2016-09-25 François Dumont <fdumont@gcc.gnu.org>
[official-gcc.git] / gcc / sel-sched-ir.c
blob210b1e4edfb359a161cda4826704005ae9ab5a24
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "cfghooks.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "df.h"
28 #include "tm_p.h"
29 #include "cfgrtl.h"
30 #include "cfganal.h"
31 #include "cfgbuild.h"
32 #include "insn-config.h"
33 #include "insn-attr.h"
34 #include "recog.h"
35 #include "params.h"
36 #include "target.h"
37 #include "sched-int.h"
38 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
40 #ifdef INSN_SCHEDULING
41 #include "regset.h"
42 #include "cfgloop.h"
43 #include "sel-sched-ir.h"
44 /* We don't have to use it except for sel_print_insn. */
45 #include "sel-sched-dump.h"
47 /* A vector holding bb info for whole scheduling pass. */
48 vec<sel_global_bb_info_def> sel_global_bb_info;
50 /* A vector holding bb info. */
51 vec<sel_region_bb_info_def> sel_region_bb_info;
53 /* A pool for allocating all lists. */
54 object_allocator<_list_node> sched_lists_pool ("sel-sched-lists");
56 /* This contains information about successors for compute_av_set. */
57 struct succs_info current_succs;
59 /* Data structure to describe interaction with the generic scheduler utils. */
60 static struct common_sched_info_def sel_common_sched_info;
62 /* The loop nest being pipelined. */
63 struct loop *current_loop_nest;
65 /* LOOP_NESTS is a vector containing the corresponding loop nest for
66 each region. */
67 static vec<loop_p> loop_nests;
69 /* Saves blocks already in loop regions, indexed by bb->index. */
70 static sbitmap bbs_in_loop_rgns = NULL;
72 /* CFG hooks that are saved before changing create_basic_block hook. */
73 static struct cfg_hooks orig_cfg_hooks;
76 /* Array containing reverse topological index of function basic blocks,
77 indexed by BB->INDEX. */
78 static int *rev_top_order_index = NULL;
80 /* Length of the above array. */
81 static int rev_top_order_index_len = -1;
83 /* A regset pool structure. */
84 static struct
86 /* The stack to which regsets are returned. */
87 regset *v;
89 /* Its pointer. */
90 int n;
92 /* Its size. */
93 int s;
95 /* In VV we save all generated regsets so that, when destructing the
96 pool, we can compare it with V and check that every regset was returned
97 back to pool. */
98 regset *vv;
100 /* The pointer of VV stack. */
101 int nn;
103 /* Its size. */
104 int ss;
106 /* The difference between allocated and returned regsets. */
107 int diff;
108 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
110 /* This represents the nop pool. */
111 static struct
113 /* The vector which holds previously emitted nops. */
114 insn_t *v;
116 /* Its pointer. */
117 int n;
119 /* Its size. */
120 int s;
121 } nop_pool = { NULL, 0, 0 };
123 /* The pool for basic block notes. */
124 static vec<rtx_note *> bb_note_pool;
126 /* A NOP pattern used to emit placeholder insns. */
127 rtx nop_pattern = NULL_RTX;
128 /* A special instruction that resides in EXIT_BLOCK.
129 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
130 rtx_insn *exit_insn = NULL;
132 /* TRUE if while scheduling current region, which is loop, its preheader
133 was removed. */
134 bool preheader_removed = false;
137 /* Forward static declarations. */
138 static void fence_clear (fence_t);
140 static void deps_init_id (idata_t, insn_t, bool);
141 static void init_id_from_df (idata_t, insn_t, bool);
142 static expr_t set_insn_init (expr_t, vinsn_t, int);
144 static void cfg_preds (basic_block, insn_t **, int *);
145 static void prepare_insn_expr (insn_t, int);
146 static void free_history_vect (vec<expr_history_def> &);
148 static void move_bb_info (basic_block, basic_block);
149 static void remove_empty_bb (basic_block, bool);
150 static void sel_merge_blocks (basic_block, basic_block);
151 static void sel_remove_loop_preheader (void);
152 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
154 static bool insn_is_the_only_one_in_bb_p (insn_t);
155 static void create_initial_data_sets (basic_block);
157 static void free_av_set (basic_block);
158 static void invalidate_av_set (basic_block);
159 static void extend_insn_data (void);
160 static void sel_init_new_insn (insn_t, int, int = -1);
161 static void finish_insns (void);
163 /* Various list functions. */
165 /* Copy an instruction list L. */
166 ilist_t
167 ilist_copy (ilist_t l)
169 ilist_t head = NULL, *tailp = &head;
171 while (l)
173 ilist_add (tailp, ILIST_INSN (l));
174 tailp = &ILIST_NEXT (*tailp);
175 l = ILIST_NEXT (l);
178 return head;
181 /* Invert an instruction list L. */
182 ilist_t
183 ilist_invert (ilist_t l)
185 ilist_t res = NULL;
187 while (l)
189 ilist_add (&res, ILIST_INSN (l));
190 l = ILIST_NEXT (l);
193 return res;
196 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
197 void
198 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
200 bnd_t bnd;
202 _list_add (lp);
203 bnd = BLIST_BND (*lp);
205 BND_TO (bnd) = to;
206 BND_PTR (bnd) = ptr;
207 BND_AV (bnd) = NULL;
208 BND_AV1 (bnd) = NULL;
209 BND_DC (bnd) = dc;
212 /* Remove the list note pointed to by LP. */
213 void
214 blist_remove (blist_t *lp)
216 bnd_t b = BLIST_BND (*lp);
218 av_set_clear (&BND_AV (b));
219 av_set_clear (&BND_AV1 (b));
220 ilist_clear (&BND_PTR (b));
222 _list_remove (lp);
225 /* Init a fence tail L. */
226 void
227 flist_tail_init (flist_tail_t l)
229 FLIST_TAIL_HEAD (l) = NULL;
230 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
233 /* Try to find fence corresponding to INSN in L. */
234 fence_t
235 flist_lookup (flist_t l, insn_t insn)
237 while (l)
239 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
240 return FLIST_FENCE (l);
242 l = FLIST_NEXT (l);
245 return NULL;
248 /* Init the fields of F before running fill_insns. */
249 static void
250 init_fence_for_scheduling (fence_t f)
252 FENCE_BNDS (f) = NULL;
253 FENCE_PROCESSED_P (f) = false;
254 FENCE_SCHEDULED_P (f) = false;
257 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
258 static void
259 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
260 insn_t last_scheduled_insn, vec<rtx_insn *, va_gc> *executing_insns,
261 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
262 int cycle, int cycle_issued_insns, int issue_more,
263 bool starts_cycle_p, bool after_stall_p)
265 fence_t f;
267 _list_add (lp);
268 f = FLIST_FENCE (*lp);
270 FENCE_INSN (f) = insn;
272 gcc_assert (state != NULL);
273 FENCE_STATE (f) = state;
275 FENCE_CYCLE (f) = cycle;
276 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
277 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
278 FENCE_AFTER_STALL_P (f) = after_stall_p;
280 gcc_assert (dc != NULL);
281 FENCE_DC (f) = dc;
283 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
284 FENCE_TC (f) = tc;
286 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
287 FENCE_ISSUE_MORE (f) = issue_more;
288 FENCE_EXECUTING_INSNS (f) = executing_insns;
289 FENCE_READY_TICKS (f) = ready_ticks;
290 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
291 FENCE_SCHED_NEXT (f) = sched_next;
293 init_fence_for_scheduling (f);
296 /* Remove the head node of the list pointed to by LP. */
297 static void
298 flist_remove (flist_t *lp)
300 if (FENCE_INSN (FLIST_FENCE (*lp)))
301 fence_clear (FLIST_FENCE (*lp));
302 _list_remove (lp);
305 /* Clear the fence list pointed to by LP. */
306 void
307 flist_clear (flist_t *lp)
309 while (*lp)
310 flist_remove (lp);
313 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
314 void
315 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
317 def_t d;
319 _list_add (dl);
320 d = DEF_LIST_DEF (*dl);
322 d->orig_insn = original_insn;
323 d->crosses_call = crosses_call;
327 /* Functions to work with target contexts. */
329 /* Bulk target context. It is convenient for debugging purposes to ensure
330 that there are no uninitialized (null) target contexts. */
331 static tc_t bulk_tc = (tc_t) 1;
333 /* Target hooks wrappers. In the future we can provide some default
334 implementations for them. */
336 /* Allocate a store for the target context. */
337 static tc_t
338 alloc_target_context (void)
340 return (targetm.sched.alloc_sched_context
341 ? targetm.sched.alloc_sched_context () : bulk_tc);
344 /* Init target context TC.
345 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
346 Overwise, copy current backend context to TC. */
347 static void
348 init_target_context (tc_t tc, bool clean_p)
350 if (targetm.sched.init_sched_context)
351 targetm.sched.init_sched_context (tc, clean_p);
354 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
355 int init_target_context (). */
356 tc_t
357 create_target_context (bool clean_p)
359 tc_t tc = alloc_target_context ();
361 init_target_context (tc, clean_p);
362 return tc;
365 /* Copy TC to the current backend context. */
366 void
367 set_target_context (tc_t tc)
369 if (targetm.sched.set_sched_context)
370 targetm.sched.set_sched_context (tc);
373 /* TC is about to be destroyed. Free any internal data. */
374 static void
375 clear_target_context (tc_t tc)
377 if (targetm.sched.clear_sched_context)
378 targetm.sched.clear_sched_context (tc);
381 /* Clear and free it. */
382 static void
383 delete_target_context (tc_t tc)
385 clear_target_context (tc);
387 if (targetm.sched.free_sched_context)
388 targetm.sched.free_sched_context (tc);
391 /* Make a copy of FROM in TO.
392 NB: May be this should be a hook. */
393 static void
394 copy_target_context (tc_t to, tc_t from)
396 tc_t tmp = create_target_context (false);
398 set_target_context (from);
399 init_target_context (to, false);
401 set_target_context (tmp);
402 delete_target_context (tmp);
405 /* Create a copy of TC. */
406 static tc_t
407 create_copy_of_target_context (tc_t tc)
409 tc_t copy = alloc_target_context ();
411 copy_target_context (copy, tc);
413 return copy;
416 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
417 is the same as in init_target_context (). */
418 void
419 reset_target_context (tc_t tc, bool clean_p)
421 clear_target_context (tc);
422 init_target_context (tc, clean_p);
425 /* Functions to work with dependence contexts.
426 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
427 context. It accumulates information about processed insns to decide if
428 current insn is dependent on the processed ones. */
430 /* Make a copy of FROM in TO. */
431 static void
432 copy_deps_context (deps_t to, deps_t from)
434 init_deps (to, false);
435 deps_join (to, from);
438 /* Allocate store for dep context. */
439 static deps_t
440 alloc_deps_context (void)
442 return XNEW (struct deps_desc);
445 /* Allocate and initialize dep context. */
446 static deps_t
447 create_deps_context (void)
449 deps_t dc = alloc_deps_context ();
451 init_deps (dc, false);
452 return dc;
455 /* Create a copy of FROM. */
456 static deps_t
457 create_copy_of_deps_context (deps_t from)
459 deps_t to = alloc_deps_context ();
461 copy_deps_context (to, from);
462 return to;
465 /* Clean up internal data of DC. */
466 static void
467 clear_deps_context (deps_t dc)
469 free_deps (dc);
472 /* Clear and free DC. */
473 static void
474 delete_deps_context (deps_t dc)
476 clear_deps_context (dc);
477 free (dc);
480 /* Clear and init DC. */
481 static void
482 reset_deps_context (deps_t dc)
484 clear_deps_context (dc);
485 init_deps (dc, false);
488 /* This structure describes the dependence analysis hooks for advancing
489 dependence context. */
490 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
492 NULL,
494 NULL, /* start_insn */
495 NULL, /* finish_insn */
496 NULL, /* start_lhs */
497 NULL, /* finish_lhs */
498 NULL, /* start_rhs */
499 NULL, /* finish_rhs */
500 haifa_note_reg_set,
501 haifa_note_reg_clobber,
502 haifa_note_reg_use,
503 NULL, /* note_mem_dep */
504 NULL, /* note_dep */
506 0, 0, 0
509 /* Process INSN and add its impact on DC. */
510 void
511 advance_deps_context (deps_t dc, insn_t insn)
513 sched_deps_info = &advance_deps_context_sched_deps_info;
514 deps_analyze_insn (dc, insn);
518 /* Functions to work with DFA states. */
520 /* Allocate store for a DFA state. */
521 static state_t
522 state_alloc (void)
524 return xmalloc (dfa_state_size);
527 /* Allocate and initialize DFA state. */
528 static state_t
529 state_create (void)
531 state_t state = state_alloc ();
533 state_reset (state);
534 advance_state (state);
535 return state;
538 /* Free DFA state. */
539 static void
540 state_free (state_t state)
542 free (state);
545 /* Make a copy of FROM in TO. */
546 static void
547 state_copy (state_t to, state_t from)
549 memcpy (to, from, dfa_state_size);
552 /* Create a copy of FROM. */
553 static state_t
554 state_create_copy (state_t from)
556 state_t to = state_alloc ();
558 state_copy (to, from);
559 return to;
563 /* Functions to work with fences. */
565 /* Clear the fence. */
566 static void
567 fence_clear (fence_t f)
569 state_t s = FENCE_STATE (f);
570 deps_t dc = FENCE_DC (f);
571 void *tc = FENCE_TC (f);
573 ilist_clear (&FENCE_BNDS (f));
575 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
576 || (s == NULL && dc == NULL && tc == NULL));
578 free (s);
580 if (dc != NULL)
581 delete_deps_context (dc);
583 if (tc != NULL)
584 delete_target_context (tc);
585 vec_free (FENCE_EXECUTING_INSNS (f));
586 free (FENCE_READY_TICKS (f));
587 FENCE_READY_TICKS (f) = NULL;
590 /* Init a list of fences with successors of OLD_FENCE. */
591 void
592 init_fences (insn_t old_fence)
594 insn_t succ;
595 succ_iterator si;
596 bool first = true;
597 int ready_ticks_size = get_max_uid () + 1;
599 FOR_EACH_SUCC_1 (succ, si, old_fence,
600 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
603 if (first)
604 first = false;
605 else
606 gcc_assert (flag_sel_sched_pipelining_outer_loops);
608 flist_add (&fences, succ,
609 state_create (),
610 create_deps_context () /* dc */,
611 create_target_context (true) /* tc */,
612 NULL /* last_scheduled_insn */,
613 NULL, /* executing_insns */
614 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
615 ready_ticks_size,
616 NULL /* sched_next */,
617 1 /* cycle */, 0 /* cycle_issued_insns */,
618 issue_rate, /* issue_more */
619 1 /* starts_cycle_p */, 0 /* after_stall_p */);
623 /* Merges two fences (filling fields of fence F with resulting values) by
624 following rules: 1) state, target context and last scheduled insn are
625 propagated from fallthrough edge if it is available;
626 2) deps context and cycle is propagated from more probable edge;
627 3) all other fields are set to corresponding constant values.
629 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
630 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
631 and AFTER_STALL_P are the corresponding fields of the second fence. */
632 static void
633 merge_fences (fence_t f, insn_t insn,
634 state_t state, deps_t dc, void *tc,
635 rtx_insn *last_scheduled_insn,
636 vec<rtx_insn *, va_gc> *executing_insns,
637 int *ready_ticks, int ready_ticks_size,
638 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
640 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
642 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
643 && !sched_next && !FENCE_SCHED_NEXT (f));
645 /* Check if we can decide which path fences came.
646 If we can't (or don't want to) - reset all. */
647 if (last_scheduled_insn == NULL
648 || last_scheduled_insn_old == NULL
649 /* This is a case when INSN is reachable on several paths from
650 one insn (this can happen when pipelining of outer loops is on and
651 there are two edges: one going around of inner loop and the other -
652 right through it; in such case just reset everything). */
653 || last_scheduled_insn == last_scheduled_insn_old)
655 state_reset (FENCE_STATE (f));
656 state_free (state);
658 reset_deps_context (FENCE_DC (f));
659 delete_deps_context (dc);
661 reset_target_context (FENCE_TC (f), true);
662 delete_target_context (tc);
664 if (cycle > FENCE_CYCLE (f))
665 FENCE_CYCLE (f) = cycle;
667 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
668 FENCE_ISSUE_MORE (f) = issue_rate;
669 vec_free (executing_insns);
670 free (ready_ticks);
671 if (FENCE_EXECUTING_INSNS (f))
672 FENCE_EXECUTING_INSNS (f)->block_remove (0,
673 FENCE_EXECUTING_INSNS (f)->length ());
674 if (FENCE_READY_TICKS (f))
675 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
677 else
679 edge edge_old = NULL, edge_new = NULL;
680 edge candidate;
681 succ_iterator si;
682 insn_t succ;
684 /* Find fallthrough edge. */
685 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
686 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
688 if (!candidate
689 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
690 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
692 /* No fallthrough edge leading to basic block of INSN. */
693 state_reset (FENCE_STATE (f));
694 state_free (state);
696 reset_target_context (FENCE_TC (f), true);
697 delete_target_context (tc);
699 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
700 FENCE_ISSUE_MORE (f) = issue_rate;
702 else
703 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
705 /* Would be weird if same insn is successor of several fallthrough
706 edges. */
707 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
708 != BLOCK_FOR_INSN (last_scheduled_insn_old));
710 state_free (FENCE_STATE (f));
711 FENCE_STATE (f) = state;
713 delete_target_context (FENCE_TC (f));
714 FENCE_TC (f) = tc;
716 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
717 FENCE_ISSUE_MORE (f) = issue_more;
719 else
721 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
722 state_free (state);
723 delete_target_context (tc);
725 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
726 != BLOCK_FOR_INSN (last_scheduled_insn));
729 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
730 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
731 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
733 if (succ == insn)
735 /* No same successor allowed from several edges. */
736 gcc_assert (!edge_old);
737 edge_old = si.e1;
740 /* Find edge of second predecessor (last_scheduled_insn->insn). */
741 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
742 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
744 if (succ == insn)
746 /* No same successor allowed from several edges. */
747 gcc_assert (!edge_new);
748 edge_new = si.e1;
752 /* Check if we can choose most probable predecessor. */
753 if (edge_old == NULL || edge_new == NULL)
755 reset_deps_context (FENCE_DC (f));
756 delete_deps_context (dc);
757 vec_free (executing_insns);
758 free (ready_ticks);
760 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
761 if (FENCE_EXECUTING_INSNS (f))
762 FENCE_EXECUTING_INSNS (f)->block_remove (0,
763 FENCE_EXECUTING_INSNS (f)->length ());
764 if (FENCE_READY_TICKS (f))
765 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
767 else
768 if (edge_new->probability > edge_old->probability)
770 delete_deps_context (FENCE_DC (f));
771 FENCE_DC (f) = dc;
772 vec_free (FENCE_EXECUTING_INSNS (f));
773 FENCE_EXECUTING_INSNS (f) = executing_insns;
774 free (FENCE_READY_TICKS (f));
775 FENCE_READY_TICKS (f) = ready_ticks;
776 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
777 FENCE_CYCLE (f) = cycle;
779 else
781 /* Leave DC and CYCLE untouched. */
782 delete_deps_context (dc);
783 vec_free (executing_insns);
784 free (ready_ticks);
788 /* Fill remaining invariant fields. */
789 if (after_stall_p)
790 FENCE_AFTER_STALL_P (f) = 1;
792 FENCE_ISSUED_INSNS (f) = 0;
793 FENCE_STARTS_CYCLE_P (f) = 1;
794 FENCE_SCHED_NEXT (f) = NULL;
797 /* Add a new fence to NEW_FENCES list, initializing it from all
798 other parameters. */
799 static void
800 add_to_fences (flist_tail_t new_fences, insn_t insn,
801 state_t state, deps_t dc, void *tc,
802 rtx_insn *last_scheduled_insn,
803 vec<rtx_insn *, va_gc> *executing_insns, int *ready_ticks,
804 int ready_ticks_size, rtx_insn *sched_next, int cycle,
805 int cycle_issued_insns, int issue_rate,
806 bool starts_cycle_p, bool after_stall_p)
808 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
810 if (! f)
812 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
813 last_scheduled_insn, executing_insns, ready_ticks,
814 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
815 issue_rate, starts_cycle_p, after_stall_p);
817 FLIST_TAIL_TAILP (new_fences)
818 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
820 else
822 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
823 executing_insns, ready_ticks, ready_ticks_size,
824 sched_next, cycle, issue_rate, after_stall_p);
828 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
829 void
830 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
832 fence_t f, old;
833 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
835 old = FLIST_FENCE (old_fences);
836 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
837 FENCE_INSN (FLIST_FENCE (old_fences)));
838 if (f)
840 merge_fences (f, old->insn, old->state, old->dc, old->tc,
841 old->last_scheduled_insn, old->executing_insns,
842 old->ready_ticks, old->ready_ticks_size,
843 old->sched_next, old->cycle, old->issue_more,
844 old->after_stall_p);
846 else
848 _list_add (tailp);
849 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
850 *FLIST_FENCE (*tailp) = *old;
851 init_fence_for_scheduling (FLIST_FENCE (*tailp));
853 FENCE_INSN (old) = NULL;
856 /* Add a new fence to NEW_FENCES list and initialize most of its data
857 as a clean one. */
858 void
859 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
861 int ready_ticks_size = get_max_uid () + 1;
863 add_to_fences (new_fences,
864 succ, state_create (), create_deps_context (),
865 create_target_context (true),
866 NULL, NULL,
867 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
868 NULL, FENCE_CYCLE (fence) + 1,
869 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
872 /* Add a new fence to NEW_FENCES list and initialize all of its data
873 from FENCE and SUCC. */
874 void
875 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
877 int * new_ready_ticks
878 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
880 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
881 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
882 add_to_fences (new_fences,
883 succ, state_create_copy (FENCE_STATE (fence)),
884 create_copy_of_deps_context (FENCE_DC (fence)),
885 create_copy_of_target_context (FENCE_TC (fence)),
886 FENCE_LAST_SCHEDULED_INSN (fence),
887 vec_safe_copy (FENCE_EXECUTING_INSNS (fence)),
888 new_ready_ticks,
889 FENCE_READY_TICKS_SIZE (fence),
890 FENCE_SCHED_NEXT (fence),
891 FENCE_CYCLE (fence),
892 FENCE_ISSUED_INSNS (fence),
893 FENCE_ISSUE_MORE (fence),
894 FENCE_STARTS_CYCLE_P (fence),
895 FENCE_AFTER_STALL_P (fence));
899 /* Functions to work with regset and nop pools. */
901 /* Returns the new regset from pool. It might have some of the bits set
902 from the previous usage. */
903 regset
904 get_regset_from_pool (void)
906 regset rs;
908 if (regset_pool.n != 0)
909 rs = regset_pool.v[--regset_pool.n];
910 else
911 /* We need to create the regset. */
913 rs = ALLOC_REG_SET (&reg_obstack);
915 if (regset_pool.nn == regset_pool.ss)
916 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
917 (regset_pool.ss = 2 * regset_pool.ss + 1));
918 regset_pool.vv[regset_pool.nn++] = rs;
921 regset_pool.diff++;
923 return rs;
926 /* Same as above, but returns the empty regset. */
927 regset
928 get_clear_regset_from_pool (void)
930 regset rs = get_regset_from_pool ();
932 CLEAR_REG_SET (rs);
933 return rs;
936 /* Return regset RS to the pool for future use. */
937 void
938 return_regset_to_pool (regset rs)
940 gcc_assert (rs);
941 regset_pool.diff--;
943 if (regset_pool.n == regset_pool.s)
944 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
945 (regset_pool.s = 2 * regset_pool.s + 1));
946 regset_pool.v[regset_pool.n++] = rs;
949 /* This is used as a qsort callback for sorting regset pool stacks.
