4570 expression_list = tree_cons (NULL_TREE, expr, expression_list);
4572 if (expr == error_mark_node)
4573 goto skip_comma;
4576 /* After the first item, attribute lists look the same as
4577 expression lists. */
4578 is_attribute_list = false;
4580 get_comma:;
4581 /* If the next token isn't a `,', then we are done. */
4582 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
4583 break;
4585 /* Otherwise, consume the `,' and keep going. */
4586 cp_lexer_consume_token (parser->lexer);
4589 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
4591 int ending;
4593 skip_comma:;
4594 /* We try and resync to an unnested comma, as that will give the
4595 user better diagnostics. */
4596 ending = cp_parser_skip_to_closing_parenthesis (parser,
4597 /*recovering=*/true,
4598 /*or_comma=*/true,
4599 /*consume_paren=*/true);
4600 if (ending < 0)
4601 goto get_comma;
4602 if (!ending)
4603 return error_mark_node;
4606 /* We built up the list in reverse order so we must reverse it now. */
4607 expression_list = nreverse (expression_list);
4608 if (identifier)
4609 expression_list = tree_cons (NULL_TREE, identifier, expression_list);
4611 return expression_list;
4614 /* Parse a pseudo-destructor-name.
4616 pseudo-destructor-name:
4617 :: [opt] nested-name-specifier [opt] type-name :: ~ type-name
4618 :: [opt] nested-name-specifier template template-id :: ~ type-name
4619 :: [opt] nested-name-specifier [opt] ~ type-name
4621 If either of the first two productions is used, sets *SCOPE to the
4622 TYPE specified before the final `::'. Otherwise, *SCOPE is set to
4623 NULL_TREE. *TYPE is set to the TYPE_DECL for the final type-name,
4624 or ERROR_MARK_NODE if the parse fails. */
4626 static void
4627 cp_parser_pseudo_destructor_name (cp_parser* parser,
4628 tree* scope,
4629 tree* type)
4631 bool nested_name_specifier_p;
4633 /* Assume that things will not work out. */
4634 *type = error_mark_node;
4636 /* Look for the optional `::' operator. */
4637 cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/true);
4638 /* Look for the optional nested-name-specifier. */
4639 nested_name_specifier_p
4640 = (cp_parser_nested_name_specifier_opt (parser,
4641 /*typename_keyword_p=*/false,
4642 /*check_dependency_p=*/true,
4643 /*type_p=*/false,
4644 /*is_declaration=*/true)
4645 != NULL_TREE);
4646 /* Now, if we saw a nested-name-specifier, we might be doing the
4647 second production. */
4648 if (nested_name_specifier_p
4649 && cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
4651 /* Consume the `template' keyword. */
4652 cp_lexer_consume_token (parser->lexer);
4653 /* Parse the template-id. */
4654 cp_parser_template_id (parser,
4655 /*template_keyword_p=*/true,
4656 /*check_dependency_p=*/false,
4657 /*is_declaration=*/true);
4658 /* Look for the `::' token. */
4659 cp_parser_require (parser, CPP_SCOPE, "`::'");
4661 /* If the next token is not a `~', then there might be some
4662 additional qualification. */
4663 else if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMPL))
4665 /* Look for the type-name. */
4666 *scope = TREE_TYPE (cp_parser_type_name (parser));
4668 if (*scope == error_mark_node)
4669 return;
4671 /* If we don't have ::~, then something has gone wrong. Since
4672 the only caller of this function is looking for something
4673 after `.' or `->' after a scalar type, most likely the
4674 program is trying to get a member of a non-aggregate
4675 type. */
4676 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SCOPE)
4677 || cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_COMPL)
4679 cp_parser_error (parser, "request for member of non-aggregate type");
4680 return;
4683 /* Look for the `::' token. */
4684 cp_parser_require (parser, CPP_SCOPE, "`::'");
4686 else
4687 *scope = NULL_TREE;
4689 /* Look for the `~'. */
4690 cp_parser_require (parser, CPP_COMPL, "`~'");
4691 /* Look for the type-name again. We are not responsible for
4692 checking that it matches the first type-name. */
4693 *type = cp_parser_type_name (parser);
4696 /* Parse a unary-expression.
4698 unary-expression:
4699 postfix-expression
4700 ++ cast-expression
4701 -- cast-expression
4702 unary-operator cast-expression
4703 sizeof unary-expression
4704 sizeof ( type-id )
4705 new-expression
4706 delete-expression
4708 GNU Extensions:
4710 unary-expression:
4711 __extension__ cast-expression
4712 __alignof__ unary-expression
4713 __alignof__ ( type-id )
4714 __real__ cast-expression
4715 __imag__ cast-expression
4716 && identifier
4718 ADDRESS_P is true iff the unary-expression is appearing as the
4719 operand of the `&' operator. CAST_P is true if this expression is
4720 the target of a cast.
4722 Returns a representation of the expression. */
4724 static tree
4725 cp_parser_unary_expression (cp_parser *parser, bool address_p, bool cast_p)
4727 cp_token *token;
4728 enum tree_code unary_operator;
4730 /* Peek at the next token. */
4731 token = cp_lexer_peek_token (parser->lexer);
4732 /* Some keywords give away the kind of expression. */
4733 if (token->type == CPP_KEYWORD)
4735 enum rid keyword = token->keyword;
4737 switch (keyword)
4739 case RID_ALIGNOF:
4740 case RID_SIZEOF:
4742 tree operand;
4743 enum tree_code op;
4745 op = keyword == RID_ALIGNOF ? ALIGNOF_EXPR : SIZEOF_EXPR;
4746 /* Consume the token. */
4747 cp_lexer_consume_token (parser->lexer);
4748 /* Parse the operand. */
4749 operand = cp_parser_sizeof_operand (parser, keyword);
4751 if (TYPE_P (operand))
4752 return cxx_sizeof_or_alignof_type (operand, op, true);
4753 else
4754 return cxx_sizeof_or_alignof_expr (operand, op);
4757 case RID_NEW:
4758 return cp_parser_new_expression (parser);
4760 case RID_DELETE:
4761 return cp_parser_delete_expression (parser);
4763 case RID_EXTENSION:
4765 /* The saved value of the PEDANTIC flag. */
4766 int saved_pedantic;
4767 tree expr;
4769 /* Save away the PEDANTIC flag. */
4770 cp_parser_extension_opt (parser, &saved_pedantic);
4771 /* Parse the cast-expression. */
4772 expr = cp_parser_simple_cast_expression (parser);
4773 /* Restore the PEDANTIC flag. */
4774 pedantic = saved_pedantic;
4776 return expr;
4779 case RID_REALPART:
4780 case RID_IMAGPART:
4782 tree expression;
4784 /* Consume the `__real__' or `__imag__' token. */
4785 cp_lexer_consume_token (parser->lexer);
4786 /* Parse the cast-expression. */
4787 expression = cp_parser_simple_cast_expression (parser);
4788 /* Create the complete representation. */
4789 return build_x_unary_op ((keyword == RID_REALPART
4790 ? REALPART_EXPR : IMAGPART_EXPR),
4791 expression);
4793 break;
4795 default:
4796 break;
4800 /* Look for the `:: new' and `:: delete', which also signal the
4801 beginning of a new-expression, or delete-expression,
4802 respectively. If the next token is `::', then it might be one of
4803 these. */
4804 if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
4806 enum rid keyword;
4808 /* See if the token after the `::' is one of the keywords in
4809 which we're interested. */
4810 keyword = cp_lexer_peek_nth_token (parser->lexer, 2)->keyword;
4811 /* If it's `new', we have a new-expression. */
4812 if (keyword == RID_NEW)
4813 return cp_parser_new_expression (parser);
4814 /* Similarly, for `delete'. */
4815 else if (keyword == RID_DELETE)
4816 return cp_parser_delete_expression (parser);
4819 /* Look for a unary operator. */
4820 unary_operator = cp_parser_unary_operator (token);
4821 /* The `++' and `--' operators can be handled similarly, even though
4822 they are not technically unary-operators in the grammar. */
4823 if (unary_operator == ERROR_MARK)
4825 if (token->type == CPP_PLUS_PLUS)
4826 unary_operator = PREINCREMENT_EXPR;
4827 else if (token->type == CPP_MINUS_MINUS)
4828 unary_operator = PREDECREMENT_EXPR;
4829 /* Handle the GNU address-of-label extension. */
4830 else if (cp_parser_allow_gnu_extensions_p (parser)
4831 && token->type == CPP_AND_AND)
4833 tree identifier;
4835 /* Consume the '&&' token. */
4836 cp_lexer_consume_token (parser->lexer);
4837 /* Look for the identifier. */
4838 identifier = cp_parser_identifier (parser);
4839 /* Create an expression representing the address. */
4840 return finish_label_address_expr (identifier);
4843 if (unary_operator != ERROR_MARK)
4845 tree cast_expression;
4846 tree expression = error_mark_node;
4847 const char *non_constant_p = NULL;
4849 /* Consume the operator token. */
4850 token = cp_lexer_consume_token (parser->lexer);
4851 /* Parse the cast-expression. */
4852 cast_expression
4853 = cp_parser_cast_expression (parser,
4854 unary_operator == ADDR_EXPR,
4855 /*cast_p=*/false);
4856 /* Now, build an appropriate representation. */
4857 switch (unary_operator)
4859 case INDIRECT_REF:
4860 non_constant_p = "`*'";
4861 expression = build_x_indirect_ref (cast_expression, "unary *");
4862 break;
4864 case ADDR_EXPR:
4865 non_constant_p = "`&'";
4866 /* Fall through. */
4867 case BIT_NOT_EXPR:
4868 expression = build_x_unary_op (unary_operator, cast_expression);
4869 break;
4871 case PREINCREMENT_EXPR:
4872 case PREDECREMENT_EXPR:
4873 non_constant_p = (unary_operator == PREINCREMENT_EXPR
4874 ? "`++'" : "`--'");
4875 /* Fall through. */
4876 case CONVERT_EXPR:
4877 case NEGATE_EXPR:
4878 case TRUTH_NOT_EXPR:
4879 expression = finish_unary_op_expr (unary_operator, cast_expression);
4880 break;
4882 default:
4883 gcc_unreachable ();
4886 if (non_constant_p
4887 && cp_parser_non_integral_constant_expression (parser,
4888 non_constant_p))
4889 expression = error_mark_node;
4891 return expression;
4894 return cp_parser_postfix_expression (parser, address_p, cast_p);
4897 /* Returns ERROR_MARK if TOKEN is not a unary-operator. If TOKEN is a
4898 unary-operator, the corresponding tree code is returned. */
4900 static enum tree_code
4901 cp_parser_unary_operator (cp_token* token)
4903 switch (token->type)
4905 case CPP_MULT:
4906 return INDIRECT_REF;
4908 case CPP_AND:
4909 return ADDR_EXPR;
4911 case CPP_PLUS:
4912 return CONVERT_EXPR;
4914 case CPP_MINUS:
4915 return NEGATE_EXPR;
4917 case CPP_NOT:
4918 return TRUTH_NOT_EXPR;
4920 case CPP_COMPL:
4921 return BIT_NOT_EXPR;
4923 default:
4924 return ERROR_MARK;
4928 /* Parse a new-expression.
4930 new-expression:
4931 :: [opt] new new-placement [opt] new-type-id new-initializer [opt]
4932 :: [opt] new new-placement [opt] ( type-id ) new-initializer [opt]
4934 Returns a representation of the expression. */
4936 static tree
4937 cp_parser_new_expression (cp_parser* parser)
4939 bool global_scope_p;
4940 tree placement;
4941 tree type;
4942 tree initializer;
4943 tree nelts;
4945 /* Look for the optional `::' operator. */
4946 global_scope_p
4947 = (cp_parser_global_scope_opt (parser,
4948 /*current_scope_valid_p=*/false)
4949 != NULL_TREE);
4950 /* Look for the `new' operator. */
4951 cp_parser_require_keyword (parser, RID_NEW, "`new'");
4952 /* There's no easy way to tell a new-placement from the
4953 `( type-id )' construct. */
4954 cp_parser_parse_tentatively (parser);
4955 /* Look for a new-placement. */
4956 placement = cp_parser_new_placement (parser);
4957 /* If that didn't work out, there's no new-placement. */
4958 if (!cp_parser_parse_definitely (parser))
4959 placement = NULL_TREE;
4961 /* If the next token is a `(', then we have a parenthesized
4962 type-id. */
4963 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
4965 /* Consume the `('. */
4966 cp_lexer_consume_token (parser->lexer);
4967 /* Parse the type-id. */
4968 type = cp_parser_type_id (parser);
4969 /* Look for the closing `)'. */
4970 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
4971 /* There should not be a direct-new-declarator in this production,
4972 but GCC used to allowed this, so we check and emit a sensible error
4973 message for this case. */
4974 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
4976 error ("array bound forbidden after parenthesized type-id");
4977 inform ("try removing the parentheses around the type-id");
4978 cp_parser_direct_new_declarator (parser);
4980 nelts = NULL_TREE;
4982 /* Otherwise, there must be a new-type-id. */
4983 else
4984 type = cp_parser_new_type_id (parser, &nelts);
4986 /* If the next token is a `(', then we have a new-initializer. */
4987 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
4988 initializer = cp_parser_new_initializer (parser);
4989 else
4990 initializer = NULL_TREE;
4992 /* A new-expression may not appear in an integral constant
4993 expression. */
4994 if (cp_parser_non_integral_constant_expression (parser, "`new'"))
4995 return error_mark_node;
4997 /* Create a representation of the new-expression. */
4998 return build_new (placement, type, nelts, initializer, global_scope_p);
5001 /* Parse a new-placement.
5003 new-placement:
5004 ( expression-list )
5006 Returns the same representation as for an expression-list. */
5008 static tree
5009 cp_parser_new_placement (cp_parser* parser)
5011 tree expression_list;
5013 /* Parse the expression-list. */
5014 expression_list = (cp_parser_parenthesized_expression_list
5015 (parser, false, /*cast_p=*/false,
5016 /*non_constant_p=*/NULL));
5018 return expression_list;
5021 /* Parse a new-type-id.
5023 new-type-id:
5024 type-specifier-seq new-declarator [opt]
5026 Returns the TYPE allocated. If the new-type-id indicates an array
5027 type, *NELTS is set to the number of elements in the last array
5028 bound; the TYPE will not include the last array bound. */
5030 static tree
5031 cp_parser_new_type_id (cp_parser* parser, tree *nelts)
5033 cp_decl_specifier_seq type_specifier_seq;
5034 cp_declarator *new_declarator;
5035 cp_declarator *declarator;
5036 cp_declarator *outer_declarator;
5037 const char *saved_message;
5038 tree type;
5040 /* The type-specifier sequence must not contain type definitions.
5041 (It cannot contain declarations of new types either, but if they
5042 are not definitions we will catch that because they are not
5043 complete.) */
5044 saved_message = parser->type_definition_forbidden_message;
5045 parser->type_definition_forbidden_message
5046 = "types may not be defined in a new-type-id";
5047 /* Parse the type-specifier-seq. */
5048 cp_parser_type_specifier_seq (parser, /*is_condition=*/false,
5049 &type_specifier_seq);
5050 /* Restore the old message. */
5051 parser->type_definition_forbidden_message = saved_message;
5052 /* Parse the new-declarator. */
5053 new_declarator = cp_parser_new_declarator_opt (parser);
5055 /* Determine the number of elements in the last array dimension, if
5056 any. */
5057 *nelts = NULL_TREE;
5058 /* Skip down to the last array dimension. */
5059 declarator = new_declarator;
5060 outer_declarator = NULL;
5061 while (declarator && (declarator->kind == cdk_pointer
5062 || declarator->kind == cdk_ptrmem))
5064 outer_declarator = declarator;
5065 declarator = declarator->declarator;
5067 while (declarator
5068 && declarator->kind == cdk_array
5069 && declarator->declarator
5070 && declarator->declarator->kind == cdk_array)
5072 outer_declarator = declarator;
5073 declarator = declarator->declarator;
5076 if (declarator && declarator->kind == cdk_array)
5078 *nelts = declarator->u.array.bounds;
5079 if (*nelts == error_mark_node)
5080 *nelts = integer_one_node;
5082 if (outer_declarator)
5083 outer_declarator->declarator = declarator->declarator;
5084 else
5085 new_declarator = NULL;
5088 type = groktypename (&type_specifier_seq, new_declarator);
5089 if (TREE_CODE (type) == ARRAY_TYPE && *nelts == NULL_TREE)
5091 *nelts = array_type_nelts_top (type);
5092 type = TREE_TYPE (type);
5094 return type;
5097 /* Parse an (optional) new-declarator.
5099 new-declarator:
5100 ptr-operator new-declarator [opt]
5101 direct-new-declarator
5103 Returns the declarator. */
5105 static cp_declarator *
5106 cp_parser_new_declarator_opt (cp_parser* parser)
5108 enum tree_code code;
5109 tree type;
5110 cp_cv_quals cv_quals;
5112 /* We don't know if there's a ptr-operator next, or not. */
5113 cp_parser_parse_tentatively (parser);
5114 /* Look for a ptr-operator. */
5115 code = cp_parser_ptr_operator (parser, &type, &cv_quals);
5116 /* If that worked, look for more new-declarators. */
5117 if (cp_parser_parse_definitely (parser))
5119 cp_declarator *declarator;
5121 /* Parse another optional declarator. */
5122 declarator = cp_parser_new_declarator_opt (parser);
5124 /* Create the representation of the declarator. */
5125 if (type)
5126 declarator = make_ptrmem_declarator (cv_quals, type, declarator);
5127 else if (code == INDIRECT_REF)
5128 declarator = make_pointer_declarator (cv_quals, declarator);
5129 else
5130 declarator = make_reference_declarator (cv_quals, declarator);
5132 return declarator;
5135 /* If the next token is a `[', there is a direct-new-declarator. */
5136 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
5137 return cp_parser_direct_new_declarator (parser);
5139 return NULL;
5142 /* Parse a direct-new-declarator.
5144 direct-new-declarator:
5145 [ expression ]
5146 direct-new-declarator [constant-expression]
5150 static cp_declarator *
5151 cp_parser_direct_new_declarator (cp_parser* parser)
5153 cp_declarator *declarator = NULL;
5155 while (true)
5157 tree expression;
5159 /* Look for the opening `['. */
5160 cp_parser_require (parser, CPP_OPEN_SQUARE, "`['");
5161 /* The first expression is not required to be constant. */
5162 if (!declarator)
5164 expression = cp_parser_expression (parser, /*cast_p=*/false);
5165 /* The standard requires that the expression have integral
5166 type. DR 74 adds enumeration types. We believe that the
5167 real intent is that these expressions be handled like the
5168 expression in a `switch' condition, which also allows
5169 classes with a single conversion to integral or
5170 enumeration type. */
5171 if (!processing_template_decl)
5173 expression
5174 = build_expr_type_conversion (WANT_INT | WANT_ENUM,
5175 expression,
5176 /*complain=*/true);
5177 if (!expression)
5179 error ("expression in new-declarator must have integral "
5180 "or enumeration type");
5181 expression = error_mark_node;
5185 /* But all the other expressions must be. */
5186 else
5187 expression
5188 = cp_parser_constant_expression (parser,
5189 /*allow_non_constant=*/false,
5190 NULL);
5191 /* Look for the closing `]'. */
5192 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
5194 /* Add this bound to the declarator. */
5195 declarator = make_array_declarator (declarator, expression);
5197 /* If the next token is not a `[', then there are no more
5198 bounds. */
5199 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_SQUARE))
5200 break;
5203 return declarator;
5206 /* Parse a new-initializer.
5208 new-initializer:
5209 ( expression-list [opt] )
5211 Returns a representation of the expression-list. If there is no
5212 expression-list, VOID_ZERO_NODE is returned. */
5214 static tree
5215 cp_parser_new_initializer (cp_parser* parser)
5217 tree expression_list;
5219 expression_list = (cp_parser_parenthesized_expression_list
5220 (parser, false, /*cast_p=*/false,
5221 /*non_constant_p=*/NULL));
5222 if (!expression_list)
5223 expression_list = void_zero_node;
5225 return expression_list;
5228 /* Parse a delete-expression.
5230 delete-expression:
5231 :: [opt] delete cast-expression
5232 :: [opt] delete [ ] cast-expression
5234 Returns a representation of the expression. */
5236 static tree
5237 cp_parser_delete_expression (cp_parser* parser)
5239 bool global_scope_p;
5240 bool array_p;
5241 tree expression;
5243 /* Look for the optional `::' operator. */
5244 global_scope_p
5245 = (cp_parser_global_scope_opt (parser,
5246 /*current_scope_valid_p=*/false)
5247 != NULL_TREE);
5248 /* Look for the `delete' keyword. */
5249 cp_parser_require_keyword (parser, RID_DELETE, "`delete'");
5250 /* See if the array syntax is in use. */
5251 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
5253 /* Consume the `[' token. */
5254 cp_lexer_consume_token (parser->lexer);
5255 /* Look for the `]' token. */
5256 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
5257 /* Remember that this is the `[]' construct. */
5258 array_p = true;
5260 else
5261 array_p = false;
5263 /* Parse the cast-expression. */
5264 expression = cp_parser_simple_cast_expression (parser);
5266 /* A delete-expression may not appear in an integral constant
5267 expression. */
5268 if (cp_parser_non_integral_constant_expression (parser, "`delete'"))
5269 return error_mark_node;
5271 return delete_sanity (expression, NULL_TREE, array_p, global_scope_p);
5274 /* Parse a cast-expression.
5276 cast-expression:
5277 unary-expression
5278 ( type-id ) cast-expression
5280 ADDRESS_P is true iff the unary-expression is appearing as the
5281 operand of the `&' operator. CAST_P is true if this expression is
5282 the target of a cast.
5284 Returns a representation of the expression. */
5286 static tree
5287 cp_parser_cast_expression (cp_parser *parser, bool address_p, bool cast_p)
5289 /* If it's a `(', then we might be looking at a cast. */
5290 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
5292 tree type = NULL_TREE;
5293 tree expr = NULL_TREE;
5294 bool compound_literal_p;
5295 const char *saved_message;
5297 /* There's no way to know yet whether or not this is a cast.
5298 For example, `(int (3))' is a unary-expression, while `(int)
5299 3' is a cast. So, we resort to parsing tentatively. */
5300 cp_parser_parse_tentatively (parser);
5301 /* Types may not be defined in a cast. */
5302 saved_message = parser->type_definition_forbidden_message;
5303 parser->type_definition_forbidden_message
5304 = "types may not be defined in casts";
5305 /* Consume the `('. */
5306 cp_lexer_consume_token (parser->lexer);
5307 /* A very tricky bit is that `(struct S) { 3 }' is a
5308 compound-literal (which we permit in C++ as an extension).
5309 But, that construct is not a cast-expression -- it is a
5310 postfix-expression. (The reason is that `(struct S) { 3 }.i'
5311 is legal; if the compound-literal were a cast-expression,
5312 you'd need an extra set of parentheses.) But, if we parse
5313 the type-id, and it happens to be a class-specifier, then we
5314 will commit to the parse at that point, because we cannot
5315 undo the action that is done when creating a new class. So,
5316 then we cannot back up and do a postfix-expression.
5318 Therefore, we scan ahead to the closing `)', and check to see
5319 if the token after the `)' is a `{'. If so, we are not
5320 looking at a cast-expression.
5322 Save tokens so that we can put them back. */
5323 cp_lexer_save_tokens (parser->lexer);
5324 /* Skip tokens until the next token is a closing parenthesis.
5325 If we find the closing `)', and the next token is a `{', then
5326 we are looking at a compound-literal. */
5327 compound_literal_p
5328 = (cp_parser_skip_to_closing_parenthesis (parser, false, false,
5329 /*consume_paren=*/true)
5330 && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE));
5331 /* Roll back the tokens we skipped. */
5332 cp_lexer_rollback_tokens (parser->lexer);
5333 /* If we were looking at a compound-literal, simulate an error
5334 so that the call to cp_parser_parse_definitely below will
5335 fail. */
5336 if (compound_literal_p)
5337 cp_parser_simulate_error (parser);
5338 else
5340 bool saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
5341 parser->in_type_id_in_expr_p = true;
5342 /* Look for the type-id. */
5343 type = cp_parser_type_id (parser);
5344 /* Look for the closing `)'. */
5345 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
5346 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
5349 /* Restore the saved message. */
5350 parser->type_definition_forbidden_message = saved_message;
5352 /* If ok so far, parse the dependent expression. We cannot be
5353 sure it is a cast. Consider `(T ())'. It is a parenthesized
5354 ctor of T, but looks like a cast to function returning T
5355 without a dependent expression. */
5356 if (!cp_parser_error_occurred (parser))
5357 expr = cp_parser_cast_expression (parser,
5358 /*address_p=*/false,
5359 /*cast_p=*/true);
5361 if (cp_parser_parse_definitely (parser))
5363 /* Warn about old-style casts, if so requested. */
5364 if (warn_old_style_cast
5365 && !in_system_header
5366 && !VOID_TYPE_P (type)
5367 && current_lang_name != lang_name_c)
5368 warning (0, "use of old-style cast");
5370 /* Only type conversions to integral or enumeration types
5371 can be used in constant-expressions. */
5372 if (parser->integral_constant_expression_p
5373 && !dependent_type_p (type)
5374 && !INTEGRAL_OR_ENUMERATION_TYPE_P (type)
5375 && (cp_parser_non_integral_constant_expression
5376 (parser,
5377 "a cast to a type other than an integral or "
5378 "enumeration type")))
5379 return error_mark_node;
5381 /* Perform the cast. */
5382 expr = build_c_cast (type, expr);
5383 return expr;
5387 /* If we get here, then it's not a cast, so it must be a
5388 unary-expression. */
5389 return cp_parser_unary_expression (parser, address_p, cast_p);
5392 /* Parse a binary expression of the general form:
5394 pm-expression:
5395 cast-expression
5396 pm-expression .* cast-expression
5397 pm-expression ->* cast-expression
5399 multiplicative-expression:
5400 pm-expression
5401 multiplicative-expression * pm-expression
5402 multiplicative-expression / pm-expression
5403 multiplicative-expression % pm-expression
5405 additive-expression:
5406 multiplicative-expression
5407 additive-expression + multiplicative-expression
5408 additive-expression - multiplicative-expression
5410 shift-expression:
5411 additive-expression
5412 shift-expression << additive-expression
5413 shift-expression >> additive-expression
5415 relational-expression:
5416 shift-expression
5417 relational-expression < shift-expression
5418 relational-expression > shift-expression
5419 relational-expression <= shift-expression
5420 relational-expression >= shift-expression
5422 GNU Extension:
5424 relational-expression:
5425 relational-expression <? shift-expression
5426 relational-expression >? shift-expression
5428 equality-expression:
5429 relational-expression
5430 equality-expression == relational-expression
5431 equality-expression != relational-expression
5433 and-expression:
5434 equality-expression
5435 and-expression & equality-expression
5437 exclusive-or-expression:
5438 and-expression
5439 exclusive-or-expression ^ and-expression
5441 inclusive-or-expression:
5442 exclusive-or-expression
5443 inclusive-or-expression | exclusive-or-expression
5445 logical-and-expression:
5446 inclusive-or-expression
5447 logical-and-expression && inclusive-or-expression
5449 logical-or-expression:
5450 logical-and-expression
5451 logical-or-expression || logical-and-expression
5453 All these are implemented with a single function like:
5455 binary-expression:
5456 simple-cast-expression
5457 binary-expression <token> binary-expression
5459 CAST_P is true if this expression is the target of a cast.
5461 The binops_by_token map is used to get the tree codes for each <token> type.
5462 binary-expressions are associated according to a precedence table. */
5464 #define TOKEN_PRECEDENCE(token) \
5465 ((token->type == CPP_GREATER && !parser->greater_than_is_operator_p) \
5466 ? PREC_NOT_OPERATOR \
5467 : binops_by_token[token->type].prec)
5469 static tree
5470 cp_parser_binary_expression (cp_parser* parser, bool cast_p)
5472 cp_parser_expression_stack stack;
5473 cp_parser_expression_stack_entry *sp = &stack[0];
5474 tree lhs, rhs;
5475 cp_token *token;
5476 enum tree_code tree_type;
5477 enum cp_parser_prec prec = PREC_NOT_OPERATOR, new_prec, lookahead_prec;
5478 bool overloaded_p;
5480 /* Parse the first expression. */
5481 lhs = cp_parser_cast_expression (parser, /*address_p=*/false, cast_p);
5483 for (;;)
5485 /* Get an operator token. */
5486 token = cp_lexer_peek_token (parser->lexer);
5487 if (token->type == CPP_MIN || token->type == CPP_MAX)
5488 cp_parser_warn_min_max ();
5490 new_prec = TOKEN_PRECEDENCE (token);
5492 /* Popping an entry off the stack means we completed a subexpression:
5493 - either we found a token which is not an operator (`>' where it is not
5494 an operator, or prec == PREC_NOT_OPERATOR), in which case popping
5495 will happen repeatedly;
5496 - or, we found an operator which has lower priority. This is the case
5497 where the recursive descent *ascends*, as in `3 * 4 + 5' after
5498 parsing `3 * 4'. */
5499 if (new_prec <= prec)
5501 if (sp == stack)
5502 break;
5503 else
5504 goto pop;
5507 get_rhs:
5508 tree_type = binops_by_token[token->type].tree_type;
5510 /* We used the operator token. */
5511 cp_lexer_consume_token (parser->lexer);
5513 /* Extract another operand. It may be the RHS of this expression
5514 or the LHS of a new, higher priority expression. */
5515 rhs = cp_parser_simple_cast_expression (parser);
5517 /* Get another operator token. Look up its precedence to avoid
5518 building a useless (immediately popped) stack entry for common
5519 cases such as 3 + 4 + 5 or 3 * 4 + 5. */
5520 token = cp_lexer_peek_token (parser->lexer);
5521 lookahead_prec = TOKEN_PRECEDENCE (token);
5522 if (lookahead_prec > new_prec)
5524 /* ... and prepare to parse the RHS of the new, higher priority
5525 expression. Since precedence levels on the stack are
5526 monotonically increasing, we do not have to care about
5527 stack overflows. */
5528 sp->prec = prec;
5529 sp->tree_type = tree_type;
5530 sp->lhs = lhs;
5531 sp++;
5532 lhs = rhs;
5533 prec = new_prec;
5534 new_prec = lookahead_prec;
5535 goto get_rhs;
5537 pop:
5538 /* If the stack is not empty, we have parsed into LHS the right side
5539 (`4' in the example above) of an expression we had suspended.
5540 We can use the information on the stack to recover the LHS (`3')
5541 from the stack together with the tree code (`MULT_EXPR'), and
5542 the precedence of the higher level subexpression
5543 (`PREC_ADDITIVE_EXPRESSION'). TOKEN is the CPP_PLUS token,
5544 which will be used to actually build the additive expression. */
5545 --sp;
5546 prec = sp->prec;
5547 tree_type = sp->tree_type;
5548 rhs = lhs;
5549 lhs = sp->lhs;
5552 overloaded_p = false;
5553 lhs = build_x_binary_op (tree_type, lhs, rhs, &overloaded_p);
5555 /* If the binary operator required the use of an overloaded operator,
5556 then this expression cannot be an integral constant-expression.
5557 An overloaded operator can be used even if both operands are
5558 otherwise permissible in an integral constant-expression if at
5559 least one of the operands is of enumeration type. */
5561 if (overloaded_p
5562 && (cp_parser_non_integral_constant_expression
5563 (parser, "calls to overloaded operators")))
5564 return error_mark_node;
5567 return lhs;
5571 /* Parse the `? expression : assignment-expression' part of a
5572 conditional-expression. The LOGICAL_OR_EXPR is the
5573 logical-or-expression that started the conditional-expression.
5574 Returns a representation of the entire conditional-expression.
5576 This routine is used by cp_parser_assignment_expression.
5578 ? expression : assignment-expression
5580 GNU Extensions:
5582 ? : assignment-expression */
5584 static tree
5585 cp_parser_question_colon_clause (cp_parser* parser, tree logical_or_expr)
5587 tree expr;
5588 tree assignment_expr;
5590 /* Consume the `?' token. */
5591 cp_lexer_consume_token (parser->lexer);
5592 if (cp_parser_allow_gnu_extensions_p (parser)
5593 && cp_lexer_next_token_is (parser->lexer, CPP_COLON))
5594 /* Implicit true clause. */
5595 expr = NULL_TREE;
5596 else
5597 /* Parse the expression. */
5598 expr = cp_parser_expression (parser, /*cast_p=*/false);
5600 /* The next token should be a `:'. */
5601 cp_parser_require (parser, CPP_COLON, "`:'");
5602 /* Parse the assignment-expression. */
5603 assignment_expr = cp_parser_assignment_expression (parser, /*cast_p=*/false);
5605 /* Build the conditional-expression. */
5606 return build_x_conditional_expr (logical_or_expr,
5607 expr,
5608 assignment_expr);
5611 /* Parse an assignment-expression.
5613 assignment-expression:
5614 conditional-expression
5615 logical-or-expression assignment-operator assignment_expression
5616 throw-expression
5618 CAST_P is true if this expression is the target of a cast.
5620 Returns a representation for the expression. */
5622 static tree
5623 cp_parser_assignment_expression (cp_parser* parser, bool cast_p)
5625 tree expr;
5627 /* If the next token is the `throw' keyword, then we're looking at
5628 a throw-expression. */
5629 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_THROW))
5630 expr = cp_parser_throw_expression (parser);
5631 /* Otherwise, it must be that we are looking at a
5632 logical-or-expression. */
5633 else
5635 /* Parse the binary expressions (logical-or-expression). */
5636 expr = cp_parser_binary_expression (parser, cast_p);
5637 /* If the next token is a `?' then we're actually looking at a
5638 conditional-expression. */
5639 if (cp_lexer_next_token_is (parser->lexer, CPP_QUERY))
5640 return cp_parser_question_colon_clause (parser, expr);
5641 else
5643 enum tree_code assignment_operator;
5645 /* If it's an assignment-operator, we're using the second
5646 production. */
5647 assignment_operator
5648 = cp_parser_assignment_operator_opt (parser);
5649 if (assignment_operator != ERROR_MARK)
5651 tree rhs;
5653 /* Parse the right-hand side of the assignment. */
5654 rhs = cp_parser_assignment_expression (parser, cast_p);
5655 /* An assignment may not appear in a
5656 constant-expression. */
5657 if (cp_parser_non_integral_constant_expression (parser,
5658 "an assignment"))
5659 return error_mark_node;
5660 /* Build the assignment expression. */
5661 expr = build_x_modify_expr (expr,
5662 assignment_operator,
5663 rhs);
5668 return expr;
5671 /* Parse an (optional) assignment-operator.
5673 assignment-operator: one of
5674 = *= /= %= += -= >>= <<= &= ^= |=
5676 GNU Extension:
5678 assignment-operator: one of
5679 <?= >?=
5681 If the next token is an assignment operator, the corresponding tree
5682 code is returned, and the token is consumed. For example, for
5683 `+=', PLUS_EXPR is returned. For `=' itself, the code returned is
5684 NOP_EXPR. For `/', TRUNC_DIV_EXPR is returned; for `%',
5685 TRUNC_MOD_EXPR is returned. If TOKEN is not an assignment
5686 operator, ERROR_MARK is returned. */
5688 static enum tree_code
5689 cp_parser_assignment_operator_opt (cp_parser* parser)
5691 enum tree_code op;
5692 cp_token *token;
5694 /* Peek at the next toen. */
5695 token = cp_lexer_peek_token (parser->lexer);
5697 switch (token->type)
5699 case CPP_EQ:
5700 op = NOP_EXPR;
5701 break;
5703 case CPP_MULT_EQ:
5704 op = MULT_EXPR;
5705 break;
5707 case CPP_DIV_EQ:
5708 op = TRUNC_DIV_EXPR;
5709 break;
5711 case CPP_MOD_EQ:
5712 op = TRUNC_MOD_EXPR;
5713 break;
5715 case CPP_PLUS_EQ:
5716 op = PLUS_EXPR;
5717 break;
5719 case CPP_MINUS_EQ:
5720 op = MINUS_EXPR;
5721 break;
5723 case CPP_RSHIFT_EQ:
5724 op = RSHIFT_EXPR;
5725 break;
5727 case CPP_LSHIFT_EQ:
5728 op = LSHIFT_EXPR;
5729 break;
5731 case CPP_AND_EQ:
5732 op = BIT_AND_EXPR;
5733 break;
5735 case CPP_XOR_EQ:
5736 op = BIT_XOR_EXPR;
5737 break;
5739 case CPP_OR_EQ:
5740 op = BIT_IOR_EXPR;
5741 break;
5743 case CPP_MIN_EQ:
5744 op = MIN_EXPR;
5745 cp_parser_warn_min_max ();
5746 break;
5748 case CPP_MAX_EQ:
5749 op = MAX_EXPR;
5750 cp_parser_warn_min_max ();
5751 break;
5753 default:
5754 /* Nothing else is an assignment operator. */
5755 op = ERROR_MARK;
5758 /* If it was an assignment operator, consume it. */
5759 if (op != ERROR_MARK)
5760 cp_lexer_consume_token (parser->lexer);
5762 return op;
5765 /* Parse an expression.
5767 expression:
5768 assignment-expression
5769 expression , assignment-expression
5771 CAST_P is true if this expression is the target of a cast.
5773 Returns a representation of the expression. */
5775 static tree
5776 cp_parser_expression (cp_parser* parser, bool cast_p)
5778 tree expression = NULL_TREE;
5780 while (true)
5782 tree assignment_expression;
5784 /* Parse the next assignment-expression. */
5785 assignment_expression
5786 = cp_parser_assignment_expression (parser, cast_p);
5787 /* If this is the first assignment-expression, we can just
5788 save it away. */
5789 if (!expression)
5790 expression = assignment_expression;
5791 else
5792 expression = build_x_compound_expr (expression,
5793 assignment_expression);
5794 /* If the next token is not a comma, then we are done with the
5795 expression. */
5796 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
5797 break;
5798 /* Consume the `,'. */
5799 cp_lexer_consume_token (parser->lexer);
5800 /* A comma operator cannot appear in a constant-expression. */
5801 if (cp_parser_non_integral_constant_expression (parser,
5802 "a comma operator"))
5803 expression = error_mark_node;
5806 return expression;
5809 /* Parse a constant-expression.
5811 constant-expression:
5812 conditional-expression
5814 If ALLOW_NON_CONSTANT_P a non-constant expression is silently
5815 accepted. If ALLOW_NON_CONSTANT_P is true and the expression is not
5816 constant, *NON_CONSTANT_P is set to TRUE. If ALLOW_NON_CONSTANT_P
5817 is false, NON_CONSTANT_P should be NULL. */
5819 static tree
5820 cp_parser_constant_expression (cp_parser* parser,
5821 bool allow_non_constant_p,
5822 bool *non_constant_p)
5824 bool saved_integral_constant_expression_p;
5825 bool saved_allow_non_integral_constant_expression_p;
5826 bool saved_non_integral_constant_expression_p;
5827 tree expression;
5829 /* It might seem that we could simply parse the
5830 conditional-expression, and then check to see if it were
5831 TREE_CONSTANT. However, an expression that is TREE_CONSTANT is
5832 one that the compiler can figure out is constant, possibly after
5833 doing some simplifications or optimizations. The standard has a
5834 precise definition of constant-expression, and we must honor
5835 that, even though it is somewhat more restrictive.
5837 For example:
5839 int i[(2, 3)];
5841 is not a legal declaration, because `(2, 3)' is not a
5842 constant-expression. The `,' operator is forbidden in a
5843 constant-expression. However, GCC's constant-folding machinery
5844 will fold this operation to an INTEGER_CST for `3'. */
5846 /* Save the old settings. */
5847 saved_integral_constant_expression_p = parser->integral_constant_expression_p;
5848 saved_allow_non_integral_constant_expression_p
5849 = parser->allow_non_integral_constant_expression_p;
5850 saved_non_integral_constant_expression_p = parser->non_integral_constant_expression_p;
5851 /* We are now parsing a constant-expression. */
5852 parser->integral_constant_expression_p = true;
5853 parser->allow_non_integral_constant_expression_p = allow_non_constant_p;
5854 parser->non_integral_constant_expression_p = false;
5855 /* Although the grammar says "conditional-expression", we parse an
5856 "assignment-expression", which also permits "throw-expression"
5857 and the use of assignment operators. In the case that
5858 ALLOW_NON_CONSTANT_P is false, we get better errors than we would
5859 otherwise. In the case that ALLOW_NON_CONSTANT_P is true, it is
5860 actually essential that we look for an assignment-expression.
5861 For example, cp_parser_initializer_clauses uses this function to
5862 determine whether a particular assignment-expression is in fact
5863 constant. */
5864 expression = cp_parser_assignment_expression (parser, /*cast_p=*/false);
5865 /* Restore the old settings. */
5866 parser->integral_constant_expression_p
5867 = saved_integral_constant_expression_p;
5868 parser->allow_non_integral_constant_expression_p
5869 = saved_allow_non_integral_constant_expression_p;
5870 if (allow_non_constant_p)
5871 *non_constant_p = parser->non_integral_constant_expression_p;
5872 else if (parser->non_integral_constant_expression_p)
5873 expression = error_mark_node;
5874 parser->non_integral_constant_expression_p
5875 = saved_non_integral_constant_expression_p;
5877 return expression;
5880 /* Parse __builtin_offsetof.
5882 offsetof-expression:
5883 "__builtin_offsetof" "(" type-id "," offsetof-member-designator ")"
5885 offsetof-member-designator:
5886 id-expression
5887 | offsetof-member-designator "." id-expression
5888 | offsetof-member-designator "[" expression "]"
5891 static tree
5892 cp_parser_builtin_offsetof (cp_parser *parser)
5894 int save_ice_p, save_non_ice_p;
5895 tree type, expr;
5896 cp_id_kind dummy;
5898 /* We're about to accept non-integral-constant things, but will
5899 definitely yield an integral constant expression. Save and
5900 restore these values around our local parsing. */
5901 save_ice_p = parser->integral_constant_expression_p;
5902 save_non_ice_p = parser->non_integral_constant_expression_p;
5904 /* Consume the "__builtin_offsetof" token. */
5905 cp_lexer_consume_token (parser->lexer);
5906 /* Consume the opening `('. */
5907 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
5908 /* Parse the type-id. */
5909 type = cp_parser_type_id (parser);
5910 /* Look for the `,'. */
5911 cp_parser_require (parser, CPP_COMMA, "`,'");
5913 /* Build the (type *)null that begins the traditional offsetof macro. */
5914 expr = build_static_cast (build_pointer_type (type), null_pointer_node);
5916 /* Parse the offsetof-member-designator. We begin as if we saw "expr->". */
5917 expr = cp_parser_postfix_dot_deref_expression (parser, CPP_DEREF, expr,
5918 true, &dummy);
5919 while (true)
5921 cp_token *token = cp_lexer_peek_token (parser->lexer);
5922 switch (token->type)
5924 case CPP_OPEN_SQUARE:
5925 /* offsetof-member-designator "[" expression "]" */
5926 expr = cp_parser_postfix_open_square_expression (parser, expr, true);
5927 break;
5929 case CPP_DOT:
5930 /* offsetof-member-designator "." identifier */
5931 cp_lexer_consume_token (parser->lexer);
5932 expr = cp_parser_postfix_dot_deref_expression (parser, CPP_DOT, expr,
5933 true, &dummy);
5934 break;
5936 case CPP_CLOSE_PAREN:
5937 /* Consume the ")" token. */
5938 cp_lexer_consume_token (parser->lexer);
5939 goto success;
5941 default:
5942 /* Error. We know the following require will fail, but
5943 that gives the proper error message. */
5944 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
5945 cp_parser_skip_to_closing_parenthesis (parser, true, false, true);
5946 expr = error_mark_node;
5947 goto failure;
5951 success:
5952 /* If we're processing a template, we can't finish the semantics yet.
5953 Otherwise we can fold the entire expression now. */
5954 if (processing_template_decl)
5955 expr = build1 (OFFSETOF_EXPR, size_type_node, expr);
5956 else
5957 expr = fold_offsetof (expr);
5959 failure:
5960 parser->integral_constant_expression_p = save_ice_p;
5961 parser->non_integral_constant_expression_p = save_non_ice_p;
5963 return expr;
5966 /* Statements [gram.stmt.stmt] */
5968 /* Parse a statement.
5970 statement:
5971 labeled-statement
5972 expression-statement
5973 compound-statement
5974 selection-statement
5975 iteration-statement
5976 jump-statement
5977 declaration-statement
5978 try-block */
5980 static void
5981 cp_parser_statement (cp_parser* parser, tree in_statement_expr)
5983 tree statement;
5984 cp_token *token;
5985 location_t statement_location;
5987 /* There is no statement yet. */
5988 statement = NULL_TREE;
5989 /* Peek at the next token. */
5990 token = cp_lexer_peek_token (parser->lexer);
5991 /* Remember the location of the first token in the statement. */
5992 statement_location = token->location;
5993 /* If this is a keyword, then that will often determine what kind of
5994 statement we have. */
5995 if (token->type == CPP_KEYWORD)
5997 enum rid keyword = token->keyword;
5999 switch (keyword)
6001 case RID_CASE:
6002 case RID_DEFAULT:
6003 statement = cp_parser_labeled_statement (parser,
6004 in_statement_expr);
6005 break;
6007 case RID_IF:
6008 case RID_SWITCH:
6009 statement = cp_parser_selection_statement (parser);
6010 break;
6012 case RID_WHILE:
6013 case RID_DO:
6014 case RID_FOR:
6015 statement = cp_parser_iteration_statement (parser);
6016 break;
6018 case RID_BREAK:
6019 case RID_CONTINUE:
6020 case RID_RETURN:
6021 case RID_GOTO:
6022 statement = cp_parser_jump_statement (parser);
6023 break;
6025 /* Objective-C++ exception-handling constructs. */
6026 case RID_AT_TRY:
6027 case RID_AT_CATCH:
6028 case RID_AT_FINALLY:
6029 case RID_AT_SYNCHRONIZED:
6030 case RID_AT_THROW:
6031 statement = cp_parser_objc_statement (parser);
6032 break;
6034 case RID_TRY:
6035 statement = cp_parser_try_block (parser);
6036 break;
6038 default:
6039 /* It might be a keyword like `int' that can start a
6040 declaration-statement. */
6041 break;
6044 else if (token->type == CPP_NAME)
6046 /* If the next token is a `:', then we are looking at a
6047 labeled-statement. */
6048 token = cp_lexer_peek_nth_token (parser->lexer, 2);
6049 if (token->type == CPP_COLON)
6050 statement = cp_parser_labeled_statement (parser, in_statement_expr);
6052 /* Anything that starts with a `{' must be a compound-statement. */
6053 else if (token->type == CPP_OPEN_BRACE)
6054 statement = cp_parser_compound_statement (parser, NULL, false);
6055 /* CPP_PRAGMA is a #pragma inside a function body, which constitutes
6056 a statement all its own. */
6057 else if (token->type == CPP_PRAGMA)
6059 cp_lexer_handle_pragma (parser->lexer);
6060 return;
6063 /* Everything else must be a declaration-statement or an
6064 expression-statement. Try for the declaration-statement
6065 first, unless we are looking at a `;', in which case we know that
6066 we have an expression-statement. */
6067 if (!statement)
6069 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6071 cp_parser_parse_tentatively (parser);
6072 /* Try to parse the declaration-statement. */
6073 cp_parser_declaration_statement (parser);
6074 /* If that worked, we're done. */
6075 if (cp_parser_parse_definitely (parser))
6076 return;
6078 /* Look for an expression-statement instead. */
6079 statement = cp_parser_expression_statement (parser, in_statement_expr);
6082 /* Set the line number for the statement. */
6083 if (statement && STATEMENT_CODE_P (TREE_CODE (statement)))
6084 SET_EXPR_LOCATION (statement, statement_location);
6087 /* Parse a labeled-statement.
6089 labeled-statement:
6090 identifier : statement
6091 case constant-expression : statement
6092 default : statement
6094 GNU Extension:
6096 labeled-statement:
6097 case constant-expression ... constant-expression : statement
6099 Returns the new CASE_LABEL_EXPR, for a `case' or `default' label.
6100 For an ordinary label, returns a LABEL_EXPR. */
6102 static tree
6103 cp_parser_labeled_statement (cp_parser* parser, tree in_statement_expr)
6105 cp_token *token;
6106 tree statement = error_mark_node;
6108 /* The next token should be an identifier. */
6109 token = cp_lexer_peek_token (parser->lexer);
6110 if (token->type != CPP_NAME
6111 && token->type != CPP_KEYWORD)
6113 cp_parser_error (parser, "expected labeled-statement");
6114 return error_mark_node;
6117 switch (token->keyword)
6119 case RID_CASE:
6121 tree expr, expr_hi;
6122 cp_token *ellipsis;
6124 /* Consume the `case' token. */
6125 cp_lexer_consume_token (parser->lexer);
6126 /* Parse the constant-expression. */
6127 expr = cp_parser_constant_expression (parser,
6128 /*allow_non_constant_p=*/false,
6129 NULL);
6131 ellipsis = cp_lexer_peek_token (parser->lexer);
6132 if (ellipsis->type == CPP_ELLIPSIS)
6134 /* Consume the `...' token. */
6135 cp_lexer_consume_token (parser->lexer);
6136 expr_hi =
6137 cp_parser_constant_expression (parser,
6138 /*allow_non_constant_p=*/false,
6139 NULL);
6140 /* We don't need to emit warnings here, as the common code
6141 will do this for us. */
6143 else
6144 expr_hi = NULL_TREE;
6146 if (!parser->in_switch_statement_p)
6147 error ("case label %qE not within a switch statement", expr);
6148 else
6149 statement = finish_case_label (expr, expr_hi);
6151 break;
6153 case RID_DEFAULT:
6154 /* Consume the `default' token. */
6155 cp_lexer_consume_token (parser->lexer);
6156 if (!parser->in_switch_statement_p)
6157 error ("case label not within a switch statement");
6158 else
6159 statement = finish_case_label (NULL_TREE, NULL_TREE);
6160 break;
6162 default:
6163 /* Anything else must be an ordinary label. */
6164 statement = finish_label_stmt (cp_parser_identifier (parser));
6165 break;
6168 /* Require the `:' token. */
6169 cp_parser_require (parser, CPP_COLON, "`:'");
6170 /* Parse the labeled statement. */
6171 cp_parser_statement (parser, in_statement_expr);
6173 /* Return the label, in the case of a `case' or `default' label. */
6174 return statement;
6177 /* Parse an expression-statement.
