[PR49366] emit loc exprs for C++ non-virtual pmf template value parms
[official-gcc.git] / gcc / dwarf2out.c
blobc658220c868cc5a9bee66f014d06f46ffcebfad0
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992-2016 Free Software Foundation, Inc.
3 Contributed by Gary Funck (gary@intrepid.com).
4 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
5 Extensively modified by Jason Merrill (jason@cygnus.com).
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* TODO: Emit .debug_line header even when there are no functions, since
24 the file numbers are used by .debug_info. Alternately, leave
25 out locations for types and decls.
26 Avoid talking about ctors and op= for PODs.
27 Factor out common prologue sequences into multiple CIEs. */
29 /* The first part of this file deals with the DWARF 2 frame unwind
30 information, which is also used by the GCC efficient exception handling
31 mechanism. The second part, controlled only by an #ifdef
32 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
33 information. */
35 /* DWARF2 Abbreviation Glossary:
37 CFA = Canonical Frame Address
38 a fixed address on the stack which identifies a call frame.
39 We define it to be the value of SP just before the call insn.
40 The CFA register and offset, which may change during the course
41 of the function, are used to calculate its value at runtime.
43 CFI = Call Frame Instruction
44 an instruction for the DWARF2 abstract machine
46 CIE = Common Information Entry
47 information describing information common to one or more FDEs
49 DIE = Debugging Information Entry
51 FDE = Frame Description Entry
52 information describing the stack call frame, in particular,
53 how to restore registers
55 DW_CFA_... = DWARF2 CFA call frame instruction
56 DW_TAG_... = DWARF2 DIE tag */
58 #include "config.h"
59 #include "system.h"
60 #include "coretypes.h"
61 #include "target.h"
62 #include "function.h"
63 #include "rtl.h"
64 #include "tree.h"
65 #include "tm_p.h"
66 #include "stringpool.h"
67 #include "insn-config.h"
68 #include "ira.h"
69 #include "cgraph.h"
70 #include "diagnostic.h"
71 #include "fold-const.h"
72 #include "stor-layout.h"
73 #include "varasm.h"
74 #include "version.h"
75 #include "flags.h"
76 #include "rtlhash.h"
77 #include "reload.h"
78 #include "output.h"
79 #include "expr.h"
80 #include "dwarf2out.h"
81 #include "dwarf2asm.h"
82 #include "toplev.h"
83 #include "md5.h"
84 #include "tree-pretty-print.h"
85 #include "debug.h"
86 #include "common/common-target.h"
87 #include "langhooks.h"
88 #include "lra.h"
89 #include "dumpfile.h"
90 #include "opts.h"
91 #include "tree-dfa.h"
92 #include "gdb/gdb-index.h"
93 #include "rtl-iter.h"
95 static void dwarf2out_source_line (unsigned int, const char *, int, bool);
96 static rtx_insn *last_var_location_insn;
97 static rtx_insn *cached_next_real_insn;
98 static void dwarf2out_decl (tree);
100 #ifndef XCOFF_DEBUGGING_INFO
101 #define XCOFF_DEBUGGING_INFO 0
102 #endif
104 #ifndef HAVE_XCOFF_DWARF_EXTRAS
105 #define HAVE_XCOFF_DWARF_EXTRAS 0
106 #endif
108 #ifdef VMS_DEBUGGING_INFO
109 int vms_file_stats_name (const char *, long long *, long *, char *, int *);
111 /* Define this macro to be a nonzero value if the directory specifications
112 which are output in the debug info should end with a separator. */
113 #define DWARF2_DIR_SHOULD_END_WITH_SEPARATOR 1
114 /* Define this macro to evaluate to a nonzero value if GCC should refrain
115 from generating indirect strings in DWARF2 debug information, for instance
116 if your target is stuck with an old version of GDB that is unable to
117 process them properly or uses VMS Debug. */
118 #define DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET 1
119 #else
120 #define DWARF2_DIR_SHOULD_END_WITH_SEPARATOR 0
121 #define DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET 0
122 #endif
124 /* ??? Poison these here until it can be done generically. They've been
125 totally replaced in this file; make sure it stays that way. */
126 #undef DWARF2_UNWIND_INFO
127 #undef DWARF2_FRAME_INFO
128 #if (GCC_VERSION >= 3000)
129 #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
130 #endif
132 /* The size of the target's pointer type. */
133 #ifndef PTR_SIZE
134 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
135 #endif
137 /* Array of RTXes referenced by the debugging information, which therefore
138 must be kept around forever. */
139 static GTY(()) vec<rtx, va_gc> *used_rtx_array;
141 /* A pointer to the base of a list of incomplete types which might be
142 completed at some later time. incomplete_types_list needs to be a
143 vec<tree, va_gc> *because we want to tell the garbage collector about
144 it. */
145 static GTY(()) vec<tree, va_gc> *incomplete_types;
147 /* A pointer to the base of a table of references to declaration
148 scopes. This table is a display which tracks the nesting
149 of declaration scopes at the current scope and containing
150 scopes. This table is used to find the proper place to
151 define type declaration DIE's. */
152 static GTY(()) vec<tree, va_gc> *decl_scope_table;
154 /* Pointers to various DWARF2 sections. */
155 static GTY(()) section *debug_info_section;
156 static GTY(()) section *debug_skeleton_info_section;
157 static GTY(()) section *debug_abbrev_section;
158 static GTY(()) section *debug_skeleton_abbrev_section;
159 static GTY(()) section *debug_aranges_section;
160 static GTY(()) section *debug_addr_section;
161 static GTY(()) section *debug_macinfo_section;
162 static GTY(()) section *debug_line_section;
163 static GTY(()) section *debug_skeleton_line_section;
164 static GTY(()) section *debug_loc_section;
165 static GTY(()) section *debug_pubnames_section;
166 static GTY(()) section *debug_pubtypes_section;
167 static GTY(()) section *debug_str_section;
168 static GTY(()) section *debug_str_dwo_section;
169 static GTY(()) section *debug_str_offsets_section;
170 static GTY(()) section *debug_ranges_section;
171 static GTY(()) section *debug_frame_section;
173 /* Maximum size (in bytes) of an artificially generated label. */
174 #define MAX_ARTIFICIAL_LABEL_BYTES 30
176 /* According to the (draft) DWARF 3 specification, the initial length
177 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
178 bytes are 0xffffffff, followed by the length stored in the next 8
179 bytes.
181 However, the SGI/MIPS ABI uses an initial length which is equal to
182 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
184 #ifndef DWARF_INITIAL_LENGTH_SIZE
185 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
186 #endif
188 /* Round SIZE up to the nearest BOUNDARY. */
189 #define DWARF_ROUND(SIZE,BOUNDARY) \
190 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
192 /* CIE identifier. */
193 #if HOST_BITS_PER_WIDE_INT >= 64
194 #define DWARF_CIE_ID \
195 (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
196 #else
197 #define DWARF_CIE_ID DW_CIE_ID
198 #endif
201 /* A vector for a table that contains frame description
202 information for each routine. */
203 #define NOT_INDEXED (-1U)
204 #define NO_INDEX_ASSIGNED (-2U)
206 static GTY(()) vec<dw_fde_ref, va_gc> *fde_vec;
208 struct GTY((for_user)) indirect_string_node {
209 const char *str;
210 unsigned int refcount;
211 enum dwarf_form form;
212 char *label;
213 unsigned int index;
216 struct indirect_string_hasher : ggc_ptr_hash<indirect_string_node>
218 typedef const char *compare_type;
220 static hashval_t hash (indirect_string_node *);
221 static bool equal (indirect_string_node *, const char *);
224 static GTY (()) hash_table<indirect_string_hasher> *debug_str_hash;
226 /* With split_debug_info, both the comp_dir and dwo_name go in the
227 main object file, rather than the dwo, similar to the force_direct
228 parameter elsewhere but with additional complications:
230 1) The string is needed in both the main object file and the dwo.
231 That is, the comp_dir and dwo_name will appear in both places.
233 2) Strings can use three forms: DW_FORM_string, DW_FORM_strp or
234 DW_FORM_GNU_str_index.
236 3) GCC chooses the form to use late, depending on the size and
237 reference count.
239 Rather than forcing the all debug string handling functions and
240 callers to deal with these complications, simply use a separate,
241 special-cased string table for any attribute that should go in the
242 main object file. This limits the complexity to just the places
243 that need it. */
245 static GTY (()) hash_table<indirect_string_hasher> *skeleton_debug_str_hash;
247 static GTY(()) int dw2_string_counter;
249 /* True if the compilation unit places functions in more than one section. */
250 static GTY(()) bool have_multiple_function_sections = false;
252 /* Whether the default text and cold text sections have been used at all. */
254 static GTY(()) bool text_section_used = false;
255 static GTY(()) bool cold_text_section_used = false;
257 /* The default cold text section. */
258 static GTY(()) section *cold_text_section;
260 /* The DIE for C++14 'auto' in a function return type. */
261 static GTY(()) dw_die_ref auto_die;
263 /* The DIE for C++14 'decltype(auto)' in a function return type. */
264 static GTY(()) dw_die_ref decltype_auto_die;
266 /* Forward declarations for functions defined in this file. */
268 static char *stripattributes (const char *);
269 static void output_call_frame_info (int);
270 static void dwarf2out_note_section_used (void);
272 /* Personality decl of current unit. Used only when assembler does not support
273 personality CFI. */
274 static GTY(()) rtx current_unit_personality;
276 /* Data and reference forms for relocatable data. */
277 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
278 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
280 #ifndef DEBUG_FRAME_SECTION
281 #define DEBUG_FRAME_SECTION ".debug_frame"
282 #endif
284 #ifndef FUNC_BEGIN_LABEL
285 #define FUNC_BEGIN_LABEL "LFB"
286 #endif
288 #ifndef FUNC_END_LABEL
289 #define FUNC_END_LABEL "LFE"
290 #endif
292 #ifndef PROLOGUE_END_LABEL
293 #define PROLOGUE_END_LABEL "LPE"
294 #endif
296 #ifndef EPILOGUE_BEGIN_LABEL
297 #define EPILOGUE_BEGIN_LABEL "LEB"
298 #endif
300 #ifndef FRAME_BEGIN_LABEL
301 #define FRAME_BEGIN_LABEL "Lframe"
302 #endif
303 #define CIE_AFTER_SIZE_LABEL "LSCIE"
304 #define CIE_END_LABEL "LECIE"
305 #define FDE_LABEL "LSFDE"
306 #define FDE_AFTER_SIZE_LABEL "LASFDE"
307 #define FDE_END_LABEL "LEFDE"
308 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
309 #define LINE_NUMBER_END_LABEL "LELT"
310 #define LN_PROLOG_AS_LABEL "LASLTP"
311 #define LN_PROLOG_END_LABEL "LELTP"
312 #define DIE_LABEL_PREFIX "DW"
314 /* Match the base name of a file to the base name of a compilation unit. */
316 static int
317 matches_main_base (const char *path)
319 /* Cache the last query. */
320 static const char *last_path = NULL;
321 static int last_match = 0;
322 if (path != last_path)
324 const char *base;
325 int length = base_of_path (path, &base);
326 last_path = path;
327 last_match = (length == main_input_baselength
328 && memcmp (base, main_input_basename, length) == 0);
330 return last_match;
333 #ifdef DEBUG_DEBUG_STRUCT
335 static int
336 dump_struct_debug (tree type, enum debug_info_usage usage,
337 enum debug_struct_file criterion, int generic,
338 int matches, int result)
340 /* Find the type name. */
341 tree type_decl = TYPE_STUB_DECL (type);
342 tree t = type_decl;
343 const char *name = 0;
344 if (TREE_CODE (t) == TYPE_DECL)
345 t = DECL_NAME (t);
346 if (t)
347 name = IDENTIFIER_POINTER (t);
349 fprintf (stderr, " struct %d %s %s %s %s %d %p %s\n",
350 criterion,
351 DECL_IN_SYSTEM_HEADER (type_decl) ? "sys" : "usr",
352 matches ? "bas" : "hdr",
353 generic ? "gen" : "ord",
354 usage == DINFO_USAGE_DFN ? ";" :
355 usage == DINFO_USAGE_DIR_USE ? "." : "*",
356 result,
357 (void*) type_decl, name);
358 return result;
360 #define DUMP_GSTRUCT(type, usage, criterion, generic, matches, result) \
361 dump_struct_debug (type, usage, criterion, generic, matches, result)
363 #else
365 #define DUMP_GSTRUCT(type, usage, criterion, generic, matches, result) \
366 (result)
368 #endif
370 /* Get the number of HOST_WIDE_INTs needed to represent the precision
371 of the number. Some constants have a large uniform precision, so
372 we get the precision needed for the actual value of the number. */
374 static unsigned int
375 get_full_len (const wide_int &op)
377 int prec = wi::min_precision (op, UNSIGNED);
378 return ((prec + HOST_BITS_PER_WIDE_INT - 1)
379 / HOST_BITS_PER_WIDE_INT);
382 static bool
383 should_emit_struct_debug (tree type, enum debug_info_usage usage)
385 enum debug_struct_file criterion;
386 tree type_decl;
387 bool generic = lang_hooks.types.generic_p (type);
389 if (generic)
390 criterion = debug_struct_generic[usage];
391 else
392 criterion = debug_struct_ordinary[usage];
394 if (criterion == DINFO_STRUCT_FILE_NONE)
395 return DUMP_GSTRUCT (type, usage, criterion, generic, false, false);
396 if (criterion == DINFO_STRUCT_FILE_ANY)
397 return DUMP_GSTRUCT (type, usage, criterion, generic, false, true);
399 type_decl = TYPE_STUB_DECL (TYPE_MAIN_VARIANT (type));
401 if (type_decl != NULL)
403 if (criterion == DINFO_STRUCT_FILE_SYS && DECL_IN_SYSTEM_HEADER (type_decl))
404 return DUMP_GSTRUCT (type, usage, criterion, generic, false, true);
406 if (matches_main_base (DECL_SOURCE_FILE (type_decl)))
407 return DUMP_GSTRUCT (type, usage, criterion, generic, true, true);
410 return DUMP_GSTRUCT (type, usage, criterion, generic, false, false);
413 /* Return a pointer to a copy of the section string name S with all
414 attributes stripped off, and an asterisk prepended (for assemble_name). */
416 static inline char *
417 stripattributes (const char *s)
419 char *stripped = XNEWVEC (char, strlen (s) + 2);
420 char *p = stripped;
422 *p++ = '*';
424 while (*s && *s != ',')
425 *p++ = *s++;
427 *p = '\0';
428 return stripped;
431 /* Switch [BACK] to eh_frame_section. If we don't have an eh_frame_section,
432 switch to the data section instead, and write out a synthetic start label
433 for collect2 the first time around. */
435 static void
436 switch_to_eh_frame_section (bool back ATTRIBUTE_UNUSED)
438 if (eh_frame_section == 0)
440 int flags;
442 if (EH_TABLES_CAN_BE_READ_ONLY)
444 int fde_encoding;
445 int per_encoding;
446 int lsda_encoding;
448 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
449 /*global=*/0);
450 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
451 /*global=*/1);
452 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
453 /*global=*/0);
454 flags = ((! flag_pic
455 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
456 && (fde_encoding & 0x70) != DW_EH_PE_aligned
457 && (per_encoding & 0x70) != DW_EH_PE_absptr
458 && (per_encoding & 0x70) != DW_EH_PE_aligned
459 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
460 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
461 ? 0 : SECTION_WRITE);
463 else
464 flags = SECTION_WRITE;
466 #ifdef EH_FRAME_SECTION_NAME
467 eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
468 #else
469 eh_frame_section = ((flags == SECTION_WRITE)
470 ? data_section : readonly_data_section);
471 #endif /* EH_FRAME_SECTION_NAME */
474 switch_to_section (eh_frame_section);
476 #ifdef EH_FRAME_THROUGH_COLLECT2
477 /* We have no special eh_frame section. Emit special labels to guide
478 collect2. */
479 if (!back)
481 tree label = get_file_function_name ("F");
482 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
483 targetm.asm_out.globalize_label (asm_out_file,
484 IDENTIFIER_POINTER (label));
485 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
487 #endif
490 /* Switch [BACK] to the eh or debug frame table section, depending on
491 FOR_EH. */
493 static void
494 switch_to_frame_table_section (int for_eh, bool back)
496 if (for_eh)
497 switch_to_eh_frame_section (back);
498 else
500 if (!debug_frame_section)
501 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
502 SECTION_DEBUG, NULL);
503 switch_to_section (debug_frame_section);
507 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
509 enum dw_cfi_oprnd_type
510 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
512 switch (cfi)
514 case DW_CFA_nop:
515 case DW_CFA_GNU_window_save:
516 case DW_CFA_remember_state:
517 case DW_CFA_restore_state:
518 return dw_cfi_oprnd_unused;
520 case DW_CFA_set_loc:
521 case DW_CFA_advance_loc1:
522 case DW_CFA_advance_loc2:
523 case DW_CFA_advance_loc4:
524 case DW_CFA_MIPS_advance_loc8:
525 return dw_cfi_oprnd_addr;
527 case DW_CFA_offset:
528 case DW_CFA_offset_extended:
529 case DW_CFA_def_cfa:
530 case DW_CFA_offset_extended_sf:
531 case DW_CFA_def_cfa_sf:
532 case DW_CFA_restore:
533 case DW_CFA_restore_extended:
534 case DW_CFA_undefined:
535 case DW_CFA_same_value:
536 case DW_CFA_def_cfa_register:
537 case DW_CFA_register:
538 case DW_CFA_expression:
539 return dw_cfi_oprnd_reg_num;
541 case DW_CFA_def_cfa_offset:
542 case DW_CFA_GNU_args_size:
543 case DW_CFA_def_cfa_offset_sf:
544 return dw_cfi_oprnd_offset;
546 case DW_CFA_def_cfa_expression:
547 return dw_cfi_oprnd_loc;
549 default:
550 gcc_unreachable ();
554 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
556 enum dw_cfi_oprnd_type
557 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
559 switch (cfi)
561 case DW_CFA_def_cfa:
562 case DW_CFA_def_cfa_sf:
563 case DW_CFA_offset:
564 case DW_CFA_offset_extended_sf:
565 case DW_CFA_offset_extended:
566 return dw_cfi_oprnd_offset;
568 case DW_CFA_register:
569 return dw_cfi_oprnd_reg_num;
571 case DW_CFA_expression:
572 return dw_cfi_oprnd_loc;
574 default:
575 return dw_cfi_oprnd_unused;
579 /* Output one FDE. */
581 static void
582 output_fde (dw_fde_ref fde, bool for_eh, bool second,
583 char *section_start_label, int fde_encoding, char *augmentation,
584 bool any_lsda_needed, int lsda_encoding)
586 const char *begin, *end;
587 static unsigned int j;
588 char l1[20], l2[20];
590 targetm.asm_out.emit_unwind_label (asm_out_file, fde->decl, for_eh,
591 /* empty */ 0);
592 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL,
593 for_eh + j);
594 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + j);
595 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + j);
596 if (!XCOFF_DEBUGGING_INFO || for_eh)
598 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
599 dw2_asm_output_data (4, 0xffffffff, "Initial length escape value"
600 " indicating 64-bit DWARF extension");
601 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
602 "FDE Length");
604 ASM_OUTPUT_LABEL (asm_out_file, l1);
606 if (for_eh)
607 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
608 else
609 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
610 debug_frame_section, "FDE CIE offset");
612 begin = second ? fde->dw_fde_second_begin : fde->dw_fde_begin;
613 end = second ? fde->dw_fde_second_end : fde->dw_fde_end;
615 if (for_eh)
617 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, begin);
618 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
619 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref, false,
620 "FDE initial location");
621 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
622 end, begin, "FDE address range");
624 else
626 dw2_asm_output_addr (DWARF2_ADDR_SIZE, begin, "FDE initial location");
627 dw2_asm_output_delta (DWARF2_ADDR_SIZE, end, begin, "FDE address range");
630 if (augmentation[0])
632 if (any_lsda_needed)
634 int size = size_of_encoded_value (lsda_encoding);
636 if (lsda_encoding == DW_EH_PE_aligned)
638 int offset = ( 4 /* Length */
639 + 4 /* CIE offset */
640 + 2 * size_of_encoded_value (fde_encoding)
641 + 1 /* Augmentation size */ );
642 int pad = -offset & (PTR_SIZE - 1);
644 size += pad;
645 gcc_assert (size_of_uleb128 (size) == 1);
648 dw2_asm_output_data_uleb128 (size, "Augmentation size");
650 if (fde->uses_eh_lsda)
652 ASM_GENERATE_INTERNAL_LABEL (l1, second ? "LLSDAC" : "LLSDA",
653 fde->funcdef_number);
654 dw2_asm_output_encoded_addr_rtx (lsda_encoding,
655 gen_rtx_SYMBOL_REF (Pmode, l1),
656 false,
657 "Language Specific Data Area");
659 else
661 if (lsda_encoding == DW_EH_PE_aligned)
662 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
663 dw2_asm_output_data (size_of_encoded_value (lsda_encoding), 0,
664 "Language Specific Data Area (none)");
667 else
668 dw2_asm_output_data_uleb128 (0, "Augmentation size");
671 /* Loop through the Call Frame Instructions associated with this FDE. */
672 fde->dw_fde_current_label = begin;
674 size_t from, until, i;
676 from = 0;
677 until = vec_safe_length (fde->dw_fde_cfi);
679 if (fde->dw_fde_second_begin == NULL)
681 else if (!second)
682 until = fde->dw_fde_switch_cfi_index;
683 else
684 from = fde->dw_fde_switch_cfi_index;
686 for (i = from; i < until; i++)
687 output_cfi ((*fde->dw_fde_cfi)[i], fde, for_eh);
690 /* If we are to emit a ref/link from function bodies to their frame tables,
691 do it now. This is typically performed to make sure that tables
692 associated with functions are dragged with them and not discarded in
693 garbage collecting links. We need to do this on a per function basis to
694 cope with -ffunction-sections. */
696 #ifdef ASM_OUTPUT_DWARF_TABLE_REF
697 /* Switch to the function section, emit the ref to the tables, and
698 switch *back* into the table section. */
699 switch_to_section (function_section (fde->decl));
700 ASM_OUTPUT_DWARF_TABLE_REF (section_start_label);
701 switch_to_frame_table_section (for_eh, true);
702 #endif
704 /* Pad the FDE out to an address sized boundary. */
705 ASM_OUTPUT_ALIGN (asm_out_file,
706 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
707 ASM_OUTPUT_LABEL (asm_out_file, l2);
709 j += 2;
712 /* Return true if frame description entry FDE is needed for EH. */
714 static bool
715 fde_needed_for_eh_p (dw_fde_ref fde)
717 if (flag_asynchronous_unwind_tables)
718 return true;
720 if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde->decl))
721 return true;
723 if (fde->uses_eh_lsda)
724 return true;
726 /* If exceptions are enabled, we have collected nothrow info. */
727 if (flag_exceptions && (fde->all_throwers_are_sibcalls || fde->nothrow))
728 return false;
730 return true;
733 /* Output the call frame information used to record information
734 that relates to calculating the frame pointer, and records the
735 location of saved registers. */
737 static void
738 output_call_frame_info (int for_eh)
740 unsigned int i;
741 dw_fde_ref fde;
742 dw_cfi_ref cfi;
743 char l1[20], l2[20], section_start_label[20];
744 bool any_lsda_needed = false;
745 char augmentation[6];
746 int augmentation_size;
747 int fde_encoding = DW_EH_PE_absptr;
748 int per_encoding = DW_EH_PE_absptr;
749 int lsda_encoding = DW_EH_PE_absptr;
750 int return_reg;
751 rtx personality = NULL;
752 int dw_cie_version;
754 /* Don't emit a CIE if there won't be any FDEs. */
755 if (!fde_vec)
756 return;
758 /* Nothing to do if the assembler's doing it all. */
759 if (dwarf2out_do_cfi_asm ())
760 return;
762 /* If we don't have any functions we'll want to unwind out of, don't emit
763 any EH unwind information. If we make FDEs linkonce, we may have to
764 emit an empty label for an FDE that wouldn't otherwise be emitted. We
765 want to avoid having an FDE kept around when the function it refers to
766 is discarded. Example where this matters: a primary function template
767 in C++ requires EH information, an explicit specialization doesn't. */
768 if (for_eh)
770 bool any_eh_needed = false;
772 FOR_EACH_VEC_ELT (*fde_vec, i, fde)
774 if (fde->uses_eh_lsda)
775 any_eh_needed = any_lsda_needed = true;
776 else if (fde_needed_for_eh_p (fde))
777 any_eh_needed = true;
778 else if (TARGET_USES_WEAK_UNWIND_INFO)
779 targetm.asm_out.emit_unwind_label (asm_out_file, fde->decl, 1, 1);
782 if (!any_eh_needed)
783 return;
786 /* We're going to be generating comments, so turn on app. */
787 if (flag_debug_asm)
788 app_enable ();
790 /* Switch to the proper frame section, first time. */
791 switch_to_frame_table_section (for_eh, false);
793 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
794 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
796 /* Output the CIE. */
797 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
798 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
799 if (!XCOFF_DEBUGGING_INFO || for_eh)
801 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
802 dw2_asm_output_data (4, 0xffffffff,
803 "Initial length escape value indicating 64-bit DWARF extension");
804 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
805 "Length of Common Information Entry");
807 ASM_OUTPUT_LABEL (asm_out_file, l1);
809 /* Now that the CIE pointer is PC-relative for EH,
810 use 0 to identify the CIE. */
811 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
812 (for_eh ? 0 : DWARF_CIE_ID),
813 "CIE Identifier Tag");
815 /* Use the CIE version 3 for DWARF3; allow DWARF2 to continue to
816 use CIE version 1, unless that would produce incorrect results
817 due to overflowing the return register column. */
818 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
819 dw_cie_version = 1;
820 if (return_reg >= 256 || dwarf_version > 2)
821 dw_cie_version = 3;
822 dw2_asm_output_data (1, dw_cie_version, "CIE Version");
824 augmentation[0] = 0;
825 augmentation_size = 0;
827 personality = current_unit_personality;
828 if (for_eh)
830 char *p;
832 /* Augmentation:
833 z Indicates that a uleb128 is present to size the
834 augmentation section.
835 L Indicates the encoding (and thus presence) of
836 an LSDA pointer in the FDE augmentation.
837 R Indicates a non-default pointer encoding for
838 FDE code pointers.
839 P Indicates the presence of an encoding + language
840 personality routine in the CIE augmentation. */
842 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
843 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
844 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
846 p = augmentation + 1;
847 if (personality)
849 *p++ = 'P';
850 augmentation_size += 1 + size_of_encoded_value (per_encoding);
851 assemble_external_libcall (personality);
853 if (any_lsda_needed)
855 *p++ = 'L';
856 augmentation_size += 1;
858 if (fde_encoding != DW_EH_PE_absptr)
860 *p++ = 'R';
861 augmentation_size += 1;
863 if (p > augmentation + 1)
865 augmentation[0] = 'z';
866 *p = '\0';
869 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
870 if (personality && per_encoding == DW_EH_PE_aligned)
872 int offset = ( 4 /* Length */
873 + 4 /* CIE Id */
874 + 1 /* CIE version */
875 + strlen (augmentation) + 1 /* Augmentation */
876 + size_of_uleb128 (1) /* Code alignment */
877 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
878 + 1 /* RA column */
879 + 1 /* Augmentation size */
880 + 1 /* Personality encoding */ );
881 int pad = -offset & (PTR_SIZE - 1);
883 augmentation_size += pad;
885 /* Augmentations should be small, so there's scarce need to
886 iterate for a solution. Die if we exceed one uleb128 byte. */
887 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
891 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
892 if (dw_cie_version >= 4)
894 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "CIE Address Size");
895 dw2_asm_output_data (1, 0, "CIE Segment Size");
897 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
898 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
899 "CIE Data Alignment Factor");
901 if (dw_cie_version == 1)
902 dw2_asm_output_data (1, return_reg, "CIE RA Column");
903 else
904 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
906 if (augmentation[0])
908 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
909 if (personality)
911 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
912 eh_data_format_name (per_encoding));
913 dw2_asm_output_encoded_addr_rtx (per_encoding,
914 personality,
915 true, NULL);
918 if (any_lsda_needed)
919 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
920 eh_data_format_name (lsda_encoding));
922 if (fde_encoding != DW_EH_PE_absptr)
923 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
924 eh_data_format_name (fde_encoding));
927 FOR_EACH_VEC_ELT (*cie_cfi_vec, i, cfi)
928 output_cfi (cfi, NULL, for_eh);
930 /* Pad the CIE out to an address sized boundary. */
931 ASM_OUTPUT_ALIGN (asm_out_file,
932 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
933 ASM_OUTPUT_LABEL (asm_out_file, l2);
935 /* Loop through all of the FDE's. */
936 FOR_EACH_VEC_ELT (*fde_vec, i, fde)
938 unsigned int k;
940 /* Don't emit EH unwind info for leaf functions that don't need it. */
941 if (for_eh && !fde_needed_for_eh_p (fde))
942 continue;
944 for (k = 0; k < (fde->dw_fde_second_begin ? 2 : 1); k++)
945 output_fde (fde, for_eh, k, section_start_label, fde_encoding,
946 augmentation, any_lsda_needed, lsda_encoding);
949 if (for_eh && targetm.terminate_dw2_eh_frame_info)
950 dw2_asm_output_data (4, 0, "End of Table");
952 /* Turn off app to make assembly quicker. */
953 if (flag_debug_asm)
954 app_disable ();
957 /* Emit .cfi_startproc and .cfi_personality/.cfi_lsda if needed. */
959 static void
960 dwarf2out_do_cfi_startproc (bool second)
962 int enc;
963 rtx ref;
964 rtx personality = get_personality_function (current_function_decl);
966 fprintf (asm_out_file, "\t.cfi_startproc\n");
968 if (personality)
970 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
971 ref = personality;
973 /* ??? The GAS support isn't entirely consistent. We have to
974 handle indirect support ourselves, but PC-relative is done
975 in the assembler. Further, the assembler can't handle any
976 of the weirder relocation types. */
977 if (enc & DW_EH_PE_indirect)
978 ref = dw2_force_const_mem (ref, true);
980 fprintf (asm_out_file, "\t.cfi_personality %#x,", enc);
981 output_addr_const (asm_out_file, ref);
982 fputc ('\n', asm_out_file);
985 if (crtl->uses_eh_lsda)
987 char lab[20];
989 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
990 ASM_GENERATE_INTERNAL_LABEL (lab, second ? "LLSDAC" : "LLSDA",
991 current_function_funcdef_no);
992 ref = gen_rtx_SYMBOL_REF (Pmode, lab);
993 SYMBOL_REF_FLAGS (ref) = SYMBOL_FLAG_LOCAL;
995 if (enc & DW_EH_PE_indirect)
996 ref = dw2_force_const_mem (ref, true);
998 fprintf (asm_out_file, "\t.cfi_lsda %#x,", enc);
999 output_addr_const (asm_out_file, ref);
1000 fputc ('\n', asm_out_file);
1004 /* Allocate CURRENT_FDE. Immediately initialize all we can, noting that
1005 this allocation may be done before pass_final. */
1007 dw_fde_ref
1008 dwarf2out_alloc_current_fde (void)
1010 dw_fde_ref fde;
1012 fde = ggc_cleared_alloc<dw_fde_node> ();
1013 fde->decl = current_function_decl;
1014 fde->funcdef_number = current_function_funcdef_no;
1015 fde->fde_index = vec_safe_length (fde_vec);
1016 fde->all_throwers_are_sibcalls = crtl->all_throwers_are_sibcalls;
1017 fde->uses_eh_lsda = crtl->uses_eh_lsda;
1018 fde->nothrow = crtl->nothrow;
1019 fde->drap_reg = INVALID_REGNUM;
1020 fde->vdrap_reg = INVALID_REGNUM;
1022 /* Record the FDE associated with this function. */
1023 cfun->fde = fde;
1024 vec_safe_push (fde_vec, fde);
1026 return fde;
1029 /* Output a marker (i.e. a label) for the beginning of a function, before
1030 the prologue. */
1032 void
1033 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
1034 const char *file ATTRIBUTE_UNUSED)
1036 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1037 char * dup_label;
1038 dw_fde_ref fde;
1039 section *fnsec;
1040 bool do_frame;
1042 current_function_func_begin_label = NULL;
1044 do_frame = dwarf2out_do_frame ();
1046 /* ??? current_function_func_begin_label is also used by except.c for
1047 call-site information. We must emit this label if it might be used. */
1048 if (!do_frame
1049 && (!flag_exceptions
1050 || targetm_common.except_unwind_info (&global_options) == UI_SJLJ))
1051 return;
1053 fnsec = function_section (current_function_decl);
1054 switch_to_section (fnsec);
1055 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
1056 current_function_funcdef_no);
1057 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
1058 current_function_funcdef_no);
1059 dup_label = xstrdup (label);
1060 current_function_func_begin_label = dup_label;
1062 /* We can elide the fde allocation if we're not emitting debug info. */
1063 if (!do_frame)
1064 return;
1066 /* Cater to the various TARGET_ASM_OUTPUT_MI_THUNK implementations that
1067 emit insns as rtx but bypass the bulk of rest_of_compilation, which
1068 would include pass_dwarf2_frame. If we've not created the FDE yet,
1069 do so now. */
1070 fde = cfun->fde;
1071 if (fde == NULL)
1072 fde = dwarf2out_alloc_current_fde ();
1074 /* Initialize the bits of CURRENT_FDE that were not available earlier. */
1075 fde->dw_fde_begin = dup_label;
1076 fde->dw_fde_current_label = dup_label;
1077 fde->in_std_section = (fnsec == text_section
1078 || (cold_text_section && fnsec == cold_text_section));
1080 /* We only want to output line number information for the genuine dwarf2
1081 prologue case, not the eh frame case. */
1082 #ifdef DWARF2_DEBUGGING_INFO
1083 if (file)
1084 dwarf2out_source_line (line, file, 0, true);
1085 #endif
1087 if (dwarf2out_do_cfi_asm ())
1088 dwarf2out_do_cfi_startproc (false);
1089 else
1091 rtx personality = get_personality_function (current_function_decl);
1092 if (!current_unit_personality)
1093 current_unit_personality = personality;
1095 /* We cannot keep a current personality per function as without CFI
1096 asm, at the point where we emit the CFI data, there is no current
1097 function anymore. */
1098 if (personality && current_unit_personality != personality)
1099 sorry ("multiple EH personalities are supported only with assemblers "
1100 "supporting .cfi_personality directive");
1104 /* Output a marker (i.e. a label) for the end of the generated code
1105 for a function prologue. This gets called *after* the prologue code has
1106 been generated. */
1108 void
1109 dwarf2out_vms_end_prologue (unsigned int line ATTRIBUTE_UNUSED,
1110 const char *file ATTRIBUTE_UNUSED)
1112 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1114 /* Output a label to mark the endpoint of the code generated for this
1115 function. */
1116 ASM_GENERATE_INTERNAL_LABEL (label, PROLOGUE_END_LABEL,
1117 current_function_funcdef_no);
1118 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, PROLOGUE_END_LABEL,
1119 current_function_funcdef_no);
1120 cfun->fde->dw_fde_vms_end_prologue = xstrdup (label);
1123 /* Output a marker (i.e. a label) for the beginning of the generated code
1124 for a function epilogue. This gets called *before* the prologue code has
1125 been generated. */
1127 void
1128 dwarf2out_vms_begin_epilogue (unsigned int line ATTRIBUTE_UNUSED,
1129 const char *file ATTRIBUTE_UNUSED)
1131 dw_fde_ref fde = cfun->fde;
1132 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1134 if (fde->dw_fde_vms_begin_epilogue)
1135 return;
1137 /* Output a label to mark the endpoint of the code generated for this
1138 function. */
1139 ASM_GENERATE_INTERNAL_LABEL (label, EPILOGUE_BEGIN_LABEL,
1140 current_function_funcdef_no);
1141 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, EPILOGUE_BEGIN_LABEL,
1142 current_function_funcdef_no);
1143 fde->dw_fde_vms_begin_epilogue = xstrdup (label);
1146 /* Output a marker (i.e. a label) for the absolute end of the generated code
1147 for a function definition. This gets called *after* the epilogue code has
1148 been generated. */
1150 void
1151 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
1152 const char *file ATTRIBUTE_UNUSED)
1154 dw_fde_ref fde;
1155 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1157 last_var_location_insn = NULL;
1158 cached_next_real_insn = NULL;
1160 if (dwarf2out_do_cfi_asm ())
1161 fprintf (asm_out_file, "\t.cfi_endproc\n");
1163 /* Output a label to mark the endpoint of the code generated for this
1164 function. */
1165 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
1166 current_function_funcdef_no);
1167 ASM_OUTPUT_LABEL (asm_out_file, label);
1168 fde = cfun->fde;
1169 gcc_assert (fde != NULL);
1170 if (fde->dw_fde_second_begin == NULL)
1171 fde->dw_fde_end = xstrdup (label);
1174 void
1175 dwarf2out_frame_finish (void)
1177 /* Output call frame information. */
1178 if (targetm.debug_unwind_info () == UI_DWARF2)
1179 output_call_frame_info (0);
1181 /* Output another copy for the unwinder. */
1182 if ((flag_unwind_tables || flag_exceptions)
1183 && targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
1184 output_call_frame_info (1);
1187 /* Note that the current function section is being used for code. */
1189 static void
1190 dwarf2out_note_section_used (void)
1192 section *sec = current_function_section ();
1193 if (sec == text_section)
1194 text_section_used = true;
1195 else if (sec == cold_text_section)
1196 cold_text_section_used = true;
1199 static void var_location_switch_text_section (void);
1200 static void set_cur_line_info_table (section *);
1202 void
1203 dwarf2out_switch_text_section (void)
1205 section *sect;
1206 dw_fde_ref fde = cfun->fde;
1208 gcc_assert (cfun && fde && fde->dw_fde_second_begin == NULL);
1210 if (!in_cold_section_p)
1212 fde->dw_fde_end = crtl->subsections.cold_section_end_label;
1213 fde->dw_fde_second_begin = crtl->subsections.hot_section_label;
1214 fde->dw_fde_second_end = crtl->subsections.hot_section_end_label;
1216 else
1218 fde->dw_fde_end = crtl->subsections.hot_section_end_label;
1219 fde->dw_fde_second_begin = crtl->subsections.cold_section_label;
1220 fde->dw_fde_second_end = crtl->subsections.cold_section_end_label;
1222 have_multiple_function_sections = true;
1224 /* There is no need to mark used sections when not debugging. */
1225 if (cold_text_section != NULL)
1226 dwarf2out_note_section_used ();
1228 if (dwarf2out_do_cfi_asm ())
1229 fprintf (asm_out_file, "\t.cfi_endproc\n");
1231 /* Now do the real section switch. */
1232 sect = current_function_section ();
1233 switch_to_section (sect);
1235 fde->second_in_std_section
1236 = (sect == text_section
1237 || (cold_text_section && sect == cold_text_section));
1239 if (dwarf2out_do_cfi_asm ())
1240 dwarf2out_do_cfi_startproc (true);
1242 var_location_switch_text_section ();
1244 if (cold_text_section != NULL)
1245 set_cur_line_info_table (sect);
1248 /* And now, the subset of the debugging information support code necessary
1249 for emitting location expressions. */
1251 /* Data about a single source file. */
1252 struct GTY((for_user)) dwarf_file_data {
1253 const char * filename;
1254 int emitted_number;
1257 /* Describe an entry into the .debug_addr section. */
1259 enum ate_kind {
1260 ate_kind_rtx,
1261 ate_kind_rtx_dtprel,
1262 ate_kind_label
1265 struct GTY((for_user)) addr_table_entry {
1266 enum ate_kind kind;
1267 unsigned int refcount;
1268 unsigned int index;
1269 union addr_table_entry_struct_union
1271 rtx GTY ((tag ("0"))) rtl;
1272 char * GTY ((tag ("1"))) label;
1274 GTY ((desc ("%1.kind"))) addr;
1277 /* Location lists are ranges + location descriptions for that range,
1278 so you can track variables that are in different places over
1279 their entire life. */
1280 typedef struct GTY(()) dw_loc_list_struct {
1281 dw_loc_list_ref dw_loc_next;
1282 const char *begin; /* Label and addr_entry for start of range */
1283 addr_table_entry *begin_entry;
1284 const char *end; /* Label for end of range */
1285 char *ll_symbol; /* Label for beginning of location list.
1286 Only on head of list */
1287 const char *section; /* Section this loclist is relative to */
1288 dw_loc_descr_ref expr;
1289 hashval_t hash;
1290 /* True if all addresses in this and subsequent lists are known to be
1291 resolved. */
1292 bool resolved_addr;
1293 /* True if this list has been replaced by dw_loc_next. */
1294 bool replaced;
1295 bool emitted;
1296 /* True if the range should be emitted even if begin and end
1297 are the same. */
1298 bool force;
1299 } dw_loc_list_node;
1301 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
1302 static dw_loc_descr_ref uint_loc_descriptor (unsigned HOST_WIDE_INT);
1304 /* Convert a DWARF stack opcode into its string name. */
1306 static const char *
1307 dwarf_stack_op_name (unsigned int op)
1309 const char *name = get_DW_OP_name (op);
1311 if (name != NULL)
1312 return name;
1314 return "OP_<unknown>";
1317 /* Return a pointer to a newly allocated location description. Location
1318 descriptions are simple expression terms that can be strung
1319 together to form more complicated location (address) descriptions. */
1321 static inline dw_loc_descr_ref
1322 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
1323 unsigned HOST_WIDE_INT oprnd2)
1325 dw_loc_descr_ref descr = ggc_cleared_alloc<dw_loc_descr_node> ();
1327 descr->dw_loc_opc = op;
1328 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
1329 descr->dw_loc_oprnd1.val_entry = NULL;
1330 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
1331 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
1332 descr->dw_loc_oprnd2.val_entry = NULL;
1333 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
1335 return descr;
1338 /* Return a pointer to a newly allocated location description for
1339 REG and OFFSET. */
1341 static inline dw_loc_descr_ref
1342 new_reg_loc_descr (unsigned int reg, unsigned HOST_WIDE_INT offset)
1344 if (reg <= 31)
1345 return new_loc_descr ((enum dwarf_location_atom) (DW_OP_breg0 + reg),
1346 offset, 0);
1347 else
1348 return new_loc_descr (DW_OP_bregx, reg, offset);
1351 /* Add a location description term to a location description expression. */
1353 static inline void
1354 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
1356 dw_loc_descr_ref *d;
1358 /* Find the end of the chain. */
1359 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
1362 *d = descr;
1365 /* Compare two location operands for exact equality. */
1367 static bool
1368 dw_val_equal_p (dw_val_node *a, dw_val_node *b)
1370 if (a->val_class != b->val_class)
1371 return false;
1372 switch (a->val_class)
1374 case dw_val_class_none:
1375 return true;
1376 case dw_val_class_addr:
1377 return rtx_equal_p (a->v.val_addr, b->v.val_addr);
1379 case dw_val_class_offset:
1380 case dw_val_class_unsigned_const:
1381 case dw_val_class_const:
1382 case dw_val_class_range_list:
1383 case dw_val_class_lineptr:
1384 case dw_val_class_macptr:
1385 /* These are all HOST_WIDE_INT, signed or unsigned. */
1386 return a->v.val_unsigned == b->v.val_unsigned;
1388 case dw_val_class_loc:
1389 return a->v.val_loc == b->v.val_loc;
1390 case dw_val_class_loc_list:
1391 return a->v.val_loc_list == b->v.val_loc_list;
1392 case dw_val_class_die_ref:
1393 return a->v.val_die_ref.die == b->v.val_die_ref.die;
1394 case dw_val_class_fde_ref:
1395 return a->v.val_fde_index == b->v.val_fde_index;
1396 case dw_val_class_lbl_id:
1397 case dw_val_class_high_pc:
1398 return strcmp (a->v.val_lbl_id, b->v.val_lbl_id) == 0;
1399 case dw_val_class_str:
1400 return a->v.val_str == b->v.val_str;
1401 case dw_val_class_flag:
1402 return a->v.val_flag == b->v.val_flag;
1403 case dw_val_class_file:
1404 return a->v.val_file == b->v.val_file;
1405 case dw_val_class_decl_ref:
1406 return a->v.val_decl_ref == b->v.val_decl_ref;
1408 case dw_val_class_const_double:
1409 return (a->v.val_double.high == b->v.val_double.high
1410 && a->v.val_double.low == b->v.val_double.low);
1412 case dw_val_class_wide_int:
1413 return *a->v.val_wide == *b->v.val_wide;
1415 case dw_val_class_vec:
1417 size_t a_len = a->v.val_vec.elt_size * a->v.val_vec.length;
1418 size_t b_len = b->v.val_vec.elt_size * b->v.val_vec.length;
1420 return (a_len == b_len
1421 && !memcmp (a->v.val_vec.array, b->v.val_vec.array, a_len));
1424 case dw_val_class_data8:
1425 return memcmp (a->v.val_data8, b->v.val_data8, 8) == 0;
1427 case dw_val_class_vms_delta:
1428 return (!strcmp (a->v.val_vms_delta.lbl1, b->v.val_vms_delta.lbl1)
1429 && !strcmp (a->v.val_vms_delta.lbl1, b->v.val_vms_delta.lbl1));
1431 case dw_val_class_discr_value:
1432 return (a->v.val_discr_value.pos == b->v.val_discr_value.pos
1433 && a->v.val_discr_value.v.uval == b->v.val_discr_value.v.uval);
1434 case dw_val_class_discr_list:
1435 /* It makes no sense comparing two discriminant value lists. */
1436 return false;
1438 gcc_unreachable ();
1441 /* Compare two location atoms for exact equality. */
1443 static bool
1444 loc_descr_equal_p_1 (dw_loc_descr_ref a, dw_loc_descr_ref b)
1446 if (a->dw_loc_opc != b->dw_loc_opc)
1447 return false;
1449 /* ??? This is only ever set for DW_OP_constNu, for N equal to the
1450 address size, but since we always allocate cleared storage it
1451 should be zero for other types of locations. */
1452 if (a->dtprel != b->dtprel)
1453 return false;
1455 return (dw_val_equal_p (&a->dw_loc_oprnd1, &b->dw_loc_oprnd1)
1456 && dw_val_equal_p (&a->dw_loc_oprnd2, &b->dw_loc_oprnd2));
1459 /* Compare two complete location expressions for exact equality. */
1461 bool
1462 loc_descr_equal_p (dw_loc_descr_ref a, dw_loc_descr_ref b)
1464 while (1)
1466 if (a == b)
1467 return true;
1468 if (a == NULL || b == NULL)
1469 return false;
1470 if (!loc_descr_equal_p_1 (a, b))
1471 return false;
1473 a = a->dw_loc_next;
1474 b = b->dw_loc_next;
1479 /* Add a constant OFFSET to a location expression. */
1481 static void
1482 loc_descr_plus_const (dw_loc_descr_ref *list_head, HOST_WIDE_INT offset)
1484 dw_loc_descr_ref loc;
1485 HOST_WIDE_INT *p;
1487 gcc_assert (*list_head != NULL);
1489 if (!offset)
1490 return;
1492 /* Find the end of the chain. */
1493 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
1496 p = NULL;
1497 if (loc->dw_loc_opc == DW_OP_fbreg
1498 || (loc->dw_loc_opc >= DW_OP_breg0 && loc->dw_loc_opc <= DW_OP_breg31))
1499 p = &loc->dw_loc_oprnd1.v.val_int;
1500 else if (loc->dw_loc_opc == DW_OP_bregx)
1501 p = &loc->dw_loc_oprnd2.v.val_int;
1503 /* If the last operation is fbreg, breg{0..31,x}, optimize by adjusting its
1504 offset. Don't optimize if an signed integer overflow would happen. */
1505 if (p != NULL
1506 && ((offset > 0 && *p <= INTTYPE_MAXIMUM (HOST_WIDE_INT) - offset)
1507 || (offset < 0 && *p >= INTTYPE_MINIMUM (HOST_WIDE_INT) - offset)))
1508 *p += offset;
1510 else if (offset > 0)
1511 loc->dw_loc_next = new_loc_descr (DW_OP_plus_uconst, offset, 0);
1513 else
1515 loc->dw_loc_next = int_loc_descriptor (-offset);
1516 add_loc_descr (&loc->dw_loc_next, new_loc_descr (DW_OP_minus, 0, 0));
1520 /* Add a constant OFFSET to a location list. */
1522 static void
1523 loc_list_plus_const (dw_loc_list_ref list_head, HOST_WIDE_INT offset)
1525 dw_loc_list_ref d;
1526 for (d = list_head; d != NULL; d = d->dw_loc_next)
1527 loc_descr_plus_const (&d->expr, offset);
1530 #define DWARF_REF_SIZE \
1531 (dwarf_version == 2 ? DWARF2_ADDR_SIZE : DWARF_OFFSET_SIZE)
1533 static unsigned long int get_base_type_offset (dw_die_ref);
1535 /* Return the size of a location descriptor. */
1537 static unsigned long
1538 size_of_loc_descr (dw_loc_descr_ref loc)
1540 unsigned long size = 1;
1542 switch (loc->dw_loc_opc)
1544 case DW_OP_addr:
1545 size += DWARF2_ADDR_SIZE;
1546 break;
1547 case DW_OP_GNU_addr_index:
1548 case DW_OP_GNU_const_index:
1549 gcc_assert (loc->dw_loc_oprnd1.val_entry->index != NO_INDEX_ASSIGNED);
1550 size += size_of_uleb128 (loc->dw_loc_oprnd1.val_entry->index);
1551 break;
1552 case DW_OP_const1u:
1553 case DW_OP_const1s:
1554 size += 1;
1555 break;
1556 case DW_OP_const2u:
1557 case DW_OP_const2s:
1558 size += 2;
1559 break;
1560 case DW_OP_const4u:
1561 case DW_OP_const4s:
1562 size += 4;
1563 break;
1564 case DW_OP_const8u:
1565 case DW_OP_const8s:
1566 size += 8;
1567 break;
1568 case DW_OP_constu:
1569 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1570 break;
1571 case DW_OP_consts:
1572 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
1573 break;
1574 case DW_OP_pick:
1575 size += 1;
1576 break;
1577 case DW_OP_plus_uconst:
1578 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1579 break;
1580 case DW_OP_skip:
1581 case DW_OP_bra:
1582 size += 2;
1583 break;
1584 case DW_OP_breg0:
1585 case DW_OP_breg1:
1586 case DW_OP_breg2:
1587 case DW_OP_breg3:
1588 case DW_OP_breg4:
1589 case DW_OP_breg5:
1590 case DW_OP_breg6:
1591 case DW_OP_breg7:
1592 case DW_OP_breg8:
1593 case DW_OP_breg9:
1594 case DW_OP_breg10:
1595 case DW_OP_breg11:
1596 case DW_OP_breg12:
1597 case DW_OP_breg13:
1598 case DW_OP_breg14:
1599 case DW_OP_breg15:
1600 case DW_OP_breg16:
1601 case DW_OP_breg17:
1602 case DW_OP_breg18:
1603 case DW_OP_breg19:
1604 case DW_OP_breg20:
1605 case DW_OP_breg21:
1606 case DW_OP_breg22:
1607 case DW_OP_breg23:
1608 case DW_OP_breg24:
1609 case DW_OP_breg25:
1610 case DW_OP_breg26:
1611 case DW_OP_breg27:
1612 case DW_OP_breg28:
1613 case DW_OP_breg29:
1614 case DW_OP_breg30:
1615 case DW_OP_breg31:
1616 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
1617 break;
1618 case DW_OP_regx:
1619 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1620 break;
1621 case DW_OP_fbreg:
1622 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
1623 break;
1624 case DW_OP_bregx:
1625 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1626 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
1627 break;
1628 case DW_OP_piece:
1629 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1630 break;
1631 case DW_OP_bit_piece:
1632 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1633 size += size_of_uleb128 (loc->dw_loc_oprnd2.v.val_unsigned);
1634 break;
1635 case DW_OP_deref_size:
1636 case DW_OP_xderef_size:
1637 size += 1;
1638 break;
1639 case DW_OP_call2:
1640 size += 2;
1641 break;
1642 case DW_OP_call4:
1643 size += 4;
1644 break;
1645 case DW_OP_call_ref:
1646 size += DWARF_REF_SIZE;
1647 break;
1648 case DW_OP_implicit_value:
1649 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned)
1650 + loc->dw_loc_oprnd1.v.val_unsigned;
1651 break;
1652 case DW_OP_GNU_implicit_pointer:
1653 size += DWARF_REF_SIZE + size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
1654 break;
1655 case DW_OP_GNU_entry_value:
1657 unsigned long op_size = size_of_locs (loc->dw_loc_oprnd1.v.val_loc);
1658 size += size_of_uleb128 (op_size) + op_size;
1659 break;
1661 case DW_OP_GNU_const_type:
1663 unsigned long o
1664 = get_base_type_offset (loc->dw_loc_oprnd1.v.val_die_ref.die);
1665 size += size_of_uleb128 (o) + 1;
1666 switch (loc->dw_loc_oprnd2.val_class)
1668 case dw_val_class_vec:
1669 size += loc->dw_loc_oprnd2.v.val_vec.length
1670 * loc->dw_loc_oprnd2.v.val_vec.elt_size;
1671 break;
1672 case dw_val_class_const:
1673 size += HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT;
1674 break;
1675 case dw_val_class_const_double:
1676 size += HOST_BITS_PER_DOUBLE_INT / BITS_PER_UNIT;
1677 break;
1678 case dw_val_class_wide_int:
1679 size += (get_full_len (*loc->dw_loc_oprnd2.v.val_wide)
1680 * HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT);
1681 break;
1682 default:
1683 gcc_unreachable ();
1685 break;
1687 case DW_OP_GNU_regval_type:
1689 unsigned long o
1690 = get_base_type_offset (loc->dw_loc_oprnd2.v.val_die_ref.die);
1691 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned)
1692 + size_of_uleb128 (o);
1694 break;
1695 case DW_OP_GNU_deref_type:
1697 unsigned long o
1698 = get_base_type_offset (loc->dw_loc_oprnd2.v.val_die_ref.die);
1699 size += 1 + size_of_uleb128 (o);
1701 break;
1702 case DW_OP_GNU_convert:
1703 case DW_OP_GNU_reinterpret:
1704 if (loc->dw_loc_oprnd1.val_class == dw_val_class_unsigned_const)
1705 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1706 else
1708 unsigned long o
1709 = get_base_type_offset (loc->dw_loc_oprnd1.v.val_die_ref.die);
1710 size += size_of_uleb128 (o);
1712 break;
1713 case DW_OP_GNU_parameter_ref:
1714 size += 4;
1715 break;
1716 default:
1717 break;
1720 return size;
1723 /* Return the size of a series of location descriptors. */
1725 unsigned long
1726 size_of_locs (dw_loc_descr_ref loc)
1728 dw_loc_descr_ref l;
1729 unsigned long size;
1731 /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
1732 field, to avoid writing to a PCH file. */
1733 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
1735 if (l->dw_loc_opc == DW_OP_skip || l->dw_loc_opc == DW_OP_bra)
1736 break;
1737 size += size_of_loc_descr (l);
1739 if (! l)
1740 return size;
1742 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
1744 l->dw_loc_addr = size;
1745 size += size_of_loc_descr (l);
1748 return size;
1751 /* Return the size of the value in a DW_AT_discr_value attribute. */
1753 static int
1754 size_of_discr_value (dw_discr_value *discr_value)
1756 if (discr_value->pos)
1757 return size_of_uleb128 (discr_value->v.uval);
1758 else
1759 return size_of_sleb128 (discr_value->v.sval);
1762 /* Return the size of the value in a DW_discr_list attribute. */
1764 static int
1765 size_of_discr_list (dw_discr_list_ref discr_list)
1767 int size = 0;
1769 for (dw_discr_list_ref list = discr_list;
1770 list != NULL;
1771 list = list->dw_discr_next)
1773 /* One byte for the discriminant value descriptor, and then one or two
1774 LEB128 numbers, depending on whether it's a single case label or a
1775 range label. */
1776 size += 1;
1777 size += size_of_discr_value (&list->dw_discr_lower_bound);
1778 if (list->dw_discr_range != 0)
1779 size += size_of_discr_value (&list->dw_discr_upper_bound);
1781 return size;
1784 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
1785 static void get_ref_die_offset_label (char *, dw_die_ref);
1786 static unsigned long int get_ref_die_offset (dw_die_ref);
1788 /* Output location description stack opcode's operands (if any).
1789 The for_eh_or_skip parameter controls whether register numbers are
1790 converted using DWARF2_FRAME_REG_OUT, which is needed in the case that
1791 hard reg numbers have been processed via DWARF_FRAME_REGNUM (i.e. for unwind
1792 info). This should be suppressed for the cases that have not been converted
1793 (i.e. symbolic debug info), by setting the parameter < 0. See PR47324. */
1795 static void
1796 output_loc_operands (dw_loc_descr_ref loc, int for_eh_or_skip)
1798 dw_val_ref val1 = &loc->dw_loc_oprnd1;
1799 dw_val_ref val2 = &loc->dw_loc_oprnd2;
1801 switch (loc->dw_loc_opc)
1803 #ifdef DWARF2_DEBUGGING_INFO
1804 case DW_OP_const2u:
1805 case DW_OP_const2s:
1806 dw2_asm_output_data (2, val1->v.val_int, NULL);
1807 break;
1808 case DW_OP_const4u:
1809 if (loc->dtprel)
1811 gcc_assert (targetm.asm_out.output_dwarf_dtprel);
1812 targetm.asm_out.output_dwarf_dtprel (asm_out_file, 4,
1813 val1->v.val_addr);
1814 fputc ('\n', asm_out_file);
1815 break;
1817 /* FALLTHRU */
1818 case DW_OP_const4s:
1819 dw2_asm_output_data (4, val1->v.val_int, NULL);
1820 break;
1821 case DW_OP_const8u:
1822 if (loc->dtprel)
1824 gcc_assert (targetm.asm_out.output_dwarf_dtprel);
1825 targetm.asm_out.output_dwarf_dtprel (asm_out_file, 8,
1826 val1->v.val_addr);
1827 fputc ('\n', asm_out_file);
1828 break;
1830 /* FALLTHRU */
1831 case DW_OP_const8s:
1832 gcc_assert (HOST_BITS_PER_WIDE_INT >= 64);
1833 dw2_asm_output_data (8, val1->v.val_int, NULL);
1834 break;
1835 case DW_OP_skip:
1836 case DW_OP_bra:
1838 int offset;
1840 gcc_assert (val1->val_class == dw_val_class_loc);
1841 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
1843 dw2_asm_output_data (2, offset, NULL);
1845 break;
1846 case DW_OP_implicit_value:
1847 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
1848 switch (val2->val_class)
1850 case dw_val_class_const:
1851 dw2_asm_output_data (val1->v.val_unsigned, val2->v.val_int, NULL);
1852 break;
1853 case dw_val_class_vec:
1855 unsigned int elt_size = val2->v.val_vec.elt_size;
1856 unsigned int len = val2->v.val_vec.length;
1857 unsigned int i;
1858 unsigned char *p;
1860 if (elt_size > sizeof (HOST_WIDE_INT))
1862 elt_size /= 2;
1863 len *= 2;
1865 for (i = 0, p = val2->v.val_vec.array;
1866 i < len;
1867 i++, p += elt_size)
1868 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
1869 "fp or vector constant word %u", i);
1871 break;
1872 case dw_val_class_const_double:
1874 unsigned HOST_WIDE_INT first, second;
1876 if (WORDS_BIG_ENDIAN)
1878 first = val2->v.val_double.high;
1879 second = val2->v.val_double.low;
1881 else
1883 first = val2->v.val_double.low;
1884 second = val2->v.val_double.high;
1886 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
1887 first, NULL);
1888 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
1889 second, NULL);
1891 break;
1892 case dw_val_class_wide_int:
1894 int i;
1895 int len = get_full_len (*val2->v.val_wide);
1896 if (WORDS_BIG_ENDIAN)
1897 for (i = len - 1; i >= 0; --i)
1898 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
1899 val2->v.val_wide->elt (i), NULL);
1900 else
1901 for (i = 0; i < len; ++i)
1902 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
1903 val2->v.val_wide->elt (i), NULL);
1905 break;
1906 case dw_val_class_addr:
1907 gcc_assert (val1->v.val_unsigned == DWARF2_ADDR_SIZE);
1908 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val2->v.val_addr, NULL);
1909 break;
1910 default:
1911 gcc_unreachable ();
1913 break;
1914 #else
1915 case DW_OP_const2u:
1916 case DW_OP_const2s:
1917 case DW_OP_const4u:
1918 case DW_OP_const4s:
1919 case DW_OP_const8u:
1920 case DW_OP_const8s:
1921 case DW_OP_skip:
1922 case DW_OP_bra:
1923 case DW_OP_implicit_value:
1924 /* We currently don't make any attempt to make sure these are
1925 aligned properly like we do for the main unwind info, so
1926 don't support emitting things larger than a byte if we're
1927 only doing unwinding. */
1928 gcc_unreachable ();
1929 #endif
1930 case DW_OP_const1u:
1931 case DW_OP_const1s:
1932 dw2_asm_output_data (1, val1->v.val_int, NULL);
1933 break;
1934 case DW_OP_constu:
1935 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
1936 break;
1937 case DW_OP_consts:
1938 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
1939 break;
1940 case DW_OP_pick:
1941 dw2_asm_output_data (1, val1->v.val_int, NULL);
1942 break;
1943 case DW_OP_plus_uconst:
1944 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
1945 break;
1946 case DW_OP_breg0:
1947 case DW_OP_breg1:
1948 case DW_OP_breg2:
1949 case DW_OP_breg3:
1950 case DW_OP_breg4:
1951 case DW_OP_breg5:
1952 case DW_OP_breg6:
1953 case DW_OP_breg7:
1954 case DW_OP_breg8:
1955 case DW_OP_breg9:
1956 case DW_OP_breg10:
1957 case DW_OP_breg11:
1958 case DW_OP_breg12:
1959 case DW_OP_breg13:
1960 case DW_OP_breg14:
1961 case DW_OP_breg15:
1962 case DW_OP_breg16:
1963 case DW_OP_breg17:
1964 case DW_OP_breg18:
1965 case DW_OP_breg19:
1966 case DW_OP_breg20:
1967 case DW_OP_breg21:
1968 case DW_OP_breg22:
1969 case DW_OP_breg23:
1970 case DW_OP_breg24:
1971 case DW_OP_breg25:
1972 case DW_OP_breg26:
1973 case DW_OP_breg27:
1974 case DW_OP_breg28:
1975 case DW_OP_breg29:
1976 case DW_OP_breg30:
1977 case DW_OP_breg31:
1978 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
1979 break;
1980 case DW_OP_regx:
1982 unsigned r = val1->v.val_unsigned;
1983 if (for_eh_or_skip >= 0)
1984 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
1985 gcc_assert (size_of_uleb128 (r)
1986 == size_of_uleb128 (val1->v.val_unsigned));
1987 dw2_asm_output_data_uleb128 (r, NULL);
1989 break;
1990 case DW_OP_fbreg:
1991 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
1992 break;
1993 case DW_OP_bregx:
1995 unsigned r = val1->v.val_unsigned;
1996 if (for_eh_or_skip >= 0)
1997 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
1998 gcc_assert (size_of_uleb128 (r)
1999 == size_of_uleb128 (val1->v.val_unsigned));
2000 dw2_asm_output_data_uleb128 (r, NULL);
2001 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
2003 break;
2004 case DW_OP_piece:
2005 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2006 break;
2007 case DW_OP_bit_piece:
2008 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2009 dw2_asm_output_data_uleb128 (val2->v.val_unsigned, NULL);
2010 break;
2011 case DW_OP_deref_size:
2012 case DW_OP_xderef_size:
2013 dw2_asm_output_data (1, val1->v.val_int, NULL);
2014 break;
2016 case DW_OP_addr:
2017 if (loc->dtprel)
2019 if (targetm.asm_out.output_dwarf_dtprel)
2021 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
2022 DWARF2_ADDR_SIZE,
2023 val1->v.val_addr);
2024 fputc ('\n', asm_out_file);
2026 else
2027 gcc_unreachable ();
2029 else
2031 #ifdef DWARF2_DEBUGGING_INFO
2032 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2033 #else
2034 gcc_unreachable ();
2035 #endif
2037 break;
2039 case DW_OP_GNU_addr_index:
2040 case DW_OP_GNU_const_index:
2041 gcc_assert (loc->dw_loc_oprnd1.val_entry->index != NO_INDEX_ASSIGNED);
2042 dw2_asm_output_data_uleb128 (loc->dw_loc_oprnd1.val_entry->index,
2043 "(index into .debug_addr)");
2044 break;
2046 case DW_OP_call2:
2047 case DW_OP_call4:
2049 unsigned long die_offset
2050 = get_ref_die_offset (val1->v.val_die_ref.die);
2051 /* Make sure the offset has been computed and that we can encode it as
2052 an operand. */
2053 gcc_assert (die_offset > 0
2054 && die_offset <= (loc->dw_loc_opc == DW_OP_call2)
2055 ? 0xffff
2056 : 0xffffffff);
2057 dw2_asm_output_data ((loc->dw_loc_opc == DW_OP_call2) ? 2 : 4,
2058 die_offset, NULL);
2060 break;
2062 case DW_OP_GNU_implicit_pointer:
2064 char label[MAX_ARTIFICIAL_LABEL_BYTES
2065 + HOST_BITS_PER_WIDE_INT / 2 + 2];
2066 gcc_assert (val1->val_class == dw_val_class_die_ref);
2067 get_ref_die_offset_label (label, val1->v.val_die_ref.die);
2068 dw2_asm_output_offset (DWARF_REF_SIZE, label, debug_info_section, NULL);
2069 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
2071 break;
2073 case DW_OP_GNU_entry_value:
2074 dw2_asm_output_data_uleb128 (size_of_locs (val1->v.val_loc), NULL);
2075 output_loc_sequence (val1->v.val_loc, for_eh_or_skip);
2076 break;
2078 case DW_OP_GNU_const_type:
2080 unsigned long o = get_base_type_offset (val1->v.val_die_ref.die), l;
2081 gcc_assert (o);
2082 dw2_asm_output_data_uleb128 (o, NULL);
2083 switch (val2->val_class)
2085 case dw_val_class_const:
2086 l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
2087 dw2_asm_output_data (1, l, NULL);
2088 dw2_asm_output_data (l, val2->v.val_int, NULL);
2089 break;
2090 case dw_val_class_vec:
2092 unsigned int elt_size = val2->v.val_vec.elt_size;
2093 unsigned int len = val2->v.val_vec.length;
2094 unsigned int i;
2095 unsigned char *p;
2097 l = len * elt_size;
2098 dw2_asm_output_data (1, l, NULL);
2099 if (elt_size > sizeof (HOST_WIDE_INT))
2101 elt_size /= 2;
2102 len *= 2;
2104 for (i = 0, p = val2->v.val_vec.array;
2105 i < len;
2106 i++, p += elt_size)
2107 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
2108 "fp or vector constant word %u", i);
2110 break;
2111 case dw_val_class_const_double:
2113 unsigned HOST_WIDE_INT first, second;
2114 l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
2116 dw2_asm_output_data (1, 2 * l, NULL);
2117 if (WORDS_BIG_ENDIAN)
2119 first = val2->v.val_double.high;
2120 second = val2->v.val_double.low;
2122 else
2124 first = val2->v.val_double.low;
2125 second = val2->v.val_double.high;
2127 dw2_asm_output_data (l, first, NULL);
2128 dw2_asm_output_data (l, second, NULL);
2130 break;
2131 case dw_val_class_wide_int:
2133 int i;
2134 int len = get_full_len (*val2->v.val_wide);
2135 l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
2137 dw2_asm_output_data (1, len * l, NULL);
2138 if (WORDS_BIG_ENDIAN)
2139 for (i = len - 1; i >= 0; --i)
2140 dw2_asm_output_data (l, val2->v.val_wide->elt (i), NULL);
2141 else
2142 for (i = 0; i < len; ++i)
2143 dw2_asm_output_data (l, val2->v.val_wide->elt (i), NULL);
2145 break;
2146 default:
2147 gcc_unreachable ();
2150 break;
2151 case DW_OP_GNU_regval_type:
2153 unsigned r = val1->v.val_unsigned;
2154 unsigned long o = get_base_type_offset (val2->v.val_die_ref.die);
2155 gcc_assert (o);
2156 if (for_eh_or_skip >= 0)
2158 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
2159 gcc_assert (size_of_uleb128 (r)
2160 == size_of_uleb128 (val1->v.val_unsigned));
2162 dw2_asm_output_data_uleb128 (r, NULL);
2163 dw2_asm_output_data_uleb128 (o, NULL);
2165 break;
2166 case DW_OP_GNU_deref_type:
2168 unsigned long o = get_base_type_offset (val2->v.val_die_ref.die);
2169 gcc_assert (o);
2170 dw2_asm_output_data (1, val1->v.val_int, NULL);
2171 dw2_asm_output_data_uleb128 (o, NULL);
2173 break;
2174 case DW_OP_GNU_convert:
2175 case DW_OP_GNU_reinterpret:
2176 if (loc->dw_loc_oprnd1.val_class == dw_val_class_unsigned_const)
2177 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2178 else
2180 unsigned long o = get_base_type_offset (val1->v.val_die_ref.die);
2181 gcc_assert (o);
2182 dw2_asm_output_data_uleb128 (o, NULL);
2184 break;
2186 case DW_OP_GNU_parameter_ref:
2188 unsigned long o;
2189 gcc_assert (val1->val_class == dw_val_class_die_ref);
2190 o = get_ref_die_offset (val1->v.val_die_ref.die);
2191 dw2_asm_output_data (4, o, NULL);
2193 break;
2195 default:
2196 /* Other codes have no operands. */
2197 break;
2201 /* Output a sequence of location operations.
2202 The for_eh_or_skip parameter controls whether register numbers are
2203 converted using DWARF2_FRAME_REG_OUT, which is needed in the case that
2204 hard reg numbers have been processed via DWARF_FRAME_REGNUM (i.e. for unwind
2205 info). This should be suppressed for the cases that have not been converted
2206 (i.e. symbolic debug info), by setting the parameter < 0. See PR47324. */
2208 void
2209 output_loc_sequence (dw_loc_descr_ref loc, int for_eh_or_skip)
2211 for (; loc != NULL; loc = loc->dw_loc_next)
2213 enum dwarf_location_atom opc = loc->dw_loc_opc;
2214 /* Output the opcode. */
2215 if (for_eh_or_skip >= 0
2216 && opc >= DW_OP_breg0 && opc <= DW_OP_breg31)
2218 unsigned r = (opc - DW_OP_breg0);
2219 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
2220 gcc_assert (r <= 31);
2221 opc = (enum dwarf_location_atom) (DW_OP_breg0 + r);
2223 else if (for_eh_or_skip >= 0
2224 && opc >= DW_OP_reg0 && opc <= DW_OP_reg31)
2226 unsigned r = (opc - DW_OP_reg0);
2227 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
2228 gcc_assert (r <= 31);
2229 opc = (enum dwarf_location_atom) (DW_OP_reg0 + r);
2232 dw2_asm_output_data (1, opc,
2233 "%s", dwarf_stack_op_name (opc));
2235 /* Output the operand(s) (if any). */
2236 output_loc_operands (loc, for_eh_or_skip);
2240 /* Output location description stack opcode's operands (if any).
2241 The output is single bytes on a line, suitable for .cfi_escape. */
2243 static void
2244 output_loc_operands_raw (dw_loc_descr_ref loc)
2246 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2247 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2249 switch (loc->dw_loc_opc)
2251 case DW_OP_addr:
2252 case DW_OP_GNU_addr_index:
2253 case DW_OP_GNU_const_index:
2254 case DW_OP_implicit_value:
2255 /* We cannot output addresses in .cfi_escape, only bytes. */
2256 gcc_unreachable ();
2258 case DW_OP_const1u:
2259 case DW_OP_const1s:
2260 case DW_OP_pick:
2261 case DW_OP_deref_size:
2262 case DW_OP_xderef_size:
2263 fputc (',', asm_out_file);
2264 dw2_asm_output_data_raw (1, val1->v.val_int);
2265 break;
2267 case DW_OP_const2u:
2268 case DW_OP_const2s:
2269 fputc (',', asm_out_file);
2270 dw2_asm_output_data_raw (2, val1->v.val_int);
2271 break;
2273 case DW_OP_const4u:
2274 case DW_OP_const4s:
2275 fputc (',', asm_out_file);
2276 dw2_asm_output_data_raw (4, val1->v.val_int);
2277 break;
2279 case DW_OP_const8u:
2280 case DW_OP_const8s:
2281 gcc_assert (HOST_BITS_PER_WIDE_INT >= 64);
2282 fputc (',', asm_out_file);
2283 dw2_asm_output_data_raw (8, val1->v.val_int);
2284 break;
2286 case DW_OP_skip:
2287 case DW_OP_bra:
2289 int offset;
2291 gcc_assert (val1->val_class == dw_val_class_loc);
2292 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2294 fputc (',', asm_out_file);
2295 dw2_asm_output_data_raw (2, offset);
2297 break;
2299 case DW_OP_regx:
2301 unsigned r = DWARF2_FRAME_REG_OUT (val1->v.val_unsigned, 1);
2302 gcc_assert (size_of_uleb128 (r)
2303 == size_of_uleb128 (val1->v.val_unsigned));
2304 fputc (',', asm_out_file);
2305 dw2_asm_output_data_uleb128_raw (r);
2307 break;
2309 case DW_OP_constu:
2310 case DW_OP_plus_uconst:
2311 case DW_OP_piece:
2312 fputc (',', asm_out_file);
2313 dw2_asm_output_data_uleb128_raw (val1->v.val_unsigned);
2314 break;
2316 case DW_OP_bit_piece:
2317 fputc (',', asm_out_file);
2318 dw2_asm_output_data_uleb128_raw (val1->v.val_unsigned);
2319 dw2_asm_output_data_uleb128_raw (val2->v.val_unsigned);
2320 break;
2322 case DW_OP_consts:
2323 case DW_OP_breg0:
2324 case DW_OP_breg1:
2325 case DW_OP_breg2:
2326 case DW_OP_breg3:
2327 case DW_OP_breg4:
2328 case DW_OP_breg5:
2329 case DW_OP_breg6:
2330 case DW_OP_breg7:
2331 case DW_OP_breg8:
2332 case DW_OP_breg9:
2333 case DW_OP_breg10:
2334 case DW_OP_breg11:
2335 case DW_OP_breg12:
2336 case DW_OP_breg13:
2337 case DW_OP_breg14:
2338 case DW_OP_breg15:
2339 case DW_OP_breg16:
2340 case DW_OP_breg17:
2341 case DW_OP_breg18:
2342 case DW_OP_breg19:
2343 case DW_OP_breg20:
2344 case DW_OP_breg21:
2345 case DW_OP_breg22:
2346 case DW_OP_breg23:
2347 case DW_OP_breg24:
2348 case DW_OP_breg25:
2349 case DW_OP_breg26:
2350 case DW_OP_breg27:
2351 case DW_OP_breg28:
2352 case DW_OP_breg29:
2353 case DW_OP_breg30:
2354 case DW_OP_breg31:
2355 case DW_OP_fbreg:
2356 fputc (',', asm_out_file);
2357 dw2_asm_output_data_sleb128_raw (val1->v.val_int);
2358 break;
2360 case DW_OP_bregx:
2362 unsigned r = DWARF2_FRAME_REG_OUT (val1->v.val_unsigned, 1);
2363 gcc_assert (size_of_uleb128 (r)
2364 == size_of_uleb128 (val1->v.val_unsigned));
2365 fputc (',', asm_out_file);
2366 dw2_asm_output_data_uleb128_raw (r);
2367 fputc (',', asm_out_file);
2368 dw2_asm_output_data_sleb128_raw (val2->v.val_int);
2370 break;
2372 case DW_OP_GNU_implicit_pointer:
2373 case DW_OP_GNU_entry_value:
2374 case DW_OP_GNU_const_type:
2375 case DW_OP_GNU_regval_type:
2376 case DW_OP_GNU_deref_type:
2377 case DW_OP_GNU_convert:
2378 case DW_OP_GNU_reinterpret:
2379 case DW_OP_GNU_parameter_ref:
2380 gcc_unreachable ();
2381 break;
2383 default:
2384 /* Other codes have no operands. */
2385 break;
2389 void
2390 output_loc_sequence_raw (dw_loc_descr_ref loc)
2392 while (1)
2394 enum dwarf_location_atom opc = loc->dw_loc_opc;
2395 /* Output the opcode. */
2396 if (opc >= DW_OP_breg0 && opc <= DW_OP_breg31)
2398 unsigned r = (opc - DW_OP_breg0);
2399 r = DWARF2_FRAME_REG_OUT (r, 1);
2400 gcc_assert (r <= 31);
2401 opc = (enum dwarf_location_atom) (DW_OP_breg0 + r);
2403 else if (opc >= DW_OP_reg0 && opc <= DW_OP_reg31)
2405 unsigned r = (opc - DW_OP_reg0);
2406 r = DWARF2_FRAME_REG_OUT (r, 1);
2407 gcc_assert (r <= 31);
2408 opc = (enum dwarf_location_atom) (DW_OP_reg0 + r);
2410 /* Output the opcode. */
2411 fprintf (asm_out_file, "%#x", opc);
2412 output_loc_operands_raw (loc);
2414 if (!loc->dw_loc_next)
2415 break;
2416 loc = loc->dw_loc_next;
2418 fputc (',', asm_out_file);
2422 /* This function builds a dwarf location descriptor sequence from a
2423 dw_cfa_location, adding the given OFFSET to the result of the
2424 expression. */
2426 struct dw_loc_descr_node *
2427 build_cfa_loc (dw_cfa_location *cfa, HOST_WIDE_INT offset)
2429 struct dw_loc_descr_node *head, *tmp;
2431 offset += cfa->offset;
2433 if (cfa->indirect)
2435 head = new_reg_loc_descr (cfa->reg, cfa->base_offset);
2436 head->dw_loc_oprnd1.val_class = dw_val_class_const;
2437 head->dw_loc_oprnd1.val_entry = NULL;
2438 tmp = new_loc_descr (DW_OP_deref, 0, 0);
2439 add_loc_descr (&head, tmp);
2440 if (offset != 0)
2442 tmp = new_loc_descr (DW_OP_plus_uconst, offset, 0);
2443 add_loc_descr (&head, tmp);
2446 else
2447 head = new_reg_loc_descr (cfa->reg, offset);
2449 return head;
2452 /* This function builds a dwarf location descriptor sequence for
2453 the address at OFFSET from the CFA when stack is aligned to
2454 ALIGNMENT byte. */
2456 struct dw_loc_descr_node *
2457 build_cfa_aligned_loc (dw_cfa_location *cfa,
2458 HOST_WIDE_INT offset, HOST_WIDE_INT alignment)
2460 struct dw_loc_descr_node *head;
2461 unsigned int dwarf_fp
2462 = DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM);
2464 /* When CFA is defined as FP+OFFSET, emulate stack alignment. */
2465 if (cfa->reg == HARD_FRAME_POINTER_REGNUM && cfa->indirect == 0)
2467 head = new_reg_loc_descr (dwarf_fp, 0);
2468 add_loc_descr (&head, int_loc_descriptor (alignment));
2469 add_loc_descr (&head, new_loc_descr (DW_OP_and, 0, 0));
2470 loc_descr_plus_const (&head, offset);
2472 else
2473 head = new_reg_loc_descr (dwarf_fp, offset);
2474 return head;
2477 /* And now, the support for symbolic debugging information. */
2479 /* .debug_str support. */
2481 static void dwarf2out_init (const char *);
2482 static void dwarf2out_finish (const char *);
2483 static void dwarf2out_early_finish (void);
2484 static void dwarf2out_assembly_start (void);
2485 static void dwarf2out_define (unsigned int, const char *);
2486 static void dwarf2out_undef (unsigned int, const char *);
2487 static void dwarf2out_start_source_file (unsigned, const char *);
2488 static void dwarf2out_end_source_file (unsigned);
2489 static void dwarf2out_function_decl (tree);
2490 static void dwarf2out_begin_block (unsigned, unsigned);
2491 static void dwarf2out_end_block (unsigned, unsigned);
2492 static bool dwarf2out_ignore_block (const_tree);
2493 static void dwarf2out_early_global_decl (tree);
2494 static void dwarf2out_late_global_decl (tree);
2495 static void dwarf2out_type_decl (tree, int);
2496 static void dwarf2out_imported_module_or_decl (tree, tree, tree, bool);
2497 static void dwarf2out_imported_module_or_decl_1 (tree, tree, tree,
2498 dw_die_ref);
2499 static void dwarf2out_abstract_function (tree);
2500 static void dwarf2out_var_location (rtx_insn *);
2501 static void dwarf2out_size_function (tree);
2502 static void dwarf2out_begin_function (tree);
2503 static void dwarf2out_end_function (unsigned int);
2504 static void dwarf2out_register_main_translation_unit (tree unit);
2505 static void dwarf2out_set_name (tree, tree);
2507 /* The debug hooks structure. */
2509 const struct gcc_debug_hooks dwarf2_debug_hooks =
2511 dwarf2out_init,
2512 dwarf2out_finish,
2513 dwarf2out_early_finish,
2514 dwarf2out_assembly_start,
2515 dwarf2out_define,
2516 dwarf2out_undef,
2517 dwarf2out_start_source_file,
2518 dwarf2out_end_source_file,
2519 dwarf2out_begin_block,
2520 dwarf2out_end_block,
2521 dwarf2out_ignore_block,
2522 dwarf2out_source_line,
2523 dwarf2out_begin_prologue,
2524 #if VMS_DEBUGGING_INFO
2525 dwarf2out_vms_end_prologue,
2526 dwarf2out_vms_begin_epilogue,
2527 #else
2528 debug_nothing_int_charstar,
2529 debug_nothing_int_charstar,
2530 #endif
2531 dwarf2out_end_epilogue,
2532 dwarf2out_begin_function,
2533 dwarf2out_end_function, /* end_function */
2534 dwarf2out_register_main_translation_unit,
2535 dwarf2out_function_decl, /* function_decl */
2536 dwarf2out_early_global_decl,
2537 dwarf2out_late_global_decl,
2538 dwarf2out_type_decl, /* type_decl */
2539 dwarf2out_imported_module_or_decl,
2540 debug_nothing_tree, /* deferred_inline_function */
2541 /* The DWARF 2 backend tries to reduce debugging bloat by not
2542 emitting the abstract description of inline functions until
2543 something tries to reference them. */
2544 dwarf2out_abstract_function, /* outlining_inline_function */
2545 debug_nothing_rtx_code_label, /* label */
2546 debug_nothing_int, /* handle_pch */
2547 dwarf2out_var_location,
2548 dwarf2out_size_function, /* size_function */
2549 dwarf2out_switch_text_section,
2550 dwarf2out_set_name,
2551 1, /* start_end_main_source_file */
2552 TYPE_SYMTAB_IS_DIE /* tree_type_symtab_field */
2555 const struct gcc_debug_hooks dwarf2_lineno_debug_hooks =
2557 dwarf2out_init,
2558 debug_nothing_charstar,
2559 debug_nothing_void,
2560 debug_nothing_void,
2561 debug_nothing_int_charstar,
2562 debug_nothing_int_charstar,
2563 debug_nothing_int_charstar,
2564 debug_nothing_int,
2565 debug_nothing_int_int, /* begin_block */
2566 debug_nothing_int_int, /* end_block */
2567 debug_true_const_tree, /* ignore_block */
2568 dwarf2out_source_line, /* source_line */
2569 debug_nothing_int_charstar, /* begin_prologue */
2570 debug_nothing_int_charstar, /* end_prologue */
2571 debug_nothing_int_charstar, /* begin_epilogue */
2572 debug_nothing_int_charstar, /* end_epilogue */
2573 debug_nothing_tree, /* begin_function */
2574 debug_nothing_int, /* end_function */
2575 debug_nothing_tree, /* register_main_translation_unit */
2576 debug_nothing_tree, /* function_decl */
2577 debug_nothing_tree, /* early_global_decl */
2578 debug_nothing_tree, /* late_global_decl */
2579 debug_nothing_tree_int, /* type_decl */
2580 debug_nothing_tree_tree_tree_bool, /* imported_module_or_decl */
2581 debug_nothing_tree, /* deferred_inline_function */
2582 debug_nothing_tree, /* outlining_inline_function */
2583 debug_nothing_rtx_code_label, /* label */
2584 debug_nothing_int, /* handle_pch */
2585 debug_nothing_rtx_insn, /* var_location */
2586 debug_nothing_tree, /* size_function */
2587 debug_nothing_void, /* switch_text_section */
2588 debug_nothing_tree_tree, /* set_name */
2589 0, /* start_end_main_source_file */
2590 TYPE_SYMTAB_IS_ADDRESS /* tree_type_symtab_field */
2593 /* NOTE: In the comments in this file, many references are made to
2594 "Debugging Information Entries". This term is abbreviated as `DIE'
2595 throughout the remainder of this file. */
2597 /* An internal representation of the DWARF output is built, and then
2598 walked to generate the DWARF debugging info. The walk of the internal
2599 representation is done after the entire program has been compiled.
2600 The types below are used to describe the internal representation. */
2602 /* Whether to put type DIEs into their own section .debug_types instead
2603 of making them part of the .debug_info section. Only supported for
2604 Dwarf V4 or higher and the user didn't disable them through
2605 -fno-debug-types-section. It is more efficient to put them in a
2606 separate comdat sections since the linker will then be able to
2607 remove duplicates. But not all tools support .debug_types sections
2608 yet. */
2610 #define use_debug_types (dwarf_version >= 4 && flag_debug_types_section)
2612 /* Various DIE's use offsets relative to the beginning of the
2613 .debug_info section to refer to each other. */
2615 typedef long int dw_offset;
2617 struct comdat_type_node;
2619 /* The entries in the line_info table more-or-less mirror the opcodes
2620 that are used in the real dwarf line table. Arrays of these entries
2621 are collected per section when DWARF2_ASM_LINE_DEBUG_INFO is not
2622 supported. */
2624 enum dw_line_info_opcode {
2625 /* Emit DW_LNE_set_address; the operand is the label index. */
2626 LI_set_address,
2628 /* Emit a row to the matrix with the given line. This may be done
2629 via any combination of DW_LNS_copy, DW_LNS_advance_line, and
2630 special opcodes. */
2631 LI_set_line,
2633 /* Emit a DW_LNS_set_file. */
2634 LI_set_file,
2636 /* Emit a DW_LNS_set_column. */
2637 LI_set_column,
2639 /* Emit a DW_LNS_negate_stmt; the operand is ignored. */
2640 LI_negate_stmt,
2642 /* Emit a DW_LNS_set_prologue_end/epilogue_begin; the operand is ignored. */
2643 LI_set_prologue_end,
2644 LI_set_epilogue_begin,
2646 /* Emit a DW_LNE_set_discriminator. */
2647 LI_set_discriminator
2650 typedef struct GTY(()) dw_line_info_struct {
2651 enum dw_line_info_opcode opcode;
2652 unsigned int val;
2653 } dw_line_info_entry;
2656 struct GTY(()) dw_line_info_table {
2657 /* The label that marks the end of this section. */
2658 const char *end_label;
2660 /* The values for the last row of the matrix, as collected in the table.
2661 These are used to minimize the changes to the next row. */
2662 unsigned int file_num;
2663 unsigned int line_num;
2664 unsigned int column_num;
2665 int discrim_num;
2666 bool is_stmt;
2667 bool in_use;
2669 vec<dw_line_info_entry, va_gc> *entries;
2673 /* Each DIE attribute has a field specifying the attribute kind,
2674 a link to the next attribute in the chain, and an attribute value.
2675 Attributes are typically linked below the DIE they modify. */
2677 typedef struct GTY(()) dw_attr_struct {
2678 enum dwarf_attribute dw_attr;
2679 dw_val_node dw_attr_val;
2681 dw_attr_node;
2684 /* The Debugging Information Entry (DIE) structure. DIEs form a tree.
2685 The children of each node form a circular list linked by
2686 die_sib. die_child points to the node *before* the "first" child node. */
2688 typedef struct GTY((chain_circular ("%h.die_sib"), for_user)) die_struct {
2689 union die_symbol_or_type_node
2691 const char * GTY ((tag ("0"))) die_symbol;
2692 comdat_type_node *GTY ((tag ("1"))) die_type_node;
2694 GTY ((desc ("%0.comdat_type_p"))) die_id;
2695 vec<dw_attr_node, va_gc> *die_attr;
2696 dw_die_ref die_parent;
2697 dw_die_ref die_child;
2698 dw_die_ref die_sib;
2699 dw_die_ref die_definition; /* ref from a specification to its definition */
2700 dw_offset die_offset;
2701 unsigned long die_abbrev;
2702 int die_mark;
2703 unsigned int decl_id;
2704 enum dwarf_tag die_tag;
2705 /* Die is used and must not be pruned as unused. */
2706 BOOL_BITFIELD die_perennial_p : 1;
2707 BOOL_BITFIELD comdat_type_p : 1; /* DIE has a type signature */
2708 /* Lots of spare bits. */
2710 die_node;
2712 /* Set to TRUE while dwarf2out_early_global_decl is running. */
2713 static bool early_dwarf;
2714 struct set_early_dwarf {
2715 bool saved;
2716 set_early_dwarf () : saved(early_dwarf) { early_dwarf = true; }
2717 ~set_early_dwarf () { early_dwarf = saved; }
2720 /* Evaluate 'expr' while 'c' is set to each child of DIE in order. */
2721 #define FOR_EACH_CHILD(die, c, expr) do { \
2722 c = die->die_child; \
2723 if (c) do { \
2724 c = c->die_sib; \
2725 expr; \
2726 } while (c != die->die_child); \
2727 } while (0)
2729 /* The pubname structure */
2731 typedef struct GTY(()) pubname_struct {
2732 dw_die_ref die;
2733 const char *name;
2735 pubname_entry;
2738 struct GTY(()) dw_ranges {
2739 /* If this is positive, it's a block number, otherwise it's a
2740 bitwise-negated index into dw_ranges_by_label. */
2741 int num;
2744 /* A structure to hold a macinfo entry. */
2746 typedef struct GTY(()) macinfo_struct {
2747 unsigned char code;
2748 unsigned HOST_WIDE_INT lineno;
2749 const char *info;
2751 macinfo_entry;
2754 struct GTY(()) dw_ranges_by_label {
2755 const char *begin;
2756 const char *end;
2759 /* The comdat type node structure. */
2760 struct GTY(()) comdat_type_node
2762 dw_die_ref root_die;
2763 dw_die_ref type_die;
2764 dw_die_ref skeleton_die;
2765 char signature[DWARF_TYPE_SIGNATURE_SIZE];
2766 comdat_type_node *next;
2769 /* A list of DIEs for which we can't determine ancestry (parent_die
2770 field) just yet. Later in dwarf2out_finish we will fill in the
2771 missing bits. */
2772 typedef struct GTY(()) limbo_die_struct {
2773 dw_die_ref die;
2774 /* The tree for which this DIE was created. We use this to
2775 determine ancestry later. */
2776 tree created_for;
2777 struct limbo_die_struct *next;
2779 limbo_die_node;
2781 typedef struct skeleton_chain_struct
2783 dw_die_ref old_die;
2784 dw_die_ref new_die;
2785 struct skeleton_chain_struct *parent;
2787 skeleton_chain_node;
2789 /* Define a macro which returns nonzero for a TYPE_DECL which was
2790 implicitly generated for a type.
