2016-09-25 François Dumont <fdumont@gcc.gnu.org>
[official-gcc.git] / gcc / reload1.c
blobda53cfa5f95bce15057cdfbe998b2f85aba690ac
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "tm_p.h"
30 #include "optabs.h"
31 #include "regs.h"
32 #include "ira.h"
33 #include "recog.h"
35 #include "rtl-error.h"
36 #include "expr.h"
37 #include "addresses.h"
38 #include "cfgrtl.h"
39 #include "cfgbuild.h"
40 #include "reload.h"
41 #include "except.h"
42 #include "dumpfile.h"
43 #include "rtl-iter.h"
45 /* This file contains the reload pass of the compiler, which is
46 run after register allocation has been done. It checks that
47 each insn is valid (operands required to be in registers really
48 are in registers of the proper class) and fixes up invalid ones
49 by copying values temporarily into registers for the insns
50 that need them.
52 The results of register allocation are described by the vector
53 reg_renumber; the insns still contain pseudo regs, but reg_renumber
54 can be used to find which hard reg, if any, a pseudo reg is in.
56 The technique we always use is to free up a few hard regs that are
57 called ``reload regs'', and for each place where a pseudo reg
58 must be in a hard reg, copy it temporarily into one of the reload regs.
60 Reload regs are allocated locally for every instruction that needs
61 reloads. When there are pseudos which are allocated to a register that
62 has been chosen as a reload reg, such pseudos must be ``spilled''.
63 This means that they go to other hard regs, or to stack slots if no other
64 available hard regs can be found. Spilling can invalidate more
65 insns, requiring additional need for reloads, so we must keep checking
66 until the process stabilizes.
68 For machines with different classes of registers, we must keep track
69 of the register class needed for each reload, and make sure that
70 we allocate enough reload registers of each class.
72 The file reload.c contains the code that checks one insn for
73 validity and reports the reloads that it needs. This file
74 is in charge of scanning the entire rtl code, accumulating the
75 reload needs, spilling, assigning reload registers to use for
76 fixing up each insn, and generating the new insns to copy values
77 into the reload registers. */
79 struct target_reload default_target_reload;
80 #if SWITCHABLE_TARGET
81 struct target_reload *this_target_reload = &default_target_reload;
82 #endif
84 #define spill_indirect_levels \
85 (this_target_reload->x_spill_indirect_levels)
87 /* During reload_as_needed, element N contains a REG rtx for the hard reg
88 into which reg N has been reloaded (perhaps for a previous insn). */
89 static rtx *reg_last_reload_reg;
91 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
92 for an output reload that stores into reg N. */
93 static regset_head reg_has_output_reload;
95 /* Indicates which hard regs are reload-registers for an output reload
96 in the current insn. */
97 static HARD_REG_SET reg_is_output_reload;
99 /* Widest width in which each pseudo reg is referred to (via subreg). */
100 static unsigned int *reg_max_ref_width;
102 /* Vector to remember old contents of reg_renumber before spilling. */
103 static short *reg_old_renumber;
105 /* During reload_as_needed, element N contains the last pseudo regno reloaded
106 into hard register N. If that pseudo reg occupied more than one register,
107 reg_reloaded_contents points to that pseudo for each spill register in
108 use; all of these must remain set for an inheritance to occur. */
109 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
111 /* During reload_as_needed, element N contains the insn for which
112 hard register N was last used. Its contents are significant only
113 when reg_reloaded_valid is set for this register. */
114 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
116 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
117 static HARD_REG_SET reg_reloaded_valid;
118 /* Indicate if the register was dead at the end of the reload.
119 This is only valid if reg_reloaded_contents is set and valid. */
120 static HARD_REG_SET reg_reloaded_dead;
122 /* Indicate whether the register's current value is one that is not
123 safe to retain across a call, even for registers that are normally
124 call-saved. This is only meaningful for members of reg_reloaded_valid. */
125 static HARD_REG_SET reg_reloaded_call_part_clobbered;
127 /* Number of spill-regs so far; number of valid elements of spill_regs. */
128 static int n_spills;
130 /* In parallel with spill_regs, contains REG rtx's for those regs.
131 Holds the last rtx used for any given reg, or 0 if it has never
132 been used for spilling yet. This rtx is reused, provided it has
133 the proper mode. */
134 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
136 /* In parallel with spill_regs, contains nonzero for a spill reg
137 that was stored after the last time it was used.
138 The precise value is the insn generated to do the store. */
139 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
141 /* This is the register that was stored with spill_reg_store. This is a
142 copy of reload_out / reload_out_reg when the value was stored; if
143 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
144 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
146 /* This table is the inverse mapping of spill_regs:
147 indexed by hard reg number,
148 it contains the position of that reg in spill_regs,
149 or -1 for something that is not in spill_regs.
151 ?!? This is no longer accurate. */
152 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
154 /* This reg set indicates registers that can't be used as spill registers for
155 the currently processed insn. These are the hard registers which are live
156 during the insn, but not allocated to pseudos, as well as fixed
157 registers. */
158 static HARD_REG_SET bad_spill_regs;
160 /* These are the hard registers that can't be used as spill register for any
161 insn. This includes registers used for user variables and registers that
162 we can't eliminate. A register that appears in this set also can't be used
163 to retry register allocation. */
164 static HARD_REG_SET bad_spill_regs_global;
166 /* Describes order of use of registers for reloading
167 of spilled pseudo-registers. `n_spills' is the number of
168 elements that are actually valid; new ones are added at the end.
170 Both spill_regs and spill_reg_order are used on two occasions:
171 once during find_reload_regs, where they keep track of the spill registers
172 for a single insn, but also during reload_as_needed where they show all
173 the registers ever used by reload. For the latter case, the information
174 is calculated during finish_spills. */
175 static short spill_regs[FIRST_PSEUDO_REGISTER];
177 /* This vector of reg sets indicates, for each pseudo, which hard registers
178 may not be used for retrying global allocation because the register was
179 formerly spilled from one of them. If we allowed reallocating a pseudo to
180 a register that it was already allocated to, reload might not
181 terminate. */
182 static HARD_REG_SET *pseudo_previous_regs;
184 /* This vector of reg sets indicates, for each pseudo, which hard
185 registers may not be used for retrying global allocation because they
186 are used as spill registers during one of the insns in which the
187 pseudo is live. */
188 static HARD_REG_SET *pseudo_forbidden_regs;
190 /* All hard regs that have been used as spill registers for any insn are
191 marked in this set. */
192 static HARD_REG_SET used_spill_regs;
194 /* Index of last register assigned as a spill register. We allocate in
195 a round-robin fashion. */
196 static int last_spill_reg;
198 /* Record the stack slot for each spilled hard register. */
199 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
201 /* Width allocated so far for that stack slot. */
202 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
204 /* Record which pseudos needed to be spilled. */
205 static regset_head spilled_pseudos;
207 /* Record which pseudos changed their allocation in finish_spills. */
208 static regset_head changed_allocation_pseudos;
210 /* Used for communication between order_regs_for_reload and count_pseudo.
211 Used to avoid counting one pseudo twice. */
212 static regset_head pseudos_counted;
214 /* First uid used by insns created by reload in this function.
215 Used in find_equiv_reg. */
216 int reload_first_uid;
218 /* Flag set by local-alloc or global-alloc if anything is live in
219 a call-clobbered reg across calls. */
220 int caller_save_needed;
222 /* Set to 1 while reload_as_needed is operating.
223 Required by some machines to handle any generated moves differently. */
224 int reload_in_progress = 0;
226 /* This obstack is used for allocation of rtl during register elimination.
227 The allocated storage can be freed once find_reloads has processed the
228 insn. */
229 static struct obstack reload_obstack;
231 /* Points to the beginning of the reload_obstack. All insn_chain structures
232 are allocated first. */
233 static char *reload_startobj;
235 /* The point after all insn_chain structures. Used to quickly deallocate
236 memory allocated in copy_reloads during calculate_needs_all_insns. */
237 static char *reload_firstobj;
239 /* This points before all local rtl generated by register elimination.
240 Used to quickly free all memory after processing one insn. */
241 static char *reload_insn_firstobj;
243 /* List of insn_chain instructions, one for every insn that reload needs to
244 examine. */
245 struct insn_chain *reload_insn_chain;
247 /* TRUE if we potentially left dead insns in the insn stream and want to
248 run DCE immediately after reload, FALSE otherwise. */
249 static bool need_dce;
251 /* List of all insns needing reloads. */
252 static struct insn_chain *insns_need_reload;
254 /* This structure is used to record information about register eliminations.
255 Each array entry describes one possible way of eliminating a register
256 in favor of another. If there is more than one way of eliminating a
257 particular register, the most preferred should be specified first. */
259 struct elim_table
261 int from; /* Register number to be eliminated. */
262 int to; /* Register number used as replacement. */
263 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
264 int can_eliminate; /* Nonzero if this elimination can be done. */
265 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
266 target hook in previous scan over insns
267 made by reload. */
268 HOST_WIDE_INT offset; /* Current offset between the two regs. */
269 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
270 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
271 rtx from_rtx; /* REG rtx for the register to be eliminated.
272 We cannot simply compare the number since
273 we might then spuriously replace a hard
274 register corresponding to a pseudo
275 assigned to the reg to be eliminated. */
276 rtx to_rtx; /* REG rtx for the replacement. */
279 static struct elim_table *reg_eliminate = 0;
281 /* This is an intermediate structure to initialize the table. It has
282 exactly the members provided by ELIMINABLE_REGS. */
283 static const struct elim_table_1
285 const int from;
286 const int to;
287 } reg_eliminate_1[] =
289 ELIMINABLE_REGS;
291 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
293 /* Record the number of pending eliminations that have an offset not equal
294 to their initial offset. If nonzero, we use a new copy of each
295 replacement result in any insns encountered. */
296 int num_not_at_initial_offset;
298 /* Count the number of registers that we may be able to eliminate. */
299 static int num_eliminable;
300 /* And the number of registers that are equivalent to a constant that
301 can be eliminated to frame_pointer / arg_pointer + constant. */
302 static int num_eliminable_invariants;
304 /* For each label, we record the offset of each elimination. If we reach
305 a label by more than one path and an offset differs, we cannot do the
306 elimination. This information is indexed by the difference of the
307 number of the label and the first label number. We can't offset the
308 pointer itself as this can cause problems on machines with segmented
309 memory. The first table is an array of flags that records whether we
310 have yet encountered a label and the second table is an array of arrays,
311 one entry in the latter array for each elimination. */
313 static int first_label_num;
314 static char *offsets_known_at;
315 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
317 vec<reg_equivs_t, va_gc> *reg_equivs;
319 /* Stack of addresses where an rtx has been changed. We can undo the
320 changes by popping items off the stack and restoring the original
321 value at each location.
323 We use this simplistic undo capability rather than copy_rtx as copy_rtx
324 will not make a deep copy of a normally sharable rtx, such as
325 (const (plus (symbol_ref) (const_int))). If such an expression appears
326 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
327 rtx expression would be changed. See PR 42431. */
329 typedef rtx *rtx_p;
330 static vec<rtx_p> substitute_stack;
332 /* Number of labels in the current function. */
334 static int num_labels;
336 static void replace_pseudos_in (rtx *, machine_mode, rtx);
337 static void maybe_fix_stack_asms (void);
338 static void copy_reloads (struct insn_chain *);
339 static void calculate_needs_all_insns (int);
340 static int find_reg (struct insn_chain *, int);
341 static void find_reload_regs (struct insn_chain *);
342 static void select_reload_regs (void);
343 static void delete_caller_save_insns (void);
345 static void spill_failure (rtx_insn *, enum reg_class);
346 static void count_spilled_pseudo (int, int, int);
347 static void delete_dead_insn (rtx_insn *);
348 static void alter_reg (int, int, bool);
349 static void set_label_offsets (rtx, rtx_insn *, int);
350 static void check_eliminable_occurrences (rtx);
351 static void elimination_effects (rtx, machine_mode);
352 static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
353 static int eliminate_regs_in_insn (rtx_insn *, int);
354 static void update_eliminable_offsets (void);
355 static void mark_not_eliminable (rtx, const_rtx, void *);
356 static void set_initial_elim_offsets (void);
357 static bool verify_initial_elim_offsets (void);
358 static void set_initial_label_offsets (void);
359 static void set_offsets_for_label (rtx_insn *);
360 static void init_eliminable_invariants (rtx_insn *, bool);
361 static void init_elim_table (void);
362 static void free_reg_equiv (void);
363 static void update_eliminables (HARD_REG_SET *);
364 static bool update_eliminables_and_spill (void);
365 static void elimination_costs_in_insn (rtx_insn *);
366 static void spill_hard_reg (unsigned int, int);
367 static int finish_spills (int);
368 static void scan_paradoxical_subregs (rtx);
369 static void count_pseudo (int);
370 static void order_regs_for_reload (struct insn_chain *);
371 static void reload_as_needed (int);
372 static void forget_old_reloads_1 (rtx, const_rtx, void *);
373 static void forget_marked_reloads (regset);
374 static int reload_reg_class_lower (const void *, const void *);
375 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
376 machine_mode);
377 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
378 machine_mode);
379 static int reload_reg_free_p (unsigned int, int, enum reload_type);
380 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
381 rtx, rtx, int, int);
382 static int free_for_value_p (int, machine_mode, int, enum reload_type,
383 rtx, rtx, int, int);
384 static int allocate_reload_reg (struct insn_chain *, int, int);
385 static int conflicts_with_override (rtx);
386 static void failed_reload (rtx_insn *, int);
387 static int set_reload_reg (int, int);
388 static void choose_reload_regs_init (struct insn_chain *, rtx *);
389 static void choose_reload_regs (struct insn_chain *);
390 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
391 rtx, int);
392 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
393 int);
394 static void do_input_reload (struct insn_chain *, struct reload *, int);
395 static void do_output_reload (struct insn_chain *, struct reload *, int);
396 static void emit_reload_insns (struct insn_chain *);
397 static void delete_output_reload (rtx_insn *, int, int, rtx);
398 static void delete_address_reloads (rtx_insn *, rtx_insn *);
399 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
400 static void inc_for_reload (rtx, rtx, rtx, int);
401 static void add_auto_inc_notes (rtx_insn *, rtx);
402 static void substitute (rtx *, const_rtx, rtx);
403 static bool gen_reload_chain_without_interm_reg_p (int, int);
404 static int reloads_conflict (int, int);
405 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
406 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
408 /* Initialize the reload pass. This is called at the beginning of compilation
409 and may be called again if the target is reinitialized. */
411 void
412 init_reload (void)
414 int i;
416 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
417 Set spill_indirect_levels to the number of levels such addressing is
418 permitted, zero if it is not permitted at all. */
420 rtx tem
421 = gen_rtx_MEM (Pmode,
422 gen_rtx_PLUS (Pmode,
423 gen_rtx_REG (Pmode,
424 LAST_VIRTUAL_REGISTER + 1),
425 gen_int_mode (4, Pmode)));
426 spill_indirect_levels = 0;
428 while (memory_address_p (QImode, tem))
430 spill_indirect_levels++;
431 tem = gen_rtx_MEM (Pmode, tem);
434 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
436 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
437 indirect_symref_ok = memory_address_p (QImode, tem);
439 /* See if reg+reg is a valid (and offsettable) address. */
441 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
443 tem = gen_rtx_PLUS (Pmode,
444 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
445 gen_rtx_REG (Pmode, i));
447 /* This way, we make sure that reg+reg is an offsettable address. */
448 tem = plus_constant (Pmode, tem, 4);
450 if (memory_address_p (QImode, tem))
452 double_reg_address_ok = 1;
453 break;
457 /* Initialize obstack for our rtl allocation. */
458 if (reload_startobj == NULL)
460 gcc_obstack_init (&reload_obstack);
461 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
464 INIT_REG_SET (&spilled_pseudos);
465 INIT_REG_SET (&changed_allocation_pseudos);
466 INIT_REG_SET (&pseudos_counted);
469 /* List of insn chains that are currently unused. */
470 static struct insn_chain *unused_insn_chains = 0;
472 /* Allocate an empty insn_chain structure. */
473 struct insn_chain *
474 new_insn_chain (void)
476 struct insn_chain *c;
478 if (unused_insn_chains == 0)
480 c = XOBNEW (&reload_obstack, struct insn_chain);
481 INIT_REG_SET (&c->live_throughout);
482 INIT_REG_SET (&c->dead_or_set);
484 else
486 c = unused_insn_chains;
487 unused_insn_chains = c->next;
489 c->is_caller_save_insn = 0;
490 c->need_operand_change = 0;
491 c->need_reload = 0;
492 c->need_elim = 0;
493 return c;
496 /* Small utility function to set all regs in hard reg set TO which are
497 allocated to pseudos in regset FROM. */
499 void
500 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
502 unsigned int regno;
503 reg_set_iterator rsi;
505 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
507 int r = reg_renumber[regno];
509 if (r < 0)
511 /* reload_combine uses the information from DF_LIVE_IN,
512 which might still contain registers that have not
513 actually been allocated since they have an
514 equivalence. */
515 gcc_assert (ira_conflicts_p || reload_completed);
517 else
518 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
522 /* Replace all pseudos found in LOC with their corresponding
523 equivalences. */
525 static void
526 replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
528 rtx x = *loc;
529 enum rtx_code code;
530 const char *fmt;
531 int i, j;
533 if (! x)
534 return;
536 code = GET_CODE (x);
537 if (code == REG)
539 unsigned int regno = REGNO (x);
541 if (regno < FIRST_PSEUDO_REGISTER)
542 return;
544 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
545 if (x != *loc)
547 *loc = x;
548 replace_pseudos_in (loc, mem_mode, usage);
549 return;
552 if (reg_equiv_constant (regno))
553 *loc = reg_equiv_constant (regno);
554 else if (reg_equiv_invariant (regno))
555 *loc = reg_equiv_invariant (regno);
556 else if (reg_equiv_mem (regno))
557 *loc = reg_equiv_mem (regno);
558 else if (reg_equiv_address (regno))
559 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
560 else
562 gcc_assert (!REG_P (regno_reg_rtx[regno])
563 || REGNO (regno_reg_rtx[regno]) != regno);
564 *loc = regno_reg_rtx[regno];
567 return;
569 else if (code == MEM)
571 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
572 return;
575 /* Process each of our operands recursively. */
576 fmt = GET_RTX_FORMAT (code);
577 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
578 if (*fmt == 'e')
579 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
580 else if (*fmt == 'E')
581 for (j = 0; j < XVECLEN (x, i); j++)
582 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
585 /* Determine if the current function has an exception receiver block
586 that reaches the exit block via non-exceptional edges */
588 static bool
589 has_nonexceptional_receiver (void)
591 edge e;
592 edge_iterator ei;
593 basic_block *tos, *worklist, bb;
595 /* If we're not optimizing, then just err on the safe side. */
596 if (!optimize)
597 return true;
599 /* First determine which blocks can reach exit via normal paths. */
600 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
602 FOR_EACH_BB_FN (bb, cfun)
603 bb->flags &= ~BB_REACHABLE;
605 /* Place the exit block on our worklist. */
606 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
607 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
609 /* Iterate: find everything reachable from what we've already seen. */
610 while (tos != worklist)
612 bb = *--tos;
614 FOR_EACH_EDGE (e, ei, bb->preds)
615 if (!(e->flags & EDGE_ABNORMAL))
617 basic_block src = e->src;
619 if (!(src->flags & BB_REACHABLE))
621 src->flags |= BB_REACHABLE;
622 *tos++ = src;
626 free (worklist);
628 /* Now see if there's a reachable block with an exceptional incoming
629 edge. */
630 FOR_EACH_BB_FN (bb, cfun)
631 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
632 return true;
634 /* No exceptional block reached exit unexceptionally. */
635 return false;
638 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
639 zero elements) to MAX_REG_NUM elements.
641 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
642 void
643 grow_reg_equivs (void)
645 int old_size = vec_safe_length (reg_equivs);
646 int max_regno = max_reg_num ();
647 int i;
648 reg_equivs_t ze;
650 memset (&ze, 0, sizeof (reg_equivs_t));
651 vec_safe_reserve (reg_equivs, max_regno);
652 for (i = old_size; i < max_regno; i++)
653 reg_equivs->quick_insert (i, ze);
657 /* Global variables used by reload and its subroutines. */
659 /* The current basic block while in calculate_elim_costs_all_insns. */
660 static basic_block elim_bb;
662 /* Set during calculate_needs if an insn needs register elimination. */
663 static int something_needs_elimination;
664 /* Set during calculate_needs if an insn needs an operand changed. */
665 static int something_needs_operands_changed;
666 /* Set by alter_regs if we spilled a register to the stack. */
667 static bool something_was_spilled;
669 /* Nonzero means we couldn't get enough spill regs. */
670 static int failure;
672 /* Temporary array of pseudo-register number. */
673 static int *temp_pseudo_reg_arr;
675 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
676 If that insn didn't set the register (i.e., it copied the register to
677 memory), just delete that insn instead of the equivalencing insn plus
678 anything now dead. If we call delete_dead_insn on that insn, we may
679 delete the insn that actually sets the register if the register dies
680 there and that is incorrect. */
681 static void
682 remove_init_insns ()
684 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
686 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
688 rtx list;
689 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
691 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
693 /* If we already deleted the insn or if it may trap, we can't
694 delete it. The latter case shouldn't happen, but can
695 if an insn has a variable address, gets a REG_EH_REGION
696 note added to it, and then gets converted into a load
697 from a constant address. */
698 if (NOTE_P (equiv_insn)
699 || can_throw_internal (equiv_insn))
701 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
702 delete_dead_insn (equiv_insn);
703 else
704 SET_INSN_DELETED (equiv_insn);
710 /* Return true if remove_init_insns will delete INSN. */
711 static bool
712 will_delete_init_insn_p (rtx_insn *insn)
714 rtx set = single_set (insn);
715 if (!set || !REG_P (SET_DEST (set)))
716 return false;
717 unsigned regno = REGNO (SET_DEST (set));
719 if (can_throw_internal (insn))
720 return false;
722 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
723 return false;
725 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
727 rtx equiv_insn = XEXP (list, 0);
728 if (equiv_insn == insn)
729 return true;
731 return false;
734 /* Main entry point for the reload pass.
736 FIRST is the first insn of the function being compiled.
738 GLOBAL nonzero means we were called from global_alloc
739 and should attempt to reallocate any pseudoregs that we
740 displace from hard regs we will use for reloads.
741 If GLOBAL is zero, we do not have enough information to do that,
742 so any pseudo reg that is spilled must go to the stack.
744 Return value is TRUE if reload likely left dead insns in the
745 stream and a DCE pass should be run to elimiante them. Else the
746 return value is FALSE. */
748 bool
749 reload (rtx_insn *first, int global)
751 int i, n;
752 rtx_insn *insn;
753 struct elim_table *ep;
754 basic_block bb;
755 bool inserted;
757 /* Make sure even insns with volatile mem refs are recognizable. */
758 init_recog ();
760 failure = 0;
762 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
764 /* Make sure that the last insn in the chain
765 is not something that needs reloading. */
766 emit_note (NOTE_INSN_DELETED);
768 /* Enable find_equiv_reg to distinguish insns made by reload. */
769 reload_first_uid = get_max_uid ();
771 #ifdef SECONDARY_MEMORY_NEEDED
772 /* Initialize the secondary memory table. */
773 clear_secondary_mem ();
774 #endif
776 /* We don't have a stack slot for any spill reg yet. */
777 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
778 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
780 /* Initialize the save area information for caller-save, in case some
781 are needed. */
782 init_save_areas ();
784 /* Compute which hard registers are now in use
785 as homes for pseudo registers.
786 This is done here rather than (eg) in global_alloc
787 because this point is reached even if not optimizing. */
788 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
789 mark_home_live (i);
791 /* A function that has a nonlocal label that can reach the exit
792 block via non-exceptional paths must save all call-saved
793 registers. */
794 if (cfun->has_nonlocal_label
795 && has_nonexceptional_receiver ())
796 crtl->saves_all_registers = 1;
798 if (crtl->saves_all_registers)
799 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
800 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
801 df_set_regs_ever_live (i, true);
803 /* Find all the pseudo registers that didn't get hard regs
804 but do have known equivalent constants or memory slots.
805 These include parameters (known equivalent to parameter slots)
806 and cse'd or loop-moved constant memory addresses.
808 Record constant equivalents in reg_equiv_constant
809 so they will be substituted by find_reloads.
810 Record memory equivalents in reg_mem_equiv so they can
811 be substituted eventually by altering the REG-rtx's. */
813 grow_reg_equivs ();
814 reg_old_renumber = XCNEWVEC (short, max_regno);
815 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
816 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
817 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
819 CLEAR_HARD_REG_SET (bad_spill_regs_global);
821 init_eliminable_invariants (first, true);
822 init_elim_table ();
824 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
825 stack slots to the pseudos that lack hard regs or equivalents.
826 Do not touch virtual registers. */
828 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
829 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
830 temp_pseudo_reg_arr[n++] = i;
832 if (ira_conflicts_p)
833 /* Ask IRA to order pseudo-registers for better stack slot
834 sharing. */
835 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
837 for (i = 0; i < n; i++)
838 alter_reg (temp_pseudo_reg_arr[i], -1, false);
840 /* If we have some registers we think can be eliminated, scan all insns to
841 see if there is an insn that sets one of these registers to something
842 other than itself plus a constant. If so, the register cannot be
843 eliminated. Doing this scan here eliminates an extra pass through the
844 main reload loop in the most common case where register elimination
845 cannot be done. */
846 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
847 if (INSN_P (insn))
848 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
850 maybe_fix_stack_asms ();
852 insns_need_reload = 0;
853 something_needs_elimination = 0;
855 /* Initialize to -1, which means take the first spill register. */
856 last_spill_reg = -1;
858 /* Spill any hard regs that we know we can't eliminate. */
859 CLEAR_HARD_REG_SET (used_spill_regs);
860 /* There can be multiple ways to eliminate a register;
861 they should be listed adjacently.
862 Elimination for any register fails only if all possible ways fail. */
863 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
865 int from = ep->from;
866 int can_eliminate = 0;
869 can_eliminate |= ep->can_eliminate;
870 ep++;
872 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
873 if (! can_eliminate)
874 spill_hard_reg (from, 1);
877 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed)
878 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
880 finish_spills (global);
882 /* From now on, we may need to generate moves differently. We may also
883 allow modifications of insns which cause them to not be recognized.
884 Any such modifications will be cleaned up during reload itself. */
885 reload_in_progress = 1;
887 /* This loop scans the entire function each go-round
888 and repeats until one repetition spills no additional hard regs. */
889 for (;;)
891 int something_changed;
892 HOST_WIDE_INT starting_frame_size;
894 starting_frame_size = get_frame_size ();
895 something_was_spilled = false;
897 set_initial_elim_offsets ();
898 set_initial_label_offsets ();
900 /* For each pseudo register that has an equivalent location defined,
901 try to eliminate any eliminable registers (such as the frame pointer)
902 assuming initial offsets for the replacement register, which
903 is the normal case.
905 If the resulting location is directly addressable, substitute
906 the MEM we just got directly for the old REG.
908 If it is not addressable but is a constant or the sum of a hard reg
909 and constant, it is probably not addressable because the constant is
910 out of range, in that case record the address; we will generate
911 hairy code to compute the address in a register each time it is
912 needed. Similarly if it is a hard register, but one that is not
913 valid as an address register.
915 If the location is not addressable, but does not have one of the
916 above forms, assign a stack slot. We have to do this to avoid the
917 potential of producing lots of reloads if, e.g., a location involves
918 a pseudo that didn't get a hard register and has an equivalent memory
919 location that also involves a pseudo that didn't get a hard register.
921 Perhaps at some point we will improve reload_when_needed handling
922 so this problem goes away. But that's very hairy. */
924 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
925 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
927 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
928 NULL_RTX);
930 if (strict_memory_address_addr_space_p
931 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
932 MEM_ADDR_SPACE (x)))
933 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
934 else if (CONSTANT_P (XEXP (x, 0))
935 || (REG_P (XEXP (x, 0))
936 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
937 || (GET_CODE (XEXP (x, 0)) == PLUS
938 && REG_P (XEXP (XEXP (x, 0), 0))
939 && (REGNO (XEXP (XEXP (x, 0), 0))
940 < FIRST_PSEUDO_REGISTER)
941 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
942 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
943 else
945 /* Make a new stack slot. Then indicate that something
946 changed so we go back and recompute offsets for
947 eliminable registers because the allocation of memory
948 below might change some offset. reg_equiv_{mem,address}
949 will be set up for this pseudo on the next pass around
950 the loop. */
951 reg_equiv_memory_loc (i) = 0;
952 reg_equiv_init (i) = 0;
953 alter_reg (i, -1, true);
957 if (caller_save_needed)
958 setup_save_areas ();
960 if (starting_frame_size && crtl->stack_alignment_needed)
962 /* If we have a stack frame, we must align it now. The
963 stack size may be a part of the offset computation for
964 register elimination. So if this changes the stack size,
965 then repeat the elimination bookkeeping. We don't
966 realign when there is no stack, as that will cause a
967 stack frame when none is needed should
968 STARTING_FRAME_OFFSET not be already aligned to
969 STACK_BOUNDARY. */
970 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
972 /* If we allocated another stack slot, redo elimination bookkeeping. */
973 if (something_was_spilled || starting_frame_size != get_frame_size ())
975 if (update_eliminables_and_spill ())
976 finish_spills (0);
977 continue;
980 if (caller_save_needed)
982 save_call_clobbered_regs ();
983 /* That might have allocated new insn_chain structures. */
984 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
987 calculate_needs_all_insns (global);
989 if (! ira_conflicts_p)
990 /* Don't do it for IRA. We need this info because we don't
991 change live_throughout and dead_or_set for chains when IRA
992 is used. */
993 CLEAR_REG_SET (&spilled_pseudos);
995 something_changed = 0;
997 /* If we allocated any new memory locations, make another pass
998 since it might have changed elimination offsets. */
999 if (something_was_spilled || starting_frame_size != get_frame_size ())
1000 something_changed = 1;
1002 /* Even if the frame size remained the same, we might still have
1003 changed elimination offsets, e.g. if find_reloads called
1004 force_const_mem requiring the back end to allocate a constant
1005 pool base register that needs to be saved on the stack. */
1006 else if (!verify_initial_elim_offsets ())
1007 something_changed = 1;
1009 if (update_eliminables_and_spill ())
1011 finish_spills (0);
1012 something_changed = 1;
1014 else
1016 select_reload_regs ();
1017 if (failure)
1018 goto failed;
1019 if (insns_need_reload)
1020 something_changed |= finish_spills (global);
1023 if (! something_changed)
1024 break;
1026 if (caller_save_needed)
1027 delete_caller_save_insns ();
1029 obstack_free (&reload_obstack, reload_firstobj);
1032 /* If global-alloc was run, notify it of any register eliminations we have
1033 done. */
1034 if (global)
1035 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1036 if (ep->can_eliminate)
1037 mark_elimination (ep->from, ep->to);
1039 remove_init_insns ();
1041 /* Use the reload registers where necessary
1042 by generating move instructions to move the must-be-register
1043 values into or out of the reload registers. */
1045 if (insns_need_reload != 0 || something_needs_elimination
1046 || something_needs_operands_changed)
1048 HOST_WIDE_INT old_frame_size = get_frame_size ();
1050 reload_as_needed (global);
1052 gcc_assert (old_frame_size == get_frame_size ());
1054 gcc_assert (verify_initial_elim_offsets ());
1057 /* If we were able to eliminate the frame pointer, show that it is no
1058 longer live at the start of any basic block. If it ls live by
1059 virtue of being in a pseudo, that pseudo will be marked live
1060 and hence the frame pointer will be known to be live via that
1061 pseudo. */
1063 if (! frame_pointer_needed)
1064 FOR_EACH_BB_FN (bb, cfun)
1065 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1067 /* Come here (with failure set nonzero) if we can't get enough spill
1068 regs. */
1069 failed:
1071 CLEAR_REG_SET (&changed_allocation_pseudos);
1072 CLEAR_REG_SET (&spilled_pseudos);
1073 reload_in_progress = 0;
1075 /* Now eliminate all pseudo regs by modifying them into
1076 their equivalent memory references.
1077 The REG-rtx's for the pseudos are modified in place,
1078 so all insns that used to refer to them now refer to memory.