6179 expression-statement:
6180 expression [opt] ;
6182 Returns the new EXPR_STMT -- or NULL_TREE if the expression
6183 statement consists of nothing more than an `;'. IN_STATEMENT_EXPR_P
6184 indicates whether this expression-statement is part of an
6185 expression statement. */
6187 static tree
6188 cp_parser_expression_statement (cp_parser* parser, tree in_statement_expr)
6190 tree statement = NULL_TREE;
6192 /* If the next token is a ';', then there is no expression
6193 statement. */
6194 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6195 statement = cp_parser_expression (parser, /*cast_p=*/false);
6197 /* Consume the final `;'. */
6198 cp_parser_consume_semicolon_at_end_of_statement (parser);
6200 if (in_statement_expr
6201 && cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
6202 /* This is the final expression statement of a statement
6203 expression. */
6204 statement = finish_stmt_expr_expr (statement, in_statement_expr);
6205 else if (statement)
6206 statement = finish_expr_stmt (statement);
6207 else
6208 finish_stmt ();
6210 return statement;
6213 /* Parse a compound-statement.
6215 compound-statement:
6216 { statement-seq [opt] }
6218 Returns a tree representing the statement. */
6220 static tree
6221 cp_parser_compound_statement (cp_parser *parser, tree in_statement_expr,
6222 bool in_try)
6224 tree compound_stmt;
6226 /* Consume the `{'. */
6227 if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
6228 return error_mark_node;
6229 /* Begin the compound-statement. */
6230 compound_stmt = begin_compound_stmt (in_try ? BCS_TRY_BLOCK : 0);
6231 /* Parse an (optional) statement-seq. */
6232 cp_parser_statement_seq_opt (parser, in_statement_expr);
6233 /* Finish the compound-statement. */
6234 finish_compound_stmt (compound_stmt);
6235 /* Consume the `}'. */
6236 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
6238 return compound_stmt;
6241 /* Parse an (optional) statement-seq.
6243 statement-seq:
6244 statement
6245 statement-seq [opt] statement */
6247 static void
6248 cp_parser_statement_seq_opt (cp_parser* parser, tree in_statement_expr)
6250 /* Scan statements until there aren't any more. */
6251 while (true)
6253 /* If we're looking at a `}', then we've run out of statements. */
6254 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE)
6255 || cp_lexer_next_token_is (parser->lexer, CPP_EOF))
6256 break;
6258 /* Parse the statement. */
6259 cp_parser_statement (parser, in_statement_expr);
6263 /* Parse a selection-statement.
6265 selection-statement:
6266 if ( condition ) statement
6267 if ( condition ) statement else statement
6268 switch ( condition ) statement
6270 Returns the new IF_STMT or SWITCH_STMT. */
6272 static tree
6273 cp_parser_selection_statement (cp_parser* parser)
6275 cp_token *token;
6276 enum rid keyword;
6278 /* Peek at the next token. */
6279 token = cp_parser_require (parser, CPP_KEYWORD, "selection-statement");
6281 /* See what kind of keyword it is. */
6282 keyword = token->keyword;
6283 switch (keyword)
6285 case RID_IF:
6286 case RID_SWITCH:
6288 tree statement;
6289 tree condition;
6291 /* Look for the `('. */
6292 if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
6294 cp_parser_skip_to_end_of_statement (parser);
6295 return error_mark_node;
6298 /* Begin the selection-statement. */
6299 if (keyword == RID_IF)
6300 statement = begin_if_stmt ();
6301 else
6302 statement = begin_switch_stmt ();
6304 /* Parse the condition. */
6305 condition = cp_parser_condition (parser);
6306 /* Look for the `)'. */
6307 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
6308 cp_parser_skip_to_closing_parenthesis (parser, true, false,
6309 /*consume_paren=*/true);
6311 if (keyword == RID_IF)
6313 /* Add the condition. */
6314 finish_if_stmt_cond (condition, statement);
6316 /* Parse the then-clause. */
6317 cp_parser_implicitly_scoped_statement (parser);
6318 finish_then_clause (statement);
6320 /* If the next token is `else', parse the else-clause. */
6321 if (cp_lexer_next_token_is_keyword (parser->lexer,
6322 RID_ELSE))
6324 /* Consume the `else' keyword. */
6325 cp_lexer_consume_token (parser->lexer);
6326 begin_else_clause (statement);
6327 /* Parse the else-clause. */
6328 cp_parser_implicitly_scoped_statement (parser);
6329 finish_else_clause (statement);
6332 /* Now we're all done with the if-statement. */
6333 finish_if_stmt (statement);
6335 else
6337 bool in_switch_statement_p;
6339 /* Add the condition. */
6340 finish_switch_cond (condition, statement);
6342 /* Parse the body of the switch-statement. */
6343 in_switch_statement_p = parser->in_switch_statement_p;
6344 parser->in_switch_statement_p = true;
6345 cp_parser_implicitly_scoped_statement (parser);
6346 parser->in_switch_statement_p = in_switch_statement_p;
6348 /* Now we're all done with the switch-statement. */
6349 finish_switch_stmt (statement);
6352 return statement;
6354 break;
6356 default:
6357 cp_parser_error (parser, "expected selection-statement");
6358 return error_mark_node;
6362 /* Parse a condition.
6364 condition:
6365 expression
6366 type-specifier-seq declarator = assignment-expression
6368 GNU Extension:
6370 condition:
6371 type-specifier-seq declarator asm-specification [opt]
6372 attributes [opt] = assignment-expression
6374 Returns the expression that should be tested. */
6376 static tree
6377 cp_parser_condition (cp_parser* parser)
6379 cp_decl_specifier_seq type_specifiers;
6380 const char *saved_message;
6382 /* Try the declaration first. */
6383 cp_parser_parse_tentatively (parser);
6384 /* New types are not allowed in the type-specifier-seq for a
6385 condition. */
6386 saved_message = parser->type_definition_forbidden_message;
6387 parser->type_definition_forbidden_message
6388 = "types may not be defined in conditions";
6389 /* Parse the type-specifier-seq. */
6390 cp_parser_type_specifier_seq (parser, /*is_condition==*/true,
6391 &type_specifiers);
6392 /* Restore the saved message. */
6393 parser->type_definition_forbidden_message = saved_message;
6394 /* If all is well, we might be looking at a declaration. */
6395 if (!cp_parser_error_occurred (parser))
6397 tree decl;
6398 tree asm_specification;
6399 tree attributes;
6400 cp_declarator *declarator;
6401 tree initializer = NULL_TREE;
6403 /* Parse the declarator. */
6404 declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
6405 /*ctor_dtor_or_conv_p=*/NULL,
6406 /*parenthesized_p=*/NULL,
6407 /*member_p=*/false);
6408 /* Parse the attributes. */
6409 attributes = cp_parser_attributes_opt (parser);
6410 /* Parse the asm-specification. */
6411 asm_specification = cp_parser_asm_specification_opt (parser);
6412 /* If the next token is not an `=', then we might still be
6413 looking at an expression. For example:
6415 if (A(a).x)
6417 looks like a decl-specifier-seq and a declarator -- but then
6418 there is no `=', so this is an expression. */
6419 cp_parser_require (parser, CPP_EQ, "`='");
6420 /* If we did see an `=', then we are looking at a declaration
6421 for sure. */
6422 if (cp_parser_parse_definitely (parser))
6424 tree pushed_scope;
6426 /* Create the declaration. */
6427 decl = start_decl (declarator, &type_specifiers,
6428 /*initialized_p=*/true,
6429 attributes, /*prefix_attributes=*/NULL_TREE,
6430 &pushed_scope);
6431 /* Parse the assignment-expression. */
6432 initializer = cp_parser_assignment_expression (parser,
6433 /*cast_p=*/false);
6435 /* Process the initializer. */
6436 cp_finish_decl (decl,
6437 initializer,
6438 asm_specification,
6439 LOOKUP_ONLYCONVERTING);
6441 if (pushed_scope)
6442 pop_scope (pushed_scope);
6444 return convert_from_reference (decl);
6447 /* If we didn't even get past the declarator successfully, we are
6448 definitely not looking at a declaration. */
6449 else
6450 cp_parser_abort_tentative_parse (parser);
6452 /* Otherwise, we are looking at an expression. */
6453 return cp_parser_expression (parser, /*cast_p=*/false);
6456 /* Parse an iteration-statement.
6458 iteration-statement:
6459 while ( condition ) statement
6460 do statement while ( expression ) ;
6461 for ( for-init-statement condition [opt] ; expression [opt] )
6462 statement
6464 Returns the new WHILE_STMT, DO_STMT, or FOR_STMT. */
6466 static tree
6467 cp_parser_iteration_statement (cp_parser* parser)
6469 cp_token *token;
6470 enum rid keyword;
6471 tree statement;
6472 bool in_iteration_statement_p;
6475 /* Peek at the next token. */
6476 token = cp_parser_require (parser, CPP_KEYWORD, "iteration-statement");
6477 if (!token)
6478 return error_mark_node;
6480 /* Remember whether or not we are already within an iteration
6481 statement. */
6482 in_iteration_statement_p = parser->in_iteration_statement_p;
6484 /* See what kind of keyword it is. */
6485 keyword = token->keyword;
6486 switch (keyword)
6488 case RID_WHILE:
6490 tree condition;
6492 /* Begin the while-statement. */
6493 statement = begin_while_stmt ();
6494 /* Look for the `('. */
6495 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6496 /* Parse the condition. */
6497 condition = cp_parser_condition (parser);
6498 finish_while_stmt_cond (condition, statement);
6499 /* Look for the `)'. */
6500 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6501 /* Parse the dependent statement. */
6502 parser->in_iteration_statement_p = true;
6503 cp_parser_already_scoped_statement (parser);
6504 parser->in_iteration_statement_p = in_iteration_statement_p;
6505 /* We're done with the while-statement. */
6506 finish_while_stmt (statement);
6508 break;
6510 case RID_DO:
6512 tree expression;
6514 /* Begin the do-statement. */
6515 statement = begin_do_stmt ();
6516 /* Parse the body of the do-statement. */
6517 parser->in_iteration_statement_p = true;
6518 cp_parser_implicitly_scoped_statement (parser);
6519 parser->in_iteration_statement_p = in_iteration_statement_p;
6520 finish_do_body (statement);
6521 /* Look for the `while' keyword. */
6522 cp_parser_require_keyword (parser, RID_WHILE, "`while'");
6523 /* Look for the `('. */
6524 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6525 /* Parse the expression. */
6526 expression = cp_parser_expression (parser, /*cast_p=*/false);
6527 /* We're done with the do-statement. */
6528 finish_do_stmt (expression, statement);
6529 /* Look for the `)'. */
6530 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6531 /* Look for the `;'. */
6532 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6534 break;
6536 case RID_FOR:
6538 tree condition = NULL_TREE;
6539 tree expression = NULL_TREE;
6541 /* Begin the for-statement. */
6542 statement = begin_for_stmt ();
6543 /* Look for the `('. */
6544 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6545 /* Parse the initialization. */
6546 cp_parser_for_init_statement (parser);
6547 finish_for_init_stmt (statement);
6549 /* If there's a condition, process it. */
6550 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6551 condition = cp_parser_condition (parser);
6552 finish_for_cond (condition, statement);
6553 /* Look for the `;'. */
6554 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6556 /* If there's an expression, process it. */
6557 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
6558 expression = cp_parser_expression (parser, /*cast_p=*/false);
6559 finish_for_expr (expression, statement);
6560 /* Look for the `)'. */
6561 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6563 /* Parse the body of the for-statement. */
6564 parser->in_iteration_statement_p = true;
6565 cp_parser_already_scoped_statement (parser);
6566 parser->in_iteration_statement_p = in_iteration_statement_p;
6568 /* We're done with the for-statement. */
6569 finish_for_stmt (statement);
6571 break;
6573 default:
6574 cp_parser_error (parser, "expected iteration-statement");
6575 statement = error_mark_node;
6576 break;
6579 return statement;
6582 /* Parse a for-init-statement.
6584 for-init-statement:
6585 expression-statement
6586 simple-declaration */
6588 static void
6589 cp_parser_for_init_statement (cp_parser* parser)
6591 /* If the next token is a `;', then we have an empty
6592 expression-statement. Grammatically, this is also a
6593 simple-declaration, but an invalid one, because it does not
6594 declare anything. Therefore, if we did not handle this case
6595 specially, we would issue an error message about an invalid
6596 declaration. */
6597 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6599 /* We're going to speculatively look for a declaration, falling back
6600 to an expression, if necessary. */
6601 cp_parser_parse_tentatively (parser);
6602 /* Parse the declaration. */
6603 cp_parser_simple_declaration (parser,
6604 /*function_definition_allowed_p=*/false);
6605 /* If the tentative parse failed, then we shall need to look for an
6606 expression-statement. */
6607 if (cp_parser_parse_definitely (parser))
6608 return;
6611 cp_parser_expression_statement (parser, false);
6614 /* Parse a jump-statement.
6616 jump-statement:
6617 break ;
6618 continue ;
6619 return expression [opt] ;
6620 goto identifier ;
6622 GNU extension:
6624 jump-statement:
6625 goto * expression ;
6627 Returns the new BREAK_STMT, CONTINUE_STMT, RETURN_EXPR, or GOTO_EXPR. */
6629 static tree
6630 cp_parser_jump_statement (cp_parser* parser)
6632 tree statement = error_mark_node;
6633 cp_token *token;
6634 enum rid keyword;
6636 /* Peek at the next token. */
6637 token = cp_parser_require (parser, CPP_KEYWORD, "jump-statement");
6638 if (!token)
6639 return error_mark_node;
6641 /* See what kind of keyword it is. */
6642 keyword = token->keyword;
6643 switch (keyword)
6645 case RID_BREAK:
6646 if (!parser->in_switch_statement_p
6647 && !parser->in_iteration_statement_p)
6649 error ("break statement not within loop or switch");
6650 statement = error_mark_node;
6652 else
6653 statement = finish_break_stmt ();
6654 cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6655 break;
6657 case RID_CONTINUE:
6658 if (!parser->in_iteration_statement_p)
6660 error ("continue statement not within a loop");
6661 statement = error_mark_node;
6663 else
6664 statement = finish_continue_stmt ();
6665 cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6666 break;
6668 case RID_RETURN:
6670 tree expr;
6672 /* If the next token is a `;', then there is no
6673 expression. */
6674 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6675 expr = cp_parser_expression (parser, /*cast_p=*/false);
6676 else
6677 expr = NULL_TREE;
6678 /* Build the return-statement. */
6679 statement = finish_return_stmt (expr);
6680 /* Look for the final `;'. */
6681 cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6683 break;
6685 case RID_GOTO:
6686 /* Create the goto-statement. */
6687 if (cp_lexer_next_token_is (parser->lexer, CPP_MULT))
6689 /* Issue a warning about this use of a GNU extension. */
6690 if (pedantic)
6691 pedwarn ("ISO C++ forbids computed gotos");
6692 /* Consume the '*' token. */
6693 cp_lexer_consume_token (parser->lexer);
6694 /* Parse the dependent expression. */
6695 finish_goto_stmt (cp_parser_expression (parser, /*cast_p=*/false));
6697 else
6698 finish_goto_stmt (cp_parser_identifier (parser));
6699 /* Look for the final `;'. */
6700 cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6701 break;
6703 default:
6704 cp_parser_error (parser, "expected jump-statement");
6705 break;
6708 return statement;
6711 /* Parse a declaration-statement.
6713 declaration-statement:
6714 block-declaration */
6716 static void
6717 cp_parser_declaration_statement (cp_parser* parser)
6719 void *p;
6721 /* Get the high-water mark for the DECLARATOR_OBSTACK. */
6722 p = obstack_alloc (&declarator_obstack, 0);
6724 /* Parse the block-declaration. */
6725 cp_parser_block_declaration (parser, /*statement_p=*/true);
6727 /* Free any declarators allocated. */
6728 obstack_free (&declarator_obstack, p);
6730 /* Finish off the statement. */
6731 finish_stmt ();
6734 /* Some dependent statements (like `if (cond) statement'), are
6735 implicitly in their own scope. In other words, if the statement is
6736 a single statement (as opposed to a compound-statement), it is
6737 none-the-less treated as if it were enclosed in braces. Any
6738 declarations appearing in the dependent statement are out of scope
6739 after control passes that point. This function parses a statement,
6740 but ensures that is in its own scope, even if it is not a
6741 compound-statement.
6743 Returns the new statement. */
6745 static tree
6746 cp_parser_implicitly_scoped_statement (cp_parser* parser)
6748 tree statement;
6750 /* If the token is not a `{', then we must take special action. */
6751 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
6753 /* Create a compound-statement. */
6754 statement = begin_compound_stmt (0);
6755 /* Parse the dependent-statement. */
6756 cp_parser_statement (parser, false);
6757 /* Finish the dummy compound-statement. */
6758 finish_compound_stmt (statement);
6760 /* Otherwise, we simply parse the statement directly. */
6761 else
6762 statement = cp_parser_compound_statement (parser, NULL, false);
6764 /* Return the statement. */
6765 return statement;
6768 /* For some dependent statements (like `while (cond) statement'), we
6769 have already created a scope. Therefore, even if the dependent
6770 statement is a compound-statement, we do not want to create another
6771 scope. */
6773 static void
6774 cp_parser_already_scoped_statement (cp_parser* parser)
6776 /* If the token is a `{', then we must take special action. */
6777 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
6778 cp_parser_statement (parser, false);
6779 else
6781 /* Avoid calling cp_parser_compound_statement, so that we
6782 don't create a new scope. Do everything else by hand. */
6783 cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
6784 cp_parser_statement_seq_opt (parser, false);
6785 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
6789 /* Declarations [gram.dcl.dcl] */
6791 /* Parse an optional declaration-sequence.
6793 declaration-seq:
6794 declaration
6795 declaration-seq declaration */
6797 static void
6798 cp_parser_declaration_seq_opt (cp_parser* parser)
6800 while (true)
6802 cp_token *token;
6804 token = cp_lexer_peek_token (parser->lexer);
6806 if (token->type == CPP_CLOSE_BRACE
6807 || token->type == CPP_EOF)
6808 break;
6810 if (token->type == CPP_SEMICOLON)
6812 /* A declaration consisting of a single semicolon is
6813 invalid. Allow it unless we're being pedantic. */
6814 cp_lexer_consume_token (parser->lexer);
6815 if (pedantic && !in_system_header)
6816 pedwarn ("extra %<;%>");
6817 continue;
6820 /* If we're entering or exiting a region that's implicitly
6821 extern "C", modify the lang context appropriately. */
6822 if (!parser->implicit_extern_c && token->implicit_extern_c)
6824 push_lang_context (lang_name_c);
6825 parser->implicit_extern_c = true;
6827 else if (parser->implicit_extern_c && !token->implicit_extern_c)
6829 pop_lang_context ();
6830 parser->implicit_extern_c = false;
6833 if (token->type == CPP_PRAGMA)
6835 /* A top-level declaration can consist solely of a #pragma.
6836 A nested declaration cannot, so this is done here and not
6837 in cp_parser_declaration. (A #pragma at block scope is
6838 handled in cp_parser_statement.) */
6839 cp_lexer_handle_pragma (parser->lexer);
6840 continue;
6843 /* Parse the declaration itself. */
6844 cp_parser_declaration (parser);
6848 /* Parse a declaration.
6850 declaration:
6851 block-declaration
6852 function-definition
6853 template-declaration
6854 explicit-instantiation
6855 explicit-specialization
6856 linkage-specification
6857 namespace-definition
6859 GNU extension:
6861 declaration:
6862 __extension__ declaration */
6864 static void
6865 cp_parser_declaration (cp_parser* parser)
6867 cp_token token1;
6868 cp_token token2;
6869 int saved_pedantic;
6870 void *p;
6872 /* Check for the `__extension__' keyword. */
6873 if (cp_parser_extension_opt (parser, &saved_pedantic))
6875 /* Parse the qualified declaration. */
6876 cp_parser_declaration (parser);
6877 /* Restore the PEDANTIC flag. */
6878 pedantic = saved_pedantic;
6880 return;
6883 /* Try to figure out what kind of declaration is present. */
6884 token1 = *cp_lexer_peek_token (parser->lexer);
6886 if (token1.type != CPP_EOF)
6887 token2 = *cp_lexer_peek_nth_token (parser->lexer, 2);
6889 /* Get the high-water mark for the DECLARATOR_OBSTACK. */
6890 p = obstack_alloc (&declarator_obstack, 0);
6892 /* If the next token is `extern' and the following token is a string
6893 literal, then we have a linkage specification. */
6894 if (token1.keyword == RID_EXTERN
6895 && cp_parser_is_string_literal (&token2))
6896 cp_parser_linkage_specification (parser);
6897 /* If the next token is `template', then we have either a template
6898 declaration, an explicit instantiation, or an explicit
6899 specialization. */
6900 else if (token1.keyword == RID_TEMPLATE)
6902 /* `template <>' indicates a template specialization. */
6903 if (token2.type == CPP_LESS
6904 && cp_lexer_peek_nth_token (parser->lexer, 3)->type == CPP_GREATER)
6905 cp_parser_explicit_specialization (parser);
6906 /* `template <' indicates a template declaration. */
6907 else if (token2.type == CPP_LESS)
6908 cp_parser_template_declaration (parser, /*member_p=*/false);
6909 /* Anything else must be an explicit instantiation. */
6910 else
6911 cp_parser_explicit_instantiation (parser);
6913 /* If the next token is `export', then we have a template
6914 declaration. */
6915 else if (token1.keyword == RID_EXPORT)
6916 cp_parser_template_declaration (parser, /*member_p=*/false);
6917 /* If the next token is `extern', 'static' or 'inline' and the one
6918 after that is `template', we have a GNU extended explicit
6919 instantiation directive. */
6920 else if (cp_parser_allow_gnu_extensions_p (parser)
6921 && (token1.keyword == RID_EXTERN
6922 || token1.keyword == RID_STATIC
6923 || token1.keyword == RID_INLINE)
6924 && token2.keyword == RID_TEMPLATE)
6925 cp_parser_explicit_instantiation (parser);
6926 /* If the next token is `namespace', check for a named or unnamed
6927 namespace definition. */
6928 else if (token1.keyword == RID_NAMESPACE
6929 && (/* A named namespace definition. */
6930 (token2.type == CPP_NAME
6931 && (cp_lexer_peek_nth_token (parser->lexer, 3)->type
6932 == CPP_OPEN_BRACE))
6933 /* An unnamed namespace definition. */
6934 || token2.type == CPP_OPEN_BRACE))
6935 cp_parser_namespace_definition (parser);
6936 /* Objective-C++ declaration/definition. */
6937 else if (c_dialect_objc () && OBJC_IS_AT_KEYWORD (token1.keyword))
6938 cp_parser_objc_declaration (parser);
6939 /* We must have either a block declaration or a function
6940 definition. */
6941 else
6942 /* Try to parse a block-declaration, or a function-definition. */
6943 cp_parser_block_declaration (parser, /*statement_p=*/false);
6945 /* Free any declarators allocated. */
6946 obstack_free (&declarator_obstack, p);
6949 /* Parse a block-declaration.
6951 block-declaration:
6952 simple-declaration
6953 asm-definition
6954 namespace-alias-definition
6955 using-declaration
6956 using-directive
6958 GNU Extension:
6960 block-declaration:
6961 __extension__ block-declaration
6962 label-declaration
6964 If STATEMENT_P is TRUE, then this block-declaration is occurring as
6965 part of a declaration-statement. */
6967 static void
6968 cp_parser_block_declaration (cp_parser *parser,
6969 bool statement_p)
6971 cp_token *token1;
6972 int saved_pedantic;
6974 /* Check for the `__extension__' keyword. */
6975 if (cp_parser_extension_opt (parser, &saved_pedantic))
6977 /* Parse the qualified declaration. */
6978 cp_parser_block_declaration (parser, statement_p);
6979 /* Restore the PEDANTIC flag. */
6980 pedantic = saved_pedantic;
6982 return;
6985 /* Peek at the next token to figure out which kind of declaration is
6986 present. */
6987 token1 = cp_lexer_peek_token (parser->lexer);
6989 /* If the next keyword is `asm', we have an asm-definition. */
6990 if (token1->keyword == RID_ASM)
6992 if (statement_p)
6993 cp_parser_commit_to_tentative_parse (parser);
6994 cp_parser_asm_definition (parser);
6996 /* If the next keyword is `namespace', we have a
6997 namespace-alias-definition. */
6998 else if (token1->keyword == RID_NAMESPACE)
6999 cp_parser_namespace_alias_definition (parser);
7000 /* If the next keyword is `using', we have either a
7001 using-declaration or a using-directive. */
7002 else if (token1->keyword == RID_USING)
7004 cp_token *token2;
7006 if (statement_p)
7007 cp_parser_commit_to_tentative_parse (parser);
7008 /* If the token after `using' is `namespace', then we have a
7009 using-directive. */
7010 token2 = cp_lexer_peek_nth_token (parser->lexer, 2);
7011 if (token2->keyword == RID_NAMESPACE)
7012 cp_parser_using_directive (parser);
7013 /* Otherwise, it's a using-declaration. */
7014 else
7015 cp_parser_using_declaration (parser);
7017 /* If the next keyword is `__label__' we have a label declaration. */
7018 else if (token1->keyword == RID_LABEL)
7020 if (statement_p)
7021 cp_parser_commit_to_tentative_parse (parser);
7022 cp_parser_label_declaration (parser);
7024 /* Anything else must be a simple-declaration. */
7025 else
7026 cp_parser_simple_declaration (parser, !statement_p);
7029 /* Parse a simple-declaration.
7031 simple-declaration:
7032 decl-specifier-seq [opt] init-declarator-list [opt] ;
7034 init-declarator-list:
7035 init-declarator
7036 init-declarator-list , init-declarator
7038 If FUNCTION_DEFINITION_ALLOWED_P is TRUE, then we also recognize a
7039 function-definition as a simple-declaration. */
7041 static void
7042 cp_parser_simple_declaration (cp_parser* parser,
7043 bool function_definition_allowed_p)
7045 cp_decl_specifier_seq decl_specifiers;
7046 int declares_class_or_enum;
7047 bool saw_declarator;
7049 /* Defer access checks until we know what is being declared; the
7050 checks for names appearing in the decl-specifier-seq should be
7051 done as if we were in the scope of the thing being declared. */
7052 push_deferring_access_checks (dk_deferred);
7054 /* Parse the decl-specifier-seq. We have to keep track of whether
7055 or not the decl-specifier-seq declares a named class or
7056 enumeration type, since that is the only case in which the
7057 init-declarator-list is allowed to be empty.
7059 [dcl.dcl]
7061 In a simple-declaration, the optional init-declarator-list can be
7062 omitted only when declaring a class or enumeration, that is when
7063 the decl-specifier-seq contains either a class-specifier, an
7064 elaborated-type-specifier, or an enum-specifier. */
7065 cp_parser_decl_specifier_seq (parser,
7066 CP_PARSER_FLAGS_OPTIONAL,
7067 &decl_specifiers,
7068 &declares_class_or_enum);
7069 /* We no longer need to defer access checks. */
7070 stop_deferring_access_checks ();
7072 /* In a block scope, a valid declaration must always have a
7073 decl-specifier-seq. By not trying to parse declarators, we can
7074 resolve the declaration/expression ambiguity more quickly. */
7075 if (!function_definition_allowed_p
7076 && !decl_specifiers.any_specifiers_p)
7078 cp_parser_error (parser, "expected declaration");
7079 goto done;
7082 /* If the next two tokens are both identifiers, the code is
7083 erroneous. The usual cause of this situation is code like:
7085 T t;
7087 where "T" should name a type -- but does not. */
7088 if (!decl_specifiers.type
7089 && cp_parser_parse_and_diagnose_invalid_type_name (parser))
7091 /* If parsing tentatively, we should commit; we really are
7092 looking at a declaration. */
7093 cp_parser_commit_to_tentative_parse (parser);
7094 /* Give up. */
7095 goto done;
7098 /* If we have seen at least one decl-specifier, and the next token
7099 is not a parenthesis, then we must be looking at a declaration.
7100 (After "int (" we might be looking at a functional cast.) */
7101 if (decl_specifiers.any_specifiers_p
7102 && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
7103 cp_parser_commit_to_tentative_parse (parser);
7105 /* Keep going until we hit the `;' at the end of the simple
7106 declaration. */
7107 saw_declarator = false;
7108 while (cp_lexer_next_token_is_not (parser->lexer,
7109 CPP_SEMICOLON))
7111 cp_token *token;
7112 bool function_definition_p;
7113 tree decl;
7115 saw_declarator = true;
7116 /* Parse the init-declarator. */
7117 decl = cp_parser_init_declarator (parser, &decl_specifiers,
7118 function_definition_allowed_p,
7119 /*member_p=*/false,
7120 declares_class_or_enum,
7121 &function_definition_p);
7122 /* If an error occurred while parsing tentatively, exit quickly.
7123 (That usually happens when in the body of a function; each
7124 statement is treated as a declaration-statement until proven
7125 otherwise.) */
7126 if (cp_parser_error_occurred (parser))
7127 goto done;
7128 /* Handle function definitions specially. */
7129 if (function_definition_p)
7131 /* If the next token is a `,', then we are probably
7132 processing something like:
7134 void f() {}, *p;
7136 which is erroneous. */
7137 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
7138 error ("mixing declarations and function-definitions is forbidden");
7139 /* Otherwise, we're done with the list of declarators. */
7140 else
7142 pop_deferring_access_checks ();
7143 return;
7146 /* The next token should be either a `,' or a `;'. */
7147 token = cp_lexer_peek_token (parser->lexer);
7148 /* If it's a `,', there are more declarators to come. */
7149 if (token->type == CPP_COMMA)
7150 cp_lexer_consume_token (parser->lexer);
7151 /* If it's a `;', we are done. */
7152 else if (token->type == CPP_SEMICOLON)
7153 break;
7154 /* Anything else is an error. */
7155 else
7157 /* If we have already issued an error message we don't need
7158 to issue another one. */
7159 if (decl != error_mark_node
7160 || cp_parser_uncommitted_to_tentative_parse_p (parser))
7161 cp_parser_error (parser, "expected %<,%> or %<;%>");
7162 /* Skip tokens until we reach the end of the statement. */
7163 cp_parser_skip_to_end_of_statement (parser);
7164 /* If the next token is now a `;', consume it. */
7165 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
7166 cp_lexer_consume_token (parser->lexer);
7167 goto done;
7169 /* After the first time around, a function-definition is not
7170 allowed -- even if it was OK at first. For example:
7172 int i, f() {}
7174 is not valid. */
7175 function_definition_allowed_p = false;
7178 /* Issue an error message if no declarators are present, and the
7179 decl-specifier-seq does not itself declare a class or
7180 enumeration. */
7181 if (!saw_declarator)
7183 if (cp_parser_declares_only_class_p (parser))
7184 shadow_tag (&decl_specifiers);
7185 /* Perform any deferred access checks. */
7186 perform_deferred_access_checks ();
7189 /* Consume the `;'. */
7190 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
7192 done:
7193 pop_deferring_access_checks ();
7196 /* Parse a decl-specifier-seq.
7198 decl-specifier-seq:
7199 decl-specifier-seq [opt] decl-specifier
7201 decl-specifier:
7202 storage-class-specifier
7203 type-specifier
7204 function-specifier
7205 friend
7206 typedef
7208 GNU Extension:
7210 decl-specifier:
7211 attributes
7213 Set *DECL_SPECS to a representation of the decl-specifier-seq.
7215 The parser flags FLAGS is used to control type-specifier parsing.
7217 *DECLARES_CLASS_OR_ENUM is set to the bitwise or of the following
7218 flags:
7220 1: one of the decl-specifiers is an elaborated-type-specifier
7221 (i.e., a type declaration)
7222 2: one of the decl-specifiers is an enum-specifier or a
7223 class-specifier (i.e., a type definition)
7227 static void
7228 cp_parser_decl_specifier_seq (cp_parser* parser,
7229 cp_parser_flags flags,
7230 cp_decl_specifier_seq *decl_specs,
7231 int* declares_class_or_enum)
7233 bool constructor_possible_p = !parser->in_declarator_p;
7235 /* Clear DECL_SPECS. */
7236 clear_decl_specs (decl_specs);
7238 /* Assume no class or enumeration type is declared. */
7239 *declares_class_or_enum = 0;
7241 /* Keep reading specifiers until there are no more to read. */
7242 while (true)
7244 bool constructor_p;
7245 bool found_decl_spec;
7246 cp_token *token;
7248 /* Peek at the next token. */
7249 token = cp_lexer_peek_token (parser->lexer);
7250 /* Handle attributes. */
7251 if (token->keyword == RID_ATTRIBUTE)
7253 /* Parse the attributes. */
7254 decl_specs->attributes
7255 = chainon (decl_specs->attributes,
7256 cp_parser_attributes_opt (parser));
7257 continue;
7259 /* Assume we will find a decl-specifier keyword. */
7260 found_decl_spec = true;
7261 /* If the next token is an appropriate keyword, we can simply
7262 add it to the list. */
7263 switch (token->keyword)
7265 /* decl-specifier:
7266 friend */
7267 case RID_FRIEND:
7268 if (decl_specs->specs[(int) ds_friend]++)
7269 error ("duplicate %<friend%>");
7270 /* Consume the token. */
7271 cp_lexer_consume_token (parser->lexer);
7272 break;
7274 /* function-specifier:
7275 inline
7276 virtual
7277 explicit */
7278 case RID_INLINE:
7279 case RID_VIRTUAL:
7280 case RID_EXPLICIT:
7281 cp_parser_function_specifier_opt (parser, decl_specs);
7282 break;
7284 /* decl-specifier:
7285 typedef */
7286 case RID_TYPEDEF:
7287 ++decl_specs->specs[(int) ds_typedef];
7288 /* Consume the token. */
7289 cp_lexer_consume_token (parser->lexer);
7290 /* A constructor declarator cannot appear in a typedef. */
7291 constructor_possible_p = false;
7292 /* The "typedef" keyword can only occur in a declaration; we
7293 may as well commit at this point. */
7294 cp_parser_commit_to_tentative_parse (parser);
7295 break;
7297 /* storage-class-specifier:
7298 auto
7299 register
7300 static
7301 extern
7302 mutable
7304 GNU Extension:
7305 thread */
7306 case RID_AUTO:
7307 /* Consume the token. */
7308 cp_lexer_consume_token (parser->lexer);
7309 cp_parser_set_storage_class (decl_specs, sc_auto);
7310 break;
7311 case RID_REGISTER:
7312 /* Consume the token. */
7313 cp_lexer_consume_token (parser->lexer);
7314 cp_parser_set_storage_class (decl_specs, sc_register);
7315 break;
7316 case RID_STATIC:
7317 /* Consume the token. */
7318 cp_lexer_consume_token (parser->lexer);
7319 if (decl_specs->specs[(int) ds_thread])
7321 error ("%<__thread%> before %<static%>");
7322 decl_specs->specs[(int) ds_thread] = 0;
7324 cp_parser_set_storage_class (decl_specs, sc_static);
7325 break;
7326 case RID_EXTERN:
7327 /* Consume the token. */
7328 cp_lexer_consume_token (parser->lexer);
7329 if (decl_specs->specs[(int) ds_thread])
7331 error ("%<__thread%> before %<extern%>");
7332 decl_specs->specs[(int) ds_thread] = 0;
7334 cp_parser_set_storage_class (decl_specs, sc_extern);
7335 break;
7336 case RID_MUTABLE:
7337 /* Consume the token. */
7338 cp_lexer_consume_token (parser->lexer);
7339 cp_parser_set_storage_class (decl_specs, sc_mutable);
7340 break;
7341 case RID_THREAD:
7342 /* Consume the token. */
7343 cp_lexer_consume_token (parser->lexer);
7344 ++decl_specs->specs[(int) ds_thread];
7345 break;
7347 default:
7348 /* We did not yet find a decl-specifier yet. */
7349 found_decl_spec = false;
7350 break;
7353 /* Constructors are a special case. The `S' in `S()' is not a
7354 decl-specifier; it is the beginning of the declarator. */
7355 constructor_p
7356 = (!found_decl_spec
7357 && constructor_possible_p
7358 && (cp_parser_constructor_declarator_p
7359 (parser, decl_specs->specs[(int) ds_friend] != 0)));
7361 /* If we don't have a DECL_SPEC yet, then we must be looking at
7362 a type-specifier. */
7363 if (!found_decl_spec && !constructor_p)
7365 int decl_spec_declares_class_or_enum;
7366 bool is_cv_qualifier;
7367 tree type_spec;
7369 type_spec
7370 = cp_parser_type_specifier (parser, flags,
7371 decl_specs,
7372 /*is_declaration=*/true,
7373 &decl_spec_declares_class_or_enum,
7374 &is_cv_qualifier);
7376 *declares_class_or_enum |= decl_spec_declares_class_or_enum;
7378 /* If this type-specifier referenced a user-defined type
7379 (a typedef, class-name, etc.), then we can't allow any
7380 more such type-specifiers henceforth.
7382 [dcl.spec]
7384 The longest sequence of decl-specifiers that could
7385 possibly be a type name is taken as the
7386 decl-specifier-seq of a declaration. The sequence shall
7387 be self-consistent as described below.
7389 [dcl.type]
7391 As a general rule, at most one type-specifier is allowed
7392 in the complete decl-specifier-seq of a declaration. The
7393 only exceptions are the following:
7395 -- const or volatile can be combined with any other
7396 type-specifier.
7398 -- signed or unsigned can be combined with char, long,
7399 short, or int.
7401 -- ..
7403 Example:
7405 typedef char* Pc;
7406 void g (const int Pc);
7408 Here, Pc is *not* part of the decl-specifier seq; it's
7409 the declarator. Therefore, once we see a type-specifier
7410 (other than a cv-qualifier), we forbid any additional
7411 user-defined types. We *do* still allow things like `int
7412 int' to be considered a decl-specifier-seq, and issue the
7413 error message later. */
7414 if (type_spec && !is_cv_qualifier)
7415 flags |= CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES;
7416 /* A constructor declarator cannot follow a type-specifier. */
7417 if (type_spec)
7419 constructor_possible_p = false;
7420 found_decl_spec = true;
7424 /* If we still do not have a DECL_SPEC, then there are no more
7425 decl-specifiers. */
7426 if (!found_decl_spec)
7427 break;
7429 decl_specs->any_specifiers_p = true;
7430 /* After we see one decl-specifier, further decl-specifiers are
7431 always optional. */
7432 flags |= CP_PARSER_FLAGS_OPTIONAL;
7435 /* Don't allow a friend specifier with a class definition. */
7436 if (decl_specs->specs[(int) ds_friend] != 0
7437 && (*declares_class_or_enum & 2))
7438 error ("class definition may not be declared a friend");
7441 /* Parse an (optional) storage-class-specifier.
7443 storage-class-specifier:
7444 auto
7445 register
7446 static
7447 extern
7448 mutable
7450 GNU Extension:
7452 storage-class-specifier:
7453 thread
7455 Returns an IDENTIFIER_NODE corresponding to the keyword used. */
7457 static tree
7458 cp_parser_storage_class_specifier_opt (cp_parser* parser)
7460 switch (cp_lexer_peek_token (parser->lexer)->keyword)
7462 case RID_AUTO:
7463 case RID_REGISTER:
7464 case RID_STATIC:
7465 case RID_EXTERN:
7466 case RID_MUTABLE:
7467 case RID_THREAD:
7468 /* Consume the token. */
7469 return cp_lexer_consume_token (parser->lexer)->value;
7471 default:
7472 return NULL_TREE;
7476 /* Parse an (optional) function-specifier.
7478 function-specifier:
7479 inline
7480 virtual
7481 explicit
7483 Returns an IDENTIFIER_NODE corresponding to the keyword used.
7484 Updates DECL_SPECS, if it is non-NULL. */
7486 static tree
7487 cp_parser_function_specifier_opt (cp_parser* parser,
7488 cp_decl_specifier_seq *decl_specs)
7490 switch (cp_lexer_peek_token (parser->lexer)->keyword)
7492 case RID_INLINE:
7493 if (decl_specs)
7494 ++decl_specs->specs[(int) ds_inline];
7495 break;
7497 case RID_VIRTUAL:
7498 if (decl_specs)
7499 ++decl_specs->specs[(int) ds_virtual];
7500 break;
7502 case RID_EXPLICIT:
7503 if (decl_specs)
7504 ++decl_specs->specs[(int) ds_explicit];
7505 break;
7507 default:
7508 return NULL_TREE;
7511 /* Consume the token. */
7512 return cp_lexer_consume_token (parser->lexer)->value;
7515 /* Parse a linkage-specification.
7517 linkage-specification:
7518 extern string-literal { declaration-seq [opt] }
7519 extern string-literal declaration */
7521 static void
7522 cp_parser_linkage_specification (cp_parser* parser)
7524 tree linkage;
7526 /* Look for the `extern' keyword. */
7527 cp_parser_require_keyword (parser, RID_EXTERN, "`extern'");
7529 /* Look for the string-literal. */
7530 linkage = cp_parser_string_literal (parser, false, false);
7532 /* Transform the literal into an identifier. If the literal is a
7533 wide-character string, or contains embedded NULs, then we can't
7534 handle it as the user wants. */
7535 if (strlen (TREE_STRING_POINTER (linkage))
7536 != (size_t) (TREE_STRING_LENGTH (linkage) - 1))
7538 cp_parser_error (parser, "invalid linkage-specification");
7539 /* Assume C++ linkage. */
7540 linkage = lang_name_cplusplus;
7542 else
7543 linkage = get_identifier (TREE_STRING_POINTER (linkage));
7545 /* We're now using the new linkage. */
7546 push_lang_context (linkage);
7548 /* If the next token is a `{', then we're using the first
7549 production. */
7550 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
7552 /* Consume the `{' token. */
7553 cp_lexer_consume_token (parser->lexer);
7554 /* Parse the declarations. */
7555 cp_parser_declaration_seq_opt (parser);
7556 /* Look for the closing `}'. */
7557 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
7559 /* Otherwise, there's just one declaration. */
7560 else
7562 bool saved_in_unbraced_linkage_specification_p;
7564 saved_in_unbraced_linkage_specification_p
7565 = parser->in_unbraced_linkage_specification_p;
7566 parser->in_unbraced_linkage_specification_p = true;
7567 have_extern_spec = true;
7568 cp_parser_declaration (parser);
7569 have_extern_spec = false;
7570 parser->in_unbraced_linkage_specification_p
7571 = saved_in_unbraced_linkage_specification_p;
7574 /* We're done with the linkage-specification. */
7575 pop_lang_context ();
7578 /* Special member functions [gram.special] */
7580 /* Parse a conversion-function-id.
7582 conversion-function-id:
7583 operator conversion-type-id
7585 Returns an IDENTIFIER_NODE representing the operator. */
7587 static tree
7588 cp_parser_conversion_function_id (cp_parser* parser)
7590 tree type;
7591 tree saved_scope;
7592 tree saved_qualifying_scope;
7593 tree saved_object_scope;
7594 tree pushed_scope = NULL_TREE;
7596 /* Look for the `operator' token. */
7597 if (!cp_parser_require_keyword (parser, RID_OPERATOR, "`operator'"))
7598 return error_mark_node;
7599 /* When we parse the conversion-type-id, the current scope will be
7600 reset. However, we need that information in able to look up the
7601 conversion function later, so we save it here. */
7602 saved_scope = parser->scope;
7603 saved_qualifying_scope = parser->qualifying_scope;
7604 saved_object_scope = parser->object_scope;
7605 /* We must enter the scope of the class so that the names of
7606 entities declared within the class are available in the
7607 conversion-type-id. For example, consider:
7609 struct S {
7610 typedef int I;
7611 operator I();
7614 S::operator I() { ... }
7616 In order to see that `I' is a type-name in the definition, we
7617 must be in the scope of `S'. */
7618 if (saved_scope)
7619 pushed_scope = push_scope (saved_scope);
7620 /* Parse the conversion-type-id. */
7621 type = cp_parser_conversion_type_id (parser);
7622 /* Leave the scope of the class, if any. */
7623 if (pushed_scope)
7624 pop_scope (pushed_scope);
7625 /* Restore the saved scope. */
7626 parser->scope = saved_scope;
7627 parser->qualifying_scope = saved_qualifying_scope;
7628 parser->object_scope = saved_object_scope;
7629 /* If the TYPE is invalid, indicate failure. */
7630 if (type == error_mark_node)
7631 return error_mark_node;
7632 return mangle_conv_op_name_for_type (type);
7635 /* Parse a conversion-type-id:
7637 conversion-type-id:
7638 type-specifier-seq conversion-declarator [opt]
7640 Returns the TYPE specified. */
7642 static tree
7643 cp_parser_conversion_type_id (cp_parser* parser)
7645 tree attributes;
7646 cp_decl_specifier_seq type_specifiers;
7647 cp_declarator *declarator;
7648 tree type_specified;
7650 /* Parse the attributes. */
7651 attributes = cp_parser_attributes_opt (parser);
7652 /* Parse the type-specifiers. */
7653 cp_parser_type_specifier_seq (parser, /*is_condition=*/false,
7654 &type_specifiers);
7655 /* If that didn't work, stop. */
7656 if (type_specifiers.type == error_mark_node)
7657 return error_mark_node;
7658 /* Parse the conversion-declarator. */
7659 declarator = cp_parser_conversion_declarator_opt (parser);
7661 type_specified = grokdeclarator (declarator, &type_specifiers, TYPENAME,
7662 /*initialized=*/0, &attributes);
7663 if (attributes)
7664 cplus_decl_attributes (&type_specified, attributes, /*flags=*/0);
7665 return type_specified;
7668 /* Parse an (optional) conversion-declarator.
7670 conversion-declarator:
7671 ptr-operator conversion-declarator [opt]
7675 static cp_declarator *
7676 cp_parser_conversion_declarator_opt (cp_parser* parser)
7678 enum tree_code code;
7679 tree class_type;
7680 cp_cv_quals cv_quals;
7682 /* We don't know if there's a ptr-operator next, or not. */
7683 cp_parser_parse_tentatively (parser);
7684 /* Try the ptr-operator. */
7685 code = cp_parser_ptr_operator (parser, &class_type, &cv_quals);
7686 /* If it worked, look for more conversion-declarators. */
7687 if (cp_parser_parse_definitely (parser))
7689 cp_declarator *declarator;
7691 /* Parse another optional declarator. */
7692 declarator = cp_parser_conversion_declarator_opt (parser);
7694 /* Create the representation of the declarator. */
7695 if (class_type)
7696 declarator = make_ptrmem_declarator (cv_quals, class_type,
7697 declarator);
7698 else if (code == INDIRECT_REF)
7699 declarator = make_pointer_declarator (cv_quals, declarator);
7700 else
7701 declarator = make_reference_declarator (cv_quals, declarator);
7703 return declarator;
7706 return NULL;
7709 /* Parse an (optional) ctor-initializer.
7711 ctor-initializer:
7712 : mem-initializer-list
7714 Returns TRUE iff the ctor-initializer was actually present. */
7716 static bool
7717 cp_parser_ctor_initializer_opt (cp_parser* parser)
7719 /* If the next token is not a `:', then there is no
7720 ctor-initializer. */
7721 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COLON))
7723 /* Do default initialization of any bases and members. */
7724 if (DECL_CONSTRUCTOR_P (current_function_decl))
7725 finish_mem_initializers (NULL_TREE);
7727 return false;
7730 /* Consume the `:' token. */
7731 cp_lexer_consume_token (parser->lexer);
7732 /* And the mem-initializer-list. */
7733 cp_parser_mem_initializer_list (parser);
7735 return true;
7738 /* Parse a mem-initializer-list.
7740 mem-initializer-list:
7741 mem-initializer
7742 mem-initializer , mem-initializer-list */
7744 static void
7745 cp_parser_mem_initializer_list (cp_parser* parser)
7747 tree mem_initializer_list = NULL_TREE;
7749 /* Let the semantic analysis code know that we are starting the
7750 mem-initializer-list. */
7751 if (!DECL_CONSTRUCTOR_P (current_function_decl))
7752 error ("only constructors take base initializers");
7754 /* Loop through the list. */
7755 while (true)
7757 tree mem_initializer;
7759 /* Parse the mem-initializer. */
7760 mem_initializer = cp_parser_mem_initializer (parser);
7761 /* Add it to the list, unless it was erroneous. */
7762 if (mem_initializer)
7764 TREE_CHAIN (mem_initializer) = mem_initializer_list;
7765 mem_initializer_list = mem_initializer;
7767 /* If the next token is not a `,', we're done. */
7768 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
7769 break;
7770 /* Consume the `,' token. */
7771 cp_lexer_consume_token (parser->lexer);
7774 /* Perform semantic analysis. */
7775 if (DECL_CONSTRUCTOR_P (current_function_decl))
7776 finish_mem_initializers (mem_initializer_list);
7779 /* Parse a mem-initializer.
7781 mem-initializer:
7782 mem-initializer-id ( expression-list [opt] )
7784 GNU extension:
7786 mem-initializer:
7787 ( expression-list [opt] )
7789 Returns a TREE_LIST. The TREE_PURPOSE is the TYPE (for a base
7790 class) or FIELD_DECL (for a non-static data member) to initialize;
7791 the TREE_VALUE is the expression-list. */
7793 static tree
7794 cp_parser_mem_initializer (cp_parser* parser)
7796 tree mem_initializer_id;
7797 tree expression_list;
7798 tree member;
7800 /* Find out what is being initialized. */
7801 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
7803 pedwarn ("anachronistic old-style base class initializer");
7804 mem_initializer_id = NULL_TREE;
7806 else
7807 mem_initializer_id = cp_parser_mem_initializer_id (parser);
7808 member = expand_member_init (mem_initializer_id);
7809 if (member && !DECL_P (member))
7810 in_base_initializer = 1;
7812 expression_list
7813 = cp_parser_parenthesized_expression_list (parser, false,
7814 /*cast_p=*/false,
7815 /*non_constant_p=*/NULL);
7816 if (!expression_list)
7817 expression_list = void_type_node;
7819 in_base_initializer = 0;
7821 return member ? build_tree_list (member, expression_list) : NULL_TREE;
7824 /* Parse a mem-initializer-id.
7826 mem-initializer-id:
7827 :: [opt] nested-name-specifier [opt] class-name
7828 identifier
7830 Returns a TYPE indicating the class to be initializer for the first
7831 production. Returns an IDENTIFIER_NODE indicating the data member
7832 to be initialized for the second production. */
7834 static tree
7835 cp_parser_mem_initializer_id (cp_parser* parser)
7837 bool global_scope_p;
7838 bool nested_name_specifier_p;
7839 bool template_p = false;
7840 tree id;
7842 /* `typename' is not allowed in this context ([temp.res]). */
7843 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TYPENAME))
7845 error ("keyword %<typename%> not allowed in this context (a qualified "
7846 "member initializer is implicitly a type)");
7847 cp_lexer_consume_token (parser->lexer);
7849 /* Look for the optional `::' operator. */
7850 global_scope_p
7851 = (cp_parser_global_scope_opt (parser,
7852 /*current_scope_valid_p=*/false)
7853 != NULL_TREE);
7854 /* Look for the optional nested-name-specifier. The simplest way to
7855 implement:
7857 [temp.res]
7859 The keyword `typename' is not permitted in a base-specifier or
7860 mem-initializer; in these contexts a qualified name that
7861 depends on a template-parameter is implicitly assumed to be a
7862 type name.