2792 Note that, unlike the C front-end (which generates a NULL named
2793 TYPE_DECL node for each complete tagged type, each array type,
2794 and each function type node created) the C++ front-end generates
2795 a _named_ TYPE_DECL node for each tagged type node created.
2796 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
2797 generate a DW_TAG_typedef DIE for them. Likewise with the Ada
2798 front-end, but for each type, tagged or not. */
2800 #define TYPE_DECL_IS_STUB(decl) \
2801 (DECL_NAME (decl) == NULL_TREE \
2802 || (DECL_ARTIFICIAL (decl) \
2803 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
2804 /* This is necessary for stub decls that \
2805 appear in nested inline functions. */ \
2806 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
2807 && (decl_ultimate_origin (decl) \
2808 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
2810 /* Information concerning the compilation unit's programming
2811 language, and compiler version. */
2813 /* Fixed size portion of the DWARF compilation unit header. */
2814 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
2815 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
2817 /* Fixed size portion of the DWARF comdat type unit header. */
2818 #define DWARF_COMDAT_TYPE_UNIT_HEADER_SIZE \
2819 (DWARF_COMPILE_UNIT_HEADER_SIZE + DWARF_TYPE_SIGNATURE_SIZE \
2820 + DWARF_OFFSET_SIZE)
2822 /* Fixed size portion of public names info. */
2823 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
2825 /* Fixed size portion of the address range info. */
2826 #define DWARF_ARANGES_HEADER_SIZE \
2827 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
2828 DWARF2_ADDR_SIZE * 2) \
2829 - DWARF_INITIAL_LENGTH_SIZE)
2831 /* Size of padding portion in the address range info. It must be
2832 aligned to twice the pointer size. */
2833 #define DWARF_ARANGES_PAD_SIZE \
2834 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
2835 DWARF2_ADDR_SIZE * 2) \
2836 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
2838 /* Use assembler line directives if available. */
2839 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
2840 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
2841 #define DWARF2_ASM_LINE_DEBUG_INFO 1
2842 #else
2843 #define DWARF2_ASM_LINE_DEBUG_INFO 0
2844 #endif
2845 #endif
2847 /* Minimum line offset in a special line info. opcode.
2848 This value was chosen to give a reasonable range of values. */
2849 #define DWARF_LINE_BASE -10
2851 /* First special line opcode - leave room for the standard opcodes. */
2852 #define DWARF_LINE_OPCODE_BASE ((int)DW_LNS_set_isa + 1)
2854 /* Range of line offsets in a special line info. opcode. */
2855 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
2857 /* Flag that indicates the initial value of the is_stmt_start flag.
2858 In the present implementation, we do not mark any lines as
2859 the beginning of a source statement, because that information
2860 is not made available by the GCC front-end. */
2861 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
2863 /* Maximum number of operations per instruction bundle. */
2864 #ifndef DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN
2865 #define DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN 1
2866 #endif
2868 /* This location is used by calc_die_sizes() to keep track
2869 the offset of each DIE within the .debug_info section. */
2870 static unsigned long next_die_offset;
2872 /* Record the root of the DIE's built for the current compilation unit. */
2873 static GTY(()) dw_die_ref single_comp_unit_die;
2875 /* A list of type DIEs that have been separated into comdat sections. */
2876 static GTY(()) comdat_type_node *comdat_type_list;
2878 /* A list of DIEs with a NULL parent waiting to be relocated. */
2879 static GTY(()) limbo_die_node *limbo_die_list;
2881 /* A list of DIEs for which we may have to generate
2882 DW_AT_{,MIPS_}linkage_name once their DECL_ASSEMBLER_NAMEs are set. */
2883 static GTY(()) limbo_die_node *deferred_asm_name;
2885 struct dwarf_file_hasher : ggc_ptr_hash<dwarf_file_data>
2887 typedef const char *compare_type;
2889 static hashval_t hash (dwarf_file_data *);
2890 static bool equal (dwarf_file_data *, const char *);
2893 /* Filenames referenced by this compilation unit. */
2894 static GTY(()) hash_table<dwarf_file_hasher> *file_table;
2896 struct decl_die_hasher : ggc_ptr_hash<die_node>
2898 typedef tree compare_type;
2900 static hashval_t hash (die_node *);
2901 static bool equal (die_node *, tree);
2903 /* A hash table of references to DIE's that describe declarations.
2904 The key is a DECL_UID() which is a unique number identifying each decl. */
2905 static GTY (()) hash_table<decl_die_hasher> *decl_die_table;
2907 struct block_die_hasher : ggc_ptr_hash<die_struct>
2909 static hashval_t hash (die_struct *);
2910 static bool equal (die_struct *, die_struct *);
2913 /* A hash table of references to DIE's that describe COMMON blocks.
2914 The key is DECL_UID() ^ die_parent. */
2915 static GTY (()) hash_table<block_die_hasher> *common_block_die_table;
2917 typedef struct GTY(()) die_arg_entry_struct {
2918 dw_die_ref die;
2919 tree arg;
2920 } die_arg_entry;
2923 /* Node of the variable location list. */
2924 struct GTY ((chain_next ("%h.next"))) var_loc_node {
2925 /* Either NOTE_INSN_VAR_LOCATION, or, for SRA optimized variables,
2926 EXPR_LIST chain. For small bitsizes, bitsize is encoded
2927 in mode of the EXPR_LIST node and first EXPR_LIST operand
2928 is either NOTE_INSN_VAR_LOCATION for a piece with a known
2929 location or NULL for padding. For larger bitsizes,
2930 mode is 0 and first operand is a CONCAT with bitsize
2931 as first CONCAT operand and NOTE_INSN_VAR_LOCATION resp.
2932 NULL as second operand. */
2933 rtx GTY (()) loc;
2934 const char * GTY (()) label;
2935 struct var_loc_node * GTY (()) next;
2938 /* Variable location list. */
2939 struct GTY ((for_user)) var_loc_list_def {
2940 struct var_loc_node * GTY (()) first;
2942 /* Pointer to the last but one or last element of the
2943 chained list. If the list is empty, both first and
2944 last are NULL, if the list contains just one node
2945 or the last node certainly is not redundant, it points
2946 to the last node, otherwise points to the last but one.
2947 Do not mark it for GC because it is marked through the chain. */
2948 struct var_loc_node * GTY ((skip ("%h"))) last;
2950 /* Pointer to the last element before section switch,
2951 if NULL, either sections weren't switched or first
2952 is after section switch. */
2953 struct var_loc_node * GTY ((skip ("%h"))) last_before_switch;
2955 /* DECL_UID of the variable decl. */
2956 unsigned int decl_id;
2958 typedef struct var_loc_list_def var_loc_list;
2960 /* Call argument location list. */
2961 struct GTY ((chain_next ("%h.next"))) call_arg_loc_node {
2962 rtx GTY (()) call_arg_loc_note;
2963 const char * GTY (()) label;
2964 tree GTY (()) block;
2965 bool tail_call_p;
2966 rtx GTY (()) symbol_ref;
2967 struct call_arg_loc_node * GTY (()) next;
2971 struct decl_loc_hasher : ggc_ptr_hash<var_loc_list>
2973 typedef const_tree compare_type;
2975 static hashval_t hash (var_loc_list *);
2976 static bool equal (var_loc_list *, const_tree);
2979 /* Table of decl location linked lists. */
2980 static GTY (()) hash_table<decl_loc_hasher> *decl_loc_table;
2982 /* Head and tail of call_arg_loc chain. */
2983 static GTY (()) struct call_arg_loc_node *call_arg_locations;
2984 static struct call_arg_loc_node *call_arg_loc_last;
2986 /* Number of call sites in the current function. */
2987 static int call_site_count = -1;
2988 /* Number of tail call sites in the current function. */
2989 static int tail_call_site_count = -1;
2991 /* A cached location list. */
2992 struct GTY ((for_user)) cached_dw_loc_list_def {
2993 /* The DECL_UID of the decl that this entry describes. */
2994 unsigned int decl_id;
2996 /* The cached location list. */
2997 dw_loc_list_ref loc_list;
2999 typedef struct cached_dw_loc_list_def cached_dw_loc_list;
3001 struct dw_loc_list_hasher : ggc_ptr_hash<cached_dw_loc_list>
3004 typedef const_tree compare_type;
3006 static hashval_t hash (cached_dw_loc_list *);
3007 static bool equal (cached_dw_loc_list *, const_tree);
3010 /* Table of cached location lists. */
3011 static GTY (()) hash_table<dw_loc_list_hasher> *cached_dw_loc_list_table;
3013 /* A pointer to the base of a list of references to DIE's that
3014 are uniquely identified by their tag, presence/absence of
3015 children DIE's, and list of attribute/value pairs. */
3016 static GTY((length ("abbrev_die_table_allocated")))
3017 dw_die_ref *abbrev_die_table;
3019 /* Number of elements currently allocated for abbrev_die_table. */
3020 static GTY(()) unsigned abbrev_die_table_allocated;
3022 /* Number of elements in abbrev_die_table currently in use. */
3023 static GTY(()) unsigned abbrev_die_table_in_use;
3025 /* A hash map to remember the stack usage for DWARF procedures. The value
3026 stored is the stack size difference between before the DWARF procedure
3027 invokation and after it returned. In other words, for a DWARF procedure
3028 that consumes N stack slots and that pushes M ones, this stores M - N. */
3029 static hash_map<dw_die_ref, int> *dwarf_proc_stack_usage_map;
3031 /* Size (in elements) of increments by which we may expand the
3032 abbrev_die_table. */
3033 #define ABBREV_DIE_TABLE_INCREMENT 256
3035 /* A global counter for generating labels for line number data. */
3036 static unsigned int line_info_label_num;
3038 /* The current table to which we should emit line number information
3039 for the current function. This will be set up at the beginning of
3040 assembly for the function. */
3041 static GTY(()) dw_line_info_table *cur_line_info_table;
3043 /* The two default tables of line number info. */
3044 static GTY(()) dw_line_info_table *text_section_line_info;
3045 static GTY(()) dw_line_info_table *cold_text_section_line_info;
3047 /* The set of all non-default tables of line number info. */
3048 static GTY(()) vec<dw_line_info_table *, va_gc> *separate_line_info;
3050 /* A flag to tell pubnames/types export if there is an info section to
3051 refer to. */
3052 static bool info_section_emitted;
3054 /* A pointer to the base of a table that contains a list of publicly
3055 accessible names. */
3056 static GTY (()) vec<pubname_entry, va_gc> *pubname_table;
3058 /* A pointer to the base of a table that contains a list of publicly
3059 accessible types. */
3060 static GTY (()) vec<pubname_entry, va_gc> *pubtype_table;
3062 /* A pointer to the base of a table that contains a list of macro
3063 defines/undefines (and file start/end markers). */
3064 static GTY (()) vec<macinfo_entry, va_gc> *macinfo_table;
3066 /* True if .debug_macinfo or .debug_macros section is going to be
3067 emitted. */
3068 #define have_macinfo \
3069 ((!XCOFF_DEBUGGING_INFO || HAVE_XCOFF_DWARF_EXTRAS) \
3070 && debug_info_level >= DINFO_LEVEL_VERBOSE \
3071 && !macinfo_table->is_empty ())
3073 /* Array of dies for which we should generate .debug_ranges info. */
3074 static GTY ((length ("ranges_table_allocated"))) dw_ranges *ranges_table;
3076 /* Number of elements currently allocated for ranges_table. */
3077 static GTY(()) unsigned ranges_table_allocated;
3079 /* Number of elements in ranges_table currently in use. */
3080 static GTY(()) unsigned ranges_table_in_use;
3082 /* Array of pairs of labels referenced in ranges_table. */
3083 static GTY ((length ("ranges_by_label_allocated")))
3084 dw_ranges_by_label *ranges_by_label;
3086 /* Number of elements currently allocated for ranges_by_label. */
3087 static GTY(()) unsigned ranges_by_label_allocated;
3089 /* Number of elements in ranges_by_label currently in use. */
3090 static GTY(()) unsigned ranges_by_label_in_use;
3092 /* Size (in elements) of increments by which we may expand the
3093 ranges_table. */
3094 #define RANGES_TABLE_INCREMENT 64
3096 /* Whether we have location lists that need outputting */
3097 static GTY(()) bool have_location_lists;
3099 /* Unique label counter. */
3100 static GTY(()) unsigned int loclabel_num;
3102 /* Unique label counter for point-of-call tables. */
3103 static GTY(()) unsigned int poc_label_num;
3105 /* The last file entry emitted by maybe_emit_file(). */
3106 static GTY(()) struct dwarf_file_data * last_emitted_file;
3108 /* Number of internal labels generated by gen_internal_sym(). */
3109 static GTY(()) int label_num;
3111 static GTY(()) vec<die_arg_entry, va_gc> *tmpl_value_parm_die_table;
3113 /* Instances of generic types for which we need to generate debug
3114 info that describe their generic parameters and arguments. That
3115 generation needs to happen once all types are properly laid out so
3116 we do it at the end of compilation. */
3117 static GTY(()) vec<tree, va_gc> *generic_type_instances;
3119 /* Offset from the "steady-state frame pointer" to the frame base,
3120 within the current function. */
3121 static HOST_WIDE_INT frame_pointer_fb_offset;
3122 static bool frame_pointer_fb_offset_valid;
3124 static vec<dw_die_ref> base_types;
3126 /* Flags to represent a set of attribute classes for attributes that represent
3127 a scalar value (bounds, pointers, ...). */
3128 enum dw_scalar_form
3130 dw_scalar_form_constant = 0x01,
3131 dw_scalar_form_exprloc = 0x02,
3132 dw_scalar_form_reference = 0x04
3135 /* Forward declarations for functions defined in this file. */
3137 static int is_pseudo_reg (const_rtx);
3138 static tree type_main_variant (tree);
3139 static int is_tagged_type (const_tree);
3140 static const char *dwarf_tag_name (unsigned);
3141 static const char *dwarf_attr_name (unsigned);
3142 static const char *dwarf_form_name (unsigned);
3143 static tree decl_ultimate_origin (const_tree);
3144 static tree decl_class_context (tree);
3145 static void add_dwarf_attr (dw_die_ref, dw_attr_node *);
3146 static inline enum dw_val_class AT_class (dw_attr_node *);
3147 static inline unsigned int AT_index (dw_attr_node *);
3148 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3149 static inline unsigned AT_flag (dw_attr_node *);
3150 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3151 static inline HOST_WIDE_INT AT_int (dw_attr_node *);
3152 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3153 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_node *);
3154 static void add_AT_double (dw_die_ref, enum dwarf_attribute,
3155 HOST_WIDE_INT, unsigned HOST_WIDE_INT);
3156 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
3157 unsigned int, unsigned char *);
3158 static void add_AT_data8 (dw_die_ref, enum dwarf_attribute, unsigned char *);
3159 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3160 static inline const char *AT_string (dw_attr_node *);
3161 static enum dwarf_form AT_string_form (dw_attr_node *);
3162 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3163 static void add_AT_specification (dw_die_ref, dw_die_ref);
3164 static inline dw_die_ref AT_ref (dw_attr_node *);
3165 static inline int AT_ref_external (dw_attr_node *);
3166 static inline void set_AT_ref_external (dw_attr_node *, int);
3167 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3168 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3169 static inline dw_loc_descr_ref AT_loc (dw_attr_node *);
3170 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3171 dw_loc_list_ref);
3172 static inline dw_loc_list_ref AT_loc_list (dw_attr_node *);
3173 static addr_table_entry *add_addr_table_entry (void *, enum ate_kind);
3174 static void remove_addr_table_entry (addr_table_entry *);
3175 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx, bool);
3176 static inline rtx AT_addr (dw_attr_node *);
3177 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3178 static void add_AT_lineptr (dw_die_ref, enum dwarf_attribute, const char *);
3179 static void add_AT_macptr (dw_die_ref, enum dwarf_attribute, const char *);
3180 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3181 unsigned HOST_WIDE_INT);
3182 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3183 unsigned long, bool);
3184 static inline const char *AT_lbl (dw_attr_node *);
3185 static dw_attr_node *get_AT (dw_die_ref, enum dwarf_attribute);
3186 static const char *get_AT_low_pc (dw_die_ref);
3187 static const char *get_AT_hi_pc (dw_die_ref);
3188 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3189 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3190 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3191 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3192 static bool is_cxx (void);
3193 static bool is_fortran (void);
3194 static bool is_ada (void);
3195 static bool remove_AT (dw_die_ref, enum dwarf_attribute);
3196 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
3197 static void add_child_die (dw_die_ref, dw_die_ref);
3198 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3199 static dw_die_ref lookup_type_die (tree);
3200 static dw_die_ref strip_naming_typedef (tree, dw_die_ref);
3201 static dw_die_ref lookup_type_die_strip_naming_typedef (tree);
3202 static void equate_type_number_to_die (tree, dw_die_ref);
3203 static dw_die_ref lookup_decl_die (tree);
3204 static var_loc_list *lookup_decl_loc (const_tree);
3205 static void equate_decl_number_to_die (tree, dw_die_ref);
3206 static struct var_loc_node *add_var_loc_to_decl (tree, rtx, const char *);
3207 static void print_spaces (FILE *);
3208 static void print_die (dw_die_ref, FILE *);
3209 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3210 static dw_die_ref pop_compile_unit (dw_die_ref);
3211 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3212 static void attr_checksum (dw_attr_node *, struct md5_ctx *, int *);
3213 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3214 static void checksum_sleb128 (HOST_WIDE_INT, struct md5_ctx *);
3215 static void checksum_uleb128 (unsigned HOST_WIDE_INT, struct md5_ctx *);
3216 static void loc_checksum_ordered (dw_loc_descr_ref, struct md5_ctx *);
3217 static void attr_checksum_ordered (enum dwarf_tag, dw_attr_node *,
3218 struct md5_ctx *, int *);
3219 struct checksum_attributes;
3220 static void collect_checksum_attributes (struct checksum_attributes *, dw_die_ref);
3221 static void die_checksum_ordered (dw_die_ref, struct md5_ctx *, int *);
3222 static void checksum_die_context (dw_die_ref, struct md5_ctx *);
3223 static void generate_type_signature (dw_die_ref, comdat_type_node *);
3224 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3225 static int same_dw_val_p (const dw_val_node *, const dw_val_node *, int *);
3226 static int same_attr_p (dw_attr_node *, dw_attr_node *, int *);
3227 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3228 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3229 static void compute_section_prefix (dw_die_ref);
3230 static int is_type_die (dw_die_ref);
3231 static int is_comdat_die (dw_die_ref);
3232 static int is_symbol_die (dw_die_ref);
3233 static inline bool is_template_instantiation (dw_die_ref);
3234 static void assign_symbol_names (dw_die_ref);
3235 static void break_out_includes (dw_die_ref);
3236 static int is_declaration_die (dw_die_ref);
3237 static int should_move_die_to_comdat (dw_die_ref);
3238 static dw_die_ref clone_as_declaration (dw_die_ref);
3239 static dw_die_ref clone_die (dw_die_ref);
3240 static dw_die_ref clone_tree (dw_die_ref);
3241 static dw_die_ref copy_declaration_context (dw_die_ref, dw_die_ref);
3242 static void generate_skeleton_ancestor_tree (skeleton_chain_node *);
3243 static void generate_skeleton_bottom_up (skeleton_chain_node *);
3244 static dw_die_ref generate_skeleton (dw_die_ref);
3245 static dw_die_ref remove_child_or_replace_with_skeleton (dw_die_ref,
3246 dw_die_ref,
3247 dw_die_ref);
3248 static void break_out_comdat_types (dw_die_ref);
3249 static void copy_decls_for_unworthy_types (dw_die_ref);
3251 static void add_sibling_attributes (dw_die_ref);
3252 static void output_location_lists (dw_die_ref);
3253 static int constant_size (unsigned HOST_WIDE_INT);
3254 static unsigned long size_of_die (dw_die_ref);
3255 static void calc_die_sizes (dw_die_ref);
3256 static void calc_base_type_die_sizes (void);
3257 static void mark_dies (dw_die_ref);
3258 static void unmark_dies (dw_die_ref);
3259 static void unmark_all_dies (dw_die_ref);
3260 static unsigned long size_of_pubnames (vec<pubname_entry, va_gc> *);
3261 static unsigned long size_of_aranges (void);
3262 static enum dwarf_form value_format (dw_attr_node *);
3263 static void output_value_format (dw_attr_node *);
3264 static void output_abbrev_section (void);
3265 static void output_die_abbrevs (unsigned long, dw_die_ref);
3266 static void output_die_symbol (dw_die_ref);
3267 static void output_die (dw_die_ref);
3268 static void output_compilation_unit_header (void);
3269 static void output_comp_unit (dw_die_ref, int);
3270 static void output_comdat_type_unit (comdat_type_node *);
3271 static const char *dwarf2_name (tree, int);
3272 static void add_pubname (tree, dw_die_ref);
3273 static void add_enumerator_pubname (const char *, dw_die_ref);
3274 static void add_pubname_string (const char *, dw_die_ref);
3275 static void add_pubtype (tree, dw_die_ref);
3276 static void output_pubnames (vec<pubname_entry, va_gc> *);
3277 static void output_aranges (void);
3278 static unsigned int add_ranges_num (int);
3279 static unsigned int add_ranges (const_tree);
3280 static void add_ranges_by_labels (dw_die_ref, const char *, const char *,
3281 bool *, bool);
3282 static void output_ranges (void);
3283 static dw_line_info_table *new_line_info_table (void);
3284 static void output_line_info (bool);
3285 static void output_file_names (void);
3286 static dw_die_ref base_type_die (tree, bool);
3287 static int is_base_type (tree);
3288 static dw_die_ref subrange_type_die (tree, tree, tree, tree, dw_die_ref);
3289 static int decl_quals (const_tree);
3290 static dw_die_ref modified_type_die (tree, int, bool, dw_die_ref);
3291 static dw_die_ref generic_parameter_die (tree, tree, bool, dw_die_ref);
3292 static dw_die_ref template_parameter_pack_die (tree, tree, dw_die_ref);
3293 static int type_is_enum (const_tree);
3294 static unsigned int dbx_reg_number (const_rtx);
3295 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
3296 static dw_loc_descr_ref reg_loc_descriptor (rtx, enum var_init_status);
3297 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int,
3298 enum var_init_status);
3299 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx,
3300 enum var_init_status);
3301 static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT,
3302 enum var_init_status);
3303 static int is_based_loc (const_rtx);
3304 static bool resolve_one_addr (rtx *);
3305 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx,
3306 enum var_init_status);
3307 static dw_loc_descr_ref loc_descriptor (rtx, machine_mode mode,
3308 enum var_init_status);
3309 struct loc_descr_context;
3310 static void add_loc_descr_to_each (dw_loc_list_ref list, dw_loc_descr_ref ref);
3311 static void add_loc_list (dw_loc_list_ref *ret, dw_loc_list_ref list);
3312 static dw_loc_list_ref loc_list_from_tree (tree, int,
3313 const struct loc_descr_context *);
3314 static dw_loc_descr_ref loc_descriptor_from_tree (tree, int,
3315 const struct loc_descr_context *);
3316 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3317 static tree field_type (const_tree);
3318 static unsigned int simple_type_align_in_bits (const_tree);
3319 static unsigned int simple_decl_align_in_bits (const_tree);
3320 static unsigned HOST_WIDE_INT simple_type_size_in_bits (const_tree);
3321 struct vlr_context;
3322 static dw_loc_descr_ref field_byte_offset (const_tree, struct vlr_context *,
3323 HOST_WIDE_INT *);
3324 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3325 dw_loc_list_ref);
3326 static void add_data_member_location_attribute (dw_die_ref, tree,
3327 struct vlr_context *);
3328 static bool add_const_value_attribute (dw_die_ref, rtx);
3329 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
3330 static void insert_wide_int (const wide_int &, unsigned char *, int);
3331 static void insert_float (const_rtx, unsigned char *);
3332 static rtx rtl_for_decl_location (tree);
3333 static bool add_location_or_const_value_attribute (dw_die_ref, tree, bool);
3334 static bool tree_add_const_value_attribute (dw_die_ref, tree);
3335 static bool tree_add_const_value_attribute_for_decl (dw_die_ref, tree);
3336 static void add_name_attribute (dw_die_ref, const char *);
3337 static void add_gnat_descriptive_type_attribute (dw_die_ref, tree, dw_die_ref);
3338 static void add_comp_dir_attribute (dw_die_ref);
3339 static void add_scalar_info (dw_die_ref, enum dwarf_attribute, tree, int,
3340 const struct loc_descr_context *);
3341 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree,
3342 const struct loc_descr_context *);
3343 static void add_subscript_info (dw_die_ref, tree, bool);
3344 static void add_byte_size_attribute (dw_die_ref, tree);
3345 static inline void add_bit_offset_attribute (dw_die_ref, tree,
3346 struct vlr_context *);
3347 static void add_bit_size_attribute (dw_die_ref, tree);
3348 static void add_prototyped_attribute (dw_die_ref, tree);
3349 static dw_die_ref add_abstract_origin_attribute (dw_die_ref, tree);
3350 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
3351 static void add_src_coords_attributes (dw_die_ref, tree);
3352 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
3353 static void add_discr_value (dw_die_ref, dw_discr_value *);
3354 static void add_discr_list (dw_die_ref, dw_discr_list_ref);
3355 static inline dw_discr_list_ref AT_discr_list (dw_attr_node *);
3356 static void push_decl_scope (tree);
3357 static void pop_decl_scope (void);
3358 static dw_die_ref scope_die_for (tree, dw_die_ref);
3359 static inline int local_scope_p (dw_die_ref);
3360 static inline int class_scope_p (dw_die_ref);
3361 static inline int class_or_namespace_scope_p (dw_die_ref);
3362 static void add_type_attribute (dw_die_ref, tree, int, bool, dw_die_ref);
3363 static void add_calling_convention_attribute (dw_die_ref, tree);
3364 static const char *type_tag (const_tree);
3365 static tree member_declared_type (const_tree);
3366 #if 0
3367 static const char *decl_start_label (tree);
3368 #endif
3369 static void gen_array_type_die (tree, dw_die_ref);
3370 static void gen_descr_array_type_die (tree, struct array_descr_info *, dw_die_ref);
3371 #if 0
3372 static void gen_entry_point_die (tree, dw_die_ref);
3373 #endif
3374 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
3375 static dw_die_ref gen_formal_parameter_die (tree, tree, bool, dw_die_ref);
3376 static dw_die_ref gen_formal_parameter_pack_die (tree, tree, dw_die_ref, tree*);
3377 static void gen_unspecified_parameters_die (tree, dw_die_ref);
3378 static void gen_formal_types_die (tree, dw_die_ref);
3379 static void gen_subprogram_die (tree, dw_die_ref);
3380 static void gen_variable_die (tree, tree, dw_die_ref);
3381 static void gen_const_die (tree, dw_die_ref);
3382 static void gen_label_die (tree, dw_die_ref);
3383 static void gen_lexical_block_die (tree, dw_die_ref);
3384 static void gen_inlined_subroutine_die (tree, dw_die_ref);
3385 static void gen_field_die (tree, struct vlr_context *, dw_die_ref);
3386 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
3387 static dw_die_ref gen_compile_unit_die (const char *);
3388 static void gen_inheritance_die (tree, tree, tree, dw_die_ref);
3389 static void gen_member_die (tree, dw_die_ref);
3390 static void gen_struct_or_union_type_die (tree, dw_die_ref,
3391 enum debug_info_usage);
3392 static void gen_subroutine_type_die (tree, dw_die_ref);
3393 static void gen_typedef_die (tree, dw_die_ref);
3394 static void gen_type_die (tree, dw_die_ref);
3395 static void gen_block_die (tree, dw_die_ref);
3396 static void decls_for_scope (tree, dw_die_ref);
3397 static bool is_naming_typedef_decl (const_tree);
3398 static inline dw_die_ref get_context_die (tree);
3399 static void gen_namespace_die (tree, dw_die_ref);
3400 static dw_die_ref gen_namelist_decl (tree, dw_die_ref, tree);
3401 static dw_die_ref gen_decl_die (tree, tree, struct vlr_context *, dw_die_ref);
3402 static dw_die_ref force_decl_die (tree);
3403 static dw_die_ref force_type_die (tree);
3404 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
3405 static dw_die_ref declare_in_namespace (tree, dw_die_ref);
3406 static struct dwarf_file_data * lookup_filename (const char *);
3407 static void retry_incomplete_types (void);
3408 static void gen_type_die_for_member (tree, tree, dw_die_ref);
3409 static void gen_generic_params_dies (tree);
3410 static void gen_tagged_type_die (tree, dw_die_ref, enum debug_info_usage);
3411 static void gen_type_die_with_usage (tree, dw_die_ref, enum debug_info_usage);
3412 static void splice_child_die (dw_die_ref, dw_die_ref);
3413 static int file_info_cmp (const void *, const void *);
3414 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
3415 const char *, const char *);
3416 static void output_loc_list (dw_loc_list_ref);
3417 static char *gen_internal_sym (const char *);
3418 static bool want_pubnames (void);
3420 static void prune_unmark_dies (dw_die_ref);
3421 static void prune_unused_types_mark_generic_parms_dies (dw_die_ref);
3422 static void prune_unused_types_mark (dw_die_ref, int);
3423 static void prune_unused_types_walk (dw_die_ref);
3424 static void prune_unused_types_walk_attribs (dw_die_ref);
3425 static void prune_unused_types_prune (dw_die_ref);
3426 static void prune_unused_types (void);
3427 static int maybe_emit_file (struct dwarf_file_data *fd);
3428 static inline const char *AT_vms_delta1 (dw_attr_node *);
3429 static inline const char *AT_vms_delta2 (dw_attr_node *);
3430 static inline void add_AT_vms_delta (dw_die_ref, enum dwarf_attribute,
3431 const char *, const char *);
3432 static void append_entry_to_tmpl_value_parm_die_table (dw_die_ref, tree);
3433 static void gen_remaining_tmpl_value_param_die_attribute (void);
3434 static bool generic_type_p (tree);
3435 static void schedule_generic_params_dies_gen (tree t);
3436 static void gen_scheduled_generic_parms_dies (void);
3438 static const char *comp_dir_string (void);
3440 static void hash_loc_operands (dw_loc_descr_ref, inchash::hash &);
3442 /* enum for tracking thread-local variables whose address is really an offset
3443 relative to the TLS pointer, which will need link-time relocation, but will
3444 not need relocation by the DWARF consumer. */
3446 enum dtprel_bool
3448 dtprel_false = 0,
3449 dtprel_true = 1
3452 /* Return the operator to use for an address of a variable. For dtprel_true, we
3453 use DW_OP_const*. For regular variables, which need both link-time
3454 relocation and consumer-level relocation (e.g., to account for shared objects
3455 loaded at a random address), we use DW_OP_addr*. */
3457 static inline enum dwarf_location_atom
3458 dw_addr_op (enum dtprel_bool dtprel)
3460 if (dtprel == dtprel_true)
3461 return (dwarf_split_debug_info ? DW_OP_GNU_const_index
3462 : (DWARF2_ADDR_SIZE == 4 ? DW_OP_const4u : DW_OP_const8u));
3463 else
3464 return dwarf_split_debug_info ? DW_OP_GNU_addr_index : DW_OP_addr;
3467 /* Return a pointer to a newly allocated address location description. If
3468 dwarf_split_debug_info is true, then record the address with the appropriate
3469 relocation. */
3470 static inline dw_loc_descr_ref
3471 new_addr_loc_descr (rtx addr, enum dtprel_bool dtprel)
3473 dw_loc_descr_ref ref = new_loc_descr (dw_addr_op (dtprel), 0, 0);
3475 ref->dw_loc_oprnd1.val_class = dw_val_class_addr;
3476 ref->dw_loc_oprnd1.v.val_addr = addr;
3477 ref->dtprel = dtprel;
3478 if (dwarf_split_debug_info)
3479 ref->dw_loc_oprnd1.val_entry
3480 = add_addr_table_entry (addr,
3481 dtprel ? ate_kind_rtx_dtprel : ate_kind_rtx);
3482 else
3483 ref->dw_loc_oprnd1.val_entry = NULL;
3485 return ref;
3488 /* Section names used to hold DWARF debugging information. */
3490 #ifndef DEBUG_INFO_SECTION
3491 #define DEBUG_INFO_SECTION ".debug_info"
3492 #endif
3493 #ifndef DEBUG_DWO_INFO_SECTION
3494 #define DEBUG_DWO_INFO_SECTION ".debug_info.dwo"
3495 #endif
3496 #ifndef DEBUG_ABBREV_SECTION
3497 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3498 #endif
3499 #ifndef DEBUG_DWO_ABBREV_SECTION
3500 #define DEBUG_DWO_ABBREV_SECTION ".debug_abbrev.dwo"
3501 #endif
3502 #ifndef DEBUG_ARANGES_SECTION
3503 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3504 #endif
3505 #ifndef DEBUG_ADDR_SECTION
3506 #define DEBUG_ADDR_SECTION ".debug_addr"
3507 #endif
3508 #ifndef DEBUG_NORM_MACINFO_SECTION
3509 #define DEBUG_NORM_MACINFO_SECTION ".debug_macinfo"
3510 #endif
3511 #ifndef DEBUG_DWO_MACINFO_SECTION
3512 #define DEBUG_DWO_MACINFO_SECTION ".debug_macinfo.dwo"
3513 #endif
3514 #ifndef DEBUG_MACINFO_SECTION
3515 #define DEBUG_MACINFO_SECTION \
3516 (!dwarf_split_debug_info \
3517 ? (DEBUG_NORM_MACINFO_SECTION) : (DEBUG_DWO_MACINFO_SECTION))
3518 #endif
3519 #ifndef DEBUG_NORM_MACRO_SECTION
3520 #define DEBUG_NORM_MACRO_SECTION ".debug_macro"
3521 #endif
3522 #ifndef DEBUG_DWO_MACRO_SECTION
3523 #define DEBUG_DWO_MACRO_SECTION ".debug_macro.dwo"
3524 #endif
3525 #ifndef DEBUG_MACRO_SECTION
3526 #define DEBUG_MACRO_SECTION \
3527 (!dwarf_split_debug_info \
3528 ? (DEBUG_NORM_MACRO_SECTION) : (DEBUG_DWO_MACRO_SECTION))
3529 #endif
3530 #ifndef DEBUG_LINE_SECTION
3531 #define DEBUG_LINE_SECTION ".debug_line"
3532 #endif
3533 #ifndef DEBUG_DWO_LINE_SECTION
3534 #define DEBUG_DWO_LINE_SECTION ".debug_line.dwo"
3535 #endif
3536 #ifndef DEBUG_LOC_SECTION
3537 #define DEBUG_LOC_SECTION ".debug_loc"
3538 #endif
3539 #ifndef DEBUG_DWO_LOC_SECTION
3540 #define DEBUG_DWO_LOC_SECTION ".debug_loc.dwo"
3541 #endif
3542 #ifndef DEBUG_PUBNAMES_SECTION
3543 #define DEBUG_PUBNAMES_SECTION \
3544 ((debug_generate_pub_sections == 2) \
3545 ? ".debug_gnu_pubnames" : ".debug_pubnames")
3546 #endif
3547 #ifndef DEBUG_PUBTYPES_SECTION
3548 #define DEBUG_PUBTYPES_SECTION \
3549 ((debug_generate_pub_sections == 2) \
3550 ? ".debug_gnu_pubtypes" : ".debug_pubtypes")
3551 #endif
3552 #define DEBUG_NORM_STR_OFFSETS_SECTION ".debug_str_offsets"
3553 #define DEBUG_DWO_STR_OFFSETS_SECTION ".debug_str_offsets.dwo"
3554 #ifndef DEBUG_STR_OFFSETS_SECTION
3555 #define DEBUG_STR_OFFSETS_SECTION \
3556 (!dwarf_split_debug_info \
3557 ? (DEBUG_NORM_STR_OFFSETS_SECTION) : (DEBUG_DWO_STR_OFFSETS_SECTION))
3558 #endif
3559 #ifndef DEBUG_STR_DWO_SECTION
3560 #define DEBUG_STR_DWO_SECTION ".debug_str.dwo"
3561 #endif
3562 #ifndef DEBUG_STR_SECTION
3563 #define DEBUG_STR_SECTION ".debug_str"
3564 #endif
3565 #ifndef DEBUG_RANGES_SECTION
3566 #define DEBUG_RANGES_SECTION ".debug_ranges"
3567 #endif
3569 /* Standard ELF section names for compiled code and data. */
3570 #ifndef TEXT_SECTION_NAME
3571 #define TEXT_SECTION_NAME ".text"
3572 #endif
3574 /* Section flags for .debug_macinfo/.debug_macro section. */
3575 #define DEBUG_MACRO_SECTION_FLAGS \
3576 (dwarf_split_debug_info ? SECTION_DEBUG | SECTION_EXCLUDE : SECTION_DEBUG)
3578 /* Section flags for .debug_str section. */
3579 #define DEBUG_STR_SECTION_FLAGS \
3580 (HAVE_GAS_SHF_MERGE && flag_merge_debug_strings \
3581 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
3582 : SECTION_DEBUG)
3584 /* Section flags for .debug_str.dwo section. */
3585 #define DEBUG_STR_DWO_SECTION_FLAGS (SECTION_DEBUG | SECTION_EXCLUDE)
3587 /* Labels we insert at beginning sections we can reference instead of
3588 the section names themselves. */
3590 #ifndef TEXT_SECTION_LABEL
3591 #define TEXT_SECTION_LABEL "Ltext"
3592 #endif
3593 #ifndef COLD_TEXT_SECTION_LABEL
3594 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
3595 #endif
3596 #ifndef DEBUG_LINE_SECTION_LABEL
3597 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3598 #endif
3599 #ifndef DEBUG_SKELETON_LINE_SECTION_LABEL
3600 #define DEBUG_SKELETON_LINE_SECTION_LABEL "Lskeleton_debug_line"
3601 #endif
3602 #ifndef DEBUG_INFO_SECTION_LABEL
3603 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3604 #endif
3605 #ifndef DEBUG_SKELETON_INFO_SECTION_LABEL
3606 #define DEBUG_SKELETON_INFO_SECTION_LABEL "Lskeleton_debug_info"
3607 #endif
3608 #ifndef DEBUG_ABBREV_SECTION_LABEL
3609 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3610 #endif
3611 #ifndef DEBUG_SKELETON_ABBREV_SECTION_LABEL
3612 #define DEBUG_SKELETON_ABBREV_SECTION_LABEL "Lskeleton_debug_abbrev"
3613 #endif
3614 #ifndef DEBUG_ADDR_SECTION_LABEL
3615 #define DEBUG_ADDR_SECTION_LABEL "Ldebug_addr"
3616 #endif
3617 #ifndef DEBUG_LOC_SECTION_LABEL
3618 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3619 #endif
3620 #ifndef DEBUG_RANGES_SECTION_LABEL
3621 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3622 #endif
3623 #ifndef DEBUG_MACINFO_SECTION_LABEL
3624 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3625 #endif
3626 #ifndef DEBUG_MACRO_SECTION_LABEL
3627 #define DEBUG_MACRO_SECTION_LABEL "Ldebug_macro"
3628 #endif
3629 #define SKELETON_COMP_DIE_ABBREV 1
3630 #define SKELETON_TYPE_DIE_ABBREV 2
3632 /* Definitions of defaults for formats and names of various special
3633 (artificial) labels which may be generated within this file (when the -g
3634 options is used and DWARF2_DEBUGGING_INFO is in effect.
3635 If necessary, these may be overridden from within the tm.h file, but
3636 typically, overriding these defaults is unnecessary. */
3638 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3639 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3640 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3641 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3642 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3643 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3644 static char debug_skeleton_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3645 static char debug_skeleton_abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3646 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3647 static char debug_addr_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3648 static char debug_skeleton_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3649 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3650 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3651 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3653 #ifndef TEXT_END_LABEL
3654 #define TEXT_END_LABEL "Letext"
3655 #endif
3656 #ifndef COLD_END_LABEL
3657 #define COLD_END_LABEL "Letext_cold"
3658 #endif
3659 #ifndef BLOCK_BEGIN_LABEL
3660 #define BLOCK_BEGIN_LABEL "LBB"
3661 #endif
3662 #ifndef BLOCK_END_LABEL
3663 #define BLOCK_END_LABEL "LBE"
3664 #endif
3665 #ifndef LINE_CODE_LABEL
3666 #define LINE_CODE_LABEL "LM"
3667 #endif
3670 /* Return the root of the DIE's built for the current compilation unit. */
3671 static dw_die_ref
3672 comp_unit_die (void)
3674 if (!single_comp_unit_die)
3675 single_comp_unit_die = gen_compile_unit_die (NULL);
3676 return single_comp_unit_die;
3679 /* We allow a language front-end to designate a function that is to be
3680 called to "demangle" any name before it is put into a DIE. */
3682 static const char *(*demangle_name_func) (const char *);
3684 void
3685 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
3687 demangle_name_func = func;
3690 /* Test if rtl node points to a pseudo register. */
3692 static inline int
3693 is_pseudo_reg (const_rtx rtl)
3695 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3696 || (GET_CODE (rtl) == SUBREG
3697 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3700 /* Return a reference to a type, with its const and volatile qualifiers
3701 removed. */
3703 static inline tree
3704 type_main_variant (tree type)
3706 type = TYPE_MAIN_VARIANT (type);
3708 /* ??? There really should be only one main variant among any group of
3709 variants of a given type (and all of the MAIN_VARIANT values for all
3710 members of the group should point to that one type) but sometimes the C
3711 front-end messes this up for array types, so we work around that bug
3712 here. */
3713 if (TREE_CODE (type) == ARRAY_TYPE)
3714 while (type != TYPE_MAIN_VARIANT (type))
3715 type = TYPE_MAIN_VARIANT (type);
3717 return type;
3720 /* Return nonzero if the given type node represents a tagged type. */
3722 static inline int
3723 is_tagged_type (const_tree type)
3725 enum tree_code code = TREE_CODE (type);
3727 return (code == RECORD_TYPE || code == UNION_TYPE
3728 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
3731 /* Set label to debug_info_section_label + die_offset of a DIE reference. */
3733 static void
3734 get_ref_die_offset_label (char *label, dw_die_ref ref)
3736 sprintf (label, "%s+%ld", debug_info_section_label, ref->die_offset);
3739 /* Return die_offset of a DIE reference to a base type. */
3741 static unsigned long int
3742 get_base_type_offset (dw_die_ref ref)
3744 if (ref->die_offset)
3745 return ref->die_offset;
3746 if (comp_unit_die ()->die_abbrev)
3748 calc_base_type_die_sizes ();
3749 gcc_assert (ref->die_offset);
3751 return ref->die_offset;
3754 /* Return die_offset of a DIE reference other than base type. */
3756 static unsigned long int
3757 get_ref_die_offset (dw_die_ref ref)
3759 gcc_assert (ref->die_offset);
3760 return ref->die_offset;
3763 /* Convert a DIE tag into its string name. */
3765 static const char *
3766 dwarf_tag_name (unsigned int tag)
3768 const char *name = get_DW_TAG_name (tag);
3770 if (name != NULL)
3771 return name;
3773 return "DW_TAG_<unknown>";
3776 /* Convert a DWARF attribute code into its string name. */
3778 static const char *
3779 dwarf_attr_name (unsigned int attr)
3781 const char *name;
3783 switch (attr)
3785 #if VMS_DEBUGGING_INFO
3786 case DW_AT_HP_prologue:
3787 return "DW_AT_HP_prologue";
3788 #else
3789 case DW_AT_MIPS_loop_unroll_factor:
3790 return "DW_AT_MIPS_loop_unroll_factor";
3791 #endif
3793 #if VMS_DEBUGGING_INFO
3794 case DW_AT_HP_epilogue:
3795 return "DW_AT_HP_epilogue";
3796 #else
3797 case DW_AT_MIPS_stride:
3798 return "DW_AT_MIPS_stride";
3799 #endif
3802 name = get_DW_AT_name (attr);
3804 if (name != NULL)
3805 return name;
3807 return "DW_AT_<unknown>";
3810 /* Convert a DWARF value form code into its string name. */
3812 static const char *
3813 dwarf_form_name (unsigned int form)
3815 const char *name = get_DW_FORM_name (form);
3817 if (name != NULL)
3818 return name;
3820 return "DW_FORM_<unknown>";
3823 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
3824 instance of an inlined instance of a decl which is local to an inline
3825 function, so we have to trace all of the way back through the origin chain
3826 to find out what sort of node actually served as the original seed for the
3827 given block. */
3829 static tree
3830 decl_ultimate_origin (const_tree decl)
3832 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
3833 return NULL_TREE;
3835 /* DECL_ABSTRACT_ORIGIN can point to itself; ignore that if
3836 we're trying to output the abstract instance of this function. */
3837 if (DECL_ABSTRACT_P (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
3838 return NULL_TREE;
3840 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
3841 most distant ancestor, this should never happen. */
3842 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
3844 return DECL_ABSTRACT_ORIGIN (decl);
3847 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
3848 of a virtual function may refer to a base class, so we check the 'this'
3849 parameter. */
3851 static tree
3852 decl_class_context (tree decl)
3854 tree context = NULL_TREE;
3856 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
3857 context = DECL_CONTEXT (decl);
3858 else
3859 context = TYPE_MAIN_VARIANT
3860 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
3862 if (context && !TYPE_P (context))
3863 context = NULL_TREE;
3865 return context;
3868 /* Add an attribute/value pair to a DIE. */
3870 static inline void
3871 add_dwarf_attr (dw_die_ref die, dw_attr_node *attr)
3873 /* Maybe this should be an assert? */
3874 if (die == NULL)
3875 return;
3877 vec_safe_reserve (die->die_attr, 1);
3878 vec_safe_push (die->die_attr, *attr);
3881 static inline enum dw_val_class
3882 AT_class (dw_attr_node *a)
3884 return a->dw_attr_val.val_class;
3887 /* Return the index for any attribute that will be referenced with a
3888 DW_FORM_GNU_addr_index or DW_FORM_GNU_str_index. String indices
3889 are stored in dw_attr_val.v.val_str for reference counting
3890 pruning. */
3892 static inline unsigned int
3893 AT_index (dw_attr_node *a)
3895 if (AT_class (a) == dw_val_class_str)
3896 return a->dw_attr_val.v.val_str->index;
3897 else if (a->dw_attr_val.val_entry != NULL)
3898 return a->dw_attr_val.val_entry->index;
3899 return NOT_INDEXED;
3902 /* Add a flag value attribute to a DIE. */
3904 static inline void
3905 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
3907 dw_attr_node attr;
3909 attr.dw_attr = attr_kind;
3910 attr.dw_attr_val.val_class = dw_val_class_flag;
3911 attr.dw_attr_val.val_entry = NULL;
3912 attr.dw_attr_val.v.val_flag = flag;
3913 add_dwarf_attr (die, &attr);
3916 static inline unsigned
3917 AT_flag (dw_attr_node *a)
3919 gcc_assert (a && AT_class (a) == dw_val_class_flag);
3920 return a->dw_attr_val.v.val_flag;
3923 /* Add a signed integer attribute value to a DIE. */
3925 static inline void
3926 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
3928 dw_attr_node attr;
3930 attr.dw_attr = attr_kind;
3931 attr.dw_attr_val.val_class = dw_val_class_const;
3932 attr.dw_attr_val.val_entry = NULL;
3933 attr.dw_attr_val.v.val_int = int_val;
3934 add_dwarf_attr (die, &attr);
3937 static inline HOST_WIDE_INT
3938 AT_int (dw_attr_node *a)
3940 gcc_assert (a && AT_class (a) == dw_val_class_const);
3941 return a->dw_attr_val.v.val_int;
3944 /* Add an unsigned integer attribute value to a DIE. */
3946 static inline void
3947 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
3948 unsigned HOST_WIDE_INT unsigned_val)
3950 dw_attr_node attr;
3952 attr.dw_attr = attr_kind;
3953 attr.dw_attr_val.val_class = dw_val_class_unsigned_const;
3954 attr.dw_attr_val.val_entry = NULL;
3955 attr.dw_attr_val.v.val_unsigned = unsigned_val;
3956 add_dwarf_attr (die, &attr);
3959 static inline unsigned HOST_WIDE_INT
3960 AT_unsigned (dw_attr_node *a)
3962 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
3963 return a->dw_attr_val.v.val_unsigned;
3966 /* Add an unsigned wide integer attribute value to a DIE. */
3968 static inline void
3969 add_AT_wide (dw_die_ref die, enum dwarf_attribute attr_kind,
3970 const wide_int& w)
3972 dw_attr_node attr;
3974 attr.dw_attr = attr_kind;
3975 attr.dw_attr_val.val_class = dw_val_class_wide_int;
3976 attr.dw_attr_val.val_entry = NULL;
3977 attr.dw_attr_val.v.val_wide = ggc_alloc<wide_int> ();
3978 *attr.dw_attr_val.v.val_wide = w;
3979 add_dwarf_attr (die, &attr);
3982 /* Add an unsigned double integer attribute value to a DIE. */
3984 static inline void
3985 add_AT_double (dw_die_ref die, enum dwarf_attribute attr_kind,
3986 HOST_WIDE_INT high, unsigned HOST_WIDE_INT low)
3988 dw_attr_node attr;
3990 attr.dw_attr = attr_kind;
3991 attr.dw_attr_val.val_class = dw_val_class_const_double;
3992 attr.dw_attr_val.val_entry = NULL;
3993 attr.dw_attr_val.v.val_double.high = high;
3994 attr.dw_attr_val.v.val_double.low = low;
3995 add_dwarf_attr (die, &attr);
3998 /* Add a floating point attribute value to a DIE and return it. */
4000 static inline void
4001 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4002 unsigned int length, unsigned int elt_size, unsigned char *array)
4004 dw_attr_node attr;
4006 attr.dw_attr = attr_kind;
4007 attr.dw_attr_val.val_class = dw_val_class_vec;
4008 attr.dw_attr_val.val_entry = NULL;
4009 attr.dw_attr_val.v.val_vec.length = length;
4010 attr.dw_attr_val.v.val_vec.elt_size = elt_size;
4011 attr.dw_attr_val.v.val_vec.array = array;
4012 add_dwarf_attr (die, &attr);
4015 /* Add an 8-byte data attribute value to a DIE. */
4017 static inline void
4018 add_AT_data8 (dw_die_ref die, enum dwarf_attribute attr_kind,
4019 unsigned char data8[8])
4021 dw_attr_node attr;
4023 attr.dw_attr = attr_kind;
4024 attr.dw_attr_val.val_class = dw_val_class_data8;
4025 attr.dw_attr_val.val_entry = NULL;
4026 memcpy (attr.dw_attr_val.v.val_data8, data8, 8);
4027 add_dwarf_attr (die, &attr);
4030 /* Add DW_AT_low_pc and DW_AT_high_pc to a DIE. When using
4031 dwarf_split_debug_info, address attributes in dies destined for the
4032 final executable have force_direct set to avoid using indexed
4033 references. */
4035 static inline void
4036 add_AT_low_high_pc (dw_die_ref die, const char *lbl_low, const char *lbl_high,
4037 bool force_direct)
4039 dw_attr_node attr;
4040 char * lbl_id;
4042 lbl_id = xstrdup (lbl_low);
4043 attr.dw_attr = DW_AT_low_pc;
4044 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
4045 attr.dw_attr_val.v.val_lbl_id = lbl_id;
4046 if (dwarf_split_debug_info && !force_direct)
4047 attr.dw_attr_val.val_entry
4048 = add_addr_table_entry (lbl_id, ate_kind_label);
4049 else
4050 attr.dw_attr_val.val_entry = NULL;
4051 add_dwarf_attr (die, &attr);
4053 attr.dw_attr = DW_AT_high_pc;
4054 if (dwarf_version < 4)
4055 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
4056 else
4057 attr.dw_attr_val.val_class = dw_val_class_high_pc;
4058 lbl_id = xstrdup (lbl_high);
4059 attr.dw_attr_val.v.val_lbl_id = lbl_id;
4060 if (attr.dw_attr_val.val_class == dw_val_class_lbl_id
4061 && dwarf_split_debug_info && !force_direct)
4062 attr.dw_attr_val.val_entry
4063 = add_addr_table_entry (lbl_id, ate_kind_label);
4064 else
4065 attr.dw_attr_val.val_entry = NULL;
4066 add_dwarf_attr (die, &attr);
4069 /* Hash and equality functions for debug_str_hash. */
4071 hashval_t
4072 indirect_string_hasher::hash (indirect_string_node *x)
4074 return htab_hash_string (x->str);
4077 bool
4078 indirect_string_hasher::equal (indirect_string_node *x1, const char *x2)
4080 return strcmp (x1->str, x2) == 0;
4083 /* Add STR to the given string hash table. */
4085 static struct indirect_string_node *
4086 find_AT_string_in_table (const char *str,
4087 hash_table<indirect_string_hasher> *table)
4089 struct indirect_string_node *node;
4091 indirect_string_node **slot
4092 = table->find_slot_with_hash (str, htab_hash_string (str), INSERT);
4093 if (*slot == NULL)
4095 node = ggc_cleared_alloc<indirect_string_node> ();
4096 node->str = ggc_strdup (str);
4097 *slot = node;
4099 else
4100 node = *slot;
4102 node->refcount++;
4103 return node;
4106 /* Add STR to the indirect string hash table. */
4108 static struct indirect_string_node *
4109 find_AT_string (const char *str)
4111 if (! debug_str_hash)
4112 debug_str_hash = hash_table<indirect_string_hasher>::create_ggc (10);
4114 return find_AT_string_in_table (str, debug_str_hash);
4117 /* Add a string attribute value to a DIE. */
4119 static inline void
4120 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4122 dw_attr_node attr;
4123 struct indirect_string_node *node;
4125 node = find_AT_string (str);
4127 attr.dw_attr = attr_kind;
4128 attr.dw_attr_val.val_class = dw_val_class_str;
4129 attr.dw_attr_val.val_entry = NULL;
4130 attr.dw_attr_val.v.val_str = node;
4131 add_dwarf_attr (die, &attr);
4134 static inline const char *
4135 AT_string (dw_attr_node *a)
4137 gcc_assert (a && AT_class (a) == dw_val_class_str);
4138 return a->dw_attr_val.v.val_str->str;
4141 /* Call this function directly to bypass AT_string_form's logic to put
4142 the string inline in the die. */
4144 static void
4145 set_indirect_string (struct indirect_string_node *node)
4147 char label[32];
4148 /* Already indirect is a no op. */
4149 if (node->form == DW_FORM_strp || node->form == DW_FORM_GNU_str_index)
4151 gcc_assert (node->label);
4152 return;
4154 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4155 ++dw2_string_counter;
4156 node->label = xstrdup (label);
4158 if (!dwarf_split_debug_info)
4160 node->form = DW_FORM_strp;
4161 node->index = NOT_INDEXED;
4163 else
4165 node->form = DW_FORM_GNU_str_index;
4166 node->index = NO_INDEX_ASSIGNED;
4170 /* Find out whether a string should be output inline in DIE
4171 or out-of-line in .debug_str section. */
4173 static enum dwarf_form
4174 find_string_form (struct indirect_string_node *node)
4176 unsigned int len;
4178 if (node->form)
4179 return node->form;
4181 len = strlen (node->str) + 1;
4183 /* If the string is shorter or equal to the size of the reference, it is
4184 always better to put it inline. */
4185 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4186 return node->form = DW_FORM_string;
4188 /* If we cannot expect the linker to merge strings in .debug_str
4189 section, only put it into .debug_str if it is worth even in this
4190 single module. */
4191 if (DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
4192 || ((debug_str_section->common.flags & SECTION_MERGE) == 0
4193 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len))
4194 return node->form = DW_FORM_string;
4196 set_indirect_string (node);
4198 return node->form;
4201 /* Find out whether the string referenced from the attribute should be
4202 output inline in DIE or out-of-line in .debug_str section. */
4204 static enum dwarf_form
4205 AT_string_form (dw_attr_node *a)
4207 gcc_assert (a && AT_class (a) == dw_val_class_str);
4208 return find_string_form (a->dw_attr_val.v.val_str);
4211 /* Add a DIE reference attribute value to a DIE. */
4213 static inline void
4214 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4216 dw_attr_node attr;
4217 gcc_checking_assert (targ_die != NULL);
4219 /* With LTO we can end up trying to reference something we didn't create
4220 a DIE for. Avoid crashing later on a NULL referenced DIE. */
4221 if (targ_die == NULL)
4222 return;
4224 attr.dw_attr = attr_kind;
4225 attr.dw_attr_val.val_class = dw_val_class_die_ref;
4226 attr.dw_attr_val.val_entry = NULL;
4227 attr.dw_attr_val.v.val_die_ref.die = targ_die;
4228 attr.dw_attr_val.v.val_die_ref.external = 0;
4229 add_dwarf_attr (die, &attr);
4232 /* Change DIE reference REF to point to NEW_DIE instead. */
4234 static inline void
4235 change_AT_die_ref (dw_attr_node *ref, dw_die_ref new_die)
4237 gcc_assert (ref->dw_attr_val.val_class == dw_val_class_die_ref);
4238 ref->dw_attr_val.v.val_die_ref.die = new_die;
4239 ref->dw_attr_val.v.val_die_ref.external = 0;
4242 /* Add an AT_specification attribute to a DIE, and also make the back
4243 pointer from the specification to the definition. */
4245 static inline void
4246 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4248 add_AT_die_ref (die, DW_AT_specification, targ_die);
4249 gcc_assert (!targ_die->die_definition);
4250 targ_die->die_definition = die;
4253 static inline dw_die_ref
4254 AT_ref (dw_attr_node *a)
4256 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4257 return a->dw_attr_val.v.val_die_ref.die;
4260 static inline int
4261 AT_ref_external (dw_attr_node *a)
4263 if (a && AT_class (a) == dw_val_class_die_ref)
4264 return a->dw_attr_val.v.val_die_ref.external;
4266 return 0;
4269 static inline void
4270 set_AT_ref_external (dw_attr_node *a, int i)
4272 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4273 a->dw_attr_val.v.val_die_ref.external = i;
4276 /* Add an FDE reference attribute value to a DIE. */
4278 static inline void
4279 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4281 dw_attr_node attr;
4283 attr.dw_attr = attr_kind;
4284 attr.dw_attr_val.val_class = dw_val_class_fde_ref;
4285 attr.dw_attr_val.val_entry = NULL;
4286 attr.dw_attr_val.v.val_fde_index = targ_fde;
4287 add_dwarf_attr (die, &attr);
4290 /* Add a location description attribute value to a DIE. */
4292 static inline void
4293 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4295 dw_attr_node attr;
4297 attr.dw_attr = attr_kind;
4298 attr.dw_attr_val.val_class = dw_val_class_loc;
4299 attr.dw_attr_val.val_entry = NULL;
4300 attr.dw_attr_val.v.val_loc = loc;
4301 add_dwarf_attr (die, &attr);
4304 static inline dw_loc_descr_ref
4305 AT_loc (dw_attr_node *a)
4307 gcc_assert (a && AT_class (a) == dw_val_class_loc);
4308 return a->dw_attr_val.v.val_loc;
4311 static inline void
4312 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4314 dw_attr_node attr;
4316 if (XCOFF_DEBUGGING_INFO && !HAVE_XCOFF_DWARF_EXTRAS)
4317 return;
4319 attr.dw_attr = attr_kind;
4320 attr.dw_attr_val.val_class = dw_val_class_loc_list;
4321 attr.dw_attr_val.val_entry = NULL;
4322 attr.dw_attr_val.v.val_loc_list = loc_list;
4323 add_dwarf_attr (die, &attr);
4324 have_location_lists = true;
4327 static inline dw_loc_list_ref
4328 AT_loc_list (dw_attr_node *a)
4330 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
4331 return a->dw_attr_val.v.val_loc_list;
4334 static inline dw_loc_list_ref *
4335 AT_loc_list_ptr (dw_attr_node *a)
4337 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
4338 return &a->dw_attr_val.v.val_loc_list;
4341 struct addr_hasher : ggc_ptr_hash<addr_table_entry>
4343 static hashval_t hash (addr_table_entry *);
4344 static bool equal (addr_table_entry *, addr_table_entry *);
4347 /* Table of entries into the .debug_addr section. */
4349 static GTY (()) hash_table<addr_hasher> *addr_index_table;
4351 /* Hash an address_table_entry. */
4353 hashval_t
4354 addr_hasher::hash (addr_table_entry *a)
4356 inchash::hash hstate;
4357 switch (a->kind)
4359 case ate_kind_rtx:
4360 hstate.add_int (0);
4361 break;
4362 case ate_kind_rtx_dtprel:
4363 hstate.add_int (1);
4364 break;
4365 case ate_kind_label:
4366 return htab_hash_string (a->addr.label);
4367 default:
4368 gcc_unreachable ();
4370 inchash::add_rtx (a->addr.rtl, hstate);
4371 return hstate.end ();
4374 /* Determine equality for two address_table_entries. */
4376 bool
4377 addr_hasher::equal (addr_table_entry *a1, addr_table_entry *a2)
4379 if (a1->kind != a2->kind)
4380 return 0;
4381 switch (a1->kind)
4383 case ate_kind_rtx:
4384 case ate_kind_rtx_dtprel:
4385 return rtx_equal_p (a1->addr.rtl, a2->addr.rtl);
4386 case ate_kind_label:
4387 return strcmp (a1->addr.label, a2->addr.label) == 0;
4388 default:
4389 gcc_unreachable ();
4393 /* Initialize an addr_table_entry. */
4395 void
4396 init_addr_table_entry (addr_table_entry *e, enum ate_kind kind, void *addr)
4398 e->kind = kind;
4399 switch (kind)
4401 case ate_kind_rtx:
4402 case ate_kind_rtx_dtprel:
4403 e->addr.rtl = (rtx) addr;
4404 break;
4405 case ate_kind_label:
4406 e->addr.label = (char *) addr;
4407 break;
4409 e->refcount = 0;
4410 e->index = NO_INDEX_ASSIGNED;
4413 /* Add attr to the address table entry to the table. Defer setting an
4414 index until output time. */
4416 static addr_table_entry *
4417 add_addr_table_entry (void *addr, enum ate_kind kind)
4419 addr_table_entry *node;
4420 addr_table_entry finder;
4422 gcc_assert (dwarf_split_debug_info);
4423 if (! addr_index_table)
4424 addr_index_table = hash_table<addr_hasher>::create_ggc (10);
4425 init_addr_table_entry (&finder, kind, addr);
4426 addr_table_entry **slot = addr_index_table->find_slot (&finder, INSERT);
4428 if (*slot == HTAB_EMPTY_ENTRY)
4430 node = ggc_cleared_alloc<addr_table_entry> ();
4431 init_addr_table_entry (node, kind, addr);
4432 *slot = node;
4434 else
4435 node = *slot;
4437 node->refcount++;
4438 return node;
4441 /* Remove an entry from the addr table by decrementing its refcount.
4442 Strictly, decrementing the refcount would be enough, but the
4443 assertion that the entry is actually in the table has found
4444 bugs. */
4446 static void
4447 remove_addr_table_entry (addr_table_entry *entry)
4449 gcc_assert (dwarf_split_debug_info && addr_index_table);
4450 /* After an index is assigned, the table is frozen. */
4451 gcc_assert (entry->refcount > 0 && entry->index == NO_INDEX_ASSIGNED);
4452 entry->refcount--;
4455 /* Given a location list, remove all addresses it refers to from the
4456 address_table. */
4458 static void
4459 remove_loc_list_addr_table_entries (dw_loc_descr_ref descr)
4461 for (; descr; descr = descr->dw_loc_next)
4462 if (descr->dw_loc_oprnd1.val_entry != NULL)
4464 gcc_assert (descr->dw_loc_oprnd1.val_entry->index == NO_INDEX_ASSIGNED);
4465 remove_addr_table_entry (descr->dw_loc_oprnd1.val_entry);
4469 /* A helper function for dwarf2out_finish called through
4470 htab_traverse. Assign an addr_table_entry its index. All entries
4471 must be collected into the table when this function is called,
4472 because the indexing code relies on htab_traverse to traverse nodes
4473 in the same order for each run. */
4476 index_addr_table_entry (addr_table_entry **h, unsigned int *index)
4478 addr_table_entry *node = *h;
4480 /* Don't index unreferenced nodes. */
4481 if (node->refcount == 0)
4482 return 1;
4484 gcc_assert (node->index == NO_INDEX_ASSIGNED);
4485 node->index = *index;
4486 *index += 1;
4488 return 1;
4491 /* Add an address constant attribute value to a DIE. When using
4492 dwarf_split_debug_info, address attributes in dies destined for the
4493 final executable should be direct references--setting the parameter
4494 force_direct ensures this behavior. */
4496 static inline void
4497 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr,
4498 bool force_direct)
4500 dw_attr_node attr;
4502 attr.dw_attr = attr_kind;
4503 attr.dw_attr_val.val_class = dw_val_class_addr;
4504 attr.dw_attr_val.v.val_addr = addr;
4505 if (dwarf_split_debug_info && !force_direct)
4506 attr.dw_attr_val.val_entry = add_addr_table_entry (addr, ate_kind_rtx);
4507 else
4508 attr.dw_attr_val.val_entry = NULL;
4509 add_dwarf_attr (die, &attr);
4512 /* Get the RTX from to an address DIE attribute. */
4514 static inline rtx
4515 AT_addr (dw_attr_node *a)
4517 gcc_assert (a && AT_class (a) == dw_val_class_addr);
4518 return a->dw_attr_val.v.val_addr;
4521 /* Add a file attribute value to a DIE. */
4523 static inline void
4524 add_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind,
4525 struct dwarf_file_data *fd)
4527 dw_attr_node attr;
4529 attr.dw_attr = attr_kind;
4530 attr.dw_attr_val.val_class = dw_val_class_file;
4531 attr.dw_attr_val.val_entry = NULL;
4532 attr.dw_attr_val.v.val_file = fd;
4533 add_dwarf_attr (die, &attr);
4536 /* Get the dwarf_file_data from a file DIE attribute. */
4538 static inline struct dwarf_file_data *
4539 AT_file (dw_attr_node *a)
4541 gcc_assert (a && AT_class (a) == dw_val_class_file);
4542 return a->dw_attr_val.v.val_file;
4545 /* Add a vms delta attribute value to a DIE. */
4547 static inline void
4548 add_AT_vms_delta (dw_die_ref die, enum dwarf_attribute attr_kind,
4549 const char *lbl1, const char *lbl2)
4551 dw_attr_node attr;
4553 attr.dw_attr = attr_kind;
4554 attr.dw_attr_val.val_class = dw_val_class_vms_delta;
4555 attr.dw_attr_val.val_entry = NULL;
4556 attr.dw_attr_val.v.val_vms_delta.lbl1 = xstrdup (lbl1);
4557 attr.dw_attr_val.v.val_vms_delta.lbl2 = xstrdup (lbl2);
4558 add_dwarf_attr (die, &attr);
4561 /* Add a label identifier attribute value to a DIE. */
4563 static inline void
4564 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind,
4565 const char *lbl_id)
4567 dw_attr_node attr;
4569 attr.dw_attr = attr_kind;
4570 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
4571 attr.dw_attr_val.val_entry = NULL;
4572 attr.dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4573 if (dwarf_split_debug_info)
4574 attr.dw_attr_val.val_entry
4575 = add_addr_table_entry (attr.dw_attr_val.v.val_lbl_id,
4576 ate_kind_label);
4577 add_dwarf_attr (die, &attr);
4580 /* Add a section offset attribute value to a DIE, an offset into the
4581 debug_line section. */
4583 static inline void
4584 add_AT_lineptr (dw_die_ref die, enum dwarf_attribute attr_kind,
4585 const char *label)
4587 dw_attr_node attr;
4589 attr.dw_attr = attr_kind;
4590 attr.dw_attr_val.val_class = dw_val_class_lineptr;
4591 attr.dw_attr_val.val_entry = NULL;
4592 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
4593 add_dwarf_attr (die, &attr);
4596 /* Add a section offset attribute value to a DIE, an offset into the
4597 debug_macinfo section. */
4599 static inline void
4600 add_AT_macptr (dw_die_ref die, enum dwarf_attribute attr_kind,
4601 const char *label)
4603 dw_attr_node attr;
4605 attr.dw_attr = attr_kind;
4606 attr.dw_attr_val.val_class = dw_val_class_macptr;
4607 attr.dw_attr_val.val_entry = NULL;
4608 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
4609 add_dwarf_attr (die, &attr);
4612 /* Add an offset attribute value to a DIE. */
4614 static inline void
4615 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
4616 unsigned HOST_WIDE_INT offset)
4618 dw_attr_node attr;
4620 attr.dw_attr = attr_kind;
4621 attr.dw_attr_val.val_class = dw_val_class_offset;
4622 attr.dw_attr_val.val_entry = NULL;
4623 attr.dw_attr_val.v.val_offset = offset;
4624 add_dwarf_attr (die, &attr);
4627 /* Add a range_list attribute value to a DIE. When using
4628 dwarf_split_debug_info, address attributes in dies destined for the
4629 final executable should be direct references--setting the parameter
4630 force_direct ensures this behavior. */
4632 #define UNRELOCATED_OFFSET ((addr_table_entry *) 1)
4633 #define RELOCATED_OFFSET (NULL)
4635 static void
4636 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
4637 long unsigned int offset, bool force_direct)
4639 dw_attr_node attr;
4641 attr.dw_attr = attr_kind;
4642 attr.dw_attr_val.val_class = dw_val_class_range_list;
4643 /* For the range_list attribute, use val_entry to store whether the
4644 offset should follow split-debug-info or normal semantics. This
4645 value is read in output_range_list_offset. */
4646 if (dwarf_split_debug_info && !force_direct)
4647 attr.dw_attr_val.val_entry = UNRELOCATED_OFFSET;
4648 else
4649 attr.dw_attr_val.val_entry = RELOCATED_OFFSET;
4650 attr.dw_attr_val.v.val_offset = offset;
4651 add_dwarf_attr (die, &attr);
4654 /* Return the start label of a delta attribute. */
4656 static inline const char *
4657 AT_vms_delta1 (dw_attr_node *a)
4659 gcc_assert (a && (AT_class (a) == dw_val_class_vms_delta));
4660 return a->dw_attr_val.v.val_vms_delta.lbl1;
4663 /* Return the end label of a delta attribute. */
4665 static inline const char *
4666 AT_vms_delta2 (dw_attr_node *a)
4668 gcc_assert (a && (AT_class (a) == dw_val_class_vms_delta));
4669 return a->dw_attr_val.v.val_vms_delta.lbl2;
4672 static inline const char *
4673 AT_lbl (dw_attr_node *a)
4675 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
4676 || AT_class (a) == dw_val_class_lineptr
4677 || AT_class (a) == dw_val_class_macptr
4678 || AT_class (a) == dw_val_class_high_pc));
4679 return a->dw_attr_val.v.val_lbl_id;
4682 /* Get the attribute of type attr_kind. */
4684 static dw_attr_node *
4685 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
4687 dw_attr_node *a;
4688 unsigned ix;
4689 dw_die_ref spec = NULL;
4691 if (! die)
4692 return NULL;
4694 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
4695 if (a->dw_attr == attr_kind)
4696 return a;
4697 else if (a->dw_attr == DW_AT_specification
4698 || a->dw_attr == DW_AT_abstract_origin)
4699 spec = AT_ref (a);
4701 if (spec)
4702 return get_AT (spec, attr_kind);
4704 return NULL;
4707 /* Returns the parent of the declaration of DIE. */
4709 static dw_die_ref
4710 get_die_parent (dw_die_ref die)
4712 dw_die_ref t;
4714 if (!die)
4715 return NULL;
4717 if ((t = get_AT_ref (die, DW_AT_abstract_origin))
4718 || (t = get_AT_ref (die, DW_AT_specification)))
4719 die = t;
4721 return die->die_parent;
4724 /* Return the "low pc" attribute value, typically associated with a subprogram
4725 DIE. Return null if the "low pc" attribute is either not present, or if it
4726 cannot be represented as an assembler label identifier. */
4728 static inline const char *
4729 get_AT_low_pc (dw_die_ref die)
4731 dw_attr_node *a = get_AT (die, DW_AT_low_pc);
4733 return a ? AT_lbl (a) : NULL;
4736 /* Return the "high pc" attribute value, typically associated with a subprogram
4737 DIE. Return null if the "high pc" attribute is either not present, or if it
4738 cannot be represented as an assembler label identifier. */
4740 static inline const char *
4741 get_AT_hi_pc (dw_die_ref die)
4743 dw_attr_node *a = get_AT (die, DW_AT_high_pc);
4745 return a ? AT_lbl (a) : NULL;
4748 /* Return the value of the string attribute designated by ATTR_KIND, or
4749 NULL if it is not present. */
4751 static inline const char *
4752 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
4754 dw_attr_node *a = get_AT (die, attr_kind);
4756 return a ? AT_string (a) : NULL;
4759 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
4760 if it is not present. */
4762 static inline int
4763 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
4765 dw_attr_node *a = get_AT (die, attr_kind);
4767 return a ? AT_flag (a) : 0;
4770 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
4771 if it is not present. */
4773 static inline unsigned
4774 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
4776 dw_attr_node *a = get_AT (die, attr_kind);
4778 return a ? AT_unsigned (a) : 0;
4781 static inline dw_die_ref
4782 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
4784 dw_attr_node *a = get_AT (die, attr_kind);
4786 return a ? AT_ref (a) : NULL;
4789 static inline struct dwarf_file_data *
4790 get_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind)
4792 dw_attr_node *a = get_AT (die, attr_kind);
4794 return a ? AT_file (a) : NULL;
4797 /* Return TRUE if the language is C++. */
4799 static inline bool
4800 is_cxx (void)
4802 unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);
4804 return (lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus
4805 || lang == DW_LANG_C_plus_plus_11 || lang == DW_LANG_C_plus_plus_14);
4808 /* Return TRUE if the language is Java. */
4810 static inline bool
4811 is_java (void)
4813 unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);
4815 return lang == DW_LANG_Java;
4818 /* Return TRUE if the language is Fortran. */
4820 static inline bool
4821 is_fortran (void)
4823 unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);
4825 return (lang == DW_LANG_Fortran77
4826 || lang == DW_LANG_Fortran90
4827 || lang == DW_LANG_Fortran95
4828 || lang == DW_LANG_Fortran03
4829 || lang == DW_LANG_Fortran08);
4832 /* Return TRUE if the language is Ada. */
4834 static inline bool
4835 is_ada (void)
4837 unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);
4839 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
4842 /* Remove the specified attribute if present. Return TRUE if removal
4843 was successful. */
4845 static bool
4846 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
4848 dw_attr_node *a;
4849 unsigned ix;
4851 if (! die)
4852 return false;
4854 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
4855 if (a->dw_attr == attr_kind)
4857 if (AT_class (a) == dw_val_class_str)
4858 if (a->dw_attr_val.v.val_str->refcount)
4859 a->dw_attr_val.v.val_str->refcount--;
4861 /* vec::ordered_remove should help reduce the number of abbrevs
4862 that are needed. */
4863 die->die_attr->ordered_remove (ix);
4864 return true;
4866 return false;
4869 /* Remove CHILD from its parent. PREV must have the property that
4870 PREV->DIE_SIB == CHILD. Does not alter CHILD. */
4872 static void
4873 remove_child_with_prev (dw_die_ref child, dw_die_ref prev)
4875 gcc_assert (child->die_parent == prev->die_parent);
4876 gcc_assert (prev->die_sib == child);
4877 if (prev == child)
4879 gcc_assert (child->die_parent->die_child == child);
4880 prev = NULL;
4882 else
4883 prev->die_sib = child->die_sib;
4884 if (child->die_parent->die_child == child)
4885 child->die_parent->die_child = prev;
4888 /* Replace OLD_CHILD with NEW_CHILD. PREV must have the property that
4889 PREV->DIE_SIB == OLD_CHILD. Does not alter OLD_CHILD. */
4891 static void
4892 replace_child (dw_die_ref old_child, dw_die_ref new_child, dw_die_ref prev)
4894 dw_die_ref parent = old_child->die_parent;
4896 gcc_assert (parent == prev->die_parent);
4897 gcc_assert (prev->die_sib == old_child);
4899 new_child->die_parent = parent;
4900 if (prev == old_child)
4902 gcc_assert (parent->die_child == old_child);
4903 new_child->die_sib = new_child;
4905 else
4907 prev->die_sib = new_child;
4908 new_child->die_sib = old_child->die_sib;
4910 if (old_child->die_parent->die_child == old_child)
4911 old_child->die_parent->die_child = new_child;
4914 /* Move all children from OLD_PARENT to NEW_PARENT. */
4916 static void
4917 move_all_children (dw_die_ref old_parent, dw_die_ref new_parent)
4919 dw_die_ref c;
4920 new_parent->die_child = old_parent->die_child;
4921 old_parent->die_child = NULL;
4922 FOR_EACH_CHILD (new_parent, c, c->die_parent = new_parent);
4925 /* Remove child DIE whose die_tag is TAG. Do nothing if no child
4926 matches TAG. */
4928 static void
4929 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
4931 dw_die_ref c;
4933 c = die->die_child;
4934 if (c) do {
4935 dw_die_ref prev = c;
4936 c = c->die_sib;
4937 while (c->die_tag == tag)
4939 remove_child_with_prev (c, prev);
4940 c->die_parent = NULL;
4941 /* Might have removed every child. */
4942 if (c == c->die_sib)
4943 return;
4944 c = c->die_sib;
4946 } while (c != die->die_child);
4949 /* Add a CHILD_DIE as the last child of DIE. */
4951 static void
4952 add_child_die (dw_die_ref die, dw_die_ref child_die)
4954 /* FIXME this should probably be an assert. */
4955 if (! die || ! child_die)
4956 return;
4957 gcc_assert (die != child_die);
4959 child_die->die_parent = die;
4960 if (die->die_child)
4962 child_die->die_sib = die->die_child->die_sib;
4963 die->die_child->die_sib = child_die;
4965 else
4966 child_die->die_sib = child_die;
4967 die->die_child = child_die;
4970 /* Like add_child_die, but put CHILD_DIE after AFTER_DIE. */
4972 static void
4973 add_child_die_after (dw_die_ref die, dw_die_ref child_die,
4974 dw_die_ref after_die)
4976 gcc_assert (die
4977 && child_die
4978 && after_die
4979 && die->die_child
4980 && die != child_die);
4982 child_die->die_parent = die;
4983 child_die->die_sib = after_die->die_sib;
4984 after_die->die_sib = child_die;
4985 if (die->die_child == after_die)
4986 die->die_child = child_die;
4989 /* Unassociate CHILD from its parent, and make its parent be
4990 NEW_PARENT. */
4992 static void
4993 reparent_child (dw_die_ref child, dw_die_ref new_parent)
4995 for (dw_die_ref p = child->die_parent->die_child; ; p = p->die_sib)
4996 if (p->die_sib == child)
4998 remove_child_with_prev (child, p);
4999 break;
5001 add_child_die (new_parent, child);
5004 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5005 is the specification, to the end of PARENT's list of children.
5006 This is done by removing and re-adding it. */
5008 static void
5009 splice_child_die (dw_die_ref parent, dw_die_ref child)
5011 /* We want the declaration DIE from inside the class, not the
5012 specification DIE at toplevel. */
5013 if (child->die_parent != parent)
5015 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5017 if (tmp)
5018 child = tmp;
5021 gcc_assert (child->die_parent == parent
5022 || (child->die_parent
5023 == get_AT_ref (parent, DW_AT_specification)));
5025 reparent_child (child, parent);
5028 /* Create and return a new die with a parent of PARENT_DIE. If
5029 PARENT_DIE is NULL, the new DIE is placed in limbo and an
5030 associated tree T must be supplied to determine parenthood
5031 later. */
5033 static inline dw_die_ref
5034 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5036 dw_die_ref die = ggc_cleared_alloc<die_node> ();
5038 die->die_tag = tag_value;
5040 if (parent_die != NULL)
5041 add_child_die (parent_die, die);
5042 else
5044 limbo_die_node *limbo_node;
5046 /* No DIEs created after early dwarf should end up in limbo,
5047 because the limbo list should not persist past LTO
5048 streaming. */
5049 if (tag_value != DW_TAG_compile_unit
5050 /* These are allowed because they're generated while
5051 breaking out COMDAT units late. */
5052 && tag_value != DW_TAG_type_unit
5053 && !early_dwarf
5054 /* Allow nested functions to live in limbo because they will
5055 only temporarily live there, as decls_for_scope will fix
5056 them up. */
5057 && (TREE_CODE (t) != FUNCTION_DECL
5058 || !decl_function_context (t))
5059 /* Same as nested functions above but for types. Types that
5060 are local to a function will be fixed in
5061 decls_for_scope. */
5062 && (!RECORD_OR_UNION_TYPE_P (t)
5063 || !TYPE_CONTEXT (t)
5064 || TREE_CODE (TYPE_CONTEXT (t)) != FUNCTION_DECL)
5065 /* FIXME debug-early: Allow late limbo DIE creation for LTO,
5066 especially in the ltrans stage, but once we implement LTO
5067 dwarf streaming, we should remove this exception. */
5068 && !in_lto_p)
5070 fprintf (stderr, "symbol ended up in limbo too late:");
5071 debug_generic_stmt (t);
5072 gcc_unreachable ();
5075 limbo_node = ggc_cleared_alloc<limbo_die_node> ();
5076 limbo_node->die = die;
5077 limbo_node->created_for = t;
5078 limbo_node->next = limbo_die_list;
5079 limbo_die_list = limbo_node;
5082 return die;
5085 /* Return the DIE associated with the given type specifier. */
5087 static inline dw_die_ref
5088 lookup_type_die (tree type)
5090 return TYPE_SYMTAB_DIE (type);
5093 /* Given a TYPE_DIE representing the type TYPE, if TYPE is an
5094 anonymous type named by the typedef TYPE_DIE, return the DIE of the
5095 anonymous type instead the one of the naming typedef. */
5097 static inline dw_die_ref
5098 strip_naming_typedef (tree type, dw_die_ref type_die)
5100 if (type
5101 && TREE_CODE (type) == RECORD_TYPE
5102 && type_die
5103 && type_die->die_tag == DW_TAG_typedef
5104 && is_naming_typedef_decl (TYPE_NAME (type)))
5105 type_die = get_AT_ref (type_die, DW_AT_type);
5106 return type_die;
5109 /* Like lookup_type_die, but if type is an anonymous type named by a
5110 typedef[1], return the DIE of the anonymous type instead the one of
5111 the naming typedef. This is because in gen_typedef_die, we did
5112 equate the anonymous struct named by the typedef with the DIE of
5113 the naming typedef. So by default, lookup_type_die on an anonymous
5114 struct yields the DIE of the naming typedef.
5116 [1]: Read the comment of is_naming_typedef_decl to learn about what
5117 a naming typedef is. */
5119 static inline dw_die_ref
5120 lookup_type_die_strip_naming_typedef (tree type)
5122 dw_die_ref die = lookup_type_die (type);
5123 return strip_naming_typedef (type, die);
5126 /* Equate a DIE to a given type specifier. */
5128 static inline void
5129 equate_type_number_to_die (tree type, dw_die_ref type_die)
5131 TYPE_SYMTAB_DIE (type) = type_die;
5134 /* Returns a hash value for X (which really is a die_struct). */
5136 inline hashval_t
5137 decl_die_hasher::hash (die_node *x)
5139 return (hashval_t) x->decl_id;
5142 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5144 inline bool
5145 decl_die_hasher::equal (die_node *x, tree y)
5147 return (x->decl_id == DECL_UID (y));
5150 /* Return the DIE associated with a given declaration. */
5152 static inline dw_die_ref
5153 lookup_decl_die (tree decl)
5155 return decl_die_table->find_with_hash (decl, DECL_UID (decl));
5158 /* Returns a hash value for X (which really is a var_loc_list). */
5160 inline hashval_t
5161 decl_loc_hasher::hash (var_loc_list *x)
5163 return (hashval_t) x->decl_id;
5166 /* Return nonzero if decl_id of var_loc_list X is the same as
5167 UID of decl *Y. */
5169 inline bool
5170 decl_loc_hasher::equal (var_loc_list *x, const_tree y)
5172 return (x->decl_id == DECL_UID (y));
5175 /* Return the var_loc list associated with a given declaration. */
5177 static inline var_loc_list *
5178 lookup_decl_loc (const_tree decl)
5180 if (!decl_loc_table)
5181 return NULL;
5182 return decl_loc_table->find_with_hash (decl, DECL_UID (decl));
5185 /* Returns a hash value for X (which really is a cached_dw_loc_list_list). */
5187 inline hashval_t
5188 dw_loc_list_hasher::hash (cached_dw_loc_list *x)
5190 return (hashval_t) x->decl_id;
5193 /* Return nonzero if decl_id of cached_dw_loc_list X is the same as
5194 UID of decl *Y. */
5196 inline bool
5197 dw_loc_list_hasher::equal (cached_dw_loc_list *x, const_tree y)
5199 return (x->decl_id == DECL_UID (y));
5202 /* Equate a DIE to a particular declaration. */
5204 static void
5205 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5207 unsigned int decl_id = DECL_UID (decl);
5209 *decl_die_table->find_slot_with_hash (decl, decl_id, INSERT) = decl_die;
5210 decl_die->decl_id = decl_id;
5213 /* Return how many bits covers PIECE EXPR_LIST. */
5215 static HOST_WIDE_INT
5216 decl_piece_bitsize (rtx piece)
5218 int ret = (int) GET_MODE (piece);
5219 if (ret)
5220 return ret;
5221 gcc_assert (GET_CODE (XEXP (piece, 0)) == CONCAT
5222 && CONST_INT_P (XEXP (XEXP (piece, 0), 0)));
5223 return INTVAL (XEXP (XEXP (piece, 0), 0));
5226 /* Return pointer to the location of location note in PIECE EXPR_LIST. */
5228 static rtx *
5229 decl_piece_varloc_ptr (rtx piece)
5231 if ((int) GET_MODE (piece))
5232 return &XEXP (piece, 0);
5233 else
5234 return &XEXP (XEXP (piece, 0), 1);
5237 /* Create an EXPR_LIST for location note LOC_NOTE covering BITSIZE bits.
5238 Next is the chain of following piece nodes. */
5240 static rtx_expr_list *
5241 decl_piece_node (rtx loc_note, HOST_WIDE_INT bitsize, rtx next)
5243 if (bitsize > 0 && bitsize <= (int) MAX_MACHINE_MODE)
5244 return alloc_EXPR_LIST (bitsize, loc_note, next);
5245 else
5246 return alloc_EXPR_LIST (0, gen_rtx_CONCAT (VOIDmode,
5247 GEN_INT (bitsize),
5248 loc_note), next);
5251 /* Return rtx that should be stored into loc field for
5252 LOC_NOTE and BITPOS/BITSIZE. */
5254 static rtx
5255 construct_piece_list (rtx loc_note, HOST_WIDE_INT bitpos,
5256 HOST_WIDE_INT bitsize)
5258 if (bitsize != -1)
5260 loc_note = decl_piece_node (loc_note, bitsize, NULL_RTX);
5261 if (bitpos != 0)
5262 loc_note = decl_piece_node (NULL_RTX, bitpos, loc_note);
5264 return loc_note;
5267 /* This function either modifies location piece list *DEST in
5268 place (if SRC and INNER is NULL), or copies location piece list
5269 *SRC to *DEST while modifying it. Location BITPOS is modified
5270 to contain LOC_NOTE, any pieces overlapping it are removed resp.
5271 not copied and if needed some padding around it is added.