1080 For a reg that has a reg_equiv_address, all those insns
1081 were changed by reloading so that no insns refer to it any longer;
1082 but the DECL_RTL of a variable decl may refer to it,
1083 and if so this causes the debugging info to mention the variable. */
1085 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1087 rtx addr = 0;
1089 if (reg_equiv_mem (i))
1090 addr = XEXP (reg_equiv_mem (i), 0);
1092 if (reg_equiv_address (i))
1093 addr = reg_equiv_address (i);
1095 if (addr)
1097 if (reg_renumber[i] < 0)
1099 rtx reg = regno_reg_rtx[i];
1101 REG_USERVAR_P (reg) = 0;
1102 PUT_CODE (reg, MEM);
1103 XEXP (reg, 0) = addr;
1104 if (reg_equiv_memory_loc (i))
1105 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1106 else
1107 MEM_ATTRS (reg) = 0;
1108 MEM_NOTRAP_P (reg) = 1;
1110 else if (reg_equiv_mem (i))
1111 XEXP (reg_equiv_mem (i), 0) = addr;
1114 /* We don't want complex addressing modes in debug insns
1115 if simpler ones will do, so delegitimize equivalences
1116 in debug insns. */
1117 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1119 rtx reg = regno_reg_rtx[i];
1120 rtx equiv = 0;
1121 df_ref use, next;
1123 if (reg_equiv_constant (i))
1124 equiv = reg_equiv_constant (i);
1125 else if (reg_equiv_invariant (i))
1126 equiv = reg_equiv_invariant (i);
1127 else if (reg && MEM_P (reg))
1128 equiv = targetm.delegitimize_address (reg);
1129 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1130 equiv = reg;
1132 if (equiv == reg)
1133 continue;
1135 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1137 insn = DF_REF_INSN (use);
1139 /* Make sure the next ref is for a different instruction,
1140 so that we're not affected by the rescan. */
1141 next = DF_REF_NEXT_REG (use);
1142 while (next && DF_REF_INSN (next) == insn)
1143 next = DF_REF_NEXT_REG (next);
1145 if (DEBUG_INSN_P (insn))
1147 if (!equiv)
1149 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1150 df_insn_rescan_debug_internal (insn);
1152 else
1153 INSN_VAR_LOCATION_LOC (insn)
1154 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1155 reg, equiv);
1161 /* We must set reload_completed now since the cleanup_subreg_operands call
1162 below will re-recognize each insn and reload may have generated insns
1163 which are only valid during and after reload. */
1164 reload_completed = 1;
1166 /* Make a pass over all the insns and delete all USEs which we inserted
1167 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1168 notes. Delete all CLOBBER insns, except those that refer to the return
1169 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1170 from misarranging variable-array code, and simplify (subreg (reg))
1171 operands. Strip and regenerate REG_INC notes that may have been moved
1172 around. */
1174 for (insn = first; insn; insn = NEXT_INSN (insn))
1175 if (INSN_P (insn))
1177 rtx *pnote;
1179 if (CALL_P (insn))
1180 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1181 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1183 if ((GET_CODE (PATTERN (insn)) == USE
1184 /* We mark with QImode USEs introduced by reload itself. */
1185 && (GET_MODE (insn) == QImode
1186 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1187 || (GET_CODE (PATTERN (insn)) == CLOBBER
1188 && (!MEM_P (XEXP (PATTERN (insn), 0))
1189 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1190 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1191 && XEXP (XEXP (PATTERN (insn), 0), 0)
1192 != stack_pointer_rtx))
1193 && (!REG_P (XEXP (PATTERN (insn), 0))
1194 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1196 delete_insn (insn);
1197 continue;
1200 /* Some CLOBBERs may survive until here and still reference unassigned
1201 pseudos with const equivalent, which may in turn cause ICE in later
1202 passes if the reference remains in place. */
1203 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1204 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1205 VOIDmode, PATTERN (insn));
1207 /* Discard obvious no-ops, even without -O. This optimization
1208 is fast and doesn't interfere with debugging. */
1209 if (NONJUMP_INSN_P (insn)
1210 && GET_CODE (PATTERN (insn)) == SET
1211 && REG_P (SET_SRC (PATTERN (insn)))
1212 && REG_P (SET_DEST (PATTERN (insn)))
1213 && (REGNO (SET_SRC (PATTERN (insn)))
1214 == REGNO (SET_DEST (PATTERN (insn)))))
1216 delete_insn (insn);
1217 continue;
1220 pnote = &REG_NOTES (insn);
1221 while (*pnote != 0)
1223 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1224 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1225 || REG_NOTE_KIND (*pnote) == REG_INC)
1226 *pnote = XEXP (*pnote, 1);
1227 else
1228 pnote = &XEXP (*pnote, 1);
1231 if (AUTO_INC_DEC)
1232 add_auto_inc_notes (insn, PATTERN (insn));
1234 /* Simplify (subreg (reg)) if it appears as an operand. */
1235 cleanup_subreg_operands (insn);
1237 /* Clean up invalid ASMs so that they don't confuse later passes.
1238 See PR 21299. */
1239 if (asm_noperands (PATTERN (insn)) >= 0)
1241 extract_insn (insn);
1242 if (!constrain_operands (1, get_enabled_alternatives (insn)))
1244 error_for_asm (insn,
1245 "%<asm%> operand has impossible constraints");
1246 delete_insn (insn);
1247 continue;
1252 free (temp_pseudo_reg_arr);
1254 /* Indicate that we no longer have known memory locations or constants. */
1255 free_reg_equiv ();
1257 free (reg_max_ref_width);
1258 free (reg_old_renumber);
1259 free (pseudo_previous_regs);
1260 free (pseudo_forbidden_regs);
1262 CLEAR_HARD_REG_SET (used_spill_regs);
1263 for (i = 0; i < n_spills; i++)
1264 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1266 /* Free all the insn_chain structures at once. */
1267 obstack_free (&reload_obstack, reload_startobj);
1268 unused_insn_chains = 0;
1270 inserted = fixup_abnormal_edges ();
1272 /* We've possibly turned single trapping insn into multiple ones. */
1273 if (cfun->can_throw_non_call_exceptions)
1275 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
1276 bitmap_ones (blocks);
1277 find_many_sub_basic_blocks (blocks);
1280 if (inserted)
1281 commit_edge_insertions ();
1283 /* Replacing pseudos with their memory equivalents might have
1284 created shared rtx. Subsequent passes would get confused
1285 by this, so unshare everything here. */
1286 unshare_all_rtl_again (first);
1288 #ifdef STACK_BOUNDARY
1289 /* init_emit has set the alignment of the hard frame pointer
1290 to STACK_BOUNDARY. It is very likely no longer valid if
1291 the hard frame pointer was used for register allocation. */
1292 if (!frame_pointer_needed)
1293 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1294 #endif
1296 substitute_stack.release ();
1298 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1300 reload_completed = !failure;
1302 return need_dce;
1305 /* Yet another special case. Unfortunately, reg-stack forces people to
1306 write incorrect clobbers in asm statements. These clobbers must not
1307 cause the register to appear in bad_spill_regs, otherwise we'll call
1308 fatal_insn later. We clear the corresponding regnos in the live
1309 register sets to avoid this.
1310 The whole thing is rather sick, I'm afraid. */
1312 static void
1313 maybe_fix_stack_asms (void)
1315 #ifdef STACK_REGS
1316 const char *constraints[MAX_RECOG_OPERANDS];
1317 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1318 struct insn_chain *chain;
1320 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1322 int i, noperands;
1323 HARD_REG_SET clobbered, allowed;
1324 rtx pat;
1326 if (! INSN_P (chain->insn)
1327 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1328 continue;
1329 pat = PATTERN (chain->insn);
1330 if (GET_CODE (pat) != PARALLEL)
1331 continue;
1333 CLEAR_HARD_REG_SET (clobbered);
1334 CLEAR_HARD_REG_SET (allowed);
1336 /* First, make a mask of all stack regs that are clobbered. */
1337 for (i = 0; i < XVECLEN (pat, 0); i++)
1339 rtx t = XVECEXP (pat, 0, i);
1340 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1341 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1344 /* Get the operand values and constraints out of the insn. */
1345 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1346 constraints, operand_mode, NULL);
1348 /* For every operand, see what registers are allowed. */
1349 for (i = 0; i < noperands; i++)
1351 const char *p = constraints[i];
1352 /* For every alternative, we compute the class of registers allowed
1353 for reloading in CLS, and merge its contents into the reg set
1354 ALLOWED. */
1355 int cls = (int) NO_REGS;
1357 for (;;)
1359 char c = *p;
1361 if (c == '\0' || c == ',' || c == '#')
1363 /* End of one alternative - mark the regs in the current
1364 class, and reset the class. */
1365 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1366 cls = NO_REGS;
1367 p++;
1368 if (c == '#')
1369 do {
1370 c = *p++;
1371 } while (c != '\0' && c != ',');
1372 if (c == '\0')
1373 break;
1374 continue;
1377 switch (c)
1379 case 'g':
1380 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1381 break;
1383 default:
1384 enum constraint_num cn = lookup_constraint (p);
1385 if (insn_extra_address_constraint (cn))
1386 cls = (int) reg_class_subunion[cls]
1387 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1388 ADDRESS, SCRATCH)];
1389 else
1390 cls = (int) reg_class_subunion[cls]
1391 [reg_class_for_constraint (cn)];
1392 break;
1394 p += CONSTRAINT_LEN (c, p);
1397 /* Those of the registers which are clobbered, but allowed by the
1398 constraints, must be usable as reload registers. So clear them
1399 out of the life information. */
1400 AND_HARD_REG_SET (allowed, clobbered);
1401 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1402 if (TEST_HARD_REG_BIT (allowed, i))
1404 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1405 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1409 #endif
1412 /* Copy the global variables n_reloads and rld into the corresponding elts
1413 of CHAIN. */
1414 static void
1415 copy_reloads (struct insn_chain *chain)
1417 chain->n_reloads = n_reloads;
1418 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1419 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1420 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1423 /* Walk the chain of insns, and determine for each whether it needs reloads
1424 and/or eliminations. Build the corresponding insns_need_reload list, and
1425 set something_needs_elimination as appropriate. */
1426 static void
1427 calculate_needs_all_insns (int global)
1429 struct insn_chain **pprev_reload = &insns_need_reload;
1430 struct insn_chain *chain, *next = 0;
1432 something_needs_elimination = 0;
1434 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1435 for (chain = reload_insn_chain; chain != 0; chain = next)
1437 rtx_insn *insn = chain->insn;
1439 next = chain->next;
1441 /* Clear out the shortcuts. */
1442 chain->n_reloads = 0;
1443 chain->need_elim = 0;
1444 chain->need_reload = 0;
1445 chain->need_operand_change = 0;
1447 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1448 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1449 what effects this has on the known offsets at labels. */
1451 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1452 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1453 set_label_offsets (insn, insn, 0);
1455 if (INSN_P (insn))
1457 rtx old_body = PATTERN (insn);
1458 int old_code = INSN_CODE (insn);
1459 rtx old_notes = REG_NOTES (insn);
1460 int did_elimination = 0;
1461 int operands_changed = 0;
1463 /* Skip insns that only set an equivalence. */
1464 if (will_delete_init_insn_p (insn))
1465 continue;
1467 /* If needed, eliminate any eliminable registers. */
1468 if (num_eliminable || num_eliminable_invariants)
1469 did_elimination = eliminate_regs_in_insn (insn, 0);
1471 /* Analyze the instruction. */
1472 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1473 global, spill_reg_order);
1475 /* If a no-op set needs more than one reload, this is likely
1476 to be something that needs input address reloads. We
1477 can't get rid of this cleanly later, and it is of no use
1478 anyway, so discard it now.
1479 We only do this when expensive_optimizations is enabled,
1480 since this complements reload inheritance / output
1481 reload deletion, and it can make debugging harder. */
1482 if (flag_expensive_optimizations && n_reloads > 1)
1484 rtx set = single_set (insn);
1485 if (set
1487 ((SET_SRC (set) == SET_DEST (set)
1488 && REG_P (SET_SRC (set))
1489 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1490 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1491 && reg_renumber[REGNO (SET_SRC (set))] < 0
1492 && reg_renumber[REGNO (SET_DEST (set))] < 0
1493 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1494 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1495 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1496 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1498 if (ira_conflicts_p)
1499 /* Inform IRA about the insn deletion. */
1500 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1501 REGNO (SET_SRC (set)));
1502 delete_insn (insn);
1503 /* Delete it from the reload chain. */
1504 if (chain->prev)
1505 chain->prev->next = next;
1506 else
1507 reload_insn_chain = next;
1508 if (next)
1509 next->prev = chain->prev;
1510 chain->next = unused_insn_chains;
1511 unused_insn_chains = chain;
1512 continue;
1515 if (num_eliminable)
1516 update_eliminable_offsets ();
1518 /* Remember for later shortcuts which insns had any reloads or
1519 register eliminations. */
1520 chain->need_elim = did_elimination;
1521 chain->need_reload = n_reloads > 0;
1522 chain->need_operand_change = operands_changed;
1524 /* Discard any register replacements done. */
1525 if (did_elimination)
1527 obstack_free (&reload_obstack, reload_insn_firstobj);
1528 PATTERN (insn) = old_body;
1529 INSN_CODE (insn) = old_code;
1530 REG_NOTES (insn) = old_notes;
1531 something_needs_elimination = 1;
1534 something_needs_operands_changed |= operands_changed;
1536 if (n_reloads != 0)
1538 copy_reloads (chain);
1539 *pprev_reload = chain;
1540 pprev_reload = &chain->next_need_reload;
1544 *pprev_reload = 0;
1547 /* This function is called from the register allocator to set up estimates
1548 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1549 an invariant. The structure is similar to calculate_needs_all_insns. */
1551 void
1552 calculate_elim_costs_all_insns (void)
1554 int *reg_equiv_init_cost;
1555 basic_block bb;
1556 int i;
1558 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1559 init_elim_table ();
1560 init_eliminable_invariants (get_insns (), false);
1562 set_initial_elim_offsets ();
1563 set_initial_label_offsets ();
1565 FOR_EACH_BB_FN (bb, cfun)
1567 rtx_insn *insn;
1568 elim_bb = bb;
1570 FOR_BB_INSNS (bb, insn)
1572 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1573 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1574 what effects this has on the known offsets at labels. */
1576 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1577 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1578 set_label_offsets (insn, insn, 0);
1580 if (INSN_P (insn))
1582 rtx set = single_set (insn);
1584 /* Skip insns that only set an equivalence. */
1585 if (set && REG_P (SET_DEST (set))
1586 && reg_renumber[REGNO (SET_DEST (set))] < 0
1587 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1588 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1590 unsigned regno = REGNO (SET_DEST (set));
1591 rtx_insn_list *init = reg_equiv_init (regno);
1592 if (init)
1594 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1595 false, true);
1596 machine_mode mode = GET_MODE (SET_DEST (set));
1597 int cost = set_src_cost (t, mode,
1598 optimize_bb_for_speed_p (bb));
1599 int freq = REG_FREQ_FROM_BB (bb);
1601 reg_equiv_init_cost[regno] = cost * freq;
1602 continue;
1605 /* If needed, eliminate any eliminable registers. */
1606 if (num_eliminable || num_eliminable_invariants)
1607 elimination_costs_in_insn (insn);
1609 if (num_eliminable)
1610 update_eliminable_offsets ();
1614 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1616 if (reg_equiv_invariant (i))
1618 if (reg_equiv_init (i))
1620 int cost = reg_equiv_init_cost[i];
1621 if (dump_file)
1622 fprintf (dump_file,
1623 "Reg %d has equivalence, initial gains %d\n", i, cost);
1624 if (cost != 0)
1625 ira_adjust_equiv_reg_cost (i, cost);
1627 else
1629 if (dump_file)
1630 fprintf (dump_file,
1631 "Reg %d had equivalence, but can't be eliminated\n",
1633 ira_adjust_equiv_reg_cost (i, 0);
1638 free (reg_equiv_init_cost);
1639 free (offsets_known_at);
1640 free (offsets_at);
1641 offsets_at = NULL;
1642 offsets_known_at = NULL;
1645 /* Comparison function for qsort to decide which of two reloads
1646 should be handled first. *P1 and *P2 are the reload numbers. */
1648 static int
1649 reload_reg_class_lower (const void *r1p, const void *r2p)
1651 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1652 int t;
1654 /* Consider required reloads before optional ones. */
1655 t = rld[r1].optional - rld[r2].optional;
1656 if (t != 0)
1657 return t;
1659 /* Count all solitary classes before non-solitary ones. */
1660 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1661 - (reg_class_size[(int) rld[r1].rclass] == 1));
1662 if (t != 0)
1663 return t;
1665 /* Aside from solitaires, consider all multi-reg groups first. */
1666 t = rld[r2].nregs - rld[r1].nregs;
1667 if (t != 0)
1668 return t;
1670 /* Consider reloads in order of increasing reg-class number. */
1671 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1672 if (t != 0)
1673 return t;
1675 /* If reloads are equally urgent, sort by reload number,
1676 so that the results of qsort leave nothing to chance. */
1677 return r1 - r2;
1680 /* The cost of spilling each hard reg. */
1681 static int spill_cost[FIRST_PSEUDO_REGISTER];
1683 /* When spilling multiple hard registers, we use SPILL_COST for the first
1684 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1685 only the first hard reg for a multi-reg pseudo. */
1686 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1688 /* Map of hard regno to pseudo regno currently occupying the hard
1689 reg. */
1690 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1692 /* Update the spill cost arrays, considering that pseudo REG is live. */
1694 static void
1695 count_pseudo (int reg)
1697 int freq = REG_FREQ (reg);
1698 int r = reg_renumber[reg];
1699 int nregs;
1701 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1702 if (ira_conflicts_p && r < 0)
1703 return;
1705 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1706 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1707 return;
1709 SET_REGNO_REG_SET (&pseudos_counted, reg);
1711 gcc_assert (r >= 0);
1713 spill_add_cost[r] += freq;
1714 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1715 while (nregs-- > 0)
1717 hard_regno_to_pseudo_regno[r + nregs] = reg;
1718 spill_cost[r + nregs] += freq;
1722 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1723 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1725 static void
1726 order_regs_for_reload (struct insn_chain *chain)
1728 unsigned i;
1729 HARD_REG_SET used_by_pseudos;
1730 HARD_REG_SET used_by_pseudos2;
1731 reg_set_iterator rsi;
1733 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1735 memset (spill_cost, 0, sizeof spill_cost);
1736 memset (spill_add_cost, 0, sizeof spill_add_cost);
1737 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1738 hard_regno_to_pseudo_regno[i] = -1;
1740 /* Count number of uses of each hard reg by pseudo regs allocated to it
1741 and then order them by decreasing use. First exclude hard registers
1742 that are live in or across this insn. */
1744 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1745 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1746 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1747 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1749 /* Now find out which pseudos are allocated to it, and update
1750 hard_reg_n_uses. */
1751 CLEAR_REG_SET (&pseudos_counted);
1753 EXECUTE_IF_SET_IN_REG_SET
1754 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1756 count_pseudo (i);
1758 EXECUTE_IF_SET_IN_REG_SET
1759 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1761 count_pseudo (i);
1763 CLEAR_REG_SET (&pseudos_counted);
1766 /* Vector of reload-numbers showing the order in which the reloads should
1767 be processed. */
1768 static short reload_order[MAX_RELOADS];
1770 /* This is used to keep track of the spill regs used in one insn. */
1771 static HARD_REG_SET used_spill_regs_local;
1773 /* We decided to spill hard register SPILLED, which has a size of
1774 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1775 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1776 update SPILL_COST/SPILL_ADD_COST. */
1778 static void
1779 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1781 int freq = REG_FREQ (reg);
1782 int r = reg_renumber[reg];
1783 int nregs;
1785 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1786 if (ira_conflicts_p && r < 0)
1787 return;
1789 gcc_assert (r >= 0);
1791 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1793 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1794 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1795 return;
1797 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1799 spill_add_cost[r] -= freq;
1800 while (nregs-- > 0)
1802 hard_regno_to_pseudo_regno[r + nregs] = -1;
1803 spill_cost[r + nregs] -= freq;
1807 /* Find reload register to use for reload number ORDER. */
1809 static int
1810 find_reg (struct insn_chain *chain, int order)
1812 int rnum = reload_order[order];
1813 struct reload *rl = rld + rnum;
1814 int best_cost = INT_MAX;
1815 int best_reg = -1;
1816 unsigned int i, j, n;
1817 int k;
1818 HARD_REG_SET not_usable;
1819 HARD_REG_SET used_by_other_reload;
1820 reg_set_iterator rsi;
1821 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1822 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1824 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1825 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1826 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1828 CLEAR_HARD_REG_SET (used_by_other_reload);
1829 for (k = 0; k < order; k++)
1831 int other = reload_order[k];
1833 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1834 for (j = 0; j < rld[other].nregs; j++)
1835 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1838 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1840 #ifdef REG_ALLOC_ORDER
1841 unsigned int regno = reg_alloc_order[i];
1842 #else
1843 unsigned int regno = i;
1844 #endif
1846 if (! TEST_HARD_REG_BIT (not_usable, regno)
1847 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1848 && HARD_REGNO_MODE_OK (regno, rl->mode))
1850 int this_cost = spill_cost[regno];
1851 int ok = 1;
1852 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1854 for (j = 1; j < this_nregs; j++)
1856 this_cost += spill_add_cost[regno + j];
1857 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1858 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1859 ok = 0;
1861 if (! ok)
1862 continue;
1864 if (ira_conflicts_p)
1866 /* Ask IRA to find a better pseudo-register for
1867 spilling. */
1868 for (n = j = 0; j < this_nregs; j++)
1870 int r = hard_regno_to_pseudo_regno[regno + j];
1872 if (r < 0)
1873 continue;
1874 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1875 regno_pseudo_regs[n++] = r;
1877 regno_pseudo_regs[n++] = -1;
1878 if (best_reg < 0
1879 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1880 best_regno_pseudo_regs,
1881 rl->in, rl->out,
1882 chain->insn))
1884 best_reg = regno;
1885 for (j = 0;; j++)
1887 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1888 if (regno_pseudo_regs[j] < 0)
1889 break;
1892 continue;
1895 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1896 this_cost--;
1897 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1898 this_cost--;
1899 if (this_cost < best_cost
1900 /* Among registers with equal cost, prefer caller-saved ones, or
1901 use REG_ALLOC_ORDER if it is defined. */
1902 || (this_cost == best_cost
1903 #ifdef REG_ALLOC_ORDER
1904 && (inv_reg_alloc_order[regno]
1905 < inv_reg_alloc_order[best_reg])
1906 #else
1907 && call_used_regs[regno]
1908 && ! call_used_regs[best_reg]
1909 #endif
1912 best_reg = regno;
1913 best_cost = this_cost;
1917 if (best_reg == -1)
1918 return 0;
1920 if (dump_file)
1921 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1923 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1924 rl->regno = best_reg;
1926 EXECUTE_IF_SET_IN_REG_SET
1927 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1929 count_spilled_pseudo (best_reg, rl->nregs, j);
1932 EXECUTE_IF_SET_IN_REG_SET
1933 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1935 count_spilled_pseudo (best_reg, rl->nregs, j);
1938 for (i = 0; i < rl->nregs; i++)
1940 gcc_assert (spill_cost[best_reg + i] == 0);
1941 gcc_assert (spill_add_cost[best_reg + i] == 0);
1942 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1943 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1945 return 1;
1948 /* Find more reload regs to satisfy the remaining need of an insn, which
1949 is given by CHAIN.
1950 Do it by ascending class number, since otherwise a reg
1951 might be spilled for a big class and might fail to count
1952 for a smaller class even though it belongs to that class. */
1954 static void
1955 find_reload_regs (struct insn_chain *chain)
1957 int i;
1959 /* In order to be certain of getting the registers we need,
1960 we must sort the reloads into order of increasing register class.
1961 Then our grabbing of reload registers will parallel the process
1962 that provided the reload registers. */
1963 for (i = 0; i < chain->n_reloads; i++)
1965 /* Show whether this reload already has a hard reg. */
1966 if (chain->rld[i].reg_rtx)
1968 int regno = REGNO (chain->rld[i].reg_rtx);
1969 chain->rld[i].regno = regno;
1970 chain->rld[i].nregs
1971 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
1973 else
1974 chain->rld[i].regno = -1;
1975 reload_order[i] = i;
1978 n_reloads = chain->n_reloads;
1979 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1981 CLEAR_HARD_REG_SET (used_spill_regs_local);
1983 if (dump_file)
1984 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1986 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1988 /* Compute the order of preference for hard registers to spill. */
1990 order_regs_for_reload (chain);
1992 for (i = 0; i < n_reloads; i++)
1994 int r = reload_order[i];
1996 /* Ignore reloads that got marked inoperative. */
1997 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1998 && ! rld[r].optional
1999 && rld[r].regno == -1)
2000 if (! find_reg (chain, i))
2002 if (dump_file)
2003 fprintf (dump_file, "reload failure for reload %d\n", r);
2004 spill_failure (chain->insn, rld[r].rclass);
2005 failure = 1;
2006 return;
2010 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2011 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2013 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2016 static void
2017 select_reload_regs (void)
2019 struct insn_chain *chain;
2021 /* Try to satisfy the needs for each insn. */
2022 for (chain = insns_need_reload; chain != 0;
2023 chain = chain->next_need_reload)
2024 find_reload_regs (chain);
2027 /* Delete all insns that were inserted by emit_caller_save_insns during
2028 this iteration. */
2029 static void
2030 delete_caller_save_insns (void)
2032 struct insn_chain *c = reload_insn_chain;
2034 while (c != 0)
2036 while (c != 0 && c->is_caller_save_insn)
2038 struct insn_chain *next = c->next;
2039 rtx_insn *insn = c->insn;
2041 if (c == reload_insn_chain)
2042 reload_insn_chain = next;
2043 delete_insn (insn);
2045 if (next)
2046 next->prev = c->prev;
2047 if (c->prev)
2048 c->prev->next = next;
2049 c->next = unused_insn_chains;
2050 unused_insn_chains = c;
2051 c = next;
2053 if (c != 0)
2054 c = c->next;
2058 /* Handle the failure to find a register to spill.
2059 INSN should be one of the insns which needed this particular spill reg. */
2061 static void
2062 spill_failure (rtx_insn *insn, enum reg_class rclass)
2064 if (asm_noperands (PATTERN (insn)) >= 0)
2065 error_for_asm (insn, "can%'t find a register in class %qs while "
2066 "reloading %<asm%>",
2067 reg_class_names[rclass]);
2068 else
2070 error ("unable to find a register to spill in class %qs",
2071 reg_class_names[rclass]);
2073 if (dump_file)
2075 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2076 debug_reload_to_stream (dump_file);
2078 fatal_insn ("this is the insn:", insn);
2082 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2083 data that is dead in INSN. */
2085 static void
2086 delete_dead_insn (rtx_insn *insn)
2088 rtx_insn *prev = prev_active_insn (insn);
2089 rtx prev_dest;
2091 /* If the previous insn sets a register that dies in our insn make
2092 a note that we want to run DCE immediately after reload.
2094 We used to delete the previous insn & recurse, but that's wrong for
2095 block local equivalences. Instead of trying to figure out the exact
2096 circumstances where we can delete the potentially dead insns, just
2097 let DCE do the job. */
2098 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2099 && GET_CODE (PATTERN (prev)) == SET
2100 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2101 && reg_mentioned_p (prev_dest, PATTERN (insn))
2102 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2103 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2104 need_dce = 1;
2106 SET_INSN_DELETED (insn);
2109 /* Modify the home of pseudo-reg I.
2110 The new home is present in reg_renumber[I].
2112 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2113 or it may be -1, meaning there is none or it is not relevant.
2114 This is used so that all pseudos spilled from a given hard reg
2115 can share one stack slot. */
2117 static void
2118 alter_reg (int i, int from_reg, bool dont_share_p)
2120 /* When outputting an inline function, this can happen
2121 for a reg that isn't actually used. */
2122 if (regno_reg_rtx[i] == 0)
2123 return;
2125 /* If the reg got changed to a MEM at rtl-generation time,
2126 ignore it. */
2127 if (!REG_P (regno_reg_rtx[i]))
2128 return;
2130 /* Modify the reg-rtx to contain the new hard reg
2131 number or else to contain its pseudo reg number. */
2132 SET_REGNO (regno_reg_rtx[i],
2133 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2135 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2136 allocate a stack slot for it. */
2138 if (reg_renumber[i] < 0
2139 && REG_N_REFS (i) > 0
2140 && reg_equiv_constant (i) == 0
2141 && (reg_equiv_invariant (i) == 0
2142 || reg_equiv_init (i) == 0)
2143 && reg_equiv_memory_loc (i) == 0)
2145 rtx x = NULL_RTX;
2146 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2147 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2148 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2149 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2150 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2151 int adjust = 0;
2153 something_was_spilled = true;
2155 if (ira_conflicts_p)
2157 /* Mark the spill for IRA. */
2158 SET_REGNO_REG_SET (&spilled_pseudos, i);
2159 if (!dont_share_p)
2160 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2163 if (x)
2166 /* Each pseudo reg has an inherent size which comes from its own mode,
2167 and a total size which provides room for paradoxical subregs
2168 which refer to the pseudo reg in wider modes.
2170 We can use a slot already allocated if it provides both
2171 enough inherent space and enough total space.
2172 Otherwise, we allocate a new slot, making sure that it has no less
2173 inherent space, and no less total space, then the previous slot. */
2174 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2176 rtx stack_slot;
2178 /* No known place to spill from => no slot to reuse. */
2179 x = assign_stack_local (mode, total_size,
2180 min_align > inherent_align
2181 || total_size > inherent_size ? -1 : 0);
2183 stack_slot = x;
2185 /* Cancel the big-endian correction done in assign_stack_local.
2186 Get the address of the beginning of the slot. This is so we
2187 can do a big-endian correction unconditionally below. */
2188 if (BYTES_BIG_ENDIAN)
2190 adjust = inherent_size - total_size;
2191 if (adjust)
2192 stack_slot
2193 = adjust_address_nv (x, mode_for_size (total_size
2194 * BITS_PER_UNIT,
2195 MODE_INT, 1),
2196 adjust);
2199 if (! dont_share_p && ira_conflicts_p)
2200 /* Inform IRA about allocation a new stack slot. */
2201 ira_mark_new_stack_slot (stack_slot, i, total_size);
2204 /* Reuse a stack slot if possible. */
2205 else if (spill_stack_slot[from_reg] != 0
2206 && spill_stack_slot_width[from_reg] >= total_size
2207 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2208 >= inherent_size)
2209 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2210 x = spill_stack_slot[from_reg];
2212 /* Allocate a bigger slot. */
2213 else
2215 /* Compute maximum size needed, both for inherent size
2216 and for total size. */
2217 rtx stack_slot;
2219 if (spill_stack_slot[from_reg])
2221 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2222 > inherent_size)
2223 mode = GET_MODE (spill_stack_slot[from_reg]);
2224 if (spill_stack_slot_width[from_reg] > total_size)
2225 total_size = spill_stack_slot_width[from_reg];
2226 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2227 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2230 /* Make a slot with that size. */
2231 x = assign_stack_local (mode, total_size,
2232 min_align > inherent_align
2233 || total_size > inherent_size ? -1 : 0);
2234 stack_slot = x;
2236 /* Cancel the big-endian correction done in assign_stack_local.
2237 Get the address of the beginning of the slot. This is so we
2238 can do a big-endian correction unconditionally below. */
2239 if (BYTES_BIG_ENDIAN)
2241 adjust = GET_MODE_SIZE (mode) - total_size;
2242 if (adjust)
2243 stack_slot
2244 = adjust_address_nv (x, mode_for_size (total_size
2245 * BITS_PER_UNIT,
2246 MODE_INT, 1),
2247 adjust);
2250 spill_stack_slot[from_reg] = stack_slot;
2251 spill_stack_slot_width[from_reg] = total_size;
2254 /* On a big endian machine, the "address" of the slot
2255 is the address of the low part that fits its inherent mode. */
2256 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2257 adjust += (total_size - inherent_size);
2259 /* If we have any adjustment to make, or if the stack slot is the
2260 wrong mode, make a new stack slot. */
2261 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2263 /* Set all of the memory attributes as appropriate for a spill. */
2264 set_mem_attrs_for_spill (x);
2266 /* Save the stack slot for later. */
2267 reg_equiv_memory_loc (i) = x;
2271 /* Mark the slots in regs_ever_live for the hard regs used by
2272 pseudo-reg number REGNO, accessed in MODE. */
2274 static void
2275 mark_home_live_1 (int regno, machine_mode mode)
2277 int i, lim;
2279 i = reg_renumber[regno];
2280 if (i < 0)
2281 return;
2282 lim = end_hard_regno (mode, i);
2283 while (i < lim)
2284 df_set_regs_ever_live (i++, true);
2287 /* Mark the slots in regs_ever_live for the hard regs
2288 used by pseudo-reg number REGNO. */
2290 void
2291 mark_home_live (int regno)
2293 if (reg_renumber[regno] >= 0)
2294 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2297 /* This function handles the tracking of elimination offsets around branches.