7864 is to assume that we have seen the `typename' keyword at this
7865 point. */
7866 nested_name_specifier_p
7867 = (cp_parser_nested_name_specifier_opt (parser,
7868 /*typename_keyword_p=*/true,
7869 /*check_dependency_p=*/true,
7870 /*type_p=*/true,
7871 /*is_declaration=*/true)
7872 != NULL_TREE);
7873 if (nested_name_specifier_p)
7874 template_p = cp_parser_optional_template_keyword (parser);
7875 /* If there is a `::' operator or a nested-name-specifier, then we
7876 are definitely looking for a class-name. */
7877 if (global_scope_p || nested_name_specifier_p)
7878 return cp_parser_class_name (parser,
7879 /*typename_keyword_p=*/true,
7880 /*template_keyword_p=*/template_p,
7881 none_type,
7882 /*check_dependency_p=*/true,
7883 /*class_head_p=*/false,
7884 /*is_declaration=*/true);
7885 /* Otherwise, we could also be looking for an ordinary identifier. */
7886 cp_parser_parse_tentatively (parser);
7887 /* Try a class-name. */
7888 id = cp_parser_class_name (parser,
7889 /*typename_keyword_p=*/true,
7890 /*template_keyword_p=*/false,
7891 none_type,
7892 /*check_dependency_p=*/true,
7893 /*class_head_p=*/false,
7894 /*is_declaration=*/true);
7895 /* If we found one, we're done. */
7896 if (cp_parser_parse_definitely (parser))
7897 return id;
7898 /* Otherwise, look for an ordinary identifier. */
7899 return cp_parser_identifier (parser);
7902 /* Overloading [gram.over] */
7904 /* Parse an operator-function-id.
7906 operator-function-id:
7907 operator operator
7909 Returns an IDENTIFIER_NODE for the operator which is a
7910 human-readable spelling of the identifier, e.g., `operator +'. */
7912 static tree
7913 cp_parser_operator_function_id (cp_parser* parser)
7915 /* Look for the `operator' keyword. */
7916 if (!cp_parser_require_keyword (parser, RID_OPERATOR, "`operator'"))
7917 return error_mark_node;
7918 /* And then the name of the operator itself. */
7919 return cp_parser_operator (parser);
7922 /* Parse an operator.
7924 operator:
7925 new delete new[] delete[] + - * / % ^ & | ~ ! = < >
7926 += -= *= /= %= ^= &= |= << >> >>= <<= == != <= >= &&
7927 || ++ -- , ->* -> () []
7929 GNU Extensions:
7931 operator:
7932 <? >? <?= >?=
7934 Returns an IDENTIFIER_NODE for the operator which is a
7935 human-readable spelling of the identifier, e.g., `operator +'. */
7937 static tree
7938 cp_parser_operator (cp_parser* parser)
7940 tree id = NULL_TREE;
7941 cp_token *token;
7943 /* Peek at the next token. */
7944 token = cp_lexer_peek_token (parser->lexer);
7945 /* Figure out which operator we have. */
7946 switch (token->type)
7948 case CPP_KEYWORD:
7950 enum tree_code op;
7952 /* The keyword should be either `new' or `delete'. */
7953 if (token->keyword == RID_NEW)
7954 op = NEW_EXPR;
7955 else if (token->keyword == RID_DELETE)
7956 op = DELETE_EXPR;
7957 else
7958 break;
7960 /* Consume the `new' or `delete' token. */
7961 cp_lexer_consume_token (parser->lexer);
7963 /* Peek at the next token. */
7964 token = cp_lexer_peek_token (parser->lexer);
7965 /* If it's a `[' token then this is the array variant of the
7966 operator. */
7967 if (token->type == CPP_OPEN_SQUARE)
7969 /* Consume the `[' token. */
7970 cp_lexer_consume_token (parser->lexer);
7971 /* Look for the `]' token. */
7972 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
7973 id = ansi_opname (op == NEW_EXPR
7974 ? VEC_NEW_EXPR : VEC_DELETE_EXPR);
7976 /* Otherwise, we have the non-array variant. */
7977 else
7978 id = ansi_opname (op);
7980 return id;
7983 case CPP_PLUS:
7984 id = ansi_opname (PLUS_EXPR);
7985 break;
7987 case CPP_MINUS:
7988 id = ansi_opname (MINUS_EXPR);
7989 break;
7991 case CPP_MULT:
7992 id = ansi_opname (MULT_EXPR);
7993 break;
7995 case CPP_DIV:
7996 id = ansi_opname (TRUNC_DIV_EXPR);
7997 break;
7999 case CPP_MOD:
8000 id = ansi_opname (TRUNC_MOD_EXPR);
8001 break;
8003 case CPP_XOR:
8004 id = ansi_opname (BIT_XOR_EXPR);
8005 break;
8007 case CPP_AND:
8008 id = ansi_opname (BIT_AND_EXPR);
8009 break;
8011 case CPP_OR:
8012 id = ansi_opname (BIT_IOR_EXPR);
8013 break;
8015 case CPP_COMPL:
8016 id = ansi_opname (BIT_NOT_EXPR);
8017 break;
8019 case CPP_NOT:
8020 id = ansi_opname (TRUTH_NOT_EXPR);
8021 break;
8023 case CPP_EQ:
8024 id = ansi_assopname (NOP_EXPR);
8025 break;
8027 case CPP_LESS:
8028 id = ansi_opname (LT_EXPR);
8029 break;
8031 case CPP_GREATER:
8032 id = ansi_opname (GT_EXPR);
8033 break;
8035 case CPP_PLUS_EQ:
8036 id = ansi_assopname (PLUS_EXPR);
8037 break;
8039 case CPP_MINUS_EQ:
8040 id = ansi_assopname (MINUS_EXPR);
8041 break;
8043 case CPP_MULT_EQ:
8044 id = ansi_assopname (MULT_EXPR);
8045 break;
8047 case CPP_DIV_EQ:
8048 id = ansi_assopname (TRUNC_DIV_EXPR);
8049 break;
8051 case CPP_MOD_EQ:
8052 id = ansi_assopname (TRUNC_MOD_EXPR);
8053 break;
8055 case CPP_XOR_EQ:
8056 id = ansi_assopname (BIT_XOR_EXPR);
8057 break;
8059 case CPP_AND_EQ:
8060 id = ansi_assopname (BIT_AND_EXPR);
8061 break;
8063 case CPP_OR_EQ:
8064 id = ansi_assopname (BIT_IOR_EXPR);
8065 break;
8067 case CPP_LSHIFT:
8068 id = ansi_opname (LSHIFT_EXPR);
8069 break;
8071 case CPP_RSHIFT:
8072 id = ansi_opname (RSHIFT_EXPR);
8073 break;
8075 case CPP_LSHIFT_EQ:
8076 id = ansi_assopname (LSHIFT_EXPR);
8077 break;
8079 case CPP_RSHIFT_EQ:
8080 id = ansi_assopname (RSHIFT_EXPR);
8081 break;
8083 case CPP_EQ_EQ:
8084 id = ansi_opname (EQ_EXPR);
8085 break;
8087 case CPP_NOT_EQ:
8088 id = ansi_opname (NE_EXPR);
8089 break;
8091 case CPP_LESS_EQ:
8092 id = ansi_opname (LE_EXPR);
8093 break;
8095 case CPP_GREATER_EQ:
8096 id = ansi_opname (GE_EXPR);
8097 break;
8099 case CPP_AND_AND:
8100 id = ansi_opname (TRUTH_ANDIF_EXPR);
8101 break;
8103 case CPP_OR_OR:
8104 id = ansi_opname (TRUTH_ORIF_EXPR);
8105 break;
8107 case CPP_PLUS_PLUS:
8108 id = ansi_opname (POSTINCREMENT_EXPR);
8109 break;
8111 case CPP_MINUS_MINUS:
8112 id = ansi_opname (PREDECREMENT_EXPR);
8113 break;
8115 case CPP_COMMA:
8116 id = ansi_opname (COMPOUND_EXPR);
8117 break;
8119 case CPP_DEREF_STAR:
8120 id = ansi_opname (MEMBER_REF);
8121 break;
8123 case CPP_DEREF:
8124 id = ansi_opname (COMPONENT_REF);
8125 break;
8127 case CPP_OPEN_PAREN:
8128 /* Consume the `('. */
8129 cp_lexer_consume_token (parser->lexer);
8130 /* Look for the matching `)'. */
8131 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
8132 return ansi_opname (CALL_EXPR);
8134 case CPP_OPEN_SQUARE:
8135 /* Consume the `['. */
8136 cp_lexer_consume_token (parser->lexer);
8137 /* Look for the matching `]'. */
8138 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
8139 return ansi_opname (ARRAY_REF);
8141 /* Extensions. */
8142 case CPP_MIN:
8143 id = ansi_opname (MIN_EXPR);
8144 cp_parser_warn_min_max ();
8145 break;
8147 case CPP_MAX:
8148 id = ansi_opname (MAX_EXPR);
8149 cp_parser_warn_min_max ();
8150 break;
8152 case CPP_MIN_EQ:
8153 id = ansi_assopname (MIN_EXPR);
8154 cp_parser_warn_min_max ();
8155 break;
8157 case CPP_MAX_EQ:
8158 id = ansi_assopname (MAX_EXPR);
8159 cp_parser_warn_min_max ();
8160 break;
8162 default:
8163 /* Anything else is an error. */
8164 break;
8167 /* If we have selected an identifier, we need to consume the
8168 operator token. */
8169 if (id)
8170 cp_lexer_consume_token (parser->lexer);
8171 /* Otherwise, no valid operator name was present. */
8172 else
8174 cp_parser_error (parser, "expected operator");
8175 id = error_mark_node;
8178 return id;
8181 /* Parse a template-declaration.
8183 template-declaration:
8184 export [opt] template < template-parameter-list > declaration
8186 If MEMBER_P is TRUE, this template-declaration occurs within a
8187 class-specifier.
8189 The grammar rule given by the standard isn't correct. What
8190 is really meant is:
8192 template-declaration:
8193 export [opt] template-parameter-list-seq
8194 decl-specifier-seq [opt] init-declarator [opt] ;
8195 export [opt] template-parameter-list-seq
8196 function-definition
8198 template-parameter-list-seq:
8199 template-parameter-list-seq [opt]
8200 template < template-parameter-list > */
8202 static void
8203 cp_parser_template_declaration (cp_parser* parser, bool member_p)
8205 /* Check for `export'. */
8206 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXPORT))
8208 /* Consume the `export' token. */
8209 cp_lexer_consume_token (parser->lexer);
8210 /* Warn that we do not support `export'. */
8211 warning (0, "keyword %<export%> not implemented, and will be ignored");
8214 cp_parser_template_declaration_after_export (parser, member_p);
8217 /* Parse a template-parameter-list.
8219 template-parameter-list:
8220 template-parameter
8221 template-parameter-list , template-parameter
8223 Returns a TREE_LIST. Each node represents a template parameter.
8224 The nodes are connected via their TREE_CHAINs. */
8226 static tree
8227 cp_parser_template_parameter_list (cp_parser* parser)
8229 tree parameter_list = NULL_TREE;
8231 while (true)
8233 tree parameter;
8234 cp_token *token;
8235 bool is_non_type;
8237 /* Parse the template-parameter. */
8238 parameter = cp_parser_template_parameter (parser, &is_non_type);
8239 /* Add it to the list. */
8240 if (parameter != error_mark_node)
8241 parameter_list = process_template_parm (parameter_list,
8242 parameter,
8243 is_non_type);
8244 /* Peek at the next token. */
8245 token = cp_lexer_peek_token (parser->lexer);
8246 /* If it's not a `,', we're done. */
8247 if (token->type != CPP_COMMA)
8248 break;
8249 /* Otherwise, consume the `,' token. */
8250 cp_lexer_consume_token (parser->lexer);
8253 return parameter_list;
8256 /* Parse a template-parameter.
8258 template-parameter:
8259 type-parameter
8260 parameter-declaration
8262 If all goes well, returns a TREE_LIST. The TREE_VALUE represents
8263 the parameter. The TREE_PURPOSE is the default value, if any.
8264 Returns ERROR_MARK_NODE on failure. *IS_NON_TYPE is set to true
8265 iff this parameter is a non-type parameter. */
8267 static tree
8268 cp_parser_template_parameter (cp_parser* parser, bool *is_non_type)
8270 cp_token *token;
8271 cp_parameter_declarator *parameter_declarator;
8272 tree parm;
8274 /* Assume it is a type parameter or a template parameter. */
8275 *is_non_type = false;
8276 /* Peek at the next token. */
8277 token = cp_lexer_peek_token (parser->lexer);
8278 /* If it is `class' or `template', we have a type-parameter. */
8279 if (token->keyword == RID_TEMPLATE)
8280 return cp_parser_type_parameter (parser);
8281 /* If it is `class' or `typename' we do not know yet whether it is a
8282 type parameter or a non-type parameter. Consider:
8284 template <typename T, typename T::X X> ...
8288 template <class C, class D*> ...
8290 Here, the first parameter is a type parameter, and the second is
8291 a non-type parameter. We can tell by looking at the token after
8292 the identifier -- if it is a `,', `=', or `>' then we have a type
8293 parameter. */
8294 if (token->keyword == RID_TYPENAME || token->keyword == RID_CLASS)
8296 /* Peek at the token after `class' or `typename'. */
8297 token = cp_lexer_peek_nth_token (parser->lexer, 2);
8298 /* If it's an identifier, skip it. */
8299 if (token->type == CPP_NAME)
8300 token = cp_lexer_peek_nth_token (parser->lexer, 3);
8301 /* Now, see if the token looks like the end of a template
8302 parameter. */
8303 if (token->type == CPP_COMMA
8304 || token->type == CPP_EQ
8305 || token->type == CPP_GREATER)
8306 return cp_parser_type_parameter (parser);
8309 /* Otherwise, it is a non-type parameter.
8311 [temp.param]
8313 When parsing a default template-argument for a non-type
8314 template-parameter, the first non-nested `>' is taken as the end
8315 of the template parameter-list rather than a greater-than
8316 operator. */
8317 *is_non_type = true;
8318 parameter_declarator
8319 = cp_parser_parameter_declaration (parser, /*template_parm_p=*/true,
8320 /*parenthesized_p=*/NULL);
8321 parm = grokdeclarator (parameter_declarator->declarator,
8322 &parameter_declarator->decl_specifiers,
8323 PARM, /*initialized=*/0,
8324 /*attrlist=*/NULL);
8325 if (parm == error_mark_node)
8326 return error_mark_node;
8327 return build_tree_list (parameter_declarator->default_argument, parm);
8330 /* Parse a type-parameter.
8332 type-parameter:
8333 class identifier [opt]
8334 class identifier [opt] = type-id
8335 typename identifier [opt]
8336 typename identifier [opt] = type-id
8337 template < template-parameter-list > class identifier [opt]
8338 template < template-parameter-list > class identifier [opt]
8339 = id-expression
8341 Returns a TREE_LIST. The TREE_VALUE is itself a TREE_LIST. The
8342 TREE_PURPOSE is the default-argument, if any. The TREE_VALUE is
8343 the declaration of the parameter. */
8345 static tree
8346 cp_parser_type_parameter (cp_parser* parser)
8348 cp_token *token;
8349 tree parameter;
8351 /* Look for a keyword to tell us what kind of parameter this is. */
8352 token = cp_parser_require (parser, CPP_KEYWORD,
8353 "`class', `typename', or `template'");
8354 if (!token)
8355 return error_mark_node;
8357 switch (token->keyword)
8359 case RID_CLASS:
8360 case RID_TYPENAME:
8362 tree identifier;
8363 tree default_argument;
8365 /* If the next token is an identifier, then it names the
8366 parameter. */
8367 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
8368 identifier = cp_parser_identifier (parser);
8369 else
8370 identifier = NULL_TREE;
8372 /* Create the parameter. */
8373 parameter = finish_template_type_parm (class_type_node, identifier);
8375 /* If the next token is an `=', we have a default argument. */
8376 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
8378 /* Consume the `=' token. */
8379 cp_lexer_consume_token (parser->lexer);
8380 /* Parse the default-argument. */
8381 default_argument = cp_parser_type_id (parser);
8383 else
8384 default_argument = NULL_TREE;
8386 /* Create the combined representation of the parameter and the
8387 default argument. */
8388 parameter = build_tree_list (default_argument, parameter);
8390 break;
8392 case RID_TEMPLATE:
8394 tree parameter_list;
8395 tree identifier;
8396 tree default_argument;
8398 /* Look for the `<'. */
8399 cp_parser_require (parser, CPP_LESS, "`<'");
8400 /* Parse the template-parameter-list. */
8401 begin_template_parm_list ();
8402 parameter_list
8403 = cp_parser_template_parameter_list (parser);
8404 parameter_list = end_template_parm_list (parameter_list);
8405 /* Look for the `>'. */
8406 cp_parser_require (parser, CPP_GREATER, "`>'");
8407 /* Look for the `class' keyword. */
8408 cp_parser_require_keyword (parser, RID_CLASS, "`class'");
8409 /* If the next token is an `=', then there is a
8410 default-argument. If the next token is a `>', we are at
8411 the end of the parameter-list. If the next token is a `,',
8412 then we are at the end of this parameter. */
8413 if (cp_lexer_next_token_is_not (parser->lexer, CPP_EQ)
8414 && cp_lexer_next_token_is_not (parser->lexer, CPP_GREATER)
8415 && cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
8417 identifier = cp_parser_identifier (parser);
8418 /* Treat invalid names as if the parameter were nameless. */
8419 if (identifier == error_mark_node)
8420 identifier = NULL_TREE;
8422 else
8423 identifier = NULL_TREE;
8425 /* Create the template parameter. */
8426 parameter = finish_template_template_parm (class_type_node,
8427 identifier);
8429 /* If the next token is an `=', then there is a
8430 default-argument. */
8431 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
8433 bool is_template;
8435 /* Consume the `='. */
8436 cp_lexer_consume_token (parser->lexer);
8437 /* Parse the id-expression. */
8438 default_argument
8439 = cp_parser_id_expression (parser,
8440 /*template_keyword_p=*/false,
8441 /*check_dependency_p=*/true,
8442 /*template_p=*/&is_template,
8443 /*declarator_p=*/false);
8444 if (TREE_CODE (default_argument) == TYPE_DECL)
8445 /* If the id-expression was a template-id that refers to
8446 a template-class, we already have the declaration here,
8447 so no further lookup is needed. */
8449 else
8450 /* Look up the name. */
8451 default_argument
8452 = cp_parser_lookup_name (parser, default_argument,
8453 none_type,
8454 /*is_template=*/is_template,
8455 /*is_namespace=*/false,
8456 /*check_dependency=*/true,
8457 /*ambiguous_p=*/NULL);
8458 /* See if the default argument is valid. */
8459 default_argument
8460 = check_template_template_default_arg (default_argument);
8462 else
8463 default_argument = NULL_TREE;
8465 /* Create the combined representation of the parameter and the
8466 default argument. */
8467 parameter = build_tree_list (default_argument, parameter);
8469 break;
8471 default:
8472 gcc_unreachable ();
8473 break;
8476 return parameter;
8479 /* Parse a template-id.
8481 template-id:
8482 template-name < template-argument-list [opt] >
8484 If TEMPLATE_KEYWORD_P is TRUE, then we have just seen the
8485 `template' keyword. In this case, a TEMPLATE_ID_EXPR will be
8486 returned. Otherwise, if the template-name names a function, or set
8487 of functions, returns a TEMPLATE_ID_EXPR. If the template-name
8488 names a class, returns a TYPE_DECL for the specialization.
8490 If CHECK_DEPENDENCY_P is FALSE, names are looked up in
8491 uninstantiated templates. */
8493 static tree
8494 cp_parser_template_id (cp_parser *parser,
8495 bool template_keyword_p,
8496 bool check_dependency_p,
8497 bool is_declaration)
8499 tree template;
8500 tree arguments;
8501 tree template_id;
8502 cp_token_position start_of_id = 0;
8503 tree access_check = NULL_TREE;
8504 cp_token *next_token, *next_token_2;
8505 bool is_identifier;
8507 /* If the next token corresponds to a template-id, there is no need
8508 to reparse it. */
8509 next_token = cp_lexer_peek_token (parser->lexer);
8510 if (next_token->type == CPP_TEMPLATE_ID)
8512 tree value;
8513 tree check;
8515 /* Get the stored value. */
8516 value = cp_lexer_consume_token (parser->lexer)->value;
8517 /* Perform any access checks that were deferred. */
8518 for (check = TREE_PURPOSE (value); check; check = TREE_CHAIN (check))
8519 perform_or_defer_access_check (TREE_PURPOSE (check),
8520 TREE_VALUE (check));
8521 /* Return the stored value. */
8522 return TREE_VALUE (value);
8525 /* Avoid performing name lookup if there is no possibility of
8526 finding a template-id. */
8527 if ((next_token->type != CPP_NAME && next_token->keyword != RID_OPERATOR)
8528 || (next_token->type == CPP_NAME
8529 && !cp_parser_nth_token_starts_template_argument_list_p
8530 (parser, 2)))
8532 cp_parser_error (parser, "expected template-id");
8533 return error_mark_node;
8536 /* Remember where the template-id starts. */
8537 if (cp_parser_uncommitted_to_tentative_parse_p (parser))
8538 start_of_id = cp_lexer_token_position (parser->lexer, false);
8540 push_deferring_access_checks (dk_deferred);
8542 /* Parse the template-name. */
8543 is_identifier = false;
8544 template = cp_parser_template_name (parser, template_keyword_p,
8545 check_dependency_p,
8546 is_declaration,
8547 &is_identifier);
8548 if (template == error_mark_node || is_identifier)
8550 pop_deferring_access_checks ();
8551 return template;
8554 /* If we find the sequence `[:' after a template-name, it's probably
8555 a digraph-typo for `< ::'. Substitute the tokens and check if we can
8556 parse correctly the argument list. */
8557 next_token = cp_lexer_peek_token (parser->lexer);
8558 next_token_2 = cp_lexer_peek_nth_token (parser->lexer, 2);
8559 if (next_token->type == CPP_OPEN_SQUARE
8560 && next_token->flags & DIGRAPH
8561 && next_token_2->type == CPP_COLON
8562 && !(next_token_2->flags & PREV_WHITE))
8564 cp_parser_parse_tentatively (parser);
8565 /* Change `:' into `::'. */
8566 next_token_2->type = CPP_SCOPE;
8567 /* Consume the first token (CPP_OPEN_SQUARE - which we pretend it is
8568 CPP_LESS. */
8569 cp_lexer_consume_token (parser->lexer);
8570 /* Parse the arguments. */
8571 arguments = cp_parser_enclosed_template_argument_list (parser);
8572 if (!cp_parser_parse_definitely (parser))
8574 /* If we couldn't parse an argument list, then we revert our changes
8575 and return simply an error. Maybe this is not a template-id
8576 after all. */
8577 next_token_2->type = CPP_COLON;
8578 cp_parser_error (parser, "expected %<<%>");
8579 pop_deferring_access_checks ();
8580 return error_mark_node;
8582 /* Otherwise, emit an error about the invalid digraph, but continue
8583 parsing because we got our argument list. */
8584 pedwarn ("%<<::%> cannot begin a template-argument list");
8585 inform ("%<<:%> is an alternate spelling for %<[%>. Insert whitespace "
8586 "between %<<%> and %<::%>");
8587 if (!flag_permissive)
8589 static bool hint;
8590 if (!hint)
8592 inform ("(if you use -fpermissive G++ will accept your code)");
8593 hint = true;
8597 else
8599 /* Look for the `<' that starts the template-argument-list. */
8600 if (!cp_parser_require (parser, CPP_LESS, "`<'"))
8602 pop_deferring_access_checks ();
8603 return error_mark_node;
8605 /* Parse the arguments. */
8606 arguments = cp_parser_enclosed_template_argument_list (parser);
8609 /* Build a representation of the specialization. */
8610 if (TREE_CODE (template) == IDENTIFIER_NODE)
8611 template_id = build_min_nt (TEMPLATE_ID_EXPR, template, arguments);
8612 else if (DECL_CLASS_TEMPLATE_P (template)
8613 || DECL_TEMPLATE_TEMPLATE_PARM_P (template))
8614 template_id
8615 = finish_template_type (template, arguments,
8616 cp_lexer_next_token_is (parser->lexer,
8617 CPP_SCOPE));
8618 else
8620 /* If it's not a class-template or a template-template, it should be
8621 a function-template. */
8622 gcc_assert ((DECL_FUNCTION_TEMPLATE_P (template)
8623 || TREE_CODE (template) == OVERLOAD
8624 || BASELINK_P (template)));
8626 template_id = lookup_template_function (template, arguments);
8629 /* Retrieve any deferred checks. Do not pop this access checks yet
8630 so the memory will not be reclaimed during token replacing below. */
8631 access_check = get_deferred_access_checks ();
8633 /* If parsing tentatively, replace the sequence of tokens that makes
8634 up the template-id with a CPP_TEMPLATE_ID token. That way,
8635 should we re-parse the token stream, we will not have to repeat
8636 the effort required to do the parse, nor will we issue duplicate
8637 error messages about problems during instantiation of the
8638 template. */
8639 if (start_of_id)
8641 cp_token *token = cp_lexer_token_at (parser->lexer, start_of_id);
8643 /* Reset the contents of the START_OF_ID token. */
8644 token->type = CPP_TEMPLATE_ID;
8645 token->value = build_tree_list (access_check, template_id);
8646 token->keyword = RID_MAX;
8648 /* Purge all subsequent tokens. */
8649 cp_lexer_purge_tokens_after (parser->lexer, start_of_id);
8651 /* ??? Can we actually assume that, if template_id ==
8652 error_mark_node, we will have issued a diagnostic to the
8653 user, as opposed to simply marking the tentative parse as
8654 failed? */
8655 if (cp_parser_error_occurred (parser) && template_id != error_mark_node)
8656 error ("parse error in template argument list");
8659 pop_deferring_access_checks ();
8660 return template_id;
8663 /* Parse a template-name.
8665 template-name:
8666 identifier
8668 The standard should actually say:
8670 template-name:
8671 identifier
8672 operator-function-id
8674 A defect report has been filed about this issue.
8676 A conversion-function-id cannot be a template name because they cannot
8677 be part of a template-id. In fact, looking at this code:
8679 a.operator K<int>()
8681 the conversion-function-id is "operator K<int>", and K<int> is a type-id.
8682 It is impossible to call a templated conversion-function-id with an
8683 explicit argument list, since the only allowed template parameter is
8684 the type to which it is converting.
8686 If TEMPLATE_KEYWORD_P is true, then we have just seen the
8687 `template' keyword, in a construction like:
8689 T::template f<3>()
8691 In that case `f' is taken to be a template-name, even though there
8692 is no way of knowing for sure.
8694 Returns the TEMPLATE_DECL for the template, or an OVERLOAD if the
8695 name refers to a set of overloaded functions, at least one of which
8696 is a template, or an IDENTIFIER_NODE with the name of the template,
8697 if TEMPLATE_KEYWORD_P is true. If CHECK_DEPENDENCY_P is FALSE,
8698 names are looked up inside uninstantiated templates. */
8700 static tree
8701 cp_parser_template_name (cp_parser* parser,
8702 bool template_keyword_p,
8703 bool check_dependency_p,
8704 bool is_declaration,
8705 bool *is_identifier)
8707 tree identifier;
8708 tree decl;
8709 tree fns;
8711 /* If the next token is `operator', then we have either an
8712 operator-function-id or a conversion-function-id. */
8713 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_OPERATOR))
8715 /* We don't know whether we're looking at an
8716 operator-function-id or a conversion-function-id. */
8717 cp_parser_parse_tentatively (parser);
8718 /* Try an operator-function-id. */
8719 identifier = cp_parser_operator_function_id (parser);
8720 /* If that didn't work, try a conversion-function-id. */
8721 if (!cp_parser_parse_definitely (parser))
8723 cp_parser_error (parser, "expected template-name");
8724 return error_mark_node;
8727 /* Look for the identifier. */
8728 else
8729 identifier = cp_parser_identifier (parser);
8731 /* If we didn't find an identifier, we don't have a template-id. */
8732 if (identifier == error_mark_node)
8733 return error_mark_node;
8735 /* If the name immediately followed the `template' keyword, then it
8736 is a template-name. However, if the next token is not `<', then
8737 we do not treat it as a template-name, since it is not being used
8738 as part of a template-id. This enables us to handle constructs
8739 like:
8741 template <typename T> struct S { S(); };
8742 template <typename T> S<T>::S();
8744 correctly. We would treat `S' as a template -- if it were `S<T>'
8745 -- but we do not if there is no `<'. */
8747 if (processing_template_decl
8748 && cp_parser_nth_token_starts_template_argument_list_p (parser, 1))
8750 /* In a declaration, in a dependent context, we pretend that the
8751 "template" keyword was present in order to improve error
8752 recovery. For example, given:
8754 template <typename T> void f(T::X<int>);
8756 we want to treat "X<int>" as a template-id. */
8757 if (is_declaration
8758 && !template_keyword_p
8759 && parser->scope && TYPE_P (parser->scope)
8760 && check_dependency_p
8761 && dependent_type_p (parser->scope)
8762 /* Do not do this for dtors (or ctors), since they never
8763 need the template keyword before their name. */
8764 && !constructor_name_p (identifier, parser->scope))
8766 cp_token_position start = 0;
8768 /* Explain what went wrong. */
8769 error ("non-template %qD used as template", identifier);
8770 inform ("use %<%T::template %D%> to indicate that it is a template",
8771 parser->scope, identifier);
8772 /* If parsing tentatively, find the location of the "<" token. */
8773 if (cp_parser_simulate_error (parser))
8774 start = cp_lexer_token_position (parser->lexer, true);
8775 /* Parse the template arguments so that we can issue error
8776 messages about them. */
8777 cp_lexer_consume_token (parser->lexer);
8778 cp_parser_enclosed_template_argument_list (parser);
8779 /* Skip tokens until we find a good place from which to
8780 continue parsing. */
8781 cp_parser_skip_to_closing_parenthesis (parser,
8782 /*recovering=*/true,
8783 /*or_comma=*/true,
8784 /*consume_paren=*/false);
8785 /* If parsing tentatively, permanently remove the
8786 template argument list. That will prevent duplicate
8787 error messages from being issued about the missing
8788 "template" keyword. */
8789 if (start)
8790 cp_lexer_purge_tokens_after (parser->lexer, start);
8791 if (is_identifier)
8792 *is_identifier = true;
8793 return identifier;
8796 /* If the "template" keyword is present, then there is generally
8797 no point in doing name-lookup, so we just return IDENTIFIER.
8798 But, if the qualifying scope is non-dependent then we can
8799 (and must) do name-lookup normally. */
8800 if (template_keyword_p
8801 && (!parser->scope
8802 || (TYPE_P (parser->scope)
8803 && dependent_type_p (parser->scope))))
8804 return identifier;
8807 /* Look up the name. */
8808 decl = cp_parser_lookup_name (parser, identifier,
8809 none_type,
8810 /*is_template=*/false,
8811 /*is_namespace=*/false,
8812 check_dependency_p,
8813 /*ambiguous_p=*/NULL);
8814 decl = maybe_get_template_decl_from_type_decl (decl);
8816 /* If DECL is a template, then the name was a template-name. */
8817 if (TREE_CODE (decl) == TEMPLATE_DECL)
8819 else
8821 tree fn = NULL_TREE;
8823 /* The standard does not explicitly indicate whether a name that
8824 names a set of overloaded declarations, some of which are
8825 templates, is a template-name. However, such a name should
8826 be a template-name; otherwise, there is no way to form a
8827 template-id for the overloaded templates. */
8828 fns = BASELINK_P (decl) ? BASELINK_FUNCTIONS (decl) : decl;
8829 if (TREE_CODE (fns) == OVERLOAD)
8830 for (fn = fns; fn; fn = OVL_NEXT (fn))
8831 if (TREE_CODE (OVL_CURRENT (fn)) == TEMPLATE_DECL)
8832 break;
8834 if (!fn)
8836 /* The name does not name a template. */
8837 cp_parser_error (parser, "expected template-name");
8838 return error_mark_node;
8842 /* If DECL is dependent, and refers to a function, then just return
8843 its name; we will look it up again during template instantiation. */
8844 if (DECL_FUNCTION_TEMPLATE_P (decl) || !DECL_P (decl))
8846 tree scope = CP_DECL_CONTEXT (get_first_fn (decl));
8847 if (TYPE_P (scope) && dependent_type_p (scope))
8848 return identifier;
8851 return decl;
8854 /* Parse a template-argument-list.
8856 template-argument-list:
8857 template-argument
8858 template-argument-list , template-argument
8860 Returns a TREE_VEC containing the arguments. */
8862 static tree
8863 cp_parser_template_argument_list (cp_parser* parser)
8865 tree fixed_args[10];
8866 unsigned n_args = 0;
8867 unsigned alloced = 10;
8868 tree *arg_ary = fixed_args;
8869 tree vec;
8870 bool saved_in_template_argument_list_p;
8872 saved_in_template_argument_list_p = parser->in_template_argument_list_p;
8873 parser->in_template_argument_list_p = true;
8876 tree argument;
8878 if (n_args)
8879 /* Consume the comma. */
8880 cp_lexer_consume_token (parser->lexer);
8882 /* Parse the template-argument. */
8883 argument = cp_parser_template_argument (parser);
8884 if (n_args == alloced)
8886 alloced *= 2;
8888 if (arg_ary == fixed_args)
8890 arg_ary = xmalloc (sizeof (tree) * alloced);
8891 memcpy (arg_ary, fixed_args, sizeof (tree) * n_args);
8893 else
8894 arg_ary = xrealloc (arg_ary, sizeof (tree) * alloced);
8896 arg_ary[n_args++] = argument;
8898 while (cp_lexer_next_token_is (parser->lexer, CPP_COMMA));
8900 vec = make_tree_vec (n_args);
8902 while (n_args--)
8903 TREE_VEC_ELT (vec, n_args) = arg_ary[n_args];
8905 if (arg_ary != fixed_args)
8906 free (arg_ary);
8907 parser->in_template_argument_list_p = saved_in_template_argument_list_p;
8908 return vec;
8911 /* Parse a template-argument.
8913 template-argument:
8914 assignment-expression
8915 type-id
8916 id-expression
8918 The representation is that of an assignment-expression, type-id, or
8919 id-expression -- except that the qualified id-expression is
8920 evaluated, so that the value returned is either a DECL or an
8921 OVERLOAD.
8923 Although the standard says "assignment-expression", it forbids
8924 throw-expressions or assignments in the template argument.
8925 Therefore, we use "conditional-expression" instead. */
8927 static tree
8928 cp_parser_template_argument (cp_parser* parser)
8930 tree argument;
8931 bool template_p;
8932 bool address_p;
8933 bool maybe_type_id = false;
8934 cp_token *token;
8935 cp_id_kind idk;
8936 tree qualifying_class;
8938 /* There's really no way to know what we're looking at, so we just
8939 try each alternative in order.
8941 [temp.arg]
8943 In a template-argument, an ambiguity between a type-id and an
8944 expression is resolved to a type-id, regardless of the form of
8945 the corresponding template-parameter.
8947 Therefore, we try a type-id first. */
8948 cp_parser_parse_tentatively (parser);
8949 argument = cp_parser_type_id (parser);
8950 /* If there was no error parsing the type-id but the next token is a '>>',
8951 we probably found a typo for '> >'. But there are type-id which are
8952 also valid expressions. For instance:
8954 struct X { int operator >> (int); };
8955 template <int V> struct Foo {};
8956 Foo<X () >> 5> r;
8958 Here 'X()' is a valid type-id of a function type, but the user just
8959 wanted to write the expression "X() >> 5". Thus, we remember that we
8960 found a valid type-id, but we still try to parse the argument as an
8961 expression to see what happens. */
8962 if (!cp_parser_error_occurred (parser)
8963 && cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT))
8965 maybe_type_id = true;
8966 cp_parser_abort_tentative_parse (parser);
8968 else
8970 /* If the next token isn't a `,' or a `>', then this argument wasn't
8971 really finished. This means that the argument is not a valid
8972 type-id. */
8973 if (!cp_parser_next_token_ends_template_argument_p (parser))
8974 cp_parser_error (parser, "expected template-argument");
8975 /* If that worked, we're done. */
8976 if (cp_parser_parse_definitely (parser))
8977 return argument;
8979 /* We're still not sure what the argument will be. */
8980 cp_parser_parse_tentatively (parser);
8981 /* Try a template. */
8982 argument = cp_parser_id_expression (parser,
8983 /*template_keyword_p=*/false,
8984 /*check_dependency_p=*/true,
8985 &template_p,
8986 /*declarator_p=*/false);
8987 /* If the next token isn't a `,' or a `>', then this argument wasn't
8988 really finished. */
8989 if (!cp_parser_next_token_ends_template_argument_p (parser))
8990 cp_parser_error (parser, "expected template-argument");
8991 if (!cp_parser_error_occurred (parser))
8993 /* Figure out what is being referred to. If the id-expression
8994 was for a class template specialization, then we will have a
8995 TYPE_DECL at this point. There is no need to do name lookup
8996 at this point in that case. */
8997 if (TREE_CODE (argument) != TYPE_DECL)
8998 argument = cp_parser_lookup_name (parser, argument,
8999 none_type,
9000 /*is_template=*/template_p,
9001 /*is_namespace=*/false,
9002 /*check_dependency=*/true,
9003 /*ambiguous_p=*/NULL);
9004 if (TREE_CODE (argument) != TEMPLATE_DECL
9005 && TREE_CODE (argument) != UNBOUND_CLASS_TEMPLATE)
9006 cp_parser_error (parser, "expected template-name");
9008 if (cp_parser_parse_definitely (parser))
9009 return argument;
9010 /* It must be a non-type argument. There permitted cases are given
9011 in [temp.arg.nontype]:
9013 -- an integral constant-expression of integral or enumeration
9014 type; or
9016 -- the name of a non-type template-parameter; or
9018 -- the name of an object or function with external linkage...
9020 -- the address of an object or function with external linkage...
9022 -- a pointer to member... */
9023 /* Look for a non-type template parameter. */
9024 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
9026 cp_parser_parse_tentatively (parser);
9027 argument = cp_parser_primary_expression (parser,
9028 /*cast_p=*/false,
9029 &idk,
9030 &qualifying_class);
9031 if (TREE_CODE (argument) != TEMPLATE_PARM_INDEX
9032 || !cp_parser_next_token_ends_template_argument_p (parser))
9033 cp_parser_simulate_error (parser);
9034 if (cp_parser_parse_definitely (parser))
9035 return argument;
9038 /* If the next token is "&", the argument must be the address of an
9039 object or function with external linkage. */
9040 address_p = cp_lexer_next_token_is (parser->lexer, CPP_AND);
9041 if (address_p)
9042 cp_lexer_consume_token (parser->lexer);
9043 /* See if we might have an id-expression. */
9044 token = cp_lexer_peek_token (parser->lexer);
9045 if (token->type == CPP_NAME
9046 || token->keyword == RID_OPERATOR
9047 || token->type == CPP_SCOPE
9048 || token->type == CPP_TEMPLATE_ID
9049 || token->type == CPP_NESTED_NAME_SPECIFIER)
9051 cp_parser_parse_tentatively (parser);
9052 argument = cp_parser_primary_expression (parser,
9053 /*cast_p=*/false,
9054 &idk,
9055 &qualifying_class);
9056 if (cp_parser_error_occurred (parser)
9057 || !cp_parser_next_token_ends_template_argument_p (parser))
9058 cp_parser_abort_tentative_parse (parser);
9059 else
9061 if (TREE_CODE (argument) == INDIRECT_REF)
9063 gcc_assert (REFERENCE_REF_P (argument));
9064 argument = TREE_OPERAND (argument, 0);
9067 if (qualifying_class)
9068 argument = finish_qualified_id_expr (qualifying_class,
9069 argument,
9070 /*done=*/true,
9071 address_p);
9072 if (TREE_CODE (argument) == VAR_DECL)
9074 /* A variable without external linkage might still be a
9075 valid constant-expression, so no error is issued here
9076 if the external-linkage check fails. */
9077 if (!DECL_EXTERNAL_LINKAGE_P (argument))
9078 cp_parser_simulate_error (parser);
9080 else if (is_overloaded_fn (argument))
9081 /* All overloaded functions are allowed; if the external
9082 linkage test does not pass, an error will be issued
9083 later. */
9085 else if (address_p
9086 && (TREE_CODE (argument) == OFFSET_REF
9087 || TREE_CODE (argument) == SCOPE_REF))
9088 /* A pointer-to-member. */
9090 else if (TREE_CODE (argument) == TEMPLATE_PARM_INDEX)
9092 else
9093 cp_parser_simulate_error (parser);
9095 if (cp_parser_parse_definitely (parser))
9097 if (address_p)
9098 argument = build_x_unary_op (ADDR_EXPR, argument);
9099 return argument;
9103 /* If the argument started with "&", there are no other valid
9104 alternatives at this point. */
9105 if (address_p)
9107 cp_parser_error (parser, "invalid non-type template argument");
9108 return error_mark_node;
9111 /* If the argument wasn't successfully parsed as a type-id followed
9112 by '>>', the argument can only be a constant expression now.
9113 Otherwise, we try parsing the constant-expression tentatively,
9114 because the argument could really be a type-id. */
9115 if (maybe_type_id)
9116 cp_parser_parse_tentatively (parser);
9117 argument = cp_parser_constant_expression (parser,
9118 /*allow_non_constant_p=*/false,
9119 /*non_constant_p=*/NULL);
9120 argument = fold_non_dependent_expr (argument);
9121 if (!maybe_type_id)
9122 return argument;
9123 if (!cp_parser_next_token_ends_template_argument_p (parser))
9124 cp_parser_error (parser, "expected template-argument");
9125 if (cp_parser_parse_definitely (parser))
9126 return argument;
9127 /* We did our best to parse the argument as a non type-id, but that
9128 was the only alternative that matched (albeit with a '>' after
9129 it). We can assume it's just a typo from the user, and a
9130 diagnostic will then be issued. */
9131 return cp_parser_type_id (parser);
9134 /* Parse an explicit-instantiation.
9136 explicit-instantiation:
9137 template declaration
9139 Although the standard says `declaration', what it really means is:
9141 explicit-instantiation:
9142 template decl-specifier-seq [opt] declarator [opt] ;
9144 Things like `template int S<int>::i = 5, int S<double>::j;' are not
9145 supposed to be allowed. A defect report has been filed about this
9146 issue.
9148 GNU Extension:
9150 explicit-instantiation:
9151 storage-class-specifier template
9152 decl-specifier-seq [opt] declarator [opt] ;
9153 function-specifier template
9154 decl-specifier-seq [opt] declarator [opt] ; */
9156 static void
9157 cp_parser_explicit_instantiation (cp_parser* parser)
9159 int declares_class_or_enum;
9160 cp_decl_specifier_seq decl_specifiers;
9161 tree extension_specifier = NULL_TREE;
9163 /* Look for an (optional) storage-class-specifier or
9164 function-specifier. */
9165 if (cp_parser_allow_gnu_extensions_p (parser))
9167 extension_specifier
9168 = cp_parser_storage_class_specifier_opt (parser);
9169 if (!extension_specifier)
9170 extension_specifier
9171 = cp_parser_function_specifier_opt (parser,
9172 /*decl_specs=*/NULL);
9175 /* Look for the `template' keyword. */
9176 cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'");
9177 /* Let the front end know that we are processing an explicit
9178 instantiation. */
9179 begin_explicit_instantiation ();
9180 /* [temp.explicit] says that we are supposed to ignore access
9181 control while processing explicit instantiation directives. */
9182 push_deferring_access_checks (dk_no_check);
9183 /* Parse a decl-specifier-seq. */
9184 cp_parser_decl_specifier_seq (parser,
9185 CP_PARSER_FLAGS_OPTIONAL,
9186 &decl_specifiers,
9187 &declares_class_or_enum);
9188 /* If there was exactly one decl-specifier, and it declared a class,
9189 and there's no declarator, then we have an explicit type
9190 instantiation. */
9191 if (declares_class_or_enum && cp_parser_declares_only_class_p (parser))
9193 tree type;
9195 type = check_tag_decl (&decl_specifiers);
9196 /* Turn access control back on for names used during
9197 template instantiation. */
9198 pop_deferring_access_checks ();
9199 if (type)
9200 do_type_instantiation (type, extension_specifier, /*complain=*/1);
9202 else
9204 cp_declarator *declarator;
9205 tree decl;
9207 /* Parse the declarator. */
9208 declarator
9209 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
9210 /*ctor_dtor_or_conv_p=*/NULL,
9211 /*parenthesized_p=*/NULL,
9212 /*member_p=*/false);
9213 if (declares_class_or_enum & 2)
9214 cp_parser_check_for_definition_in_return_type (declarator,
9215 decl_specifiers.type);
9216 if (declarator != cp_error_declarator)
9218 decl = grokdeclarator (declarator, &decl_specifiers,
9219 NORMAL, 0, NULL);
9220 /* Turn access control back on for names used during
9221 template instantiation. */
9222 pop_deferring_access_checks ();
9223 /* Do the explicit instantiation. */
9224 do_decl_instantiation (decl, extension_specifier);
9226 else
9228 pop_deferring_access_checks ();
9229 /* Skip the body of the explicit instantiation. */
9230 cp_parser_skip_to_end_of_statement (parser);
9233 /* We're done with the instantiation. */
9234 end_explicit_instantiation ();
9236 cp_parser_consume_semicolon_at_end_of_statement (parser);
9239 /* Parse an explicit-specialization.
9241 explicit-specialization:
9242 template < > declaration
9244 Although the standard says `declaration', what it really means is:
9246 explicit-specialization:
9247 template <> decl-specifier [opt] init-declarator [opt] ;
9248 template <> function-definition
9249 template <> explicit-specialization
9250 template <> template-declaration */
9252 static void
9253 cp_parser_explicit_specialization (cp_parser* parser)
9255 /* Look for the `template' keyword. */
9256 cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'");
9257 /* Look for the `<'. */
9258 cp_parser_require (parser, CPP_LESS, "`<'");
9259 /* Look for the `>'. */
9260 cp_parser_require (parser, CPP_GREATER, "`>'");
9261 /* We have processed another parameter list. */
9262 ++parser->num_template_parameter_lists;
9263 /* Let the front end know that we are beginning a specialization. */
9264 begin_specialization ();
9266 /* If the next keyword is `template', we need to figure out whether
9267 or not we're looking a template-declaration. */
9268 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
9270 if (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_LESS
9271 && cp_lexer_peek_nth_token (parser->lexer, 3)->type != CPP_GREATER)
9272 cp_parser_template_declaration_after_export (parser,
9273 /*member_p=*/false);
9274 else
9275 cp_parser_explicit_specialization (parser);
9277 else
9278 /* Parse the dependent declaration. */
9279 cp_parser_single_declaration (parser,
9280 /*member_p=*/false,
9281 /*friend_p=*/NULL);
9283 /* We're done with the specialization. */
9284 end_specialization ();
9285 /* We're done with this parameter list. */
9286 --parser->num_template_parameter_lists;
9289 /* Parse a type-specifier.
9291 type-specifier:
9292 simple-type-specifier
9293 class-specifier
9294 enum-specifier
9295 elaborated-type-specifier
9296 cv-qualifier
9298 GNU Extension:
9300 type-specifier:
9301 __complex__
9303 Returns a representation of the type-specifier. For a
9304 class-specifier, enum-specifier, or elaborated-type-specifier, a
9305 TREE_TYPE is returned; otherwise, a TYPE_DECL is returned.
9307 The parser flags FLAGS is used to control type-specifier parsing.
9309 If IS_DECLARATION is TRUE, then this type-specifier is appearing
9310 in a decl-specifier-seq.
9312 If DECLARES_CLASS_OR_ENUM is non-NULL, and the type-specifier is a
9313 class-specifier, enum-specifier, or elaborated-type-specifier, then
9314 *DECLARES_CLASS_OR_ENUM is set to a nonzero value. The value is 1
9315 if a type is declared; 2 if it is defined. Otherwise, it is set to
9316 zero.
9318 If IS_CV_QUALIFIER is non-NULL, and the type-specifier is a
9319 cv-qualifier, then IS_CV_QUALIFIER is set to TRUE. Otherwise, it
9320 is set to FALSE. */
9322 static tree
9323 cp_parser_type_specifier (cp_parser* parser,
9324 cp_parser_flags flags,
9325 cp_decl_specifier_seq *decl_specs,
9326 bool is_declaration,
9327 int* declares_class_or_enum,
9328 bool* is_cv_qualifier)
9330 tree type_spec = NULL_TREE;
9331 cp_token *token;
9332 enum rid keyword;
9333 cp_decl_spec ds = ds_last;
9335 /* Assume this type-specifier does not declare a new type. */
9336 if (declares_class_or_enum)
9337 *declares_class_or_enum = 0;
9338 /* And that it does not specify a cv-qualifier. */
9339 if (is_cv_qualifier)
9340 *is_cv_qualifier = false;
9341 /* Peek at the next token. */
9342 token = cp_lexer_peek_token (parser->lexer);
9344 /* If we're looking at a keyword, we can use that to guide the
9345 production we choose. */
9346 keyword = token->keyword;
9347 switch (keyword)
9349 case RID_ENUM:
9350 /* 'enum' [identifier] '{' introduces an enum-specifier;
9351 'enum' <anything else> introduces an elaborated-type-specifier. */
9352 if (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_OPEN_BRACE
9353 || (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_NAME
9354 && cp_lexer_peek_nth_token (parser->lexer, 3)->type
9355 == CPP_OPEN_BRACE))
9357 if (parser->num_template_parameter_lists)
9359 error ("template declaration of %qs", "enum");
9360 cp_parser_skip_to_end_of_block_or_statement (parser);
9361 type_spec = error_mark_node;
9363 else
9364 type_spec = cp_parser_enum_specifier (parser);
9366 if (declares_class_or_enum)
9367 *declares_class_or_enum = 2;
9368 if (decl_specs)
9369 cp_parser_set_decl_spec_type (decl_specs,
9370 type_spec,
9371 /*user_defined_p=*/true);
9372 return type_spec;
9374 else
9375 goto elaborated_type_specifier;
9377 /* Any of these indicate either a class-specifier, or an
9378 elaborated-type-specifier. */
9379 case RID_CLASS:
9380 case RID_STRUCT:
9381 case RID_UNION:
9382 /* Parse tentatively so that we can back up if we don't find a
9383 class-specifier. */
9384 cp_parser_parse_tentatively (parser);
9385 /* Look for the class-specifier. */
9386 type_spec = cp_parser_class_specifier (parser);
9387 /* If that worked, we're done. */
9388 if (cp_parser_parse_definitely (parser))
9390 if (declares_class_or_enum)
9391 *declares_class_or_enum = 2;
9392 if (decl_specs)
9393 cp_parser_set_decl_spec_type (decl_specs,
9394 type_spec,
9395 /*user_defined_p=*/true);
9396 return type_spec;
9399 /* Fall through. */
9400 elaborated_type_specifier:
9401 /* We're declaring (not defining) a class or enum. */
9402 if (declares_class_or_enum)
9403 *declares_class_or_enum = 1;
9405 /* Fall through. */
9406 case RID_TYPENAME:
9407 /* Look for an elaborated-type-specifier. */
9408 type_spec
9409 = (cp_parser_elaborated_type_specifier
9410 (parser,
9411 decl_specs && decl_specs->specs[(int) ds_friend],
9412 is_declaration));
9413 if (decl_specs)
9414 cp_parser_set_decl_spec_type (decl_specs,
9415 type_spec,
9416 /*user_defined_p=*/true);
9417 return type_spec;
9419 case RID_CONST:
9420 ds = ds_const;
9421 if (is_cv_qualifier)
9422 *is_cv_qualifier = true;
9423 break;
9425 case RID_VOLATILE:
9426 ds = ds_volatile;
9427 if (is_cv_qualifier)
9428 *is_cv_qualifier = true;
9429 break;
9431 case RID_RESTRICT:
9432 ds = ds_restrict;
9433 if (is_cv_qualifier)
9434 *is_cv_qualifier = true;
9435 break;
9437 case RID_COMPLEX:
9438 /* The `__complex__' keyword is a GNU extension. */
9439 ds = ds_complex;
9440 break;
9442 default:
9443 break;
9446 /* Handle simple keywords. */
9447 if (ds != ds_last)
9449 if (decl_specs)
9451 ++decl_specs->specs[(int)ds];
9452 decl_specs->any_specifiers_p = true;
9454 return cp_lexer_consume_token (parser->lexer)->value;
9457 /* If we do not already have a type-specifier, assume we are looking
9458 at a simple-type-specifier. */
9459 type_spec = cp_parser_simple_type_specifier (parser,
9460 decl_specs,
9461 flags);
9463 /* If we didn't find a type-specifier, and a type-specifier was not
9464 optional in this context, issue an error message. */
9465 if (!type_spec && !(flags & CP_PARSER_FLAGS_OPTIONAL))
9467 cp_parser_error (parser, "expected type specifier");
9468 return error_mark_node;
9471 return type_spec;
9474 /* Parse a simple-type-specifier.