5272 When modifying in place, DEST should point to EXPR_LIST where
5273 earlier pieces cover PIECE_BITPOS bits, when copying SRC points
5274 to the start of the whole list and INNER points to the EXPR_LIST
5275 where earlier pieces cover PIECE_BITPOS bits. */
5277 static void
5278 adjust_piece_list (rtx *dest, rtx *src, rtx *inner,
5279 HOST_WIDE_INT bitpos, HOST_WIDE_INT piece_bitpos,
5280 HOST_WIDE_INT bitsize, rtx loc_note)
5282 HOST_WIDE_INT diff;
5283 bool copy = inner != NULL;
5285 if (copy)
5287 /* First copy all nodes preceding the current bitpos. */
5288 while (src != inner)
5290 *dest = decl_piece_node (*decl_piece_varloc_ptr (*src),
5291 decl_piece_bitsize (*src), NULL_RTX);
5292 dest = &XEXP (*dest, 1);
5293 src = &XEXP (*src, 1);
5296 /* Add padding if needed. */
5297 if (bitpos != piece_bitpos)
5299 *dest = decl_piece_node (NULL_RTX, bitpos - piece_bitpos,
5300 copy ? NULL_RTX : *dest);
5301 dest = &XEXP (*dest, 1);
5303 else if (*dest && decl_piece_bitsize (*dest) == bitsize)
5305 gcc_assert (!copy);
5306 /* A piece with correct bitpos and bitsize already exist,
5307 just update the location for it and return. */
5308 *decl_piece_varloc_ptr (*dest) = loc_note;
5309 return;
5311 /* Add the piece that changed. */
5312 *dest = decl_piece_node (loc_note, bitsize, copy ? NULL_RTX : *dest);
5313 dest = &XEXP (*dest, 1);
5314 /* Skip over pieces that overlap it. */
5315 diff = bitpos - piece_bitpos + bitsize;
5316 if (!copy)
5317 src = dest;
5318 while (diff > 0 && *src)
5320 rtx piece = *src;
5321 diff -= decl_piece_bitsize (piece);
5322 if (copy)
5323 src = &XEXP (piece, 1);
5324 else
5326 *src = XEXP (piece, 1);
5327 free_EXPR_LIST_node (piece);
5330 /* Add padding if needed. */
5331 if (diff < 0 && *src)
5333 if (!copy)
5334 dest = src;
5335 *dest = decl_piece_node (NULL_RTX, -diff, copy ? NULL_RTX : *dest);
5336 dest = &XEXP (*dest, 1);
5338 if (!copy)
5339 return;
5340 /* Finally copy all nodes following it. */
5341 while (*src)
5343 *dest = decl_piece_node (*decl_piece_varloc_ptr (*src),
5344 decl_piece_bitsize (*src), NULL_RTX);
5345 dest = &XEXP (*dest, 1);
5346 src = &XEXP (*src, 1);
5350 /* Add a variable location node to the linked list for DECL. */
5352 static struct var_loc_node *
5353 add_var_loc_to_decl (tree decl, rtx loc_note, const char *label)
5355 unsigned int decl_id;
5356 var_loc_list *temp;
5357 struct var_loc_node *loc = NULL;
5358 HOST_WIDE_INT bitsize = -1, bitpos = -1;
5360 if (TREE_CODE (decl) == VAR_DECL
5361 && DECL_HAS_DEBUG_EXPR_P (decl))
5363 tree realdecl = DECL_DEBUG_EXPR (decl);
5364 if (handled_component_p (realdecl)
5365 || (TREE_CODE (realdecl) == MEM_REF
5366 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5368 HOST_WIDE_INT maxsize;
5369 bool reverse;
5370 tree innerdecl
5371 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize, &maxsize,
5372 &reverse);
5373 if (!DECL_P (innerdecl)
5374 || DECL_IGNORED_P (innerdecl)
5375 || TREE_STATIC (innerdecl)
5376 || bitsize <= 0
5377 || bitpos + bitsize > 256
5378 || bitsize != maxsize)
5379 return NULL;
5380 decl = innerdecl;
5384 decl_id = DECL_UID (decl);
5385 var_loc_list **slot
5386 = decl_loc_table->find_slot_with_hash (decl, decl_id, INSERT);
5387 if (*slot == NULL)
5389 temp = ggc_cleared_alloc<var_loc_list> ();
5390 temp->decl_id = decl_id;
5391 *slot = temp;
5393 else
5394 temp = *slot;
5396 /* For PARM_DECLs try to keep around the original incoming value,
5397 even if that means we'll emit a zero-range .debug_loc entry. */
5398 if (temp->last
5399 && temp->first == temp->last
5400 && TREE_CODE (decl) == PARM_DECL
5401 && NOTE_P (temp->first->loc)
5402 && NOTE_VAR_LOCATION_DECL (temp->first->loc) == decl
5403 && DECL_INCOMING_RTL (decl)
5404 && NOTE_VAR_LOCATION_LOC (temp->first->loc)
5405 && GET_CODE (NOTE_VAR_LOCATION_LOC (temp->first->loc))
5406 == GET_CODE (DECL_INCOMING_RTL (decl))
5407 && prev_real_insn (temp->first->loc) == NULL_RTX
5408 && (bitsize != -1
5409 || !rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->first->loc),
5410 NOTE_VAR_LOCATION_LOC (loc_note))
5411 || (NOTE_VAR_LOCATION_STATUS (temp->first->loc)
5412 != NOTE_VAR_LOCATION_STATUS (loc_note))))
5414 loc = ggc_cleared_alloc<var_loc_node> ();
5415 temp->first->next = loc;
5416 temp->last = loc;
5417 loc->loc = construct_piece_list (loc_note, bitpos, bitsize);
5419 else if (temp->last)
5421 struct var_loc_node *last = temp->last, *unused = NULL;
5422 rtx *piece_loc = NULL, last_loc_note;
5423 HOST_WIDE_INT piece_bitpos = 0;
5424 if (last->next)
5426 last = last->next;
5427 gcc_assert (last->next == NULL);
5429 if (bitsize != -1 && GET_CODE (last->loc) == EXPR_LIST)
5431 piece_loc = &last->loc;
5434 HOST_WIDE_INT cur_bitsize = decl_piece_bitsize (*piece_loc);
5435 if (piece_bitpos + cur_bitsize > bitpos)
5436 break;
5437 piece_bitpos += cur_bitsize;
5438 piece_loc = &XEXP (*piece_loc, 1);
5440 while (*piece_loc);
5442 /* TEMP->LAST here is either pointer to the last but one or
5443 last element in the chained list, LAST is pointer to the
5444 last element. */
5445 if (label && strcmp (last->label, label) == 0)
5447 /* For SRA optimized variables if there weren't any real
5448 insns since last note, just modify the last node. */
5449 if (piece_loc != NULL)
5451 adjust_piece_list (piece_loc, NULL, NULL,
5452 bitpos, piece_bitpos, bitsize, loc_note);
5453 return NULL;
5455 /* If the last note doesn't cover any instructions, remove it. */
5456 if (temp->last != last)
5458 temp->last->next = NULL;
5459 unused = last;
5460 last = temp->last;
5461 gcc_assert (strcmp (last->label, label) != 0);
5463 else
5465 gcc_assert (temp->first == temp->last
5466 || (temp->first->next == temp->last
5467 && TREE_CODE (decl) == PARM_DECL));
5468 memset (temp->last, '\0', sizeof (*temp->last));
5469 temp->last->loc = construct_piece_list (loc_note, bitpos, bitsize);
5470 return temp->last;
5473 if (bitsize == -1 && NOTE_P (last->loc))
5474 last_loc_note = last->loc;
5475 else if (piece_loc != NULL
5476 && *piece_loc != NULL_RTX
5477 && piece_bitpos == bitpos
5478 && decl_piece_bitsize (*piece_loc) == bitsize)
5479 last_loc_note = *decl_piece_varloc_ptr (*piece_loc);
5480 else
5481 last_loc_note = NULL_RTX;
5482 /* If the current location is the same as the end of the list,
5483 and either both or neither of the locations is uninitialized,
5484 we have nothing to do. */
5485 if (last_loc_note == NULL_RTX
5486 || (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (last_loc_note),
5487 NOTE_VAR_LOCATION_LOC (loc_note)))
5488 || ((NOTE_VAR_LOCATION_STATUS (last_loc_note)
5489 != NOTE_VAR_LOCATION_STATUS (loc_note))
5490 && ((NOTE_VAR_LOCATION_STATUS (last_loc_note)
5491 == VAR_INIT_STATUS_UNINITIALIZED)
5492 || (NOTE_VAR_LOCATION_STATUS (loc_note)
5493 == VAR_INIT_STATUS_UNINITIALIZED))))
5495 /* Add LOC to the end of list and update LAST. If the last
5496 element of the list has been removed above, reuse its
5497 memory for the new node, otherwise allocate a new one. */
5498 if (unused)
5500 loc = unused;
5501 memset (loc, '\0', sizeof (*loc));
5503 else
5504 loc = ggc_cleared_alloc<var_loc_node> ();
5505 if (bitsize == -1 || piece_loc == NULL)
5506 loc->loc = construct_piece_list (loc_note, bitpos, bitsize);
5507 else
5508 adjust_piece_list (&loc->loc, &last->loc, piece_loc,
5509 bitpos, piece_bitpos, bitsize, loc_note);
5510 last->next = loc;
5511 /* Ensure TEMP->LAST will point either to the new last but one
5512 element of the chain, or to the last element in it. */
5513 if (last != temp->last)
5514 temp->last = last;
5516 else if (unused)
5517 ggc_free (unused);
5519 else
5521 loc = ggc_cleared_alloc<var_loc_node> ();
5522 temp->first = loc;
5523 temp->last = loc;
5524 loc->loc = construct_piece_list (loc_note, bitpos, bitsize);
5526 return loc;
5529 /* Keep track of the number of spaces used to indent the
5530 output of the debugging routines that print the structure of
5531 the DIE internal representation. */
5532 static int print_indent;
5534 /* Indent the line the number of spaces given by print_indent. */
5536 static inline void
5537 print_spaces (FILE *outfile)
5539 fprintf (outfile, "%*s", print_indent, "");
5542 /* Print a type signature in hex. */
5544 static inline void
5545 print_signature (FILE *outfile, char *sig)
5547 int i;
5549 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
5550 fprintf (outfile, "%02x", sig[i] & 0xff);
5553 static inline void
5554 print_discr_value (FILE *outfile, dw_discr_value *discr_value)
5556 if (discr_value->pos)
5557 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, discr_value->v.sval);
5558 else
5559 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, discr_value->v.uval);
5562 static void print_loc_descr (dw_loc_descr_ref, FILE *);
5564 /* Print the value associated to the VAL DWARF value node to OUTFILE. If
5565 RECURSE, output location descriptor operations. */
5567 static void
5568 print_dw_val (dw_val_node *val, bool recurse, FILE *outfile)
5570 switch (val->val_class)
5572 case dw_val_class_addr:
5573 fprintf (outfile, "address");
5574 break;
5575 case dw_val_class_offset:
5576 fprintf (outfile, "offset");
5577 break;
5578 case dw_val_class_loc:
5579 fprintf (outfile, "location descriptor");
5580 if (val->v.val_loc == NULL)
5581 fprintf (outfile, " -> <null>\n");
5582 else if (recurse)
5584 fprintf (outfile, ":\n");
5585 print_indent += 4;
5586 print_loc_descr (val->v.val_loc, outfile);
5587 print_indent -= 4;
5589 else
5590 fprintf (outfile, " (%p)\n", (void *) val->v.val_loc);
5591 break;
5592 case dw_val_class_loc_list:
5593 fprintf (outfile, "location list -> label:%s",
5594 val->v.val_loc_list->ll_symbol);
5595 break;
5596 case dw_val_class_range_list:
5597 fprintf (outfile, "range list");
5598 break;
5599 case dw_val_class_const:
5600 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, val->v.val_int);
5601 break;
5602 case dw_val_class_unsigned_const:
5603 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, val->v.val_unsigned);
5604 break;
5605 case dw_val_class_const_double:
5606 fprintf (outfile, "constant (" HOST_WIDE_INT_PRINT_DEC","\
5607 HOST_WIDE_INT_PRINT_UNSIGNED")",
5608 val->v.val_double.high,
5609 val->v.val_double.low);
5610 break;
5611 case dw_val_class_wide_int:
5613 int i = val->v.val_wide->get_len ();
5614 fprintf (outfile, "constant (");
5615 gcc_assert (i > 0);
5616 if (val->v.val_wide->elt (i - 1) == 0)
5617 fprintf (outfile, "0x");
5618 fprintf (outfile, HOST_WIDE_INT_PRINT_HEX,
5619 val->v.val_wide->elt (--i));
5620 while (--i >= 0)
5621 fprintf (outfile, HOST_WIDE_INT_PRINT_PADDED_HEX,
5622 val->v.val_wide->elt (i));
5623 fprintf (outfile, ")");
5624 break;
5626 case dw_val_class_vec:
5627 fprintf (outfile, "floating-point or vector constant");
5628 break;
5629 case dw_val_class_flag:
5630 fprintf (outfile, "%u", val->v.val_flag);
5631 break;
5632 case dw_val_class_die_ref:
5633 if (val->v.val_die_ref.die != NULL)
5635 dw_die_ref die = val->v.val_die_ref.die;
5637 if (die->comdat_type_p)
5639 fprintf (outfile, "die -> signature: ");
5640 print_signature (outfile,
5641 die->die_id.die_type_node->signature);
5643 else if (die->die_id.die_symbol)
5644 fprintf (outfile, "die -> label: %s", die->die_id.die_symbol);
5645 else
5646 fprintf (outfile, "die -> %ld", die->die_offset);
5647 fprintf (outfile, " (%p)", (void *) die);
5649 else
5650 fprintf (outfile, "die -> <null>");
5651 break;
5652 case dw_val_class_vms_delta:
5653 fprintf (outfile, "delta: @slotcount(%s-%s)",
5654 val->v.val_vms_delta.lbl2, val->v.val_vms_delta.lbl1);
5655 break;
5656 case dw_val_class_lbl_id:
5657 case dw_val_class_lineptr:
5658 case dw_val_class_macptr:
5659 case dw_val_class_high_pc:
5660 fprintf (outfile, "label: %s", val->v.val_lbl_id);
5661 break;
5662 case dw_val_class_str:
5663 if (val->v.val_str->str != NULL)
5664 fprintf (outfile, "\"%s\"", val->v.val_str->str);
5665 else
5666 fprintf (outfile, "<null>");
5667 break;
5668 case dw_val_class_file:
5669 fprintf (outfile, "\"%s\" (%d)", val->v.val_file->filename,
5670 val->v.val_file->emitted_number);
5671 break;
5672 case dw_val_class_data8:
5674 int i;
5676 for (i = 0; i < 8; i++)
5677 fprintf (outfile, "%02x", val->v.val_data8[i]);
5678 break;
5680 case dw_val_class_discr_value:
5681 print_discr_value (outfile, &val->v.val_discr_value);
5682 break;
5683 case dw_val_class_discr_list:
5684 for (dw_discr_list_ref node = val->v.val_discr_list;
5685 node != NULL;
5686 node = node->dw_discr_next)
5688 if (node->dw_discr_range)
5690 fprintf (outfile, " .. ");
5691 print_discr_value (outfile, &node->dw_discr_lower_bound);
5692 print_discr_value (outfile, &node->dw_discr_upper_bound);
5694 else
5695 print_discr_value (outfile, &node->dw_discr_lower_bound);
5697 if (node->dw_discr_next != NULL)
5698 fprintf (outfile, " | ");
5700 default:
5701 break;
5705 /* Likewise, for a DIE attribute. */
5707 static void
5708 print_attribute (dw_attr_node *a, bool recurse, FILE *outfile)
5710 print_dw_val (&a->dw_attr_val, recurse, outfile);
5714 /* Print the list of operands in the LOC location description to OUTFILE. This
5715 routine is a debugging aid only. */
5717 static void
5718 print_loc_descr (dw_loc_descr_ref loc, FILE *outfile)
5720 dw_loc_descr_ref l = loc;
5722 if (loc == NULL)
5724 print_spaces (outfile);
5725 fprintf (outfile, "<null>\n");
5726 return;
5729 for (l = loc; l != NULL; l = l->dw_loc_next)
5731 print_spaces (outfile);
5732 fprintf (outfile, "(%p) %s",
5733 (void *) l,
5734 dwarf_stack_op_name (l->dw_loc_opc));
5735 if (l->dw_loc_oprnd1.val_class != dw_val_class_none)
5737 fprintf (outfile, " ");
5738 print_dw_val (&l->dw_loc_oprnd1, false, outfile);
5740 if (l->dw_loc_oprnd2.val_class != dw_val_class_none)
5742 fprintf (outfile, ", ");
5743 print_dw_val (&l->dw_loc_oprnd2, false, outfile);
5745 fprintf (outfile, "\n");
5749 /* Print the information associated with a given DIE, and its children.
5750 This routine is a debugging aid only. */
5752 static void
5753 print_die (dw_die_ref die, FILE *outfile)
5755 dw_attr_node *a;
5756 dw_die_ref c;
5757 unsigned ix;
5759 print_spaces (outfile);
5760 fprintf (outfile, "DIE %4ld: %s (%p)\n",
5761 die->die_offset, dwarf_tag_name (die->die_tag),
5762 (void*) die);
5763 print_spaces (outfile);
5764 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5765 fprintf (outfile, " offset: %ld", die->die_offset);
5766 fprintf (outfile, " mark: %d\n", die->die_mark);
5768 if (die->comdat_type_p)
5770 print_spaces (outfile);
5771 fprintf (outfile, " signature: ");
5772 print_signature (outfile, die->die_id.die_type_node->signature);
5773 fprintf (outfile, "\n");
5776 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
5778 print_spaces (outfile);
5779 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5781 print_attribute (a, true, outfile);
5782 fprintf (outfile, "\n");
5785 if (die->die_child != NULL)
5787 print_indent += 4;
5788 FOR_EACH_CHILD (die, c, print_die (c, outfile));
5789 print_indent -= 4;
5791 if (print_indent == 0)
5792 fprintf (outfile, "\n");
5795 /* Print the list of operations in the LOC location description. */
5797 DEBUG_FUNCTION void
5798 debug_dwarf_loc_descr (dw_loc_descr_ref loc)
5800 print_loc_descr (loc, stderr);
5803 /* Print the information collected for a given DIE. */
5805 DEBUG_FUNCTION void
5806 debug_dwarf_die (dw_die_ref die)
5808 print_die (die, stderr);
5811 DEBUG_FUNCTION void
5812 debug (die_struct &ref)
5814 print_die (&ref, stderr);
5817 DEBUG_FUNCTION void
5818 debug (die_struct *ptr)
5820 if (ptr)
5821 debug (*ptr);
5822 else
5823 fprintf (stderr, "<nil>\n");
5827 /* Print all DWARF information collected for the compilation unit.
5828 This routine is a debugging aid only. */
5830 DEBUG_FUNCTION void
5831 debug_dwarf (void)
5833 print_indent = 0;
5834 print_die (comp_unit_die (), stderr);
5837 /* Sanity checks on DIEs. */
5839 static void
5840 check_die (dw_die_ref die)
5842 unsigned ix;
5843 dw_attr_node *a;
5844 bool inline_found = false;
5845 int n_location = 0, n_low_pc = 0, n_high_pc = 0, n_artificial = 0;
5846 int n_decl_line = 0, n_decl_file = 0;
5847 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
5849 switch (a->dw_attr)
5851 case DW_AT_inline:
5852 if (a->dw_attr_val.v.val_unsigned)
5853 inline_found = true;
5854 break;
5855 case DW_AT_location:
5856 ++n_location;
5857 break;
5858 case DW_AT_low_pc:
5859 ++n_low_pc;
5860 break;
5861 case DW_AT_high_pc:
5862 ++n_high_pc;
5863 break;
5864 case DW_AT_artificial:
5865 ++n_artificial;
5866 break;
5867 case DW_AT_decl_line:
5868 ++n_decl_line;
5869 break;
5870 case DW_AT_decl_file:
5871 ++n_decl_file;
5872 break;
5873 default:
5874 break;
5877 if (n_location > 1 || n_low_pc > 1 || n_high_pc > 1 || n_artificial > 1
5878 || n_decl_line > 1 || n_decl_file > 1)
5880 fprintf (stderr, "Duplicate attributes in DIE:\n");
5881 debug_dwarf_die (die);
5882 gcc_unreachable ();
5884 if (inline_found)
5886 /* A debugging information entry that is a member of an abstract
5887 instance tree [that has DW_AT_inline] should not contain any
5888 attributes which describe aspects of the subroutine which vary
5889 between distinct inlined expansions or distinct out-of-line
5890 expansions. */
5891 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
5892 gcc_assert (a->dw_attr != DW_AT_low_pc
5893 && a->dw_attr != DW_AT_high_pc
5894 && a->dw_attr != DW_AT_location
5895 && a->dw_attr != DW_AT_frame_base
5896 && a->dw_attr != DW_AT_GNU_all_call_sites);
5900 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5901 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5902 DIE that marks the start of the DIEs for this include file. */
5904 static dw_die_ref
5905 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5907 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5908 dw_die_ref new_unit = gen_compile_unit_die (filename);
5910 new_unit->die_sib = old_unit;
5911 return new_unit;
5914 /* Close an include-file CU and reopen the enclosing one. */
5916 static dw_die_ref
5917 pop_compile_unit (dw_die_ref old_unit)
5919 dw_die_ref new_unit = old_unit->die_sib;
5921 old_unit->die_sib = NULL;
5922 return new_unit;
5925 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5926 #define CHECKSUM_BLOCK(FOO, SIZE) md5_process_bytes ((FOO), (SIZE), ctx)
5927 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5929 /* Calculate the checksum of a location expression. */
5931 static inline void
5932 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5934 int tem;
5935 inchash::hash hstate;
5936 hashval_t hash;
5938 tem = (loc->dtprel << 8) | ((unsigned int) loc->dw_loc_opc);
5939 CHECKSUM (tem);
5940 hash_loc_operands (loc, hstate);
5941 hash = hstate.end();
5942 CHECKSUM (hash);
5945 /* Calculate the checksum of an attribute. */
5947 static void
5948 attr_checksum (dw_attr_node *at, struct md5_ctx *ctx, int *mark)
5950 dw_loc_descr_ref loc;
5951 rtx r;
5953 CHECKSUM (at->dw_attr);
5955 /* We don't care that this was compiled with a different compiler
5956 snapshot; if the output is the same, that's what matters. */
5957 if (at->dw_attr == DW_AT_producer)
5958 return;
5960 switch (AT_class (at))
5962 case dw_val_class_const:
5963 CHECKSUM (at->dw_attr_val.v.val_int);
5964 break;
5965 case dw_val_class_unsigned_const:
5966 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5967 break;
5968 case dw_val_class_const_double:
5969 CHECKSUM (at->dw_attr_val.v.val_double);
5970 break;
5971 case dw_val_class_wide_int:
5972 CHECKSUM_BLOCK (at->dw_attr_val.v.val_wide->get_val (),
5973 get_full_len (*at->dw_attr_val.v.val_wide)
5974 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
5975 break;
5976 case dw_val_class_vec:
5977 CHECKSUM_BLOCK (at->dw_attr_val.v.val_vec.array,
5978 (at->dw_attr_val.v.val_vec.length
5979 * at->dw_attr_val.v.val_vec.elt_size));
5980 break;
5981 case dw_val_class_flag:
5982 CHECKSUM (at->dw_attr_val.v.val_flag);
5983 break;
5984 case dw_val_class_str:
5985 CHECKSUM_STRING (AT_string (at));
5986 break;
5988 case dw_val_class_addr:
5989 r = AT_addr (at);
5990 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5991 CHECKSUM_STRING (XSTR (r, 0));
5992 break;
5994 case dw_val_class_offset:
5995 CHECKSUM (at->dw_attr_val.v.val_offset);
5996 break;
5998 case dw_val_class_loc:
5999 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
6000 loc_checksum (loc, ctx);
6001 break;
6003 case dw_val_class_die_ref:
6004 die_checksum (AT_ref (at), ctx, mark);
6005 break;
6007 case dw_val_class_fde_ref:
6008 case dw_val_class_vms_delta:
6009 case dw_val_class_lbl_id:
6010 case dw_val_class_lineptr:
6011 case dw_val_class_macptr:
6012 case dw_val_class_high_pc:
6013 break;
6015 case dw_val_class_file:
6016 CHECKSUM_STRING (AT_file (at)->filename);
6017 break;
6019 case dw_val_class_data8:
6020 CHECKSUM (at->dw_attr_val.v.val_data8);
6021 break;
6023 default:
6024 break;
6028 /* Calculate the checksum of a DIE. */
6030 static void
6031 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
6033 dw_die_ref c;
6034 dw_attr_node *a;
6035 unsigned ix;
6037 /* To avoid infinite recursion. */
6038 if (die->die_mark)
6040 CHECKSUM (die->die_mark);
6041 return;
6043 die->die_mark = ++(*mark);
6045 CHECKSUM (die->die_tag);
6047 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
6048 attr_checksum (a, ctx, mark);
6050 FOR_EACH_CHILD (die, c, die_checksum (c, ctx, mark));
6053 #undef CHECKSUM
6054 #undef CHECKSUM_BLOCK
6055 #undef CHECKSUM_STRING
6057 /* For DWARF-4 types, include the trailing NULL when checksumming strings. */
6058 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
6059 #define CHECKSUM_BLOCK(FOO, SIZE) md5_process_bytes ((FOO), (SIZE), ctx)
6060 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO) + 1, ctx)
6061 #define CHECKSUM_SLEB128(FOO) checksum_sleb128 ((FOO), ctx)
6062 #define CHECKSUM_ULEB128(FOO) checksum_uleb128 ((FOO), ctx)
6063 #define CHECKSUM_ATTR(FOO) \
6064 if (FOO) attr_checksum_ordered (die->die_tag, (FOO), ctx, mark)
6066 /* Calculate the checksum of a number in signed LEB128 format. */
6068 static void
6069 checksum_sleb128 (HOST_WIDE_INT value, struct md5_ctx *ctx)
6071 unsigned char byte;
6072 bool more;
6074 while (1)
6076 byte = (value & 0x7f);
6077 value >>= 7;
6078 more = !((value == 0 && (byte & 0x40) == 0)
6079 || (value == -1 && (byte & 0x40) != 0));
6080 if (more)
6081 byte |= 0x80;
6082 CHECKSUM (byte);
6083 if (!more)
6084 break;
6088 /* Calculate the checksum of a number in unsigned LEB128 format. */
6090 static void
6091 checksum_uleb128 (unsigned HOST_WIDE_INT value, struct md5_ctx *ctx)
6093 while (1)
6095 unsigned char byte = (value & 0x7f);
6096 value >>= 7;
6097 if (value != 0)
6098 /* More bytes to follow. */
6099 byte |= 0x80;
6100 CHECKSUM (byte);
6101 if (value == 0)
6102 break;
6106 /* Checksum the context of the DIE. This adds the names of any
6107 surrounding namespaces or structures to the checksum. */
6109 static void
6110 checksum_die_context (dw_die_ref die, struct md5_ctx *ctx)
6112 const char *name;
6113 dw_die_ref spec;
6114 int tag = die->die_tag;
6116 if (tag != DW_TAG_namespace
6117 && tag != DW_TAG_structure_type
6118 && tag != DW_TAG_class_type)
6119 return;
6121 name = get_AT_string (die, DW_AT_name);
6123 spec = get_AT_ref (die, DW_AT_specification);
6124 if (spec != NULL)
6125 die = spec;
6127 if (die->die_parent != NULL)
6128 checksum_die_context (die->die_parent, ctx);
6130 CHECKSUM_ULEB128 ('C');
6131 CHECKSUM_ULEB128 (tag);
6132 if (name != NULL)
6133 CHECKSUM_STRING (name);
6136 /* Calculate the checksum of a location expression. */
6138 static inline void
6139 loc_checksum_ordered (dw_loc_descr_ref loc, struct md5_ctx *ctx)
6141 /* Special case for lone DW_OP_plus_uconst: checksum as if the location
6142 were emitted as a DW_FORM_sdata instead of a location expression. */
6143 if (loc->dw_loc_opc == DW_OP_plus_uconst && loc->dw_loc_next == NULL)
6145 CHECKSUM_ULEB128 (DW_FORM_sdata);
6146 CHECKSUM_SLEB128 ((HOST_WIDE_INT) loc->dw_loc_oprnd1.v.val_unsigned);
6147 return;
6150 /* Otherwise, just checksum the raw location expression. */
6151 while (loc != NULL)
6153 inchash::hash hstate;
6154 hashval_t hash;
6156 CHECKSUM_ULEB128 (loc->dtprel);
6157 CHECKSUM_ULEB128 (loc->dw_loc_opc);
6158 hash_loc_operands (loc, hstate);
6159 hash = hstate.end ();
6160 CHECKSUM (hash);
6161 loc = loc->dw_loc_next;
6165 /* Calculate the checksum of an attribute. */
6167 static void
6168 attr_checksum_ordered (enum dwarf_tag tag, dw_attr_node *at,
6169 struct md5_ctx *ctx, int *mark)
6171 dw_loc_descr_ref loc;
6172 rtx r;
6174 if (AT_class (at) == dw_val_class_die_ref)
6176 dw_die_ref target_die = AT_ref (at);
6178 /* For pointer and reference types, we checksum only the (qualified)
6179 name of the target type (if there is a name). For friend entries,
6180 we checksum only the (qualified) name of the target type or function.
6181 This allows the checksum to remain the same whether the target type
6182 is complete or not. */
6183 if ((at->dw_attr == DW_AT_type
6184 && (tag == DW_TAG_pointer_type
6185 || tag == DW_TAG_reference_type
6186 || tag == DW_TAG_rvalue_reference_type
6187 || tag == DW_TAG_ptr_to_member_type))
6188 || (at->dw_attr == DW_AT_friend
6189 && tag == DW_TAG_friend))
6191 dw_attr_node *name_attr = get_AT (target_die, DW_AT_name);
6193 if (name_attr != NULL)
6195 dw_die_ref decl = get_AT_ref (target_die, DW_AT_specification);
6197 if (decl == NULL)
6198 decl = target_die;
6199 CHECKSUM_ULEB128 ('N');
6200 CHECKSUM_ULEB128 (at->dw_attr);
6201 if (decl->die_parent != NULL)
6202 checksum_die_context (decl->die_parent, ctx);
6203 CHECKSUM_ULEB128 ('E');
6204 CHECKSUM_STRING (AT_string (name_attr));
6205 return;
6209 /* For all other references to another DIE, we check to see if the
6210 target DIE has already been visited. If it has, we emit a
6211 backward reference; if not, we descend recursively. */
6212 if (target_die->die_mark > 0)
6214 CHECKSUM_ULEB128 ('R');
6215 CHECKSUM_ULEB128 (at->dw_attr);
6216 CHECKSUM_ULEB128 (target_die->die_mark);
6218 else
6220 dw_die_ref decl = get_AT_ref (target_die, DW_AT_specification);
6222 if (decl == NULL)
6223 decl = target_die;
6224 target_die->die_mark = ++(*mark);
6225 CHECKSUM_ULEB128 ('T');
6226 CHECKSUM_ULEB128 (at->dw_attr);
6227 if (decl->die_parent != NULL)
6228 checksum_die_context (decl->die_parent, ctx);
6229 die_checksum_ordered (target_die, ctx, mark);
6231 return;
6234 CHECKSUM_ULEB128 ('A');
6235 CHECKSUM_ULEB128 (at->dw_attr);
6237 switch (AT_class (at))
6239 case dw_val_class_const:
6240 CHECKSUM_ULEB128 (DW_FORM_sdata);
6241 CHECKSUM_SLEB128 (at->dw_attr_val.v.val_int);
6242 break;
6244 case dw_val_class_unsigned_const:
6245 CHECKSUM_ULEB128 (DW_FORM_sdata);
6246 CHECKSUM_SLEB128 ((int) at->dw_attr_val.v.val_unsigned);
6247 break;
6249 case dw_val_class_const_double:
6250 CHECKSUM_ULEB128 (DW_FORM_block);
6251 CHECKSUM_ULEB128 (sizeof (at->dw_attr_val.v.val_double));
6252 CHECKSUM (at->dw_attr_val.v.val_double);
6253 break;
6255 case dw_val_class_wide_int:
6256 CHECKSUM_ULEB128 (DW_FORM_block);
6257 CHECKSUM_ULEB128 (get_full_len (*at->dw_attr_val.v.val_wide)
6258 * HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT);
6259 CHECKSUM_BLOCK (at->dw_attr_val.v.val_wide->get_val (),
6260 get_full_len (*at->dw_attr_val.v.val_wide)
6261 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
6262 break;
6264 case dw_val_class_vec:
6265 CHECKSUM_ULEB128 (DW_FORM_block);
6266 CHECKSUM_ULEB128 (at->dw_attr_val.v.val_vec.length
6267 * at->dw_attr_val.v.val_vec.elt_size);
6268 CHECKSUM_BLOCK (at->dw_attr_val.v.val_vec.array,
6269 (at->dw_attr_val.v.val_vec.length
6270 * at->dw_attr_val.v.val_vec.elt_size));
6271 break;
6273 case dw_val_class_flag:
6274 CHECKSUM_ULEB128 (DW_FORM_flag);
6275 CHECKSUM_ULEB128 (at->dw_attr_val.v.val_flag ? 1 : 0);
6276 break;
6278 case dw_val_class_str:
6279 CHECKSUM_ULEB128 (DW_FORM_string);
6280 CHECKSUM_STRING (AT_string (at));
6281 break;
6283 case dw_val_class_addr:
6284 r = AT_addr (at);
6285 gcc_assert (GET_CODE (r) == SYMBOL_REF);
6286 CHECKSUM_ULEB128 (DW_FORM_string);
6287 CHECKSUM_STRING (XSTR (r, 0));
6288 break;
6290 case dw_val_class_offset:
6291 CHECKSUM_ULEB128 (DW_FORM_sdata);
6292 CHECKSUM_ULEB128 (at->dw_attr_val.v.val_offset);
6293 break;
6295 case dw_val_class_loc:
6296 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
6297 loc_checksum_ordered (loc, ctx);
6298 break;
6300 case dw_val_class_fde_ref:
6301 case dw_val_class_lbl_id:
6302 case dw_val_class_lineptr:
6303 case dw_val_class_macptr:
6304 case dw_val_class_high_pc:
6305 break;
6307 case dw_val_class_file:
6308 CHECKSUM_ULEB128 (DW_FORM_string);
6309 CHECKSUM_STRING (AT_file (at)->filename);
6310 break;
6312 case dw_val_class_data8:
6313 CHECKSUM (at->dw_attr_val.v.val_data8);
6314 break;
6316 default:
6317 break;
6321 struct checksum_attributes
6323 dw_attr_node *at_name;
6324 dw_attr_node *at_type;
6325 dw_attr_node *at_friend;
6326 dw_attr_node *at_accessibility;
6327 dw_attr_node *at_address_class;
6328 dw_attr_node *at_allocated;
6329 dw_attr_node *at_artificial;
6330 dw_attr_node *at_associated;
6331 dw_attr_node *at_binary_scale;
6332 dw_attr_node *at_bit_offset;
6333 dw_attr_node *at_bit_size;
6334 dw_attr_node *at_bit_stride;
6335 dw_attr_node *at_byte_size;
6336 dw_attr_node *at_byte_stride;
6337 dw_attr_node *at_const_value;
6338 dw_attr_node *at_containing_type;
6339 dw_attr_node *at_count;
6340 dw_attr_node *at_data_location;
6341 dw_attr_node *at_data_member_location;
6342 dw_attr_node *at_decimal_scale;
6343 dw_attr_node *at_decimal_sign;
6344 dw_attr_node *at_default_value;
6345 dw_attr_node *at_digit_count;
6346 dw_attr_node *at_discr;
6347 dw_attr_node *at_discr_list;
6348 dw_attr_node *at_discr_value;
6349 dw_attr_node *at_encoding;
6350 dw_attr_node *at_endianity;
6351 dw_attr_node *at_explicit;
6352 dw_attr_node *at_is_optional;
6353 dw_attr_node *at_location;
6354 dw_attr_node *at_lower_bound;
6355 dw_attr_node *at_mutable;
6356 dw_attr_node *at_ordering;
6357 dw_attr_node *at_picture_string;
6358 dw_attr_node *at_prototyped;
6359 dw_attr_node *at_small;
6360 dw_attr_node *at_segment;
6361 dw_attr_node *at_string_length;
6362 dw_attr_node *at_threads_scaled;
6363 dw_attr_node *at_upper_bound;
6364 dw_attr_node *at_use_location;
6365 dw_attr_node *at_use_UTF8;
6366 dw_attr_node *at_variable_parameter;
6367 dw_attr_node *at_virtuality;
6368 dw_attr_node *at_visibility;
6369 dw_attr_node *at_vtable_elem_location;
6372 /* Collect the attributes that we will want to use for the checksum. */
6374 static void
6375 collect_checksum_attributes (struct checksum_attributes *attrs, dw_die_ref die)
6377 dw_attr_node *a;
6378 unsigned ix;
6380 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
6382 switch (a->dw_attr)
6384 case DW_AT_name:
6385 attrs->at_name = a;
6386 break;
6387 case DW_AT_type:
6388 attrs->at_type = a;
6389 break;
6390 case DW_AT_friend:
6391 attrs->at_friend = a;
6392 break;
6393 case DW_AT_accessibility:
6394 attrs->at_accessibility = a;
6395 break;
6396 case DW_AT_address_class:
6397 attrs->at_address_class = a;
6398 break;
6399 case DW_AT_allocated:
6400 attrs->at_allocated = a;
6401 break;
6402 case DW_AT_artificial:
6403 attrs->at_artificial = a;
6404 break;
6405 case DW_AT_associated:
6406 attrs->at_associated = a;
6407 break;
6408 case DW_AT_binary_scale:
6409 attrs->at_binary_scale = a;
6410 break;
6411 case DW_AT_bit_offset:
6412 attrs->at_bit_offset = a;
6413 break;
6414 case DW_AT_bit_size:
6415 attrs->at_bit_size = a;
6416 break;
6417 case DW_AT_bit_stride:
6418 attrs->at_bit_stride = a;
6419 break;
6420 case DW_AT_byte_size:
6421 attrs->at_byte_size = a;
6422 break;
6423 case DW_AT_byte_stride:
6424 attrs->at_byte_stride = a;
6425 break;
6426 case DW_AT_const_value:
6427 attrs->at_const_value = a;
6428 break;
6429 case DW_AT_containing_type:
6430 attrs->at_containing_type = a;
6431 break;
6432 case DW_AT_count:
6433 attrs->at_count = a;
6434 break;
6435 case DW_AT_data_location:
6436 attrs->at_data_location = a;
6437 break;
6438 case DW_AT_data_member_location:
6439 attrs->at_data_member_location = a;
6440 break;
6441 case DW_AT_decimal_scale:
6442 attrs->at_decimal_scale = a;
6443 break;
6444 case DW_AT_decimal_sign:
6445 attrs->at_decimal_sign = a;
6446 break;
6447 case DW_AT_default_value:
6448 attrs->at_default_value = a;
6449 break;
6450 case DW_AT_digit_count:
6451 attrs->at_digit_count = a;
6452 break;
6453 case DW_AT_discr:
6454 attrs->at_discr = a;
6455 break;
6456 case DW_AT_discr_list:
6457 attrs->at_discr_list = a;
6458 break;
6459 case DW_AT_discr_value:
6460 attrs->at_discr_value = a;
6461 break;
6462 case DW_AT_encoding:
6463 attrs->at_encoding = a;
6464 break;
6465 case DW_AT_endianity:
6466 attrs->at_endianity = a;
6467 break;
6468 case DW_AT_explicit:
6469 attrs->at_explicit = a;
6470 break;
6471 case DW_AT_is_optional:
6472 attrs->at_is_optional = a;
6473 break;
6474 case DW_AT_location:
6475 attrs->at_location = a;
6476 break;
6477 case DW_AT_lower_bound:
6478 attrs->at_lower_bound = a;
6479 break;
6480 case DW_AT_mutable:
6481 attrs->at_mutable = a;
6482 break;
6483 case DW_AT_ordering:
6484 attrs->at_ordering = a;
6485 break;
6486 case DW_AT_picture_string:
6487 attrs->at_picture_string = a;
6488 break;
6489 case DW_AT_prototyped:
6490 attrs->at_prototyped = a;
6491 break;
6492 case DW_AT_small:
6493 attrs->at_small = a;
6494 break;
6495 case DW_AT_segment:
6496 attrs->at_segment = a;
6497 break;
6498 case DW_AT_string_length:
6499 attrs->at_string_length = a;
6500 break;
6501 case DW_AT_threads_scaled:
6502 attrs->at_threads_scaled = a;
6503 break;
6504 case DW_AT_upper_bound:
6505 attrs->at_upper_bound = a;
6506 break;
6507 case DW_AT_use_location:
6508 attrs->at_use_location = a;
6509 break;
6510 case DW_AT_use_UTF8:
6511 attrs->at_use_UTF8 = a;
6512 break;
6513 case DW_AT_variable_parameter:
6514 attrs->at_variable_parameter = a;
6515 break;
6516 case DW_AT_virtuality:
6517 attrs->at_virtuality = a;
6518 break;
6519 case DW_AT_visibility:
6520 attrs->at_visibility = a;
6521 break;
6522 case DW_AT_vtable_elem_location:
6523 attrs->at_vtable_elem_location = a;
6524 break;
6525 default:
6526 break;
6531 /* Calculate the checksum of a DIE, using an ordered subset of attributes. */
6533 static void
6534 die_checksum_ordered (dw_die_ref die, struct md5_ctx *ctx, int *mark)
6536 dw_die_ref c;
6537 dw_die_ref decl;
6538 struct checksum_attributes attrs;
6540 CHECKSUM_ULEB128 ('D');
6541 CHECKSUM_ULEB128 (die->die_tag);
6543 memset (&attrs, 0, sizeof (attrs));
6545 decl = get_AT_ref (die, DW_AT_specification);
6546 if (decl != NULL)
6547 collect_checksum_attributes (&attrs, decl);
6548 collect_checksum_attributes (&attrs, die);
6550 CHECKSUM_ATTR (attrs.at_name);
6551 CHECKSUM_ATTR (attrs.at_accessibility);
6552 CHECKSUM_ATTR (attrs.at_address_class);
6553 CHECKSUM_ATTR (attrs.at_allocated);
6554 CHECKSUM_ATTR (attrs.at_artificial);
6555 CHECKSUM_ATTR (attrs.at_associated);
6556 CHECKSUM_ATTR (attrs.at_binary_scale);
6557 CHECKSUM_ATTR (attrs.at_bit_offset);
6558 CHECKSUM_ATTR (attrs.at_bit_size);
6559 CHECKSUM_ATTR (attrs.at_bit_stride);
6560 CHECKSUM_ATTR (attrs.at_byte_size);
6561 CHECKSUM_ATTR (attrs.at_byte_stride);
6562 CHECKSUM_ATTR (attrs.at_const_value);
6563 CHECKSUM_ATTR (attrs.at_containing_type);
6564 CHECKSUM_ATTR (attrs.at_count);
6565 CHECKSUM_ATTR (attrs.at_data_location);
6566 CHECKSUM_ATTR (attrs.at_data_member_location);
6567 CHECKSUM_ATTR (attrs.at_decimal_scale);
6568 CHECKSUM_ATTR (attrs.at_decimal_sign);
6569 CHECKSUM_ATTR (attrs.at_default_value);
6570 CHECKSUM_ATTR (attrs.at_digit_count);
6571 CHECKSUM_ATTR (attrs.at_discr);
6572 CHECKSUM_ATTR (attrs.at_discr_list);
6573 CHECKSUM_ATTR (attrs.at_discr_value);
6574 CHECKSUM_ATTR (attrs.at_encoding);
6575 CHECKSUM_ATTR (attrs.at_endianity);
6576 CHECKSUM_ATTR (attrs.at_explicit);
6577 CHECKSUM_ATTR (attrs.at_is_optional);
6578 CHECKSUM_ATTR (attrs.at_location);
6579 CHECKSUM_ATTR (attrs.at_lower_bound);
6580 CHECKSUM_ATTR (attrs.at_mutable);
6581 CHECKSUM_ATTR (attrs.at_ordering);
6582 CHECKSUM_ATTR (attrs.at_picture_string);
6583 CHECKSUM_ATTR (attrs.at_prototyped);
6584 CHECKSUM_ATTR (attrs.at_small);
6585 CHECKSUM_ATTR (attrs.at_segment);
6586 CHECKSUM_ATTR (attrs.at_string_length);
6587 CHECKSUM_ATTR (attrs.at_threads_scaled);
6588 CHECKSUM_ATTR (attrs.at_upper_bound);
6589 CHECKSUM_ATTR (attrs.at_use_location);
6590 CHECKSUM_ATTR (attrs.at_use_UTF8);
6591 CHECKSUM_ATTR (attrs.at_variable_parameter);
6592 CHECKSUM_ATTR (attrs.at_virtuality);
6593 CHECKSUM_ATTR (attrs.at_visibility);
6594 CHECKSUM_ATTR (attrs.at_vtable_elem_location);
6595 CHECKSUM_ATTR (attrs.at_type);
6596 CHECKSUM_ATTR (attrs.at_friend);
6598 /* Checksum the child DIEs. */
6599 c = die->die_child;
6600 if (c) do {
6601 dw_attr_node *name_attr;
6603 c = c->die_sib;
6604 name_attr = get_AT (c, DW_AT_name);
6605 if (is_template_instantiation (c))
6607 /* Ignore instantiations of member type and function templates. */
6609 else if (name_attr != NULL
6610 && (is_type_die (c) || c->die_tag == DW_TAG_subprogram))
6612 /* Use a shallow checksum for named nested types and member
6613 functions. */
6614 CHECKSUM_ULEB128 ('S');
6615 CHECKSUM_ULEB128 (c->die_tag);
6616 CHECKSUM_STRING (AT_string (name_attr));
6618 else
6620 /* Use a deep checksum for other children. */
6621 /* Mark this DIE so it gets processed when unmarking. */
6622 if (c->die_mark == 0)
6623 c->die_mark = -1;
6624 die_checksum_ordered (c, ctx, mark);
6626 } while (c != die->die_child);
6628 CHECKSUM_ULEB128 (0);
6631 /* Add a type name and tag to a hash. */
6632 static void
6633 die_odr_checksum (int tag, const char *name, md5_ctx *ctx)
6635 CHECKSUM_ULEB128 (tag);
6636 CHECKSUM_STRING (name);
6639 #undef CHECKSUM
6640 #undef CHECKSUM_STRING
6641 #undef CHECKSUM_ATTR
6642 #undef CHECKSUM_LEB128
6643 #undef CHECKSUM_ULEB128
6645 /* Generate the type signature for DIE. This is computed by generating an
6646 MD5 checksum over the DIE's tag, its relevant attributes, and its
6647 children. Attributes that are references to other DIEs are processed
6648 by recursion, using the MARK field to prevent infinite recursion.
6649 If the DIE is nested inside a namespace or another type, we also
6650 need to include that context in the signature. The lower 64 bits
6651 of the resulting MD5 checksum comprise the signature. */
6653 static void
6654 generate_type_signature (dw_die_ref die, comdat_type_node *type_node)
6656 int mark;
6657 const char *name;
6658 unsigned char checksum[16];
6659 struct md5_ctx ctx;
6660 dw_die_ref decl;
6661 dw_die_ref parent;
6663 name = get_AT_string (die, DW_AT_name);
6664 decl = get_AT_ref (die, DW_AT_specification);
6665 parent = get_die_parent (die);
6667 /* First, compute a signature for just the type name (and its surrounding
6668 context, if any. This is stored in the type unit DIE for link-time
6669 ODR (one-definition rule) checking. */
6671 if (is_cxx () && name != NULL)
6673 md5_init_ctx (&ctx);
6675 /* Checksum the names of surrounding namespaces and structures. */
6676 if (parent != NULL)
6677 checksum_die_context (parent, &ctx);
6679 /* Checksum the current DIE. */
6680 die_odr_checksum (die->die_tag, name, &ctx);
6681 md5_finish_ctx (&ctx, checksum);
6683 add_AT_data8 (type_node->root_die, DW_AT_GNU_odr_signature, &checksum[8]);
6686 /* Next, compute the complete type signature. */
6688 md5_init_ctx (&ctx);
6689 mark = 1;
6690 die->die_mark = mark;
6692 /* Checksum the names of surrounding namespaces and structures. */
6693 if (parent != NULL)
6694 checksum_die_context (parent, &ctx);
6696 /* Checksum the DIE and its children. */
6697 die_checksum_ordered (die, &ctx, &mark);
6698 unmark_all_dies (die);
6699 md5_finish_ctx (&ctx, checksum);
6701 /* Store the signature in the type node and link the type DIE and the
6702 type node together. */
6703 memcpy (type_node->signature, &checksum[16 - DWARF_TYPE_SIGNATURE_SIZE],
6704 DWARF_TYPE_SIGNATURE_SIZE);
6705 die->comdat_type_p = true;
6706 die->die_id.die_type_node = type_node;
6707 type_node->type_die = die;
6709 /* If the DIE is a specification, link its declaration to the type node
6710 as well. */
6711 if (decl != NULL)
6713 decl->comdat_type_p = true;
6714 decl->die_id.die_type_node = type_node;
6718 /* Do the location expressions look same? */
6719 static inline int
6720 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
6722 return loc1->dw_loc_opc == loc2->dw_loc_opc
6723 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
6724 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
6727 /* Do the values look the same? */
6728 static int
6729 same_dw_val_p (const dw_val_node *v1, const dw_val_node *v2, int *mark)
6731 dw_loc_descr_ref loc1, loc2;
6732 rtx r1, r2;
6734 if (v1->val_class != v2->val_class)
6735 return 0;
6737 switch (v1->val_class)
6739 case dw_val_class_const:
6740 return v1->v.val_int == v2->v.val_int;
6741 case dw_val_class_unsigned_const:
6742 return v1->v.val_unsigned == v2->v.val_unsigned;
6743 case dw_val_class_const_double:
6744 return v1->v.val_double.high == v2->v.val_double.high
6745 && v1->v.val_double.low == v2->v.val_double.low;
6746 case dw_val_class_wide_int:
6747 return *v1->v.val_wide == *v2->v.val_wide;
6748 case dw_val_class_vec:
6749 if (v1->v.val_vec.length != v2->v.val_vec.length
6750 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
6751 return 0;
6752 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
6753 v1->v.val_vec.length * v1->v.val_vec.elt_size))
6754 return 0;
6755 return 1;
6756 case dw_val_class_flag:
6757 return v1->v.val_flag == v2->v.val_flag;
6758 case dw_val_class_str:
6759 return !strcmp (v1->v.val_str->str, v2->v.val_str->str);
6761 case dw_val_class_addr:
6762 r1 = v1->v.val_addr;
6763 r2 = v2->v.val_addr;
6764 if (GET_CODE (r1) != GET_CODE (r2))
6765 return 0;
6766 return !rtx_equal_p (r1, r2);
6768 case dw_val_class_offset:
6769 return v1->v.val_offset == v2->v.val_offset;
6771 case dw_val_class_loc:
6772 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
6773 loc1 && loc2;
6774 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
6775 if (!same_loc_p (loc1, loc2, mark))
6776 return 0;
6777 return !loc1 && !loc2;
6779 case dw_val_class_die_ref:
6780 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
6782 case dw_val_class_fde_ref:
6783 case dw_val_class_vms_delta:
6784 case dw_val_class_lbl_id:
6785 case dw_val_class_lineptr:
6786 case dw_val_class_macptr:
6787 case dw_val_class_high_pc:
6788 return 1;
6790 case dw_val_class_file:
6791 return v1->v.val_file == v2->v.val_file;
6793 case dw_val_class_data8:
6794 return !memcmp (v1->v.val_data8, v2->v.val_data8, 8);
6796 default:
6797 return 1;
6801 /* Do the attributes look the same? */
6803 static int
6804 same_attr_p (dw_attr_node *at1, dw_attr_node *at2, int *mark)
6806 if (at1->dw_attr != at2->dw_attr)
6807 return 0;
6809 /* We don't care that this was compiled with a different compiler
6810 snapshot; if the output is the same, that's what matters. */
6811 if (at1->dw_attr == DW_AT_producer)
6812 return 1;
6814 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
6817 /* Do the dies look the same? */
6819 static int
6820 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
6822 dw_die_ref c1, c2;
6823 dw_attr_node *a1;
6824 unsigned ix;
6826 /* To avoid infinite recursion. */
6827 if (die1->die_mark)
6828 return die1->die_mark == die2->die_mark;
6829 die1->die_mark = die2->die_mark = ++(*mark);
6831 if (die1->die_tag != die2->die_tag)
6832 return 0;
6834 if (vec_safe_length (die1->die_attr) != vec_safe_length (die2->die_attr))
6835 return 0;
6837 FOR_EACH_VEC_SAFE_ELT (die1->die_attr, ix, a1)
6838 if (!same_attr_p (a1, &(*die2->die_attr)[ix], mark))
6839 return 0;
6841 c1 = die1->die_child;
6842 c2 = die2->die_child;
6843 if (! c1)
6845 if (c2)
6846 return 0;
6848 else
6849 for (;;)
6851 if (!same_die_p (c1, c2, mark))
6852 return 0;
6853 c1 = c1->die_sib;
6854 c2 = c2->die_sib;
6855 if (c1 == die1->die_child)
6857 if (c2 == die2->die_child)
6858 break;
6859 else
6860 return 0;
6864 return 1;
6867 /* Do the dies look the same? Wrapper around same_die_p. */
6869 static int
6870 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
6872 int mark = 0;
6873 int ret = same_die_p (die1, die2, &mark);
6875 unmark_all_dies (die1);
6876 unmark_all_dies (die2);
6878 return ret;
6881 /* The prefix to attach to symbols on DIEs in the current comdat debug
6882 info section. */
6883 static const char *comdat_symbol_id;
6885 /* The index of the current symbol within the current comdat CU. */
6886 static unsigned int comdat_symbol_number;
6888 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6889 children, and set comdat_symbol_id accordingly. */
6891 static void
6892 compute_section_prefix (dw_die_ref unit_die)
6894 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6895 const char *base = die_name ? lbasename (die_name) : "anonymous";
6896 char *name = XALLOCAVEC (char, strlen (base) + 64);
6897 char *p;
6898 int i, mark;
6899 unsigned char checksum[16];
6900 struct md5_ctx ctx;
6902 /* Compute the checksum of the DIE, then append part of it as hex digits to
6903 the name filename of the unit. */
6905 md5_init_ctx (&ctx);
6906 mark = 0;
6907 die_checksum (unit_die, &ctx, &mark);
6908 unmark_all_dies (unit_die);
6909 md5_finish_ctx (&ctx, checksum);
6911 sprintf (name, "%s.", base);
6912 clean_symbol_name (name);
6914 p = name + strlen (name);
6915 for (i = 0; i < 4; i++)
6917 sprintf (p, "%.2x", checksum[i]);
6918 p += 2;
6921 comdat_symbol_id = unit_die->die_id.die_symbol = xstrdup (name);
6922 comdat_symbol_number = 0;
6925 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6927 static int
6928 is_type_die (dw_die_ref die)
6930 switch (die->die_tag)
6932 case DW_TAG_array_type:
6933 case DW_TAG_class_type:
6934 case DW_TAG_interface_type:
6935 case DW_TAG_enumeration_type:
6936 case DW_TAG_pointer_type:
6937 case DW_TAG_reference_type:
6938 case DW_TAG_rvalue_reference_type:
6939 case DW_TAG_string_type:
6940 case DW_TAG_structure_type:
6941 case DW_TAG_subroutine_type:
6942 case DW_TAG_union_type:
6943 case DW_TAG_ptr_to_member_type:
6944 case DW_TAG_set_type:
6945 case DW_TAG_subrange_type:
6946 case DW_TAG_base_type:
6947 case DW_TAG_const_type:
6948 case DW_TAG_file_type:
6949 case DW_TAG_packed_type:
6950 case DW_TAG_volatile_type:
6951 case DW_TAG_typedef:
6952 return 1;
6953 default:
6954 return 0;
6958 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6959 Basically, we want to choose the bits that are likely to be shared between
6960 compilations (types) and leave out the bits that are specific to individual
6961 compilations (functions). */
6963 static int
6964 is_comdat_die (dw_die_ref c)
6966 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6967 we do for stabs. The advantage is a greater likelihood of sharing between
6968 objects that don't include headers in the same order (and therefore would
6969 put the base types in a different comdat). jason 8/28/00 */
6971 if (c->die_tag == DW_TAG_base_type)
6972 return 0;
6974 if (c->die_tag == DW_TAG_pointer_type
6975 || c->die_tag == DW_TAG_reference_type
6976 || c->die_tag == DW_TAG_rvalue_reference_type
6977 || c->die_tag == DW_TAG_const_type
6978 || c->die_tag == DW_TAG_volatile_type)
6980 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6982 return t ? is_comdat_die (t) : 0;
6985 return is_type_die (c);
6988 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6989 compilation unit. */
6991 static int
6992 is_symbol_die (dw_die_ref c)
6994 return (is_type_die (c)
6995 || is_declaration_die (c)
6996 || c->die_tag == DW_TAG_namespace
6997 || c->die_tag == DW_TAG_module);
7000 /* Returns true iff C is a compile-unit DIE. */
7002 static inline bool
7003 is_cu_die (dw_die_ref c)
7005 return c && c->die_tag == DW_TAG_compile_unit;
7008 /* Returns true iff C is a unit DIE of some sort. */
7010 static inline bool
7011 is_unit_die (dw_die_ref c)
7013 return c && (c->die_tag == DW_TAG_compile_unit
7014 || c->die_tag == DW_TAG_partial_unit
7015 || c->die_tag == DW_TAG_type_unit);
7018 /* Returns true iff C is a namespace DIE. */
7020 static inline bool
7021 is_namespace_die (dw_die_ref c)
7023 return c && c->die_tag == DW_TAG_namespace;
7026 /* Returns true iff C is a class or structure DIE. */
7028 static inline bool
7029 is_class_die (dw_die_ref c)
7031 return c && (c->die_tag == DW_TAG_class_type
7032 || c->die_tag == DW_TAG_structure_type);
7035 /* Return non-zero if this DIE is a template parameter. */
7037 static inline bool
7038 is_template_parameter (dw_die_ref die)
7040 switch (die->die_tag)
7042 case DW_TAG_template_type_param:
7043 case DW_TAG_template_value_param:
7044 case DW_TAG_GNU_template_template_param:
7045 case DW_TAG_GNU_template_parameter_pack:
7046 return true;
7047 default:
7048 return false;
7052 /* Return non-zero if this DIE represents a template instantiation. */
7054 static inline bool
7055 is_template_instantiation (dw_die_ref die)
7057 dw_die_ref c;
7059 if (!is_type_die (die) && die->die_tag != DW_TAG_subprogram)
7060 return false;
7061 FOR_EACH_CHILD (die, c, if (is_template_parameter (c)) return true);
7062 return false;
7065 static char *
7066 gen_internal_sym (const char *prefix)
7068 char buf[256];
7070 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
7071 return xstrdup (buf);
7074 /* Assign symbols to all worthy DIEs under DIE. */
7076 static void
7077 assign_symbol_names (dw_die_ref die)
7079 dw_die_ref c;
7081 if (is_symbol_die (die) && !die->comdat_type_p)
7083 if (comdat_symbol_id)
7085 char *p = XALLOCAVEC (char, strlen (comdat_symbol_id) + 64);
7087 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
7088 comdat_symbol_id, comdat_symbol_number++);
7089 die->die_id.die_symbol = xstrdup (p);
7091 else
7092 die->die_id.die_symbol = gen_internal_sym ("LDIE");
7095 FOR_EACH_CHILD (die, c, assign_symbol_names (c));
7098 struct cu_hash_table_entry
7100 dw_die_ref cu;
7101 unsigned min_comdat_num, max_comdat_num;
7102 struct cu_hash_table_entry *next;
7105 /* Helpers to manipulate hash table of CUs. */
7107 struct cu_hash_table_entry_hasher : pointer_hash <cu_hash_table_entry>
7109 typedef die_struct *compare_type;
7110 static inline hashval_t hash (const cu_hash_table_entry *);
7111 static inline bool equal (const cu_hash_table_entry *, const die_struct *);
7112 static inline void remove (cu_hash_table_entry *);
7115 inline hashval_t
7116 cu_hash_table_entry_hasher::hash (const cu_hash_table_entry *entry)
7118 return htab_hash_string (entry->cu->die_id.die_symbol);
7121 inline bool
7122 cu_hash_table_entry_hasher::equal (const cu_hash_table_entry *entry1,
7123 const die_struct *entry2)
7125 return !strcmp (entry1->cu->die_id.die_symbol, entry2->die_id.die_symbol);
7128 inline void
7129 cu_hash_table_entry_hasher::remove (cu_hash_table_entry *entry)
7131 struct cu_hash_table_entry *next;
7133 while (entry)
7135 next = entry->next;
7136 free (entry);
7137 entry = next;
7141 typedef hash_table<cu_hash_table_entry_hasher> cu_hash_type;
7143 /* Check whether we have already seen this CU and set up SYM_NUM
7144 accordingly. */
7145 static int
7146 check_duplicate_cu (dw_die_ref cu, cu_hash_type *htable, unsigned int *sym_num)
7148 struct cu_hash_table_entry dummy;
7149 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
7151 dummy.max_comdat_num = 0;
7153 slot = htable->find_slot_with_hash (cu,
7154 htab_hash_string (cu->die_id.die_symbol),
7155 INSERT);
7156 entry = *slot;
7158 for (; entry; last = entry, entry = entry->next)
7160 if (same_die_p_wrap (cu, entry->cu))
7161 break;
7164 if (entry)
7166 *sym_num = entry->min_comdat_num;
7167 return 1;
7170 entry = XCNEW (struct cu_hash_table_entry);
7171 entry->cu = cu;
7172 entry->min_comdat_num = *sym_num = last->max_comdat_num;
7173 entry->next = *slot;
7174 *slot = entry;
7176 return 0;
7179 /* Record SYM_NUM to record of CU in HTABLE. */
7180 static void
7181 record_comdat_symbol_number (dw_die_ref cu, cu_hash_type *htable,
7182 unsigned int sym_num)
7184 struct cu_hash_table_entry **slot, *entry;
7186 slot = htable->find_slot_with_hash (cu,
7187 htab_hash_string (cu->die_id.die_symbol),
7188 NO_INSERT);
7189 entry = *slot;
7191 entry->max_comdat_num = sym_num;
7194 /* Traverse the DIE (which is always comp_unit_die), and set up
7195 additional compilation units for each of the include files we see
7196 bracketed by BINCL/EINCL. */
7198 static void
7199 break_out_includes (dw_die_ref die)
7201 dw_die_ref c;
7202 dw_die_ref unit = NULL;
7203 limbo_die_node *node, **pnode;
7205 c = die->die_child;
7206 if (c) do {
7207 dw_die_ref prev = c;
7208 c = c->die_sib;
7209 while (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
7210 || (unit && is_comdat_die (c)))
7212 dw_die_ref next = c->die_sib;
7214 /* This DIE is for a secondary CU; remove it from the main one. */
7215 remove_child_with_prev (c, prev);
7217 if (c->die_tag == DW_TAG_GNU_BINCL)
7218 unit = push_new_compile_unit (unit, c);
7219 else if (c->die_tag == DW_TAG_GNU_EINCL)
7220 unit = pop_compile_unit (unit);
7221 else
7222 add_child_die (unit, c);
7223 c = next;
7224 if (c == die->die_child)
7225 break;
7227 } while (c != die->die_child);
7229 #if 0
7230 /* We can only use this in debugging, since the frontend doesn't check
7231 to make sure that we leave every include file we enter. */
7232 gcc_assert (!unit);
7233 #endif
7235 assign_symbol_names (die);
7236 cu_hash_type cu_hash_table (10);
7237 for (node = limbo_die_list, pnode = &limbo_die_list;
7238 node;
7239 node = node->next)
7241 int is_dupl;
7243 compute_section_prefix (node->die);
7244 is_dupl = check_duplicate_cu (node->die, &cu_hash_table,
7245 &comdat_symbol_number);
7246 assign_symbol_names (node->die);
7247 if (is_dupl)
7248 *pnode = node->next;
7249 else
7251 pnode = &node->next;
7252 record_comdat_symbol_number (node->die, &cu_hash_table,
7253 comdat_symbol_number);
7258 /* Return non-zero if this DIE is a declaration. */
7260 static int
7261 is_declaration_die (dw_die_ref die)
7263 dw_attr_node *a;
7264 unsigned ix;
7266 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
7267 if (a->dw_attr == DW_AT_declaration)
7268 return 1;
7270 return 0;
7273 /* Return non-zero if this DIE is nested inside a subprogram. */
7275 static int
7276 is_nested_in_subprogram (dw_die_ref die)
7278 dw_die_ref decl = get_AT_ref (die, DW_AT_specification);
7280 if (decl == NULL)
7281 decl = die;
7282 return local_scope_p (decl);
7285 /* Return non-zero if this DIE contains a defining declaration of a
7286 subprogram. */
7288 static int
7289 contains_subprogram_definition (dw_die_ref die)
7291 dw_die_ref c;
7293 if (die->die_tag == DW_TAG_subprogram && ! is_declaration_die (die))
7294 return 1;
7295 FOR_EACH_CHILD (die, c, if (contains_subprogram_definition (c)) return 1);
7296 return 0;
7299 /* Return non-zero if this is a type DIE that should be moved to a
7300 COMDAT .debug_types section. */
7302 static int
7303 should_move_die_to_comdat (dw_die_ref die)
7305 switch (die->die_tag)
7307 case DW_TAG_class_type:
7308 case DW_TAG_structure_type:
7309 case DW_TAG_enumeration_type:
7310 case DW_TAG_union_type:
7311 /* Don't move declarations, inlined instances, types nested in a
7312 subprogram, or types that contain subprogram definitions. */
7313 if (is_declaration_die (die)
7314 || get_AT (die, DW_AT_abstract_origin)
7315 || is_nested_in_subprogram (die)
7316 || contains_subprogram_definition (die))
7317 return 0;
7318 return 1;
7319 case DW_TAG_array_type:
7320 case DW_TAG_interface_type:
7321 case DW_TAG_pointer_type:
7322 case DW_TAG_reference_type:
7323 case DW_TAG_rvalue_reference_type:
7324 case DW_TAG_string_type:
7325 case DW_TAG_subroutine_type:
7326 case DW_TAG_ptr_to_member_type:
7327 case DW_TAG_set_type:
7328 case DW_TAG_subrange_type:
7329 case DW_TAG_base_type:
7330 case DW_TAG_const_type:
7331 case DW_TAG_file_type:
7332 case DW_TAG_packed_type:
7333 case DW_TAG_volatile_type:
7334 case DW_TAG_typedef:
7335 default:
7336 return 0;
7340 /* Make a clone of DIE. */
7342 static dw_die_ref
7343 clone_die (dw_die_ref die)
7345 dw_die_ref clone;
7346 dw_attr_node *a;
7347 unsigned ix;
7349 clone = ggc_cleared_alloc<die_node> ();
7350 clone->die_tag = die->die_tag;
7352 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
7353 add_dwarf_attr (clone, a);
7355 return clone;
7358 /* Make a clone of the tree rooted at DIE. */
7360 static dw_die_ref
7361 clone_tree (dw_die_ref die)
7363 dw_die_ref c;
7364 dw_die_ref clone = clone_die (die);
7366 FOR_EACH_CHILD (die, c, add_child_die (clone, clone_tree (c)));
7368 return clone;
7371 /* Make a clone of DIE as a declaration. */
7373 static dw_die_ref
7374 clone_as_declaration (dw_die_ref die)
7376 dw_die_ref clone;
7377 dw_die_ref decl;
7378 dw_attr_node *a;
7379 unsigned ix;
7381 /* If the DIE is already a declaration, just clone it. */
7382 if (is_declaration_die (die))
7383 return clone_die (die);
7385 /* If the DIE is a specification, just clone its declaration DIE. */
7386 decl = get_AT_ref (die, DW_AT_specification);
7387 if (decl != NULL)
7389 clone = clone_die (decl);
7390 if (die->comdat_type_p)
7391 add_AT_die_ref (clone, DW_AT_signature, die);
7392 return clone;
7395 clone = ggc_cleared_alloc<die_node> ();
7396 clone->die_tag = die->die_tag;
7398 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
7400 /* We don't want to copy over all attributes.
7401 For example we don't want DW_AT_byte_size because otherwise we will no
7402 longer have a declaration and GDB will treat it as a definition. */
7404 switch (a->dw_attr)
7406 case DW_AT_abstract_origin:
7407 case DW_AT_artificial:
7408 case DW_AT_containing_type:
7409 case DW_AT_external:
7410 case DW_AT_name:
7411 case DW_AT_type:
7412 case DW_AT_virtuality:
7413 case DW_AT_linkage_name:
7414 case DW_AT_MIPS_linkage_name:
7415 add_dwarf_attr (clone, a);
7416 break;
7417 case DW_AT_byte_size:
7418 default:
7419 break;
7423 if (die->comdat_type_p)
7424 add_AT_die_ref (clone, DW_AT_signature, die);
7426 add_AT_flag (clone, DW_AT_declaration, 1);
7427 return clone;
7431 /* Structure to map a DIE in one CU to its copy in a comdat type unit. */
7433 struct decl_table_entry
7435 dw_die_ref orig;
7436 dw_die_ref copy;
7439 /* Helpers to manipulate hash table of copied declarations. */
7441 /* Hashtable helpers. */
7443 struct decl_table_entry_hasher : free_ptr_hash <decl_table_entry>
7445 typedef die_struct *compare_type;
7446 static inline hashval_t hash (const decl_table_entry *);
7447 static inline bool equal (const decl_table_entry *, const die_struct *);
7450 inline hashval_t
7451 decl_table_entry_hasher::hash (const decl_table_entry *entry)
7453 return htab_hash_pointer (entry->orig);
7456 inline bool
7457 decl_table_entry_hasher::equal (const decl_table_entry *entry1,
7458 const die_struct *entry2)
7460 return entry1->orig == entry2;
7463 typedef hash_table<decl_table_entry_hasher> decl_hash_type;
7465 /* Copy DIE and its ancestors, up to, but not including, the compile unit
7466 or type unit entry, to a new tree. Adds the new tree to UNIT and returns
7467 a pointer to the copy of DIE. If DECL_TABLE is provided, it is used
7468 to check if the ancestor has already been copied into UNIT. */
7470 static dw_die_ref
7471 copy_ancestor_tree (dw_die_ref unit, dw_die_ref die,
7472 decl_hash_type *decl_table)
7474 dw_die_ref parent = die->die_parent;
7475 dw_die_ref new_parent = unit;
7476 dw_die_ref copy;
7477 decl_table_entry **slot = NULL;
7478 struct decl_table_entry *entry = NULL;
7480 if (decl_table)
7482 /* Check if the entry has already been copied to UNIT. */
7483 slot = decl_table->find_slot_with_hash (die, htab_hash_pointer (die),
7484 INSERT);
7485 if (*slot != HTAB_EMPTY_ENTRY)
7487 entry = *slot;
7488 return entry->copy;
7491 /* Record in DECL_TABLE that DIE has been copied to UNIT. */
7492 entry = XCNEW (struct decl_table_entry);
7493 entry->orig = die;
7494 entry->copy = NULL;
7495 *slot = entry;
7498 if (parent != NULL)
7500 dw_die_ref spec = get_AT_ref (parent, DW_AT_specification);
7501 if (spec != NULL)
7502 parent = spec;
7503 if (!is_unit_die (parent))
7504 new_parent = copy_ancestor_tree (unit, parent, decl_table);
7507 copy = clone_as_declaration (die);
7508 add_child_die (new_parent, copy);
7510 if (decl_table)
7512 /* Record the pointer to the copy. */
7513 entry->copy = copy;
7516 return copy;
7518 /* Copy the declaration context to the new type unit DIE. This includes
7519 any surrounding namespace or type declarations. If the DIE has an
7520 AT_specification attribute, it also includes attributes and children
7521 attached to the specification, and returns a pointer to the original
7522 parent of the declaration DIE. Returns NULL otherwise. */
7524 static dw_die_ref
7525 copy_declaration_context (dw_die_ref unit, dw_die_ref die)
7527 dw_die_ref decl;
7528 dw_die_ref new_decl;
7529 dw_die_ref orig_parent = NULL;
7531 decl = get_AT_ref (die, DW_AT_specification);
7532 if (decl == NULL)
7533 decl = die;
7534 else
7536 unsigned ix;
7537 dw_die_ref c;
7538 dw_attr_node *a;
7540 /* The original DIE will be changed to a declaration, and must
7541 be moved to be a child of the original declaration DIE. */
7542 orig_parent = decl->die_parent;
7544 /* Copy the type node pointer from the new DIE to the original
7545 declaration DIE so we can forward references later. */
7546 decl->comdat_type_p = true;
7547 decl->die_id.die_type_node = die->die_id.die_type_node;
7549 remove_AT (die, DW_AT_specification);
7551 FOR_EACH_VEC_SAFE_ELT (decl->die_attr, ix, a)
7553 if (a->dw_attr != DW_AT_name
7554 && a->dw_attr != DW_AT_declaration
7555 && a->dw_attr != DW_AT_external)
7556 add_dwarf_attr (die, a);
7559 FOR_EACH_CHILD (decl, c, add_child_die (die, clone_tree (c)));
7562 if (decl->die_parent != NULL
7563 && !is_unit_die (decl->die_parent))
7565 new_decl = copy_ancestor_tree (unit, decl, NULL);
7566 if (new_decl != NULL)
7568 remove_AT (new_decl, DW_AT_signature);
7569 add_AT_specification (die, new_decl);
7573 return orig_parent;
7576 /* Generate the skeleton ancestor tree for the given NODE, then clone
7577 the DIE and add the clone into the tree. */
7579 static void
7580 generate_skeleton_ancestor_tree (skeleton_chain_node *node)
7582 if (node->new_die != NULL)
7583 return;
7585 node->new_die = clone_as_declaration (node->old_die);
7587 if (node->parent != NULL)
7589 generate_skeleton_ancestor_tree (node->parent);
7590 add_child_die (node->parent->new_die, node->new_die);
7594 /* Generate a skeleton tree of DIEs containing any declarations that are
7595 found in the original tree. We traverse the tree looking for declaration
7596 DIEs, and construct the skeleton from the bottom up whenever we find one. */
7598 static void
7599 generate_skeleton_bottom_up (skeleton_chain_node *parent)
7601 skeleton_chain_node node;
7602 dw_die_ref c;
7603 dw_die_ref first;
7604 dw_die_ref prev = NULL;
7605 dw_die_ref next = NULL;
7607 node.parent = parent;
7609 first = c = parent->old_die->die_child;
7610 if (c)
7611 next = c->die_sib;
7612 if (c) do {
7613 if (prev == NULL || prev->die_sib == c)
7614 prev = c;
7615 c = next;
7616 next = (c == first ? NULL : c->die_sib);
7617 node.old_die = c;
7618 node.new_die = NULL;
7619 if (is_declaration_die (c))
7621 if (is_template_instantiation (c))
7623 /* Instantiated templates do not need to be cloned into the
7624 type unit. Just move the DIE and its children back to
7625 the skeleton tree (in the main CU). */
7626 remove_child_with_prev (c, prev);
7627 add_child_die (parent->new_die, c);
7628 c = prev;
7630 else
7632 /* Clone the existing DIE, move the original to the skeleton
7633 tree (which is in the main CU), and put the clone, with
7634 all the original's children, where the original came from
7635 (which is about to be moved to the type unit). */
7636 dw_die_ref clone = clone_die (c);
7637 move_all_children (c, clone);
7639 /* If the original has a DW_AT_object_pointer attribute,
7640 it would now point to a child DIE just moved to the
7641 cloned tree, so we need to remove that attribute from
7642 the original. */
7643 remove_AT (c, DW_AT_object_pointer);
7645 replace_child (c, clone, prev);
7646 generate_skeleton_ancestor_tree (parent);
7647 add_child_die (parent->new_die, c);
7648 node.new_die = c;
7649 c = clone;
7652 generate_skeleton_bottom_up (&node);
7653 } while (next != NULL);
7656 /* Wrapper function for generate_skeleton_bottom_up. */
7658 static dw_die_ref
7659 generate_skeleton (dw_die_ref die)
7661 skeleton_chain_node node;
7663 node.old_die = die;
7664 node.new_die = NULL;
7665 node.parent = NULL;
7667 /* If this type definition is nested inside another type,
7668 and is not an instantiation of a template, always leave
7669 at least a declaration in its place. */
7670 if (die->die_parent != NULL
7671 && is_type_die (die->die_parent)
7672 && !is_template_instantiation (die))
7673 node.new_die = clone_as_declaration (die);
7675 generate_skeleton_bottom_up (&node);
7676 return node.new_die;
7679 /* Remove the CHILD DIE from its parent, possibly replacing it with a cloned
7680 declaration. The original DIE is moved to a new compile unit so that
7681 existing references to it follow it to the new location. If any of the
7682 original DIE's descendants is a declaration, we need to replace the
7683 original DIE with a skeleton tree and move the declarations back into the
7684 skeleton tree. */
7686 static dw_die_ref
7687 remove_child_or_replace_with_skeleton (dw_die_ref unit, dw_die_ref child,
7688 dw_die_ref prev)
7690 dw_die_ref skeleton, orig_parent;
7692 /* Copy the declaration context to the type unit DIE. If the returned
7693 ORIG_PARENT is not NULL, the skeleton needs to be added as a child of
7694 that DIE. */
7695 orig_parent = copy_declaration_context (unit, child);
7697 skeleton = generate_skeleton (child);
7698 if (skeleton == NULL)
7699 remove_child_with_prev (child, prev);
7700 else
7702 skeleton->comdat_type_p = true;
7703 skeleton->die_id.die_type_node = child->die_id.die_type_node;
7705 /* If the original DIE was a specification, we need to put
7706 the skeleton under the parent DIE of the declaration.
7707 This leaves the original declaration in the tree, but
7708 it will be pruned later since there are no longer any
7709 references to it. */
7710 if (orig_parent != NULL)
7712 remove_child_with_prev (child, prev);
7713 add_child_die (orig_parent, skeleton);
7715 else
7716 replace_child (child, skeleton, prev);
7719 return skeleton;
7722 static void
7723 copy_dwarf_procs_ref_in_attrs (dw_die_ref die,
7724 comdat_type_node *type_node,
7725 hash_map<dw_die_ref, dw_die_ref> &copied_dwarf_procs);
7727 /* Helper for copy_dwarf_procs_ref_in_dies. Make a copy of the DIE DWARF
7728 procedure, put it under TYPE_NODE and return the copy. Continue looking for
7729 DWARF procedure references in the DW_AT_location attribute. */
7731 static dw_die_ref
7732 copy_dwarf_procedure (dw_die_ref die,
7733 comdat_type_node *type_node,
7734 hash_map<dw_die_ref, dw_die_ref> &copied_dwarf_procs)
7736 /* We do this for COMDAT section, which is DWARFv4 specific, so
7737 DWARF procedure are always DW_TAG_dwarf_procedure DIEs (unlike
7738 DW_TAG_variable in DWARFv3). */
7739 gcc_assert (die->die_tag == DW_TAG_dwarf_procedure);
7741 /* DWARF procedures are not supposed to have children... */
7742 gcc_assert (die->die_child == NULL);
7744 /* ... and they are supposed to have only one attribute: DW_AT_location. */
7745 gcc_assert (vec_safe_length (die->die_attr) == 1
7746 && ((*die->die_attr)[0].dw_attr == DW_AT_location));
7748 /* Do not copy more than once DWARF procedures. */
7749 bool existed;
7750 dw_die_ref &die_copy = copied_dwarf_procs.get_or_insert (die, &existed);
7751 if (existed)
7752 return die_copy;
7754 die_copy = clone_die (die);
7755 add_child_die (type_node->root_die, die_copy);
7756 copy_dwarf_procs_ref_in_attrs (die_copy, type_node, copied_dwarf_procs);
7757 return die_copy;
7760 /* Helper for copy_dwarf_procs_ref_in_dies. Look for references to DWARF
7761 procedures in DIE's attributes. */
7763 static void
7764 copy_dwarf_procs_ref_in_attrs (dw_die_ref die,
7765 comdat_type_node *type_node,
7766 hash_map<dw_die_ref, dw_die_ref> &copied_dwarf_procs)
7768 dw_attr_node *a;
7769 unsigned i;
7771 FOR_EACH_VEC_SAFE_ELT (die->die_attr, i, a)
7773 dw_loc_descr_ref loc;
7775 if (a->dw_attr_val.val_class != dw_val_class_loc)
7776 continue;
7778 for (loc = a->dw_attr_val.v.val_loc; loc != NULL; loc = loc->dw_loc_next)
7780 switch (loc->dw_loc_opc)
7782 case DW_OP_call2:
7783 case DW_OP_call4:
7784 case DW_OP_call_ref:
7785 gcc_assert (loc->dw_loc_oprnd1.val_class
7786 == dw_val_class_die_ref);
7787 loc->dw_loc_oprnd1.v.val_die_ref.die
7788 = copy_dwarf_procedure (loc->dw_loc_oprnd1.v.val_die_ref.die,
7789 type_node,
7790 copied_dwarf_procs);
7792 default:
7793 break;
7799 /* Copy DWARF procedures that are referenced by the DIE tree to TREE_NODE and
7800 rewrite references to point to the copies.
7802 References are looked for in DIE's attributes and recursively in all its
7803 children attributes that are location descriptions. COPIED_DWARF_PROCS is a
7804 mapping from old DWARF procedures to their copy. It is used not to copy
7805 twice the same DWARF procedure under TYPE_NODE. */
7807 static void
7808 copy_dwarf_procs_ref_in_dies (dw_die_ref die,
7809 comdat_type_node *type_node,
7810 hash_map<dw_die_ref, dw_die_ref> &copied_dwarf_procs)
7812 dw_die_ref c;
7814 copy_dwarf_procs_ref_in_attrs (die, type_node, copied_dwarf_procs);
7815 FOR_EACH_CHILD (die, c, copy_dwarf_procs_ref_in_dies (c,
7816 type_node,
7817 copied_dwarf_procs));
7820 /* Traverse the DIE and set up additional .debug_types sections for each
7821 type worthy of being placed in a COMDAT section. */
7823 static void
7824 break_out_comdat_types (dw_die_ref die)
7826 dw_die_ref c;
7827 dw_die_ref first;
7828 dw_die_ref prev = NULL;
7829 dw_die_ref next = NULL;
7830 dw_die_ref unit = NULL;
7832 first = c = die->die_child;
7833 if (c)
7834 next = c->die_sib;
7835 if (c) do {
7836 if (prev == NULL || prev->die_sib == c)
7837 prev = c;
7838 c = next;
7839 next = (c == first ? NULL : c->die_sib);
7840 if (should_move_die_to_comdat (c))
7842 dw_die_ref replacement;
7843 comdat_type_node *type_node;
7845 /* Break out nested types into their own type units. */
7846 break_out_comdat_types (c);
7848 /* Create a new type unit DIE as the root for the new tree, and
7849 add it to the list of comdat types. */
7850 unit = new_die (DW_TAG_type_unit, NULL, NULL);
7851 add_AT_unsigned (unit, DW_AT_language,
7852 get_AT_unsigned (comp_unit_die (), DW_AT_language));
7853 type_node = ggc_cleared_alloc<comdat_type_node> ();
7854 type_node->root_die = unit;
7855 type_node->next = comdat_type_list;
7856 comdat_type_list = type_node;
7858 /* Generate the type signature. */
7859 generate_type_signature (c, type_node);
7861 /* Copy the declaration context, attributes, and children of the
7862 declaration into the new type unit DIE, then remove this DIE
7863 from the main CU (or replace it with a skeleton if necessary). */
7864 replacement = remove_child_or_replace_with_skeleton (unit, c, prev);
7865 type_node->skeleton_die = replacement;
7867 /* Add the DIE to the new compunit. */
7868 add_child_die (unit, c);
7870 /* Types can reference DWARF procedures for type size or data location
7871 expressions. Calls in DWARF expressions cannot target procedures
7872 that are not in the same section. So we must copy DWARF procedures
7873 along with this type and then rewrite references to them. */
7874 hash_map<dw_die_ref, dw_die_ref> copied_dwarf_procs;
7875 copy_dwarf_procs_ref_in_dies (c, type_node, copied_dwarf_procs);
7877 if (replacement != NULL)
7878 c = replacement;
7880 else if (c->die_tag == DW_TAG_namespace
7881 || c->die_tag == DW_TAG_class_type
7882 || c->die_tag == DW_TAG_structure_type
7883 || c->die_tag == DW_TAG_union_type)
7885 /* Look for nested types that can be broken out. */
7886 break_out_comdat_types (c);
7888 } while (next != NULL);
7891 /* Like clone_tree, but copy DW_TAG_subprogram DIEs as declarations.
7892 Enter all the cloned children into the hash table decl_table. */
7894 static dw_die_ref
7895 clone_tree_partial (dw_die_ref die, decl_hash_type *decl_table)
7897 dw_die_ref c;
7898 dw_die_ref clone;
7899 struct decl_table_entry *entry;
7900 decl_table_entry **slot;
7902 if (die->die_tag == DW_TAG_subprogram)
7903 clone = clone_as_declaration (die);
7904 else
7905 clone = clone_die (die);
7907 slot = decl_table->find_slot_with_hash (die,
7908 htab_hash_pointer (die), INSERT);
7910 /* Assert that DIE isn't in the hash table yet. If it would be there
7911 before, the ancestors would be necessarily there as well, therefore
7912 clone_tree_partial wouldn't be called. */
7913 gcc_assert (*slot == HTAB_EMPTY_ENTRY);
7915 entry = XCNEW (struct decl_table_entry);
7916 entry->orig = die;
7917 entry->copy = clone;
7918 *slot = entry;
7920 if (die->die_tag != DW_TAG_subprogram)
7921 FOR_EACH_CHILD (die, c,
7922 add_child_die (clone, clone_tree_partial (c, decl_table)));
7924 return clone;
7927 /* Walk the DIE and its children, looking for references to incomplete
7928 or trivial types that are unmarked (i.e., that are not in the current
7929 type_unit). */
7931 static void
7932 copy_decls_walk (dw_die_ref unit, dw_die_ref die, decl_hash_type *decl_table)
7934 dw_die_ref c;
7935 dw_attr_node *a;
7936 unsigned ix;
7938 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
7940 if (AT_class (a) == dw_val_class_die_ref)
7942 dw_die_ref targ = AT_ref (a);
7943 decl_table_entry **slot;
7944 struct decl_table_entry *entry;
7946 if (targ->die_mark != 0 || targ->comdat_type_p)
7947 continue;
7949 slot = decl_table->find_slot_with_hash (targ,
7950 htab_hash_pointer (targ),
7951 INSERT);
7953 if (*slot != HTAB_EMPTY_ENTRY)
7955 /* TARG has already been copied, so we just need to
7956 modify the reference to point to the copy. */
7957 entry = *slot;
7958 a->dw_attr_val.v.val_die_ref.die = entry->copy;
7960 else
7962 dw_die_ref parent = unit;
7963 dw_die_ref copy = clone_die (targ);
7965 /* Record in DECL_TABLE that TARG has been copied.
7966 Need to do this now, before the recursive call,
7967 because DECL_TABLE may be expanded and SLOT
7968 would no longer be a valid pointer. */
7969 entry = XCNEW (struct decl_table_entry);
7970 entry->orig = targ;
7971 entry->copy = copy;
7972 *slot = entry;
7974 /* If TARG is not a declaration DIE, we need to copy its
7975 children. */
7976 if (!is_declaration_die (targ))
7978 FOR_EACH_CHILD (
7979 targ, c,
7980 add_child_die (copy,
7981 clone_tree_partial (c, decl_table)));
7984 /* Make sure the cloned tree is marked as part of the
7985 type unit. */
7986 mark_dies (copy);
7988 /* If TARG has surrounding context, copy its ancestor tree
7989 into the new type unit. */
7990 if (targ->die_parent != NULL
7991 && !is_unit_die (targ->die_parent))
7992 parent = copy_ancestor_tree (unit, targ->die_parent,
7993 decl_table);
7995 add_child_die (parent, copy);
7996 a->dw_attr_val.v.val_die_ref.die = copy;
7998 /* Make sure the newly-copied DIE is walked. If it was
7999 installed in a previously-added context, it won't
8000 get visited otherwise. */
8001 if (parent != unit)
8003 /* Find the highest point of the newly-added tree,
8004 mark each node along the way, and walk from there. */
8005 parent->die_mark = 1;
8006 while (parent->die_parent
8007 && parent->die_parent->die_mark == 0)
8009 parent = parent->die_parent;
8010 parent->die_mark = 1;
8012 copy_decls_walk (unit, parent, decl_table);
8018 FOR_EACH_CHILD (die, c, copy_decls_walk (unit, c, decl_table));
8021 /* Copy declarations for "unworthy" types into the new comdat section.
8022 Incomplete types, modified types, and certain other types aren't broken
8023 out into comdat sections of their own, so they don't have a signature,
8024 and we need to copy the declaration into the same section so that we
8025 don't have an external reference. */
8027 static void
8028 copy_decls_for_unworthy_types (dw_die_ref unit)
8030 mark_dies (unit);
8031 decl_hash_type decl_table (10);
8032 copy_decls_walk (unit, unit, &decl_table);
8033 unmark_dies (unit);
8036 /* Traverse the DIE and add a sibling attribute if it may have the
8037 effect of speeding up access to siblings. To save some space,
8038 avoid generating sibling attributes for DIE's without children. */
8040 static void
8041 add_sibling_attributes (dw_die_ref die)
8043 dw_die_ref c;
8045 if (! die->die_child)
8046 return;
8048 if (die->die_parent && die != die->die_parent->die_child)
8049 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
8051 FOR_EACH_CHILD (die, c, add_sibling_attributes (c));
8054 /* Output all location lists for the DIE and its children. */
8056 static void
8057 output_location_lists (dw_die_ref die)
8059 dw_die_ref c;
8060 dw_attr_node *a;
8061 unsigned ix;
8063 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8064 if (AT_class (a) == dw_val_class_loc_list)
8065 output_loc_list (AT_loc_list (a));
8067 FOR_EACH_CHILD (die, c, output_location_lists (c));
8070 /* We want to limit the number of external references, because they are
8071 larger than local references: a relocation takes multiple words, and
8072 even a sig8 reference is always eight bytes, whereas a local reference
8073 can be as small as one byte (though DW_FORM_ref is usually 4 in GCC).
8074 So if we encounter multiple external references to the same type DIE, we
8075 make a local typedef stub for it and redirect all references there.
8077 This is the element of the hash table for keeping track of these
8078 references. */
8080 struct external_ref
8082 dw_die_ref type;
8083 dw_die_ref stub;
8084 unsigned n_refs;
8087 /* Hashtable helpers. */
8089 struct external_ref_hasher : free_ptr_hash <external_ref>
8091 static inline hashval_t hash (const external_ref *);
8092 static inline bool equal (const external_ref *, const external_ref *);
8095 inline hashval_t
8096 external_ref_hasher::hash (const external_ref *r)
8098 dw_die_ref die = r->type;
8099 hashval_t h = 0;
8101 /* We can't use the address of the DIE for hashing, because
8102 that will make the order of the stub DIEs non-deterministic. */
8103 if (! die->comdat_type_p)
8104 /* We have a symbol; use it to compute a hash. */
8105 h = htab_hash_string (die->die_id.die_symbol);
8106 else
8108 /* We have a type signature; use a subset of the bits as the hash.
8109 The 8-byte signature is at least as large as hashval_t. */
8110 comdat_type_node *type_node = die->die_id.die_type_node;
8111 memcpy (&h, type_node->signature, sizeof (h));
8113 return h;
8116 inline bool
8117 external_ref_hasher::equal (const external_ref *r1, const external_ref *r2)
8119 return r1->type == r2->type;
8122 typedef hash_table<external_ref_hasher> external_ref_hash_type;
8124 /* Return a pointer to the external_ref for references to DIE. */
8126 static struct external_ref *
8127 lookup_external_ref (external_ref_hash_type *map, dw_die_ref die)
8129 struct external_ref ref, *ref_p;
8130 external_ref **slot;
8132 ref.type = die;
8133 slot = map->find_slot (&ref, INSERT);
8134 if (*slot != HTAB_EMPTY_ENTRY)
8135 return *slot;
8137 ref_p = XCNEW (struct external_ref);
8138 ref_p->type = die;
8139 *slot = ref_p;
8140 return ref_p;
8143 /* Subroutine of optimize_external_refs, below.
8145 If we see a type skeleton, record it as our stub. If we see external
8146 references, remember how many we've seen. */
8148 static void
8149 optimize_external_refs_1 (dw_die_ref die, external_ref_hash_type *map)
8151 dw_die_ref c;
8152 dw_attr_node *a;
8153 unsigned ix;
8154 struct external_ref *ref_p;
8156 if (is_type_die (die)
8157 && (c = get_AT_ref (die, DW_AT_signature)))
8159 /* This is a local skeleton; use it for local references. */
8160 ref_p = lookup_external_ref (map, c);
8161 ref_p->stub = die;
8164 /* Scan the DIE references, and remember any that refer to DIEs from
8165 other CUs (i.e. those which are not marked). */
8166 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8167 if (AT_class (a) == dw_val_class_die_ref
8168 && (c = AT_ref (a))->die_mark == 0
8169 && is_type_die (c))
8171 ref_p = lookup_external_ref (map, c);
8172 ref_p->n_refs++;
8175 FOR_EACH_CHILD (die, c, optimize_external_refs_1 (c, map));
8178 /* htab_traverse callback function for optimize_external_refs, below. SLOT
8179 points to an external_ref, DATA is the CU we're processing. If we don't
8180 already have a local stub, and we have multiple refs, build a stub. */
8183 dwarf2_build_local_stub (external_ref **slot, dw_die_ref data)
8185 struct external_ref *ref_p = *slot;
8187 if (ref_p->stub == NULL && ref_p->n_refs > 1 && !dwarf_strict)
8189 /* We have multiple references to this type, so build a small stub.