2299 X is a piece of RTL being scanned.
2301 INSN is the insn that it came from, if any.
2303 INITIAL_P is nonzero if we are to set the offset to be the initial
2304 offset and zero if we are setting the offset of the label to be the
2305 current offset. */
2307 static void
2308 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2310 enum rtx_code code = GET_CODE (x);
2311 rtx tem;
2312 unsigned int i;
2313 struct elim_table *p;
2315 switch (code)
2317 case LABEL_REF:
2318 if (LABEL_REF_NONLOCAL_P (x))
2319 return;
2321 x = LABEL_REF_LABEL (x);
2323 /* fall through */
2325 case CODE_LABEL:
2326 /* If we know nothing about this label, set the desired offsets. Note
2327 that this sets the offset at a label to be the offset before a label
2328 if we don't know anything about the label. This is not correct for
2329 the label after a BARRIER, but is the best guess we can make. If
2330 we guessed wrong, we will suppress an elimination that might have
2331 been possible had we been able to guess correctly. */
2333 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2335 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2336 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2337 = (initial_p ? reg_eliminate[i].initial_offset
2338 : reg_eliminate[i].offset);
2339 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2342 /* Otherwise, if this is the definition of a label and it is
2343 preceded by a BARRIER, set our offsets to the known offset of
2344 that label. */
2346 else if (x == insn
2347 && (tem = prev_nonnote_insn (insn)) != 0
2348 && BARRIER_P (tem))
2349 set_offsets_for_label (insn);
2350 else
2351 /* If neither of the above cases is true, compare each offset
2352 with those previously recorded and suppress any eliminations
2353 where the offsets disagree. */
2355 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2356 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2357 != (initial_p ? reg_eliminate[i].initial_offset
2358 : reg_eliminate[i].offset))
2359 reg_eliminate[i].can_eliminate = 0;
2361 return;
2363 case JUMP_TABLE_DATA:
2364 set_label_offsets (PATTERN (insn), insn, initial_p);
2365 return;
2367 case JUMP_INSN:
2368 set_label_offsets (PATTERN (insn), insn, initial_p);
2370 /* fall through */
2372 case INSN:
2373 case CALL_INSN:
2374 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2375 to indirectly and hence must have all eliminations at their
2376 initial offsets. */
2377 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2378 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2379 set_label_offsets (XEXP (tem, 0), insn, 1);
2380 return;
2382 case PARALLEL:
2383 case ADDR_VEC:
2384 case ADDR_DIFF_VEC:
2385 /* Each of the labels in the parallel or address vector must be
2386 at their initial offsets. We want the first field for PARALLEL
2387 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2389 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2390 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2391 insn, initial_p);
2392 return;
2394 case SET:
2395 /* We only care about setting PC. If the source is not RETURN,
2396 IF_THEN_ELSE, or a label, disable any eliminations not at
2397 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2398 isn't one of those possibilities. For branches to a label,
2399 call ourselves recursively.
2401 Note that this can disable elimination unnecessarily when we have
2402 a non-local goto since it will look like a non-constant jump to
2403 someplace in the current function. This isn't a significant
2404 problem since such jumps will normally be when all elimination
2405 pairs are back to their initial offsets. */
2407 if (SET_DEST (x) != pc_rtx)
2408 return;
2410 switch (GET_CODE (SET_SRC (x)))
2412 case PC:
2413 case RETURN:
2414 return;
2416 case LABEL_REF:
2417 set_label_offsets (SET_SRC (x), insn, initial_p);
2418 return;
2420 case IF_THEN_ELSE:
2421 tem = XEXP (SET_SRC (x), 1);
2422 if (GET_CODE (tem) == LABEL_REF)
2423 set_label_offsets (LABEL_REF_LABEL (tem), insn, initial_p);
2424 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2425 break;
2427 tem = XEXP (SET_SRC (x), 2);
2428 if (GET_CODE (tem) == LABEL_REF)
2429 set_label_offsets (LABEL_REF_LABEL (tem), insn, initial_p);
2430 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2431 break;
2432 return;
2434 default:
2435 break;
2438 /* If we reach here, all eliminations must be at their initial
2439 offset because we are doing a jump to a variable address. */
2440 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2441 if (p->offset != p->initial_offset)
2442 p->can_eliminate = 0;
2443 break;
2445 default:
2446 break;
2450 /* This function examines every reg that occurs in X and adjusts the
2451 costs for its elimination which are gathered by IRA. INSN is the
2452 insn in which X occurs. We do not recurse into MEM expressions. */
2454 static void
2455 note_reg_elim_costly (const_rtx x, rtx insn)
2457 subrtx_iterator::array_type array;
2458 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2460 const_rtx x = *iter;
2461 if (MEM_P (x))
2462 iter.skip_subrtxes ();
2463 else if (REG_P (x)
2464 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2465 && reg_equiv_init (REGNO (x))
2466 && reg_equiv_invariant (REGNO (x)))
2468 rtx t = reg_equiv_invariant (REGNO (x));
2469 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2470 int cost = set_src_cost (new_rtx, Pmode,
2471 optimize_bb_for_speed_p (elim_bb));
2472 int freq = REG_FREQ_FROM_BB (elim_bb);
2474 if (cost != 0)
2475 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2480 /* Scan X and replace any eliminable registers (such as fp) with a
2481 replacement (such as sp), plus an offset.
2483 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2484 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2485 MEM, we are allowed to replace a sum of a register and the constant zero
2486 with the register, which we cannot do outside a MEM. In addition, we need
2487 to record the fact that a register is referenced outside a MEM.
2489 If INSN is an insn, it is the insn containing X. If we replace a REG
2490 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2491 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2492 the REG is being modified.
2494 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2495 That's used when we eliminate in expressions stored in notes.
2496 This means, do not set ref_outside_mem even if the reference
2497 is outside of MEMs.
2499 If FOR_COSTS is true, we are being called before reload in order to
2500 estimate the costs of keeping registers with an equivalence unallocated.
2502 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2503 replacements done assuming all offsets are at their initial values. If
2504 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2505 encounter, return the actual location so that find_reloads will do
2506 the proper thing. */
2508 static rtx
2509 eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
2510 bool may_use_invariant, bool for_costs)
2512 enum rtx_code code = GET_CODE (x);
2513 struct elim_table *ep;
2514 int regno;
2515 rtx new_rtx;
2516 int i, j;
2517 const char *fmt;
2518 int copied = 0;
2520 if (! current_function_decl)
2521 return x;
2523 switch (code)
2525 CASE_CONST_ANY:
2526 case CONST:
2527 case SYMBOL_REF:
2528 case CODE_LABEL:
2529 case PC:
2530 case CC0:
2531 case ASM_INPUT:
2532 case ADDR_VEC:
2533 case ADDR_DIFF_VEC:
2534 case RETURN:
2535 return x;
2537 case REG:
2538 regno = REGNO (x);
2540 /* First handle the case where we encounter a bare register that
2541 is eliminable. Replace it with a PLUS. */
2542 if (regno < FIRST_PSEUDO_REGISTER)
2544 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2545 ep++)
2546 if (ep->from_rtx == x && ep->can_eliminate)
2547 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2550 else if (reg_renumber && reg_renumber[regno] < 0
2551 && reg_equivs
2552 && reg_equiv_invariant (regno))
2554 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2555 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2556 mem_mode, insn, true, for_costs);
2557 /* There exists at least one use of REGNO that cannot be
2558 eliminated. Prevent the defining insn from being deleted. */
2559 reg_equiv_init (regno) = NULL;
2560 if (!for_costs)
2561 alter_reg (regno, -1, true);
2563 return x;
2565 /* You might think handling MINUS in a manner similar to PLUS is a
2566 good idea. It is not. It has been tried multiple times and every
2567 time the change has had to have been reverted.
2569 Other parts of reload know a PLUS is special (gen_reload for example)
2570 and require special code to handle code a reloaded PLUS operand.
2572 Also consider backends where the flags register is clobbered by a
2573 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2574 lea instruction comes to mind). If we try to reload a MINUS, we
2575 may kill the flags register that was holding a useful value.
2577 So, please before trying to handle MINUS, consider reload as a
2578 whole instead of this little section as well as the backend issues. */
2579 case PLUS:
2580 /* If this is the sum of an eliminable register and a constant, rework
2581 the sum. */
2582 if (REG_P (XEXP (x, 0))
2583 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2584 && CONSTANT_P (XEXP (x, 1)))
2586 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2587 ep++)
2588 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2590 /* The only time we want to replace a PLUS with a REG (this
2591 occurs when the constant operand of the PLUS is the negative
2592 of the offset) is when we are inside a MEM. We won't want
2593 to do so at other times because that would change the
2594 structure of the insn in a way that reload can't handle.
2595 We special-case the commonest situation in
2596 eliminate_regs_in_insn, so just replace a PLUS with a
2597 PLUS here, unless inside a MEM. */
2598 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2599 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2600 return ep->to_rtx;
2601 else
2602 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2603 plus_constant (Pmode, XEXP (x, 1),
2604 ep->previous_offset));
2607 /* If the register is not eliminable, we are done since the other
2608 operand is a constant. */
2609 return x;
2612 /* If this is part of an address, we want to bring any constant to the
2613 outermost PLUS. We will do this by doing register replacement in
2614 our operands and seeing if a constant shows up in one of them.
2616 Note that there is no risk of modifying the structure of the insn,
2617 since we only get called for its operands, thus we are either
2618 modifying the address inside a MEM, or something like an address
2619 operand of a load-address insn. */
2622 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2623 for_costs);
2624 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2625 for_costs);
2627 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2629 /* If one side is a PLUS and the other side is a pseudo that
2630 didn't get a hard register but has a reg_equiv_constant,
2631 we must replace the constant here since it may no longer
2632 be in the position of any operand. */
2633 if (GET_CODE (new0) == PLUS && REG_P (new1)
2634 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2635 && reg_renumber[REGNO (new1)] < 0
2636 && reg_equivs
2637 && reg_equiv_constant (REGNO (new1)) != 0)
2638 new1 = reg_equiv_constant (REGNO (new1));
2639 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2640 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2641 && reg_renumber[REGNO (new0)] < 0
2642 && reg_equiv_constant (REGNO (new0)) != 0)
2643 new0 = reg_equiv_constant (REGNO (new0));
2645 new_rtx = form_sum (GET_MODE (x), new0, new1);
2647 /* As above, if we are not inside a MEM we do not want to
2648 turn a PLUS into something else. We might try to do so here
2649 for an addition of 0 if we aren't optimizing. */
2650 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2651 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2652 else
2653 return new_rtx;
2656 return x;
2658 case MULT:
2659 /* If this is the product of an eliminable register and a
2660 constant, apply the distribute law and move the constant out
2661 so that we have (plus (mult ..) ..). This is needed in order
2662 to keep load-address insns valid. This case is pathological.
2663 We ignore the possibility of overflow here. */
2664 if (REG_P (XEXP (x, 0))
2665 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2666 && CONST_INT_P (XEXP (x, 1)))
2667 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2668 ep++)
2669 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2671 if (! mem_mode
2672 /* Refs inside notes or in DEBUG_INSNs don't count for
2673 this purpose. */
2674 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2675 || GET_CODE (insn) == INSN_LIST
2676 || DEBUG_INSN_P (insn))))
2677 ep->ref_outside_mem = 1;
2679 return
2680 plus_constant (Pmode,
2681 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2682 ep->previous_offset * INTVAL (XEXP (x, 1)));
2685 /* fall through */
2687 case CALL:
2688 case COMPARE:
2689 /* See comments before PLUS about handling MINUS. */
2690 case MINUS:
2691 case DIV: case UDIV:
2692 case MOD: case UMOD:
2693 case AND: case IOR: case XOR:
2694 case ROTATERT: case ROTATE:
2695 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2696 case NE: case EQ:
2697 case GE: case GT: case GEU: case GTU:
2698 case LE: case LT: case LEU: case LTU:
2700 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2701 for_costs);
2702 rtx new1 = XEXP (x, 1)
2703 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2704 for_costs) : 0;
2706 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2707 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2709 return x;
2711 case EXPR_LIST:
2712 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2713 if (XEXP (x, 0))
2715 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2716 for_costs);
2717 if (new_rtx != XEXP (x, 0))
2719 /* If this is a REG_DEAD note, it is not valid anymore.
2720 Using the eliminated version could result in creating a
2721 REG_DEAD note for the stack or frame pointer. */
2722 if (REG_NOTE_KIND (x) == REG_DEAD)
2723 return (XEXP (x, 1)
2724 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2725 for_costs)
2726 : NULL_RTX);
2728 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2732 /* fall through */
2734 case INSN_LIST:
2735 case INT_LIST:
2736 /* Now do eliminations in the rest of the chain. If this was
2737 an EXPR_LIST, this might result in allocating more memory than is
2738 strictly needed, but it simplifies the code. */
2739 if (XEXP (x, 1))
2741 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2742 for_costs);
2743 if (new_rtx != XEXP (x, 1))
2744 return
2745 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2747 return x;
2749 case PRE_INC:
2750 case POST_INC:
2751 case PRE_DEC:
2752 case POST_DEC:
2753 /* We do not support elimination of a register that is modified.
2754 elimination_effects has already make sure that this does not
2755 happen. */
2756 return x;
2758 case PRE_MODIFY:
2759 case POST_MODIFY:
2760 /* We do not support elimination of a register that is modified.
2761 elimination_effects has already make sure that this does not
2762 happen. The only remaining case we need to consider here is
2763 that the increment value may be an eliminable register. */
2764 if (GET_CODE (XEXP (x, 1)) == PLUS
2765 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2767 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2768 insn, true, for_costs);
2770 if (new_rtx != XEXP (XEXP (x, 1), 1))
2771 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2772 gen_rtx_PLUS (GET_MODE (x),
2773 XEXP (x, 0), new_rtx));
2775 return x;
2777 case STRICT_LOW_PART:
2778 case NEG: case NOT:
2779 case SIGN_EXTEND: case ZERO_EXTEND:
2780 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2781 case FLOAT: case FIX:
2782 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2783 case ABS:
2784 case SQRT:
2785 case FFS:
2786 case CLZ:
2787 case CTZ:
2788 case POPCOUNT:
2789 case PARITY:
2790 case BSWAP:
2791 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2792 for_costs);
2793 if (new_rtx != XEXP (x, 0))
2794 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2795 return x;
2797 case SUBREG:
2798 /* Similar to above processing, but preserve SUBREG_BYTE.
2799 Convert (subreg (mem)) to (mem) if not paradoxical.
2800 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2801 pseudo didn't get a hard reg, we must replace this with the
2802 eliminated version of the memory location because push_reload
2803 may do the replacement in certain circumstances. */
2804 if (REG_P (SUBREG_REG (x))
2805 && !paradoxical_subreg_p (x)
2806 && reg_equivs
2807 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2809 new_rtx = SUBREG_REG (x);
2811 else
2812 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2814 if (new_rtx != SUBREG_REG (x))
2816 int x_size = GET_MODE_SIZE (GET_MODE (x));
2817 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2819 if (MEM_P (new_rtx)
2820 && ((x_size < new_size
2821 #if WORD_REGISTER_OPERATIONS
2822 /* On these machines, combine can create rtl of the form
2823 (set (subreg:m1 (reg:m2 R) 0) ...)
2824 where m1 < m2, and expects something interesting to
2825 happen to the entire word. Moreover, it will use the
2826 (reg:m2 R) later, expecting all bits to be preserved.
2827 So if the number of words is the same, preserve the
2828 subreg so that push_reload can see it. */
2829 && ! ((x_size - 1) / UNITS_PER_WORD
2830 == (new_size -1 ) / UNITS_PER_WORD)
2831 #endif
2833 || x_size == new_size)
2835 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2836 else
2837 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2840 return x;
2842 case MEM:
2843 /* Our only special processing is to pass the mode of the MEM to our
2844 recursive call and copy the flags. While we are here, handle this
2845 case more efficiently. */
2847 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2848 for_costs);
2849 if (for_costs
2850 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2851 && !memory_address_p (GET_MODE (x), new_rtx))
2852 note_reg_elim_costly (XEXP (x, 0), insn);
2854 return replace_equiv_address_nv (x, new_rtx);
2856 case USE:
2857 /* Handle insn_list USE that a call to a pure function may generate. */
2858 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2859 for_costs);
2860 if (new_rtx != XEXP (x, 0))
2861 return gen_rtx_USE (GET_MODE (x), new_rtx);
2862 return x;
2864 case CLOBBER:
2865 case ASM_OPERANDS:
2866 gcc_assert (insn && DEBUG_INSN_P (insn));
2867 break;
2869 case SET:
2870 gcc_unreachable ();
2872 default:
2873 break;
2876 /* Process each of our operands recursively. If any have changed, make a
2877 copy of the rtx. */
2878 fmt = GET_RTX_FORMAT (code);
2879 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2881 if (*fmt == 'e')
2883 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2884 for_costs);
2885 if (new_rtx != XEXP (x, i) && ! copied)
2887 x = shallow_copy_rtx (x);
2888 copied = 1;
2890 XEXP (x, i) = new_rtx;
2892 else if (*fmt == 'E')
2894 int copied_vec = 0;
2895 for (j = 0; j < XVECLEN (x, i); j++)
2897 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2898 for_costs);
2899 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2901 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2902 XVEC (x, i)->elem);
2903 if (! copied)
2905 x = shallow_copy_rtx (x);
2906 copied = 1;
2908 XVEC (x, i) = new_v;
2909 copied_vec = 1;
2911 XVECEXP (x, i, j) = new_rtx;
2916 return x;
2920 eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
2922 if (reg_eliminate == NULL)
2924 gcc_assert (targetm.no_register_allocation);
2925 return x;
2927 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2930 /* Scan rtx X for modifications of elimination target registers. Update
2931 the table of eliminables to reflect the changed state. MEM_MODE is
2932 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2934 static void
2935 elimination_effects (rtx x, machine_mode mem_mode)
2937 enum rtx_code code = GET_CODE (x);
2938 struct elim_table *ep;
2939 int regno;
2940 int i, j;
2941 const char *fmt;
2943 switch (code)
2945 CASE_CONST_ANY:
2946 case CONST:
2947 case SYMBOL_REF:
2948 case CODE_LABEL:
2949 case PC:
2950 case CC0:
2951 case ASM_INPUT:
2952 case ADDR_VEC:
2953 case ADDR_DIFF_VEC:
2954 case RETURN:
2955 return;
2957 case REG:
2958 regno = REGNO (x);
2960 /* First handle the case where we encounter a bare register that
2961 is eliminable. Replace it with a PLUS. */
2962 if (regno < FIRST_PSEUDO_REGISTER)
2964 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2965 ep++)
2966 if (ep->from_rtx == x && ep->can_eliminate)
2968 if (! mem_mode)
2969 ep->ref_outside_mem = 1;
2970 return;
2974 else if (reg_renumber[regno] < 0
2975 && reg_equivs
2976 && reg_equiv_constant (regno)
2977 && ! function_invariant_p (reg_equiv_constant (regno)))
2978 elimination_effects (reg_equiv_constant (regno), mem_mode);
2979 return;
2981 case PRE_INC:
2982 case POST_INC:
2983 case PRE_DEC:
2984 case POST_DEC:
2985 case POST_MODIFY:
2986 case PRE_MODIFY:
2987 /* If we modify the source of an elimination rule, disable it. */
2988 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2989 if (ep->from_rtx == XEXP (x, 0))
2990 ep->can_eliminate = 0;
2992 /* If we modify the target of an elimination rule by adding a constant,
2993 update its offset. If we modify the target in any other way, we'll
2994 have to disable the rule as well. */
2995 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2996 if (ep->to_rtx == XEXP (x, 0))
2998 int size = GET_MODE_SIZE (mem_mode);
3000 /* If more bytes than MEM_MODE are pushed, account for them. */
3001 #ifdef PUSH_ROUNDING
3002 if (ep->to_rtx == stack_pointer_rtx)
3003 size = PUSH_ROUNDING (size);
3004 #endif
3005 if (code == PRE_DEC || code == POST_DEC)
3006 ep->offset += size;
3007 else if (code == PRE_INC || code == POST_INC)
3008 ep->offset -= size;
3009 else if (code == PRE_MODIFY || code == POST_MODIFY)
3011 if (GET_CODE (XEXP (x, 1)) == PLUS
3012 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3013 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3014 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3015 else
3016 ep->can_eliminate = 0;
3020 /* These two aren't unary operators. */
3021 if (code == POST_MODIFY || code == PRE_MODIFY)
3022 break;
3024 /* Fall through to generic unary operation case. */
3025 case STRICT_LOW_PART:
3026 case NEG: case NOT:
3027 case SIGN_EXTEND: case ZERO_EXTEND:
3028 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3029 case FLOAT: case FIX:
3030 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3031 case ABS:
3032 case SQRT:
3033 case FFS:
3034 case CLZ:
3035 case CTZ:
3036 case POPCOUNT:
3037 case PARITY:
3038 case BSWAP:
3039 elimination_effects (XEXP (x, 0), mem_mode);
3040 return;
3042 case SUBREG:
3043 if (REG_P (SUBREG_REG (x))
3044 && (GET_MODE_SIZE (GET_MODE (x))
3045 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3046 && reg_equivs
3047 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3048 return;
3050 elimination_effects (SUBREG_REG (x), mem_mode);
3051 return;
3053 case USE:
3054 /* If using a register that is the source of an eliminate we still
3055 think can be performed, note it cannot be performed since we don't
3056 know how this register is used. */
3057 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3058 if (ep->from_rtx == XEXP (x, 0))
3059 ep->can_eliminate = 0;
3061 elimination_effects (XEXP (x, 0), mem_mode);
3062 return;
3064 case CLOBBER:
3065 /* If clobbering a register that is the replacement register for an
3066 elimination we still think can be performed, note that it cannot
3067 be performed. Otherwise, we need not be concerned about it. */
3068 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3069 if (ep->to_rtx == XEXP (x, 0))
3070 ep->can_eliminate = 0;
3072 elimination_effects (XEXP (x, 0), mem_mode);
3073 return;
3075 case SET:
3076 /* Check for setting a register that we know about. */
3077 if (REG_P (SET_DEST (x)))
3079 /* See if this is setting the replacement register for an
3080 elimination.
3082 If DEST is the hard frame pointer, we do nothing because we
3083 assume that all assignments to the frame pointer are for
3084 non-local gotos and are being done at a time when they are valid
3085 and do not disturb anything else. Some machines want to
3086 eliminate a fake argument pointer (or even a fake frame pointer)
3087 with either the real frame or the stack pointer. Assignments to
3088 the hard frame pointer must not prevent this elimination. */
3090 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3091 ep++)
3092 if (ep->to_rtx == SET_DEST (x)
3093 && SET_DEST (x) != hard_frame_pointer_rtx)
3095 /* If it is being incremented, adjust the offset. Otherwise,
3096 this elimination can't be done. */
3097 rtx src = SET_SRC (x);
3099 if (GET_CODE (src) == PLUS
3100 && XEXP (src, 0) == SET_DEST (x)
3101 && CONST_INT_P (XEXP (src, 1)))
3102 ep->offset -= INTVAL (XEXP (src, 1));
3103 else
3104 ep->can_eliminate = 0;
3108 elimination_effects (SET_DEST (x), VOIDmode);
3109 elimination_effects (SET_SRC (x), VOIDmode);
3110 return;
3112 case MEM:
3113 /* Our only special processing is to pass the mode of the MEM to our
3114 recursive call. */
3115 elimination_effects (XEXP (x, 0), GET_MODE (x));
3116 return;
3118 default:
3119 break;
3122 fmt = GET_RTX_FORMAT (code);
3123 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3125 if (*fmt == 'e')
3126 elimination_effects (XEXP (x, i), mem_mode);
3127 else if (*fmt == 'E')
3128 for (j = 0; j < XVECLEN (x, i); j++)
3129 elimination_effects (XVECEXP (x, i, j), mem_mode);
3133 /* Descend through rtx X and verify that no references to eliminable registers
3134 remain. If any do remain, mark the involved register as not
3135 eliminable. */
3137 static void
3138 check_eliminable_occurrences (rtx x)
3140 const char *fmt;
3141 int i;
3142 enum rtx_code code;
3144 if (x == 0)
3145 return;
3147 code = GET_CODE (x);
3149 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3151 struct elim_table *ep;
3153 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3154 if (ep->from_rtx == x)
3155 ep->can_eliminate = 0;
3156 return;
3159 fmt = GET_RTX_FORMAT (code);
3160 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3162 if (*fmt == 'e')
3163 check_eliminable_occurrences (XEXP (x, i));
3164 else if (*fmt == 'E')
3166 int j;
3167 for (j = 0; j < XVECLEN (x, i); j++)
3168 check_eliminable_occurrences (XVECEXP (x, i, j));
3173 /* Scan INSN and eliminate all eliminable registers in it.
3175 If REPLACE is nonzero, do the replacement destructively. Also
3176 delete the insn as dead it if it is setting an eliminable register.
3178 If REPLACE is zero, do all our allocations in reload_obstack.
3180 If no eliminations were done and this insn doesn't require any elimination
3181 processing (these are not identical conditions: it might be updating sp,
3182 but not referencing fp; this needs to be seen during reload_as_needed so
3183 that the offset between fp and sp can be taken into consideration), zero
3184 is returned. Otherwise, 1 is returned. */
3186 static int
3187 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3189 int icode = recog_memoized (insn);
3190 rtx old_body = PATTERN (insn);
3191 int insn_is_asm = asm_noperands (old_body) >= 0;
3192 rtx old_set = single_set (insn);
3193 rtx new_body;
3194 int val = 0;
3195 int i;
3196 rtx substed_operand[MAX_RECOG_OPERANDS];
3197 rtx orig_operand[MAX_RECOG_OPERANDS];
3198 struct elim_table *ep;
3199 rtx plus_src, plus_cst_src;
3201 if (! insn_is_asm && icode < 0)
3203 gcc_assert (DEBUG_INSN_P (insn)
3204 || GET_CODE (PATTERN (insn)) == USE
3205 || GET_CODE (PATTERN (insn)) == CLOBBER
3206 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3207 if (DEBUG_INSN_P (insn))
3208 INSN_VAR_LOCATION_LOC (insn)
3209 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3210 return 0;
3213 if (old_set != 0 && REG_P (SET_DEST (old_set))
3214 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3216 /* Check for setting an eliminable register. */
3217 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3218 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3220 /* If this is setting the frame pointer register to the
3221 hardware frame pointer register and this is an elimination
3222 that will be done (tested above), this insn is really
3223 adjusting the frame pointer downward to compensate for
3224 the adjustment done before a nonlocal goto. */
3225 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
3226 && ep->from == FRAME_POINTER_REGNUM
3227 && ep->to == HARD_FRAME_POINTER_REGNUM)
3229 rtx base = SET_SRC (old_set);
3230 rtx_insn *base_insn = insn;
3231 HOST_WIDE_INT offset = 0;
3233 while (base != ep->to_rtx)
3235 rtx_insn *prev_insn;
3236 rtx prev_set;
3238 if (GET_CODE (base) == PLUS
3239 && CONST_INT_P (XEXP (base, 1)))
3241 offset += INTVAL (XEXP (base, 1));
3242 base = XEXP (base, 0);
3244 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3245 && (prev_set = single_set (prev_insn)) != 0
3246 && rtx_equal_p (SET_DEST (prev_set), base))
3248 base = SET_SRC (prev_set);
3249 base_insn = prev_insn;
3251 else
3252 break;
3255 if (base == ep->to_rtx)
3257 rtx src = plus_constant (Pmode, ep->to_rtx,
3258 offset - ep->offset);
3260 new_body = old_body;
3261 if (! replace)
3263 new_body = copy_insn (old_body);
3264 if (REG_NOTES (insn))
3265 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3267 PATTERN (insn) = new_body;
3268 old_set = single_set (insn);
3270 /* First see if this insn remains valid when we
3271 make the change. If not, keep the INSN_CODE
3272 the same and let reload fit it up. */
3273 validate_change (insn, &SET_SRC (old_set), src, 1);
3274 validate_change (insn, &SET_DEST (old_set),
3275 ep->to_rtx, 1);
3276 if (! apply_change_group ())
3278 SET_SRC (old_set) = src;
3279 SET_DEST (old_set) = ep->to_rtx;
3282 val = 1;
3283 goto done;
3287 /* In this case this insn isn't serving a useful purpose. We
3288 will delete it in reload_as_needed once we know that this
3289 elimination is, in fact, being done.
3291 If REPLACE isn't set, we can't delete this insn, but needn't
3292 process it since it won't be used unless something changes. */
3293 if (replace)
3295 delete_dead_insn (insn);
3296 return 1;
3298 val = 1;
3299 goto done;
3303 /* We allow one special case which happens to work on all machines we
3304 currently support: a single set with the source or a REG_EQUAL
3305 note being a PLUS of an eliminable register and a constant. */
3306 plus_src = plus_cst_src = 0;
3307 if (old_set && REG_P (SET_DEST (old_set)))
3309 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3310 plus_src = SET_SRC (old_set);
3311 /* First see if the source is of the form (plus (...) CST). */
3312 if (plus_src
3313 && CONST_INT_P (XEXP (plus_src, 1)))
3314 plus_cst_src = plus_src;
3315 else if (REG_P (SET_SRC (old_set))
3316 || plus_src)
3318 /* Otherwise, see if we have a REG_EQUAL note of the form
3319 (plus (...) CST). */
3320 rtx links;
3321 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3323 if ((REG_NOTE_KIND (links) == REG_EQUAL
3324 || REG_NOTE_KIND (links) == REG_EQUIV)
3325 && GET_CODE (XEXP (links, 0)) == PLUS
3326 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3328 plus_cst_src = XEXP (links, 0);
3329 break;
3334 /* Check that the first operand of the PLUS is a hard reg or
3335 the lowpart subreg of one. */
3336 if (plus_cst_src)
3338 rtx reg = XEXP (plus_cst_src, 0);
3339 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3340 reg = SUBREG_REG (reg);
3342 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3343 plus_cst_src = 0;
3346 if (plus_cst_src)
3348 rtx reg = XEXP (plus_cst_src, 0);
3349 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3351 if (GET_CODE (reg) == SUBREG)
3352 reg = SUBREG_REG (reg);
3354 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3355 if (ep->from_rtx == reg && ep->can_eliminate)
3357 rtx to_rtx = ep->to_rtx;
3358 offset += ep->offset;
3359 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3361 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3362 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3363 to_rtx);
3364 /* If we have a nonzero offset, and the source is already
3365 a simple REG, the following transformation would
3366 increase the cost of the insn by replacing a simple REG
3367 with (plus (reg sp) CST). So try only when we already
3368 had a PLUS before. */
3369 if (offset == 0 || plus_src)
3371 rtx new_src = plus_constant (GET_MODE (to_rtx),
3372 to_rtx, offset);
3374 new_body = old_body;
3375 if (! replace)
3377 new_body = copy_insn (old_body);
3378 if (REG_NOTES (insn))
3379 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3381 PATTERN (insn) = new_body;
3382 old_set = single_set (insn);
3384 /* First see if this insn remains valid when we make the
3385 change. If not, try to replace the whole pattern with
3386 a simple set (this may help if the original insn was a
3387 PARALLEL that was only recognized as single_set due to
3388 REG_UNUSED notes). If this isn't valid either, keep
3389 the INSN_CODE the same and let reload fix it up. */
3390 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3392 rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
3394 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3395 SET_SRC (old_set) = new_src;
3398 else
3399 break;
3401 val = 1;
3402 /* This can't have an effect on elimination offsets, so skip right
3403 to the end. */
3404 goto done;
3408 /* Determine the effects of this insn on elimination offsets. */
3409 elimination_effects (old_body, VOIDmode);
3411 /* Eliminate all eliminable registers occurring in operands that
3412 can be handled by reload. */
3413 extract_insn (insn);
3414 for (i = 0; i < recog_data.n_operands; i++)
3416 orig_operand[i] = recog_data.operand[i];
3417 substed_operand[i] = recog_data.operand[i];
3419 /* For an asm statement, every operand is eliminable. */
3420 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3422 bool is_set_src, in_plus;
3424 /* Check for setting a register that we know about. */
3425 if (recog_data.operand_type[i] != OP_IN
3426 && REG_P (orig_operand[i]))
3428 /* If we are assigning to a register that can be eliminated, it
3429 must be as part of a PARALLEL, since the code above handles
3430 single SETs. We must indicate that we can no longer
3431 eliminate this reg. */
3432 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3433 ep++)
3434 if (ep->from_rtx == orig_operand[i])
3435 ep->can_eliminate = 0;
3438 /* Companion to the above plus substitution, we can allow
3439 invariants as the source of a plain move. */
3440 is_set_src = false;
3441 if (old_set
3442 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3443 is_set_src = true;
3444 in_plus = false;
3445 if (plus_src
3446 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3447 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3448 in_plus = true;
3450 substed_operand[i]
3451 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3452 replace ? insn : NULL_RTX,
3453 is_set_src || in_plus, false);
3454 if (substed_operand[i] != orig_operand[i])
3455 val = 1;
3456 /* Terminate the search in check_eliminable_occurrences at
3457 this point. */
3458 *recog_data.operand_loc[i] = 0;
3460 /* If an output operand changed from a REG to a MEM and INSN is an
3461 insn, write a CLOBBER insn. */
3462 if (recog_data.operand_type[i] != OP_IN
3463 && REG_P (orig_operand[i])
3464 && MEM_P (substed_operand[i])
3465 && replace)
3466 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3470 for (i = 0; i < recog_data.n_dups; i++)
3471 *recog_data.dup_loc[i]
3472 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3474 /* If any eliminable remain, they aren't eliminable anymore. */
3475 check_eliminable_occurrences (old_body);
3477 /* Substitute the operands; the new values are in the substed_operand
3478 array. */
3479 for (i = 0; i < recog_data.n_operands; i++)
3480 *recog_data.operand_loc[i] = substed_operand[i];
3481 for (i = 0; i < recog_data.n_dups; i++)
3482 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3484 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3485 re-recognize the insn. We do this in case we had a simple addition
3486 but now can do this as a load-address. This saves an insn in this
3487 common case.
3488 If re-recognition fails, the old insn code number will still be used,
3489 and some register operands may have changed into PLUS expressions.