950 X and XX are addresses of two regsets. They are never equal. */
951 static int
952 cmp_v_in_regset_pool (const void *x, const void *xx)
954 uintptr_t r1 = (uintptr_t) *((const regset *) x);
955 uintptr_t r2 = (uintptr_t) *((const regset *) xx);
956 if (r1 > r2)
957 return 1;
958 else if (r1 < r2)
959 return -1;
960 gcc_unreachable ();
963 /* Free the regset pool possibly checking for memory leaks. */
964 void
965 free_regset_pool (void)
967 if (flag_checking)
969 regset *v = regset_pool.v;
970 int i = 0;
971 int n = regset_pool.n;
973 regset *vv = regset_pool.vv;
974 int ii = 0;
975 int nn = regset_pool.nn;
977 int diff = 0;
979 gcc_assert (n <= nn);
981 /* Sort both vectors so it will be possible to compare them. */
982 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
983 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
985 while (ii < nn)
987 if (v[i] == vv[ii])
988 i++;
989 else
990 /* VV[II] was lost. */
991 diff++;
993 ii++;
996 gcc_assert (diff == regset_pool.diff);
999 /* If not true - we have a memory leak. */
1000 gcc_assert (regset_pool.diff == 0);
1002 while (regset_pool.n)
1004 --regset_pool.n;
1005 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1008 free (regset_pool.v);
1009 regset_pool.v = NULL;
1010 regset_pool.s = 0;
1012 free (regset_pool.vv);
1013 regset_pool.vv = NULL;
1014 regset_pool.nn = 0;
1015 regset_pool.ss = 0;
1017 regset_pool.diff = 0;
1021 /* Functions to work with nop pools. NOP insns are used as temporary
1022 placeholders of the insns being scheduled to allow correct update of
1023 the data sets. When update is finished, NOPs are deleted. */
1025 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1026 nops sel-sched generates. */
1027 static vinsn_t nop_vinsn = NULL;
1029 /* Emit a nop before INSN, taking it from pool. */
1030 insn_t
1031 get_nop_from_pool (insn_t insn)
1033 rtx nop_pat;
1034 insn_t nop;
1035 bool old_p = nop_pool.n != 0;
1036 int flags;
1038 if (old_p)
1039 nop_pat = nop_pool.v[--nop_pool.n];
1040 else
1041 nop_pat = nop_pattern;
1043 nop = emit_insn_before (nop_pat, insn);
1045 if (old_p)
1046 flags = INSN_INIT_TODO_SSID;
1047 else
1048 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1050 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1051 sel_init_new_insn (nop, flags);
1053 return nop;
1056 /* Remove NOP from the instruction stream and return it to the pool. */
1057 void
1058 return_nop_to_pool (insn_t nop, bool full_tidying)
1060 gcc_assert (INSN_IN_STREAM_P (nop));
1061 sel_remove_insn (nop, false, full_tidying);
1063 /* We'll recycle this nop. */
1064 nop->set_undeleted ();
1066 if (nop_pool.n == nop_pool.s)
1067 nop_pool.v = XRESIZEVEC (rtx_insn *, nop_pool.v,
1068 (nop_pool.s = 2 * nop_pool.s + 1));
1069 nop_pool.v[nop_pool.n++] = nop;
1072 /* Free the nop pool. */
1073 void
1074 free_nop_pool (void)
1076 nop_pool.n = 0;
1077 nop_pool.s = 0;
1078 free (nop_pool.v);
1079 nop_pool.v = NULL;
1083 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1084 The callback is given two rtxes XX and YY and writes the new rtxes
1085 to NX and NY in case some needs to be skipped. */
1086 static int
1087 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1089 const_rtx x = *xx;
1090 const_rtx y = *yy;
1092 if (GET_CODE (x) == UNSPEC
1093 && (targetm.sched.skip_rtx_p == NULL
1094 || targetm.sched.skip_rtx_p (x)))
1096 *nx = XVECEXP (x, 0, 0);
1097 *ny = CONST_CAST_RTX (y);
1098 return 1;
1101 if (GET_CODE (y) == UNSPEC
1102 && (targetm.sched.skip_rtx_p == NULL
1103 || targetm.sched.skip_rtx_p (y)))
1105 *nx = CONST_CAST_RTX (x);
1106 *ny = XVECEXP (y, 0, 0);
1107 return 1;
1110 return 0;
1113 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1114 to support ia64 speculation. When changes are needed, new rtx X and new mode
1115 NMODE are written, and the callback returns true. */
1116 static int
1117 hash_with_unspec_callback (const_rtx x, machine_mode mode ATTRIBUTE_UNUSED,
1118 rtx *nx, machine_mode* nmode)
1120 if (GET_CODE (x) == UNSPEC
1121 && targetm.sched.skip_rtx_p
1122 && targetm.sched.skip_rtx_p (x))
1124 *nx = XVECEXP (x, 0 ,0);
1125 *nmode = VOIDmode;
1126 return 1;
1129 return 0;
1132 /* Returns LHS and RHS are ok to be scheduled separately. */
1133 static bool
1134 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1136 if (lhs == NULL || rhs == NULL)
1137 return false;
1139 /* Do not schedule constants as rhs: no point to use reg, if const
1140 can be used. Moreover, scheduling const as rhs may lead to mode
1141 mismatch cause consts don't have modes but they could be merged
1142 from branches where the same const used in different modes. */
1143 if (CONSTANT_P (rhs))
1144 return false;
1146 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1147 if (COMPARISON_P (rhs))
1148 return false;
1150 /* Do not allow single REG to be an rhs. */
1151 if (REG_P (rhs))
1152 return false;
1154 /* See comment at find_used_regs_1 (*1) for explanation of this
1155 restriction. */
1156 /* FIXME: remove this later. */
1157 if (MEM_P (lhs))
1158 return false;
1160 /* This will filter all tricky things like ZERO_EXTRACT etc.
1161 For now we don't handle it. */
1162 if (!REG_P (lhs) && !MEM_P (lhs))
1163 return false;
1165 return true;
1168 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1169 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1170 used e.g. for insns from recovery blocks. */
1171 static void
1172 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1174 hash_rtx_callback_function hrcf;
1175 int insn_class;
1177 VINSN_INSN_RTX (vi) = insn;
1178 VINSN_COUNT (vi) = 0;
1179 vi->cost = -1;
1181 if (INSN_NOP_P (insn))
1182 return;
1184 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1185 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1186 else
1187 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1189 /* Hash vinsn depending on whether it is separable or not. */
1190 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1191 if (VINSN_SEPARABLE_P (vi))
1193 rtx rhs = VINSN_RHS (vi);
1195 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1196 NULL, NULL, false, hrcf);
1197 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1198 VOIDmode, NULL, NULL,
1199 false, hrcf);
1201 else
1203 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1204 NULL, NULL, false, hrcf);
1205 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1208 insn_class = haifa_classify_insn (insn);
1209 if (insn_class >= 2
1210 && (!targetm.sched.get_insn_spec_ds
1211 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1212 == 0)))
1213 VINSN_MAY_TRAP_P (vi) = true;
1214 else
1215 VINSN_MAY_TRAP_P (vi) = false;
1218 /* Indicate that VI has become the part of an rtx object. */
1219 void
1220 vinsn_attach (vinsn_t vi)
1222 /* Assert that VI is not pending for deletion. */
1223 gcc_assert (VINSN_INSN_RTX (vi));
1225 VINSN_COUNT (vi)++;
1228 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1229 VINSN_TYPE (VI). */
1230 static vinsn_t
1231 vinsn_create (insn_t insn, bool force_unique_p)
1233 vinsn_t vi = XCNEW (struct vinsn_def);
1235 vinsn_init (vi, insn, force_unique_p);
1236 return vi;
1239 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1240 the copy. */
1241 vinsn_t
1242 vinsn_copy (vinsn_t vi, bool reattach_p)
1244 rtx_insn *copy;
1245 bool unique = VINSN_UNIQUE_P (vi);
1246 vinsn_t new_vi;
1248 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1249 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1250 if (reattach_p)
1252 vinsn_detach (vi);
1253 vinsn_attach (new_vi);
1256 return new_vi;
1259 /* Delete the VI vinsn and free its data. */
1260 static void
1261 vinsn_delete (vinsn_t vi)
1263 gcc_assert (VINSN_COUNT (vi) == 0);
1265 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1267 return_regset_to_pool (VINSN_REG_SETS (vi));
1268 return_regset_to_pool (VINSN_REG_USES (vi));
1269 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1272 free (vi);
1275 /* Indicate that VI is no longer a part of some rtx object.
1276 Remove VI if it is no longer needed. */
1277 void
1278 vinsn_detach (vinsn_t vi)
1280 gcc_assert (VINSN_COUNT (vi) > 0);
1282 if (--VINSN_COUNT (vi) == 0)
1283 vinsn_delete (vi);
1286 /* Returns TRUE if VI is a branch. */
1287 bool
1288 vinsn_cond_branch_p (vinsn_t vi)
1290 insn_t insn;
1292 if (!VINSN_UNIQUE_P (vi))
1293 return false;
1295 insn = VINSN_INSN_RTX (vi);
1296 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1297 return false;
1299 return control_flow_insn_p (insn);
1302 /* Return latency of INSN. */
1303 static int
1304 sel_insn_rtx_cost (rtx_insn *insn)
1306 int cost;
1308 /* A USE insn, or something else we don't need to
1309 understand. We can't pass these directly to
1310 result_ready_cost or insn_default_latency because it will
1311 trigger a fatal error for unrecognizable insns. */
1312 if (recog_memoized (insn) < 0)
1313 cost = 0;
1314 else
1316 cost = insn_default_latency (insn);
1318 if (cost < 0)
1319 cost = 0;
1322 return cost;
1325 /* Return the cost of the VI.
1326 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1328 sel_vinsn_cost (vinsn_t vi)
1330 int cost = vi->cost;
1332 if (cost < 0)
1334 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1335 vi->cost = cost;
1338 return cost;
1342 /* Functions for insn emitting. */
1344 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1345 EXPR and SEQNO. */
1346 insn_t
1347 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1349 insn_t new_insn;
1351 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1353 new_insn = emit_insn_after (pattern, after);
1354 set_insn_init (expr, NULL, seqno);
1355 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1357 return new_insn;
1360 /* Force newly generated vinsns to be unique. */
1361 static bool init_insn_force_unique_p = false;
1363 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1364 initialize its data from EXPR and SEQNO. */
1365 insn_t
1366 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1367 insn_t after)
1369 insn_t insn;
1371 gcc_assert (!init_insn_force_unique_p);
1373 init_insn_force_unique_p = true;
1374 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1375 CANT_MOVE (insn) = 1;
1376 init_insn_force_unique_p = false;
1378 return insn;
1381 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1382 take it as a new vinsn instead of EXPR's vinsn.
1383 We simplify insns later, after scheduling region in
1384 simplify_changed_insns. */
1385 insn_t
1386 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1387 insn_t after)
1389 expr_t emit_expr;
1390 insn_t insn;
1391 int flags;
1393 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1394 seqno);
1395 insn = EXPR_INSN_RTX (emit_expr);
1397 /* The insn may come from the transformation cache, which may hold already
1398 deleted insns, so mark it as not deleted. */
1399 insn->set_undeleted ();
1401 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1403 flags = INSN_INIT_TODO_SSID;
1404 if (INSN_LUID (insn) == 0)
1405 flags |= INSN_INIT_TODO_LUID;
1406 sel_init_new_insn (insn, flags);
1408 return insn;
1411 /* Move insn from EXPR after AFTER. */
1412 insn_t
1413 sel_move_insn (expr_t expr, int seqno, insn_t after)
1415 insn_t insn = EXPR_INSN_RTX (expr);
1416 basic_block bb = BLOCK_FOR_INSN (after);
1417 insn_t next = NEXT_INSN (after);
1419 /* Assert that in move_op we disconnected this insn properly. */
1420 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1421 SET_PREV_INSN (insn) = after;
1422 SET_NEXT_INSN (insn) = next;
1424 SET_NEXT_INSN (after) = insn;
1425 SET_PREV_INSN (next) = insn;
1427 /* Update links from insn to bb and vice versa. */
1428 df_insn_change_bb (insn, bb);
1429 if (BB_END (bb) == after)
1430 BB_END (bb) = insn;
1432 prepare_insn_expr (insn, seqno);
1433 return insn;
1437 /* Functions to work with right-hand sides. */
1439 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1440 VECT and return true when found. Use NEW_VINSN for comparison only when
1441 COMPARE_VINSNS is true. Write to INDP the index on which
1442 the search has stopped, such that inserting the new element at INDP will
1443 retain VECT's sort order. */
1444 static bool
1445 find_in_history_vect_1 (vec<expr_history_def> vect,
1446 unsigned uid, vinsn_t new_vinsn,
1447 bool compare_vinsns, int *indp)
1449 expr_history_def *arr;
1450 int i, j, len = vect.length ();
1452 if (len == 0)
1454 *indp = 0;
1455 return false;
1458 arr = vect.address ();
1459 i = 0, j = len - 1;
1461 while (i <= j)
1463 unsigned auid = arr[i].uid;
1464 vinsn_t avinsn = arr[i].new_expr_vinsn;
1466 if (auid == uid
1467 /* When undoing transformation on a bookkeeping copy, the new vinsn
1468 may not be exactly equal to the one that is saved in the vector.
1469 This is because the insn whose copy we're checking was possibly
1470 substituted itself. */
1471 && (! compare_vinsns
1472 || vinsn_equal_p (avinsn, new_vinsn)))
1474 *indp = i;
1475 return true;
1477 else if (auid > uid)
1478 break;
1479 i++;
1482 *indp = i;
1483 return false;
1486 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1487 the position found or -1, if no such value is in vector.