8190 Both of these forms are a bit dodgy from the perspective of the
8191 DWARF standard, since technically they should have names. */
8192 dw_die_ref cu = data;
8193 dw_die_ref type = ref_p->type;
8194 dw_die_ref stub = NULL;
8196 if (type->comdat_type_p)
8198 /* If we refer to this type via sig8, use AT_signature. */
8199 stub = new_die (type->die_tag, cu, NULL_TREE);
8200 add_AT_die_ref (stub, DW_AT_signature, type);
8202 else
8204 /* Otherwise, use a typedef with no name. */
8205 stub = new_die (DW_TAG_typedef, cu, NULL_TREE);
8206 add_AT_die_ref (stub, DW_AT_type, type);
8209 stub->die_mark++;
8210 ref_p->stub = stub;
8212 return 1;
8215 /* DIE is a unit; look through all the DIE references to see if there are
8216 any external references to types, and if so, create local stubs for
8217 them which will be applied in build_abbrev_table. This is useful because
8218 references to local DIEs are smaller. */
8220 static external_ref_hash_type *
8221 optimize_external_refs (dw_die_ref die)
8223 external_ref_hash_type *map = new external_ref_hash_type (10);
8224 optimize_external_refs_1 (die, map);
8225 map->traverse <dw_die_ref, dwarf2_build_local_stub> (die);
8226 return map;
8229 /* The format of each DIE (and its attribute value pairs) is encoded in an
8230 abbreviation table. This routine builds the abbreviation table and assigns
8231 a unique abbreviation id for each abbreviation entry. The children of each
8232 die are visited recursively. */
8234 static void
8235 build_abbrev_table (dw_die_ref die, external_ref_hash_type *extern_map)
8237 unsigned long abbrev_id;
8238 unsigned int n_alloc;
8239 dw_die_ref c;
8240 dw_attr_node *a;
8241 unsigned ix;
8243 /* Scan the DIE references, and replace any that refer to
8244 DIEs from other CUs (i.e. those which are not marked) with
8245 the local stubs we built in optimize_external_refs. */
8246 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8247 if (AT_class (a) == dw_val_class_die_ref
8248 && (c = AT_ref (a))->die_mark == 0)
8250 struct external_ref *ref_p;
8251 gcc_assert (AT_ref (a)->comdat_type_p || AT_ref (a)->die_id.die_symbol);
8253 ref_p = lookup_external_ref (extern_map, c);
8254 if (ref_p->stub && ref_p->stub != die)
8255 change_AT_die_ref (a, ref_p->stub);
8256 else
8257 /* We aren't changing this reference, so mark it external. */
8258 set_AT_ref_external (a, 1);
8261 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
8263 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
8264 dw_attr_node *die_a, *abbrev_a;
8265 unsigned ix;
8266 bool ok = true;
8268 if (abbrev->die_tag != die->die_tag)
8269 continue;
8270 if ((abbrev->die_child != NULL) != (die->die_child != NULL))
8271 continue;
8273 if (vec_safe_length (abbrev->die_attr) != vec_safe_length (die->die_attr))
8274 continue;
8276 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, die_a)
8278 abbrev_a = &(*abbrev->die_attr)[ix];
8279 if ((abbrev_a->dw_attr != die_a->dw_attr)
8280 || (value_format (abbrev_a) != value_format (die_a)))
8282 ok = false;
8283 break;
8286 if (ok)
8287 break;
8290 if (abbrev_id >= abbrev_die_table_in_use)
8292 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
8294 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
8295 abbrev_die_table = GGC_RESIZEVEC (dw_die_ref, abbrev_die_table,
8296 n_alloc);
8298 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
8299 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
8300 abbrev_die_table_allocated = n_alloc;
8303 ++abbrev_die_table_in_use;
8304 abbrev_die_table[abbrev_id] = die;
8307 die->die_abbrev = abbrev_id;
8308 FOR_EACH_CHILD (die, c, build_abbrev_table (c, extern_map));
8311 /* Return the power-of-two number of bytes necessary to represent VALUE. */
8313 static int
8314 constant_size (unsigned HOST_WIDE_INT value)
8316 int log;
8318 if (value == 0)
8319 log = 0;
8320 else
8321 log = floor_log2 (value);
8323 log = log / 8;
8324 log = 1 << (floor_log2 (log) + 1);
8326 return log;
8329 /* Return the size of a DIE as it is represented in the
8330 .debug_info section. */
8332 static unsigned long
8333 size_of_die (dw_die_ref die)
8335 unsigned long size = 0;
8336 dw_attr_node *a;
8337 unsigned ix;
8338 enum dwarf_form form;
8340 size += size_of_uleb128 (die->die_abbrev);
8341 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8343 switch (AT_class (a))
8345 case dw_val_class_addr:
8346 if (dwarf_split_debug_info && AT_index (a) != NOT_INDEXED)
8348 gcc_assert (AT_index (a) != NO_INDEX_ASSIGNED);
8349 size += size_of_uleb128 (AT_index (a));
8351 else
8352 size += DWARF2_ADDR_SIZE;
8353 break;
8354 case dw_val_class_offset:
8355 size += DWARF_OFFSET_SIZE;
8356 break;
8357 case dw_val_class_loc:
8359 unsigned long lsize = size_of_locs (AT_loc (a));
8361 /* Block length. */
8362 if (dwarf_version >= 4)
8363 size += size_of_uleb128 (lsize);
8364 else
8365 size += constant_size (lsize);
8366 size += lsize;
8368 break;
8369 case dw_val_class_loc_list:
8370 if (dwarf_split_debug_info && AT_index (a) != NOT_INDEXED)
8372 gcc_assert (AT_index (a) != NO_INDEX_ASSIGNED);
8373 size += size_of_uleb128 (AT_index (a));
8375 else
8376 size += DWARF_OFFSET_SIZE;
8377 break;
8378 case dw_val_class_range_list:
8379 size += DWARF_OFFSET_SIZE;
8380 break;
8381 case dw_val_class_const:
8382 size += size_of_sleb128 (AT_int (a));
8383 break;
8384 case dw_val_class_unsigned_const:
8386 int csize = constant_size (AT_unsigned (a));
8387 if (dwarf_version == 3
8388 && a->dw_attr == DW_AT_data_member_location
8389 && csize >= 4)
8390 size += size_of_uleb128 (AT_unsigned (a));
8391 else
8392 size += csize;
8394 break;
8395 case dw_val_class_const_double:
8396 size += HOST_BITS_PER_DOUBLE_INT / HOST_BITS_PER_CHAR;
8397 if (HOST_BITS_PER_WIDE_INT >= 64)
8398 size++; /* block */
8399 break;
8400 case dw_val_class_wide_int:
8401 size += (get_full_len (*a->dw_attr_val.v.val_wide)
8402 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
8403 if (get_full_len (*a->dw_attr_val.v.val_wide) * HOST_BITS_PER_WIDE_INT
8404 > 64)
8405 size++; /* block */
8406 break;
8407 case dw_val_class_vec:
8408 size += constant_size (a->dw_attr_val.v.val_vec.length
8409 * a->dw_attr_val.v.val_vec.elt_size)
8410 + a->dw_attr_val.v.val_vec.length
8411 * a->dw_attr_val.v.val_vec.elt_size; /* block */
8412 break;
8413 case dw_val_class_flag:
8414 if (dwarf_version >= 4)
8415 /* Currently all add_AT_flag calls pass in 1 as last argument,
8416 so DW_FORM_flag_present can be used. If that ever changes,
8417 we'll need to use DW_FORM_flag and have some optimization
8418 in build_abbrev_table that will change those to
8419 DW_FORM_flag_present if it is set to 1 in all DIEs using
8420 the same abbrev entry. */
8421 gcc_assert (a->dw_attr_val.v.val_flag == 1);
8422 else
8423 size += 1;
8424 break;
8425 case dw_val_class_die_ref:
8426 if (AT_ref_external (a))
8428 /* In DWARF4, we use DW_FORM_ref_sig8; for earlier versions
8429 we use DW_FORM_ref_addr. In DWARF2, DW_FORM_ref_addr
8430 is sized by target address length, whereas in DWARF3
8431 it's always sized as an offset. */
8432 if (use_debug_types)
8433 size += DWARF_TYPE_SIGNATURE_SIZE;
8434 else if (dwarf_version == 2)
8435 size += DWARF2_ADDR_SIZE;
8436 else
8437 size += DWARF_OFFSET_SIZE;
8439 else
8440 size += DWARF_OFFSET_SIZE;
8441 break;
8442 case dw_val_class_fde_ref:
8443 size += DWARF_OFFSET_SIZE;
8444 break;
8445 case dw_val_class_lbl_id:
8446 if (dwarf_split_debug_info && AT_index (a) != NOT_INDEXED)
8448 gcc_assert (AT_index (a) != NO_INDEX_ASSIGNED);
8449 size += size_of_uleb128 (AT_index (a));
8451 else
8452 size += DWARF2_ADDR_SIZE;
8453 break;
8454 case dw_val_class_lineptr:
8455 case dw_val_class_macptr:
8456 size += DWARF_OFFSET_SIZE;
8457 break;
8458 case dw_val_class_str:
8459 form = AT_string_form (a);
8460 if (form == DW_FORM_strp)
8461 size += DWARF_OFFSET_SIZE;
8462 else if (form == DW_FORM_GNU_str_index)
8463 size += size_of_uleb128 (AT_index (a));
8464 else
8465 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
8466 break;
8467 case dw_val_class_file:
8468 size += constant_size (maybe_emit_file (a->dw_attr_val.v.val_file));
8469 break;
8470 case dw_val_class_data8:
8471 size += 8;
8472 break;
8473 case dw_val_class_vms_delta:
8474 size += DWARF_OFFSET_SIZE;
8475 break;
8476 case dw_val_class_high_pc:
8477 size += DWARF2_ADDR_SIZE;
8478 break;
8479 case dw_val_class_discr_value:
8480 size += size_of_discr_value (&a->dw_attr_val.v.val_discr_value);
8481 break;
8482 case dw_val_class_discr_list:
8484 unsigned block_size = size_of_discr_list (AT_discr_list (a));
8486 /* This is a block, so we have the block length and then its
8487 data. */
8488 size += constant_size (block_size) + block_size;
8490 break;
8491 default:
8492 gcc_unreachable ();
8496 return size;
8499 /* Size the debugging information associated with a given DIE. Visits the
8500 DIE's children recursively. Updates the global variable next_die_offset, on
8501 each time through. Uses the current value of next_die_offset to update the
8502 die_offset field in each DIE. */
8504 static void
8505 calc_die_sizes (dw_die_ref die)
8507 dw_die_ref c;
8509 gcc_assert (die->die_offset == 0
8510 || (unsigned long int) die->die_offset == next_die_offset);
8511 die->die_offset = next_die_offset;
8512 next_die_offset += size_of_die (die);
8514 FOR_EACH_CHILD (die, c, calc_die_sizes (c));
8516 if (die->die_child != NULL)
8517 /* Count the null byte used to terminate sibling lists. */
8518 next_die_offset += 1;
8521 /* Size just the base type children at the start of the CU.
8522 This is needed because build_abbrev needs to size locs
8523 and sizing of type based stack ops needs to know die_offset
8524 values for the base types. */
8526 static void
8527 calc_base_type_die_sizes (void)
8529 unsigned long die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
8530 unsigned int i;
8531 dw_die_ref base_type;
8532 #if ENABLE_ASSERT_CHECKING
8533 dw_die_ref prev = comp_unit_die ()->die_child;
8534 #endif
8536 die_offset += size_of_die (comp_unit_die ());
8537 for (i = 0; base_types.iterate (i, &base_type); i++)
8539 #if ENABLE_ASSERT_CHECKING
8540 gcc_assert (base_type->die_offset == 0
8541 && prev->die_sib == base_type
8542 && base_type->die_child == NULL
8543 && base_type->die_abbrev);
8544 prev = base_type;
8545 #endif
8546 base_type->die_offset = die_offset;
8547 die_offset += size_of_die (base_type);
8551 /* Set the marks for a die and its children. We do this so
8552 that we know whether or not a reference needs to use FORM_ref_addr; only
8553 DIEs in the same CU will be marked. We used to clear out the offset
8554 and use that as the flag, but ran into ordering problems. */
8556 static void
8557 mark_dies (dw_die_ref die)
8559 dw_die_ref c;
8561 gcc_assert (!die->die_mark);
8563 die->die_mark = 1;
8564 FOR_EACH_CHILD (die, c, mark_dies (c));
8567 /* Clear the marks for a die and its children. */
8569 static void
8570 unmark_dies (dw_die_ref die)
8572 dw_die_ref c;
8574 if (! use_debug_types)
8575 gcc_assert (die->die_mark);
8577 die->die_mark = 0;
8578 FOR_EACH_CHILD (die, c, unmark_dies (c));
8581 /* Clear the marks for a die, its children and referred dies. */
8583 static void
8584 unmark_all_dies (dw_die_ref die)
8586 dw_die_ref c;
8587 dw_attr_node *a;
8588 unsigned ix;
8590 if (!die->die_mark)
8591 return;
8592 die->die_mark = 0;
8594 FOR_EACH_CHILD (die, c, unmark_all_dies (c));
8596 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8597 if (AT_class (a) == dw_val_class_die_ref)
8598 unmark_all_dies (AT_ref (a));
8601 /* Calculate if the entry should appear in the final output file. It may be
8602 from a pruned a type. */
8604 static bool
8605 include_pubname_in_output (vec<pubname_entry, va_gc> *table, pubname_entry *p)
8607 /* By limiting gnu pubnames to definitions only, gold can generate a
8608 gdb index without entries for declarations, which don't include
8609 enough information to be useful. */
8610 if (debug_generate_pub_sections == 2 && is_declaration_die (p->die))
8611 return false;
8613 if (table == pubname_table)
8615 /* Enumerator names are part of the pubname table, but the
8616 parent DW_TAG_enumeration_type die may have been pruned.
8617 Don't output them if that is the case. */
8618 if (p->die->die_tag == DW_TAG_enumerator &&
8619 (p->die->die_parent == NULL
8620 || !p->die->die_parent->die_perennial_p))
8621 return false;
8623 /* Everything else in the pubname table is included. */
8624 return true;
8627 /* The pubtypes table shouldn't include types that have been
8628 pruned. */
8629 return (p->die->die_offset != 0
8630 || !flag_eliminate_unused_debug_types);
8633 /* Return the size of the .debug_pubnames or .debug_pubtypes table
8634 generated for the compilation unit. */
8636 static unsigned long
8637 size_of_pubnames (vec<pubname_entry, va_gc> *names)
8639 unsigned long size;
8640 unsigned i;
8641 pubname_entry *p;
8642 int space_for_flags = (debug_generate_pub_sections == 2) ? 1 : 0;
8644 size = DWARF_PUBNAMES_HEADER_SIZE;
8645 FOR_EACH_VEC_ELT (*names, i, p)
8646 if (include_pubname_in_output (names, p))
8647 size += strlen (p->name) + DWARF_OFFSET_SIZE + 1 + space_for_flags;
8649 size += DWARF_OFFSET_SIZE;
8650 return size;
8653 /* Return the size of the information in the .debug_aranges section. */
8655 static unsigned long
8656 size_of_aranges (void)
8658 unsigned long size;
8660 size = DWARF_ARANGES_HEADER_SIZE;
8662 /* Count the address/length pair for this compilation unit. */
8663 if (text_section_used)
8664 size += 2 * DWARF2_ADDR_SIZE;
8665 if (cold_text_section_used)
8666 size += 2 * DWARF2_ADDR_SIZE;
8667 if (have_multiple_function_sections)
8669 unsigned fde_idx;
8670 dw_fde_ref fde;
8672 FOR_EACH_VEC_ELT (*fde_vec, fde_idx, fde)
8674 if (DECL_IGNORED_P (fde->decl))
8675 continue;
8676 if (!fde->in_std_section)
8677 size += 2 * DWARF2_ADDR_SIZE;
8678 if (fde->dw_fde_second_begin && !fde->second_in_std_section)
8679 size += 2 * DWARF2_ADDR_SIZE;
8683 /* Count the two zero words used to terminated the address range table. */
8684 size += 2 * DWARF2_ADDR_SIZE;
8685 return size;
8688 /* Select the encoding of an attribute value. */
8690 static enum dwarf_form
8691 value_format (dw_attr_node *a)
8693 switch (AT_class (a))
8695 case dw_val_class_addr:
8696 /* Only very few attributes allow DW_FORM_addr. */
8697 switch (a->dw_attr)
8699 case DW_AT_low_pc:
8700 case DW_AT_high_pc:
8701 case DW_AT_entry_pc:
8702 case DW_AT_trampoline:
8703 return (AT_index (a) == NOT_INDEXED
8704 ? DW_FORM_addr : DW_FORM_GNU_addr_index);
8705 default:
8706 break;
8708 switch (DWARF2_ADDR_SIZE)
8710 case 1:
8711 return DW_FORM_data1;
8712 case 2:
8713 return DW_FORM_data2;
8714 case 4:
8715 return DW_FORM_data4;
8716 case 8:
8717 return DW_FORM_data8;
8718 default:
8719 gcc_unreachable ();
8721 case dw_val_class_range_list:
8722 case dw_val_class_loc_list:
8723 if (dwarf_version >= 4)
8724 return DW_FORM_sec_offset;
8725 /* FALLTHRU */
8726 case dw_val_class_vms_delta:
8727 case dw_val_class_offset:
8728 switch (DWARF_OFFSET_SIZE)
8730 case 4:
8731 return DW_FORM_data4;
8732 case 8:
8733 return DW_FORM_data8;
8734 default:
8735 gcc_unreachable ();
8737 case dw_val_class_loc:
8738 if (dwarf_version >= 4)
8739 return DW_FORM_exprloc;
8740 switch (constant_size (size_of_locs (AT_loc (a))))
8742 case 1:
8743 return DW_FORM_block1;
8744 case 2:
8745 return DW_FORM_block2;
8746 case 4:
8747 return DW_FORM_block4;
8748 default:
8749 gcc_unreachable ();
8751 case dw_val_class_const:
8752 return DW_FORM_sdata;
8753 case dw_val_class_unsigned_const:
8754 switch (constant_size (AT_unsigned (a)))
8756 case 1:
8757 return DW_FORM_data1;
8758 case 2:
8759 return DW_FORM_data2;
8760 case 4:
8761 /* In DWARF3 DW_AT_data_member_location with
8762 DW_FORM_data4 or DW_FORM_data8 is a loclistptr, not
8763 constant, so we need to use DW_FORM_udata if we need
8764 a large constant. */
8765 if (dwarf_version == 3 && a->dw_attr == DW_AT_data_member_location)
8766 return DW_FORM_udata;
8767 return DW_FORM_data4;
8768 case 8:
8769 if (dwarf_version == 3 && a->dw_attr == DW_AT_data_member_location)
8770 return DW_FORM_udata;
8771 return DW_FORM_data8;
8772 default:
8773 gcc_unreachable ();
8775 case dw_val_class_const_double:
8776 switch (HOST_BITS_PER_WIDE_INT)
8778 case 8:
8779 return DW_FORM_data2;
8780 case 16:
8781 return DW_FORM_data4;
8782 case 32:
8783 return DW_FORM_data8;
8784 case 64:
8785 default:
8786 return DW_FORM_block1;
8788 case dw_val_class_wide_int:
8789 switch (get_full_len (*a->dw_attr_val.v.val_wide) * HOST_BITS_PER_WIDE_INT)
8791 case 8:
8792 return DW_FORM_data1;
8793 case 16:
8794 return DW_FORM_data2;
8795 case 32:
8796 return DW_FORM_data4;
8797 case 64:
8798 return DW_FORM_data8;
8799 default:
8800 return DW_FORM_block1;
8802 case dw_val_class_vec:
8803 switch (constant_size (a->dw_attr_val.v.val_vec.length
8804 * a->dw_attr_val.v.val_vec.elt_size))
8806 case 1:
8807 return DW_FORM_block1;
8808 case 2:
8809 return DW_FORM_block2;
8810 case 4:
8811 return DW_FORM_block4;
8812 default:
8813 gcc_unreachable ();
8815 case dw_val_class_flag:
8816 if (dwarf_version >= 4)
8818 /* Currently all add_AT_flag calls pass in 1 as last argument,
8819 so DW_FORM_flag_present can be used. If that ever changes,
8820 we'll need to use DW_FORM_flag and have some optimization
8821 in build_abbrev_table that will change those to
8822 DW_FORM_flag_present if it is set to 1 in all DIEs using
8823 the same abbrev entry. */
8824 gcc_assert (a->dw_attr_val.v.val_flag == 1);
8825 return DW_FORM_flag_present;
8827 return DW_FORM_flag;
8828 case dw_val_class_die_ref:
8829 if (AT_ref_external (a))
8830 return use_debug_types ? DW_FORM_ref_sig8 : DW_FORM_ref_addr;
8831 else
8832 return DW_FORM_ref;
8833 case dw_val_class_fde_ref:
8834 return DW_FORM_data;
8835 case dw_val_class_lbl_id:
8836 return (AT_index (a) == NOT_INDEXED
8837 ? DW_FORM_addr : DW_FORM_GNU_addr_index);
8838 case dw_val_class_lineptr:
8839 case dw_val_class_macptr:
8840 return dwarf_version >= 4 ? DW_FORM_sec_offset : DW_FORM_data;
8841 case dw_val_class_str:
8842 return AT_string_form (a);
8843 case dw_val_class_file:
8844 switch (constant_size (maybe_emit_file (a->dw_attr_val.v.val_file)))
8846 case 1:
8847 return DW_FORM_data1;
8848 case 2:
8849 return DW_FORM_data2;
8850 case 4:
8851 return DW_FORM_data4;
8852 default:
8853 gcc_unreachable ();
8856 case dw_val_class_data8:
8857 return DW_FORM_data8;
8859 case dw_val_class_high_pc:
8860 switch (DWARF2_ADDR_SIZE)
8862 case 1:
8863 return DW_FORM_data1;
8864 case 2:
8865 return DW_FORM_data2;
8866 case 4:
8867 return DW_FORM_data4;
8868 case 8:
8869 return DW_FORM_data8;
8870 default:
8871 gcc_unreachable ();
8874 case dw_val_class_discr_value:
8875 return (a->dw_attr_val.v.val_discr_value.pos
8876 ? DW_FORM_udata
8877 : DW_FORM_sdata);
8878 case dw_val_class_discr_list:
8879 switch (constant_size (size_of_discr_list (AT_discr_list (a))))
8881 case 1:
8882 return DW_FORM_block1;
8883 case 2:
8884 return DW_FORM_block2;
8885 case 4:
8886 return DW_FORM_block4;
8887 default:
8888 gcc_unreachable ();
8891 default:
8892 gcc_unreachable ();
8896 /* Output the encoding of an attribute value. */
8898 static void
8899 output_value_format (dw_attr_node *a)
8901 enum dwarf_form form = value_format (a);
8903 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
8906 /* Given a die and id, produce the appropriate abbreviations. */
8908 static void
8909 output_die_abbrevs (unsigned long abbrev_id, dw_die_ref abbrev)
8911 unsigned ix;
8912 dw_attr_node *a_attr;
8914 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
8915 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
8916 dwarf_tag_name (abbrev->die_tag));
8918 if (abbrev->die_child != NULL)
8919 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
8920 else
8921 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
8923 for (ix = 0; vec_safe_iterate (abbrev->die_attr, ix, &a_attr); ix++)
8925 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
8926 dwarf_attr_name (a_attr->dw_attr));
8927 output_value_format (a_attr);
8930 dw2_asm_output_data (1, 0, NULL);
8931 dw2_asm_output_data (1, 0, NULL);
8935 /* Output the .debug_abbrev section which defines the DIE abbreviation
8936 table. */
8938 static void
8939 output_abbrev_section (void)
8941 unsigned long abbrev_id;
8943 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
8944 output_die_abbrevs (abbrev_id, abbrev_die_table[abbrev_id]);
8946 /* Terminate the table. */
8947 dw2_asm_output_data (1, 0, NULL);
8950 /* Output a symbol we can use to refer to this DIE from another CU. */
8952 static inline void
8953 output_die_symbol (dw_die_ref die)
8955 const char *sym = die->die_id.die_symbol;
8957 gcc_assert (!die->comdat_type_p);
8959 if (sym == 0)
8960 return;
8962 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
8963 /* We make these global, not weak; if the target doesn't support
8964 .linkonce, it doesn't support combining the sections, so debugging
8965 will break. */
8966 targetm.asm_out.globalize_label (asm_out_file, sym);
8968 ASM_OUTPUT_LABEL (asm_out_file, sym);
8971 /* Return a new location list, given the begin and end range, and the
8972 expression. */
8974 static inline dw_loc_list_ref
8975 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
8976 const char *section)
8978 dw_loc_list_ref retlist = ggc_cleared_alloc<dw_loc_list_node> ();
8980 retlist->begin = begin;
8981 retlist->begin_entry = NULL;
8982 retlist->end = end;
8983 retlist->expr = expr;
8984 retlist->section = section;
8986 return retlist;
8989 /* Generate a new internal symbol for this location list node, if it
8990 hasn't got one yet. */
8992 static inline void
8993 gen_llsym (dw_loc_list_ref list)
8995 gcc_assert (!list->ll_symbol);
8996 list->ll_symbol = gen_internal_sym ("LLST");
8999 /* Output the location list given to us. */
9001 static void
9002 output_loc_list (dw_loc_list_ref list_head)
9004 dw_loc_list_ref curr = list_head;
9006 if (list_head->emitted)
9007 return;
9008 list_head->emitted = true;
9010 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
9012 /* Walk the location list, and output each range + expression. */
9013 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
9015 unsigned long size;
9016 /* Don't output an entry that starts and ends at the same address. */
9017 if (strcmp (curr->begin, curr->end) == 0 && !curr->force)
9018 continue;
9019 size = size_of_locs (curr->expr);
9020 /* If the expression is too large, drop it on the floor. We could
9021 perhaps put it into DW_TAG_dwarf_procedure and refer to that
9022 in the expression, but >= 64KB expressions for a single value
9023 in a single range are unlikely very useful. */
9024 if (size > 0xffff)
9025 continue;
9026 if (dwarf_split_debug_info)
9028 dw2_asm_output_data (1, DW_LLE_GNU_start_length_entry,
9029 "Location list start/length entry (%s)",
9030 list_head->ll_symbol);
9031 dw2_asm_output_data_uleb128 (curr->begin_entry->index,
9032 "Location list range start index (%s)",
9033 curr->begin);
9034 /* The length field is 4 bytes. If we ever need to support
9035 an 8-byte length, we can add a new DW_LLE code or fall back
9036 to DW_LLE_GNU_start_end_entry. */
9037 dw2_asm_output_delta (4, curr->end, curr->begin,
9038 "Location list range length (%s)",
9039 list_head->ll_symbol);
9041 else if (!have_multiple_function_sections)
9043 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
9044 "Location list begin address (%s)",
9045 list_head->ll_symbol);
9046 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
9047 "Location list end address (%s)",
9048 list_head->ll_symbol);
9050 else
9052 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
9053 "Location list begin address (%s)",
9054 list_head->ll_symbol);
9055 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
9056 "Location list end address (%s)",
9057 list_head->ll_symbol);
9060 /* Output the block length for this list of location operations. */
9061 gcc_assert (size <= 0xffff);
9062 dw2_asm_output_data (2, size, "%s", "Location expression size");
9064 output_loc_sequence (curr->expr, -1);
9067 if (dwarf_split_debug_info)
9068 dw2_asm_output_data (1, DW_LLE_GNU_end_of_list_entry,
9069 "Location list terminator (%s)",
9070 list_head->ll_symbol);
9071 else
9073 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
9074 "Location list terminator begin (%s)",
9075 list_head->ll_symbol);
9076 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
9077 "Location list terminator end (%s)",
9078 list_head->ll_symbol);
9082 /* Output a range_list offset into the debug_range section. Emit a
9083 relocated reference if val_entry is NULL, otherwise, emit an
9084 indirect reference. */
9086 static void
9087 output_range_list_offset (dw_attr_node *a)
9089 const char *name = dwarf_attr_name (a->dw_attr);
9091 if (a->dw_attr_val.val_entry == RELOCATED_OFFSET)
9093 char *p = strchr (ranges_section_label, '\0');
9094 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX, a->dw_attr_val.v.val_offset);
9095 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
9096 debug_ranges_section, "%s", name);
9097 *p = '\0';
9099 else
9100 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
9101 "%s (offset from %s)", name, ranges_section_label);
9104 /* Output the offset into the debug_loc section. */
9106 static void
9107 output_loc_list_offset (dw_attr_node *a)
9109 char *sym = AT_loc_list (a)->ll_symbol;
9111 gcc_assert (sym);
9112 if (dwarf_split_debug_info)
9113 dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym, loc_section_label,
9114 "%s", dwarf_attr_name (a->dw_attr));
9115 else
9116 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, debug_loc_section,
9117 "%s", dwarf_attr_name (a->dw_attr));
9120 /* Output an attribute's index or value appropriately. */
9122 static void
9123 output_attr_index_or_value (dw_attr_node *a)
9125 const char *name = dwarf_attr_name (a->dw_attr);
9127 if (dwarf_split_debug_info && AT_index (a) != NOT_INDEXED)
9129 dw2_asm_output_data_uleb128 (AT_index (a), "%s", name);
9130 return;
9132 switch (AT_class (a))
9134 case dw_val_class_addr:
9135 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
9136 break;
9137 case dw_val_class_high_pc:
9138 case dw_val_class_lbl_id:
9139 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
9140 break;
9141 case dw_val_class_loc_list:
9142 output_loc_list_offset (a);
9143 break;
9144 default:
9145 gcc_unreachable ();
9149 /* Output a type signature. */
9151 static inline void
9152 output_signature (const char *sig, const char *name)
9154 int i;
9156 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
9157 dw2_asm_output_data (1, sig[i], i == 0 ? "%s" : NULL, name);
9160 /* Output a discriminant value. */
9162 static inline void
9163 output_discr_value (dw_discr_value *discr_value, const char *name)
9165 if (discr_value->pos)
9166 dw2_asm_output_data_uleb128 (discr_value->v.uval, "%s", name);
9167 else
9168 dw2_asm_output_data_sleb128 (discr_value->v.sval, "%s", name);
9171 /* Output the DIE and its attributes. Called recursively to generate
9172 the definitions of each child DIE. */
9174 static void
9175 output_die (dw_die_ref die)
9177 dw_attr_node *a;
9178 dw_die_ref c;
9179 unsigned long size;
9180 unsigned ix;
9182 /* If someone in another CU might refer to us, set up a symbol for
9183 them to point to. */
9184 if (! die->comdat_type_p && die->die_id.die_symbol)
9185 output_die_symbol (die);
9187 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (%#lx) %s)",
9188 (unsigned long)die->die_offset,
9189 dwarf_tag_name (die->die_tag));
9191 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
9193 const char *name = dwarf_attr_name (a->dw_attr);
9195 switch (AT_class (a))
9197 case dw_val_class_addr:
9198 output_attr_index_or_value (a);
9199 break;
9201 case dw_val_class_offset:
9202 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
9203 "%s", name);
9204 break;
9206 case dw_val_class_range_list:
9207 output_range_list_offset (a);
9208 break;
9210 case dw_val_class_loc:
9211 size = size_of_locs (AT_loc (a));
9213 /* Output the block length for this list of location operations. */
9214 if (dwarf_version >= 4)
9215 dw2_asm_output_data_uleb128 (size, "%s", name);
9216 else
9217 dw2_asm_output_data (constant_size (size), size, "%s", name);
9219 output_loc_sequence (AT_loc (a), -1);
9220 break;
9222 case dw_val_class_const:
9223 /* ??? It would be slightly more efficient to use a scheme like is
9224 used for unsigned constants below, but gdb 4.x does not sign
9225 extend. Gdb 5.x does sign extend. */
9226 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
9227 break;
9229 case dw_val_class_unsigned_const:
9231 int csize = constant_size (AT_unsigned (a));
9232 if (dwarf_version == 3
9233 && a->dw_attr == DW_AT_data_member_location
9234 && csize >= 4)
9235 dw2_asm_output_data_uleb128 (AT_unsigned (a), "%s", name);
9236 else
9237 dw2_asm_output_data (csize, AT_unsigned (a), "%s", name);
9239 break;
9241 case dw_val_class_const_double:
9243 unsigned HOST_WIDE_INT first, second;
9245 if (HOST_BITS_PER_WIDE_INT >= 64)
9246 dw2_asm_output_data (1,
9247 HOST_BITS_PER_DOUBLE_INT
9248 / HOST_BITS_PER_CHAR,
9249 NULL);
9251 if (WORDS_BIG_ENDIAN)
9253 first = a->dw_attr_val.v.val_double.high;
9254 second = a->dw_attr_val.v.val_double.low;
9256 else
9258 first = a->dw_attr_val.v.val_double.low;
9259 second = a->dw_attr_val.v.val_double.high;
9262 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
9263 first, "%s", name);
9264 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
9265 second, NULL);
9267 break;
9269 case dw_val_class_wide_int:
9271 int i;
9272 int len = get_full_len (*a->dw_attr_val.v.val_wide);
9273 int l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
9274 if (len * HOST_BITS_PER_WIDE_INT > 64)
9275 dw2_asm_output_data (1, get_full_len (*a->dw_attr_val.v.val_wide) * l,
9276 NULL);
9278 if (WORDS_BIG_ENDIAN)
9279 for (i = len - 1; i >= 0; --i)
9281 dw2_asm_output_data (l, a->dw_attr_val.v.val_wide->elt (i),
9282 "%s", name);
9283 name = "";
9285 else
9286 for (i = 0; i < len; ++i)
9288 dw2_asm_output_data (l, a->dw_attr_val.v.val_wide->elt (i),
9289 "%s", name);
9290 name = "";
9293 break;
9295 case dw_val_class_vec:
9297 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
9298 unsigned int len = a->dw_attr_val.v.val_vec.length;
9299 unsigned int i;
9300 unsigned char *p;
9302 dw2_asm_output_data (constant_size (len * elt_size),
9303 len * elt_size, "%s", name);
9304 if (elt_size > sizeof (HOST_WIDE_INT))
9306 elt_size /= 2;
9307 len *= 2;
9309 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
9310 i < len;
9311 i++, p += elt_size)
9312 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
9313 "fp or vector constant word %u", i);
9314 break;
9317 case dw_val_class_flag:
9318 if (dwarf_version >= 4)
9320 /* Currently all add_AT_flag calls pass in 1 as last argument,
9321 so DW_FORM_flag_present can be used. If that ever changes,
9322 we'll need to use DW_FORM_flag and have some optimization
9323 in build_abbrev_table that will change those to
9324 DW_FORM_flag_present if it is set to 1 in all DIEs using
9325 the same abbrev entry. */
9326 gcc_assert (AT_flag (a) == 1);
9327 if (flag_debug_asm)
9328 fprintf (asm_out_file, "\t\t\t%s %s\n",
9329 ASM_COMMENT_START, name);
9330 break;
9332 dw2_asm_output_data (1, AT_flag (a), "%s", name);
9333 break;
9335 case dw_val_class_loc_list:
9336 output_attr_index_or_value (a);
9337 break;
9339 case dw_val_class_die_ref:
9340 if (AT_ref_external (a))
9342 if (AT_ref (a)->comdat_type_p)
9344 comdat_type_node *type_node =
9345 AT_ref (a)->die_id.die_type_node;
9347 gcc_assert (type_node);
9348 output_signature (type_node->signature, name);
9350 else
9352 const char *sym = AT_ref (a)->die_id.die_symbol;
9353 int size;
9355 gcc_assert (sym);
9356 /* In DWARF2, DW_FORM_ref_addr is sized by target address
9357 length, whereas in DWARF3 it's always sized as an
9358 offset. */
9359 if (dwarf_version == 2)
9360 size = DWARF2_ADDR_SIZE;
9361 else
9362 size = DWARF_OFFSET_SIZE;
9363 dw2_asm_output_offset (size, sym, debug_info_section, "%s",
9364 name);
9367 else
9369 gcc_assert (AT_ref (a)->die_offset);
9370 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
9371 "%s", name);
9373 break;
9375 case dw_val_class_fde_ref:
9377 char l1[20];
9379 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
9380 a->dw_attr_val.v.val_fde_index * 2);
9381 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, debug_frame_section,
9382 "%s", name);
9384 break;
9386 case dw_val_class_vms_delta:
9387 #ifdef ASM_OUTPUT_DWARF_VMS_DELTA
9388 dw2_asm_output_vms_delta (DWARF_OFFSET_SIZE,
9389 AT_vms_delta2 (a), AT_vms_delta1 (a),
9390 "%s", name);
9391 #else
9392 dw2_asm_output_delta (DWARF_OFFSET_SIZE,
9393 AT_vms_delta2 (a), AT_vms_delta1 (a),
9394 "%s", name);
9395 #endif
9396 break;
9398 case dw_val_class_lbl_id:
9399 output_attr_index_or_value (a);
9400 break;
9402 case dw_val_class_lineptr:
9403 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
9404 debug_line_section, "%s", name);
9405 break;
9407 case dw_val_class_macptr:
9408 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
9409 debug_macinfo_section, "%s", name);
9410 break;
9412 case dw_val_class_str:
9413 if (a->dw_attr_val.v.val_str->form == DW_FORM_strp)
9414 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
9415 a->dw_attr_val.v.val_str->label,
9416 debug_str_section,
9417 "%s: \"%s\"", name, AT_string (a));
9418 else if (a->dw_attr_val.v.val_str->form == DW_FORM_GNU_str_index)
9419 dw2_asm_output_data_uleb128 (AT_index (a),
9420 "%s: \"%s\"", name, AT_string (a));
9421 else
9422 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
9423 break;
9425 case dw_val_class_file:
9427 int f = maybe_emit_file (a->dw_attr_val.v.val_file);
9429 dw2_asm_output_data (constant_size (f), f, "%s (%s)", name,
9430 a->dw_attr_val.v.val_file->filename);
9431 break;
9434 case dw_val_class_data8:
9436 int i;
9438 for (i = 0; i < 8; i++)
9439 dw2_asm_output_data (1, a->dw_attr_val.v.val_data8[i],
9440 i == 0 ? "%s" : NULL, name);
9441 break;
9444 case dw_val_class_high_pc:
9445 dw2_asm_output_delta (DWARF2_ADDR_SIZE, AT_lbl (a),
9446 get_AT_low_pc (die), "DW_AT_high_pc");
9447 break;
9449 case dw_val_class_discr_value:
9450 output_discr_value (&a->dw_attr_val.v.val_discr_value, name);
9451 break;
9453 case dw_val_class_discr_list:
9455 dw_discr_list_ref list = AT_discr_list (a);
9456 const int size = size_of_discr_list (list);
9458 /* This is a block, so output its length first. */
9459 dw2_asm_output_data (constant_size (size), size,
9460 "%s: block size", name);
9462 for (; list != NULL; list = list->dw_discr_next)
9464 /* One byte for the discriminant value descriptor, and then as
9465 many LEB128 numbers as required. */
9466 if (list->dw_discr_range)
9467 dw2_asm_output_data (1, DW_DSC_range,
9468 "%s: DW_DSC_range", name);
9469 else
9470 dw2_asm_output_data (1, DW_DSC_label,
9471 "%s: DW_DSC_label", name);
9473 output_discr_value (&list->dw_discr_lower_bound, name);
9474 if (list->dw_discr_range)
9475 output_discr_value (&list->dw_discr_upper_bound, name);
9477 break;
9480 default:
9481 gcc_unreachable ();
9485 FOR_EACH_CHILD (die, c, output_die (c));
9487 /* Add null byte to terminate sibling list. */
9488 if (die->die_child != NULL)
9489 dw2_asm_output_data (1, 0, "end of children of DIE %#lx",
9490 (unsigned long) die->die_offset);
9493 /* Output the compilation unit that appears at the beginning of the
9494 .debug_info section, and precedes the DIE descriptions. */
9496 static void
9497 output_compilation_unit_header (void)
9499 /* We don't support actual DWARFv5 units yet, we just use some
9500 DWARFv5 draft DIE tags in DWARFv4 format. */
9501 int ver = dwarf_version < 5 ? dwarf_version : 4;
9503 if (!XCOFF_DEBUGGING_INFO)
9505 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
9506 dw2_asm_output_data (4, 0xffffffff,
9507 "Initial length escape value indicating 64-bit DWARF extension");
9508 dw2_asm_output_data (DWARF_OFFSET_SIZE,
9509 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
9510 "Length of Compilation Unit Info");
9513 dw2_asm_output_data (2, ver, "DWARF version number");
9514 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
9515 debug_abbrev_section,
9516 "Offset Into Abbrev. Section");
9517 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
9520 /* Output the compilation unit DIE and its children. */
9522 static void
9523 output_comp_unit (dw_die_ref die, int output_if_empty)
9525 const char *secname, *oldsym;
9526 char *tmp;
9528 /* Unless we are outputting main CU, we may throw away empty ones. */
9529 if (!output_if_empty && die->die_child == NULL)
9530 return;
9532 /* Even if there are no children of this DIE, we must output the information
9533 about the compilation unit. Otherwise, on an empty translation unit, we
9534 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
9535 will then complain when examining the file. First mark all the DIEs in
9536 this CU so we know which get local refs. */
9537 mark_dies (die);
9539 external_ref_hash_type *extern_map = optimize_external_refs (die);
9541 build_abbrev_table (die, extern_map);
9543 delete extern_map;
9545 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
9546 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
9547 calc_die_sizes (die);
9549 oldsym = die->die_id.die_symbol;
9550 if (oldsym)
9552 tmp = XALLOCAVEC (char, strlen (oldsym) + 24);
9554 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
9555 secname = tmp;
9556 die->die_id.die_symbol = NULL;
9557 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
9559 else
9561 switch_to_section (debug_info_section);
9562 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
9563 info_section_emitted = true;
9566 /* Output debugging information. */
9567 output_compilation_unit_header ();
9568 output_die (die);
9570 /* Leave the marks on the main CU, so we can check them in
9571 output_pubnames. */
9572 if (oldsym)
9574 unmark_dies (die);
9575 die->die_id.die_symbol = oldsym;
9579 /* Whether to generate the DWARF accelerator tables in .debug_pubnames
9580 and .debug_pubtypes. This is configured per-target, but can be
9581 overridden by the -gpubnames or -gno-pubnames options. */
9583 static inline bool
9584 want_pubnames (void)
9586 if (debug_info_level <= DINFO_LEVEL_TERSE)
9587 return false;
9588 if (debug_generate_pub_sections != -1)
9589 return debug_generate_pub_sections;
9590 return targetm.want_debug_pub_sections;
9593 /* Add the DW_AT_GNU_pubnames and DW_AT_GNU_pubtypes attributes. */
9595 static void
9596 add_AT_pubnames (dw_die_ref die)
9598 if (want_pubnames ())
9599 add_AT_flag (die, DW_AT_GNU_pubnames, 1);
9602 /* Add a string attribute value to a skeleton DIE. */
9604 static inline void
9605 add_skeleton_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind,
9606 const char *str)
9608 dw_attr_node attr;
9609 struct indirect_string_node *node;
9611 if (! skeleton_debug_str_hash)
9612 skeleton_debug_str_hash
9613 = hash_table<indirect_string_hasher>::create_ggc (10);
9615 node = find_AT_string_in_table (str, skeleton_debug_str_hash);
9616 find_string_form (node);
9617 if (node->form == DW_FORM_GNU_str_index)
9618 node->form = DW_FORM_strp;
9620 attr.dw_attr = attr_kind;
9621 attr.dw_attr_val.val_class = dw_val_class_str;
9622 attr.dw_attr_val.val_entry = NULL;
9623 attr.dw_attr_val.v.val_str = node;
9624 add_dwarf_attr (die, &attr);
9627 /* Helper function to generate top-level dies for skeleton debug_info and
9628 debug_types. */
9630 static void
9631 add_top_level_skeleton_die_attrs (dw_die_ref die)
9633 const char *dwo_file_name = concat (aux_base_name, ".dwo", NULL);
9634 const char *comp_dir = comp_dir_string ();
9636 add_skeleton_AT_string (die, DW_AT_GNU_dwo_name, dwo_file_name);
9637 if (comp_dir != NULL)
9638 add_skeleton_AT_string (die, DW_AT_comp_dir, comp_dir);
9639 add_AT_pubnames (die);
9640 add_AT_lineptr (die, DW_AT_GNU_addr_base, debug_addr_section_label);
9643 /* Output skeleton debug sections that point to the dwo file. */
9645 static void
9646 output_skeleton_debug_sections (dw_die_ref comp_unit)
9648 /* We don't support actual DWARFv5 units yet, we just use some
9649 DWARFv5 draft DIE tags in DWARFv4 format. */
9650 int ver = dwarf_version < 5 ? dwarf_version : 4;
9652 /* These attributes will be found in the full debug_info section. */
9653 remove_AT (comp_unit, DW_AT_producer);
9654 remove_AT (comp_unit, DW_AT_language);
9656 switch_to_section (debug_skeleton_info_section);
9657 ASM_OUTPUT_LABEL (asm_out_file, debug_skeleton_info_section_label);
9659 /* Produce the skeleton compilation-unit header. This one differs enough from
9660 a normal CU header that it's better not to call output_compilation_unit
9661 header. */
9662 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
9663 dw2_asm_output_data (4, 0xffffffff,
9664 "Initial length escape value indicating 64-bit DWARF extension");
9666 dw2_asm_output_data (DWARF_OFFSET_SIZE,
9667 DWARF_COMPILE_UNIT_HEADER_SIZE
9668 - DWARF_INITIAL_LENGTH_SIZE
9669 + size_of_die (comp_unit),
9670 "Length of Compilation Unit Info");
9671 dw2_asm_output_data (2, ver, "DWARF version number");
9672 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_skeleton_abbrev_section_label,
9673 debug_abbrev_section,
9674 "Offset Into Abbrev. Section");
9675 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
9677 comp_unit->die_abbrev = SKELETON_COMP_DIE_ABBREV;
9678 output_die (comp_unit);
9680 /* Build the skeleton debug_abbrev section. */
9681 switch_to_section (debug_skeleton_abbrev_section);
9682 ASM_OUTPUT_LABEL (asm_out_file, debug_skeleton_abbrev_section_label);
9684 output_die_abbrevs (SKELETON_COMP_DIE_ABBREV, comp_unit);
9686 dw2_asm_output_data (1, 0, "end of skeleton .debug_abbrev");
9689 /* Output a comdat type unit DIE and its children. */
9691 static void
9692 output_comdat_type_unit (comdat_type_node *node)
9694 const char *secname;
9695 char *tmp;
9696 int i;
9697 #if defined (OBJECT_FORMAT_ELF)
9698 tree comdat_key;
9699 #endif
9701 /* First mark all the DIEs in this CU so we know which get local refs. */
9702 mark_dies (node->root_die);
9704 external_ref_hash_type *extern_map = optimize_external_refs (node->root_die);
9706 build_abbrev_table (node->root_die, extern_map);
9708 delete extern_map;
9709 extern_map = NULL;
9711 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
9712 next_die_offset = DWARF_COMDAT_TYPE_UNIT_HEADER_SIZE;
9713 calc_die_sizes (node->root_die);
9715 #if defined (OBJECT_FORMAT_ELF)
9716 if (!dwarf_split_debug_info)
9717 secname = ".debug_types";
9718 else
9719 secname = ".debug_types.dwo";
9721 tmp = XALLOCAVEC (char, 4 + DWARF_TYPE_SIGNATURE_SIZE * 2);
9722 sprintf (tmp, "wt.");
9723 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
9724 sprintf (tmp + 3 + i * 2, "%02x", node->signature[i] & 0xff);
9725 comdat_key = get_identifier (tmp);
9726 targetm.asm_out.named_section (secname,
9727 SECTION_DEBUG | SECTION_LINKONCE,
9728 comdat_key);
9729 #else
9730 tmp = XALLOCAVEC (char, 18 + DWARF_TYPE_SIGNATURE_SIZE * 2);
9731 sprintf (tmp, ".gnu.linkonce.wt.");
9732 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
9733 sprintf (tmp + 17 + i * 2, "%02x", node->signature[i] & 0xff);
9734 secname = tmp;
9735 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
9736 #endif
9738 /* Output debugging information. */
9739 output_compilation_unit_header ();
9740 output_signature (node->signature, "Type Signature");
9741 dw2_asm_output_data (DWARF_OFFSET_SIZE, node->type_die->die_offset,
9742 "Offset to Type DIE");
9743 output_die (node->root_die);
9745 unmark_dies (node->root_die);
9748 /* Return the DWARF2/3 pubname associated with a decl. */
9750 static const char *
9751 dwarf2_name (tree decl, int scope)
9753 if (DECL_NAMELESS (decl))
9754 return NULL;
9755 return lang_hooks.dwarf_name (decl, scope ? 1 : 0);
9758 /* Add a new entry to .debug_pubnames if appropriate. */
9760 static void
9761 add_pubname_string (const char *str, dw_die_ref die)
9763 pubname_entry e;
9765 e.die = die;
9766 e.name = xstrdup (str);
9767 vec_safe_push (pubname_table, e);
9770 static void
9771 add_pubname (tree decl, dw_die_ref die)
9773 if (!want_pubnames ())
9774 return;
9776 /* Don't add items to the table when we expect that the consumer will have
9777 just read the enclosing die. For example, if the consumer is looking at a
9778 class_member, it will either be inside the class already, or will have just
9779 looked up the class to find the member. Either way, searching the class is
9780 faster than searching the index. */
9781 if ((TREE_PUBLIC (decl) && !class_scope_p (die->die_parent))
9782 || is_cu_die (die->die_parent) || is_namespace_die (die->die_parent))
9784 const char *name = dwarf2_name (decl, 1);
9786 if (name)
9787 add_pubname_string (name, die);
9791 /* Add an enumerator to the pubnames section. */
9793 static void
9794 add_enumerator_pubname (const char *scope_name, dw_die_ref die)
9796 pubname_entry e;
9798 gcc_assert (scope_name);
9799 e.name = concat (scope_name, get_AT_string (die, DW_AT_name), NULL);
9800 e.die = die;
9801 vec_safe_push (pubname_table, e);
9804 /* Add a new entry to .debug_pubtypes if appropriate. */
9806 static void
9807 add_pubtype (tree decl, dw_die_ref die)
9809 pubname_entry e;
9811 if (!want_pubnames ())
9812 return;
9814 if ((TREE_PUBLIC (decl)
9815 || is_cu_die (die->die_parent) || is_namespace_die (die->die_parent))
9816 && (die->die_tag == DW_TAG_typedef || COMPLETE_TYPE_P (decl)))
9818 tree scope = NULL;
9819 const char *scope_name = "";
9820 const char *sep = is_cxx () ? "::" : ".";
9821 const char *name;
9823 scope = TYPE_P (decl) ? TYPE_CONTEXT (decl) : NULL;
9824 if (scope && TREE_CODE (scope) == NAMESPACE_DECL)
9826 scope_name = lang_hooks.dwarf_name (scope, 1);
9827 if (scope_name != NULL && scope_name[0] != '\0')
9828 scope_name = concat (scope_name, sep, NULL);
9829 else
9830 scope_name = "";
9833 if (TYPE_P (decl))
9834 name = type_tag (decl);
9835 else
9836 name = lang_hooks.dwarf_name (decl, 1);
9838 /* If we don't have a name for the type, there's no point in adding
9839 it to the table. */
9840 if (name != NULL && name[0] != '\0')
9842 e.die = die;
9843 e.name = concat (scope_name, name, NULL);
9844 vec_safe_push (pubtype_table, e);
9847 /* Although it might be more consistent to add the pubinfo for the
9848 enumerators as their dies are created, they should only be added if the
9849 enum type meets the criteria above. So rather than re-check the parent
9850 enum type whenever an enumerator die is created, just output them all
9851 here. This isn't protected by the name conditional because anonymous
9852 enums don't have names. */
9853 if (die->die_tag == DW_TAG_enumeration_type)
9855 dw_die_ref c;
9857 FOR_EACH_CHILD (die, c, add_enumerator_pubname (scope_name, c));
9862 /* Output a single entry in the pubnames table. */
9864 static void
9865 output_pubname (dw_offset die_offset, pubname_entry *entry)
9867 dw_die_ref die = entry->die;
9868 int is_static = get_AT_flag (die, DW_AT_external) ? 0 : 1;
9870 dw2_asm_output_data (DWARF_OFFSET_SIZE, die_offset, "DIE offset");
9872 if (debug_generate_pub_sections == 2)
9874 /* This logic follows gdb's method for determining the value of the flag
9875 byte. */
9876 uint32_t flags = GDB_INDEX_SYMBOL_KIND_NONE;
9877 switch (die->die_tag)
9879 case DW_TAG_typedef:
9880 case DW_TAG_base_type:
9881 case DW_TAG_subrange_type:
9882 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags, GDB_INDEX_SYMBOL_KIND_TYPE);
9883 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, 1);
9884 break;
9885 case DW_TAG_enumerator:
9886 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags,
9887 GDB_INDEX_SYMBOL_KIND_VARIABLE);
9888 if (!is_cxx () && !is_java ())
9889 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, 1);
9890 break;
9891 case DW_TAG_subprogram:
9892 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags,
9893 GDB_INDEX_SYMBOL_KIND_FUNCTION);
9894 if (!is_ada ())
9895 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, is_static);
9896 break;
9897 case DW_TAG_constant:
9898 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags,
9899 GDB_INDEX_SYMBOL_KIND_VARIABLE);
9900 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, is_static);
9901 break;
9902 case DW_TAG_variable:
9903 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags,
9904 GDB_INDEX_SYMBOL_KIND_VARIABLE);
9905 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, is_static);
9906 break;
9907 case DW_TAG_namespace:
9908 case DW_TAG_imported_declaration:
9909 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags, GDB_INDEX_SYMBOL_KIND_TYPE);
9910 break;
9911 case DW_TAG_class_type:
9912 case DW_TAG_interface_type:
9913 case DW_TAG_structure_type:
9914 case DW_TAG_union_type:
9915 case DW_TAG_enumeration_type:
9916 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags, GDB_INDEX_SYMBOL_KIND_TYPE);
9917 if (!is_cxx () && !is_java ())
9918 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, 1);
9919 break;
9920 default:
9921 /* An unusual tag. Leave the flag-byte empty. */
9922 break;
9924 dw2_asm_output_data (1, flags >> GDB_INDEX_CU_BITSIZE,
9925 "GDB-index flags");
9928 dw2_asm_output_nstring (entry->name, -1, "external name");
9932 /* Output the public names table used to speed up access to externally
9933 visible names; or the public types table used to find type definitions. */
9935 static void
9936 output_pubnames (vec<pubname_entry, va_gc> *names)
9938 unsigned i;
9939 unsigned long pubnames_length = size_of_pubnames (names);
9940 pubname_entry *pub;
9942 if (!XCOFF_DEBUGGING_INFO)
9944 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
9945 dw2_asm_output_data (4, 0xffffffff,
9946 "Initial length escape value indicating 64-bit DWARF extension");
9947 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
9948 "Pub Info Length");
9951 /* Version number for pubnames/pubtypes is independent of dwarf version. */
9952 dw2_asm_output_data (2, 2, "DWARF Version");
9954 if (dwarf_split_debug_info)
9955 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_skeleton_info_section_label,
9956 debug_skeleton_info_section,
9957 "Offset of Compilation Unit Info");
9958 else
9959 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
9960 debug_info_section,
9961 "Offset of Compilation Unit Info");
9962 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
9963 "Compilation Unit Length");
9965 FOR_EACH_VEC_ELT (*names, i, pub)
9967 if (include_pubname_in_output (names, pub))
9969 dw_offset die_offset = pub->die->die_offset;
9971 /* We shouldn't see pubnames for DIEs outside of the main CU. */
9972 if (names == pubname_table && pub->die->die_tag != DW_TAG_enumerator)
9973 gcc_assert (pub->die->die_mark);
9975 /* If we're putting types in their own .debug_types sections,
9976 the .debug_pubtypes table will still point to the compile
9977 unit (not the type unit), so we want to use the offset of
9978 the skeleton DIE (if there is one). */
9979 if (pub->die->comdat_type_p && names == pubtype_table)
9981 comdat_type_node *type_node = pub->die->die_id.die_type_node;
9983 if (type_node != NULL)
9984 die_offset = (type_node->skeleton_die != NULL
9985 ? type_node->skeleton_die->die_offset
9986 : comp_unit_die ()->die_offset);
9989 output_pubname (die_offset, pub);
9993 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
9996 /* Output public names and types tables if necessary. */
9998 static void
9999 output_pubtables (void)
10001 if (!want_pubnames () || !info_section_emitted)
10002 return;
10004 switch_to_section (debug_pubnames_section);
10005 output_pubnames (pubname_table);
10006 /* ??? Only defined by DWARF3, but emitted by Darwin for DWARF2.
10007 It shouldn't hurt to emit it always, since pure DWARF2 consumers
10008 simply won't look for the section. */
10009 switch_to_section (debug_pubtypes_section);
10010 output_pubnames (pubtype_table);
10014 /* Output the information that goes into the .debug_aranges table.
10015 Namely, define the beginning and ending address range of the
10016 text section generated for this compilation unit. */
10018 static void
10019 output_aranges (void)
10021 unsigned i;
10022 unsigned long aranges_length = size_of_aranges ();
10024 if (!XCOFF_DEBUGGING_INFO)
10026 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
10027 dw2_asm_output_data (4, 0xffffffff,
10028 "Initial length escape value indicating 64-bit DWARF extension");
10029 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
10030 "Length of Address Ranges Info");
10033 /* Version number for aranges is still 2, even up to DWARF5. */
10034 dw2_asm_output_data (2, 2, "DWARF Version");
10035 if (dwarf_split_debug_info)
10036 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_skeleton_info_section_label,
10037 debug_skeleton_info_section,
10038 "Offset of Compilation Unit Info");
10039 else
10040 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
10041 debug_info_section,
10042 "Offset of Compilation Unit Info");
10043 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
10044 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
10046 /* We need to align to twice the pointer size here. */
10047 if (DWARF_ARANGES_PAD_SIZE)
10049 /* Pad using a 2 byte words so that padding is correct for any
10050 pointer size. */
10051 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
10052 2 * DWARF2_ADDR_SIZE);
10053 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
10054 dw2_asm_output_data (2, 0, NULL);
10057 /* It is necessary not to output these entries if the sections were
10058 not used; if the sections were not used, the length will be 0 and
10059 the address may end up as 0 if the section is discarded by ld
10060 --gc-sections, leaving an invalid (0, 0) entry that can be
10061 confused with the terminator. */
10062 if (text_section_used)
10064 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
10065 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
10066 text_section_label, "Length");
10068 if (cold_text_section_used)
10070 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
10071 "Address");
10072 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
10073 cold_text_section_label, "Length");
10076 if (have_multiple_function_sections)
10078 unsigned fde_idx;
10079 dw_fde_ref fde;
10081 FOR_EACH_VEC_ELT (*fde_vec, fde_idx, fde)
10083 if (DECL_IGNORED_P (fde->decl))
10084 continue;
10085 if (!fde->in_std_section)
10087 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
10088 "Address");
10089 dw2_asm_output_delta (DWARF2_ADDR_SIZE, fde->dw_fde_end,
10090 fde->dw_fde_begin, "Length");
10092 if (fde->dw_fde_second_begin && !fde->second_in_std_section)
10094 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_second_begin,
10095 "Address");
10096 dw2_asm_output_delta (DWARF2_ADDR_SIZE, fde->dw_fde_second_end,
10097 fde->dw_fde_second_begin, "Length");
10102 /* Output the terminator words. */
10103 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
10104 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
10107 /* Add a new entry to .debug_ranges. Return the offset at which it
10108 was placed. */
10110 static unsigned int
10111 add_ranges_num (int num)
10113 unsigned int in_use = ranges_table_in_use;
10115 if (in_use == ranges_table_allocated)
10117 ranges_table_allocated += RANGES_TABLE_INCREMENT;
10118 ranges_table = GGC_RESIZEVEC (dw_ranges, ranges_table,
10119 ranges_table_allocated);
10120 memset (ranges_table + ranges_table_in_use, 0,
10121 RANGES_TABLE_INCREMENT * sizeof (dw_ranges));
10124 ranges_table[in_use].num = num;
10125 ranges_table_in_use = in_use + 1;
10127 return in_use * 2 * DWARF2_ADDR_SIZE;
10130 /* Add a new entry to .debug_ranges corresponding to a block, or a
10131 range terminator if BLOCK is NULL. */
10133 static unsigned int
10134 add_ranges (const_tree block)
10136 return add_ranges_num (block ? BLOCK_NUMBER (block) : 0);
10139 /* Add a new entry to .debug_ranges corresponding to a pair of labels.
10140 When using dwarf_split_debug_info, address attributes in dies destined
10141 for the final executable should be direct references--setting the
10142 parameter force_direct ensures this behavior. */
10144 static void
10145 add_ranges_by_labels (dw_die_ref die, const char *begin, const char *end,
10146 bool *added, bool force_direct)
10148 unsigned int in_use = ranges_by_label_in_use;
10149 unsigned int offset;
10151 if (in_use == ranges_by_label_allocated)
10153 ranges_by_label_allocated += RANGES_TABLE_INCREMENT;
10154 ranges_by_label = GGC_RESIZEVEC (dw_ranges_by_label, ranges_by_label,
10155 ranges_by_label_allocated);
10156 memset (ranges_by_label + ranges_by_label_in_use, 0,
10157 RANGES_TABLE_INCREMENT * sizeof (dw_ranges_by_label));
10160 ranges_by_label[in_use].begin = begin;
10161 ranges_by_label[in_use].end = end;
10162 ranges_by_label_in_use = in_use + 1;
10164 offset = add_ranges_num (-(int)in_use - 1);
10165 if (!*added)
10167 add_AT_range_list (die, DW_AT_ranges, offset, force_direct);
10168 *added = true;
10172 static void
10173 output_ranges (void)
10175 unsigned i;
10176 static const char *const start_fmt = "Offset %#x";
10177 const char *fmt = start_fmt;
10179 for (i = 0; i < ranges_table_in_use; i++)
10181 int block_num = ranges_table[i].num;
10183 if (block_num > 0)
10185 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
10186 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
10188 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
10189 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
10191 /* If all code is in the text section, then the compilation
10192 unit base address defaults to DW_AT_low_pc, which is the
10193 base of the text section. */
10194 if (!have_multiple_function_sections)
10196 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
10197 text_section_label,
10198 fmt, i * 2 * DWARF2_ADDR_SIZE);
10199 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
10200 text_section_label, NULL);
10203 /* Otherwise, the compilation unit base address is zero,
10204 which allows us to use absolute addresses, and not worry
10205 about whether the target supports cross-section
10206 arithmetic. */
10207 else
10209 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
10210 fmt, i * 2 * DWARF2_ADDR_SIZE);
10211 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
10214 fmt = NULL;
10217 /* Negative block_num stands for an index into ranges_by_label. */
10218 else if (block_num < 0)
10220 int lab_idx = - block_num - 1;
10222 if (!have_multiple_function_sections)
10224 gcc_unreachable ();
10225 #if 0
10226 /* If we ever use add_ranges_by_labels () for a single
10227 function section, all we have to do is to take out
10228 the #if 0 above. */
10229 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
10230 ranges_by_label[lab_idx].begin,
10231 text_section_label,
10232 fmt, i * 2 * DWARF2_ADDR_SIZE);
10233 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
10234 ranges_by_label[lab_idx].end,
10235 text_section_label, NULL);
10236 #endif
10238 else
10240 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
10241 ranges_by_label[lab_idx].begin,
10242 fmt, i * 2 * DWARF2_ADDR_SIZE);
10243 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
10244 ranges_by_label[lab_idx].end,
10245 NULL);
10248 else
10250 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
10251 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
10252 fmt = start_fmt;
10257 /* Data structure containing information about input files. */
10258 struct file_info
10260 const char *path; /* Complete file name. */
10261 const char *fname; /* File name part. */
10262 int length; /* Length of entire string. */
10263 struct dwarf_file_data * file_idx; /* Index in input file table. */
10264 int dir_idx; /* Index in directory table. */
10267 /* Data structure containing information about directories with source
10268 files. */
10269 struct dir_info
10271 const char *path; /* Path including directory name. */
10272 int length; /* Path length. */
10273 int prefix; /* Index of directory entry which is a prefix. */
10274 int count; /* Number of files in this directory. */
10275 int dir_idx; /* Index of directory used as base. */
10278 /* Callback function for file_info comparison. We sort by looking at
10279 the directories in the path. */
10281 static int
10282 file_info_cmp (const void *p1, const void *p2)
10284 const struct file_info *const s1 = (const struct file_info *) p1;
10285 const struct file_info *const s2 = (const struct file_info *) p2;
10286 const unsigned char *cp1;
10287 const unsigned char *cp2;
10289 /* Take care of file names without directories. We need to make sure that
10290 we return consistent values to qsort since some will get confused if
10291 we return the same value when identical operands are passed in opposite
10292 orders. So if neither has a directory, return 0 and otherwise return
10293 1 or -1 depending on which one has the directory. */
10294 if ((s1->path == s1->fname || s2->path == s2->fname))
10295 return (s2->path == s2->fname) - (s1->path == s1->fname);
10297 cp1 = (const unsigned char *) s1->path;
10298 cp2 = (const unsigned char *) s2->path;
10300 while (1)
10302 ++cp1;
10303 ++cp2;
10304 /* Reached the end of the first path? If so, handle like above. */
10305 if ((cp1 == (const unsigned char *) s1->fname)
10306 || (cp2 == (const unsigned char *) s2->fname))
10307 return ((cp2 == (const unsigned char *) s2->fname)
10308 - (cp1 == (const unsigned char *) s1->fname));
10310 /* Character of current path component the same? */
10311 else if (*cp1 != *cp2)
10312 return *cp1 - *cp2;
10316 struct file_name_acquire_data
10318 struct file_info *files;
10319 int used_files;
10320 int max_files;
10323 /* Traversal function for the hash table. */
10326 file_name_acquire (dwarf_file_data **slot, file_name_acquire_data *fnad)
10328 struct dwarf_file_data *d = *slot;
10329 struct file_info *fi;
10330 const char *f;
10332 gcc_assert (fnad->max_files >= d->emitted_number);
10334 if (! d->emitted_number)
10335 return 1;
10337 gcc_assert (fnad->max_files != fnad->used_files);
10339 fi = fnad->files + fnad->used_files++;
10341 /* Skip all leading "./". */
10342 f = d->filename;
10343 while (f[0] == '.' && IS_DIR_SEPARATOR (f[1]))
10344 f += 2;
10346 /* Create a new array entry. */
10347 fi->path = f;
10348 fi->length = strlen (f);
10349 fi->file_idx = d;
10351 /* Search for the file name part. */
10352 f = strrchr (f, DIR_SEPARATOR);
10353 #if defined (DIR_SEPARATOR_2)
10355 char *g = strrchr (fi->path, DIR_SEPARATOR_2);
10357 if (g != NULL)
10359 if (f == NULL || f < g)
10360 f = g;
10363 #endif
10365 fi->fname = f == NULL ? fi->path : f + 1;
10366 return 1;
10369 /* Output the directory table and the file name table. We try to minimize
10370 the total amount of memory needed. A heuristic is used to avoid large
10371 slowdowns with many input files. */
10373 static void
10374 output_file_names (void)
10376 struct file_name_acquire_data fnad;
10377 int numfiles;
10378 struct file_info *files;
10379 struct dir_info *dirs;
10380 int *saved;
10381 int *savehere;
10382 int *backmap;
10383 int ndirs;
10384 int idx_offset;
10385 int i;
10387 if (!last_emitted_file)
10389 dw2_asm_output_data (1, 0, "End directory table");
10390 dw2_asm_output_data (1, 0, "End file name table");
10391 return;
10394 numfiles = last_emitted_file->emitted_number;
10396 /* Allocate the various arrays we need. */
10397 files = XALLOCAVEC (struct file_info, numfiles);
10398 dirs = XALLOCAVEC (struct dir_info, numfiles);
10400 fnad.files = files;
10401 fnad.used_files = 0;
10402 fnad.max_files = numfiles;
10403 file_table->traverse<file_name_acquire_data *, file_name_acquire> (&fnad);
10404 gcc_assert (fnad.used_files == fnad.max_files);
10406 qsort (files, numfiles, sizeof (files[0]), file_info_cmp);
10408 /* Find all the different directories used. */
10409 dirs[0].path = files[0].path;
10410 dirs[0].length = files[0].fname - files[0].path;
10411 dirs[0].prefix = -1;
10412 dirs[0].count = 1;
10413 dirs[0].dir_idx = 0;
10414 files[0].dir_idx = 0;
10415 ndirs = 1;
10417 for (i = 1; i < numfiles; i++)
10418 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
10419 && memcmp (dirs[ndirs - 1].path, files[i].path,
10420 dirs[ndirs - 1].length) == 0)
10422 /* Same directory as last entry. */
10423 files[i].dir_idx = ndirs - 1;
10424 ++dirs[ndirs - 1].count;
10426 else
10428 int j;
10430 /* This is a new directory. */
10431 dirs[ndirs].path = files[i].path;
10432 dirs[ndirs].length = files[i].fname - files[i].path;
10433 dirs[ndirs].count = 1;
10434 dirs[ndirs].dir_idx = ndirs;
10435 files[i].dir_idx = ndirs;
10437 /* Search for a prefix. */
10438 dirs[ndirs].prefix = -1;
10439 for (j = 0; j < ndirs; j++)
10440 if (dirs[j].length < dirs[ndirs].length
10441 && dirs[j].length > 1
10442 && (dirs[ndirs].prefix == -1
10443 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
10444 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
10445 dirs[ndirs].prefix = j;
10447 ++ndirs;
10450 /* Now to the actual work. We have to find a subset of the directories which
10451 allow expressing the file name using references to the directory table
10452 with the least amount of characters. We do not do an exhaustive search
10453 where we would have to check out every combination of every single
10454 possible prefix. Instead we use a heuristic which provides nearly optimal
10455 results in most cases and never is much off. */
10456 saved = XALLOCAVEC (int, ndirs);
10457 savehere = XALLOCAVEC (int, ndirs);
10459 memset (saved, '\0', ndirs * sizeof (saved[0]));
10460 for (i = 0; i < ndirs; i++)
10462 int j;
10463 int total;
10465 /* We can always save some space for the current directory. But this
10466 does not mean it will be enough to justify adding the directory. */
10467 savehere[i] = dirs[i].length;
10468 total = (savehere[i] - saved[i]) * dirs[i].count;
10470 for (j = i + 1; j < ndirs; j++)
10472 savehere[j] = 0;
10473 if (saved[j] < dirs[i].length)
10475 /* Determine whether the dirs[i] path is a prefix of the
10476 dirs[j] path. */
10477 int k;
10479 k = dirs[j].prefix;
10480 while (k != -1 && k != (int) i)
10481 k = dirs[k].prefix;
10483 if (k == (int) i)
10485 /* Yes it is. We can possibly save some memory by
10486 writing the filenames in dirs[j] relative to
10487 dirs[i]. */
10488 savehere[j] = dirs[i].length;
10489 total += (savehere[j] - saved[j]) * dirs[j].count;
10494 /* Check whether we can save enough to justify adding the dirs[i]
10495 directory. */
10496 if (total > dirs[i].length + 1)
10498 /* It's worthwhile adding. */
10499 for (j = i; j < ndirs; j++)
10500 if (savehere[j] > 0)
10502 /* Remember how much we saved for this directory so far. */
10503 saved[j] = savehere[j];
10505 /* Remember the prefix directory. */
10506 dirs[j].dir_idx = i;
10511 /* Emit the directory name table. */
10512 idx_offset = dirs[0].length > 0 ? 1 : 0;
10513 for (i = 1 - idx_offset; i < ndirs; i++)
10514 dw2_asm_output_nstring (dirs[i].path,
10515 dirs[i].length
10516 - !DWARF2_DIR_SHOULD_END_WITH_SEPARATOR,
10517 "Directory Entry: %#x", i + idx_offset);
10519 dw2_asm_output_data (1, 0, "End directory table");
10521 /* We have to emit them in the order of emitted_number since that's
10522 used in the debug info generation. To do this efficiently we
10523 generate a back-mapping of the indices first. */
10524 backmap = XALLOCAVEC (int, numfiles);
10525 for (i = 0; i < numfiles; i++)
10526 backmap[files[i].file_idx->emitted_number - 1] = i;
10528 /* Now write all the file names. */
10529 for (i = 0; i < numfiles; i++)
10531 int file_idx = backmap[i];
10532 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
10534 #ifdef VMS_DEBUGGING_INFO
10535 #define MAX_VMS_VERSION_LEN 6 /* ";32768" */
10537 /* Setting these fields can lead to debugger miscomparisons,
10538 but VMS Debug requires them to be set correctly. */
10540 int ver;
10541 long long cdt;
10542 long siz;
10543 int maxfilelen = strlen (files[file_idx].path)
10544 + dirs[dir_idx].length
10545 + MAX_VMS_VERSION_LEN + 1;
10546 char *filebuf = XALLOCAVEC (char, maxfilelen);
10548 vms_file_stats_name (files[file_idx].path, 0, 0, 0, &ver);
10549 snprintf (filebuf, maxfilelen, "%s;%d",
10550 files[file_idx].path + dirs[dir_idx].length, ver);
10552 dw2_asm_output_nstring
10553 (filebuf, -1, "File Entry: %#x", (unsigned) i + 1);
10555 /* Include directory index. */
10556 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
10558 /* Modification time. */
10559 dw2_asm_output_data_uleb128
10560 ((vms_file_stats_name (files[file_idx].path, &cdt, 0, 0, 0) == 0)
10561 ? cdt : 0,
10562 NULL);
10564 /* File length in bytes. */
10565 dw2_asm_output_data_uleb128
10566 ((vms_file_stats_name (files[file_idx].path, 0, &siz, 0, 0) == 0)
10567 ? siz : 0,
10568 NULL);
10569 #else
10570 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
10571 "File Entry: %#x", (unsigned) i + 1);
10573 /* Include directory index. */
10574 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
10576 /* Modification time. */
10577 dw2_asm_output_data_uleb128 (0, NULL);
10579 /* File length in bytes. */
10580 dw2_asm_output_data_uleb128 (0, NULL);
10581 #endif /* VMS_DEBUGGING_INFO */
10584 dw2_asm_output_data (1, 0, "End file name table");
10588 /* Output one line number table into the .debug_line section. */
10590 static void
10591 output_one_line_info_table (dw_line_info_table *table)
10593 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
10594 unsigned int current_line = 1;
10595 bool current_is_stmt = DWARF_LINE_DEFAULT_IS_STMT_START;
10596 dw_line_info_entry *ent;
10597 size_t i;
10599 FOR_EACH_VEC_SAFE_ELT (table->entries, i, ent)
10601 switch (ent->opcode)
10603 case LI_set_address:
10604 /* ??? Unfortunately, we have little choice here currently, and
10605 must always use the most general form. GCC does not know the
10606 address delta itself, so we can't use DW_LNS_advance_pc. Many
10607 ports do have length attributes which will give an upper bound
10608 on the address range. We could perhaps use length attributes
10609 to determine when it is safe to use DW_LNS_fixed_advance_pc. */
10610 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, ent->val);
10612 /* This can handle any delta. This takes
10613 4+DWARF2_ADDR_SIZE bytes. */
10614 dw2_asm_output_data (1, 0, "set address %s", line_label);
10615 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
10616 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
10617 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
10618 break;
10620 case LI_set_line:
10621 if (ent->val == current_line)
10623 /* We still need to start a new row, so output a copy insn. */
10624 dw2_asm_output_data (1, DW_LNS_copy,
10625 "copy line %u", current_line);
10627 else
10629 int line_offset = ent->val - current_line;
10630 int line_delta = line_offset - DWARF_LINE_BASE;
10632 current_line = ent->val;
10633 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
10635 /* This can handle deltas from -10 to 234, using the current
10636 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE.
10637 This takes 1 byte. */
10638 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
10639 "line %u", current_line);
10641 else
10643 /* This can handle any delta. This takes at least 4 bytes,
10644 depending on the value being encoded. */
10645 dw2_asm_output_data (1, DW_LNS_advance_line,
10646 "advance to line %u", current_line);
10647 dw2_asm_output_data_sleb128 (line_offset, NULL);
10648 dw2_asm_output_data (1, DW_LNS_copy, NULL);
10651 break;
10653 case LI_set_file:
10654 dw2_asm_output_data (1, DW_LNS_set_file, "set file %u", ent->val);
10655 dw2_asm_output_data_uleb128 (ent->val, "%u", ent->val);
10656 break;
10658 case LI_set_column:
10659 dw2_asm_output_data (1, DW_LNS_set_column, "column %u", ent->val);
10660 dw2_asm_output_data_uleb128 (ent->val, "%u", ent->val);
10661 break;
10663 case LI_negate_stmt:
10664 current_is_stmt = !current_is_stmt;
10665 dw2_asm_output_data (1, DW_LNS_negate_stmt,
10666 "is_stmt %d", current_is_stmt);
10667 break;
10669 case LI_set_prologue_end:
10670 dw2_asm_output_data (1, DW_LNS_set_prologue_end,
10671 "set prologue end");
10672 break;
10674 case LI_set_epilogue_begin:
10675 dw2_asm_output_data (1, DW_LNS_set_epilogue_begin,
10676 "set epilogue begin");
10677 break;
10679 case LI_set_discriminator:
10680 dw2_asm_output_data (1, 0, "discriminator %u", ent->val);
10681 dw2_asm_output_data_uleb128 (1 + size_of_uleb128 (ent->val), NULL);
10682 dw2_asm_output_data (1, DW_LNE_set_discriminator, NULL);
10683 dw2_asm_output_data_uleb128 (ent->val, NULL);
10684 break;
10688 /* Emit debug info for the address of the end of the table. */
10689 dw2_asm_output_data (1, 0, "set address %s", table->end_label);
10690 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
10691 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
10692 dw2_asm_output_addr (DWARF2_ADDR_SIZE, table->end_label, NULL);
10694 dw2_asm_output_data (1, 0, "end sequence");
10695 dw2_asm_output_data_uleb128 (1, NULL);
10696 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
10699 /* Output the source line number correspondence information. This
10700 information goes into the .debug_line section. */
10702 static void
10703 output_line_info (bool prologue_only)
10705 char l1[20], l2[20], p1[20], p2[20];
10706 /* We don't support DWARFv5 line tables yet. */
10707 int ver = dwarf_version < 5 ? dwarf_version : 4;
10708 bool saw_one = false;
10709 int opc;
10711 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
10712 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
10713 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
10714 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
10716 if (!XCOFF_DEBUGGING_INFO)
10718 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
10719 dw2_asm_output_data (4, 0xffffffff,
10720 "Initial length escape value indicating 64-bit DWARF extension");
10721 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
10722 "Length of Source Line Info");
10725 ASM_OUTPUT_LABEL (asm_out_file, l1);
10727 dw2_asm_output_data (2, ver, "DWARF Version");
10728 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
10729 ASM_OUTPUT_LABEL (asm_out_file, p1);
10731 /* Define the architecture-dependent minimum instruction length (in bytes).
10732 In this implementation of DWARF, this field is used for information
10733 purposes only. Since GCC generates assembly language, we have no
10734 a priori knowledge of how many instruction bytes are generated for each
10735 source line, and therefore can use only the DW_LNE_set_address and
10736 DW_LNS_fixed_advance_pc line information commands. Accordingly, we fix
10737 this as '1', which is "correct enough" for all architectures,
10738 and don't let the target override. */
10739 dw2_asm_output_data (1, 1, "Minimum Instruction Length");
10741 if (ver >= 4)
10742 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN,
10743 "Maximum Operations Per Instruction");
10744 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
10745 "Default is_stmt_start flag");
10746 dw2_asm_output_data (1, DWARF_LINE_BASE,
10747 "Line Base Value (Special Opcodes)");
10748 dw2_asm_output_data (1, DWARF_LINE_RANGE,
10749 "Line Range Value (Special Opcodes)");
10750 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
10751 "Special Opcode Base");
10753 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
10755 int n_op_args;
10756 switch (opc)
10758 case DW_LNS_advance_pc:
10759 case DW_LNS_advance_line:
10760 case DW_LNS_set_file:
10761 case DW_LNS_set_column:
10762 case DW_LNS_fixed_advance_pc:
10763 case DW_LNS_set_isa:
10764 n_op_args = 1;
10765 break;
10766 default:
10767 n_op_args = 0;
10768 break;
10771 dw2_asm_output_data (1, n_op_args, "opcode: %#x has %d args",
10772 opc, n_op_args);
10775 /* Write out the information about the files we use. */
10776 output_file_names ();
10777 ASM_OUTPUT_LABEL (asm_out_file, p2);
10778 if (prologue_only)
10780 /* Output the marker for the end of the line number info. */
10781 ASM_OUTPUT_LABEL (asm_out_file, l2);
10782 return;
10785 if (separate_line_info)
10787 dw_line_info_table *table;
10788 size_t i;
10790 FOR_EACH_VEC_ELT (*separate_line_info, i, table)
10791 if (table->in_use)
10793 output_one_line_info_table (table);
10794 saw_one = true;
10797 if (cold_text_section_line_info && cold_text_section_line_info->in_use)
10799 output_one_line_info_table (cold_text_section_line_info);
10800 saw_one = true;
10803 /* ??? Some Darwin linkers crash on a .debug_line section with no
10804 sequences. Further, merely a DW_LNE_end_sequence entry is not
10805 sufficient -- the address column must also be initialized.
10806 Make sure to output at least one set_address/end_sequence pair,
10807 choosing .text since that section is always present. */
10808 if (text_section_line_info->in_use || !saw_one)
10809 output_one_line_info_table (text_section_line_info);
10811 /* Output the marker for the end of the line number info. */
10812 ASM_OUTPUT_LABEL (asm_out_file, l2);
10815 /* Return true if DW_AT_endianity should be emitted according to REVERSE. */
10817 static inline bool
10818 need_endianity_attribute_p (bool reverse)
10820 return reverse && (dwarf_version >= 3 || !dwarf_strict);
10823 /* Given a pointer to a tree node for some base type, return a pointer to
10824 a DIE that describes the given type. REVERSE is true if the type is
10825 to be interpreted in the reverse storage order wrt the target order.
10827 This routine must only be called for GCC type nodes that correspond to
10828 Dwarf base (fundamental) types. */
10830 static dw_die_ref
10831 base_type_die (tree type, bool reverse)
10833 dw_die_ref base_type_result;
10834 enum dwarf_type encoding;
10835 bool fpt_used = false;
10836 struct fixed_point_type_info fpt_info;
10837 tree type_bias = NULL_TREE;
10839 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
10840 return 0;
10842 /* If this is a subtype that should not be emitted as a subrange type,
10843 use the base type. See subrange_type_for_debug_p. */
10844 if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != NULL_TREE)
10845 type = TREE_TYPE (type);
10847 switch (TREE_CODE (type))
10849 case INTEGER_TYPE:
10850 if ((dwarf_version >= 4 || !dwarf_strict)
10851 && TYPE_NAME (type)
10852 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10853 && DECL_IS_BUILTIN (TYPE_NAME (type))
10854 && DECL_NAME (TYPE_NAME (type)))
10856 const char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
10857 if (strcmp (name, "char16_t") == 0
10858 || strcmp (name, "char32_t") == 0)
10860 encoding = DW_ATE_UTF;
10861 break;
10864 if ((dwarf_version >= 3 || !dwarf_strict)
10865 && lang_hooks.types.get_fixed_point_type_info)
10867 memset (&fpt_info, 0, sizeof (fpt_info));
10868 if (lang_hooks.types.get_fixed_point_type_info (type, &fpt_info))
10870 fpt_used = true;
10871 encoding = ((TYPE_UNSIGNED (type))
10872 ? DW_ATE_unsigned_fixed
10873 : DW_ATE_signed_fixed);
10874 break;
10877 if (TYPE_STRING_FLAG (type))
10879 if (TYPE_UNSIGNED (type))
10880 encoding = DW_ATE_unsigned_char;
10881 else
10882 encoding = DW_ATE_signed_char;
10884 else if (TYPE_UNSIGNED (type))
10885 encoding = DW_ATE_unsigned;
10886 else
10887 encoding = DW_ATE_signed;
10889 if (!dwarf_strict
10890 && lang_hooks.types.get_type_bias)
10891 type_bias = lang_hooks.types.get_type_bias (type);
10892 break;
10894 case REAL_TYPE:
10895 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
10897 if (dwarf_version >= 3 || !dwarf_strict)
10898 encoding = DW_ATE_decimal_float;
10899 else
10900 encoding = DW_ATE_lo_user;
10902 else
10903 encoding = DW_ATE_float;
10904 break;
10906 case FIXED_POINT_TYPE:
10907 if (!(dwarf_version >= 3 || !dwarf_strict))
10908 encoding = DW_ATE_lo_user;
10909 else if (TYPE_UNSIGNED (type))
10910 encoding = DW_ATE_unsigned_fixed;
10911 else
10912 encoding = DW_ATE_signed_fixed;
10913 break;
10915 /* Dwarf2 doesn't know anything about complex ints, so use
10916 a user defined type for it. */
10917 case COMPLEX_TYPE:
10918 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
10919 encoding = DW_ATE_complex_float;
10920 else
10921 encoding = DW_ATE_lo_user;
10922 break;
10924 case BOOLEAN_TYPE:
10925 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
10926 encoding = DW_ATE_boolean;
10927 break;
10929 default:
10930 /* No other TREE_CODEs are Dwarf fundamental types. */
10931 gcc_unreachable ();
10934 base_type_result = new_die (DW_TAG_base_type, comp_unit_die (), type);
10936 add_AT_unsigned (base_type_result, DW_AT_byte_size,
10937 int_size_in_bytes (type));
10938 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
10940 if (need_endianity_attribute_p (reverse))
10941 add_AT_unsigned (base_type_result, DW_AT_endianity,
10942 BYTES_BIG_ENDIAN ? DW_END_little : DW_END_big);
10944 if (fpt_used)
10946 switch (fpt_info.scale_factor_kind)
10948 case fixed_point_scale_factor_binary:
10949 add_AT_int (base_type_result, DW_AT_binary_scale,
10950 fpt_info.scale_factor.binary);
10951 break;
10953 case fixed_point_scale_factor_decimal:
10954 add_AT_int (base_type_result, DW_AT_decimal_scale,
10955 fpt_info.scale_factor.decimal);
10956 break;
10958 case fixed_point_scale_factor_arbitrary:
10959 /* Arbitrary scale factors cannot be described in standard DWARF,
10960 yet. */
10961 if (!dwarf_strict)
10963 /* Describe the scale factor as a rational constant. */
10964 const dw_die_ref scale_factor
10965 = new_die (DW_TAG_constant, comp_unit_die (), type);
10967 add_AT_unsigned (scale_factor, DW_AT_GNU_numerator,
10968 fpt_info.scale_factor.arbitrary.numerator);
10969 add_AT_int (scale_factor, DW_AT_GNU_denominator,
10970 fpt_info.scale_factor.arbitrary.denominator);
10972 add_AT_die_ref (base_type_result, DW_AT_small, scale_factor);
10974 break;
10976 default:
10977 gcc_unreachable ();
10981 if (type_bias)
10982 add_scalar_info (base_type_result, DW_AT_GNU_bias, type_bias,
10983 dw_scalar_form_constant
10984 | dw_scalar_form_exprloc
10985 | dw_scalar_form_reference,
10986 NULL);
10988 add_pubtype (type, base_type_result);
10990 return base_type_result;
10993 /* A C++ function with deduced return type can have a TEMPLATE_TYPE_PARM
10994 named 'auto' in its type: return true for it, false otherwise. */
10996 static inline bool
10997 is_cxx_auto (tree type)
10999 if (is_cxx ())
11001 tree name = TYPE_IDENTIFIER (type);
11002 if (name == get_identifier ("auto")
11003 || name == get_identifier ("decltype(auto)"))
11004 return true;
11006 return false;
11009 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
11010 given input type is a Dwarf "fundamental" type. Otherwise return null. */
11012 static inline int
11013 is_base_type (tree type)
11015 switch (TREE_CODE (type))
11017 case ERROR_MARK:
11018 case VOID_TYPE:
11019 case INTEGER_TYPE:
11020 case REAL_TYPE:
11021 case FIXED_POINT_TYPE:
11022 case COMPLEX_TYPE:
11023 case BOOLEAN_TYPE:
11024 case POINTER_BOUNDS_TYPE:
11025 return 1;
11027 case ARRAY_TYPE:
11028 case RECORD_TYPE:
11029 case UNION_TYPE:
11030 case QUAL_UNION_TYPE:
11031 case ENUMERAL_TYPE:
11032 case FUNCTION_TYPE:
11033 case METHOD_TYPE:
11034 case POINTER_TYPE:
11035 case REFERENCE_TYPE:
11036 case NULLPTR_TYPE:
11037 case OFFSET_TYPE:
11038 case LANG_TYPE:
11039 case VECTOR_TYPE:
11040 return 0;
11042 default:
11043 if (is_cxx_auto (type))
11044 return 0;
11045 gcc_unreachable ();
11048 return 0;
11051 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
11052 node, return the size in bits for the type if it is a constant, or else
11053 return the alignment for the type if the type's size is not constant, or
11054 else return BITS_PER_WORD if the type actually turns out to be an
11055 ERROR_MARK node. */
11057 static inline unsigned HOST_WIDE_INT
11058 simple_type_size_in_bits (const_tree type)
11060 if (TREE_CODE (type) == ERROR_MARK)
11061 return BITS_PER_WORD;
11062 else if (TYPE_SIZE (type) == NULL_TREE)
11063 return 0;
11064 else if (tree_fits_uhwi_p (TYPE_SIZE (type)))
11065 return tree_to_uhwi (TYPE_SIZE (type));
11066 else
11067 return TYPE_ALIGN (type);
11070 /* Similarly, but return an offset_int instead of UHWI. */
11072 static inline offset_int
11073 offset_int_type_size_in_bits (const_tree type)
11075 if (TREE_CODE (type) == ERROR_MARK)
11076 return BITS_PER_WORD;
11077 else if (TYPE_SIZE (type) == NULL_TREE)
11078 return 0;
11079 else if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
11080 return wi::to_offset (TYPE_SIZE (type));
11081 else
11082 return TYPE_ALIGN (type);
11085 /* Given a pointer to a tree node for a subrange type, return a pointer
11086 to a DIE that describes the given type. */
11088 static dw_die_ref
11089 subrange_type_die (tree type, tree low, tree high, tree bias,
11090 dw_die_ref context_die)
11092 dw_die_ref subrange_die;
11093 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
11095 if (context_die == NULL)
11096 context_die = comp_unit_die ();
11098 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
11100 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
11102 /* The size of the subrange type and its base type do not match,
11103 so we need to generate a size attribute for the subrange type. */
11104 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
11107 if (low)
11108 add_bound_info (subrange_die, DW_AT_lower_bound, low, NULL);
11109 if (high)
11110 add_bound_info (subrange_die, DW_AT_upper_bound, high, NULL);
11111 if (bias && !dwarf_strict)
11112 add_scalar_info (subrange_die, DW_AT_GNU_bias, bias,
11113 dw_scalar_form_constant
11114 | dw_scalar_form_exprloc
11115 | dw_scalar_form_reference,
11116 NULL);
11118 return subrange_die;
11121 /* Returns the (const and/or volatile) cv_qualifiers associated with
11122 the decl node. This will normally be augmented with the
11123 cv_qualifiers of the underlying type in add_type_attribute. */
11125 static int
11126 decl_quals (const_tree decl)
11128 return ((TREE_READONLY (decl)
11129 ? TYPE_QUAL_CONST : TYPE_UNQUALIFIED)
11130 | (TREE_THIS_VOLATILE (decl)
11131 ? TYPE_QUAL_VOLATILE : TYPE_UNQUALIFIED));
11134 /* Determine the TYPE whose qualifiers match the largest strict subset
11135 of the given TYPE_QUALS, and return its qualifiers. Ignore all
11136 qualifiers outside QUAL_MASK. */
11138 static int
11139 get_nearest_type_subqualifiers (tree type, int type_quals, int qual_mask)
11141 tree t;
11142 int best_rank = 0, best_qual = 0, max_rank;
11144 type_quals &= qual_mask;
11145 max_rank = popcount_hwi (type_quals) - 1;
11147 for (t = TYPE_MAIN_VARIANT (type); t && best_rank < max_rank;
11148 t = TYPE_NEXT_VARIANT (t))
11150 int q = TYPE_QUALS (t) & qual_mask;
11152 if ((q & type_quals) == q && q != type_quals
11153 && check_base_type (t, type))
11155 int rank = popcount_hwi (q);
11157 if (rank > best_rank)
11159 best_rank = rank;
11160 best_qual = q;
11165 return best_qual;
11168 struct dwarf_qual_info_t { int q; enum dwarf_tag t; };
11169 static const dwarf_qual_info_t dwarf_qual_info[] =
11171 { TYPE_QUAL_CONST, DW_TAG_const_type },
11172 { TYPE_QUAL_VOLATILE, DW_TAG_volatile_type },
11173 { TYPE_QUAL_RESTRICT, DW_TAG_restrict_type },
11174 { TYPE_QUAL_ATOMIC, DW_TAG_atomic_type }
11176 static const unsigned int dwarf_qual_info_size
11177 = sizeof (dwarf_qual_info) / sizeof (dwarf_qual_info[0]);
11179 /* If DIE is a qualified DIE of some base DIE with the same parent,
11180 return the base DIE, otherwise return NULL. Set MASK to the
11181 qualifiers added compared to the returned DIE. */
11183 static dw_die_ref
11184 qualified_die_p (dw_die_ref die, int *mask, unsigned int depth)
11186 unsigned int i;
11187 for (i = 0; i < dwarf_qual_info_size; i++)
11188 if (die->die_tag == dwarf_qual_info[i].t)
11189 break;
11190 if (i == dwarf_qual_info_size)
11191 return NULL;
11192 if (vec_safe_length (die->die_attr) != 1)
11193 return NULL;
11194 dw_die_ref type = get_AT_ref (die, DW_AT_type);
11195 if (type == NULL || type->die_parent != die->die_parent)
11196 return NULL;
11197 *mask |= dwarf_qual_info[i].q;
11198 if (depth)
11200 dw_die_ref ret = qualified_die_p (type, mask, depth - 1);
11201 if (ret)
11202 return ret;
11204 return type;
11207 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
11208 entry that chains the modifiers specified by CV_QUALS in front of the
11209 given type. REVERSE is true if the type is to be interpreted in the
11210 reverse storage order wrt the target order. */
11212 static dw_die_ref
11213 modified_type_die (tree type, int cv_quals, bool reverse,
11214 dw_die_ref context_die)
11216 enum tree_code code = TREE_CODE (type);
11217 dw_die_ref mod_type_die;
11218 dw_die_ref sub_die = NULL;
11219 tree item_type = NULL;
11220 tree qualified_type;
11221 tree name, low, high;
11222 dw_die_ref mod_scope;
11223 /* Only these cv-qualifiers are currently handled. */
11224 const int cv_qual_mask = (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE
11225 | TYPE_QUAL_RESTRICT | TYPE_QUAL_ATOMIC);
11227 if (code == ERROR_MARK)
11228 return NULL;
11230 if (lang_hooks.types.get_debug_type)
11232 tree debug_type = lang_hooks.types.get_debug_type (type);
11234 if (debug_type != NULL_TREE && debug_type != type)
11235 return modified_type_die (debug_type, cv_quals, reverse, context_die);
11238 cv_quals &= cv_qual_mask;
11240 /* Don't emit DW_TAG_restrict_type for DWARFv2, since it is a type
11241 tag modifier (and not an attribute) old consumers won't be able
11242 to handle it. */
11243 if (dwarf_version < 3)
11244 cv_quals &= ~TYPE_QUAL_RESTRICT;
11246 /* Likewise for DW_TAG_atomic_type for DWARFv5. */
11247 if (dwarf_version < 5)
11248 cv_quals &= ~TYPE_QUAL_ATOMIC;
11250 /* See if we already have the appropriately qualified variant of
11251 this type. */
11252 qualified_type = get_qualified_type (type, cv_quals);
11254 if (qualified_type == sizetype
11255 && TYPE_NAME (qualified_type)
11256 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL)
11258 tree t = TREE_TYPE (TYPE_NAME (qualified_type));
11260 gcc_checking_assert (TREE_CODE (t) == INTEGER_TYPE
11261 && TYPE_PRECISION (t)
11262 == TYPE_PRECISION (qualified_type)
11263 && TYPE_UNSIGNED (t)
11264 == TYPE_UNSIGNED (qualified_type));
11265 qualified_type = t;
11268 /* If we do, then we can just use its DIE, if it exists. */
11269 if (qualified_type)
11271 mod_type_die = lookup_type_die (qualified_type);
11273 /* DW_AT_endianity doesn't come from a qualifier on the type. */
11274 if (mod_type_die
11275 && (!need_endianity_attribute_p (reverse)
11276 || !is_base_type (type)
11277 || get_AT_unsigned (mod_type_die, DW_AT_endianity)))
11278 return mod_type_die;
11281 name = qualified_type ? TYPE_NAME (qualified_type) : NULL;
11283 /* Handle C typedef types. */
11284 if (name && TREE_CODE (name) == TYPE_DECL && DECL_ORIGINAL_TYPE (name)
11285 && !DECL_ARTIFICIAL (name))
11287 tree dtype = TREE_TYPE (name);
11289 if (qualified_type == dtype)
11291 /* For a named type, use the typedef. */
11292 gen_type_die (qualified_type, context_die);
11293 return lookup_type_die (qualified_type);
11295 else
11297 int dquals = TYPE_QUALS_NO_ADDR_SPACE (dtype);
11298 dquals &= cv_qual_mask;
11299 if ((dquals & ~cv_quals) != TYPE_UNQUALIFIED
11300 || (cv_quals == dquals && DECL_ORIGINAL_TYPE (name) != type))
11301 /* cv-unqualified version of named type. Just use
11302 the unnamed type to which it refers. */
11303 return modified_type_die (DECL_ORIGINAL_TYPE (name), cv_quals,
11304 reverse, context_die);
11305 /* Else cv-qualified version of named type; fall through. */
11309 mod_scope = scope_die_for (type, context_die);
11311 if (cv_quals)
11313 int sub_quals = 0, first_quals = 0;
11314 unsigned i;
11315 dw_die_ref first = NULL, last = NULL;
11317 /* Determine a lesser qualified type that most closely matches
11318 this one. Then generate DW_TAG_* entries for the remaining
11319 qualifiers. */
11320 sub_quals = get_nearest_type_subqualifiers (type, cv_quals,
11321 cv_qual_mask);
11322 if (sub_quals && use_debug_types)
11324 bool needed = false;
11325 /* If emitting type units, make sure the order of qualifiers
11326 is canonical. Thus, start from unqualified type if
11327 an earlier qualifier is missing in sub_quals, but some later
11328 one is present there. */
11329 for (i = 0; i < dwarf_qual_info_size; i++)
11330 if (dwarf_qual_info[i].q & cv_quals & ~sub_quals)
11331 needed = true;
11332 else if (needed && (dwarf_qual_info[i].q & cv_quals))
11334 sub_quals = 0;
11335 break;
11338 mod_type_die = modified_type_die (type, sub_quals, reverse, context_die);
11339 if (mod_scope && mod_type_die && mod_type_die->die_parent == mod_scope)
11341 /* As not all intermediate qualified DIEs have corresponding
11342 tree types, ensure that qualified DIEs in the same scope
11343 as their DW_AT_type are emitted after their DW_AT_type,
11344 only with other qualified DIEs for the same type possibly
11345 in between them. Determine the range of such qualified
11346 DIEs now (first being the base type, last being corresponding
11347 last qualified DIE for it). */
11348 unsigned int count = 0;
11349 first = qualified_die_p (mod_type_die, &first_quals,
11350 dwarf_qual_info_size);
11351 if (first == NULL)
11352 first = mod_type_die;
11353 gcc_assert ((first_quals & ~sub_quals) == 0);
11354 for (count = 0, last = first;
11355 count < (1U << dwarf_qual_info_size);
11356 count++, last = last->die_sib)
11358 int quals = 0;
11359 if (last == mod_scope->die_child)
11360 break;
11361 if (qualified_die_p (last->die_sib, &quals, dwarf_qual_info_size)
11362 != first)
11363 break;
11367 for (i = 0; i < dwarf_qual_info_size; i++)
11368 if (dwarf_qual_info[i].q & cv_quals & ~sub_quals)
11370 dw_die_ref d;
11371 if (first && first != last)
11373 for (d = first->die_sib; ; d = d->die_sib)
11375 int quals = 0;
11376 qualified_die_p (d, &quals, dwarf_qual_info_size);
11377 if (quals == (first_quals | dwarf_qual_info[i].q))
11378 break;
11379 if (d == last)
11381 d = NULL;
11382 break;
11385 if (d)
11387 mod_type_die = d;
11388 continue;
11391 if (first)
11393 d = ggc_cleared_alloc<die_node> ();
11394 d->die_tag = dwarf_qual_info[i].t;
11395 add_child_die_after (mod_scope, d, last);
11396 last = d;
11398 else
11399 d = new_die (dwarf_qual_info[i].t, mod_scope, type);
11400 if (mod_type_die)
11401 add_AT_die_ref (d, DW_AT_type, mod_type_die);
11402 mod_type_die = d;
11403 first_quals |= dwarf_qual_info[i].q;
11406 else if (code == POINTER_TYPE || code == REFERENCE_TYPE)
11408 dwarf_tag tag = DW_TAG_pointer_type;
11409 if (code == REFERENCE_TYPE)
11411 if (TYPE_REF_IS_RVALUE (type) && dwarf_version >= 4)
11412 tag = DW_TAG_rvalue_reference_type;
11413 else
11414 tag = DW_TAG_reference_type;
11416 mod_type_die = new_die (tag, mod_scope, type);
11418 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
11419 simple_type_size_in_bits (type) / BITS_PER_UNIT);
11420 item_type = TREE_TYPE (type);
11422 addr_space_t as = TYPE_ADDR_SPACE (item_type);
11423 if (!ADDR_SPACE_GENERIC_P (as))
11425 int action = targetm.addr_space.debug (as);
11426 if (action >= 0)
11428 /* Positive values indicate an address_class. */
11429 add_AT_unsigned (mod_type_die, DW_AT_address_class, action);
11431 else
11433 /* Negative values indicate an (inverted) segment base reg. */
11434 dw_loc_descr_ref d
11435 = one_reg_loc_descriptor (~action, VAR_INIT_STATUS_INITIALIZED);
11436 add_AT_loc (mod_type_die, DW_AT_segment, d);
11440 else if (code == INTEGER_TYPE
11441 && TREE_TYPE (type) != NULL_TREE
11442 && subrange_type_for_debug_p (type, &low, &high))
11444 tree bias = NULL_TREE;
11445 if (lang_hooks.types.get_type_bias)
11446 bias = lang_hooks.types.get_type_bias (type);
11447 mod_type_die = subrange_type_die (type, low, high, bias, context_die);
11448 item_type = TREE_TYPE (type);
11450 else if (is_base_type (type))
11451 mod_type_die = base_type_die (type, reverse);
11452 else
11454 gen_type_die (type, context_die);
11456 /* We have to get the type_main_variant here (and pass that to the
11457 `lookup_type_die' routine) because the ..._TYPE node we have
11458 might simply be a *copy* of some original type node (where the
11459 copy was created to help us keep track of typedef names) and
11460 that copy might have a different TYPE_UID from the original
11461 ..._TYPE node. */
11462 if (TREE_CODE (type) != VECTOR_TYPE)
11463 return lookup_type_die (type_main_variant (type));
11464 else
11465 /* Vectors have the debugging information in the type,
11466 not the main variant. */
11467 return lookup_type_die (type);
11470 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
11471 don't output a DW_TAG_typedef, since there isn't one in the
11472 user's program; just attach a DW_AT_name to the type.