3490 These will be handled by find_reloads by loading them into a register
3491 again. */
3493 if (val)
3495 /* If we aren't replacing things permanently and we changed something,
3496 make another copy to ensure that all the RTL is new. Otherwise
3497 things can go wrong if find_reload swaps commutative operands
3498 and one is inside RTL that has been copied while the other is not. */
3499 new_body = old_body;
3500 if (! replace)
3502 new_body = copy_insn (old_body);
3503 if (REG_NOTES (insn))
3504 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3506 PATTERN (insn) = new_body;
3508 /* If we had a move insn but now we don't, rerecognize it. This will
3509 cause spurious re-recognition if the old move had a PARALLEL since
3510 the new one still will, but we can't call single_set without
3511 having put NEW_BODY into the insn and the re-recognition won't
3512 hurt in this rare case. */
3513 /* ??? Why this huge if statement - why don't we just rerecognize the
3514 thing always? */
3515 if (! insn_is_asm
3516 && old_set != 0
3517 && ((REG_P (SET_SRC (old_set))
3518 && (GET_CODE (new_body) != SET
3519 || !REG_P (SET_SRC (new_body))))
3520 /* If this was a load from or store to memory, compare
3521 the MEM in recog_data.operand to the one in the insn.
3522 If they are not equal, then rerecognize the insn. */
3523 || (old_set != 0
3524 && ((MEM_P (SET_SRC (old_set))
3525 && SET_SRC (old_set) != recog_data.operand[1])
3526 || (MEM_P (SET_DEST (old_set))
3527 && SET_DEST (old_set) != recog_data.operand[0])))
3528 /* If this was an add insn before, rerecognize. */
3529 || GET_CODE (SET_SRC (old_set)) == PLUS))
3531 int new_icode = recog (PATTERN (insn), insn, 0);
3532 if (new_icode >= 0)
3533 INSN_CODE (insn) = new_icode;
3537 /* Restore the old body. If there were any changes to it, we made a copy
3538 of it while the changes were still in place, so we'll correctly return
3539 a modified insn below. */
3540 if (! replace)
3542 /* Restore the old body. */
3543 for (i = 0; i < recog_data.n_operands; i++)
3544 /* Restoring a top-level match_parallel would clobber the new_body
3545 we installed in the insn. */
3546 if (recog_data.operand_loc[i] != &PATTERN (insn))
3547 *recog_data.operand_loc[i] = orig_operand[i];
3548 for (i = 0; i < recog_data.n_dups; i++)
3549 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3552 /* Update all elimination pairs to reflect the status after the current
3553 insn. The changes we make were determined by the earlier call to
3554 elimination_effects.
3556 We also detect cases where register elimination cannot be done,
3557 namely, if a register would be both changed and referenced outside a MEM
3558 in the resulting insn since such an insn is often undefined and, even if
3559 not, we cannot know what meaning will be given to it. Note that it is
3560 valid to have a register used in an address in an insn that changes it
3561 (presumably with a pre- or post-increment or decrement).
3563 If anything changes, return nonzero. */
3565 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3567 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3568 ep->can_eliminate = 0;
3570 ep->ref_outside_mem = 0;
3572 if (ep->previous_offset != ep->offset)
3573 val = 1;
3576 done:
3577 /* If we changed something, perform elimination in REG_NOTES. This is
3578 needed even when REPLACE is zero because a REG_DEAD note might refer
3579 to a register that we eliminate and could cause a different number
3580 of spill registers to be needed in the final reload pass than in
3581 the pre-passes. */
3582 if (val && REG_NOTES (insn) != 0)
3583 REG_NOTES (insn)
3584 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3585 false);
3587 return val;
3590 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3591 register allocator. INSN is the instruction we need to examine, we perform
3592 eliminations in its operands and record cases where eliminating a reg with
3593 an invariant equivalence would add extra cost. */
3595 #pragma GCC diagnostic push
3596 #pragma GCC diagnostic warning "-Wmaybe-uninitialized"
3597 static void
3598 elimination_costs_in_insn (rtx_insn *insn)
3600 int icode = recog_memoized (insn);
3601 rtx old_body = PATTERN (insn);
3602 int insn_is_asm = asm_noperands (old_body) >= 0;
3603 rtx old_set = single_set (insn);
3604 int i;
3605 rtx orig_operand[MAX_RECOG_OPERANDS];
3606 rtx orig_dup[MAX_RECOG_OPERANDS];
3607 struct elim_table *ep;
3608 rtx plus_src, plus_cst_src;
3609 bool sets_reg_p;
3611 if (! insn_is_asm && icode < 0)
3613 gcc_assert (DEBUG_INSN_P (insn)
3614 || GET_CODE (PATTERN (insn)) == USE
3615 || GET_CODE (PATTERN (insn)) == CLOBBER
3616 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3617 return;
3620 if (old_set != 0 && REG_P (SET_DEST (old_set))
3621 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3623 /* Check for setting an eliminable register. */
3624 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3625 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3626 return;
3629 /* We allow one special case which happens to work on all machines we
3630 currently support: a single set with the source or a REG_EQUAL
3631 note being a PLUS of an eliminable register and a constant. */
3632 plus_src = plus_cst_src = 0;
3633 sets_reg_p = false;
3634 if (old_set && REG_P (SET_DEST (old_set)))
3636 sets_reg_p = true;
3637 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3638 plus_src = SET_SRC (old_set);
3639 /* First see if the source is of the form (plus (...) CST). */
3640 if (plus_src
3641 && CONST_INT_P (XEXP (plus_src, 1)))
3642 plus_cst_src = plus_src;
3643 else if (REG_P (SET_SRC (old_set))
3644 || plus_src)
3646 /* Otherwise, see if we have a REG_EQUAL note of the form
3647 (plus (...) CST). */
3648 rtx links;
3649 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3651 if ((REG_NOTE_KIND (links) == REG_EQUAL
3652 || REG_NOTE_KIND (links) == REG_EQUIV)
3653 && GET_CODE (XEXP (links, 0)) == PLUS
3654 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3656 plus_cst_src = XEXP (links, 0);
3657 break;
3663 /* Determine the effects of this insn on elimination offsets. */
3664 elimination_effects (old_body, VOIDmode);
3666 /* Eliminate all eliminable registers occurring in operands that
3667 can be handled by reload. */
3668 extract_insn (insn);
3669 int n_dups = recog_data.n_dups;
3670 for (i = 0; i < n_dups; i++)
3671 orig_dup[i] = *recog_data.dup_loc[i];
3673 int n_operands = recog_data.n_operands;
3674 for (i = 0; i < n_operands; i++)
3676 orig_operand[i] = recog_data.operand[i];
3678 /* For an asm statement, every operand is eliminable. */
3679 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3681 bool is_set_src, in_plus;
3683 /* Check for setting a register that we know about. */
3684 if (recog_data.operand_type[i] != OP_IN
3685 && REG_P (orig_operand[i]))
3687 /* If we are assigning to a register that can be eliminated, it
3688 must be as part of a PARALLEL, since the code above handles
3689 single SETs. We must indicate that we can no longer
3690 eliminate this reg. */
3691 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3692 ep++)
3693 if (ep->from_rtx == orig_operand[i])
3694 ep->can_eliminate = 0;
3697 /* Companion to the above plus substitution, we can allow
3698 invariants as the source of a plain move. */
3699 is_set_src = false;
3700 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3701 is_set_src = true;
3702 if (is_set_src && !sets_reg_p)
3703 note_reg_elim_costly (SET_SRC (old_set), insn);
3704 in_plus = false;
3705 if (plus_src && sets_reg_p
3706 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3707 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3708 in_plus = true;
3710 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3711 NULL_RTX,
3712 is_set_src || in_plus, true);
3713 /* Terminate the search in check_eliminable_occurrences at
3714 this point. */
3715 *recog_data.operand_loc[i] = 0;
3719 for (i = 0; i < n_dups; i++)
3720 *recog_data.dup_loc[i]
3721 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3723 /* If any eliminable remain, they aren't eliminable anymore. */
3724 check_eliminable_occurrences (old_body);
3726 /* Restore the old body. */
3727 for (i = 0; i < n_operands; i++)
3728 *recog_data.operand_loc[i] = orig_operand[i];
3729 for (i = 0; i < n_dups; i++)
3730 *recog_data.dup_loc[i] = orig_dup[i];
3732 /* Update all elimination pairs to reflect the status after the current
3733 insn. The changes we make were determined by the earlier call to
3734 elimination_effects. */
3736 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3738 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3739 ep->can_eliminate = 0;
3741 ep->ref_outside_mem = 0;
3744 return;
3746 #pragma GCC diagnostic pop
3748 /* Loop through all elimination pairs.
3749 Recalculate the number not at initial offset.
3751 Compute the maximum offset (minimum offset if the stack does not
3752 grow downward) for each elimination pair. */
3754 static void
3755 update_eliminable_offsets (void)
3757 struct elim_table *ep;
3759 num_not_at_initial_offset = 0;
3760 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3762 ep->previous_offset = ep->offset;
3763 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3764 num_not_at_initial_offset++;
3768 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3769 replacement we currently believe is valid, mark it as not eliminable if X
3770 modifies DEST in any way other than by adding a constant integer to it.
3772 If DEST is the frame pointer, we do nothing because we assume that
3773 all assignments to the hard frame pointer are nonlocal gotos and are being
3774 done at a time when they are valid and do not disturb anything else.
3775 Some machines want to eliminate a fake argument pointer with either the
3776 frame or stack pointer. Assignments to the hard frame pointer must not
3777 prevent this elimination.
3779 Called via note_stores from reload before starting its passes to scan
3780 the insns of the function. */
3782 static void
3783 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3785 unsigned int i;
3787 /* A SUBREG of a hard register here is just changing its mode. We should
3788 not see a SUBREG of an eliminable hard register, but check just in
3789 case. */
3790 if (GET_CODE (dest) == SUBREG)
3791 dest = SUBREG_REG (dest);
3793 if (dest == hard_frame_pointer_rtx)
3794 return;
3796 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3797 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3798 && (GET_CODE (x) != SET
3799 || GET_CODE (SET_SRC (x)) != PLUS
3800 || XEXP (SET_SRC (x), 0) != dest
3801 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3803 reg_eliminate[i].can_eliminate_previous
3804 = reg_eliminate[i].can_eliminate = 0;
3805 num_eliminable--;
3809 /* Verify that the initial elimination offsets did not change since the
3810 last call to set_initial_elim_offsets. This is used to catch cases
3811 where something illegal happened during reload_as_needed that could
3812 cause incorrect code to be generated if we did not check for it. */
3814 static bool
3815 verify_initial_elim_offsets (void)
3817 HOST_WIDE_INT t;
3818 struct elim_table *ep;
3820 if (!num_eliminable)
3821 return true;
3823 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3825 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3826 if (t != ep->initial_offset)
3827 return false;
3830 return true;
3833 /* Reset all offsets on eliminable registers to their initial values. */
3835 static void
3836 set_initial_elim_offsets (void)
3838 struct elim_table *ep = reg_eliminate;
3840 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3842 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3843 ep->previous_offset = ep->offset = ep->initial_offset;
3846 num_not_at_initial_offset = 0;
3849 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3851 static void
3852 set_initial_eh_label_offset (rtx label)
3854 set_label_offsets (label, NULL, 1);
3857 /* Initialize the known label offsets.
3858 Set a known offset for each forced label to be at the initial offset
3859 of each elimination. We do this because we assume that all
3860 computed jumps occur from a location where each elimination is
3861 at its initial offset.
3862 For all other labels, show that we don't know the offsets. */
3864 static void
3865 set_initial_label_offsets (void)
3867 memset (offsets_known_at, 0, num_labels);
3869 unsigned int i;
3870 rtx_insn *insn;
3871 FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
3872 set_label_offsets (insn, NULL, 1);
3874 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3875 if (x->insn ())
3876 set_label_offsets (x->insn (), NULL, 1);
3878 for_each_eh_label (set_initial_eh_label_offset);
3881 /* Set all elimination offsets to the known values for the code label given
3882 by INSN. */
3884 static void
3885 set_offsets_for_label (rtx_insn *insn)
3887 unsigned int i;
3888 int label_nr = CODE_LABEL_NUMBER (insn);
3889 struct elim_table *ep;
3891 num_not_at_initial_offset = 0;
3892 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3894 ep->offset = ep->previous_offset
3895 = offsets_at[label_nr - first_label_num][i];
3896 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3897 num_not_at_initial_offset++;
3901 /* See if anything that happened changes which eliminations are valid.
3902 For example, on the SPARC, whether or not the frame pointer can
3903 be eliminated can depend on what registers have been used. We need
3904 not check some conditions again (such as flag_omit_frame_pointer)
3905 since they can't have changed. */
3907 static void
3908 update_eliminables (HARD_REG_SET *pset)
3910 int previous_frame_pointer_needed = frame_pointer_needed;
3911 struct elim_table *ep;
3913 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3914 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3915 && targetm.frame_pointer_required ())
3916 || ! targetm.can_eliminate (ep->from, ep->to)
3918 ep->can_eliminate = 0;
3920 /* Look for the case where we have discovered that we can't replace
3921 register A with register B and that means that we will now be
3922 trying to replace register A with register C. This means we can
3923 no longer replace register C with register B and we need to disable
3924 such an elimination, if it exists. This occurs often with A == ap,
3925 B == sp, and C == fp. */
3927 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3929 struct elim_table *op;
3930 int new_to = -1;
3932 if (! ep->can_eliminate && ep->can_eliminate_previous)
3934 /* Find the current elimination for ep->from, if there is a
3935 new one. */
3936 for (op = reg_eliminate;
3937 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3938 if (op->from == ep->from && op->can_eliminate)
3940 new_to = op->to;
3941 break;
3944 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3945 disable it. */
3946 for (op = reg_eliminate;
3947 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3948 if (op->from == new_to && op->to == ep->to)
3949 op->can_eliminate = 0;
3953 /* See if any registers that we thought we could eliminate the previous
3954 time are no longer eliminable. If so, something has changed and we
3955 must spill the register. Also, recompute the number of eliminable
3956 registers and see if the frame pointer is needed; it is if there is
3957 no elimination of the frame pointer that we can perform. */
3959 frame_pointer_needed = 1;
3960 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3962 if (ep->can_eliminate
3963 && ep->from == FRAME_POINTER_REGNUM
3964 && ep->to != HARD_FRAME_POINTER_REGNUM
3965 && (! SUPPORTS_STACK_ALIGNMENT
3966 || ! crtl->stack_realign_needed))
3967 frame_pointer_needed = 0;
3969 if (! ep->can_eliminate && ep->can_eliminate_previous)
3971 ep->can_eliminate_previous = 0;
3972 SET_HARD_REG_BIT (*pset, ep->from);
3973 num_eliminable--;
3977 /* If we didn't need a frame pointer last time, but we do now, spill
3978 the hard frame pointer. */
3979 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3980 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3983 /* Call update_eliminables an spill any registers we can't eliminate anymore.
3984 Return true iff a register was spilled. */
3986 static bool
3987 update_eliminables_and_spill (void)
3989 int i;
3990 bool did_spill = false;
3991 HARD_REG_SET to_spill;
3992 CLEAR_HARD_REG_SET (to_spill);
3993 update_eliminables (&to_spill);
3994 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
3996 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3997 if (TEST_HARD_REG_BIT (to_spill, i))
3999 spill_hard_reg (i, 1);
4000 did_spill = true;
4002 /* Regardless of the state of spills, if we previously had
4003 a register that we thought we could eliminate, but now can
4004 not eliminate, we must run another pass.
4006 Consider pseudos which have an entry in reg_equiv_* which
4007 reference an eliminable register. We must make another pass
4008 to update reg_equiv_* so that we do not substitute in the
4009 old value from when we thought the elimination could be
4010 performed. */
4012 return did_spill;
4015 /* Return true if X is used as the target register of an elimination. */
4017 bool
4018 elimination_target_reg_p (rtx x)
4020 struct elim_table *ep;
4022 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4023 if (ep->to_rtx == x && ep->can_eliminate)
4024 return true;
4026 return false;
4029 /* Initialize the table of registers to eliminate.
4030 Pre-condition: global flag frame_pointer_needed has been set before
4031 calling this function. */
4033 static void
4034 init_elim_table (void)
4036 struct elim_table *ep;
4037 const struct elim_table_1 *ep1;
4039 if (!reg_eliminate)
4040 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4042 num_eliminable = 0;
4044 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4045 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4047 ep->from = ep1->from;
4048 ep->to = ep1->to;
4049 ep->can_eliminate = ep->can_eliminate_previous
4050 = (targetm.can_eliminate (ep->from, ep->to)
4051 && ! (ep->to == STACK_POINTER_REGNUM
4052 && frame_pointer_needed
4053 && (! SUPPORTS_STACK_ALIGNMENT
4054 || ! stack_realign_fp)));
4057 /* Count the number of eliminable registers and build the FROM and TO
4058 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4059 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4060 We depend on this. */
4061 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4063 num_eliminable += ep->can_eliminate;
4064 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4065 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4069 /* Find all the pseudo registers that didn't get hard regs
4070 but do have known equivalent constants or memory slots.
4071 These include parameters (known equivalent to parameter slots)
4072 and cse'd or loop-moved constant memory addresses.
4074 Record constant equivalents in reg_equiv_constant
4075 so they will be substituted by find_reloads.
4076 Record memory equivalents in reg_mem_equiv so they can
4077 be substituted eventually by altering the REG-rtx's. */
4079 static void
4080 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4082 int i;
4083 rtx_insn *insn;
4085 grow_reg_equivs ();
4086 if (do_subregs)
4087 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4088 else
4089 reg_max_ref_width = NULL;
4091 num_eliminable_invariants = 0;
4093 first_label_num = get_first_label_num ();
4094 num_labels = max_label_num () - first_label_num;
4096 /* Allocate the tables used to store offset information at labels. */
4097 offsets_known_at = XNEWVEC (char, num_labels);
4098 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4100 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4101 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4102 find largest such for each pseudo. FIRST is the head of the insn
4103 list. */
4105 for (insn = first; insn; insn = NEXT_INSN (insn))
4107 rtx set = single_set (insn);
4109 /* We may introduce USEs that we want to remove at the end, so
4110 we'll mark them with QImode. Make sure there are no
4111 previously-marked insns left by say regmove. */
4112 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4113 && GET_MODE (insn) != VOIDmode)
4114 PUT_MODE (insn, VOIDmode);
4116 if (do_subregs && NONDEBUG_INSN_P (insn))
4117 scan_paradoxical_subregs (PATTERN (insn));
4119 if (set != 0 && REG_P (SET_DEST (set)))
4121 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4122 rtx x;
4124 if (! note)
4125 continue;
4127 i = REGNO (SET_DEST (set));
4128 x = XEXP (note, 0);
4130 if (i <= LAST_VIRTUAL_REGISTER)
4131 continue;
4133 /* If flag_pic and we have constant, verify it's legitimate. */
4134 if (!CONSTANT_P (x)
4135 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4137 /* It can happen that a REG_EQUIV note contains a MEM
4138 that is not a legitimate memory operand. As later
4139 stages of reload assume that all addresses found
4140 in the reg_equiv_* arrays were originally legitimate,
4141 we ignore such REG_EQUIV notes. */
4142 if (memory_operand (x, VOIDmode))
4144 /* Always unshare the equivalence, so we can
4145 substitute into this insn without touching the
4146 equivalence. */
4147 reg_equiv_memory_loc (i) = copy_rtx (x);
4149 else if (function_invariant_p (x))
4151 machine_mode mode;
4153 mode = GET_MODE (SET_DEST (set));
4154 if (GET_CODE (x) == PLUS)
4156 /* This is PLUS of frame pointer and a constant,
4157 and might be shared. Unshare it. */
4158 reg_equiv_invariant (i) = copy_rtx (x);
4159 num_eliminable_invariants++;
4161 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4163 reg_equiv_invariant (i) = x;
4164 num_eliminable_invariants++;
4166 else if (targetm.legitimate_constant_p (mode, x))
4167 reg_equiv_constant (i) = x;
4168 else
4170 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4171 if (! reg_equiv_memory_loc (i))
4172 reg_equiv_init (i) = NULL;
4175 else
4177 reg_equiv_init (i) = NULL;
4178 continue;
4181 else
4182 reg_equiv_init (i) = NULL;
4186 if (dump_file)
4187 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4188 if (reg_equiv_init (i))
4190 fprintf (dump_file, "init_insns for %u: ", i);
4191 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4192 fprintf (dump_file, "\n");
4196 /* Indicate that we no longer have known memory locations or constants.
4197 Free all data involved in tracking these. */
4199 static void
4200 free_reg_equiv (void)
4202 int i;
4204 free (offsets_known_at);
4205 free (offsets_at);
4206 offsets_at = 0;
4207 offsets_known_at = 0;
4209 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4210 if (reg_equiv_alt_mem_list (i))
4211 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4212 vec_free (reg_equivs);
4215 /* Kick all pseudos out of hard register REGNO.
4217 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4218 because we found we can't eliminate some register. In the case, no pseudos
4219 are allowed to be in the register, even if they are only in a block that
4220 doesn't require spill registers, unlike the case when we are spilling this
4221 hard reg to produce another spill register.
4223 Return nonzero if any pseudos needed to be kicked out. */
4225 static void
4226 spill_hard_reg (unsigned int regno, int cant_eliminate)
4228 int i;
4230 if (cant_eliminate)
4232 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4233 df_set_regs_ever_live (regno, true);
4236 /* Spill every pseudo reg that was allocated to this reg
4237 or to something that overlaps this reg. */
4239 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4240 if (reg_renumber[i] >= 0
4241 && (unsigned int) reg_renumber[i] <= regno
4242 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4243 SET_REGNO_REG_SET (&spilled_pseudos, i);
4246 /* After spill_hard_reg was called and/or find_reload_regs was run for all
4247 insns that need reloads, this function is used to actually spill pseudo
4248 registers and try to reallocate them. It also sets up the spill_regs
4249 array for use by choose_reload_regs.
4251 GLOBAL nonzero means we should attempt to reallocate any pseudo registers
4252 that we displace from hard registers. */
4254 static int
4255 finish_spills (int global)
4257 struct insn_chain *chain;
4258 int something_changed = 0;
4259 unsigned i;
4260 reg_set_iterator rsi;
4262 /* Build the spill_regs array for the function. */
4263 /* If there are some registers still to eliminate and one of the spill regs
4264 wasn't ever used before, additional stack space may have to be
4265 allocated to store this register. Thus, we may have changed the offset
4266 between the stack and frame pointers, so mark that something has changed.
4268 One might think that we need only set VAL to 1 if this is a call-used
4269 register. However, the set of registers that must be saved by the
4270 prologue is not identical to the call-used set. For example, the
4271 register used by the call insn for the return PC is a call-used register,
4272 but must be saved by the prologue. */
4274 n_spills = 0;
4275 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4276 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4278 spill_reg_order[i] = n_spills;
4279 spill_regs[n_spills++] = i;
4280 if (num_eliminable && ! df_regs_ever_live_p (i))
4281 something_changed = 1;
4282 df_set_regs_ever_live (i, true);
4284 else
4285 spill_reg_order[i] = -1;
4287 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4288 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4290 /* Record the current hard register the pseudo is allocated to
4291 in pseudo_previous_regs so we avoid reallocating it to the
4292 same hard reg in a later pass. */
4293 gcc_assert (reg_renumber[i] >= 0);
4295 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4296 /* Mark it as no longer having a hard register home. */
4297 reg_renumber[i] = -1;
4298 if (ira_conflicts_p)
4299 /* Inform IRA about the change. */
4300 ira_mark_allocation_change (i);
4301 /* We will need to scan everything again. */
4302 something_changed = 1;
4305 /* Retry global register allocation if possible. */
4306 if (global && ira_conflicts_p)
4308 unsigned int n;
4310 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4311 /* For every insn that needs reloads, set the registers used as spill
4312 regs in pseudo_forbidden_regs for every pseudo live across the
4313 insn. */
4314 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4316 EXECUTE_IF_SET_IN_REG_SET
4317 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4319 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4320 chain->used_spill_regs);
4322 EXECUTE_IF_SET_IN_REG_SET
4323 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4325 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4326 chain->used_spill_regs);
4330 /* Retry allocating the pseudos spilled in IRA and the
4331 reload. For each reg, merge the various reg sets that
4332 indicate which hard regs can't be used, and call
4333 ira_reassign_pseudos. */
4334 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4335 if (reg_old_renumber[i] != reg_renumber[i])
4337 if (reg_renumber[i] < 0)
4338 temp_pseudo_reg_arr[n++] = i;
4339 else
4340 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4342 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4343 bad_spill_regs_global,
4344 pseudo_forbidden_regs, pseudo_previous_regs,
4345 &spilled_pseudos))
4346 something_changed = 1;
4348 /* Fix up the register information in the insn chain.
4349 This involves deleting those of the spilled pseudos which did not get
4350 a new hard register home from the live_{before,after} sets. */
4351 for (chain = reload_insn_chain; chain; chain = chain->next)
4353 HARD_REG_SET used_by_pseudos;
4354 HARD_REG_SET used_by_pseudos2;
4356 if (! ira_conflicts_p)
4358 /* Don't do it for IRA because IRA and the reload still can
4359 assign hard registers to the spilled pseudos on next
4360 reload iterations. */
4361 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4362 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4364 /* Mark any unallocated hard regs as available for spills. That
4365 makes inheritance work somewhat better. */
4366 if (chain->need_reload)
4368 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4369 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4370 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4372 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4373 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4374 /* Value of chain->used_spill_regs from previous iteration
4375 may be not included in the value calculated here because
4376 of possible removing caller-saves insns (see function
4377 delete_caller_save_insns. */
4378 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4379 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4383 CLEAR_REG_SET (&changed_allocation_pseudos);
4384 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4385 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4387 int regno = reg_renumber[i];
4388 if (reg_old_renumber[i] == regno)
4389 continue;
4391 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4393 alter_reg (i, reg_old_renumber[i], false);
4394 reg_old_renumber[i] = regno;
4395 if (dump_file)
4397 if (regno == -1)
4398 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4399 else
4400 fprintf (dump_file, " Register %d now in %d.\n\n",
4401 i, reg_renumber[i]);
4405 return something_changed;
4408 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4410 static void
4411 scan_paradoxical_subregs (rtx x)
4413 int i;
4414 const char *fmt;
4415 enum rtx_code code = GET_CODE (x);
4417 switch (code)
4419 case REG:
4420 case CONST:
4421 case SYMBOL_REF:
4422 case LABEL_REF:
4423 CASE_CONST_ANY:
4424 case CC0:
4425 case PC:
4426 case USE:
4427 case CLOBBER:
4428 return;
4430 case SUBREG:
4431 if (REG_P (SUBREG_REG (x))
4432 && (GET_MODE_SIZE (GET_MODE (x))
4433 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4435 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4436 = GET_MODE_SIZE (GET_MODE (x));
4437 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4439 return;
4441 default:
4442 break;
4445 fmt = GET_RTX_FORMAT (code);
4446 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4448 if (fmt[i] == 'e')
4449 scan_paradoxical_subregs (XEXP (x, i));
4450 else if (fmt[i] == 'E')
4452 int j;
4453 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4454 scan_paradoxical_subregs (XVECEXP (x, i, j));
4459 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4460 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4461 and apply the corresponding narrowing subreg to *OTHER_PTR.
4462 Return true if the operands were changed, false otherwise. */
4464 static bool
4465 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4467 rtx op, inner, other, tem;
4469 op = *op_ptr;
4470 if (!paradoxical_subreg_p (op))
4471 return false;
4472 inner = SUBREG_REG (op);
4474 other = *other_ptr;
4475 tem = gen_lowpart_common (GET_MODE (inner), other);
4476 if (!tem)
4477 return false;
4479 /* If the lowpart operation turned a hard register into a subreg,
4480 rather than simplifying it to another hard register, then the
4481 mode change cannot be properly represented. For example, OTHER
4482 might be valid in its current mode, but not in the new one. */
4483 if (GET_CODE (tem) == SUBREG
4484 && REG_P (other)
4485 && HARD_REGISTER_P (other))
4486 return false;
4488 *op_ptr = inner;
4489 *other_ptr = tem;
4490 return true;
4493 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4494 examine all of the reload insns between PREV and NEXT exclusive, and
4495 annotate all that may trap. */
4497 static void
4498 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4500 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4501 if (note == NULL)
4502 return;
4503 if (!insn_could_throw_p (insn))
4504 remove_note (insn, note);
4505 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4508 /* Reload pseudo-registers into hard regs around each insn as needed.
4509 Additional register load insns are output before the insn that needs it
4510 and perhaps store insns after insns that modify the reloaded pseudo reg.
4512 reg_last_reload_reg and reg_reloaded_contents keep track of
4513 which registers are already available in reload registers.
4514 We update these for the reloads that we perform,
4515 as the insns are scanned. */
4517 static void
4518 reload_as_needed (int live_known)
4520 struct insn_chain *chain;
4521 #if AUTO_INC_DEC
4522 int i;
4523 #endif
4524 rtx_note *marker;
4526 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4527 memset (spill_reg_store, 0, sizeof spill_reg_store);
4528 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4529 INIT_REG_SET (&reg_has_output_reload);
4530 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4531 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4533 set_initial_elim_offsets ();
4535 /* Generate a marker insn that we will move around. */
4536 marker = emit_note (NOTE_INSN_DELETED);
4537 unlink_insn_chain (marker, marker);
4539 for (chain = reload_insn_chain; chain; chain = chain->next)
4541 rtx_insn *prev = 0;
4542 rtx_insn *insn = chain->insn;
4543 rtx_insn *old_next = NEXT_INSN (insn);
4544 #if AUTO_INC_DEC
4545 rtx_insn *old_prev = PREV_INSN (insn);
4546 #endif
4548 if (will_delete_init_insn_p (insn))
4549 continue;
4551 /* If we pass a label, copy the offsets from the label information
4552 into the current offsets of each elimination. */
4553 if (LABEL_P (insn))
4554 set_offsets_for_label (insn);
4556 else if (INSN_P (insn))
4558 regset_head regs_to_forget;
4559 INIT_REG_SET (&regs_to_forget);
4560 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4562 /* If this is a USE and CLOBBER of a MEM, ensure that any
4563 references to eliminable registers have been removed. */
4565 if ((GET_CODE (PATTERN (insn)) == USE
4566 || GET_CODE (PATTERN (insn)) == CLOBBER)
4567 && MEM_P (XEXP (PATTERN (insn), 0)))
4568 XEXP (XEXP (PATTERN (insn), 0), 0)
4569 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4570 GET_MODE (XEXP (PATTERN (insn), 0)),
4571 NULL_RTX);
4573 /* If we need to do register elimination processing, do so.
4574 This might delete the insn, in which case we are done. */
4575 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4577 eliminate_regs_in_insn (insn, 1);
4578 if (NOTE_P (insn))
4580 update_eliminable_offsets ();
4581 CLEAR_REG_SET (&regs_to_forget);
4582 continue;
4586 /* If need_elim is nonzero but need_reload is zero, one might think
4587 that we could simply set n_reloads to 0. However, find_reloads
4588 could have done some manipulation of the insn (such as swapping
4589 commutative operands), and these manipulations are lost during
4590 the first pass for every insn that needs register elimination.
4591 So the actions of find_reloads must be redone here. */
4593 if (! chain->need_elim && ! chain->need_reload
4594 && ! chain->need_operand_change)
4595 n_reloads = 0;
4596 /* First find the pseudo regs that must be reloaded for this insn.
4597 This info is returned in the tables reload_... (see reload.h).
4598 Also modify the body of INSN by substituting RELOAD
4599 rtx's for those pseudo regs. */
4600 else
4602 CLEAR_REG_SET (&reg_has_output_reload);
4603 CLEAR_HARD_REG_SET (reg_is_output_reload);
4605 find_reloads (insn, 1, spill_indirect_levels, live_known,
4606 spill_reg_order);
4609 if (n_reloads > 0)
4611 rtx_insn *next = NEXT_INSN (insn);
4613 /* ??? PREV can get deleted by reload inheritance.
4614 Work around this by emitting a marker note. */
4615 prev = PREV_INSN (insn);
4616 reorder_insns_nobb (marker, marker, prev);
4618 /* Now compute which reload regs to reload them into. Perhaps
4619 reusing reload regs from previous insns, or else output
4620 load insns to reload them. Maybe output store insns too.
4621 Record the choices of reload reg in reload_reg_rtx. */
4622 choose_reload_regs (chain);
4624 /* Generate the insns to reload operands into or out of
4625 their reload regs. */
4626 emit_reload_insns (chain);
4628 /* Substitute the chosen reload regs from reload_reg_rtx
4629 into the insn's body (or perhaps into the bodies of other
4630 load and store insn that we just made for reloading
4631 and that we moved the structure into). */
4632 subst_reloads (insn);
4634 prev = PREV_INSN (marker);
4635 unlink_insn_chain (marker, marker);
4637 /* Adjust the exception region notes for loads and stores. */
4638 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4639 fixup_eh_region_note (insn, prev, next);
4641 /* Adjust the location of REG_ARGS_SIZE. */
4642 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4643 if (p)
4645 remove_note (insn, p);
4646 fixup_args_size_notes (prev, PREV_INSN (next),
4647 INTVAL (XEXP (p, 0)));
4650 /* If this was an ASM, make sure that all the reload insns
4651 we have generated are valid. If not, give an error
4652 and delete them. */
4653 if (asm_noperands (PATTERN (insn)) >= 0)
4654 for (rtx_insn *p = NEXT_INSN (prev);
4655 p != next;
4656 p = NEXT_INSN (p))
4657 if (p != insn && INSN_P (p)
4658 && GET_CODE (PATTERN (p)) != USE
4659 && (recog_memoized (p) < 0
4660 || (extract_insn (p),
4661 !(constrain_operands (1,
4662 get_enabled_alternatives (p))))))
4664 error_for_asm (insn,
4665 "%<asm%> operand requires "
4666 "impossible reload");
4667 delete_insn (p);
4671 if (num_eliminable && chain->need_elim)
4672 update_eliminable_offsets ();
4674 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4675 is no longer validly lying around to save a future reload.