9476 simple-type-specifier:
9477 :: [opt] nested-name-specifier [opt] type-name
9478 :: [opt] nested-name-specifier template template-id
9479 char
9480 wchar_t
9481 bool
9482 short
9484 long
9485 signed
9486 unsigned
9487 float
9488 double
9489 void
9491 GNU Extension:
9493 simple-type-specifier:
9494 __typeof__ unary-expression
9495 __typeof__ ( type-id )
9497 Returns the indicated TYPE_DECL. If DECL_SPECS is not NULL, it is
9498 appropriately updated. */
9500 static tree
9501 cp_parser_simple_type_specifier (cp_parser* parser,
9502 cp_decl_specifier_seq *decl_specs,
9503 cp_parser_flags flags)
9505 tree type = NULL_TREE;
9506 cp_token *token;
9508 /* Peek at the next token. */
9509 token = cp_lexer_peek_token (parser->lexer);
9511 /* If we're looking at a keyword, things are easy. */
9512 switch (token->keyword)
9514 case RID_CHAR:
9515 if (decl_specs)
9516 decl_specs->explicit_char_p = true;
9517 type = char_type_node;
9518 break;
9519 case RID_WCHAR:
9520 type = wchar_type_node;
9521 break;
9522 case RID_BOOL:
9523 type = boolean_type_node;
9524 break;
9525 case RID_SHORT:
9526 if (decl_specs)
9527 ++decl_specs->specs[(int) ds_short];
9528 type = short_integer_type_node;
9529 break;
9530 case RID_INT:
9531 if (decl_specs)
9532 decl_specs->explicit_int_p = true;
9533 type = integer_type_node;
9534 break;
9535 case RID_LONG:
9536 if (decl_specs)
9537 ++decl_specs->specs[(int) ds_long];
9538 type = long_integer_type_node;
9539 break;
9540 case RID_SIGNED:
9541 if (decl_specs)
9542 ++decl_specs->specs[(int) ds_signed];
9543 type = integer_type_node;
9544 break;
9545 case RID_UNSIGNED:
9546 if (decl_specs)
9547 ++decl_specs->specs[(int) ds_unsigned];
9548 type = unsigned_type_node;
9549 break;
9550 case RID_FLOAT:
9551 type = float_type_node;
9552 break;
9553 case RID_DOUBLE:
9554 type = double_type_node;
9555 break;
9556 case RID_VOID:
9557 type = void_type_node;
9558 break;
9560 case RID_TYPEOF:
9561 /* Consume the `typeof' token. */
9562 cp_lexer_consume_token (parser->lexer);
9563 /* Parse the operand to `typeof'. */
9564 type = cp_parser_sizeof_operand (parser, RID_TYPEOF);
9565 /* If it is not already a TYPE, take its type. */
9566 if (!TYPE_P (type))
9567 type = finish_typeof (type);
9569 if (decl_specs)
9570 cp_parser_set_decl_spec_type (decl_specs, type,
9571 /*user_defined_p=*/true);
9573 return type;
9575 default:
9576 break;
9579 /* If the type-specifier was for a built-in type, we're done. */
9580 if (type)
9582 tree id;
9584 /* Record the type. */
9585 if (decl_specs
9586 && (token->keyword != RID_SIGNED
9587 && token->keyword != RID_UNSIGNED
9588 && token->keyword != RID_SHORT
9589 && token->keyword != RID_LONG))
9590 cp_parser_set_decl_spec_type (decl_specs,
9591 type,
9592 /*user_defined=*/false);
9593 if (decl_specs)
9594 decl_specs->any_specifiers_p = true;
9596 /* Consume the token. */
9597 id = cp_lexer_consume_token (parser->lexer)->value;
9599 /* There is no valid C++ program where a non-template type is
9600 followed by a "<". That usually indicates that the user thought
9601 that the type was a template. */
9602 cp_parser_check_for_invalid_template_id (parser, type);
9604 return TYPE_NAME (type);
9607 /* The type-specifier must be a user-defined type. */
9608 if (!(flags & CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES))
9610 bool qualified_p;
9611 bool global_p;
9613 /* Don't gobble tokens or issue error messages if this is an
9614 optional type-specifier. */
9615 if (flags & CP_PARSER_FLAGS_OPTIONAL)
9616 cp_parser_parse_tentatively (parser);
9618 /* Look for the optional `::' operator. */
9619 global_p
9620 = (cp_parser_global_scope_opt (parser,
9621 /*current_scope_valid_p=*/false)
9622 != NULL_TREE);
9623 /* Look for the nested-name specifier. */
9624 qualified_p
9625 = (cp_parser_nested_name_specifier_opt (parser,
9626 /*typename_keyword_p=*/false,
9627 /*check_dependency_p=*/true,
9628 /*type_p=*/false,
9629 /*is_declaration=*/false)
9630 != NULL_TREE);
9631 /* If we have seen a nested-name-specifier, and the next token
9632 is `template', then we are using the template-id production. */
9633 if (parser->scope
9634 && cp_parser_optional_template_keyword (parser))
9636 /* Look for the template-id. */
9637 type = cp_parser_template_id (parser,
9638 /*template_keyword_p=*/true,
9639 /*check_dependency_p=*/true,
9640 /*is_declaration=*/false);
9641 /* If the template-id did not name a type, we are out of
9642 luck. */
9643 if (TREE_CODE (type) != TYPE_DECL)
9645 cp_parser_error (parser, "expected template-id for type");
9646 type = NULL_TREE;
9649 /* Otherwise, look for a type-name. */
9650 else
9651 type = cp_parser_type_name (parser);
9652 /* Keep track of all name-lookups performed in class scopes. */
9653 if (type
9654 && !global_p
9655 && !qualified_p
9656 && TREE_CODE (type) == TYPE_DECL
9657 && TREE_CODE (DECL_NAME (type)) == IDENTIFIER_NODE)
9658 maybe_note_name_used_in_class (DECL_NAME (type), type);
9659 /* If it didn't work out, we don't have a TYPE. */
9660 if ((flags & CP_PARSER_FLAGS_OPTIONAL)
9661 && !cp_parser_parse_definitely (parser))
9662 type = NULL_TREE;
9663 if (type && decl_specs)
9664 cp_parser_set_decl_spec_type (decl_specs, type,
9665 /*user_defined=*/true);
9668 /* If we didn't get a type-name, issue an error message. */
9669 if (!type && !(flags & CP_PARSER_FLAGS_OPTIONAL))
9671 cp_parser_error (parser, "expected type-name");
9672 return error_mark_node;
9675 /* There is no valid C++ program where a non-template type is
9676 followed by a "<". That usually indicates that the user thought
9677 that the type was a template. */
9678 if (type && type != error_mark_node)
9680 /* As a last-ditch effort, see if TYPE is an Objective-C type.
9681 If it is, then the '<'...'>' enclose protocol names rather than
9682 template arguments, and so everything is fine. */
9683 if (c_dialect_objc ()
9684 && (objc_is_id (type) || objc_is_class_name (type)))
9686 tree protos = cp_parser_objc_protocol_refs_opt (parser);
9687 tree qual_type = objc_get_protocol_qualified_type (type, protos);
9689 /* Clobber the "unqualified" type previously entered into
9690 DECL_SPECS with the new, improved protocol-qualified version. */
9691 if (decl_specs)
9692 decl_specs->type = qual_type;
9694 return qual_type;
9697 cp_parser_check_for_invalid_template_id (parser, TREE_TYPE (type));
9700 return type;
9703 /* Parse a type-name.
9705 type-name:
9706 class-name
9707 enum-name
9708 typedef-name
9710 enum-name:
9711 identifier
9713 typedef-name:
9714 identifier
9716 Returns a TYPE_DECL for the type. */
9718 static tree
9719 cp_parser_type_name (cp_parser* parser)
9721 tree type_decl;
9722 tree identifier;
9724 /* We can't know yet whether it is a class-name or not. */
9725 cp_parser_parse_tentatively (parser);
9726 /* Try a class-name. */
9727 type_decl = cp_parser_class_name (parser,
9728 /*typename_keyword_p=*/false,
9729 /*template_keyword_p=*/false,
9730 none_type,
9731 /*check_dependency_p=*/true,
9732 /*class_head_p=*/false,
9733 /*is_declaration=*/false);
9734 /* If it's not a class-name, keep looking. */
9735 if (!cp_parser_parse_definitely (parser))
9737 /* It must be a typedef-name or an enum-name. */
9738 identifier = cp_parser_identifier (parser);
9739 if (identifier == error_mark_node)
9740 return error_mark_node;
9742 /* Look up the type-name. */
9743 type_decl = cp_parser_lookup_name_simple (parser, identifier);
9745 if (TREE_CODE (type_decl) != TYPE_DECL
9746 && (objc_is_id (identifier) || objc_is_class_name (identifier)))
9748 /* See if this is an Objective-C type. */
9749 tree protos = cp_parser_objc_protocol_refs_opt (parser);
9750 tree type = objc_get_protocol_qualified_type (identifier, protos);
9751 if (type)
9752 type_decl = TYPE_NAME (type);
9755 /* Issue an error if we did not find a type-name. */
9756 if (TREE_CODE (type_decl) != TYPE_DECL)
9758 if (!cp_parser_simulate_error (parser))
9759 cp_parser_name_lookup_error (parser, identifier, type_decl,
9760 "is not a type");
9761 type_decl = error_mark_node;
9763 /* Remember that the name was used in the definition of the
9764 current class so that we can check later to see if the
9765 meaning would have been different after the class was
9766 entirely defined. */
9767 else if (type_decl != error_mark_node
9768 && !parser->scope)
9769 maybe_note_name_used_in_class (identifier, type_decl);
9772 return type_decl;
9776 /* Parse an elaborated-type-specifier. Note that the grammar given
9777 here incorporates the resolution to DR68.
9779 elaborated-type-specifier:
9780 class-key :: [opt] nested-name-specifier [opt] identifier
9781 class-key :: [opt] nested-name-specifier [opt] template [opt] template-id
9782 enum :: [opt] nested-name-specifier [opt] identifier
9783 typename :: [opt] nested-name-specifier identifier
9784 typename :: [opt] nested-name-specifier template [opt]
9785 template-id
9787 GNU extension:
9789 elaborated-type-specifier:
9790 class-key attributes :: [opt] nested-name-specifier [opt] identifier
9791 class-key attributes :: [opt] nested-name-specifier [opt]
9792 template [opt] template-id
9793 enum attributes :: [opt] nested-name-specifier [opt] identifier
9795 If IS_FRIEND is TRUE, then this elaborated-type-specifier is being
9796 declared `friend'. If IS_DECLARATION is TRUE, then this
9797 elaborated-type-specifier appears in a decl-specifiers-seq, i.e.,
9798 something is being declared.
9800 Returns the TYPE specified. */
9802 static tree
9803 cp_parser_elaborated_type_specifier (cp_parser* parser,
9804 bool is_friend,
9805 bool is_declaration)
9807 enum tag_types tag_type;
9808 tree identifier;
9809 tree type = NULL_TREE;
9810 tree attributes = NULL_TREE;
9812 /* See if we're looking at the `enum' keyword. */
9813 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ENUM))
9815 /* Consume the `enum' token. */
9816 cp_lexer_consume_token (parser->lexer);
9817 /* Remember that it's an enumeration type. */
9818 tag_type = enum_type;
9819 /* Parse the attributes. */
9820 attributes = cp_parser_attributes_opt (parser);
9822 /* Or, it might be `typename'. */
9823 else if (cp_lexer_next_token_is_keyword (parser->lexer,
9824 RID_TYPENAME))
9826 /* Consume the `typename' token. */
9827 cp_lexer_consume_token (parser->lexer);
9828 /* Remember that it's a `typename' type. */
9829 tag_type = typename_type;
9830 /* The `typename' keyword is only allowed in templates. */
9831 if (!processing_template_decl)
9832 pedwarn ("using %<typename%> outside of template");
9834 /* Otherwise it must be a class-key. */
9835 else
9837 tag_type = cp_parser_class_key (parser);
9838 if (tag_type == none_type)
9839 return error_mark_node;
9840 /* Parse the attributes. */
9841 attributes = cp_parser_attributes_opt (parser);
9844 /* Look for the `::' operator. */
9845 cp_parser_global_scope_opt (parser,
9846 /*current_scope_valid_p=*/false);
9847 /* Look for the nested-name-specifier. */
9848 if (tag_type == typename_type)
9850 if (cp_parser_nested_name_specifier (parser,
9851 /*typename_keyword_p=*/true,
9852 /*check_dependency_p=*/true,
9853 /*type_p=*/true,
9854 is_declaration)
9855 == error_mark_node)
9856 return error_mark_node;
9858 else
9859 /* Even though `typename' is not present, the proposed resolution
9860 to Core Issue 180 says that in `class A<T>::B', `B' should be
9861 considered a type-name, even if `A<T>' is dependent. */
9862 cp_parser_nested_name_specifier_opt (parser,
9863 /*typename_keyword_p=*/true,
9864 /*check_dependency_p=*/true,
9865 /*type_p=*/true,
9866 is_declaration);
9867 /* For everything but enumeration types, consider a template-id. */
9868 if (tag_type != enum_type)
9870 bool template_p = false;
9871 tree decl;
9873 /* Allow the `template' keyword. */
9874 template_p = cp_parser_optional_template_keyword (parser);
9875 /* If we didn't see `template', we don't know if there's a
9876 template-id or not. */
9877 if (!template_p)
9878 cp_parser_parse_tentatively (parser);
9879 /* Parse the template-id. */
9880 decl = cp_parser_template_id (parser, template_p,
9881 /*check_dependency_p=*/true,
9882 is_declaration);
9883 /* If we didn't find a template-id, look for an ordinary
9884 identifier. */
9885 if (!template_p && !cp_parser_parse_definitely (parser))
9887 /* If DECL is a TEMPLATE_ID_EXPR, and the `typename' keyword is
9888 in effect, then we must assume that, upon instantiation, the
9889 template will correspond to a class. */
9890 else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
9891 && tag_type == typename_type)
9892 type = make_typename_type (parser->scope, decl,
9893 typename_type,
9894 /*complain=*/1);
9895 else
9896 type = TREE_TYPE (decl);
9899 /* For an enumeration type, consider only a plain identifier. */
9900 if (!type)
9902 identifier = cp_parser_identifier (parser);
9904 if (identifier == error_mark_node)
9906 parser->scope = NULL_TREE;
9907 return error_mark_node;
9910 /* For a `typename', we needn't call xref_tag. */
9911 if (tag_type == typename_type
9912 && TREE_CODE (parser->scope) != NAMESPACE_DECL)
9913 return cp_parser_make_typename_type (parser, parser->scope,
9914 identifier);
9915 /* Look up a qualified name in the usual way. */
9916 if (parser->scope)
9918 tree decl;
9920 decl = cp_parser_lookup_name (parser, identifier,
9921 tag_type,
9922 /*is_template=*/false,
9923 /*is_namespace=*/false,
9924 /*check_dependency=*/true,
9925 /*ambiguous_p=*/NULL);
9927 /* If we are parsing friend declaration, DECL may be a
9928 TEMPLATE_DECL tree node here. However, we need to check
9929 whether this TEMPLATE_DECL results in valid code. Consider
9930 the following example:
9932 namespace N {
9933 template <class T> class C {};
9935 class X {
9936 template <class T> friend class N::C; // #1, valid code
9938 template <class T> class Y {
9939 friend class N::C; // #2, invalid code
9942 For both case #1 and #2, we arrive at a TEMPLATE_DECL after
9943 name lookup of `N::C'. We see that friend declaration must
9944 be template for the code to be valid. Note that
9945 processing_template_decl does not work here since it is
9946 always 1 for the above two cases. */
9948 decl = (cp_parser_maybe_treat_template_as_class
9949 (decl, /*tag_name_p=*/is_friend
9950 && parser->num_template_parameter_lists));
9952 if (TREE_CODE (decl) != TYPE_DECL)
9954 cp_parser_diagnose_invalid_type_name (parser,
9955 parser->scope,
9956 identifier);
9957 return error_mark_node;
9960 if (TREE_CODE (TREE_TYPE (decl)) != TYPENAME_TYPE)
9961 check_elaborated_type_specifier
9962 (tag_type, decl,
9963 (parser->num_template_parameter_lists
9964 || DECL_SELF_REFERENCE_P (decl)));
9966 type = TREE_TYPE (decl);
9968 else
9970 /* An elaborated-type-specifier sometimes introduces a new type and
9971 sometimes names an existing type. Normally, the rule is that it
9972 introduces a new type only if there is not an existing type of
9973 the same name already in scope. For example, given:
9975 struct S {};
9976 void f() { struct S s; }
9978 the `struct S' in the body of `f' is the same `struct S' as in
9979 the global scope; the existing definition is used. However, if
9980 there were no global declaration, this would introduce a new
9981 local class named `S'.
9983 An exception to this rule applies to the following code:
9985 namespace N { struct S; }
9987 Here, the elaborated-type-specifier names a new type
9988 unconditionally; even if there is already an `S' in the
9989 containing scope this declaration names a new type.
9990 This exception only applies if the elaborated-type-specifier
9991 forms the complete declaration:
9993 [class.name]
9995 A declaration consisting solely of `class-key identifier ;' is
9996 either a redeclaration of the name in the current scope or a
9997 forward declaration of the identifier as a class name. It
9998 introduces the name into the current scope.
10000 We are in this situation precisely when the next token is a `;'.
10002 An exception to the exception is that a `friend' declaration does
10003 *not* name a new type; i.e., given:
10005 struct S { friend struct T; };
10007 `T' is not a new type in the scope of `S'.
10009 Also, `new struct S' or `sizeof (struct S)' never results in the
10010 definition of a new type; a new type can only be declared in a
10011 declaration context. */
10013 tag_scope ts;
10014 if (is_friend)
10015 /* Friends have special name lookup rules. */
10016 ts = ts_within_enclosing_non_class;
10017 else if (is_declaration
10018 && cp_lexer_next_token_is (parser->lexer,
10019 CPP_SEMICOLON))
10020 /* This is a `class-key identifier ;' */
10021 ts = ts_current;
10022 else
10023 ts = ts_global;
10025 /* Warn about attributes. They are ignored. */
10026 if (attributes)
10027 warning (OPT_Wattributes,
10028 "type attributes are honored only at type definition");
10030 type = xref_tag (tag_type, identifier, ts,
10031 parser->num_template_parameter_lists);
10034 if (tag_type != enum_type)
10035 cp_parser_check_class_key (tag_type, type);
10037 /* A "<" cannot follow an elaborated type specifier. If that
10038 happens, the user was probably trying to form a template-id. */
10039 cp_parser_check_for_invalid_template_id (parser, type);
10041 return type;
10044 /* Parse an enum-specifier.
10046 enum-specifier:
10047 enum identifier [opt] { enumerator-list [opt] }
10049 GNU Extensions:
10050 enum identifier [opt] { enumerator-list [opt] } attributes
10052 Returns an ENUM_TYPE representing the enumeration. */
10054 static tree
10055 cp_parser_enum_specifier (cp_parser* parser)
10057 tree identifier;
10058 tree type;
10060 /* Caller guarantees that the current token is 'enum', an identifier
10061 possibly follows, and the token after that is an opening brace.
10062 If we don't have an identifier, fabricate an anonymous name for
10063 the enumeration being defined. */
10064 cp_lexer_consume_token (parser->lexer);
10066 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
10067 identifier = cp_parser_identifier (parser);
10068 else
10069 identifier = make_anon_name ();
10071 /* Issue an error message if type-definitions are forbidden here. */
10072 cp_parser_check_type_definition (parser);
10074 /* Create the new type. We do this before consuming the opening brace
10075 so the enum will be recorded as being on the line of its tag (or the
10076 'enum' keyword, if there is no tag). */
10077 type = start_enum (identifier);
10079 /* Consume the opening brace. */
10080 cp_lexer_consume_token (parser->lexer);
10082 /* If the next token is not '}', then there are some enumerators. */
10083 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_BRACE))
10084 cp_parser_enumerator_list (parser, type);
10086 /* Consume the final '}'. */
10087 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
10089 /* Look for trailing attributes to apply to this enumeration, and
10090 apply them if appropriate. */
10091 if (cp_parser_allow_gnu_extensions_p (parser))
10093 tree trailing_attr = cp_parser_attributes_opt (parser);
10094 cplus_decl_attributes (&type,
10095 trailing_attr,
10096 (int) ATTR_FLAG_TYPE_IN_PLACE);
10099 /* Finish up the enumeration. */
10100 finish_enum (type);
10102 return type;
10105 /* Parse an enumerator-list. The enumerators all have the indicated
10106 TYPE.
10108 enumerator-list:
10109 enumerator-definition
10110 enumerator-list , enumerator-definition */
10112 static void
10113 cp_parser_enumerator_list (cp_parser* parser, tree type)
10115 while (true)
10117 /* Parse an enumerator-definition. */
10118 cp_parser_enumerator_definition (parser, type);
10120 /* If the next token is not a ',', we've reached the end of
10121 the list. */
10122 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
10123 break;
10124 /* Otherwise, consume the `,' and keep going. */
10125 cp_lexer_consume_token (parser->lexer);
10126 /* If the next token is a `}', there is a trailing comma. */
10127 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
10129 if (pedantic && !in_system_header)
10130 pedwarn ("comma at end of enumerator list");
10131 break;
10136 /* Parse an enumerator-definition. The enumerator has the indicated
10137 TYPE.
10139 enumerator-definition:
10140 enumerator
10141 enumerator = constant-expression
10143 enumerator:
10144 identifier */
10146 static void
10147 cp_parser_enumerator_definition (cp_parser* parser, tree type)
10149 tree identifier;
10150 tree value;
10152 /* Look for the identifier. */
10153 identifier = cp_parser_identifier (parser);
10154 if (identifier == error_mark_node)
10155 return;
10157 /* If the next token is an '=', then there is an explicit value. */
10158 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
10160 /* Consume the `=' token. */
10161 cp_lexer_consume_token (parser->lexer);
10162 /* Parse the value. */
10163 value = cp_parser_constant_expression (parser,
10164 /*allow_non_constant_p=*/false,
10165 NULL);
10167 else
10168 value = NULL_TREE;
10170 /* Create the enumerator. */
10171 build_enumerator (identifier, value, type);
10174 /* Parse a namespace-name.
10176 namespace-name:
10177 original-namespace-name
10178 namespace-alias
10180 Returns the NAMESPACE_DECL for the namespace. */
10182 static tree
10183 cp_parser_namespace_name (cp_parser* parser)
10185 tree identifier;
10186 tree namespace_decl;
10188 /* Get the name of the namespace. */
10189 identifier = cp_parser_identifier (parser);
10190 if (identifier == error_mark_node)
10191 return error_mark_node;
10193 /* Look up the identifier in the currently active scope. Look only
10194 for namespaces, due to:
10196 [basic.lookup.udir]
10198 When looking up a namespace-name in a using-directive or alias
10199 definition, only namespace names are considered.
10201 And:
10203 [basic.lookup.qual]
10205 During the lookup of a name preceding the :: scope resolution
10206 operator, object, function, and enumerator names are ignored.
10208 (Note that cp_parser_class_or_namespace_name only calls this
10209 function if the token after the name is the scope resolution
10210 operator.) */
10211 namespace_decl = cp_parser_lookup_name (parser, identifier,
10212 none_type,
10213 /*is_template=*/false,
10214 /*is_namespace=*/true,
10215 /*check_dependency=*/true,
10216 /*ambiguous_p=*/NULL);
10217 /* If it's not a namespace, issue an error. */
10218 if (namespace_decl == error_mark_node
10219 || TREE_CODE (namespace_decl) != NAMESPACE_DECL)
10221 cp_parser_error (parser, "expected namespace-name");
10222 namespace_decl = error_mark_node;
10225 return namespace_decl;
10228 /* Parse a namespace-definition.
10230 namespace-definition:
10231 named-namespace-definition
10232 unnamed-namespace-definition
10234 named-namespace-definition:
10235 original-namespace-definition
10236 extension-namespace-definition
10238 original-namespace-definition:
10239 namespace identifier { namespace-body }
10241 extension-namespace-definition:
10242 namespace original-namespace-name { namespace-body }
10244 unnamed-namespace-definition:
10245 namespace { namespace-body } */
10247 static void
10248 cp_parser_namespace_definition (cp_parser* parser)
10250 tree identifier;
10252 /* Look for the `namespace' keyword. */
10253 cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
10255 /* Get the name of the namespace. We do not attempt to distinguish
10256 between an original-namespace-definition and an
10257 extension-namespace-definition at this point. The semantic
10258 analysis routines are responsible for that. */
10259 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
10260 identifier = cp_parser_identifier (parser);
10261 else
10262 identifier = NULL_TREE;
10264 /* Look for the `{' to start the namespace. */
10265 cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
10266 /* Start the namespace. */
10267 push_namespace (identifier);
10268 /* Parse the body of the namespace. */
10269 cp_parser_namespace_body (parser);
10270 /* Finish the namespace. */
10271 pop_namespace ();
10272 /* Look for the final `}'. */
10273 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
10276 /* Parse a namespace-body.
10278 namespace-body:
10279 declaration-seq [opt] */
10281 static void
10282 cp_parser_namespace_body (cp_parser* parser)
10284 cp_parser_declaration_seq_opt (parser);
10287 /* Parse a namespace-alias-definition.
10289 namespace-alias-definition:
10290 namespace identifier = qualified-namespace-specifier ; */
10292 static void
10293 cp_parser_namespace_alias_definition (cp_parser* parser)
10295 tree identifier;
10296 tree namespace_specifier;
10298 /* Look for the `namespace' keyword. */
10299 cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
10300 /* Look for the identifier. */
10301 identifier = cp_parser_identifier (parser);
10302 if (identifier == error_mark_node)
10303 return;
10304 /* Look for the `=' token. */
10305 cp_parser_require (parser, CPP_EQ, "`='");
10306 /* Look for the qualified-namespace-specifier. */
10307 namespace_specifier
10308 = cp_parser_qualified_namespace_specifier (parser);
10309 /* Look for the `;' token. */
10310 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10312 /* Register the alias in the symbol table. */
10313 do_namespace_alias (identifier, namespace_specifier);
10316 /* Parse a qualified-namespace-specifier.
10318 qualified-namespace-specifier:
10319 :: [opt] nested-name-specifier [opt] namespace-name
10321 Returns a NAMESPACE_DECL corresponding to the specified
10322 namespace. */
10324 static tree
10325 cp_parser_qualified_namespace_specifier (cp_parser* parser)
10327 /* Look for the optional `::'. */
10328 cp_parser_global_scope_opt (parser,
10329 /*current_scope_valid_p=*/false);
10331 /* Look for the optional nested-name-specifier. */
10332 cp_parser_nested_name_specifier_opt (parser,
10333 /*typename_keyword_p=*/false,
10334 /*check_dependency_p=*/true,
10335 /*type_p=*/false,
10336 /*is_declaration=*/true);
10338 return cp_parser_namespace_name (parser);
10341 /* Parse a using-declaration.
10343 using-declaration:
10344 using typename [opt] :: [opt] nested-name-specifier unqualified-id ;
10345 using :: unqualified-id ; */
10347 static void
10348 cp_parser_using_declaration (cp_parser* parser)
10350 cp_token *token;
10351 bool typename_p = false;
10352 bool global_scope_p;
10353 tree decl;
10354 tree identifier;
10355 tree qscope;
10357 /* Look for the `using' keyword. */
10358 cp_parser_require_keyword (parser, RID_USING, "`using'");
10360 /* Peek at the next token. */
10361 token = cp_lexer_peek_token (parser->lexer);
10362 /* See if it's `typename'. */
10363 if (token->keyword == RID_TYPENAME)
10365 /* Remember that we've seen it. */
10366 typename_p = true;
10367 /* Consume the `typename' token. */
10368 cp_lexer_consume_token (parser->lexer);
10371 /* Look for the optional global scope qualification. */
10372 global_scope_p
10373 = (cp_parser_global_scope_opt (parser,
10374 /*current_scope_valid_p=*/false)
10375 != NULL_TREE);
10377 /* If we saw `typename', or didn't see `::', then there must be a
10378 nested-name-specifier present. */
10379 if (typename_p || !global_scope_p)
10380 qscope = cp_parser_nested_name_specifier (parser, typename_p,
10381 /*check_dependency_p=*/true,
10382 /*type_p=*/false,
10383 /*is_declaration=*/true);
10384 /* Otherwise, we could be in either of the two productions. In that
10385 case, treat the nested-name-specifier as optional. */
10386 else
10387 qscope = cp_parser_nested_name_specifier_opt (parser,
10388 /*typename_keyword_p=*/false,
10389 /*check_dependency_p=*/true,
10390 /*type_p=*/false,
10391 /*is_declaration=*/true);
10392 if (!qscope)
10393 qscope = global_namespace;
10395 /* Parse the unqualified-id. */
10396 identifier = cp_parser_unqualified_id (parser,
10397 /*template_keyword_p=*/false,
10398 /*check_dependency_p=*/true,
10399 /*declarator_p=*/true);
10401 /* The function we call to handle a using-declaration is different
10402 depending on what scope we are in. */
10403 if (identifier == error_mark_node)
10405 else if (TREE_CODE (identifier) != IDENTIFIER_NODE
10406 && TREE_CODE (identifier) != BIT_NOT_EXPR)
10407 /* [namespace.udecl]
10409 A using declaration shall not name a template-id. */
10410 error ("a template-id may not appear in a using-declaration");
10411 else
10413 if (at_class_scope_p ())
10415 /* Create the USING_DECL. */
10416 decl = do_class_using_decl (parser->scope, identifier);
10417 /* Add it to the list of members in this class. */
10418 finish_member_declaration (decl);
10420 else
10422 decl = cp_parser_lookup_name_simple (parser, identifier);
10423 if (decl == error_mark_node)
10424 cp_parser_name_lookup_error (parser, identifier, decl, NULL);
10425 else if (!at_namespace_scope_p ())
10426 do_local_using_decl (decl, qscope, identifier);
10427 else
10428 do_toplevel_using_decl (decl, qscope, identifier);
10432 /* Look for the final `;'. */
10433 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10436 /* Parse a using-directive.
10438 using-directive:
10439 using namespace :: [opt] nested-name-specifier [opt]
10440 namespace-name ; */
10442 static void
10443 cp_parser_using_directive (cp_parser* parser)
10445 tree namespace_decl;
10446 tree attribs;
10448 /* Look for the `using' keyword. */
10449 cp_parser_require_keyword (parser, RID_USING, "`using'");
10450 /* And the `namespace' keyword. */
10451 cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
10452 /* Look for the optional `::' operator. */
10453 cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false);
10454 /* And the optional nested-name-specifier. */
10455 cp_parser_nested_name_specifier_opt (parser,
10456 /*typename_keyword_p=*/false,
10457 /*check_dependency_p=*/true,
10458 /*type_p=*/false,
10459 /*is_declaration=*/true);
10460 /* Get the namespace being used. */
10461 namespace_decl = cp_parser_namespace_name (parser);
10462 /* And any specified attributes. */
10463 attribs = cp_parser_attributes_opt (parser);
10464 /* Update the symbol table. */
10465 parse_using_directive (namespace_decl, attribs);
10466 /* Look for the final `;'. */
10467 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10470 /* Parse an asm-definition.
10472 asm-definition:
10473 asm ( string-literal ) ;
10475 GNU Extension:
10477 asm-definition:
10478 asm volatile [opt] ( string-literal ) ;
10479 asm volatile [opt] ( string-literal : asm-operand-list [opt] ) ;
10480 asm volatile [opt] ( string-literal : asm-operand-list [opt]
10481 : asm-operand-list [opt] ) ;
10482 asm volatile [opt] ( string-literal : asm-operand-list [opt]
10483 : asm-operand-list [opt]
10484 : asm-operand-list [opt] ) ; */
10486 static void
10487 cp_parser_asm_definition (cp_parser* parser)
10489 tree string;
10490 tree outputs = NULL_TREE;
10491 tree inputs = NULL_TREE;
10492 tree clobbers = NULL_TREE;
10493 tree asm_stmt;
10494 bool volatile_p = false;
10495 bool extended_p = false;
10497 /* Look for the `asm' keyword. */
10498 cp_parser_require_keyword (parser, RID_ASM, "`asm'");
10499 /* See if the next token is `volatile'. */
10500 if (cp_parser_allow_gnu_extensions_p (parser)
10501 && cp_lexer_next_token_is_keyword (parser->lexer, RID_VOLATILE))
10503 /* Remember that we saw the `volatile' keyword. */
10504 volatile_p = true;
10505 /* Consume the token. */
10506 cp_lexer_consume_token (parser->lexer);
10508 /* Look for the opening `('. */
10509 if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
10510 return;
10511 /* Look for the string. */
10512 string = cp_parser_string_literal (parser, false, false);
10513 if (string == error_mark_node)
10515 cp_parser_skip_to_closing_parenthesis (parser, true, false,
10516 /*consume_paren=*/true);
10517 return;
10520 /* If we're allowing GNU extensions, check for the extended assembly
10521 syntax. Unfortunately, the `:' tokens need not be separated by
10522 a space in C, and so, for compatibility, we tolerate that here
10523 too. Doing that means that we have to treat the `::' operator as
10524 two `:' tokens. */
10525 if (cp_parser_allow_gnu_extensions_p (parser)
10526 && at_function_scope_p ()
10527 && (cp_lexer_next_token_is (parser->lexer, CPP_COLON)
10528 || cp_lexer_next_token_is (parser->lexer, CPP_SCOPE)))
10530 bool inputs_p = false;
10531 bool clobbers_p = false;
10533 /* The extended syntax was used. */
10534 extended_p = true;
10536 /* Look for outputs. */
10537 if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
10539 /* Consume the `:'. */
10540 cp_lexer_consume_token (parser->lexer);
10541 /* Parse the output-operands. */
10542 if (cp_lexer_next_token_is_not (parser->lexer,
10543 CPP_COLON)
10544 && cp_lexer_next_token_is_not (parser->lexer,
10545 CPP_SCOPE)
10546 && cp_lexer_next_token_is_not (parser->lexer,
10547 CPP_CLOSE_PAREN))
10548 outputs = cp_parser_asm_operand_list (parser);
10550 /* If the next token is `::', there are no outputs, and the
10551 next token is the beginning of the inputs. */
10552 else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
10553 /* The inputs are coming next. */
10554 inputs_p = true;
10556 /* Look for inputs. */
10557 if (inputs_p
10558 || cp_lexer_next_token_is (parser->lexer, CPP_COLON))
10560 /* Consume the `:' or `::'. */
10561 cp_lexer_consume_token (parser->lexer);
10562 /* Parse the output-operands. */
10563 if (cp_lexer_next_token_is_not (parser->lexer,
10564 CPP_COLON)
10565 && cp_lexer_next_token_is_not (parser->lexer,
10566 CPP_CLOSE_PAREN))
10567 inputs = cp_parser_asm_operand_list (parser);
10569 else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
10570 /* The clobbers are coming next. */
10571 clobbers_p = true;
10573 /* Look for clobbers. */
10574 if (clobbers_p
10575 || cp_lexer_next_token_is (parser->lexer, CPP_COLON))
10577 /* Consume the `:' or `::'. */
10578 cp_lexer_consume_token (parser->lexer);
10579 /* Parse the clobbers. */
10580 if (cp_lexer_next_token_is_not (parser->lexer,
10581 CPP_CLOSE_PAREN))
10582 clobbers = cp_parser_asm_clobber_list (parser);
10585 /* Look for the closing `)'. */
10586 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
10587 cp_parser_skip_to_closing_parenthesis (parser, true, false,
10588 /*consume_paren=*/true);
10589 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10591 /* Create the ASM_EXPR. */
10592 if (at_function_scope_p ())
10594 asm_stmt = finish_asm_stmt (volatile_p, string, outputs,
10595 inputs, clobbers);
10596 /* If the extended syntax was not used, mark the ASM_EXPR. */
10597 if (!extended_p)
10599 tree temp = asm_stmt;
10600 if (TREE_CODE (temp) == CLEANUP_POINT_EXPR)
10601 temp = TREE_OPERAND (temp, 0);
10603 ASM_INPUT_P (temp) = 1;
10606 else
10607 assemble_asm (string);
10610 /* Declarators [gram.dcl.decl] */
10612 /* Parse an init-declarator.
10614 init-declarator:
10615 declarator initializer [opt]
10617 GNU Extension:
10619 init-declarator:
10620 declarator asm-specification [opt] attributes [opt] initializer [opt]
10622 function-definition:
10623 decl-specifier-seq [opt] declarator ctor-initializer [opt]
10624 function-body
10625 decl-specifier-seq [opt] declarator function-try-block
10627 GNU Extension:
10629 function-definition:
10630 __extension__ function-definition
10632 The DECL_SPECIFIERS and PREFIX_ATTRIBUTES apply to this declarator.
10633 Returns a representation of the entity declared. If MEMBER_P is TRUE,
10634 then this declarator appears in a class scope. The new DECL created
10635 by this declarator is returned.
10637 If FUNCTION_DEFINITION_ALLOWED_P then we handle the declarator and
10638 for a function-definition here as well. If the declarator is a
10639 declarator for a function-definition, *FUNCTION_DEFINITION_P will
10640 be TRUE upon return. By that point, the function-definition will
10641 have been completely parsed.
10643 FUNCTION_DEFINITION_P may be NULL if FUNCTION_DEFINITION_ALLOWED_P
10644 is FALSE. */
10646 static tree
10647 cp_parser_init_declarator (cp_parser* parser,
10648 cp_decl_specifier_seq *decl_specifiers,
10649 bool function_definition_allowed_p,
10650 bool member_p,
10651 int declares_class_or_enum,
10652 bool* function_definition_p)
10654 cp_token *token;
10655 cp_declarator *declarator;
10656 tree prefix_attributes;
10657 tree attributes;
10658 tree asm_specification;
10659 tree initializer;
10660 tree decl = NULL_TREE;
10661 tree scope;
10662 bool is_initialized;
10663 bool is_parenthesized_init;
10664 bool is_non_constant_init;
10665 int ctor_dtor_or_conv_p;
10666 bool friend_p;
10667 tree pushed_scope = NULL;
10669 /* Gather the attributes that were provided with the
10670 decl-specifiers. */
10671 prefix_attributes = decl_specifiers->attributes;
10673 /* Assume that this is not the declarator for a function
10674 definition. */
10675 if (function_definition_p)
10676 *function_definition_p = false;
10678 /* Defer access checks while parsing the declarator; we cannot know
10679 what names are accessible until we know what is being
10680 declared. */
10681 resume_deferring_access_checks ();
10683 /* Parse the declarator. */
10684 declarator
10685 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
10686 &ctor_dtor_or_conv_p,
10687 /*parenthesized_p=*/NULL,
10688 /*member_p=*/false);
10689 /* Gather up the deferred checks. */
10690 stop_deferring_access_checks ();
10692 /* If the DECLARATOR was erroneous, there's no need to go
10693 further. */
10694 if (declarator == cp_error_declarator)
10695 return error_mark_node;
10697 if (declares_class_or_enum & 2)
10698 cp_parser_check_for_definition_in_return_type (declarator,
10699 decl_specifiers->type);
10701 /* Figure out what scope the entity declared by the DECLARATOR is
10702 located in. `grokdeclarator' sometimes changes the scope, so
10703 we compute it now. */
10704 scope = get_scope_of_declarator (declarator);
10706 /* If we're allowing GNU extensions, look for an asm-specification
10707 and attributes. */
10708 if (cp_parser_allow_gnu_extensions_p (parser))
10710 /* Look for an asm-specification. */
10711 asm_specification = cp_parser_asm_specification_opt (parser);
10712 /* And attributes. */
10713 attributes = cp_parser_attributes_opt (parser);
10715 else
10717 asm_specification = NULL_TREE;
10718 attributes = NULL_TREE;
10721 /* Peek at the next token. */
10722 token = cp_lexer_peek_token (parser->lexer);
10723 /* Check to see if the token indicates the start of a
10724 function-definition. */
10725 if (cp_parser_token_starts_function_definition_p (token))
10727 if (!function_definition_allowed_p)
10729 /* If a function-definition should not appear here, issue an
10730 error message. */
10731 cp_parser_error (parser,
10732 "a function-definition is not allowed here");
10733 return error_mark_node;
10735 else
10737 /* Neither attributes nor an asm-specification are allowed
10738 on a function-definition. */
10739 if (asm_specification)
10740 error ("an asm-specification is not allowed on a function-definition");
10741 if (attributes)
10742 error ("attributes are not allowed on a function-definition");
10743 /* This is a function-definition. */
10744 *function_definition_p = true;
10746 /* Parse the function definition. */
10747 if (member_p)
10748 decl = cp_parser_save_member_function_body (parser,
10749 decl_specifiers,
10750 declarator,
10751 prefix_attributes);
10752 else
10753 decl
10754 = (cp_parser_function_definition_from_specifiers_and_declarator
10755 (parser, decl_specifiers, prefix_attributes, declarator));
10757 return decl;
10761 /* [dcl.dcl]
10763 Only in function declarations for constructors, destructors, and
10764 type conversions can the decl-specifier-seq be omitted.
10766 We explicitly postpone this check past the point where we handle
10767 function-definitions because we tolerate function-definitions
10768 that are missing their return types in some modes. */
10769 if (!decl_specifiers->any_specifiers_p && ctor_dtor_or_conv_p <= 0)
10771 cp_parser_error (parser,
10772 "expected constructor, destructor, or type conversion");
10773 return error_mark_node;
10776 /* An `=' or an `(' indicates an initializer. */
10777 is_initialized = (token->type == CPP_EQ
10778 || token->type == CPP_OPEN_PAREN);
10779 /* If the init-declarator isn't initialized and isn't followed by a
10780 `,' or `;', it's not a valid init-declarator. */
10781 if (!is_initialized
10782 && token->type != CPP_COMMA
10783 && token->type != CPP_SEMICOLON)
10785 cp_parser_error (parser, "expected initializer");
10786 return error_mark_node;
10789 /* Because start_decl has side-effects, we should only call it if we
10790 know we're going ahead. By this point, we know that we cannot
10791 possibly be looking at any other construct. */
10792 cp_parser_commit_to_tentative_parse (parser);
10794 /* If the decl specifiers were bad, issue an error now that we're
10795 sure this was intended to be a declarator. Then continue
10796 declaring the variable(s), as int, to try to cut down on further
10797 errors. */
10798 if (decl_specifiers->any_specifiers_p
10799 && decl_specifiers->type == error_mark_node)
10801 cp_parser_error (parser, "invalid type in declaration");
10802 decl_specifiers->type = integer_type_node;
10805 /* Check to see whether or not this declaration is a friend. */
10806 friend_p = cp_parser_friend_p (decl_specifiers);
10808 /* Check that the number of template-parameter-lists is OK. */
10809 if (!cp_parser_check_declarator_template_parameters (parser, declarator))
10810 return error_mark_node;
10812 /* Enter the newly declared entry in the symbol table. If we're
10813 processing a declaration in a class-specifier, we wait until
10814 after processing the initializer. */
10815 if (!member_p)
10817 if (parser->in_unbraced_linkage_specification_p)
10819 decl_specifiers->storage_class = sc_extern;
10820 have_extern_spec = false;
10822 decl = start_decl (declarator, decl_specifiers,
10823 is_initialized, attributes, prefix_attributes,
10824 &pushed_scope);
10826 else if (scope)
10827 /* Enter the SCOPE. That way unqualified names appearing in the
10828 initializer will be looked up in SCOPE. */
10829 pushed_scope = push_scope (scope);
10831 /* Perform deferred access control checks, now that we know in which
10832 SCOPE the declared entity resides. */
10833 if (!member_p && decl)
10835 tree saved_current_function_decl = NULL_TREE;
10837 /* If the entity being declared is a function, pretend that we
10838 are in its scope. If it is a `friend', it may have access to
10839 things that would not otherwise be accessible. */
10840 if (TREE_CODE (decl) == FUNCTION_DECL)
10842 saved_current_function_decl = current_function_decl;
10843 current_function_decl = decl;
10846 /* Perform the access control checks for the declarator and the
10847 the decl-specifiers. */
10848 perform_deferred_access_checks ();
10850 /* Restore the saved value. */
10851 if (TREE_CODE (decl) == FUNCTION_DECL)
10852 current_function_decl = saved_current_function_decl;
10855 /* Parse the initializer. */
10856 if (is_initialized)
10857 initializer = cp_parser_initializer (parser,
10858 &is_parenthesized_init,
10859 &is_non_constant_init);
10860 else
10862 initializer = NULL_TREE;
10863 is_parenthesized_init = false;
10864 is_non_constant_init = true;
10867 /* The old parser allows attributes to appear after a parenthesized
10868 initializer. Mark Mitchell proposed removing this functionality
10869 on the GCC mailing lists on 2002-08-13. This parser accepts the
10870 attributes -- but ignores them. */
10871 if (cp_parser_allow_gnu_extensions_p (parser) && is_parenthesized_init)
10872 if (cp_parser_attributes_opt (parser))
10873 warning (OPT_Wattributes,
10874 "attributes after parenthesized initializer ignored");
10876 /* For an in-class declaration, use `grokfield' to create the
10877 declaration. */
10878 if (member_p)
10880 if (pushed_scope)
10882 pop_scope (pushed_scope);
10883 pushed_scope = false;
10885 decl = grokfield (declarator, decl_specifiers,
10886 initializer, /*asmspec=*/NULL_TREE,
10887 /*attributes=*/NULL_TREE);
10888 if (decl && TREE_CODE (decl) == FUNCTION_DECL)
10889 cp_parser_save_default_args (parser, decl);
10892 /* Finish processing the declaration. But, skip friend
10893 declarations. */
10894 if (!friend_p && decl && decl != error_mark_node)
10896 cp_finish_decl (decl,
10897 initializer,
10898 asm_specification,
10899 /* If the initializer is in parentheses, then this is
10900 a direct-initialization, which means that an
10901 `explicit' constructor is OK. Otherwise, an
10902 `explicit' constructor cannot be used. */
10903 ((is_parenthesized_init || !is_initialized)
10904 ? 0 : LOOKUP_ONLYCONVERTING));
10906 if (!friend_p && pushed_scope)
10907 pop_scope (pushed_scope);
10909 /* Remember whether or not variables were initialized by
10910 constant-expressions. */
10911 if (decl && TREE_CODE (decl) == VAR_DECL
10912 && is_initialized && !is_non_constant_init)
10913 DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = true;
10915 return decl;
10918 /* Parse a declarator.
10920 declarator:
10921 direct-declarator
10922 ptr-operator declarator
10924 abstract-declarator:
10925 ptr-operator abstract-declarator [opt]
10926 direct-abstract-declarator
10928 GNU Extensions:
10930 declarator:
10931 attributes [opt] direct-declarator
10932 attributes [opt] ptr-operator declarator
10934 abstract-declarator:
10935 attributes [opt] ptr-operator abstract-declarator [opt]
10936 attributes [opt] direct-abstract-declarator
10938 If CTOR_DTOR_OR_CONV_P is not NULL, *CTOR_DTOR_OR_CONV_P is used to
10939 detect constructor, destructor or conversion operators. It is set
10940 to -1 if the declarator is a name, and +1 if it is a
10941 function. Otherwise it is set to zero. Usually you just want to
10942 test for >0, but internally the negative value is used.
10944 (The reason for CTOR_DTOR_OR_CONV_P is that a declaration must have
10945 a decl-specifier-seq unless it declares a constructor, destructor,
10946 or conversion. It might seem that we could check this condition in
10947 semantic analysis, rather than parsing, but that makes it difficult
10948 to handle something like `f()'. We want to notice that there are
10949 no decl-specifiers, and therefore realize that this is an
10950 expression, not a declaration.)
10952 If PARENTHESIZED_P is non-NULL, *PARENTHESIZED_P is set to true iff
10953 the declarator is a direct-declarator of the form "(...)".