11473 Don't attach a DW_AT_name to DW_TAG_const_type or DW_TAG_volatile_type
11474 if the base type already has the same name. */
11475 if (name
11476 && ((TREE_CODE (name) != TYPE_DECL
11477 && (qualified_type == TYPE_MAIN_VARIANT (type)
11478 || (cv_quals == TYPE_UNQUALIFIED)))
11479 || (TREE_CODE (name) == TYPE_DECL
11480 && TREE_TYPE (name) == qualified_type
11481 && DECL_NAME (name))))
11483 if (TREE_CODE (name) == TYPE_DECL)
11484 /* Could just call add_name_and_src_coords_attributes here,
11485 but since this is a builtin type it doesn't have any
11486 useful source coordinates anyway. */
11487 name = DECL_NAME (name);
11488 add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
11490 /* This probably indicates a bug. */
11491 else if (mod_type_die && mod_type_die->die_tag == DW_TAG_base_type)
11493 name = TYPE_IDENTIFIER (type);
11494 add_name_attribute (mod_type_die,
11495 name ? IDENTIFIER_POINTER (name) : "__unknown__");
11498 if (qualified_type)
11499 equate_type_number_to_die (qualified_type, mod_type_die);
11501 if (item_type)
11502 /* We must do this after the equate_type_number_to_die call, in case
11503 this is a recursive type. This ensures that the modified_type_die
11504 recursion will terminate even if the type is recursive. Recursive
11505 types are possible in Ada. */
11506 sub_die = modified_type_die (item_type,
11507 TYPE_QUALS_NO_ADDR_SPACE (item_type),
11508 reverse,
11509 context_die);
11511 if (sub_die != NULL)
11512 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
11514 add_gnat_descriptive_type_attribute (mod_type_die, type, context_die);
11515 if (TYPE_ARTIFICIAL (type))
11516 add_AT_flag (mod_type_die, DW_AT_artificial, 1);
11518 return mod_type_die;
11521 /* Generate DIEs for the generic parameters of T.
11522 T must be either a generic type or a generic function.
11523 See http://gcc.gnu.org/wiki/TemplateParmsDwarf for more. */
11525 static void
11526 gen_generic_params_dies (tree t)
11528 tree parms, args;
11529 int parms_num, i;
11530 dw_die_ref die = NULL;
11531 int non_default;
11533 if (!t || (TYPE_P (t) && !COMPLETE_TYPE_P (t)))
11534 return;
11536 if (TYPE_P (t))
11537 die = lookup_type_die (t);
11538 else if (DECL_P (t))
11539 die = lookup_decl_die (t);
11541 gcc_assert (die);
11543 parms = lang_hooks.get_innermost_generic_parms (t);
11544 if (!parms)
11545 /* T has no generic parameter. It means T is neither a generic type
11546 or function. End of story. */
11547 return;
11549 parms_num = TREE_VEC_LENGTH (parms);
11550 args = lang_hooks.get_innermost_generic_args (t);
11551 if (TREE_CHAIN (args) && TREE_CODE (TREE_CHAIN (args)) == INTEGER_CST)
11552 non_default = int_cst_value (TREE_CHAIN (args));
11553 else
11554 non_default = TREE_VEC_LENGTH (args);
11555 for (i = 0; i < parms_num; i++)
11557 tree parm, arg, arg_pack_elems;
11558 dw_die_ref parm_die;
11560 parm = TREE_VEC_ELT (parms, i);
11561 arg = TREE_VEC_ELT (args, i);
11562 arg_pack_elems = lang_hooks.types.get_argument_pack_elems (arg);
11563 gcc_assert (parm && TREE_VALUE (parm) && arg);
11565 if (parm && TREE_VALUE (parm) && arg)
11567 /* If PARM represents a template parameter pack,
11568 emit a DW_TAG_GNU_template_parameter_pack DIE, followed
11569 by DW_TAG_template_*_parameter DIEs for the argument
11570 pack elements of ARG. Note that ARG would then be
11571 an argument pack. */
11572 if (arg_pack_elems)
11573 parm_die = template_parameter_pack_die (TREE_VALUE (parm),
11574 arg_pack_elems,
11575 die);
11576 else
11577 parm_die = generic_parameter_die (TREE_VALUE (parm), arg,
11578 true /* emit name */, die);
11579 if (i >= non_default)
11580 add_AT_flag (parm_die, DW_AT_default_value, 1);
11585 /* Create and return a DIE for PARM which should be
11586 the representation of a generic type parameter.
11587 For instance, in the C++ front end, PARM would be a template parameter.
11588 ARG is the argument to PARM.
11589 EMIT_NAME_P if tree, the DIE will have DW_AT_name attribute set to the
11590 name of the PARM.
11591 PARENT_DIE is the parent DIE which the new created DIE should be added to,
11592 as a child node. */
11594 static dw_die_ref
11595 generic_parameter_die (tree parm, tree arg,
11596 bool emit_name_p,
11597 dw_die_ref parent_die)
11599 dw_die_ref tmpl_die = NULL;
11600 const char *name = NULL;
11602 if (!parm || !DECL_NAME (parm) || !arg)
11603 return NULL;
11605 /* We support non-type generic parameters and arguments,
11606 type generic parameters and arguments, as well as
11607 generic generic parameters (a.k.a. template template parameters in C++)
11608 and arguments. */
11609 if (TREE_CODE (parm) == PARM_DECL)
11610 /* PARM is a nontype generic parameter */
11611 tmpl_die = new_die (DW_TAG_template_value_param, parent_die, parm);
11612 else if (TREE_CODE (parm) == TYPE_DECL)
11613 /* PARM is a type generic parameter. */
11614 tmpl_die = new_die (DW_TAG_template_type_param, parent_die, parm);
11615 else if (lang_hooks.decls.generic_generic_parameter_decl_p (parm))
11616 /* PARM is a generic generic parameter.
11617 Its DIE is a GNU extension. It shall have a
11618 DW_AT_name attribute to represent the name of the template template
11619 parameter, and a DW_AT_GNU_template_name attribute to represent the
11620 name of the template template argument. */
11621 tmpl_die = new_die (DW_TAG_GNU_template_template_param,
11622 parent_die, parm);
11623 else
11624 gcc_unreachable ();
11626 if (tmpl_die)
11628 tree tmpl_type;
11630 /* If PARM is a generic parameter pack, it means we are
11631 emitting debug info for a template argument pack element.
11632 In other terms, ARG is a template argument pack element.
11633 In that case, we don't emit any DW_AT_name attribute for
11634 the die. */
11635 if (emit_name_p)
11637 name = IDENTIFIER_POINTER (DECL_NAME (parm));
11638 gcc_assert (name);
11639 add_AT_string (tmpl_die, DW_AT_name, name);
11642 if (!lang_hooks.decls.generic_generic_parameter_decl_p (parm))
11644 /* DWARF3, 5.6.8 says if PARM is a non-type generic parameter
11645 TMPL_DIE should have a child DW_AT_type attribute that is set
11646 to the type of the argument to PARM, which is ARG.
11647 If PARM is a type generic parameter, TMPL_DIE should have a
11648 child DW_AT_type that is set to ARG. */
11649 tmpl_type = TYPE_P (arg) ? arg : TREE_TYPE (arg);
11650 add_type_attribute (tmpl_die, tmpl_type,
11651 (TREE_THIS_VOLATILE (tmpl_type)
11652 ? TYPE_QUAL_VOLATILE : TYPE_UNQUALIFIED),
11653 false, parent_die);
11655 else
11657 /* So TMPL_DIE is a DIE representing a
11658 a generic generic template parameter, a.k.a template template
11659 parameter in C++ and arg is a template. */
11661 /* The DW_AT_GNU_template_name attribute of the DIE must be set
11662 to the name of the argument. */
11663 name = dwarf2_name (TYPE_P (arg) ? TYPE_NAME (arg) : arg, 1);
11664 if (name)
11665 add_AT_string (tmpl_die, DW_AT_GNU_template_name, name);
11668 if (TREE_CODE (parm) == PARM_DECL)
11669 /* So PARM is a non-type generic parameter.
11670 DWARF3 5.6.8 says we must set a DW_AT_const_value child
11671 attribute of TMPL_DIE which value represents the value
11672 of ARG.
11673 We must be careful here:
11674 The value of ARG might reference some function decls.
11675 We might currently be emitting debug info for a generic
11676 type and types are emitted before function decls, we don't
11677 know if the function decls referenced by ARG will actually be
11678 emitted after cgraph computations.
11679 So must defer the generation of the DW_AT_const_value to
11680 after cgraph is ready. */
11681 append_entry_to_tmpl_value_parm_die_table (tmpl_die, arg);
11684 return tmpl_die;
11687 /* Generate and return a DW_TAG_GNU_template_parameter_pack DIE representing.
11688 PARM_PACK must be a template parameter pack. The returned DIE
11689 will be child DIE of PARENT_DIE. */
11691 static dw_die_ref
11692 template_parameter_pack_die (tree parm_pack,
11693 tree parm_pack_args,
11694 dw_die_ref parent_die)
11696 dw_die_ref die;
11697 int j;
11699 gcc_assert (parent_die && parm_pack);
11701 die = new_die (DW_TAG_GNU_template_parameter_pack, parent_die, parm_pack);
11702 add_name_and_src_coords_attributes (die, parm_pack);
11703 for (j = 0; j < TREE_VEC_LENGTH (parm_pack_args); j++)
11704 generic_parameter_die (parm_pack,
11705 TREE_VEC_ELT (parm_pack_args, j),
11706 false /* Don't emit DW_AT_name */,
11707 die);
11708 return die;
11711 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
11712 an enumerated type. */
11714 static inline int
11715 type_is_enum (const_tree type)
11717 return TREE_CODE (type) == ENUMERAL_TYPE;
11720 /* Return the DBX register number described by a given RTL node. */
11722 static unsigned int
11723 dbx_reg_number (const_rtx rtl)
11725 unsigned regno = REGNO (rtl);
11727 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
11729 #ifdef LEAF_REG_REMAP
11730 if (crtl->uses_only_leaf_regs)
11732 int leaf_reg = LEAF_REG_REMAP (regno);
11733 if (leaf_reg != -1)
11734 regno = (unsigned) leaf_reg;
11736 #endif
11738 regno = DBX_REGISTER_NUMBER (regno);
11739 gcc_assert (regno != INVALID_REGNUM);
11740 return regno;
11743 /* Optionally add a DW_OP_piece term to a location description expression.
11744 DW_OP_piece is only added if the location description expression already
11745 doesn't end with DW_OP_piece. */
11747 static void
11748 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
11750 dw_loc_descr_ref loc;
11752 if (*list_head != NULL)
11754 /* Find the end of the chain. */
11755 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
11758 if (loc->dw_loc_opc != DW_OP_piece)
11759 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
11763 /* Return a location descriptor that designates a machine register or
11764 zero if there is none. */
11766 static dw_loc_descr_ref
11767 reg_loc_descriptor (rtx rtl, enum var_init_status initialized)
11769 rtx regs;
11771 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
11772 return 0;
11774 /* We only use "frame base" when we're sure we're talking about the
11775 post-prologue local stack frame. We do this by *not* running
11776 register elimination until this point, and recognizing the special
11777 argument pointer and soft frame pointer rtx's.
11778 Use DW_OP_fbreg offset DW_OP_stack_value in this case. */
11779 if ((rtl == arg_pointer_rtx || rtl == frame_pointer_rtx)
11780 && eliminate_regs (rtl, VOIDmode, NULL_RTX) != rtl)
11782 dw_loc_descr_ref result = NULL;
11784 if (dwarf_version >= 4 || !dwarf_strict)
11786 result = mem_loc_descriptor (rtl, GET_MODE (rtl), VOIDmode,
11787 initialized);
11788 if (result)
11789 add_loc_descr (&result,
11790 new_loc_descr (DW_OP_stack_value, 0, 0));
11792 return result;
11795 regs = targetm.dwarf_register_span (rtl);
11797 if (REG_NREGS (rtl) > 1 || regs)
11798 return multiple_reg_loc_descriptor (rtl, regs, initialized);
11799 else
11801 unsigned int dbx_regnum = dbx_reg_number (rtl);
11802 if (dbx_regnum == IGNORED_DWARF_REGNUM)
11803 return 0;
11804 return one_reg_loc_descriptor (dbx_regnum, initialized);
11808 /* Return a location descriptor that designates a machine register for
11809 a given hard register number. */
11811 static dw_loc_descr_ref
11812 one_reg_loc_descriptor (unsigned int regno, enum var_init_status initialized)
11814 dw_loc_descr_ref reg_loc_descr;
11816 if (regno <= 31)
11817 reg_loc_descr
11818 = new_loc_descr ((enum dwarf_location_atom) (DW_OP_reg0 + regno), 0, 0);
11819 else
11820 reg_loc_descr = new_loc_descr (DW_OP_regx, regno, 0);
11822 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
11823 add_loc_descr (&reg_loc_descr, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
11825 return reg_loc_descr;
11828 /* Given an RTL of a register, return a location descriptor that
11829 designates a value that spans more than one register. */
11831 static dw_loc_descr_ref
11832 multiple_reg_loc_descriptor (rtx rtl, rtx regs,
11833 enum var_init_status initialized)
11835 int size, i;
11836 dw_loc_descr_ref loc_result = NULL;
11838 /* Simple, contiguous registers. */
11839 if (regs == NULL_RTX)
11841 unsigned reg = REGNO (rtl);
11842 int nregs;
11844 #ifdef LEAF_REG_REMAP
11845 if (crtl->uses_only_leaf_regs)
11847 int leaf_reg = LEAF_REG_REMAP (reg);
11848 if (leaf_reg != -1)
11849 reg = (unsigned) leaf_reg;
11851 #endif
11853 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
11854 nregs = REG_NREGS (rtl);
11856 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
11858 loc_result = NULL;
11859 while (nregs--)
11861 dw_loc_descr_ref t;
11863 t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg),
11864 VAR_INIT_STATUS_INITIALIZED);
11865 add_loc_descr (&loc_result, t);
11866 add_loc_descr_op_piece (&loc_result, size);
11867 ++reg;
11869 return loc_result;
11872 /* Now onto stupid register sets in non contiguous locations. */
11874 gcc_assert (GET_CODE (regs) == PARALLEL);
11876 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
11877 loc_result = NULL;
11879 for (i = 0; i < XVECLEN (regs, 0); ++i)
11881 dw_loc_descr_ref t;
11883 t = one_reg_loc_descriptor (dbx_reg_number (XVECEXP (regs, 0, i)),
11884 VAR_INIT_STATUS_INITIALIZED);
11885 add_loc_descr (&loc_result, t);
11886 add_loc_descr_op_piece (&loc_result, size);
11889 if (loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
11890 add_loc_descr (&loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
11891 return loc_result;
11894 static unsigned long size_of_int_loc_descriptor (HOST_WIDE_INT);
11896 /* Return a location descriptor that designates a constant i,
11897 as a compound operation from constant (i >> shift), constant shift
11898 and DW_OP_shl. */
11900 static dw_loc_descr_ref
11901 int_shift_loc_descriptor (HOST_WIDE_INT i, int shift)
11903 dw_loc_descr_ref ret = int_loc_descriptor (i >> shift);
11904 add_loc_descr (&ret, int_loc_descriptor (shift));
11905 add_loc_descr (&ret, new_loc_descr (DW_OP_shl, 0, 0));
11906 return ret;
11909 /* Return a location descriptor that designates a constant. */
11911 static dw_loc_descr_ref
11912 int_loc_descriptor (HOST_WIDE_INT i)
11914 enum dwarf_location_atom op;
11916 /* Pick the smallest representation of a constant, rather than just
11917 defaulting to the LEB encoding. */
11918 if (i >= 0)
11920 int clz = clz_hwi (i);
11921 int ctz = ctz_hwi (i);
11922 if (i <= 31)
11923 op = (enum dwarf_location_atom) (DW_OP_lit0 + i);
11924 else if (i <= 0xff)
11925 op = DW_OP_const1u;
11926 else if (i <= 0xffff)
11927 op = DW_OP_const2u;
11928 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 5
11929 && clz + 5 + 255 >= HOST_BITS_PER_WIDE_INT)
11930 /* DW_OP_litX DW_OP_litY DW_OP_shl takes just 3 bytes and
11931 DW_OP_litX DW_OP_const1u Y DW_OP_shl takes just 4 bytes,
11932 while DW_OP_const4u is 5 bytes. */
11933 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 5);
11934 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
11935 && clz + 8 + 31 >= HOST_BITS_PER_WIDE_INT)
11936 /* DW_OP_const1u X DW_OP_litY DW_OP_shl takes just 4 bytes,
11937 while DW_OP_const4u is 5 bytes. */
11938 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 8);
11939 else if (HOST_BITS_PER_WIDE_INT == 32 || i <= 0xffffffff)
11940 op = DW_OP_const4u;
11941 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
11942 && clz + 8 + 255 >= HOST_BITS_PER_WIDE_INT)
11943 /* DW_OP_const1u X DW_OP_const1u Y DW_OP_shl takes just 5 bytes,
11944 while DW_OP_constu of constant >= 0x100000000 takes at least
11945 6 bytes. */
11946 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 8);
11947 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 16
11948 && clz + 16 + (size_of_uleb128 (i) > 5 ? 255 : 31)
11949 >= HOST_BITS_PER_WIDE_INT)
11950 /* DW_OP_const2u X DW_OP_litY DW_OP_shl takes just 5 bytes,
11951 DW_OP_const2u X DW_OP_const1u Y DW_OP_shl takes 6 bytes,
11952 while DW_OP_constu takes in this case at least 6 bytes. */
11953 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 16);
11954 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 32
11955 && clz + 32 + 31 >= HOST_BITS_PER_WIDE_INT
11956 && size_of_uleb128 (i) > 6)
11957 /* DW_OP_const4u X DW_OP_litY DW_OP_shl takes just 7 bytes. */
11958 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 32);
11959 else
11960 op = DW_OP_constu;
11962 else
11964 if (i >= -0x80)
11965 op = DW_OP_const1s;
11966 else if (i >= -0x8000)
11967 op = DW_OP_const2s;
11968 else if (HOST_BITS_PER_WIDE_INT == 32 || i >= -0x80000000)
11970 if (size_of_int_loc_descriptor (i) < 5)
11972 dw_loc_descr_ref ret = int_loc_descriptor (-i);
11973 add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
11974 return ret;
11976 op = DW_OP_const4s;
11978 else
11980 if (size_of_int_loc_descriptor (i)
11981 < (unsigned long) 1 + size_of_sleb128 (i))
11983 dw_loc_descr_ref ret = int_loc_descriptor (-i);
11984 add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
11985 return ret;
11987 op = DW_OP_consts;
11991 return new_loc_descr (op, i, 0);
11994 /* Likewise, for unsigned constants. */
11996 static dw_loc_descr_ref
11997 uint_loc_descriptor (unsigned HOST_WIDE_INT i)
11999 const unsigned HOST_WIDE_INT max_int = INTTYPE_MAXIMUM (HOST_WIDE_INT);
12000 const unsigned HOST_WIDE_INT max_uint
12001 = INTTYPE_MAXIMUM (unsigned HOST_WIDE_INT);
12003 /* If possible, use the clever signed constants handling. */
12004 if (i <= max_int)
12005 return int_loc_descriptor ((HOST_WIDE_INT) i);
12007 /* Here, we are left with positive numbers that cannot be represented as
12008 HOST_WIDE_INT, i.e.:
12009 max (HOST_WIDE_INT) < i <= max (unsigned HOST_WIDE_INT)
12011 Using DW_OP_const4/8/./u operation to encode them consumes a lot of bytes
12012 whereas may be better to output a negative integer: thanks to integer
12013 wrapping, we know that:
12014 x = x - 2 ** DWARF2_ADDR_SIZE
12015 = x - 2 * (max (HOST_WIDE_INT) + 1)
12016 So numbers close to max (unsigned HOST_WIDE_INT) could be represented as
12017 small negative integers. Let's try that in cases it will clearly improve
12018 the encoding: there is no gain turning DW_OP_const4u into
12019 DW_OP_const4s. */
12020 if (DWARF2_ADDR_SIZE * 8 == HOST_BITS_PER_WIDE_INT
12021 && ((DWARF2_ADDR_SIZE == 4 && i > max_uint - 0x8000)
12022 || (DWARF2_ADDR_SIZE == 8 && i > max_uint - 0x80000000)))
12024 const unsigned HOST_WIDE_INT first_shift = i - max_int - 1;
12026 /* Now, -1 < first_shift <= max (HOST_WIDE_INT)
12027 i.e. 0 <= first_shift <= max (HOST_WIDE_INT). */
12028 const HOST_WIDE_INT second_shift
12029 = (HOST_WIDE_INT) first_shift - (HOST_WIDE_INT) max_int - 1;
12031 /* So we finally have:
12032 -max (HOST_WIDE_INT) - 1 <= second_shift <= -1.
12033 i.e. min (HOST_WIDE_INT) <= second_shift < 0. */
12034 return int_loc_descriptor (second_shift);
12037 /* Last chance: fallback to a simple constant operation. */
12038 return new_loc_descr
12039 ((HOST_BITS_PER_WIDE_INT == 32 || i <= 0xffffffff)
12040 ? DW_OP_const4u
12041 : DW_OP_const8u,
12042 i, 0);
12045 /* Generate and return a location description that computes the unsigned
12046 comparison of the two stack top entries (a OP b where b is the top-most
12047 entry and a is the second one). The KIND of comparison can be LT_EXPR,
12048 LE_EXPR, GT_EXPR or GE_EXPR. */
12050 static dw_loc_descr_ref
12051 uint_comparison_loc_list (enum tree_code kind)
12053 enum dwarf_location_atom op, flip_op;
12054 dw_loc_descr_ref ret, bra_node, jmp_node, tmp;
12056 switch (kind)
12058 case LT_EXPR:
12059 op = DW_OP_lt;
12060 break;
12061 case LE_EXPR:
12062 op = DW_OP_le;
12063 break;
12064 case GT_EXPR:
12065 op = DW_OP_gt;
12066 break;
12067 case GE_EXPR:
12068 op = DW_OP_ge;
12069 break;
12070 default:
12071 gcc_unreachable ();
12074 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
12075 jmp_node = new_loc_descr (DW_OP_skip, 0, 0);
12077 /* Until DWARFv4, operations all work on signed integers. It is nevertheless
12078 possible to perform unsigned comparisons: we just have to distinguish
12079 three cases:
12081 1. when a and b have the same sign (as signed integers); then we should
12082 return: a OP(signed) b;
12084 2. when a is a negative signed integer while b is a positive one, then a
12085 is a greater unsigned integer than b; likewise when a and b's roles
12086 are flipped.
12088 So first, compare the sign of the two operands. */
12089 ret = new_loc_descr (DW_OP_over, 0, 0);
12090 add_loc_descr (&ret, new_loc_descr (DW_OP_over, 0, 0));
12091 add_loc_descr (&ret, new_loc_descr (DW_OP_xor, 0, 0));
12092 /* If they have different signs (i.e. they have different sign bits), then
12093 the stack top value has now the sign bit set and thus it's smaller than
12094 zero. */
12095 add_loc_descr (&ret, new_loc_descr (DW_OP_lit0, 0, 0));
12096 add_loc_descr (&ret, new_loc_descr (DW_OP_lt, 0, 0));
12097 add_loc_descr (&ret, bra_node);
12099 /* We are in case 1. At this point, we know both operands have the same
12100 sign, to it's safe to use the built-in signed comparison. */
12101 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
12102 add_loc_descr (&ret, jmp_node);
12104 /* We are in case 2. Here, we know both operands do not have the same sign,
12105 so we have to flip the signed comparison. */
12106 flip_op = (kind == LT_EXPR || kind == LE_EXPR) ? DW_OP_gt : DW_OP_lt;
12107 tmp = new_loc_descr (flip_op, 0, 0);
12108 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
12109 bra_node->dw_loc_oprnd1.v.val_loc = tmp;
12110 add_loc_descr (&ret, tmp);
12112 /* This dummy operation is necessary to make the two branches join. */
12113 tmp = new_loc_descr (DW_OP_nop, 0, 0);
12114 jmp_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
12115 jmp_node->dw_loc_oprnd1.v.val_loc = tmp;
12116 add_loc_descr (&ret, tmp);
12118 return ret;
12121 /* Likewise, but takes the location description lists (might be destructive on
12122 them). Return NULL if either is NULL or if concatenation fails. */
12124 static dw_loc_list_ref
12125 loc_list_from_uint_comparison (dw_loc_list_ref left, dw_loc_list_ref right,
12126 enum tree_code kind)
12128 if (left == NULL || right == NULL)
12129 return NULL;
12131 add_loc_list (&left, right);
12132 if (left == NULL)
12133 return NULL;
12135 add_loc_descr_to_each (left, uint_comparison_loc_list (kind));
12136 return left;
12139 /* Return size_of_locs (int_shift_loc_descriptor (i, shift))
12140 without actually allocating it. */
12142 static unsigned long
12143 size_of_int_shift_loc_descriptor (HOST_WIDE_INT i, int shift)
12145 return size_of_int_loc_descriptor (i >> shift)
12146 + size_of_int_loc_descriptor (shift)
12147 + 1;
12150 /* Return size_of_locs (int_loc_descriptor (i)) without
12151 actually allocating it. */
12153 static unsigned long
12154 size_of_int_loc_descriptor (HOST_WIDE_INT i)
12156 unsigned long s;
12158 if (i >= 0)
12160 int clz, ctz;
12161 if (i <= 31)
12162 return 1;
12163 else if (i <= 0xff)
12164 return 2;
12165 else if (i <= 0xffff)
12166 return 3;
12167 clz = clz_hwi (i);
12168 ctz = ctz_hwi (i);
12169 if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 5
12170 && clz + 5 + 255 >= HOST_BITS_PER_WIDE_INT)
12171 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
12172 - clz - 5);
12173 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
12174 && clz + 8 + 31 >= HOST_BITS_PER_WIDE_INT)
12175 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
12176 - clz - 8);
12177 else if (HOST_BITS_PER_WIDE_INT == 32 || i <= 0xffffffff)
12178 return 5;
12179 s = size_of_uleb128 ((unsigned HOST_WIDE_INT) i);
12180 if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
12181 && clz + 8 + 255 >= HOST_BITS_PER_WIDE_INT)
12182 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
12183 - clz - 8);
12184 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 16
12185 && clz + 16 + (s > 5 ? 255 : 31) >= HOST_BITS_PER_WIDE_INT)
12186 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
12187 - clz - 16);
12188 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 32
12189 && clz + 32 + 31 >= HOST_BITS_PER_WIDE_INT
12190 && s > 6)
12191 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
12192 - clz - 32);
12193 else
12194 return 1 + s;
12196 else
12198 if (i >= -0x80)
12199 return 2;
12200 else if (i >= -0x8000)
12201 return 3;
12202 else if (HOST_BITS_PER_WIDE_INT == 32 || i >= -0x80000000)
12204 if (-(unsigned HOST_WIDE_INT) i != (unsigned HOST_WIDE_INT) i)
12206 s = size_of_int_loc_descriptor (-i) + 1;
12207 if (s < 5)
12208 return s;
12210 return 5;
12212 else
12214 unsigned long r = 1 + size_of_sleb128 (i);
12215 if (-(unsigned HOST_WIDE_INT) i != (unsigned HOST_WIDE_INT) i)
12217 s = size_of_int_loc_descriptor (-i) + 1;
12218 if (s < r)
12219 return s;
12221 return r;
12226 /* Return loc description representing "address" of integer value.
12227 This can appear only as toplevel expression. */
12229 static dw_loc_descr_ref
12230 address_of_int_loc_descriptor (int size, HOST_WIDE_INT i)
12232 int litsize;
12233 dw_loc_descr_ref loc_result = NULL;
12235 if (!(dwarf_version >= 4 || !dwarf_strict))
12236 return NULL;
12238 litsize = size_of_int_loc_descriptor (i);
12239 /* Determine if DW_OP_stack_value or DW_OP_implicit_value
12240 is more compact. For DW_OP_stack_value we need:
12241 litsize + 1 (DW_OP_stack_value)
12242 and for DW_OP_implicit_value:
12243 1 (DW_OP_implicit_value) + 1 (length) + size. */
12244 if ((int) DWARF2_ADDR_SIZE >= size && litsize + 1 <= 1 + 1 + size)
12246 loc_result = int_loc_descriptor (i);
12247 add_loc_descr (&loc_result,
12248 new_loc_descr (DW_OP_stack_value, 0, 0));
12249 return loc_result;
12252 loc_result = new_loc_descr (DW_OP_implicit_value,
12253 size, 0);
12254 loc_result->dw_loc_oprnd2.val_class = dw_val_class_const;
12255 loc_result->dw_loc_oprnd2.v.val_int = i;
12256 return loc_result;
12259 /* Return a location descriptor that designates a base+offset location. */
12261 static dw_loc_descr_ref
12262 based_loc_descr (rtx reg, HOST_WIDE_INT offset,
12263 enum var_init_status initialized)
12265 unsigned int regno;
12266 dw_loc_descr_ref result;
12267 dw_fde_ref fde = cfun->fde;
12269 /* We only use "frame base" when we're sure we're talking about the
12270 post-prologue local stack frame. We do this by *not* running
12271 register elimination until this point, and recognizing the special
12272 argument pointer and soft frame pointer rtx's. */
12273 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
12275 rtx elim = (ira_use_lra_p
12276 ? lra_eliminate_regs (reg, VOIDmode, NULL_RTX)
12277 : eliminate_regs (reg, VOIDmode, NULL_RTX));
12279 if (elim != reg)
12281 if (GET_CODE (elim) == PLUS)
12283 offset += INTVAL (XEXP (elim, 1));
12284 elim = XEXP (elim, 0);
12286 gcc_assert ((SUPPORTS_STACK_ALIGNMENT
12287 && (elim == hard_frame_pointer_rtx
12288 || elim == stack_pointer_rtx))
12289 || elim == (frame_pointer_needed
12290 ? hard_frame_pointer_rtx
12291 : stack_pointer_rtx));
12293 /* If drap register is used to align stack, use frame
12294 pointer + offset to access stack variables. If stack
12295 is aligned without drap, use stack pointer + offset to
12296 access stack variables. */
12297 if (crtl->stack_realign_tried
12298 && reg == frame_pointer_rtx)
12300 int base_reg
12301 = DWARF_FRAME_REGNUM ((fde && fde->drap_reg != INVALID_REGNUM)
12302 ? HARD_FRAME_POINTER_REGNUM
12303 : REGNO (elim));
12304 return new_reg_loc_descr (base_reg, offset);
12307 gcc_assert (frame_pointer_fb_offset_valid);
12308 offset += frame_pointer_fb_offset;
12309 return new_loc_descr (DW_OP_fbreg, offset, 0);
12313 regno = REGNO (reg);
12314 #ifdef LEAF_REG_REMAP
12315 if (crtl->uses_only_leaf_regs)
12317 int leaf_reg = LEAF_REG_REMAP (regno);
12318 if (leaf_reg != -1)
12319 regno = (unsigned) leaf_reg;
12321 #endif
12322 regno = DWARF_FRAME_REGNUM (regno);
12324 if (!optimize && fde
12325 && (fde->drap_reg == regno || fde->vdrap_reg == regno))
12327 /* Use cfa+offset to represent the location of arguments passed
12328 on the stack when drap is used to align stack.
12329 Only do this when not optimizing, for optimized code var-tracking
12330 is supposed to track where the arguments live and the register
12331 used as vdrap or drap in some spot might be used for something
12332 else in other part of the routine. */
12333 return new_loc_descr (DW_OP_fbreg, offset, 0);
12336 if (regno <= 31)
12337 result = new_loc_descr ((enum dwarf_location_atom) (DW_OP_breg0 + regno),
12338 offset, 0);
12339 else
12340 result = new_loc_descr (DW_OP_bregx, regno, offset);
12342 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
12343 add_loc_descr (&result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
12345 return result;
12348 /* Return true if this RTL expression describes a base+offset calculation. */
12350 static inline int
12351 is_based_loc (const_rtx rtl)
12353 return (GET_CODE (rtl) == PLUS
12354 && ((REG_P (XEXP (rtl, 0))
12355 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
12356 && CONST_INT_P (XEXP (rtl, 1)))));
12359 /* Try to handle TLS MEMs, for which mem_loc_descriptor on XEXP (mem, 0)
12360 failed. */
12362 static dw_loc_descr_ref
12363 tls_mem_loc_descriptor (rtx mem)
12365 tree base;
12366 dw_loc_descr_ref loc_result;
12368 if (MEM_EXPR (mem) == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
12369 return NULL;
12371 base = get_base_address (MEM_EXPR (mem));
12372 if (base == NULL
12373 || TREE_CODE (base) != VAR_DECL
12374 || !DECL_THREAD_LOCAL_P (base))
12375 return NULL;
12377 loc_result = loc_descriptor_from_tree (MEM_EXPR (mem), 1, NULL);
12378 if (loc_result == NULL)
12379 return NULL;
12381 if (MEM_OFFSET (mem))
12382 loc_descr_plus_const (&loc_result, MEM_OFFSET (mem));
12384 return loc_result;
12387 /* Output debug info about reason why we failed to expand expression as dwarf
12388 expression. */
12390 static void
12391 expansion_failed (tree expr, rtx rtl, char const *reason)
12393 if (dump_file && (dump_flags & TDF_DETAILS))
12395 fprintf (dump_file, "Failed to expand as dwarf: ");
12396 if (expr)
12397 print_generic_expr (dump_file, expr, dump_flags);
12398 if (rtl)
12400 fprintf (dump_file, "\n");
12401 print_rtl (dump_file, rtl);
12403 fprintf (dump_file, "\nReason: %s\n", reason);
12407 /* Helper function for const_ok_for_output. */
12409 static bool
12410 const_ok_for_output_1 (rtx rtl)
12412 if (GET_CODE (rtl) == UNSPEC)
12414 /* If delegitimize_address couldn't do anything with the UNSPEC, assume
12415 we can't express it in the debug info. */
12416 /* Don't complain about TLS UNSPECs, those are just too hard to
12417 delegitimize. Note this could be a non-decl SYMBOL_REF such as
12418 one in a constant pool entry, so testing SYMBOL_REF_TLS_MODEL
12419 rather than DECL_THREAD_LOCAL_P is not just an optimization. */
12420 if (flag_checking
12421 && (XVECLEN (rtl, 0) == 0
12422 || GET_CODE (XVECEXP (rtl, 0, 0)) != SYMBOL_REF
12423 || SYMBOL_REF_TLS_MODEL (XVECEXP (rtl, 0, 0)) == TLS_MODEL_NONE))
12424 inform (current_function_decl
12425 ? DECL_SOURCE_LOCATION (current_function_decl)
12426 : UNKNOWN_LOCATION,
12427 #if NUM_UNSPEC_VALUES > 0
12428 "non-delegitimized UNSPEC %s (%d) found in variable location",
12429 ((XINT (rtl, 1) >= 0 && XINT (rtl, 1) < NUM_UNSPEC_VALUES)
12430 ? unspec_strings[XINT (rtl, 1)] : "unknown"),
12431 XINT (rtl, 1));
12432 #else
12433 "non-delegitimized UNSPEC %d found in variable location",
12434 XINT (rtl, 1));
12435 #endif
12436 expansion_failed (NULL_TREE, rtl,
12437 "UNSPEC hasn't been delegitimized.\n");
12438 return false;
12441 if (targetm.const_not_ok_for_debug_p (rtl))
12443 expansion_failed (NULL_TREE, rtl,
12444 "Expression rejected for debug by the backend.\n");
12445 return false;
12448 /* FIXME: Refer to PR60655. It is possible for simplification
12449 of rtl expressions in var tracking to produce such expressions.
12450 We should really identify / validate expressions
12451 enclosed in CONST that can be handled by assemblers on various
12452 targets and only handle legitimate cases here. */
12453 if (GET_CODE (rtl) != SYMBOL_REF)
12455 if (GET_CODE (rtl) == NOT)
12456 return false;
12457 return true;
12460 if (CONSTANT_POOL_ADDRESS_P (rtl))
12462 bool marked;
12463 get_pool_constant_mark (rtl, &marked);
12464 /* If all references to this pool constant were optimized away,
12465 it was not output and thus we can't represent it. */
12466 if (!marked)
12468 expansion_failed (NULL_TREE, rtl,
12469 "Constant was removed from constant pool.\n");
12470 return false;
12474 if (SYMBOL_REF_TLS_MODEL (rtl) != TLS_MODEL_NONE)
12475 return false;
12477 /* Avoid references to external symbols in debug info, on several targets
12478 the linker might even refuse to link when linking a shared library,
12479 and in many other cases the relocations for .debug_info/.debug_loc are
12480 dropped, so the address becomes zero anyway. Hidden symbols, guaranteed
12481 to be defined within the same shared library or executable are fine. */
12482 if (SYMBOL_REF_EXTERNAL_P (rtl))
12484 tree decl = SYMBOL_REF_DECL (rtl);
12486 if (decl == NULL || !targetm.binds_local_p (decl))
12488 expansion_failed (NULL_TREE, rtl,
12489 "Symbol not defined in current TU.\n");
12490 return false;
12494 return true;
12497 /* Return true if constant RTL can be emitted in DW_OP_addr or
12498 DW_AT_const_value. TLS SYMBOL_REFs, external SYMBOL_REFs or
12499 non-marked constant pool SYMBOL_REFs can't be referenced in it. */
12501 static bool
12502 const_ok_for_output (rtx rtl)
12504 if (GET_CODE (rtl) == SYMBOL_REF)
12505 return const_ok_for_output_1 (rtl);
12507 if (GET_CODE (rtl) == CONST)
12509 subrtx_var_iterator::array_type array;
12510 FOR_EACH_SUBRTX_VAR (iter, array, XEXP (rtl, 0), ALL)
12511 if (!const_ok_for_output_1 (*iter))
12512 return false;
12513 return true;
12516 return true;
12519 /* Return a reference to DW_TAG_base_type corresponding to MODE and UNSIGNEDP
12520 if possible, NULL otherwise. */
12522 static dw_die_ref
12523 base_type_for_mode (machine_mode mode, bool unsignedp)
12525 dw_die_ref type_die;
12526 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
12528 if (type == NULL)
12529 return NULL;
12530 switch (TREE_CODE (type))
12532 case INTEGER_TYPE:
12533 case REAL_TYPE:
12534 break;
12535 default:
12536 return NULL;
12538 type_die = lookup_type_die (type);
12539 if (!type_die)
12540 type_die = modified_type_die (type, TYPE_UNQUALIFIED, false,
12541 comp_unit_die ());
12542 if (type_die == NULL || type_die->die_tag != DW_TAG_base_type)
12543 return NULL;
12544 return type_die;
12547 /* For OP descriptor assumed to be in unsigned MODE, convert it to a unsigned
12548 type matching MODE, or, if MODE is narrower than or as wide as
12549 DWARF2_ADDR_SIZE, untyped. Return NULL if the conversion is not
12550 possible. */
12552 static dw_loc_descr_ref
12553 convert_descriptor_to_mode (machine_mode mode, dw_loc_descr_ref op)
12555 machine_mode outer_mode = mode;
12556 dw_die_ref type_die;
12557 dw_loc_descr_ref cvt;
12559 if (GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE)
12561 add_loc_descr (&op, new_loc_descr (DW_OP_GNU_convert, 0, 0));
12562 return op;
12564 type_die = base_type_for_mode (outer_mode, 1);
12565 if (type_die == NULL)
12566 return NULL;
12567 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12568 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12569 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
12570 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12571 add_loc_descr (&op, cvt);
12572 return op;
12575 /* Return location descriptor for comparison OP with operands OP0 and OP1. */
12577 static dw_loc_descr_ref
12578 compare_loc_descriptor (enum dwarf_location_atom op, dw_loc_descr_ref op0,
12579 dw_loc_descr_ref op1)
12581 dw_loc_descr_ref ret = op0;
12582 add_loc_descr (&ret, op1);
12583 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
12584 if (STORE_FLAG_VALUE != 1)
12586 add_loc_descr (&ret, int_loc_descriptor (STORE_FLAG_VALUE));
12587 add_loc_descr (&ret, new_loc_descr (DW_OP_mul, 0, 0));
12589 return ret;
12592 /* Return location descriptor for signed comparison OP RTL. */
12594 static dw_loc_descr_ref
12595 scompare_loc_descriptor (enum dwarf_location_atom op, rtx rtl,
12596 machine_mode mem_mode)
12598 machine_mode op_mode = GET_MODE (XEXP (rtl, 0));
12599 dw_loc_descr_ref op0, op1;
12600 int shift;
12602 if (op_mode == VOIDmode)
12603 op_mode = GET_MODE (XEXP (rtl, 1));
12604 if (op_mode == VOIDmode)
12605 return NULL;
12607 if (dwarf_strict
12608 && (!SCALAR_INT_MODE_P (op_mode)
12609 || GET_MODE_SIZE (op_mode) > DWARF2_ADDR_SIZE))
12610 return NULL;
12612 op0 = mem_loc_descriptor (XEXP (rtl, 0), op_mode, mem_mode,
12613 VAR_INIT_STATUS_INITIALIZED);
12614 op1 = mem_loc_descriptor (XEXP (rtl, 1), op_mode, mem_mode,
12615 VAR_INIT_STATUS_INITIALIZED);
12617 if (op0 == NULL || op1 == NULL)
12618 return NULL;
12620 if (!SCALAR_INT_MODE_P (op_mode)
12621 || GET_MODE_SIZE (op_mode) == DWARF2_ADDR_SIZE)
12622 return compare_loc_descriptor (op, op0, op1);
12624 if (GET_MODE_SIZE (op_mode) > DWARF2_ADDR_SIZE)
12626 dw_die_ref type_die = base_type_for_mode (op_mode, 0);
12627 dw_loc_descr_ref cvt;
12629 if (type_die == NULL)
12630 return NULL;
12631 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12632 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12633 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
12634 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12635 add_loc_descr (&op0, cvt);
12636 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12637 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12638 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
12639 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12640 add_loc_descr (&op1, cvt);
12641 return compare_loc_descriptor (op, op0, op1);
12644 shift = (DWARF2_ADDR_SIZE - GET_MODE_SIZE (op_mode)) * BITS_PER_UNIT;
12645 /* For eq/ne, if the operands are known to be zero-extended,
12646 there is no need to do the fancy shifting up. */
12647 if (op == DW_OP_eq || op == DW_OP_ne)
12649 dw_loc_descr_ref last0, last1;
12650 for (last0 = op0; last0->dw_loc_next != NULL; last0 = last0->dw_loc_next)
12652 for (last1 = op1; last1->dw_loc_next != NULL; last1 = last1->dw_loc_next)
12654 /* deref_size zero extends, and for constants we can check
12655 whether they are zero extended or not. */
12656 if (((last0->dw_loc_opc == DW_OP_deref_size
12657 && last0->dw_loc_oprnd1.v.val_int <= GET_MODE_SIZE (op_mode))
12658 || (CONST_INT_P (XEXP (rtl, 0))
12659 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (rtl, 0))
12660 == (INTVAL (XEXP (rtl, 0)) & GET_MODE_MASK (op_mode))))
12661 && ((last1->dw_loc_opc == DW_OP_deref_size
12662 && last1->dw_loc_oprnd1.v.val_int <= GET_MODE_SIZE (op_mode))
12663 || (CONST_INT_P (XEXP (rtl, 1))
12664 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (rtl, 1))
12665 == (INTVAL (XEXP (rtl, 1)) & GET_MODE_MASK (op_mode)))))
12666 return compare_loc_descriptor (op, op0, op1);
12668 /* EQ/NE comparison against constant in narrower type than
12669 DWARF2_ADDR_SIZE can be performed either as
12670 DW_OP_const1u <shift> DW_OP_shl DW_OP_const* <cst << shift>
12671 DW_OP_{eq,ne}
12673 DW_OP_const*u <mode_mask> DW_OP_and DW_OP_const* <cst & mode_mask>
12674 DW_OP_{eq,ne}. Pick whatever is shorter. */
12675 if (CONST_INT_P (XEXP (rtl, 1))
12676 && GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT
12677 && (size_of_int_loc_descriptor (shift) + 1
12678 + size_of_int_loc_descriptor (INTVAL (XEXP (rtl, 1)) << shift)
12679 >= size_of_int_loc_descriptor (GET_MODE_MASK (op_mode)) + 1
12680 + size_of_int_loc_descriptor (INTVAL (XEXP (rtl, 1))
12681 & GET_MODE_MASK (op_mode))))
12683 add_loc_descr (&op0, int_loc_descriptor (GET_MODE_MASK (op_mode)));
12684 add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0));
12685 op1 = int_loc_descriptor (INTVAL (XEXP (rtl, 1))
12686 & GET_MODE_MASK (op_mode));
12687 return compare_loc_descriptor (op, op0, op1);
12690 add_loc_descr (&op0, int_loc_descriptor (shift));
12691 add_loc_descr (&op0, new_loc_descr (DW_OP_shl, 0, 0));
12692 if (CONST_INT_P (XEXP (rtl, 1)))
12693 op1 = int_loc_descriptor (INTVAL (XEXP (rtl, 1)) << shift);
12694 else
12696 add_loc_descr (&op1, int_loc_descriptor (shift));
12697 add_loc_descr (&op1, new_loc_descr (DW_OP_shl, 0, 0));
12699 return compare_loc_descriptor (op, op0, op1);
12702 /* Return location descriptor for unsigned comparison OP RTL. */
12704 static dw_loc_descr_ref
12705 ucompare_loc_descriptor (enum dwarf_location_atom op, rtx rtl,
12706 machine_mode mem_mode)
12708 machine_mode op_mode = GET_MODE (XEXP (rtl, 0));
12709 dw_loc_descr_ref op0, op1;
12711 if (op_mode == VOIDmode)
12712 op_mode = GET_MODE (XEXP (rtl, 1));
12713 if (op_mode == VOIDmode)
12714 return NULL;
12715 if (!SCALAR_INT_MODE_P (op_mode))
12716 return NULL;
12718 if (dwarf_strict && GET_MODE_SIZE (op_mode) > DWARF2_ADDR_SIZE)
12719 return NULL;
12721 op0 = mem_loc_descriptor (XEXP (rtl, 0), op_mode, mem_mode,
12722 VAR_INIT_STATUS_INITIALIZED);
12723 op1 = mem_loc_descriptor (XEXP (rtl, 1), op_mode, mem_mode,
12724 VAR_INIT_STATUS_INITIALIZED);
12726 if (op0 == NULL || op1 == NULL)
12727 return NULL;
12729 if (GET_MODE_SIZE (op_mode) < DWARF2_ADDR_SIZE)
12731 HOST_WIDE_INT mask = GET_MODE_MASK (op_mode);
12732 dw_loc_descr_ref last0, last1;
12733 for (last0 = op0; last0->dw_loc_next != NULL; last0 = last0->dw_loc_next)
12735 for (last1 = op1; last1->dw_loc_next != NULL; last1 = last1->dw_loc_next)
12737 if (CONST_INT_P (XEXP (rtl, 0)))
12738 op0 = int_loc_descriptor (INTVAL (XEXP (rtl, 0)) & mask);
12739 /* deref_size zero extends, so no need to mask it again. */
12740 else if (last0->dw_loc_opc != DW_OP_deref_size
12741 || last0->dw_loc_oprnd1.v.val_int > GET_MODE_SIZE (op_mode))
12743 add_loc_descr (&op0, int_loc_descriptor (mask));
12744 add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0));
12746 if (CONST_INT_P (XEXP (rtl, 1)))
12747 op1 = int_loc_descriptor (INTVAL (XEXP (rtl, 1)) & mask);
12748 /* deref_size zero extends, so no need to mask it again. */
12749 else if (last1->dw_loc_opc != DW_OP_deref_size
12750 || last1->dw_loc_oprnd1.v.val_int > GET_MODE_SIZE (op_mode))
12752 add_loc_descr (&op1, int_loc_descriptor (mask));
12753 add_loc_descr (&op1, new_loc_descr (DW_OP_and, 0, 0));
12756 else if (GET_MODE_SIZE (op_mode) == DWARF2_ADDR_SIZE)
12758 HOST_WIDE_INT bias = 1;
12759 bias <<= (DWARF2_ADDR_SIZE * BITS_PER_UNIT - 1);
12760 add_loc_descr (&op0, new_loc_descr (DW_OP_plus_uconst, bias, 0));
12761 if (CONST_INT_P (XEXP (rtl, 1)))
12762 op1 = int_loc_descriptor ((unsigned HOST_WIDE_INT) bias
12763 + INTVAL (XEXP (rtl, 1)));
12764 else
12765 add_loc_descr (&op1, new_loc_descr (DW_OP_plus_uconst,
12766 bias, 0));
12768 return compare_loc_descriptor (op, op0, op1);
12771 /* Return location descriptor for {U,S}{MIN,MAX}. */
12773 static dw_loc_descr_ref
12774 minmax_loc_descriptor (rtx rtl, machine_mode mode,
12775 machine_mode mem_mode)
12777 enum dwarf_location_atom op;
12778 dw_loc_descr_ref op0, op1, ret;
12779 dw_loc_descr_ref bra_node, drop_node;
12781 if (dwarf_strict
12782 && (!SCALAR_INT_MODE_P (mode)
12783 || GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE))
12784 return NULL;
12786 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
12787 VAR_INIT_STATUS_INITIALIZED);
12788 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
12789 VAR_INIT_STATUS_INITIALIZED);
12791 if (op0 == NULL || op1 == NULL)
12792 return NULL;
12794 add_loc_descr (&op0, new_loc_descr (DW_OP_dup, 0, 0));
12795 add_loc_descr (&op1, new_loc_descr (DW_OP_swap, 0, 0));
12796 add_loc_descr (&op1, new_loc_descr (DW_OP_over, 0, 0));
12797 if (GET_CODE (rtl) == UMIN || GET_CODE (rtl) == UMAX)
12799 if (GET_MODE_SIZE (mode) < DWARF2_ADDR_SIZE)
12801 HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12802 add_loc_descr (&op0, int_loc_descriptor (mask));
12803 add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0));
12804 add_loc_descr (&op1, int_loc_descriptor (mask));
12805 add_loc_descr (&op1, new_loc_descr (DW_OP_and, 0, 0));
12807 else if (GET_MODE_SIZE (mode) == DWARF2_ADDR_SIZE)
12809 HOST_WIDE_INT bias = 1;
12810 bias <<= (DWARF2_ADDR_SIZE * BITS_PER_UNIT - 1);
12811 add_loc_descr (&op0, new_loc_descr (DW_OP_plus_uconst, bias, 0));
12812 add_loc_descr (&op1, new_loc_descr (DW_OP_plus_uconst, bias, 0));
12815 else if (!SCALAR_INT_MODE_P (mode)
12816 && GET_MODE_SIZE (mode) < DWARF2_ADDR_SIZE)
12818 int shift = (DWARF2_ADDR_SIZE - GET_MODE_SIZE (mode)) * BITS_PER_UNIT;
12819 add_loc_descr (&op0, int_loc_descriptor (shift));
12820 add_loc_descr (&op0, new_loc_descr (DW_OP_shl, 0, 0));
12821 add_loc_descr (&op1, int_loc_descriptor (shift));
12822 add_loc_descr (&op1, new_loc_descr (DW_OP_shl, 0, 0));
12824 else if (SCALAR_INT_MODE_P (mode)
12825 && GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE)
12827 dw_die_ref type_die = base_type_for_mode (mode, 0);
12828 dw_loc_descr_ref cvt;
12829 if (type_die == NULL)
12830 return NULL;
12831 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12832 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12833 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
12834 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12835 add_loc_descr (&op0, cvt);
12836 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12837 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12838 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
12839 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12840 add_loc_descr (&op1, cvt);
12843 if (GET_CODE (rtl) == SMIN || GET_CODE (rtl) == UMIN)
12844 op = DW_OP_lt;
12845 else
12846 op = DW_OP_gt;
12847 ret = op0;
12848 add_loc_descr (&ret, op1);
12849 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
12850 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
12851 add_loc_descr (&ret, bra_node);
12852 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12853 drop_node = new_loc_descr (DW_OP_drop, 0, 0);
12854 add_loc_descr (&ret, drop_node);
12855 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
12856 bra_node->dw_loc_oprnd1.v.val_loc = drop_node;
12857 if ((GET_CODE (rtl) == SMIN || GET_CODE (rtl) == SMAX)
12858 && SCALAR_INT_MODE_P (mode)
12859 && GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE)
12860 ret = convert_descriptor_to_mode (mode, ret);
12861 return ret;
12864 /* Helper function for mem_loc_descriptor. Perform OP binary op,
12865 but after converting arguments to type_die, afterwards
12866 convert back to unsigned. */
12868 static dw_loc_descr_ref
12869 typed_binop (enum dwarf_location_atom op, rtx rtl, dw_die_ref type_die,
12870 machine_mode mode, machine_mode mem_mode)
12872 dw_loc_descr_ref cvt, op0, op1;
12874 if (type_die == NULL)
12875 return NULL;
12876 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
12877 VAR_INIT_STATUS_INITIALIZED);
12878 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
12879 VAR_INIT_STATUS_INITIALIZED);
12880 if (op0 == NULL || op1 == NULL)
12881 return NULL;
12882 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12883 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12884 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
12885 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12886 add_loc_descr (&op0, cvt);
12887 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12888 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12889 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
12890 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12891 add_loc_descr (&op1, cvt);
12892 add_loc_descr (&op0, op1);
12893 add_loc_descr (&op0, new_loc_descr (op, 0, 0));
12894 return convert_descriptor_to_mode (mode, op0);
12897 /* CLZ (where constV is CLZ_DEFINED_VALUE_AT_ZERO computed value,
12898 const0 is DW_OP_lit0 or corresponding typed constant,
12899 const1 is DW_OP_lit1 or corresponding typed constant
12900 and constMSB is constant with just the MSB bit set
12901 for the mode):
12902 DW_OP_dup DW_OP_bra <L1> DW_OP_drop constV DW_OP_skip <L4>
12903 L1: const0 DW_OP_swap
12904 L2: DW_OP_dup constMSB DW_OP_and DW_OP_bra <L3> const1 DW_OP_shl
12905 DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
12906 L3: DW_OP_drop
12907 L4: DW_OP_nop
12909 CTZ is similar:
12910 DW_OP_dup DW_OP_bra <L1> DW_OP_drop constV DW_OP_skip <L4>
12911 L1: const0 DW_OP_swap
12912 L2: DW_OP_dup const1 DW_OP_and DW_OP_bra <L3> const1 DW_OP_shr
12913 DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
12914 L3: DW_OP_drop
12915 L4: DW_OP_nop
12917 FFS is similar:
12918 DW_OP_dup DW_OP_bra <L1> DW_OP_drop const0 DW_OP_skip <L4>
12919 L1: const1 DW_OP_swap
12920 L2: DW_OP_dup const1 DW_OP_and DW_OP_bra <L3> const1 DW_OP_shr
12921 DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
12922 L3: DW_OP_drop
12923 L4: DW_OP_nop */
12925 static dw_loc_descr_ref
12926 clz_loc_descriptor (rtx rtl, machine_mode mode,
12927 machine_mode mem_mode)
12929 dw_loc_descr_ref op0, ret, tmp;
12930 HOST_WIDE_INT valv;
12931 dw_loc_descr_ref l1jump, l1label;
12932 dw_loc_descr_ref l2jump, l2label;
12933 dw_loc_descr_ref l3jump, l3label;
12934 dw_loc_descr_ref l4jump, l4label;
12935 rtx msb;
12937 if (!SCALAR_INT_MODE_P (mode)
12938 || GET_MODE (XEXP (rtl, 0)) != mode)
12939 return NULL;
12941 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
12942 VAR_INIT_STATUS_INITIALIZED);
12943 if (op0 == NULL)
12944 return NULL;
12945 ret = op0;
12946 if (GET_CODE (rtl) == CLZ)
12948 if (!CLZ_DEFINED_VALUE_AT_ZERO (mode, valv))
12949 valv = GET_MODE_BITSIZE (mode);
12951 else if (GET_CODE (rtl) == FFS)
12952 valv = 0;
12953 else if (!CTZ_DEFINED_VALUE_AT_ZERO (mode, valv))
12954 valv = GET_MODE_BITSIZE (mode);
12955 add_loc_descr (&ret, new_loc_descr (DW_OP_dup, 0, 0));
12956 l1jump = new_loc_descr (DW_OP_bra, 0, 0);
12957 add_loc_descr (&ret, l1jump);
12958 add_loc_descr (&ret, new_loc_descr (DW_OP_drop, 0, 0));
12959 tmp = mem_loc_descriptor (GEN_INT (valv), mode, mem_mode,
12960 VAR_INIT_STATUS_INITIALIZED);
12961 if (tmp == NULL)
12962 return NULL;
12963 add_loc_descr (&ret, tmp);
12964 l4jump = new_loc_descr (DW_OP_skip, 0, 0);
12965 add_loc_descr (&ret, l4jump);
12966 l1label = mem_loc_descriptor (GET_CODE (rtl) == FFS
12967 ? const1_rtx : const0_rtx,
12968 mode, mem_mode,
12969 VAR_INIT_STATUS_INITIALIZED);
12970 if (l1label == NULL)
12971 return NULL;
12972 add_loc_descr (&ret, l1label);
12973 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12974 l2label = new_loc_descr (DW_OP_dup, 0, 0);
12975 add_loc_descr (&ret, l2label);
12976 if (GET_CODE (rtl) != CLZ)
12977 msb = const1_rtx;
12978 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
12979 msb = GEN_INT (HOST_WIDE_INT_1U
12980 << (GET_MODE_BITSIZE (mode) - 1));
12981 else
12982 msb = immed_wide_int_const
12983 (wi::set_bit_in_zero (GET_MODE_PRECISION (mode) - 1,
12984 GET_MODE_PRECISION (mode)), mode);
12985 if (GET_CODE (msb) == CONST_INT && INTVAL (msb) < 0)
12986 tmp = new_loc_descr (HOST_BITS_PER_WIDE_INT == 32
12987 ? DW_OP_const4u : HOST_BITS_PER_WIDE_INT == 64
12988 ? DW_OP_const8u : DW_OP_constu, INTVAL (msb), 0);
12989 else
12990 tmp = mem_loc_descriptor (msb, mode, mem_mode,
12991 VAR_INIT_STATUS_INITIALIZED);
12992 if (tmp == NULL)
12993 return NULL;
12994 add_loc_descr (&ret, tmp);
12995 add_loc_descr (&ret, new_loc_descr (DW_OP_and, 0, 0));
12996 l3jump = new_loc_descr (DW_OP_bra, 0, 0);
12997 add_loc_descr (&ret, l3jump);
12998 tmp = mem_loc_descriptor (const1_rtx, mode, mem_mode,
12999 VAR_INIT_STATUS_INITIALIZED);
13000 if (tmp == NULL)
13001 return NULL;
13002 add_loc_descr (&ret, tmp);
13003 add_loc_descr (&ret, new_loc_descr (GET_CODE (rtl) == CLZ
13004 ? DW_OP_shl : DW_OP_shr, 0, 0));
13005 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
13006 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, 1, 0));
13007 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
13008 l2jump = new_loc_descr (DW_OP_skip, 0, 0);
13009 add_loc_descr (&ret, l2jump);
13010 l3label = new_loc_descr (DW_OP_drop, 0, 0);
13011 add_loc_descr (&ret, l3label);
13012 l4label = new_loc_descr (DW_OP_nop, 0, 0);
13013 add_loc_descr (&ret, l4label);
13014 l1jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
13015 l1jump->dw_loc_oprnd1.v.val_loc = l1label;
13016 l2jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
13017 l2jump->dw_loc_oprnd1.v.val_loc = l2label;
13018 l3jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
13019 l3jump->dw_loc_oprnd1.v.val_loc = l3label;
13020 l4jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
13021 l4jump->dw_loc_oprnd1.v.val_loc = l4label;
13022 return ret;
13025 /* POPCOUNT (const0 is DW_OP_lit0 or corresponding typed constant,
13026 const1 is DW_OP_lit1 or corresponding typed constant):
13027 const0 DW_OP_swap
13028 L1: DW_OP_dup DW_OP_bra <L2> DW_OP_dup DW_OP_rot const1 DW_OP_and
13029 DW_OP_plus DW_OP_swap const1 DW_OP_shr DW_OP_skip <L1>
13030 L2: DW_OP_drop
13032 PARITY is similar:
13033 L1: DW_OP_dup DW_OP_bra <L2> DW_OP_dup DW_OP_rot const1 DW_OP_and
13034 DW_OP_xor DW_OP_swap const1 DW_OP_shr DW_OP_skip <L1>
13035 L2: DW_OP_drop */
13037 static dw_loc_descr_ref
13038 popcount_loc_descriptor (rtx rtl, machine_mode mode,
13039 machine_mode mem_mode)
13041 dw_loc_descr_ref op0, ret, tmp;
13042 dw_loc_descr_ref l1jump, l1label;
13043 dw_loc_descr_ref l2jump, l2label;
13045 if (!SCALAR_INT_MODE_P (mode)
13046 || GET_MODE (XEXP (rtl, 0)) != mode)
13047 return NULL;
13049 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
13050 VAR_INIT_STATUS_INITIALIZED);
13051 if (op0 == NULL)
13052 return NULL;
13053 ret = op0;
13054 tmp = mem_loc_descriptor (const0_rtx, mode, mem_mode,
13055 VAR_INIT_STATUS_INITIALIZED);
13056 if (tmp == NULL)
13057 return NULL;
13058 add_loc_descr (&ret, tmp);
13059 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
13060 l1label = new_loc_descr (DW_OP_dup, 0, 0);
13061 add_loc_descr (&ret, l1label);
13062 l2jump = new_loc_descr (DW_OP_bra, 0, 0);
13063 add_loc_descr (&ret, l2jump);
13064 add_loc_descr (&ret, new_loc_descr (DW_OP_dup, 0, 0));
13065 add_loc_descr (&ret, new_loc_descr (DW_OP_rot, 0, 0));
13066 tmp = mem_loc_descriptor (const1_rtx, mode, mem_mode,
13067 VAR_INIT_STATUS_INITIALIZED);
13068 if (tmp == NULL)
13069 return NULL;
13070 add_loc_descr (&ret, tmp);
13071 add_loc_descr (&ret, new_loc_descr (DW_OP_and, 0, 0));
13072 add_loc_descr (&ret, new_loc_descr (GET_CODE (rtl) == POPCOUNT
13073 ? DW_OP_plus : DW_OP_xor, 0, 0));
13074 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
13075 tmp = mem_loc_descriptor (const1_rtx, mode, mem_mode,
13076 VAR_INIT_STATUS_INITIALIZED);
13077 add_loc_descr (&ret, tmp);
13078 add_loc_descr (&ret, new_loc_descr (DW_OP_shr, 0, 0));
13079 l1jump = new_loc_descr (DW_OP_skip, 0, 0);
13080 add_loc_descr (&ret, l1jump);
13081 l2label = new_loc_descr (DW_OP_drop, 0, 0);
13082 add_loc_descr (&ret, l2label);
13083 l1jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
13084 l1jump->dw_loc_oprnd1.v.val_loc = l1label;
13085 l2jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
13086 l2jump->dw_loc_oprnd1.v.val_loc = l2label;
13087 return ret;
13090 /* BSWAP (constS is initial shift count, either 56 or 24):
13091 constS const0
13092 L1: DW_OP_pick <2> constS DW_OP_pick <3> DW_OP_minus DW_OP_shr
13093 const255 DW_OP_and DW_OP_pick <2> DW_OP_shl DW_OP_or
13094 DW_OP_swap DW_OP_dup const0 DW_OP_eq DW_OP_bra <L2> const8
13095 DW_OP_minus DW_OP_swap DW_OP_skip <L1>
13096 L2: DW_OP_drop DW_OP_swap DW_OP_drop */
13098 static dw_loc_descr_ref
13099 bswap_loc_descriptor (rtx rtl, machine_mode mode,
13100 machine_mode mem_mode)
13102 dw_loc_descr_ref op0, ret, tmp;
13103 dw_loc_descr_ref l1jump, l1label;
13104 dw_loc_descr_ref l2jump, l2label;
13106 if (!SCALAR_INT_MODE_P (mode)
13107 || BITS_PER_UNIT != 8
13108 || (GET_MODE_BITSIZE (mode) != 32
13109 && GET_MODE_BITSIZE (mode) != 64))
13110 return NULL;
13112 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
13113 VAR_INIT_STATUS_INITIALIZED);
13114 if (op0 == NULL)
13115 return NULL;
13117 ret = op0;
13118 tmp = mem_loc_descriptor (GEN_INT (GET_MODE_BITSIZE (mode) - 8),
13119 mode, mem_mode,
13120 VAR_INIT_STATUS_INITIALIZED);
13121 if (tmp == NULL)
13122 return NULL;
13123 add_loc_descr (&ret, tmp);
13124 tmp = mem_loc_descriptor (const0_rtx, mode, mem_mode,
13125 VAR_INIT_STATUS_INITIALIZED);
13126 if (tmp == NULL)
13127 return NULL;
13128 add_loc_descr (&ret, tmp);
13129 l1label = new_loc_descr (DW_OP_pick, 2, 0);
13130 add_loc_descr (&ret, l1label);
13131 tmp = mem_loc_descriptor (GEN_INT (GET_MODE_BITSIZE (mode) - 8),
13132 mode, mem_mode,
13133 VAR_INIT_STATUS_INITIALIZED);
13134 add_loc_descr (&ret, tmp);
13135 add_loc_descr (&ret, new_loc_descr (DW_OP_pick, 3, 0));
13136 add_loc_descr (&ret, new_loc_descr (DW_OP_minus, 0, 0));
13137 add_loc_descr (&ret, new_loc_descr (DW_OP_shr, 0, 0));
13138 tmp = mem_loc_descriptor (GEN_INT (255), mode, mem_mode,
13139 VAR_INIT_STATUS_INITIALIZED);
13140 if (tmp == NULL)
13141 return NULL;
13142 add_loc_descr (&ret, tmp);
13143 add_loc_descr (&ret, new_loc_descr (DW_OP_and, 0, 0));
13144 add_loc_descr (&ret, new_loc_descr (DW_OP_pick, 2, 0));
13145 add_loc_descr (&ret, new_loc_descr (DW_OP_shl, 0, 0));
13146 add_loc_descr (&ret, new_loc_descr (DW_OP_or, 0, 0));
13147 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
13148 add_loc_descr (&ret, new_loc_descr (DW_OP_dup, 0, 0));
13149 tmp = mem_loc_descriptor (const0_rtx, mode, mem_mode,
13150 VAR_INIT_STATUS_INITIALIZED);
13151 add_loc_descr (&ret, tmp);
13152 add_loc_descr (&ret, new_loc_descr (DW_OP_eq, 0, 0));
13153 l2jump = new_loc_descr (DW_OP_bra, 0, 0);
13154 add_loc_descr (&ret, l2jump);
13155 tmp = mem_loc_descriptor (GEN_INT (8), mode, mem_mode,
13156 VAR_INIT_STATUS_INITIALIZED);
13157 add_loc_descr (&ret, tmp);
13158 add_loc_descr (&ret, new_loc_descr (DW_OP_minus, 0, 0));
13159 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
13160 l1jump = new_loc_descr (DW_OP_skip, 0, 0);
13161 add_loc_descr (&ret, l1jump);
13162 l2label = new_loc_descr (DW_OP_drop, 0, 0);
13163 add_loc_descr (&ret, l2label);
13164 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
13165 add_loc_descr (&ret, new_loc_descr (DW_OP_drop, 0, 0));
13166 l1jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
13167 l1jump->dw_loc_oprnd1.v.val_loc = l1label;
13168 l2jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
13169 l2jump->dw_loc_oprnd1.v.val_loc = l2label;
13170 return ret;
13173 /* ROTATE (constMASK is mode mask, BITSIZE is bitsize of mode):
13174 DW_OP_over DW_OP_over DW_OP_shl [ constMASK DW_OP_and ] DW_OP_rot
13175 [ DW_OP_swap constMASK DW_OP_and DW_OP_swap ] DW_OP_neg
13176 DW_OP_plus_uconst <BITSIZE> DW_OP_shr DW_OP_or
13178 ROTATERT is similar:
13179 DW_OP_over DW_OP_over DW_OP_neg DW_OP_plus_uconst <BITSIZE>
13180 DW_OP_shl [ constMASK DW_OP_and ] DW_OP_rot
13181 [ DW_OP_swap constMASK DW_OP_and DW_OP_swap ] DW_OP_shr DW_OP_or */
13183 static dw_loc_descr_ref
13184 rotate_loc_descriptor (rtx rtl, machine_mode mode,
13185 machine_mode mem_mode)
13187 rtx rtlop1 = XEXP (rtl, 1);
13188 dw_loc_descr_ref op0, op1, ret, mask[2] = { NULL, NULL };
13189 int i;
13191 if (!SCALAR_INT_MODE_P (mode))
13192 return NULL;
13194 if (GET_MODE (rtlop1) != VOIDmode
13195 && GET_MODE_BITSIZE (GET_MODE (rtlop1)) < GET_MODE_BITSIZE (mode))
13196 rtlop1 = gen_rtx_ZERO_EXTEND (mode, rtlop1);
13197 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
13198 VAR_INIT_STATUS_INITIALIZED);
13199 op1 = mem_loc_descriptor (rtlop1, mode, mem_mode,
13200 VAR_INIT_STATUS_INITIALIZED);
13201 if (op0 == NULL || op1 == NULL)
13202 return NULL;
13203 if (GET_MODE_SIZE (mode) < DWARF2_ADDR_SIZE)
13204 for (i = 0; i < 2; i++)
13206 if (GET_MODE_BITSIZE (mode) < HOST_BITS_PER_WIDE_INT)
13207 mask[i] = mem_loc_descriptor (GEN_INT (GET_MODE_MASK (mode)),
13208 mode, mem_mode,
13209 VAR_INIT_STATUS_INITIALIZED);
13210 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
13211 mask[i] = new_loc_descr (HOST_BITS_PER_WIDE_INT == 32
13212 ? DW_OP_const4u
13213 : HOST_BITS_PER_WIDE_INT == 64
13214 ? DW_OP_const8u : DW_OP_constu,
13215 GET_MODE_MASK (mode), 0);
13216 else
13217 mask[i] = NULL;
13218 if (mask[i] == NULL)
13219 return NULL;
13220 add_loc_descr (&mask[i], new_loc_descr (DW_OP_and, 0, 0));
13222 ret = op0;
13223 add_loc_descr (&ret, op1);
13224 add_loc_descr (&ret, new_loc_descr (DW_OP_over, 0, 0));
13225 add_loc_descr (&ret, new_loc_descr (DW_OP_over, 0, 0));
13226 if (GET_CODE (rtl) == ROTATERT)
13228 add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
13229 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst,
13230 GET_MODE_BITSIZE (mode), 0));
13232 add_loc_descr (&ret, new_loc_descr (DW_OP_shl, 0, 0));
13233 if (mask[0] != NULL)
13234 add_loc_descr (&ret, mask[0]);
13235 add_loc_descr (&ret, new_loc_descr (DW_OP_rot, 0, 0));
13236 if (mask[1] != NULL)
13238 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
13239 add_loc_descr (&ret, mask[1]);
13240 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
13242 if (GET_CODE (rtl) == ROTATE)
13244 add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
13245 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst,
13246 GET_MODE_BITSIZE (mode), 0));
13248 add_loc_descr (&ret, new_loc_descr (DW_OP_shr, 0, 0));
13249 add_loc_descr (&ret, new_loc_descr (DW_OP_or, 0, 0));
13250 return ret;
13253 /* Helper function for mem_loc_descriptor. Return DW_OP_GNU_parameter_ref
13254 for DEBUG_PARAMETER_REF RTL. */
13256 static dw_loc_descr_ref
13257 parameter_ref_descriptor (rtx rtl)
13259 dw_loc_descr_ref ret;
13260 dw_die_ref ref;
13262 if (dwarf_strict)
13263 return NULL;
13264 gcc_assert (TREE_CODE (DEBUG_PARAMETER_REF_DECL (rtl)) == PARM_DECL);
13265 ref = lookup_decl_die (DEBUG_PARAMETER_REF_DECL (rtl));
13266 ret = new_loc_descr (DW_OP_GNU_parameter_ref, 0, 0);
13267 if (ref)
13269 ret->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13270 ret->dw_loc_oprnd1.v.val_die_ref.die = ref;
13271 ret->dw_loc_oprnd1.v.val_die_ref.external = 0;
13273 else
13275 ret->dw_loc_oprnd1.val_class = dw_val_class_decl_ref;
13276 ret->dw_loc_oprnd1.v.val_decl_ref = DEBUG_PARAMETER_REF_DECL (rtl);
13278 return ret;
13281 /* The following routine converts the RTL for a variable or parameter
13282 (resident in memory) into an equivalent Dwarf representation of a
13283 mechanism for getting the address of that same variable onto the top of a
13284 hypothetical "address evaluation" stack.
13286 When creating memory location descriptors, we are effectively transforming
13287 the RTL for a memory-resident object into its Dwarf postfix expression
13288 equivalent. This routine recursively descends an RTL tree, turning
13289 it into Dwarf postfix code as it goes.
13291 MODE is the mode that should be assumed for the rtl if it is VOIDmode.
13293 MEM_MODE is the mode of the memory reference, needed to handle some
13294 autoincrement addressing modes.