4676 Note that this does not detect pseudos that were reloaded
4677 for this insn in order to be stored in
4678 (obeying register constraints). That is correct; such reload
4679 registers ARE still valid. */
4680 forget_marked_reloads (&regs_to_forget);
4681 CLEAR_REG_SET (&regs_to_forget);
4683 /* There may have been CLOBBER insns placed after INSN. So scan
4684 between INSN and NEXT and use them to forget old reloads. */
4685 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4686 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4687 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4689 #if AUTO_INC_DEC
4690 /* Likewise for regs altered by auto-increment in this insn.
4691 REG_INC notes have been changed by reloading:
4692 find_reloads_address_1 records substitutions for them,
4693 which have been performed by subst_reloads above. */
4694 for (i = n_reloads - 1; i >= 0; i--)
4696 rtx in_reg = rld[i].in_reg;
4697 if (in_reg)
4699 enum rtx_code code = GET_CODE (in_reg);
4700 /* PRE_INC / PRE_DEC will have the reload register ending up
4701 with the same value as the stack slot, but that doesn't
4702 hold true for POST_INC / POST_DEC. Either we have to
4703 convert the memory access to a true POST_INC / POST_DEC,
4704 or we can't use the reload register for inheritance. */
4705 if ((code == POST_INC || code == POST_DEC)
4706 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4707 REGNO (rld[i].reg_rtx))
4708 /* Make sure it is the inc/dec pseudo, and not
4709 some other (e.g. output operand) pseudo. */
4710 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4711 == REGNO (XEXP (in_reg, 0))))
4714 rtx reload_reg = rld[i].reg_rtx;
4715 machine_mode mode = GET_MODE (reload_reg);
4716 int n = 0;
4717 rtx_insn *p;
4719 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4721 /* We really want to ignore REG_INC notes here, so
4722 use PATTERN (p) as argument to reg_set_p . */
4723 if (reg_set_p (reload_reg, PATTERN (p)))
4724 break;
4725 n = count_occurrences (PATTERN (p), reload_reg, 0);
4726 if (! n)
4727 continue;
4728 if (n == 1)
4730 rtx replace_reg
4731 = gen_rtx_fmt_e (code, mode, reload_reg);
4733 validate_replace_rtx_group (reload_reg,
4734 replace_reg, p);
4735 n = verify_changes (0);
4737 /* We must also verify that the constraints
4738 are met after the replacement. Make sure
4739 extract_insn is only called for an insn
4740 where the replacements were found to be
4741 valid so far. */
4742 if (n)
4744 extract_insn (p);
4745 n = constrain_operands (1,
4746 get_enabled_alternatives (p));
4749 /* If the constraints were not met, then
4750 undo the replacement, else confirm it. */
4751 if (!n)
4752 cancel_changes (0);
4753 else
4754 confirm_change_group ();
4756 break;
4758 if (n == 1)
4760 add_reg_note (p, REG_INC, reload_reg);
4761 /* Mark this as having an output reload so that the
4762 REG_INC processing code below won't invalidate
4763 the reload for inheritance. */
4764 SET_HARD_REG_BIT (reg_is_output_reload,
4765 REGNO (reload_reg));
4766 SET_REGNO_REG_SET (&reg_has_output_reload,
4767 REGNO (XEXP (in_reg, 0)));
4769 else
4770 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4771 NULL);
4773 else if ((code == PRE_INC || code == PRE_DEC)
4774 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4775 REGNO (rld[i].reg_rtx))
4776 /* Make sure it is the inc/dec pseudo, and not
4777 some other (e.g. output operand) pseudo. */
4778 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4779 == REGNO (XEXP (in_reg, 0))))
4781 SET_HARD_REG_BIT (reg_is_output_reload,
4782 REGNO (rld[i].reg_rtx));
4783 SET_REGNO_REG_SET (&reg_has_output_reload,
4784 REGNO (XEXP (in_reg, 0)));
4786 else if (code == PRE_INC || code == PRE_DEC
4787 || code == POST_INC || code == POST_DEC)
4789 int in_regno = REGNO (XEXP (in_reg, 0));
4791 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4793 int in_hard_regno;
4794 bool forget_p = true;
4796 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4797 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4798 in_hard_regno))
4800 for (rtx_insn *x = (old_prev ?
4801 NEXT_INSN (old_prev) : insn);
4802 x != old_next;
4803 x = NEXT_INSN (x))
4804 if (x == reg_reloaded_insn[in_hard_regno])
4806 forget_p = false;
4807 break;
4810 /* If for some reasons, we didn't set up
4811 reg_last_reload_reg in this insn,
4812 invalidate inheritance from previous
4813 insns for the incremented/decremented
4814 register. Such registers will be not in
4815 reg_has_output_reload. Invalidate it
4816 also if the corresponding element in
4817 reg_reloaded_insn is also
4818 invalidated. */
4819 if (forget_p)
4820 forget_old_reloads_1 (XEXP (in_reg, 0),
4821 NULL_RTX, NULL);
4826 /* If a pseudo that got a hard register is auto-incremented,
4827 we must purge records of copying it into pseudos without
4828 hard registers. */
4829 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4830 if (REG_NOTE_KIND (x) == REG_INC)
4832 /* See if this pseudo reg was reloaded in this insn.
4833 If so, its last-reload info is still valid
4834 because it is based on this insn's reload. */
4835 for (i = 0; i < n_reloads; i++)
4836 if (rld[i].out == XEXP (x, 0))
4837 break;
4839 if (i == n_reloads)
4840 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4842 #endif
4844 /* A reload reg's contents are unknown after a label. */
4845 if (LABEL_P (insn))
4846 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4848 /* Don't assume a reload reg is still good after a call insn
4849 if it is a call-used reg, or if it contains a value that will
4850 be partially clobbered by the call. */
4851 else if (CALL_P (insn))
4853 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4854 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4856 /* If this is a call to a setjmp-type function, we must not
4857 reuse any reload reg contents across the call; that will
4858 just be clobbered by other uses of the register in later
4859 code, before the longjmp. */
4860 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4861 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4865 /* Clean up. */
4866 free (reg_last_reload_reg);
4867 CLEAR_REG_SET (&reg_has_output_reload);
4870 /* Discard all record of any value reloaded from X,
4871 or reloaded in X from someplace else;
4872 unless X is an output reload reg of the current insn.
4874 X may be a hard reg (the reload reg)
4875 or it may be a pseudo reg that was reloaded from.
4877 When DATA is non-NULL just mark the registers in regset
4878 to be forgotten later. */
4880 static void
4881 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4882 void *data)
4884 unsigned int regno;
4885 unsigned int nr;
4886 regset regs = (regset) data;
4888 /* note_stores does give us subregs of hard regs,
4889 subreg_regno_offset requires a hard reg. */
4890 while (GET_CODE (x) == SUBREG)
4892 /* We ignore the subreg offset when calculating the regno,
4893 because we are using the entire underlying hard register
4894 below. */
4895 x = SUBREG_REG (x);
4898 if (!REG_P (x))
4899 return;
4901 regno = REGNO (x);
4903 if (regno >= FIRST_PSEUDO_REGISTER)
4904 nr = 1;
4905 else
4907 unsigned int i;
4909 nr = hard_regno_nregs[regno][GET_MODE (x)];
4910 /* Storing into a spilled-reg invalidates its contents.
4911 This can happen if a block-local pseudo is allocated to that reg
4912 and it wasn't spilled because this block's total need is 0.
4913 Then some insn might have an optional reload and use this reg. */
4914 if (!regs)
4915 for (i = 0; i < nr; i++)
4916 /* But don't do this if the reg actually serves as an output
4917 reload reg in the current instruction. */
4918 if (n_reloads == 0
4919 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4921 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4922 spill_reg_store[regno + i] = 0;
4926 if (regs)
4927 while (nr-- > 0)
4928 SET_REGNO_REG_SET (regs, regno + nr);
4929 else
4931 /* Since value of X has changed,
4932 forget any value previously copied from it. */
4934 while (nr-- > 0)
4935 /* But don't forget a copy if this is the output reload
4936 that establishes the copy's validity. */
4937 if (n_reloads == 0
4938 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4939 reg_last_reload_reg[regno + nr] = 0;
4943 /* Forget the reloads marked in regset by previous function. */
4944 static void
4945 forget_marked_reloads (regset regs)
4947 unsigned int reg;
4948 reg_set_iterator rsi;
4949 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4951 if (reg < FIRST_PSEUDO_REGISTER
4952 /* But don't do this if the reg actually serves as an output
4953 reload reg in the current instruction. */
4954 && (n_reloads == 0
4955 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4957 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4958 spill_reg_store[reg] = 0;
4960 if (n_reloads == 0
4961 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4962 reg_last_reload_reg[reg] = 0;
4966 /* The following HARD_REG_SETs indicate when each hard register is
4967 used for a reload of various parts of the current insn. */
4969 /* If reg is unavailable for all reloads. */
4970 static HARD_REG_SET reload_reg_unavailable;
4971 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4972 static HARD_REG_SET reload_reg_used;
4973 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4974 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4975 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4976 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4977 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4978 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4979 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4980 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4981 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4982 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4983 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4984 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4985 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4986 static HARD_REG_SET reload_reg_used_in_op_addr;
4987 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4988 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4989 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4990 static HARD_REG_SET reload_reg_used_in_insn;
4991 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4992 static HARD_REG_SET reload_reg_used_in_other_addr;
4994 /* If reg is in use as a reload reg for any sort of reload. */
4995 static HARD_REG_SET reload_reg_used_at_all;
4997 /* If reg is use as an inherited reload. We just mark the first register
4998 in the group. */
4999 static HARD_REG_SET reload_reg_used_for_inherit;
5001 /* Records which hard regs are used in any way, either as explicit use or
5002 by being allocated to a pseudo during any point of the current insn. */
5003 static HARD_REG_SET reg_used_in_insn;
5005 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5006 TYPE. MODE is used to indicate how many consecutive regs are
5007 actually used. */
5009 static void
5010 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5011 machine_mode mode)
5013 switch (type)
5015 case RELOAD_OTHER:
5016 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5017 break;
5019 case RELOAD_FOR_INPUT_ADDRESS:
5020 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5021 break;
5023 case RELOAD_FOR_INPADDR_ADDRESS:
5024 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5025 break;
5027 case RELOAD_FOR_OUTPUT_ADDRESS:
5028 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5029 break;
5031 case RELOAD_FOR_OUTADDR_ADDRESS:
5032 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5033 break;
5035 case RELOAD_FOR_OPERAND_ADDRESS:
5036 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5037 break;
5039 case RELOAD_FOR_OPADDR_ADDR:
5040 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5041 break;
5043 case RELOAD_FOR_OTHER_ADDRESS:
5044 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5045 break;
5047 case RELOAD_FOR_INPUT:
5048 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5049 break;
5051 case RELOAD_FOR_OUTPUT:
5052 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5053 break;
5055 case RELOAD_FOR_INSN:
5056 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5057 break;
5060 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5063 /* Similarly, but show REGNO is no longer in use for a reload. */
5065 static void
5066 clear_reload_reg_in_use (unsigned int regno, int opnum,
5067 enum reload_type type, machine_mode mode)
5069 unsigned int nregs = hard_regno_nregs[regno][mode];
5070 unsigned int start_regno, end_regno, r;
5071 int i;
5072 /* A complication is that for some reload types, inheritance might
5073 allow multiple reloads of the same types to share a reload register.
5074 We set check_opnum if we have to check only reloads with the same
5075 operand number, and check_any if we have to check all reloads. */
5076 int check_opnum = 0;
5077 int check_any = 0;
5078 HARD_REG_SET *used_in_set;
5080 switch (type)
5082 case RELOAD_OTHER:
5083 used_in_set = &reload_reg_used;
5084 break;
5086 case RELOAD_FOR_INPUT_ADDRESS:
5087 used_in_set = &reload_reg_used_in_input_addr[opnum];
5088 break;
5090 case RELOAD_FOR_INPADDR_ADDRESS:
5091 check_opnum = 1;
5092 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5093 break;
5095 case RELOAD_FOR_OUTPUT_ADDRESS:
5096 used_in_set = &reload_reg_used_in_output_addr[opnum];
5097 break;
5099 case RELOAD_FOR_OUTADDR_ADDRESS:
5100 check_opnum = 1;
5101 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5102 break;
5104 case RELOAD_FOR_OPERAND_ADDRESS:
5105 used_in_set = &reload_reg_used_in_op_addr;
5106 break;
5108 case RELOAD_FOR_OPADDR_ADDR:
5109 check_any = 1;
5110 used_in_set = &reload_reg_used_in_op_addr_reload;
5111 break;
5113 case RELOAD_FOR_OTHER_ADDRESS:
5114 used_in_set = &reload_reg_used_in_other_addr;
5115 check_any = 1;
5116 break;
5118 case RELOAD_FOR_INPUT:
5119 used_in_set = &reload_reg_used_in_input[opnum];
5120 break;
5122 case RELOAD_FOR_OUTPUT:
5123 used_in_set = &reload_reg_used_in_output[opnum];
5124 break;
5126 case RELOAD_FOR_INSN:
5127 used_in_set = &reload_reg_used_in_insn;
5128 break;
5129 default:
5130 gcc_unreachable ();
5132 /* We resolve conflicts with remaining reloads of the same type by
5133 excluding the intervals of reload registers by them from the
5134 interval of freed reload registers. Since we only keep track of
5135 one set of interval bounds, we might have to exclude somewhat
5136 more than what would be necessary if we used a HARD_REG_SET here.
5137 But this should only happen very infrequently, so there should
5138 be no reason to worry about it. */
5140 start_regno = regno;
5141 end_regno = regno + nregs;
5142 if (check_opnum || check_any)
5144 for (i = n_reloads - 1; i >= 0; i--)
5146 if (rld[i].when_needed == type
5147 && (check_any || rld[i].opnum == opnum)
5148 && rld[i].reg_rtx)
5150 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5151 unsigned int conflict_end
5152 = end_hard_regno (rld[i].mode, conflict_start);
5154 /* If there is an overlap with the first to-be-freed register,
5155 adjust the interval start. */
5156 if (conflict_start <= start_regno && conflict_end > start_regno)
5157 start_regno = conflict_end;
5158 /* Otherwise, if there is a conflict with one of the other
5159 to-be-freed registers, adjust the interval end. */
5160 if (conflict_start > start_regno && conflict_start < end_regno)
5161 end_regno = conflict_start;
5166 for (r = start_regno; r < end_regno; r++)
5167 CLEAR_HARD_REG_BIT (*used_in_set, r);
5170 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5171 specified by OPNUM and TYPE. */
5173 static int
5174 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5176 int i;
5178 /* In use for a RELOAD_OTHER means it's not available for anything. */
5179 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5180 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5181 return 0;
5183 switch (type)
5185 case RELOAD_OTHER:
5186 /* In use for anything means we can't use it for RELOAD_OTHER. */
5187 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5188 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5189 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5190 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5191 return 0;
5193 for (i = 0; i < reload_n_operands; i++)
5194 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5195 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5196 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5197 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5198 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5199 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5200 return 0;
5202 return 1;
5204 case RELOAD_FOR_INPUT:
5205 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5206 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5207 return 0;
5209 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5210 return 0;
5212 /* If it is used for some other input, can't use it. */
5213 for (i = 0; i < reload_n_operands; i++)
5214 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5215 return 0;
5217 /* If it is used in a later operand's address, can't use it. */
5218 for (i = opnum + 1; i < reload_n_operands; i++)
5219 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5220 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5221 return 0;
5223 return 1;
5225 case RELOAD_FOR_INPUT_ADDRESS:
5226 /* Can't use a register if it is used for an input address for this
5227 operand or used as an input in an earlier one. */
5228 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5229 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5230 return 0;
5232 for (i = 0; i < opnum; i++)
5233 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5234 return 0;
5236 return 1;
5238 case RELOAD_FOR_INPADDR_ADDRESS:
5239 /* Can't use a register if it is used for an input address
5240 for this operand or used as an input in an earlier
5241 one. */
5242 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5243 return 0;
5245 for (i = 0; i < opnum; i++)
5246 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5247 return 0;
5249 return 1;
5251 case RELOAD_FOR_OUTPUT_ADDRESS:
5252 /* Can't use a register if it is used for an output address for this
5253 operand or used as an output in this or a later operand. Note
5254 that multiple output operands are emitted in reverse order, so
5255 the conflicting ones are those with lower indices. */
5256 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5257 return 0;
5259 for (i = 0; i <= opnum; i++)
5260 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5261 return 0;
5263 return 1;
5265 case RELOAD_FOR_OUTADDR_ADDRESS:
5266 /* Can't use a register if it is used for an output address
5267 for this operand or used as an output in this or a
5268 later operand. Note that multiple output operands are
5269 emitted in reverse order, so the conflicting ones are
5270 those with lower indices. */
5271 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5272 return 0;
5274 for (i = 0; i <= opnum; i++)
5275 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5276 return 0;
5278 return 1;
5280 case RELOAD_FOR_OPERAND_ADDRESS:
5281 for (i = 0; i < reload_n_operands; i++)
5282 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5283 return 0;
5285 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5286 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5288 case RELOAD_FOR_OPADDR_ADDR:
5289 for (i = 0; i < reload_n_operands; i++)
5290 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5291 return 0;
5293 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5295 case RELOAD_FOR_OUTPUT:
5296 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5297 outputs, or an operand address for this or an earlier output.
5298 Note that multiple output operands are emitted in reverse order,
5299 so the conflicting ones are those with higher indices. */
5300 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5301 return 0;
5303 for (i = 0; i < reload_n_operands; i++)
5304 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5305 return 0;
5307 for (i = opnum; i < reload_n_operands; i++)
5308 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5309 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5310 return 0;
5312 return 1;
5314 case RELOAD_FOR_INSN:
5315 for (i = 0; i < reload_n_operands; i++)
5316 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5317 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5318 return 0;
5320 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5321 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5323 case RELOAD_FOR_OTHER_ADDRESS:
5324 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5326 default:
5327 gcc_unreachable ();
5331 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5332 the number RELOADNUM, is still available in REGNO at the end of the insn.
5334 We can assume that the reload reg was already tested for availability
5335 at the time it is needed, and we should not check this again,
5336 in case the reg has already been marked in use. */
5338 static int
5339 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5341 int opnum = rld[reloadnum].opnum;
5342 enum reload_type type = rld[reloadnum].when_needed;
5343 int i;
5345 /* See if there is a reload with the same type for this operand, using
5346 the same register. This case is not handled by the code below. */
5347 for (i = reloadnum + 1; i < n_reloads; i++)
5349 rtx reg;
5350 int nregs;
5352 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5353 continue;
5354 reg = rld[i].reg_rtx;
5355 if (reg == NULL_RTX)
5356 continue;
5357 nregs = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
5358 if (regno >= REGNO (reg) && regno < REGNO (reg) + nregs)
5359 return 0;
5362 switch (type)
5364 case RELOAD_OTHER:
5365 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5366 its value must reach the end. */
5367 return 1;
5369 /* If this use is for part of the insn,
5370 its value reaches if no subsequent part uses the same register.
5371 Just like the above function, don't try to do this with lots
5372 of fallthroughs. */
5374 case RELOAD_FOR_OTHER_ADDRESS:
5375 /* Here we check for everything else, since these don't conflict
5376 with anything else and everything comes later. */
5378 for (i = 0; i < reload_n_operands; i++)
5379 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5380 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5381 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5382 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5383 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5384 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5385 return 0;
5387 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5388 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5389 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5390 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5392 case RELOAD_FOR_INPUT_ADDRESS:
5393 case RELOAD_FOR_INPADDR_ADDRESS:
5394 /* Similar, except that we check only for this and subsequent inputs
5395 and the address of only subsequent inputs and we do not need
5396 to check for RELOAD_OTHER objects since they are known not to
5397 conflict. */
5399 for (i = opnum; i < reload_n_operands; i++)
5400 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5401 return 0;
5403 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5404 could be killed if the register is also used by reload with type
5405 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5406 if (type == RELOAD_FOR_INPADDR_ADDRESS
5407 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5408 return 0;
5410 for (i = opnum + 1; i < reload_n_operands; i++)
5411 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5412 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5413 return 0;
5415 for (i = 0; i < reload_n_operands; i++)
5416 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5417 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5418 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5419 return 0;
5421 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5422 return 0;
5424 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5425 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5426 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5428 case RELOAD_FOR_INPUT:
5429 /* Similar to input address, except we start at the next operand for
5430 both input and input address and we do not check for
5431 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5432 would conflict. */
5434 for (i = opnum + 1; i < reload_n_operands; i++)
5435 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5436 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5437 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5438 return 0;
5440 /* ... fall through ... */
5442 case RELOAD_FOR_OPERAND_ADDRESS:
5443 /* Check outputs and their addresses. */
5445 for (i = 0; i < reload_n_operands; i++)
5446 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5447 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5448 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5449 return 0;
5451 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5453 case RELOAD_FOR_OPADDR_ADDR:
5454 for (i = 0; i < reload_n_operands; i++)
5455 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5456 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5457 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5458 return 0;
5460 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5461 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5462 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5464 case RELOAD_FOR_INSN:
5465 /* These conflict with other outputs with RELOAD_OTHER. So
5466 we need only check for output addresses. */
5468 opnum = reload_n_operands;
5470 /* fall through */
5472 case RELOAD_FOR_OUTPUT:
5473 case RELOAD_FOR_OUTPUT_ADDRESS:
5474 case RELOAD_FOR_OUTADDR_ADDRESS:
5475 /* We already know these can't conflict with a later output. So the
5476 only thing to check are later output addresses.
5477 Note that multiple output operands are emitted in reverse order,
5478 so the conflicting ones are those with lower indices. */
5479 for (i = 0; i < opnum; i++)
5480 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5481 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5482 return 0;
5484 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5485 could be killed if the register is also used by reload with type
5486 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5487 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5488 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5489 return 0;
5491 return 1;
5493 default:
5494 gcc_unreachable ();
5498 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5499 every register in REG. */
5501 static bool
5502 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5504 unsigned int i;
5506 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5507 if (!reload_reg_reaches_end_p (i, reloadnum))
5508 return false;
5509 return true;
5513 /* Returns whether R1 and R2 are uniquely chained: the value of one
5514 is used by the other, and that value is not used by any other
5515 reload for this insn. This is used to partially undo the decision
5516 made in find_reloads when in the case of multiple
5517 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5518 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5519 reloads. This code tries to avoid the conflict created by that
5520 change. It might be cleaner to explicitly keep track of which
5521 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5522 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5523 this after the fact. */
5524 static bool
5525 reloads_unique_chain_p (int r1, int r2)
5527 int i;
5529 /* We only check input reloads. */
5530 if (! rld[r1].in || ! rld[r2].in)
5531 return false;
5533 /* Avoid anything with output reloads. */
5534 if (rld[r1].out || rld[r2].out)
5535 return false;
5537 /* "chained" means one reload is a component of the other reload,
5538 not the same as the other reload. */
5539 if (rld[r1].opnum != rld[r2].opnum
5540 || rtx_equal_p (rld[r1].in, rld[r2].in)
5541 || rld[r1].optional || rld[r2].optional
5542 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5543 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5544 return false;
5546 /* The following loop assumes that r1 is the reload that feeds r2. */
5547 if (r1 > r2)
5548 std::swap (r1, r2);
5550 for (i = 0; i < n_reloads; i ++)
5551 /* Look for input reloads that aren't our two */
5552 if (i != r1 && i != r2 && rld[i].in)
5554 /* If our reload is mentioned at all, it isn't a simple chain. */
5555 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5556 return false;
5558 return true;
5561 /* The recursive function change all occurrences of WHAT in *WHERE
5562 to REPL. */
5563 static void
5564 substitute (rtx *where, const_rtx what, rtx repl)
5566 const char *fmt;
5567 int i;
5568 enum rtx_code code;
5570 if (*where == 0)
5571 return;
5573 if (*where == what || rtx_equal_p (*where, what))
5575 /* Record the location of the changed rtx. */
5576 substitute_stack.safe_push (where);
5577 *where = repl;
5578 return;
5581 code = GET_CODE (*where);
5582 fmt = GET_RTX_FORMAT (code);
5583 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5585 if (fmt[i] == 'E')
5587 int j;
5589 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5590 substitute (&XVECEXP (*where, i, j), what, repl);
5592 else if (fmt[i] == 'e')
5593 substitute (&XEXP (*where, i), what, repl);
5597 /* The function returns TRUE if chain of reload R1 and R2 (in any
5598 order) can be evaluated without usage of intermediate register for
5599 the reload containing another reload. It is important to see
5600 gen_reload to understand what the function is trying to do. As an
5601 example, let us have reload chain
5603 r2: const
5604 r1: <something> + const
5606 and reload R2 got reload reg HR. The function returns true if
5607 there is a correct insn HR = HR + <something>. Otherwise,
5608 gen_reload will use intermediate register (and this is the reload
5609 reg for R1) to reload <something>.
5611 We need this function to find a conflict for chain reloads. In our
5612 example, if HR = HR + <something> is incorrect insn, then we cannot
5613 use HR as a reload register for R2. If we do use it then we get a
5614 wrong code:
5616 HR = const
5617 HR = <something>
5618 HR = HR + HR
5621 static bool
5622 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5624 /* Assume other cases in gen_reload are not possible for
5625 chain reloads or do need an intermediate hard registers. */
5626 bool result = true;
5627 int regno, code;
5628 rtx out, in;
5629 rtx_insn *insn;
5630 rtx_insn *last = get_last_insn ();
5632 /* Make r2 a component of r1. */
5633 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5634 std::swap (r1, r2);
5636 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5637 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5638 gcc_assert (regno >= 0);
5639 out = gen_rtx_REG (rld[r1].mode, regno);
5640 in = rld[r1].in;
5641 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5643 /* If IN is a paradoxical SUBREG, remove it and try to put the
5644 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5645 strip_paradoxical_subreg (&in, &out);
5647 if (GET_CODE (in) == PLUS
5648 && (REG_P (XEXP (in, 0))
5649 || GET_CODE (XEXP (in, 0)) == SUBREG
5650 || MEM_P (XEXP (in, 0)))
5651 && (REG_P (XEXP (in, 1))
5652 || GET_CODE (XEXP (in, 1)) == SUBREG
5653 || CONSTANT_P (XEXP (in, 1))
5654 || MEM_P (XEXP (in, 1))))
5656 insn = emit_insn (gen_rtx_SET (out, in));
5657 code = recog_memoized (insn);
5658 result = false;
5660 if (code >= 0)
5662 extract_insn (insn);
5663 /* We want constrain operands to treat this insn strictly in
5664 its validity determination, i.e., the way it would after
5665 reload has completed. */
5666 result = constrain_operands (1, get_enabled_alternatives (insn));
5669 delete_insns_since (last);
5672 /* Restore the original value at each changed address within R1. */
5673 while (!substitute_stack.is_empty ())
5675 rtx *where = substitute_stack.pop ();
5676 *where = rld[r2].in;
5679 return result;
5682 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5683 Return 0 otherwise.
5685 This function uses the same algorithm as reload_reg_free_p above. */
5687 static int
5688 reloads_conflict (int r1, int r2)
5690 enum reload_type r1_type = rld[r1].when_needed;
5691 enum reload_type r2_type = rld[r2].when_needed;
5692 int r1_opnum = rld[r1].opnum;
5693 int r2_opnum = rld[r2].opnum;
5695 /* RELOAD_OTHER conflicts with everything. */
5696 if (r2_type == RELOAD_OTHER)
5697 return 1;
5699 /* Otherwise, check conflicts differently for each type. */
5701 switch (r1_type)
5703 case RELOAD_FOR_INPUT:
5704 return (r2_type == RELOAD_FOR_INSN
5705 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5706 || r2_type == RELOAD_FOR_OPADDR_ADDR
5707 || r2_type == RELOAD_FOR_INPUT
5708 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5709 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5710 && r2_opnum > r1_opnum));
5712 case RELOAD_FOR_INPUT_ADDRESS:
5713 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5714 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5716 case RELOAD_FOR_INPADDR_ADDRESS:
5717 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5718 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5720 case RELOAD_FOR_OUTPUT_ADDRESS:
5721 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5722 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5724 case RELOAD_FOR_OUTADDR_ADDRESS:
5725 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5726 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5728 case RELOAD_FOR_OPERAND_ADDRESS:
5729 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5730 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5731 && (!reloads_unique_chain_p (r1, r2)
5732 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5734 case RELOAD_FOR_OPADDR_ADDR:
5735 return (r2_type == RELOAD_FOR_INPUT
5736 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5738 case RELOAD_FOR_OUTPUT:
5739 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5740 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5741 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5742 && r2_opnum >= r1_opnum));
5744 case RELOAD_FOR_INSN:
5745 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5746 || r2_type == RELOAD_FOR_INSN
5747 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5749 case RELOAD_FOR_OTHER_ADDRESS:
5750 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5752 case RELOAD_OTHER:
5753 return 1;
5755 default:
5756 gcc_unreachable ();
5760 /* Indexed by reload number, 1 if incoming value
5761 inherited from previous insns. */
5762 static char reload_inherited[MAX_RELOADS];
5764 /* For an inherited reload, this is the insn the reload was inherited from,
5765 if we know it. Otherwise, this is 0. */
5766 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5768 /* If nonzero, this is a place to get the value of the reload,
5769 rather than using reload_in. */
5770 static rtx reload_override_in[MAX_RELOADS];
5772 /* For each reload, the hard register number of the register used,
5773 or -1 if we did not need a register for this reload. */
5774 static int reload_spill_index[MAX_RELOADS];
5776 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5777 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5779 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5780 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5782 /* Subroutine of free_for_value_p, used to check a single register.
5783 START_REGNO is the starting regno of the full reload register
5784 (possibly comprising multiple hard registers) that we are considering. */
5786 static int
5787 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5788 enum reload_type type, rtx value, rtx out,
5789 int reloadnum, int ignore_address_reloads)
5791 int time1;
5792 /* Set if we see an input reload that must not share its reload register
5793 with any new earlyclobber, but might otherwise share the reload
5794 register with an output or input-output reload. */
5795 int check_earlyclobber = 0;
5796 int i;
5797 int copy = 0;
5799 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5800 return 0;
5802 if (out == const0_rtx)
5804 copy = 1;
5805 out = NULL_RTX;
5808 /* We use some pseudo 'time' value to check if the lifetimes of the
5809 new register use would overlap with the one of a previous reload
5810 that is not read-only or uses a different value.
5811 The 'time' used doesn't have to be linear in any shape or form, just
5812 monotonic.
5813 Some reload types use different 'buckets' for each operand.
5814 So there are MAX_RECOG_OPERANDS different time values for each
5815 such reload type.
5816 We compute TIME1 as the time when the register for the prospective
5817 new reload ceases to be live, and TIME2 for each existing
5818 reload as the time when that the reload register of that reload
5819 becomes live.