1488 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1490 find_in_history_vect (vec<expr_history_def> vect, rtx insn,
1491 vinsn_t new_vinsn, bool originators_p)
1493 int ind;
1495 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1496 false, &ind))
1497 return ind;
1499 if (INSN_ORIGINATORS (insn) && originators_p)
1501 unsigned uid;
1502 bitmap_iterator bi;
1504 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1505 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1506 return ind;
1509 return -1;
1512 /* Insert new element in a sorted history vector pointed to by PVECT,
1513 if it is not there already. The element is searched using
1514 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1515 the history of a transformation. */
1516 void
1517 insert_in_history_vect (vec<expr_history_def> *pvect,
1518 unsigned uid, enum local_trans_type type,
1519 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1520 ds_t spec_ds)
1522 vec<expr_history_def> vect = *pvect;
1523 expr_history_def temp;
1524 bool res;
1525 int ind;
1527 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1529 if (res)
1531 expr_history_def *phist = &vect[ind];
1533 /* It is possible that speculation types of expressions that were
1534 propagated through different paths will be different here. In this
1535 case, merge the status to get the correct check later. */
1536 if (phist->spec_ds != spec_ds)
1537 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1538 return;
1541 temp.uid = uid;
1542 temp.old_expr_vinsn = old_expr_vinsn;
1543 temp.new_expr_vinsn = new_expr_vinsn;
1544 temp.spec_ds = spec_ds;
1545 temp.type = type;
1547 vinsn_attach (old_expr_vinsn);
1548 vinsn_attach (new_expr_vinsn);
1549 vect.safe_insert (ind, temp);
1550 *pvect = vect;
1553 /* Free history vector PVECT. */
1554 static void
1555 free_history_vect (vec<expr_history_def> &pvect)
1557 unsigned i;
1558 expr_history_def *phist;
1560 if (! pvect.exists ())
1561 return;
1563 for (i = 0; pvect.iterate (i, &phist); i++)
1565 vinsn_detach (phist->old_expr_vinsn);
1566 vinsn_detach (phist->new_expr_vinsn);
1569 pvect.release ();
1572 /* Merge vector FROM to PVECT. */
1573 static void
1574 merge_history_vect (vec<expr_history_def> *pvect,
1575 vec<expr_history_def> from)
1577 expr_history_def *phist;
1578 int i;
1580 /* We keep this vector sorted. */
1581 for (i = 0; from.iterate (i, &phist); i++)
1582 insert_in_history_vect (pvect, phist->uid, phist->type,
1583 phist->old_expr_vinsn, phist->new_expr_vinsn,
1584 phist->spec_ds);
1587 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1588 bool
1589 vinsn_equal_p (vinsn_t x, vinsn_t y)
1591 rtx_equal_p_callback_function repcf;
1593 if (x == y)
1594 return true;
1596 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1597 return false;
1599 if (VINSN_HASH (x) != VINSN_HASH (y))
1600 return false;
1602 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1603 if (VINSN_SEPARABLE_P (x))
1605 /* Compare RHSes of VINSNs. */
1606 gcc_assert (VINSN_RHS (x));
1607 gcc_assert (VINSN_RHS (y));
1609 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1612 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1616 /* Functions for working with expressions. */
1618 /* Initialize EXPR. */
1619 static void
1620 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1621 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1622 ds_t spec_to_check_ds, int orig_sched_cycle,
1623 vec<expr_history_def> history,
1624 signed char target_available,
1625 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1626 bool cant_move)
1628 vinsn_attach (vi);
1630 EXPR_VINSN (expr) = vi;
1631 EXPR_SPEC (expr) = spec;
1632 EXPR_USEFULNESS (expr) = use;
1633 EXPR_PRIORITY (expr) = priority;
1634 EXPR_PRIORITY_ADJ (expr) = 0;
1635 EXPR_SCHED_TIMES (expr) = sched_times;
1636 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1637 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1638 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1639 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1641 if (history.exists ())
1642 EXPR_HISTORY_OF_CHANGES (expr) = history;
1643 else
1644 EXPR_HISTORY_OF_CHANGES (expr).create (0);
1646 EXPR_TARGET_AVAILABLE (expr) = target_available;
1647 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1648 EXPR_WAS_RENAMED (expr) = was_renamed;
1649 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1650 EXPR_CANT_MOVE (expr) = cant_move;
1653 /* Make a copy of the expr FROM into the expr TO. */
1654 void
1655 copy_expr (expr_t to, expr_t from)
1657 vec<expr_history_def> temp = vNULL;
1659 if (EXPR_HISTORY_OF_CHANGES (from).exists ())
1661 unsigned i;
1662 expr_history_def *phist;
1664 temp = EXPR_HISTORY_OF_CHANGES (from).copy ();
1665 for (i = 0;
1666 temp.iterate (i, &phist);
1667 i++)
1669 vinsn_attach (phist->old_expr_vinsn);
1670 vinsn_attach (phist->new_expr_vinsn);
1674 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1675 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1676 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1677 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1678 EXPR_ORIG_SCHED_CYCLE (from), temp,
1679 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1680 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1681 EXPR_CANT_MOVE (from));
1684 /* Same, but the final expr will not ever be in av sets, so don't copy
1685 "uninteresting" data such as bitmap cache. */
1686 void
1687 copy_expr_onside (expr_t to, expr_t from)
1689 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1690 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1691 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0,
1692 vNULL,
1693 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1694 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1695 EXPR_CANT_MOVE (from));
1698 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1699 initializing new insns. */
1700 static void
1701 prepare_insn_expr (insn_t insn, int seqno)
1703 expr_t expr = INSN_EXPR (insn);
1704 ds_t ds;
1706 INSN_SEQNO (insn) = seqno;
1707 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1708 EXPR_SPEC (expr) = 0;
1709 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1710 EXPR_WAS_SUBSTITUTED (expr) = 0;
1711 EXPR_WAS_RENAMED (expr) = 0;
1712 EXPR_TARGET_AVAILABLE (expr) = 1;
1713 INSN_LIVE_VALID_P (insn) = false;
1715 /* ??? If this expression is speculative, make its dependence
1716 as weak as possible. We can filter this expression later
1717 in process_spec_exprs, because we do not distinguish
1718 between the status we got during compute_av_set and the
1719 existing status. To be fixed. */
1720 ds = EXPR_SPEC_DONE_DS (expr);
1721 if (ds)
1722 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1724 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1727 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1728 is non-null when expressions are merged from different successors at
1729 a split point. */
1730 static void
1731 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1733 if (EXPR_TARGET_AVAILABLE (to) < 0
1734 || EXPR_TARGET_AVAILABLE (from) < 0)
1735 EXPR_TARGET_AVAILABLE (to) = -1;
1736 else
1738 /* We try to detect the case when one of the expressions
1739 can only be reached through another one. In this case,
1740 we can do better. */
1741 if (split_point == NULL)
1743 int toind, fromind;
1745 toind = EXPR_ORIG_BB_INDEX (to);
1746 fromind = EXPR_ORIG_BB_INDEX (from);
1748 if (toind && toind == fromind)
1749 /* Do nothing -- everything is done in
1750 merge_with_other_exprs. */
1752 else
1753 EXPR_TARGET_AVAILABLE (to) = -1;
1755 else if (EXPR_TARGET_AVAILABLE (from) == 0
1756 && EXPR_LHS (from)
1757 && REG_P (EXPR_LHS (from))
1758 && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1759 EXPR_TARGET_AVAILABLE (to) = -1;
1760 else
1761 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1765 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1766 is non-null when expressions are merged from different successors at
1767 a split point. */
1768 static void
1769 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1771 ds_t old_to_ds, old_from_ds;
1773 old_to_ds = EXPR_SPEC_DONE_DS (to);
1774 old_from_ds = EXPR_SPEC_DONE_DS (from);
1776 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1777 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1778 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1780 /* When merging e.g. control & data speculative exprs, or a control
1781 speculative with a control&data speculative one, we really have
1782 to change vinsn too. Also, when speculative status is changed,
1783 we also need to record this as a transformation in expr's history. */
1784 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1786 old_to_ds = ds_get_speculation_types (old_to_ds);
1787 old_from_ds = ds_get_speculation_types (old_from_ds);
1789 if (old_to_ds != old_from_ds)
1791 ds_t record_ds;
1793 /* When both expressions are speculative, we need to change
1794 the vinsn first. */
1795 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1797 int res;
1799 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1800 gcc_assert (res >= 0);
1803 if (split_point != NULL)
1805 /* Record the change with proper status. */
1806 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1807 record_ds &= ~(old_to_ds & SPECULATIVE);
1808 record_ds &= ~(old_from_ds & SPECULATIVE);
1810 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1811 INSN_UID (split_point), TRANS_SPECULATION,
1812 EXPR_VINSN (from), EXPR_VINSN (to),
1813 record_ds);
1820 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1821 this is done along different paths. */
1822 void
1823 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1825 /* Choose the maximum of the specs of merged exprs. This is required
1826 for correctness of bookkeeping. */
1827 if (EXPR_SPEC (to) < EXPR_SPEC (from))
1828 EXPR_SPEC (to) = EXPR_SPEC (from);
1830 if (split_point)
1831 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1832 else
1833 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1834 EXPR_USEFULNESS (from));
1836 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1837 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1839 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1840 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1842 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1843 EXPR_ORIG_BB_INDEX (to) = 0;
1845 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1846 EXPR_ORIG_SCHED_CYCLE (from));
1848 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1849 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1850 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1852 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1853 EXPR_HISTORY_OF_CHANGES (from));
1854 update_target_availability (to, from, split_point);
1855 update_speculative_bits (to, from, split_point);
1858 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1859 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1860 are merged from different successors at a split point. */
1861 void
1862 merge_expr (expr_t to, expr_t from, insn_t split_point)
1864 vinsn_t to_vi = EXPR_VINSN (to);
1865 vinsn_t from_vi = EXPR_VINSN (from);
1867 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1869 /* Make sure that speculative pattern is propagated into exprs that
1870 have non-speculative one. This will provide us with consistent
1871 speculative bits and speculative patterns inside expr. */
1872 if (EXPR_SPEC_DONE_DS (to) == 0
1873 && (EXPR_SPEC_DONE_DS (from) != 0
1874 /* Do likewise for volatile insns, so that we always retain
1875 the may_trap_p bit on the resulting expression. However,
1876 avoid propagating the trapping bit into the instructions
1877 already speculated. This would result in replacing the
1878 speculative pattern with the non-speculative one and breaking
1879 the speculation support. */
1880 || (!VINSN_MAY_TRAP_P (EXPR_VINSN (to))
1881 && VINSN_MAY_TRAP_P (EXPR_VINSN (from)))))
1882 change_vinsn_in_expr (to, EXPR_VINSN (from));
1884 merge_expr_data (to, from, split_point);
1885 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1888 /* Clear the information of this EXPR. */
1889 void
1890 clear_expr (expr_t expr)
1893 vinsn_detach (EXPR_VINSN (expr));
1894 EXPR_VINSN (expr) = NULL;
1896 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1899 /* For a given LV_SET, mark EXPR having unavailable target register. */
1900 static void
1901 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1903 if (EXPR_SEPARABLE_P (expr))
1905 if (REG_P (EXPR_LHS (expr))
1906 && register_unavailable_p (lv_set, EXPR_LHS (expr)))
1908 /* If it's an insn like r1 = use (r1, ...), and it exists in
1909 different forms in each of the av_sets being merged, we can't say
1910 whether original destination register is available or not.
1911 However, this still works if destination register is not used
1912 in the original expression: if the branch at which LV_SET we're
1913 looking here is not actually 'other branch' in sense that same
1914 expression is available through it (but it can't be determined
1915 at computation stage because of transformations on one of the
1916 branches), it still won't affect the availability.
1917 Liveness of a register somewhere on a code motion path means
1918 it's either read somewhere on a codemotion path, live on
1919 'other' branch, live at the point immediately following
1920 the original operation, or is read by the original operation.
1921 The latter case is filtered out in the condition below.
1922 It still doesn't cover the case when register is defined and used
1923 somewhere within the code motion path, and in this case we could
1924 miss a unifying code motion along both branches using a renamed
1925 register, but it won't affect a code correctness since upon
1926 an actual code motion a bookkeeping code would be generated. */
1927 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1928 EXPR_LHS (expr)))
1929 EXPR_TARGET_AVAILABLE (expr) = -1;
1930 else
1931 EXPR_TARGET_AVAILABLE (expr) = false;
1934 else
1936 unsigned regno;
1937 reg_set_iterator rsi;
1939 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1940 0, regno, rsi)
1941 if (bitmap_bit_p (lv_set, regno))
1943 EXPR_TARGET_AVAILABLE (expr) = false;
1944 break;
1947 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1948 0, regno, rsi)
1949 if (bitmap_bit_p (lv_set, regno))
1951 EXPR_TARGET_AVAILABLE (expr) = false;
1952 break;
1957 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1958 or dependence status have changed, 2 when also the target register
1959 became unavailable, 0 if nothing had to be changed. */
1961 speculate_expr (expr_t expr, ds_t ds)
1963 int res;
1964 rtx_insn *orig_insn_rtx;
1965 rtx spec_pat;
1966 ds_t target_ds, current_ds;
1968 /* Obtain the status we need to put on EXPR. */
1969 target_ds = (ds & SPECULATIVE);
1970 current_ds = EXPR_SPEC_DONE_DS (expr);
1971 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1973 orig_insn_rtx = EXPR_INSN_RTX (expr);
1975 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1977 switch (res)
1979 case 0:
1980 EXPR_SPEC_DONE_DS (expr) = ds;
1981 return current_ds != ds ? 1 : 0;
1983 case 1:
1985 rtx_insn *spec_insn_rtx =
1986 create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1987 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1989 change_vinsn_in_expr (expr, spec_vinsn);
1990 EXPR_SPEC_DONE_DS (expr) = ds;
1991 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1993 /* Do not allow clobbering the address register of speculative
1994 insns. */
1995 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1996 expr_dest_reg (expr)))
1998 EXPR_TARGET_AVAILABLE (expr) = false;
1999 return 2;
2002 return 1;
2005 case -1:
2006 return -1;
2008 default:
2009 gcc_unreachable ();
2010 return -1;
2014 /* Return a destination register, if any, of EXPR. */
2016 expr_dest_reg (expr_t expr)
2018 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2020 if (dest != NULL_RTX && REG_P (dest))
2021 return dest;
2023 return NULL_RTX;
2026 /* Returns the REGNO of the R's destination. */
2027 unsigned
2028 expr_dest_regno (expr_t expr)
2030 rtx dest = expr_dest_reg (expr);
2032 gcc_assert (dest != NULL_RTX);
2033 return REGNO (dest);
2036 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2037 AV_SET having unavailable target register. */
2038 void
2039 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2041 expr_t expr;
2042 av_set_iterator avi;
2044 FOR_EACH_EXPR (expr, avi, join_set)
2045 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2046 set_unavailable_target_for_expr (expr, lv_set);
2050 /* Returns true if REG (at least partially) is present in REGS. */
2051 bool
2052 register_unavailable_p (regset regs, rtx reg)
2054 unsigned regno, end_regno;
2056 regno = REGNO (reg);
2057 if (bitmap_bit_p (regs, regno))
2058 return true;
2060 end_regno = END_REGNO (reg);
2062 while (++regno < end_regno)
2063 if (bitmap_bit_p (regs, regno))
2064 return true;
2066 return false;
2069 /* Av set functions. */
2071 /* Add a new element to av set SETP.
2072 Return the element added. */
2073 static av_set_t
2074 av_set_add_element (av_set_t *setp)
2076 /* Insert at the beginning of the list. */
2077 _list_add (setp);
2078 return *setp;
2081 /* Add EXPR to SETP. */
2082 void
2083 av_set_add (av_set_t *setp, expr_t expr)
2085 av_set_t elem;
2087 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2088 elem = av_set_add_element (setp);
2089 copy_expr (_AV_SET_EXPR (elem), expr);
2092 /* Same, but do not copy EXPR. */
2093 static void
2094 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2096 av_set_t elem;
2098 elem = av_set_add_element (setp);
2099 *_AV_SET_EXPR (elem) = *expr;
2102 /* Remove expr pointed to by IP from the av_set. */
2103 void
2104 av_set_iter_remove (av_set_iterator *ip)
2106 clear_expr (_AV_SET_EXPR (*ip->lp));
2107 _list_iter_remove (ip);
2110 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2111 sense of vinsn_equal_p function. Return NULL if no such expr is
2112 in SET was found. */
2113 expr_t
2114 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2116 expr_t expr;
2117 av_set_iterator i;
2119 FOR_EACH_EXPR (expr, i, set)
2120 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2121 return expr;
2122 return NULL;
2125 /* Same, but also remove the EXPR found. */
2126 static expr_t
2127 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2129 expr_t expr;
2130 av_set_iterator i;
2132 FOR_EACH_EXPR_1 (expr, i, setp)
2133 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2135 _list_iter_remove_nofree (&i);
2136 return expr;
2138 return NULL;
2141 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2142 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2143 Returns NULL if no such expr is in SET was found. */
2144 static expr_t
2145 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2147 expr_t cur_expr;
2148 av_set_iterator i;
2150 FOR_EACH_EXPR (cur_expr, i, set)
2152 if (cur_expr == expr)
2153 continue;
2154 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2155 return cur_expr;
2158 return NULL;
2161 /* If other expression is already in AVP, remove one of them. */
2162 expr_t
2163 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2165 expr_t expr2;
2167 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2168 if (expr2 != NULL)
2170 /* Reset target availability on merge, since taking it only from one
2171 of the exprs would be controversial for different code. */
2172 EXPR_TARGET_AVAILABLE (expr2) = -1;
2173 EXPR_USEFULNESS (expr2) = 0;
2175 merge_expr (expr2, expr, NULL);
2177 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2178 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2180 av_set_iter_remove (ip);
2181 return expr2;
2184 return expr;
2187 /* Return true if there is an expr that correlates to VI in SET. */
2188 bool
2189 av_set_is_in_p (av_set_t set, vinsn_t vi)
2191 return av_set_lookup (set, vi) != NULL;
2194 /* Return a copy of SET. */
2195 av_set_t
2196 av_set_copy (av_set_t set)
2198 expr_t expr;
2199 av_set_iterator i;
2200 av_set_t res = NULL;
2202 FOR_EACH_EXPR (expr, i, set)
2203 av_set_add (&res, expr);
2205 return res;
2208 /* Join two av sets that do not have common elements by attaching second set
2209 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2210 _AV_SET_NEXT of first set's last element). */
2211 static void
2212 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2214 gcc_assert (*to_tailp == NULL);
2215 *to_tailp = *fromp;
2216 *fromp = NULL;
2219 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2220 pointed to by FROMP afterwards. */
2221 void
2222 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2224 expr_t expr1;
2225 av_set_iterator i;
2227 /* Delete from TOP all exprs, that present in FROMP. */
2228 FOR_EACH_EXPR_1 (expr1, i, top)
2230 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2232 if (expr2)
2234 merge_expr (expr2, expr1, insn);
2235 av_set_iter_remove (&i);
2239 join_distinct_sets (i.lp, fromp);
2242 /* Same as above, but also update availability of target register in
2243 TOP judging by TO_LV_SET and FROM_LV_SET. */
2244 void
2245 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2246 regset from_lv_set, insn_t insn)
2248 expr_t expr1;
2249 av_set_iterator i;
2250 av_set_t *to_tailp, in_both_set = NULL;
2252 /* Delete from TOP all expres, that present in FROMP. */
2253 FOR_EACH_EXPR_1 (expr1, i, top)
2255 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2257 if (expr2)
2259 /* It may be that the expressions have different destination
2260 registers, in which case we need to check liveness here. */
2261 if (EXPR_SEPARABLE_P (expr1))
2263 int regno1 = (REG_P (EXPR_LHS (expr1))
2264 ? (int) expr_dest_regno (expr1) : -1);
2265 int regno2 = (REG_P (EXPR_LHS (expr2))
2266 ? (int) expr_dest_regno (expr2) : -1);
2268 /* ??? We don't have a way to check restrictions for
2269 *other* register on the current path, we did it only
2270 for the current target register. Give up. */
2271 if (regno1 != regno2)
2272 EXPR_TARGET_AVAILABLE (expr2) = -1;
2274 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2275 EXPR_TARGET_AVAILABLE (expr2) = -1;
2277 merge_expr (expr2, expr1, insn);
2278 av_set_add_nocopy (&in_both_set, expr2);
2279 av_set_iter_remove (&i);
2281 else
2282 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2283 FROM_LV_SET. */
2284 set_unavailable_target_for_expr (expr1, from_lv_set);
2286 to_tailp = i.lp;
2288 /* These expressions are not present in TOP. Check liveness
2289 restrictions on TO_LV_SET. */
2290 FOR_EACH_EXPR (expr1, i, *fromp)
2291 set_unavailable_target_for_expr (expr1, to_lv_set);
2293 join_distinct_sets (i.lp, &in_both_set);
2294 join_distinct_sets (to_tailp, fromp);
2297 /* Clear av_set pointed to by SETP. */
2298 void
2299 av_set_clear (av_set_t *setp)
2301 expr_t expr;
2302 av_set_iterator i;
2304 FOR_EACH_EXPR_1 (expr, i, setp)
2305 av_set_iter_remove (&i);
2307 gcc_assert (*setp == NULL);
2310 /* Leave only one non-speculative element in the SETP. */
2311 void
2312 av_set_leave_one_nonspec (av_set_t *setp)
2314 expr_t expr;
2315 av_set_iterator i;
2316 bool has_one_nonspec = false;
2318 /* Keep all speculative exprs, and leave one non-speculative
2319 (the first one). */
2320 FOR_EACH_EXPR_1 (expr, i, setp)
2322 if (!EXPR_SPEC_DONE_DS (expr))
2324 if (has_one_nonspec)
2325 av_set_iter_remove (&i);
2326 else
2327 has_one_nonspec = true;
2332 /* Return the N'th element of the SET. */
2333 expr_t
2334 av_set_element (av_set_t set, int n)
2336 expr_t expr;
2337 av_set_iterator i;
2339 FOR_EACH_EXPR (expr, i, set)
2340 if (n-- == 0)
2341 return expr;
2343 gcc_unreachable ();
2344 return NULL;
2347 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2348 void
2349 av_set_substract_cond_branches (av_set_t *avp)
2351 av_set_iterator i;
2352 expr_t expr;
2354 FOR_EACH_EXPR_1 (expr, i, avp)
2355 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2356 av_set_iter_remove (&i);
2359 /* Multiplies usefulness attribute of each member of av-set *AVP by
2360 value PROB / ALL_PROB. */
2361 void
2362 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2364 av_set_iterator i;
2365 expr_t expr;
2367 FOR_EACH_EXPR (expr, i, av)
2368 EXPR_USEFULNESS (expr) = (all_prob
2369 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2370 : 0);
2373 /* Leave in AVP only those expressions, which are present in AV,
2374 and return it, merging history expressions. */
2375 void
2376 av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2378 av_set_iterator i;
2379 expr_t expr, expr2;
2381 FOR_EACH_EXPR_1 (expr, i, avp)
2382 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2383 av_set_iter_remove (&i);
2384 else
2385 /* When updating av sets in bookkeeping blocks, we can add more insns
2386 there which will be transformed but the upper av sets will not
2387 reflect those transformations. We then fail to undo those
2388 when searching for such insns. So merge the history saved
2389 in the av set of the block we are processing. */
2390 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2391 EXPR_HISTORY_OF_CHANGES (expr2));
2396 /* Dependence hooks to initialize insn data. */
2398 /* This is used in hooks callable from dependence analysis when initializing
2399 instruction's data. */
2400 static struct
2402 /* Where the dependence was found (lhs/rhs). */
2403 deps_where_t where;
2405 /* The actual data object to initialize. */
2406 idata_t id;
2408 /* True when the insn should not be made clonable. */
2409 bool force_unique_p;
2411 /* True when insn should be treated as of type USE, i.e. never renamed. */
2412 bool force_use_p;
2413 } deps_init_id_data;
2416 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2417 clonable. */
2418 static void
2419 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2421 int type;
2423 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2424 That clonable insns which can be separated into lhs and rhs have type SET.