10955 MEMBER_P is true iff this declarator is a member-declarator. */
10957 static cp_declarator *
10958 cp_parser_declarator (cp_parser* parser,
10959 cp_parser_declarator_kind dcl_kind,
10960 int* ctor_dtor_or_conv_p,
10961 bool* parenthesized_p,
10962 bool member_p)
10964 cp_token *token;
10965 cp_declarator *declarator;
10966 enum tree_code code;
10967 cp_cv_quals cv_quals;
10968 tree class_type;
10969 tree attributes = NULL_TREE;
10971 /* Assume this is not a constructor, destructor, or type-conversion
10972 operator. */
10973 if (ctor_dtor_or_conv_p)
10974 *ctor_dtor_or_conv_p = 0;
10976 if (cp_parser_allow_gnu_extensions_p (parser))
10977 attributes = cp_parser_attributes_opt (parser);
10979 /* Peek at the next token. */
10980 token = cp_lexer_peek_token (parser->lexer);
10982 /* Check for the ptr-operator production. */
10983 cp_parser_parse_tentatively (parser);
10984 /* Parse the ptr-operator. */
10985 code = cp_parser_ptr_operator (parser,
10986 &class_type,
10987 &cv_quals);
10988 /* If that worked, then we have a ptr-operator. */
10989 if (cp_parser_parse_definitely (parser))
10991 /* If a ptr-operator was found, then this declarator was not
10992 parenthesized. */
10993 if (parenthesized_p)
10994 *parenthesized_p = true;
10995 /* The dependent declarator is optional if we are parsing an
10996 abstract-declarator. */
10997 if (dcl_kind != CP_PARSER_DECLARATOR_NAMED)
10998 cp_parser_parse_tentatively (parser);
11000 /* Parse the dependent declarator. */
11001 declarator = cp_parser_declarator (parser, dcl_kind,
11002 /*ctor_dtor_or_conv_p=*/NULL,
11003 /*parenthesized_p=*/NULL,
11004 /*member_p=*/false);
11006 /* If we are parsing an abstract-declarator, we must handle the
11007 case where the dependent declarator is absent. */
11008 if (dcl_kind != CP_PARSER_DECLARATOR_NAMED
11009 && !cp_parser_parse_definitely (parser))
11010 declarator = NULL;
11012 /* Build the representation of the ptr-operator. */
11013 if (class_type)
11014 declarator = make_ptrmem_declarator (cv_quals,
11015 class_type,
11016 declarator);
11017 else if (code == INDIRECT_REF)
11018 declarator = make_pointer_declarator (cv_quals, declarator);
11019 else
11020 declarator = make_reference_declarator (cv_quals, declarator);
11022 /* Everything else is a direct-declarator. */
11023 else
11025 if (parenthesized_p)
11026 *parenthesized_p = cp_lexer_next_token_is (parser->lexer,
11027 CPP_OPEN_PAREN);
11028 declarator = cp_parser_direct_declarator (parser, dcl_kind,
11029 ctor_dtor_or_conv_p,
11030 member_p);
11033 if (attributes && declarator != cp_error_declarator)
11034 declarator->attributes = attributes;
11036 return declarator;
11039 /* Parse a direct-declarator or direct-abstract-declarator.
11041 direct-declarator:
11042 declarator-id
11043 direct-declarator ( parameter-declaration-clause )
11044 cv-qualifier-seq [opt]
11045 exception-specification [opt]
11046 direct-declarator [ constant-expression [opt] ]
11047 ( declarator )
11049 direct-abstract-declarator:
11050 direct-abstract-declarator [opt]
11051 ( parameter-declaration-clause )
11052 cv-qualifier-seq [opt]
11053 exception-specification [opt]
11054 direct-abstract-declarator [opt] [ constant-expression [opt] ]
11055 ( abstract-declarator )
11057 Returns a representation of the declarator. DCL_KIND is
11058 CP_PARSER_DECLARATOR_ABSTRACT, if we are parsing a
11059 direct-abstract-declarator. It is CP_PARSER_DECLARATOR_NAMED, if
11060 we are parsing a direct-declarator. It is
11061 CP_PARSER_DECLARATOR_EITHER, if we can accept either - in the case
11062 of ambiguity we prefer an abstract declarator, as per
11063 [dcl.ambig.res]. CTOR_DTOR_OR_CONV_P and MEMBER_P are as for
11064 cp_parser_declarator. */
11066 static cp_declarator *
11067 cp_parser_direct_declarator (cp_parser* parser,
11068 cp_parser_declarator_kind dcl_kind,
11069 int* ctor_dtor_or_conv_p,
11070 bool member_p)
11072 cp_token *token;
11073 cp_declarator *declarator = NULL;
11074 tree scope = NULL_TREE;
11075 bool saved_default_arg_ok_p = parser->default_arg_ok_p;
11076 bool saved_in_declarator_p = parser->in_declarator_p;
11077 bool first = true;
11078 tree pushed_scope = NULL_TREE;
11080 while (true)
11082 /* Peek at the next token. */
11083 token = cp_lexer_peek_token (parser->lexer);
11084 if (token->type == CPP_OPEN_PAREN)
11086 /* This is either a parameter-declaration-clause, or a
11087 parenthesized declarator. When we know we are parsing a
11088 named declarator, it must be a parenthesized declarator
11089 if FIRST is true. For instance, `(int)' is a
11090 parameter-declaration-clause, with an omitted
11091 direct-abstract-declarator. But `((*))', is a
11092 parenthesized abstract declarator. Finally, when T is a
11093 template parameter `(T)' is a
11094 parameter-declaration-clause, and not a parenthesized
11095 named declarator.
11097 We first try and parse a parameter-declaration-clause,
11098 and then try a nested declarator (if FIRST is true).
11100 It is not an error for it not to be a
11101 parameter-declaration-clause, even when FIRST is
11102 false. Consider,
11104 int i (int);
11105 int i (3);
11107 The first is the declaration of a function while the
11108 second is a the definition of a variable, including its
11109 initializer.
11111 Having seen only the parenthesis, we cannot know which of
11112 these two alternatives should be selected. Even more
11113 complex are examples like:
11115 int i (int (a));
11116 int i (int (3));
11118 The former is a function-declaration; the latter is a
11119 variable initialization.
11121 Thus again, we try a parameter-declaration-clause, and if
11122 that fails, we back out and return. */
11124 if (!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED)
11126 cp_parameter_declarator *params;
11127 unsigned saved_num_template_parameter_lists;
11129 /* In a member-declarator, the only valid interpretation
11130 of a parenthesis is the start of a
11131 parameter-declaration-clause. (It is invalid to
11132 initialize a static data member with a parenthesized
11133 initializer; only the "=" form of initialization is
11134 permitted.) */
11135 if (!member_p)
11136 cp_parser_parse_tentatively (parser);
11138 /* Consume the `('. */
11139 cp_lexer_consume_token (parser->lexer);
11140 if (first)
11142 /* If this is going to be an abstract declarator, we're
11143 in a declarator and we can't have default args. */
11144 parser->default_arg_ok_p = false;
11145 parser->in_declarator_p = true;
11148 /* Inside the function parameter list, surrounding
11149 template-parameter-lists do not apply. */
11150 saved_num_template_parameter_lists
11151 = parser->num_template_parameter_lists;
11152 parser->num_template_parameter_lists = 0;
11154 /* Parse the parameter-declaration-clause. */
11155 params = cp_parser_parameter_declaration_clause (parser);
11157 parser->num_template_parameter_lists
11158 = saved_num_template_parameter_lists;
11160 /* If all went well, parse the cv-qualifier-seq and the
11161 exception-specification. */
11162 if (member_p || cp_parser_parse_definitely (parser))
11164 cp_cv_quals cv_quals;
11165 tree exception_specification;
11167 if (ctor_dtor_or_conv_p)
11168 *ctor_dtor_or_conv_p = *ctor_dtor_or_conv_p < 0;
11169 first = false;
11170 /* Consume the `)'. */
11171 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
11173 /* Parse the cv-qualifier-seq. */
11174 cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
11175 /* And the exception-specification. */
11176 exception_specification
11177 = cp_parser_exception_specification_opt (parser);
11179 /* Create the function-declarator. */
11180 declarator = make_call_declarator (declarator,
11181 params,
11182 cv_quals,
11183 exception_specification);
11184 /* Any subsequent parameter lists are to do with
11185 return type, so are not those of the declared
11186 function. */
11187 parser->default_arg_ok_p = false;
11189 /* Repeat the main loop. */
11190 continue;
11194 /* If this is the first, we can try a parenthesized
11195 declarator. */
11196 if (first)
11198 bool saved_in_type_id_in_expr_p;
11200 parser->default_arg_ok_p = saved_default_arg_ok_p;
11201 parser->in_declarator_p = saved_in_declarator_p;
11203 /* Consume the `('. */
11204 cp_lexer_consume_token (parser->lexer);
11205 /* Parse the nested declarator. */
11206 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
11207 parser->in_type_id_in_expr_p = true;
11208 declarator
11209 = cp_parser_declarator (parser, dcl_kind, ctor_dtor_or_conv_p,
11210 /*parenthesized_p=*/NULL,
11211 member_p);
11212 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
11213 first = false;
11214 /* Expect a `)'. */
11215 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
11216 declarator = cp_error_declarator;
11217 if (declarator == cp_error_declarator)
11218 break;
11220 goto handle_declarator;
11222 /* Otherwise, we must be done. */
11223 else
11224 break;
11226 else if ((!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED)
11227 && token->type == CPP_OPEN_SQUARE)
11229 /* Parse an array-declarator. */
11230 tree bounds;
11232 if (ctor_dtor_or_conv_p)
11233 *ctor_dtor_or_conv_p = 0;
11235 first = false;
11236 parser->default_arg_ok_p = false;
11237 parser->in_declarator_p = true;
11238 /* Consume the `['. */
11239 cp_lexer_consume_token (parser->lexer);
11240 /* Peek at the next token. */
11241 token = cp_lexer_peek_token (parser->lexer);
11242 /* If the next token is `]', then there is no
11243 constant-expression. */
11244 if (token->type != CPP_CLOSE_SQUARE)
11246 bool non_constant_p;
11248 bounds
11249 = cp_parser_constant_expression (parser,
11250 /*allow_non_constant=*/true,
11251 &non_constant_p);
11252 if (!non_constant_p)
11253 bounds = fold_non_dependent_expr (bounds);
11254 /* Normally, the array bound must be an integral constant
11255 expression. However, as an extension, we allow VLAs
11256 in function scopes. */
11257 else if (!at_function_scope_p ())
11259 error ("array bound is not an integer constant");
11260 bounds = error_mark_node;
11263 else
11264 bounds = NULL_TREE;
11265 /* Look for the closing `]'. */
11266 if (!cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'"))
11268 declarator = cp_error_declarator;
11269 break;
11272 declarator = make_array_declarator (declarator, bounds);
11274 else if (first && dcl_kind != CP_PARSER_DECLARATOR_ABSTRACT)
11276 tree qualifying_scope;
11277 tree unqualified_name;
11279 /* Parse a declarator-id */
11280 if (dcl_kind == CP_PARSER_DECLARATOR_EITHER)
11281 cp_parser_parse_tentatively (parser);
11282 unqualified_name = cp_parser_declarator_id (parser);
11283 qualifying_scope = parser->scope;
11284 if (dcl_kind == CP_PARSER_DECLARATOR_EITHER)
11286 if (!cp_parser_parse_definitely (parser))
11287 unqualified_name = error_mark_node;
11288 else if (qualifying_scope
11289 || (TREE_CODE (unqualified_name)
11290 != IDENTIFIER_NODE))
11292 cp_parser_error (parser, "expected unqualified-id");
11293 unqualified_name = error_mark_node;
11297 if (unqualified_name == error_mark_node)
11299 declarator = cp_error_declarator;
11300 break;
11303 if (qualifying_scope && at_namespace_scope_p ()
11304 && TREE_CODE (qualifying_scope) == TYPENAME_TYPE)
11306 /* In the declaration of a member of a template class
11307 outside of the class itself, the SCOPE will sometimes
11308 be a TYPENAME_TYPE. For example, given:
11310 template <typename T>
11311 int S<T>::R::i = 3;
11313 the SCOPE will be a TYPENAME_TYPE for `S<T>::R'. In
11314 this context, we must resolve S<T>::R to an ordinary
11315 type, rather than a typename type.
11317 The reason we normally avoid resolving TYPENAME_TYPEs
11318 is that a specialization of `S' might render
11319 `S<T>::R' not a type. However, if `S' is
11320 specialized, then this `i' will not be used, so there
11321 is no harm in resolving the types here. */
11322 tree type;
11324 /* Resolve the TYPENAME_TYPE. */
11325 type = resolve_typename_type (qualifying_scope,
11326 /*only_current_p=*/false);
11327 /* If that failed, the declarator is invalid. */
11328 if (type == error_mark_node)
11329 error ("%<%T::%D%> is not a type",
11330 TYPE_CONTEXT (qualifying_scope),
11331 TYPE_IDENTIFIER (qualifying_scope));
11332 qualifying_scope = type;
11335 declarator = make_id_declarator (qualifying_scope,
11336 unqualified_name);
11337 declarator->id_loc = token->location;
11338 if (unqualified_name)
11340 tree class_type;
11342 if (qualifying_scope
11343 && CLASS_TYPE_P (qualifying_scope))
11344 class_type = qualifying_scope;
11345 else
11346 class_type = current_class_type;
11348 if (class_type)
11350 if (TREE_CODE (unqualified_name) == BIT_NOT_EXPR)
11351 declarator->u.id.sfk = sfk_destructor;
11352 else if (IDENTIFIER_TYPENAME_P (unqualified_name))
11353 declarator->u.id.sfk = sfk_conversion;
11354 else if (/* There's no way to declare a constructor
11355 for an anonymous type, even if the type
11356 got a name for linkage purposes. */
11357 !TYPE_WAS_ANONYMOUS (class_type)
11358 && (constructor_name_p (unqualified_name,
11359 class_type)
11360 || (TREE_CODE (unqualified_name) == TYPE_DECL
11361 && (same_type_p
11362 (TREE_TYPE (unqualified_name),
11363 class_type)))))
11364 declarator->u.id.sfk = sfk_constructor;
11366 if (ctor_dtor_or_conv_p && declarator->u.id.sfk != sfk_none)
11367 *ctor_dtor_or_conv_p = -1;
11368 if (qualifying_scope
11369 && TREE_CODE (unqualified_name) == TYPE_DECL
11370 && CLASSTYPE_USE_TEMPLATE (TREE_TYPE (unqualified_name)))
11372 error ("invalid use of constructor as a template");
11373 inform ("use %<%T::%D%> instead of %<%T::%T%> to name "
11374 "the constructor in a qualified name",
11375 class_type,
11376 DECL_NAME (TYPE_TI_TEMPLATE (class_type)),
11377 class_type, class_type);
11382 handle_declarator:;
11383 scope = get_scope_of_declarator (declarator);
11384 if (scope)
11385 /* Any names that appear after the declarator-id for a
11386 member are looked up in the containing scope. */
11387 pushed_scope = push_scope (scope);
11388 parser->in_declarator_p = true;
11389 if ((ctor_dtor_or_conv_p && *ctor_dtor_or_conv_p)
11390 || (declarator && declarator->kind == cdk_id))
11391 /* Default args are only allowed on function
11392 declarations. */
11393 parser->default_arg_ok_p = saved_default_arg_ok_p;
11394 else
11395 parser->default_arg_ok_p = false;
11397 first = false;
11399 /* We're done. */
11400 else
11401 break;
11404 /* For an abstract declarator, we might wind up with nothing at this
11405 point. That's an error; the declarator is not optional. */
11406 if (!declarator)
11407 cp_parser_error (parser, "expected declarator");
11409 /* If we entered a scope, we must exit it now. */
11410 if (pushed_scope)
11411 pop_scope (pushed_scope);
11413 parser->default_arg_ok_p = saved_default_arg_ok_p;
11414 parser->in_declarator_p = saved_in_declarator_p;
11416 return declarator;
11419 /* Parse a ptr-operator.
11421 ptr-operator:
11422 * cv-qualifier-seq [opt]
11424 :: [opt] nested-name-specifier * cv-qualifier-seq [opt]
11426 GNU Extension:
11428 ptr-operator:
11429 & cv-qualifier-seq [opt]
11431 Returns INDIRECT_REF if a pointer, or pointer-to-member, was used.
11432 Returns ADDR_EXPR if a reference was used. In the case of a
11433 pointer-to-member, *TYPE is filled in with the TYPE containing the
11434 member. *CV_QUALS is filled in with the cv-qualifier-seq, or
11435 TYPE_UNQUALIFIED, if there are no cv-qualifiers. Returns
11436 ERROR_MARK if an error occurred. */
11438 static enum tree_code
11439 cp_parser_ptr_operator (cp_parser* parser,
11440 tree* type,
11441 cp_cv_quals *cv_quals)
11443 enum tree_code code = ERROR_MARK;
11444 cp_token *token;
11446 /* Assume that it's not a pointer-to-member. */
11447 *type = NULL_TREE;
11448 /* And that there are no cv-qualifiers. */
11449 *cv_quals = TYPE_UNQUALIFIED;
11451 /* Peek at the next token. */
11452 token = cp_lexer_peek_token (parser->lexer);
11453 /* If it's a `*' or `&' we have a pointer or reference. */
11454 if (token->type == CPP_MULT || token->type == CPP_AND)
11456 /* Remember which ptr-operator we were processing. */
11457 code = (token->type == CPP_AND ? ADDR_EXPR : INDIRECT_REF);
11459 /* Consume the `*' or `&'. */
11460 cp_lexer_consume_token (parser->lexer);
11462 /* A `*' can be followed by a cv-qualifier-seq, and so can a
11463 `&', if we are allowing GNU extensions. (The only qualifier
11464 that can legally appear after `&' is `restrict', but that is
11465 enforced during semantic analysis. */
11466 if (code == INDIRECT_REF
11467 || cp_parser_allow_gnu_extensions_p (parser))
11468 *cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
11470 else
11472 /* Try the pointer-to-member case. */
11473 cp_parser_parse_tentatively (parser);
11474 /* Look for the optional `::' operator. */
11475 cp_parser_global_scope_opt (parser,
11476 /*current_scope_valid_p=*/false);
11477 /* Look for the nested-name specifier. */
11478 cp_parser_nested_name_specifier (parser,
11479 /*typename_keyword_p=*/false,
11480 /*check_dependency_p=*/true,
11481 /*type_p=*/false,
11482 /*is_declaration=*/false);
11483 /* If we found it, and the next token is a `*', then we are
11484 indeed looking at a pointer-to-member operator. */
11485 if (!cp_parser_error_occurred (parser)
11486 && cp_parser_require (parser, CPP_MULT, "`*'"))
11488 /* The type of which the member is a member is given by the
11489 current SCOPE. */
11490 *type = parser->scope;
11491 /* The next name will not be qualified. */
11492 parser->scope = NULL_TREE;
11493 parser->qualifying_scope = NULL_TREE;
11494 parser->object_scope = NULL_TREE;
11495 /* Indicate that the `*' operator was used. */
11496 code = INDIRECT_REF;
11497 /* Look for the optional cv-qualifier-seq. */
11498 *cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
11500 /* If that didn't work we don't have a ptr-operator. */
11501 if (!cp_parser_parse_definitely (parser))
11502 cp_parser_error (parser, "expected ptr-operator");
11505 return code;
11508 /* Parse an (optional) cv-qualifier-seq.
11510 cv-qualifier-seq:
11511 cv-qualifier cv-qualifier-seq [opt]
11513 cv-qualifier:
11514 const
11515 volatile
11517 GNU Extension:
11519 cv-qualifier:
11520 __restrict__
11522 Returns a bitmask representing the cv-qualifiers. */
11524 static cp_cv_quals
11525 cp_parser_cv_qualifier_seq_opt (cp_parser* parser)
11527 cp_cv_quals cv_quals = TYPE_UNQUALIFIED;
11529 while (true)
11531 cp_token *token;
11532 cp_cv_quals cv_qualifier;
11534 /* Peek at the next token. */
11535 token = cp_lexer_peek_token (parser->lexer);
11536 /* See if it's a cv-qualifier. */
11537 switch (token->keyword)
11539 case RID_CONST:
11540 cv_qualifier = TYPE_QUAL_CONST;
11541 break;
11543 case RID_VOLATILE:
11544 cv_qualifier = TYPE_QUAL_VOLATILE;
11545 break;
11547 case RID_RESTRICT:
11548 cv_qualifier = TYPE_QUAL_RESTRICT;
11549 break;
11551 default:
11552 cv_qualifier = TYPE_UNQUALIFIED;
11553 break;
11556 if (!cv_qualifier)
11557 break;
11559 if (cv_quals & cv_qualifier)
11561 error ("duplicate cv-qualifier");
11562 cp_lexer_purge_token (parser->lexer);
11564 else
11566 cp_lexer_consume_token (parser->lexer);
11567 cv_quals |= cv_qualifier;
11571 return cv_quals;
11574 /* Parse a declarator-id.
11576 declarator-id:
11577 id-expression
11578 :: [opt] nested-name-specifier [opt] type-name
11580 In the `id-expression' case, the value returned is as for
11581 cp_parser_id_expression if the id-expression was an unqualified-id.
11582 If the id-expression was a qualified-id, then a SCOPE_REF is
11583 returned. The first operand is the scope (either a NAMESPACE_DECL
11584 or TREE_TYPE), but the second is still just a representation of an
11585 unqualified-id. */
11587 static tree
11588 cp_parser_declarator_id (cp_parser* parser)
11590 /* The expression must be an id-expression. Assume that qualified
11591 names are the names of types so that:
11593 template <class T>
11594 int S<T>::R::i = 3;
11596 will work; we must treat `S<T>::R' as the name of a type.
11597 Similarly, assume that qualified names are templates, where
11598 required, so that:
11600 template <class T>
11601 int S<T>::R<T>::i = 3;
11603 will work, too. */
11604 return cp_parser_id_expression (parser,
11605 /*template_keyword_p=*/false,
11606 /*check_dependency_p=*/false,
11607 /*template_p=*/NULL,
11608 /*declarator_p=*/true);
11611 /* Parse a type-id.
11613 type-id:
11614 type-specifier-seq abstract-declarator [opt]
11616 Returns the TYPE specified. */
11618 static tree
11619 cp_parser_type_id (cp_parser* parser)
11621 cp_decl_specifier_seq type_specifier_seq;
11622 cp_declarator *abstract_declarator;
11624 /* Parse the type-specifier-seq. */
11625 cp_parser_type_specifier_seq (parser, /*is_condition=*/false,
11626 &type_specifier_seq);
11627 if (type_specifier_seq.type == error_mark_node)
11628 return error_mark_node;
11630 /* There might or might not be an abstract declarator. */
11631 cp_parser_parse_tentatively (parser);
11632 /* Look for the declarator. */
11633 abstract_declarator
11634 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_ABSTRACT, NULL,
11635 /*parenthesized_p=*/NULL,
11636 /*member_p=*/false);
11637 /* Check to see if there really was a declarator. */
11638 if (!cp_parser_parse_definitely (parser))
11639 abstract_declarator = NULL;
11641 return groktypename (&type_specifier_seq, abstract_declarator);
11644 /* Parse a type-specifier-seq.
11646 type-specifier-seq:
11647 type-specifier type-specifier-seq [opt]
11649 GNU extension:
11651 type-specifier-seq:
11652 attributes type-specifier-seq [opt]
11654 If IS_CONDITION is true, we are at the start of a "condition",
11655 e.g., we've just seen "if (".
11657 Sets *TYPE_SPECIFIER_SEQ to represent the sequence. */
11659 static void
11660 cp_parser_type_specifier_seq (cp_parser* parser,
11661 bool is_condition,
11662 cp_decl_specifier_seq *type_specifier_seq)
11664 bool seen_type_specifier = false;
11665 cp_parser_flags flags = CP_PARSER_FLAGS_OPTIONAL;
11667 /* Clear the TYPE_SPECIFIER_SEQ. */
11668 clear_decl_specs (type_specifier_seq);
11670 /* Parse the type-specifiers and attributes. */
11671 while (true)
11673 tree type_specifier;
11674 bool is_cv_qualifier;
11676 /* Check for attributes first. */
11677 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ATTRIBUTE))
11679 type_specifier_seq->attributes =
11680 chainon (type_specifier_seq->attributes,
11681 cp_parser_attributes_opt (parser));
11682 continue;
11685 /* Look for the type-specifier. */
11686 type_specifier = cp_parser_type_specifier (parser,
11687 flags,
11688 type_specifier_seq,
11689 /*is_declaration=*/false,
11690 NULL,
11691 &is_cv_qualifier);
11692 if (!type_specifier)
11694 /* If the first type-specifier could not be found, this is not a
11695 type-specifier-seq at all. */
11696 if (!seen_type_specifier)
11698 cp_parser_error (parser, "expected type-specifier");
11699 type_specifier_seq->type = error_mark_node;
11700 return;
11702 /* If subsequent type-specifiers could not be found, the
11703 type-specifier-seq is complete. */
11704 break;
11707 seen_type_specifier = true;
11708 /* The standard says that a condition can be:
11710 type-specifier-seq declarator = assignment-expression
11712 However, given:
11714 struct S {};
11715 if (int S = ...)
11717 we should treat the "S" as a declarator, not as a
11718 type-specifier. The standard doesn't say that explicitly for
11719 type-specifier-seq, but it does say that for
11720 decl-specifier-seq in an ordinary declaration. Perhaps it
11721 would be clearer just to allow a decl-specifier-seq here, and
11722 then add a semantic restriction that if any decl-specifiers
11723 that are not type-specifiers appear, the program is invalid. */
11724 if (is_condition && !is_cv_qualifier)
11725 flags |= CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES;
11728 return;
11731 /* Parse a parameter-declaration-clause.
11733 parameter-declaration-clause:
11734 parameter-declaration-list [opt] ... [opt]
11735 parameter-declaration-list , ...
11737 Returns a representation for the parameter declarations. A return
11738 value of NULL indicates a parameter-declaration-clause consisting
11739 only of an ellipsis. */
11741 static cp_parameter_declarator *
11742 cp_parser_parameter_declaration_clause (cp_parser* parser)
11744 cp_parameter_declarator *parameters;
11745 cp_token *token;
11746 bool ellipsis_p;
11747 bool is_error;
11749 /* Peek at the next token. */
11750 token = cp_lexer_peek_token (parser->lexer);
11751 /* Check for trivial parameter-declaration-clauses. */
11752 if (token->type == CPP_ELLIPSIS)
11754 /* Consume the `...' token. */
11755 cp_lexer_consume_token (parser->lexer);
11756 return NULL;
11758 else if (token->type == CPP_CLOSE_PAREN)
11759 /* There are no parameters. */
11761 #ifndef NO_IMPLICIT_EXTERN_C
11762 if (in_system_header && current_class_type == NULL
11763 && current_lang_name == lang_name_c)
11764 return NULL;
11765 else
11766 #endif
11767 return no_parameters;
11769 /* Check for `(void)', too, which is a special case. */
11770 else if (token->keyword == RID_VOID
11771 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
11772 == CPP_CLOSE_PAREN))
11774 /* Consume the `void' token. */
11775 cp_lexer_consume_token (parser->lexer);
11776 /* There are no parameters. */
11777 return no_parameters;
11780 /* Parse the parameter-declaration-list. */
11781 parameters = cp_parser_parameter_declaration_list (parser, &is_error);
11782 /* If a parse error occurred while parsing the
11783 parameter-declaration-list, then the entire
11784 parameter-declaration-clause is erroneous. */
11785 if (is_error)
11786 return NULL;
11788 /* Peek at the next token. */
11789 token = cp_lexer_peek_token (parser->lexer);
11790 /* If it's a `,', the clause should terminate with an ellipsis. */
11791 if (token->type == CPP_COMMA)
11793 /* Consume the `,'. */
11794 cp_lexer_consume_token (parser->lexer);
11795 /* Expect an ellipsis. */
11796 ellipsis_p
11797 = (cp_parser_require (parser, CPP_ELLIPSIS, "`...'") != NULL);
11799 /* It might also be `...' if the optional trailing `,' was
11800 omitted. */
11801 else if (token->type == CPP_ELLIPSIS)
11803 /* Consume the `...' token. */
11804 cp_lexer_consume_token (parser->lexer);
11805 /* And remember that we saw it. */
11806 ellipsis_p = true;
11808 else
11809 ellipsis_p = false;
11811 /* Finish the parameter list. */
11812 if (parameters && ellipsis_p)
11813 parameters->ellipsis_p = true;
11815 return parameters;
11818 /* Parse a parameter-declaration-list.
11820 parameter-declaration-list:
11821 parameter-declaration
11822 parameter-declaration-list , parameter-declaration
11824 Returns a representation of the parameter-declaration-list, as for
11825 cp_parser_parameter_declaration_clause. However, the
11826 `void_list_node' is never appended to the list. Upon return,
11827 *IS_ERROR will be true iff an error occurred. */
11829 static cp_parameter_declarator *
11830 cp_parser_parameter_declaration_list (cp_parser* parser, bool *is_error)
11832 cp_parameter_declarator *parameters = NULL;
11833 cp_parameter_declarator **tail = &parameters;
11835 /* Assume all will go well. */
11836 *is_error = false;
11838 /* Look for more parameters. */
11839 while (true)
11841 cp_parameter_declarator *parameter;
11842 bool parenthesized_p;
11843 /* Parse the parameter. */
11844 parameter
11845 = cp_parser_parameter_declaration (parser,
11846 /*template_parm_p=*/false,
11847 &parenthesized_p);
11849 /* If a parse error occurred parsing the parameter declaration,
11850 then the entire parameter-declaration-list is erroneous. */
11851 if (!parameter)
11853 *is_error = true;
11854 parameters = NULL;
11855 break;
11857 /* Add the new parameter to the list. */
11858 *tail = parameter;
11859 tail = &parameter->next;
11861 /* Peek at the next token. */
11862 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN)
11863 || cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS)
11864 /* These are for Objective-C++ */
11865 || cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)
11866 || cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
11867 /* The parameter-declaration-list is complete. */
11868 break;
11869 else if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
11871 cp_token *token;
11873 /* Peek at the next token. */
11874 token = cp_lexer_peek_nth_token (parser->lexer, 2);
11875 /* If it's an ellipsis, then the list is complete. */
11876 if (token->type == CPP_ELLIPSIS)
11877 break;
11878 /* Otherwise, there must be more parameters. Consume the
11879 `,'. */
11880 cp_lexer_consume_token (parser->lexer);
11881 /* When parsing something like:
11883 int i(float f, double d)
11885 we can tell after seeing the declaration for "f" that we
11886 are not looking at an initialization of a variable "i",
11887 but rather at the declaration of a function "i".
11889 Due to the fact that the parsing of template arguments
11890 (as specified to a template-id) requires backtracking we
11891 cannot use this technique when inside a template argument
11892 list. */
11893 if (!parser->in_template_argument_list_p
11894 && !parser->in_type_id_in_expr_p
11895 && cp_parser_uncommitted_to_tentative_parse_p (parser)
11896 /* However, a parameter-declaration of the form
11897 "foat(f)" (which is a valid declaration of a
11898 parameter "f") can also be interpreted as an
11899 expression (the conversion of "f" to "float"). */
11900 && !parenthesized_p)
11901 cp_parser_commit_to_tentative_parse (parser);
11903 else
11905 cp_parser_error (parser, "expected %<,%> or %<...%>");
11906 if (!cp_parser_uncommitted_to_tentative_parse_p (parser))
11907 cp_parser_skip_to_closing_parenthesis (parser,
11908 /*recovering=*/true,
11909 /*or_comma=*/false,
11910 /*consume_paren=*/false);
11911 break;
11915 return parameters;
11918 /* Parse a parameter declaration.
11920 parameter-declaration:
11921 decl-specifier-seq declarator
11922 decl-specifier-seq declarator = assignment-expression
11923 decl-specifier-seq abstract-declarator [opt]
11924 decl-specifier-seq abstract-declarator [opt] = assignment-expression
11926 If TEMPLATE_PARM_P is TRUE, then this parameter-declaration
11927 declares a template parameter. (In that case, a non-nested `>'
11928 token encountered during the parsing of the assignment-expression
11929 is not interpreted as a greater-than operator.)
11931 Returns a representation of the parameter, or NULL if an error
11932 occurs. If PARENTHESIZED_P is non-NULL, *PARENTHESIZED_P is set to
11933 true iff the declarator is of the form "(p)". */
11935 static cp_parameter_declarator *
11936 cp_parser_parameter_declaration (cp_parser *parser,
11937 bool template_parm_p,
11938 bool *parenthesized_p)
11940 int declares_class_or_enum;
11941 bool greater_than_is_operator_p;
11942 cp_decl_specifier_seq decl_specifiers;
11943 cp_declarator *declarator;
11944 tree default_argument;
11945 cp_token *token;
11946 const char *saved_message;
11948 /* In a template parameter, `>' is not an operator.
11950 [temp.param]
11952 When parsing a default template-argument for a non-type
11953 template-parameter, the first non-nested `>' is taken as the end
11954 of the template parameter-list rather than a greater-than
11955 operator. */
11956 greater_than_is_operator_p = !template_parm_p;
11958 /* Type definitions may not appear in parameter types. */
11959 saved_message = parser->type_definition_forbidden_message;
11960 parser->type_definition_forbidden_message
11961 = "types may not be defined in parameter types";
11963 /* Parse the declaration-specifiers. */
11964 cp_parser_decl_specifier_seq (parser,
11965 CP_PARSER_FLAGS_NONE,
11966 &decl_specifiers,
11967 &declares_class_or_enum);
11968 /* If an error occurred, there's no reason to attempt to parse the
11969 rest of the declaration. */
11970 if (cp_parser_error_occurred (parser))
11972 parser->type_definition_forbidden_message = saved_message;
11973 return NULL;
11976 /* Peek at the next token. */
11977 token = cp_lexer_peek_token (parser->lexer);
11978 /* If the next token is a `)', `,', `=', `>', or `...', then there
11979 is no declarator. */
11980 if (token->type == CPP_CLOSE_PAREN
11981 || token->type == CPP_COMMA
11982 || token->type == CPP_EQ
11983 || token->type == CPP_ELLIPSIS
11984 || token->type == CPP_GREATER)
11986 declarator = NULL;
11987 if (parenthesized_p)
11988 *parenthesized_p = false;
11990 /* Otherwise, there should be a declarator. */
11991 else
11993 bool saved_default_arg_ok_p = parser->default_arg_ok_p;
11994 parser->default_arg_ok_p = false;
11996 /* After seeing a decl-specifier-seq, if the next token is not a
11997 "(", there is no possibility that the code is a valid
11998 expression. Therefore, if parsing tentatively, we commit at
11999 this point. */
12000 if (!parser->in_template_argument_list_p
12001 /* In an expression context, having seen:
12003 (int((char ...
12005 we cannot be sure whether we are looking at a
12006 function-type (taking a "char" as a parameter) or a cast
12007 of some object of type "char" to "int". */
12008 && !parser->in_type_id_in_expr_p
12009 && cp_parser_uncommitted_to_tentative_parse_p (parser)
12010 && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
12011 cp_parser_commit_to_tentative_parse (parser);
12012 /* Parse the declarator. */
12013 declarator = cp_parser_declarator (parser,
12014 CP_PARSER_DECLARATOR_EITHER,
12015 /*ctor_dtor_or_conv_p=*/NULL,
12016 parenthesized_p,
12017 /*member_p=*/false);
12018 parser->default_arg_ok_p = saved_default_arg_ok_p;
12019 /* After the declarator, allow more attributes. */
12020 decl_specifiers.attributes
12021 = chainon (decl_specifiers.attributes,
12022 cp_parser_attributes_opt (parser));
12025 /* The restriction on defining new types applies only to the type
12026 of the parameter, not to the default argument. */
12027 parser->type_definition_forbidden_message = saved_message;
12029 /* If the next token is `=', then process a default argument. */
12030 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
12032 bool saved_greater_than_is_operator_p;
12033 /* Consume the `='. */
12034 cp_lexer_consume_token (parser->lexer);
12036 /* If we are defining a class, then the tokens that make up the
12037 default argument must be saved and processed later. */
12038 if (!template_parm_p && at_class_scope_p ()
12039 && TYPE_BEING_DEFINED (current_class_type))
12041 unsigned depth = 0;
12042 cp_token *first_token;
12043 cp_token *token;
12045 /* Add tokens until we have processed the entire default
12046 argument. We add the range [first_token, token). */
12047 first_token = cp_lexer_peek_token (parser->lexer);
12048 while (true)
12050 bool done = false;
12052 /* Peek at the next token. */
12053 token = cp_lexer_peek_token (parser->lexer);
12054 /* What we do depends on what token we have. */
12055 switch (token->type)
12057 /* In valid code, a default argument must be
12058 immediately followed by a `,' `)', or `...'. */
12059 case CPP_COMMA:
12060 case CPP_CLOSE_PAREN:
12061 case CPP_ELLIPSIS:
12062 /* If we run into a non-nested `;', `}', or `]',
12063 then the code is invalid -- but the default
12064 argument is certainly over. */
12065 case CPP_SEMICOLON:
12066 case CPP_CLOSE_BRACE:
12067 case CPP_CLOSE_SQUARE:
12068 if (depth == 0)
12069 done = true;
12070 /* Update DEPTH, if necessary. */
12071 else if (token->type == CPP_CLOSE_PAREN
12072 || token->type == CPP_CLOSE_BRACE
12073 || token->type == CPP_CLOSE_SQUARE)
12074 --depth;
12075 break;
12077 case CPP_OPEN_PAREN:
12078 case CPP_OPEN_SQUARE:
12079 case CPP_OPEN_BRACE:
12080 ++depth;
12081 break;
12083 case CPP_GREATER:
12084 /* If we see a non-nested `>', and `>' is not an
12085 operator, then it marks the end of the default
12086 argument. */
12087 if (!depth && !greater_than_is_operator_p)
12088 done = true;
12089 break;
12091 /* If we run out of tokens, issue an error message. */
12092 case CPP_EOF:
12093 error ("file ends in default argument");
12094 done = true;
12095 break;
12097 case CPP_NAME:
12098 case CPP_SCOPE:
12099 /* In these cases, we should look for template-ids.
12100 For example, if the default argument is
12101 `X<int, double>()', we need to do name lookup to
12102 figure out whether or not `X' is a template; if
12103 so, the `,' does not end the default argument.
12105 That is not yet done. */
12106 break;
12108 default:
12109 break;
12112 /* If we've reached the end, stop. */
12113 if (done)
12114 break;
12116 /* Add the token to the token block. */
12117 token = cp_lexer_consume_token (parser->lexer);
12120 /* Create a DEFAULT_ARG to represented the unparsed default
12121 argument. */
12122 default_argument = make_node (DEFAULT_ARG);
12123 DEFARG_TOKENS (default_argument)
12124 = cp_token_cache_new (first_token, token);
12126 /* Outside of a class definition, we can just parse the
12127 assignment-expression. */
12128 else
12130 bool saved_local_variables_forbidden_p;
12132 /* Make sure that PARSER->GREATER_THAN_IS_OPERATOR_P is
12133 set correctly. */
12134 saved_greater_than_is_operator_p
12135 = parser->greater_than_is_operator_p;
12136 parser->greater_than_is_operator_p = greater_than_is_operator_p;
12137 /* Local variable names (and the `this' keyword) may not
12138 appear in a default argument. */
12139 saved_local_variables_forbidden_p
12140 = parser->local_variables_forbidden_p;
12141 parser->local_variables_forbidden_p = true;
12142 /* Parse the assignment-expression. */
12143 default_argument
12144 = cp_parser_assignment_expression (parser, /*cast_p=*/false);
12145 /* Restore saved state. */
12146 parser->greater_than_is_operator_p
12147 = saved_greater_than_is_operator_p;
12148 parser->local_variables_forbidden_p
12149 = saved_local_variables_forbidden_p;
12151 if (!parser->default_arg_ok_p)
12153 if (!flag_pedantic_errors)
12154 warning (0, "deprecated use of default argument for parameter of non-function");
12155 else
12157 error ("default arguments are only permitted for function parameters");
12158 default_argument = NULL_TREE;
12162 else
12163 default_argument = NULL_TREE;
12165 return make_parameter_declarator (&decl_specifiers,
12166 declarator,
12167 default_argument);
12170 /* Parse a function-body.
12172 function-body:
12173 compound_statement */
12175 static void
12176 cp_parser_function_body (cp_parser *parser)
12178 cp_parser_compound_statement (parser, NULL, false);
12181 /* Parse a ctor-initializer-opt followed by a function-body. Return
12182 true if a ctor-initializer was present. */
12184 static bool
12185 cp_parser_ctor_initializer_opt_and_function_body (cp_parser *parser)
12187 tree body;
12188 bool ctor_initializer_p;
12190 /* Begin the function body. */
12191 body = begin_function_body ();
12192 /* Parse the optional ctor-initializer. */
12193 ctor_initializer_p = cp_parser_ctor_initializer_opt (parser);
12194 /* Parse the function-body. */
12195 cp_parser_function_body (parser);
12196 /* Finish the function body. */
12197 finish_function_body (body);
12199 return ctor_initializer_p;
12202 /* Parse an initializer.
12204 initializer:
12205 = initializer-clause
12206 ( expression-list )
12208 Returns a expression representing the initializer. If no
12209 initializer is present, NULL_TREE is returned.
12211 *IS_PARENTHESIZED_INIT is set to TRUE if the `( expression-list )'
12212 production is used, and zero otherwise. *IS_PARENTHESIZED_INIT is
12213 set to FALSE if there is no initializer present. If there is an
12214 initializer, and it is not a constant-expression, *NON_CONSTANT_P
12215 is set to true; otherwise it is set to false. */
12217 static tree
12218 cp_parser_initializer (cp_parser* parser, bool* is_parenthesized_init,
12219 bool* non_constant_p)
12221 cp_token *token;
12222 tree init;
12224 /* Peek at the next token. */
12225 token = cp_lexer_peek_token (parser->lexer);
12227 /* Let our caller know whether or not this initializer was
12228 parenthesized. */
12229 *is_parenthesized_init = (token->type == CPP_OPEN_PAREN);
12230 /* Assume that the initializer is constant. */
12231 *non_constant_p = false;
12233 if (token->type == CPP_EQ)
12235 /* Consume the `='. */
12236 cp_lexer_consume_token (parser->lexer);
12237 /* Parse the initializer-clause. */
12238 init = cp_parser_initializer_clause (parser, non_constant_p);
12240 else if (token->type == CPP_OPEN_PAREN)
12241 init = cp_parser_parenthesized_expression_list (parser, false,
12242 /*cast_p=*/false,
12243 non_constant_p);
12244 else
12246 /* Anything else is an error. */
12247 cp_parser_error (parser, "expected initializer");
12248 init = error_mark_node;
12251 return init;
12254 /* Parse an initializer-clause.
12256 initializer-clause:
12257 assignment-expression
12258 { initializer-list , [opt] }
12261 Returns an expression representing the initializer.
12263 If the `assignment-expression' production is used the value
12264 returned is simply a representation for the expression.
12266 Otherwise, a CONSTRUCTOR is returned. The CONSTRUCTOR_ELTS will be
12267 the elements of the initializer-list (or NULL_TREE, if the last
12268 production is used). The TREE_TYPE for the CONSTRUCTOR will be
12269 NULL_TREE. There is no way to detect whether or not the optional
12270 trailing `,' was provided. NON_CONSTANT_P is as for
12271 cp_parser_initializer. */
12273 static tree
12274 cp_parser_initializer_clause (cp_parser* parser, bool* non_constant_p)
12276 tree initializer;
12278 /* Assume the expression is constant. */
12279 *non_constant_p = false;
12281 /* If it is not a `{', then we are looking at an
12282 assignment-expression. */
12283 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
12285 initializer
12286 = cp_parser_constant_expression (parser,
12287 /*allow_non_constant_p=*/true,
12288 non_constant_p);
12289 if (!*non_constant_p)
12290 initializer = fold_non_dependent_expr (initializer);
12292 else
12294 /* Consume the `{' token. */
12295 cp_lexer_consume_token (parser->lexer);
12296 /* Create a CONSTRUCTOR to represent the braced-initializer. */
12297 initializer = make_node (CONSTRUCTOR);
12298 /* If it's not a `}', then there is a non-trivial initializer. */
12299 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_BRACE))
12301 /* Parse the initializer list. */
12302 CONSTRUCTOR_ELTS (initializer)
12303 = cp_parser_initializer_list (parser, non_constant_p);
12304 /* A trailing `,' token is allowed. */
12305 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
12306 cp_lexer_consume_token (parser->lexer);
12308 /* Now, there should be a trailing `}'. */
12309 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
12312 return initializer;
12315 /* Parse an initializer-list.
12317 initializer-list:
12318 initializer-clause
12319 initializer-list , initializer-clause
12321 GNU Extension:
12323 initializer-list:
12324 identifier : initializer-clause
12325 initializer-list, identifier : initializer-clause
12327 Returns a TREE_LIST. The TREE_VALUE of each node is an expression
12328 for the initializer. If the TREE_PURPOSE is non-NULL, it is the
12329 IDENTIFIER_NODE naming the field to initialize. NON_CONSTANT_P is
12330 as for cp_parser_initializer. */
12332 static tree
12333 cp_parser_initializer_list (cp_parser* parser, bool* non_constant_p)
12335 tree initializers = NULL_TREE;
12337 /* Assume all of the expressions are constant. */
12338 *non_constant_p = false;
12340 /* Parse the rest of the list. */
12341 while (true)
12343 cp_token *token;
12344 tree identifier;
12345 tree initializer;
12346 bool clause_non_constant_p;
12348 /* If the next token is an identifier and the following one is a
12349 colon, we are looking at the GNU designated-initializer
12350 syntax. */
12351 if (cp_parser_allow_gnu_extensions_p (parser)
12352 && cp_lexer_next_token_is (parser->lexer, CPP_NAME)
12353 && cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_COLON)
12355 /* Consume the identifier. */
12356 identifier = cp_lexer_consume_token (parser->lexer)->value;
12357 /* Consume the `:'. */
12358 cp_lexer_consume_token (parser->lexer);
12360 else
12361 identifier = NULL_TREE;
12363 /* Parse the initializer. */
12364 initializer = cp_parser_initializer_clause (parser,
12365 &clause_non_constant_p);
12366 /* If any clause is non-constant, so is the entire initializer. */
12367 if (clause_non_constant_p)
12368 *non_constant_p = true;
12369 /* Add it to the list. */
12370 initializers = tree_cons (identifier, initializer, initializers);
12372 /* If the next token is not a comma, we have reached the end of
12373 the list. */
12374 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
12375 break;
12377 /* Peek at the next token. */
12378 token = cp_lexer_peek_nth_token (parser->lexer, 2);
12379 /* If the next token is a `}', then we're still done. An
12380 initializer-clause can have a trailing `,' after the
12381 initializer-list and before the closing `}'. */
12382 if (token->type == CPP_CLOSE_BRACE)
12383 break;
12385 /* Consume the `,' token. */
12386 cp_lexer_consume_token (parser->lexer);
12389 /* The initializers were built up in reverse order, so we need to
12390 reverse them now. */
12391 return nreverse (initializers);
12394 /* Classes [gram.class] */
12396 /* Parse a class-name.
12398 class-name:
12399 identifier
12400 template-id
12402 TYPENAME_KEYWORD_P is true iff the `typename' keyword has been used
12403 to indicate that names looked up in dependent types should be
12404 assumed to be types. TEMPLATE_KEYWORD_P is true iff the `template'
12405 keyword has been used to indicate that the name that appears next
12406 is a template. TAG_TYPE indicates the explicit tag given before
12407 the type name, if any. If CHECK_DEPENDENCY_P is FALSE, names are
12408 looked up in dependent scopes. If CLASS_HEAD_P is TRUE, this class
12409 is the class being defined in a class-head.
12411 Returns the TYPE_DECL representing the class. */
12413 static tree
12414 cp_parser_class_name (cp_parser *parser,
12415 bool typename_keyword_p,
12416 bool template_keyword_p,
12417 enum tag_types tag_type,
12418 bool check_dependency_p,
12419 bool class_head_p,
12420 bool is_declaration)
12422 tree decl;
12423 tree scope;
12424 bool typename_p;
12425 cp_token *token;
12427 /* All class-names start with an identifier. */
12428 token = cp_lexer_peek_token (parser->lexer);
12429 if (token->type != CPP_NAME && token->type != CPP_TEMPLATE_ID)
12431 cp_parser_error (parser, "expected class-name");
12432 return error_mark_node;
12435 /* PARSER->SCOPE can be cleared when parsing the template-arguments
12436 to a template-id, so we save it here. */
12437 scope = parser->scope;
12438 if (scope == error_mark_node)
12439 return error_mark_node;
12441 /* Any name names a type if we're following the `typename' keyword
12442 in a qualified name where the enclosing scope is type-dependent. */
12443 typename_p = (typename_keyword_p && scope && TYPE_P (scope)
12444 && dependent_type_p (scope));
12445 /* Handle the common case (an identifier, but not a template-id)
12446 efficiently. */
12447 if (token->type == CPP_NAME
12448 && !cp_parser_nth_token_starts_template_argument_list_p (parser, 2))
12450 tree identifier;
12452 /* Look for the identifier. */
12453 identifier = cp_parser_identifier (parser);
12454 /* If the next token isn't an identifier, we are certainly not
12455 looking at a class-name. */
12456 if (identifier == error_mark_node)
12457 decl = error_mark_node;
12458 /* If we know this is a type-name, there's no need to look it
12459 up. */
12460 else if (typename_p)
12461 decl = identifier;
12462 else
12464 /* If the next token is a `::', then the name must be a type
12465 name.
12467 [basic.lookup.qual]
12469 During the lookup for a name preceding the :: scope
12470 resolution operator, object, function, and enumerator
12471 names are ignored. */
12472 if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
12473 tag_type = typename_type;
12474 /* Look up the name. */
12475 decl = cp_parser_lookup_name (parser, identifier,
12476 tag_type,
12477 /*is_template=*/false,
12478 /*is_namespace=*/false,
12479 check_dependency_p,
12480 /*ambiguous_p=*/NULL);
12483 else
12485 /* Try a template-id. */
12486 decl = cp_parser_template_id (parser, template_keyword_p,
12487 check_dependency_p,
12488 is_declaration);
12489 if (decl == error_mark_node)
12490 return error_mark_node;
12493 decl = cp_parser_maybe_treat_template_as_class (decl, class_head_p);
12495 /* If this is a typename, create a TYPENAME_TYPE. */
12496 if (typename_p && decl != error_mark_node)
12498 decl = make_typename_type (scope, decl, typename_type, /*complain=*/1);
12499 if (decl != error_mark_node)
12500 decl = TYPE_NAME (decl);
12503 /* Check to see that it is really the name of a class. */
12504 if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
12505 && TREE_CODE (TREE_OPERAND (decl, 0)) == IDENTIFIER_NODE
12506 && cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
12507 /* Situations like this:
12509 template <typename T> struct A {
12510 typename T::template X<int>::I i;
12513 are problematic. Is `T::template X<int>' a class-name? The
12514 standard does not seem to be definitive, but there is no other
12515 valid interpretation of the following `::'. Therefore, those
12516 names are considered class-names. */
12517 decl = TYPE_NAME (make_typename_type (scope, decl, tag_type, tf_error));
12518 else if (decl == error_mark_node
12519 || TREE_CODE (decl) != TYPE_DECL
12520 || TREE_TYPE (decl) == error_mark_node
12521 || !IS_AGGR_TYPE (TREE_TYPE (decl)))
12523 cp_parser_error (parser, "expected class-name");
12524 return error_mark_node;
12527 return decl;
12530 /* Parse a class-specifier.