5820 Where there is little to be gained by exact lifetime calculations,
5821 we just make conservative assumptions, i.e. a longer lifetime;
5822 this is done in the 'default:' cases. */
5823 switch (type)
5825 case RELOAD_FOR_OTHER_ADDRESS:
5826 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5827 time1 = copy ? 0 : 1;
5828 break;
5829 case RELOAD_OTHER:
5830 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5831 break;
5832 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5833 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5834 respectively, to the time values for these, we get distinct time
5835 values. To get distinct time values for each operand, we have to
5836 multiply opnum by at least three. We round that up to four because
5837 multiply by four is often cheaper. */
5838 case RELOAD_FOR_INPADDR_ADDRESS:
5839 time1 = opnum * 4 + 2;
5840 break;
5841 case RELOAD_FOR_INPUT_ADDRESS:
5842 time1 = opnum * 4 + 3;
5843 break;
5844 case RELOAD_FOR_INPUT:
5845 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5846 executes (inclusive). */
5847 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5848 break;
5849 case RELOAD_FOR_OPADDR_ADDR:
5850 /* opnum * 4 + 4
5851 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5852 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5853 break;
5854 case RELOAD_FOR_OPERAND_ADDRESS:
5855 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5856 is executed. */
5857 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5858 break;
5859 case RELOAD_FOR_OUTADDR_ADDRESS:
5860 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5861 break;
5862 case RELOAD_FOR_OUTPUT_ADDRESS:
5863 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5864 break;
5865 default:
5866 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5869 for (i = 0; i < n_reloads; i++)
5871 rtx reg = rld[i].reg_rtx;
5872 if (reg && REG_P (reg)
5873 && ((unsigned) regno - true_regnum (reg)
5874 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5875 && i != reloadnum)
5877 rtx other_input = rld[i].in;
5879 /* If the other reload loads the same input value, that
5880 will not cause a conflict only if it's loading it into
5881 the same register. */
5882 if (true_regnum (reg) != start_regno)
5883 other_input = NULL_RTX;
5884 if (! other_input || ! rtx_equal_p (other_input, value)
5885 || rld[i].out || out)
5887 int time2;
5888 switch (rld[i].when_needed)
5890 case RELOAD_FOR_OTHER_ADDRESS:
5891 time2 = 0;
5892 break;
5893 case RELOAD_FOR_INPADDR_ADDRESS:
5894 /* find_reloads makes sure that a
5895 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5896 by at most one - the first -
5897 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5898 address reload is inherited, the address address reload
5899 goes away, so we can ignore this conflict. */
5900 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5901 && ignore_address_reloads
5902 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5903 Then the address address is still needed to store
5904 back the new address. */
5905 && ! rld[reloadnum].out)
5906 continue;
5907 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5908 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5909 reloads go away. */
5910 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5911 && ignore_address_reloads
5912 /* Unless we are reloading an auto_inc expression. */
5913 && ! rld[reloadnum].out)
5914 continue;
5915 time2 = rld[i].opnum * 4 + 2;
5916 break;
5917 case RELOAD_FOR_INPUT_ADDRESS:
5918 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5919 && ignore_address_reloads
5920 && ! rld[reloadnum].out)
5921 continue;
5922 time2 = rld[i].opnum * 4 + 3;
5923 break;
5924 case RELOAD_FOR_INPUT:
5925 time2 = rld[i].opnum * 4 + 4;
5926 check_earlyclobber = 1;
5927 break;
5928 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5929 == MAX_RECOG_OPERAND * 4 */
5930 case RELOAD_FOR_OPADDR_ADDR:
5931 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5932 && ignore_address_reloads
5933 && ! rld[reloadnum].out)
5934 continue;
5935 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5936 break;
5937 case RELOAD_FOR_OPERAND_ADDRESS:
5938 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5939 check_earlyclobber = 1;
5940 break;
5941 case RELOAD_FOR_INSN:
5942 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5943 break;
5944 case RELOAD_FOR_OUTPUT:
5945 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5946 instruction is executed. */
5947 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5948 break;
5949 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5950 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5951 value. */
5952 case RELOAD_FOR_OUTADDR_ADDRESS:
5953 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5954 && ignore_address_reloads
5955 && ! rld[reloadnum].out)
5956 continue;
5957 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5958 break;
5959 case RELOAD_FOR_OUTPUT_ADDRESS:
5960 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5961 break;
5962 case RELOAD_OTHER:
5963 /* If there is no conflict in the input part, handle this
5964 like an output reload. */
5965 if (! rld[i].in || rtx_equal_p (other_input, value))
5967 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5968 /* Earlyclobbered outputs must conflict with inputs. */
5969 if (earlyclobber_operand_p (rld[i].out))
5970 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5972 break;
5974 time2 = 1;
5975 /* RELOAD_OTHER might be live beyond instruction execution,
5976 but this is not obvious when we set time2 = 1. So check
5977 here if there might be a problem with the new reload
5978 clobbering the register used by the RELOAD_OTHER. */
5979 if (out)
5980 return 0;
5981 break;
5982 default:
5983 return 0;
5985 if ((time1 >= time2
5986 && (! rld[i].in || rld[i].out
5987 || ! rtx_equal_p (other_input, value)))
5988 || (out && rld[reloadnum].out_reg
5989 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5990 return 0;
5995 /* Earlyclobbered outputs must conflict with inputs. */
5996 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5997 return 0;
5999 return 1;
6002 /* Return 1 if the value in reload reg REGNO, as used by a reload
6003 needed for the part of the insn specified by OPNUM and TYPE,
6004 may be used to load VALUE into it.
6006 MODE is the mode in which the register is used, this is needed to
6007 determine how many hard regs to test.
6009 Other read-only reloads with the same value do not conflict
6010 unless OUT is nonzero and these other reloads have to live while
6011 output reloads live.
6012 If OUT is CONST0_RTX, this is a special case: it means that the
6013 test should not be for using register REGNO as reload register, but
6014 for copying from register REGNO into the reload register.
6016 RELOADNUM is the number of the reload we want to load this value for;
6017 a reload does not conflict with itself.
6019 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6020 reloads that load an address for the very reload we are considering.
6022 The caller has to make sure that there is no conflict with the return
6023 register. */
6025 static int
6026 free_for_value_p (int regno, machine_mode mode, int opnum,
6027 enum reload_type type, rtx value, rtx out, int reloadnum,
6028 int ignore_address_reloads)
6030 int nregs = hard_regno_nregs[regno][mode];
6031 while (nregs-- > 0)
6032 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6033 value, out, reloadnum,
6034 ignore_address_reloads))
6035 return 0;
6036 return 1;
6039 /* Return nonzero if the rtx X is invariant over the current function. */
6040 /* ??? Actually, the places where we use this expect exactly what is
6041 tested here, and not everything that is function invariant. In
6042 particular, the frame pointer and arg pointer are special cased;
6043 pic_offset_table_rtx is not, and we must not spill these things to
6044 memory. */
6047 function_invariant_p (const_rtx x)
6049 if (CONSTANT_P (x))
6050 return 1;
6051 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6052 return 1;
6053 if (GET_CODE (x) == PLUS
6054 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6055 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6056 return 1;
6057 return 0;
6060 /* Determine whether the reload reg X overlaps any rtx'es used for
6061 overriding inheritance. Return nonzero if so. */
6063 static int
6064 conflicts_with_override (rtx x)
6066 int i;
6067 for (i = 0; i < n_reloads; i++)
6068 if (reload_override_in[i]
6069 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6070 return 1;
6071 return 0;
6074 /* Give an error message saying we failed to find a reload for INSN,
6075 and clear out reload R. */
6076 static void
6077 failed_reload (rtx_insn *insn, int r)
6079 if (asm_noperands (PATTERN (insn)) < 0)
6080 /* It's the compiler's fault. */
6081 fatal_insn ("could not find a spill register", insn);
6083 /* It's the user's fault; the operand's mode and constraint
6084 don't match. Disable this reload so we don't crash in final. */
6085 error_for_asm (insn,
6086 "%<asm%> operand constraint incompatible with operand size");
6087 rld[r].in = 0;
6088 rld[r].out = 0;
6089 rld[r].reg_rtx = 0;
6090 rld[r].optional = 1;
6091 rld[r].secondary_p = 1;
6094 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6095 for reload R. If it's valid, get an rtx for it. Return nonzero if
6096 successful. */
6097 static int
6098 set_reload_reg (int i, int r)
6100 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6101 parameter. */
6102 int regno ATTRIBUTE_UNUSED;
6103 rtx reg = spill_reg_rtx[i];
6105 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6106 spill_reg_rtx[i] = reg
6107 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6109 regno = true_regnum (reg);
6111 /* Detect when the reload reg can't hold the reload mode.
6112 This used to be one `if', but Sequent compiler can't handle that. */
6113 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6115 machine_mode test_mode = VOIDmode;
6116 if (rld[r].in)
6117 test_mode = GET_MODE (rld[r].in);
6118 /* If rld[r].in has VOIDmode, it means we will load it
6119 in whatever mode the reload reg has: to wit, rld[r].mode.
6120 We have already tested that for validity. */
6121 /* Aside from that, we need to test that the expressions
6122 to reload from or into have modes which are valid for this
6123 reload register. Otherwise the reload insns would be invalid. */
6124 if (! (rld[r].in != 0 && test_mode != VOIDmode
6125 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6126 if (! (rld[r].out != 0
6127 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6129 /* The reg is OK. */
6130 last_spill_reg = i;
6132 /* Mark as in use for this insn the reload regs we use
6133 for this. */
6134 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6135 rld[r].when_needed, rld[r].mode);
6137 rld[r].reg_rtx = reg;
6138 reload_spill_index[r] = spill_regs[i];
6139 return 1;
6142 return 0;
6145 /* Find a spill register to use as a reload register for reload R.
6146 LAST_RELOAD is nonzero if this is the last reload for the insn being
6147 processed.
6149 Set rld[R].reg_rtx to the register allocated.
6151 We return 1 if successful, or 0 if we couldn't find a spill reg and
6152 we didn't change anything. */
6154 static int
6155 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6156 int last_reload)
6158 int i, pass, count;
6160 /* If we put this reload ahead, thinking it is a group,
6161 then insist on finding a group. Otherwise we can grab a
6162 reg that some other reload needs.
6163 (That can happen when we have a 68000 DATA_OR_FP_REG
6164 which is a group of data regs or one fp reg.)
6165 We need not be so restrictive if there are no more reloads
6166 for this insn.
6168 ??? Really it would be nicer to have smarter handling
6169 for that kind of reg class, where a problem like this is normal.
6170 Perhaps those classes should be avoided for reloading
6171 by use of more alternatives. */
6173 int force_group = rld[r].nregs > 1 && ! last_reload;
6175 /* If we want a single register and haven't yet found one,
6176 take any reg in the right class and not in use.
6177 If we want a consecutive group, here is where we look for it.
6179 We use three passes so we can first look for reload regs to
6180 reuse, which are already in use for other reloads in this insn,
6181 and only then use additional registers which are not "bad", then
6182 finally any register.
6184 I think that maximizing reuse is needed to make sure we don't
6185 run out of reload regs. Suppose we have three reloads, and
6186 reloads A and B can share regs. These need two regs.
6187 Suppose A and B are given different regs.
6188 That leaves none for C. */
6189 for (pass = 0; pass < 3; pass++)
6191 /* I is the index in spill_regs.
6192 We advance it round-robin between insns to use all spill regs
6193 equally, so that inherited reloads have a chance
6194 of leapfrogging each other. */
6196 i = last_spill_reg;
6198 for (count = 0; count < n_spills; count++)
6200 int rclass = (int) rld[r].rclass;
6201 int regnum;
6203 i++;
6204 if (i >= n_spills)
6205 i -= n_spills;
6206 regnum = spill_regs[i];
6208 if ((reload_reg_free_p (regnum, rld[r].opnum,
6209 rld[r].when_needed)
6210 || (rld[r].in
6211 /* We check reload_reg_used to make sure we
6212 don't clobber the return register. */
6213 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6214 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6215 rld[r].when_needed, rld[r].in,
6216 rld[r].out, r, 1)))
6217 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6218 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6219 /* Look first for regs to share, then for unshared. But
6220 don't share regs used for inherited reloads; they are
6221 the ones we want to preserve. */
6222 && (pass
6223 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6224 regnum)
6225 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6226 regnum))))
6228 int nr = hard_regno_nregs[regnum][rld[r].mode];
6230 /* During the second pass we want to avoid reload registers
6231 which are "bad" for this reload. */
6232 if (pass == 1
6233 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6234 continue;
6236 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6237 (on 68000) got us two FP regs. If NR is 1,
6238 we would reject both of them. */
6239 if (force_group)
6240 nr = rld[r].nregs;
6241 /* If we need only one reg, we have already won. */
6242 if (nr == 1)
6244 /* But reject a single reg if we demand a group. */
6245 if (force_group)
6246 continue;
6247 break;
6249 /* Otherwise check that as many consecutive regs as we need
6250 are available here. */
6251 while (nr > 1)
6253 int regno = regnum + nr - 1;
6254 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6255 && spill_reg_order[regno] >= 0
6256 && reload_reg_free_p (regno, rld[r].opnum,
6257 rld[r].when_needed)))
6258 break;
6259 nr--;
6261 if (nr == 1)
6262 break;
6266 /* If we found something on the current pass, omit later passes. */
6267 if (count < n_spills)
6268 break;
6271 /* We should have found a spill register by now. */
6272 if (count >= n_spills)
6273 return 0;
6275 /* I is the index in SPILL_REG_RTX of the reload register we are to
6276 allocate. Get an rtx for it and find its register number. */
6278 return set_reload_reg (i, r);
6281 /* Initialize all the tables needed to allocate reload registers.
6282 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6283 is the array we use to restore the reg_rtx field for every reload. */
6285 static void
6286 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6288 int i;
6290 for (i = 0; i < n_reloads; i++)
6291 rld[i].reg_rtx = save_reload_reg_rtx[i];
6293 memset (reload_inherited, 0, MAX_RELOADS);
6294 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6295 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6297 CLEAR_HARD_REG_SET (reload_reg_used);
6298 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6299 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6300 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6301 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6302 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6304 CLEAR_HARD_REG_SET (reg_used_in_insn);
6306 HARD_REG_SET tmp;
6307 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6308 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6309 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6310 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6311 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6312 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6315 for (i = 0; i < reload_n_operands; i++)
6317 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6318 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6319 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6320 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6321 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6322 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6325 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6327 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6329 for (i = 0; i < n_reloads; i++)
6330 /* If we have already decided to use a certain register,
6331 don't use it in another way. */
6332 if (rld[i].reg_rtx)
6333 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6334 rld[i].when_needed, rld[i].mode);
6337 #ifdef SECONDARY_MEMORY_NEEDED
6338 /* If X is not a subreg, return it unmodified. If it is a subreg,
6339 look up whether we made a replacement for the SUBREG_REG. Return
6340 either the replacement or the SUBREG_REG. */
6342 static rtx
6343 replaced_subreg (rtx x)
6345 if (GET_CODE (x) == SUBREG)
6346 return find_replacement (&SUBREG_REG (x));
6347 return x;
6349 #endif
6351 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6352 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6353 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6354 otherwise it is NULL. */
6356 static int
6357 compute_reload_subreg_offset (machine_mode outermode,
6358 rtx subreg,
6359 machine_mode innermode)
6361 int outer_offset;
6362 machine_mode middlemode;
6364 if (!subreg)
6365 return subreg_lowpart_offset (outermode, innermode);
6367 outer_offset = SUBREG_BYTE (subreg);
6368 middlemode = GET_MODE (SUBREG_REG (subreg));
6370 /* If SUBREG is paradoxical then return the normal lowpart offset
6371 for OUTERMODE and INNERMODE. Our caller has already checked
6372 that OUTERMODE fits in INNERMODE. */
6373 if (outer_offset == 0
6374 && GET_MODE_SIZE (outermode) > GET_MODE_SIZE (middlemode))
6375 return subreg_lowpart_offset (outermode, innermode);
6377 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6378 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6379 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6382 /* Assign hard reg targets for the pseudo-registers we must reload
6383 into hard regs for this insn.
6384 Also output the instructions to copy them in and out of the hard regs.
6386 For machines with register classes, we are responsible for
6387 finding a reload reg in the proper class. */
6389 static void
6390 choose_reload_regs (struct insn_chain *chain)
6392 rtx_insn *insn = chain->insn;
6393 int i, j;
6394 unsigned int max_group_size = 1;
6395 enum reg_class group_class = NO_REGS;
6396 int pass, win, inheritance;
6398 rtx save_reload_reg_rtx[MAX_RELOADS];
6400 /* In order to be certain of getting the registers we need,
6401 we must sort the reloads into order of increasing register class.
6402 Then our grabbing of reload registers will parallel the process
6403 that provided the reload registers.
6405 Also note whether any of the reloads wants a consecutive group of regs.
6406 If so, record the maximum size of the group desired and what
6407 register class contains all the groups needed by this insn. */
6409 for (j = 0; j < n_reloads; j++)
6411 reload_order[j] = j;
6412 if (rld[j].reg_rtx != NULL_RTX)
6414 gcc_assert (REG_P (rld[j].reg_rtx)
6415 && HARD_REGISTER_P (rld[j].reg_rtx));
6416 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6418 else
6419 reload_spill_index[j] = -1;
6421 if (rld[j].nregs > 1)
6423 max_group_size = MAX (rld[j].nregs, max_group_size);
6424 group_class
6425 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6428 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6431 if (n_reloads > 1)
6432 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6434 /* If -O, try first with inheritance, then turning it off.
6435 If not -O, don't do inheritance.
6436 Using inheritance when not optimizing leads to paradoxes
6437 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6438 because one side of the comparison might be inherited. */
6439 win = 0;
6440 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6442 choose_reload_regs_init (chain, save_reload_reg_rtx);
6444 /* Process the reloads in order of preference just found.
6445 Beyond this point, subregs can be found in reload_reg_rtx.
6447 This used to look for an existing reloaded home for all of the
6448 reloads, and only then perform any new reloads. But that could lose
6449 if the reloads were done out of reg-class order because a later
6450 reload with a looser constraint might have an old home in a register
6451 needed by an earlier reload with a tighter constraint.
6453 To solve this, we make two passes over the reloads, in the order
6454 described above. In the first pass we try to inherit a reload
6455 from a previous insn. If there is a later reload that needs a
6456 class that is a proper subset of the class being processed, we must
6457 also allocate a spill register during the first pass.
6459 Then make a second pass over the reloads to allocate any reloads
6460 that haven't been given registers yet. */
6462 for (j = 0; j < n_reloads; j++)
6464 int r = reload_order[j];
6465 rtx search_equiv = NULL_RTX;
6467 /* Ignore reloads that got marked inoperative. */
6468 if (rld[r].out == 0 && rld[r].in == 0
6469 && ! rld[r].secondary_p)
6470 continue;
6472 /* If find_reloads chose to use reload_in or reload_out as a reload
6473 register, we don't need to chose one. Otherwise, try even if it
6474 found one since we might save an insn if we find the value lying
6475 around.
6476 Try also when reload_in is a pseudo without a hard reg. */
6477 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6478 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6479 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6480 && !MEM_P (rld[r].in)
6481 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6482 continue;
6484 #if 0 /* No longer needed for correct operation.
6485 It might give better code, or might not; worth an experiment? */
6486 /* If this is an optional reload, we can't inherit from earlier insns
6487 until we are sure that any non-optional reloads have been allocated.
6488 The following code takes advantage of the fact that optional reloads
6489 are at the end of reload_order. */
6490 if (rld[r].optional != 0)
6491 for (i = 0; i < j; i++)
6492 if ((rld[reload_order[i]].out != 0
6493 || rld[reload_order[i]].in != 0
6494 || rld[reload_order[i]].secondary_p)
6495 && ! rld[reload_order[i]].optional
6496 && rld[reload_order[i]].reg_rtx == 0)
6497 allocate_reload_reg (chain, reload_order[i], 0);
6498 #endif
6500 /* First see if this pseudo is already available as reloaded
6501 for a previous insn. We cannot try to inherit for reloads
6502 that are smaller than the maximum number of registers needed
6503 for groups unless the register we would allocate cannot be used
6504 for the groups.
6506 We could check here to see if this is a secondary reload for
6507 an object that is already in a register of the desired class.
6508 This would avoid the need for the secondary reload register.
6509 But this is complex because we can't easily determine what
6510 objects might want to be loaded via this reload. So let a
6511 register be allocated here. In `emit_reload_insns' we suppress
6512 one of the loads in the case described above. */
6514 if (inheritance)
6516 int byte = 0;
6517 int regno = -1;
6518 machine_mode mode = VOIDmode;
6519 rtx subreg = NULL_RTX;
6521 if (rld[r].in == 0)
6523 else if (REG_P (rld[r].in))
6525 regno = REGNO (rld[r].in);
6526 mode = GET_MODE (rld[r].in);
6528 else if (REG_P (rld[r].in_reg))
6530 regno = REGNO (rld[r].in_reg);
6531 mode = GET_MODE (rld[r].in_reg);
6533 else if (GET_CODE (rld[r].in_reg) == SUBREG
6534 && REG_P (SUBREG_REG (rld[r].in_reg)))
6536 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6537 if (regno < FIRST_PSEUDO_REGISTER)
6538 regno = subreg_regno (rld[r].in_reg);
6539 else
6541 subreg = rld[r].in_reg;
6542 byte = SUBREG_BYTE (subreg);
6544 mode = GET_MODE (rld[r].in_reg);
6546 #if AUTO_INC_DEC
6547 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6548 && REG_P (XEXP (rld[r].in_reg, 0)))
6550 regno = REGNO (XEXP (rld[r].in_reg, 0));
6551 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6552 rld[r].out = rld[r].in;
6554 #endif
6555 #if 0
6556 /* This won't work, since REGNO can be a pseudo reg number.
6557 Also, it takes much more hair to keep track of all the things
6558 that can invalidate an inherited reload of part of a pseudoreg. */
6559 else if (GET_CODE (rld[r].in) == SUBREG
6560 && REG_P (SUBREG_REG (rld[r].in)))
6561 regno = subreg_regno (rld[r].in);
6562 #endif
6564 if (regno >= 0
6565 && reg_last_reload_reg[regno] != 0
6566 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6567 >= GET_MODE_SIZE (mode) + byte)
6568 #ifdef CANNOT_CHANGE_MODE_CLASS
6569 /* Verify that the register it's in can be used in
6570 mode MODE. */
6571 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6572 GET_MODE (reg_last_reload_reg[regno]),
6573 mode)
6574 #endif
6577 enum reg_class rclass = rld[r].rclass, last_class;
6578 rtx last_reg = reg_last_reload_reg[regno];
6580 i = REGNO (last_reg);
6581 byte = compute_reload_subreg_offset (mode,
6582 subreg,
6583 GET_MODE (last_reg));
6584 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6585 last_class = REGNO_REG_CLASS (i);
6587 if (reg_reloaded_contents[i] == regno
6588 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6589 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6590 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6591 /* Even if we can't use this register as a reload
6592 register, we might use it for reload_override_in,
6593 if copying it to the desired class is cheap
6594 enough. */
6595 || ((register_move_cost (mode, last_class, rclass)
6596 < memory_move_cost (mode, rclass, true))
6597 && (secondary_reload_class (1, rclass, mode,
6598 last_reg)
6599 == NO_REGS)
6600 #ifdef SECONDARY_MEMORY_NEEDED
6601 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6602 mode)
6603 #endif
6606 && (rld[r].nregs == max_group_size
6607 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6609 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6610 rld[r].when_needed, rld[r].in,
6611 const0_rtx, r, 1))
6613 /* If a group is needed, verify that all the subsequent
6614 registers still have their values intact. */
6615 int nr = hard_regno_nregs[i][rld[r].mode];
6616 int k;
6618 for (k = 1; k < nr; k++)
6619 if (reg_reloaded_contents[i + k] != regno
6620 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6621 break;
6623 if (k == nr)
6625 int i1;
6626 int bad_for_class;
6628 last_reg = (GET_MODE (last_reg) == mode
6629 ? last_reg : gen_rtx_REG (mode, i));
6631 bad_for_class = 0;
6632 for (k = 0; k < nr; k++)
6633 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6634 i+k);
6636 /* We found a register that contains the
6637 value we need. If this register is the
6638 same as an `earlyclobber' operand of the
6639 current insn, just mark it as a place to
6640 reload from since we can't use it as the
6641 reload register itself. */
6643 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6644 if (reg_overlap_mentioned_for_reload_p
6645 (reg_last_reload_reg[regno],
6646 reload_earlyclobbers[i1]))
6647 break;
6649 if (i1 != n_earlyclobbers
6650 || ! (free_for_value_p (i, rld[r].mode,
6651 rld[r].opnum,
6652 rld[r].when_needed, rld[r].in,
6653 rld[r].out, r, 1))
6654 /* Don't use it if we'd clobber a pseudo reg. */
6655 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6656 && rld[r].out
6657 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6658 /* Don't clobber the frame pointer. */
6659 || (i == HARD_FRAME_POINTER_REGNUM
6660 && frame_pointer_needed
6661 && rld[r].out)
6662 /* Don't really use the inherited spill reg
6663 if we need it wider than we've got it. */
6664 || (GET_MODE_SIZE (rld[r].mode)
6665 > GET_MODE_SIZE (mode))
6666 || bad_for_class
6668 /* If find_reloads chose reload_out as reload
6669 register, stay with it - that leaves the
6670 inherited register for subsequent reloads. */
6671 || (rld[r].out && rld[r].reg_rtx
6672 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6674 if (! rld[r].optional)
6676 reload_override_in[r] = last_reg;
6677 reload_inheritance_insn[r]
6678 = reg_reloaded_insn[i];
6681 else
6683 int k;
6684 /* We can use this as a reload reg. */
6685 /* Mark the register as in use for this part of
6686 the insn. */
6687 mark_reload_reg_in_use (i,
6688 rld[r].opnum,
6689 rld[r].when_needed,
6690 rld[r].mode);
6691 rld[r].reg_rtx = last_reg;
6692 reload_inherited[r] = 1;
6693 reload_inheritance_insn[r]
6694 = reg_reloaded_insn[i];
6695 reload_spill_index[r] = i;
6696 for (k = 0; k < nr; k++)
6697 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6698 i + k);
6705 /* Here's another way to see if the value is already lying around. */
6706 if (inheritance
6707 && rld[r].in != 0
6708 && ! reload_inherited[r]
6709 && rld[r].out == 0
6710 && (CONSTANT_P (rld[r].in)
6711 || GET_CODE (rld[r].in) == PLUS
6712 || REG_P (rld[r].in)
6713 || MEM_P (rld[r].in))
6714 && (rld[r].nregs == max_group_size
6715 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6716 search_equiv = rld[r].in;
6718 if (search_equiv)
6720 rtx equiv
6721 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6722 -1, NULL, 0, rld[r].mode);
6723 int regno = 0;
6725 if (equiv != 0)
6727 if (REG_P (equiv))
6728 regno = REGNO (equiv);
6729 else
6731 /* This must be a SUBREG of a hard register.
6732 Make a new REG since this might be used in an
6733 address and not all machines support SUBREGs
6734 there. */
6735 gcc_assert (GET_CODE (equiv) == SUBREG);
6736 regno = subreg_regno (equiv);
6737 equiv = gen_rtx_REG (rld[r].mode, regno);
6738 /* If we choose EQUIV as the reload register, but the
6739 loop below decides to cancel the inheritance, we'll
6740 end up reloading EQUIV in rld[r].mode, not the mode
6741 it had originally. That isn't safe when EQUIV isn't
6742 available as a spill register since its value might
6743 still be live at this point. */
6744 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6745 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6746 equiv = 0;
6750 /* If we found a spill reg, reject it unless it is free
6751 and of the desired class. */
6752 if (equiv != 0)
6754 int regs_used = 0;
6755 int bad_for_class = 0;
6756 int max_regno = regno + rld[r].nregs;
6758 for (i = regno; i < max_regno; i++)
6760 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6762 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6766 if ((regs_used
6767 && ! free_for_value_p (regno, rld[r].mode,
6768 rld[r].opnum, rld[r].when_needed,
6769 rld[r].in, rld[r].out, r, 1))
6770 || bad_for_class)
6771 equiv = 0;
6774 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6775 equiv = 0;
6777 /* We found a register that contains the value we need.
6778 If this register is the same as an `earlyclobber' operand
6779 of the current insn, just mark it as a place to reload from
6780 since we can't use it as the reload register itself. */
6782 if (equiv != 0)
6783 for (i = 0; i < n_earlyclobbers; i++)
6784 if (reg_overlap_mentioned_for_reload_p (equiv,
6785 reload_earlyclobbers[i]))
6787 if (! rld[r].optional)
6788 reload_override_in[r] = equiv;
6789 equiv = 0;
6790 break;
6793 /* If the equiv register we have found is explicitly clobbered
6794 in the current insn, it depends on the reload type if we
6795 can use it, use it for reload_override_in, or not at all.
6796 In particular, we then can't use EQUIV for a
6797 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6799 if (equiv != 0)
6801 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6802 switch (rld[r].when_needed)
6804 case RELOAD_FOR_OTHER_ADDRESS:
6805 case RELOAD_FOR_INPADDR_ADDRESS:
6806 case RELOAD_FOR_INPUT_ADDRESS:
6807 case RELOAD_FOR_OPADDR_ADDR:
6808 break;
6809 case RELOAD_OTHER:
6810 case RELOAD_FOR_INPUT:
6811 case RELOAD_FOR_OPERAND_ADDRESS:
6812 if (! rld[r].optional)
6813 reload_override_in[r] = equiv;
6814 /* Fall through. */
6815 default:
6816 equiv = 0;
6817 break;
6819 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6820 switch (rld[r].when_needed)
6822 case RELOAD_FOR_OTHER_ADDRESS:
6823 case RELOAD_FOR_INPADDR_ADDRESS:
6824 case RELOAD_FOR_INPUT_ADDRESS:
6825 case RELOAD_FOR_OPADDR_ADDR:
6826 case RELOAD_FOR_OPERAND_ADDRESS:
6827 case RELOAD_FOR_INPUT:
6828 break;
6829 case RELOAD_OTHER:
6830 if (! rld[r].optional)
6831 reload_override_in[r] = equiv;
6832 /* Fall through. */
6833 default:
6834 equiv = 0;
6835 break;
6839 /* If we found an equivalent reg, say no code need be generated
6840 to load it, and use it as our reload reg. */
6841 if (equiv != 0
6842 && (regno != HARD_FRAME_POINTER_REGNUM
6843 || !frame_pointer_needed))
6845 int nr = hard_regno_nregs[regno][rld[r].mode];
6846 int k;
6847 rld[r].reg_rtx = equiv;
6848 reload_spill_index[r] = regno;
6849 reload_inherited[r] = 1;
6851 /* If reg_reloaded_valid is not set for this register,
6852 there might be a stale spill_reg_store lying around.
6853 We must clear it, since otherwise emit_reload_insns
6854 might delete the store. */
6855 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6856 spill_reg_store[regno] = NULL;
6857 /* If any of the hard registers in EQUIV are spill
6858 registers, mark them as in use for this insn. */
6859 for (k = 0; k < nr; k++)
6861 i = spill_reg_order[regno + k];
6862 if (i >= 0)
6864 mark_reload_reg_in_use (regno, rld[r].opnum,
6865 rld[r].when_needed,
6866 rld[r].mode);
6867 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6868 regno + k);
6874 /* If we found a register to use already, or if this is an optional
6875 reload, we are done. */
6876 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6877 continue;
6879 #if 0
6880 /* No longer needed for correct operation. Might or might
6881 not give better code on the average. Want to experiment? */
6883 /* See if there is a later reload that has a class different from our
6884 class that intersects our class or that requires less register
6885 than our reload. If so, we must allocate a register to this
6886 reload now, since that reload might inherit a previous reload
6887 and take the only available register in our class. Don't do this
6888 for optional reloads since they will force all previous reloads
6889 to be allocated. Also don't do this for reloads that have been
6890 turned off. */
6892 for (i = j + 1; i < n_reloads; i++)
6894 int s = reload_order[i];
6896 if ((rld[s].in == 0 && rld[s].out == 0
6897 && ! rld[s].secondary_p)
6898 || rld[s].optional)
6899 continue;
6901 if ((rld[s].rclass != rld[r].rclass
6902 && reg_classes_intersect_p (rld[r].rclass,
6903 rld[s].rclass))
6904 || rld[s].nregs < rld[r].nregs)
6905 break;
6908 if (i == n_reloads)
6909 continue;
6911 allocate_reload_reg (chain, r, j == n_reloads - 1);
6912 #endif
6915 /* Now allocate reload registers for anything non-optional that
6916 didn't get one yet. */
6917 for (j = 0; j < n_reloads; j++)
6919 int r = reload_order[j];
6921 /* Ignore reloads that got marked inoperative. */
6922 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6923 continue;
6925 /* Skip reloads that already have a register allocated or are
6926 optional. */
6927 if (rld[r].reg_rtx != 0 || rld[r].optional)
6928 continue;
6930 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6931 break;
6934 /* If that loop got all the way, we have won. */
6935 if (j == n_reloads)
6937 win = 1;
6938 break;
6941 /* Loop around and try without any inheritance. */
6944 if (! win)
6946 /* First undo everything done by the failed attempt
6947 to allocate with inheritance. */
6948 choose_reload_regs_init (chain, save_reload_reg_rtx);
6950 /* Some sanity tests to verify that the reloads found in the first
6951 pass are identical to the ones we have now. */
6952 gcc_assert (chain->n_reloads == n_reloads);
6954 for (i = 0; i < n_reloads; i++)
6956 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6957 continue;
6958 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6959 for (j = 0; j < n_spills; j++)
6960 if (spill_regs[j] == chain->rld[i].regno)
6961 if (! set_reload_reg (j, i))
6962 failed_reload (chain->insn, i);
6966 /* If we thought we could inherit a reload, because it seemed that
6967 nothing else wanted the same reload register earlier in the insn,
6968 verify that assumption, now that all reloads have been assigned.
6969 Likewise for reloads where reload_override_in has been set. */
6971 /* If doing expensive optimizations, do one preliminary pass that doesn't
6972 cancel any inheritance, but removes reloads that have been needed only
6973 for reloads that we know can be inherited. */
6974 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6976 for (j = 0; j < n_reloads; j++)
6978 int r = reload_order[j];
6979 rtx check_reg;
6980 #ifdef SECONDARY_MEMORY_NEEDED
6981 rtx tem;
6982 #endif
6983 if (reload_inherited[r] && rld[r].reg_rtx)
6984 check_reg = rld[r].reg_rtx;
6985 else if (reload_override_in[r]
6986 && (REG_P (reload_override_in[r])
6987 || GET_CODE (reload_override_in[r]) == SUBREG))
6988 check_reg = reload_override_in[r];
6989 else
6990 continue;
6991 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6992 rld[r].opnum, rld[r].when_needed, rld[r].in,
6993 (reload_inherited[r]
6994 ? rld[r].out : const0_rtx),
6995 r, 1))
6997 if (pass)
6998 continue;
6999 reload_inherited[r] = 0;
7000 reload_override_in[r] = 0;
7002 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
7003 reload_override_in, then we do not need its related
7004 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
7005 likewise for other reload types.
7006 We handle this by removing a reload when its only replacement
7007 is mentioned in reload_in of the reload we are going to inherit.
7008 A special case are auto_inc expressions; even if the input is
7009 inherited, we still need the address for the output. We can
7010 recognize them because they have RELOAD_OUT set to RELOAD_IN.