13296 Return 0 if we can't represent the location. */
13298 dw_loc_descr_ref
13299 mem_loc_descriptor (rtx rtl, machine_mode mode,
13300 machine_mode mem_mode,
13301 enum var_init_status initialized)
13303 dw_loc_descr_ref mem_loc_result = NULL;
13304 enum dwarf_location_atom op;
13305 dw_loc_descr_ref op0, op1;
13306 rtx inner = NULL_RTX;
13308 if (mode == VOIDmode)
13309 mode = GET_MODE (rtl);
13311 /* Note that for a dynamically sized array, the location we will generate a
13312 description of here will be the lowest numbered location which is
13313 actually within the array. That's *not* necessarily the same as the
13314 zeroth element of the array. */
13316 rtl = targetm.delegitimize_address (rtl);
13318 if (mode != GET_MODE (rtl) && GET_MODE (rtl) != VOIDmode)
13319 return NULL;
13321 switch (GET_CODE (rtl))
13323 case POST_INC:
13324 case POST_DEC:
13325 case POST_MODIFY:
13326 return mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode, initialized);
13328 case SUBREG:
13329 /* The case of a subreg may arise when we have a local (register)
13330 variable or a formal (register) parameter which doesn't quite fill
13331 up an entire register. For now, just assume that it is
13332 legitimate to make the Dwarf info refer to the whole register which
13333 contains the given subreg. */
13334 if (!subreg_lowpart_p (rtl))
13335 break;
13336 inner = SUBREG_REG (rtl);
13337 case TRUNCATE:
13338 if (inner == NULL_RTX)
13339 inner = XEXP (rtl, 0);
13340 if (SCALAR_INT_MODE_P (mode)
13341 && SCALAR_INT_MODE_P (GET_MODE (inner))
13342 && (GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE
13343 #ifdef POINTERS_EXTEND_UNSIGNED
13344 || (mode == Pmode && mem_mode != VOIDmode)
13345 #endif
13347 && GET_MODE_SIZE (GET_MODE (inner)) <= DWARF2_ADDR_SIZE)
13349 mem_loc_result = mem_loc_descriptor (inner,
13350 GET_MODE (inner),
13351 mem_mode, initialized);
13352 break;
13354 if (dwarf_strict)
13355 break;
13356 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (inner)))
13357 break;
13358 if (GET_MODE_SIZE (mode) != GET_MODE_SIZE (GET_MODE (inner))
13359 && (!SCALAR_INT_MODE_P (mode)
13360 || !SCALAR_INT_MODE_P (GET_MODE (inner))))
13361 break;
13362 else
13364 dw_die_ref type_die;
13365 dw_loc_descr_ref cvt;
13367 mem_loc_result = mem_loc_descriptor (inner,
13368 GET_MODE (inner),
13369 mem_mode, initialized);
13370 if (mem_loc_result == NULL)
13371 break;
13372 type_die = base_type_for_mode (mode, SCALAR_INT_MODE_P (mode));
13373 if (type_die == NULL)
13375 mem_loc_result = NULL;
13376 break;
13378 if (GET_MODE_SIZE (mode)
13379 != GET_MODE_SIZE (GET_MODE (inner)))
13380 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
13381 else
13382 cvt = new_loc_descr (DW_OP_GNU_reinterpret, 0, 0);
13383 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13384 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
13385 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
13386 add_loc_descr (&mem_loc_result, cvt);
13387 if (SCALAR_INT_MODE_P (mode)
13388 && GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE)
13390 /* Convert it to untyped afterwards. */
13391 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
13392 add_loc_descr (&mem_loc_result, cvt);
13395 break;
13397 case REG:
13398 if (! SCALAR_INT_MODE_P (mode)
13399 || (GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE
13400 && rtl != arg_pointer_rtx
13401 && rtl != frame_pointer_rtx
13402 #ifdef POINTERS_EXTEND_UNSIGNED
13403 && (mode != Pmode || mem_mode == VOIDmode)
13404 #endif
13407 dw_die_ref type_die;
13408 unsigned int dbx_regnum;
13410 if (dwarf_strict)
13411 break;
13412 if (REGNO (rtl) > FIRST_PSEUDO_REGISTER)
13413 break;
13414 type_die = base_type_for_mode (mode, SCALAR_INT_MODE_P (mode));
13415 if (type_die == NULL)
13416 break;
13418 dbx_regnum = dbx_reg_number (rtl);
13419 if (dbx_regnum == IGNORED_DWARF_REGNUM)
13420 break;
13421 mem_loc_result = new_loc_descr (DW_OP_GNU_regval_type,
13422 dbx_regnum, 0);
13423 mem_loc_result->dw_loc_oprnd2.val_class = dw_val_class_die_ref;
13424 mem_loc_result->dw_loc_oprnd2.v.val_die_ref.die = type_die;
13425 mem_loc_result->dw_loc_oprnd2.v.val_die_ref.external = 0;
13426 break;
13428 /* Whenever a register number forms a part of the description of the
13429 method for calculating the (dynamic) address of a memory resident
13430 object, DWARF rules require the register number be referred to as
13431 a "base register". This distinction is not based in any way upon
13432 what category of register the hardware believes the given register
13433 belongs to. This is strictly DWARF terminology we're dealing with
13434 here. Note that in cases where the location of a memory-resident
13435 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
13436 OP_CONST (0)) the actual DWARF location descriptor that we generate
13437 may just be OP_BASEREG (basereg). This may look deceptively like
13438 the object in question was allocated to a register (rather than in
13439 memory) so DWARF consumers need to be aware of the subtle
13440 distinction between OP_REG and OP_BASEREG. */
13441 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
13442 mem_loc_result = based_loc_descr (rtl, 0, VAR_INIT_STATUS_INITIALIZED);
13443 else if (stack_realign_drap
13444 && crtl->drap_reg
13445 && crtl->args.internal_arg_pointer == rtl
13446 && REGNO (crtl->drap_reg) < FIRST_PSEUDO_REGISTER)
13448 /* If RTL is internal_arg_pointer, which has been optimized
13449 out, use DRAP instead. */
13450 mem_loc_result = based_loc_descr (crtl->drap_reg, 0,
13451 VAR_INIT_STATUS_INITIALIZED);
13453 break;
13455 case SIGN_EXTEND:
13456 case ZERO_EXTEND:
13457 if (!SCALAR_INT_MODE_P (mode))
13458 break;
13459 op0 = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (XEXP (rtl, 0)),
13460 mem_mode, VAR_INIT_STATUS_INITIALIZED);
13461 if (op0 == 0)
13462 break;
13463 else if (GET_CODE (rtl) == ZERO_EXTEND
13464 && GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE
13465 && GET_MODE_BITSIZE (GET_MODE (XEXP (rtl, 0)))
13466 < HOST_BITS_PER_WIDE_INT
13467 /* If DW_OP_const{1,2,4}u won't be used, it is shorter
13468 to expand zero extend as two shifts instead of
13469 masking. */
13470 && GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0))) <= 4)
13472 machine_mode imode = GET_MODE (XEXP (rtl, 0));
13473 mem_loc_result = op0;
13474 add_loc_descr (&mem_loc_result,
13475 int_loc_descriptor (GET_MODE_MASK (imode)));
13476 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_and, 0, 0));
13478 else if (GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE)
13480 int shift = DWARF2_ADDR_SIZE
13481 - GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0)));
13482 shift *= BITS_PER_UNIT;
13483 if (GET_CODE (rtl) == SIGN_EXTEND)
13484 op = DW_OP_shra;
13485 else
13486 op = DW_OP_shr;
13487 mem_loc_result = op0;
13488 add_loc_descr (&mem_loc_result, int_loc_descriptor (shift));
13489 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_shl, 0, 0));
13490 add_loc_descr (&mem_loc_result, int_loc_descriptor (shift));
13491 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
13493 else if (!dwarf_strict)
13495 dw_die_ref type_die1, type_die2;
13496 dw_loc_descr_ref cvt;
13498 type_die1 = base_type_for_mode (GET_MODE (XEXP (rtl, 0)),
13499 GET_CODE (rtl) == ZERO_EXTEND);
13500 if (type_die1 == NULL)
13501 break;
13502 type_die2 = base_type_for_mode (mode, 1);
13503 if (type_die2 == NULL)
13504 break;
13505 mem_loc_result = op0;
13506 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
13507 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13508 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die1;
13509 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
13510 add_loc_descr (&mem_loc_result, cvt);
13511 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
13512 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13513 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die2;
13514 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
13515 add_loc_descr (&mem_loc_result, cvt);
13517 break;
13519 case MEM:
13521 rtx new_rtl = avoid_constant_pool_reference (rtl);
13522 if (new_rtl != rtl)
13524 mem_loc_result = mem_loc_descriptor (new_rtl, mode, mem_mode,
13525 initialized);
13526 if (mem_loc_result != NULL)
13527 return mem_loc_result;
13530 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0),
13531 get_address_mode (rtl), mode,
13532 VAR_INIT_STATUS_INITIALIZED);
13533 if (mem_loc_result == NULL)
13534 mem_loc_result = tls_mem_loc_descriptor (rtl);
13535 if (mem_loc_result != NULL)
13537 if (GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE
13538 || !SCALAR_INT_MODE_P(mode))
13540 dw_die_ref type_die;
13541 dw_loc_descr_ref deref;
13543 if (dwarf_strict)
13544 return NULL;
13545 type_die
13546 = base_type_for_mode (mode, SCALAR_INT_MODE_P (mode));
13547 if (type_die == NULL)
13548 return NULL;
13549 deref = new_loc_descr (DW_OP_GNU_deref_type,
13550 GET_MODE_SIZE (mode), 0);
13551 deref->dw_loc_oprnd2.val_class = dw_val_class_die_ref;
13552 deref->dw_loc_oprnd2.v.val_die_ref.die = type_die;
13553 deref->dw_loc_oprnd2.v.val_die_ref.external = 0;
13554 add_loc_descr (&mem_loc_result, deref);
13556 else if (GET_MODE_SIZE (mode) == DWARF2_ADDR_SIZE)
13557 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
13558 else
13559 add_loc_descr (&mem_loc_result,
13560 new_loc_descr (DW_OP_deref_size,
13561 GET_MODE_SIZE (mode), 0));
13563 break;
13565 case LO_SUM:
13566 return mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode, initialized);
13568 case LABEL_REF:
13569 /* Some ports can transform a symbol ref into a label ref, because
13570 the symbol ref is too far away and has to be dumped into a constant
13571 pool. */
13572 case CONST:
13573 case SYMBOL_REF:
13574 if (!SCALAR_INT_MODE_P (mode)
13575 || (GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE
13576 #ifdef POINTERS_EXTEND_UNSIGNED
13577 && (mode != Pmode || mem_mode == VOIDmode)
13578 #endif
13580 break;
13581 if (GET_CODE (rtl) == SYMBOL_REF
13582 && SYMBOL_REF_TLS_MODEL (rtl) != TLS_MODEL_NONE)
13584 dw_loc_descr_ref temp;
13586 /* If this is not defined, we have no way to emit the data. */
13587 if (!targetm.have_tls || !targetm.asm_out.output_dwarf_dtprel)
13588 break;
13590 temp = new_addr_loc_descr (rtl, dtprel_true);
13592 mem_loc_result = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
13593 add_loc_descr (&mem_loc_result, temp);
13595 break;
13598 if (!const_ok_for_output (rtl))
13600 if (GET_CODE (rtl) == CONST)
13601 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
13602 initialized);
13603 break;
13606 symref:
13607 mem_loc_result = new_addr_loc_descr (rtl, dtprel_false);
13608 vec_safe_push (used_rtx_array, rtl);
13609 break;
13611 case CONCAT:
13612 case CONCATN:
13613 case VAR_LOCATION:
13614 case DEBUG_IMPLICIT_PTR:
13615 expansion_failed (NULL_TREE, rtl,
13616 "CONCAT/CONCATN/VAR_LOCATION is handled only by loc_descriptor");
13617 return 0;
13619 case ENTRY_VALUE:
13620 if (dwarf_strict)
13621 return NULL;
13622 if (REG_P (ENTRY_VALUE_EXP (rtl)))
13624 if (!SCALAR_INT_MODE_P (mode)
13625 || GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE)
13626 op0 = mem_loc_descriptor (ENTRY_VALUE_EXP (rtl), mode,
13627 VOIDmode, VAR_INIT_STATUS_INITIALIZED);
13628 else
13630 unsigned int dbx_regnum = dbx_reg_number (ENTRY_VALUE_EXP (rtl));
13631 if (dbx_regnum == IGNORED_DWARF_REGNUM)
13632 return NULL;
13633 op0 = one_reg_loc_descriptor (dbx_regnum,
13634 VAR_INIT_STATUS_INITIALIZED);
13637 else if (MEM_P (ENTRY_VALUE_EXP (rtl))
13638 && REG_P (XEXP (ENTRY_VALUE_EXP (rtl), 0)))
13640 op0 = mem_loc_descriptor (ENTRY_VALUE_EXP (rtl), mode,
13641 VOIDmode, VAR_INIT_STATUS_INITIALIZED);
13642 if (op0 && op0->dw_loc_opc == DW_OP_fbreg)
13643 return NULL;
13645 else
13646 gcc_unreachable ();
13647 if (op0 == NULL)
13648 return NULL;
13649 mem_loc_result = new_loc_descr (DW_OP_GNU_entry_value, 0, 0);
13650 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_loc;
13651 mem_loc_result->dw_loc_oprnd1.v.val_loc = op0;
13652 break;
13654 case DEBUG_PARAMETER_REF:
13655 mem_loc_result = parameter_ref_descriptor (rtl);
13656 break;
13658 case PRE_MODIFY:
13659 /* Extract the PLUS expression nested inside and fall into
13660 PLUS code below. */
13661 rtl = XEXP (rtl, 1);
13662 goto plus;
13664 case PRE_INC:
13665 case PRE_DEC:
13666 /* Turn these into a PLUS expression and fall into the PLUS code
13667 below. */
13668 rtl = gen_rtx_PLUS (mode, XEXP (rtl, 0),
13669 gen_int_mode (GET_CODE (rtl) == PRE_INC
13670 ? GET_MODE_UNIT_SIZE (mem_mode)
13671 : -GET_MODE_UNIT_SIZE (mem_mode),
13672 mode));
13674 /* ... fall through ... */
13676 case PLUS:
13677 plus:
13678 if (is_based_loc (rtl)
13679 && (GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE
13680 || XEXP (rtl, 0) == arg_pointer_rtx
13681 || XEXP (rtl, 0) == frame_pointer_rtx)
13682 && SCALAR_INT_MODE_P (mode))
13683 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
13684 INTVAL (XEXP (rtl, 1)),
13685 VAR_INIT_STATUS_INITIALIZED);
13686 else
13688 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
13689 VAR_INIT_STATUS_INITIALIZED);
13690 if (mem_loc_result == 0)
13691 break;
13693 if (CONST_INT_P (XEXP (rtl, 1))
13694 && GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE)
13695 loc_descr_plus_const (&mem_loc_result, INTVAL (XEXP (rtl, 1)));
13696 else
13698 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
13699 VAR_INIT_STATUS_INITIALIZED);
13700 if (op1 == 0)
13701 return NULL;
13702 add_loc_descr (&mem_loc_result, op1);
13703 add_loc_descr (&mem_loc_result,
13704 new_loc_descr (DW_OP_plus, 0, 0));
13707 break;
13709 /* If a pseudo-reg is optimized away, it is possible for it to
13710 be replaced with a MEM containing a multiply or shift. */
13711 case MINUS:
13712 op = DW_OP_minus;
13713 goto do_binop;
13715 case MULT:
13716 op = DW_OP_mul;
13717 goto do_binop;
13719 case DIV:
13720 if (!dwarf_strict
13721 && SCALAR_INT_MODE_P (mode)
13722 && GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE)
13724 mem_loc_result = typed_binop (DW_OP_div, rtl,
13725 base_type_for_mode (mode, 0),
13726 mode, mem_mode);
13727 break;
13729 op = DW_OP_div;
13730 goto do_binop;
13732 case UMOD:
13733 op = DW_OP_mod;
13734 goto do_binop;
13736 case ASHIFT:
13737 op = DW_OP_shl;
13738 goto do_shift;
13740 case ASHIFTRT:
13741 op = DW_OP_shra;
13742 goto do_shift;
13744 case LSHIFTRT:
13745 op = DW_OP_shr;
13746 goto do_shift;
13748 do_shift:
13749 if (!SCALAR_INT_MODE_P (mode))
13750 break;
13751 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
13752 VAR_INIT_STATUS_INITIALIZED);
13754 rtx rtlop1 = XEXP (rtl, 1);
13755 if (GET_MODE (rtlop1) != VOIDmode
13756 && GET_MODE_BITSIZE (GET_MODE (rtlop1))
13757 < GET_MODE_BITSIZE (mode))
13758 rtlop1 = gen_rtx_ZERO_EXTEND (mode, rtlop1);
13759 op1 = mem_loc_descriptor (rtlop1, mode, mem_mode,
13760 VAR_INIT_STATUS_INITIALIZED);
13763 if (op0 == 0 || op1 == 0)
13764 break;
13766 mem_loc_result = op0;
13767 add_loc_descr (&mem_loc_result, op1);
13768 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
13769 break;
13771 case AND:
13772 op = DW_OP_and;
13773 goto do_binop;
13775 case IOR:
13776 op = DW_OP_or;
13777 goto do_binop;
13779 case XOR:
13780 op = DW_OP_xor;
13781 goto do_binop;
13783 do_binop:
13784 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
13785 VAR_INIT_STATUS_INITIALIZED);
13786 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
13787 VAR_INIT_STATUS_INITIALIZED);
13789 if (op0 == 0 || op1 == 0)
13790 break;
13792 mem_loc_result = op0;
13793 add_loc_descr (&mem_loc_result, op1);
13794 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
13795 break;
13797 case MOD:
13798 if (GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE && !dwarf_strict)
13800 mem_loc_result = typed_binop (DW_OP_mod, rtl,
13801 base_type_for_mode (mode, 0),
13802 mode, mem_mode);
13803 break;
13806 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
13807 VAR_INIT_STATUS_INITIALIZED);
13808 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
13809 VAR_INIT_STATUS_INITIALIZED);
13811 if (op0 == 0 || op1 == 0)
13812 break;
13814 mem_loc_result = op0;
13815 add_loc_descr (&mem_loc_result, op1);
13816 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_over, 0, 0));
13817 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_over, 0, 0));
13818 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_div, 0, 0));
13819 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
13820 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_minus, 0, 0));
13821 break;
13823 case UDIV:
13824 if (!dwarf_strict && SCALAR_INT_MODE_P (mode))
13826 if (GET_MODE_CLASS (mode) > DWARF2_ADDR_SIZE)
13828 op = DW_OP_div;
13829 goto do_binop;
13831 mem_loc_result = typed_binop (DW_OP_div, rtl,
13832 base_type_for_mode (mode, 1),
13833 mode, mem_mode);
13835 break;
13837 case NOT:
13838 op = DW_OP_not;
13839 goto do_unop;
13841 case ABS:
13842 op = DW_OP_abs;
13843 goto do_unop;
13845 case NEG:
13846 op = DW_OP_neg;
13847 goto do_unop;
13849 do_unop:
13850 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
13851 VAR_INIT_STATUS_INITIALIZED);
13853 if (op0 == 0)
13854 break;
13856 mem_loc_result = op0;
13857 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
13858 break;
13860 case CONST_INT:
13861 if (GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE
13862 #ifdef POINTERS_EXTEND_UNSIGNED
13863 || (mode == Pmode
13864 && mem_mode != VOIDmode
13865 && trunc_int_for_mode (INTVAL (rtl), ptr_mode) == INTVAL (rtl))
13866 #endif
13869 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
13870 break;
13872 if (!dwarf_strict
13873 && (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT
13874 || GET_MODE_BITSIZE (mode) == HOST_BITS_PER_DOUBLE_INT))
13876 dw_die_ref type_die = base_type_for_mode (mode, 1);
13877 machine_mode amode;
13878 if (type_die == NULL)
13879 return NULL;
13880 amode = mode_for_size (DWARF2_ADDR_SIZE * BITS_PER_UNIT,
13881 MODE_INT, 0);
13882 if (INTVAL (rtl) >= 0
13883 && amode != BLKmode
13884 && trunc_int_for_mode (INTVAL (rtl), amode) == INTVAL (rtl)
13885 /* const DW_OP_GNU_convert <XXX> vs.
13886 DW_OP_GNU_const_type <XXX, 1, const>. */
13887 && size_of_int_loc_descriptor (INTVAL (rtl)) + 1 + 1
13888 < (unsigned long) 1 + 1 + 1 + GET_MODE_SIZE (mode))
13890 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
13891 op0 = new_loc_descr (DW_OP_GNU_convert, 0, 0);
13892 op0->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13893 op0->dw_loc_oprnd1.v.val_die_ref.die = type_die;
13894 op0->dw_loc_oprnd1.v.val_die_ref.external = 0;
13895 add_loc_descr (&mem_loc_result, op0);
13896 return mem_loc_result;
13898 mem_loc_result = new_loc_descr (DW_OP_GNU_const_type, 0,
13899 INTVAL (rtl));
13900 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13901 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.die = type_die;
13902 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.external = 0;
13903 if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
13904 mem_loc_result->dw_loc_oprnd2.val_class = dw_val_class_const;
13905 else
13907 mem_loc_result->dw_loc_oprnd2.val_class
13908 = dw_val_class_const_double;
13909 mem_loc_result->dw_loc_oprnd2.v.val_double
13910 = double_int::from_shwi (INTVAL (rtl));
13913 break;
13915 case CONST_DOUBLE:
13916 if (!dwarf_strict)
13918 dw_die_ref type_die;
13920 /* Note that if TARGET_SUPPORTS_WIDE_INT == 0, a
13921 CONST_DOUBLE rtx could represent either a large integer
13922 or a floating-point constant. If TARGET_SUPPORTS_WIDE_INT != 0,
13923 the value is always a floating point constant.
13925 When it is an integer, a CONST_DOUBLE is used whenever
13926 the constant requires 2 HWIs to be adequately represented.
13927 We output CONST_DOUBLEs as blocks. */
13928 if (mode == VOIDmode
13929 || (GET_MODE (rtl) == VOIDmode
13930 && GET_MODE_BITSIZE (mode) != HOST_BITS_PER_DOUBLE_INT))
13931 break;
13932 type_die = base_type_for_mode (mode, SCALAR_INT_MODE_P (mode));
13933 if (type_die == NULL)
13934 return NULL;
13935 mem_loc_result = new_loc_descr (DW_OP_GNU_const_type, 0, 0);
13936 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13937 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.die = type_die;
13938 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.external = 0;
13939 #if TARGET_SUPPORTS_WIDE_INT == 0
13940 if (!SCALAR_FLOAT_MODE_P (mode))
13942 mem_loc_result->dw_loc_oprnd2.val_class
13943 = dw_val_class_const_double;
13944 mem_loc_result->dw_loc_oprnd2.v.val_double
13945 = rtx_to_double_int (rtl);
13947 else
13948 #endif
13950 unsigned int length = GET_MODE_SIZE (mode);
13951 unsigned char *array = ggc_vec_alloc<unsigned char> (length);
13953 insert_float (rtl, array);
13954 mem_loc_result->dw_loc_oprnd2.val_class = dw_val_class_vec;
13955 mem_loc_result->dw_loc_oprnd2.v.val_vec.length = length / 4;
13956 mem_loc_result->dw_loc_oprnd2.v.val_vec.elt_size = 4;
13957 mem_loc_result->dw_loc_oprnd2.v.val_vec.array = array;
13960 break;
13962 case CONST_WIDE_INT:
13963 if (!dwarf_strict)
13965 dw_die_ref type_die;
13967 type_die = base_type_for_mode (mode, SCALAR_INT_MODE_P (mode));
13968 if (type_die == NULL)
13969 return NULL;
13970 mem_loc_result = new_loc_descr (DW_OP_GNU_const_type, 0, 0);
13971 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13972 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.die = type_die;
13973 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.external = 0;
13974 mem_loc_result->dw_loc_oprnd2.val_class
13975 = dw_val_class_wide_int;
13976 mem_loc_result->dw_loc_oprnd2.v.val_wide = ggc_alloc<wide_int> ();
13977 *mem_loc_result->dw_loc_oprnd2.v.val_wide = std::make_pair (rtl, mode);
13979 break;
13981 case EQ:
13982 mem_loc_result = scompare_loc_descriptor (DW_OP_eq, rtl, mem_mode);
13983 break;
13985 case GE:
13986 mem_loc_result = scompare_loc_descriptor (DW_OP_ge, rtl, mem_mode);
13987 break;
13989 case GT:
13990 mem_loc_result = scompare_loc_descriptor (DW_OP_gt, rtl, mem_mode);
13991 break;
13993 case LE:
13994 mem_loc_result = scompare_loc_descriptor (DW_OP_le, rtl, mem_mode);
13995 break;
13997 case LT:
13998 mem_loc_result = scompare_loc_descriptor (DW_OP_lt, rtl, mem_mode);
13999 break;
14001 case NE:
14002 mem_loc_result = scompare_loc_descriptor (DW_OP_ne, rtl, mem_mode);
14003 break;
14005 case GEU:
14006 mem_loc_result = ucompare_loc_descriptor (DW_OP_ge, rtl, mem_mode);
14007 break;
14009 case GTU:
14010 mem_loc_result = ucompare_loc_descriptor (DW_OP_gt, rtl, mem_mode);
14011 break;
14013 case LEU:
14014 mem_loc_result = ucompare_loc_descriptor (DW_OP_le, rtl, mem_mode);
14015 break;
14017 case LTU:
14018 mem_loc_result = ucompare_loc_descriptor (DW_OP_lt, rtl, mem_mode);
14019 break;
14021 case UMIN:
14022 case UMAX:
14023 if (!SCALAR_INT_MODE_P (mode))
14024 break;
14025 /* FALLTHRU */
14026 case SMIN:
14027 case SMAX:
14028 mem_loc_result = minmax_loc_descriptor (rtl, mode, mem_mode);
14029 break;
14031 case ZERO_EXTRACT:
14032 case SIGN_EXTRACT:
14033 if (CONST_INT_P (XEXP (rtl, 1))
14034 && CONST_INT_P (XEXP (rtl, 2))
14035 && ((unsigned) INTVAL (XEXP (rtl, 1))
14036 + (unsigned) INTVAL (XEXP (rtl, 2))
14037 <= GET_MODE_BITSIZE (mode))
14038 && SCALAR_INT_MODE_P (mode)
14039 && GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE
14040 && GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0))) <= DWARF2_ADDR_SIZE)
14042 int shift, size;
14043 op0 = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (XEXP (rtl, 0)),
14044 mem_mode, VAR_INIT_STATUS_INITIALIZED);
14045 if (op0 == 0)
14046 break;
14047 if (GET_CODE (rtl) == SIGN_EXTRACT)
14048 op = DW_OP_shra;
14049 else
14050 op = DW_OP_shr;
14051 mem_loc_result = op0;
14052 size = INTVAL (XEXP (rtl, 1));
14053 shift = INTVAL (XEXP (rtl, 2));
14054 if (BITS_BIG_ENDIAN)
14055 shift = GET_MODE_BITSIZE (GET_MODE (XEXP (rtl, 0)))
14056 - shift - size;
14057 if (shift + size != (int) DWARF2_ADDR_SIZE)
14059 add_loc_descr (&mem_loc_result,
14060 int_loc_descriptor (DWARF2_ADDR_SIZE
14061 - shift - size));
14062 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_shl, 0, 0));
14064 if (size != (int) DWARF2_ADDR_SIZE)
14066 add_loc_descr (&mem_loc_result,
14067 int_loc_descriptor (DWARF2_ADDR_SIZE - size));
14068 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
14071 break;
14073 case IF_THEN_ELSE:
14075 dw_loc_descr_ref op2, bra_node, drop_node;
14076 op0 = mem_loc_descriptor (XEXP (rtl, 0),
14077 GET_MODE (XEXP (rtl, 0)) == VOIDmode
14078 ? word_mode : GET_MODE (XEXP (rtl, 0)),
14079 mem_mode, VAR_INIT_STATUS_INITIALIZED);
14080 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
14081 VAR_INIT_STATUS_INITIALIZED);
14082 op2 = mem_loc_descriptor (XEXP (rtl, 2), mode, mem_mode,
14083 VAR_INIT_STATUS_INITIALIZED);
14084 if (op0 == NULL || op1 == NULL || op2 == NULL)
14085 break;
14087 mem_loc_result = op1;
14088 add_loc_descr (&mem_loc_result, op2);
14089 add_loc_descr (&mem_loc_result, op0);
14090 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
14091 add_loc_descr (&mem_loc_result, bra_node);
14092 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_swap, 0, 0));
14093 drop_node = new_loc_descr (DW_OP_drop, 0, 0);
14094 add_loc_descr (&mem_loc_result, drop_node);
14095 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
14096 bra_node->dw_loc_oprnd1.v.val_loc = drop_node;
14098 break;
14100 case FLOAT_EXTEND:
14101 case FLOAT_TRUNCATE:
14102 case FLOAT:
14103 case UNSIGNED_FLOAT:
14104 case FIX:
14105 case UNSIGNED_FIX:
14106 if (!dwarf_strict)
14108 dw_die_ref type_die;
14109 dw_loc_descr_ref cvt;
14111 op0 = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (XEXP (rtl, 0)),
14112 mem_mode, VAR_INIT_STATUS_INITIALIZED);
14113 if (op0 == NULL)
14114 break;
14115 if (SCALAR_INT_MODE_P (GET_MODE (XEXP (rtl, 0)))
14116 && (GET_CODE (rtl) == FLOAT
14117 || GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0)))
14118 <= DWARF2_ADDR_SIZE))
14120 type_die = base_type_for_mode (GET_MODE (XEXP (rtl, 0)),
14121 GET_CODE (rtl) == UNSIGNED_FLOAT);
14122 if (type_die == NULL)
14123 break;
14124 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
14125 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
14126 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
14127 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
14128 add_loc_descr (&op0, cvt);
14130 type_die = base_type_for_mode (mode, GET_CODE (rtl) == UNSIGNED_FIX);
14131 if (type_die == NULL)
14132 break;
14133 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
14134 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
14135 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
14136 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
14137 add_loc_descr (&op0, cvt);
14138 if (SCALAR_INT_MODE_P (mode)
14139 && (GET_CODE (rtl) == FIX
14140 || GET_MODE_SIZE (mode) < DWARF2_ADDR_SIZE))
14142 op0 = convert_descriptor_to_mode (mode, op0);
14143 if (op0 == NULL)
14144 break;
14146 mem_loc_result = op0;
14148 break;
14150 case CLZ:
14151 case CTZ:
14152 case FFS:
14153 mem_loc_result = clz_loc_descriptor (rtl, mode, mem_mode);
14154 break;
14156 case POPCOUNT:
14157 case PARITY:
14158 mem_loc_result = popcount_loc_descriptor (rtl, mode, mem_mode);
14159 break;
14161 case BSWAP:
14162 mem_loc_result = bswap_loc_descriptor (rtl, mode, mem_mode);
14163 break;
14165 case ROTATE:
14166 case ROTATERT:
14167 mem_loc_result = rotate_loc_descriptor (rtl, mode, mem_mode);
14168 break;
14170 case COMPARE:
14171 /* In theory, we could implement the above. */
14172 /* DWARF cannot represent the unsigned compare operations
14173 natively. */
14174 case SS_MULT:
14175 case US_MULT:
14176 case SS_DIV:
14177 case US_DIV:
14178 case SS_PLUS:
14179 case US_PLUS:
14180 case SS_MINUS:
14181 case US_MINUS:
14182 case SS_NEG:
14183 case US_NEG:
14184 case SS_ABS:
14185 case SS_ASHIFT:
14186 case US_ASHIFT:
14187 case SS_TRUNCATE:
14188 case US_TRUNCATE:
14189 case UNORDERED:
14190 case ORDERED:
14191 case UNEQ:
14192 case UNGE:
14193 case UNGT:
14194 case UNLE:
14195 case UNLT:
14196 case LTGT:
14197 case FRACT_CONVERT:
14198 case UNSIGNED_FRACT_CONVERT:
14199 case SAT_FRACT:
14200 case UNSIGNED_SAT_FRACT:
14201 case SQRT:
14202 case ASM_OPERANDS:
14203 case VEC_MERGE:
14204 case VEC_SELECT:
14205 case VEC_CONCAT:
14206 case VEC_DUPLICATE:
14207 case UNSPEC:
14208 case HIGH:
14209 case FMA:
14210 case STRICT_LOW_PART:
14211 case CONST_VECTOR:
14212 case CONST_FIXED:
14213 case CLRSB:
14214 case CLOBBER:
14215 /* If delegitimize_address couldn't do anything with the UNSPEC, we
14216 can't express it in the debug info. This can happen e.g. with some
14217 TLS UNSPECs. */
14218 break;
14220 case CONST_STRING:
14221 resolve_one_addr (&rtl);
14222 goto symref;
14224 default:
14225 if (flag_checking)
14227 print_rtl (stderr, rtl);
14228 gcc_unreachable ();
14230 break;
14233 if (mem_loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
14234 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
14236 return mem_loc_result;
14239 /* Return a descriptor that describes the concatenation of two locations.
14240 This is typically a complex variable. */
14242 static dw_loc_descr_ref
14243 concat_loc_descriptor (rtx x0, rtx x1, enum var_init_status initialized)
14245 dw_loc_descr_ref cc_loc_result = NULL;
14246 dw_loc_descr_ref x0_ref
14247 = loc_descriptor (x0, VOIDmode, VAR_INIT_STATUS_INITIALIZED);
14248 dw_loc_descr_ref x1_ref
14249 = loc_descriptor (x1, VOIDmode, VAR_INIT_STATUS_INITIALIZED);
14251 if (x0_ref == 0 || x1_ref == 0)
14252 return 0;
14254 cc_loc_result = x0_ref;
14255 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
14257 add_loc_descr (&cc_loc_result, x1_ref);
14258 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
14260 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
14261 add_loc_descr (&cc_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
14263 return cc_loc_result;
14266 /* Return a descriptor that describes the concatenation of N
14267 locations. */
14269 static dw_loc_descr_ref
14270 concatn_loc_descriptor (rtx concatn, enum var_init_status initialized)
14272 unsigned int i;
14273 dw_loc_descr_ref cc_loc_result = NULL;
14274 unsigned int n = XVECLEN (concatn, 0);
14276 for (i = 0; i < n; ++i)
14278 dw_loc_descr_ref ref;
14279 rtx x = XVECEXP (concatn, 0, i);
14281 ref = loc_descriptor (x, VOIDmode, VAR_INIT_STATUS_INITIALIZED);
14282 if (ref == NULL)
14283 return NULL;
14285 add_loc_descr (&cc_loc_result, ref);
14286 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x)));
14289 if (cc_loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
14290 add_loc_descr (&cc_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
14292 return cc_loc_result;
14295 /* Helper function for loc_descriptor. Return DW_OP_GNU_implicit_pointer
14296 for DEBUG_IMPLICIT_PTR RTL. */
14298 static dw_loc_descr_ref
14299 implicit_ptr_descriptor (rtx rtl, HOST_WIDE_INT offset)
14301 dw_loc_descr_ref ret;
14302 dw_die_ref ref;
14304 if (dwarf_strict)
14305 return NULL;
14306 gcc_assert (TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl)) == VAR_DECL
14307 || TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl)) == PARM_DECL
14308 || TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl)) == RESULT_DECL);
14309 ref = lookup_decl_die (DEBUG_IMPLICIT_PTR_DECL (rtl));
14310 ret = new_loc_descr (DW_OP_GNU_implicit_pointer, 0, offset);
14311 ret->dw_loc_oprnd2.val_class = dw_val_class_const;
14312 if (ref)
14314 ret->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
14315 ret->dw_loc_oprnd1.v.val_die_ref.die = ref;
14316 ret->dw_loc_oprnd1.v.val_die_ref.external = 0;
14318 else
14320 ret->dw_loc_oprnd1.val_class = dw_val_class_decl_ref;
14321 ret->dw_loc_oprnd1.v.val_decl_ref = DEBUG_IMPLICIT_PTR_DECL (rtl);
14323 return ret;
14326 /* Output a proper Dwarf location descriptor for a variable or parameter
14327 which is either allocated in a register or in a memory location. For a
14328 register, we just generate an OP_REG and the register number. For a
14329 memory location we provide a Dwarf postfix expression describing how to
14330 generate the (dynamic) address of the object onto the address stack.
14332 MODE is mode of the decl if this loc_descriptor is going to be used in
14333 .debug_loc section where DW_OP_stack_value and DW_OP_implicit_value are
14334 allowed, VOIDmode otherwise.
14336 If we don't know how to describe it, return 0. */
14338 static dw_loc_descr_ref
14339 loc_descriptor (rtx rtl, machine_mode mode,
14340 enum var_init_status initialized)
14342 dw_loc_descr_ref loc_result = NULL;
14344 switch (GET_CODE (rtl))
14346 case SUBREG:
14347 /* The case of a subreg may arise when we have a local (register)
14348 variable or a formal (register) parameter which doesn't quite fill
14349 up an entire register. For now, just assume that it is
14350 legitimate to make the Dwarf info refer to the whole register which
14351 contains the given subreg. */
14352 if (REG_P (SUBREG_REG (rtl)) && subreg_lowpart_p (rtl))
14353 loc_result = loc_descriptor (SUBREG_REG (rtl),
14354 GET_MODE (SUBREG_REG (rtl)), initialized);
14355 else
14356 goto do_default;
14357 break;
14359 case REG:
14360 loc_result = reg_loc_descriptor (rtl, initialized);
14361 break;
14363 case MEM:
14364 loc_result = mem_loc_descriptor (XEXP (rtl, 0), get_address_mode (rtl),
14365 GET_MODE (rtl), initialized);
14366 if (loc_result == NULL)
14367 loc_result = tls_mem_loc_descriptor (rtl);
14368 if (loc_result == NULL)
14370 rtx new_rtl = avoid_constant_pool_reference (rtl);
14371 if (new_rtl != rtl)
14372 loc_result = loc_descriptor (new_rtl, mode, initialized);
14374 break;
14376 case CONCAT:
14377 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1),
14378 initialized);
14379 break;
14381 case CONCATN:
14382 loc_result = concatn_loc_descriptor (rtl, initialized);
14383 break;
14385 case VAR_LOCATION:
14386 /* Single part. */
14387 if (GET_CODE (PAT_VAR_LOCATION_LOC (rtl)) != PARALLEL)
14389 rtx loc = PAT_VAR_LOCATION_LOC (rtl);
14390 if (GET_CODE (loc) == EXPR_LIST)
14391 loc = XEXP (loc, 0);
14392 loc_result = loc_descriptor (loc, mode, initialized);
14393 break;
14396 rtl = XEXP (rtl, 1);
14397 /* FALLTHRU */
14399 case PARALLEL:
14401 rtvec par_elems = XVEC (rtl, 0);
14402 int num_elem = GET_NUM_ELEM (par_elems);
14403 machine_mode mode;
14404 int i;
14406 /* Create the first one, so we have something to add to. */
14407 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0),
14408 VOIDmode, initialized);
14409 if (loc_result == NULL)
14410 return NULL;
14411 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
14412 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
14413 for (i = 1; i < num_elem; i++)
14415 dw_loc_descr_ref temp;
14417 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0),
14418 VOIDmode, initialized);
14419 if (temp == NULL)
14420 return NULL;
14421 add_loc_descr (&loc_result, temp);
14422 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
14423 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
14426 break;
14428 case CONST_INT:
14429 if (mode != VOIDmode && mode != BLKmode)
14430 loc_result = address_of_int_loc_descriptor (GET_MODE_SIZE (mode),
14431 INTVAL (rtl));
14432 break;
14434 case CONST_DOUBLE:
14435 if (mode == VOIDmode)
14436 mode = GET_MODE (rtl);
14438 if (mode != VOIDmode && (dwarf_version >= 4 || !dwarf_strict))
14440 gcc_assert (mode == GET_MODE (rtl) || VOIDmode == GET_MODE (rtl));
14442 /* Note that a CONST_DOUBLE rtx could represent either an integer
14443 or a floating-point constant. A CONST_DOUBLE is used whenever
14444 the constant requires more than one word in order to be
14445 adequately represented. We output CONST_DOUBLEs as blocks. */
14446 loc_result = new_loc_descr (DW_OP_implicit_value,
14447 GET_MODE_SIZE (mode), 0);
14448 #if TARGET_SUPPORTS_WIDE_INT == 0
14449 if (!SCALAR_FLOAT_MODE_P (mode))
14451 loc_result->dw_loc_oprnd2.val_class = dw_val_class_const_double;
14452 loc_result->dw_loc_oprnd2.v.val_double
14453 = rtx_to_double_int (rtl);
14455 else
14456 #endif
14458 unsigned int length = GET_MODE_SIZE (mode);
14459 unsigned char *array = ggc_vec_alloc<unsigned char> (length);
14461 insert_float (rtl, array);
14462 loc_result->dw_loc_oprnd2.val_class = dw_val_class_vec;
14463 loc_result->dw_loc_oprnd2.v.val_vec.length = length / 4;
14464 loc_result->dw_loc_oprnd2.v.val_vec.elt_size = 4;
14465 loc_result->dw_loc_oprnd2.v.val_vec.array = array;
14468 break;
14470 case CONST_WIDE_INT:
14471 if (mode == VOIDmode)
14472 mode = GET_MODE (rtl);
14474 if (mode != VOIDmode && (dwarf_version >= 4 || !dwarf_strict))
14476 loc_result = new_loc_descr (DW_OP_implicit_value,
14477 GET_MODE_SIZE (mode), 0);
14478 loc_result->dw_loc_oprnd2.val_class = dw_val_class_wide_int;
14479 loc_result->dw_loc_oprnd2.v.val_wide = ggc_alloc<wide_int> ();
14480 *loc_result->dw_loc_oprnd2.v.val_wide = std::make_pair (rtl, mode);
14482 break;
14484 case CONST_VECTOR:
14485 if (mode == VOIDmode)
14486 mode = GET_MODE (rtl);
14488 if (mode != VOIDmode && (dwarf_version >= 4 || !dwarf_strict))
14490 unsigned int elt_size = GET_MODE_UNIT_SIZE (GET_MODE (rtl));
14491 unsigned int length = CONST_VECTOR_NUNITS (rtl);
14492 unsigned char *array
14493 = ggc_vec_alloc<unsigned char> (length * elt_size);
14494 unsigned int i;
14495 unsigned char *p;
14496 machine_mode imode = GET_MODE_INNER (mode);
14498 gcc_assert (mode == GET_MODE (rtl) || VOIDmode == GET_MODE (rtl));
14499 switch (GET_MODE_CLASS (mode))
14501 case MODE_VECTOR_INT:
14502 for (i = 0, p = array; i < length; i++, p += elt_size)
14504 rtx elt = CONST_VECTOR_ELT (rtl, i);
14505 insert_wide_int (std::make_pair (elt, imode), p, elt_size);
14507 break;
14509 case MODE_VECTOR_FLOAT:
14510 for (i = 0, p = array; i < length; i++, p += elt_size)
14512 rtx elt = CONST_VECTOR_ELT (rtl, i);
14513 insert_float (elt, p);
14515 break;
14517 default:
14518 gcc_unreachable ();
14521 loc_result = new_loc_descr (DW_OP_implicit_value,
14522 length * elt_size, 0);
14523 loc_result->dw_loc_oprnd2.val_class = dw_val_class_vec;
14524 loc_result->dw_loc_oprnd2.v.val_vec.length = length;
14525 loc_result->dw_loc_oprnd2.v.val_vec.elt_size = elt_size;
14526 loc_result->dw_loc_oprnd2.v.val_vec.array = array;
14528 break;
14530 case CONST:
14531 if (mode == VOIDmode
14532 || CONST_SCALAR_INT_P (XEXP (rtl, 0))
14533 || CONST_DOUBLE_AS_FLOAT_P (XEXP (rtl, 0))
14534 || GET_CODE (XEXP (rtl, 0)) == CONST_VECTOR)
14536 loc_result = loc_descriptor (XEXP (rtl, 0), mode, initialized);
14537 break;
14539 /* FALLTHROUGH */
14540 case SYMBOL_REF:
14541 if (!const_ok_for_output (rtl))
14542 break;
14543 case LABEL_REF:
14544 if (mode != VOIDmode && GET_MODE_SIZE (mode) == DWARF2_ADDR_SIZE
14545 && (dwarf_version >= 4 || !dwarf_strict))
14547 loc_result = new_addr_loc_descr (rtl, dtprel_false);
14548 add_loc_descr (&loc_result, new_loc_descr (DW_OP_stack_value, 0, 0));
14549 vec_safe_push (used_rtx_array, rtl);
14551 break;
14553 case DEBUG_IMPLICIT_PTR:
14554 loc_result = implicit_ptr_descriptor (rtl, 0);
14555 break;
14557 case PLUS:
14558 if (GET_CODE (XEXP (rtl, 0)) == DEBUG_IMPLICIT_PTR
14559 && CONST_INT_P (XEXP (rtl, 1)))
14561 loc_result
14562 = implicit_ptr_descriptor (XEXP (rtl, 0), INTVAL (XEXP (rtl, 1)));
14563 break;
14565 /* FALLTHRU */
14566 do_default:
14567 default:
14568 if ((SCALAR_INT_MODE_P (mode)
14569 && GET_MODE (rtl) == mode
14570 && GET_MODE_SIZE (GET_MODE (rtl)) <= DWARF2_ADDR_SIZE
14571 && dwarf_version >= 4)
14572 || (!dwarf_strict && mode != VOIDmode && mode != BLKmode))
14574 /* Value expression. */
14575 loc_result = mem_loc_descriptor (rtl, mode, VOIDmode, initialized);
14576 if (loc_result)
14577 add_loc_descr (&loc_result,
14578 new_loc_descr (DW_OP_stack_value, 0, 0));
14580 break;
14583 return loc_result;
14586 /* We need to figure out what section we should use as the base for the
14587 address ranges where a given location is valid.
14588 1. If this particular DECL has a section associated with it, use that.
14589 2. If this function has a section associated with it, use that.
14590 3. Otherwise, use the text section.
14591 XXX: If you split a variable across multiple sections, we won't notice. */
14593 static const char *
14594 secname_for_decl (const_tree decl)
14596 const char *secname;
14598 if (VAR_OR_FUNCTION_DECL_P (decl)
14599 && (DECL_EXTERNAL (decl) || TREE_PUBLIC (decl) || TREE_STATIC (decl))
14600 && DECL_SECTION_NAME (decl))
14601 secname = DECL_SECTION_NAME (decl);
14602 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
14603 secname = DECL_SECTION_NAME (current_function_decl);
14604 else if (cfun && in_cold_section_p)
14605 secname = crtl->subsections.cold_section_label;
14606 else
14607 secname = text_section_label;
14609 return secname;
14612 /* Return true when DECL_BY_REFERENCE is defined and set for DECL. */
14614 static bool
14615 decl_by_reference_p (tree decl)
14617 return ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == RESULT_DECL
14618 || TREE_CODE (decl) == VAR_DECL)
14619 && DECL_BY_REFERENCE (decl));
14622 /* Helper function for dw_loc_list. Compute proper Dwarf location descriptor
14623 for VARLOC. */
14625 static dw_loc_descr_ref
14626 dw_loc_list_1 (tree loc, rtx varloc, int want_address,
14627 enum var_init_status initialized)
14629 int have_address = 0;
14630 dw_loc_descr_ref descr;
14631 machine_mode mode;
14633 if (want_address != 2)
14635 gcc_assert (GET_CODE (varloc) == VAR_LOCATION);
14636 /* Single part. */
14637 if (GET_CODE (PAT_VAR_LOCATION_LOC (varloc)) != PARALLEL)
14639 varloc = PAT_VAR_LOCATION_LOC (varloc);
14640 if (GET_CODE (varloc) == EXPR_LIST)
14641 varloc = XEXP (varloc, 0);
14642 mode = GET_MODE (varloc);
14643 if (MEM_P (varloc))
14645 rtx addr = XEXP (varloc, 0);
14646 descr = mem_loc_descriptor (addr, get_address_mode (varloc),
14647 mode, initialized);
14648 if (descr)
14649 have_address = 1;
14650 else
14652 rtx x = avoid_constant_pool_reference (varloc);
14653 if (x != varloc)
14654 descr = mem_loc_descriptor (x, mode, VOIDmode,
14655 initialized);
14658 else
14659 descr = mem_loc_descriptor (varloc, mode, VOIDmode, initialized);
14661 else
14662 return 0;
14664 else
14666 if (GET_CODE (varloc) == VAR_LOCATION)
14667 mode = DECL_MODE (PAT_VAR_LOCATION_DECL (varloc));
14668 else
14669 mode = DECL_MODE (loc);
14670 descr = loc_descriptor (varloc, mode, initialized);
14671 have_address = 1;
14674 if (!descr)
14675 return 0;
14677 if (want_address == 2 && !have_address
14678 && (dwarf_version >= 4 || !dwarf_strict))
14680 if (int_size_in_bytes (TREE_TYPE (loc)) > DWARF2_ADDR_SIZE)
14682 expansion_failed (loc, NULL_RTX,
14683 "DWARF address size mismatch");
14684 return 0;
14686 add_loc_descr (&descr, new_loc_descr (DW_OP_stack_value, 0, 0));
14687 have_address = 1;
14689 /* Show if we can't fill the request for an address. */
14690 if (want_address && !have_address)
14692 expansion_failed (loc, NULL_RTX,
14693 "Want address and only have value");
14694 return 0;
14697 /* If we've got an address and don't want one, dereference. */
14698 if (!want_address && have_address)
14700 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
14701 enum dwarf_location_atom op;
14703 if (size > DWARF2_ADDR_SIZE || size == -1)
14705 expansion_failed (loc, NULL_RTX,
14706 "DWARF address size mismatch");
14707 return 0;
14709 else if (size == DWARF2_ADDR_SIZE)
14710 op = DW_OP_deref;
14711 else
14712 op = DW_OP_deref_size;
14714 add_loc_descr (&descr, new_loc_descr (op, size, 0));
14717 return descr;
14720 /* Create a DW_OP_piece or DW_OP_bit_piece for bitsize, or return NULL
14721 if it is not possible. */
14723 static dw_loc_descr_ref
14724 new_loc_descr_op_bit_piece (HOST_WIDE_INT bitsize, HOST_WIDE_INT offset)
14726 if ((bitsize % BITS_PER_UNIT) == 0 && offset == 0)
14727 return new_loc_descr (DW_OP_piece, bitsize / BITS_PER_UNIT, 0);
14728 else if (dwarf_version >= 3 || !dwarf_strict)
14729 return new_loc_descr (DW_OP_bit_piece, bitsize, offset);
14730 else
14731 return NULL;
14734 /* Helper function for dw_loc_list. Compute proper Dwarf location descriptor
14735 for VAR_LOC_NOTE for variable DECL that has been optimized by SRA. */
14737 static dw_loc_descr_ref
14738 dw_sra_loc_expr (tree decl, rtx loc)
14740 rtx p;
14741 unsigned HOST_WIDE_INT padsize = 0;
14742 dw_loc_descr_ref descr, *descr_tail;
14743 unsigned HOST_WIDE_INT decl_size;
14744 rtx varloc;
14745 enum var_init_status initialized;
14747 if (DECL_SIZE (decl) == NULL
14748 || !tree_fits_uhwi_p (DECL_SIZE (decl)))
14749 return NULL;
14751 decl_size = tree_to_uhwi (DECL_SIZE (decl));
14752 descr = NULL;
14753 descr_tail = &descr;
14755 for (p = loc; p; p = XEXP (p, 1))
14757 unsigned HOST_WIDE_INT bitsize = decl_piece_bitsize (p);
14758 rtx loc_note = *decl_piece_varloc_ptr (p);
14759 dw_loc_descr_ref cur_descr;
14760 dw_loc_descr_ref *tail, last = NULL;
14761 unsigned HOST_WIDE_INT opsize = 0;
14763 if (loc_note == NULL_RTX
14764 || NOTE_VAR_LOCATION_LOC (loc_note) == NULL_RTX)
14766 padsize += bitsize;
14767 continue;
14769 initialized = NOTE_VAR_LOCATION_STATUS (loc_note);
14770 varloc = NOTE_VAR_LOCATION (loc_note);
14771 cur_descr = dw_loc_list_1 (decl, varloc, 2, initialized);
14772 if (cur_descr == NULL)
14774 padsize += bitsize;
14775 continue;
14778 /* Check that cur_descr either doesn't use
14779 DW_OP_*piece operations, or their sum is equal
14780 to bitsize. Otherwise we can't embed it. */
14781 for (tail = &cur_descr; *tail != NULL;
14782 tail = &(*tail)->dw_loc_next)
14783 if ((*tail)->dw_loc_opc == DW_OP_piece)
14785 opsize += (*tail)->dw_loc_oprnd1.v.val_unsigned
14786 * BITS_PER_UNIT;
14787 last = *tail;
14789 else if ((*tail)->dw_loc_opc == DW_OP_bit_piece)
14791 opsize += (*tail)->dw_loc_oprnd1.v.val_unsigned;
14792 last = *tail;
14795 if (last != NULL && opsize != bitsize)
14797 padsize += bitsize;
14798 /* Discard the current piece of the descriptor and release any
14799 addr_table entries it uses. */
14800 remove_loc_list_addr_table_entries (cur_descr);
14801 continue;
14804 /* If there is a hole, add DW_OP_*piece after empty DWARF
14805 expression, which means that those bits are optimized out. */
14806 if (padsize)
14808 if (padsize > decl_size)
14810 remove_loc_list_addr_table_entries (cur_descr);
14811 goto discard_descr;
14813 decl_size -= padsize;
14814 *descr_tail = new_loc_descr_op_bit_piece (padsize, 0);
14815 if (*descr_tail == NULL)
14817 remove_loc_list_addr_table_entries (cur_descr);
14818 goto discard_descr;
14820 descr_tail = &(*descr_tail)->dw_loc_next;
14821 padsize = 0;
14823 *descr_tail = cur_descr;
14824 descr_tail = tail;
14825 if (bitsize > decl_size)
14826 goto discard_descr;
14827 decl_size -= bitsize;
14828 if (last == NULL)
14830 HOST_WIDE_INT offset = 0;
14831 if (GET_CODE (varloc) == VAR_LOCATION
14832 && GET_CODE (PAT_VAR_LOCATION_LOC (varloc)) != PARALLEL)
14834 varloc = PAT_VAR_LOCATION_LOC (varloc);
14835 if (GET_CODE (varloc) == EXPR_LIST)
14836 varloc = XEXP (varloc, 0);
14840 if (GET_CODE (varloc) == CONST
14841 || GET_CODE (varloc) == SIGN_EXTEND
14842 || GET_CODE (varloc) == ZERO_EXTEND)
14843 varloc = XEXP (varloc, 0);
14844 else if (GET_CODE (varloc) == SUBREG)
14845 varloc = SUBREG_REG (varloc);
14846 else
14847 break;
14849 while (1);
14850 /* DW_OP_bit_size offset should be zero for register
14851 or implicit location descriptions and empty location
14852 descriptions, but for memory addresses needs big endian
14853 adjustment. */
14854 if (MEM_P (varloc))
14856 unsigned HOST_WIDE_INT memsize
14857 = MEM_SIZE (varloc) * BITS_PER_UNIT;
14858 if (memsize != bitsize)
14860 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN
14861 && (memsize > BITS_PER_WORD || bitsize > BITS_PER_WORD))
14862 goto discard_descr;
14863 if (memsize < bitsize)
14864 goto discard_descr;
14865 if (BITS_BIG_ENDIAN)
14866 offset = memsize - bitsize;
14870 *descr_tail = new_loc_descr_op_bit_piece (bitsize, offset);
14871 if (*descr_tail == NULL)
14872 goto discard_descr;
14873 descr_tail = &(*descr_tail)->dw_loc_next;
14877 /* If there were any non-empty expressions, add padding till the end of
14878 the decl. */
14879 if (descr != NULL && decl_size != 0)
14881 *descr_tail = new_loc_descr_op_bit_piece (decl_size, 0);
14882 if (*descr_tail == NULL)
14883 goto discard_descr;
14885 return descr;
14887 discard_descr:
14888 /* Discard the descriptor and release any addr_table entries it uses. */
14889 remove_loc_list_addr_table_entries (descr);
14890 return NULL;
14893 /* Return the dwarf representation of the location list LOC_LIST of
14894 DECL. WANT_ADDRESS has the same meaning as in loc_list_from_tree
14895 function. */
14897 static dw_loc_list_ref
14898 dw_loc_list (var_loc_list *loc_list, tree decl, int want_address)
14900 const char *endname, *secname;
14901 rtx varloc;
14902 enum var_init_status initialized;
14903 struct var_loc_node *node;
14904 dw_loc_descr_ref descr;
14905 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
14906 dw_loc_list_ref list = NULL;
14907 dw_loc_list_ref *listp = &list;
14909 /* Now that we know what section we are using for a base,
14910 actually construct the list of locations.
14911 The first location information is what is passed to the
14912 function that creates the location list, and the remaining
14913 locations just get added on to that list.
14914 Note that we only know the start address for a location
14915 (IE location changes), so to build the range, we use
14916 the range [current location start, next location start].
14917 This means we have to special case the last node, and generate
14918 a range of [last location start, end of function label]. */
14920 secname = secname_for_decl (decl);
14922 for (node = loc_list->first; node; node = node->next)
14923 if (GET_CODE (node->loc) == EXPR_LIST
14924 || NOTE_VAR_LOCATION_LOC (node->loc) != NULL_RTX)
14926 if (GET_CODE (node->loc) == EXPR_LIST)
14928 /* This requires DW_OP_{,bit_}piece, which is not usable
14929 inside DWARF expressions. */
14930 if (want_address != 2)
14931 continue;
14932 descr = dw_sra_loc_expr (decl, node->loc);
14933 if (descr == NULL)
14934 continue;
14936 else
14938 initialized = NOTE_VAR_LOCATION_STATUS (node->loc);
14939 varloc = NOTE_VAR_LOCATION (node->loc);
14940 descr = dw_loc_list_1 (decl, varloc, want_address, initialized);
14942 if (descr)
14944 bool range_across_switch = false;
14945 /* If section switch happens in between node->label
14946 and node->next->label (or end of function) and
14947 we can't emit it as a single entry list,
14948 emit two ranges, first one ending at the end
14949 of first partition and second one starting at the
14950 beginning of second partition. */
14951 if (node == loc_list->last_before_switch
14952 && (node != loc_list->first || loc_list->first->next)
14953 && current_function_decl)
14955 endname = cfun->fde->dw_fde_end;
14956 range_across_switch = true;
14958 /* The variable has a location between NODE->LABEL and
14959 NODE->NEXT->LABEL. */
14960 else if (node->next)
14961 endname = node->next->label;
14962 /* If the variable has a location at the last label
14963 it keeps its location until the end of function. */
14964 else if (!current_function_decl)
14965 endname = text_end_label;
14966 else
14968 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
14969 current_function_funcdef_no);
14970 endname = ggc_strdup (label_id);
14973 *listp = new_loc_list (descr, node->label, endname, secname);
14974 if (TREE_CODE (decl) == PARM_DECL
14975 && node == loc_list->first
14976 && NOTE_P (node->loc)
14977 && strcmp (node->label, endname) == 0)
14978 (*listp)->force = true;
14979 listp = &(*listp)->dw_loc_next;
14981 if (range_across_switch)
14983 if (GET_CODE (node->loc) == EXPR_LIST)
14984 descr = dw_sra_loc_expr (decl, node->loc);
14985 else
14987 initialized = NOTE_VAR_LOCATION_STATUS (node->loc);
14988 varloc = NOTE_VAR_LOCATION (node->loc);
14989 descr = dw_loc_list_1 (decl, varloc, want_address,
14990 initialized);
14992 gcc_assert (descr);
14993 /* The variable has a location between NODE->LABEL and
14994 NODE->NEXT->LABEL. */
14995 if (node->next)
14996 endname = node->next->label;
14997 else
14998 endname = cfun->fde->dw_fde_second_end;
14999 *listp = new_loc_list (descr,
15000 cfun->fde->dw_fde_second_begin,
15001 endname, secname);
15002 listp = &(*listp)->dw_loc_next;
15007 /* Try to avoid the overhead of a location list emitting a location
15008 expression instead, but only if we didn't have more than one
15009 location entry in the first place. If some entries were not
15010 representable, we don't want to pretend a single entry that was
15011 applies to the entire scope in which the variable is
15012 available. */
15013 if (list && loc_list->first->next)
15014 gen_llsym (list);
15016 return list;
15019 /* Return if the loc_list has only single element and thus can be represented
15020 as location description. */
15022 static bool
15023 single_element_loc_list_p (dw_loc_list_ref list)
15025 gcc_assert (!list->dw_loc_next || list->ll_symbol);
15026 return !list->ll_symbol;
15029 /* To each location in list LIST add loc descr REF. */
15031 static void
15032 add_loc_descr_to_each (dw_loc_list_ref list, dw_loc_descr_ref ref)
15034 dw_loc_descr_ref copy;
15035 add_loc_descr (&list->expr, ref);
15036 list = list->dw_loc_next;
15037 while (list)
15039 copy = ggc_alloc<dw_loc_descr_node> ();
15040 memcpy (copy, ref, sizeof (dw_loc_descr_node));
15041 add_loc_descr (&list->expr, copy);
15042 while (copy->dw_loc_next)
15044 dw_loc_descr_ref new_copy = ggc_alloc<dw_loc_descr_node> ();
15045 memcpy (new_copy, copy->dw_loc_next, sizeof (dw_loc_descr_node));
15046 copy->dw_loc_next = new_copy;
15047 copy = new_copy;
15049 list = list->dw_loc_next;
15053 /* Given two lists RET and LIST
15054 produce location list that is result of adding expression in LIST
15055 to expression in RET on each position in program.
15056 Might be destructive on both RET and LIST.
15058 TODO: We handle only simple cases of RET or LIST having at most one
15059 element. General case would inolve sorting the lists in program order
15060 and merging them that will need some additional work.
15061 Adding that will improve quality of debug info especially for SRA-ed
15062 structures. */
15064 static void
15065 add_loc_list (dw_loc_list_ref *ret, dw_loc_list_ref list)
15067 if (!list)
15068 return;
15069 if (!*ret)
15071 *ret = list;
15072 return;
15074 if (!list->dw_loc_next)
15076 add_loc_descr_to_each (*ret, list->expr);
15077 return;
15079 if (!(*ret)->dw_loc_next)
15081 add_loc_descr_to_each (list, (*ret)->expr);
15082 *ret = list;
15083 return;
15085 expansion_failed (NULL_TREE, NULL_RTX,
15086 "Don't know how to merge two non-trivial"
15087 " location lists.\n");
15088 *ret = NULL;
15089 return;
15092 /* LOC is constant expression. Try a luck, look it up in constant
15093 pool and return its loc_descr of its address. */
15095 static dw_loc_descr_ref
15096 cst_pool_loc_descr (tree loc)
15098 /* Get an RTL for this, if something has been emitted. */
15099 rtx rtl = lookup_constant_def (loc);
15101 if (!rtl || !MEM_P (rtl))
15103 gcc_assert (!rtl);
15104 return 0;
15106 gcc_assert (GET_CODE (XEXP (rtl, 0)) == SYMBOL_REF);
15108 /* TODO: We might get more coverage if we was actually delaying expansion
15109 of all expressions till end of compilation when constant pools are fully
15110 populated. */
15111 if (!TREE_ASM_WRITTEN (SYMBOL_REF_DECL (XEXP (rtl, 0))))
15113 expansion_failed (loc, NULL_RTX,
15114 "CST value in contant pool but not marked.");
15115 return 0;
15117 return mem_loc_descriptor (XEXP (rtl, 0), get_address_mode (rtl),
15118 GET_MODE (rtl), VAR_INIT_STATUS_INITIALIZED);
15121 /* Return dw_loc_list representing address of addr_expr LOC
15122 by looking for inner INDIRECT_REF expression and turning
15123 it into simple arithmetics.
15125 See loc_list_from_tree for the meaning of CONTEXT. */
15127 static dw_loc_list_ref
15128 loc_list_for_address_of_addr_expr_of_indirect_ref (tree loc, bool toplev,
15129 const loc_descr_context *context)
15131 tree obj, offset;
15132 HOST_WIDE_INT bitsize, bitpos, bytepos;
15133 machine_mode mode;
15134 int unsignedp, reversep, volatilep = 0;
15135 dw_loc_list_ref list_ret = NULL, list_ret1 = NULL;
15137 obj = get_inner_reference (TREE_OPERAND (loc, 0),
15138 &bitsize, &bitpos, &offset, &mode,
15139 &unsignedp, &reversep, &volatilep);
15140 STRIP_NOPS (obj);
15141 if (bitpos % BITS_PER_UNIT)
15143 expansion_failed (loc, NULL_RTX, "bitfield access");
15144 return 0;
15146 if (!INDIRECT_REF_P (obj))
15148 expansion_failed (obj,
15149 NULL_RTX, "no indirect ref in inner refrence");
15150 return 0;
15152 if (!offset && !bitpos)
15153 list_ret = loc_list_from_tree (TREE_OPERAND (obj, 0), toplev ? 2 : 1,
15154 context);
15155 else if (toplev
15156 && int_size_in_bytes (TREE_TYPE (loc)) <= DWARF2_ADDR_SIZE
15157 && (dwarf_version >= 4 || !dwarf_strict))
15159 list_ret = loc_list_from_tree (TREE_OPERAND (obj, 0), 0, context);
15160 if (!list_ret)
15161 return 0;
15162 if (offset)
15164 /* Variable offset. */
15165 list_ret1 = loc_list_from_tree (offset, 0, context);
15166 if (list_ret1 == 0)
15167 return 0;
15168 add_loc_list (&list_ret, list_ret1);
15169 if (!list_ret)
15170 return 0;
15171 add_loc_descr_to_each (list_ret,
15172 new_loc_descr (DW_OP_plus, 0, 0));
15174 bytepos = bitpos / BITS_PER_UNIT;
15175 if (bytepos > 0)
15176 add_loc_descr_to_each (list_ret,
15177 new_loc_descr (DW_OP_plus_uconst,
15178 bytepos, 0));
15179 else if (bytepos < 0)
15180 loc_list_plus_const (list_ret, bytepos);
15181 add_loc_descr_to_each (list_ret,
15182 new_loc_descr (DW_OP_stack_value, 0, 0));
15184 return list_ret;
15187 /* Set LOC to the next operation that is not a DW_OP_nop operation. In the case
15188 all operations from LOC are nops, move to the last one. Insert in NOPS all
15189 operations that are skipped. */
15191 static void
15192 loc_descr_to_next_no_nop (dw_loc_descr_ref &loc,
15193 hash_set<dw_loc_descr_ref> &nops)
15195 while (loc->dw_loc_next != NULL && loc->dw_loc_opc == DW_OP_nop)
15197 nops.add (loc);
15198 loc = loc->dw_loc_next;
15202 /* Helper for loc_descr_without_nops: free the location description operation
15203 P. */
15205 bool
15206 free_loc_descr (const dw_loc_descr_ref &loc, void *data ATTRIBUTE_UNUSED)
15208 ggc_free (loc);
15209 return true;
15212 /* Remove all DW_OP_nop operations from LOC except, if it exists, the one that
15213 finishes LOC. */
15215 static void
15216 loc_descr_without_nops (dw_loc_descr_ref &loc)
15218 if (loc->dw_loc_opc == DW_OP_nop && loc->dw_loc_next == NULL)
15219 return;
15221 /* Set of all DW_OP_nop operations we remove. */
15222 hash_set<dw_loc_descr_ref> nops;
15224 /* First, strip all prefix NOP operations in order to keep the head of the
15225 operations list. */
15226 loc_descr_to_next_no_nop (loc, nops);
15228 for (dw_loc_descr_ref cur = loc; cur != NULL;)
15230 /* For control flow operations: strip "prefix" nops in destination
15231 labels. */
15232 if (cur->dw_loc_oprnd1.val_class == dw_val_class_loc)
15233 loc_descr_to_next_no_nop (cur->dw_loc_oprnd1.v.val_loc, nops);
15234 if (cur->dw_loc_oprnd2.val_class == dw_val_class_loc)
15235 loc_descr_to_next_no_nop (cur->dw_loc_oprnd2.v.val_loc, nops);
15237 /* Do the same for the operations that follow, then move to the next
15238 iteration. */
15239 if (cur->dw_loc_next != NULL)
15240 loc_descr_to_next_no_nop (cur->dw_loc_next, nops);
15241 cur = cur->dw_loc_next;
15244 nops.traverse<void *, free_loc_descr> (NULL);
15248 struct dwarf_procedure_info;
15250 /* Helper structure for location descriptions generation. */
15251 struct loc_descr_context
15253 /* The type that is implicitly referenced by DW_OP_push_object_address, or
15254 NULL_TREE if DW_OP_push_object_address in invalid for this location
15255 description. This is used when processing PLACEHOLDER_EXPR nodes. */
15256 tree context_type;
15257 /* The ..._DECL node that should be translated as a
15258 DW_OP_push_object_address operation. */
15259 tree base_decl;
15260 /* Information about the DWARF procedure we are currently generating. NULL if
15261 we are not generating a DWARF procedure. */
15262 struct dwarf_procedure_info *dpi;
15265 /* DWARF procedures generation
15267 DWARF expressions (aka. location descriptions) are used to encode variable
15268 things such as sizes or offsets. Such computations can have redundant parts
15269 that can be factorized in order to reduce the size of the output debug
15270 information. This is the whole point of DWARF procedures.
15272 Thanks to stor-layout.c, size and offset expressions in GENERIC trees are
15273 already factorized into functions ("size functions") in order to handle very
15274 big and complex types. Such functions are quite simple: they have integral
15275 arguments, they return an integral result and their body contains only a
15276 return statement with arithmetic expressions. This is the only kind of
15277 function we are interested in translating into DWARF procedures, here.
15279 DWARF expressions and DWARF procedure are executed using a stack, so we have
15280 to define some calling convention for them to interact. Let's say that:
15282 - Before calling a DWARF procedure, DWARF expressions must push on the stack
15283 all arguments in reverse order (right-to-left) so that when the DWARF
15284 procedure execution starts, the first argument is the top of the stack.
15286 - Then, when returning, the DWARF procedure must have consumed all arguments
15287 on the stack, must have pushed the result and touched nothing else.
15289 - Each integral argument and the result are integral types can be hold in a
15290 single stack slot.
15292 - We call "frame offset" the number of stack slots that are "under DWARF
15293 procedure control": it includes the arguments slots, the temporaries and
15294 the result slot. Thus, it is equal to the number of arguments when the
15295 procedure execution starts and must be equal to one (the result) when it
15296 returns. */
15298 /* Helper structure used when generating operations for a DWARF procedure. */
15299 struct dwarf_procedure_info
15301 /* The FUNCTION_DECL node corresponding to the DWARF procedure that is
15302 currently translated. */
15303 tree fndecl;
15304 /* The number of arguments FNDECL takes. */
15305 unsigned args_count;
15308 /* Return a pointer to a newly created DIE node for a DWARF procedure. Add
15309 LOCATION as its DW_AT_location attribute. If FNDECL is not NULL_TREE,
15310 equate it to this DIE. */
15312 static dw_die_ref
15313 new_dwarf_proc_die (dw_loc_descr_ref location, tree fndecl,
15314 dw_die_ref parent_die)
15316 const bool dwarf_proc_supported = dwarf_version >= 4;
15317 dw_die_ref dwarf_proc_die;
15319 if ((dwarf_version < 3 && dwarf_strict)
15320 || location == NULL)
15321 return NULL;
15323 dwarf_proc_die = new_die (dwarf_proc_supported
15324 ? DW_TAG_dwarf_procedure
15325 : DW_TAG_variable,
15326 parent_die,
15327 fndecl);
15328 if (fndecl)
15329 equate_decl_number_to_die (fndecl, dwarf_proc_die);
15330 if (!dwarf_proc_supported)
15331 add_AT_flag (dwarf_proc_die, DW_AT_artificial, 1);
15332 add_AT_loc (dwarf_proc_die, DW_AT_location, location);
15333 return dwarf_proc_die;
15336 /* Return whether TYPE is a supported type as a DWARF procedure argument
15337 type or return type (we handle only scalar types and pointer types that
15338 aren't wider than the DWARF expression evaluation stack. */
15340 static bool
15341 is_handled_procedure_type (tree type)
15343 return ((INTEGRAL_TYPE_P (type)
15344 || TREE_CODE (type) == OFFSET_TYPE
15345 || TREE_CODE (type) == POINTER_TYPE)
15346 && int_size_in_bytes (type) <= DWARF2_ADDR_SIZE);
15349 /* Helper for resolve_args_picking: do the same but stop when coming across
15350 visited nodes. For each node we visit, register in FRAME_OFFSETS the frame
15351 offset *before* evaluating the corresponding operation. */
15353 static bool
15354 resolve_args_picking_1 (dw_loc_descr_ref loc, unsigned initial_frame_offset,
15355 struct dwarf_procedure_info *dpi,
15356 hash_map<dw_loc_descr_ref, unsigned> &frame_offsets)
15358 /* The "frame_offset" identifier is already used to name a macro... */
15359 unsigned frame_offset_ = initial_frame_offset;
15360 dw_loc_descr_ref l;
15362 for (l = loc; l != NULL;)
15364 bool existed;
15365 unsigned &l_frame_offset = frame_offsets.get_or_insert (l, &existed);
15367 /* If we already met this node, there is nothing to compute anymore. */
15368 if (existed)
15370 /* Make sure that the stack size is consistent wherever the execution
15371 flow comes from. */
15372 gcc_assert ((unsigned) l_frame_offset == frame_offset_);
15373 break;
15375 l_frame_offset = frame_offset_;
15377 /* If needed, relocate the picking offset with respect to the frame
15378 offset. */
15379 if (l->dw_loc_opc == DW_OP_pick && l->frame_offset_rel)
15381 /* frame_offset_ is the size of the current stack frame, including
15382 incoming arguments. Besides, the arguments are pushed
15383 right-to-left. Thus, in order to access the Nth argument from
15384 this operation node, the picking has to skip temporaries *plus*
15385 one stack slot per argument (0 for the first one, 1 for the second
15386 one, etc.).
15388 The targetted argument number (N) is already set as the operand,
15389 and the number of temporaries can be computed with:
15390 frame_offsets_ - dpi->args_count */
15391 l->dw_loc_oprnd1.v.val_unsigned += frame_offset_ - dpi->args_count;
15393 /* DW_OP_pick handles only offsets from 0 to 255 (inclusive)... */
15394 if (l->dw_loc_oprnd1.v.val_unsigned > 255)
15395 return false;
15398 /* Update frame_offset according to the effect the current operation has
15399 on the stack. */
15400 switch (l->dw_loc_opc)
15402 case DW_OP_deref:
15403 case DW_OP_swap:
15404 case DW_OP_rot:
15405 case DW_OP_abs:
15406 case DW_OP_neg:
15407 case DW_OP_not:
15408 case DW_OP_plus_uconst:
15409 case DW_OP_skip:
15410 case DW_OP_reg0:
15411 case DW_OP_reg1:
15412 case DW_OP_reg2:
15413 case DW_OP_reg3:
15414 case DW_OP_reg4:
15415 case DW_OP_reg5:
15416 case DW_OP_reg6:
15417 case DW_OP_reg7:
15418 case DW_OP_reg8:
15419 case DW_OP_reg9:
15420 case DW_OP_reg10:
15421 case DW_OP_reg11:
15422 case DW_OP_reg12:
15423 case DW_OP_reg13:
15424 case DW_OP_reg14:
15425 case DW_OP_reg15:
15426 case DW_OP_reg16:
15427 case DW_OP_reg17:
15428 case DW_OP_reg18:
15429 case DW_OP_reg19:
15430 case DW_OP_reg20:
15431 case DW_OP_reg21:
15432 case DW_OP_reg22:
15433 case DW_OP_reg23:
15434 case DW_OP_reg24:
15435 case DW_OP_reg25:
15436 case DW_OP_reg26:
15437 case DW_OP_reg27:
15438 case DW_OP_reg28:
15439 case DW_OP_reg29:
15440 case DW_OP_reg30:
15441 case DW_OP_reg31:
15442 case DW_OP_bregx:
15443 case DW_OP_piece:
15444 case DW_OP_deref_size:
15445 case DW_OP_nop:
15446 case DW_OP_form_tls_address:
15447 case DW_OP_bit_piece:
15448 case DW_OP_implicit_value:
15449 case DW_OP_stack_value:
15450 break;
15452 case DW_OP_addr:
15453 case DW_OP_const1u:
15454 case DW_OP_const1s:
15455 case DW_OP_const2u:
15456 case DW_OP_const2s:
15457 case DW_OP_const4u:
15458 case DW_OP_const4s:
15459 case DW_OP_const8u:
15460 case DW_OP_const8s:
15461 case DW_OP_constu:
15462 case DW_OP_consts:
15463 case DW_OP_dup:
15464 case DW_OP_over:
15465 case DW_OP_pick:
15466 case DW_OP_lit0:
15467 case DW_OP_lit1:
15468 case DW_OP_lit2:
15469 case DW_OP_lit3:
15470 case DW_OP_lit4:
15471 case DW_OP_lit5:
15472 case DW_OP_lit6:
15473 case DW_OP_lit7:
15474 case DW_OP_lit8:
15475 case DW_OP_lit9:
15476 case DW_OP_lit10:
15477 case DW_OP_lit11:
15478 case DW_OP_lit12:
15479 case DW_OP_lit13:
15480 case DW_OP_lit14:
15481 case DW_OP_lit15:
15482 case DW_OP_lit16:
15483 case DW_OP_lit17:
15484 case DW_OP_lit18:
15485 case DW_OP_lit19:
15486 case DW_OP_lit20:
15487 case DW_OP_lit21:
15488 case DW_OP_lit22:
15489 case DW_OP_lit23:
15490 case DW_OP_lit24:
15491 case DW_OP_lit25:
15492 case DW_OP_lit26:
15493 case DW_OP_lit27:
15494 case DW_OP_lit28:
15495 case DW_OP_lit29:
15496 case DW_OP_lit30:
15497 case DW_OP_lit31:
15498 case DW_OP_breg0:
15499 case DW_OP_breg1:
15500 case DW_OP_breg2:
15501 case DW_OP_breg3:
15502 case DW_OP_breg4:
15503 case DW_OP_breg5:
15504 case DW_OP_breg6:
15505 case DW_OP_breg7:
15506 case DW_OP_breg8:
15507 case DW_OP_breg9:
15508 case DW_OP_breg10:
15509 case DW_OP_breg11:
15510 case DW_OP_breg12:
15511 case DW_OP_breg13:
15512 case DW_OP_breg14:
15513 case DW_OP_breg15:
15514 case DW_OP_breg16:
15515 case DW_OP_breg17:
15516 case DW_OP_breg18:
15517 case DW_OP_breg19:
15518 case DW_OP_breg20:
15519 case DW_OP_breg21:
15520 case DW_OP_breg22:
15521 case DW_OP_breg23:
15522 case DW_OP_breg24:
15523 case DW_OP_breg25:
15524 case DW_OP_breg26:
15525 case DW_OP_breg27:
15526 case DW_OP_breg28:
15527 case DW_OP_breg29:
15528 case DW_OP_breg30:
15529 case DW_OP_breg31:
15530 case DW_OP_fbreg:
15531 case DW_OP_push_object_address:
15532 case DW_OP_call_frame_cfa:
15533 ++frame_offset_;
15534 break;
15536 case DW_OP_drop:
15537 case DW_OP_xderef:
15538 case DW_OP_and:
15539 case DW_OP_div:
15540 case DW_OP_minus:
15541 case DW_OP_mod:
15542 case DW_OP_mul:
15543 case DW_OP_or:
15544 case DW_OP_plus:
15545 case DW_OP_shl:
15546 case DW_OP_shr:
15547 case DW_OP_shra:
15548 case DW_OP_xor:
15549 case DW_OP_bra:
15550 case DW_OP_eq:
15551 case DW_OP_ge:
15552 case DW_OP_gt:
15553 case DW_OP_le:
15554 case DW_OP_lt:
15555 case DW_OP_ne:
15556 case DW_OP_regx:
15557 case DW_OP_xderef_size:
15558 --frame_offset_;
15559 break;
15561 case DW_OP_call2:
15562 case DW_OP_call4:
15563 case DW_OP_call_ref:
15565 dw_die_ref dwarf_proc = l->dw_loc_oprnd1.v.val_die_ref.die;
15566 int *stack_usage = dwarf_proc_stack_usage_map->get (dwarf_proc);
15568 if (stack_usage == NULL)
15569 return false;
15570 frame_offset_ += *stack_usage;
15571 break;
15574 case DW_OP_GNU_push_tls_address:
15575 case DW_OP_GNU_uninit:
15576 case DW_OP_GNU_encoded_addr:
15577 case DW_OP_GNU_implicit_pointer:
15578 case DW_OP_GNU_entry_value:
15579 case DW_OP_GNU_const_type:
15580 case DW_OP_GNU_regval_type:
15581 case DW_OP_GNU_deref_type:
15582 case DW_OP_GNU_convert:
15583 case DW_OP_GNU_reinterpret:
15584 case DW_OP_GNU_parameter_ref:
15585 /* loc_list_from_tree will probably not output these operations for
15586 size functions, so assume they will not appear here. */
15587 /* Fall through... */
15589 default:
15590 gcc_unreachable ();
15593 /* Now, follow the control flow (except subroutine calls). */
15594 switch (l->dw_loc_opc)
15596 case DW_OP_bra:
15597 if (!resolve_args_picking_1 (l->dw_loc_next, frame_offset_, dpi,
15598 frame_offsets))
15599 return false;
15600 /* Fall through... */
15602 case DW_OP_skip:
15603 l = l->dw_loc_oprnd1.v.val_loc;
15604 break;
15606 case DW_OP_stack_value:
15607 return true;
15609 default:
15610 l = l->dw_loc_next;
15611 break;
15615 return true;
15618 /* Make a DFS over operations reachable through LOC (i.e. follow branch
15619 operations) in order to resolve the operand of DW_OP_pick operations that
15620 target DWARF procedure arguments (DPI). INITIAL_FRAME_OFFSET is the frame
15621 offset *before* LOC is executed. Return if all relocations were
15622 successful. */
15624 static bool
15625 resolve_args_picking (dw_loc_descr_ref loc, unsigned initial_frame_offset,
15626 struct dwarf_procedure_info *dpi)
15628 /* Associate to all visited operations the frame offset *before* evaluating
15629 this operation. */
15630 hash_map<dw_loc_descr_ref, unsigned> frame_offsets;
15632 return resolve_args_picking_1 (loc, initial_frame_offset, dpi,
15633 frame_offsets);
15636 /* Try to generate a DWARF procedure that computes the same result as FNDECL.
15637 Return NULL if it is not possible. */
15639 static dw_die_ref
15640 function_to_dwarf_procedure (tree fndecl)
15642 struct loc_descr_context ctx;
15643 struct dwarf_procedure_info dpi;
15644 dw_die_ref dwarf_proc_die;
15645 tree tree_body = DECL_SAVED_TREE (fndecl);
15646 dw_loc_descr_ref loc_body, epilogue;
15648 tree cursor;
15649 unsigned i;
15651 /* Do not generate multiple DWARF procedures for the same function
15652 declaration. */
15653 dwarf_proc_die = lookup_decl_die (fndecl);
15654 if (dwarf_proc_die != NULL)
15655 return dwarf_proc_die;
15657 /* DWARF procedures are available starting with the DWARFv3 standard, but
15658 it's the DWARFv4 standard that introduces the DW_TAG_dwarf_procedure
15659 DIE. */
15660 if (dwarf_version < 3 && dwarf_strict)
15661 return NULL;
15663 /* We handle only functions for which we still have a body, that return a
15664 supported type and that takes arguments with supported types. Note that
15665 there is no point translating functions that return nothing. */
15666 if (tree_body == NULL_TREE
15667 || DECL_RESULT (fndecl) == NULL_TREE
15668 || !is_handled_procedure_type (TREE_TYPE (DECL_RESULT (fndecl))))
15669 return NULL;
15671 for (cursor = DECL_ARGUMENTS (fndecl);
15672 cursor != NULL_TREE;
15673 cursor = TREE_CHAIN (cursor))
15674 if (!is_handled_procedure_type (TREE_TYPE (cursor)))
15675 return NULL;
15677 /* Match only "expr" in: RETURN_EXPR (MODIFY_EXPR (RESULT_DECL, expr)). */
15678 if (TREE_CODE (tree_body) != RETURN_EXPR)
15679 return NULL;
15680 tree_body = TREE_OPERAND (tree_body, 0);
15681 if (TREE_CODE (tree_body) != MODIFY_EXPR
15682 || TREE_OPERAND (tree_body, 0) != DECL_RESULT (fndecl))
15683 return NULL;
15684 tree_body = TREE_OPERAND (tree_body, 1);
15686 /* Try to translate the body expression itself. Note that this will probably
15687 cause an infinite recursion if its call graph has a cycle. This is very
15688 unlikely for size functions, however, so don't bother with such things at
15689 the moment. */
15690 ctx.context_type = NULL_TREE;
15691 ctx.base_decl = NULL_TREE;
15692 ctx.dpi = &dpi;
15693 dpi.fndecl = fndecl;
15694 dpi.args_count = list_length (DECL_ARGUMENTS (fndecl));
15695 loc_body = loc_descriptor_from_tree (tree_body, 0, &ctx);
15696 if (!loc_body)
15697 return NULL;
15699 /* After evaluating all operands in "loc_body", we should still have on the
15700 stack all arguments plus the desired function result (top of the stack).
15701 Generate code in order to keep only the result in our stack frame. */
15702 epilogue = NULL;
15703 for (i = 0; i < dpi.args_count; ++i)
15705 dw_loc_descr_ref op_couple = new_loc_descr (DW_OP_swap, 0, 0);
15706 op_couple->dw_loc_next = new_loc_descr (DW_OP_drop, 0, 0);
15707 op_couple->dw_loc_next->dw_loc_next = epilogue;
15708 epilogue = op_couple;
15710 add_loc_descr (&loc_body, epilogue);
15711 if (!resolve_args_picking (loc_body, dpi.args_count, &dpi))
15712 return NULL;
15714 /* Trailing nops from loc_descriptor_from_tree (if any) cannot be removed
15715 because they are considered useful. Now there is an epilogue, they are
15716 not anymore, so give it another try. */
15717 loc_descr_without_nops (loc_body);
15719 /* fndecl may be used both as a regular DW_TAG_subprogram DIE and as
15720 a DW_TAG_dwarf_procedure, so we may have a conflict, here. It's unlikely,
15721 though, given that size functions do not come from source, so they should
15722 not have a dedicated DW_TAG_subprogram DIE. */
15723 dwarf_proc_die
15724 = new_dwarf_proc_die (loc_body, fndecl,
15725 get_context_die (DECL_CONTEXT (fndecl)));
15727 /* The called DWARF procedure consumes one stack slot per argument and
15728 returns one stack slot. */
15729 dwarf_proc_stack_usage_map->put (dwarf_proc_die, 1 - dpi.args_count);
15731 return dwarf_proc_die;
15735 /* Generate Dwarf location list representing LOC.
15736 If WANT_ADDRESS is false, expression computing LOC will be computed
15737 If WANT_ADDRESS is 1, expression computing address of LOC will be returned
15738 if WANT_ADDRESS is 2, expression computing address useable in location
15739 will be returned (i.e. DW_OP_reg can be used
15740 to refer to register values).
15742 CONTEXT provides information to customize the location descriptions
15743 generation. Its context_type field specifies what type is implicitly
15744 referenced by DW_OP_push_object_address. If it is NULL_TREE, this operation
15745 will not be generated.