12532 class-specifier:
12533 class-head { member-specification [opt] }
12535 Returns the TREE_TYPE representing the class. */
12537 static tree
12538 cp_parser_class_specifier (cp_parser* parser)
12540 cp_token *token;
12541 tree type;
12542 tree attributes = NULL_TREE;
12543 int has_trailing_semicolon;
12544 bool nested_name_specifier_p;
12545 unsigned saved_num_template_parameter_lists;
12546 tree old_scope = NULL_TREE;
12547 tree scope = NULL_TREE;
12549 push_deferring_access_checks (dk_no_deferred);
12551 /* Parse the class-head. */
12552 type = cp_parser_class_head (parser,
12553 &nested_name_specifier_p,
12554 &attributes);
12555 /* If the class-head was a semantic disaster, skip the entire body
12556 of the class. */
12557 if (!type)
12559 cp_parser_skip_to_end_of_block_or_statement (parser);
12560 pop_deferring_access_checks ();
12561 return error_mark_node;
12564 /* Look for the `{'. */
12565 if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
12567 pop_deferring_access_checks ();
12568 return error_mark_node;
12571 /* Issue an error message if type-definitions are forbidden here. */
12572 cp_parser_check_type_definition (parser);
12573 /* Remember that we are defining one more class. */
12574 ++parser->num_classes_being_defined;
12575 /* Inside the class, surrounding template-parameter-lists do not
12576 apply. */
12577 saved_num_template_parameter_lists
12578 = parser->num_template_parameter_lists;
12579 parser->num_template_parameter_lists = 0;
12581 /* Start the class. */
12582 if (nested_name_specifier_p)
12584 scope = CP_DECL_CONTEXT (TYPE_MAIN_DECL (type));
12585 old_scope = push_inner_scope (scope);
12587 type = begin_class_definition (type);
12589 if (type == error_mark_node)
12590 /* If the type is erroneous, skip the entire body of the class. */
12591 cp_parser_skip_to_closing_brace (parser);
12592 else
12593 /* Parse the member-specification. */
12594 cp_parser_member_specification_opt (parser);
12596 /* Look for the trailing `}'. */
12597 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
12598 /* We get better error messages by noticing a common problem: a
12599 missing trailing `;'. */
12600 token = cp_lexer_peek_token (parser->lexer);
12601 has_trailing_semicolon = (token->type == CPP_SEMICOLON);
12602 /* Look for trailing attributes to apply to this class. */
12603 if (cp_parser_allow_gnu_extensions_p (parser))
12605 tree sub_attr = cp_parser_attributes_opt (parser);
12606 attributes = chainon (attributes, sub_attr);
12608 if (type != error_mark_node)
12609 type = finish_struct (type, attributes);
12610 if (nested_name_specifier_p)
12611 pop_inner_scope (old_scope, scope);
12612 /* If this class is not itself within the scope of another class,
12613 then we need to parse the bodies of all of the queued function
12614 definitions. Note that the queued functions defined in a class
12615 are not always processed immediately following the
12616 class-specifier for that class. Consider:
12618 struct A {
12619 struct B { void f() { sizeof (A); } };
12622 If `f' were processed before the processing of `A' were
12623 completed, there would be no way to compute the size of `A'.
12624 Note that the nesting we are interested in here is lexical --
12625 not the semantic nesting given by TYPE_CONTEXT. In particular,
12626 for:
12628 struct A { struct B; };
12629 struct A::B { void f() { } };
12631 there is no need to delay the parsing of `A::B::f'. */
12632 if (--parser->num_classes_being_defined == 0)
12634 tree queue_entry;
12635 tree fn;
12636 tree class_type = NULL_TREE;
12637 tree pushed_scope = NULL_TREE;
12639 /* In a first pass, parse default arguments to the functions.
12640 Then, in a second pass, parse the bodies of the functions.
12641 This two-phased approach handles cases like:
12643 struct S {
12644 void f() { g(); }
12645 void g(int i = 3);
12649 for (TREE_PURPOSE (parser->unparsed_functions_queues)
12650 = nreverse (TREE_PURPOSE (parser->unparsed_functions_queues));
12651 (queue_entry = TREE_PURPOSE (parser->unparsed_functions_queues));
12652 TREE_PURPOSE (parser->unparsed_functions_queues)
12653 = TREE_CHAIN (TREE_PURPOSE (parser->unparsed_functions_queues)))
12655 fn = TREE_VALUE (queue_entry);
12656 /* If there are default arguments that have not yet been processed,
12657 take care of them now. */
12658 if (class_type != TREE_PURPOSE (queue_entry))
12660 if (pushed_scope)
12661 pop_scope (pushed_scope);
12662 class_type = TREE_PURPOSE (queue_entry);
12663 pushed_scope = push_scope (class_type);
12665 /* Make sure that any template parameters are in scope. */
12666 maybe_begin_member_template_processing (fn);
12667 /* Parse the default argument expressions. */
12668 cp_parser_late_parsing_default_args (parser, fn);
12669 /* Remove any template parameters from the symbol table. */
12670 maybe_end_member_template_processing ();
12672 if (pushed_scope)
12673 pop_scope (pushed_scope);
12674 /* Now parse the body of the functions. */
12675 for (TREE_VALUE (parser->unparsed_functions_queues)
12676 = nreverse (TREE_VALUE (parser->unparsed_functions_queues));
12677 (queue_entry = TREE_VALUE (parser->unparsed_functions_queues));
12678 TREE_VALUE (parser->unparsed_functions_queues)
12679 = TREE_CHAIN (TREE_VALUE (parser->unparsed_functions_queues)))
12681 /* Figure out which function we need to process. */
12682 fn = TREE_VALUE (queue_entry);
12684 /* A hack to prevent garbage collection. */
12685 function_depth++;
12687 /* Parse the function. */
12688 cp_parser_late_parsing_for_member (parser, fn);
12689 function_depth--;
12693 /* Put back any saved access checks. */
12694 pop_deferring_access_checks ();
12696 /* Restore the count of active template-parameter-lists. */
12697 parser->num_template_parameter_lists
12698 = saved_num_template_parameter_lists;
12700 return type;
12703 /* Parse a class-head.
12705 class-head:
12706 class-key identifier [opt] base-clause [opt]
12707 class-key nested-name-specifier identifier base-clause [opt]
12708 class-key nested-name-specifier [opt] template-id
12709 base-clause [opt]
12711 GNU Extensions:
12712 class-key attributes identifier [opt] base-clause [opt]
12713 class-key attributes nested-name-specifier identifier base-clause [opt]
12714 class-key attributes nested-name-specifier [opt] template-id
12715 base-clause [opt]
12717 Returns the TYPE of the indicated class. Sets
12718 *NESTED_NAME_SPECIFIER_P to TRUE iff one of the productions
12719 involving a nested-name-specifier was used, and FALSE otherwise.
12721 Returns error_mark_node if this is not a class-head.
12723 Returns NULL_TREE if the class-head is syntactically valid, but
12724 semantically invalid in a way that means we should skip the entire
12725 body of the class. */
12727 static tree
12728 cp_parser_class_head (cp_parser* parser,
12729 bool* nested_name_specifier_p,
12730 tree *attributes_p)
12732 tree nested_name_specifier;
12733 enum tag_types class_key;
12734 tree id = NULL_TREE;
12735 tree type = NULL_TREE;
12736 tree attributes;
12737 bool template_id_p = false;
12738 bool qualified_p = false;
12739 bool invalid_nested_name_p = false;
12740 bool invalid_explicit_specialization_p = false;
12741 tree pushed_scope = NULL_TREE;
12742 unsigned num_templates;
12743 tree bases;
12745 /* Assume no nested-name-specifier will be present. */
12746 *nested_name_specifier_p = false;
12747 /* Assume no template parameter lists will be used in defining the
12748 type. */
12749 num_templates = 0;
12751 /* Look for the class-key. */
12752 class_key = cp_parser_class_key (parser);
12753 if (class_key == none_type)
12754 return error_mark_node;
12756 /* Parse the attributes. */
12757 attributes = cp_parser_attributes_opt (parser);
12759 /* If the next token is `::', that is invalid -- but sometimes
12760 people do try to write:
12762 struct ::S {};
12764 Handle this gracefully by accepting the extra qualifier, and then
12765 issuing an error about it later if this really is a
12766 class-head. If it turns out just to be an elaborated type
12767 specifier, remain silent. */
12768 if (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false))
12769 qualified_p = true;
12771 push_deferring_access_checks (dk_no_check);
12773 /* Determine the name of the class. Begin by looking for an
12774 optional nested-name-specifier. */
12775 nested_name_specifier
12776 = cp_parser_nested_name_specifier_opt (parser,
12777 /*typename_keyword_p=*/false,
12778 /*check_dependency_p=*/false,
12779 /*type_p=*/false,
12780 /*is_declaration=*/false);
12781 /* If there was a nested-name-specifier, then there *must* be an
12782 identifier. */
12783 if (nested_name_specifier)
12785 /* Although the grammar says `identifier', it really means
12786 `class-name' or `template-name'. You are only allowed to
12787 define a class that has already been declared with this
12788 syntax.
12790 The proposed resolution for Core Issue 180 says that whever
12791 you see `class T::X' you should treat `X' as a type-name.
12793 It is OK to define an inaccessible class; for example:
12795 class A { class B; };
12796 class A::B {};
12798 We do not know if we will see a class-name, or a
12799 template-name. We look for a class-name first, in case the
12800 class-name is a template-id; if we looked for the
12801 template-name first we would stop after the template-name. */
12802 cp_parser_parse_tentatively (parser);
12803 type = cp_parser_class_name (parser,
12804 /*typename_keyword_p=*/false,
12805 /*template_keyword_p=*/false,
12806 class_type,
12807 /*check_dependency_p=*/false,
12808 /*class_head_p=*/true,
12809 /*is_declaration=*/false);
12810 /* If that didn't work, ignore the nested-name-specifier. */
12811 if (!cp_parser_parse_definitely (parser))
12813 invalid_nested_name_p = true;
12814 id = cp_parser_identifier (parser);
12815 if (id == error_mark_node)
12816 id = NULL_TREE;
12818 /* If we could not find a corresponding TYPE, treat this
12819 declaration like an unqualified declaration. */
12820 if (type == error_mark_node)
12821 nested_name_specifier = NULL_TREE;
12822 /* Otherwise, count the number of templates used in TYPE and its
12823 containing scopes. */
12824 else
12826 tree scope;
12828 for (scope = TREE_TYPE (type);
12829 scope && TREE_CODE (scope) != NAMESPACE_DECL;
12830 scope = (TYPE_P (scope)
12831 ? TYPE_CONTEXT (scope)
12832 : DECL_CONTEXT (scope)))
12833 if (TYPE_P (scope)
12834 && CLASS_TYPE_P (scope)
12835 && CLASSTYPE_TEMPLATE_INFO (scope)
12836 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (scope))
12837 && !CLASSTYPE_TEMPLATE_SPECIALIZATION (scope))
12838 ++num_templates;
12841 /* Otherwise, the identifier is optional. */
12842 else
12844 /* We don't know whether what comes next is a template-id,
12845 an identifier, or nothing at all. */
12846 cp_parser_parse_tentatively (parser);
12847 /* Check for a template-id. */
12848 id = cp_parser_template_id (parser,
12849 /*template_keyword_p=*/false,
12850 /*check_dependency_p=*/true,
12851 /*is_declaration=*/true);
12852 /* If that didn't work, it could still be an identifier. */
12853 if (!cp_parser_parse_definitely (parser))
12855 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
12856 id = cp_parser_identifier (parser);
12857 else
12858 id = NULL_TREE;
12860 else
12862 template_id_p = true;
12863 ++num_templates;
12867 pop_deferring_access_checks ();
12869 if (id)
12870 cp_parser_check_for_invalid_template_id (parser, id);
12872 /* If it's not a `:' or a `{' then we can't really be looking at a
12873 class-head, since a class-head only appears as part of a
12874 class-specifier. We have to detect this situation before calling
12875 xref_tag, since that has irreversible side-effects. */
12876 if (!cp_parser_next_token_starts_class_definition_p (parser))
12878 cp_parser_error (parser, "expected %<{%> or %<:%>");
12879 return error_mark_node;
12882 /* At this point, we're going ahead with the class-specifier, even
12883 if some other problem occurs. */
12884 cp_parser_commit_to_tentative_parse (parser);
12885 /* Issue the error about the overly-qualified name now. */
12886 if (qualified_p)
12887 cp_parser_error (parser,
12888 "global qualification of class name is invalid");
12889 else if (invalid_nested_name_p)
12890 cp_parser_error (parser,
12891 "qualified name does not name a class");
12892 else if (nested_name_specifier)
12894 tree scope;
12896 /* Reject typedef-names in class heads. */
12897 if (!DECL_IMPLICIT_TYPEDEF_P (type))
12899 error ("invalid class name in declaration of %qD", type);
12900 type = NULL_TREE;
12901 goto done;
12904 /* Figure out in what scope the declaration is being placed. */
12905 scope = current_scope ();
12906 /* If that scope does not contain the scope in which the
12907 class was originally declared, the program is invalid. */
12908 if (scope && !is_ancestor (scope, nested_name_specifier))
12910 error ("declaration of %qD in %qD which does not enclose %qD",
12911 type, scope, nested_name_specifier);
12912 type = NULL_TREE;
12913 goto done;
12915 /* [dcl.meaning]
12917 A declarator-id shall not be qualified exception of the
12918 definition of a ... nested class outside of its class
12919 ... [or] a the definition or explicit instantiation of a
12920 class member of a namespace outside of its namespace. */
12921 if (scope == nested_name_specifier)
12923 pedwarn ("extra qualification ignored");
12924 nested_name_specifier = NULL_TREE;
12925 num_templates = 0;
12928 /* An explicit-specialization must be preceded by "template <>". If
12929 it is not, try to recover gracefully. */
12930 if (at_namespace_scope_p ()
12931 && parser->num_template_parameter_lists == 0
12932 && template_id_p)
12934 error ("an explicit specialization must be preceded by %<template <>%>");
12935 invalid_explicit_specialization_p = true;
12936 /* Take the same action that would have been taken by
12937 cp_parser_explicit_specialization. */
12938 ++parser->num_template_parameter_lists;
12939 begin_specialization ();
12941 /* There must be no "return" statements between this point and the
12942 end of this function; set "type "to the correct return value and
12943 use "goto done;" to return. */
12944 /* Make sure that the right number of template parameters were
12945 present. */
12946 if (!cp_parser_check_template_parameters (parser, num_templates))
12948 /* If something went wrong, there is no point in even trying to
12949 process the class-definition. */
12950 type = NULL_TREE;
12951 goto done;
12954 /* Look up the type. */
12955 if (template_id_p)
12957 type = TREE_TYPE (id);
12958 maybe_process_partial_specialization (type);
12959 if (nested_name_specifier)
12960 pushed_scope = push_scope (nested_name_specifier);
12962 else if (nested_name_specifier)
12964 tree class_type;
12966 /* Given:
12968 template <typename T> struct S { struct T };
12969 template <typename T> struct S<T>::T { };
12971 we will get a TYPENAME_TYPE when processing the definition of
12972 `S::T'. We need to resolve it to the actual type before we
12973 try to define it. */
12974 if (TREE_CODE (TREE_TYPE (type)) == TYPENAME_TYPE)
12976 class_type = resolve_typename_type (TREE_TYPE (type),
12977 /*only_current_p=*/false);
12978 if (class_type != error_mark_node)
12979 type = TYPE_NAME (class_type);
12980 else
12982 cp_parser_error (parser, "could not resolve typename type");
12983 type = error_mark_node;
12987 maybe_process_partial_specialization (TREE_TYPE (type));
12988 class_type = current_class_type;
12989 /* Enter the scope indicated by the nested-name-specifier. */
12990 pushed_scope = push_scope (nested_name_specifier);
12991 /* Get the canonical version of this type. */
12992 type = TYPE_MAIN_DECL (TREE_TYPE (type));
12993 if (PROCESSING_REAL_TEMPLATE_DECL_P ()
12994 && !CLASSTYPE_TEMPLATE_SPECIALIZATION (TREE_TYPE (type)))
12996 type = push_template_decl (type);
12997 if (type == error_mark_node)
12999 type = NULL_TREE;
13000 goto done;
13004 type = TREE_TYPE (type);
13005 *nested_name_specifier_p = true;
13007 else /* The name is not a nested name. */
13009 /* If the class was unnamed, create a dummy name. */
13010 if (!id)
13011 id = make_anon_name ();
13012 type = xref_tag (class_key, id, /*tag_scope=*/ts_current,
13013 parser->num_template_parameter_lists);
13016 /* Indicate whether this class was declared as a `class' or as a
13017 `struct'. */
13018 if (TREE_CODE (type) == RECORD_TYPE)
13019 CLASSTYPE_DECLARED_CLASS (type) = (class_key == class_type);
13020 cp_parser_check_class_key (class_key, type);
13022 /* If this type was already complete, and we see another definition,
13023 that's an error. */
13024 if (type != error_mark_node && COMPLETE_TYPE_P (type))
13026 error ("redefinition of %q#T", type);
13027 cp_error_at ("previous definition of %q#T", type);
13028 type = NULL_TREE;
13029 goto done;
13032 /* We will have entered the scope containing the class; the names of
13033 base classes should be looked up in that context. For example:
13035 struct A { struct B {}; struct C; };
13036 struct A::C : B {};
13038 is valid. */
13039 bases = NULL_TREE;
13041 /* Get the list of base-classes, if there is one. */
13042 if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
13043 bases = cp_parser_base_clause (parser);
13045 /* Process the base classes. */
13046 xref_basetypes (type, bases);
13048 done:
13049 /* Leave the scope given by the nested-name-specifier. We will
13050 enter the class scope itself while processing the members. */
13051 if (pushed_scope)
13052 pop_scope (pushed_scope);
13054 if (invalid_explicit_specialization_p)
13056 end_specialization ();
13057 --parser->num_template_parameter_lists;
13059 *attributes_p = attributes;
13060 return type;
13063 /* Parse a class-key.
13065 class-key:
13066 class
13067 struct
13068 union
13070 Returns the kind of class-key specified, or none_type to indicate
13071 error. */
13073 static enum tag_types
13074 cp_parser_class_key (cp_parser* parser)
13076 cp_token *token;
13077 enum tag_types tag_type;
13079 /* Look for the class-key. */
13080 token = cp_parser_require (parser, CPP_KEYWORD, "class-key");
13081 if (!token)
13082 return none_type;
13084 /* Check to see if the TOKEN is a class-key. */
13085 tag_type = cp_parser_token_is_class_key (token);
13086 if (!tag_type)
13087 cp_parser_error (parser, "expected class-key");
13088 return tag_type;
13091 /* Parse an (optional) member-specification.
13093 member-specification:
13094 member-declaration member-specification [opt]
13095 access-specifier : member-specification [opt] */
13097 static void
13098 cp_parser_member_specification_opt (cp_parser* parser)
13100 while (true)
13102 cp_token *token;
13103 enum rid keyword;
13105 /* Peek at the next token. */
13106 token = cp_lexer_peek_token (parser->lexer);
13107 /* If it's a `}', or EOF then we've seen all the members. */
13108 if (token->type == CPP_CLOSE_BRACE || token->type == CPP_EOF)
13109 break;
13111 /* See if this token is a keyword. */
13112 keyword = token->keyword;
13113 switch (keyword)
13115 case RID_PUBLIC:
13116 case RID_PROTECTED:
13117 case RID_PRIVATE:
13118 /* Consume the access-specifier. */
13119 cp_lexer_consume_token (parser->lexer);
13120 /* Remember which access-specifier is active. */
13121 current_access_specifier = token->value;
13122 /* Look for the `:'. */
13123 cp_parser_require (parser, CPP_COLON, "`:'");
13124 break;
13126 default:
13127 /* Accept #pragmas at class scope. */
13128 if (token->type == CPP_PRAGMA)
13130 cp_lexer_handle_pragma (parser->lexer);
13131 break;
13134 /* Otherwise, the next construction must be a
13135 member-declaration. */
13136 cp_parser_member_declaration (parser);
13141 /* Parse a member-declaration.
13143 member-declaration:
13144 decl-specifier-seq [opt] member-declarator-list [opt] ;
13145 function-definition ; [opt]
13146 :: [opt] nested-name-specifier template [opt] unqualified-id ;
13147 using-declaration
13148 template-declaration
13150 member-declarator-list:
13151 member-declarator
13152 member-declarator-list , member-declarator
13154 member-declarator:
13155 declarator pure-specifier [opt]
13156 declarator constant-initializer [opt]
13157 identifier [opt] : constant-expression
13159 GNU Extensions:
13161 member-declaration:
13162 __extension__ member-declaration
13164 member-declarator:
13165 declarator attributes [opt] pure-specifier [opt]
13166 declarator attributes [opt] constant-initializer [opt]
13167 identifier [opt] attributes [opt] : constant-expression */
13169 static void
13170 cp_parser_member_declaration (cp_parser* parser)
13172 cp_decl_specifier_seq decl_specifiers;
13173 tree prefix_attributes;
13174 tree decl;
13175 int declares_class_or_enum;
13176 bool friend_p;
13177 cp_token *token;
13178 int saved_pedantic;
13180 /* Check for the `__extension__' keyword. */
13181 if (cp_parser_extension_opt (parser, &saved_pedantic))
13183 /* Recurse. */
13184 cp_parser_member_declaration (parser);
13185 /* Restore the old value of the PEDANTIC flag. */
13186 pedantic = saved_pedantic;
13188 return;
13191 /* Check for a template-declaration. */
13192 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
13194 /* Parse the template-declaration. */
13195 cp_parser_template_declaration (parser, /*member_p=*/true);
13197 return;
13200 /* Check for a using-declaration. */
13201 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_USING))
13203 /* Parse the using-declaration. */
13204 cp_parser_using_declaration (parser);
13206 return;
13209 /* Check for @defs. */
13210 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_AT_DEFS))
13212 tree ivar, member;
13213 tree ivar_chains = cp_parser_objc_defs_expression (parser);
13214 ivar = ivar_chains;
13215 while (ivar)
13217 member = ivar;
13218 ivar = TREE_CHAIN (member);
13219 TREE_CHAIN (member) = NULL_TREE;
13220 finish_member_declaration (member);
13222 return;
13225 /* Parse the decl-specifier-seq. */
13226 cp_parser_decl_specifier_seq (parser,
13227 CP_PARSER_FLAGS_OPTIONAL,
13228 &decl_specifiers,
13229 &declares_class_or_enum);
13230 prefix_attributes = decl_specifiers.attributes;
13231 decl_specifiers.attributes = NULL_TREE;
13232 /* Check for an invalid type-name. */
13233 if (!decl_specifiers.type
13234 && cp_parser_parse_and_diagnose_invalid_type_name (parser))
13235 return;
13236 /* If there is no declarator, then the decl-specifier-seq should
13237 specify a type. */
13238 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
13240 /* If there was no decl-specifier-seq, and the next token is a
13241 `;', then we have something like:
13243 struct S { ; };
13245 [class.mem]
13247 Each member-declaration shall declare at least one member
13248 name of the class. */
13249 if (!decl_specifiers.any_specifiers_p)
13251 cp_token *token = cp_lexer_peek_token (parser->lexer);
13252 if (pedantic && !token->in_system_header)
13253 pedwarn ("%Hextra %<;%>", &token->location);
13255 else
13257 tree type;
13259 /* See if this declaration is a friend. */
13260 friend_p = cp_parser_friend_p (&decl_specifiers);
13261 /* If there were decl-specifiers, check to see if there was
13262 a class-declaration. */
13263 type = check_tag_decl (&decl_specifiers);
13264 /* Nested classes have already been added to the class, but
13265 a `friend' needs to be explicitly registered. */
13266 if (friend_p)
13268 /* If the `friend' keyword was present, the friend must
13269 be introduced with a class-key. */
13270 if (!declares_class_or_enum)
13271 error ("a class-key must be used when declaring a friend");
13272 /* In this case:
13274 template <typename T> struct A {
13275 friend struct A<T>::B;
13278 A<T>::B will be represented by a TYPENAME_TYPE, and
13279 therefore not recognized by check_tag_decl. */
13280 if (!type
13281 && decl_specifiers.type
13282 && TYPE_P (decl_specifiers.type))
13283 type = decl_specifiers.type;
13284 if (!type || !TYPE_P (type))
13285 error ("friend declaration does not name a class or "
13286 "function");
13287 else
13288 make_friend_class (current_class_type, type,
13289 /*complain=*/true);
13291 /* If there is no TYPE, an error message will already have
13292 been issued. */
13293 else if (!type || type == error_mark_node)
13295 /* An anonymous aggregate has to be handled specially; such
13296 a declaration really declares a data member (with a
13297 particular type), as opposed to a nested class. */
13298 else if (ANON_AGGR_TYPE_P (type))
13300 /* Remove constructors and such from TYPE, now that we
13301 know it is an anonymous aggregate. */
13302 fixup_anonymous_aggr (type);
13303 /* And make the corresponding data member. */
13304 decl = build_decl (FIELD_DECL, NULL_TREE, type);
13305 /* Add it to the class. */
13306 finish_member_declaration (decl);
13308 else
13309 cp_parser_check_access_in_redeclaration (TYPE_NAME (type));
13312 else
13314 /* See if these declarations will be friends. */
13315 friend_p = cp_parser_friend_p (&decl_specifiers);
13317 /* Keep going until we hit the `;' at the end of the
13318 declaration. */
13319 while (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
13321 tree attributes = NULL_TREE;
13322 tree first_attribute;
13324 /* Peek at the next token. */
13325 token = cp_lexer_peek_token (parser->lexer);
13327 /* Check for a bitfield declaration. */
13328 if (token->type == CPP_COLON
13329 || (token->type == CPP_NAME
13330 && cp_lexer_peek_nth_token (parser->lexer, 2)->type
13331 == CPP_COLON))
13333 tree identifier;
13334 tree width;
13336 /* Get the name of the bitfield. Note that we cannot just
13337 check TOKEN here because it may have been invalidated by
13338 the call to cp_lexer_peek_nth_token above. */
13339 if (cp_lexer_peek_token (parser->lexer)->type != CPP_COLON)
13340 identifier = cp_parser_identifier (parser);
13341 else
13342 identifier = NULL_TREE;
13344 /* Consume the `:' token. */
13345 cp_lexer_consume_token (parser->lexer);
13346 /* Get the width of the bitfield. */
13347 width
13348 = cp_parser_constant_expression (parser,
13349 /*allow_non_constant=*/false,
13350 NULL);
13352 /* Look for attributes that apply to the bitfield. */
13353 attributes = cp_parser_attributes_opt (parser);
13354 /* Remember which attributes are prefix attributes and
13355 which are not. */
13356 first_attribute = attributes;
13357 /* Combine the attributes. */
13358 attributes = chainon (prefix_attributes, attributes);
13360 /* Create the bitfield declaration. */
13361 decl = grokbitfield (identifier
13362 ? make_id_declarator (NULL_TREE,
13363 identifier)
13364 : NULL,
13365 &decl_specifiers,
13366 width);
13367 /* Apply the attributes. */
13368 cplus_decl_attributes (&decl, attributes, /*flags=*/0);
13370 else
13372 cp_declarator *declarator;
13373 tree initializer;
13374 tree asm_specification;
13375 int ctor_dtor_or_conv_p;
13377 /* Parse the declarator. */
13378 declarator
13379 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
13380 &ctor_dtor_or_conv_p,
13381 /*parenthesized_p=*/NULL,
13382 /*member_p=*/true);
13384 /* If something went wrong parsing the declarator, make sure
13385 that we at least consume some tokens. */
13386 if (declarator == cp_error_declarator)
13388 /* Skip to the end of the statement. */
13389 cp_parser_skip_to_end_of_statement (parser);
13390 /* If the next token is not a semicolon, that is
13391 probably because we just skipped over the body of
13392 a function. So, we consume a semicolon if
13393 present, but do not issue an error message if it
13394 is not present. */
13395 if (cp_lexer_next_token_is (parser->lexer,
13396 CPP_SEMICOLON))
13397 cp_lexer_consume_token (parser->lexer);
13398 return;
13401 if (declares_class_or_enum & 2)
13402 cp_parser_check_for_definition_in_return_type
13403 (declarator, decl_specifiers.type);
13405 /* Look for an asm-specification. */
13406 asm_specification = cp_parser_asm_specification_opt (parser);
13407 /* Look for attributes that apply to the declaration. */
13408 attributes = cp_parser_attributes_opt (parser);
13409 /* Remember which attributes are prefix attributes and
13410 which are not. */
13411 first_attribute = attributes;
13412 /* Combine the attributes. */
13413 attributes = chainon (prefix_attributes, attributes);
13415 /* If it's an `=', then we have a constant-initializer or a
13416 pure-specifier. It is not correct to parse the
13417 initializer before registering the member declaration
13418 since the member declaration should be in scope while
13419 its initializer is processed. However, the rest of the
13420 front end does not yet provide an interface that allows
13421 us to handle this correctly. */
13422 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
13424 /* In [class.mem]:
13426 A pure-specifier shall be used only in the declaration of
13427 a virtual function.
13429 A member-declarator can contain a constant-initializer
13430 only if it declares a static member of integral or
13431 enumeration type.
13433 Therefore, if the DECLARATOR is for a function, we look
13434 for a pure-specifier; otherwise, we look for a
13435 constant-initializer. When we call `grokfield', it will
13436 perform more stringent semantics checks. */
13437 if (declarator->kind == cdk_function)
13438 initializer = cp_parser_pure_specifier (parser);
13439 else
13440 /* Parse the initializer. */
13441 initializer = cp_parser_constant_initializer (parser);
13443 /* Otherwise, there is no initializer. */
13444 else
13445 initializer = NULL_TREE;
13447 /* See if we are probably looking at a function
13448 definition. We are certainly not looking at a
13449 member-declarator. Calling `grokfield' has
13450 side-effects, so we must not do it unless we are sure
13451 that we are looking at a member-declarator. */
13452 if (cp_parser_token_starts_function_definition_p
13453 (cp_lexer_peek_token (parser->lexer)))
13455 /* The grammar does not allow a pure-specifier to be
13456 used when a member function is defined. (It is
13457 possible that this fact is an oversight in the
13458 standard, since a pure function may be defined
13459 outside of the class-specifier. */
13460 if (initializer)
13461 error ("pure-specifier on function-definition");
13462 decl = cp_parser_save_member_function_body (parser,
13463 &decl_specifiers,
13464 declarator,
13465 attributes);
13466 /* If the member was not a friend, declare it here. */
13467 if (!friend_p)
13468 finish_member_declaration (decl);
13469 /* Peek at the next token. */
13470 token = cp_lexer_peek_token (parser->lexer);
13471 /* If the next token is a semicolon, consume it. */
13472 if (token->type == CPP_SEMICOLON)
13473 cp_lexer_consume_token (parser->lexer);
13474 return;
13476 else
13478 /* Create the declaration. */
13479 decl = grokfield (declarator, &decl_specifiers,
13480 initializer, asm_specification,
13481 attributes);
13482 /* Any initialization must have been from a
13483 constant-expression. */
13484 if (decl && TREE_CODE (decl) == VAR_DECL && initializer)
13485 DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = 1;
13489 /* Reset PREFIX_ATTRIBUTES. */
13490 while (attributes && TREE_CHAIN (attributes) != first_attribute)
13491 attributes = TREE_CHAIN (attributes);
13492 if (attributes)
13493 TREE_CHAIN (attributes) = NULL_TREE;
13495 /* If there is any qualification still in effect, clear it
13496 now; we will be starting fresh with the next declarator. */
13497 parser->scope = NULL_TREE;
13498 parser->qualifying_scope = NULL_TREE;
13499 parser->object_scope = NULL_TREE;
13500 /* If it's a `,', then there are more declarators. */
13501 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
13502 cp_lexer_consume_token (parser->lexer);
13503 /* If the next token isn't a `;', then we have a parse error. */
13504 else if (cp_lexer_next_token_is_not (parser->lexer,
13505 CPP_SEMICOLON))
13507 cp_parser_error (parser, "expected %<;%>");
13508 /* Skip tokens until we find a `;'. */
13509 cp_parser_skip_to_end_of_statement (parser);
13511 break;
13514 if (decl)
13516 /* Add DECL to the list of members. */
13517 if (!friend_p)
13518 finish_member_declaration (decl);
13520 if (TREE_CODE (decl) == FUNCTION_DECL)
13521 cp_parser_save_default_args (parser, decl);
13526 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
13529 /* Parse a pure-specifier.
13531 pure-specifier:
13534 Returns INTEGER_ZERO_NODE if a pure specifier is found.
13535 Otherwise, ERROR_MARK_NODE is returned. */
13537 static tree
13538 cp_parser_pure_specifier (cp_parser* parser)
13540 cp_token *token;
13542 /* Look for the `=' token. */
13543 if (!cp_parser_require (parser, CPP_EQ, "`='"))
13544 return error_mark_node;
13545 /* Look for the `0' token. */
13546 token = cp_lexer_consume_token (parser->lexer);
13547 if (token->type != CPP_NUMBER || !integer_zerop (token->value))
13549 cp_parser_error (parser,
13550 "invalid pure specifier (only `= 0' is allowed)");
13551 cp_parser_skip_to_end_of_statement (parser);
13552 return error_mark_node;
13555 /* FIXME: Unfortunately, this will accept `0L' and `0x00' as well.
13556 We need to get information from the lexer about how the number
13557 was spelled in order to fix this problem. */
13558 return integer_zero_node;
13561 /* Parse a constant-initializer.
13563 constant-initializer:
13564 = constant-expression
13566 Returns a representation of the constant-expression. */
13568 static tree
13569 cp_parser_constant_initializer (cp_parser* parser)
13571 /* Look for the `=' token. */
13572 if (!cp_parser_require (parser, CPP_EQ, "`='"))
13573 return error_mark_node;
13575 /* It is invalid to write:
13577 struct S { static const int i = { 7 }; };
13580 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
13582 cp_parser_error (parser,
13583 "a brace-enclosed initializer is not allowed here");
13584 /* Consume the opening brace. */
13585 cp_lexer_consume_token (parser->lexer);
13586 /* Skip the initializer. */
13587 cp_parser_skip_to_closing_brace (parser);
13588 /* Look for the trailing `}'. */
13589 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
13591 return error_mark_node;
13594 return cp_parser_constant_expression (parser,
13595 /*allow_non_constant=*/false,
13596 NULL);
13599 /* Derived classes [gram.class.derived] */
13601 /* Parse a base-clause.
13603 base-clause:
13604 : base-specifier-list
13606 base-specifier-list:
13607 base-specifier
13608 base-specifier-list , base-specifier
13610 Returns a TREE_LIST representing the base-classes, in the order in
13611 which they were declared. The representation of each node is as
13612 described by cp_parser_base_specifier.
13614 In the case that no bases are specified, this function will return
13615 NULL_TREE, not ERROR_MARK_NODE. */
13617 static tree
13618 cp_parser_base_clause (cp_parser* parser)
13620 tree bases = NULL_TREE;
13622 /* Look for the `:' that begins the list. */
13623 cp_parser_require (parser, CPP_COLON, "`:'");
13625 /* Scan the base-specifier-list. */
13626 while (true)
13628 cp_token *token;
13629 tree base;
13631 /* Look for the base-specifier. */
13632 base = cp_parser_base_specifier (parser);
13633 /* Add BASE to the front of the list. */
13634 if (base != error_mark_node)
13636 TREE_CHAIN (base) = bases;
13637 bases = base;
13639 /* Peek at the next token. */
13640 token = cp_lexer_peek_token (parser->lexer);
13641 /* If it's not a comma, then the list is complete. */
13642 if (token->type != CPP_COMMA)
13643 break;
13644 /* Consume the `,'. */
13645 cp_lexer_consume_token (parser->lexer);
13648 /* PARSER->SCOPE may still be non-NULL at this point, if the last
13649 base class had a qualified name. However, the next name that
13650 appears is certainly not qualified. */
13651 parser->scope = NULL_TREE;
13652 parser->qualifying_scope = NULL_TREE;
13653 parser->object_scope = NULL_TREE;
13655 return nreverse (bases);
13658 /* Parse a base-specifier.
13660 base-specifier:
13661 :: [opt] nested-name-specifier [opt] class-name
13662 virtual access-specifier [opt] :: [opt] nested-name-specifier
13663 [opt] class-name
13664 access-specifier virtual [opt] :: [opt] nested-name-specifier
13665 [opt] class-name
13667 Returns a TREE_LIST. The TREE_PURPOSE will be one of
13668 ACCESS_{DEFAULT,PUBLIC,PROTECTED,PRIVATE}_[VIRTUAL]_NODE to
13669 indicate the specifiers provided. The TREE_VALUE will be a TYPE
13670 (or the ERROR_MARK_NODE) indicating the type that was specified. */
13672 static tree
13673 cp_parser_base_specifier (cp_parser* parser)
13675 cp_token *token;
13676 bool done = false;
13677 bool virtual_p = false;
13678 bool duplicate_virtual_error_issued_p = false;
13679 bool duplicate_access_error_issued_p = false;
13680 bool class_scope_p, template_p;
13681 tree access = access_default_node;
13682 tree type;
13684 /* Process the optional `virtual' and `access-specifier'. */
13685 while (!done)
13687 /* Peek at the next token. */
13688 token = cp_lexer_peek_token (parser->lexer);
13689 /* Process `virtual'. */
13690 switch (token->keyword)
13692 case RID_VIRTUAL:
13693 /* If `virtual' appears more than once, issue an error. */
13694 if (virtual_p && !duplicate_virtual_error_issued_p)
13696 cp_parser_error (parser,
13697 "%<virtual%> specified more than once in base-specified");
13698 duplicate_virtual_error_issued_p = true;
13701 virtual_p = true;
13703 /* Consume the `virtual' token. */
13704 cp_lexer_consume_token (parser->lexer);
13706 break;
13708 case RID_PUBLIC:
13709 case RID_PROTECTED:
13710 case RID_PRIVATE:
13711 /* If more than one access specifier appears, issue an
13712 error. */
13713 if (access != access_default_node
13714 && !duplicate_access_error_issued_p)
13716 cp_parser_error (parser,
13717 "more than one access specifier in base-specified");
13718 duplicate_access_error_issued_p = true;
13721 access = ridpointers[(int) token->keyword];
13723 /* Consume the access-specifier. */
13724 cp_lexer_consume_token (parser->lexer);
13726 break;
13728 default:
13729 done = true;
13730 break;
13733 /* It is not uncommon to see programs mechanically, erroneously, use
13734 the 'typename' keyword to denote (dependent) qualified types
13735 as base classes. */
13736 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TYPENAME))
13738 if (!processing_template_decl)
13739 error ("keyword %<typename%> not allowed outside of templates");
13740 else
13741 error ("keyword %<typename%> not allowed in this context "
13742 "(the base class is implicitly a type)");
13743 cp_lexer_consume_token (parser->lexer);
13746 /* Look for the optional `::' operator. */
13747 cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false);
13748 /* Look for the nested-name-specifier. The simplest way to
13749 implement:
13751 [temp.res]
13753 The keyword `typename' is not permitted in a base-specifier or
13754 mem-initializer; in these contexts a qualified name that
13755 depends on a template-parameter is implicitly assumed to be a
13756 type name.
13758 is to pretend that we have seen the `typename' keyword at this
13759 point. */
13760 cp_parser_nested_name_specifier_opt (parser,
13761 /*typename_keyword_p=*/true,
13762 /*check_dependency_p=*/true,
13763 typename_type,
13764 /*is_declaration=*/true);
13765 /* If the base class is given by a qualified name, assume that names
13766 we see are type names or templates, as appropriate. */
13767 class_scope_p = (parser->scope && TYPE_P (parser->scope));
13768 template_p = class_scope_p && cp_parser_optional_template_keyword (parser);
13770 /* Finally, look for the class-name. */
13771 type = cp_parser_class_name (parser,
13772 class_scope_p,
13773 template_p,
13774 typename_type,
13775 /*check_dependency_p=*/true,
13776 /*class_head_p=*/false,
13777 /*is_declaration=*/true);
13779 if (type == error_mark_node)
13780 return error_mark_node;
13782 return finish_base_specifier (TREE_TYPE (type), access, virtual_p);
13785 /* Exception handling [gram.exception] */
13787 /* Parse an (optional) exception-specification.
13789 exception-specification:
13790 throw ( type-id-list [opt] )
13792 Returns a TREE_LIST representing the exception-specification. The
13793 TREE_VALUE of each node is a type. */
13795 static tree
13796 cp_parser_exception_specification_opt (cp_parser* parser)
13798 cp_token *token;
13799 tree type_id_list;
13801 /* Peek at the next token. */
13802 token = cp_lexer_peek_token (parser->lexer);
13803 /* If it's not `throw', then there's no exception-specification. */
13804 if (!cp_parser_is_keyword (token, RID_THROW))
13805 return NULL_TREE;
13807 /* Consume the `throw'. */
13808 cp_lexer_consume_token (parser->lexer);
13810 /* Look for the `('. */
13811 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13813 /* Peek at the next token. */
13814 token = cp_lexer_peek_token (parser->lexer);
13815 /* If it's not a `)', then there is a type-id-list. */
13816 if (token->type != CPP_CLOSE_PAREN)
13818 const char *saved_message;
13820 /* Types may not be defined in an exception-specification. */
13821 saved_message = parser->type_definition_forbidden_message;
13822 parser->type_definition_forbidden_message
13823 = "types may not be defined in an exception-specification";
13824 /* Parse the type-id-list. */
13825 type_id_list = cp_parser_type_id_list (parser);
13826 /* Restore the saved message. */
13827 parser->type_definition_forbidden_message = saved_message;
13829 else
13830 type_id_list = empty_except_spec;
13832 /* Look for the `)'. */
13833 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13835 return type_id_list;
13838 /* Parse an (optional) type-id-list.
13840 type-id-list:
13841 type-id
13842 type-id-list , type-id
13844 Returns a TREE_LIST. The TREE_VALUE of each node is a TYPE,
13845 in the order that the types were presented. */
13847 static tree
13848 cp_parser_type_id_list (cp_parser* parser)
13850 tree types = NULL_TREE;
13852 while (true)
13854 cp_token *token;
13855 tree type;
13857 /* Get the next type-id. */
13858 type = cp_parser_type_id (parser);
13859 /* Add it to the list. */
13860 types = add_exception_specifier (types, type, /*complain=*/1);
13861 /* Peek at the next token. */
13862 token = cp_lexer_peek_token (parser->lexer);
13863 /* If it is not a `,', we are done. */
13864 if (token->type != CPP_COMMA)
13865 break;
13866 /* Consume the `,'. */
13867 cp_lexer_consume_token (parser->lexer);
13870 return nreverse (types);
13873 /* Parse a try-block.
13875 try-block:
13876 try compound-statement handler-seq */
13878 static tree
13879 cp_parser_try_block (cp_parser* parser)
13881 tree try_block;
13883 cp_parser_require_keyword (parser, RID_TRY, "`try'");
13884 try_block = begin_try_block ();
13885 cp_parser_compound_statement (parser, NULL, true);
13886 finish_try_block (try_block);
13887 cp_parser_handler_seq (parser);
13888 finish_handler_sequence (try_block);
13890 return try_block;
13893 /* Parse a function-try-block.
13895 function-try-block:
13896 try ctor-initializer [opt] function-body handler-seq */
13898 static bool
13899 cp_parser_function_try_block (cp_parser* parser)
13901 tree try_block;
13902 bool ctor_initializer_p;
13904 /* Look for the `try' keyword. */
13905 if (!cp_parser_require_keyword (parser, RID_TRY, "`try'"))
13906 return false;
13907 /* Let the rest of the front-end know where we are. */
13908 try_block = begin_function_try_block ();
13909 /* Parse the function-body. */
13910 ctor_initializer_p
13911 = cp_parser_ctor_initializer_opt_and_function_body (parser);
13912 /* We're done with the `try' part. */
13913 finish_function_try_block (try_block);
13914 /* Parse the handlers. */
13915 cp_parser_handler_seq (parser);
13916 /* We're done with the handlers. */
13917 finish_function_handler_sequence (try_block);
13919 return ctor_initializer_p;
13922 /* Parse a handler-seq.
13924 handler-seq:
13925 handler handler-seq [opt] */
13927 static void
13928 cp_parser_handler_seq (cp_parser* parser)
13930 while (true)
13932 cp_token *token;
13934 /* Parse the handler. */
13935 cp_parser_handler (parser);
13936 /* Peek at the next token. */
13937 token = cp_lexer_peek_token (parser->lexer);
13938 /* If it's not `catch' then there are no more handlers. */
13939 if (!cp_parser_is_keyword (token, RID_CATCH))
13940 break;
13944 /* Parse a handler.
13946 handler:
13947 catch ( exception-declaration ) compound-statement */
13949 static void
13950 cp_parser_handler (cp_parser* parser)
13952 tree handler;
13953 tree declaration;
13955 cp_parser_require_keyword (parser, RID_CATCH, "`catch'");
13956 handler = begin_handler ();
13957 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13958 declaration = cp_parser_exception_declaration (parser);
13959 finish_handler_parms (declaration, handler);
13960 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13961 cp_parser_compound_statement (parser, NULL, false);
13962 finish_handler (handler);
13965 /* Parse an exception-declaration.
13967 exception-declaration:
13968 type-specifier-seq declarator
13969 type-specifier-seq abstract-declarator
13970 type-specifier-seq
13973 Returns a VAR_DECL for the declaration, or NULL_TREE if the
13974 ellipsis variant is used. */
13976 static tree
13977 cp_parser_exception_declaration (cp_parser* parser)
13979 tree decl;
13980 cp_decl_specifier_seq type_specifiers;
13981 cp_declarator *declarator;
13982 const char *saved_message;
13984 /* If it's an ellipsis, it's easy to handle. */
13985 if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
13987 /* Consume the `...' token. */
13988 cp_lexer_consume_token (parser->lexer);
13989 return NULL_TREE;
13992 /* Types may not be defined in exception-declarations. */
13993 saved_message = parser->type_definition_forbidden_message;
13994 parser->type_definition_forbidden_message
13995 = "types may not be defined in exception-declarations";
13997 /* Parse the type-specifier-seq. */
13998 cp_parser_type_specifier_seq (parser, /*is_condition=*/false,
13999 &type_specifiers);
14000 /* If it's a `)', then there is no declarator. */
14001 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN))
14002 declarator = NULL;
14003 else
14004 declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_EITHER,
14005 /*ctor_dtor_or_conv_p=*/NULL,
14006 /*parenthesized_p=*/NULL,
14007 /*member_p=*/false);
14009 /* Restore the saved message. */
14010 parser->type_definition_forbidden_message = saved_message;
14012 if (type_specifiers.any_specifiers_p)
14014 decl = grokdeclarator (declarator, &type_specifiers, CATCHPARM, 1, NULL);
14015 if (decl == NULL_TREE)
14016 error ("invalid catch parameter");
14018 else
14019 decl = NULL_TREE;
14021 return decl;
14024 /* Parse a throw-expression.
14026 throw-expression:
14027 throw assignment-expression [opt]
14029 Returns a THROW_EXPR representing the throw-expression. */
14031 static tree
14032 cp_parser_throw_expression (cp_parser* parser)
14034 tree expression;
14035 cp_token* token;
14037 cp_parser_require_keyword (parser, RID_THROW, "`throw'");
14038 token = cp_lexer_peek_token (parser->lexer);
14039 /* Figure out whether or not there is an assignment-expression
14040 following the "throw" keyword. */
14041 if (token->type == CPP_COMMA
14042 || token->type == CPP_SEMICOLON
14043 || token->type == CPP_CLOSE_PAREN
14044 || token->type == CPP_CLOSE_SQUARE
14045 || token->type == CPP_CLOSE_BRACE
14046 || token->type == CPP_COLON)
14047 expression = NULL_TREE;
14048 else
14049 expression = cp_parser_assignment_expression (parser,
14050 /*cast_p=*/false);
14052 return build_throw (expression);
14055 /* GNU Extensions */
14057 /* Parse an (optional) asm-specification.
14059 asm-specification:
14060 asm ( string-literal )
14062 If the asm-specification is present, returns a STRING_CST
14063 corresponding to the string-literal. Otherwise, returns
14064 NULL_TREE. */
14066 static tree
14067 cp_parser_asm_specification_opt (cp_parser* parser)
14069 cp_token *token;
14070 tree asm_specification;
14072 /* Peek at the next token. */
14073 token = cp_lexer_peek_token (parser->lexer);
14074 /* If the next token isn't the `asm' keyword, then there's no
14075 asm-specification. */
14076 if (!cp_parser_is_keyword (token, RID_ASM))
14077 return NULL_TREE;
14079 /* Consume the `asm' token. */
14080 cp_lexer_consume_token (parser->lexer);
14081 /* Look for the `('. */
14082 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
14084 /* Look for the string-literal. */
14085 asm_specification = cp_parser_string_literal (parser, false, false);
14087 /* Look for the `)'. */
14088 cp_parser_require (parser, CPP_CLOSE_PAREN, "`('");
14090 return asm_specification;
14093 /* Parse an asm-operand-list.
14095 asm-operand-list:
14096 asm-operand
14097 asm-operand-list , asm-operand
14099 asm-operand:
14100 string-literal ( expression )
14101 [ string-literal ] string-literal ( expression )
14103 Returns a TREE_LIST representing the operands. The TREE_VALUE of
14104 each node is the expression. The TREE_PURPOSE is itself a
14105 TREE_LIST whose TREE_PURPOSE is a STRING_CST for the bracketed
14106 string-literal (or NULL_TREE if not present) and whose TREE_VALUE
14107 is a STRING_CST for the string literal before the parenthesis. */
14109 static tree
14110 cp_parser_asm_operand_list (cp_parser* parser)
14112 tree asm_operands = NULL_TREE;
14114 while (true)
14116 tree string_literal;
14117 tree expression;
14118 tree name;
14120 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
14122 /* Consume the `[' token. */
14123 cp_lexer_consume_token (parser->lexer);
14124 /* Read the operand name. */
14125 name = cp_parser_identifier (parser);
14126 if (name != error_mark_node)
14127 name = build_string (IDENTIFIER_LENGTH (name),
14128 IDENTIFIER_POINTER (name));
14129 /* Look for the closing `]'. */
14130 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
14132 else
14133 name = NULL_TREE;
14134 /* Look for the string-literal. */
14135 string_literal = cp_parser_string_literal (parser, false, false);
14137 /* Look for the `('. */
14138 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
14139 /* Parse the expression. */
14140 expression = cp_parser_expression (parser, /*cast_p=*/false);
14141 /* Look for the `)'. */
14142 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
14144 /* Add this operand to the list. */
14145 asm_operands = tree_cons (build_tree_list (name, string_literal),
14146 expression,
14147 asm_operands);
14148 /* If the next token is not a `,', there are no more
14149 operands. */
14150 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
14151 break;
14152 /* Consume the `,'. */
14153 cp_lexer_consume_token (parser->lexer);
14156 return nreverse (asm_operands);
14159 /* Parse an asm-clobber-list.
14161 asm-clobber-list:
14162 string-literal
14163 asm-clobber-list , string-literal
14165 Returns a TREE_LIST, indicating the clobbers in the order that they
14166 appeared. The TREE_VALUE of each node is a STRING_CST. */
14168 static tree
14169 cp_parser_asm_clobber_list (cp_parser* parser)
14171 tree clobbers = NULL_TREE;
14173 while (true)
14175 tree string_literal;
14177 /* Look for the string literal. */
14178 string_literal = cp_parser_string_literal (parser, false, false);
14179 /* Add it to the list. */
14180 clobbers = tree_cons (NULL_TREE, string_literal, clobbers);
14181 /* If the next token is not a `,', then the list is
14182 complete. */
14183 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
14184 break;
14185 /* Consume the `,' token. */
14186 cp_lexer_consume_token (parser->lexer);
14189 return clobbers;
14192 /* Parse an (optional) series of attributes.