7011 If we succeeded removing some reload and we are doing a preliminary
7012 pass just to remove such reloads, make another pass, since the
7013 removal of one reload might allow us to inherit another one. */
7014 else if (rld[r].in
7015 && rld[r].out != rld[r].in
7016 && remove_address_replacements (rld[r].in))
7018 if (pass)
7019 pass = 2;
7021 #ifdef SECONDARY_MEMORY_NEEDED
7022 /* If we needed a memory location for the reload, we also have to
7023 remove its related reloads. */
7024 else if (rld[r].in
7025 && rld[r].out != rld[r].in
7026 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7027 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7028 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem)),
7029 rld[r].rclass, rld[r].inmode)
7030 && remove_address_replacements
7031 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7032 rld[r].when_needed)))
7034 if (pass)
7035 pass = 2;
7037 #endif
7041 /* Now that reload_override_in is known valid,
7042 actually override reload_in. */
7043 for (j = 0; j < n_reloads; j++)
7044 if (reload_override_in[j])
7045 rld[j].in = reload_override_in[j];
7047 /* If this reload won't be done because it has been canceled or is
7048 optional and not inherited, clear reload_reg_rtx so other
7049 routines (such as subst_reloads) don't get confused. */
7050 for (j = 0; j < n_reloads; j++)
7051 if (rld[j].reg_rtx != 0
7052 && ((rld[j].optional && ! reload_inherited[j])
7053 || (rld[j].in == 0 && rld[j].out == 0
7054 && ! rld[j].secondary_p)))
7056 int regno = true_regnum (rld[j].reg_rtx);
7058 if (spill_reg_order[regno] >= 0)
7059 clear_reload_reg_in_use (regno, rld[j].opnum,
7060 rld[j].when_needed, rld[j].mode);
7061 rld[j].reg_rtx = 0;
7062 reload_spill_index[j] = -1;
7065 /* Record which pseudos and which spill regs have output reloads. */
7066 for (j = 0; j < n_reloads; j++)
7068 int r = reload_order[j];
7070 i = reload_spill_index[r];
7072 /* I is nonneg if this reload uses a register.
7073 If rld[r].reg_rtx is 0, this is an optional reload
7074 that we opted to ignore. */
7075 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7076 && rld[r].reg_rtx != 0)
7078 int nregno = REGNO (rld[r].out_reg);
7079 int nr = 1;
7081 if (nregno < FIRST_PSEUDO_REGISTER)
7082 nr = hard_regno_nregs[nregno][rld[r].mode];
7084 while (--nr >= 0)
7085 SET_REGNO_REG_SET (&reg_has_output_reload,
7086 nregno + nr);
7088 if (i >= 0)
7089 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7091 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7092 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7093 || rld[r].when_needed == RELOAD_FOR_INSN);
7098 /* Deallocate the reload register for reload R. This is called from
7099 remove_address_replacements. */
7101 void
7102 deallocate_reload_reg (int r)
7104 int regno;
7106 if (! rld[r].reg_rtx)
7107 return;
7108 regno = true_regnum (rld[r].reg_rtx);
7109 rld[r].reg_rtx = 0;
7110 if (spill_reg_order[regno] >= 0)
7111 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7112 rld[r].mode);
7113 reload_spill_index[r] = -1;
7116 /* These arrays are filled by emit_reload_insns and its subroutines. */
7117 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7118 static rtx_insn *other_input_address_reload_insns = 0;
7119 static rtx_insn *other_input_reload_insns = 0;
7120 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7121 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7122 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7123 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7124 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7125 static rtx_insn *operand_reload_insns = 0;
7126 static rtx_insn *other_operand_reload_insns = 0;
7127 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7129 /* Values to be put in spill_reg_store are put here first. Instructions
7130 must only be placed here if the associated reload register reaches
7131 the end of the instruction's reload sequence. */
7132 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7133 static HARD_REG_SET reg_reloaded_died;
7135 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7136 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7137 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7138 adjusted register, and return true. Otherwise, return false. */
7139 static bool
7140 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7141 enum reg_class new_class,
7142 machine_mode new_mode)
7145 rtx reg;
7147 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7149 unsigned regno = REGNO (reg);
7151 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7152 continue;
7153 if (GET_MODE (reg) != new_mode)
7155 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7156 continue;
7157 if (hard_regno_nregs[regno][new_mode]
7158 > hard_regno_nregs[regno][GET_MODE (reg)])
7159 continue;
7160 reg = reload_adjust_reg_for_mode (reg, new_mode);
7162 *reload_reg = reg;
7163 return true;
7165 return false;
7168 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7169 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7170 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7171 adjusted register, and return true. Otherwise, return false. */
7172 static bool
7173 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7174 enum insn_code icode)
7177 enum reg_class new_class = scratch_reload_class (icode);
7178 machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7180 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7181 new_class, new_mode);
7184 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7185 has the number J. OLD contains the value to be used as input. */
7187 static void
7188 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7189 rtx old, int j)
7191 rtx_insn *insn = chain->insn;
7192 rtx reloadreg;
7193 rtx oldequiv_reg = 0;
7194 rtx oldequiv = 0;
7195 int special = 0;
7196 machine_mode mode;
7197 rtx_insn **where;
7199 /* delete_output_reload is only invoked properly if old contains
7200 the original pseudo register. Since this is replaced with a
7201 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7202 find the pseudo in RELOAD_IN_REG. This is also used to
7203 determine whether a secondary reload is needed. */
7204 if (reload_override_in[j]
7205 && (REG_P (rl->in_reg)
7206 || (GET_CODE (rl->in_reg) == SUBREG
7207 && REG_P (SUBREG_REG (rl->in_reg)))))
7209 oldequiv = old;
7210 old = rl->in_reg;
7212 if (oldequiv == 0)
7213 oldequiv = old;
7214 else if (REG_P (oldequiv))
7215 oldequiv_reg = oldequiv;
7216 else if (GET_CODE (oldequiv) == SUBREG)
7217 oldequiv_reg = SUBREG_REG (oldequiv);
7219 reloadreg = reload_reg_rtx_for_input[j];
7220 mode = GET_MODE (reloadreg);
7222 /* If we are reloading from a register that was recently stored in
7223 with an output-reload, see if we can prove there was
7224 actually no need to store the old value in it. */
7226 if (optimize && REG_P (oldequiv)
7227 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7228 && spill_reg_store[REGNO (oldequiv)]
7229 && REG_P (old)
7230 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7231 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7232 rl->out_reg)))
7233 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7235 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7236 OLDEQUIV. */
7238 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7239 oldequiv = SUBREG_REG (oldequiv);
7240 if (GET_MODE (oldequiv) != VOIDmode
7241 && mode != GET_MODE (oldequiv))
7242 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7244 /* Switch to the right place to emit the reload insns. */
7245 switch (rl->when_needed)
7247 case RELOAD_OTHER:
7248 where = &other_input_reload_insns;
7249 break;
7250 case RELOAD_FOR_INPUT:
7251 where = &input_reload_insns[rl->opnum];
7252 break;
7253 case RELOAD_FOR_INPUT_ADDRESS:
7254 where = &input_address_reload_insns[rl->opnum];
7255 break;
7256 case RELOAD_FOR_INPADDR_ADDRESS:
7257 where = &inpaddr_address_reload_insns[rl->opnum];
7258 break;
7259 case RELOAD_FOR_OUTPUT_ADDRESS:
7260 where = &output_address_reload_insns[rl->opnum];
7261 break;
7262 case RELOAD_FOR_OUTADDR_ADDRESS:
7263 where = &outaddr_address_reload_insns[rl->opnum];
7264 break;
7265 case RELOAD_FOR_OPERAND_ADDRESS:
7266 where = &operand_reload_insns;
7267 break;
7268 case RELOAD_FOR_OPADDR_ADDR:
7269 where = &other_operand_reload_insns;
7270 break;
7271 case RELOAD_FOR_OTHER_ADDRESS:
7272 where = &other_input_address_reload_insns;
7273 break;
7274 default:
7275 gcc_unreachable ();
7278 push_to_sequence (*where);
7280 /* Auto-increment addresses must be reloaded in a special way. */
7281 if (rl->out && ! rl->out_reg)
7283 /* We are not going to bother supporting the case where a
7284 incremented register can't be copied directly from
7285 OLDEQUIV since this seems highly unlikely. */
7286 gcc_assert (rl->secondary_in_reload < 0);
7288 if (reload_inherited[j])
7289 oldequiv = reloadreg;
7291 old = XEXP (rl->in_reg, 0);
7293 /* Prevent normal processing of this reload. */
7294 special = 1;
7295 /* Output a special code sequence for this case. */
7296 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7299 /* If we are reloading a pseudo-register that was set by the previous
7300 insn, see if we can get rid of that pseudo-register entirely
7301 by redirecting the previous insn into our reload register. */
7303 else if (optimize && REG_P (old)
7304 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7305 && dead_or_set_p (insn, old)
7306 /* This is unsafe if some other reload
7307 uses the same reg first. */
7308 && ! conflicts_with_override (reloadreg)
7309 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7310 rl->when_needed, old, rl->out, j, 0))
7312 rtx_insn *temp = PREV_INSN (insn);
7313 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7314 temp = PREV_INSN (temp);
7315 if (temp
7316 && NONJUMP_INSN_P (temp)
7317 && GET_CODE (PATTERN (temp)) == SET
7318 && SET_DEST (PATTERN (temp)) == old
7319 /* Make sure we can access insn_operand_constraint. */
7320 && asm_noperands (PATTERN (temp)) < 0
7321 /* This is unsafe if operand occurs more than once in current
7322 insn. Perhaps some occurrences aren't reloaded. */
7323 && count_occurrences (PATTERN (insn), old, 0) == 1)
7325 rtx old = SET_DEST (PATTERN (temp));
7326 /* Store into the reload register instead of the pseudo. */
7327 SET_DEST (PATTERN (temp)) = reloadreg;
7329 /* Verify that resulting insn is valid.
7331 Note that we have replaced the destination of TEMP with
7332 RELOADREG. If TEMP references RELOADREG within an
7333 autoincrement addressing mode, then the resulting insn
7334 is ill-formed and we must reject this optimization. */
7335 extract_insn (temp);
7336 if (constrain_operands (1, get_enabled_alternatives (temp))
7337 && (!AUTO_INC_DEC || ! find_reg_note (temp, REG_INC, reloadreg)))
7339 /* If the previous insn is an output reload, the source is
7340 a reload register, and its spill_reg_store entry will
7341 contain the previous destination. This is now
7342 invalid. */
7343 if (REG_P (SET_SRC (PATTERN (temp)))
7344 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7346 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7347 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7350 /* If these are the only uses of the pseudo reg,
7351 pretend for GDB it lives in the reload reg we used. */
7352 if (REG_N_DEATHS (REGNO (old)) == 1
7353 && REG_N_SETS (REGNO (old)) == 1)
7355 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7356 if (ira_conflicts_p)
7357 /* Inform IRA about the change. */
7358 ira_mark_allocation_change (REGNO (old));
7359 alter_reg (REGNO (old), -1, false);
7361 special = 1;
7363 /* Adjust any debug insns between temp and insn. */
7364 while ((temp = NEXT_INSN (temp)) != insn)
7365 if (DEBUG_INSN_P (temp))
7366 INSN_VAR_LOCATION_LOC (temp)
7367 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (temp),
7368 old, reloadreg);
7369 else
7370 gcc_assert (NOTE_P (temp));
7372 else
7374 SET_DEST (PATTERN (temp)) = old;
7379 /* We can't do that, so output an insn to load RELOADREG. */
7381 /* If we have a secondary reload, pick up the secondary register
7382 and icode, if any. If OLDEQUIV and OLD are different or
7383 if this is an in-out reload, recompute whether or not we
7384 still need a secondary register and what the icode should
7385 be. If we still need a secondary register and the class or
7386 icode is different, go back to reloading from OLD if using
7387 OLDEQUIV means that we got the wrong type of register. We
7388 cannot have different class or icode due to an in-out reload
7389 because we don't make such reloads when both the input and
7390 output need secondary reload registers. */
7392 if (! special && rl->secondary_in_reload >= 0)
7394 rtx second_reload_reg = 0;
7395 rtx third_reload_reg = 0;
7396 int secondary_reload = rl->secondary_in_reload;
7397 rtx real_oldequiv = oldequiv;
7398 rtx real_old = old;
7399 rtx tmp;
7400 enum insn_code icode;
7401 enum insn_code tertiary_icode = CODE_FOR_nothing;
7403 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7404 and similarly for OLD.
7405 See comments in get_secondary_reload in reload.c. */
7406 /* If it is a pseudo that cannot be replaced with its
7407 equivalent MEM, we must fall back to reload_in, which
7408 will have all the necessary substitutions registered.
7409 Likewise for a pseudo that can't be replaced with its
7410 equivalent constant.
7412 Take extra care for subregs of such pseudos. Note that
7413 we cannot use reg_equiv_mem in this case because it is
7414 not in the right mode. */
7416 tmp = oldequiv;
7417 if (GET_CODE (tmp) == SUBREG)
7418 tmp = SUBREG_REG (tmp);
7419 if (REG_P (tmp)
7420 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7421 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7422 || reg_equiv_constant (REGNO (tmp)) != 0))
7424 if (! reg_equiv_mem (REGNO (tmp))
7425 || num_not_at_initial_offset
7426 || GET_CODE (oldequiv) == SUBREG)
7427 real_oldequiv = rl->in;
7428 else
7429 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7432 tmp = old;
7433 if (GET_CODE (tmp) == SUBREG)
7434 tmp = SUBREG_REG (tmp);
7435 if (REG_P (tmp)
7436 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7437 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7438 || reg_equiv_constant (REGNO (tmp)) != 0))
7440 if (! reg_equiv_mem (REGNO (tmp))
7441 || num_not_at_initial_offset
7442 || GET_CODE (old) == SUBREG)
7443 real_old = rl->in;
7444 else
7445 real_old = reg_equiv_mem (REGNO (tmp));
7448 second_reload_reg = rld[secondary_reload].reg_rtx;
7449 if (rld[secondary_reload].secondary_in_reload >= 0)
7451 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7453 third_reload_reg = rld[tertiary_reload].reg_rtx;
7454 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7455 /* We'd have to add more code for quartary reloads. */
7456 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7458 icode = rl->secondary_in_icode;
7460 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7461 || (rl->in != 0 && rl->out != 0))
7463 secondary_reload_info sri, sri2;
7464 enum reg_class new_class, new_t_class;
7466 sri.icode = CODE_FOR_nothing;
7467 sri.prev_sri = NULL;
7468 new_class
7469 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7470 rl->rclass, mode,
7471 &sri);
7473 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7474 second_reload_reg = 0;
7475 else if (new_class == NO_REGS)
7477 if (reload_adjust_reg_for_icode (&second_reload_reg,
7478 third_reload_reg,
7479 (enum insn_code) sri.icode))
7481 icode = (enum insn_code) sri.icode;
7482 third_reload_reg = 0;
7484 else
7486 oldequiv = old;
7487 real_oldequiv = real_old;
7490 else if (sri.icode != CODE_FOR_nothing)
7491 /* We currently lack a way to express this in reloads. */
7492 gcc_unreachable ();
7493 else
7495 sri2.icode = CODE_FOR_nothing;
7496 sri2.prev_sri = &sri;
7497 new_t_class
7498 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7499 new_class, mode,
7500 &sri);
7501 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7503 if (reload_adjust_reg_for_temp (&second_reload_reg,
7504 third_reload_reg,
7505 new_class, mode))
7507 third_reload_reg = 0;
7508 tertiary_icode = (enum insn_code) sri2.icode;
7510 else
7512 oldequiv = old;
7513 real_oldequiv = real_old;
7516 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7518 rtx intermediate = second_reload_reg;
7520 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7521 new_class, mode)
7522 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7523 ((enum insn_code)
7524 sri2.icode)))
7526 second_reload_reg = intermediate;
7527 tertiary_icode = (enum insn_code) sri2.icode;
7529 else
7531 oldequiv = old;
7532 real_oldequiv = real_old;
7535 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7537 rtx intermediate = second_reload_reg;
7539 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7540 new_class, mode)
7541 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7542 new_t_class, mode))
7544 second_reload_reg = intermediate;
7545 tertiary_icode = (enum insn_code) sri2.icode;
7547 else
7549 oldequiv = old;
7550 real_oldequiv = real_old;
7553 else
7555 /* This could be handled more intelligently too. */
7556 oldequiv = old;
7557 real_oldequiv = real_old;
7562 /* If we still need a secondary reload register, check
7563 to see if it is being used as a scratch or intermediate
7564 register and generate code appropriately. If we need
7565 a scratch register, use REAL_OLDEQUIV since the form of
7566 the insn may depend on the actual address if it is
7567 a MEM. */
7569 if (second_reload_reg)
7571 if (icode != CODE_FOR_nothing)
7573 /* We'd have to add extra code to handle this case. */
7574 gcc_assert (!third_reload_reg);
7576 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7577 second_reload_reg));
7578 special = 1;
7580 else
7582 /* See if we need a scratch register to load the
7583 intermediate register (a tertiary reload). */
7584 if (tertiary_icode != CODE_FOR_nothing)
7586 emit_insn ((GEN_FCN (tertiary_icode)
7587 (second_reload_reg, real_oldequiv,
7588 third_reload_reg)));
7590 else if (third_reload_reg)
7592 gen_reload (third_reload_reg, real_oldequiv,
7593 rl->opnum,
7594 rl->when_needed);
7595 gen_reload (second_reload_reg, third_reload_reg,
7596 rl->opnum,
7597 rl->when_needed);
7599 else
7600 gen_reload (second_reload_reg, real_oldequiv,
7601 rl->opnum,
7602 rl->when_needed);
7604 oldequiv = second_reload_reg;
7609 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7611 rtx real_oldequiv = oldequiv;
7613 if ((REG_P (oldequiv)
7614 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7615 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7616 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7617 || (GET_CODE (oldequiv) == SUBREG
7618 && REG_P (SUBREG_REG (oldequiv))
7619 && (REGNO (SUBREG_REG (oldequiv))
7620 >= FIRST_PSEUDO_REGISTER)
7621 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7622 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7623 || (CONSTANT_P (oldequiv)
7624 && (targetm.preferred_reload_class (oldequiv,
7625 REGNO_REG_CLASS (REGNO (reloadreg)))
7626 == NO_REGS)))
7627 real_oldequiv = rl->in;
7628 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7629 rl->when_needed);
7632 if (cfun->can_throw_non_call_exceptions)
7633 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7635 /* End this sequence. */
7636 *where = get_insns ();
7637 end_sequence ();
7639 /* Update reload_override_in so that delete_address_reloads_1
7640 can see the actual register usage. */
7641 if (oldequiv_reg)
7642 reload_override_in[j] = oldequiv;
7645 /* Generate insns to for the output reload RL, which is for the insn described
7646 by CHAIN and has the number J. */
7647 static void
7648 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7649 int j)
7651 rtx reloadreg;
7652 rtx_insn *insn = chain->insn;
7653 int special = 0;
7654 rtx old = rl->out;
7655 machine_mode mode;
7656 rtx_insn *p;
7657 rtx rl_reg_rtx;
7659 if (rl->when_needed == RELOAD_OTHER)
7660 start_sequence ();
7661 else
7662 push_to_sequence (output_reload_insns[rl->opnum]);
7664 rl_reg_rtx = reload_reg_rtx_for_output[j];
7665 mode = GET_MODE (rl_reg_rtx);
7667 reloadreg = rl_reg_rtx;
7669 /* If we need two reload regs, set RELOADREG to the intermediate
7670 one, since it will be stored into OLD. We might need a secondary
7671 register only for an input reload, so check again here. */
7673 if (rl->secondary_out_reload >= 0)
7675 rtx real_old = old;
7676 int secondary_reload = rl->secondary_out_reload;
7677 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7679 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7680 && reg_equiv_mem (REGNO (old)) != 0)
7681 real_old = reg_equiv_mem (REGNO (old));
7683 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7685 rtx second_reloadreg = reloadreg;
7686 reloadreg = rld[secondary_reload].reg_rtx;
7688 /* See if RELOADREG is to be used as a scratch register
7689 or as an intermediate register. */
7690 if (rl->secondary_out_icode != CODE_FOR_nothing)
7692 /* We'd have to add extra code to handle this case. */
7693 gcc_assert (tertiary_reload < 0);
7695 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7696 (real_old, second_reloadreg, reloadreg)));
7697 special = 1;
7699 else
7701 /* See if we need both a scratch and intermediate reload
7702 register. */
7704 enum insn_code tertiary_icode
7705 = rld[secondary_reload].secondary_out_icode;
7707 /* We'd have to add more code for quartary reloads. */
7708 gcc_assert (tertiary_reload < 0
7709 || rld[tertiary_reload].secondary_out_reload < 0);
7711 if (GET_MODE (reloadreg) != mode)
7712 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7714 if (tertiary_icode != CODE_FOR_nothing)
7716 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7718 /* Copy primary reload reg to secondary reload reg.
7719 (Note that these have been swapped above, then
7720 secondary reload reg to OLD using our insn.) */
7722 /* If REAL_OLD is a paradoxical SUBREG, remove it
7723 and try to put the opposite SUBREG on
7724 RELOADREG. */
7725 strip_paradoxical_subreg (&real_old, &reloadreg);
7727 gen_reload (reloadreg, second_reloadreg,
7728 rl->opnum, rl->when_needed);
7729 emit_insn ((GEN_FCN (tertiary_icode)
7730 (real_old, reloadreg, third_reloadreg)));
7731 special = 1;
7734 else
7736 /* Copy between the reload regs here and then to
7737 OUT later. */
7739 gen_reload (reloadreg, second_reloadreg,
7740 rl->opnum, rl->when_needed);
7741 if (tertiary_reload >= 0)
7743 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7745 gen_reload (third_reloadreg, reloadreg,
7746 rl->opnum, rl->when_needed);
7747 reloadreg = third_reloadreg;
7754 /* Output the last reload insn. */
7755 if (! special)
7757 rtx set;
7759 /* Don't output the last reload if OLD is not the dest of
7760 INSN and is in the src and is clobbered by INSN. */
7761 if (! flag_expensive_optimizations
7762 || !REG_P (old)
7763 || !(set = single_set (insn))
7764 || rtx_equal_p (old, SET_DEST (set))
7765 || !reg_mentioned_p (old, SET_SRC (set))
7766 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7767 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7768 gen_reload (old, reloadreg, rl->opnum,
7769 rl->when_needed);
7772 /* Look at all insns we emitted, just to be safe. */
7773 for (p = get_insns (); p; p = NEXT_INSN (p))
7774 if (INSN_P (p))
7776 rtx pat = PATTERN (p);
7778 /* If this output reload doesn't come from a spill reg,
7779 clear any memory of reloaded copies of the pseudo reg.
7780 If this output reload comes from a spill reg,
7781 reg_has_output_reload will make this do nothing. */
7782 note_stores (pat, forget_old_reloads_1, NULL);
7784 if (reg_mentioned_p (rl_reg_rtx, pat))
7786 rtx set = single_set (insn);
7787 if (reload_spill_index[j] < 0
7788 && set
7789 && SET_SRC (set) == rl_reg_rtx)
7791 int src = REGNO (SET_SRC (set));
7793 reload_spill_index[j] = src;
7794 SET_HARD_REG_BIT (reg_is_output_reload, src);
7795 if (find_regno_note (insn, REG_DEAD, src))
7796 SET_HARD_REG_BIT (reg_reloaded_died, src);
7798 if (HARD_REGISTER_P (rl_reg_rtx))
7800 int s = rl->secondary_out_reload;
7801 set = single_set (p);
7802 /* If this reload copies only to the secondary reload
7803 register, the secondary reload does the actual
7804 store. */
7805 if (s >= 0 && set == NULL_RTX)
7806 /* We can't tell what function the secondary reload
7807 has and where the actual store to the pseudo is
7808 made; leave new_spill_reg_store alone. */
7810 else if (s >= 0
7811 && SET_SRC (set) == rl_reg_rtx
7812 && SET_DEST (set) == rld[s].reg_rtx)
7814 /* Usually the next instruction will be the
7815 secondary reload insn; if we can confirm
7816 that it is, setting new_spill_reg_store to
7817 that insn will allow an extra optimization. */
7818 rtx s_reg = rld[s].reg_rtx;
7819 rtx_insn *next = NEXT_INSN (p);
7820 rld[s].out = rl->out;
7821 rld[s].out_reg = rl->out_reg;
7822 set = single_set (next);
7823 if (set && SET_SRC (set) == s_reg
7824 && reload_reg_rtx_reaches_end_p (s_reg, s))
7826 SET_HARD_REG_BIT (reg_is_output_reload,
7827 REGNO (s_reg));
7828 new_spill_reg_store[REGNO (s_reg)] = next;
7831 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7832 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7837 if (rl->when_needed == RELOAD_OTHER)
7839 emit_insn (other_output_reload_insns[rl->opnum]);
7840 other_output_reload_insns[rl->opnum] = get_insns ();
7842 else
7843 output_reload_insns[rl->opnum] = get_insns ();
7845 if (cfun->can_throw_non_call_exceptions)
7846 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7848 end_sequence ();
7851 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7852 and has the number J. */
7853 static void
7854 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7856 rtx_insn *insn = chain->insn;
7857 rtx old = (rl->in && MEM_P (rl->in)
7858 ? rl->in_reg : rl->in);
7859 rtx reg_rtx = rl->reg_rtx;
7861 if (old && reg_rtx)
7863 machine_mode mode;
7865 /* Determine the mode to reload in.
7866 This is very tricky because we have three to choose from.
7867 There is the mode the insn operand wants (rl->inmode).
7868 There is the mode of the reload register RELOADREG.
7869 There is the intrinsic mode of the operand, which we could find
7870 by stripping some SUBREGs.
7871 It turns out that RELOADREG's mode is irrelevant:
7872 we can change that arbitrarily.
7874 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7875 then the reload reg may not support QImode moves, so use SImode.
7876 If foo is in memory due to spilling a pseudo reg, this is safe,
7877 because the QImode value is in the least significant part of a
7878 slot big enough for a SImode. If foo is some other sort of
7879 memory reference, then it is impossible to reload this case,
7880 so previous passes had better make sure this never happens.
7882 Then consider a one-word union which has SImode and one of its
7883 members is a float, being fetched as (SUBREG:SF union:SI).
7884 We must fetch that as SFmode because we could be loading into
7885 a float-only register. In this case OLD's mode is correct.
7887 Consider an immediate integer: it has VOIDmode. Here we need
7888 to get a mode from something else.
7890 In some cases, there is a fourth mode, the operand's
7891 containing mode. If the insn specifies a containing mode for
7892 this operand, it overrides all others.
7894 I am not sure whether the algorithm here is always right,
7895 but it does the right things in those cases. */
7897 mode = GET_MODE (old);
7898 if (mode == VOIDmode)
7899 mode = rl->inmode;
7901 /* We cannot use gen_lowpart_common since it can do the wrong thing
7902 when REG_RTX has a multi-word mode. Note that REG_RTX must
7903 always be a REG here. */
7904 if (GET_MODE (reg_rtx) != mode)
7905 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7907 reload_reg_rtx_for_input[j] = reg_rtx;
7909 if (old != 0
7910 /* AUTO_INC reloads need to be handled even if inherited. We got an
7911 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7912 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7913 && ! rtx_equal_p (reg_rtx, old)
7914 && reg_rtx != 0)
7915 emit_input_reload_insns (chain, rld + j, old, j);
7917 /* When inheriting a wider reload, we have a MEM in rl->in,
7918 e.g. inheriting a SImode output reload for
7919 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7920 if (optimize && reload_inherited[j] && rl->in
7921 && MEM_P (rl->in)
7922 && MEM_P (rl->in_reg)
7923 && reload_spill_index[j] >= 0
7924 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7925 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7927 /* If we are reloading a register that was recently stored in with an
7928 output-reload, see if we can prove there was
7929 actually no need to store the old value in it. */
7931 if (optimize
7932 && (reload_inherited[j] || reload_override_in[j])
7933 && reg_rtx
7934 && REG_P (reg_rtx)
7935 && spill_reg_store[REGNO (reg_rtx)] != 0
7936 #if 0
7937 /* There doesn't seem to be any reason to restrict this to pseudos
7938 and doing so loses in the case where we are copying from a
7939 register of the wrong class. */
7940 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7941 #endif
7942 /* The insn might have already some references to stackslots
7943 replaced by MEMs, while reload_out_reg still names the
7944 original pseudo. */
7945 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7946 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7947 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7950 /* Do output reloading for reload RL, which is for the insn described by
7951 CHAIN and has the number J.
7952 ??? At some point we need to support handling output reloads of
7953 JUMP_INSNs or insns that set cc0. */
7954 static void
7955 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7957 rtx note, old;
7958 rtx_insn *insn = chain->insn;
7959 /* If this is an output reload that stores something that is
7960 not loaded in this same reload, see if we can eliminate a previous
7961 store. */
7962 rtx pseudo = rl->out_reg;
7963 rtx reg_rtx = rl->reg_rtx;
7965 if (rl->out && reg_rtx)
7967 machine_mode mode;
7969 /* Determine the mode to reload in.
7970 See comments above (for input reloading). */
7971 mode = GET_MODE (rl->out);
7972 if (mode == VOIDmode)
7974 /* VOIDmode should never happen for an output. */
7975 if (asm_noperands (PATTERN (insn)) < 0)
7976 /* It's the compiler's fault. */
7977 fatal_insn ("VOIDmode on an output", insn);
7978 error_for_asm (insn, "output operand is constant in %<asm%>");
7979 /* Prevent crash--use something we know is valid. */
7980 mode = word_mode;
7981 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7983 if (GET_MODE (reg_rtx) != mode)
7984 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7986 reload_reg_rtx_for_output[j] = reg_rtx;
7988 if (pseudo
7989 && optimize
7990 && REG_P (pseudo)
7991 && ! rtx_equal_p (rl->in_reg, pseudo)
7992 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7993 && reg_last_reload_reg[REGNO (pseudo)])
7995 int pseudo_no = REGNO (pseudo);
7996 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7998 /* We don't need to test full validity of last_regno for
7999 inherit here; we only want to know if the store actually
8000 matches the pseudo. */
8001 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
8002 && reg_reloaded_contents[last_regno] == pseudo_no
8003 && spill_reg_store[last_regno]
8004 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
8005 delete_output_reload (insn, j, last_regno, reg_rtx);
8008 old = rl->out_reg;
8009 if (old == 0
8010 || reg_rtx == 0
8011 || rtx_equal_p (old, reg_rtx))
8012 return;
8014 /* An output operand that dies right away does need a reload,
8015 but need not be copied from it. Show the new location in the
8016 REG_UNUSED note. */
8017 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
8018 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
8020 XEXP (note, 0) = reg_rtx;
8021 return;
8023 /* Likewise for a SUBREG of an operand that dies. */
8024 else if (GET_CODE (old) == SUBREG
8025 && REG_P (SUBREG_REG (old))
8026 && 0 != (note = find_reg_note (insn, REG_UNUSED,
8027 SUBREG_REG (old))))
8029 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
8030 return;
8032 else if (GET_CODE (old) == SCRATCH)
8033 /* If we aren't optimizing, there won't be a REG_UNUSED note,
8034 but we don't want to make an output reload. */
8035 return;
8037 /* If is a JUMP_INSN, we can't support output reloads yet. */
8038 gcc_assert (NONJUMP_INSN_P (insn));
8040 emit_output_reload_insns (chain, rld + j, j);
8043 /* A reload copies values of MODE from register SRC to register DEST.
8044 Return true if it can be treated for inheritance purposes like a
8045 group of reloads, each one reloading a single hard register. The
8046 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8047 occupy the same number of hard registers. */
8049 static bool
8050 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8051 int src ATTRIBUTE_UNUSED,
8052 machine_mode mode ATTRIBUTE_UNUSED)
8054 #ifdef CANNOT_CHANGE_MODE_CLASS
8055 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8056 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8057 #else
8058 return true;
8059 #endif
8062 /* Output insns to reload values in and out of the chosen reload regs. */
8064 static void
8065 emit_reload_insns (struct insn_chain *chain)
8067 rtx_insn *insn = chain->insn;
8069 int j;
8071 CLEAR_HARD_REG_SET (reg_reloaded_died);
8073 for (j = 0; j < reload_n_operands; j++)
8074 input_reload_insns[j] = input_address_reload_insns[j]
8075 = inpaddr_address_reload_insns[j]
8076 = output_reload_insns[j] = output_address_reload_insns[j]
8077 = outaddr_address_reload_insns[j]
8078 = other_output_reload_insns[j] = 0;
8079 other_input_address_reload_insns = 0;
8080 other_input_reload_insns = 0;
8081 operand_reload_insns = 0;
8082 other_operand_reload_insns = 0;
8084 /* Dump reloads into the dump file. */
8085 if (dump_file)
8087 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8088 debug_reload_to_stream (dump_file);
8091 for (j = 0; j < n_reloads; j++)
8092 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8094 unsigned int i;
8096 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8097 new_spill_reg_store[i] = 0;
8100 /* Now output the instructions to copy the data into and out of the
8101 reload registers. Do these in the order that the reloads were reported,
8102 since reloads of base and index registers precede reloads of operands
8103 and the operands may need the base and index registers reloaded. */
8105 for (j = 0; j < n_reloads; j++)
8107 do_input_reload (chain, rld + j, j);
8108 do_output_reload (chain, rld + j, j);
8111 /* Now write all the insns we made for reloads in the order expected by
8112 the allocation functions. Prior to the insn being reloaded, we write
8113 the following reloads:
8115 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8117 RELOAD_OTHER reloads.
8119 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8120 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8121 RELOAD_FOR_INPUT reload for the operand.