2425 Other clonable insns have type USE. */
2426 type = GET_CODE (insn);
2428 /* Only regular insns could be cloned. */
2429 if (type == INSN && !force_unique_p)
2430 type = SET;
2431 else if (type == JUMP_INSN && simplejump_p (insn))
2432 type = PC;
2433 else if (type == DEBUG_INSN)
2434 type = !force_unique_p ? USE : INSN;
2436 IDATA_TYPE (id) = type;
2437 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2438 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2439 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2442 /* Start initializing insn data. */
2443 static void
2444 deps_init_id_start_insn (insn_t insn)
2446 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2448 setup_id_for_insn (deps_init_id_data.id, insn,
2449 deps_init_id_data.force_unique_p);
2450 deps_init_id_data.where = DEPS_IN_INSN;
2453 /* Start initializing lhs data. */
2454 static void
2455 deps_init_id_start_lhs (rtx lhs)
2457 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2458 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2460 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2462 IDATA_LHS (deps_init_id_data.id) = lhs;
2463 deps_init_id_data.where = DEPS_IN_LHS;
2467 /* Finish initializing lhs data. */
2468 static void
2469 deps_init_id_finish_lhs (void)
2471 deps_init_id_data.where = DEPS_IN_INSN;
2474 /* Note a set of REGNO. */
2475 static void
2476 deps_init_id_note_reg_set (int regno)
2478 haifa_note_reg_set (regno);
2480 if (deps_init_id_data.where == DEPS_IN_RHS)
2481 deps_init_id_data.force_use_p = true;
2483 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2484 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2486 #ifdef STACK_REGS
2487 /* Make instructions that set stack registers to be ineligible for
2488 renaming to avoid issues with find_used_regs. */
2489 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2490 deps_init_id_data.force_use_p = true;
2491 #endif
2494 /* Note a clobber of REGNO. */
2495 static void
2496 deps_init_id_note_reg_clobber (int regno)
2498 haifa_note_reg_clobber (regno);
2500 if (deps_init_id_data.where == DEPS_IN_RHS)
2501 deps_init_id_data.force_use_p = true;
2503 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2504 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2507 /* Note a use of REGNO. */
2508 static void
2509 deps_init_id_note_reg_use (int regno)
2511 haifa_note_reg_use (regno);
2513 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2514 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2517 /* Start initializing rhs data. */
2518 static void
2519 deps_init_id_start_rhs (rtx rhs)
2521 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2523 /* And there was no sel_deps_reset_to_insn (). */
2524 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2526 IDATA_RHS (deps_init_id_data.id) = rhs;
2527 deps_init_id_data.where = DEPS_IN_RHS;
2531 /* Finish initializing rhs data. */
2532 static void
2533 deps_init_id_finish_rhs (void)
2535 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2536 || deps_init_id_data.where == DEPS_IN_INSN);
2537 deps_init_id_data.where = DEPS_IN_INSN;
2540 /* Finish initializing insn data. */
2541 static void
2542 deps_init_id_finish_insn (void)
2544 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2546 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2548 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2549 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2551 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2552 || deps_init_id_data.force_use_p)
2554 /* This should be a USE, as we don't want to schedule its RHS
2555 separately. However, we still want to have them recorded
2556 for the purposes of substitution. That's why we don't
2557 simply call downgrade_to_use () here. */
2558 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2559 gcc_assert (!lhs == !rhs);
2561 IDATA_TYPE (deps_init_id_data.id) = USE;
2565 deps_init_id_data.where = DEPS_IN_NOWHERE;
2568 /* This is dependence info used for initializing insn's data. */
2569 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2571 /* This initializes most of the static part of the above structure. */
2572 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2574 NULL,
2576 deps_init_id_start_insn,
2577 deps_init_id_finish_insn,
2578 deps_init_id_start_lhs,
2579 deps_init_id_finish_lhs,
2580 deps_init_id_start_rhs,
2581 deps_init_id_finish_rhs,
2582 deps_init_id_note_reg_set,
2583 deps_init_id_note_reg_clobber,
2584 deps_init_id_note_reg_use,
2585 NULL, /* note_mem_dep */
2586 NULL, /* note_dep */
2588 0, /* use_cselib */
2589 0, /* use_deps_list */
2590 0 /* generate_spec_deps */
2593 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2594 we don't actually need information about lhs and rhs. */
2595 static void
2596 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2598 rtx pat = PATTERN (insn);
2600 if (NONJUMP_INSN_P (insn)
2601 && GET_CODE (pat) == SET
2602 && !force_unique_p)
2604 IDATA_RHS (id) = SET_SRC (pat);
2605 IDATA_LHS (id) = SET_DEST (pat);
2607 else
2608 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2611 /* Possibly downgrade INSN to USE. */
2612 static void
2613 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2615 bool must_be_use = false;
2616 df_ref def;
2617 rtx lhs = IDATA_LHS (id);
2618 rtx rhs = IDATA_RHS (id);
2620 /* We downgrade only SETs. */
2621 if (IDATA_TYPE (id) != SET)
2622 return;
2624 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2626 IDATA_TYPE (id) = USE;
2627 return;
2630 FOR_EACH_INSN_DEF (def, insn)
2632 if (DF_REF_INSN (def)
2633 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2634 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2636 must_be_use = true;
2637 break;
2640 #ifdef STACK_REGS
2641 /* Make instructions that set stack registers to be ineligible for
2642 renaming to avoid issues with find_used_regs. */
2643 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2645 must_be_use = true;
2646 break;
2648 #endif
2651 if (must_be_use)
2652 IDATA_TYPE (id) = USE;
2655 /* Setup implicit register clobbers calculated by sched-deps for INSN
2656 before reload and save them in ID. */
2657 static void
2658 setup_id_implicit_regs (idata_t id, insn_t insn)
2660 if (reload_completed)
2661 return;
2663 HARD_REG_SET temp;
2664 unsigned regno;
2665 hard_reg_set_iterator hrsi;
2667 get_implicit_reg_pending_clobbers (&temp, insn);
2668 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2669 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2672 /* Setup register sets describing INSN in ID. */
2673 static void
2674 setup_id_reg_sets (idata_t id, insn_t insn)
2676 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2677 df_ref def, use;
2678 regset tmp = get_clear_regset_from_pool ();
2680 FOR_EACH_INSN_INFO_DEF (def, insn_info)
2682 unsigned int regno = DF_REF_REGNO (def);
2684 /* Post modifies are treated like clobbers by sched-deps.c. */
2685 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2686 | DF_REF_PRE_POST_MODIFY)))
2687 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2688 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2690 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2692 #ifdef STACK_REGS
2693 /* For stack registers, treat writes to them as writes
2694 to the first one to be consistent with sched-deps.c. */
2695 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2696 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2697 #endif
2699 /* Mark special refs that generate read/write def pair. */
2700 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2701 || regno == STACK_POINTER_REGNUM)
2702 bitmap_set_bit (tmp, regno);
2705 FOR_EACH_INSN_INFO_USE (use, insn_info)
2707 unsigned int regno = DF_REF_REGNO (use);
2709 /* When these refs are met for the first time, skip them, as
2710 these uses are just counterparts of some defs. */
2711 if (bitmap_bit_p (tmp, regno))
2712 bitmap_clear_bit (tmp, regno);
2713 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2715 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2717 #ifdef STACK_REGS
2718 /* For stack registers, treat reads from them as reads from
2719 the first one to be consistent with sched-deps.c. */
2720 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2721 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2722 #endif
2726 /* Also get implicit reg clobbers from sched-deps. */
2727 setup_id_implicit_regs (id, insn);
2729 return_regset_to_pool (tmp);
2732 /* Initialize instruction data for INSN in ID using DF's data. */
2733 static void
2734 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2736 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2738 setup_id_for_insn (id, insn, force_unique_p);
2739 setup_id_lhs_rhs (id, insn, force_unique_p);
2741 if (INSN_NOP_P (insn))
2742 return;
2744 maybe_downgrade_id_to_use (id, insn);
2745 setup_id_reg_sets (id, insn);
2748 /* Initialize instruction data for INSN in ID. */
2749 static void
2750 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2752 struct deps_desc _dc, *dc = &_dc;
2754 deps_init_id_data.where = DEPS_IN_NOWHERE;
2755 deps_init_id_data.id = id;
2756 deps_init_id_data.force_unique_p = force_unique_p;
2757 deps_init_id_data.force_use_p = false;
2759 init_deps (dc, false);
2760 memcpy (&deps_init_id_sched_deps_info,
2761 &const_deps_init_id_sched_deps_info,
2762 sizeof (deps_init_id_sched_deps_info));
2763 if (spec_info != NULL)
2764 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2765 sched_deps_info = &deps_init_id_sched_deps_info;
2767 deps_analyze_insn (dc, insn);
2768 /* Implicit reg clobbers received from sched-deps separately. */
2769 setup_id_implicit_regs (id, insn);
2771 free_deps (dc);
2772 deps_init_id_data.id = NULL;
2776 struct sched_scan_info_def
2778 /* This hook notifies scheduler frontend to extend its internal per basic
2779 block data structures. This hook should be called once before a series of
2780 calls to bb_init (). */
2781 void (*extend_bb) (void);
2783 /* This hook makes scheduler frontend to initialize its internal data
2784 structures for the passed basic block. */
2785 void (*init_bb) (basic_block);
2787 /* This hook notifies scheduler frontend to extend its internal per insn data
2788 structures. This hook should be called once before a series of calls to
2789 insn_init (). */
2790 void (*extend_insn) (void);
2792 /* This hook makes scheduler frontend to initialize its internal data
2793 structures for the passed insn. */
2794 void (*init_insn) (insn_t);
2797 /* A driver function to add a set of basic blocks (BBS) to the
2798 scheduling region. */
2799 static void
2800 sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2802 unsigned i;
2803 basic_block bb;
2805 if (ssi->extend_bb)
2806 ssi->extend_bb ();
2808 if (ssi->init_bb)
2809 FOR_EACH_VEC_ELT (bbs, i, bb)
2810 ssi->init_bb (bb);
2812 if (ssi->extend_insn)
2813 ssi->extend_insn ();
2815 if (ssi->init_insn)
2816 FOR_EACH_VEC_ELT (bbs, i, bb)
2818 rtx_insn *insn;
2820 FOR_BB_INSNS (bb, insn)
2821 ssi->init_insn (insn);
2825 /* Implement hooks for collecting fundamental insn properties like if insn is
2826 an ASM or is within a SCHED_GROUP. */
2828 /* True when a "one-time init" data for INSN was already inited. */
2829 static bool
2830 first_time_insn_init (insn_t insn)
2832 return INSN_LIVE (insn) == NULL;
2835 /* Hash an entry in a transformed_insns hashtable. */
2836 static hashval_t
2837 hash_transformed_insns (const void *p)
2839 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2842 /* Compare the entries in a transformed_insns hashtable. */
2843 static int
2844 eq_transformed_insns (const void *p, const void *q)
2846 rtx_insn *i1 =
2847 VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2848 rtx_insn *i2 =
2849 VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2851 if (INSN_UID (i1) == INSN_UID (i2))
2852 return 1;
2853 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2856 /* Free an entry in a transformed_insns hashtable. */
2857 static void
2858 free_transformed_insns (void *p)
2860 struct transformed_insns *pti = (struct transformed_insns *) p;
2862 vinsn_detach (pti->vinsn_old);
2863 vinsn_detach (pti->vinsn_new);
2864 free (pti);
2867 /* Init the s_i_d data for INSN which should be inited just once, when
2868 we first see the insn. */
2869 static void
2870 init_first_time_insn_data (insn_t insn)
2872 /* This should not be set if this is the first time we init data for
2873 insn. */
2874 gcc_assert (first_time_insn_init (insn));
2876 /* These are needed for nops too. */
2877 INSN_LIVE (insn) = get_regset_from_pool ();
2878 INSN_LIVE_VALID_P (insn) = false;
2880 if (!INSN_NOP_P (insn))
2882 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2883 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2884 INSN_TRANSFORMED_INSNS (insn)
2885 = htab_create (16, hash_transformed_insns,
2886 eq_transformed_insns, free_transformed_insns);
2887 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2891 /* Free almost all above data for INSN that is scheduled already.
2892 Used for extra-large basic blocks. */
2893 void
2894 free_data_for_scheduled_insn (insn_t insn)
2896 gcc_assert (! first_time_insn_init (insn));
2898 if (! INSN_ANALYZED_DEPS (insn))
2899 return;
2901 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2902 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2903 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2905 /* This is allocated only for bookkeeping insns. */
2906 if (INSN_ORIGINATORS (insn))
2907 BITMAP_FREE (INSN_ORIGINATORS (insn));
2908 free_deps (&INSN_DEPS_CONTEXT (insn));
2910 INSN_ANALYZED_DEPS (insn) = NULL;
2912 /* Clear the readonly flag so we would ICE when trying to recalculate
2913 the deps context (as we believe that it should not happen). */
2914 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2917 /* Free the same data as above for INSN. */
2918 static void
2919 free_first_time_insn_data (insn_t insn)
2921 gcc_assert (! first_time_insn_init (insn));
2923 free_data_for_scheduled_insn (insn);
2924 return_regset_to_pool (INSN_LIVE (insn));
2925 INSN_LIVE (insn) = NULL;
2926 INSN_LIVE_VALID_P (insn) = false;
2929 /* Initialize region-scope data structures for basic blocks. */
2930 static void
2931 init_global_and_expr_for_bb (basic_block bb)
2933 if (sel_bb_empty_p (bb))
2934 return;
2936 invalidate_av_set (bb);
2939 /* Data for global dependency analysis (to initialize CANT_MOVE and
2940 SCHED_GROUP_P). */
2941 static struct
2943 /* Previous insn. */
2944 insn_t prev_insn;
2945 } init_global_data;
2947 /* Determine if INSN is in the sched_group, is an asm or should not be
2948 cloned. After that initialize its expr. */
2949 static void
2950 init_global_and_expr_for_insn (insn_t insn)
2952 if (LABEL_P (insn))
2953 return;
2955 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2957 init_global_data.prev_insn = NULL;
2958 return;
2961 gcc_assert (INSN_P (insn));
2963 if (SCHED_GROUP_P (insn))
2964 /* Setup a sched_group. */
2966 insn_t prev_insn = init_global_data.prev_insn;
2968 if (prev_insn)
2969 INSN_SCHED_NEXT (prev_insn) = insn;
2971 init_global_data.prev_insn = insn;
2973 else
2974 init_global_data.prev_insn = NULL;
2976 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2977 || asm_noperands (PATTERN (insn)) >= 0)
2978 /* Mark INSN as an asm. */
2979 INSN_ASM_P (insn) = true;
2982 bool force_unique_p;
2983 ds_t spec_done_ds;
2985 /* Certain instructions cannot be cloned, and frame related insns and
2986 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2987 their block. */
2988 if (prologue_epilogue_contains (insn))
2990 if (RTX_FRAME_RELATED_P (insn))
2991 CANT_MOVE (insn) = 1;
2992 else
2994 rtx note;
2995 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2996 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2997 && ((enum insn_note) INTVAL (XEXP (note, 0))
2998 == NOTE_INSN_EPILOGUE_BEG))
3000 CANT_MOVE (insn) = 1;
3001 break;
3004 force_unique_p = true;
3006 else
3007 if (CANT_MOVE (insn)
3008 || INSN_ASM_P (insn)
3009 || SCHED_GROUP_P (insn)
3010 || CALL_P (insn)
3011 /* Exception handling insns are always unique. */
3012 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
3013 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
3014 || control_flow_insn_p (insn)
3015 || volatile_insn_p (PATTERN (insn))
3016 || (targetm.cannot_copy_insn_p
3017 && targetm.cannot_copy_insn_p (insn)))
3018 force_unique_p = true;
3019 else
3020 force_unique_p = false;
3022 if (targetm.sched.get_insn_spec_ds)
3024 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
3025 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
3027 else
3028 spec_done_ds = 0;
3030 /* Initialize INSN's expr. */
3031 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3032 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
3033 spec_done_ds, 0, 0, vNULL, true,
3034 false, false, false, CANT_MOVE (insn));
3037 init_first_time_insn_data (insn);
3040 /* Scan the region and initialize instruction data for basic blocks BBS. */
3041 void
3042 sel_init_global_and_expr (bb_vec_t bbs)
3044 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
3045 const struct sched_scan_info_def ssi =
3047 NULL, /* extend_bb */
3048 init_global_and_expr_for_bb, /* init_bb */
3049 extend_insn_data, /* extend_insn */
3050 init_global_and_expr_for_insn /* init_insn */
3053 sched_scan (&ssi, bbs);
3056 /* Finalize region-scope data structures for basic blocks. */
3057 static void
3058 finish_global_and_expr_for_bb (basic_block bb)
3060 av_set_clear (&BB_AV_SET (bb));
3061 BB_AV_LEVEL (bb) = 0;
3064 /* Finalize INSN's data. */
3065 static void
3066 finish_global_and_expr_insn (insn_t insn)
3068 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3069 return;
3071 gcc_assert (INSN_P (insn));
3073 if (INSN_LUID (insn) > 0)
3075 free_first_time_insn_data (insn);
3076 INSN_WS_LEVEL (insn) = 0;
3077 CANT_MOVE (insn) = 0;
3079 /* We can no longer assert this, as vinsns of this insn could be
3080 easily live in other insn's caches. This should be changed to
3081 a counter-like approach among all vinsns. */
3082 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3083 clear_expr (INSN_EXPR (insn));
3087 /* Finalize per instruction data for the whole region. */
3088 void
3089 sel_finish_global_and_expr (void)
3092 bb_vec_t bbs;
3093 int i;
3095 bbs.create (current_nr_blocks);
3097 for (i = 0; i < current_nr_blocks; i++)
3098 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
3100 /* Clear AV_SETs and INSN_EXPRs. */
3102 const struct sched_scan_info_def ssi =
3104 NULL, /* extend_bb */
3105 finish_global_and_expr_for_bb, /* init_bb */
3106 NULL, /* extend_insn */
3107 finish_global_and_expr_insn /* init_insn */
3110 sched_scan (&ssi, bbs);
3113 bbs.release ();
3116 finish_insns ();
3120 /* In the below hooks, we merely calculate whether or not a dependence
3121 exists, and in what part of insn. However, we will need more data
3122 when we'll start caching dependence requests. */
3124 /* Container to hold information for dependency analysis. */
3125 static struct
3127 deps_t dc;
3129 /* A variable to track which part of rtx we are scanning in
3130 sched-deps.c: sched_analyze_insn (). */
3131 deps_where_t where;
3133 /* Current producer. */
3134 insn_t pro;
3136 /* Current consumer. */
3137 vinsn_t con;
3139 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3140 X is from { INSN, LHS, RHS }. */
3141 ds_t has_dep_p[DEPS_IN_NOWHERE];
3142 } has_dependence_data;
3144 /* Start analyzing dependencies of INSN. */
3145 static void
3146 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3148 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3150 has_dependence_data.where = DEPS_IN_INSN;
3153 /* Finish analyzing dependencies of an insn. */
3154 static void
3155 has_dependence_finish_insn (void)
3157 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3159 has_dependence_data.where = DEPS_IN_NOWHERE;
3162 /* Start analyzing dependencies of LHS. */
3163 static void
3164 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3166 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3168 if (VINSN_LHS (has_dependence_data.con) != NULL)
3169 has_dependence_data.where = DEPS_IN_LHS;
3172 /* Finish analyzing dependencies of an lhs. */
3173 static void
3174 has_dependence_finish_lhs (void)
3176 has_dependence_data.where = DEPS_IN_INSN;
3179 /* Start analyzing dependencies of RHS. */
3180 static void
3181 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3183 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3185 if (VINSN_RHS (has_dependence_data.con) != NULL)
3186 has_dependence_data.where = DEPS_IN_RHS;
3189 /* Start analyzing dependencies of an rhs. */
3190 static void
3191 has_dependence_finish_rhs (void)
3193 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3194 || has_dependence_data.where == DEPS_IN_INSN);
3196 has_dependence_data.where = DEPS_IN_INSN;
3199 /* Note a set of REGNO. */
3200 static void
3201 has_dependence_note_reg_set (int regno)
3203 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3205 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3206 VINSN_INSN_RTX
3207 (has_dependence_data.con)))
3209 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3211 if (reg_last->sets != NULL
3212 || reg_last->clobbers != NULL)
3213 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3215 if (reg_last->uses || reg_last->implicit_sets)
3216 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3220 /* Note a clobber of REGNO. */
3221 static void
3222 has_dependence_note_reg_clobber (int regno)
3224 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3226 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3227 VINSN_INSN_RTX
3228 (has_dependence_data.con)))
3230 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3232 if (reg_last->sets)
3233 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3235 if (reg_last->uses || reg_last->implicit_sets)
3236 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3240 /* Note a use of REGNO. */
3241 static void
3242 has_dependence_note_reg_use (int regno)
3244 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3246 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3247 VINSN_INSN_RTX
3248 (has_dependence_data.con)))
3250 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3252 if (reg_last->sets)
3253 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3255 if (reg_last->clobbers || reg_last->implicit_sets)
3256 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3258 /* Merge BE_IN_SPEC bits into *DSP when the dependency producer
3259 is actually a check insn. We need to do this for any register
3260 read-read dependency with the check unless we track properly
3261 all registers written by BE_IN_SPEC-speculated insns, as
3262 we don't have explicit dependence lists. See PR 53975. */
3263 if (reg_last->uses)
3265 ds_t pro_spec_checked_ds;
3267 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3268 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3270 if (pro_spec_checked_ds != 0)
3271 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3272 NULL_RTX, NULL_RTX);
3277 /* Note a memory dependence. */
3278 static void
3279 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3280 rtx pending_mem ATTRIBUTE_UNUSED,
3281 insn_t pending_insn ATTRIBUTE_UNUSED,
3282 ds_t ds ATTRIBUTE_UNUSED)
3284 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3285 VINSN_INSN_RTX (has_dependence_data.con)))
3287 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3289 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3293 /* Note a dependence. */
3294 static void
3295 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3296 ds_t ds ATTRIBUTE_UNUSED)
3298 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3299 VINSN_INSN_RTX (has_dependence_data.con)))
3301 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3303 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3307 /* Mark the insn as having a hard dependence that prevents speculation. */
3308 void
3309 sel_mark_hard_insn (rtx insn)
3311 int i;
3313 /* Only work when we're in has_dependence_p mode.