15747 Its DPI field determines whether we are generating a DWARF expression for a
15748 DWARF procedure, so PARM_DECL references are processed specifically.
15750 If CONTEXT is NULL, the behavior is the same as if context_type, base_decl
15751 and dpi fields were null. */
15753 static dw_loc_list_ref
15754 loc_list_from_tree_1 (tree loc, int want_address,
15755 const struct loc_descr_context *context)
15757 dw_loc_descr_ref ret = NULL, ret1 = NULL;
15758 dw_loc_list_ref list_ret = NULL, list_ret1 = NULL;
15759 int have_address = 0;
15760 enum dwarf_location_atom op;
15762 /* ??? Most of the time we do not take proper care for sign/zero
15763 extending the values properly. Hopefully this won't be a real
15764 problem... */
15766 if (context != NULL
15767 && context->base_decl == loc
15768 && want_address == 0)
15770 if (dwarf_version >= 3 || !dwarf_strict)
15771 return new_loc_list (new_loc_descr (DW_OP_push_object_address, 0, 0),
15772 NULL, NULL, NULL);
15773 else
15774 return NULL;
15777 switch (TREE_CODE (loc))
15779 case ERROR_MARK:
15780 expansion_failed (loc, NULL_RTX, "ERROR_MARK");
15781 return 0;
15783 case PLACEHOLDER_EXPR:
15784 /* This case involves extracting fields from an object to determine the
15785 position of other fields. It is supposed to appear only as the first
15786 operand of COMPONENT_REF nodes and to reference precisely the type
15787 that the context allows. */
15788 if (context != NULL
15789 && TREE_TYPE (loc) == context->context_type
15790 && want_address >= 1)
15792 if (dwarf_version >= 3 || !dwarf_strict)
15794 ret = new_loc_descr (DW_OP_push_object_address, 0, 0);
15795 have_address = 1;
15796 break;
15798 else
15799 return NULL;
15801 else
15802 expansion_failed (loc, NULL_RTX,
15803 "PLACEHOLDER_EXPR for an unexpected type");
15804 break;
15806 case CALL_EXPR:
15808 const int nargs = call_expr_nargs (loc);
15809 tree callee = get_callee_fndecl (loc);
15810 int i;
15811 dw_die_ref dwarf_proc;
15813 if (callee == NULL_TREE)
15814 goto call_expansion_failed;
15816 /* We handle only functions that return an integer. */
15817 if (!is_handled_procedure_type (TREE_TYPE (TREE_TYPE (callee))))
15818 goto call_expansion_failed;
15820 dwarf_proc = function_to_dwarf_procedure (callee);
15821 if (dwarf_proc == NULL)
15822 goto call_expansion_failed;
15824 /* Evaluate arguments right-to-left so that the first argument will
15825 be the top-most one on the stack. */
15826 for (i = nargs - 1; i >= 0; --i)
15828 dw_loc_descr_ref loc_descr
15829 = loc_descriptor_from_tree (CALL_EXPR_ARG (loc, i), 0,
15830 context);
15832 if (loc_descr == NULL)
15833 goto call_expansion_failed;
15835 add_loc_descr (&ret, loc_descr);
15838 ret1 = new_loc_descr (DW_OP_call4, 0, 0);
15839 ret1->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
15840 ret1->dw_loc_oprnd1.v.val_die_ref.die = dwarf_proc;
15841 ret1->dw_loc_oprnd1.v.val_die_ref.external = 0;
15842 add_loc_descr (&ret, ret1);
15843 break;
15845 call_expansion_failed:
15846 expansion_failed (loc, NULL_RTX, "CALL_EXPR");
15847 /* There are no opcodes for these operations. */
15848 return 0;
15851 case PREINCREMENT_EXPR:
15852 case PREDECREMENT_EXPR:
15853 case POSTINCREMENT_EXPR:
15854 case POSTDECREMENT_EXPR:
15855 expansion_failed (loc, NULL_RTX, "PRE/POST INDCREMENT/DECREMENT");
15856 /* There are no opcodes for these operations. */
15857 return 0;
15859 case ADDR_EXPR:
15860 /* If we already want an address, see if there is INDIRECT_REF inside
15861 e.g. for &this->field. */
15862 if (want_address)
15864 list_ret = loc_list_for_address_of_addr_expr_of_indirect_ref
15865 (loc, want_address == 2, context);
15866 if (list_ret)
15867 have_address = 1;
15868 else if (decl_address_ip_invariant_p (TREE_OPERAND (loc, 0))
15869 && (ret = cst_pool_loc_descr (loc)))
15870 have_address = 1;
15872 /* Otherwise, process the argument and look for the address. */
15873 if (!list_ret && !ret)
15874 list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 1, context);
15875 else
15877 if (want_address)
15878 expansion_failed (loc, NULL_RTX, "need address of ADDR_EXPR");
15879 return NULL;
15881 break;
15883 case VAR_DECL:
15884 if (DECL_THREAD_LOCAL_P (loc))
15886 rtx rtl;
15887 enum dwarf_location_atom tls_op;
15888 enum dtprel_bool dtprel = dtprel_false;
15890 if (targetm.have_tls)
15892 /* If this is not defined, we have no way to emit the
15893 data. */
15894 if (!targetm.asm_out.output_dwarf_dtprel)
15895 return 0;
15897 /* The way DW_OP_GNU_push_tls_address is specified, we
15898 can only look up addresses of objects in the current
15899 module. We used DW_OP_addr as first op, but that's
15900 wrong, because DW_OP_addr is relocated by the debug
15901 info consumer, while DW_OP_GNU_push_tls_address
15902 operand shouldn't be. */
15903 if (DECL_EXTERNAL (loc) && !targetm.binds_local_p (loc))
15904 return 0;
15905 dtprel = dtprel_true;
15906 tls_op = DW_OP_GNU_push_tls_address;
15908 else
15910 if (!targetm.emutls.debug_form_tls_address
15911 || !(dwarf_version >= 3 || !dwarf_strict))
15912 return 0;
15913 /* We stuffed the control variable into the DECL_VALUE_EXPR
15914 to signal (via DECL_HAS_VALUE_EXPR_P) that the decl should
15915 no longer appear in gimple code. We used the control
15916 variable in specific so that we could pick it up here. */
15917 loc = DECL_VALUE_EXPR (loc);
15918 tls_op = DW_OP_form_tls_address;
15921 rtl = rtl_for_decl_location (loc);
15922 if (rtl == NULL_RTX)
15923 return 0;
15925 if (!MEM_P (rtl))
15926 return 0;
15927 rtl = XEXP (rtl, 0);
15928 if (! CONSTANT_P (rtl))
15929 return 0;
15931 ret = new_addr_loc_descr (rtl, dtprel);
15932 ret1 = new_loc_descr (tls_op, 0, 0);
15933 add_loc_descr (&ret, ret1);
15935 have_address = 1;
15936 break;
15938 /* FALLTHRU */
15940 case PARM_DECL:
15941 if (context != NULL && context->dpi != NULL
15942 && DECL_CONTEXT (loc) == context->dpi->fndecl)
15944 /* We are generating code for a DWARF procedure and we want to access
15945 one of its arguments: find the appropriate argument offset and let
15946 the resolve_args_picking pass compute the offset that complies
15947 with the stack frame size. */
15948 unsigned i = 0;
15949 tree cursor;
15951 for (cursor = DECL_ARGUMENTS (context->dpi->fndecl);
15952 cursor != NULL_TREE && cursor != loc;
15953 cursor = TREE_CHAIN (cursor), ++i)
15955 /* If we are translating a DWARF procedure, all referenced parameters
15956 must belong to the current function. */
15957 gcc_assert (cursor != NULL_TREE);
15959 ret = new_loc_descr (DW_OP_pick, i, 0);
15960 ret->frame_offset_rel = 1;
15961 break;
15963 /* FALLTHRU */
15965 case RESULT_DECL:
15966 if (DECL_HAS_VALUE_EXPR_P (loc))
15967 return loc_list_from_tree_1 (DECL_VALUE_EXPR (loc),
15968 want_address, context);
15969 /* FALLTHRU */
15971 case FUNCTION_DECL:
15973 rtx rtl;
15974 var_loc_list *loc_list = lookup_decl_loc (loc);
15976 if (loc_list && loc_list->first)
15978 list_ret = dw_loc_list (loc_list, loc, want_address);
15979 have_address = want_address != 0;
15980 break;
15982 rtl = rtl_for_decl_location (loc);
15983 if (rtl == NULL_RTX)
15985 expansion_failed (loc, NULL_RTX, "DECL has no RTL");
15986 return 0;
15988 else if (CONST_INT_P (rtl))
15990 HOST_WIDE_INT val = INTVAL (rtl);
15991 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
15992 val &= GET_MODE_MASK (DECL_MODE (loc));
15993 ret = int_loc_descriptor (val);
15995 else if (GET_CODE (rtl) == CONST_STRING)
15997 expansion_failed (loc, NULL_RTX, "CONST_STRING");
15998 return 0;
16000 else if (CONSTANT_P (rtl) && const_ok_for_output (rtl))
16001 ret = new_addr_loc_descr (rtl, dtprel_false);
16002 else
16004 machine_mode mode, mem_mode;
16006 /* Certain constructs can only be represented at top-level. */
16007 if (want_address == 2)
16009 ret = loc_descriptor (rtl, VOIDmode,
16010 VAR_INIT_STATUS_INITIALIZED);
16011 have_address = 1;
16013 else
16015 mode = GET_MODE (rtl);
16016 mem_mode = VOIDmode;
16017 if (MEM_P (rtl))
16019 mem_mode = mode;
16020 mode = get_address_mode (rtl);
16021 rtl = XEXP (rtl, 0);
16022 have_address = 1;
16024 ret = mem_loc_descriptor (rtl, mode, mem_mode,
16025 VAR_INIT_STATUS_INITIALIZED);
16027 if (!ret)
16028 expansion_failed (loc, rtl,
16029 "failed to produce loc descriptor for rtl");
16032 break;
16034 case MEM_REF:
16035 if (!integer_zerop (TREE_OPERAND (loc, 1)))
16037 have_address = 1;
16038 goto do_plus;
16040 /* Fallthru. */
16041 case INDIRECT_REF:
16042 list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
16043 have_address = 1;
16044 break;
16046 case TARGET_MEM_REF:
16047 case SSA_NAME:
16048 case DEBUG_EXPR_DECL:
16049 return NULL;
16051 case COMPOUND_EXPR:
16052 return loc_list_from_tree_1 (TREE_OPERAND (loc, 1), want_address,
16053 context);
16055 CASE_CONVERT:
16056 case VIEW_CONVERT_EXPR:
16057 case SAVE_EXPR:
16058 case MODIFY_EXPR:
16059 case NON_LVALUE_EXPR:
16060 return loc_list_from_tree_1 (TREE_OPERAND (loc, 0), want_address,
16061 context);
16063 case COMPONENT_REF:
16064 case BIT_FIELD_REF:
16065 case ARRAY_REF:
16066 case ARRAY_RANGE_REF:
16067 case REALPART_EXPR:
16068 case IMAGPART_EXPR:
16070 tree obj, offset;
16071 HOST_WIDE_INT bitsize, bitpos, bytepos;
16072 machine_mode mode;
16073 int unsignedp, reversep, volatilep = 0;
16075 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
16076 &unsignedp, &reversep, &volatilep);
16078 gcc_assert (obj != loc);
16080 list_ret = loc_list_from_tree_1 (obj,
16081 want_address == 2
16082 && !bitpos && !offset ? 2 : 1,
16083 context);
16084 /* TODO: We can extract value of the small expression via shifting even
16085 for nonzero bitpos. */
16086 if (list_ret == 0)
16087 return 0;
16088 if (bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
16090 expansion_failed (loc, NULL_RTX,
16091 "bitfield access");
16092 return 0;
16095 if (offset != NULL_TREE)
16097 /* Variable offset. */
16098 list_ret1 = loc_list_from_tree_1 (offset, 0, context);
16099 if (list_ret1 == 0)
16100 return 0;
16101 add_loc_list (&list_ret, list_ret1);
16102 if (!list_ret)
16103 return 0;
16104 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_plus, 0, 0));
16107 bytepos = bitpos / BITS_PER_UNIT;
16108 if (bytepos > 0)
16109 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
16110 else if (bytepos < 0)
16111 loc_list_plus_const (list_ret, bytepos);
16113 have_address = 1;
16114 break;
16117 case INTEGER_CST:
16118 if ((want_address || !tree_fits_shwi_p (loc))
16119 && (ret = cst_pool_loc_descr (loc)))
16120 have_address = 1;
16121 else if (want_address == 2
16122 && tree_fits_shwi_p (loc)
16123 && (ret = address_of_int_loc_descriptor
16124 (int_size_in_bytes (TREE_TYPE (loc)),
16125 tree_to_shwi (loc))))
16126 have_address = 1;
16127 else if (tree_fits_shwi_p (loc))
16128 ret = int_loc_descriptor (tree_to_shwi (loc));
16129 else if (tree_fits_uhwi_p (loc))
16130 ret = uint_loc_descriptor (tree_to_uhwi (loc));
16131 else
16133 expansion_failed (loc, NULL_RTX,
16134 "Integer operand is not host integer");
16135 return 0;
16137 break;
16139 case CONSTRUCTOR:
16140 case REAL_CST:
16141 case STRING_CST:
16142 case COMPLEX_CST:
16143 if ((ret = cst_pool_loc_descr (loc)))
16144 have_address = 1;
16145 else if (TREE_CODE (loc) == CONSTRUCTOR)
16147 tree type = TREE_TYPE (loc);
16148 unsigned HOST_WIDE_INT size = int_size_in_bytes (type);
16149 unsigned HOST_WIDE_INT offset = 0;
16150 unsigned HOST_WIDE_INT cnt;
16151 constructor_elt *ce;
16153 if (TREE_CODE (type) == RECORD_TYPE)
16155 /* This is very limited, but it's enough to output
16156 pointers to member functions, as long as the
16157 referenced function is defined in the current
16158 translation unit. */
16159 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (loc), cnt, ce)
16161 tree val = ce->value;
16163 tree field = ce->index;
16165 if (val)
16166 STRIP_NOPS (val);
16168 if (!field || DECL_BIT_FIELD (field))
16170 expansion_failed (loc, NULL_RTX,
16171 "bitfield in record type constructor");
16172 size = offset = (unsigned HOST_WIDE_INT)-1;
16173 ret = NULL;
16174 break;
16177 HOST_WIDE_INT fieldsize = tree_to_shwi (DECL_SIZE_UNIT (field));
16178 unsigned HOST_WIDE_INT pos = int_byte_position (field);
16179 gcc_assert (pos + fieldsize <= size);
16180 if (pos < offset)
16182 expansion_failed (loc, NULL_RTX,
16183 "out-of-order fields in record constructor");
16184 size = offset = (unsigned HOST_WIDE_INT)-1;
16185 ret = NULL;
16186 break;
16188 if (pos > offset)
16190 ret1 = new_loc_descr (DW_OP_piece, pos - offset, 0);
16191 add_loc_descr (&ret, ret1);
16192 offset = pos;
16194 if (val && fieldsize != 0)
16196 ret1 = loc_descriptor_from_tree (val, want_address, context);
16197 if (!ret1)
16199 expansion_failed (loc, NULL_RTX,
16200 "unsupported expression in field");
16201 size = offset = (unsigned HOST_WIDE_INT)-1;
16202 ret = NULL;
16203 break;
16205 add_loc_descr (&ret, ret1);
16207 if (fieldsize)
16209 ret1 = new_loc_descr (DW_OP_piece, fieldsize, 0);
16210 add_loc_descr (&ret, ret1);
16211 offset = pos + fieldsize;
16215 if (offset != size)
16217 ret1 = new_loc_descr (DW_OP_piece, size - offset, 0);
16218 add_loc_descr (&ret, ret1);
16219 offset = size;
16222 have_address = !!want_address;
16224 else
16225 expansion_failed (loc, NULL_RTX,
16226 "constructor of non-record type");
16228 else
16229 /* We can construct small constants here using int_loc_descriptor. */
16230 expansion_failed (loc, NULL_RTX,
16231 "constructor or constant not in constant pool");
16232 break;
16234 case TRUTH_AND_EXPR:
16235 case TRUTH_ANDIF_EXPR:
16236 case BIT_AND_EXPR:
16237 op = DW_OP_and;
16238 goto do_binop;
16240 case TRUTH_XOR_EXPR:
16241 case BIT_XOR_EXPR:
16242 op = DW_OP_xor;
16243 goto do_binop;
16245 case TRUTH_OR_EXPR:
16246 case TRUTH_ORIF_EXPR:
16247 case BIT_IOR_EXPR:
16248 op = DW_OP_or;
16249 goto do_binop;
16251 case FLOOR_DIV_EXPR:
16252 case CEIL_DIV_EXPR:
16253 case ROUND_DIV_EXPR:
16254 case TRUNC_DIV_EXPR:
16255 case EXACT_DIV_EXPR:
16256 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
16257 return 0;
16258 op = DW_OP_div;
16259 goto do_binop;
16261 case MINUS_EXPR:
16262 op = DW_OP_minus;
16263 goto do_binop;
16265 case FLOOR_MOD_EXPR:
16266 case CEIL_MOD_EXPR:
16267 case ROUND_MOD_EXPR:
16268 case TRUNC_MOD_EXPR:
16269 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
16271 op = DW_OP_mod;
16272 goto do_binop;
16274 list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
16275 list_ret1 = loc_list_from_tree_1 (TREE_OPERAND (loc, 1), 0, context);
16276 if (list_ret == 0 || list_ret1 == 0)
16277 return 0;
16279 add_loc_list (&list_ret, list_ret1);
16280 if (list_ret == 0)
16281 return 0;
16282 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_over, 0, 0));
16283 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_over, 0, 0));
16284 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_div, 0, 0));
16285 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_mul, 0, 0));
16286 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_minus, 0, 0));
16287 break;
16289 case MULT_EXPR:
16290 op = DW_OP_mul;
16291 goto do_binop;
16293 case LSHIFT_EXPR:
16294 op = DW_OP_shl;
16295 goto do_binop;
16297 case RSHIFT_EXPR:
16298 op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
16299 goto do_binop;
16301 case POINTER_PLUS_EXPR:
16302 case PLUS_EXPR:
16303 do_plus:
16304 if (tree_fits_shwi_p (TREE_OPERAND (loc, 1)))
16306 /* Big unsigned numbers can fit in HOST_WIDE_INT but it may be
16307 smarter to encode their opposite. The DW_OP_plus_uconst operation
16308 takes 1 + X bytes, X being the size of the ULEB128 addend. On the
16309 other hand, a "<push literal>; DW_OP_minus" pattern takes 1 + Y
16310 bytes, Y being the size of the operation that pushes the opposite
16311 of the addend. So let's choose the smallest representation. */
16312 const tree tree_addend = TREE_OPERAND (loc, 1);
16313 offset_int wi_addend;
16314 HOST_WIDE_INT shwi_addend;
16315 dw_loc_descr_ref loc_naddend;
16317 list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
16318 if (list_ret == 0)
16319 return 0;
16321 /* Try to get the literal to push. It is the opposite of the addend,
16322 so as we rely on wrapping during DWARF evaluation, first decode
16323 the literal as a "DWARF-sized" signed number. */
16324 wi_addend = wi::to_offset (tree_addend);
16325 wi_addend = wi::sext (wi_addend, DWARF2_ADDR_SIZE * 8);
16326 shwi_addend = wi_addend.to_shwi ();
16327 loc_naddend = (shwi_addend != INTTYPE_MINIMUM (HOST_WIDE_INT))
16328 ? int_loc_descriptor (-shwi_addend)
16329 : NULL;
16331 if (loc_naddend != NULL
16332 && ((unsigned) size_of_uleb128 (shwi_addend)
16333 > size_of_loc_descr (loc_naddend)))
16335 add_loc_descr_to_each (list_ret, loc_naddend);
16336 add_loc_descr_to_each (list_ret,
16337 new_loc_descr (DW_OP_minus, 0, 0));
16339 else
16341 for (dw_loc_descr_ref loc_cur = loc_naddend; loc_cur != NULL; )
16343 loc_naddend = loc_cur;
16344 loc_cur = loc_cur->dw_loc_next;
16345 ggc_free (loc_naddend);
16347 loc_list_plus_const (list_ret, wi_addend.to_shwi ());
16349 break;
16352 op = DW_OP_plus;
16353 goto do_binop;
16355 case LE_EXPR:
16356 op = DW_OP_le;
16357 goto do_comp_binop;
16359 case GE_EXPR:
16360 op = DW_OP_ge;
16361 goto do_comp_binop;
16363 case LT_EXPR:
16364 op = DW_OP_lt;
16365 goto do_comp_binop;
16367 case GT_EXPR:
16368 op = DW_OP_gt;
16369 goto do_comp_binop;
16371 do_comp_binop:
16372 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
16374 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0, context);
16375 list_ret1 = loc_list_from_tree (TREE_OPERAND (loc, 1), 0, context);
16376 list_ret = loc_list_from_uint_comparison (list_ret, list_ret1,
16377 TREE_CODE (loc));
16378 break;
16380 else
16381 goto do_binop;
16383 case EQ_EXPR:
16384 op = DW_OP_eq;
16385 goto do_binop;
16387 case NE_EXPR:
16388 op = DW_OP_ne;
16389 goto do_binop;
16391 do_binop:
16392 list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
16393 list_ret1 = loc_list_from_tree_1 (TREE_OPERAND (loc, 1), 0, context);
16394 if (list_ret == 0 || list_ret1 == 0)
16395 return 0;
16397 add_loc_list (&list_ret, list_ret1);
16398 if (list_ret == 0)
16399 return 0;
16400 add_loc_descr_to_each (list_ret, new_loc_descr (op, 0, 0));
16401 break;
16403 case TRUTH_NOT_EXPR:
16404 case BIT_NOT_EXPR:
16405 op = DW_OP_not;
16406 goto do_unop;
16408 case ABS_EXPR:
16409 op = DW_OP_abs;
16410 goto do_unop;
16412 case NEGATE_EXPR:
16413 op = DW_OP_neg;
16414 goto do_unop;
16416 do_unop:
16417 list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
16418 if (list_ret == 0)
16419 return 0;
16421 add_loc_descr_to_each (list_ret, new_loc_descr (op, 0, 0));
16422 break;
16424 case MIN_EXPR:
16425 case MAX_EXPR:
16427 const enum tree_code code =
16428 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
16430 loc = build3 (COND_EXPR, TREE_TYPE (loc),
16431 build2 (code, integer_type_node,
16432 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
16433 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
16436 /* ... fall through ... */
16438 case COND_EXPR:
16440 dw_loc_descr_ref lhs
16441 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0, context);
16442 dw_loc_list_ref rhs
16443 = loc_list_from_tree_1 (TREE_OPERAND (loc, 2), 0, context);
16444 dw_loc_descr_ref bra_node, jump_node, tmp;
16446 list_ret = loc_list_from_tree_1 (TREE_OPERAND (loc, 0), 0, context);
16447 if (list_ret == 0 || lhs == 0 || rhs == 0)
16448 return 0;
16450 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
16451 add_loc_descr_to_each (list_ret, bra_node);
16453 add_loc_list (&list_ret, rhs);
16454 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
16455 add_loc_descr_to_each (list_ret, jump_node);
16457 add_loc_descr_to_each (list_ret, lhs);
16458 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
16459 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
16461 /* ??? Need a node to point the skip at. Use a nop. */
16462 tmp = new_loc_descr (DW_OP_nop, 0, 0);
16463 add_loc_descr_to_each (list_ret, tmp);
16464 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
16465 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
16467 break;
16469 case FIX_TRUNC_EXPR:
16470 return 0;
16472 default:
16473 /* Leave front-end specific codes as simply unknown. This comes
16474 up, for instance, with the C STMT_EXPR. */
16475 if ((unsigned int) TREE_CODE (loc)
16476 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
16478 expansion_failed (loc, NULL_RTX,
16479 "language specific tree node");
16480 return 0;
16483 /* Otherwise this is a generic code; we should just lists all of
16484 these explicitly. We forgot one. */
16485 if (flag_checking)
16486 gcc_unreachable ();
16488 /* In a release build, we want to degrade gracefully: better to
16489 generate incomplete debugging information than to crash. */
16490 return NULL;
16493 if (!ret && !list_ret)
16494 return 0;
16496 if (want_address == 2 && !have_address
16497 && (dwarf_version >= 4 || !dwarf_strict))
16499 if (int_size_in_bytes (TREE_TYPE (loc)) > DWARF2_ADDR_SIZE)
16501 expansion_failed (loc, NULL_RTX,
16502 "DWARF address size mismatch");
16503 return 0;
16505 if (ret)
16506 add_loc_descr (&ret, new_loc_descr (DW_OP_stack_value, 0, 0));
16507 else
16508 add_loc_descr_to_each (list_ret,
16509 new_loc_descr (DW_OP_stack_value, 0, 0));
16510 have_address = 1;
16512 /* Show if we can't fill the request for an address. */
16513 if (want_address && !have_address)
16515 expansion_failed (loc, NULL_RTX,
16516 "Want address and only have value");
16517 return 0;
16520 gcc_assert (!ret || !list_ret);
16522 /* If we've got an address and don't want one, dereference. */
16523 if (!want_address && have_address)
16525 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
16527 if (size > DWARF2_ADDR_SIZE || size == -1)
16529 expansion_failed (loc, NULL_RTX,
16530 "DWARF address size mismatch");
16531 return 0;
16533 else if (size == DWARF2_ADDR_SIZE)
16534 op = DW_OP_deref;
16535 else
16536 op = DW_OP_deref_size;
16538 if (ret)
16539 add_loc_descr (&ret, new_loc_descr (op, size, 0));
16540 else
16541 add_loc_descr_to_each (list_ret, new_loc_descr (op, size, 0));
16543 if (ret)
16544 list_ret = new_loc_list (ret, NULL, NULL, NULL);
16546 return list_ret;
16549 /* Likewise, but strip useless DW_OP_nop operations in the resulting
16550 expressions. */
16552 static dw_loc_list_ref
16553 loc_list_from_tree (tree loc, int want_address,
16554 const struct loc_descr_context *context)
16556 dw_loc_list_ref result = loc_list_from_tree_1 (loc, want_address, context);
16558 for (dw_loc_list_ref loc_cur = result;
16559 loc_cur != NULL; loc_cur =
16560 loc_cur->dw_loc_next)
16561 loc_descr_without_nops (loc_cur->expr);
16562 return result;
16565 /* Same as above but return only single location expression. */
16566 static dw_loc_descr_ref
16567 loc_descriptor_from_tree (tree loc, int want_address,
16568 const struct loc_descr_context *context)
16570 dw_loc_list_ref ret = loc_list_from_tree (loc, want_address, context);
16571 if (!ret)
16572 return NULL;
16573 if (ret->dw_loc_next)
16575 expansion_failed (loc, NULL_RTX,
16576 "Location list where only loc descriptor needed");
16577 return NULL;
16579 return ret->expr;
16582 /* Given a value, round it up to the lowest multiple of `boundary'
16583 which is not less than the value itself. */
16585 static inline HOST_WIDE_INT
16586 ceiling (HOST_WIDE_INT value, unsigned int boundary)
16588 return (((value + boundary - 1) / boundary) * boundary);
16591 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
16592 pointer to the declared type for the relevant field variable, or return
16593 `integer_type_node' if the given node turns out to be an
16594 ERROR_MARK node. */
16596 static inline tree
16597 field_type (const_tree decl)
16599 tree type;
16601 if (TREE_CODE (decl) == ERROR_MARK)
16602 return integer_type_node;
16604 type = DECL_BIT_FIELD_TYPE (decl);
16605 if (type == NULL_TREE)
16606 type = TREE_TYPE (decl);
16608 return type;
16611 /* Given a pointer to a tree node, return the alignment in bits for
16612 it, or else return BITS_PER_WORD if the node actually turns out to
16613 be an ERROR_MARK node. */
16615 static inline unsigned
16616 simple_type_align_in_bits (const_tree type)
16618 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
16621 static inline unsigned
16622 simple_decl_align_in_bits (const_tree decl)
16624 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
16627 /* Return the result of rounding T up to ALIGN. */
16629 static inline offset_int
16630 round_up_to_align (const offset_int &t, unsigned int align)
16632 return wi::udiv_trunc (t + align - 1, align) * align;
16635 /* Compute the size of TYPE in bytes. If possible, return NULL and store the
16636 size as an integer constant in CST_SIZE. Otherwise, if possible, return a
16637 DWARF expression that computes the size. Return NULL and set CST_SIZE to -1
16638 if we fail to return the size in one of these two forms. */
16640 static dw_loc_descr_ref
16641 type_byte_size (const_tree type, HOST_WIDE_INT *cst_size)
16643 tree tree_size;
16644 struct loc_descr_context ctx;
16646 /* Return a constant integer in priority, if possible. */
16647 *cst_size = int_size_in_bytes (type);
16648 if (*cst_size != -1)
16649 return NULL;
16651 ctx.context_type = const_cast<tree> (type);
16652 ctx.base_decl = NULL_TREE;
16653 ctx.dpi = NULL;
16655 type = TYPE_MAIN_VARIANT (type);
16656 tree_size = TYPE_SIZE_UNIT (type);
16657 return ((tree_size != NULL_TREE)
16658 ? loc_descriptor_from_tree (tree_size, 0, &ctx)
16659 : NULL);
16662 /* Helper structure for RECORD_TYPE processing. */
16663 struct vlr_context
16665 /* Root RECORD_TYPE. It is needed to generate data member location
16666 descriptions in variable-length records (VLR), but also to cope with
16667 variants, which are composed of nested structures multiplexed with
16668 QUAL_UNION_TYPE nodes. Each time such a structure is passed to a
16669 function processing a FIELD_DECL, it is required to be non null. */
16670 tree struct_type;
16671 /* When generating a variant part in a RECORD_TYPE (i.e. a nested
16672 QUAL_UNION_TYPE), this holds an expression that computes the offset for
16673 this variant part as part of the root record (in storage units). For
16674 regular records, it must be NULL_TREE. */
16675 tree variant_part_offset;
16678 /* Given a pointer to a FIELD_DECL, compute the byte offset of the lowest
16679 addressed byte of the "containing object" for the given FIELD_DECL. If
16680 possible, return a native constant through CST_OFFSET (in which case NULL is
16681 returned); otherwise return a DWARF expression that computes the offset.
16683 Set *CST_OFFSET to 0 and return NULL if we are unable to determine what
16684 that offset is, either because the argument turns out to be a pointer to an
16685 ERROR_MARK node, or because the offset expression is too complex for us.
16687 CTX is required: see the comment for VLR_CONTEXT. */
16689 static dw_loc_descr_ref
16690 field_byte_offset (const_tree decl, struct vlr_context *ctx,
16691 HOST_WIDE_INT *cst_offset)
16693 offset_int object_offset_in_bits;
16694 offset_int object_offset_in_bytes;
16695 offset_int bitpos_int;
16696 bool is_byte_offset_cst, is_bit_offset_cst;
16697 tree tree_result;
16698 dw_loc_list_ref loc_result;
16700 *cst_offset = 0;
16702 if (TREE_CODE (decl) == ERROR_MARK)
16703 return NULL;
16704 else
16705 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
16707 is_bit_offset_cst = TREE_CODE (DECL_FIELD_BIT_OFFSET (decl)) != INTEGER_CST;
16708 is_byte_offset_cst = TREE_CODE (DECL_FIELD_OFFSET (decl)) != INTEGER_CST;
16710 /* We cannot handle variable bit offsets at the moment, so abort if it's the
16711 case. */
16712 if (is_bit_offset_cst)
16713 return NULL;
16715 #ifdef PCC_BITFIELD_TYPE_MATTERS
16716 /* We used to handle only constant offsets in all cases. Now, we handle
16717 properly dynamic byte offsets only when PCC bitfield type doesn't
16718 matter. */
16719 if (PCC_BITFIELD_TYPE_MATTERS && is_byte_offset_cst && is_bit_offset_cst)
16721 tree type;
16722 tree field_size_tree;
16723 offset_int deepest_bitpos;
16724 offset_int field_size_in_bits;
16725 unsigned int type_align_in_bits;
16726 unsigned int decl_align_in_bits;
16727 offset_int type_size_in_bits;
16729 bitpos_int = wi::to_offset (bit_position (decl));
16730 type = field_type (decl);
16731 type_size_in_bits = offset_int_type_size_in_bits (type);
16732 type_align_in_bits = simple_type_align_in_bits (type);
16734 field_size_tree = DECL_SIZE (decl);
16736 /* The size could be unspecified if there was an error, or for
16737 a flexible array member. */
16738 if (!field_size_tree)
16739 field_size_tree = bitsize_zero_node;
16741 /* If the size of the field is not constant, use the type size. */
16742 if (TREE_CODE (field_size_tree) == INTEGER_CST)
16743 field_size_in_bits = wi::to_offset (field_size_tree);
16744 else
16745 field_size_in_bits = type_size_in_bits;
16747 decl_align_in_bits = simple_decl_align_in_bits (decl);
16749 /* The GCC front-end doesn't make any attempt to keep track of the
16750 starting bit offset (relative to the start of the containing
16751 structure type) of the hypothetical "containing object" for a
16752 bit-field. Thus, when computing the byte offset value for the
16753 start of the "containing object" of a bit-field, we must deduce
16754 this information on our own. This can be rather tricky to do in
16755 some cases. For example, handling the following structure type
16756 definition when compiling for an i386/i486 target (which only
16757 aligns long long's to 32-bit boundaries) can be very tricky:
16759 struct S { int field1; long long field2:31; };
16761 Fortunately, there is a simple rule-of-thumb which can be used
16762 in such cases. When compiling for an i386/i486, GCC will
16763 allocate 8 bytes for the structure shown above. It decides to
16764 do this based upon one simple rule for bit-field allocation.
16765 GCC allocates each "containing object" for each bit-field at
16766 the first (i.e. lowest addressed) legitimate alignment boundary
16767 (based upon the required minimum alignment for the declared
16768 type of the field) which it can possibly use, subject to the
16769 condition that there is still enough available space remaining
16770 in the containing object (when allocated at the selected point)
16771 to fully accommodate all of the bits of the bit-field itself.
16773 This simple rule makes it obvious why GCC allocates 8 bytes for
16774 each object of the structure type shown above. When looking
16775 for a place to allocate the "containing object" for `field2',
16776 the compiler simply tries to allocate a 64-bit "containing
16777 object" at each successive 32-bit boundary (starting at zero)
16778 until it finds a place to allocate that 64- bit field such that
16779 at least 31 contiguous (and previously unallocated) bits remain
16780 within that selected 64 bit field. (As it turns out, for the
16781 example above, the compiler finds it is OK to allocate the
16782 "containing object" 64-bit field at bit-offset zero within the
16783 structure type.)
16785 Here we attempt to work backwards from the limited set of facts
16786 we're given, and we try to deduce from those facts, where GCC
16787 must have believed that the containing object started (within
16788 the structure type). The value we deduce is then used (by the
16789 callers of this routine) to generate DW_AT_location and
16790 DW_AT_bit_offset attributes for fields (both bit-fields and, in
16791 the case of DW_AT_location, regular fields as well). */
16793 /* Figure out the bit-distance from the start of the structure to
16794 the "deepest" bit of the bit-field. */
16795 deepest_bitpos = bitpos_int + field_size_in_bits;
16797 /* This is the tricky part. Use some fancy footwork to deduce
16798 where the lowest addressed bit of the containing object must
16799 be. */
16800 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
16802 /* Round up to type_align by default. This works best for
16803 bitfields. */
16804 object_offset_in_bits
16805 = round_up_to_align (object_offset_in_bits, type_align_in_bits);
16807 if (wi::gtu_p (object_offset_in_bits, bitpos_int))
16809 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
16811 /* Round up to decl_align instead. */
16812 object_offset_in_bits
16813 = round_up_to_align (object_offset_in_bits, decl_align_in_bits);
16816 #endif /* PCC_BITFIELD_TYPE_MATTERS */
16818 tree_result = byte_position (decl);
16819 if (ctx->variant_part_offset != NULL_TREE)
16820 tree_result = fold (build2 (PLUS_EXPR, TREE_TYPE (tree_result),
16821 ctx->variant_part_offset, tree_result));
16823 /* If the byte offset is a constant, it's simplier to handle a native
16824 constant rather than a DWARF expression. */
16825 if (TREE_CODE (tree_result) == INTEGER_CST)
16827 *cst_offset = wi::to_offset (tree_result).to_shwi ();
16828 return NULL;
16830 struct loc_descr_context loc_ctx = {
16831 ctx->struct_type, /* context_type */
16832 NULL_TREE, /* base_decl */
16833 NULL /* dpi */
16835 loc_result = loc_list_from_tree (tree_result, 0, &loc_ctx);
16837 /* We want a DWARF expression: abort if we only have a location list with
16838 multiple elements. */
16839 if (!loc_result || !single_element_loc_list_p (loc_result))
16840 return NULL;
16841 else
16842 return loc_result->expr;
16845 /* The following routines define various Dwarf attributes and any data
16846 associated with them. */
16848 /* Add a location description attribute value to a DIE.
16850 This emits location attributes suitable for whole variables and
16851 whole parameters. Note that the location attributes for struct fields are
16852 generated by the routine `data_member_location_attribute' below. */
16854 static inline void
16855 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
16856 dw_loc_list_ref descr)
16858 if (descr == 0)
16859 return;
16860 if (single_element_loc_list_p (descr))
16861 add_AT_loc (die, attr_kind, descr->expr);
16862 else
16863 add_AT_loc_list (die, attr_kind, descr);
16866 /* Add DW_AT_accessibility attribute to DIE if needed. */
16868 static void
16869 add_accessibility_attribute (dw_die_ref die, tree decl)
16871 /* In DWARF3+ the default is DW_ACCESS_private only in DW_TAG_class_type
16872 children, otherwise the default is DW_ACCESS_public. In DWARF2
16873 the default has always been DW_ACCESS_public. */
16874 if (TREE_PROTECTED (decl))
16875 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
16876 else if (TREE_PRIVATE (decl))
16878 if (dwarf_version == 2
16879 || die->die_parent == NULL
16880 || die->die_parent->die_tag != DW_TAG_class_type)
16881 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_private);
16883 else if (dwarf_version > 2
16884 && die->die_parent
16885 && die->die_parent->die_tag == DW_TAG_class_type)
16886 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
16889 /* Attach the specialized form of location attribute used for data members of
16890 struct and union types. In the special case of a FIELD_DECL node which
16891 represents a bit-field, the "offset" part of this special location
16892 descriptor must indicate the distance in bytes from the lowest-addressed
16893 byte of the containing struct or union type to the lowest-addressed byte of
16894 the "containing object" for the bit-field. (See the `field_byte_offset'
16895 function above).
16897 For any given bit-field, the "containing object" is a hypothetical object
16898 (of some integral or enum type) within which the given bit-field lives. The
16899 type of this hypothetical "containing object" is always the same as the
16900 declared type of the individual bit-field itself (for GCC anyway... the
16901 DWARF spec doesn't actually mandate this). Note that it is the size (in
16902 bytes) of the hypothetical "containing object" which will be given in the
16903 DW_AT_byte_size attribute for this bit-field. (See the
16904 `byte_size_attribute' function below.) It is also used when calculating the
16905 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
16906 function below.)
16908 CTX is required: see the comment for VLR_CONTEXT. */
16910 static void
16911 add_data_member_location_attribute (dw_die_ref die,
16912 tree decl,
16913 struct vlr_context *ctx)
16915 HOST_WIDE_INT offset;
16916 dw_loc_descr_ref loc_descr = 0;
16918 if (TREE_CODE (decl) == TREE_BINFO)
16920 /* We're working on the TAG_inheritance for a base class. */
16921 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
16923 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
16924 aren't at a fixed offset from all (sub)objects of the same
16925 type. We need to extract the appropriate offset from our
16926 vtable. The following dwarf expression means
16928 BaseAddr = ObAddr + *((*ObAddr) - Offset)
16930 This is specific to the V3 ABI, of course. */
16932 dw_loc_descr_ref tmp;
16934 /* Make a copy of the object address. */
16935 tmp = new_loc_descr (DW_OP_dup, 0, 0);
16936 add_loc_descr (&loc_descr, tmp);
16938 /* Extract the vtable address. */
16939 tmp = new_loc_descr (DW_OP_deref, 0, 0);
16940 add_loc_descr (&loc_descr, tmp);
16942 /* Calculate the address of the offset. */
16943 offset = tree_to_shwi (BINFO_VPTR_FIELD (decl));
16944 gcc_assert (offset < 0);
16946 tmp = int_loc_descriptor (-offset);
16947 add_loc_descr (&loc_descr, tmp);
16948 tmp = new_loc_descr (DW_OP_minus, 0, 0);
16949 add_loc_descr (&loc_descr, tmp);
16951 /* Extract the offset. */
16952 tmp = new_loc_descr (DW_OP_deref, 0, 0);
16953 add_loc_descr (&loc_descr, tmp);
16955 /* Add it to the object address. */
16956 tmp = new_loc_descr (DW_OP_plus, 0, 0);
16957 add_loc_descr (&loc_descr, tmp);
16959 else
16960 offset = tree_to_shwi (BINFO_OFFSET (decl));
16962 else
16964 loc_descr = field_byte_offset (decl, ctx, &offset);
16966 /* If loc_descr is available then we know the field offset is dynamic.
16967 However, GDB does not handle dynamic field offsets very well at the
16968 moment. */
16969 if (loc_descr != NULL && gnat_encodings != DWARF_GNAT_ENCODINGS_MINIMAL)
16971 loc_descr = NULL;
16972 offset = 0;
16975 /* Data member location evalutation starts with the base address on the
16976 stack. Compute the field offset and add it to this base address. */
16977 else if (loc_descr != NULL)
16978 add_loc_descr (&loc_descr, new_loc_descr (DW_OP_plus, 0, 0));
16981 if (! loc_descr)
16983 if (dwarf_version > 2)
16985 /* Don't need to output a location expression, just the constant. */
16986 if (offset < 0)
16987 add_AT_int (die, DW_AT_data_member_location, offset);
16988 else
16989 add_AT_unsigned (die, DW_AT_data_member_location, offset);
16990 return;
16992 else
16994 enum dwarf_location_atom op;
16996 /* The DWARF2 standard says that we should assume that the structure
16997 address is already on the stack, so we can specify a structure
16998 field address by using DW_OP_plus_uconst. */
16999 op = DW_OP_plus_uconst;
17000 loc_descr = new_loc_descr (op, offset, 0);
17004 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
17007 /* Writes integer values to dw_vec_const array. */
17009 static void
17010 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
17012 while (size != 0)
17014 *dest++ = val & 0xff;
17015 val >>= 8;
17016 --size;
17020 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
17022 static HOST_WIDE_INT
17023 extract_int (const unsigned char *src, unsigned int size)
17025 HOST_WIDE_INT val = 0;
17027 src += size;
17028 while (size != 0)
17030 val <<= 8;
17031 val |= *--src & 0xff;
17032 --size;
17034 return val;
17037 /* Writes wide_int values to dw_vec_const array. */
17039 static void
17040 insert_wide_int (const wide_int &val, unsigned char *dest, int elt_size)
17042 int i;
17044 if (elt_size <= HOST_BITS_PER_WIDE_INT/BITS_PER_UNIT)
17046 insert_int ((HOST_WIDE_INT) val.elt (0), elt_size, dest);
17047 return;
17050 /* We'd have to extend this code to support odd sizes. */
17051 gcc_assert (elt_size % (HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT) == 0);
17053 int n = elt_size / (HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT);
17055 if (WORDS_BIG_ENDIAN)
17056 for (i = n - 1; i >= 0; i--)
17058 insert_int ((HOST_WIDE_INT) val.elt (i), sizeof (HOST_WIDE_INT), dest);
17059 dest += sizeof (HOST_WIDE_INT);
17061 else
17062 for (i = 0; i < n; i++)
17064 insert_int ((HOST_WIDE_INT) val.elt (i), sizeof (HOST_WIDE_INT), dest);
17065 dest += sizeof (HOST_WIDE_INT);
17069 /* Writes floating point values to dw_vec_const array. */
17071 static void
17072 insert_float (const_rtx rtl, unsigned char *array)
17074 long val[4];
17075 int i;
17077 real_to_target (val, CONST_DOUBLE_REAL_VALUE (rtl), GET_MODE (rtl));
17079 /* real_to_target puts 32-bit pieces in each long. Pack them. */
17080 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
17082 insert_int (val[i], 4, array);
17083 array += 4;
17087 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
17088 does not have a "location" either in memory or in a register. These
17089 things can arise in GNU C when a constant is passed as an actual parameter
17090 to an inlined function. They can also arise in C++ where declared
17091 constants do not necessarily get memory "homes". */
17093 static bool
17094 add_const_value_attribute (dw_die_ref die, rtx rtl)
17096 switch (GET_CODE (rtl))
17098 case CONST_INT:
17100 HOST_WIDE_INT val = INTVAL (rtl);
17102 if (val < 0)
17103 add_AT_int (die, DW_AT_const_value, val);
17104 else
17105 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
17107 return true;
17109 case CONST_WIDE_INT:
17111 wide_int w1 = std::make_pair (rtl, MAX_MODE_INT);
17112 unsigned int prec = MIN (wi::min_precision (w1, UNSIGNED),
17113 (unsigned int)CONST_WIDE_INT_NUNITS (rtl) * HOST_BITS_PER_WIDE_INT);
17114 wide_int w = wi::zext (w1, prec);
17115 add_AT_wide (die, DW_AT_const_value, w);
17117 return true;
17119 case CONST_DOUBLE:
17120 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
17121 floating-point constant. A CONST_DOUBLE is used whenever the
17122 constant requires more than one word in order to be adequately
17123 represented. */
17125 machine_mode mode = GET_MODE (rtl);
17127 if (TARGET_SUPPORTS_WIDE_INT == 0 && !SCALAR_FLOAT_MODE_P (mode))
17128 add_AT_double (die, DW_AT_const_value,
17129 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
17130 else
17132 unsigned int length = GET_MODE_SIZE (mode);
17133 unsigned char *array = ggc_vec_alloc<unsigned char> (length);
17135 insert_float (rtl, array);
17136 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
17139 return true;
17141 case CONST_VECTOR:
17143 machine_mode mode = GET_MODE (rtl);
17144 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
17145 unsigned int length = CONST_VECTOR_NUNITS (rtl);
17146 unsigned char *array
17147 = ggc_vec_alloc<unsigned char> (length * elt_size);
17148 unsigned int i;
17149 unsigned char *p;
17150 machine_mode imode = GET_MODE_INNER (mode);
17152 switch (GET_MODE_CLASS (mode))
17154 case MODE_VECTOR_INT:
17155 for (i = 0, p = array; i < length; i++, p += elt_size)
17157 rtx elt = CONST_VECTOR_ELT (rtl, i);
17158 insert_wide_int (std::make_pair (elt, imode), p, elt_size);
17160 break;
17162 case MODE_VECTOR_FLOAT:
17163 for (i = 0, p = array; i < length; i++, p += elt_size)
17165 rtx elt = CONST_VECTOR_ELT (rtl, i);
17166 insert_float (elt, p);
17168 break;
17170 default:
17171 gcc_unreachable ();
17174 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
17176 return true;
17178 case CONST_STRING:
17179 if (dwarf_version >= 4 || !dwarf_strict)
17181 dw_loc_descr_ref loc_result;
17182 resolve_one_addr (&rtl);
17183 rtl_addr:
17184 loc_result = new_addr_loc_descr (rtl, dtprel_false);
17185 add_loc_descr (&loc_result, new_loc_descr (DW_OP_stack_value, 0, 0));
17186 add_AT_loc (die, DW_AT_location, loc_result);
17187 vec_safe_push (used_rtx_array, rtl);
17188 return true;
17190 return false;
17192 case CONST:
17193 if (CONSTANT_P (XEXP (rtl, 0)))
17194 return add_const_value_attribute (die, XEXP (rtl, 0));
17195 /* FALLTHROUGH */
17196 case SYMBOL_REF:
17197 if (!const_ok_for_output (rtl))
17198 return false;
17199 case LABEL_REF:
17200 if (dwarf_version >= 4 || !dwarf_strict)
17201 goto rtl_addr;
17202 return false;
17204 case PLUS:
17205 /* In cases where an inlined instance of an inline function is passed
17206 the address of an `auto' variable (which is local to the caller) we
17207 can get a situation where the DECL_RTL of the artificial local
17208 variable (for the inlining) which acts as a stand-in for the
17209 corresponding formal parameter (of the inline function) will look
17210 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
17211 exactly a compile-time constant expression, but it isn't the address
17212 of the (artificial) local variable either. Rather, it represents the
17213 *value* which the artificial local variable always has during its
17214 lifetime. We currently have no way to represent such quasi-constant
17215 values in Dwarf, so for now we just punt and generate nothing. */
17216 return false;
17218 case HIGH:
17219 case CONST_FIXED:
17220 return false;
17222 case MEM:
17223 if (GET_CODE (XEXP (rtl, 0)) == CONST_STRING
17224 && MEM_READONLY_P (rtl)
17225 && GET_MODE (rtl) == BLKmode)
17227 add_AT_string (die, DW_AT_const_value, XSTR (XEXP (rtl, 0), 0));
17228 return true;
17230 return false;
17232 default:
17233 /* No other kinds of rtx should be possible here. */
17234 gcc_unreachable ();
17236 return false;
17239 /* Determine whether the evaluation of EXPR references any variables
17240 or functions which aren't otherwise used (and therefore may not be
17241 output). */
17242 static tree
17243 reference_to_unused (tree * tp, int * walk_subtrees,
17244 void * data ATTRIBUTE_UNUSED)
17246 if (! EXPR_P (*tp) && ! CONSTANT_CLASS_P (*tp))
17247 *walk_subtrees = 0;
17249 if (DECL_P (*tp) && ! TREE_PUBLIC (*tp) && ! TREE_USED (*tp)
17250 && ! TREE_ASM_WRITTEN (*tp))
17251 return *tp;
17252 /* ??? The C++ FE emits debug information for using decls, so
17253 putting gcc_unreachable here falls over. See PR31899. For now
17254 be conservative. */
17255 else if (!symtab->global_info_ready
17256 && (TREE_CODE (*tp) == VAR_DECL || TREE_CODE (*tp) == FUNCTION_DECL))
17257 return *tp;
17258 else if (TREE_CODE (*tp) == VAR_DECL)
17260 varpool_node *node = varpool_node::get (*tp);
17261 if (!node || !node->definition)
17262 return *tp;
17264 else if (TREE_CODE (*tp) == FUNCTION_DECL
17265 && (!DECL_EXTERNAL (*tp) || DECL_DECLARED_INLINE_P (*tp)))
17267 /* The call graph machinery must have finished analyzing,
17268 optimizing and gimplifying the CU by now.
17269 So if *TP has no call graph node associated
17270 to it, it means *TP will not be emitted. */
17271 if (!cgraph_node::get (*tp))
17272 return *tp;
17274 else if (TREE_CODE (*tp) == STRING_CST && !TREE_ASM_WRITTEN (*tp))
17275 return *tp;
17277 return NULL_TREE;
17280 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
17281 for use in a later add_const_value_attribute call. */
17283 static rtx
17284 rtl_for_decl_init (tree init, tree type)
17286 rtx rtl = NULL_RTX;
17288 STRIP_NOPS (init);
17290 /* If a variable is initialized with a string constant without embedded
17291 zeros, build CONST_STRING. */
17292 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
17294 tree enttype = TREE_TYPE (type);
17295 tree domain = TYPE_DOMAIN (type);
17296 machine_mode mode = TYPE_MODE (enttype);
17298 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
17299 && domain
17300 && integer_zerop (TYPE_MIN_VALUE (domain))
17301 && compare_tree_int (TYPE_MAX_VALUE (domain),
17302 TREE_STRING_LENGTH (init) - 1) == 0
17303 && ((size_t) TREE_STRING_LENGTH (init)
17304 == strlen (TREE_STRING_POINTER (init)) + 1))
17306 rtl = gen_rtx_CONST_STRING (VOIDmode,
17307 ggc_strdup (TREE_STRING_POINTER (init)));
17308 rtl = gen_rtx_MEM (BLKmode, rtl);
17309 MEM_READONLY_P (rtl) = 1;
17312 /* Other aggregates, and complex values, could be represented using
17313 CONCAT: FIXME! */
17314 else if (AGGREGATE_TYPE_P (type)
17315 || (TREE_CODE (init) == VIEW_CONVERT_EXPR
17316 && AGGREGATE_TYPE_P (TREE_TYPE (TREE_OPERAND (init, 0))))
17317 || TREE_CODE (type) == COMPLEX_TYPE)
17319 /* Vectors only work if their mode is supported by the target.
17320 FIXME: generic vectors ought to work too. */
17321 else if (TREE_CODE (type) == VECTOR_TYPE
17322 && !VECTOR_MODE_P (TYPE_MODE (type)))
17324 /* If the initializer is something that we know will expand into an
17325 immediate RTL constant, expand it now. We must be careful not to
17326 reference variables which won't be output. */
17327 else if (initializer_constant_valid_p (init, type)
17328 && ! walk_tree (&init, reference_to_unused, NULL, NULL))
17330 /* Convert vector CONSTRUCTOR initializers to VECTOR_CST if
17331 possible. */
17332 if (TREE_CODE (type) == VECTOR_TYPE)
17333 switch (TREE_CODE (init))
17335 case VECTOR_CST:
17336 break;
17337 case CONSTRUCTOR:
17338 if (TREE_CONSTANT (init))
17340 vec<constructor_elt, va_gc> *elts = CONSTRUCTOR_ELTS (init);
17341 bool constant_p = true;
17342 tree value;
17343 unsigned HOST_WIDE_INT ix;
17345 /* Even when ctor is constant, it might contain non-*_CST
17346 elements (e.g. { 1.0/0.0 - 1.0/0.0, 0.0 }) and those don't
17347 belong into VECTOR_CST nodes. */
17348 FOR_EACH_CONSTRUCTOR_VALUE (elts, ix, value)
17349 if (!CONSTANT_CLASS_P (value))
17351 constant_p = false;
17352 break;
17355 if (constant_p)
17357 init = build_vector_from_ctor (type, elts);
17358 break;
17361 /* FALLTHRU */
17363 default:
17364 return NULL;
17367 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
17369 /* If expand_expr returns a MEM, it wasn't immediate. */
17370 gcc_assert (!rtl || !MEM_P (rtl));
17373 return rtl;
17376 /* Generate RTL for the variable DECL to represent its location. */
17378 static rtx
17379 rtl_for_decl_location (tree decl)
17381 rtx rtl;
17383 /* Here we have to decide where we are going to say the parameter "lives"
17384 (as far as the debugger is concerned). We only have a couple of
17385 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
17387 DECL_RTL normally indicates where the parameter lives during most of the
17388 activation of the function. If optimization is enabled however, this
17389 could be either NULL or else a pseudo-reg. Both of those cases indicate
17390 that the parameter doesn't really live anywhere (as far as the code
17391 generation parts of GCC are concerned) during most of the function's
17392 activation. That will happen (for example) if the parameter is never
17393 referenced within the function.
17395 We could just generate a location descriptor here for all non-NULL
17396 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
17397 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
17398 where DECL_RTL is NULL or is a pseudo-reg.
17400 Note however that we can only get away with using DECL_INCOMING_RTL as
17401 a backup substitute for DECL_RTL in certain limited cases. In cases
17402 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
17403 we can be sure that the parameter was passed using the same type as it is
17404 declared to have within the function, and that its DECL_INCOMING_RTL
17405 points us to a place where a value of that type is passed.
17407 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
17408 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
17409 because in these cases DECL_INCOMING_RTL points us to a value of some
17410 type which is *different* from the type of the parameter itself. Thus,
17411 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
17412 such cases, the debugger would end up (for example) trying to fetch a
17413 `float' from a place which actually contains the first part of a
17414 `double'. That would lead to really incorrect and confusing
17415 output at debug-time.
17417 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
17418 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
17419 are a couple of exceptions however. On little-endian machines we can
17420 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
17421 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
17422 an integral type that is smaller than TREE_TYPE (decl). These cases arise
17423 when (on a little-endian machine) a non-prototyped function has a
17424 parameter declared to be of type `short' or `char'. In such cases,
17425 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
17426 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
17427 passed `int' value. If the debugger then uses that address to fetch
17428 a `short' or a `char' (on a little-endian machine) the result will be
17429 the correct data, so we allow for such exceptional cases below.
17431 Note that our goal here is to describe the place where the given formal
17432 parameter lives during most of the function's activation (i.e. between the
17433 end of the prologue and the start of the epilogue). We'll do that as best
17434 as we can. Note however that if the given formal parameter is modified
17435 sometime during the execution of the function, then a stack backtrace (at
17436 debug-time) will show the function as having been called with the *new*
17437 value rather than the value which was originally passed in. This happens
17438 rarely enough that it is not a major problem, but it *is* a problem, and
17439 I'd like to fix it.
17441 A future version of dwarf2out.c may generate two additional attributes for
17442 any given DW_TAG_formal_parameter DIE which will describe the "passed
17443 type" and the "passed location" for the given formal parameter in addition
17444 to the attributes we now generate to indicate the "declared type" and the
17445 "active location" for each parameter. This additional set of attributes
17446 could be used by debuggers for stack backtraces. Separately, note that
17447 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
17448 This happens (for example) for inlined-instances of inline function formal
17449 parameters which are never referenced. This really shouldn't be
17450 happening. All PARM_DECL nodes should get valid non-NULL
17451 DECL_INCOMING_RTL values. FIXME. */
17453 /* Use DECL_RTL as the "location" unless we find something better. */
17454 rtl = DECL_RTL_IF_SET (decl);
17456 /* When generating abstract instances, ignore everything except
17457 constants, symbols living in memory, and symbols living in
17458 fixed registers. */
17459 if (! reload_completed)
17461 if (rtl
17462 && (CONSTANT_P (rtl)
17463 || (MEM_P (rtl)
17464 && CONSTANT_P (XEXP (rtl, 0)))
17465 || (REG_P (rtl)
17466 && TREE_CODE (decl) == VAR_DECL
17467 && TREE_STATIC (decl))))
17469 rtl = targetm.delegitimize_address (rtl);
17470 return rtl;
17472 rtl = NULL_RTX;
17474 else if (TREE_CODE (decl) == PARM_DECL)
17476 if (rtl == NULL_RTX
17477 || is_pseudo_reg (rtl)
17478 || (MEM_P (rtl)
17479 && is_pseudo_reg (XEXP (rtl, 0))
17480 && DECL_INCOMING_RTL (decl)
17481 && MEM_P (DECL_INCOMING_RTL (decl))
17482 && GET_MODE (rtl) == GET_MODE (DECL_INCOMING_RTL (decl))))
17484 tree declared_type = TREE_TYPE (decl);
17485 tree passed_type = DECL_ARG_TYPE (decl);
17486 machine_mode dmode = TYPE_MODE (declared_type);
17487 machine_mode pmode = TYPE_MODE (passed_type);
17489 /* This decl represents a formal parameter which was optimized out.
17490 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
17491 all cases where (rtl == NULL_RTX) just below. */
17492 if (dmode == pmode)
17493 rtl = DECL_INCOMING_RTL (decl);
17494 else if ((rtl == NULL_RTX || is_pseudo_reg (rtl))
17495 && SCALAR_INT_MODE_P (dmode)
17496 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
17497 && DECL_INCOMING_RTL (decl))
17499 rtx inc = DECL_INCOMING_RTL (decl);
17500 if (REG_P (inc))
17501 rtl = inc;
17502 else if (MEM_P (inc))
17504 if (BYTES_BIG_ENDIAN)
17505 rtl = adjust_address_nv (inc, dmode,
17506 GET_MODE_SIZE (pmode)
17507 - GET_MODE_SIZE (dmode));
17508 else
17509 rtl = inc;
17514 /* If the parm was passed in registers, but lives on the stack, then
17515 make a big endian correction if the mode of the type of the
17516 parameter is not the same as the mode of the rtl. */
17517 /* ??? This is the same series of checks that are made in dbxout.c before
17518 we reach the big endian correction code there. It isn't clear if all
17519 of these checks are necessary here, but keeping them all is the safe
17520 thing to do. */
17521 else if (MEM_P (rtl)
17522 && XEXP (rtl, 0) != const0_rtx
17523 && ! CONSTANT_P (XEXP (rtl, 0))
17524 /* Not passed in memory. */
17525 && !MEM_P (DECL_INCOMING_RTL (decl))
17526 /* Not passed by invisible reference. */
17527 && (!REG_P (XEXP (rtl, 0))
17528 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
17529 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
17530 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
17531 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
17532 #endif
17534 /* Big endian correction check. */
17535 && BYTES_BIG_ENDIAN
17536 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
17537 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
17538 < UNITS_PER_WORD))
17540 machine_mode addr_mode = get_address_mode (rtl);
17541 int offset = (UNITS_PER_WORD
17542 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
17544 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
17545 plus_constant (addr_mode, XEXP (rtl, 0), offset));
17548 else if (TREE_CODE (decl) == VAR_DECL
17549 && rtl
17550 && MEM_P (rtl)
17551 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
17552 && BYTES_BIG_ENDIAN)
17554 machine_mode addr_mode = get_address_mode (rtl);
17555 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
17556 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
17558 /* If a variable is declared "register" yet is smaller than
17559 a register, then if we store the variable to memory, it
17560 looks like we're storing a register-sized value, when in
17561 fact we are not. We need to adjust the offset of the
17562 storage location to reflect the actual value's bytes,
17563 else gdb will not be able to display it. */
17564 if (rsize > dsize)
17565 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
17566 plus_constant (addr_mode, XEXP (rtl, 0),
17567 rsize - dsize));
17570 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
17571 and will have been substituted directly into all expressions that use it.
17572 C does not have such a concept, but C++ and other languages do. */
17573 if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
17574 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
17576 if (rtl)
17577 rtl = targetm.delegitimize_address (rtl);
17579 /* If we don't look past the constant pool, we risk emitting a
17580 reference to a constant pool entry that isn't referenced from
17581 code, and thus is not emitted. */
17582 if (rtl)
17583 rtl = avoid_constant_pool_reference (rtl);
17585 /* Try harder to get a rtl. If this symbol ends up not being emitted
17586 in the current CU, resolve_addr will remove the expression referencing
17587 it. */
17588 if (rtl == NULL_RTX
17589 && TREE_CODE (decl) == VAR_DECL
17590 && !DECL_EXTERNAL (decl)
17591 && TREE_STATIC (decl)
17592 && DECL_NAME (decl)
17593 && !DECL_HARD_REGISTER (decl)
17594 && DECL_MODE (decl) != VOIDmode)
17596 rtl = make_decl_rtl_for_debug (decl);
17597 if (!MEM_P (rtl)
17598 || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF
17599 || SYMBOL_REF_DECL (XEXP (rtl, 0)) != decl)
17600 rtl = NULL_RTX;
17603 return rtl;
17606 /* Check whether decl is a Fortran COMMON symbol. If not, NULL_TREE is
17607 returned. If so, the decl for the COMMON block is returned, and the
17608 value is the offset into the common block for the symbol. */
17610 static tree
17611 fortran_common (tree decl, HOST_WIDE_INT *value)
17613 tree val_expr, cvar;
17614 machine_mode mode;
17615 HOST_WIDE_INT bitsize, bitpos;
17616 tree offset;
17617 int unsignedp, reversep, volatilep = 0;
17619 /* If the decl isn't a VAR_DECL, or if it isn't static, or if
17620 it does not have a value (the offset into the common area), or if it
17621 is thread local (as opposed to global) then it isn't common, and shouldn't
17622 be handled as such. */
17623 if (TREE_CODE (decl) != VAR_DECL
17624 || !TREE_STATIC (decl)
17625 || !DECL_HAS_VALUE_EXPR_P (decl)
17626 || !is_fortran ())
17627 return NULL_TREE;
17629 val_expr = DECL_VALUE_EXPR (decl);
17630 if (TREE_CODE (val_expr) != COMPONENT_REF)
17631 return NULL_TREE;
17633 cvar = get_inner_reference (val_expr, &bitsize, &bitpos, &offset, &mode,
17634 &unsignedp, &reversep, &volatilep);
17636 if (cvar == NULL_TREE
17637 || TREE_CODE (cvar) != VAR_DECL
17638 || DECL_ARTIFICIAL (cvar)
17639 || !TREE_PUBLIC (cvar))
17640 return NULL_TREE;
17642 *value = 0;
17643 if (offset != NULL)
17645 if (!tree_fits_shwi_p (offset))
17646 return NULL_TREE;
17647 *value = tree_to_shwi (offset);
17649 if (bitpos != 0)
17650 *value += bitpos / BITS_PER_UNIT;
17652 return cvar;
17655 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
17656 data attribute for a variable or a parameter. We generate the
17657 DW_AT_const_value attribute only in those cases where the given variable
17658 or parameter does not have a true "location" either in memory or in a
17659 register. This can happen (for example) when a constant is passed as an
17660 actual argument in a call to an inline function. (It's possible that
17661 these things can crop up in other ways also.) Note that one type of
17662 constant value which can be passed into an inlined function is a constant
17663 pointer. This can happen for example if an actual argument in an inlined
17664 function call evaluates to a compile-time constant address.
17666 CACHE_P is true if it is worth caching the location list for DECL,
17667 so that future calls can reuse it rather than regenerate it from scratch.
17668 This is true for BLOCK_NONLOCALIZED_VARS in inlined subroutines,
17669 since we will need to refer to them each time the function is inlined. */
17671 static bool
17672 add_location_or_const_value_attribute (dw_die_ref die, tree decl, bool cache_p)
17674 rtx rtl;
17675 dw_loc_list_ref list;
17676 var_loc_list *loc_list;
17677 cached_dw_loc_list *cache;
17679 if (early_dwarf)
17680 return false;
17682 if (TREE_CODE (decl) == ERROR_MARK)
17683 return false;
17685 if (get_AT (die, DW_AT_location)
17686 || get_AT (die, DW_AT_const_value))
17687 return true;
17689 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
17690 || TREE_CODE (decl) == RESULT_DECL);
17692 /* Try to get some constant RTL for this decl, and use that as the value of
17693 the location. */
17695 rtl = rtl_for_decl_location (decl);
17696 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING)
17697 && add_const_value_attribute (die, rtl))
17698 return true;
17700 /* See if we have single element location list that is equivalent to
17701 a constant value. That way we are better to use add_const_value_attribute
17702 rather than expanding constant value equivalent. */
17703 loc_list = lookup_decl_loc (decl);
17704 if (loc_list
17705 && loc_list->first
17706 && loc_list->first->next == NULL
17707 && NOTE_P (loc_list->first->loc)
17708 && NOTE_VAR_LOCATION (loc_list->first->loc)
17709 && NOTE_VAR_LOCATION_LOC (loc_list->first->loc))
17711 struct var_loc_node *node;
17713 node = loc_list->first;
17714 rtl = NOTE_VAR_LOCATION_LOC (node->loc);
17715 if (GET_CODE (rtl) == EXPR_LIST)
17716 rtl = XEXP (rtl, 0);
17717 if ((CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING)
17718 && add_const_value_attribute (die, rtl))
17719 return true;
17721 /* If this decl is from BLOCK_NONLOCALIZED_VARS, we might need its
17722 list several times. See if we've already cached the contents. */
17723 list = NULL;
17724 if (loc_list == NULL || cached_dw_loc_list_table == NULL)
17725 cache_p = false;
17726 if (cache_p)
17728 cache = cached_dw_loc_list_table->find_with_hash (decl, DECL_UID (decl));
17729 if (cache)
17730 list = cache->loc_list;
17732 if (list == NULL)
17734 list = loc_list_from_tree (decl, decl_by_reference_p (decl) ? 0 : 2,
17735 NULL);
17736 /* It is usually worth caching this result if the decl is from
17737 BLOCK_NONLOCALIZED_VARS and if the list has at least two elements. */
17738 if (cache_p && list && list->dw_loc_next)
17740 cached_dw_loc_list **slot
17741 = cached_dw_loc_list_table->find_slot_with_hash (decl,
17742 DECL_UID (decl),
17743 INSERT);
17744 cache = ggc_cleared_alloc<cached_dw_loc_list> ();
17745 cache->decl_id = DECL_UID (decl);
17746 cache->loc_list = list;
17747 *slot = cache;
17750 if (list)
17752 add_AT_location_description (die, DW_AT_location, list);
17753 return true;
17755 /* None of that worked, so it must not really have a location;
17756 try adding a constant value attribute from the DECL_INITIAL. */
17757 return tree_add_const_value_attribute_for_decl (die, decl);
17760 /* Helper function for tree_add_const_value_attribute. Natively encode
17761 initializer INIT into an array. Return true if successful. */
17763 static bool
17764 native_encode_initializer (tree init, unsigned char *array, int size)
17766 tree type;
17768 if (init == NULL_TREE)
17769 return false;
17771 STRIP_NOPS (init);
17772 switch (TREE_CODE (init))
17774 case STRING_CST:
17775 type = TREE_TYPE (init);
17776 if (TREE_CODE (type) == ARRAY_TYPE)
17778 tree enttype = TREE_TYPE (type);
17779 machine_mode mode = TYPE_MODE (enttype);
17781 if (GET_MODE_CLASS (mode) != MODE_INT || GET_MODE_SIZE (mode) != 1)
17782 return false;
17783 if (int_size_in_bytes (type) != size)
17784 return false;
17785 if (size > TREE_STRING_LENGTH (init))
17787 memcpy (array, TREE_STRING_POINTER (init),
17788 TREE_STRING_LENGTH (init));
17789 memset (array + TREE_STRING_LENGTH (init),
17790 '\0', size - TREE_STRING_LENGTH (init));
17792 else
17793 memcpy (array, TREE_STRING_POINTER (init), size);
17794 return true;
17796 return false;
17797 case CONSTRUCTOR:
17798 type = TREE_TYPE (init);
17799 if (int_size_in_bytes (type) != size)
17800 return false;
17801 if (TREE_CODE (type) == ARRAY_TYPE)
17803 HOST_WIDE_INT min_index;
17804 unsigned HOST_WIDE_INT cnt;
17805 int curpos = 0, fieldsize;
17806 constructor_elt *ce;
17808 if (TYPE_DOMAIN (type) == NULL_TREE
17809 || !tree_fits_shwi_p (TYPE_MIN_VALUE (TYPE_DOMAIN (type))))
17810 return false;
17812 fieldsize = int_size_in_bytes (TREE_TYPE (type));
17813 if (fieldsize <= 0)
17814 return false;
17816 min_index = tree_to_shwi (TYPE_MIN_VALUE (TYPE_DOMAIN (type)));
17817 memset (array, '\0', size);
17818 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (init), cnt, ce)
17820 tree val = ce->value;
17821 tree index = ce->index;
17822 int pos = curpos;
17823 if (index && TREE_CODE (index) == RANGE_EXPR)
17824 pos = (tree_to_shwi (TREE_OPERAND (index, 0)) - min_index)
17825 * fieldsize;
17826 else if (index)
17827 pos = (tree_to_shwi (index) - min_index) * fieldsize;
17829 if (val)
17831 STRIP_NOPS (val);
17832 if (!native_encode_initializer (val, array + pos, fieldsize))
17833 return false;
17835 curpos = pos + fieldsize;
17836 if (index && TREE_CODE (index) == RANGE_EXPR)
17838 int count = tree_to_shwi (TREE_OPERAND (index, 1))
17839 - tree_to_shwi (TREE_OPERAND (index, 0));
17840 while (count-- > 0)
17842 if (val)
17843 memcpy (array + curpos, array + pos, fieldsize);
17844 curpos += fieldsize;
17847 gcc_assert (curpos <= size);
17849 return true;
17851 else if (TREE_CODE (type) == RECORD_TYPE
17852 || TREE_CODE (type) == UNION_TYPE)
17854 tree field = NULL_TREE;
17855 unsigned HOST_WIDE_INT cnt;
17856 constructor_elt *ce;
17858 if (int_size_in_bytes (type) != size)
17859 return false;
17861 if (TREE_CODE (type) == RECORD_TYPE)
17862 field = TYPE_FIELDS (type);
17864 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (init), cnt, ce)
17866 tree val = ce->value;
17867 int pos, fieldsize;
17869 if (ce->index != 0)
17870 field = ce->index;
17872 if (val)
17873 STRIP_NOPS (val);
17875 if (field == NULL_TREE || DECL_BIT_FIELD (field))
17876 return false;
17878 if (TREE_CODE (TREE_TYPE (field)) == ARRAY_TYPE
17879 && TYPE_DOMAIN (TREE_TYPE (field))
17880 && ! TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (field))))
17881 return false;
17882 else if (DECL_SIZE_UNIT (field) == NULL_TREE
17883 || !tree_fits_shwi_p (DECL_SIZE_UNIT (field)))
17884 return false;
17885 fieldsize = tree_to_shwi (DECL_SIZE_UNIT (field));
17886 pos = int_byte_position (field);
17887 gcc_assert (pos + fieldsize <= size);
17888 if (val && fieldsize != 0
17889 && !native_encode_initializer (val, array + pos, fieldsize))
17890 return false;
17892 return true;
17894 return false;
17895 case VIEW_CONVERT_EXPR:
17896 case NON_LVALUE_EXPR:
17897 return native_encode_initializer (TREE_OPERAND (init, 0), array, size);
17898 default:
17899 return native_encode_expr (init, array, size) == size;
17903 /* Attach a DW_AT_const_value attribute to DIE. The value of the
17904 attribute is the const value T. */
17906 static bool
17907 tree_add_const_value_attribute (dw_die_ref die, tree t)
17909 tree init;
17910 tree type = TREE_TYPE (t);
17911 rtx rtl;
17913 if (!t || !TREE_TYPE (t) || TREE_TYPE (t) == error_mark_node)
17914 return false;
17916 init = t;
17917 gcc_assert (!DECL_P (init));
17919 rtl = rtl_for_decl_init (init, type);
17920 if (rtl)
17921 return add_const_value_attribute (die, rtl);
17922 /* If the host and target are sane, try harder. */
17923 else if (CHAR_BIT == 8 && BITS_PER_UNIT == 8
17924 && initializer_constant_valid_p (init, type))
17926 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (init));
17927 if (size > 0 && (int) size == size)
17929 unsigned char *array = ggc_cleared_vec_alloc<unsigned char> (size);
17931 if (native_encode_initializer (init, array, size))
17933 add_AT_vec (die, DW_AT_const_value, size, 1, array);
17934 return true;
17936 ggc_free (array);
17939 return false;
17942 /* Attach a DW_AT_const_value attribute to VAR_DIE. The value of the
17943 attribute is the const value of T, where T is an integral constant
17944 variable with static storage duration
17945 (so it can't be a PARM_DECL or a RESULT_DECL). */
17947 static bool
17948 tree_add_const_value_attribute_for_decl (dw_die_ref var_die, tree decl)
17951 if (!decl
17952 || (TREE_CODE (decl) != VAR_DECL
17953 && TREE_CODE (decl) != CONST_DECL)
17954 || (TREE_CODE (decl) == VAR_DECL
17955 && !TREE_STATIC (decl)))
17956 return false;
17958 if (TREE_READONLY (decl)
17959 && ! TREE_THIS_VOLATILE (decl)
17960 && DECL_INITIAL (decl))
17961 /* OK */;
17962 else
17963 return false;
17965 /* Don't add DW_AT_const_value if abstract origin already has one. */
17966 if (get_AT (var_die, DW_AT_const_value))
17967 return false;
17969 return tree_add_const_value_attribute (var_die, DECL_INITIAL (decl));
17972 /* Convert the CFI instructions for the current function into a
17973 location list. This is used for DW_AT_frame_base when we targeting
17974 a dwarf2 consumer that does not support the dwarf3
17975 DW_OP_call_frame_cfa. OFFSET is a constant to be added to all CFA
17976 expressions. */
17978 static dw_loc_list_ref
17979 convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset)
17981 int ix;
17982 dw_fde_ref fde;
17983 dw_loc_list_ref list, *list_tail;
17984 dw_cfi_ref cfi;
17985 dw_cfa_location last_cfa, next_cfa;
17986 const char *start_label, *last_label, *section;
17987 dw_cfa_location remember;
17989 fde = cfun->fde;
17990 gcc_assert (fde != NULL);
17992 section = secname_for_decl (current_function_decl);
17993 list_tail = &list;
17994 list = NULL;
17996 memset (&next_cfa, 0, sizeof (next_cfa));
17997 next_cfa.reg = INVALID_REGNUM;
17998 remember = next_cfa;
18000 start_label = fde->dw_fde_begin;
18002 /* ??? Bald assumption that the CIE opcode list does not contain
18003 advance opcodes. */
18004 FOR_EACH_VEC_ELT (*cie_cfi_vec, ix, cfi)
18005 lookup_cfa_1 (cfi, &next_cfa, &remember);
18007 last_cfa = next_cfa;
18008 last_label = start_label;
18010 if (fde->dw_fde_second_begin && fde->dw_fde_switch_cfi_index == 0)
18012 /* If the first partition contained no CFI adjustments, the
18013 CIE opcodes apply to the whole first partition. */
18014 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
18015 fde->dw_fde_begin, fde->dw_fde_end, section);
18016 list_tail =&(*list_tail)->dw_loc_next;
18017 start_label = last_label = fde->dw_fde_second_begin;
18020 FOR_EACH_VEC_SAFE_ELT (fde->dw_fde_cfi, ix, cfi)
18022 switch (cfi->dw_cfi_opc)
18024 case DW_CFA_set_loc:
18025 case DW_CFA_advance_loc1:
18026 case DW_CFA_advance_loc2:
18027 case DW_CFA_advance_loc4:
18028 if (!cfa_equal_p (&last_cfa, &next_cfa))
18030 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
18031 start_label, last_label, section);
18033 list_tail = &(*list_tail)->dw_loc_next;
18034 last_cfa = next_cfa;
18035 start_label = last_label;
18037 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
18038 break;
18040 case DW_CFA_advance_loc:
18041 /* The encoding is complex enough that we should never emit this. */
18042 gcc_unreachable ();
18044 default:
18045 lookup_cfa_1 (cfi, &next_cfa, &remember);
18046 break;
18048 if (ix + 1 == fde->dw_fde_switch_cfi_index)
18050 if (!cfa_equal_p (&last_cfa, &next_cfa))
18052 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
18053 start_label, last_label, section);
18055 list_tail = &(*list_tail)->dw_loc_next;
18056 last_cfa = next_cfa;
18057 start_label = last_label;
18059 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
18060 start_label, fde->dw_fde_end, section);
18061 list_tail = &(*list_tail)->dw_loc_next;
18062 start_label = last_label = fde->dw_fde_second_begin;
18066 if (!cfa_equal_p (&last_cfa, &next_cfa))
18068 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
18069 start_label, last_label, section);
18070 list_tail = &(*list_tail)->dw_loc_next;
18071 start_label = last_label;
18074 *list_tail = new_loc_list (build_cfa_loc (&next_cfa, offset),
18075 start_label,
18076 fde->dw_fde_second_begin
18077 ? fde->dw_fde_second_end : fde->dw_fde_end,
18078 section);
18080 if (list && list->dw_loc_next)
18081 gen_llsym (list);
18083 return list;
18086 /* Compute a displacement from the "steady-state frame pointer" to the
18087 frame base (often the same as the CFA), and store it in
18088 frame_pointer_fb_offset. OFFSET is added to the displacement
18089 before the latter is negated. */
18091 static void
18092 compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset)
18094 rtx reg, elim;
18096 #ifdef FRAME_POINTER_CFA_OFFSET
18097 reg = frame_pointer_rtx;
18098 offset += FRAME_POINTER_CFA_OFFSET (current_function_decl);
18099 #else
18100 reg = arg_pointer_rtx;
18101 offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
18102 #endif
18104 elim = (ira_use_lra_p
18105 ? lra_eliminate_regs (reg, VOIDmode, NULL_RTX)
18106 : eliminate_regs (reg, VOIDmode, NULL_RTX));
18107 if (GET_CODE (elim) == PLUS)
18109 offset += INTVAL (XEXP (elim, 1));
18110 elim = XEXP (elim, 0);
18113 frame_pointer_fb_offset = -offset;
18115 /* ??? AVR doesn't set up valid eliminations when there is no stack frame
18116 in which to eliminate. This is because it's stack pointer isn't
18117 directly accessible as a register within the ISA. To work around
18118 this, assume that while we cannot provide a proper value for
18119 frame_pointer_fb_offset, we won't need one either. */
18120 frame_pointer_fb_offset_valid
18121 = ((SUPPORTS_STACK_ALIGNMENT
18122 && (elim == hard_frame_pointer_rtx
18123 || elim == stack_pointer_rtx))
18124 || elim == (frame_pointer_needed
18125 ? hard_frame_pointer_rtx
18126 : stack_pointer_rtx));
18129 /* Generate a DW_AT_name attribute given some string value to be included as
18130 the value of the attribute. */
18132 static void
18133 add_name_attribute (dw_die_ref die, const char *name_string)
18135 if (name_string != NULL && *name_string != 0)
18137 if (demangle_name_func)
18138 name_string = (*demangle_name_func) (name_string);
18140 add_AT_string (die, DW_AT_name, name_string);
18144 /* Retrieve the descriptive type of TYPE, if any, make sure it has a
18145 DIE and attach a DW_AT_GNAT_descriptive_type attribute to the DIE
18146 of TYPE accordingly.
18148 ??? This is a temporary measure until after we're able to generate
18149 regular DWARF for the complex Ada type system. */
18151 static void
18152 add_gnat_descriptive_type_attribute (dw_die_ref die, tree type,
18153 dw_die_ref context_die)
18155 tree dtype;
18156 dw_die_ref dtype_die;
18158 if (!lang_hooks.types.descriptive_type)
18159 return;
18161 dtype = lang_hooks.types.descriptive_type (type);
18162 if (!dtype)
18163 return;
18165 dtype_die = lookup_type_die (dtype);
18166 if (!dtype_die)
18168 gen_type_die (dtype, context_die);
18169 dtype_die = lookup_type_die (dtype);
18170 gcc_assert (dtype_die);
18173 add_AT_die_ref (die, DW_AT_GNAT_descriptive_type, dtype_die);
18176 /* Retrieve the comp_dir string suitable for use with DW_AT_comp_dir. */
18178 static const char *
18179 comp_dir_string (void)
18181 const char *wd;
18182 char *wd1;
18183 static const char *cached_wd = NULL;
18185 if (cached_wd != NULL)
18186 return cached_wd;
18188 wd = get_src_pwd ();
18189 if (wd == NULL)
18190 return NULL;
18192 if (DWARF2_DIR_SHOULD_END_WITH_SEPARATOR)
18194 int wdlen;
18196 wdlen = strlen (wd);
18197 wd1 = ggc_vec_alloc<char> (wdlen + 2);
18198 strcpy (wd1, wd);
18199 wd1 [wdlen] = DIR_SEPARATOR;
18200 wd1 [wdlen + 1] = 0;
18201 wd = wd1;
18204 cached_wd = remap_debug_filename (wd);
18205 return cached_wd;
18208 /* Generate a DW_AT_comp_dir attribute for DIE. */
18210 static void
18211 add_comp_dir_attribute (dw_die_ref die)
18213 const char * wd = comp_dir_string ();
18214 if (wd != NULL)
18215 add_AT_string (die, DW_AT_comp_dir, wd);
18218 /* Given a tree node VALUE describing a scalar attribute ATTR (i.e. a bound, a
18219 pointer computation, ...), output a representation for that bound according
18220 to the accepted FORMS (see enum dw_scalar_form) and add it to DIE. See
18221 loc_list_from_tree for the meaning of CONTEXT. */
18223 static void
18224 add_scalar_info (dw_die_ref die, enum dwarf_attribute attr, tree value,
18225 int forms, const struct loc_descr_context *context)
18227 dw_die_ref context_die, decl_die;
18228 dw_loc_list_ref list;
18230 bool strip_conversions = true;
18232 while (strip_conversions)
18233 switch (TREE_CODE (value))
18235 case ERROR_MARK:
18236 case SAVE_EXPR:
18237 return;
18239 CASE_CONVERT:
18240 case VIEW_CONVERT_EXPR:
18241 value = TREE_OPERAND (value, 0);
18242 break;
18244 default:
18245 strip_conversions = false;
18246 break;
18249 /* If possible and permitted, output the attribute as a constant. */
18250 if ((forms & dw_scalar_form_constant) != 0
18251 && TREE_CODE (value) == INTEGER_CST)
18253 unsigned int prec = simple_type_size_in_bits (TREE_TYPE (value));
18255 /* If HOST_WIDE_INT is big enough then represent the bound as
18256 a constant value. We need to choose a form based on
18257 whether the type is signed or unsigned. We cannot just
18258 call add_AT_unsigned if the value itself is positive
18259 (add_AT_unsigned might add the unsigned value encoded as
18260 DW_FORM_data[1248]). Some DWARF consumers will lookup the
18261 bounds type and then sign extend any unsigned values found
18262 for signed types. This is needed only for
18263 DW_AT_{lower,upper}_bound, since for most other attributes,
18264 consumers will treat DW_FORM_data[1248] as unsigned values,
18265 regardless of the underlying type. */
18266 if (prec <= HOST_BITS_PER_WIDE_INT
18267 || tree_fits_uhwi_p (value))
18269 if (TYPE_UNSIGNED (TREE_TYPE (value)))
18270 add_AT_unsigned (die, attr, TREE_INT_CST_LOW (value));
18271 else
18272 add_AT_int (die, attr, TREE_INT_CST_LOW (value));
18274 else
18275 /* Otherwise represent the bound as an unsigned value with
18276 the precision of its type. The precision and signedness
18277 of the type will be necessary to re-interpret it
18278 unambiguously. */
18279 add_AT_wide (die, attr, value);
18280 return;
18283 /* Otherwise, if it's possible and permitted too, output a reference to
18284 another DIE. */
18285 if ((forms & dw_scalar_form_reference) != 0)
18287 tree decl = NULL_TREE;
18289 /* Some type attributes reference an outer type. For instance, the upper
18290 bound of an array may reference an embedding record (this happens in
18291 Ada). */
18292 if (TREE_CODE (value) == COMPONENT_REF
18293 && TREE_CODE (TREE_OPERAND (value, 0)) == PLACEHOLDER_EXPR
18294 && TREE_CODE (TREE_OPERAND (value, 1)) == FIELD_DECL)
18295 decl = TREE_OPERAND (value, 1);
18297 else if (TREE_CODE (value) == VAR_DECL
18298 || TREE_CODE (value) == PARM_DECL
18299 || TREE_CODE (value) == RESULT_DECL)
18300 decl = value;
18302 if (decl != NULL_TREE)
18304 dw_die_ref decl_die = lookup_decl_die (decl);
18306 /* ??? Can this happen, or should the variable have been bound
18307 first? Probably it can, since I imagine that we try to create
18308 the types of parameters in the order in which they exist in
18309 the list, and won't have created a forward reference to a
18310 later parameter. */
18311 if (decl_die != NULL)
18313 add_AT_die_ref (die, attr, decl_die);
18314 return;
18319 /* Last chance: try to create a stack operation procedure to evaluate the
18320 value. Do nothing if even that is not possible or permitted. */
18321 if ((forms & dw_scalar_form_exprloc) == 0)
18322 return;
18324 list = loc_list_from_tree (value, 2, context);
18325 if (list == NULL || single_element_loc_list_p (list))
18327 /* If this attribute is not a reference nor constant, it is
18328 a DWARF expression rather than location description. For that
18329 loc_list_from_tree (value, 0, &context) is needed. */
18330 dw_loc_list_ref list2 = loc_list_from_tree (value, 0, context);
18331 if (list2 && single_element_loc_list_p (list2))
18333 add_AT_loc (die, attr, list2->expr);
18334 return;
18338 /* If that failed to give a single element location list, fall back to
18339 outputting this as a reference... still if permitted. */
18340 if (list == NULL || (forms & dw_scalar_form_reference) == 0)
18341 return;
18343 if (current_function_decl == 0)
18344 context_die = comp_unit_die ();
18345 else
18346 context_die = lookup_decl_die (current_function_decl);
18348 decl_die = new_die (DW_TAG_variable, context_die, value);
18349 add_AT_flag (decl_die, DW_AT_artificial, 1);
18350 add_type_attribute (decl_die, TREE_TYPE (value), TYPE_QUAL_CONST, false,
18351 context_die);
18352 add_AT_location_description (decl_die, DW_AT_location, list);
18353 add_AT_die_ref (die, attr, decl_die);
18356 /* Return the default for DW_AT_lower_bound, or -1 if there is not any
18357 default. */
18359 static int
18360 lower_bound_default (void)
18362 switch (get_AT_unsigned (comp_unit_die (), DW_AT_language))
18364 case DW_LANG_C:
18365 case DW_LANG_C89:
18366 case DW_LANG_C99:
18367 case DW_LANG_C11:
18368 case DW_LANG_C_plus_plus:
18369 case DW_LANG_C_plus_plus_11:
18370 case DW_LANG_C_plus_plus_14:
18371 case DW_LANG_ObjC:
18372 case DW_LANG_ObjC_plus_plus:
18373 case DW_LANG_Java:
18374 return 0;
18375 case DW_LANG_Fortran77:
18376 case DW_LANG_Fortran90:
18377 case DW_LANG_Fortran95:
18378 case DW_LANG_Fortran03:
18379 case DW_LANG_Fortran08:
18380 return 1;
18381 case DW_LANG_UPC:
18382 case DW_LANG_D:
18383 case DW_LANG_Python:
18384 return dwarf_version >= 4 ? 0 : -1;
18385 case DW_LANG_Ada95:
18386 case DW_LANG_Ada83:
18387 case DW_LANG_Cobol74:
18388 case DW_LANG_Cobol85:
18389 case DW_LANG_Pascal83:
18390 case DW_LANG_Modula2:
18391 case DW_LANG_PLI:
18392 return dwarf_version >= 4 ? 1 : -1;
18393 default:
18394 return -1;
18398 /* Given a tree node describing an array bound (either lower or upper) output
18399 a representation for that bound. */
18401 static void
18402 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr,
18403 tree bound, const struct loc_descr_context *context)
18405 int dflt;
18407 while (1)
18408 switch (TREE_CODE (bound))
18410 /* Strip all conversions. */
18411 CASE_CONVERT:
18412 case VIEW_CONVERT_EXPR:
18413 bound = TREE_OPERAND (bound, 0);
18414 break;
18416 /* All fixed-bounds are represented by INTEGER_CST nodes. Lower bounds
18417 are even omitted when they are the default. */
18418 case INTEGER_CST:
18419 /* If the value for this bound is the default one, we can even omit the
18420 attribute. */
18421 if (bound_attr == DW_AT_lower_bound
18422 && tree_fits_shwi_p (bound)
18423 && (dflt = lower_bound_default ()) != -1
18424 && tree_to_shwi (bound) == dflt)
18425 return;
18427 /* FALLTHRU */
18429 default:
18430 /* Because of the complex interaction there can be with other GNAT
18431 encodings, GDB isn't ready yet to handle proper DWARF description
18432 for self-referencial subrange bounds: let GNAT encodings do the
18433 magic in such a case. */
18434 if (gnat_encodings != DWARF_GNAT_ENCODINGS_MINIMAL
18435 && contains_placeholder_p (bound))
18436 return;
18438 add_scalar_info (subrange_die, bound_attr, bound,
18439 dw_scalar_form_constant
18440 | dw_scalar_form_exprloc
18441 | dw_scalar_form_reference,
18442 context);
18443 return;
18447 /* Add subscript info to TYPE_DIE, describing an array TYPE, collapsing
18448 possibly nested array subscripts in a flat sequence if COLLAPSE_P is true.
18449 Note that the block of subscript information for an array type also
18450 includes information about the element type of the given array type.
18452 This function reuses previously set type and bound information if
18453 available. */
18455 static void
18456 add_subscript_info (dw_die_ref type_die, tree type, bool collapse_p)
18458 unsigned dimension_number;
18459 tree lower, upper;
18460 dw_die_ref child = type_die->die_child;
18462 for (dimension_number = 0;
18463 TREE_CODE (type) == ARRAY_TYPE && (dimension_number == 0 || collapse_p);
18464 type = TREE_TYPE (type), dimension_number++)
18466 tree domain = TYPE_DOMAIN (type);
18468 if (TYPE_STRING_FLAG (type) && is_fortran () && dimension_number > 0)
18469 break;
18471 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
18472 and (in GNU C only) variable bounds. Handle all three forms
18473 here. */
18475 /* Find and reuse a previously generated DW_TAG_subrange_type if
18476 available.
18478 For multi-dimensional arrays, as we iterate through the
18479 various dimensions in the enclosing for loop above, we also
18480 iterate through the DIE children and pick at each
18481 DW_TAG_subrange_type previously generated (if available).
18482 Each child DW_TAG_subrange_type DIE describes the range of
18483 the current dimension. At this point we should have as many
18484 DW_TAG_subrange_type's as we have dimensions in the
18485 array. */
18486 dw_die_ref subrange_die = NULL;
18487 if (child)
18488 while (1)
18490 child = child->die_sib;
18491 if (child->die_tag == DW_TAG_subrange_type)
18492 subrange_die = child;
18493 if (child == type_die->die_child)
18495 /* If we wrapped around, stop looking next time. */
18496 child = NULL;
18497 break;
18499 if (child->die_tag == DW_TAG_subrange_type)
18500 break;
18502 if (!subrange_die)
18503 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
18505 if (domain)
18507 /* We have an array type with specified bounds. */
18508 lower = TYPE_MIN_VALUE (domain);
18509 upper = TYPE_MAX_VALUE (domain);
18511 /* Define the index type. */
18512 if (TREE_TYPE (domain)
18513 && !get_AT (subrange_die, DW_AT_type))
18515 /* ??? This is probably an Ada unnamed subrange type. Ignore the
18516 TREE_TYPE field. We can't emit debug info for this
18517 because it is an unnamed integral type. */
18518 if (TREE_CODE (domain) == INTEGER_TYPE
18519 && TYPE_NAME (domain) == NULL_TREE
18520 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
18521 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
18523 else
18524 add_type_attribute (subrange_die, TREE_TYPE (domain),
18525 TYPE_UNQUALIFIED, false, type_die);
18528 /* ??? If upper is NULL, the array has unspecified length,
18529 but it does have a lower bound. This happens with Fortran
18530 dimension arr(N:*)
18531 Since the debugger is definitely going to need to know N
18532 to produce useful results, go ahead and output the lower
18533 bound solo, and hope the debugger can cope. */
18535 if (!get_AT (subrange_die, DW_AT_lower_bound))
18536 add_bound_info (subrange_die, DW_AT_lower_bound, lower, NULL);
18537 if (upper && !get_AT (subrange_die, DW_AT_upper_bound))
18538 add_bound_info (subrange_die, DW_AT_upper_bound, upper, NULL);
18541 /* Otherwise we have an array type with an unspecified length. The
18542 DWARF-2 spec does not say how to handle this; let's just leave out the
18543 bounds. */
18547 /* Add a DW_AT_byte_size attribute to DIE with TREE_NODE's size. */
18549 static void
18550 add_byte_size_attribute (dw_die_ref die, tree tree_node)
18552 dw_die_ref decl_die;
18553 HOST_WIDE_INT size;
18554 dw_loc_descr_ref size_expr = NULL;
18556 switch (TREE_CODE (tree_node))
18558 case ERROR_MARK:
18559 size = 0;
18560 break;
18561 case ENUMERAL_TYPE:
18562 case RECORD_TYPE:
18563 case UNION_TYPE:
18564 case QUAL_UNION_TYPE:
18565 if (TREE_CODE (TYPE_SIZE_UNIT (tree_node)) == VAR_DECL
18566 && (decl_die = lookup_decl_die (TYPE_SIZE_UNIT (tree_node))))
18568 add_AT_die_ref (die, DW_AT_byte_size, decl_die);
18569 return;
18571 size_expr = type_byte_size (tree_node, &size);
18572 break;
18573 case FIELD_DECL:
18574 /* For a data member of a struct or union, the DW_AT_byte_size is
18575 generally given as the number of bytes normally allocated for an
18576 object of the *declared* type of the member itself. This is true
18577 even for bit-fields. */
18578 size = int_size_in_bytes (field_type (tree_node));
18579 break;
18580 default:
18581 gcc_unreachable ();
18584 /* Support for dynamically-sized objects was introduced by DWARFv3.
18585 At the moment, GDB does not handle variable byte sizes very well,
18586 though. */
18587 if ((dwarf_version >= 3 || !dwarf_strict)
18588 && gnat_encodings == DWARF_GNAT_ENCODINGS_MINIMAL
18589 && size_expr != NULL)
18590 add_AT_loc (die, DW_AT_byte_size, size_expr);
18592 /* Note that `size' might be -1 when we get to this point. If it is, that
18593 indicates that the byte size of the entity in question is variable and
18594 that we could not generate a DWARF expression that computes it. */
18595 if (size >= 0)
18596 add_AT_unsigned (die, DW_AT_byte_size, size);
18599 /* For a FIELD_DECL node which represents a bit-field, output an attribute
18600 which specifies the distance in bits from the highest order bit of the
18601 "containing object" for the bit-field to the highest order bit of the
18602 bit-field itself.
18604 For any given bit-field, the "containing object" is a hypothetical object
18605 (of some integral or enum type) within which the given bit-field lives. The
18606 type of this hypothetical "containing object" is always the same as the
18607 declared type of the individual bit-field itself. The determination of the
18608 exact location of the "containing object" for a bit-field is rather
18609 complicated. It's handled by the `field_byte_offset' function (above).
18611 CTX is required: see the comment for VLR_CONTEXT.
18613 Note that it is the size (in bytes) of the hypothetical "containing object"
18614 which will be given in the DW_AT_byte_size attribute for this bit-field.
18615 (See `byte_size_attribute' above). */
18617 static inline void
18618 add_bit_offset_attribute (dw_die_ref die, tree decl, struct vlr_context *ctx)
18620 HOST_WIDE_INT object_offset_in_bytes;
18621 tree original_type = DECL_BIT_FIELD_TYPE (decl);
18622 HOST_WIDE_INT bitpos_int;
18623 HOST_WIDE_INT highest_order_object_bit_offset;
18624 HOST_WIDE_INT highest_order_field_bit_offset;
18625 HOST_WIDE_INT bit_offset;
18627 field_byte_offset (decl, ctx, &object_offset_in_bytes);
18629 /* Must be a field and a bit field. */
18630 gcc_assert (original_type && TREE_CODE (decl) == FIELD_DECL);
18632 /* We can't yet handle bit-fields whose offsets are variable, so if we
18633 encounter such things, just return without generating any attribute
18634 whatsoever. Likewise for variable or too large size. */
18635 if (! tree_fits_shwi_p (bit_position (decl))
18636 || ! tree_fits_uhwi_p (DECL_SIZE (decl)))
18637 return;
18639 bitpos_int = int_bit_position (decl);
18641 /* Note that the bit offset is always the distance (in bits) from the
18642 highest-order bit of the "containing object" to the highest-order bit of
18643 the bit-field itself. Since the "high-order end" of any object or field
18644 is different on big-endian and little-endian machines, the computation
18645 below must take account of these differences. */
18646 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
18647 highest_order_field_bit_offset = bitpos_int;
18649 if (! BYTES_BIG_ENDIAN)
18651 highest_order_field_bit_offset += tree_to_shwi (DECL_SIZE (decl));
18652 highest_order_object_bit_offset +=
18653 simple_type_size_in_bits (original_type);
18656 bit_offset
18657 = (! BYTES_BIG_ENDIAN
18658 ? highest_order_object_bit_offset - highest_order_field_bit_offset
18659 : highest_order_field_bit_offset - highest_order_object_bit_offset);
18661 if (bit_offset < 0)
18662 add_AT_int (die, DW_AT_bit_offset, bit_offset);
18663 else
18664 add_AT_unsigned (die, DW_AT_bit_offset, (unsigned HOST_WIDE_INT) bit_offset);
18667 /* For a FIELD_DECL node which represents a bit field, output an attribute
18668 which specifies the length in bits of the given field. */
18670 static inline void
18671 add_bit_size_attribute (dw_die_ref die, tree decl)
18673 /* Must be a field and a bit field. */
18674 gcc_assert (TREE_CODE (decl) == FIELD_DECL
18675 && DECL_BIT_FIELD_TYPE (decl));
18677 if (tree_fits_uhwi_p (DECL_SIZE (decl)))
18678 add_AT_unsigned (die, DW_AT_bit_size, tree_to_uhwi (DECL_SIZE (decl)));
18681 /* If the compiled language is ANSI C, then add a 'prototyped'
18682 attribute, if arg types are given for the parameters of a function. */
18684 static inline void
18685 add_prototyped_attribute (dw_die_ref die, tree func_type)
18687 switch (get_AT_unsigned (comp_unit_die (), DW_AT_language))
18689 case DW_LANG_C:
18690 case DW_LANG_C89:
18691 case DW_LANG_C99:
18692 case DW_LANG_C11:
18693 case DW_LANG_ObjC:
18694 if (prototype_p (func_type))
18695 add_AT_flag (die, DW_AT_prototyped, 1);
18696 break;
18697 default:
18698 break;
18702 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
18703 by looking in the type declaration, the object declaration equate table or
18704 the block mapping. */
18706 static inline dw_die_ref
18707 add_abstract_origin_attribute (dw_die_ref die, tree origin)
18709 dw_die_ref origin_die = NULL;
18711 if (TREE_CODE (origin) != FUNCTION_DECL
18712 && TREE_CODE (origin) != BLOCK)
18714 /* We may have gotten separated from the block for the inlined
18715 function, if we're in an exception handler or some such; make
18716 sure that the abstract function has been written out.