14194 attributes:
14195 attributes attribute
14197 attribute:
14198 __attribute__ (( attribute-list [opt] ))
14200 The return value is as for cp_parser_attribute_list. */
14202 static tree
14203 cp_parser_attributes_opt (cp_parser* parser)
14205 tree attributes = NULL_TREE;
14207 while (true)
14209 cp_token *token;
14210 tree attribute_list;
14212 /* Peek at the next token. */
14213 token = cp_lexer_peek_token (parser->lexer);
14214 /* If it's not `__attribute__', then we're done. */
14215 if (token->keyword != RID_ATTRIBUTE)
14216 break;
14218 /* Consume the `__attribute__' keyword. */
14219 cp_lexer_consume_token (parser->lexer);
14220 /* Look for the two `(' tokens. */
14221 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
14222 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
14224 /* Peek at the next token. */
14225 token = cp_lexer_peek_token (parser->lexer);
14226 if (token->type != CPP_CLOSE_PAREN)
14227 /* Parse the attribute-list. */
14228 attribute_list = cp_parser_attribute_list (parser);
14229 else
14230 /* If the next token is a `)', then there is no attribute
14231 list. */
14232 attribute_list = NULL;
14234 /* Look for the two `)' tokens. */
14235 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
14236 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
14238 /* Add these new attributes to the list. */
14239 attributes = chainon (attributes, attribute_list);
14242 return attributes;
14245 /* Parse an attribute-list.
14247 attribute-list:
14248 attribute
14249 attribute-list , attribute
14251 attribute:
14252 identifier
14253 identifier ( identifier )
14254 identifier ( identifier , expression-list )
14255 identifier ( expression-list )
14257 Returns a TREE_LIST, or NULL_TREE on error. Each node corresponds
14258 to an attribute. The TREE_PURPOSE of each node is the identifier
14259 indicating which attribute is in use. The TREE_VALUE represents
14260 the arguments, if any. */
14262 static tree
14263 cp_parser_attribute_list (cp_parser* parser)
14265 tree attribute_list = NULL_TREE;
14266 bool save_translate_strings_p = parser->translate_strings_p;
14268 parser->translate_strings_p = false;
14269 while (true)
14271 cp_token *token;
14272 tree identifier;
14273 tree attribute;
14275 /* Look for the identifier. We also allow keywords here; for
14276 example `__attribute__ ((const))' is legal. */
14277 token = cp_lexer_peek_token (parser->lexer);
14278 if (token->type == CPP_NAME
14279 || token->type == CPP_KEYWORD)
14281 /* Consume the token. */
14282 token = cp_lexer_consume_token (parser->lexer);
14284 /* Save away the identifier that indicates which attribute
14285 this is. */
14286 identifier = token->value;
14287 attribute = build_tree_list (identifier, NULL_TREE);
14289 /* Peek at the next token. */
14290 token = cp_lexer_peek_token (parser->lexer);
14291 /* If it's an `(', then parse the attribute arguments. */
14292 if (token->type == CPP_OPEN_PAREN)
14294 tree arguments;
14296 arguments = (cp_parser_parenthesized_expression_list
14297 (parser, true, /*cast_p=*/false,
14298 /*non_constant_p=*/NULL));
14299 /* Save the identifier and arguments away. */
14300 TREE_VALUE (attribute) = arguments;
14303 /* Add this attribute to the list. */
14304 TREE_CHAIN (attribute) = attribute_list;
14305 attribute_list = attribute;
14307 token = cp_lexer_peek_token (parser->lexer);
14309 /* Now, look for more attributes. If the next token isn't a
14310 `,', we're done. */
14311 if (token->type != CPP_COMMA)
14312 break;
14314 /* Consume the comma and keep going. */
14315 cp_lexer_consume_token (parser->lexer);
14317 parser->translate_strings_p = save_translate_strings_p;
14319 /* We built up the list in reverse order. */
14320 return nreverse (attribute_list);
14323 /* Parse an optional `__extension__' keyword. Returns TRUE if it is
14324 present, and FALSE otherwise. *SAVED_PEDANTIC is set to the
14325 current value of the PEDANTIC flag, regardless of whether or not
14326 the `__extension__' keyword is present. The caller is responsible
14327 for restoring the value of the PEDANTIC flag. */
14329 static bool
14330 cp_parser_extension_opt (cp_parser* parser, int* saved_pedantic)
14332 /* Save the old value of the PEDANTIC flag. */
14333 *saved_pedantic = pedantic;
14335 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXTENSION))
14337 /* Consume the `__extension__' token. */
14338 cp_lexer_consume_token (parser->lexer);
14339 /* We're not being pedantic while the `__extension__' keyword is
14340 in effect. */
14341 pedantic = 0;
14343 return true;
14346 return false;
14349 /* Parse a label declaration.
14351 label-declaration:
14352 __label__ label-declarator-seq ;
14354 label-declarator-seq:
14355 identifier , label-declarator-seq
14356 identifier */
14358 static void
14359 cp_parser_label_declaration (cp_parser* parser)
14361 /* Look for the `__label__' keyword. */
14362 cp_parser_require_keyword (parser, RID_LABEL, "`__label__'");
14364 while (true)
14366 tree identifier;
14368 /* Look for an identifier. */
14369 identifier = cp_parser_identifier (parser);
14370 /* Declare it as a lobel. */
14371 finish_label_decl (identifier);
14372 /* If the next token is a `;', stop. */
14373 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
14374 break;
14375 /* Look for the `,' separating the label declarations. */
14376 cp_parser_require (parser, CPP_COMMA, "`,'");
14379 /* Look for the final `;'. */
14380 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
14383 /* Support Functions */
14385 /* Looks up NAME in the current scope, as given by PARSER->SCOPE.
14386 NAME should have one of the representations used for an
14387 id-expression. If NAME is the ERROR_MARK_NODE, the ERROR_MARK_NODE
14388 is returned. If PARSER->SCOPE is a dependent type, then a
14389 SCOPE_REF is returned.
14391 If NAME is a TEMPLATE_ID_EXPR, then it will be immediately
14392 returned; the name was already resolved when the TEMPLATE_ID_EXPR
14393 was formed. Abstractly, such entities should not be passed to this
14394 function, because they do not need to be looked up, but it is
14395 simpler to check for this special case here, rather than at the
14396 call-sites.
14398 In cases not explicitly covered above, this function returns a
14399 DECL, OVERLOAD, or baselink representing the result of the lookup.
14400 If there was no entity with the indicated NAME, the ERROR_MARK_NODE
14401 is returned.
14403 If TAG_TYPE is not NONE_TYPE, it indicates an explicit type keyword
14404 (e.g., "struct") that was used. In that case bindings that do not
14405 refer to types are ignored.
14407 If IS_TEMPLATE is TRUE, bindings that do not refer to templates are
14408 ignored.
14410 If IS_NAMESPACE is TRUE, bindings that do not refer to namespaces
14411 are ignored.
14413 If CHECK_DEPENDENCY is TRUE, names are not looked up in dependent
14414 types.
14416 If AMBIGUOUS_P is non-NULL, it is set to true if name-lookup
14417 results in an ambiguity, and false otherwise. */
14419 static tree
14420 cp_parser_lookup_name (cp_parser *parser, tree name,
14421 enum tag_types tag_type,
14422 bool is_template, bool is_namespace,
14423 bool check_dependency,
14424 bool *ambiguous_p)
14426 tree decl;
14427 tree object_type = parser->context->object_type;
14429 /* Assume that the lookup will be unambiguous. */
14430 if (ambiguous_p)
14431 *ambiguous_p = false;
14433 /* Now that we have looked up the name, the OBJECT_TYPE (if any) is
14434 no longer valid. Note that if we are parsing tentatively, and
14435 the parse fails, OBJECT_TYPE will be automatically restored. */
14436 parser->context->object_type = NULL_TREE;
14438 if (name == error_mark_node)
14439 return error_mark_node;
14441 /* A template-id has already been resolved; there is no lookup to
14442 do. */
14443 if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
14444 return name;
14445 if (BASELINK_P (name))
14447 gcc_assert (TREE_CODE (BASELINK_FUNCTIONS (name))
14448 == TEMPLATE_ID_EXPR);
14449 return name;
14452 /* A BIT_NOT_EXPR is used to represent a destructor. By this point,
14453 it should already have been checked to make sure that the name
14454 used matches the type being destroyed. */
14455 if (TREE_CODE (name) == BIT_NOT_EXPR)
14457 tree type;
14459 /* Figure out to which type this destructor applies. */
14460 if (parser->scope)
14461 type = parser->scope;
14462 else if (object_type)
14463 type = object_type;
14464 else
14465 type = current_class_type;
14466 /* If that's not a class type, there is no destructor. */
14467 if (!type || !CLASS_TYPE_P (type))
14468 return error_mark_node;
14469 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
14470 lazily_declare_fn (sfk_destructor, type);
14471 if (!CLASSTYPE_DESTRUCTORS (type))
14472 return error_mark_node;
14473 /* If it was a class type, return the destructor. */
14474 return CLASSTYPE_DESTRUCTORS (type);
14477 /* By this point, the NAME should be an ordinary identifier. If
14478 the id-expression was a qualified name, the qualifying scope is
14479 stored in PARSER->SCOPE at this point. */
14480 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
14482 /* Perform the lookup. */
14483 if (parser->scope)
14485 bool dependent_p;
14487 if (parser->scope == error_mark_node)
14488 return error_mark_node;
14490 /* If the SCOPE is dependent, the lookup must be deferred until
14491 the template is instantiated -- unless we are explicitly
14492 looking up names in uninstantiated templates. Even then, we
14493 cannot look up the name if the scope is not a class type; it
14494 might, for example, be a template type parameter. */
14495 dependent_p = (TYPE_P (parser->scope)
14496 && !(parser->in_declarator_p
14497 && currently_open_class (parser->scope))
14498 && dependent_type_p (parser->scope));
14499 if ((check_dependency || !CLASS_TYPE_P (parser->scope))
14500 && dependent_p)
14502 if (tag_type)
14504 tree type;
14506 /* The resolution to Core Issue 180 says that `struct
14507 A::B' should be considered a type-name, even if `A'
14508 is dependent. */
14509 type = make_typename_type (parser->scope, name, tag_type,
14510 /*complain=*/1);
14511 decl = TYPE_NAME (type);
14513 else if (is_template)
14514 decl = make_unbound_class_template (parser->scope,
14515 name, NULL_TREE,
14516 /*complain=*/1);
14517 else
14518 decl = build_nt (SCOPE_REF, parser->scope, name);
14520 else
14522 tree pushed_scope = NULL_TREE;
14524 /* If PARSER->SCOPE is a dependent type, then it must be a
14525 class type, and we must not be checking dependencies;
14526 otherwise, we would have processed this lookup above. So
14527 that PARSER->SCOPE is not considered a dependent base by
14528 lookup_member, we must enter the scope here. */
14529 if (dependent_p)
14530 pushed_scope = push_scope (parser->scope);
14531 /* If the PARSER->SCOPE is a template specialization, it
14532 may be instantiated during name lookup. In that case,
14533 errors may be issued. Even if we rollback the current
14534 tentative parse, those errors are valid. */
14535 decl = lookup_qualified_name (parser->scope, name,
14536 tag_type != none_type,
14537 /*complain=*/true);
14538 if (pushed_scope)
14539 pop_scope (pushed_scope);
14541 parser->qualifying_scope = parser->scope;
14542 parser->object_scope = NULL_TREE;
14544 else if (object_type)
14546 tree object_decl = NULL_TREE;
14547 /* Look up the name in the scope of the OBJECT_TYPE, unless the
14548 OBJECT_TYPE is not a class. */
14549 if (CLASS_TYPE_P (object_type))
14550 /* If the OBJECT_TYPE is a template specialization, it may
14551 be instantiated during name lookup. In that case, errors
14552 may be issued. Even if we rollback the current tentative
14553 parse, those errors are valid. */
14554 object_decl = lookup_member (object_type,
14555 name,
14556 /*protect=*/0,
14557 tag_type != none_type);
14558 /* Look it up in the enclosing context, too. */
14559 decl = lookup_name_real (name, tag_type != none_type,
14560 /*nonclass=*/0,
14561 /*block_p=*/true, is_namespace,
14562 /*flags=*/0);
14563 parser->object_scope = object_type;
14564 parser->qualifying_scope = NULL_TREE;
14565 if (object_decl)
14566 decl = object_decl;
14568 else
14570 decl = lookup_name_real (name, tag_type != none_type,
14571 /*nonclass=*/0,
14572 /*block_p=*/true, is_namespace,
14573 /*flags=*/0);
14574 parser->qualifying_scope = NULL_TREE;
14575 parser->object_scope = NULL_TREE;
14578 /* If the lookup failed, let our caller know. */
14579 if (!decl || decl == error_mark_node)
14580 return error_mark_node;
14582 /* If it's a TREE_LIST, the result of the lookup was ambiguous. */
14583 if (TREE_CODE (decl) == TREE_LIST)
14585 if (ambiguous_p)
14586 *ambiguous_p = true;
14587 /* The error message we have to print is too complicated for
14588 cp_parser_error, so we incorporate its actions directly. */
14589 if (!cp_parser_simulate_error (parser))
14591 error ("reference to %qD is ambiguous", name);
14592 print_candidates (decl);
14594 return error_mark_node;
14597 gcc_assert (DECL_P (decl)
14598 || TREE_CODE (decl) == OVERLOAD
14599 || TREE_CODE (decl) == SCOPE_REF
14600 || TREE_CODE (decl) == UNBOUND_CLASS_TEMPLATE
14601 || BASELINK_P (decl));
14603 /* If we have resolved the name of a member declaration, check to
14604 see if the declaration is accessible. When the name resolves to
14605 set of overloaded functions, accessibility is checked when
14606 overload resolution is done.
14608 During an explicit instantiation, access is not checked at all,
14609 as per [temp.explicit]. */
14610 if (DECL_P (decl))
14611 check_accessibility_of_qualified_id (decl, object_type, parser->scope);
14613 return decl;
14616 /* Like cp_parser_lookup_name, but for use in the typical case where
14617 CHECK_ACCESS is TRUE, IS_TYPE is FALSE, IS_TEMPLATE is FALSE,
14618 IS_NAMESPACE is FALSE, and CHECK_DEPENDENCY is TRUE. */
14620 static tree
14621 cp_parser_lookup_name_simple (cp_parser* parser, tree name)
14623 return cp_parser_lookup_name (parser, name,
14624 none_type,
14625 /*is_template=*/false,
14626 /*is_namespace=*/false,
14627 /*check_dependency=*/true,
14628 /*ambiguous_p=*/NULL);
14631 /* If DECL is a TEMPLATE_DECL that can be treated like a TYPE_DECL in
14632 the current context, return the TYPE_DECL. If TAG_NAME_P is
14633 true, the DECL indicates the class being defined in a class-head,
14634 or declared in an elaborated-type-specifier.
14636 Otherwise, return DECL. */
14638 static tree
14639 cp_parser_maybe_treat_template_as_class (tree decl, bool tag_name_p)
14641 /* If the TEMPLATE_DECL is being declared as part of a class-head,
14642 the translation from TEMPLATE_DECL to TYPE_DECL occurs:
14644 struct A {
14645 template <typename T> struct B;
14648 template <typename T> struct A::B {};
14650 Similarly, in a elaborated-type-specifier:
14652 namespace N { struct X{}; }
14654 struct A {
14655 template <typename T> friend struct N::X;
14658 However, if the DECL refers to a class type, and we are in
14659 the scope of the class, then the name lookup automatically
14660 finds the TYPE_DECL created by build_self_reference rather
14661 than a TEMPLATE_DECL. For example, in:
14663 template <class T> struct S {
14664 S s;
14667 there is no need to handle such case. */
14669 if (DECL_CLASS_TEMPLATE_P (decl) && tag_name_p)
14670 return DECL_TEMPLATE_RESULT (decl);
14672 return decl;
14675 /* If too many, or too few, template-parameter lists apply to the
14676 declarator, issue an error message. Returns TRUE if all went well,
14677 and FALSE otherwise. */
14679 static bool
14680 cp_parser_check_declarator_template_parameters (cp_parser* parser,
14681 cp_declarator *declarator)
14683 unsigned num_templates;
14685 /* We haven't seen any classes that involve template parameters yet. */
14686 num_templates = 0;
14688 switch (declarator->kind)
14690 case cdk_id:
14691 if (declarator->u.id.qualifying_scope)
14693 tree scope;
14694 tree member;
14696 scope = declarator->u.id.qualifying_scope;
14697 member = declarator->u.id.unqualified_name;
14699 while (scope && CLASS_TYPE_P (scope))
14701 /* You're supposed to have one `template <...>'
14702 for every template class, but you don't need one
14703 for a full specialization. For example:
14705 template <class T> struct S{};
14706 template <> struct S<int> { void f(); };
14707 void S<int>::f () {}
14709 is correct; there shouldn't be a `template <>' for
14710 the definition of `S<int>::f'. */
14711 if (CLASSTYPE_TEMPLATE_INFO (scope)
14712 && (CLASSTYPE_TEMPLATE_INSTANTIATION (scope)
14713 || uses_template_parms (CLASSTYPE_TI_ARGS (scope)))
14714 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (scope)))
14715 ++num_templates;
14717 scope = TYPE_CONTEXT (scope);
14720 else if (TREE_CODE (declarator->u.id.unqualified_name)
14721 == TEMPLATE_ID_EXPR)
14722 /* If the DECLARATOR has the form `X<y>' then it uses one
14723 additional level of template parameters. */
14724 ++num_templates;
14726 return cp_parser_check_template_parameters (parser,
14727 num_templates);
14729 case cdk_function:
14730 case cdk_array:
14731 case cdk_pointer:
14732 case cdk_reference:
14733 case cdk_ptrmem:
14734 return (cp_parser_check_declarator_template_parameters
14735 (parser, declarator->declarator));
14737 case cdk_error:
14738 return true;
14740 default:
14741 gcc_unreachable ();
14743 return false;
14746 /* NUM_TEMPLATES were used in the current declaration. If that is
14747 invalid, return FALSE and issue an error messages. Otherwise,
14748 return TRUE. */
14750 static bool
14751 cp_parser_check_template_parameters (cp_parser* parser,
14752 unsigned num_templates)
14754 /* If there are more template classes than parameter lists, we have
14755 something like:
14757 template <class T> void S<T>::R<T>::f (); */
14758 if (parser->num_template_parameter_lists < num_templates)
14760 error ("too few template-parameter-lists");
14761 return false;
14763 /* If there are the same number of template classes and parameter
14764 lists, that's OK. */
14765 if (parser->num_template_parameter_lists == num_templates)
14766 return true;
14767 /* If there are more, but only one more, then we are referring to a
14768 member template. That's OK too. */
14769 if (parser->num_template_parameter_lists == num_templates + 1)
14770 return true;
14771 /* Otherwise, there are too many template parameter lists. We have
14772 something like:
14774 template <class T> template <class U> void S::f(); */
14775 error ("too many template-parameter-lists");
14776 return false;
14779 /* Parse an optional `::' token indicating that the following name is
14780 from the global namespace. If so, PARSER->SCOPE is set to the
14781 GLOBAL_NAMESPACE. Otherwise, PARSER->SCOPE is set to NULL_TREE,
14782 unless CURRENT_SCOPE_VALID_P is TRUE, in which case it is left alone.
14783 Returns the new value of PARSER->SCOPE, if the `::' token is
14784 present, and NULL_TREE otherwise. */
14786 static tree
14787 cp_parser_global_scope_opt (cp_parser* parser, bool current_scope_valid_p)
14789 cp_token *token;
14791 /* Peek at the next token. */
14792 token = cp_lexer_peek_token (parser->lexer);
14793 /* If we're looking at a `::' token then we're starting from the
14794 global namespace, not our current location. */
14795 if (token->type == CPP_SCOPE)
14797 /* Consume the `::' token. */
14798 cp_lexer_consume_token (parser->lexer);
14799 /* Set the SCOPE so that we know where to start the lookup. */
14800 parser->scope = global_namespace;
14801 parser->qualifying_scope = global_namespace;
14802 parser->object_scope = NULL_TREE;
14804 return parser->scope;
14806 else if (!current_scope_valid_p)
14808 parser->scope = NULL_TREE;
14809 parser->qualifying_scope = NULL_TREE;
14810 parser->object_scope = NULL_TREE;
14813 return NULL_TREE;
14816 /* Returns TRUE if the upcoming token sequence is the start of a
14817 constructor declarator. If FRIEND_P is true, the declarator is
14818 preceded by the `friend' specifier. */
14820 static bool
14821 cp_parser_constructor_declarator_p (cp_parser *parser, bool friend_p)
14823 bool constructor_p;
14824 tree type_decl = NULL_TREE;
14825 bool nested_name_p;
14826 cp_token *next_token;
14828 /* The common case is that this is not a constructor declarator, so
14829 try to avoid doing lots of work if at all possible. It's not
14830 valid declare a constructor at function scope. */
14831 if (at_function_scope_p ())
14832 return false;
14833 /* And only certain tokens can begin a constructor declarator. */
14834 next_token = cp_lexer_peek_token (parser->lexer);
14835 if (next_token->type != CPP_NAME
14836 && next_token->type != CPP_SCOPE
14837 && next_token->type != CPP_NESTED_NAME_SPECIFIER
14838 && next_token->type != CPP_TEMPLATE_ID)
14839 return false;
14841 /* Parse tentatively; we are going to roll back all of the tokens
14842 consumed here. */
14843 cp_parser_parse_tentatively (parser);
14844 /* Assume that we are looking at a constructor declarator. */
14845 constructor_p = true;
14847 /* Look for the optional `::' operator. */
14848 cp_parser_global_scope_opt (parser,
14849 /*current_scope_valid_p=*/false);
14850 /* Look for the nested-name-specifier. */
14851 nested_name_p
14852 = (cp_parser_nested_name_specifier_opt (parser,
14853 /*typename_keyword_p=*/false,
14854 /*check_dependency_p=*/false,
14855 /*type_p=*/false,
14856 /*is_declaration=*/false)
14857 != NULL_TREE);
14858 /* Outside of a class-specifier, there must be a
14859 nested-name-specifier. */
14860 if (!nested_name_p &&
14861 (!at_class_scope_p () || !TYPE_BEING_DEFINED (current_class_type)
14862 || friend_p))
14863 constructor_p = false;
14864 /* If we still think that this might be a constructor-declarator,
14865 look for a class-name. */
14866 if (constructor_p)
14868 /* If we have:
14870 template <typename T> struct S { S(); };
14871 template <typename T> S<T>::S ();
14873 we must recognize that the nested `S' names a class.
14874 Similarly, for:
14876 template <typename T> S<T>::S<T> ();
14878 we must recognize that the nested `S' names a template. */
14879 type_decl = cp_parser_class_name (parser,
14880 /*typename_keyword_p=*/false,
14881 /*template_keyword_p=*/false,
14882 none_type,
14883 /*check_dependency_p=*/false,
14884 /*class_head_p=*/false,
14885 /*is_declaration=*/false);
14886 /* If there was no class-name, then this is not a constructor. */
14887 constructor_p = !cp_parser_error_occurred (parser);
14890 /* If we're still considering a constructor, we have to see a `(',
14891 to begin the parameter-declaration-clause, followed by either a
14892 `)', an `...', or a decl-specifier. We need to check for a
14893 type-specifier to avoid being fooled into thinking that:
14895 S::S (f) (int);
14897 is a constructor. (It is actually a function named `f' that
14898 takes one parameter (of type `int') and returns a value of type
14899 `S::S'. */
14900 if (constructor_p
14901 && cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
14903 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN)
14904 && cp_lexer_next_token_is_not (parser->lexer, CPP_ELLIPSIS)
14905 /* A parameter declaration begins with a decl-specifier,
14906 which is either the "attribute" keyword, a storage class
14907 specifier, or (usually) a type-specifier. */
14908 && !cp_lexer_next_token_is_keyword (parser->lexer, RID_ATTRIBUTE)
14909 && !cp_parser_storage_class_specifier_opt (parser))
14911 tree type;
14912 tree pushed_scope = NULL_TREE;
14913 unsigned saved_num_template_parameter_lists;
14915 /* Names appearing in the type-specifier should be looked up
14916 in the scope of the class. */
14917 if (current_class_type)
14918 type = NULL_TREE;
14919 else
14921 type = TREE_TYPE (type_decl);
14922 if (TREE_CODE (type) == TYPENAME_TYPE)
14924 type = resolve_typename_type (type,
14925 /*only_current_p=*/false);
14926 if (type == error_mark_node)
14928 cp_parser_abort_tentative_parse (parser);
14929 return false;
14932 pushed_scope = push_scope (type);
14935 /* Inside the constructor parameter list, surrounding
14936 template-parameter-lists do not apply. */
14937 saved_num_template_parameter_lists
14938 = parser->num_template_parameter_lists;
14939 parser->num_template_parameter_lists = 0;
14941 /* Look for the type-specifier. */
14942 cp_parser_type_specifier (parser,
14943 CP_PARSER_FLAGS_NONE,
14944 /*decl_specs=*/NULL,
14945 /*is_declarator=*/true,
14946 /*declares_class_or_enum=*/NULL,
14947 /*is_cv_qualifier=*/NULL);
14949 parser->num_template_parameter_lists
14950 = saved_num_template_parameter_lists;
14952 /* Leave the scope of the class. */
14953 if (pushed_scope)
14954 pop_scope (pushed_scope);
14956 constructor_p = !cp_parser_error_occurred (parser);
14959 else
14960 constructor_p = false;
14961 /* We did not really want to consume any tokens. */
14962 cp_parser_abort_tentative_parse (parser);
14964 return constructor_p;
14967 /* Parse the definition of the function given by the DECL_SPECIFIERS,
14968 ATTRIBUTES, and DECLARATOR. The access checks have been deferred;
14969 they must be performed once we are in the scope of the function.
14971 Returns the function defined. */
14973 static tree
14974 cp_parser_function_definition_from_specifiers_and_declarator
14975 (cp_parser* parser,
14976 cp_decl_specifier_seq *decl_specifiers,
14977 tree attributes,
14978 const cp_declarator *declarator)
14980 tree fn;
14981 bool success_p;
14983 /* Begin the function-definition. */
14984 success_p = start_function (decl_specifiers, declarator, attributes);
14986 /* The things we're about to see are not directly qualified by any
14987 template headers we've seen thus far. */
14988 reset_specialization ();
14990 /* If there were names looked up in the decl-specifier-seq that we
14991 did not check, check them now. We must wait until we are in the
14992 scope of the function to perform the checks, since the function
14993 might be a friend. */
14994 perform_deferred_access_checks ();
14996 if (!success_p)
14998 /* Skip the entire function. */
14999 error ("invalid function declaration");
15000 cp_parser_skip_to_end_of_block_or_statement (parser);
15001 fn = error_mark_node;
15003 else
15004 fn = cp_parser_function_definition_after_declarator (parser,
15005 /*inline_p=*/false);
15007 return fn;
15010 /* Parse the part of a function-definition that follows the
15011 declarator. INLINE_P is TRUE iff this function is an inline
15012 function defined with a class-specifier.
15014 Returns the function defined. */
15016 static tree
15017 cp_parser_function_definition_after_declarator (cp_parser* parser,
15018 bool inline_p)
15020 tree fn;
15021 bool ctor_initializer_p = false;
15022 bool saved_in_unbraced_linkage_specification_p;
15023 unsigned saved_num_template_parameter_lists;
15025 /* If the next token is `return', then the code may be trying to
15026 make use of the "named return value" extension that G++ used to
15027 support. */
15028 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_RETURN))
15030 /* Consume the `return' keyword. */
15031 cp_lexer_consume_token (parser->lexer);
15032 /* Look for the identifier that indicates what value is to be
15033 returned. */
15034 cp_parser_identifier (parser);
15035 /* Issue an error message. */
15036 error ("named return values are no longer supported");
15037 /* Skip tokens until we reach the start of the function body. */
15038 while (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE)
15039 && cp_lexer_next_token_is_not (parser->lexer, CPP_EOF))
15040 cp_lexer_consume_token (parser->lexer);
15042 /* The `extern' in `extern "C" void f () { ... }' does not apply to
15043 anything declared inside `f'. */
15044 saved_in_unbraced_linkage_specification_p
15045 = parser->in_unbraced_linkage_specification_p;
15046 parser->in_unbraced_linkage_specification_p = false;
15047 /* Inside the function, surrounding template-parameter-lists do not
15048 apply. */
15049 saved_num_template_parameter_lists
15050 = parser->num_template_parameter_lists;
15051 parser->num_template_parameter_lists = 0;
15052 /* If the next token is `try', then we are looking at a
15053 function-try-block. */
15054 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TRY))
15055 ctor_initializer_p = cp_parser_function_try_block (parser);
15056 /* A function-try-block includes the function-body, so we only do
15057 this next part if we're not processing a function-try-block. */
15058 else
15059 ctor_initializer_p
15060 = cp_parser_ctor_initializer_opt_and_function_body (parser);
15062 /* Finish the function. */
15063 fn = finish_function ((ctor_initializer_p ? 1 : 0) |
15064 (inline_p ? 2 : 0));
15065 /* Generate code for it, if necessary. */
15066 expand_or_defer_fn (fn);
15067 /* Restore the saved values. */
15068 parser->in_unbraced_linkage_specification_p
15069 = saved_in_unbraced_linkage_specification_p;
15070 parser->num_template_parameter_lists
15071 = saved_num_template_parameter_lists;
15073 return fn;
15076 /* Parse a template-declaration, assuming that the `export' (and
15077 `extern') keywords, if present, has already been scanned. MEMBER_P
15078 is as for cp_parser_template_declaration. */
15080 static void
15081 cp_parser_template_declaration_after_export (cp_parser* parser, bool member_p)
15083 tree decl = NULL_TREE;
15084 tree parameter_list;
15085 bool friend_p = false;
15087 /* Look for the `template' keyword. */
15088 if (!cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'"))
15089 return;
15091 /* And the `<'. */
15092 if (!cp_parser_require (parser, CPP_LESS, "`<'"))
15093 return;
15095 /* If the next token is `>', then we have an invalid
15096 specialization. Rather than complain about an invalid template
15097 parameter, issue an error message here. */
15098 if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
15100 cp_parser_error (parser, "invalid explicit specialization");
15101 begin_specialization ();
15102 parameter_list = NULL_TREE;
15104 else
15106 /* Parse the template parameters. */
15107 begin_template_parm_list ();
15108 parameter_list = cp_parser_template_parameter_list (parser);
15109 parameter_list = end_template_parm_list (parameter_list);
15112 /* Look for the `>'. */
15113 cp_parser_skip_until_found (parser, CPP_GREATER, "`>'");
15114 /* We just processed one more parameter list. */
15115 ++parser->num_template_parameter_lists;
15116 /* If the next token is `template', there are more template
15117 parameters. */
15118 if (cp_lexer_next_token_is_keyword (parser->lexer,
15119 RID_TEMPLATE))
15120 cp_parser_template_declaration_after_export (parser, member_p);
15121 else
15123 /* There are no access checks when parsing a template, as we do not
15124 know if a specialization will be a friend. */
15125 push_deferring_access_checks (dk_no_check);
15127 decl = cp_parser_single_declaration (parser,
15128 member_p,
15129 &friend_p);
15131 pop_deferring_access_checks ();
15133 /* If this is a member template declaration, let the front
15134 end know. */
15135 if (member_p && !friend_p && decl)
15137 if (TREE_CODE (decl) == TYPE_DECL)
15138 cp_parser_check_access_in_redeclaration (decl);
15140 decl = finish_member_template_decl (decl);
15142 else if (friend_p && decl && TREE_CODE (decl) == TYPE_DECL)
15143 make_friend_class (current_class_type, TREE_TYPE (decl),
15144 /*complain=*/true);
15146 /* We are done with the current parameter list. */
15147 --parser->num_template_parameter_lists;
15149 /* Finish up. */
15150 finish_template_decl (parameter_list);
15152 /* Register member declarations. */
15153 if (member_p && !friend_p && decl && !DECL_CLASS_TEMPLATE_P (decl))
15154 finish_member_declaration (decl);
15156 /* If DECL is a function template, we must return to parse it later.
15157 (Even though there is no definition, there might be default
15158 arguments that need handling.) */
15159 if (member_p && decl
15160 && (TREE_CODE (decl) == FUNCTION_DECL
15161 || DECL_FUNCTION_TEMPLATE_P (decl)))
15162 TREE_VALUE (parser->unparsed_functions_queues)
15163 = tree_cons (NULL_TREE, decl,
15164 TREE_VALUE (parser->unparsed_functions_queues));
15167 /* Parse a `decl-specifier-seq [opt] init-declarator [opt] ;' or
15168 `function-definition' sequence. MEMBER_P is true, this declaration
15169 appears in a class scope.
15171 Returns the DECL for the declared entity. If FRIEND_P is non-NULL,
15172 *FRIEND_P is set to TRUE iff the declaration is a friend. */
15174 static tree
15175 cp_parser_single_declaration (cp_parser* parser,
15176 bool member_p,
15177 bool* friend_p)
15179 int declares_class_or_enum;
15180 tree decl = NULL_TREE;
15181 cp_decl_specifier_seq decl_specifiers;
15182 bool function_definition_p = false;
15184 /* This function is only used when processing a template
15185 declaration. */
15186 gcc_assert (innermost_scope_kind () == sk_template_parms
15187 || innermost_scope_kind () == sk_template_spec);
15189 /* Defer access checks until we know what is being declared. */
15190 push_deferring_access_checks (dk_deferred);
15192 /* Try the `decl-specifier-seq [opt] init-declarator [opt]'
15193 alternative. */
15194 cp_parser_decl_specifier_seq (parser,
15195 CP_PARSER_FLAGS_OPTIONAL,
15196 &decl_specifiers,
15197 &declares_class_or_enum);
15198 if (friend_p)
15199 *friend_p = cp_parser_friend_p (&decl_specifiers);
15201 /* There are no template typedefs. */
15202 if (decl_specifiers.specs[(int) ds_typedef])
15204 error ("template declaration of %qs", "typedef");
15205 decl = error_mark_node;
15208 /* Gather up the access checks that occurred the
15209 decl-specifier-seq. */
15210 stop_deferring_access_checks ();
15212 /* Check for the declaration of a template class. */
15213 if (declares_class_or_enum)
15215 if (cp_parser_declares_only_class_p (parser))
15217 decl = shadow_tag (&decl_specifiers);
15219 /* In this case:
15221 struct C {
15222 friend template <typename T> struct A<T>::B;
15225 A<T>::B will be represented by a TYPENAME_TYPE, and
15226 therefore not recognized by shadow_tag. */
15227 if (friend_p && *friend_p
15228 && !decl
15229 && decl_specifiers.type
15230 && TYPE_P (decl_specifiers.type))
15231 decl = decl_specifiers.type;
15233 if (decl && decl != error_mark_node)
15234 decl = TYPE_NAME (decl);
15235 else
15236 decl = error_mark_node;
15239 /* If it's not a template class, try for a template function. If
15240 the next token is a `;', then this declaration does not declare
15241 anything. But, if there were errors in the decl-specifiers, then
15242 the error might well have come from an attempted class-specifier.
15243 In that case, there's no need to warn about a missing declarator. */
15244 if (!decl
15245 && (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)
15246 || decl_specifiers.type != error_mark_node))
15247 decl = cp_parser_init_declarator (parser,
15248 &decl_specifiers,
15249 /*function_definition_allowed_p=*/true,
15250 member_p,
15251 declares_class_or_enum,
15252 &function_definition_p);
15254 pop_deferring_access_checks ();
15256 /* Clear any current qualification; whatever comes next is the start
15257 of something new. */
15258 parser->scope = NULL_TREE;
15259 parser->qualifying_scope = NULL_TREE;
15260 parser->object_scope = NULL_TREE;
15261 /* Look for a trailing `;' after the declaration. */
15262 if (!function_definition_p
15263 && (decl == error_mark_node
15264 || !cp_parser_require (parser, CPP_SEMICOLON, "`;'")))
15265 cp_parser_skip_to_end_of_block_or_statement (parser);
15267 return decl;
15270 /* Parse a cast-expression that is not the operand of a unary "&". */
15272 static tree
15273 cp_parser_simple_cast_expression (cp_parser *parser)
15275 return cp_parser_cast_expression (parser, /*address_p=*/false,
15276 /*cast_p=*/false);
15279 /* Parse a functional cast to TYPE. Returns an expression
15280 representing the cast. */
15282 static tree
15283 cp_parser_functional_cast (cp_parser* parser, tree type)
15285 tree expression_list;
15286 tree cast;
15288 expression_list
15289 = cp_parser_parenthesized_expression_list (parser, false,
15290 /*cast_p=*/true,
15291 /*non_constant_p=*/NULL);
15293 cast = build_functional_cast (type, expression_list);
15294 /* [expr.const]/1: In an integral constant expression "only type
15295 conversions to integral or enumeration type can be used". */
15296 if (cast != error_mark_node && !type_dependent_expression_p (type)
15297 && !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (type)))
15299 if (cp_parser_non_integral_constant_expression
15300 (parser, "a call to a constructor"))
15301 return error_mark_node;
15303 return cast;
15306 /* Save the tokens that make up the body of a member function defined
15307 in a class-specifier. The DECL_SPECIFIERS and DECLARATOR have
15308 already been parsed. The ATTRIBUTES are any GNU "__attribute__"
15309 specifiers applied to the declaration. Returns the FUNCTION_DECL
15310 for the member function. */
15312 static tree
15313 cp_parser_save_member_function_body (cp_parser* parser,
15314 cp_decl_specifier_seq *decl_specifiers,
15315 cp_declarator *declarator,
15316 tree attributes)
15318 cp_token *first;
15319 cp_token *last;
15320 tree fn;
15322 /* Create the function-declaration. */
15323 fn = start_method (decl_specifiers, declarator, attributes);
15324 /* If something went badly wrong, bail out now. */
15325 if (fn == error_mark_node)
15327 /* If there's a function-body, skip it. */
15328 if (cp_parser_token_starts_function_definition_p
15329 (cp_lexer_peek_token (parser->lexer)))
15330 cp_parser_skip_to_end_of_block_or_statement (parser);
15331 return error_mark_node;
15334 /* Remember it, if there default args to post process. */
15335 cp_parser_save_default_args (parser, fn);
15337 /* Save away the tokens that make up the body of the
15338 function. */
15339 first = parser->lexer->next_token;
15340 cp_parser_cache_group (parser, CPP_CLOSE_BRACE, /*depth=*/0);
15341 /* Handle function try blocks. */
15342 while (cp_lexer_next_token_is_keyword (parser->lexer, RID_CATCH))
15343 cp_parser_cache_group (parser, CPP_CLOSE_BRACE, /*depth=*/0);
15344 last = parser->lexer->next_token;
15346 /* Save away the inline definition; we will process it when the
15347 class is complete. */
15348 DECL_PENDING_INLINE_INFO (fn) = cp_token_cache_new (first, last);
15349 DECL_PENDING_INLINE_P (fn) = 1;
15351 /* We need to know that this was defined in the class, so that
15352 friend templates are handled correctly. */
15353 DECL_INITIALIZED_IN_CLASS_P (fn) = 1;
15355 /* We're done with the inline definition. */
15356 finish_method (fn);
15358 /* Add FN to the queue of functions to be parsed later. */
15359 TREE_VALUE (parser->unparsed_functions_queues)
15360 = tree_cons (NULL_TREE, fn,
15361 TREE_VALUE (parser->unparsed_functions_queues));
15363 return fn;
15366 /* Parse a template-argument-list, as well as the trailing ">" (but
15367 not the opening ">"). See cp_parser_template_argument_list for the
15368 return value. */
15370 static tree
15371 cp_parser_enclosed_template_argument_list (cp_parser* parser)
15373 tree arguments;
15374 tree saved_scope;
15375 tree saved_qualifying_scope;
15376 tree saved_object_scope;
15377 bool saved_greater_than_is_operator_p;
15379 /* [temp.names]
15381 When parsing a template-id, the first non-nested `>' is taken as
15382 the end of the template-argument-list rather than a greater-than
15383 operator. */
15384 saved_greater_than_is_operator_p
15385 = parser->greater_than_is_operator_p;
15386 parser->greater_than_is_operator_p = false;
15387 /* Parsing the argument list may modify SCOPE, so we save it
15388 here. */
15389 saved_scope = parser->scope;
15390 saved_qualifying_scope = parser->qualifying_scope;
15391 saved_object_scope = parser->object_scope;
15392 /* Parse the template-argument-list itself. */
15393 if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
15394 arguments = NULL_TREE;
15395 else
15396 arguments = cp_parser_template_argument_list (parser);
15397 /* Look for the `>' that ends the template-argument-list. If we find
15398 a '>>' instead, it's probably just a typo. */
15399 if (cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT))
15401 if (!saved_greater_than_is_operator_p)
15403 /* If we're in a nested template argument list, the '>>' has
15404 to be a typo for '> >'. We emit the error message, but we
15405 continue parsing and we push a '>' as next token, so that
15406 the argument list will be parsed correctly. Note that the
15407 global source location is still on the token before the
15408 '>>', so we need to say explicitly where we want it. */
15409 cp_token *token = cp_lexer_peek_token (parser->lexer);
15410 error ("%H%<>>%> should be %<> >%> "
15411 "within a nested template argument list",
15412 &token->location);
15414 /* ??? Proper recovery should terminate two levels of
15415 template argument list here. */
15416 token->type = CPP_GREATER;
15418 else
15420 /* If this is not a nested template argument list, the '>>'
15421 is a typo for '>'. Emit an error message and continue.
15422 Same deal about the token location, but here we can get it
15423 right by consuming the '>>' before issuing the diagnostic. */
15424 cp_lexer_consume_token (parser->lexer);
15425 error ("spurious %<>>%>, use %<>%> to terminate "
15426 "a template argument list");
15429 else if (!cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
15430 error ("missing %<>%> to terminate the template argument list");
15431 else
15432 /* It's what we want, a '>'; consume it. */
15433 cp_lexer_consume_token (parser->lexer);
15434 /* The `>' token might be a greater-than operator again now. */
15435 parser->greater_than_is_operator_p
15436 = saved_greater_than_is_operator_p;
15437 /* Restore the SAVED_SCOPE. */
15438 parser->scope = saved_scope;
15439 parser->qualifying_scope = saved_qualifying_scope;
15440 parser->object_scope = saved_object_scope;
15442 return arguments;
15445 /* MEMBER_FUNCTION is a member function, or a friend. If default
15446 arguments, or the body of the function have not yet been parsed,
15447 parse them now. */
15449 static void
15450 cp_parser_late_parsing_for_member (cp_parser* parser, tree member_function)
15452 /* If this member is a template, get the underlying
15453 FUNCTION_DECL. */
15454 if (DECL_FUNCTION_TEMPLATE_P (member_function))
15455 member_function = DECL_TEMPLATE_RESULT (member_function);
15457 /* There should not be any class definitions in progress at this
15458 point; the bodies of members are only parsed outside of all class
15459 definitions. */
15460 gcc_assert (parser->num_classes_being_defined == 0);
15461 /* While we're parsing the member functions we might encounter more
15462 classes. We want to handle them right away, but we don't want
15463 them getting mixed up with functions that are currently in the
15464 queue. */
15465 parser->unparsed_functions_queues
15466 = tree_cons (NULL_TREE, NULL_TREE, parser->unparsed_functions_queues);
15468 /* Make sure that any template parameters are in scope. */
15469 maybe_begin_member_template_processing (member_function);
15471 /* If the body of the function has not yet been parsed, parse it
15472 now. */
15473 if (DECL_PENDING_INLINE_P (member_function))
15475 tree function_scope;
15476 cp_token_cache *tokens;
15478 /* The function is no longer pending; we are processing it. */
15479 tokens = DECL_PENDING_INLINE_INFO (member_function);
15480 DECL_PENDING_INLINE_INFO (member_function) = NULL;
15481 DECL_PENDING_INLINE_P (member_function) = 0;
15483 /* If this is a local class, enter the scope of the containing
15484 function. */
15485 function_scope = current_function_decl;
15486 if (function_scope)
15487 push_function_context_to (function_scope);
15489 /* Push the body of the function onto the lexer stack. */
15490 cp_parser_push_lexer_for_tokens (parser, tokens);
15492 /* Let the front end know that we going to be defining this
15493 function. */
15494 start_preparsed_function (member_function, NULL_TREE,
15495 SF_PRE_PARSED | SF_INCLASS_INLINE);
15497 /* Now, parse the body of the function. */
15498 cp_parser_function_definition_after_declarator (parser,
15499 /*inline_p=*/true);
15501 /* Leave the scope of the containing function. */
15502 if (function_scope)
15503 pop_function_context_from (function_scope);
15504 cp_parser_pop_lexer (parser);
15507 /* Remove any template parameters from the symbol table. */
15508 maybe_end_member_template_processing ();
15510 /* Restore the queue. */
15511 parser->unparsed_functions_queues
15512 = TREE_CHAIN (parser->unparsed_functions_queues);
15515 /* If DECL contains any default args, remember it on the unparsed
15516 functions queue. */
15518 static void
15519 cp_parser_save_default_args (cp_parser* parser, tree decl)
15521 tree probe;
15523 for (probe = TYPE_ARG_TYPES (TREE_TYPE (decl));
15524 probe;
15525 probe = TREE_CHAIN (probe))
15526 if (TREE_PURPOSE (probe))
15528 TREE_PURPOSE (parser->unparsed_functions_queues)
15529 = tree_cons (current_class_type, decl,
15530 TREE_PURPOSE (parser->unparsed_functions_queues));
15531 break;
15533 return;
15536 /* FN is a FUNCTION_DECL which may contains a parameter with an
15537 unparsed DEFAULT_ARG. Parse the default args now. This function
15538 assumes that the current scope is the scope in which the default
15539 argument should be processed. */
15541 static void
15542 cp_parser_late_parsing_default_args (cp_parser *parser, tree fn)
15544 bool saved_local_variables_forbidden_p;
15545 tree parm;
15547 /* While we're parsing the default args, we might (due to the
15548 statement expression extension) encounter more classes. We want
15549 to handle them right away, but we don't want them getting mixed
15550 up with default args that are currently in the queue. */
15551 parser->unparsed_functions_queues
15552 = tree_cons (NULL_TREE, NULL_TREE, parser->unparsed_functions_queues);
15554 /* Local variable names (and the `this' keyword) may not appear
15555 in a default argument. */
15556 saved_local_variables_forbidden_p = parser->local_variables_forbidden_p;
15557 parser->local_variables_forbidden_p = true;
15559 for (parm = TYPE_ARG_TYPES (TREE_TYPE (fn));
15560 parm;
15561 parm = TREE_CHAIN (parm))
15563 cp_token_cache *tokens;
15565 if (!TREE_PURPOSE (parm)
15566 || TREE_CODE (TREE_PURPOSE (parm)) != DEFAULT_ARG)
15567 continue;
15569 /* Push the saved tokens for the default argument onto the parser's
15570 lexer stack. */
15571 tokens = DEFARG_TOKENS (TREE_PURPOSE (parm));
15572 cp_parser_push_lexer_for_tokens (parser, tokens);
15574 /* Parse the assignment-expression. */
15575 TREE_PURPOSE (parm) = cp_parser_assignment_expression (parser,
15576 /*cast_p=*/false);
15578 /* If the token stream has not been completely used up, then
15579 there was extra junk after the end of the default
15580 argument. */
15581 if (!cp_lexer_next_token_is (parser->lexer, CPP_EOF))
15582 cp_parser_error (parser, "expected %<,%>");
15584 /* Revert to the main lexer. */
15585 cp_parser_pop_lexer (parser);
15588 /* Restore the state of local_variables_forbidden_p. */
15589 parser->local_variables_forbidden_p = saved_local_variables_forbidden_p;
15591 /* Restore the queue. */
15592 parser->unparsed_functions_queues
15593 = TREE_CHAIN (parser->unparsed_functions_queues);
15596 /* Parse the operand of `sizeof' (or a similar operator). Returns
15597 either a TYPE or an expression, depending on the form of the
15598 input. The KEYWORD indicates which kind of expression we have
15599 encountered. */
15601 static tree
15602 cp_parser_sizeof_operand (cp_parser* parser, enum rid keyword)
15604 static const char *format;
15605 tree expr = NULL_TREE;
15606 const char *saved_message;
15607 bool saved_integral_constant_expression_p;
15608 bool saved_non_integral_constant_expression_p;
15610 /* Initialize FORMAT the first time we get here. */
15611 if (!format)
15612 format = "types may not be defined in '%s' expressions";
15614 /* Types cannot be defined in a `sizeof' expression. Save away the
15615 old message. */
15616 saved_message = parser->type_definition_forbidden_message;
15617 /* And create the new one. */
15618 parser->type_definition_forbidden_message
15619 = xmalloc (strlen (format)
15620 + strlen (IDENTIFIER_POINTER (ridpointers[keyword]))
15621 + 1 /* `\0' */);
15622 sprintf ((char *) parser->type_definition_forbidden_message,
15623 format, IDENTIFIER_POINTER (ridpointers[keyword]));
15625 /* The restrictions on constant-expressions do not apply inside
15626 sizeof expressions. */
15627 saved_integral_constant_expression_p
15628 = parser->integral_constant_expression_p;
15629 saved_non_integral_constant_expression_p
15630 = parser->non_integral_constant_expression_p;
15631 parser->integral_constant_expression_p = false;
15633 /* Do not actually evaluate the expression. */
15634 ++skip_evaluation;
15635 /* If it's a `(', then we might be looking at the type-id
15636 construction. */
15637 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
15639 tree type;
15640 bool saved_in_type_id_in_expr_p;
15642 /* We can't be sure yet whether we're looking at a type-id or an
15643 expression. */
15644 cp_parser_parse_tentatively (parser);
15645 /* Consume the `('. */
15646 cp_lexer_consume_token (parser->lexer);
15647 /* Parse the type-id. */
15648 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
15649 parser->in_type_id_in_expr_p = true;
15650 type = cp_parser_type_id (parser);
15651 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
15652 /* Now, look for the trailing `)'. */
15653 cp_parser_require (parser, CPP_CLOSE_PAREN, "%<)%>");
15654 /* If all went well, then we're done. */
15655 if (cp_parser_parse_definitely (parser))
15657 cp_decl_specifier_seq decl_specs;
15659 /* Build a trivial decl-specifier-seq. */
15660 clear_decl_specs (&decl_specs);
15661 decl_specs.type = type;
15663 /* Call grokdeclarator to figure out what type this is. */
15664 expr = grokdeclarator (NULL,
15665 &decl_specs,
15666 TYPENAME,
15667 /*initialized=*/0,
15668 /*attrlist=*/NULL);
15672 /* If the type-id production did not work out, then we must be
15673 looking at the unary-expression production. */
15674 if (!expr)
15675 expr = cp_parser_unary_expression (parser, /*address_p=*/false,
15676 /*cast_p=*/false);
15677 /* Go back to evaluating expressions. */
15678 --skip_evaluation;
15680 /* Free the message we created. */
15681 free ((char *) parser->type_definition_forbidden_message);
15682 /* And restore the old one. */
15683 parser->type_definition_forbidden_message = saved_message;
15684 parser->integral_constant_expression_p
15685 = saved_integral_constant_expression_p;
15686 parser->non_integral_constant_expression_p
15687 = saved_non_integral_constant_expression_p;
15689 return expr;
15692 /* If the current declaration has no declarator, return true. */
15694 static bool
15695 cp_parser_declares_only_class_p (cp_parser *parser)
15697 /* If the next token is a `;' or a `,' then there is no
15698 declarator. */
15699 return (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)
15700 || cp_lexer_next_token_is (parser->lexer, CPP_COMMA));
15703 /* Update the DECL_SPECS to reflect the STORAGE_CLASS. */
15705 static void
15706 cp_parser_set_storage_class (cp_decl_specifier_seq *decl_specs,
15707 cp_storage_class storage_class)
15709 if (decl_specs->storage_class != sc_none)
15710 decl_specs->multiple_storage_classes_p = true;
15711 else
15712 decl_specs->storage_class = storage_class;
15715 /* Update the DECL_SPECS to reflect the TYPE_SPEC. If USER_DEFINED_P
15716 is true, the type is a user-defined type; otherwise it is a
15717 built-in type specified by a keyword. */
15719 static void
15720 cp_parser_set_decl_spec_type (cp_decl_specifier_seq *decl_specs,
15721 tree type_spec,
15722 bool user_defined_p)
15724 decl_specs->any_specifiers_p = true;
15726 /* If the user tries to redeclare bool or wchar_t (with, for
15727 example, in "typedef int wchar_t;") we remember that this is what
15728 happened. In system headers, we ignore these declarations so
15729 that G++ can work with system headers that are not C++-safe. */
15730 if (decl_specs->specs[(int) ds_typedef]
15731 && !user_defined_p
15732 && (type_spec == boolean_type_node
15733 || type_spec == wchar_type_node)
15734 && (decl_specs->type
15735 || decl_specs->specs[(int) ds_long]
15736 || decl_specs->specs[(int) ds_short]
15737 || decl_specs->specs[(int) ds_unsigned]
15738 || decl_specs->specs[(int) ds_signed]))
15740 decl_specs->redefined_builtin_type = type_spec;
15741 if (!decl_specs->type)
15743 decl_specs->type = type_spec;
15744 decl_specs->user_defined_type_p = false;
15747 else if (decl_specs->type)
15748 decl_specs->multiple_types_p = true;
15749 else
15751 decl_specs->type = type_spec;
15752 decl_specs->user_defined_type_p = user_defined_p;
15753 decl_specs->redefined_builtin_type = NULL_TREE;
15757 /* DECL_SPECIFIERS is the representation of a decl-specifier-seq.