3314 ??? This is a hack, this should actually be a hook. */
3315 if (!has_dependence_data.dc || !has_dependence_data.pro)
3316 return;
3318 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3319 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3321 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3322 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3325 /* This structure holds the hooks for the dependency analysis used when
3326 actually processing dependencies in the scheduler. */
3327 static struct sched_deps_info_def has_dependence_sched_deps_info;
3329 /* This initializes most of the fields of the above structure. */
3330 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3332 NULL,
3334 has_dependence_start_insn,
3335 has_dependence_finish_insn,
3336 has_dependence_start_lhs,
3337 has_dependence_finish_lhs,
3338 has_dependence_start_rhs,
3339 has_dependence_finish_rhs,
3340 has_dependence_note_reg_set,
3341 has_dependence_note_reg_clobber,
3342 has_dependence_note_reg_use,
3343 has_dependence_note_mem_dep,
3344 has_dependence_note_dep,
3346 0, /* use_cselib */
3347 0, /* use_deps_list */
3348 0 /* generate_spec_deps */
3351 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3352 static void
3353 setup_has_dependence_sched_deps_info (void)
3355 memcpy (&has_dependence_sched_deps_info,
3356 &const_has_dependence_sched_deps_info,
3357 sizeof (has_dependence_sched_deps_info));
3359 if (spec_info != NULL)
3360 has_dependence_sched_deps_info.generate_spec_deps = 1;
3362 sched_deps_info = &has_dependence_sched_deps_info;
3365 /* Remove all dependences found and recorded in has_dependence_data array. */
3366 void
3367 sel_clear_has_dependence (void)
3369 int i;
3371 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3372 has_dependence_data.has_dep_p[i] = 0;
3375 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3376 to the dependence information array in HAS_DEP_PP. */
3377 ds_t
3378 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3380 int i;
3381 ds_t ds;
3382 struct deps_desc *dc;
3384 if (INSN_SIMPLEJUMP_P (pred))
3385 /* Unconditional jump is just a transfer of control flow.
3386 Ignore it. */
3387 return false;
3389 dc = &INSN_DEPS_CONTEXT (pred);
3391 /* We init this field lazily. */
3392 if (dc->reg_last == NULL)
3393 init_deps_reg_last (dc);
3395 if (!dc->readonly)
3397 has_dependence_data.pro = NULL;
3398 /* Initialize empty dep context with information about PRED. */
3399 advance_deps_context (dc, pred);
3400 dc->readonly = 1;
3403 has_dependence_data.where = DEPS_IN_NOWHERE;
3404 has_dependence_data.pro = pred;
3405 has_dependence_data.con = EXPR_VINSN (expr);
3406 has_dependence_data.dc = dc;
3408 sel_clear_has_dependence ();
3410 /* Now catch all dependencies that would be generated between PRED and
3411 INSN. */
3412 setup_has_dependence_sched_deps_info ();
3413 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3414 has_dependence_data.dc = NULL;
3416 /* When a barrier was found, set DEPS_IN_INSN bits. */
3417 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3418 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3419 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3420 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3422 /* Do not allow stores to memory to move through checks. Currently
3423 we don't move this to sched-deps.c as the check doesn't have
3424 obvious places to which this dependence can be attached.
3425 FIMXE: this should go to a hook. */
3426 if (EXPR_LHS (expr)
3427 && MEM_P (EXPR_LHS (expr))
3428 && sel_insn_is_speculation_check (pred))
3429 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3431 *has_dep_pp = has_dependence_data.has_dep_p;
3432 ds = 0;
3433 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3434 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3435 NULL_RTX, NULL_RTX);
3437 return ds;
3441 /* Dependence hooks implementation that checks dependence latency constraints
3442 on the insns being scheduled. The entry point for these routines is
3443 tick_check_p predicate. */
3445 static struct
3447 /* An expr we are currently checking. */
3448 expr_t expr;
3450 /* A minimal cycle for its scheduling. */
3451 int cycle;
3453 /* Whether we have seen a true dependence while checking. */
3454 bool seen_true_dep_p;
3455 } tick_check_data;
3457 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3458 on PRO with status DS and weight DW. */
3459 static void
3460 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3462 expr_t con_expr = tick_check_data.expr;
3463 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3465 if (con_insn != pro_insn)
3467 enum reg_note dt;
3468 int tick;
3470 if (/* PROducer was removed from above due to pipelining. */
3471 !INSN_IN_STREAM_P (pro_insn)
3472 /* Or PROducer was originally on the next iteration regarding the
3473 CONsumer. */
3474 || (INSN_SCHED_TIMES (pro_insn)
3475 - EXPR_SCHED_TIMES (con_expr)) > 1)
3476 /* Don't count this dependence. */
3477 return;
3479 dt = ds_to_dt (ds);
3480 if (dt == REG_DEP_TRUE)
3481 tick_check_data.seen_true_dep_p = true;
3483 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3486 dep_def _dep, *dep = &_dep;
3488 init_dep (dep, pro_insn, con_insn, dt);
3490 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3493 /* When there are several kinds of dependencies between pro and con,
3494 only REG_DEP_TRUE should be taken into account. */
3495 if (tick > tick_check_data.cycle
3496 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3497 tick_check_data.cycle = tick;
3501 /* An implementation of note_dep hook. */
3502 static void
3503 tick_check_note_dep (insn_t pro, ds_t ds)
3505 tick_check_dep_with_dw (pro, ds, 0);
3508 /* An implementation of note_mem_dep hook. */
3509 static void
3510 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3512 dw_t dw;
3514 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3515 ? estimate_dep_weak (mem1, mem2)
3516 : 0);
3518 tick_check_dep_with_dw (pro, ds, dw);
3521 /* This structure contains hooks for dependence analysis used when determining
3522 whether an insn is ready for scheduling. */
3523 static struct sched_deps_info_def tick_check_sched_deps_info =
3525 NULL,
3527 NULL,
3528 NULL,
3529 NULL,
3530 NULL,
3531 NULL,
3532 NULL,
3533 haifa_note_reg_set,
3534 haifa_note_reg_clobber,
3535 haifa_note_reg_use,
3536 tick_check_note_mem_dep,
3537 tick_check_note_dep,
3539 0, 0, 0
3542 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3543 scheduled. Return 0 if all data from producers in DC is ready. */
3545 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3547 int cycles_left;
3548 /* Initialize variables. */
3549 tick_check_data.expr = expr;
3550 tick_check_data.cycle = 0;
3551 tick_check_data.seen_true_dep_p = false;
3552 sched_deps_info = &tick_check_sched_deps_info;
3554 gcc_assert (!dc->readonly);
3555 dc->readonly = 1;
3556 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3557 dc->readonly = 0;
3559 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3561 return cycles_left >= 0 ? cycles_left : 0;
3565 /* Functions to work with insns. */
3567 /* Returns true if LHS of INSN is the same as DEST of an insn
3568 being moved. */
3569 bool
3570 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3572 rtx lhs = INSN_LHS (insn);
3574 if (lhs == NULL || dest == NULL)
3575 return false;
3577 return rtx_equal_p (lhs, dest);
3580 /* Return s_i_d entry of INSN. Callable from debugger. */
3581 sel_insn_data_def
3582 insn_sid (insn_t insn)
3584 return *SID (insn);
3587 /* True when INSN is a speculative check. We can tell this by looking
3588 at the data structures of the selective scheduler, not by examining
3589 the pattern. */
3590 bool
3591 sel_insn_is_speculation_check (rtx insn)
3593 return s_i_d.exists () && !! INSN_SPEC_CHECKED_DS (insn);
3596 /* Extracts machine mode MODE and destination location DST_LOC
3597 for given INSN. */
3598 void
3599 get_dest_and_mode (rtx insn, rtx *dst_loc, machine_mode *mode)
3601 rtx pat = PATTERN (insn);
3603 gcc_assert (dst_loc);
3604 gcc_assert (GET_CODE (pat) == SET);
3606 *dst_loc = SET_DEST (pat);
3608 gcc_assert (*dst_loc);
3609 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3611 if (mode)
3612 *mode = GET_MODE (*dst_loc);
3615 /* Returns true when moving through JUMP will result in bookkeeping
3616 creation. */
3617 bool
3618 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3620 insn_t succ;
3621 succ_iterator si;
3623 FOR_EACH_SUCC (succ, si, jump)
3624 if (sel_num_cfg_preds_gt_1 (succ))
3625 return true;
3627 return false;
3630 /* Return 'true' if INSN is the only one in its basic block. */
3631 static bool
3632 insn_is_the_only_one_in_bb_p (insn_t insn)
3634 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3637 /* Check that the region we're scheduling still has at most one
3638 backedge. */
3639 static void
3640 verify_backedges (void)
3642 if (pipelining_p)
3644 int i, n = 0;
3645 edge e;
3646 edge_iterator ei;
3648 for (i = 0; i < current_nr_blocks; i++)
3649 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))->succs)
3650 if (in_current_region_p (e->dest)
3651 && BLOCK_TO_BB (e->dest->index) < i)
3652 n++;
3654 gcc_assert (n <= 1);
3659 /* Functions to work with control flow. */
3661 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3662 are sorted in topological order (it might have been invalidated by
3663 redirecting an edge). */
3664 static void
3665 sel_recompute_toporder (void)
3667 int i, n, rgn;
3668 int *postorder, n_blocks;
3670 postorder = XALLOCAVEC (int, n_basic_blocks_for_fn (cfun));
3671 n_blocks = post_order_compute (postorder, false, false);
3673 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3674 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3675 if (CONTAINING_RGN (postorder[i]) == rgn)
3677 BLOCK_TO_BB (postorder[i]) = n;
3678 BB_TO_BLOCK (n) = postorder[i];
3679 n++;
3682 /* Assert that we updated info for all blocks. We may miss some blocks if
3683 this function is called when redirecting an edge made a block
3684 unreachable, but that block is not deleted yet. */
3685 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3688 /* Tidy the possibly empty block BB. */
3689 static bool
3690 maybe_tidy_empty_bb (basic_block bb)
3692 basic_block succ_bb, pred_bb, note_bb;
3693 vec<basic_block> dom_bbs;
3694 edge e;
3695 edge_iterator ei;
3696 bool rescan_p;
3698 /* Keep empty bb only if this block immediately precedes EXIT and
3699 has incoming non-fallthrough edge, or it has no predecessors or
3700 successors. Otherwise remove it. */
3701 if (!sel_bb_empty_p (bb)
3702 || (single_succ_p (bb)
3703 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
3704 && (!single_pred_p (bb)
3705 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3706 || EDGE_COUNT (bb->preds) == 0
3707 || EDGE_COUNT (bb->succs) == 0)
3708 return false;
3710 /* Do not attempt to redirect complex edges. */
3711 FOR_EACH_EDGE (e, ei, bb->preds)
3712 if (e->flags & EDGE_COMPLEX)
3713 return false;
3714 else if (e->flags & EDGE_FALLTHRU)
3716 rtx note;
3717 /* If prev bb ends with asm goto, see if any of the
3718 ASM_OPERANDS_LABELs don't point to the fallthru
3719 label. Do not attempt to redirect it in that case. */
3720 if (JUMP_P (BB_END (e->src))
3721 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
3723 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
3725 for (i = 0; i < n; ++i)
3726 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (bb))
3727 return false;
3731 free_data_sets (bb);
3733 /* Do not delete BB if it has more than one successor.
3734 That can occur when we moving a jump. */
3735 if (!single_succ_p (bb))
3737 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3738 sel_merge_blocks (bb->prev_bb, bb);
3739 return true;
3742 succ_bb = single_succ (bb);
3743 rescan_p = true;
3744 pred_bb = NULL;
3745 dom_bbs.create (0);
3747 /* Save a pred/succ from the current region to attach the notes to. */
3748 note_bb = NULL;
3749 FOR_EACH_EDGE (e, ei, bb->preds)
3750 if (in_current_region_p (e->src))
3752 note_bb = e->src;
3753 break;
3755 if (note_bb == NULL)
3756 note_bb = succ_bb;
3758 /* Redirect all non-fallthru edges to the next bb. */
3759 while (rescan_p)
3761 rescan_p = false;
3763 FOR_EACH_EDGE (e, ei, bb->preds)
3765 pred_bb = e->src;
3767 if (!(e->flags & EDGE_FALLTHRU))
3769 /* We can not invalidate computed topological order by moving
3770 the edge destination block (E->SUCC) along a fallthru edge.
3772 We will update dominators here only when we'll get
3773 an unreachable block when redirecting, otherwise
3774 sel_redirect_edge_and_branch will take care of it. */
3775 if (e->dest != bb
3776 && single_pred_p (e->dest))
3777 dom_bbs.safe_push (e->dest);
3778 sel_redirect_edge_and_branch (e, succ_bb);
3779 rescan_p = true;
3780 break;
3782 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3783 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3784 still have to adjust it. */
3785 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3787 /* If possible, try to remove the unneeded conditional jump. */
3788 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3789 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3791 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3792 tidy_fallthru_edge (e);
3794 else
3795 sel_redirect_edge_and_branch (e, succ_bb);
3796 rescan_p = true;
3797 break;
3802 if (can_merge_blocks_p (bb->prev_bb, bb))
3803 sel_merge_blocks (bb->prev_bb, bb);
3804 else
3806 /* This is a block without fallthru predecessor. Just delete it. */
3807 gcc_assert (note_bb);
3808 move_bb_info (note_bb, bb);
3809 remove_empty_bb (bb, true);
3812 if (!dom_bbs.is_empty ())
3814 dom_bbs.safe_push (succ_bb);
3815 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3816 dom_bbs.release ();
3819 return true;
3822 /* Tidy the control flow after we have removed original insn from
3823 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3824 is true, also try to optimize control flow on non-empty blocks. */
3825 bool
3826 tidy_control_flow (basic_block xbb, bool full_tidying)
3828 bool changed = true;
3829 insn_t first, last;
3831 /* First check whether XBB is empty. */
3832 changed = maybe_tidy_empty_bb (xbb);
3833 if (changed || !full_tidying)
3834 return changed;
3836 /* Check if there is a unnecessary jump after insn left. */
3837 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3838 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3839 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3841 if (sel_remove_insn (BB_END (xbb), false, false))
3842 return true;
3843 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3846 first = sel_bb_head (xbb);
3847 last = sel_bb_end (xbb);
3848 if (MAY_HAVE_DEBUG_INSNS)
3850 if (first != last && DEBUG_INSN_P (first))
3852 first = NEXT_INSN (first);
3853 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3855 if (first != last && DEBUG_INSN_P (last))
3857 last = PREV_INSN (last);
3858 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3860 /* Check if there is an unnecessary jump in previous basic block leading
3861 to next basic block left after removing INSN from stream.
3862 If it is so, remove that jump and redirect edge to current
3863 basic block (where there was INSN before deletion). This way
3864 when NOP will be deleted several instructions later with its
3865 basic block we will not get a jump to next instruction, which
3866 can be harmful. */
3867 if (first == last
3868 && !sel_bb_empty_p (xbb)
3869 && INSN_NOP_P (last)
3870 /* Flow goes fallthru from current block to the next. */
3871 && EDGE_COUNT (xbb->succs) == 1
3872 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3873 /* When successor is an EXIT block, it may not be the next block. */
3874 && single_succ (xbb) != EXIT_BLOCK_PTR_FOR_FN (cfun)
3875 /* And unconditional jump in previous basic block leads to
3876 next basic block of XBB and this jump can be safely removed. */
3877 && in_current_region_p (xbb->prev_bb)
3878 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3879 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3880 /* Also this jump is not at the scheduling boundary. */
3881 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3883 bool recompute_toporder_p;
3884 /* Clear data structures of jump - jump itself will be removed
3885 by sel_redirect_edge_and_branch. */
3886 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3887 recompute_toporder_p
3888 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3890 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3892 /* It can turn out that after removing unused jump, basic block
3893 that contained that jump, becomes empty too. In such case
3894 remove it too. */
3895 if (sel_bb_empty_p (xbb->prev_bb))
3896 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3897 if (recompute_toporder_p)
3898 sel_recompute_toporder ();
3901 /* TODO: use separate flag for CFG checking. */
3902 if (flag_checking)
3904 verify_backedges ();
3905 verify_dominators (CDI_DOMINATORS);
3908 return changed;
3911 /* Purge meaningless empty blocks in the middle of a region. */
3912 void
3913 purge_empty_blocks (void)
3915 int i;
3917 /* Do not attempt to delete the first basic block in the region. */
3918 for (i = 1; i < current_nr_blocks; )
3920 basic_block b = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
3922 if (maybe_tidy_empty_bb (b))
3923 continue;
3925 i++;
3929 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3930 do not delete insn's data, because it will be later re-emitted.
3931 Return true if we have removed some blocks afterwards. */
3932 bool
3933 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3935 basic_block bb = BLOCK_FOR_INSN (insn);
3937 gcc_assert (INSN_IN_STREAM_P (insn));
3939 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3941 expr_t expr;
3942 av_set_iterator i;
3944 /* When we remove a debug insn that is head of a BB, it remains
3945 in the AV_SET of the block, but it shouldn't. */
3946 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3947 if (EXPR_INSN_RTX (expr) == insn)
3949 av_set_iter_remove (&i);
3950 break;
3954 if (only_disconnect)
3955 remove_insn (insn);
3956 else
3958 delete_insn (insn);
3959 clear_expr (INSN_EXPR (insn));
3962 /* It is necessary to NULL these fields in case we are going to re-insert
3963 INSN into the insns stream, as will usually happen in the ONLY_DISCONNECT
3964 case, but also for NOPs that we will return to the nop pool. */
3965 SET_PREV_INSN (insn) = NULL_RTX;
3966 SET_NEXT_INSN (insn) = NULL_RTX;
3967 set_block_for_insn (insn, NULL);
3969 return tidy_control_flow (bb, full_tidying);
3972 /* Estimate number of the insns in BB. */
3973 static int
3974 sel_estimate_number_of_insns (basic_block bb)
3976 int res = 0;
3977 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3979 for (; insn != next_tail; insn = NEXT_INSN (insn))
3980 if (NONDEBUG_INSN_P (insn))
3981 res++;
3983 return res;
3986 /* We don't need separate luids for notes or labels. */
3987 static int
3988 sel_luid_for_non_insn (rtx x)
3990 gcc_assert (NOTE_P (x) || LABEL_P (x));
3992 return -1;
3995 /* Find the proper seqno for inserting at INSN by successors.
3996 Return -1 if no successors with positive seqno exist. */
3997 static int
3998 get_seqno_by_succs (rtx_insn *insn)
4000 basic_block bb = BLOCK_FOR_INSN (insn);
4001 rtx_insn *tmp = insn, *end = BB_END (bb);
4002 int seqno;
4003 insn_t succ = NULL;
4004 succ_iterator si;
4006 while (tmp != end)
4008 tmp = NEXT_INSN (tmp);
4009 if (INSN_P (tmp))
4010 return INSN_SEQNO (tmp);
4013 seqno = INT_MAX;
4015 FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
4016 if (INSN_SEQNO (succ) > 0)
4017 seqno = MIN (seqno, INSN_SEQNO (succ));
4019 if (seqno == INT_MAX)
4020 return -1;
4022 return seqno;
4025 /* Compute seqno for INSN by its preds or succs. Use OLD_SEQNO to compute
4026 seqno in corner cases. */
4027 static int
4028 get_seqno_for_a_jump (insn_t insn, int old_seqno)
4030 int seqno;
4032 gcc_assert (INSN_SIMPLEJUMP_P (insn));
4034 if (!sel_bb_head_p (insn))
4035 seqno = INSN_SEQNO (PREV_INSN (insn));
4036 else
4038 basic_block bb = BLOCK_FOR_INSN (insn);
4040 if (single_pred_p (bb)
4041 && !in_current_region_p (single_pred (bb)))
4043 /* We can have preds outside a region when splitting edges
4044 for pipelining of an outer loop. Use succ instead.