8123 RELOAD_FOR_OPADDR_ADDRS reloads.
8125 RELOAD_FOR_OPERAND_ADDRESS reloads.
8127 After the insn being reloaded, we write the following:
8129 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8130 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8131 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8132 reloads for the operand. The RELOAD_OTHER output reloads are
8133 output in descending order by reload number. */
8135 emit_insn_before (other_input_address_reload_insns, insn);
8136 emit_insn_before (other_input_reload_insns, insn);
8138 for (j = 0; j < reload_n_operands; j++)
8140 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8141 emit_insn_before (input_address_reload_insns[j], insn);
8142 emit_insn_before (input_reload_insns[j], insn);
8145 emit_insn_before (other_operand_reload_insns, insn);
8146 emit_insn_before (operand_reload_insns, insn);
8148 for (j = 0; j < reload_n_operands; j++)
8150 rtx_insn *x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8151 x = emit_insn_after (output_address_reload_insns[j], x);
8152 x = emit_insn_after (output_reload_insns[j], x);
8153 emit_insn_after (other_output_reload_insns[j], x);
8156 /* For all the spill regs newly reloaded in this instruction,
8157 record what they were reloaded from, so subsequent instructions
8158 can inherit the reloads.
8160 Update spill_reg_store for the reloads of this insn.
8161 Copy the elements that were updated in the loop above. */
8163 for (j = 0; j < n_reloads; j++)
8165 int r = reload_order[j];
8166 int i = reload_spill_index[r];
8168 /* If this is a non-inherited input reload from a pseudo, we must
8169 clear any memory of a previous store to the same pseudo. Only do
8170 something if there will not be an output reload for the pseudo
8171 being reloaded. */
8172 if (rld[r].in_reg != 0
8173 && ! (reload_inherited[r] || reload_override_in[r]))
8175 rtx reg = rld[r].in_reg;
8177 if (GET_CODE (reg) == SUBREG)
8178 reg = SUBREG_REG (reg);
8180 if (REG_P (reg)
8181 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8182 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8184 int nregno = REGNO (reg);
8186 if (reg_last_reload_reg[nregno])
8188 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8190 if (reg_reloaded_contents[last_regno] == nregno)
8191 spill_reg_store[last_regno] = 0;
8196 /* I is nonneg if this reload used a register.
8197 If rld[r].reg_rtx is 0, this is an optional reload
8198 that we opted to ignore. */
8200 if (i >= 0 && rld[r].reg_rtx != 0)
8202 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8203 int k;
8205 /* For a multi register reload, we need to check if all or part
8206 of the value lives to the end. */
8207 for (k = 0; k < nr; k++)
8208 if (reload_reg_reaches_end_p (i + k, r))
8209 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8211 /* Maybe the spill reg contains a copy of reload_out. */
8212 if (rld[r].out != 0
8213 && (REG_P (rld[r].out)
8214 || (rld[r].out_reg
8215 ? REG_P (rld[r].out_reg)
8216 /* The reload value is an auto-modification of
8217 some kind. For PRE_INC, POST_INC, PRE_DEC
8218 and POST_DEC, we record an equivalence
8219 between the reload register and the operand
8220 on the optimistic assumption that we can make
8221 the equivalence hold. reload_as_needed must
8222 then either make it hold or invalidate the
8223 equivalence.
8225 PRE_MODIFY and POST_MODIFY addresses are reloaded
8226 somewhat differently, and allowing them here leads
8227 to problems. */
8228 : (GET_CODE (rld[r].out) != POST_MODIFY
8229 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8231 rtx reg;
8233 reg = reload_reg_rtx_for_output[r];
8234 if (reload_reg_rtx_reaches_end_p (reg, r))
8236 machine_mode mode = GET_MODE (reg);
8237 int regno = REGNO (reg);
8238 int nregs = hard_regno_nregs[regno][mode];
8239 rtx out = (REG_P (rld[r].out)
8240 ? rld[r].out
8241 : rld[r].out_reg
8242 ? rld[r].out_reg
8243 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8244 int out_regno = REGNO (out);
8245 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8246 : hard_regno_nregs[out_regno][mode]);
8247 bool piecemeal;
8249 spill_reg_store[regno] = new_spill_reg_store[regno];
8250 spill_reg_stored_to[regno] = out;
8251 reg_last_reload_reg[out_regno] = reg;
8253 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8254 && nregs == out_nregs
8255 && inherit_piecemeal_p (out_regno, regno, mode));
8257 /* If OUT_REGNO is a hard register, it may occupy more than
8258 one register. If it does, say what is in the
8259 rest of the registers assuming that both registers
8260 agree on how many words the object takes. If not,
8261 invalidate the subsequent registers. */
8263 if (HARD_REGISTER_NUM_P (out_regno))
8264 for (k = 1; k < out_nregs; k++)
8265 reg_last_reload_reg[out_regno + k]
8266 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8268 /* Now do the inverse operation. */
8269 for (k = 0; k < nregs; k++)
8271 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8272 reg_reloaded_contents[regno + k]
8273 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8274 ? out_regno
8275 : out_regno + k);
8276 reg_reloaded_insn[regno + k] = insn;
8277 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8278 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8279 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8280 regno + k);
8281 else
8282 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8283 regno + k);
8287 /* Maybe the spill reg contains a copy of reload_in. Only do
8288 something if there will not be an output reload for
8289 the register being reloaded. */
8290 else if (rld[r].out_reg == 0
8291 && rld[r].in != 0
8292 && ((REG_P (rld[r].in)
8293 && !HARD_REGISTER_P (rld[r].in)
8294 && !REGNO_REG_SET_P (&reg_has_output_reload,
8295 REGNO (rld[r].in)))
8296 || (REG_P (rld[r].in_reg)
8297 && !REGNO_REG_SET_P (&reg_has_output_reload,
8298 REGNO (rld[r].in_reg))))
8299 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8301 rtx reg;
8303 reg = reload_reg_rtx_for_input[r];
8304 if (reload_reg_rtx_reaches_end_p (reg, r))
8306 machine_mode mode;
8307 int regno;
8308 int nregs;
8309 int in_regno;
8310 int in_nregs;
8311 rtx in;
8312 bool piecemeal;
8314 mode = GET_MODE (reg);
8315 regno = REGNO (reg);
8316 nregs = hard_regno_nregs[regno][mode];
8317 if (REG_P (rld[r].in)
8318 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8319 in = rld[r].in;
8320 else if (REG_P (rld[r].in_reg))
8321 in = rld[r].in_reg;
8322 else
8323 in = XEXP (rld[r].in_reg, 0);
8324 in_regno = REGNO (in);
8326 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8327 : hard_regno_nregs[in_regno][mode]);
8329 reg_last_reload_reg[in_regno] = reg;
8331 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8332 && nregs == in_nregs
8333 && inherit_piecemeal_p (regno, in_regno, mode));
8335 if (HARD_REGISTER_NUM_P (in_regno))
8336 for (k = 1; k < in_nregs; k++)
8337 reg_last_reload_reg[in_regno + k]
8338 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8340 /* Unless we inherited this reload, show we haven't
8341 recently done a store.
8342 Previous stores of inherited auto_inc expressions
8343 also have to be discarded. */
8344 if (! reload_inherited[r]
8345 || (rld[r].out && ! rld[r].out_reg))
8346 spill_reg_store[regno] = 0;
8348 for (k = 0; k < nregs; k++)
8350 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8351 reg_reloaded_contents[regno + k]
8352 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8353 ? in_regno
8354 : in_regno + k);
8355 reg_reloaded_insn[regno + k] = insn;
8356 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8357 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8358 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8359 regno + k);
8360 else
8361 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8362 regno + k);
8368 /* The following if-statement was #if 0'd in 1.34 (or before...).
8369 It's reenabled in 1.35 because supposedly nothing else
8370 deals with this problem. */
8372 /* If a register gets output-reloaded from a non-spill register,
8373 that invalidates any previous reloaded copy of it.
8374 But forget_old_reloads_1 won't get to see it, because
8375 it thinks only about the original insn. So invalidate it here.
8376 Also do the same thing for RELOAD_OTHER constraints where the
8377 output is discarded. */
8378 if (i < 0
8379 && ((rld[r].out != 0
8380 && (REG_P (rld[r].out)
8381 || (MEM_P (rld[r].out)
8382 && REG_P (rld[r].out_reg))))
8383 || (rld[r].out == 0 && rld[r].out_reg
8384 && REG_P (rld[r].out_reg))))
8386 rtx out = ((rld[r].out && REG_P (rld[r].out))
8387 ? rld[r].out : rld[r].out_reg);
8388 int out_regno = REGNO (out);
8389 machine_mode mode = GET_MODE (out);
8391 /* REG_RTX is now set or clobbered by the main instruction.
8392 As the comment above explains, forget_old_reloads_1 only
8393 sees the original instruction, and there is no guarantee
8394 that the original instruction also clobbered REG_RTX.
8395 For example, if find_reloads sees that the input side of
8396 a matched operand pair dies in this instruction, it may
8397 use the input register as the reload register.
8399 Calling forget_old_reloads_1 is a waste of effort if
8400 REG_RTX is also the output register.
8402 If we know that REG_RTX holds the value of a pseudo
8403 register, the code after the call will record that fact. */
8404 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8405 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8407 if (!HARD_REGISTER_NUM_P (out_regno))
8409 rtx src_reg;
8410 rtx_insn *store_insn = NULL;
8412 reg_last_reload_reg[out_regno] = 0;
8414 /* If we can find a hard register that is stored, record
8415 the storing insn so that we may delete this insn with
8416 delete_output_reload. */
8417 src_reg = reload_reg_rtx_for_output[r];
8419 if (src_reg)
8421 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8422 store_insn = new_spill_reg_store[REGNO (src_reg)];
8423 else
8424 src_reg = NULL_RTX;
8426 else
8428 /* If this is an optional reload, try to find the
8429 source reg from an input reload. */
8430 rtx set = single_set (insn);
8431 if (set && SET_DEST (set) == rld[r].out)
8433 int k;
8435 src_reg = SET_SRC (set);
8436 store_insn = insn;
8437 for (k = 0; k < n_reloads; k++)
8439 if (rld[k].in == src_reg)
8441 src_reg = reload_reg_rtx_for_input[k];
8442 break;
8447 if (src_reg && REG_P (src_reg)
8448 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8450 int src_regno, src_nregs, k;
8451 rtx note;
8453 gcc_assert (GET_MODE (src_reg) == mode);
8454 src_regno = REGNO (src_reg);
8455 src_nregs = hard_regno_nregs[src_regno][mode];
8456 /* The place where to find a death note varies with
8457 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8458 necessarily checked exactly in the code that moves
8459 notes, so just check both locations. */
8460 note = find_regno_note (insn, REG_DEAD, src_regno);
8461 if (! note && store_insn)
8462 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8463 for (k = 0; k < src_nregs; k++)
8465 spill_reg_store[src_regno + k] = store_insn;
8466 spill_reg_stored_to[src_regno + k] = out;
8467 reg_reloaded_contents[src_regno + k] = out_regno;
8468 reg_reloaded_insn[src_regno + k] = store_insn;
8469 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8470 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8471 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8472 mode))
8473 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8474 src_regno + k);
8475 else
8476 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8477 src_regno + k);
8478 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8479 if (note)
8480 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8481 else
8482 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8484 reg_last_reload_reg[out_regno] = src_reg;
8485 /* We have to set reg_has_output_reload here, or else
8486 forget_old_reloads_1 will clear reg_last_reload_reg
8487 right away. */
8488 SET_REGNO_REG_SET (&reg_has_output_reload,
8489 out_regno);
8492 else
8494 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8496 for (k = 0; k < out_nregs; k++)
8497 reg_last_reload_reg[out_regno + k] = 0;
8501 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8504 /* Go through the motions to emit INSN and test if it is strictly valid.
8505 Return the emitted insn if valid, else return NULL. */
8507 static rtx_insn *
8508 emit_insn_if_valid_for_reload (rtx pat)
8510 rtx_insn *last = get_last_insn ();
8511 int code;
8513 rtx_insn *insn = emit_insn (pat);
8514 code = recog_memoized (insn);
8516 if (code >= 0)
8518 extract_insn (insn);
8519 /* We want constrain operands to treat this insn strictly in its
8520 validity determination, i.e., the way it would after reload has
8521 completed. */
8522 if (constrain_operands (1, get_enabled_alternatives (insn)))
8523 return insn;
8526 delete_insns_since (last);
8527 return NULL;
8530 /* Emit code to perform a reload from IN (which may be a reload register) to
8531 OUT (which may also be a reload register). IN or OUT is from operand
8532 OPNUM with reload type TYPE.
8534 Returns first insn emitted. */
8536 static rtx_insn *
8537 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8539 rtx_insn *last = get_last_insn ();
8540 rtx_insn *tem;
8541 #ifdef SECONDARY_MEMORY_NEEDED
8542 rtx tem1, tem2;
8543 #endif
8545 /* If IN is a paradoxical SUBREG, remove it and try to put the
8546 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8547 if (!strip_paradoxical_subreg (&in, &out))
8548 strip_paradoxical_subreg (&out, &in);
8550 /* How to do this reload can get quite tricky. Normally, we are being
8551 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8552 register that didn't get a hard register. In that case we can just
8553 call emit_move_insn.
8555 We can also be asked to reload a PLUS that adds a register or a MEM to
8556 another register, constant or MEM. This can occur during frame pointer
8557 elimination and while reloading addresses. This case is handled by
8558 trying to emit a single insn to perform the add. If it is not valid,
8559 we use a two insn sequence.
8561 Or we can be asked to reload an unary operand that was a fragment of
8562 an addressing mode, into a register. If it isn't recognized as-is,
8563 we try making the unop operand and the reload-register the same:
8564 (set reg:X (unop:X expr:Y))
8565 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8567 Finally, we could be called to handle an 'o' constraint by putting
8568 an address into a register. In that case, we first try to do this
8569 with a named pattern of "reload_load_address". If no such pattern
8570 exists, we just emit a SET insn and hope for the best (it will normally
8571 be valid on machines that use 'o').
8573 This entire process is made complex because reload will never
8574 process the insns we generate here and so we must ensure that
8575 they will fit their constraints and also by the fact that parts of
8576 IN might be being reloaded separately and replaced with spill registers.
8577 Because of this, we are, in some sense, just guessing the right approach
8578 here. The one listed above seems to work.
8580 ??? At some point, this whole thing needs to be rethought. */
8582 if (GET_CODE (in) == PLUS
8583 && (REG_P (XEXP (in, 0))
8584 || GET_CODE (XEXP (in, 0)) == SUBREG
8585 || MEM_P (XEXP (in, 0)))
8586 && (REG_P (XEXP (in, 1))
8587 || GET_CODE (XEXP (in, 1)) == SUBREG
8588 || CONSTANT_P (XEXP (in, 1))
8589 || MEM_P (XEXP (in, 1))))
8591 /* We need to compute the sum of a register or a MEM and another
8592 register, constant, or MEM, and put it into the reload
8593 register. The best possible way of doing this is if the machine
8594 has a three-operand ADD insn that accepts the required operands.
8596 The simplest approach is to try to generate such an insn and see if it
8597 is recognized and matches its constraints. If so, it can be used.
8599 It might be better not to actually emit the insn unless it is valid,
8600 but we need to pass the insn as an operand to `recog' and
8601 `extract_insn' and it is simpler to emit and then delete the insn if
8602 not valid than to dummy things up. */
8604 rtx op0, op1, tem;
8605 rtx_insn *insn;
8606 enum insn_code code;
8608 op0 = find_replacement (&XEXP (in, 0));
8609 op1 = find_replacement (&XEXP (in, 1));
8611 /* Since constraint checking is strict, commutativity won't be
8612 checked, so we need to do that here to avoid spurious failure
8613 if the add instruction is two-address and the second operand
8614 of the add is the same as the reload reg, which is frequently
8615 the case. If the insn would be A = B + A, rearrange it so
8616 it will be A = A + B as constrain_operands expects. */
8618 if (REG_P (XEXP (in, 1))
8619 && REGNO (out) == REGNO (XEXP (in, 1)))
8620 tem = op0, op0 = op1, op1 = tem;
8622 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8623 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8625 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8626 if (insn)
8627 return insn;
8629 /* If that failed, we must use a conservative two-insn sequence.
8631 Use a move to copy one operand into the reload register. Prefer
8632 to reload a constant, MEM or pseudo since the move patterns can
8633 handle an arbitrary operand. If OP1 is not a constant, MEM or
8634 pseudo and OP1 is not a valid operand for an add instruction, then
8635 reload OP1.
8637 After reloading one of the operands into the reload register, add
8638 the reload register to the output register.
8640 If there is another way to do this for a specific machine, a
8641 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8642 we emit below. */
8644 code = optab_handler (add_optab, GET_MODE (out));
8646 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8647 || (REG_P (op1)
8648 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8649 || (code != CODE_FOR_nothing
8650 && !insn_operand_matches (code, 2, op1)))
8651 tem = op0, op0 = op1, op1 = tem;
8653 gen_reload (out, op0, opnum, type);
8655 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8656 This fixes a problem on the 32K where the stack pointer cannot
8657 be used as an operand of an add insn. */
8659 if (rtx_equal_p (op0, op1))
8660 op1 = out;
8662 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8663 if (insn)
8665 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8666 set_dst_reg_note (insn, REG_EQUIV, in, out);
8667 return insn;
8670 /* If that failed, copy the address register to the reload register.
8671 Then add the constant to the reload register. */
8673 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8674 gen_reload (out, op1, opnum, type);
8675 insn = emit_insn (gen_add2_insn (out, op0));
8676 set_dst_reg_note (insn, REG_EQUIV, in, out);
8679 #ifdef SECONDARY_MEMORY_NEEDED
8680 /* If we need a memory location to do the move, do it that way. */
8681 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8682 (REG_P (tem1) && REG_P (tem2)))
8683 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8684 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8685 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem1)),
8686 REGNO_REG_CLASS (REGNO (tem2)),
8687 GET_MODE (out)))
8689 /* Get the memory to use and rewrite both registers to its mode. */
8690 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8692 if (GET_MODE (loc) != GET_MODE (out))
8693 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8695 if (GET_MODE (loc) != GET_MODE (in))
8696 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8698 gen_reload (loc, in, opnum, type);
8699 gen_reload (out, loc, opnum, type);
8701 #endif
8702 else if (REG_P (out) && UNARY_P (in))
8704 rtx insn;
8705 rtx op1;
8706 rtx out_moded;
8707 rtx_insn *set;
8709 op1 = find_replacement (&XEXP (in, 0));
8710 if (op1 != XEXP (in, 0))
8711 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8713 /* First, try a plain SET. */
8714 set = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8715 if (set)
8716 return set;
8718 /* If that failed, move the inner operand to the reload
8719 register, and try the same unop with the inner expression
8720 replaced with the reload register. */
8722 if (GET_MODE (op1) != GET_MODE (out))
8723 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8724 else
8725 out_moded = out;
8727 gen_reload (out_moded, op1, opnum, type);
8729 insn = gen_rtx_SET (out, gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8730 out_moded));
8731 insn = emit_insn_if_valid_for_reload (insn);
8732 if (insn)
8734 set_unique_reg_note (insn, REG_EQUIV, in);
8735 return as_a <rtx_insn *> (insn);
8738 fatal_insn ("failure trying to reload:", set);
8740 /* If IN is a simple operand, use gen_move_insn. */
8741 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8743 tem = emit_insn (gen_move_insn (out, in));
8744 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8745 mark_jump_label (in, tem, 0);
8748 else if (targetm.have_reload_load_address ())
8749 emit_insn (targetm.gen_reload_load_address (out, in));
8751 /* Otherwise, just write (set OUT IN) and hope for the best. */
8752 else
8753 emit_insn (gen_rtx_SET (out, in));
8755 /* Return the first insn emitted.
8756 We can not just return get_last_insn, because there may have
8757 been multiple instructions emitted. Also note that gen_move_insn may
8758 emit more than one insn itself, so we can not assume that there is one
8759 insn emitted per emit_insn_before call. */
8761 return last ? NEXT_INSN (last) : get_insns ();
8764 /* Delete a previously made output-reload whose result we now believe
8765 is not needed. First we double-check.
8767 INSN is the insn now being processed.
8768 LAST_RELOAD_REG is the hard register number for which we want to delete
8769 the last output reload.
8770 J is the reload-number that originally used REG. The caller has made
8771 certain that reload J doesn't use REG any longer for input.
8772 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8774 static void
8775 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8776 rtx new_reload_reg)
8778 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8779 rtx reg = spill_reg_stored_to[last_reload_reg];
8780 int k;
8781 int n_occurrences;
8782 int n_inherited = 0;
8783 rtx substed;
8784 unsigned regno;
8785 int nregs;
8787 /* It is possible that this reload has been only used to set another reload
8788 we eliminated earlier and thus deleted this instruction too. */
8789 if (output_reload_insn->deleted ())
8790 return;
8792 /* Get the raw pseudo-register referred to. */
8794 while (GET_CODE (reg) == SUBREG)
8795 reg = SUBREG_REG (reg);
8796 substed = reg_equiv_memory_loc (REGNO (reg));
8798 /* This is unsafe if the operand occurs more often in the current
8799 insn than it is inherited. */
8800 for (k = n_reloads - 1; k >= 0; k--)
8802 rtx reg2 = rld[k].in;
8803 if (! reg2)
8804 continue;
8805 if (MEM_P (reg2) || reload_override_in[k])
8806 reg2 = rld[k].in_reg;
8808 if (AUTO_INC_DEC && rld[k].out && ! rld[k].out_reg)
8809 reg2 = XEXP (rld[k].in_reg, 0);
8811 while (GET_CODE (reg2) == SUBREG)
8812 reg2 = SUBREG_REG (reg2);
8813 if (rtx_equal_p (reg2, reg))
8815 if (reload_inherited[k] || reload_override_in[k] || k == j)
8816 n_inherited++;
8817 else
8818 return;
8821 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8822 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8823 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8824 reg, 0);
8825 if (substed)
8826 n_occurrences += count_occurrences (PATTERN (insn),
8827 eliminate_regs (substed, VOIDmode,
8828 NULL_RTX), 0);
8829 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8831 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8832 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8834 if (n_occurrences > n_inherited)
8835 return;
8837 regno = REGNO (reg);
8838 if (regno >= FIRST_PSEUDO_REGISTER)
8839 nregs = 1;
8840 else
8841 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8843 /* If the pseudo-reg we are reloading is no longer referenced
8844 anywhere between the store into it and here,
8845 and we're within the same basic block, then the value can only
8846 pass through the reload reg and end up here.
8847 Otherwise, give up--return. */
8848 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8849 i1 != insn; i1 = NEXT_INSN (i1))
8851 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8852 return;
8853 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8854 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8856 /* If this is USE in front of INSN, we only have to check that
8857 there are no more references than accounted for by inheritance. */
8858 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8860 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8861 i1 = NEXT_INSN (i1);
8863 if (n_occurrences <= n_inherited && i1 == insn)
8864 break;
8865 return;
8869 /* We will be deleting the insn. Remove the spill reg information. */
8870 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8872 spill_reg_store[last_reload_reg + k] = 0;
8873 spill_reg_stored_to[last_reload_reg + k] = 0;
8876 /* The caller has already checked that REG dies or is set in INSN.
8877 It has also checked that we are optimizing, and thus some
8878 inaccuracies in the debugging information are acceptable.
8879 So we could just delete output_reload_insn. But in some cases
8880 we can improve the debugging information without sacrificing
8881 optimization - maybe even improving the code: See if the pseudo
8882 reg has been completely replaced with reload regs. If so, delete
8883 the store insn and forget we had a stack slot for the pseudo. */
8884 if (rld[j].out != rld[j].in
8885 && REG_N_DEATHS (REGNO (reg)) == 1
8886 && REG_N_SETS (REGNO (reg)) == 1
8887 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8888 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8890 rtx_insn *i2;
8892 /* We know that it was used only between here and the beginning of
8893 the current basic block. (We also know that the last use before
8894 INSN was the output reload we are thinking of deleting, but never
8895 mind that.) Search that range; see if any ref remains. */
8896 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8898 rtx set = single_set (i2);
8900 /* Uses which just store in the pseudo don't count,
8901 since if they are the only uses, they are dead. */
8902 if (set != 0 && SET_DEST (set) == reg)
8903 continue;
8904 if (LABEL_P (i2) || JUMP_P (i2))
8905 break;
8906 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8907 && reg_mentioned_p (reg, PATTERN (i2)))
8909 /* Some other ref remains; just delete the output reload we
8910 know to be dead. */
8911 delete_address_reloads (output_reload_insn, insn);
8912 delete_insn (output_reload_insn);
8913 return;
8917 /* Delete the now-dead stores into this pseudo. Note that this
8918 loop also takes care of deleting output_reload_insn. */
8919 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8921 rtx set = single_set (i2);
8923 if (set != 0 && SET_DEST (set) == reg)
8925 delete_address_reloads (i2, insn);
8926 delete_insn (i2);
8928 if (LABEL_P (i2) || JUMP_P (i2))
8929 break;
8932 /* For the debugging info, say the pseudo lives in this reload reg. */
8933 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8934 if (ira_conflicts_p)
8935 /* Inform IRA about the change. */
8936 ira_mark_allocation_change (REGNO (reg));
8937 alter_reg (REGNO (reg), -1, false);
8939 else
8941 delete_address_reloads (output_reload_insn, insn);
8942 delete_insn (output_reload_insn);
8946 /* We are going to delete DEAD_INSN. Recursively delete loads of
8947 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8948 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8949 static void
8950 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
8952 rtx set = single_set (dead_insn);
8953 rtx set2, dst;
8954 rtx_insn *prev, *next;
8955 if (set)
8957 rtx dst = SET_DEST (set);
8958 if (MEM_P (dst))
8959 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8961 /* If we deleted the store from a reloaded post_{in,de}c expression,
8962 we can delete the matching adds. */
8963 prev = PREV_INSN (dead_insn);
8964 next = NEXT_INSN (dead_insn);
8965 if (! prev || ! next)
8966 return;
8967 set = single_set (next);
8968 set2 = single_set (prev);
8969 if (! set || ! set2
8970 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8971 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8972 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8973 return;
8974 dst = SET_DEST (set);
8975 if (! rtx_equal_p (dst, SET_DEST (set2))
8976 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8977 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8978 || (INTVAL (XEXP (SET_SRC (set), 1))
8979 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8980 return;
8981 delete_related_insns (prev);
8982 delete_related_insns (next);
8985 /* Subfunction of delete_address_reloads: process registers found in X. */
8986 static void
8987 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
8989 rtx_insn *prev, *i2;
8990 rtx set, dst;
8991 int i, j;
8992 enum rtx_code code = GET_CODE (x);
8994 if (code != REG)
8996 const char *fmt = GET_RTX_FORMAT (code);
8997 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8999 if (fmt[i] == 'e')
9000 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
9001 else if (fmt[i] == 'E')
9003 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9004 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
9005 current_insn);
9008 return;
9011 if (spill_reg_order[REGNO (x)] < 0)
9012 return;
9014 /* Scan backwards for the insn that sets x. This might be a way back due
9015 to inheritance. */
9016 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
9018 code = GET_CODE (prev);
9019 if (code == CODE_LABEL || code == JUMP_INSN)
9020 return;
9021 if (!INSN_P (prev))
9022 continue;
9023 if (reg_set_p (x, PATTERN (prev)))
9024 break;
9025 if (reg_referenced_p (x, PATTERN (prev)))
9026 return;
9028 if (! prev || INSN_UID (prev) < reload_first_uid)
9029 return;
9030 /* Check that PREV only sets the reload register. */
9031 set = single_set (prev);
9032 if (! set)
9033 return;
9034 dst = SET_DEST (set);
9035 if (!REG_P (dst)
9036 || ! rtx_equal_p (dst, x))
9037 return;
9038 if (! reg_set_p (dst, PATTERN (dead_insn)))
9040 /* Check if DST was used in a later insn -
9041 it might have been inherited. */
9042 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9044 if (LABEL_P (i2))
9045 break;
9046 if (! INSN_P (i2))
9047 continue;
9048 if (reg_referenced_p (dst, PATTERN (i2)))
9050 /* If there is a reference to the register in the current insn,
9051 it might be loaded in a non-inherited reload. If no other
9052 reload uses it, that means the register is set before
9053 referenced. */
9054 if (i2 == current_insn)
9056 for (j = n_reloads - 1; j >= 0; j--)
9057 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9058 || reload_override_in[j] == dst)
9059 return;
9060 for (j = n_reloads - 1; j >= 0; j--)
9061 if (rld[j].in && rld[j].reg_rtx == dst)
9062 break;
9063 if (j >= 0)
9064 break;
9066 return;
9068 if (JUMP_P (i2))
9069 break;
9070 /* If DST is still live at CURRENT_INSN, check if it is used for
9071 any reload. Note that even if CURRENT_INSN sets DST, we still
9072 have to check the reloads. */
9073 if (i2 == current_insn)
9075 for (j = n_reloads - 1; j >= 0; j--)
9076 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9077 || reload_override_in[j] == dst)
9078 return;
9079 /* ??? We can't finish the loop here, because dst might be
9080 allocated to a pseudo in this block if no reload in this
9081 block needs any of the classes containing DST - see
9082 spill_hard_reg. There is no easy way to tell this, so we
9083 have to scan till the end of the basic block. */
9085 if (reg_set_p (dst, PATTERN (i2)))
9086 break;
9089 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9090 reg_reloaded_contents[REGNO (dst)] = -1;
9091 delete_insn (prev);
9094 /* Output reload-insns to reload VALUE into RELOADREG.
9095 VALUE is an autoincrement or autodecrement RTX whose operand
9096 is a register or memory location;
9097 so reloading involves incrementing that location.
9098 IN is either identical to VALUE, or some cheaper place to reload from.
9100 INC_AMOUNT is the number to increment or decrement by (always positive).
9101 This cannot be deduced from VALUE. */
9103 static void
9104 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9106 /* REG or MEM to be copied and incremented. */
9107 rtx incloc = find_replacement (&XEXP (value, 0));
9108 /* Nonzero if increment after copying. */
9109 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9110 || GET_CODE (value) == POST_MODIFY);
9111 rtx_insn *last;
9112 rtx inc;
9113 rtx_insn *add_insn;
9114 int code;
9115 rtx real_in = in == value ? incloc : in;
9117 /* No hard register is equivalent to this register after
9118 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9119 we could inc/dec that register as well (maybe even using it for
9120 the source), but I'm not sure it's worth worrying about. */
9121 if (REG_P (incloc))
9122 reg_last_reload_reg[REGNO (incloc)] = 0;
9124 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9126 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9127 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9129 else
9131 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9132 inc_amount = -inc_amount;
9134 inc = GEN_INT (inc_amount);
9137 /* If this is post-increment, first copy the location to the reload reg. */
9138 if (post && real_in != reloadreg)
9139 emit_insn (gen_move_insn (reloadreg, real_in));
9141 if (in == value)
9143 /* See if we can directly increment INCLOC. Use a method similar to
9144 that in gen_reload. */
9146 last = get_last_insn ();
9147 add_insn = emit_insn (gen_rtx_SET (incloc,
9148 gen_rtx_PLUS (GET_MODE (incloc),
9149 incloc, inc)));
9151 code = recog_memoized (add_insn);
9152 if (code >= 0)
9154 extract_insn (add_insn);
9155 if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9157 /* If this is a pre-increment and we have incremented the value
9158 where it lives, copy the incremented value to RELOADREG to
9159 be used as an address. */
9161 if (! post)
9162 emit_insn (gen_move_insn (reloadreg, incloc));
9163 return;
9166 delete_insns_since (last);
9169 /* If couldn't do the increment directly, must increment in RELOADREG.
9170 The way we do this depends on whether this is pre- or post-increment.
9171 For pre-increment, copy INCLOC to the reload register, increment it
9172 there, then save back. */
9174 if (! post)
9176 if (in != reloadreg)
9177 emit_insn (gen_move_insn (reloadreg, real_in));
9178 emit_insn (gen_add2_insn (reloadreg, inc));
9179 emit_insn (gen_move_insn (incloc, reloadreg));
9181 else
9183 /* Postincrement.
9184 Because this might be a jump insn or a compare, and because RELOADREG
9185 may not be available after the insn in an input reload, we must do
9186 the incrementation before the insn being reloaded for.
9188 We have already copied IN to RELOADREG. Increment the copy in
9189 RELOADREG, save that back, then decrement RELOADREG so it has
9190 the original value. */
9192 emit_insn (gen_add2_insn (reloadreg, inc));
9193 emit_insn (gen_move_insn (incloc, reloadreg));
9194 if (CONST_INT_P (inc))
9195 emit_insn (gen_add2_insn (reloadreg,
9196 gen_int_mode (-INTVAL (inc),
9197 GET_MODE (reloadreg))));
9198 else
9199 emit_insn (gen_sub2_insn (reloadreg, inc));
9203 static void
9204 add_auto_inc_notes (rtx_insn *insn, rtx x)
9206 enum rtx_code code = GET_CODE (x);
9207 const char *fmt;
9208 int i, j;
9210 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9212 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9213 return;
9216 /* Scan all the operand sub-expressions. */
9217 fmt = GET_RTX_FORMAT (code);
9218 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9220 if (fmt[i] == 'e')
9221 add_auto_inc_notes (insn, XEXP (x, i));
9222 else if (fmt[i] == 'E')
9223 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9224 add_auto_inc_notes (insn, XVECEXP (x, i, j));