15758 Returns TRUE iff `friend' appears among the DECL_SPECIFIERS. */
15760 static bool
15761 cp_parser_friend_p (const cp_decl_specifier_seq *decl_specifiers)
15763 return decl_specifiers->specs[(int) ds_friend] != 0;
15766 /* If the next token is of the indicated TYPE, consume it. Otherwise,
15767 issue an error message indicating that TOKEN_DESC was expected.
15769 Returns the token consumed, if the token had the appropriate type.
15770 Otherwise, returns NULL. */
15772 static cp_token *
15773 cp_parser_require (cp_parser* parser,
15774 enum cpp_ttype type,
15775 const char* token_desc)
15777 if (cp_lexer_next_token_is (parser->lexer, type))
15778 return cp_lexer_consume_token (parser->lexer);
15779 else
15781 /* Output the MESSAGE -- unless we're parsing tentatively. */
15782 if (!cp_parser_simulate_error (parser))
15784 char *message = concat ("expected ", token_desc, NULL);
15785 cp_parser_error (parser, message);
15786 free (message);
15788 return NULL;
15792 /* Like cp_parser_require, except that tokens will be skipped until
15793 the desired token is found. An error message is still produced if
15794 the next token is not as expected. */
15796 static void
15797 cp_parser_skip_until_found (cp_parser* parser,
15798 enum cpp_ttype type,
15799 const char* token_desc)
15801 cp_token *token;
15802 unsigned nesting_depth = 0;
15804 if (cp_parser_require (parser, type, token_desc))
15805 return;
15807 /* Skip tokens until the desired token is found. */
15808 while (true)
15810 /* Peek at the next token. */
15811 token = cp_lexer_peek_token (parser->lexer);
15812 /* If we've reached the token we want, consume it and
15813 stop. */
15814 if (token->type == type && !nesting_depth)
15816 cp_lexer_consume_token (parser->lexer);
15817 return;
15819 /* If we've run out of tokens, stop. */
15820 if (token->type == CPP_EOF)
15821 return;
15822 if (token->type == CPP_OPEN_BRACE
15823 || token->type == CPP_OPEN_PAREN
15824 || token->type == CPP_OPEN_SQUARE)
15825 ++nesting_depth;
15826 else if (token->type == CPP_CLOSE_BRACE
15827 || token->type == CPP_CLOSE_PAREN
15828 || token->type == CPP_CLOSE_SQUARE)
15830 if (nesting_depth-- == 0)
15831 return;
15833 /* Consume this token. */
15834 cp_lexer_consume_token (parser->lexer);
15838 /* If the next token is the indicated keyword, consume it. Otherwise,
15839 issue an error message indicating that TOKEN_DESC was expected.
15841 Returns the token consumed, if the token had the appropriate type.
15842 Otherwise, returns NULL. */
15844 static cp_token *
15845 cp_parser_require_keyword (cp_parser* parser,
15846 enum rid keyword,
15847 const char* token_desc)
15849 cp_token *token = cp_parser_require (parser, CPP_KEYWORD, token_desc);
15851 if (token && token->keyword != keyword)
15853 dyn_string_t error_msg;
15855 /* Format the error message. */
15856 error_msg = dyn_string_new (0);
15857 dyn_string_append_cstr (error_msg, "expected ");
15858 dyn_string_append_cstr (error_msg, token_desc);
15859 cp_parser_error (parser, error_msg->s);
15860 dyn_string_delete (error_msg);
15861 return NULL;
15864 return token;
15867 /* Returns TRUE iff TOKEN is a token that can begin the body of a
15868 function-definition. */
15870 static bool
15871 cp_parser_token_starts_function_definition_p (cp_token* token)
15873 return (/* An ordinary function-body begins with an `{'. */
15874 token->type == CPP_OPEN_BRACE
15875 /* A ctor-initializer begins with a `:'. */
15876 || token->type == CPP_COLON
15877 /* A function-try-block begins with `try'. */
15878 || token->keyword == RID_TRY
15879 /* The named return value extension begins with `return'. */
15880 || token->keyword == RID_RETURN);
15883 /* Returns TRUE iff the next token is the ":" or "{" beginning a class
15884 definition. */
15886 static bool
15887 cp_parser_next_token_starts_class_definition_p (cp_parser *parser)
15889 cp_token *token;
15891 token = cp_lexer_peek_token (parser->lexer);
15892 return (token->type == CPP_OPEN_BRACE || token->type == CPP_COLON);
15895 /* Returns TRUE iff the next token is the "," or ">" ending a
15896 template-argument. */
15898 static bool
15899 cp_parser_next_token_ends_template_argument_p (cp_parser *parser)
15901 cp_token *token;
15903 token = cp_lexer_peek_token (parser->lexer);
15904 return (token->type == CPP_COMMA || token->type == CPP_GREATER);
15907 /* Returns TRUE iff the n-th token is a ">", or the n-th is a "[" and the
15908 (n+1)-th is a ":" (which is a possible digraph typo for "< ::"). */
15910 static bool
15911 cp_parser_nth_token_starts_template_argument_list_p (cp_parser * parser,
15912 size_t n)
15914 cp_token *token;
15916 token = cp_lexer_peek_nth_token (parser->lexer, n);
15917 if (token->type == CPP_LESS)
15918 return true;
15919 /* Check for the sequence `<::' in the original code. It would be lexed as
15920 `[:', where `[' is a digraph, and there is no whitespace before
15921 `:'. */
15922 if (token->type == CPP_OPEN_SQUARE && token->flags & DIGRAPH)
15924 cp_token *token2;
15925 token2 = cp_lexer_peek_nth_token (parser->lexer, n+1);
15926 if (token2->type == CPP_COLON && !(token2->flags & PREV_WHITE))
15927 return true;
15929 return false;
15932 /* Returns the kind of tag indicated by TOKEN, if it is a class-key,
15933 or none_type otherwise. */
15935 static enum tag_types
15936 cp_parser_token_is_class_key (cp_token* token)
15938 switch (token->keyword)
15940 case RID_CLASS:
15941 return class_type;
15942 case RID_STRUCT:
15943 return record_type;
15944 case RID_UNION:
15945 return union_type;
15947 default:
15948 return none_type;
15952 /* Issue an error message if the CLASS_KEY does not match the TYPE. */
15954 static void
15955 cp_parser_check_class_key (enum tag_types class_key, tree type)
15957 if ((TREE_CODE (type) == UNION_TYPE) != (class_key == union_type))
15958 pedwarn ("%qs tag used in naming %q#T",
15959 class_key == union_type ? "union"
15960 : class_key == record_type ? "struct" : "class",
15961 type);
15964 /* Issue an error message if DECL is redeclared with different
15965 access than its original declaration [class.access.spec/3].
15966 This applies to nested classes and nested class templates.
15967 [class.mem/1]. */
15969 static void
15970 cp_parser_check_access_in_redeclaration (tree decl)
15972 if (!CLASS_TYPE_P (TREE_TYPE (decl)))
15973 return;
15975 if ((TREE_PRIVATE (decl)
15976 != (current_access_specifier == access_private_node))
15977 || (TREE_PROTECTED (decl)
15978 != (current_access_specifier == access_protected_node)))
15979 error ("%qD redeclared with different access", decl);
15982 /* Look for the `template' keyword, as a syntactic disambiguator.
15983 Return TRUE iff it is present, in which case it will be
15984 consumed. */
15986 static bool
15987 cp_parser_optional_template_keyword (cp_parser *parser)
15989 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
15991 /* The `template' keyword can only be used within templates;
15992 outside templates the parser can always figure out what is a
15993 template and what is not. */
15994 if (!processing_template_decl)
15996 error ("%<template%> (as a disambiguator) is only allowed "
15997 "within templates");
15998 /* If this part of the token stream is rescanned, the same
15999 error message would be generated. So, we purge the token
16000 from the stream. */
16001 cp_lexer_purge_token (parser->lexer);
16002 return false;
16004 else
16006 /* Consume the `template' keyword. */
16007 cp_lexer_consume_token (parser->lexer);
16008 return true;
16012 return false;
16015 /* The next token is a CPP_NESTED_NAME_SPECIFIER. Consume the token,
16016 set PARSER->SCOPE, and perform other related actions. */
16018 static void
16019 cp_parser_pre_parsed_nested_name_specifier (cp_parser *parser)
16021 tree value;
16022 tree check;
16024 /* Get the stored value. */
16025 value = cp_lexer_consume_token (parser->lexer)->value;
16026 /* Perform any access checks that were deferred. */
16027 for (check = TREE_PURPOSE (value); check; check = TREE_CHAIN (check))
16028 perform_or_defer_access_check (TREE_PURPOSE (check), TREE_VALUE (check));
16029 /* Set the scope from the stored value. */
16030 parser->scope = TREE_VALUE (value);
16031 parser->qualifying_scope = TREE_TYPE (value);
16032 parser->object_scope = NULL_TREE;
16035 /* Consume tokens up through a non-nested END token. */
16037 static void
16038 cp_parser_cache_group (cp_parser *parser,
16039 enum cpp_ttype end,
16040 unsigned depth)
16042 while (true)
16044 cp_token *token;
16046 /* Abort a parenthesized expression if we encounter a brace. */
16047 if ((end == CPP_CLOSE_PAREN || depth == 0)
16048 && cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
16049 return;
16050 /* If we've reached the end of the file, stop. */
16051 if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
16052 return;
16053 /* Consume the next token. */
16054 token = cp_lexer_consume_token (parser->lexer);
16055 /* See if it starts a new group. */
16056 if (token->type == CPP_OPEN_BRACE)
16058 cp_parser_cache_group (parser, CPP_CLOSE_BRACE, depth + 1);
16059 if (depth == 0)
16060 return;
16062 else if (token->type == CPP_OPEN_PAREN)
16063 cp_parser_cache_group (parser, CPP_CLOSE_PAREN, depth + 1);
16064 else if (token->type == end)
16065 return;
16069 /* Begin parsing tentatively. We always save tokens while parsing
16070 tentatively so that if the tentative parsing fails we can restore the
16071 tokens. */
16073 static void
16074 cp_parser_parse_tentatively (cp_parser* parser)
16076 /* Enter a new parsing context. */
16077 parser->context = cp_parser_context_new (parser->context);
16078 /* Begin saving tokens. */
16079 cp_lexer_save_tokens (parser->lexer);
16080 /* In order to avoid repetitive access control error messages,
16081 access checks are queued up until we are no longer parsing
16082 tentatively. */
16083 push_deferring_access_checks (dk_deferred);
16086 /* Commit to the currently active tentative parse. */
16088 static void
16089 cp_parser_commit_to_tentative_parse (cp_parser* parser)
16091 cp_parser_context *context;
16092 cp_lexer *lexer;
16094 /* Mark all of the levels as committed. */
16095 lexer = parser->lexer;
16096 for (context = parser->context; context->next; context = context->next)
16098 if (context->status == CP_PARSER_STATUS_KIND_COMMITTED)
16099 break;
16100 context->status = CP_PARSER_STATUS_KIND_COMMITTED;
16101 while (!cp_lexer_saving_tokens (lexer))
16102 lexer = lexer->next;
16103 cp_lexer_commit_tokens (lexer);
16107 /* Abort the currently active tentative parse. All consumed tokens
16108 will be rolled back, and no diagnostics will be issued. */
16110 static void
16111 cp_parser_abort_tentative_parse (cp_parser* parser)
16113 cp_parser_simulate_error (parser);
16114 /* Now, pretend that we want to see if the construct was
16115 successfully parsed. */
16116 cp_parser_parse_definitely (parser);
16119 /* Stop parsing tentatively. If a parse error has occurred, restore the
16120 token stream. Otherwise, commit to the tokens we have consumed.
16121 Returns true if no error occurred; false otherwise. */
16123 static bool
16124 cp_parser_parse_definitely (cp_parser* parser)
16126 bool error_occurred;
16127 cp_parser_context *context;
16129 /* Remember whether or not an error occurred, since we are about to
16130 destroy that information. */
16131 error_occurred = cp_parser_error_occurred (parser);
16132 /* Remove the topmost context from the stack. */
16133 context = parser->context;
16134 parser->context = context->next;
16135 /* If no parse errors occurred, commit to the tentative parse. */
16136 if (!error_occurred)
16138 /* Commit to the tokens read tentatively, unless that was
16139 already done. */
16140 if (context->status != CP_PARSER_STATUS_KIND_COMMITTED)
16141 cp_lexer_commit_tokens (parser->lexer);
16143 pop_to_parent_deferring_access_checks ();
16145 /* Otherwise, if errors occurred, roll back our state so that things
16146 are just as they were before we began the tentative parse. */
16147 else
16149 cp_lexer_rollback_tokens (parser->lexer);
16150 pop_deferring_access_checks ();
16152 /* Add the context to the front of the free list. */
16153 context->next = cp_parser_context_free_list;
16154 cp_parser_context_free_list = context;
16156 return !error_occurred;
16159 /* Returns true if we are parsing tentatively and are not committed to
16160 this tentative parse. */
16162 static bool
16163 cp_parser_uncommitted_to_tentative_parse_p (cp_parser* parser)
16165 return (cp_parser_parsing_tentatively (parser)
16166 && parser->context->status != CP_PARSER_STATUS_KIND_COMMITTED);
16169 /* Returns nonzero iff an error has occurred during the most recent
16170 tentative parse. */
16172 static bool
16173 cp_parser_error_occurred (cp_parser* parser)
16175 return (cp_parser_parsing_tentatively (parser)
16176 && parser->context->status == CP_PARSER_STATUS_KIND_ERROR);
16179 /* Returns nonzero if GNU extensions are allowed. */
16181 static bool
16182 cp_parser_allow_gnu_extensions_p (cp_parser* parser)
16184 return parser->allow_gnu_extensions_p;
16187 /* Objective-C++ Productions */
16190 /* Parse an Objective-C expression, which feeds into a primary-expression
16191 above.
16193 objc-expression:
16194 objc-message-expression
16195 objc-string-literal
16196 objc-encode-expression
16197 objc-protocol-expression
16198 objc-selector-expression
16200 Returns a tree representation of the expression. */
16202 static tree
16203 cp_parser_objc_expression (cp_parser* parser)
16205 /* Try to figure out what kind of declaration is present. */
16206 cp_token *kwd = cp_lexer_peek_token (parser->lexer);
16208 switch (kwd->type)
16210 case CPP_OPEN_SQUARE:
16211 return cp_parser_objc_message_expression (parser);
16213 case CPP_OBJC_STRING:
16214 kwd = cp_lexer_consume_token (parser->lexer);
16215 return objc_build_string_object (kwd->value);
16217 case CPP_KEYWORD:
16218 switch (kwd->keyword)
16220 case RID_AT_ENCODE:
16221 return cp_parser_objc_encode_expression (parser);
16223 case RID_AT_PROTOCOL:
16224 return cp_parser_objc_protocol_expression (parser);
16226 case RID_AT_SELECTOR:
16227 return cp_parser_objc_selector_expression (parser);
16229 default:
16230 break;
16232 default:
16233 error ("misplaced `@%D' Objective-C++ construct", kwd->value);
16234 cp_parser_skip_to_end_of_block_or_statement (parser);
16237 return error_mark_node;
16240 /* Parse an Objective-C message expression.
16242 objc-message-expression:
16243 [ objc-message-receiver objc-message-args ]
16245 Returns a representation of an Objective-C message. */
16247 static tree
16248 cp_parser_objc_message_expression (cp_parser* parser)
16250 tree receiver, messageargs;
16252 cp_lexer_consume_token (parser->lexer); /* Eat '['. */
16253 receiver = cp_parser_objc_message_receiver (parser);
16254 messageargs = cp_parser_objc_message_args (parser);
16255 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
16257 return objc_build_message_expr (build_tree_list (receiver, messageargs));
16260 /* Parse an objc-message-receiver.
16262 objc-message-receiver:
16263 expression
16264 simple-type-specifier
16266 Returns a representation of the type or expression. */
16268 static tree
16269 cp_parser_objc_message_receiver (cp_parser* parser)
16271 tree rcv;
16273 /* An Objective-C message receiver may be either (1) a type
16274 or (2) an expression. */
16275 cp_parser_parse_tentatively (parser);
16276 rcv = cp_parser_expression (parser, false);
16278 if (cp_parser_parse_definitely (parser))
16279 return rcv;
16281 rcv = cp_parser_simple_type_specifier (parser,
16282 /*decl_specs=*/NULL,
16283 CP_PARSER_FLAGS_NONE);
16285 return objc_get_class_reference (rcv);
16288 /* Parse the arguments and selectors comprising an Objective-C message.
16290 objc-message-args:
16291 objc-selector
16292 objc-selector-args
16293 objc-selector-args , objc-comma-args
16295 objc-selector-args:
16296 objc-selector [opt] : assignment-expression
16297 objc-selector-args objc-selector [opt] : assignment-expression
16299 objc-comma-args:
16300 assignment-expression
16301 objc-comma-args , assignment-expression
16303 Returns a TREE_LIST, with TREE_PURPOSE containing a list of
16304 selector arguments and TREE_VALUE containing a list of comma
16305 arguments. */
16307 static tree
16308 cp_parser_objc_message_args (cp_parser* parser)
16310 tree sel_args = NULL_TREE, addl_args = NULL_TREE;
16311 bool maybe_unary_selector_p = true;
16312 cp_token *token = cp_lexer_peek_token (parser->lexer);
16314 while (cp_parser_objc_selector_p (token->type) || token->type == CPP_COLON)
16316 tree selector = NULL_TREE, arg;
16318 if (token->type != CPP_COLON)
16319 selector = cp_parser_objc_selector (parser);
16321 /* Detect if we have a unary selector. */
16322 if (maybe_unary_selector_p
16323 && cp_lexer_next_token_is_not (parser->lexer, CPP_COLON))
16324 return build_tree_list (selector, NULL_TREE);
16326 maybe_unary_selector_p = false;
16327 cp_parser_require (parser, CPP_COLON, "`:'");
16328 arg = cp_parser_assignment_expression (parser, false);
16330 sel_args
16331 = chainon (sel_args,
16332 build_tree_list (selector, arg));
16334 token = cp_lexer_peek_token (parser->lexer);
16337 /* Handle non-selector arguments, if any. */
16338 while (token->type == CPP_COMMA)
16340 tree arg;
16342 cp_lexer_consume_token (parser->lexer);
16343 arg = cp_parser_assignment_expression (parser, false);
16345 addl_args
16346 = chainon (addl_args,
16347 build_tree_list (NULL_TREE, arg));
16349 token = cp_lexer_peek_token (parser->lexer);
16352 return build_tree_list (sel_args, addl_args);
16355 /* Parse an Objective-C encode expression.
16357 objc-encode-expression:
16358 @encode objc-typename
16360 Returns an encoded representation of the type argument. */
16362 static tree
16363 cp_parser_objc_encode_expression (cp_parser* parser)
16365 tree type;
16367 cp_lexer_consume_token (parser->lexer); /* Eat '@encode'. */
16368 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
16369 type = complete_type (cp_parser_type_id (parser));
16370 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
16372 if (!type)
16374 error ("`@encode' must specify a type as an argument");
16375 return error_mark_node;
16378 return objc_build_encode_expr (type);
16381 /* Parse an Objective-C @defs expression. */
16383 static tree
16384 cp_parser_objc_defs_expression (cp_parser *parser)
16386 tree name;
16388 cp_lexer_consume_token (parser->lexer); /* Eat '@defs'. */
16389 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
16390 name = cp_parser_identifier (parser);
16391 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
16393 return objc_get_class_ivars (name);
16396 /* Parse an Objective-C protocol expression.
16398 objc-protocol-expression:
16399 @protocol ( identifier )
16401 Returns a representation of the protocol expression. */
16403 static tree
16404 cp_parser_objc_protocol_expression (cp_parser* parser)
16406 tree proto;
16408 cp_lexer_consume_token (parser->lexer); /* Eat '@protocol'. */
16409 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
16410 proto = cp_parser_identifier (parser);
16411 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
16413 return objc_build_protocol_expr (proto);
16416 /* Parse an Objective-C selector expression.
16418 objc-selector-expression:
16419 @selector ( objc-method-signature )
16421 objc-method-signature:
16422 objc-selector
16423 objc-selector-seq
16425 objc-selector-seq:
16426 objc-selector :
16427 objc-selector-seq objc-selector :
16429 Returns a representation of the method selector. */
16431 static tree
16432 cp_parser_objc_selector_expression (cp_parser* parser)
16434 tree sel_seq = NULL_TREE;
16435 bool maybe_unary_selector_p = true;
16436 cp_token *token;
16438 cp_lexer_consume_token (parser->lexer); /* Eat '@selector'. */
16439 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
16440 token = cp_lexer_peek_token (parser->lexer);
16442 while (cp_parser_objc_selector_p (token->type) || token->type == CPP_COLON)
16444 tree selector = NULL_TREE;
16446 if (token->type != CPP_COLON)
16447 selector = cp_parser_objc_selector (parser);
16449 /* Detect if we have a unary selector. */
16450 if (maybe_unary_selector_p
16451 && cp_lexer_next_token_is_not (parser->lexer, CPP_COLON))
16453 sel_seq = selector;
16454 goto finish_selector;
16457 maybe_unary_selector_p = false;
16458 cp_parser_require (parser, CPP_COLON, "`:'");
16460 sel_seq
16461 = chainon (sel_seq,
16462 build_tree_list (selector, NULL_TREE));
16464 token = cp_lexer_peek_token (parser->lexer);
16467 finish_selector:
16468 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
16470 return objc_build_selector_expr (sel_seq);
16473 /* Parse a list of identifiers.
16475 objc-identifier-list:
16476 identifier
16477 objc-identifier-list , identifier
16479 Returns a TREE_LIST of identifier nodes. */
16481 static tree
16482 cp_parser_objc_identifier_list (cp_parser* parser)
16484 tree list = build_tree_list (NULL_TREE, cp_parser_identifier (parser));
16485 cp_token *sep = cp_lexer_peek_token (parser->lexer);
16487 while (sep->type == CPP_COMMA)
16489 cp_lexer_consume_token (parser->lexer); /* Eat ','. */
16490 list = chainon (list,
16491 build_tree_list (NULL_TREE,
16492 cp_parser_identifier (parser)));
16493 sep = cp_lexer_peek_token (parser->lexer);
16496 return list;
16499 /* Parse an Objective-C alias declaration.
16501 objc-alias-declaration:
16502 @compatibility_alias identifier identifier ;
16504 This function registers the alias mapping with the Objective-C front-end.
16505 It returns nothing. */
16507 static void
16508 cp_parser_objc_alias_declaration (cp_parser* parser)
16510 tree alias, orig;
16512 cp_lexer_consume_token (parser->lexer); /* Eat '@compatibility_alias'. */
16513 alias = cp_parser_identifier (parser);
16514 orig = cp_parser_identifier (parser);
16515 objc_declare_alias (alias, orig);
16516 cp_parser_consume_semicolon_at_end_of_statement (parser);
16519 /* Parse an Objective-C class forward-declaration.
16521 objc-class-declaration:
16522 @class objc-identifier-list ;
16524 The function registers the forward declarations with the Objective-C
16525 front-end. It returns nothing. */
16527 static void
16528 cp_parser_objc_class_declaration (cp_parser* parser)
16530 cp_lexer_consume_token (parser->lexer); /* Eat '@class'. */
16531 objc_declare_class (cp_parser_objc_identifier_list (parser));
16532 cp_parser_consume_semicolon_at_end_of_statement (parser);
16535 /* Parse a list of Objective-C protocol references.
16537 objc-protocol-refs-opt:
16538 objc-protocol-refs [opt]
16540 objc-protocol-refs:
16541 < objc-identifier-list >
16543 Returns a TREE_LIST of identifiers, if any. */
16545 static tree
16546 cp_parser_objc_protocol_refs_opt (cp_parser* parser)
16548 tree protorefs = NULL_TREE;
16550 if(cp_lexer_next_token_is (parser->lexer, CPP_LESS))
16552 cp_lexer_consume_token (parser->lexer); /* Eat '<'. */
16553 protorefs = cp_parser_objc_identifier_list (parser);
16554 cp_parser_require (parser, CPP_GREATER, "`>'");
16557 return protorefs;
16560 /* Parse a Objective-C visibility specification. */
16562 static void
16563 cp_parser_objc_visibility_spec (cp_parser* parser)
16565 cp_token *vis = cp_lexer_peek_token (parser->lexer);
16567 switch (vis->keyword)
16569 case RID_AT_PRIVATE:
16570 objc_set_visibility (2);
16571 break;
16572 case RID_AT_PROTECTED:
16573 objc_set_visibility (0);
16574 break;
16575 case RID_AT_PUBLIC:
16576 objc_set_visibility (1);
16577 break;
16578 default:
16579 return;
16582 /* Eat '@private'/'@protected'/'@public'. */
16583 cp_lexer_consume_token (parser->lexer);
16586 /* Parse an Objective-C method type. */
16588 static void
16589 cp_parser_objc_method_type (cp_parser* parser)
16591 objc_set_method_type
16592 (cp_lexer_consume_token (parser->lexer)->type == CPP_PLUS
16593 ? PLUS_EXPR
16594 : MINUS_EXPR);
16597 /* Parse an Objective-C protocol qualifier. */
16599 static tree
16600 cp_parser_objc_protocol_qualifiers (cp_parser* parser)
16602 tree quals = NULL_TREE, node;
16603 cp_token *token = cp_lexer_peek_token (parser->lexer);
16605 node = token->value;
16607 while (node && TREE_CODE (node) == IDENTIFIER_NODE
16608 && (node == ridpointers [(int) RID_IN]
16609 || node == ridpointers [(int) RID_OUT]
16610 || node == ridpointers [(int) RID_INOUT]
16611 || node == ridpointers [(int) RID_BYCOPY]
16612 || node == ridpointers [(int) RID_BYREF]
16613 || node == ridpointers [(int) RID_ONEWAY]))
16615 quals = tree_cons (NULL_TREE, node, quals);
16616 cp_lexer_consume_token (parser->lexer);
16617 token = cp_lexer_peek_token (parser->lexer);
16618 node = token->value;
16621 return quals;
16624 /* Parse an Objective-C typename. */
16626 static tree
16627 cp_parser_objc_typename (cp_parser* parser)
16629 tree typename = NULL_TREE;
16631 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
16633 tree proto_quals, cp_type = NULL_TREE;
16635 cp_lexer_consume_token (parser->lexer); /* Eat '('. */
16636 proto_quals = cp_parser_objc_protocol_qualifiers (parser);
16638 /* An ObjC type name may consist of just protocol qualifiers, in which
16639 case the type shall default to 'id'. */
16640 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
16641 cp_type = cp_parser_type_id (parser);
16643 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
16644 typename = build_tree_list (proto_quals, cp_type);
16647 return typename;
16650 /* Check to see if TYPE refers to an Objective-C selector name. */
16652 static bool
16653 cp_parser_objc_selector_p (enum cpp_ttype type)
16655 return (type == CPP_NAME || type == CPP_KEYWORD
16656 || type == CPP_AND_AND || type == CPP_AND_EQ || type == CPP_AND
16657 || type == CPP_OR || type == CPP_COMPL || type == CPP_NOT
16658 || type == CPP_NOT_EQ || type == CPP_OR_OR || type == CPP_OR_EQ
16659 || type == CPP_XOR || type == CPP_XOR_EQ);
16662 /* Parse an Objective-C selector. */
16664 static tree
16665 cp_parser_objc_selector (cp_parser* parser)
16667 cp_token *token = cp_lexer_consume_token (parser->lexer);
16669 if (!cp_parser_objc_selector_p (token->type))
16671 error ("invalid Objective-C++ selector name");
16672 return error_mark_node;
16675 /* C++ operator names are allowed to appear in ObjC selectors. */
16676 switch (token->type)
16678 case CPP_AND_AND: return get_identifier ("and");
16679 case CPP_AND_EQ: return get_identifier ("and_eq");
16680 case CPP_AND: return get_identifier ("bitand");
16681 case CPP_OR: return get_identifier ("bitor");
16682 case CPP_COMPL: return get_identifier ("compl");
16683 case CPP_NOT: return get_identifier ("not");
16684 case CPP_NOT_EQ: return get_identifier ("not_eq");
16685 case CPP_OR_OR: return get_identifier ("or");
16686 case CPP_OR_EQ: return get_identifier ("or_eq");
16687 case CPP_XOR: return get_identifier ("xor");
16688 case CPP_XOR_EQ: return get_identifier ("xor_eq");
16689 default: return token->value;
16693 /* Parse an Objective-C params list. */
16695 static tree
16696 cp_parser_objc_method_keyword_params (cp_parser* parser)
16698 tree params = NULL_TREE;
16699 bool maybe_unary_selector_p = true;
16700 cp_token *token = cp_lexer_peek_token (parser->lexer);
16702 while (cp_parser_objc_selector_p (token->type) || token->type == CPP_COLON)
16704 tree selector = NULL_TREE, typename, identifier;
16706 if (token->type != CPP_COLON)
16707 selector = cp_parser_objc_selector (parser);
16709 /* Detect if we have a unary selector. */
16710 if (maybe_unary_selector_p
16711 && cp_lexer_next_token_is_not (parser->lexer, CPP_COLON))
16712 return selector;
16714 maybe_unary_selector_p = false;
16715 cp_parser_require (parser, CPP_COLON, "`:'");
16716 typename = cp_parser_objc_typename (parser);
16717 identifier = cp_parser_identifier (parser);
16719 params
16720 = chainon (params,
16721 objc_build_keyword_decl (selector,
16722 typename,
16723 identifier));
16725 token = cp_lexer_peek_token (parser->lexer);
16728 return params;
16731 /* Parse the non-keyword Objective-C params. */
16733 static tree
16734 cp_parser_objc_method_tail_params_opt (cp_parser* parser, bool *ellipsisp)
16736 tree params = make_node (TREE_LIST);
16737 cp_token *token = cp_lexer_peek_token (parser->lexer);
16738 *ellipsisp = false; /* Initially, assume no ellipsis. */
16740 while (token->type == CPP_COMMA)
16742 cp_parameter_declarator *parmdecl;
16743 tree parm;
16745 cp_lexer_consume_token (parser->lexer); /* Eat ','. */
16746 token = cp_lexer_peek_token (parser->lexer);
16748 if (token->type == CPP_ELLIPSIS)
16750 cp_lexer_consume_token (parser->lexer); /* Eat '...'. */
16751 *ellipsisp = true;
16752 break;
16755 parmdecl = cp_parser_parameter_declaration (parser, false, NULL);
16756 parm = grokdeclarator (parmdecl->declarator,
16757 &parmdecl->decl_specifiers,
16758 PARM, /*initialized=*/0,
16759 /*attrlist=*/NULL);
16761 chainon (params, build_tree_list (NULL_TREE, parm));
16762 token = cp_lexer_peek_token (parser->lexer);
16765 return params;
16768 /* Parse a linkage specification, a pragma, an extra semicolon or a block. */
16770 static void
16771 cp_parser_objc_interstitial_code (cp_parser* parser)
16773 cp_token *token = cp_lexer_peek_token (parser->lexer);
16775 /* If the next token is `extern' and the following token is a string
16776 literal, then we have a linkage specification. */
16777 if (token->keyword == RID_EXTERN
16778 && cp_parser_is_string_literal (cp_lexer_peek_nth_token (parser->lexer, 2)))
16779 cp_parser_linkage_specification (parser);
16780 /* Handle #pragma, if any. */
16781 else if (token->type == CPP_PRAGMA)
16782 cp_lexer_handle_pragma (parser->lexer);
16783 /* Allow stray semicolons. */
16784 else if (token->type == CPP_SEMICOLON)
16785 cp_lexer_consume_token (parser->lexer);
16786 /* Finally, try to parse a block-declaration, or a function-definition. */
16787 else
16788 cp_parser_block_declaration (parser, /*statement_p=*/false);
16791 /* Parse a method signature. */
16793 static tree
16794 cp_parser_objc_method_signature (cp_parser* parser)
16796 tree rettype, kwdparms, optparms;
16797 bool ellipsis = false;
16799 cp_parser_objc_method_type (parser);
16800 rettype = cp_parser_objc_typename (parser);
16801 kwdparms = cp_parser_objc_method_keyword_params (parser);
16802 optparms = cp_parser_objc_method_tail_params_opt (parser, &ellipsis);
16804 return objc_build_method_signature (rettype, kwdparms, optparms, ellipsis);
16807 /* Pars an Objective-C method prototype list. */
16809 static void
16810 cp_parser_objc_method_prototype_list (cp_parser* parser)
16812 cp_token *token = cp_lexer_peek_token (parser->lexer);
16814 while (token->keyword != RID_AT_END)
16816 if (token->type == CPP_PLUS || token->type == CPP_MINUS)
16818 objc_add_method_declaration
16819 (cp_parser_objc_method_signature (parser));
16820 cp_parser_consume_semicolon_at_end_of_statement (parser);
16822 else
16823 /* Allow for interspersed non-ObjC++ code. */
16824 cp_parser_objc_interstitial_code (parser);
16826 token = cp_lexer_peek_token (parser->lexer);
16829 cp_lexer_consume_token (parser->lexer); /* Eat '@end'. */
16830 objc_finish_interface ();
16833 /* Parse an Objective-C method definition list. */
16835 static void
16836 cp_parser_objc_method_definition_list (cp_parser* parser)
16838 cp_token *token = cp_lexer_peek_token (parser->lexer);
16840 while (token->keyword != RID_AT_END)
16842 tree meth;
16844 if (token->type == CPP_PLUS || token->type == CPP_MINUS)
16846 push_deferring_access_checks (dk_deferred);
16847 objc_start_method_definition
16848 (cp_parser_objc_method_signature (parser));
16850 /* For historical reasons, we accept an optional semicolon. */
16851 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
16852 cp_lexer_consume_token (parser->lexer);
16854 perform_deferred_access_checks ();
16855 stop_deferring_access_checks ();
16856 meth = cp_parser_function_definition_after_declarator (parser,
16857 false);
16858 pop_deferring_access_checks ();
16859 objc_finish_method_definition (meth);
16861 else
16862 /* Allow for interspersed non-ObjC++ code. */
16863 cp_parser_objc_interstitial_code (parser);
16865 token = cp_lexer_peek_token (parser->lexer);
16868 cp_lexer_consume_token (parser->lexer); /* Eat '@end'. */
16869 objc_finish_implementation ();
16872 /* Parse Objective-C ivars. */
16874 static void
16875 cp_parser_objc_class_ivars (cp_parser* parser)
16877 cp_token *token = cp_lexer_peek_token (parser->lexer);
16879 if (token->type != CPP_OPEN_BRACE)
16880 return; /* No ivars specified. */
16882 cp_lexer_consume_token (parser->lexer); /* Eat '{'. */
16883 token = cp_lexer_peek_token (parser->lexer);
16885 while (token->type != CPP_CLOSE_BRACE)
16887 cp_decl_specifier_seq declspecs;
16888 int decl_class_or_enum_p;
16889 tree prefix_attributes;
16891 cp_parser_objc_visibility_spec (parser);
16893 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
16894 break;
16896 cp_parser_decl_specifier_seq (parser,
16897 CP_PARSER_FLAGS_OPTIONAL,
16898 &declspecs,
16899 &decl_class_or_enum_p);
16900 prefix_attributes = declspecs.attributes;
16901 declspecs.attributes = NULL_TREE;
16903 /* Keep going until we hit the `;' at the end of the
16904 declaration. */
16905 while (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
16907 tree width = NULL_TREE, attributes, first_attribute, decl;
16908 cp_declarator *declarator = NULL;
16909 int ctor_dtor_or_conv_p;
16911 /* Check for a (possibly unnamed) bitfield declaration. */
16912 token = cp_lexer_peek_token (parser->lexer);
16913 if (token->type == CPP_COLON)
16914 goto eat_colon;
16916 if (token->type == CPP_NAME
16917 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
16918 == CPP_COLON))
16920 /* Get the name of the bitfield. */
16921 declarator = make_id_declarator (NULL_TREE,
16922 cp_parser_identifier (parser));
16924 eat_colon:
16925 cp_lexer_consume_token (parser->lexer); /* Eat ':'. */
16926 /* Get the width of the bitfield. */
16927 width
16928 = cp_parser_constant_expression (parser,
16929 /*allow_non_constant=*/false,
16930 NULL);
16932 else
16934 /* Parse the declarator. */
16935 declarator
16936 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
16937 &ctor_dtor_or_conv_p,
16938 /*parenthesized_p=*/NULL,
16939 /*member_p=*/false);
16942 /* Look for attributes that apply to the ivar. */
16943 attributes = cp_parser_attributes_opt (parser);
16944 /* Remember which attributes are prefix attributes and
16945 which are not. */
16946 first_attribute = attributes;
16947 /* Combine the attributes. */
16948 attributes = chainon (prefix_attributes, attributes);
16950 if (width)
16952 /* Create the bitfield declaration. */
16953 decl = grokbitfield (declarator, &declspecs, width);
16954 cplus_decl_attributes (&decl, attributes, /*flags=*/0);
16956 else
16957 decl = grokfield (declarator, &declspecs, NULL_TREE,
16958 NULL_TREE, attributes);
16960 /* Add the instance variable. */
16961 objc_add_instance_variable (decl);
16963 /* Reset PREFIX_ATTRIBUTES. */
16964 while (attributes && TREE_CHAIN (attributes) != first_attribute)
16965 attributes = TREE_CHAIN (attributes);
16966 if (attributes)
16967 TREE_CHAIN (attributes) = NULL_TREE;
16969 token = cp_lexer_peek_token (parser->lexer);
16971 if (token->type == CPP_COMMA)
16973 cp_lexer_consume_token (parser->lexer); /* Eat ','. */
16974 continue;
16976 break;
16979 cp_parser_consume_semicolon_at_end_of_statement (parser);
16980 token = cp_lexer_peek_token (parser->lexer);
16983 cp_lexer_consume_token (parser->lexer); /* Eat '}'. */
16984 /* For historical reasons, we accept an optional semicolon. */
16985 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
16986 cp_lexer_consume_token (parser->lexer);
16989 /* Parse an Objective-C protocol declaration. */
16991 static void
16992 cp_parser_objc_protocol_declaration (cp_parser* parser)
16994 tree proto, protorefs;
16995 cp_token *tok;
16997 cp_lexer_consume_token (parser->lexer); /* Eat '@protocol'. */
16998 if (cp_lexer_next_token_is_not (parser->lexer, CPP_NAME))
17000 error ("identifier expected after `@protocol'");
17001 goto finish;
17004 /* See if we have a forward declaration or a definition. */
17005 tok = cp_lexer_peek_nth_token (parser->lexer, 2);
17007 /* Try a forward declaration first. */
17008 if (tok->type == CPP_COMMA || tok->type == CPP_SEMICOLON)
17010 objc_declare_protocols (cp_parser_objc_identifier_list (parser));
17011 finish:
17012 cp_parser_consume_semicolon_at_end_of_statement (parser);
17015 /* Ok, we got a full-fledged definition (or at least should). */
17016 else
17018 proto = cp_parser_identifier (parser);
17019 protorefs = cp_parser_objc_protocol_refs_opt (parser);
17020 objc_start_protocol (proto, protorefs);
17021 cp_parser_objc_method_prototype_list (parser);
17025 /* Parse an Objective-C superclass or category. */
17027 static void
17028 cp_parser_objc_superclass_or_category (cp_parser *parser, tree *super,
17029 tree *categ)
17031 cp_token *next = cp_lexer_peek_token (parser->lexer);
17033 *super = *categ = NULL_TREE;
17034 if (next->type == CPP_COLON)
17036 cp_lexer_consume_token (parser->lexer); /* Eat ':'. */
17037 *super = cp_parser_identifier (parser);
17039 else if (next->type == CPP_OPEN_PAREN)
17041 cp_lexer_consume_token (parser->lexer); /* Eat '('. */
17042 *categ = cp_parser_identifier (parser);
17043 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
17047 /* Parse an Objective-C class interface. */
17049 static void
17050 cp_parser_objc_class_interface (cp_parser* parser)
17052 tree name, super, categ, protos;
17054 cp_lexer_consume_token (parser->lexer); /* Eat '@interface'. */
17055 name = cp_parser_identifier (parser);
17056 cp_parser_objc_superclass_or_category (parser, &super, &categ);
17057 protos = cp_parser_objc_protocol_refs_opt (parser);
17059 /* We have either a class or a category on our hands. */
17060 if (categ)
17061 objc_start_category_interface (name, categ, protos);
17062 else
17064 objc_start_class_interface (name, super, protos);
17065 /* Handle instance variable declarations, if any. */
17066 cp_parser_objc_class_ivars (parser);
17067 objc_continue_interface ();
17070 cp_parser_objc_method_prototype_list (parser);
17073 /* Parse an Objective-C class implementation. */
17075 static void
17076 cp_parser_objc_class_implementation (cp_parser* parser)
17078 tree name, super, categ;
17080 cp_lexer_consume_token (parser->lexer); /* Eat '@implementation'. */
17081 name = cp_parser_identifier (parser);
17082 cp_parser_objc_superclass_or_category (parser, &super, &categ);
17084 /* We have either a class or a category on our hands. */
17085 if (categ)
17086 objc_start_category_implementation (name, categ);
17087 else
17089 objc_start_class_implementation (name, super);
17090 /* Handle instance variable declarations, if any. */
17091 cp_parser_objc_class_ivars (parser);
17092 objc_continue_implementation ();
17095 cp_parser_objc_method_definition_list (parser);
17098 /* Consume the @end token and finish off the implementation. */
17100 static void
17101 cp_parser_objc_end_implementation (cp_parser* parser)
17103 cp_lexer_consume_token (parser->lexer); /* Eat '@end'. */
17104 objc_finish_implementation ();
17107 /* Parse an Objective-C declaration. */
17109 static void
17110 cp_parser_objc_declaration (cp_parser* parser)
17112 /* Try to figure out what kind of declaration is present. */
17113 cp_token *kwd = cp_lexer_peek_token (parser->lexer);
17115 switch (kwd->keyword)
17117 case RID_AT_ALIAS:
17118 cp_parser_objc_alias_declaration (parser);
17119 break;
17120 case RID_AT_CLASS:
17121 cp_parser_objc_class_declaration (parser);
17122 break;
17123 case RID_AT_PROTOCOL:
17124 cp_parser_objc_protocol_declaration (parser);
17125 break;
17126 case RID_AT_INTERFACE:
17127 cp_parser_objc_class_interface (parser);
17128 break;
17129 case RID_AT_IMPLEMENTATION:
17130 cp_parser_objc_class_implementation (parser);
17131 break;
17132 case RID_AT_END:
17133 cp_parser_objc_end_implementation (parser);
17134 break;
17135 default:
17136 error ("misplaced `@%D' Objective-C++ construct", kwd->value);
17137 cp_parser_skip_to_end_of_block_or_statement (parser);
17141 /* Parse an Objective-C try-catch-finally statement.
17143 objc-try-catch-finally-stmt:
17144 @try compound-statement objc-catch-clause-seq [opt]
17145 objc-finally-clause [opt]
17147 objc-catch-clause-seq:
17148 objc-catch-clause objc-catch-clause-seq [opt]
17150 objc-catch-clause:
17151 @catch ( exception-declaration ) compound-statement
17153 objc-finally-clause
17154 @finally compound-statement
17156 Returns NULL_TREE. */
17158 static tree
17159 cp_parser_objc_try_catch_finally_statement (cp_parser *parser) {
17160 location_t location;
17161 tree stmt;
17163 cp_parser_require_keyword (parser, RID_AT_TRY, "`@try'");
17164 location = cp_lexer_peek_token (parser->lexer)->location;
17165 /* NB: The @try block needs to be wrapped in its own STATEMENT_LIST
17166 node, lest it get absorbed into the surrounding block. */
17167 stmt = push_stmt_list ();
17168 cp_parser_compound_statement (parser, NULL, false);
17169 objc_begin_try_stmt (location, pop_stmt_list (stmt));
17171 while (cp_lexer_next_token_is_keyword (parser->lexer, RID_AT_CATCH))
17173 cp_parameter_declarator *parmdecl;
17174 tree parm;
17176 cp_lexer_consume_token (parser->lexer);
17177 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
17178 parmdecl = cp_parser_parameter_declaration (parser, false, NULL);
17179 parm = grokdeclarator (parmdecl->declarator,
17180 &parmdecl->decl_specifiers,
17181 PARM, /*initialized=*/0,
17182 /*attrlist=*/NULL);
17183 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
17184 objc_begin_catch_clause (parm);
17185 cp_parser_compound_statement (parser, NULL, false);
17186 objc_finish_catch_clause ();
17189 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_AT_FINALLY))
17191 cp_lexer_consume_token (parser->lexer);
17192 location = cp_lexer_peek_token (parser->lexer)->location;
17193 /* NB: The @finally block needs to be wrapped in its own STATEMENT_LIST
17194 node, lest it get absorbed into the surrounding block. */
17195 stmt = push_stmt_list ();
17196 cp_parser_compound_statement (parser, NULL, false);
17197 objc_build_finally_clause (location, pop_stmt_list (stmt));
17200 return objc_finish_try_stmt ();
17203 /* Parse an Objective-C synchronized statement.
17205 objc-synchronized-stmt:
17206 @synchronized ( expression ) compound-statement
17208 Returns NULL_TREE. */
17210 static tree
17211 cp_parser_objc_synchronized_statement (cp_parser *parser) {
17212 location_t location;
17213 tree lock, stmt;
17215 cp_parser_require_keyword (parser, RID_AT_SYNCHRONIZED, "`@synchronized'");
17217 location = cp_lexer_peek_token (parser->lexer)->location;
17218 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
17219 lock = cp_parser_expression (parser, false);
17220 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
17222 /* NB: The @synchronized block needs to be wrapped in its own STATEMENT_LIST
17223 node, lest it get absorbed into the surrounding block. */
17224 stmt = push_stmt_list ();
17225 cp_parser_compound_statement (parser, NULL, false);
17227 return objc_build_synchronized (location, lock, pop_stmt_list (stmt));
17230 /* Parse an Objective-C throw statement.
17232 objc-throw-stmt:
17233 @throw assignment-expression [opt] ;
17235 Returns a constructed '@throw' statement. */
17237 static tree
17238 cp_parser_objc_throw_statement (cp_parser *parser) {
17239 tree expr = NULL_TREE;
17241 cp_parser_require_keyword (parser, RID_AT_THROW, "`@throw'");
17243 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
17244 expr = cp_parser_assignment_expression (parser, false);
17246 cp_parser_consume_semicolon_at_end_of_statement (parser);
17248 return objc_build_throw_stmt (expr);
17251 /* Parse an Objective-C statement. */
17253 static tree
17254 cp_parser_objc_statement (cp_parser * parser) {
17255 /* Try to figure out what kind of declaration is present. */
17256 cp_token *kwd = cp_lexer_peek_token (parser->lexer);
17258 switch (kwd->keyword)
17260 case RID_AT_TRY:
17261 return cp_parser_objc_try_catch_finally_statement (parser);
17262 case RID_AT_SYNCHRONIZED:
17263 return cp_parser_objc_synchronized_statement (parser);
17264 case RID_AT_THROW:
17265 return cp_parser_objc_throw_statement (parser);
17266 default:
17267 error ("misplaced `@%D' Objective-C++ construct", kwd->value);
17268 cp_parser_skip_to_end_of_block_or_statement (parser);
17271 return error_mark_node;
17274 /* The parser. */
17276 static GTY (()) cp_parser *the_parser;
17278 /* External interface. */
17280 /* Parse one entire translation unit. */
17282 void
17283 c_parse_file (void)
17285 bool error_occurred;
17286 static bool already_called = false;
17288 if (already_called)
17290 sorry ("inter-module optimizations not implemented for C++");
17291 return;
17293 already_called = true;
17295 the_parser = cp_parser_new ();
17296 push_deferring_access_checks (flag_access_control
17297 ? dk_no_deferred : dk_no_check);
17298 error_occurred = cp_parser_translation_unit (the_parser);
17299 the_parser = NULL;
17302 /* This variable must be provided by every front end. */
17304 int yydebug;
17306 #include "gt-cp-parser.h"