4045 There should be only one of them. */
4046 insn_t succ = NULL;
4047 succ_iterator si;
4048 bool first = true;
4050 gcc_assert (flag_sel_sched_pipelining_outer_loops
4051 && current_loop_nest);
4052 FOR_EACH_SUCC_1 (succ, si, insn,
4053 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4055 gcc_assert (first);
4056 first = false;
4059 gcc_assert (succ != NULL);
4060 seqno = INSN_SEQNO (succ);
4062 else
4064 insn_t *preds;
4065 int n;
4067 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
4069 gcc_assert (n > 0);
4070 /* For one predecessor, use simple method. */
4071 if (n == 1)
4072 seqno = INSN_SEQNO (preds[0]);
4073 else
4074 seqno = get_seqno_by_preds (insn);
4076 free (preds);
4080 /* We were unable to find a good seqno among preds. */
4081 if (seqno < 0)
4082 seqno = get_seqno_by_succs (insn);
4084 if (seqno < 0)
4086 /* The only case where this could be here legally is that the only
4087 unscheduled insn was a conditional jump that got removed and turned
4088 into this unconditional one. Initialize from the old seqno
4089 of that jump passed down to here. */
4090 seqno = old_seqno;
4093 gcc_assert (seqno >= 0);
4094 return seqno;
4097 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
4098 with positive seqno exist. */
4100 get_seqno_by_preds (rtx_insn *insn)
4102 basic_block bb = BLOCK_FOR_INSN (insn);
4103 rtx_insn *tmp = insn, *head = BB_HEAD (bb);
4104 insn_t *preds;
4105 int n, i, seqno;
4107 /* Loop backwards from INSN to HEAD including both. */
4108 while (1)
4110 if (INSN_P (tmp))
4111 return INSN_SEQNO (tmp);
4112 if (tmp == head)
4113 break;
4114 tmp = PREV_INSN (tmp);
4117 cfg_preds (bb, &preds, &n);
4118 for (i = 0, seqno = -1; i < n; i++)
4119 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4121 return seqno;
4126 /* Extend pass-scope data structures for basic blocks. */
4127 void
4128 sel_extend_global_bb_info (void)
4130 sel_global_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4133 /* Extend region-scope data structures for basic blocks. */
4134 static void
4135 extend_region_bb_info (void)
4137 sel_region_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4140 /* Extend all data structures to fit for all basic blocks. */
4141 static void
4142 extend_bb_info (void)
4144 sel_extend_global_bb_info ();
4145 extend_region_bb_info ();
4148 /* Finalize pass-scope data structures for basic blocks. */
4149 void
4150 sel_finish_global_bb_info (void)
4152 sel_global_bb_info.release ();
4155 /* Finalize region-scope data structures for basic blocks. */
4156 static void
4157 finish_region_bb_info (void)
4159 sel_region_bb_info.release ();
4163 /* Data for each insn in current region. */
4164 vec<sel_insn_data_def> s_i_d;
4166 /* Extend data structures for insns from current region. */
4167 static void
4168 extend_insn_data (void)
4170 int reserve;
4172 sched_extend_target ();
4173 sched_deps_init (false);
4175 /* Extend data structures for insns from current region. */
4176 reserve = (sched_max_luid + 1 - s_i_d.length ());
4177 if (reserve > 0 && ! s_i_d.space (reserve))
4179 int size;
4181 if (sched_max_luid / 2 > 1024)
4182 size = sched_max_luid + 1024;
4183 else
4184 size = 3 * sched_max_luid / 2;
4187 s_i_d.safe_grow_cleared (size);
4191 /* Finalize data structures for insns from current region. */
4192 static void
4193 finish_insns (void)
4195 unsigned i;
4197 /* Clear here all dependence contexts that may have left from insns that were
4198 removed during the scheduling. */
4199 for (i = 0; i < s_i_d.length (); i++)
4201 sel_insn_data_def *sid_entry = &s_i_d[i];
4203 if (sid_entry->live)
4204 return_regset_to_pool (sid_entry->live);
4205 if (sid_entry->analyzed_deps)
4207 BITMAP_FREE (sid_entry->analyzed_deps);
4208 BITMAP_FREE (sid_entry->found_deps);
4209 htab_delete (sid_entry->transformed_insns);
4210 free_deps (&sid_entry->deps_context);
4212 if (EXPR_VINSN (&sid_entry->expr))
4214 clear_expr (&sid_entry->expr);
4216 /* Also, clear CANT_MOVE bit here, because we really don't want it
4217 to be passed to the next region. */
4218 CANT_MOVE_BY_LUID (i) = 0;
4222 s_i_d.release ();
4225 /* A proxy to pass initialization data to init_insn (). */
4226 static sel_insn_data_def _insn_init_ssid;
4227 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4229 /* If true create a new vinsn. Otherwise use the one from EXPR. */
4230 static bool insn_init_create_new_vinsn_p;
4232 /* Set all necessary data for initialization of the new insn[s]. */
4233 static expr_t
4234 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4236 expr_t x = &insn_init_ssid->expr;
4238 copy_expr_onside (x, expr);
4239 if (vi != NULL)
4241 insn_init_create_new_vinsn_p = false;
4242 change_vinsn_in_expr (x, vi);
4244 else
4245 insn_init_create_new_vinsn_p = true;
4247 insn_init_ssid->seqno = seqno;
4248 return x;
4251 /* Init data for INSN. */
4252 static void
4253 init_insn_data (insn_t insn)
4255 expr_t expr;
4256 sel_insn_data_t ssid = insn_init_ssid;
4258 /* The fields mentioned below are special and hence are not being
4259 propagated to the new insns. */
4260 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4261 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4262 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4264 expr = INSN_EXPR (insn);
4265 copy_expr (expr, &ssid->expr);
4266 prepare_insn_expr (insn, ssid->seqno);
4268 if (insn_init_create_new_vinsn_p)
4269 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4271 if (first_time_insn_init (insn))
4272 init_first_time_insn_data (insn);
4275 /* This is used to initialize spurious jumps generated by
4276 sel_redirect_edge (). OLD_SEQNO is used for initializing seqnos
4277 in corner cases within get_seqno_for_a_jump. */
4278 static void
4279 init_simplejump_data (insn_t insn, int old_seqno)
4281 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4282 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0,
4283 vNULL, true, false, false,
4284 false, true);
4285 INSN_SEQNO (insn) = get_seqno_for_a_jump (insn, old_seqno);
4286 init_first_time_insn_data (insn);
4289 /* Perform deferred initialization of insns. This is used to process
4290 a new jump that may be created by redirect_edge. OLD_SEQNO is used
4291 for initializing simplejumps in init_simplejump_data. */
4292 static void
4293 sel_init_new_insn (insn_t insn, int flags, int old_seqno)
4295 /* We create data structures for bb when the first insn is emitted in it. */
4296 if (INSN_P (insn)
4297 && INSN_IN_STREAM_P (insn)
4298 && insn_is_the_only_one_in_bb_p (insn))
4300 extend_bb_info ();
4301 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4304 if (flags & INSN_INIT_TODO_LUID)
4306 sched_extend_luids ();
4307 sched_init_insn_luid (insn);
4310 if (flags & INSN_INIT_TODO_SSID)
4312 extend_insn_data ();
4313 init_insn_data (insn);
4314 clear_expr (&insn_init_ssid->expr);
4317 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4319 extend_insn_data ();
4320 init_simplejump_data (insn, old_seqno);
4323 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4324 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4328 /* Functions to init/finish work with lv sets. */
4330 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4331 static void
4332 init_lv_set (basic_block bb)
4334 gcc_assert (!BB_LV_SET_VALID_P (bb));
4336 BB_LV_SET (bb) = get_regset_from_pool ();
4337 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4338 BB_LV_SET_VALID_P (bb) = true;
4341 /* Copy liveness information to BB from FROM_BB. */
4342 static void
4343 copy_lv_set_from (basic_block bb, basic_block from_bb)
4345 gcc_assert (!BB_LV_SET_VALID_P (bb));
4347 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4348 BB_LV_SET_VALID_P (bb) = true;
4351 /* Initialize lv set of all bb headers. */
4352 void
4353 init_lv_sets (void)
4355 basic_block bb;
4357 /* Initialize of LV sets. */
4358 FOR_EACH_BB_FN (bb, cfun)
4359 init_lv_set (bb);
4361 /* Don't forget EXIT_BLOCK. */
4362 init_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4365 /* Release lv set of HEAD. */
4366 static void
4367 free_lv_set (basic_block bb)
4369 gcc_assert (BB_LV_SET (bb) != NULL);
4371 return_regset_to_pool (BB_LV_SET (bb));
4372 BB_LV_SET (bb) = NULL;
4373 BB_LV_SET_VALID_P (bb) = false;
4376 /* Finalize lv sets of all bb headers. */
4377 void
4378 free_lv_sets (void)
4380 basic_block bb;
4382 /* Don't forget EXIT_BLOCK. */
4383 free_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4385 /* Free LV sets. */
4386 FOR_EACH_BB_FN (bb, cfun)
4387 if (BB_LV_SET (bb))
4388 free_lv_set (bb);
4391 /* Mark AV_SET for BB as invalid, so this set will be updated the next time
4392 compute_av() processes BB. This function is called when creating new basic
4393 blocks, as well as for blocks (either new or existing) where new jumps are
4394 created when the control flow is being updated. */
4395 static void
4396 invalidate_av_set (basic_block bb)
4398 BB_AV_LEVEL (bb) = -1;
4401 /* Create initial data sets for BB (they will be invalid). */
4402 static void
4403 create_initial_data_sets (basic_block bb)
4405 if (BB_LV_SET (bb))
4406 BB_LV_SET_VALID_P (bb) = false;
4407 else
4408 BB_LV_SET (bb) = get_regset_from_pool ();
4409 invalidate_av_set (bb);
4412 /* Free av set of BB. */
4413 static void
4414 free_av_set (basic_block bb)
4416 av_set_clear (&BB_AV_SET (bb));
4417 BB_AV_LEVEL (bb) = 0;
4420 /* Free data sets of BB. */
4421 void
4422 free_data_sets (basic_block bb)
4424 free_lv_set (bb);
4425 free_av_set (bb);
4428 /* Exchange data sets of TO and FROM. */
4429 void
4430 exchange_data_sets (basic_block to, basic_block from)
4432 /* Exchange lv sets of TO and FROM. */
4433 std::swap (BB_LV_SET (from), BB_LV_SET (to));
4434 std::swap (BB_LV_SET_VALID_P (from), BB_LV_SET_VALID_P (to));
4436 /* Exchange av sets of TO and FROM. */
4437 std::swap (BB_AV_SET (from), BB_AV_SET (to));
4438 std::swap (BB_AV_LEVEL (from), BB_AV_LEVEL (to));
4441 /* Copy data sets of FROM to TO. */
4442 void
4443 copy_data_sets (basic_block to, basic_block from)
4445 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4446 gcc_assert (BB_AV_SET (to) == NULL);
4448 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4449 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4451 if (BB_AV_SET_VALID_P (from))
4453 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4455 if (BB_LV_SET_VALID_P (from))
4457 gcc_assert (BB_LV_SET (to) != NULL);
4458 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4462 /* Return an av set for INSN, if any. */
4463 av_set_t
4464 get_av_set (insn_t insn)
4466 av_set_t av_set;
4468 gcc_assert (AV_SET_VALID_P (insn));
4470 if (sel_bb_head_p (insn))
4471 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4472 else
4473 av_set = NULL;
4475 return av_set;
4478 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4480 get_av_level (insn_t insn)
4482 int av_level;
4484 gcc_assert (INSN_P (insn));
4486 if (sel_bb_head_p (insn))
4487 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4488 else
4489 av_level = INSN_WS_LEVEL (insn);
4491 return av_level;
4496 /* Variables to work with control-flow graph. */
4498 /* The basic block that already has been processed by the sched_data_update (),
4499 but hasn't been in sel_add_bb () yet. */
4500 static vec<basic_block> last_added_blocks;
4502 /* A pool for allocating successor infos. */
4503 static struct
4505 /* A stack for saving succs_info structures. */
4506 struct succs_info *stack;
4508 /* Its size. */
4509 int size;
4511 /* Top of the stack. */
4512 int top;
4514 /* Maximal value of the top. */
4515 int max_top;
4516 } succs_info_pool;
4518 /* Functions to work with control-flow graph. */
4520 /* Return basic block note of BB. */
4521 rtx_insn *
4522 sel_bb_head (basic_block bb)
4524 rtx_insn *head;
4526 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4528 gcc_assert (exit_insn != NULL_RTX);
4529 head = exit_insn;
4531 else
4533 rtx_note *note = bb_note (bb);
4534 head = next_nonnote_insn (note);
4536 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4537 head = NULL;
4540 return head;
4543 /* Return true if INSN is a basic block header. */
4544 bool
4545 sel_bb_head_p (insn_t insn)
4547 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4550 /* Return last insn of BB. */
4551 rtx_insn *
4552 sel_bb_end (basic_block bb)
4554 if (sel_bb_empty_p (bb))
4555 return NULL;
4557 gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
4559 return BB_END (bb);
4562 /* Return true if INSN is the last insn in its basic block. */
4563 bool
4564 sel_bb_end_p (insn_t insn)
4566 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4569 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4570 bool
4571 sel_bb_empty_p (basic_block bb)
4573 return sel_bb_head (bb) == NULL;
4576 /* True when BB belongs to the current scheduling region. */
4577 bool
4578 in_current_region_p (basic_block bb)
4580 if (bb->index < NUM_FIXED_BLOCKS)
4581 return false;
4583 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4586 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4587 basic_block
4588 fallthru_bb_of_jump (const rtx_insn *jump)
4590 if (!JUMP_P (jump))
4591 return NULL;
4593 if (!any_condjump_p (jump))
4594 return NULL;
4596 /* A basic block that ends with a conditional jump may still have one successor
4597 (and be followed by a barrier), we are not interested. */
4598 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4599 return NULL;
4601 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4604 /* Remove all notes from BB. */
4605 static void
4606 init_bb (basic_block bb)
4608 remove_notes (bb_note (bb), BB_END (bb));
4609 BB_NOTE_LIST (bb) = note_list;
4612 void
4613 sel_init_bbs (bb_vec_t bbs)
4615 const struct sched_scan_info_def ssi =
4617 extend_bb_info, /* extend_bb */
4618 init_bb, /* init_bb */
4619 NULL, /* extend_insn */
4620 NULL /* init_insn */
4623 sched_scan (&ssi, bbs);
4626 /* Restore notes for the whole region. */
4627 static void
4628 sel_restore_notes (void)
4630 int bb;
4631 insn_t insn;
4633 for (bb = 0; bb < current_nr_blocks; bb++)
4635 basic_block first, last;
4637 first = EBB_FIRST_BB (bb);
4638 last = EBB_LAST_BB (bb)->next_bb;
4642 note_list = BB_NOTE_LIST (first);
4643 restore_other_notes (NULL, first);
4644 BB_NOTE_LIST (first) = NULL;
4646 FOR_BB_INSNS (first, insn)
4647 if (NONDEBUG_INSN_P (insn))
4648 reemit_notes (insn);
4650 first = first->next_bb;
4652 while (first != last);
4656 /* Free per-bb data structures. */
4657 void
4658 sel_finish_bbs (void)
4660 sel_restore_notes ();
4662 /* Remove current loop preheader from this loop. */
4663 if (current_loop_nest)
4664 sel_remove_loop_preheader ();
4666 finish_region_bb_info ();
4669 /* Return true if INSN has a single successor of type FLAGS. */
4670 bool
4671 sel_insn_has_single_succ_p (insn_t insn, int flags)
4673 insn_t succ;
4674 succ_iterator si;
4675 bool first_p = true;
4677 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4679 if (first_p)
4680 first_p = false;
4681 else
4682 return false;
4685 return true;
4688 /* Allocate successor's info. */
4689 static struct succs_info *
4690 alloc_succs_info (void)
4692 if (succs_info_pool.top == succs_info_pool.max_top)
4694 int i;
4696 if (++succs_info_pool.max_top >= succs_info_pool.size)
4697 gcc_unreachable ();
4699 i = ++succs_info_pool.top;
4700 succs_info_pool.stack[i].succs_ok.create (10);
4701 succs_info_pool.stack[i].succs_other.create (10);
4702 succs_info_pool.stack[i].probs_ok.create (10);
4704 else
4705 succs_info_pool.top++;
4707 return &succs_info_pool.stack[succs_info_pool.top];
4710 /* Free successor's info. */
4711 void
4712 free_succs_info (struct succs_info * sinfo)
4714 gcc_assert (succs_info_pool.top >= 0
4715 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4716 succs_info_pool.top--;
4718 /* Clear stale info. */
4719 sinfo->succs_ok.block_remove (0, sinfo->succs_ok.length ());
4720 sinfo->succs_other.block_remove (0, sinfo->succs_other.length ());
4721 sinfo->probs_ok.block_remove (0, sinfo->probs_ok.length ());
4722 sinfo->all_prob = 0;
4723 sinfo->succs_ok_n = 0;
4724 sinfo->all_succs_n = 0;
4727 /* Compute successor info for INSN. FLAGS are the flags passed
4728 to the FOR_EACH_SUCC_1 iterator. */
4729 struct succs_info *
4730 compute_succs_info (insn_t insn, short flags)
4732 succ_iterator si;
4733 insn_t succ;
4734 struct succs_info *sinfo = alloc_succs_info ();
4736 /* Traverse *all* successors and decide what to do with each. */
4737 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4739 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4740 perform code motion through inner loops. */
4741 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4743 if (current_flags & flags)
4745 sinfo->succs_ok.safe_push (succ);
4746 sinfo->probs_ok.safe_push (
4747 /* FIXME: Improve calculation when skipping
4748 inner loop to exits. */
4749 si.bb_end ? si.e1->probability : REG_BR_PROB_BASE);
4750 sinfo->succs_ok_n++;
4752 else
4753 sinfo->succs_other.safe_push (succ);
4755 /* Compute all_prob. */
4756 if (!si.bb_end)
4757 sinfo->all_prob = REG_BR_PROB_BASE;
4758 else
4759 sinfo->all_prob += si.e1->probability;
4761 sinfo->all_succs_n++;
4764 return sinfo;
4767 /* Return the predecessors of BB in PREDS and their number in N.
4768 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4769 static void
4770 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4772 edge e;
4773 edge_iterator ei;
4775 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4777 FOR_EACH_EDGE (e, ei, bb->preds)
4779 basic_block pred_bb = e->src;
4780 insn_t bb_end = BB_END (pred_bb);
4782 if (!in_current_region_p (pred_bb))
4784 gcc_assert (flag_sel_sched_pipelining_outer_loops
4785 && current_loop_nest);
4786 continue;
4789 if (sel_bb_empty_p (pred_bb))
4790 cfg_preds_1 (pred_bb, preds, n, size);
4791 else
4793 if (*n == *size)
4794 *preds = XRESIZEVEC (insn_t, *preds,
4795 (*size = 2 * *size + 1));
4796 (*preds)[(*n)++] = bb_end;
4800 gcc_assert (*n != 0
4801 || (flag_sel_sched_pipelining_outer_loops
4802 && current_loop_nest));
4805 /* Find all predecessors of BB and record them in PREDS and their number
4806 in N. Empty blocks are skipped, and only normal (forward in-region)
4807 edges are processed. */
4808 static void
4809 cfg_preds (basic_block bb, insn_t **preds, int *n)
4811 int size = 0;
4813 *preds = NULL;
4814 *n = 0;
4815 cfg_preds_1 (bb, preds, n, &size);
4818 /* Returns true if we are moving INSN through join point. */
4819 bool
4820 sel_num_cfg_preds_gt_1 (insn_t insn)
4822 basic_block bb;
4824 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4825 return false;
4827 bb = BLOCK_FOR_INSN (insn);
4829 while (1)
4831 if (EDGE_COUNT (bb->preds) > 1)
4832 return true;
4834 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4835 bb = EDGE_PRED (bb, 0)->src;
4837 if (!sel_bb_empty_p (bb))
4838 break;
4841 return false;
4844 /* Returns true when BB should be the end of an ebb. Adapted from the
4845 code in sched-ebb.c. */
4846 bool
4847 bb_ends_ebb_p (basic_block bb)
4849 basic_block next_bb = bb_next_bb (bb);
4850 edge e;
4852 if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4853 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4854 || (LABEL_P (BB_HEAD (next_bb))
4855 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4856 Work around that. */
4857 && !single_pred_p (next_bb)))
4858 return true;
4860 if (!in_current_region_p (next_bb))
4861 return true;
4863 e = find_fallthru_edge (bb->succs);
4864 if (e)
4866 gcc_assert (e->dest == next_bb);
4868 return false;
4871 return true;
4874 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4875 successor of INSN. */
4876 bool
4877 in_same_ebb_p (insn_t insn, insn_t succ)
4879 basic_block ptr = BLOCK_FOR_INSN (insn);
4881 for (;;)
4883 if (ptr == BLOCK_FOR_INSN (succ))
4884 return true;
4886 if (bb_ends_ebb_p (ptr))
4887 return false;
4889 ptr = bb_next_bb (ptr);
4892 gcc_unreachable ();
4893 return false;
4896 /* Recomputes the reverse topological order for the function and
4897 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4898 modified appropriately. */
4899 static void
4900 recompute_rev_top_order (void)
4902 int *postorder;
4903 int n_blocks, i;
4905 if (!rev_top_order_index
4906 || rev_top_order_index_len < last_basic_block_for_fn (cfun))
4908 rev_top_order_index_len = last_basic_block_for_fn (cfun);
4909 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4910 rev_top_order_index_len);
4913 postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
4915 n_blocks = post_order_compute (postorder, true, false);
4916 gcc_assert (n_basic_blocks_for_fn (cfun) == n_blocks);
4918 /* Build reverse function: for each basic block with BB->INDEX == K
4919 rev_top_order_index[K] is it's reverse topological sort number. */
4920 for (i = 0; i < n_blocks; i++)
4922 gcc_assert (postorder[i] < rev_top_order_index_len);
4923 rev_top_order_index[postorder[i]] = i;
4926 free (postorder);
4929 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4930 void
4931 clear_outdated_rtx_info (basic_block bb)
4933 rtx_insn *insn;
4935 FOR_BB_INSNS (bb, insn)
4936 if (INSN_P (insn))
4938 SCHED_GROUP_P (insn) = 0;
4939 INSN_AFTER_STALL_P (insn) = 0;
4940 INSN_SCHED_TIMES (insn) = 0;
4941 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4943 /* We cannot use the changed caches, as previously we could ignore
4944 the LHS dependence due to enabled renaming and transform
4945 the expression, and currently we'll be unable to do this. */
4946 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4950 /* Add BB_NOTE to the pool of available basic block notes. */
4951 static void
4952 return_bb_to_pool (basic_block bb)
4954 rtx_note *note = bb_note (bb);
4956 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4957 && bb->aux == NULL);
4959 /* It turns out that current cfg infrastructure does not support
4960 reuse of basic blocks. Don't bother for now. */
4961 /*bb_note_pool.safe_push (note);*/
4964 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4965 static rtx_note *
4966 get_bb_note_from_pool (void)
4968 if (bb_note_pool.is_empty ())
4969 return NULL;
4970 else
4972 rtx_note *note = bb_note_pool.pop ();
4974 SET_PREV_INSN (note) = NULL_RTX;
4975 SET_NEXT_INSN (note) = NULL_RTX;
4977 return note;
4981 /* Free bb_note_pool. */
4982 void
4983 free_bb_note_pool (void)
4985 bb_note_pool.release ();
4988 /* Setup scheduler pool and successor structure. */
4989 void
4990 alloc_sched_pools (void)
4992 int succs_size;
4994 succs_size = MAX_WS + 1;
4995 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
4996 succs_info_pool.size = succs_size;
4997 succs_info_pool.top = -1;
4998 succs_info_pool.max_top = -1;
5001 /* Free the pools. */
5002 void
5003 free_sched_pools (void)
5005 int i;
5007 sched_lists_pool.release ();
5008 gcc_assert (succs_info_pool.top == -1);
5009 for (i = 0; i <= succs_info_pool.max_top; i++)
5011 succs_info_pool.stack[i].succs_ok.release ();
5012 succs_info_pool.stack[i].succs_other.release ();
5013 succs_info_pool.stack[i].probs_ok.release ();
5015 free (succs_info_pool.stack);
5019 /* Returns a position in RGN where BB can be inserted retaining
5020 topological order. */
5021 static int
5022 find_place_to_insert_bb (basic_block bb, int rgn)
5024 bool has_preds_outside_rgn = false;
5025 edge e;
5026 edge_iterator ei;
5028 /* Find whether we have preds outside the region. */
5029 FOR_EACH_EDGE (e, ei, bb->preds)
5030 if (!in_current_region_p (e->src))
5032 has_preds_outside_rgn = true;
5033 break;
5036 /* Recompute the top order -- needed when we have > 1 pred
5037 and in case we don't have preds outside. */
5038 if (flag_sel_sched_pipelining_outer_loops
5039 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5041 int i, bbi = bb->index, cur_bbi;
5043 recompute_rev_top_order ();
5044 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5046 cur_bbi = BB_TO_BLOCK (i);
5047 if (rev_top_order_index[bbi]
5048 < rev_top_order_index[cur_bbi])
5049 break;
5052 /* We skipped the right block, so we increase i. We accommodate
5053 it for increasing by step later, so we decrease i. */
5054 return (i + 1) - 1;
5056 else if (has_preds_outside_rgn)
5058 /* This is the case when we generate an extra empty block
5059 to serve as region head during pipelining. */
5060 e = EDGE_SUCC (bb, 0);
5061 gcc_assert (EDGE_COUNT (bb->succs) == 1
5062 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5063 && (BLOCK_TO_BB (e->dest->index) == 0));
5064 return -1;
5067 /* We don't have preds outside the region. We should have
5068 the only pred, because the multiple preds case comes from
5069 the pipelining of outer loops, and that is handled above.
5070 Just take the bbi of this single pred. */
5071 if (EDGE_COUNT (bb->succs) > 0)
5073 int pred_bbi;
5075 gcc_assert (EDGE_COUNT (bb->preds) == 1);
5077 pred_bbi = EDGE_PRED (bb, 0)->src->index;
5078 return BLOCK_TO_BB (pred_bbi);
5080 else
5081 /* BB has no successors. It is safe to put it in the end. */
5082 return current_nr_blocks - 1;
5085 /* Deletes an empty basic block freeing its data. */
5086 static void
5087 delete_and_free_basic_block (basic_block bb)
5089 gcc_assert (sel_bb_empty_p (bb));
5091 if (BB_LV_SET (bb))
5092 free_lv_set (bb);
5094 bitmap_clear_bit (blocks_to_reschedule, bb->index);
5096 /* Can't assert av_set properties because we use sel_aremove_bb
5097 when removing loop preheader from the region. At the point of
5098 removing the preheader we already have deallocated sel_region_bb_info. */
5099 gcc_assert (BB_LV_SET (bb) == NULL
5100 && !BB_LV_SET_VALID_P (bb)
5101 && BB_AV_LEVEL (bb) == 0
5102 && BB_AV_SET (bb) == NULL);
5104 delete_basic_block (bb);
5107 /* Add BB to the current region and update the region data. */
5108 static void
5109 add_block_to_current_region (basic_block bb)
5111 int i, pos, bbi = -2, rgn;
5113 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5114 bbi = find_place_to_insert_bb (bb, rgn);
5115 bbi += 1;
5116 pos = RGN_BLOCKS (rgn) + bbi;
5118 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5119 && ebb_head[bbi] == pos);
5121 /* Make a place for the new block. */
5122 extend_regions ();
5124 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5125 BLOCK_TO_BB (rgn_bb_table[i])++;
5127 memmove (rgn_bb_table + pos + 1,
5128 rgn_bb_table + pos,
5129 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5131 /* Initialize data for BB. */
5132 rgn_bb_table[pos] = bb->index;
5133 BLOCK_TO_BB (bb->index) = bbi;
5134 CONTAINING_RGN (bb->index) = rgn;
5136 RGN_NR_BLOCKS (rgn)++;
5138 for (i = rgn + 1; i <= nr_regions; i++)
5139 RGN_BLOCKS (i)++;
5142 /* Remove BB from the current region and update the region data. */
5143 static void
5144 remove_bb_from_region (basic_block bb)
5146 int i, pos, bbi = -2, rgn;
5148 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5149 bbi = BLOCK_TO_BB (bb->index);
5150 pos = RGN_BLOCKS (rgn) + bbi;
5152 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5153 && ebb_head[bbi] == pos);
5155 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5156 BLOCK_TO_BB (rgn_bb_table[i])--;
5158 memmove (rgn_bb_table + pos,
5159 rgn_bb_table + pos + 1,
5160 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5162 RGN_NR_BLOCKS (rgn)--;
5163 for (i = rgn + 1; i <= nr_regions; i++)
5164 RGN_BLOCKS (i)--;
5167 /* Add BB to the current region and update all data. If BB is NULL, add all
5168 blocks from last_added_blocks vector. */
5169 static void
5170 sel_add_bb (basic_block bb)
5172 /* Extend luids so that new notes will receive zero luids. */
5173 sched_extend_luids ();
5174 sched_init_bbs ();
5175 sel_init_bbs (last_added_blocks);
5177 /* When bb is passed explicitly, the vector should contain
5178 the only element that equals to bb; otherwise, the vector
5179 should not be NULL. */
5180 gcc_assert (last_added_blocks.exists ());
5182 if (bb != NULL)
5184 gcc_assert (last_added_blocks.length () == 1
5185 && last_added_blocks[0] == bb);
5186 add_block_to_current_region (bb);
5188 /* We associate creating/deleting data sets with the first insn
5189 appearing / disappearing in the bb. */
5190 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5191 create_initial_data_sets (bb);
5193 last_added_blocks.release ();
5195 else
5196 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5198 int i;
5199 basic_block temp_bb = NULL;
5201 for (i = 0;
5202 last_added_blocks.iterate (i, &bb); i++)
5204 add_block_to_current_region (bb);
5205 temp_bb = bb;
5208 /* We need to fetch at least one bb so we know the region
5209 to update. */
5210 gcc_assert (temp_bb != NULL);
5211 bb = temp_bb;
5213 last_added_blocks.release ();
5216 rgn_setup_region (CONTAINING_RGN (bb->index));
5219 /* Remove BB from the current region and update all data.
5220 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5221 static void
5222 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5224 unsigned idx = bb->index;
5226 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5228 remove_bb_from_region (bb);
5229 return_bb_to_pool (bb);
5230 bitmap_clear_bit (blocks_to_reschedule, idx);
5232 if (remove_from_cfg_p)
5234 basic_block succ = single_succ (bb);
5235 delete_and_free_basic_block (bb);
5236 set_immediate_dominator (CDI_DOMINATORS, succ,
5237 recompute_dominator (CDI_DOMINATORS, succ));
5240 rgn_setup_region (CONTAINING_RGN (idx));
5243 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5244 static void
5245 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5247 if (in_current_region_p (merge_bb))
5248 concat_note_lists (BB_NOTE_LIST (empty_bb),
5249 &BB_NOTE_LIST (merge_bb));
5250 BB_NOTE_LIST (empty_bb) = NULL;
5254 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5255 region, but keep it in CFG. */
5256 static void
5257 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5259 /* The block should contain just a note or a label.
5260 We try to check whether it is unused below. */
5261 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5262 || LABEL_P (BB_HEAD (empty_bb)));
5264 /* If basic block has predecessors or successors, redirect them. */
5265 if (remove_from_cfg_p
5266 && (EDGE_COUNT (empty_bb->preds) > 0
5267 || EDGE_COUNT (empty_bb->succs) > 0))
5269 basic_block pred;
5270 basic_block succ;
5272 /* We need to init PRED and SUCC before redirecting edges. */
5273 if (EDGE_COUNT (empty_bb->preds) > 0)
5275 edge e;
5277 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5279 e = EDGE_PRED (empty_bb, 0);
5280 gcc_assert (e->src == empty_bb->prev_bb
5281 && (e->flags & EDGE_FALLTHRU));
5283 pred = empty_bb->prev_bb;
5285 else
5286 pred = NULL;
5288 if (EDGE_COUNT (empty_bb->succs) > 0)
5290 /* We do not check fallthruness here as above, because
5291 after removing a jump the edge may actually be not fallthru. */
5292 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5293 succ = EDGE_SUCC (empty_bb, 0)->dest;
5295 else
5296 succ = NULL;
5298 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5300 edge e = EDGE_PRED (empty_bb, 0);
5302 if (e->flags & EDGE_FALLTHRU)
5303 redirect_edge_succ_nodup (e, succ);
5304 else
5305 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5308 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5310 edge e = EDGE_SUCC (empty_bb, 0);
5312 if (find_edge (pred, e->dest) == NULL)
5313 redirect_edge_pred (e, pred);
5317 /* Finish removing. */
5318 sel_remove_bb (empty_bb, remove_from_cfg_p);
5321 /* An implementation of create_basic_block hook, which additionally updates
5322 per-bb data structures. */
5323 static basic_block
5324 sel_create_basic_block (void *headp, void *endp, basic_block after)
5326 basic_block new_bb;
5327 rtx_note *new_bb_note;
5329 gcc_assert (flag_sel_sched_pipelining_outer_loops
5330 || !last_added_blocks.exists ());
5332 new_bb_note = get_bb_note_from_pool ();
5334 if (new_bb_note == NULL_RTX)
5335 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5336 else
5338 new_bb = create_basic_block_structure ((rtx_insn *) headp,
5339 (rtx_insn *) endp,
5340 new_bb_note, after);
5341 new_bb->aux = NULL;
5344 last_added_blocks.safe_push (new_bb);
5346 return new_bb;
5349 /* Implement sched_init_only_bb (). */
5350 static void
5351 sel_init_only_bb (basic_block bb, basic_block after)
5353 gcc_assert (after == NULL);
5355 extend_regions ();
5356 rgn_make_new_region_out_of_new_block (bb);
5359 /* Update the latch when we've splitted or merged it from FROM block to TO.
5360 This should be checked for all outer loops, too. */
5361 static void
5362 change_loops_latches (basic_block from, basic_block to)
5364 gcc_assert (from != to);
5366 if (current_loop_nest)
5368 struct loop *loop;
5370 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5371 if (considered_for_pipelining_p (loop) && loop->latch == from)
5373 gcc_assert (loop == current_loop_nest);
5374 loop->latch = to;
5375 gcc_assert (loop_latch_edge (loop));
5380 /* Splits BB on two basic blocks, adding it to the region and extending
5381 per-bb data structures. Returns the newly created bb. */
5382 static basic_block
5383 sel_split_block (basic_block bb, rtx after)
5385 basic_block new_bb;
5386 insn_t insn;
5388 new_bb = sched_split_block_1 (bb, after);
5389 sel_add_bb (new_bb);
5391 /* This should be called after sel_add_bb, because this uses
5392 CONTAINING_RGN for the new block, which is not yet initialized.
5393 FIXME: this function may be a no-op now. */
5394 change_loops_latches (bb, new_bb);
5396 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5397 FOR_BB_INSNS (new_bb, insn)
5398 if (INSN_P (insn))
5399 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5401 if (sel_bb_empty_p (bb))
5403 gcc_assert (!sel_bb_empty_p (new_bb));
5405 /* NEW_BB has data sets that need to be updated and BB holds
5406 data sets that should be removed. Exchange these data sets
5407 so that we won't lose BB's valid data sets. */
5408 exchange_data_sets (new_bb, bb);
5409 free_data_sets (bb);
5412 if (!sel_bb_empty_p (new_bb)
5413 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5414 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5416 return new_bb;
5419 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5420 Otherwise returns NULL. */
5421 static rtx_insn *
5422 check_for_new_jump (basic_block bb, int prev_max_uid)
5424 rtx_insn *end;
5426 end = sel_bb_end (bb);
5427 if (end && INSN_UID (end) >= prev_max_uid)
5428 return end;
5429 return NULL;
5432 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5433 New means having UID at least equal to PREV_MAX_UID. */
5434 static rtx_insn *
5435 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5437 rtx_insn *jump;
5439 /* Return immediately if no new insns were emitted. */
5440 if (get_max_uid () == prev_max_uid)
5441 return NULL;
5443 /* Now check both blocks for new jumps. It will ever be only one. */
5444 if ((jump = check_for_new_jump (from, prev_max_uid)))
5445 return jump;
5447 if (jump_bb != NULL
5448 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5449 return jump;
5450 return NULL;
5453 /* Splits E and adds the newly created basic block to the current region.
5454 Returns this basic block. */
5455 basic_block
5456 sel_split_edge (edge e)
5458 basic_block new_bb, src, other_bb = NULL;
5459 int prev_max_uid;
5460 rtx_insn *jump;
5462 src = e->src;
5463 prev_max_uid = get_max_uid ();
5464 new_bb = split_edge (e);
5466 if (flag_sel_sched_pipelining_outer_loops
5467 && current_loop_nest)
5469 int i;
5470 basic_block bb;
5472 /* Some of the basic blocks might not have been added to the loop.
5473 Add them here, until this is fixed in force_fallthru. */
5474 for (i = 0;
5475 last_added_blocks.iterate (i, &bb); i++)
5476 if (!bb->loop_father)
5478 add_bb_to_loop (bb, e->dest->loop_father);
5480 gcc_assert (!other_bb && (new_bb->index != bb->index));
5481 other_bb = bb;
5485 /* Add all last_added_blocks to the region. */
5486 sel_add_bb (NULL);
5488 jump = find_new_jump (src, new_bb, prev_max_uid);
5489 if (jump)
5490 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5492 /* Put the correct lv set on this block. */
5493 if (other_bb && !sel_bb_empty_p (other_bb))
5494 compute_live (sel_bb_head (other_bb));
5496 return new_bb;
5499 /* Implement sched_create_empty_bb (). */
5500 static basic_block
5501 sel_create_empty_bb (basic_block after)
5503 basic_block new_bb;
5505 new_bb = sched_create_empty_bb_1 (after);
5507 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5508 later. */
5509 gcc_assert (last_added_blocks.length () == 1
5510 && last_added_blocks[0] == new_bb);
5512 last_added_blocks.release ();
5513 return new_bb;
5516 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5517 will be splitted to insert a check. */
5518 basic_block
5519 sel_create_recovery_block (insn_t orig_insn)
5521 basic_block first_bb, second_bb, recovery_block;
5522 basic_block before_recovery = NULL;
5523 rtx_insn *jump;
5525 first_bb = BLOCK_FOR_INSN (orig_insn);
5526 if (sel_bb_end_p (orig_insn))
5528 /* Avoid introducing an empty block while splitting. */
5529 gcc_assert (single_succ_p (first_bb));
5530 second_bb = single_succ (first_bb);
5532 else
5533 second_bb = sched_split_block (first_bb, orig_insn);
5535 recovery_block = sched_create_recovery_block (&before_recovery);
5536 if (before_recovery)
5537 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR_FOR_FN (cfun));
5539 gcc_assert (sel_bb_empty_p (recovery_block));
5540 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5541 if (current_loops != NULL)
5542 add_bb_to_loop (recovery_block, first_bb->loop_father);
5544 sel_add_bb (recovery_block);
5546 jump = BB_END (recovery_block);
5547 gcc_assert (sel_bb_head (recovery_block) == jump);
5548 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5550 return recovery_block;
5553 /* Merge basic block B into basic block A. */
5554 static void
5555 sel_merge_blocks (basic_block a, basic_block b)
5557 gcc_assert (sel_bb_empty_p (b)
5558 && EDGE_COUNT (b->preds) == 1
5559 && EDGE_PRED (b, 0)->src == b->prev_bb);
5561 move_bb_info (b->prev_bb, b);
5562 remove_empty_bb (b, false);
5563 merge_blocks (a, b);
5564 change_loops_latches (b, a);
5567 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5568 data structures for possibly created bb and insns. */
5569 void
5570 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5572 basic_block jump_bb, src, orig_dest = e->dest;
5573 int prev_max_uid;
5574 rtx_insn *jump;
5575 int old_seqno = -1;
5577 /* This function is now used only for bookkeeping code creation, where
5578 we'll never get the single pred of orig_dest block and thus will not
5579 hit unreachable blocks when updating dominator info. */
5580 gcc_assert (!sel_bb_empty_p (e->src)
5581 && !single_pred_p (orig_dest));
5582 src = e->src;
5583 prev_max_uid = get_max_uid ();
5584 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5585 when the conditional jump being redirected may become unconditional. */
5586 if (any_condjump_p (BB_END (src))
5587 && INSN_SEQNO (BB_END (src)) >= 0)
5588 old_seqno = INSN_SEQNO (BB_END (src));
5590 jump_bb = redirect_edge_and_branch_force (e, to);
5591 if (jump_bb != NULL)
5592 sel_add_bb (jump_bb);
5594 /* This function could not be used to spoil the loop structure by now,
5595 thus we don't care to update anything. But check it to be sure. */
5596 if (current_loop_nest
5597 && pipelining_p)
5598 gcc_assert (loop_latch_edge (current_loop_nest));
5600 jump = find_new_jump (src, jump_bb, prev_max_uid);
5601 if (jump)
5602 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP,
5603 old_seqno);
5604 set_immediate_dominator (CDI_DOMINATORS, to,
5605 recompute_dominator (CDI_DOMINATORS, to));
5606 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5607 recompute_dominator (CDI_DOMINATORS, orig_dest));
5610 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5611 redirected edge are in reverse topological order. */
5612 bool
5613 sel_redirect_edge_and_branch (edge e, basic_block to)
5615 bool latch_edge_p;
5616 basic_block src, orig_dest = e->dest;
5617 int prev_max_uid;
5618 rtx_insn *jump;
5619 edge redirected;
5620 bool recompute_toporder_p = false;
5621 bool maybe_unreachable = single_pred_p (orig_dest);
5622 int old_seqno = -1;
5624 latch_edge_p = (pipelining_p
5625 && current_loop_nest
5626 && e == loop_latch_edge (current_loop_nest));
5628 src = e->src;
5629 prev_max_uid = get_max_uid ();
5631 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5632 when the conditional jump being redirected may become unconditional. */
5633 if (any_condjump_p (BB_END (src))
5634 && INSN_SEQNO (BB_END (src)) >= 0)
5635 old_seqno = INSN_SEQNO (BB_END (src));
5637 redirected = redirect_edge_and_branch (e, to);
5639 gcc_assert (redirected && !last_added_blocks.exists ());
5641 /* When we've redirected a latch edge, update the header. */
5642 if (latch_edge_p)
5644 current_loop_nest->header = to;
5645 gcc_assert (loop_latch_edge (current_loop_nest));
5648 /* In rare situations, the topological relation between the blocks connected
5649 by the redirected edge can change (see PR42245 for an example). Update
5650 block_to_bb/bb_to_block. */
5651 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5652 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5653 recompute_toporder_p = true;
5655 jump = find_new_jump (src, NULL, prev_max_uid);
5656 if (jump)
5657 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP, old_seqno);
5659 /* Only update dominator info when we don't have unreachable blocks.
5660 Otherwise we'll update in maybe_tidy_empty_bb. */
5661 if (!maybe_unreachable)
5663 set_immediate_dominator (CDI_DOMINATORS, to,
5664 recompute_dominator (CDI_DOMINATORS, to));
5665 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5666 recompute_dominator (CDI_DOMINATORS, orig_dest));
5668 return recompute_toporder_p;
5671 /* This variable holds the cfg hooks used by the selective scheduler. */
5672 static struct cfg_hooks sel_cfg_hooks;
5674 /* Register sel-sched cfg hooks. */
5675 void
5676 sel_register_cfg_hooks (void)
5678 sched_split_block = sel_split_block;
5680 orig_cfg_hooks = get_cfg_hooks ();
5681 sel_cfg_hooks = orig_cfg_hooks;
5683 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5685 set_cfg_hooks (sel_cfg_hooks);
5687 sched_init_only_bb = sel_init_only_bb;
5688 sched_split_block = sel_split_block;
5689 sched_create_empty_bb = sel_create_empty_bb;
5692 /* Unregister sel-sched cfg hooks. */
5693 void
5694 sel_unregister_cfg_hooks (void)
5696 sched_create_empty_bb = NULL;
5697 sched_split_block = NULL;
5698 sched_init_only_bb = NULL;
5700 set_cfg_hooks (orig_cfg_hooks);
5704 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5705 LABEL is where this jump should be directed. */
5706 rtx_insn *
5707 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5709 rtx_insn *insn_rtx;
5711 gcc_assert (!INSN_P (pattern));
5713 start_sequence ();
5715 if (label == NULL_RTX)
5716 insn_rtx = emit_insn (pattern);
5717 else if (DEBUG_INSN_P (label))
5718 insn_rtx = emit_debug_insn (pattern);
5719 else
5721 insn_rtx = emit_jump_insn (pattern);
5722 JUMP_LABEL (insn_rtx) = label;
5723 ++LABEL_NUSES (label);
5726 end_sequence ();
5728 sched_extend_luids ();
5729 sched_extend_target ();
5730 sched_deps_init (false);
5732 /* Initialize INSN_CODE now. */
5733 recog_memoized (insn_rtx);
5734 return insn_rtx;
5737 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5738 must not be clonable. */
5739 vinsn_t
5740 create_vinsn_from_insn_rtx (rtx_insn *insn_rtx, bool force_unique_p)
5742 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5744 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5745 return vinsn_create (insn_rtx, force_unique_p);
5748 /* Create a copy of INSN_RTX. */
5749 rtx_insn *
5750 create_copy_of_insn_rtx (rtx insn_rtx)
5752 rtx_insn *res;
5753 rtx link;
5755 if (DEBUG_INSN_P (insn_rtx))
5756 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5757 insn_rtx);
5759 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5761 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5762 NULL_RTX);
5764 /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5765 since mark_jump_label will make them. REG_LABEL_TARGETs are created
5766 there too, but are supposed to be sticky, so we copy them. */
5767 for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5768 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5769 && REG_NOTE_KIND (link) != REG_EQUAL
5770 && REG_NOTE_KIND (link) != REG_EQUIV)
5772 if (GET_CODE (link) == EXPR_LIST)
5773 add_reg_note (res, REG_NOTE_KIND (link),
5774 copy_insn_1 (XEXP (link, 0)));
5775 else
5776 add_reg_note (res, REG_NOTE_KIND (link), XEXP (link, 0));
5779 return res;
5782 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5783 void
5784 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5786 vinsn_detach (EXPR_VINSN (expr));
5788 EXPR_VINSN (expr) = new_vinsn;
5789 vinsn_attach (new_vinsn);
5792 /* Helpers for global init. */
5793 /* This structure is used to be able to call existing bundling mechanism
5794 and calculate insn priorities. */
5795 static struct haifa_sched_info sched_sel_haifa_sched_info =
5797 NULL, /* init_ready_list */
5798 NULL, /* can_schedule_ready_p */
5799 NULL, /* schedule_more_p */
5800 NULL, /* new_ready */
5801 NULL, /* rgn_rank */
5802 sel_print_insn, /* rgn_print_insn */
5803 contributes_to_priority,
5804 NULL, /* insn_finishes_block_p */
5806 NULL, NULL,
5807 NULL, NULL,
5808 0, 0,
5810 NULL, /* add_remove_insn */
5811 NULL, /* begin_schedule_ready */
5812 NULL, /* begin_move_insn */
5813 NULL, /* advance_target_bb */
5815 NULL,
5816 NULL,
5818 SEL_SCHED | NEW_BBS
5821 /* Setup special insns used in the scheduler. */
5822 void
5823 setup_nop_and_exit_insns (void)
5825 gcc_assert (nop_pattern == NULL_RTX
5826 && exit_insn == NULL_RTX);
5828 nop_pattern = constm1_rtx;
5830 start_sequence ();
5831 emit_insn (nop_pattern);
5832 exit_insn = get_insns ();
5833 end_sequence ();
5834 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR_FOR_FN (cfun));
5837 /* Free special insns used in the scheduler. */
5838 void
5839 free_nop_and_exit_insns (void)
5841 exit_insn = NULL;
5842 nop_pattern = NULL_RTX;
5845 /* Setup a special vinsn used in new insns initialization. */
5846 void
5847 setup_nop_vinsn (void)
5849 nop_vinsn = vinsn_create (exit_insn, false);
5850 vinsn_attach (nop_vinsn);
5853 /* Free a special vinsn used in new insns initialization. */
5854 void
5855 free_nop_vinsn (void)
5857 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5858 vinsn_detach (nop_vinsn);
5859 nop_vinsn = NULL;
5862 /* Call a set_sched_flags hook. */
5863 void
5864 sel_set_sched_flags (void)
5866 /* ??? This means that set_sched_flags were called, and we decided to
5867 support speculation. However, set_sched_flags also modifies flags
5868 on current_sched_info, doing this only at global init. And we
5869 sometimes change c_s_i later. So put the correct flags again. */
5870 if (spec_info && targetm.sched.set_sched_flags)
5871 targetm.sched.set_sched_flags (spec_info);
5874 /* Setup pointers to global sched info structures. */
5875 void
5876 sel_setup_sched_infos (void)
5878 rgn_setup_common_sched_info ();
5880 memcpy (&sel_common_sched_info, common_sched_info,
5881 sizeof (sel_common_sched_info));
5883 sel_common_sched_info.fix_recovery_cfg = NULL;
5884 sel_common_sched_info.add_block = NULL;
5885 sel_common_sched_info.estimate_number_of_insns
5886 = sel_estimate_number_of_insns;
5887 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5888 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5890 common_sched_info = &sel_common_sched_info;
5892 current_sched_info = &sched_sel_haifa_sched_info;
5893 current_sched_info->sched_max_insns_priority =
5894 get_rgn_sched_max_insns_priority ();
5896 sel_set_sched_flags ();
5900 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5901 *BB_ORD_INDEX after that is increased. */
5902 static void
5903 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5905 RGN_NR_BLOCKS (rgn) += 1;
5906 RGN_DONT_CALC_DEPS (rgn) = 0;
5907 RGN_HAS_REAL_EBB (rgn) = 0;
5908 CONTAINING_RGN (bb->index) = rgn;
5909 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5910 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5911 (*bb_ord_index)++;
5913 /* FIXME: it is true only when not scheduling ebbs. */
5914 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5917 /* Functions to support pipelining of outer loops. */
5919 /* Creates a new empty region and returns it's number. */
5920 static int
5921 sel_create_new_region (void)
5923 int new_rgn_number = nr_regions;
5925 RGN_NR_BLOCKS (new_rgn_number) = 0;
5927 /* FIXME: This will work only when EBBs are not created. */
5928 if (new_rgn_number != 0)
5929 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5930 RGN_NR_BLOCKS (new_rgn_number - 1);
5931 else
5932 RGN_BLOCKS (new_rgn_number) = 0;
5934 /* Set the blocks of the next region so the other functions may
5935 calculate the number of blocks in the region. */
5936 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5937 RGN_NR_BLOCKS (new_rgn_number);
5939 nr_regions++;
5941 return new_rgn_number;
5944 /* If X has a smaller topological sort number than Y, returns -1;
5945 if greater, returns 1. */
5946 static int
5947 bb_top_order_comparator (const void *x, const void *y)
5949 basic_block bb1 = *(const basic_block *) x;
5950 basic_block bb2 = *(const basic_block *) y;
5952 gcc_assert (bb1 == bb2
5953 || rev_top_order_index[bb1->index]
5954 != rev_top_order_index[bb2->index]);
5956 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5957 bbs with greater number should go earlier. */
5958 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5959 return -1;
5960 else
5961 return 1;
5964 /* Create a region for LOOP and return its number. If we don't want
5965 to pipeline LOOP, return -1. */
5966 static int
5967 make_region_from_loop (struct loop *loop)
5969 unsigned int i;
5970 int new_rgn_number = -1;
5971 struct loop *inner;
5973 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5974 int bb_ord_index = 0;
5975 basic_block *loop_blocks;
5976 basic_block preheader_block;
5978 if (loop->num_nodes
5979 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5980 return -1;
5982 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5983 for (inner = loop->inner; inner; inner = inner->inner)
5984 if (flow_bb_inside_loop_p (inner, loop->latch))
5985 return -1;
5987 loop->ninsns = num_loop_insns (loop);
5988 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5989 return -1;
5991 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5993 for (i = 0; i < loop->num_nodes; i++)
5994 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5996 free (loop_blocks);
5997 return -1;
6000 preheader_block = loop_preheader_edge (loop)->src;
6001 gcc_assert (preheader_block);
6002 gcc_assert (loop_blocks[0] == loop->header);
6004 new_rgn_number = sel_create_new_region ();
6006 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
6007 bitmap_set_bit (bbs_in_loop_rgns, preheader_block->index);
6009 for (i = 0; i < loop->num_nodes; i++)
6011 /* Add only those blocks that haven't been scheduled in the inner loop.
6012 The exception is the basic blocks with bookkeeping code - they should
6013 be added to the region (and they actually don't belong to the loop
6014 body, but to the region containing that loop body). */
6016 gcc_assert (new_rgn_number >= 0);
6018 if (! bitmap_bit_p (bbs_in_loop_rgns, loop_blocks[i]->index))
6020 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
6021 new_rgn_number);
6022 bitmap_set_bit (bbs_in_loop_rgns, loop_blocks[i]->index);
6026 free (loop_blocks);
6027 MARK_LOOP_FOR_PIPELINING (loop);
6029 return new_rgn_number;
6032 /* Create a new region from preheader blocks LOOP_BLOCKS. */
6033 void
6034 make_region_from_loop_preheader (vec<basic_block> *&loop_blocks)
6036 unsigned int i;
6037 int new_rgn_number = -1;
6038 basic_block bb;
6040 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6041 int bb_ord_index = 0;
6043 new_rgn_number = sel_create_new_region ();
6045 FOR_EACH_VEC_ELT (*loop_blocks, i, bb)
6047 gcc_assert (new_rgn_number >= 0);
6049 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6052 vec_free (loop_blocks);
6056 /* Create region(s) from loop nest LOOP, such that inner loops will be
6057 pipelined before outer loops. Returns true when a region for LOOP
6058 is created. */
6059 static bool
6060 make_regions_from_loop_nest (struct loop *loop)
6062 struct loop *cur_loop;
6063 int rgn_number;
6065 /* Traverse all inner nodes of the loop. */
6066 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
6067 if (! bitmap_bit_p (bbs_in_loop_rgns, cur_loop->header->index))
6068 return false;
6070 /* At this moment all regular inner loops should have been pipelined.
6071 Try to create a region from this loop. */
6072 rgn_number = make_region_from_loop (loop);
6074 if (rgn_number < 0)
6075 return false;
6077 loop_nests.safe_push (loop);
6078 return true;
6081 /* Initalize data structures needed. */
6082 void
6083 sel_init_pipelining (void)
6085 /* Collect loop information to be used in outer loops pipelining. */
6086 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6087 | LOOPS_HAVE_FALLTHRU_PREHEADERS
6088 | LOOPS_HAVE_RECORDED_EXITS
6089 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6090 current_loop_nest = NULL;
6092 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block_for_fn (cfun));
6093 bitmap_clear (bbs_in_loop_rgns);
6095 recompute_rev_top_order ();
6098 /* Returns a struct loop for region RGN. */
6099 loop_p
6100 get_loop_nest_for_rgn (unsigned int rgn)
6102 /* Regions created with extend_rgns don't have corresponding loop nests,
6103 because they don't represent loops. */
6104 if (rgn < loop_nests.length ())
6105 return loop_nests[rgn];
6106 else
6107 return NULL;
6110 /* True when LOOP was included into pipelining regions. */
6111 bool
6112 considered_for_pipelining_p (struct loop *loop)
6114 if (loop_depth (loop) == 0)
6115 return false;
6117 /* Now, the loop could be too large or irreducible. Check whether its
6118 region is in LOOP_NESTS.
6119 We determine the region number of LOOP as the region number of its
6120 latch. We can't use header here, because this header could be
6121 just removed preheader and it will give us the wrong region number.
6122 Latch can't be used because it could be in the inner loop too. */
6123 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
6125 int rgn = CONTAINING_RGN (loop->latch->index);
6127 gcc_assert ((unsigned) rgn < loop_nests.length ());
6128 return true;
6131 return false;
6134 /* Makes regions from the rest of the blocks, after loops are chosen
6135 for pipelining. */
6136 static void
6137 make_regions_from_the_rest (void)
6139 int cur_rgn_blocks;
6140 int *loop_hdr;
6141 int i;
6143 basic_block bb;
6144 edge e;
6145 edge_iterator ei;
6146 int *degree;
6148 /* Index in rgn_bb_table where to start allocating new regions. */
6149 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
6151 /* Make regions from all the rest basic blocks - those that don't belong to
6152 any loop or belong to irreducible loops. Prepare the data structures
6153 for extend_rgns. */
6155 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6156 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6157 loop. */
6158 loop_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
6159 degree = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6162 /* For each basic block that belongs to some loop assign the number
6163 of innermost loop it belongs to. */
6164 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
6165 loop_hdr[i] = -1;
6167 FOR_EACH_BB_FN (bb, cfun)
6169 if (bb->loop_father && bb->loop_father->num != 0
6170 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6171 loop_hdr[bb->index] = bb->loop_father->num;
6174 /* For each basic block degree is calculated as the number of incoming
6175 edges, that are going out of bbs that are not yet scheduled.
6176 The basic blocks that are scheduled have degree value of zero. */
6177 FOR_EACH_BB_FN (bb, cfun)
6179 degree[bb->index] = 0;
6181 if (!bitmap_bit_p (bbs_in_loop_rgns, bb->index))
6183 FOR_EACH_EDGE (e, ei, bb->preds)
6184 if (!bitmap_bit_p (bbs_in_loop_rgns, e->src->index))
6185 degree[bb->index]++;
6187 else
6188 degree[bb->index] = -1;
6191 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6193 /* Any block that did not end up in a region is placed into a region
6194 by itself. */
6195 FOR_EACH_BB_FN (bb, cfun)
6196 if (degree[bb->index] >= 0)
6198 rgn_bb_table[cur_rgn_blocks] = bb->index;
6199 RGN_NR_BLOCKS (nr_regions) = 1;
6200 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6201 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6202 RGN_HAS_REAL_EBB (nr_regions) = 0;
6203 CONTAINING_RGN (bb->index) = nr_regions++;
6204 BLOCK_TO_BB (bb->index) = 0;
6207 free (degree);
6208 free (loop_hdr);
6211 /* Free data structures used in pipelining of loops. */
6212 void sel_finish_pipelining (void)
6214 struct loop *loop;
6216 /* Release aux fields so we don't free them later by mistake. */
6217 FOR_EACH_LOOP (loop, 0)
6218 loop->aux = NULL;
6220 loop_optimizer_finalize ();
6222 loop_nests.release ();
6224 free (rev_top_order_index);
6225 rev_top_order_index = NULL;
6228 /* This function replaces the find_rgns when
6229 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6230 void
6231 sel_find_rgns (void)
6233 sel_init_pipelining ();
6234 extend_regions ();
6236 if (current_loops)
6238 loop_p loop;
6240 FOR_EACH_LOOP (loop, (flag_sel_sched_pipelining_outer_loops
6241 ? LI_FROM_INNERMOST
6242 : LI_ONLY_INNERMOST))
6243 make_regions_from_loop_nest (loop);
6246 /* Make regions from all the rest basic blocks and schedule them.
6247 These blocks include blocks that don't belong to any loop or belong
6248 to irreducible loops. */
6249 make_regions_from_the_rest ();
6251 /* We don't need bbs_in_loop_rgns anymore. */
6252 sbitmap_free (bbs_in_loop_rgns);
6253 bbs_in_loop_rgns = NULL;
6256 /* Add the preheader blocks from previous loop to current region taking
6257 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
6258 This function is only used with -fsel-sched-pipelining-outer-loops. */
6259 void
6260 sel_add_loop_preheaders (bb_vec_t *bbs)
6262 int i;
6263 basic_block bb;
6264 vec<basic_block> *preheader_blocks
6265 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6267 if (!preheader_blocks)
6268 return;
6270 for (i = 0; preheader_blocks->iterate (i, &bb); i++)
6272 bbs->safe_push (bb);
6273 last_added_blocks.safe_push (bb);
6274 sel_add_bb (bb);
6277 vec_free (preheader_blocks);
6280 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6281 Please note that the function should also work when pipelining_p is
6282 false, because it is used when deciding whether we should or should
6283 not reschedule pipelined code. */
6284 bool
6285 sel_is_loop_preheader_p (basic_block bb)
6287 if (current_loop_nest)
6289 struct loop *outer;
6291 if (preheader_removed)
6292 return false;
6294 /* Preheader is the first block in the region. */
6295 if (BLOCK_TO_BB (bb->index) == 0)
6296 return true;
6298 /* We used to find a preheader with the topological information.
6299 Check that the above code is equivalent to what we did before. */
6301 if (in_current_region_p (current_loop_nest->header))
6302 gcc_assert (!(BLOCK_TO_BB (bb->index)
6303 < BLOCK_TO_BB (current_loop_nest->header->index)));
6305 /* Support the situation when the latch block of outer loop
6306 could be from here. */
6307 for (outer = loop_outer (current_loop_nest);
6308 outer;
6309 outer = loop_outer (outer))
6310 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6311 gcc_unreachable ();
6314 return false;
6317 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6318 can be removed, making the corresponding edge fallthrough (assuming that
6319 all basic blocks between JUMP_BB and DEST_BB are empty). */
6320 static bool
6321 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6323 if (!onlyjump_p (BB_END (jump_bb))
6324 || tablejump_p (BB_END (jump_bb), NULL, NULL))
6325 return false;
6327 /* Several outgoing edges, abnormal edge or destination of jump is
6328 not DEST_BB. */
6329 if (EDGE_COUNT (jump_bb->succs) != 1
6330 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6331 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6332 return false;
6334 /* If not anything of the upper. */
6335 return true;
6338 /* Removes the loop preheader from the current region and saves it in
6339 PREHEADER_BLOCKS of the father loop, so they will be added later to
6340 region that represents an outer loop. */
6341 static void
6342 sel_remove_loop_preheader (void)
6344 int i, old_len;
6345 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6346 basic_block bb;
6347 bool all_empty_p = true;
6348 vec<basic_block> *preheader_blocks
6349 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6351 vec_check_alloc (preheader_blocks, 0);
6353 gcc_assert (current_loop_nest);
6354 old_len = preheader_blocks->length ();
6356 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6357 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6359 bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6361 /* If the basic block belongs to region, but doesn't belong to
6362 corresponding loop, then it should be a preheader. */
6363 if (sel_is_loop_preheader_p (bb))
6365 preheader_blocks->safe_push (bb);
6366 if (BB_END (bb) != bb_note (bb))
6367 all_empty_p = false;
6371 /* Remove these blocks only after iterating over the whole region. */
6372 for (i = preheader_blocks->length () - 1; i >= old_len; i--)
6374 bb = (*preheader_blocks)[i];
6375 sel_remove_bb (bb, false);
6378 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6380 if (!all_empty_p)
6381 /* Immediately create new region from preheader. */
6382 make_region_from_loop_preheader (preheader_blocks);
6383 else
6385 /* If all preheader blocks are empty - dont create new empty region.
6386 Instead, remove them completely. */
6387 FOR_EACH_VEC_ELT (*preheader_blocks, i, bb)
6389 edge e;
6390 edge_iterator ei;
6391 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6393 /* Redirect all incoming edges to next basic block. */
6394 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6396 if (! (e->flags & EDGE_FALLTHRU))
6397 redirect_edge_and_branch (e, bb->next_bb);
6398 else
6399 redirect_edge_succ (e, bb->next_bb);
6401 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6402 delete_and_free_basic_block (bb);
6404 /* Check if after deleting preheader there is a nonconditional
6405 jump in PREV_BB that leads to the next basic block NEXT_BB.
6406 If it is so - delete this jump and clear data sets of its
6407 basic block if it becomes empty. */
6408 if (next_bb->prev_bb == prev_bb
6409 && prev_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
6410 && bb_has_removable_jump_to_p (prev_bb, next_bb))
6412 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6413 if (BB_END (prev_bb) == bb_note (prev_bb))
6414 free_data_sets (prev_bb);
6417 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6418 recompute_dominator (CDI_DOMINATORS,
6419 next_bb));
6422 vec_free (preheader_blocks);
6424 else
6425 /* Store preheader within the father's loop structure. */
6426 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6427 preheader_blocks);
6430 #endif