18718 Doing this for nested functions is wrong, however; functions are
18719 distinct units, and our context might not even be inline. */
18720 tree fn = origin;
18722 if (TYPE_P (fn))
18723 fn = TYPE_STUB_DECL (fn);
18725 fn = decl_function_context (fn);
18726 if (fn)
18727 dwarf2out_abstract_function (fn);
18730 if (DECL_P (origin))
18731 origin_die = lookup_decl_die (origin);
18732 else if (TYPE_P (origin))
18733 origin_die = lookup_type_die (origin);
18734 else if (TREE_CODE (origin) == BLOCK)
18735 origin_die = BLOCK_DIE (origin);
18737 /* XXX: Functions that are never lowered don't always have correct block
18738 trees (in the case of java, they simply have no block tree, in some other
18739 languages). For these functions, there is nothing we can really do to
18740 output correct debug info for inlined functions in all cases. Rather
18741 than die, we'll just produce deficient debug info now, in that we will
18742 have variables without a proper abstract origin. In the future, when all
18743 functions are lowered, we should re-add a gcc_assert (origin_die)
18744 here. */
18746 if (origin_die)
18747 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
18748 return origin_die;
18751 /* We do not currently support the pure_virtual attribute. */
18753 static inline void
18754 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
18756 if (DECL_VINDEX (func_decl))
18758 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
18760 if (tree_fits_shwi_p (DECL_VINDEX (func_decl)))
18761 add_AT_loc (die, DW_AT_vtable_elem_location,
18762 new_loc_descr (DW_OP_constu,
18763 tree_to_shwi (DECL_VINDEX (func_decl)),
18764 0));
18766 /* GNU extension: Record what type this method came from originally. */
18767 if (debug_info_level > DINFO_LEVEL_TERSE
18768 && DECL_CONTEXT (func_decl))
18769 add_AT_die_ref (die, DW_AT_containing_type,
18770 lookup_type_die (DECL_CONTEXT (func_decl)));
18774 /* Add a DW_AT_linkage_name or DW_AT_MIPS_linkage_name attribute for the
18775 given decl. This used to be a vendor extension until after DWARF 4
18776 standardized it. */
18778 static void
18779 add_linkage_attr (dw_die_ref die, tree decl)
18781 const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
18783 /* Mimic what assemble_name_raw does with a leading '*'. */
18784 if (name[0] == '*')
18785 name = &name[1];
18787 if (dwarf_version >= 4)
18788 add_AT_string (die, DW_AT_linkage_name, name);
18789 else
18790 add_AT_string (die, DW_AT_MIPS_linkage_name, name);
18793 /* Add source coordinate attributes for the given decl. */
18795 static void
18796 add_src_coords_attributes (dw_die_ref die, tree decl)
18798 expanded_location s;
18800 if (LOCATION_LOCUS (DECL_SOURCE_LOCATION (decl)) == UNKNOWN_LOCATION)
18801 return;
18802 s = expand_location (DECL_SOURCE_LOCATION (decl));
18803 add_AT_file (die, DW_AT_decl_file, lookup_filename (s.file));
18804 add_AT_unsigned (die, DW_AT_decl_line, s.line);
18807 /* Add DW_AT_{,MIPS_}linkage_name attribute for the given decl. */
18809 static void
18810 add_linkage_name_raw (dw_die_ref die, tree decl)
18812 /* Defer until we have an assembler name set. */
18813 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
18815 limbo_die_node *asm_name;
18817 asm_name = ggc_cleared_alloc<limbo_die_node> ();
18818 asm_name->die = die;
18819 asm_name->created_for = decl;
18820 asm_name->next = deferred_asm_name;
18821 deferred_asm_name = asm_name;
18823 else if (DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl))
18824 add_linkage_attr (die, decl);
18827 /* Add DW_AT_{,MIPS_}linkage_name attribute for the given decl if desired. */
18829 static void
18830 add_linkage_name (dw_die_ref die, tree decl)
18832 if (debug_info_level > DINFO_LEVEL_NONE
18833 && (TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
18834 && TREE_PUBLIC (decl)
18835 && !(TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl))
18836 && die->die_tag != DW_TAG_member)
18837 add_linkage_name_raw (die, decl);
18840 /* Add a DW_AT_name attribute and source coordinate attribute for the
18841 given decl, but only if it actually has a name. */
18843 static void
18844 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
18846 tree decl_name;
18848 decl_name = DECL_NAME (decl);
18849 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
18851 const char *name = dwarf2_name (decl, 0);
18852 if (name)
18853 add_name_attribute (die, name);
18854 if (! DECL_ARTIFICIAL (decl))
18855 add_src_coords_attributes (die, decl);
18857 add_linkage_name (die, decl);
18860 #ifdef VMS_DEBUGGING_INFO
18861 /* Get the function's name, as described by its RTL. This may be different
18862 from the DECL_NAME name used in the source file. */
18863 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
18865 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
18866 XEXP (DECL_RTL (decl), 0), false);
18867 vec_safe_push (used_rtx_array, XEXP (DECL_RTL (decl), 0));
18869 #endif /* VMS_DEBUGGING_INFO */
18872 /* Add VALUE as a DW_AT_discr_value attribute to DIE. */
18874 static void
18875 add_discr_value (dw_die_ref die, dw_discr_value *value)
18877 dw_attr_node attr;
18879 attr.dw_attr = DW_AT_discr_value;
18880 attr.dw_attr_val.val_class = dw_val_class_discr_value;
18881 attr.dw_attr_val.val_entry = NULL;
18882 attr.dw_attr_val.v.val_discr_value.pos = value->pos;
18883 if (value->pos)
18884 attr.dw_attr_val.v.val_discr_value.v.uval = value->v.uval;
18885 else
18886 attr.dw_attr_val.v.val_discr_value.v.sval = value->v.sval;
18887 add_dwarf_attr (die, &attr);
18890 /* Add DISCR_LIST as a DW_AT_discr_list to DIE. */
18892 static void
18893 add_discr_list (dw_die_ref die, dw_discr_list_ref discr_list)
18895 dw_attr_node attr;
18897 attr.dw_attr = DW_AT_discr_list;
18898 attr.dw_attr_val.val_class = dw_val_class_discr_list;
18899 attr.dw_attr_val.val_entry = NULL;
18900 attr.dw_attr_val.v.val_discr_list = discr_list;
18901 add_dwarf_attr (die, &attr);
18904 static inline dw_discr_list_ref
18905 AT_discr_list (dw_attr_node *attr)
18907 return attr->dw_attr_val.v.val_discr_list;
18910 #ifdef VMS_DEBUGGING_INFO
18911 /* Output the debug main pointer die for VMS */
18913 void
18914 dwarf2out_vms_debug_main_pointer (void)
18916 char label[MAX_ARTIFICIAL_LABEL_BYTES];
18917 dw_die_ref die;
18919 /* Allocate the VMS debug main subprogram die. */
18920 die = ggc_cleared_alloc<die_node> ();
18921 die->die_tag = DW_TAG_subprogram;
18922 add_name_attribute (die, VMS_DEBUG_MAIN_POINTER);
18923 ASM_GENERATE_INTERNAL_LABEL (label, PROLOGUE_END_LABEL,
18924 current_function_funcdef_no);
18925 add_AT_lbl_id (die, DW_AT_entry_pc, label);
18927 /* Make it the first child of comp_unit_die (). */
18928 die->die_parent = comp_unit_die ();
18929 if (comp_unit_die ()->die_child)
18931 die->die_sib = comp_unit_die ()->die_child->die_sib;
18932 comp_unit_die ()->die_child->die_sib = die;
18934 else
18936 die->die_sib = die;
18937 comp_unit_die ()->die_child = die;
18940 #endif /* VMS_DEBUGGING_INFO */
18942 /* Push a new declaration scope. */
18944 static void
18945 push_decl_scope (tree scope)
18947 vec_safe_push (decl_scope_table, scope);
18950 /* Pop a declaration scope. */
18952 static inline void
18953 pop_decl_scope (void)
18955 decl_scope_table->pop ();
18958 /* walk_tree helper function for uses_local_type, below. */
18960 static tree
18961 uses_local_type_r (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
18963 if (!TYPE_P (*tp))
18964 *walk_subtrees = 0;
18965 else
18967 tree name = TYPE_NAME (*tp);
18968 if (name && DECL_P (name) && decl_function_context (name))
18969 return *tp;
18971 return NULL_TREE;
18974 /* If TYPE involves a function-local type (including a local typedef to a
18975 non-local type), returns that type; otherwise returns NULL_TREE. */
18977 static tree
18978 uses_local_type (tree type)
18980 tree used = walk_tree_without_duplicates (&type, uses_local_type_r, NULL);
18981 return used;
18984 /* Return the DIE for the scope that immediately contains this type.
18985 Non-named types that do not involve a function-local type get global
18986 scope. Named types nested in namespaces or other types get their
18987 containing scope. All other types (i.e. function-local named types) get
18988 the current active scope. */
18990 static dw_die_ref
18991 scope_die_for (tree t, dw_die_ref context_die)
18993 dw_die_ref scope_die = NULL;
18994 tree containing_scope;
18996 /* Non-types always go in the current scope. */
18997 gcc_assert (TYPE_P (t));
18999 /* Use the scope of the typedef, rather than the scope of the type
19000 it refers to. */
19001 if (TYPE_NAME (t) && DECL_P (TYPE_NAME (t)))
19002 containing_scope = DECL_CONTEXT (TYPE_NAME (t));
19003 else
19004 containing_scope = TYPE_CONTEXT (t);
19006 /* Use the containing namespace if there is one. */
19007 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
19009 if (context_die == lookup_decl_die (containing_scope))
19010 /* OK */;
19011 else if (debug_info_level > DINFO_LEVEL_TERSE)
19012 context_die = get_context_die (containing_scope);
19013 else
19014 containing_scope = NULL_TREE;
19017 /* Ignore function type "scopes" from the C frontend. They mean that
19018 a tagged type is local to a parmlist of a function declarator, but
19019 that isn't useful to DWARF. */
19020 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
19021 containing_scope = NULL_TREE;
19023 if (SCOPE_FILE_SCOPE_P (containing_scope))
19025 /* If T uses a local type keep it local as well, to avoid references
19026 to function-local DIEs from outside the function. */
19027 if (current_function_decl && uses_local_type (t))
19028 scope_die = context_die;
19029 else
19030 scope_die = comp_unit_die ();
19032 else if (TYPE_P (containing_scope))
19034 /* For types, we can just look up the appropriate DIE. */
19035 if (debug_info_level > DINFO_LEVEL_TERSE)
19036 scope_die = get_context_die (containing_scope);
19037 else
19039 scope_die = lookup_type_die_strip_naming_typedef (containing_scope);
19040 if (scope_die == NULL)
19041 scope_die = comp_unit_die ();
19044 else
19045 scope_die = context_die;
19047 return scope_die;
19050 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
19052 static inline int
19053 local_scope_p (dw_die_ref context_die)
19055 for (; context_die; context_die = context_die->die_parent)
19056 if (context_die->die_tag == DW_TAG_inlined_subroutine
19057 || context_die->die_tag == DW_TAG_subprogram)
19058 return 1;
19060 return 0;
19063 /* Returns nonzero if CONTEXT_DIE is a class. */
19065 static inline int
19066 class_scope_p (dw_die_ref context_die)
19068 return (context_die
19069 && (context_die->die_tag == DW_TAG_structure_type
19070 || context_die->die_tag == DW_TAG_class_type
19071 || context_die->die_tag == DW_TAG_interface_type
19072 || context_die->die_tag == DW_TAG_union_type));
19075 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
19076 whether or not to treat a DIE in this context as a declaration. */
19078 static inline int
19079 class_or_namespace_scope_p (dw_die_ref context_die)
19081 return (class_scope_p (context_die)
19082 || (context_die && context_die->die_tag == DW_TAG_namespace));
19085 /* Many forms of DIEs require a "type description" attribute. This
19086 routine locates the proper "type descriptor" die for the type given
19087 by 'type' plus any additional qualifiers given by 'cv_quals', and
19088 adds a DW_AT_type attribute below the given die. */
19090 static void
19091 add_type_attribute (dw_die_ref object_die, tree type, int cv_quals,
19092 bool reverse, dw_die_ref context_die)
19094 enum tree_code code = TREE_CODE (type);
19095 dw_die_ref type_die = NULL;
19097 /* ??? If this type is an unnamed subrange type of an integral, floating-point
19098 or fixed-point type, use the inner type. This is because we have no
19099 support for unnamed types in base_type_die. This can happen if this is
19100 an Ada subrange type. Correct solution is emit a subrange type die. */
19101 if ((code == INTEGER_TYPE || code == REAL_TYPE || code == FIXED_POINT_TYPE)
19102 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
19103 type = TREE_TYPE (type), code = TREE_CODE (type);
19105 if (code == ERROR_MARK
19106 /* Handle a special case. For functions whose return type is void, we
19107 generate *no* type attribute. (Note that no object may have type
19108 `void', so this only applies to function return types). */
19109 || code == VOID_TYPE)
19110 return;
19112 type_die = modified_type_die (type,
19113 cv_quals | TYPE_QUALS_NO_ADDR_SPACE (type),
19114 reverse,
19115 context_die);
19117 if (type_die != NULL)
19118 add_AT_die_ref (object_die, DW_AT_type, type_die);
19121 /* Given an object die, add the calling convention attribute for the
19122 function call type. */
19123 static void
19124 add_calling_convention_attribute (dw_die_ref subr_die, tree decl)
19126 enum dwarf_calling_convention value = DW_CC_normal;
19128 value = ((enum dwarf_calling_convention)
19129 targetm.dwarf_calling_convention (TREE_TYPE (decl)));
19131 if (is_fortran ()
19132 && !strcmp (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)), "MAIN__"))
19134 /* DWARF 2 doesn't provide a way to identify a program's source-level
19135 entry point. DW_AT_calling_convention attributes are only meant
19136 to describe functions' calling conventions. However, lacking a
19137 better way to signal the Fortran main program, we used this for
19138 a long time, following existing custom. Now, DWARF 4 has
19139 DW_AT_main_subprogram, which we add below, but some tools still
19140 rely on the old way, which we thus keep. */
19141 value = DW_CC_program;
19143 if (dwarf_version >= 4 || !dwarf_strict)
19144 add_AT_flag (subr_die, DW_AT_main_subprogram, 1);
19147 /* Only add the attribute if the backend requests it, and
19148 is not DW_CC_normal. */
19149 if (value && (value != DW_CC_normal))
19150 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
19153 /* Given a tree pointer to a struct, class, union, or enum type node, return
19154 a pointer to the (string) tag name for the given type, or zero if the type
19155 was declared without a tag. */
19157 static const char *
19158 type_tag (const_tree type)
19160 const char *name = 0;
19162 if (TYPE_NAME (type) != 0)
19164 tree t = 0;
19166 /* Find the IDENTIFIER_NODE for the type name. */
19167 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE
19168 && !TYPE_NAMELESS (type))
19169 t = TYPE_NAME (type);
19171 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
19172 a TYPE_DECL node, regardless of whether or not a `typedef' was
19173 involved. */
19174 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
19175 && ! DECL_IGNORED_P (TYPE_NAME (type)))
19177 /* We want to be extra verbose. Don't call dwarf_name if
19178 DECL_NAME isn't set. The default hook for decl_printable_name
19179 doesn't like that, and in this context it's correct to return
19180 0, instead of "<anonymous>" or the like. */
19181 if (DECL_NAME (TYPE_NAME (type))
19182 && !DECL_NAMELESS (TYPE_NAME (type)))
19183 name = lang_hooks.dwarf_name (TYPE_NAME (type), 2);
19186 /* Now get the name as a string, or invent one. */
19187 if (!name && t != 0)
19188 name = IDENTIFIER_POINTER (t);
19191 return (name == 0 || *name == '\0') ? 0 : name;
19194 /* Return the type associated with a data member, make a special check
19195 for bit field types. */
19197 static inline tree
19198 member_declared_type (const_tree member)
19200 return (DECL_BIT_FIELD_TYPE (member)
19201 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
19204 /* Get the decl's label, as described by its RTL. This may be different
19205 from the DECL_NAME name used in the source file. */
19207 #if 0
19208 static const char *
19209 decl_start_label (tree decl)
19211 rtx x;
19212 const char *fnname;
19214 x = DECL_RTL (decl);
19215 gcc_assert (MEM_P (x));
19217 x = XEXP (x, 0);
19218 gcc_assert (GET_CODE (x) == SYMBOL_REF);
19220 fnname = XSTR (x, 0);
19221 return fnname;
19223 #endif
19225 /* For variable-length arrays that have been previously generated, but
19226 may be incomplete due to missing subscript info, fill the subscript
19227 info. Return TRUE if this is one of those cases. */
19228 static bool
19229 fill_variable_array_bounds (tree type)
19231 if (TREE_ASM_WRITTEN (type)
19232 && TREE_CODE (type) == ARRAY_TYPE
19233 && variably_modified_type_p (type, NULL))
19235 dw_die_ref array_die = lookup_type_die (type);
19236 if (!array_die)
19237 return false;
19238 add_subscript_info (array_die, type, !is_ada ());
19239 return true;
19241 return false;
19244 /* These routines generate the internal representation of the DIE's for
19245 the compilation unit. Debugging information is collected by walking
19246 the declaration trees passed in from dwarf2out_decl(). */
19248 static void
19249 gen_array_type_die (tree type, dw_die_ref context_die)
19251 dw_die_ref array_die;
19253 /* GNU compilers represent multidimensional array types as sequences of one
19254 dimensional array types whose element types are themselves array types.
19255 We sometimes squish that down to a single array_type DIE with multiple
19256 subscripts in the Dwarf debugging info. The draft Dwarf specification
19257 say that we are allowed to do this kind of compression in C, because
19258 there is no difference between an array of arrays and a multidimensional
19259 array. We don't do this for Ada to remain as close as possible to the
19260 actual representation, which is especially important against the language
19261 flexibilty wrt arrays of variable size. */
19263 bool collapse_nested_arrays = !is_ada ();
19265 if (fill_variable_array_bounds (type))
19266 return;
19268 dw_die_ref scope_die = scope_die_for (type, context_die);
19269 tree element_type;
19271 /* Emit DW_TAG_string_type for Fortran character types (with kind 1 only, as
19272 DW_TAG_string_type doesn't have DW_AT_type attribute). */
19273 if (TYPE_STRING_FLAG (type)
19274 && TREE_CODE (type) == ARRAY_TYPE
19275 && is_fortran ()
19276 && TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (char_type_node))
19278 HOST_WIDE_INT size;
19280 array_die = new_die (DW_TAG_string_type, scope_die, type);
19281 add_name_attribute (array_die, type_tag (type));
19282 equate_type_number_to_die (type, array_die);
19283 size = int_size_in_bytes (type);
19284 if (size >= 0)
19285 add_AT_unsigned (array_die, DW_AT_byte_size, size);
19286 else if (TYPE_DOMAIN (type) != NULL_TREE
19287 && TYPE_MAX_VALUE (TYPE_DOMAIN (type)) != NULL_TREE
19288 && DECL_P (TYPE_MAX_VALUE (TYPE_DOMAIN (type))))
19290 tree szdecl = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
19291 dw_loc_list_ref loc = loc_list_from_tree (szdecl, 2, NULL);
19293 size = int_size_in_bytes (TREE_TYPE (szdecl));
19294 if (loc && size > 0)
19296 add_AT_location_description (array_die, DW_AT_string_length, loc);
19297 if (size != DWARF2_ADDR_SIZE)
19298 add_AT_unsigned (array_die, DW_AT_byte_size, size);
19301 return;
19304 array_die = new_die (DW_TAG_array_type, scope_die, type);
19305 add_name_attribute (array_die, type_tag (type));
19306 equate_type_number_to_die (type, array_die);
19308 if (TREE_CODE (type) == VECTOR_TYPE)
19309 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
19311 /* For Fortran multidimensional arrays use DW_ORD_col_major ordering. */
19312 if (is_fortran ()
19313 && TREE_CODE (type) == ARRAY_TYPE
19314 && TREE_CODE (TREE_TYPE (type)) == ARRAY_TYPE
19315 && !TYPE_STRING_FLAG (TREE_TYPE (type)))
19316 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_col_major);
19318 #if 0
19319 /* We default the array ordering. SDB will probably do
19320 the right things even if DW_AT_ordering is not present. It's not even
19321 an issue until we start to get into multidimensional arrays anyway. If
19322 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
19323 then we'll have to put the DW_AT_ordering attribute back in. (But if
19324 and when we find out that we need to put these in, we will only do so
19325 for multidimensional arrays. */
19326 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
19327 #endif
19329 if (TREE_CODE (type) == VECTOR_TYPE)
19331 /* For VECTOR_TYPEs we use an array die with appropriate bounds. */
19332 dw_die_ref subrange_die = new_die (DW_TAG_subrange_type, array_die, NULL);
19333 add_bound_info (subrange_die, DW_AT_lower_bound, size_zero_node, NULL);
19334 add_bound_info (subrange_die, DW_AT_upper_bound,
19335 size_int (TYPE_VECTOR_SUBPARTS (type) - 1), NULL);
19337 else
19338 add_subscript_info (array_die, type, collapse_nested_arrays);
19340 /* Add representation of the type of the elements of this array type and
19341 emit the corresponding DIE if we haven't done it already. */
19342 element_type = TREE_TYPE (type);
19343 if (collapse_nested_arrays)
19344 while (TREE_CODE (element_type) == ARRAY_TYPE)
19346 if (TYPE_STRING_FLAG (element_type) && is_fortran ())
19347 break;
19348 element_type = TREE_TYPE (element_type);
19351 add_type_attribute (array_die, element_type, TYPE_UNQUALIFIED,
19352 TREE_CODE (type) == ARRAY_TYPE
19353 && TYPE_REVERSE_STORAGE_ORDER (type),
19354 context_die);
19356 add_gnat_descriptive_type_attribute (array_die, type, context_die);
19357 if (TYPE_ARTIFICIAL (type))
19358 add_AT_flag (array_die, DW_AT_artificial, 1);
19360 if (get_AT (array_die, DW_AT_name))
19361 add_pubtype (type, array_die);
19364 /* This routine generates DIE for array with hidden descriptor, details
19365 are filled into *info by a langhook. */
19367 static void
19368 gen_descr_array_type_die (tree type, struct array_descr_info *info,
19369 dw_die_ref context_die)
19371 const dw_die_ref scope_die = scope_die_for (type, context_die);
19372 const dw_die_ref array_die = new_die (DW_TAG_array_type, scope_die, type);
19373 const struct loc_descr_context context = { type, info->base_decl, NULL };
19374 int dim;
19376 add_name_attribute (array_die, type_tag (type));
19377 equate_type_number_to_die (type, array_die);
19379 if (info->ndimensions > 1)
19380 switch (info->ordering)
19382 case array_descr_ordering_row_major:
19383 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
19384 break;
19385 case array_descr_ordering_column_major:
19386 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_col_major);
19387 break;
19388 default:
19389 break;
19392 if (dwarf_version >= 3 || !dwarf_strict)
19394 if (info->data_location)
19395 add_scalar_info (array_die, DW_AT_data_location, info->data_location,
19396 dw_scalar_form_exprloc, &context);
19397 if (info->associated)
19398 add_scalar_info (array_die, DW_AT_associated, info->associated,
19399 dw_scalar_form_constant
19400 | dw_scalar_form_exprloc
19401 | dw_scalar_form_reference, &context);
19402 if (info->allocated)
19403 add_scalar_info (array_die, DW_AT_allocated, info->allocated,
19404 dw_scalar_form_constant
19405 | dw_scalar_form_exprloc
19406 | dw_scalar_form_reference, &context);
19407 if (info->stride)
19409 const enum dwarf_attribute attr
19410 = (info->stride_in_bits) ? DW_AT_bit_stride : DW_AT_byte_stride;
19411 const int forms
19412 = (info->stride_in_bits)
19413 ? dw_scalar_form_constant
19414 : (dw_scalar_form_constant
19415 | dw_scalar_form_exprloc
19416 | dw_scalar_form_reference);
19418 add_scalar_info (array_die, attr, info->stride, forms, &context);
19422 add_gnat_descriptive_type_attribute (array_die, type, context_die);
19424 for (dim = 0; dim < info->ndimensions; dim++)
19426 dw_die_ref subrange_die
19427 = new_die (DW_TAG_subrange_type, array_die, NULL);
19429 if (info->dimen[dim].bounds_type)
19430 add_type_attribute (subrange_die,
19431 info->dimen[dim].bounds_type, TYPE_UNQUALIFIED,
19432 false, context_die);
19433 if (info->dimen[dim].lower_bound)
19434 add_bound_info (subrange_die, DW_AT_lower_bound,
19435 info->dimen[dim].lower_bound, &context);
19436 if (info->dimen[dim].upper_bound)
19437 add_bound_info (subrange_die, DW_AT_upper_bound,
19438 info->dimen[dim].upper_bound, &context);
19439 if ((dwarf_version >= 3 || !dwarf_strict) && info->dimen[dim].stride)
19440 add_scalar_info (subrange_die, DW_AT_byte_stride,
19441 info->dimen[dim].stride,
19442 dw_scalar_form_constant
19443 | dw_scalar_form_exprloc
19444 | dw_scalar_form_reference,
19445 &context);
19448 gen_type_die (info->element_type, context_die);
19449 add_type_attribute (array_die, info->element_type, TYPE_UNQUALIFIED,
19450 TREE_CODE (type) == ARRAY_TYPE
19451 && TYPE_REVERSE_STORAGE_ORDER (type),
19452 context_die);
19454 if (get_AT (array_die, DW_AT_name))
19455 add_pubtype (type, array_die);
19458 #if 0
19459 static void
19460 gen_entry_point_die (tree decl, dw_die_ref context_die)
19462 tree origin = decl_ultimate_origin (decl);
19463 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
19465 if (origin != NULL)
19466 add_abstract_origin_attribute (decl_die, origin);
19467 else
19469 add_name_and_src_coords_attributes (decl_die, decl);
19470 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
19471 TYPE_UNQUALIFIED, false, context_die);
19474 if (DECL_ABSTRACT_P (decl))
19475 equate_decl_number_to_die (decl, decl_die);
19476 else
19477 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
19479 #endif
19481 /* Walk through the list of incomplete types again, trying once more to
19482 emit full debugging info for them. */
19484 static void
19485 retry_incomplete_types (void)
19487 set_early_dwarf s;
19488 int i;
19490 for (i = vec_safe_length (incomplete_types) - 1; i >= 0; i--)
19491 if (should_emit_struct_debug ((*incomplete_types)[i], DINFO_USAGE_DIR_USE))
19492 gen_type_die ((*incomplete_types)[i], comp_unit_die ());
19493 vec_safe_truncate (incomplete_types, 0);
19496 /* Determine what tag to use for a record type. */
19498 static enum dwarf_tag
19499 record_type_tag (tree type)
19501 if (! lang_hooks.types.classify_record)
19502 return DW_TAG_structure_type;
19504 switch (lang_hooks.types.classify_record (type))
19506 case RECORD_IS_STRUCT:
19507 return DW_TAG_structure_type;
19509 case RECORD_IS_CLASS:
19510 return DW_TAG_class_type;
19512 case RECORD_IS_INTERFACE:
19513 if (dwarf_version >= 3 || !dwarf_strict)
19514 return DW_TAG_interface_type;
19515 return DW_TAG_structure_type;
19517 default:
19518 gcc_unreachable ();
19522 /* Generate a DIE to represent an enumeration type. Note that these DIEs
19523 include all of the information about the enumeration values also. Each
19524 enumerated type name/value is listed as a child of the enumerated type
19525 DIE. */
19527 static dw_die_ref
19528 gen_enumeration_type_die (tree type, dw_die_ref context_die)
19530 dw_die_ref type_die = lookup_type_die (type);
19532 if (type_die == NULL)
19534 type_die = new_die (DW_TAG_enumeration_type,
19535 scope_die_for (type, context_die), type);
19536 equate_type_number_to_die (type, type_die);
19537 add_name_attribute (type_die, type_tag (type));
19538 if (dwarf_version >= 4 || !dwarf_strict)
19540 if (ENUM_IS_SCOPED (type))
19541 add_AT_flag (type_die, DW_AT_enum_class, 1);
19542 if (ENUM_IS_OPAQUE (type))
19543 add_AT_flag (type_die, DW_AT_declaration, 1);
19546 else if (! TYPE_SIZE (type))
19547 return type_die;
19548 else
19549 remove_AT (type_die, DW_AT_declaration);
19551 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
19552 given enum type is incomplete, do not generate the DW_AT_byte_size
19553 attribute or the DW_AT_element_list attribute. */
19554 if (TYPE_SIZE (type))
19556 tree link;
19558 TREE_ASM_WRITTEN (type) = 1;
19559 add_byte_size_attribute (type_die, type);
19560 if (dwarf_version >= 3 || !dwarf_strict)
19562 tree underlying = lang_hooks.types.enum_underlying_base_type (type);
19563 add_type_attribute (type_die, underlying, TYPE_UNQUALIFIED, false,
19564 context_die);
19566 if (TYPE_STUB_DECL (type) != NULL_TREE)
19568 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
19569 add_accessibility_attribute (type_die, TYPE_STUB_DECL (type));
19572 /* If the first reference to this type was as the return type of an
19573 inline function, then it may not have a parent. Fix this now. */
19574 if (type_die->die_parent == NULL)
19575 add_child_die (scope_die_for (type, context_die), type_die);
19577 for (link = TYPE_VALUES (type);
19578 link != NULL; link = TREE_CHAIN (link))
19580 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
19581 tree value = TREE_VALUE (link);
19583 add_name_attribute (enum_die,
19584 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
19586 if (TREE_CODE (value) == CONST_DECL)
19587 value = DECL_INITIAL (value);
19589 if (simple_type_size_in_bits (TREE_TYPE (value))
19590 <= HOST_BITS_PER_WIDE_INT || tree_fits_shwi_p (value))
19592 /* For constant forms created by add_AT_unsigned DWARF
19593 consumers (GDB, elfutils, etc.) always zero extend
19594 the value. Only when the actual value is negative
19595 do we need to use add_AT_int to generate a constant
19596 form that can represent negative values. */
19597 HOST_WIDE_INT val = TREE_INT_CST_LOW (value);
19598 if (TYPE_UNSIGNED (TREE_TYPE (value)) || val >= 0)
19599 add_AT_unsigned (enum_die, DW_AT_const_value,
19600 (unsigned HOST_WIDE_INT) val);
19601 else
19602 add_AT_int (enum_die, DW_AT_const_value, val);
19604 else
19605 /* Enumeration constants may be wider than HOST_WIDE_INT. Handle
19606 that here. TODO: This should be re-worked to use correct
19607 signed/unsigned double tags for all cases. */
19608 add_AT_wide (enum_die, DW_AT_const_value, value);
19611 add_gnat_descriptive_type_attribute (type_die, type, context_die);
19612 if (TYPE_ARTIFICIAL (type))
19613 add_AT_flag (type_die, DW_AT_artificial, 1);
19615 else
19616 add_AT_flag (type_die, DW_AT_declaration, 1);
19618 add_pubtype (type, type_die);
19620 return type_die;
19623 /* Generate a DIE to represent either a real live formal parameter decl or to
19624 represent just the type of some formal parameter position in some function
19625 type.
19627 Note that this routine is a bit unusual because its argument may be a
19628 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
19629 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
19630 node. If it's the former then this function is being called to output a
19631 DIE to represent a formal parameter object (or some inlining thereof). If
19632 it's the latter, then this function is only being called to output a
19633 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
19634 argument type of some subprogram type.
19635 If EMIT_NAME_P is true, name and source coordinate attributes
19636 are emitted. */
19638 static dw_die_ref
19639 gen_formal_parameter_die (tree node, tree origin, bool emit_name_p,
19640 dw_die_ref context_die)
19642 tree node_or_origin = node ? node : origin;
19643 tree ultimate_origin;
19644 dw_die_ref parm_die = NULL;
19646 if (TREE_CODE_CLASS (TREE_CODE (node_or_origin)) == tcc_declaration)
19648 parm_die = lookup_decl_die (node);
19650 /* If the contexts differ, we may not be talking about the same
19651 thing. */
19652 if (parm_die && parm_die->die_parent != context_die)
19654 if (!DECL_ABSTRACT_P (node))
19656 /* This can happen when creating an inlined instance, in
19657 which case we need to create a new DIE that will get
19658 annotated with DW_AT_abstract_origin. */
19659 parm_die = NULL;
19661 else
19663 /* FIXME: Reuse DIE even with a differing context.
19665 This can happen when calling
19666 dwarf2out_abstract_function to build debug info for
19667 the abstract instance of a function for which we have
19668 already generated a DIE in
19669 dwarf2out_early_global_decl.
19671 Once we remove dwarf2out_abstract_function, we should
19672 have a call to gcc_unreachable here. */
19676 if (parm_die && parm_die->die_parent == NULL)
19678 /* Check that parm_die already has the right attributes that
19679 we would have added below. If any attributes are
19680 missing, fall through to add them. */
19681 if (! DECL_ABSTRACT_P (node_or_origin)
19682 && !get_AT (parm_die, DW_AT_location)
19683 && !get_AT (parm_die, DW_AT_const_value))
19684 /* We are missing location info, and are about to add it. */
19686 else
19688 add_child_die (context_die, parm_die);
19689 return parm_die;
19694 /* If we have a previously generated DIE, use it, unless this is an
19695 concrete instance (origin != NULL), in which case we need a new
19696 DIE with a corresponding DW_AT_abstract_origin. */
19697 bool reusing_die;
19698 if (parm_die && origin == NULL)
19699 reusing_die = true;
19700 else
19702 parm_die = new_die (DW_TAG_formal_parameter, context_die, node);
19703 reusing_die = false;
19706 switch (TREE_CODE_CLASS (TREE_CODE (node_or_origin)))
19708 case tcc_declaration:
19709 ultimate_origin = decl_ultimate_origin (node_or_origin);
19710 if (node || ultimate_origin)
19711 origin = ultimate_origin;
19713 if (reusing_die)
19714 goto add_location;
19716 if (origin != NULL)
19717 add_abstract_origin_attribute (parm_die, origin);
19718 else if (emit_name_p)
19719 add_name_and_src_coords_attributes (parm_die, node);
19720 if (origin == NULL
19721 || (! DECL_ABSTRACT_P (node_or_origin)
19722 && variably_modified_type_p (TREE_TYPE (node_or_origin),
19723 decl_function_context
19724 (node_or_origin))))
19726 tree type = TREE_TYPE (node_or_origin);
19727 if (decl_by_reference_p (node_or_origin))
19728 add_type_attribute (parm_die, TREE_TYPE (type),
19729 TYPE_UNQUALIFIED,
19730 false, context_die);
19731 else
19732 add_type_attribute (parm_die, type,
19733 decl_quals (node_or_origin),
19734 false, context_die);
19736 if (origin == NULL && DECL_ARTIFICIAL (node))
19737 add_AT_flag (parm_die, DW_AT_artificial, 1);
19738 add_location:
19739 if (node && node != origin)
19740 equate_decl_number_to_die (node, parm_die);
19741 if (! DECL_ABSTRACT_P (node_or_origin))
19742 add_location_or_const_value_attribute (parm_die, node_or_origin,
19743 node == NULL);
19745 break;
19747 case tcc_type:
19748 /* We were called with some kind of a ..._TYPE node. */
19749 add_type_attribute (parm_die, node_or_origin, TYPE_UNQUALIFIED, false,
19750 context_die);
19751 break;
19753 default:
19754 gcc_unreachable ();
19757 return parm_die;
19760 /* Generate and return a DW_TAG_GNU_formal_parameter_pack. Also generate
19761 children DW_TAG_formal_parameter DIEs representing the arguments of the
19762 parameter pack.
19764 PARM_PACK must be a function parameter pack.
19765 PACK_ARG is the first argument of the parameter pack. Its TREE_CHAIN
19766 must point to the subsequent arguments of the function PACK_ARG belongs to.
19767 SUBR_DIE is the DIE of the function PACK_ARG belongs to.
19768 If NEXT_ARG is non NULL, *NEXT_ARG is set to the function argument
19769 following the last one for which a DIE was generated. */
19771 static dw_die_ref
19772 gen_formal_parameter_pack_die (tree parm_pack,
19773 tree pack_arg,
19774 dw_die_ref subr_die,
19775 tree *next_arg)
19777 tree arg;
19778 dw_die_ref parm_pack_die;
19780 gcc_assert (parm_pack
19781 && lang_hooks.function_parameter_pack_p (parm_pack)
19782 && subr_die);
19784 parm_pack_die = new_die (DW_TAG_GNU_formal_parameter_pack, subr_die, parm_pack);
19785 add_src_coords_attributes (parm_pack_die, parm_pack);
19787 for (arg = pack_arg; arg; arg = DECL_CHAIN (arg))
19789 if (! lang_hooks.decls.function_parm_expanded_from_pack_p (arg,
19790 parm_pack))
19791 break;
19792 gen_formal_parameter_die (arg, NULL,
19793 false /* Don't emit name attribute. */,
19794 parm_pack_die);
19796 if (next_arg)
19797 *next_arg = arg;
19798 return parm_pack_die;
19801 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
19802 at the end of an (ANSI prototyped) formal parameters list. */
19804 static void
19805 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
19807 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
19810 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
19811 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
19812 parameters as specified in some function type specification (except for
19813 those which appear as part of a function *definition*). */
19815 static void
19816 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
19818 tree link;
19819 tree formal_type = NULL;
19820 tree first_parm_type;
19821 tree arg;
19823 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
19825 arg = DECL_ARGUMENTS (function_or_method_type);
19826 function_or_method_type = TREE_TYPE (function_or_method_type);
19828 else
19829 arg = NULL_TREE;
19831 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
19833 /* Make our first pass over the list of formal parameter types and output a
19834 DW_TAG_formal_parameter DIE for each one. */
19835 for (link = first_parm_type; link; )
19837 dw_die_ref parm_die;
19839 formal_type = TREE_VALUE (link);
19840 if (formal_type == void_type_node)
19841 break;
19843 /* Output a (nameless) DIE to represent the formal parameter itself. */
19844 if (!POINTER_BOUNDS_TYPE_P (formal_type))
19846 parm_die = gen_formal_parameter_die (formal_type, NULL,
19847 true /* Emit name attribute. */,
19848 context_die);
19849 if (TREE_CODE (function_or_method_type) == METHOD_TYPE
19850 && link == first_parm_type)
19852 add_AT_flag (parm_die, DW_AT_artificial, 1);
19853 if (dwarf_version >= 3 || !dwarf_strict)
19854 add_AT_die_ref (context_die, DW_AT_object_pointer, parm_die);
19856 else if (arg && DECL_ARTIFICIAL (arg))
19857 add_AT_flag (parm_die, DW_AT_artificial, 1);
19860 link = TREE_CHAIN (link);
19861 if (arg)
19862 arg = DECL_CHAIN (arg);
19865 /* If this function type has an ellipsis, add a
19866 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
19867 if (formal_type != void_type_node)
19868 gen_unspecified_parameters_die (function_or_method_type, context_die);
19870 /* Make our second (and final) pass over the list of formal parameter types
19871 and output DIEs to represent those types (as necessary). */
19872 for (link = TYPE_ARG_TYPES (function_or_method_type);
19873 link && TREE_VALUE (link);
19874 link = TREE_CHAIN (link))
19875 gen_type_die (TREE_VALUE (link), context_die);
19878 /* We want to generate the DIE for TYPE so that we can generate the
19879 die for MEMBER, which has been defined; we will need to refer back
19880 to the member declaration nested within TYPE. If we're trying to
19881 generate minimal debug info for TYPE, processing TYPE won't do the
19882 trick; we need to attach the member declaration by hand. */
19884 static void
19885 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
19887 gen_type_die (type, context_die);
19889 /* If we're trying to avoid duplicate debug info, we may not have
19890 emitted the member decl for this function. Emit it now. */
19891 if (TYPE_STUB_DECL (type)
19892 && TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
19893 && ! lookup_decl_die (member))
19895 dw_die_ref type_die;
19896 gcc_assert (!decl_ultimate_origin (member));
19898 push_decl_scope (type);
19899 type_die = lookup_type_die_strip_naming_typedef (type);
19900 if (TREE_CODE (member) == FUNCTION_DECL)
19901 gen_subprogram_die (member, type_die);
19902 else if (TREE_CODE (member) == FIELD_DECL)
19904 /* Ignore the nameless fields that are used to skip bits but handle
19905 C++ anonymous unions and structs. */
19906 if (DECL_NAME (member) != NULL_TREE
19907 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
19908 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
19910 struct vlr_context vlr_ctx = {
19911 DECL_CONTEXT (member), /* struct_type */
19912 NULL_TREE /* variant_part_offset */
19914 gen_type_die (member_declared_type (member), type_die);
19915 gen_field_die (member, &vlr_ctx, type_die);
19918 else
19919 gen_variable_die (member, NULL_TREE, type_die);
19921 pop_decl_scope ();
19925 /* Forward declare these functions, because they are mutually recursive
19926 with their set_block_* pairing functions. */
19927 static void set_decl_origin_self (tree);
19928 static void set_decl_abstract_flags (tree, vec<tree> &);
19930 /* Given a pointer to some BLOCK node, if the BLOCK_ABSTRACT_ORIGIN for the
19931 given BLOCK node is NULL, set the BLOCK_ABSTRACT_ORIGIN for the node so
19932 that it points to the node itself, thus indicating that the node is its
19933 own (abstract) origin. Additionally, if the BLOCK_ABSTRACT_ORIGIN for
19934 the given node is NULL, recursively descend the decl/block tree which
19935 it is the root of, and for each other ..._DECL or BLOCK node contained
19936 therein whose DECL_ABSTRACT_ORIGINs or BLOCK_ABSTRACT_ORIGINs are also
19937 still NULL, set *their* DECL_ABSTRACT_ORIGIN or BLOCK_ABSTRACT_ORIGIN
19938 values to point to themselves. */
19940 static void
19941 set_block_origin_self (tree stmt)
19943 if (BLOCK_ABSTRACT_ORIGIN (stmt) == NULL_TREE)
19945 BLOCK_ABSTRACT_ORIGIN (stmt) = stmt;
19948 tree local_decl;
19950 for (local_decl = BLOCK_VARS (stmt);
19951 local_decl != NULL_TREE;
19952 local_decl = DECL_CHAIN (local_decl))
19953 /* Do not recurse on nested functions since the inlining status
19954 of parent and child can be different as per the DWARF spec. */
19955 if (TREE_CODE (local_decl) != FUNCTION_DECL
19956 && !DECL_EXTERNAL (local_decl))
19957 set_decl_origin_self (local_decl);
19961 tree subblock;
19963 for (subblock = BLOCK_SUBBLOCKS (stmt);
19964 subblock != NULL_TREE;
19965 subblock = BLOCK_CHAIN (subblock))
19966 set_block_origin_self (subblock); /* Recurse. */
19971 /* Given a pointer to some ..._DECL node, if the DECL_ABSTRACT_ORIGIN for
19972 the given ..._DECL node is NULL, set the DECL_ABSTRACT_ORIGIN for the
19973 node to so that it points to the node itself, thus indicating that the
19974 node represents its own (abstract) origin. Additionally, if the
19975 DECL_ABSTRACT_ORIGIN for the given node is NULL, recursively descend
19976 the decl/block tree of which the given node is the root of, and for
19977 each other ..._DECL or BLOCK node contained therein whose
19978 DECL_ABSTRACT_ORIGINs or BLOCK_ABSTRACT_ORIGINs are also still NULL,
19979 set *their* DECL_ABSTRACT_ORIGIN or BLOCK_ABSTRACT_ORIGIN values to
19980 point to themselves. */
19982 static void
19983 set_decl_origin_self (tree decl)
19985 if (DECL_ABSTRACT_ORIGIN (decl) == NULL_TREE)
19987 DECL_ABSTRACT_ORIGIN (decl) = decl;
19988 if (TREE_CODE (decl) == FUNCTION_DECL)
19990 tree arg;
19992 for (arg = DECL_ARGUMENTS (decl); arg; arg = DECL_CHAIN (arg))
19993 DECL_ABSTRACT_ORIGIN (arg) = arg;
19994 if (DECL_INITIAL (decl) != NULL_TREE
19995 && DECL_INITIAL (decl) != error_mark_node)
19996 set_block_origin_self (DECL_INITIAL (decl));
20001 /* Given a pointer to some BLOCK node, set the BLOCK_ABSTRACT flag to 1
20002 and if it wasn't 1 before, push it to abstract_vec vector.
20003 For all local decls and all local sub-blocks (recursively) do it
20004 too. */
20006 static void
20007 set_block_abstract_flags (tree stmt, vec<tree> &abstract_vec)
20009 tree local_decl;
20010 tree subblock;
20011 unsigned int i;
20013 if (!BLOCK_ABSTRACT (stmt))
20015 abstract_vec.safe_push (stmt);
20016 BLOCK_ABSTRACT (stmt) = 1;
20019 for (local_decl = BLOCK_VARS (stmt);
20020 local_decl != NULL_TREE;
20021 local_decl = DECL_CHAIN (local_decl))
20022 if (! DECL_EXTERNAL (local_decl))
20023 set_decl_abstract_flags (local_decl, abstract_vec);
20025 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (stmt); i++)
20027 local_decl = BLOCK_NONLOCALIZED_VAR (stmt, i);
20028 if ((TREE_CODE (local_decl) == VAR_DECL && !TREE_STATIC (local_decl))
20029 || TREE_CODE (local_decl) == PARM_DECL)
20030 set_decl_abstract_flags (local_decl, abstract_vec);
20033 for (subblock = BLOCK_SUBBLOCKS (stmt);
20034 subblock != NULL_TREE;
20035 subblock = BLOCK_CHAIN (subblock))
20036 set_block_abstract_flags (subblock, abstract_vec);
20039 /* Given a pointer to some ..._DECL node, set DECL_ABSTRACT_P flag on it
20040 to 1 and if it wasn't 1 before, push to abstract_vec vector.
20041 In the case where the decl is a FUNCTION_DECL also set the abstract
20042 flags for all of the parameters, local vars, local
20043 blocks and sub-blocks (recursively). */
20045 static void
20046 set_decl_abstract_flags (tree decl, vec<tree> &abstract_vec)
20048 if (!DECL_ABSTRACT_P (decl))
20050 abstract_vec.safe_push (decl);
20051 DECL_ABSTRACT_P (decl) = 1;
20054 if (TREE_CODE (decl) == FUNCTION_DECL)
20056 tree arg;
20058 for (arg = DECL_ARGUMENTS (decl); arg; arg = DECL_CHAIN (arg))
20059 if (!DECL_ABSTRACT_P (arg))
20061 abstract_vec.safe_push (arg);
20062 DECL_ABSTRACT_P (arg) = 1;
20064 if (DECL_INITIAL (decl) != NULL_TREE
20065 && DECL_INITIAL (decl) != error_mark_node)
20066 set_block_abstract_flags (DECL_INITIAL (decl), abstract_vec);
20070 /* Generate the DWARF2 info for the "abstract" instance of a function which we
20071 may later generate inlined and/or out-of-line instances of.
20073 FIXME: In the early-dwarf world, this function, and most of the
20074 DECL_ABSTRACT code should be obsoleted. The early DIE _is_
20075 the abstract instance. All we would need to do is annotate
20076 the early DIE with the appropriate DW_AT_inline in late
20077 dwarf (perhaps in gen_inlined_subroutine_die).
20079 However, we can't do this yet, because LTO streaming of DIEs
20080 has not been implemented yet. */
20082 static void
20083 dwarf2out_abstract_function (tree decl)
20085 dw_die_ref old_die;
20086 tree save_fn;
20087 tree context;
20088 hash_table<decl_loc_hasher> *old_decl_loc_table;
20089 hash_table<dw_loc_list_hasher> *old_cached_dw_loc_list_table;
20090 int old_call_site_count, old_tail_call_site_count;
20091 struct call_arg_loc_node *old_call_arg_locations;
20093 /* Make sure we have the actual abstract inline, not a clone. */
20094 decl = DECL_ORIGIN (decl);
20096 old_die = lookup_decl_die (decl);
20097 if (old_die && get_AT (old_die, DW_AT_inline))
20098 /* We've already generated the abstract instance. */
20099 return;
20101 /* We can be called while recursively when seeing block defining inlined subroutine
20102 DIE. Be sure to not clobber the outer location table nor use it or we would
20103 get locations in abstract instantces. */
20104 old_decl_loc_table = decl_loc_table;
20105 decl_loc_table = NULL;
20106 old_cached_dw_loc_list_table = cached_dw_loc_list_table;
20107 cached_dw_loc_list_table = NULL;
20108 old_call_arg_locations = call_arg_locations;
20109 call_arg_locations = NULL;
20110 old_call_site_count = call_site_count;
20111 call_site_count = -1;
20112 old_tail_call_site_count = tail_call_site_count;
20113 tail_call_site_count = -1;
20115 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
20116 we don't get confused by DECL_ABSTRACT_P. */
20117 if (debug_info_level > DINFO_LEVEL_TERSE)
20119 context = decl_class_context (decl);
20120 if (context)
20121 gen_type_die_for_member
20122 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die ());
20125 /* Pretend we've just finished compiling this function. */
20126 save_fn = current_function_decl;
20127 current_function_decl = decl;
20129 auto_vec<tree, 64> abstract_vec;
20130 set_decl_abstract_flags (decl, abstract_vec);
20131 dwarf2out_decl (decl);
20132 unsigned int i;
20133 tree t;
20134 FOR_EACH_VEC_ELT (abstract_vec, i, t)
20135 if (TREE_CODE (t) == BLOCK)
20136 BLOCK_ABSTRACT (t) = 0;
20137 else
20138 DECL_ABSTRACT_P (t) = 0;
20140 current_function_decl = save_fn;
20141 decl_loc_table = old_decl_loc_table;
20142 cached_dw_loc_list_table = old_cached_dw_loc_list_table;
20143 call_arg_locations = old_call_arg_locations;
20144 call_site_count = old_call_site_count;
20145 tail_call_site_count = old_tail_call_site_count;
20148 /* Helper function of premark_used_types() which gets called through
20149 htab_traverse.
20151 Marks the DIE of a given type in *SLOT as perennial, so it never gets
20152 marked as unused by prune_unused_types. */
20154 bool
20155 premark_used_types_helper (tree const &type, void *)
20157 dw_die_ref die;
20159 die = lookup_type_die (type);
20160 if (die != NULL)
20161 die->die_perennial_p = 1;
20162 return true;
20165 /* Helper function of premark_types_used_by_global_vars which gets called
20166 through htab_traverse.
20168 Marks the DIE of a given type in *SLOT as perennial, so it never gets
20169 marked as unused by prune_unused_types. The DIE of the type is marked
20170 only if the global variable using the type will actually be emitted. */
20173 premark_types_used_by_global_vars_helper (types_used_by_vars_entry **slot,
20174 void *)
20176 struct types_used_by_vars_entry *entry;
20177 dw_die_ref die;
20179 entry = (struct types_used_by_vars_entry *) *slot;
20180 gcc_assert (entry->type != NULL
20181 && entry->var_decl != NULL);
20182 die = lookup_type_die (entry->type);
20183 if (die)
20185 /* Ask cgraph if the global variable really is to be emitted.
20186 If yes, then we'll keep the DIE of ENTRY->TYPE. */
20187 varpool_node *node = varpool_node::get (entry->var_decl);
20188 if (node && node->definition)
20190 die->die_perennial_p = 1;
20191 /* Keep the parent DIEs as well. */
20192 while ((die = die->die_parent) && die->die_perennial_p == 0)
20193 die->die_perennial_p = 1;
20196 return 1;
20199 /* Mark all members of used_types_hash as perennial. */
20201 static void
20202 premark_used_types (struct function *fun)
20204 if (fun && fun->used_types_hash)
20205 fun->used_types_hash->traverse<void *, premark_used_types_helper> (NULL);
20208 /* Mark all members of types_used_by_vars_entry as perennial. */
20210 static void
20211 premark_types_used_by_global_vars (void)
20213 if (types_used_by_vars_hash)
20214 types_used_by_vars_hash
20215 ->traverse<void *, premark_types_used_by_global_vars_helper> (NULL);
20218 /* Generate a DW_TAG_GNU_call_site DIE in function DECL under SUBR_DIE
20219 for CA_LOC call arg loc node. */
20221 static dw_die_ref
20222 gen_call_site_die (tree decl, dw_die_ref subr_die,
20223 struct call_arg_loc_node *ca_loc)
20225 dw_die_ref stmt_die = NULL, die;
20226 tree block = ca_loc->block;
20228 while (block
20229 && block != DECL_INITIAL (decl)
20230 && TREE_CODE (block) == BLOCK)
20232 stmt_die = BLOCK_DIE (block);
20233 if (stmt_die)
20234 break;
20235 block = BLOCK_SUPERCONTEXT (block);
20237 if (stmt_die == NULL)
20238 stmt_die = subr_die;
20239 die = new_die (DW_TAG_GNU_call_site, stmt_die, NULL_TREE);
20240 add_AT_lbl_id (die, DW_AT_low_pc, ca_loc->label);
20241 if (ca_loc->tail_call_p)
20242 add_AT_flag (die, DW_AT_GNU_tail_call, 1);
20243 if (ca_loc->symbol_ref)
20245 dw_die_ref tdie = lookup_decl_die (SYMBOL_REF_DECL (ca_loc->symbol_ref));
20246 if (tdie)
20247 add_AT_die_ref (die, DW_AT_abstract_origin, tdie);
20248 else
20249 add_AT_addr (die, DW_AT_abstract_origin, ca_loc->symbol_ref, false);
20251 return die;
20254 /* Generate a DIE to represent a declared function (either file-scope or
20255 block-local). */
20257 static void
20258 gen_subprogram_die (tree decl, dw_die_ref context_die)
20260 tree origin = decl_ultimate_origin (decl);
20261 dw_die_ref subr_die;
20262 dw_die_ref old_die = lookup_decl_die (decl);
20264 /* This function gets called multiple times for different stages of
20265 the debug process. For example, for func() in this code:
20267 namespace S
20269 void func() { ... }
20272 ...we get called 4 times. Twice in early debug and twice in
20273 late debug:
20275 Early debug
20276 -----------
20278 1. Once while generating func() within the namespace. This is
20279 the declaration. The declaration bit below is set, as the
20280 context is the namespace.
20282 A new DIE will be generated with DW_AT_declaration set.
20284 2. Once for func() itself. This is the specification. The
20285 declaration bit below is clear as the context is the CU.
20287 We will use the cached DIE from (1) to create a new DIE with
20288 DW_AT_specification pointing to the declaration in (1).
20290 Late debug via rest_of_handle_final()
20291 -------------------------------------
20293 3. Once generating func() within the namespace. This is also the
20294 declaration, as in (1), but this time we will early exit below
20295 as we have a cached DIE and a declaration needs no additional
20296 annotations (no locations), as the source declaration line
20297 info is enough.
20299 4. Once for func() itself. As in (2), this is the specification,
20300 but this time we will re-use the cached DIE, and just annotate
20301 it with the location information that should now be available.
20303 For something without namespaces, but with abstract instances, we
20304 are also called a multiple times:
20306 class Base
20308 public:
20309 Base (); // constructor declaration (1)
20312 Base::Base () { } // constructor specification (2)
20314 Early debug
20315 -----------
20317 1. Once for the Base() constructor by virtue of it being a
20318 member of the Base class. This is done via
20319 rest_of_type_compilation.
20321 This is a declaration, so a new DIE will be created with
20322 DW_AT_declaration.
20324 2. Once for the Base() constructor definition, but this time
20325 while generating the abstract instance of the base
20326 constructor (__base_ctor) which is being generated via early
20327 debug of reachable functions.
20329 Even though we have a cached version of the declaration (1),
20330 we will create a DW_AT_specification of the declaration DIE
20331 in (1).
20333 3. Once for the __base_ctor itself, but this time, we generate
20334 an DW_AT_abstract_origin version of the DW_AT_specification in
20335 (2).
20337 Late debug via rest_of_handle_final
20338 -----------------------------------
20340 4. One final time for the __base_ctor (which will have a cached
20341 DIE with DW_AT_abstract_origin created in (3). This time,
20342 we will just annotate the location information now
20343 available.
20345 int declaration = (current_function_decl != decl
20346 || class_or_namespace_scope_p (context_die));
20348 premark_used_types (DECL_STRUCT_FUNCTION (decl));
20350 /* Now that the C++ front end lazily declares artificial member fns, we
20351 might need to retrofit the declaration into its class. */
20352 if (!declaration && !origin && !old_die
20353 && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
20354 && !class_or_namespace_scope_p (context_die)
20355 && debug_info_level > DINFO_LEVEL_TERSE)
20356 old_die = force_decl_die (decl);
20358 /* An inlined instance, tag a new DIE with DW_AT_abstract_origin. */
20359 if (origin != NULL)
20361 gcc_assert (!declaration || local_scope_p (context_die));
20363 /* Fixup die_parent for the abstract instance of a nested
20364 inline function. */
20365 if (old_die && old_die->die_parent == NULL)
20366 add_child_die (context_die, old_die);
20368 if (old_die && get_AT_ref (old_die, DW_AT_abstract_origin))
20370 /* If we have a DW_AT_abstract_origin we have a working
20371 cached version. */
20372 subr_die = old_die;
20374 else
20376 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
20377 add_abstract_origin_attribute (subr_die, origin);
20378 /* This is where the actual code for a cloned function is.
20379 Let's emit linkage name attribute for it. This helps
20380 debuggers to e.g, set breakpoints into
20381 constructors/destructors when the user asks "break
20382 K::K". */
20383 add_linkage_name (subr_die, decl);
20386 /* A cached copy, possibly from early dwarf generation. Reuse as
20387 much as possible. */
20388 else if (old_die)
20390 /* A declaration that has been previously dumped needs no
20391 additional information. */
20392 if (declaration)
20393 return;
20395 if (!get_AT_flag (old_die, DW_AT_declaration)
20396 /* We can have a normal definition following an inline one in the
20397 case of redefinition of GNU C extern inlines.
20398 It seems reasonable to use AT_specification in this case. */
20399 && !get_AT (old_die, DW_AT_inline))
20401 /* Detect and ignore this case, where we are trying to output
20402 something we have already output. */
20403 if (get_AT (old_die, DW_AT_low_pc)
20404 || get_AT (old_die, DW_AT_ranges))
20405 return;
20407 /* If we have no location information, this must be a
20408 partially generated DIE from early dwarf generation.
20409 Fall through and generate it. */
20412 /* If the definition comes from the same place as the declaration,
20413 maybe use the old DIE. We always want the DIE for this function
20414 that has the *_pc attributes to be under comp_unit_die so the
20415 debugger can find it. We also need to do this for abstract
20416 instances of inlines, since the spec requires the out-of-line copy
20417 to have the same parent. For local class methods, this doesn't
20418 apply; we just use the old DIE. */
20419 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
20420 struct dwarf_file_data * file_index = lookup_filename (s.file);
20421 if ((is_cu_die (old_die->die_parent)
20422 /* This condition fixes the inconsistency/ICE with the
20423 following Fortran test (or some derivative thereof) while
20424 building libgfortran:
20426 module some_m
20427 contains
20428 logical function funky (FLAG)
20429 funky = .true.
20430 end function
20431 end module
20433 || (old_die->die_parent
20434 && old_die->die_parent->die_tag == DW_TAG_module)
20435 || context_die == NULL)
20436 && (DECL_ARTIFICIAL (decl)
20437 || (get_AT_file (old_die, DW_AT_decl_file) == file_index
20438 && (get_AT_unsigned (old_die, DW_AT_decl_line)
20439 == (unsigned) s.line))))
20441 subr_die = old_die;
20443 /* Clear out the declaration attribute, but leave the
20444 parameters so they can be augmented with location
20445 information later. Unless this was a declaration, in
20446 which case, wipe out the nameless parameters and recreate
20447 them further down. */
20448 if (remove_AT (subr_die, DW_AT_declaration))
20451 remove_AT (subr_die, DW_AT_object_pointer);
20452 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
20455 /* Make a specification pointing to the previously built
20456 declaration. */
20457 else
20459 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
20460 add_AT_specification (subr_die, old_die);
20461 add_pubname (decl, subr_die);
20462 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
20463 add_AT_file (subr_die, DW_AT_decl_file, file_index);
20464 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
20465 add_AT_unsigned (subr_die, DW_AT_decl_line, s.line);
20467 /* If the prototype had an 'auto' or 'decltype(auto)' return type,
20468 emit the real type on the definition die. */
20469 if (is_cxx() && debug_info_level > DINFO_LEVEL_TERSE)
20471 dw_die_ref die = get_AT_ref (old_die, DW_AT_type);
20472 if (die == auto_die || die == decltype_auto_die)
20473 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
20474 TYPE_UNQUALIFIED, false, context_die);
20478 /* Create a fresh DIE for anything else. */
20479 else
20481 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
20483 if (TREE_PUBLIC (decl))
20484 add_AT_flag (subr_die, DW_AT_external, 1);
20486 add_name_and_src_coords_attributes (subr_die, decl);
20487 add_pubname (decl, subr_die);
20488 if (debug_info_level > DINFO_LEVEL_TERSE)
20490 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
20491 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
20492 TYPE_UNQUALIFIED, false, context_die);
20495 add_pure_or_virtual_attribute (subr_die, decl);
20496 if (DECL_ARTIFICIAL (decl))
20497 add_AT_flag (subr_die, DW_AT_artificial, 1);
20499 if (TREE_THIS_VOLATILE (decl) && (dwarf_version >= 5 || !dwarf_strict))
20500 add_AT_flag (subr_die, DW_AT_noreturn, 1);
20502 add_accessibility_attribute (subr_die, decl);
20505 /* Unless we have an existing non-declaration DIE, equate the new
20506 DIE. */
20507 if (!old_die || is_declaration_die (old_die))
20508 equate_decl_number_to_die (decl, subr_die);
20510 if (declaration)
20512 if (!old_die || !get_AT (old_die, DW_AT_inline))
20514 add_AT_flag (subr_die, DW_AT_declaration, 1);
20516 /* If this is an explicit function declaration then generate
20517 a DW_AT_explicit attribute. */
20518 if (lang_hooks.decls.function_decl_explicit_p (decl)
20519 && (dwarf_version >= 3 || !dwarf_strict))
20520 add_AT_flag (subr_die, DW_AT_explicit, 1);
20522 /* If this is a C++11 deleted special function member then generate
20523 a DW_AT_GNU_deleted attribute. */
20524 if (lang_hooks.decls.function_decl_deleted_p (decl)
20525 && (! dwarf_strict))
20526 add_AT_flag (subr_die, DW_AT_GNU_deleted, 1);
20529 /* Tag abstract instances with DW_AT_inline. */
20530 else if (DECL_ABSTRACT_P (decl))
20532 if (DECL_DECLARED_INLINE_P (decl))
20534 if (cgraph_function_possibly_inlined_p (decl))
20535 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
20536 else
20537 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
20539 else
20541 if (cgraph_function_possibly_inlined_p (decl))
20542 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
20543 else
20544 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
20547 if (DECL_DECLARED_INLINE_P (decl)
20548 && lookup_attribute ("artificial", DECL_ATTRIBUTES (decl)))
20549 add_AT_flag (subr_die, DW_AT_artificial, 1);
20551 /* For non DECL_EXTERNALs, if range information is available, fill
20552 the DIE with it. */
20553 else if (!DECL_EXTERNAL (decl) && !early_dwarf)
20555 HOST_WIDE_INT cfa_fb_offset;
20557 struct function *fun = DECL_STRUCT_FUNCTION (decl);
20559 if (!flag_reorder_blocks_and_partition)
20561 dw_fde_ref fde = fun->fde;
20562 if (fde->dw_fde_begin)
20564 /* We have already generated the labels. */
20565 add_AT_low_high_pc (subr_die, fde->dw_fde_begin,
20566 fde->dw_fde_end, false);
20568 else
20570 /* Create start/end labels and add the range. */
20571 char label_id_low[MAX_ARTIFICIAL_LABEL_BYTES];
20572 char label_id_high[MAX_ARTIFICIAL_LABEL_BYTES];
20573 ASM_GENERATE_INTERNAL_LABEL (label_id_low, FUNC_BEGIN_LABEL,
20574 current_function_funcdef_no);
20575 ASM_GENERATE_INTERNAL_LABEL (label_id_high, FUNC_END_LABEL,
20576 current_function_funcdef_no);
20577 add_AT_low_high_pc (subr_die, label_id_low, label_id_high,
20578 false);
20581 #if VMS_DEBUGGING_INFO
20582 /* HP OpenVMS Industry Standard 64: DWARF Extensions
20583 Section 2.3 Prologue and Epilogue Attributes:
20584 When a breakpoint is set on entry to a function, it is generally
20585 desirable for execution to be suspended, not on the very first
20586 instruction of the function, but rather at a point after the
20587 function's frame has been set up, after any language defined local
20588 declaration processing has been completed, and before execution of
20589 the first statement of the function begins. Debuggers generally
20590 cannot properly determine where this point is. Similarly for a
20591 breakpoint set on exit from a function. The prologue and epilogue
20592 attributes allow a compiler to communicate the location(s) to use. */
20595 if (fde->dw_fde_vms_end_prologue)
20596 add_AT_vms_delta (subr_die, DW_AT_HP_prologue,
20597 fde->dw_fde_begin, fde->dw_fde_vms_end_prologue);
20599 if (fde->dw_fde_vms_begin_epilogue)
20600 add_AT_vms_delta (subr_die, DW_AT_HP_epilogue,
20601 fde->dw_fde_begin, fde->dw_fde_vms_begin_epilogue);
20603 #endif
20606 else
20608 /* Generate pubnames entries for the split function code ranges. */
20609 dw_fde_ref fde = fun->fde;
20611 if (fde->dw_fde_second_begin)
20613 if (dwarf_version >= 3 || !dwarf_strict)
20615 /* We should use ranges for non-contiguous code section
20616 addresses. Use the actual code range for the initial
20617 section, since the HOT/COLD labels might precede an
20618 alignment offset. */
20619 bool range_list_added = false;
20620 add_ranges_by_labels (subr_die, fde->dw_fde_begin,
20621 fde->dw_fde_end, &range_list_added,
20622 false);
20623 add_ranges_by_labels (subr_die, fde->dw_fde_second_begin,
20624 fde->dw_fde_second_end,
20625 &range_list_added, false);
20626 if (range_list_added)
20627 add_ranges (NULL);
20629 else
20631 /* There is no real support in DW2 for this .. so we make
20632 a work-around. First, emit the pub name for the segment
20633 containing the function label. Then make and emit a
20634 simplified subprogram DIE for the second segment with the
20635 name pre-fixed by __hot/cold_sect_of_. We use the same
20636 linkage name for the second die so that gdb will find both
20637 sections when given "b foo". */
20638 const char *name = NULL;
20639 tree decl_name = DECL_NAME (decl);
20640 dw_die_ref seg_die;
20642 /* Do the 'primary' section. */
20643 add_AT_low_high_pc (subr_die, fde->dw_fde_begin,
20644 fde->dw_fde_end, false);
20646 /* Build a minimal DIE for the secondary section. */
20647 seg_die = new_die (DW_TAG_subprogram,
20648 subr_die->die_parent, decl);
20650 if (TREE_PUBLIC (decl))
20651 add_AT_flag (seg_die, DW_AT_external, 1);
20653 if (decl_name != NULL
20654 && IDENTIFIER_POINTER (decl_name) != NULL)
20656 name = dwarf2_name (decl, 1);
20657 if (! DECL_ARTIFICIAL (decl))
20658 add_src_coords_attributes (seg_die, decl);
20660 add_linkage_name (seg_die, decl);
20662 gcc_assert (name != NULL);
20663 add_pure_or_virtual_attribute (seg_die, decl);
20664 if (DECL_ARTIFICIAL (decl))
20665 add_AT_flag (seg_die, DW_AT_artificial, 1);
20667 name = concat ("__second_sect_of_", name, NULL);
20668 add_AT_low_high_pc (seg_die, fde->dw_fde_second_begin,
20669 fde->dw_fde_second_end, false);
20670 add_name_attribute (seg_die, name);
20671 if (want_pubnames ())
20672 add_pubname_string (name, seg_die);
20675 else
20676 add_AT_low_high_pc (subr_die, fde->dw_fde_begin, fde->dw_fde_end,
20677 false);
20680 cfa_fb_offset = CFA_FRAME_BASE_OFFSET (decl);
20682 /* We define the "frame base" as the function's CFA. This is more
20683 convenient for several reasons: (1) It's stable across the prologue
20684 and epilogue, which makes it better than just a frame pointer,
20685 (2) With dwarf3, there exists a one-byte encoding that allows us
20686 to reference the .debug_frame data by proxy, but failing that,
20687 (3) We can at least reuse the code inspection and interpretation
20688 code that determines the CFA position at various points in the
20689 function. */
20690 if (dwarf_version >= 3 && targetm.debug_unwind_info () == UI_DWARF2)
20692 dw_loc_descr_ref op = new_loc_descr (DW_OP_call_frame_cfa, 0, 0);
20693 add_AT_loc (subr_die, DW_AT_frame_base, op);
20695 else
20697 dw_loc_list_ref list = convert_cfa_to_fb_loc_list (cfa_fb_offset);
20698 if (list->dw_loc_next)
20699 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
20700 else
20701 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
20704 /* Compute a displacement from the "steady-state frame pointer" to
20705 the CFA. The former is what all stack slots and argument slots
20706 will reference in the rtl; the latter is what we've told the
20707 debugger about. We'll need to adjust all frame_base references
20708 by this displacement. */
20709 compute_frame_pointer_to_fb_displacement (cfa_fb_offset);
20711 if (fun->static_chain_decl)
20713 /* DWARF requires here a location expression that computes the
20714 address of the enclosing subprogram's frame base. The machinery
20715 in tree-nested.c is supposed to store this specific address in the
20716 last field of the FRAME record. */
20717 const tree frame_type
20718 = TREE_TYPE (TREE_TYPE (fun->static_chain_decl));
20719 const tree fb_decl = tree_last (TYPE_FIELDS (frame_type));
20721 tree fb_expr
20722 = build1 (INDIRECT_REF, frame_type, fun->static_chain_decl);
20723 fb_expr = build3 (COMPONENT_REF, TREE_TYPE (fb_decl),
20724 fb_expr, fb_decl, NULL_TREE);
20726 add_AT_location_description (subr_die, DW_AT_static_link,
20727 loc_list_from_tree (fb_expr, 0, NULL));
20731 /* Generate child dies for template paramaters. */
20732 if (early_dwarf && debug_info_level > DINFO_LEVEL_TERSE)
20733 gen_generic_params_dies (decl);
20735 /* Now output descriptions of the arguments for this function. This gets
20736 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
20737 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
20738 `...' at the end of the formal parameter list. In order to find out if
20739 there was a trailing ellipsis or not, we must instead look at the type
20740 associated with the FUNCTION_DECL. This will be a node of type
20741 FUNCTION_TYPE. If the chain of type nodes hanging off of this
20742 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
20743 an ellipsis at the end. */
20745 /* In the case where we are describing a mere function declaration, all we
20746 need to do here (and all we *can* do here) is to describe the *types* of
20747 its formal parameters. */
20748 if (debug_info_level <= DINFO_LEVEL_TERSE)
20750 else if (declaration)
20751 gen_formal_types_die (decl, subr_die);
20752 else
20754 /* Generate DIEs to represent all known formal parameters. */
20755 tree parm = DECL_ARGUMENTS (decl);
20756 tree generic_decl = early_dwarf
20757 ? lang_hooks.decls.get_generic_function_decl (decl) : NULL;
20758 tree generic_decl_parm = generic_decl
20759 ? DECL_ARGUMENTS (generic_decl)
20760 : NULL;
20762 /* Now we want to walk the list of parameters of the function and
20763 emit their relevant DIEs.
20765 We consider the case of DECL being an instance of a generic function
20766 as well as it being a normal function.
20768 If DECL is an instance of a generic function we walk the
20769 parameters of the generic function declaration _and_ the parameters of
20770 DECL itself. This is useful because we want to emit specific DIEs for
20771 function parameter packs and those are declared as part of the
20772 generic function declaration. In that particular case,
20773 the parameter pack yields a DW_TAG_GNU_formal_parameter_pack DIE.
20774 That DIE has children DIEs representing the set of arguments
20775 of the pack. Note that the set of pack arguments can be empty.
20776 In that case, the DW_TAG_GNU_formal_parameter_pack DIE will not have any
20777 children DIE.
20779 Otherwise, we just consider the parameters of DECL. */
20780 while (generic_decl_parm || parm)
20782 if (generic_decl_parm
20783 && lang_hooks.function_parameter_pack_p (generic_decl_parm))
20784 gen_formal_parameter_pack_die (generic_decl_parm,
20785 parm, subr_die,
20786 &parm);
20787 else if (parm && !POINTER_BOUNDS_P (parm))
20789 dw_die_ref parm_die = gen_decl_die (parm, NULL, NULL, subr_die);
20791 if (parm == DECL_ARGUMENTS (decl)
20792 && TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE
20793 && parm_die
20794 && (dwarf_version >= 3 || !dwarf_strict))
20795 add_AT_die_ref (subr_die, DW_AT_object_pointer, parm_die);
20797 parm = DECL_CHAIN (parm);
20799 else if (parm)
20800 parm = DECL_CHAIN (parm);
20802 if (generic_decl_parm)
20803 generic_decl_parm = DECL_CHAIN (generic_decl_parm);
20806 /* Decide whether we need an unspecified_parameters DIE at the end.
20807 There are 2 more cases to do this for: 1) the ansi ... declaration -
20808 this is detectable when the end of the arg list is not a
20809 void_type_node 2) an unprototyped function declaration (not a
20810 definition). This just means that we have no info about the
20811 parameters at all. */
20812 if (early_dwarf)
20814 if (prototype_p (TREE_TYPE (decl)))
20816 /* This is the prototyped case, check for.... */
20817 if (stdarg_p (TREE_TYPE (decl)))
20818 gen_unspecified_parameters_die (decl, subr_die);
20820 else if (DECL_INITIAL (decl) == NULL_TREE)
20821 gen_unspecified_parameters_die (decl, subr_die);
20825 if (subr_die != old_die)
20826 /* Add the calling convention attribute if requested. */
20827 add_calling_convention_attribute (subr_die, decl);
20829 /* Output Dwarf info for all of the stuff within the body of the function
20830 (if it has one - it may be just a declaration).
20832 OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
20833 a function. This BLOCK actually represents the outermost binding contour
20834 for the function, i.e. the contour in which the function's formal
20835 parameters and labels get declared. Curiously, it appears that the front
20836 end doesn't actually put the PARM_DECL nodes for the current function onto
20837 the BLOCK_VARS list for this outer scope, but are strung off of the
20838 DECL_ARGUMENTS list for the function instead.
20840 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
20841 the LABEL_DECL nodes for the function however, and we output DWARF info
20842 for those in decls_for_scope. Just within the `outer_scope' there will be
20843 a BLOCK node representing the function's outermost pair of curly braces,
20844 and any blocks used for the base and member initializers of a C++
20845 constructor function. */
20846 tree outer_scope = DECL_INITIAL (decl);
20847 if (! declaration && outer_scope && TREE_CODE (outer_scope) != ERROR_MARK)
20849 int call_site_note_count = 0;
20850 int tail_call_site_note_count = 0;
20852 /* Emit a DW_TAG_variable DIE for a named return value. */
20853 if (DECL_NAME (DECL_RESULT (decl)))
20854 gen_decl_die (DECL_RESULT (decl), NULL, NULL, subr_die);
20856 /* The first time through decls_for_scope we will generate the
20857 DIEs for the locals. The second time, we fill in the
20858 location info. */
20859 decls_for_scope (outer_scope, subr_die);
20861 if (call_arg_locations && !dwarf_strict)
20863 struct call_arg_loc_node *ca_loc;
20864 for (ca_loc = call_arg_locations; ca_loc; ca_loc = ca_loc->next)
20866 dw_die_ref die = NULL;
20867 rtx tloc = NULL_RTX, tlocc = NULL_RTX;
20868 rtx arg, next_arg;
20870 for (arg = (ca_loc->call_arg_loc_note != NULL_RTX
20871 ? NOTE_VAR_LOCATION (ca_loc->call_arg_loc_note)
20872 : NULL_RTX);
20873 arg; arg = next_arg)
20875 dw_loc_descr_ref reg, val;
20876 machine_mode mode = GET_MODE (XEXP (XEXP (arg, 0), 1));
20877 dw_die_ref cdie, tdie = NULL;
20879 next_arg = XEXP (arg, 1);
20880 if (REG_P (XEXP (XEXP (arg, 0), 0))
20881 && next_arg
20882 && MEM_P (XEXP (XEXP (next_arg, 0), 0))
20883 && REG_P (XEXP (XEXP (XEXP (next_arg, 0), 0), 0))
20884 && REGNO (XEXP (XEXP (arg, 0), 0))
20885 == REGNO (XEXP (XEXP (XEXP (next_arg, 0), 0), 0)))
20886 next_arg = XEXP (next_arg, 1);
20887 if (mode == VOIDmode)
20889 mode = GET_MODE (XEXP (XEXP (arg, 0), 0));
20890 if (mode == VOIDmode)
20891 mode = GET_MODE (XEXP (arg, 0));
20893 if (mode == VOIDmode || mode == BLKmode)
20894 continue;
20895 /* Get dynamic information about call target only if we
20896 have no static information: we cannot generate both
20897 DW_AT_abstract_origin and DW_AT_GNU_call_site_target
20898 attributes. */
20899 if (ca_loc->symbol_ref == NULL_RTX)
20901 if (XEXP (XEXP (arg, 0), 0) == pc_rtx)
20903 tloc = XEXP (XEXP (arg, 0), 1);
20904 continue;
20906 else if (GET_CODE (XEXP (XEXP (arg, 0), 0)) == CLOBBER
20907 && XEXP (XEXP (XEXP (arg, 0), 0), 0) == pc_rtx)
20909 tlocc = XEXP (XEXP (arg, 0), 1);
20910 continue;
20913 reg = NULL;
20914 if (REG_P (XEXP (XEXP (arg, 0), 0)))
20915 reg = reg_loc_descriptor (XEXP (XEXP (arg, 0), 0),
20916 VAR_INIT_STATUS_INITIALIZED);
20917 else if (MEM_P (XEXP (XEXP (arg, 0), 0)))
20919 rtx mem = XEXP (XEXP (arg, 0), 0);
20920 reg = mem_loc_descriptor (XEXP (mem, 0),
20921 get_address_mode (mem),
20922 GET_MODE (mem),
20923 VAR_INIT_STATUS_INITIALIZED);
20925 else if (GET_CODE (XEXP (XEXP (arg, 0), 0))
20926 == DEBUG_PARAMETER_REF)
20928 tree tdecl
20929 = DEBUG_PARAMETER_REF_DECL (XEXP (XEXP (arg, 0), 0));
20930 tdie = lookup_decl_die (tdecl);
20931 if (tdie == NULL)
20932 continue;
20934 else
20935 continue;
20936 if (reg == NULL
20937 && GET_CODE (XEXP (XEXP (arg, 0), 0))
20938 != DEBUG_PARAMETER_REF)
20939 continue;
20940 val = mem_loc_descriptor (XEXP (XEXP (arg, 0), 1), mode,
20941 VOIDmode,
20942 VAR_INIT_STATUS_INITIALIZED);
20943 if (val == NULL)
20944 continue;
20945 if (die == NULL)
20946 die = gen_call_site_die (decl, subr_die, ca_loc);
20947 cdie = new_die (DW_TAG_GNU_call_site_parameter, die,
20948 NULL_TREE);
20949 if (reg != NULL)
20950 add_AT_loc (cdie, DW_AT_location, reg);
20951 else if (tdie != NULL)
20952 add_AT_die_ref (cdie, DW_AT_abstract_origin, tdie);
20953 add_AT_loc (cdie, DW_AT_GNU_call_site_value, val);
20954 if (next_arg != XEXP (arg, 1))
20956 mode = GET_MODE (XEXP (XEXP (XEXP (arg, 1), 0), 1));
20957 if (mode == VOIDmode)
20958 mode = GET_MODE (XEXP (XEXP (XEXP (arg, 1), 0), 0));
20959 val = mem_loc_descriptor (XEXP (XEXP (XEXP (arg, 1),
20960 0), 1),
20961 mode, VOIDmode,
20962 VAR_INIT_STATUS_INITIALIZED);
20963 if (val != NULL)
20964 add_AT_loc (cdie, DW_AT_GNU_call_site_data_value, val);
20967 if (die == NULL
20968 && (ca_loc->symbol_ref || tloc))
20969 die = gen_call_site_die (decl, subr_die, ca_loc);
20970 if (die != NULL && (tloc != NULL_RTX || tlocc != NULL_RTX))
20972 dw_loc_descr_ref tval = NULL;
20974 if (tloc != NULL_RTX)
20975 tval = mem_loc_descriptor (tloc,
20976 GET_MODE (tloc) == VOIDmode
20977 ? Pmode : GET_MODE (tloc),
20978 VOIDmode,
20979 VAR_INIT_STATUS_INITIALIZED);
20980 if (tval)
20981 add_AT_loc (die, DW_AT_GNU_call_site_target, tval);
20982 else if (tlocc != NULL_RTX)
20984 tval = mem_loc_descriptor (tlocc,
20985 GET_MODE (tlocc) == VOIDmode
20986 ? Pmode : GET_MODE (tlocc),
20987 VOIDmode,
20988 VAR_INIT_STATUS_INITIALIZED);
20989 if (tval)
20990 add_AT_loc (die, DW_AT_GNU_call_site_target_clobbered,
20991 tval);
20994 if (die != NULL)
20996 call_site_note_count++;
20997 if (ca_loc->tail_call_p)
20998 tail_call_site_note_count++;
21002 call_arg_locations = NULL;
21003 call_arg_loc_last = NULL;
21004 if (tail_call_site_count >= 0
21005 && tail_call_site_count == tail_call_site_note_count
21006 && !dwarf_strict)
21008 if (call_site_count >= 0
21009 && call_site_count == call_site_note_count)
21010 add_AT_flag (subr_die, DW_AT_GNU_all_call_sites, 1);
21011 else
21012 add_AT_flag (subr_die, DW_AT_GNU_all_tail_call_sites, 1);
21014 call_site_count = -1;
21015 tail_call_site_count = -1;
21019 /* Returns a hash value for X (which really is a die_struct). */
21021 hashval_t
21022 block_die_hasher::hash (die_struct *d)
21024 return (hashval_t) d->decl_id ^ htab_hash_pointer (d->die_parent);
21027 /* Return nonzero if decl_id and die_parent of die_struct X is the same
21028 as decl_id and die_parent of die_struct Y. */
21030 bool
21031 block_die_hasher::equal (die_struct *x, die_struct *y)
21033 return x->decl_id == y->decl_id && x->die_parent == y->die_parent;
21036 /* Return TRUE if DECL, which may have been previously generated as
21037 OLD_DIE, is a candidate for a DW_AT_specification. DECLARATION is
21038 true if decl (or its origin) is either an extern declaration or a
21039 class/namespace scoped declaration.
21041 The declare_in_namespace support causes us to get two DIEs for one
21042 variable, both of which are declarations. We want to avoid
21043 considering one to be a specification, so we must test for
21044 DECLARATION and DW_AT_declaration. */
21045 static inline bool
21046 decl_will_get_specification_p (dw_die_ref old_die, tree decl, bool declaration)
21048 return (old_die && TREE_STATIC (decl) && !declaration
21049 && get_AT_flag (old_die, DW_AT_declaration) == 1);
21052 /* Return true if DECL is a local static. */
21054 static inline bool
21055 local_function_static (tree decl)
21057 gcc_assert (TREE_CODE (decl) == VAR_DECL);
21058 return TREE_STATIC (decl)
21059 && DECL_CONTEXT (decl)
21060 && TREE_CODE (DECL_CONTEXT (decl)) == FUNCTION_DECL;
21063 /* Generate a DIE to represent a declared data object.
21064 Either DECL or ORIGIN must be non-null. */
21066 static void
21067 gen_variable_die (tree decl, tree origin, dw_die_ref context_die)
21069 HOST_WIDE_INT off = 0;
21070 tree com_decl;
21071 tree decl_or_origin = decl ? decl : origin;
21072 tree ultimate_origin;
21073 dw_die_ref var_die;
21074 dw_die_ref old_die = decl ? lookup_decl_die (decl) : NULL;
21075 dw_die_ref origin_die = NULL;
21076 bool declaration = (DECL_EXTERNAL (decl_or_origin)
21077 || class_or_namespace_scope_p (context_die));
21078 bool specialization_p = false;
21080 ultimate_origin = decl_ultimate_origin (decl_or_origin);
21081 if (decl || ultimate_origin)
21082 origin = ultimate_origin;
21083 com_decl = fortran_common (decl_or_origin, &off);
21085 /* Symbol in common gets emitted as a child of the common block, in the form
21086 of a data member. */
21087 if (com_decl)
21089 dw_die_ref com_die;
21090 dw_loc_list_ref loc;
21091 die_node com_die_arg;
21093 var_die = lookup_decl_die (decl_or_origin);
21094 if (var_die)
21096 if (get_AT (var_die, DW_AT_location) == NULL)
21098 loc = loc_list_from_tree (com_decl, off ? 1 : 2, NULL);
21099 if (loc)
21101 if (off)
21103 /* Optimize the common case. */
21104 if (single_element_loc_list_p (loc)
21105 && loc->expr->dw_loc_opc == DW_OP_addr
21106 && loc->expr->dw_loc_next == NULL
21107 && GET_CODE (loc->expr->dw_loc_oprnd1.v.val_addr)
21108 == SYMBOL_REF)
21110 rtx x = loc->expr->dw_loc_oprnd1.v.val_addr;
21111 loc->expr->dw_loc_oprnd1.v.val_addr
21112 = plus_constant (GET_MODE (x), x , off);
21114 else
21115 loc_list_plus_const (loc, off);
21117 add_AT_location_description (var_die, DW_AT_location, loc);
21118 remove_AT (var_die, DW_AT_declaration);
21121 return;
21124 if (common_block_die_table == NULL)
21125 common_block_die_table = hash_table<block_die_hasher>::create_ggc (10);
21127 com_die_arg.decl_id = DECL_UID (com_decl);
21128 com_die_arg.die_parent = context_die;
21129 com_die = common_block_die_table->find (&com_die_arg);
21130 loc = loc_list_from_tree (com_decl, 2, NULL);
21131 if (com_die == NULL)
21133 const char *cnam
21134 = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (com_decl));
21135 die_node **slot;
21137 com_die = new_die (DW_TAG_common_block, context_die, decl);
21138 add_name_and_src_coords_attributes (com_die, com_decl);
21139 if (loc)
21141 add_AT_location_description (com_die, DW_AT_location, loc);
21142 /* Avoid sharing the same loc descriptor between
21143 DW_TAG_common_block and DW_TAG_variable. */
21144 loc = loc_list_from_tree (com_decl, 2, NULL);
21146 else if (DECL_EXTERNAL (decl_or_origin))
21147 add_AT_flag (com_die, DW_AT_declaration, 1);
21148 if (want_pubnames ())
21149 add_pubname_string (cnam, com_die); /* ??? needed? */
21150 com_die->decl_id = DECL_UID (com_decl);
21151 slot = common_block_die_table->find_slot (com_die, INSERT);
21152 *slot = com_die;
21154 else if (get_AT (com_die, DW_AT_location) == NULL && loc)
21156 add_AT_location_description (com_die, DW_AT_location, loc);
21157 loc = loc_list_from_tree (com_decl, 2, NULL);
21158 remove_AT (com_die, DW_AT_declaration);
21160 var_die = new_die (DW_TAG_variable, com_die, decl);
21161 add_name_and_src_coords_attributes (var_die, decl_or_origin);
21162 add_type_attribute (var_die, TREE_TYPE (decl_or_origin),
21163 decl_quals (decl_or_origin), false,
21164 context_die);
21165 add_AT_flag (var_die, DW_AT_external, 1);
21166 if (loc)
21168 if (off)
21170 /* Optimize the common case. */
21171 if (single_element_loc_list_p (loc)
21172 && loc->expr->dw_loc_opc == DW_OP_addr
21173 && loc->expr->dw_loc_next == NULL
21174 && GET_CODE (loc->expr->dw_loc_oprnd1.v.val_addr) == SYMBOL_REF)
21176 rtx x = loc->expr->dw_loc_oprnd1.v.val_addr;
21177 loc->expr->dw_loc_oprnd1.v.val_addr
21178 = plus_constant (GET_MODE (x), x, off);
21180 else
21181 loc_list_plus_const (loc, off);
21183 add_AT_location_description (var_die, DW_AT_location, loc);
21185 else if (DECL_EXTERNAL (decl_or_origin))
21186 add_AT_flag (var_die, DW_AT_declaration, 1);
21187 if (decl)
21188 equate_decl_number_to_die (decl, var_die);
21189 return;
21192 if (old_die)
21194 if (declaration)
21196 /* A declaration that has been previously dumped, needs no
21197 further annotations, since it doesn't need location on
21198 the second pass. */
21199 return;
21201 else if (decl_will_get_specification_p (old_die, decl, declaration)
21202 && !get_AT (old_die, DW_AT_specification))
21204 /* Fall-thru so we can make a new variable die along with a
21205 DW_AT_specification. */
21207 else if (origin && old_die->die_parent != context_die)
21209 /* If we will be creating an inlined instance, we need a
21210 new DIE that will get annotated with
21211 DW_AT_abstract_origin. Clear things so we can get a
21212 new DIE. */
21213 gcc_assert (!DECL_ABSTRACT_P (decl));
21214 old_die = NULL;
21216 else
21218 /* If a DIE was dumped early, it still needs location info.
21219 Skip to where we fill the location bits. */
21220 var_die = old_die;
21221 goto gen_variable_die_location;
21225 /* For static data members, the declaration in the class is supposed
21226 to have DW_TAG_member tag; the specification should still be
21227 DW_TAG_variable referencing the DW_TAG_member DIE. */
21228 if (declaration && class_scope_p (context_die))
21229 var_die = new_die (DW_TAG_member, context_die, decl);
21230 else
21231 var_die = new_die (DW_TAG_variable, context_die, decl);
21233 if (origin != NULL)
21234 origin_die = add_abstract_origin_attribute (var_die, origin);
21236 /* Loop unrolling can create multiple blocks that refer to the same
21237 static variable, so we must test for the DW_AT_declaration flag.
21239 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
21240 copy decls and set the DECL_ABSTRACT_P flag on them instead of
21241 sharing them.
21243 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
21244 else if (decl_will_get_specification_p (old_die, decl, declaration))
21246 /* This is a definition of a C++ class level static. */
21247 add_AT_specification (var_die, old_die);
21248 specialization_p = true;
21249 if (DECL_NAME (decl))
21251 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
21252 struct dwarf_file_data * file_index = lookup_filename (s.file);
21254 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
21255 add_AT_file (var_die, DW_AT_decl_file, file_index);
21257 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
21258 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
21260 if (old_die->die_tag == DW_TAG_member)
21261 add_linkage_name (var_die, decl);
21264 else
21265 add_name_and_src_coords_attributes (var_die, decl);
21267 if ((origin == NULL && !specialization_p)
21268 || (origin != NULL
21269 && !DECL_ABSTRACT_P (decl_or_origin)
21270 && variably_modified_type_p (TREE_TYPE (decl_or_origin),
21271 decl_function_context
21272 (decl_or_origin))))
21274 tree type = TREE_TYPE (decl_or_origin);
21276 if (decl_by_reference_p (decl_or_origin))
21277 add_type_attribute (var_die, TREE_TYPE (type), TYPE_UNQUALIFIED, false,
21278 context_die);
21279 else
21280 add_type_attribute (var_die, type, decl_quals (decl_or_origin), false,
21281 context_die);
21284 if (origin == NULL && !specialization_p)
21286 if (TREE_PUBLIC (decl))
21287 add_AT_flag (var_die, DW_AT_external, 1);
21289 if (DECL_ARTIFICIAL (decl))
21290 add_AT_flag (var_die, DW_AT_artificial, 1);
21292 add_accessibility_attribute (var_die, decl);
21295 if (declaration)
21296 add_AT_flag (var_die, DW_AT_declaration, 1);
21298 if (decl && (DECL_ABSTRACT_P (decl)
21299 || !old_die || is_declaration_die (old_die)))
21300 equate_decl_number_to_die (decl, var_die);
21302 gen_variable_die_location:
21303 if (! declaration
21304 && (! DECL_ABSTRACT_P (decl_or_origin)
21305 /* Local static vars are shared between all clones/inlines,
21306 so emit DW_AT_location on the abstract DIE if DECL_RTL is
21307 already set. */
21308 || (TREE_CODE (decl_or_origin) == VAR_DECL
21309 && TREE_STATIC (decl_or_origin)
21310 && DECL_RTL_SET_P (decl_or_origin)))
21311 /* When abstract origin already has DW_AT_location attribute, no need
21312 to add it again. */
21313 && (origin_die == NULL || get_AT (origin_die, DW_AT_location) == NULL))
21315 if (early_dwarf)
21316 add_pubname (decl_or_origin, var_die);
21317 else
21318 add_location_or_const_value_attribute (var_die, decl_or_origin,
21319 decl == NULL);
21321 else
21322 tree_add_const_value_attribute_for_decl (var_die, decl_or_origin);
21325 /* Generate a DIE to represent a named constant. */
21327 static void
21328 gen_const_die (tree decl, dw_die_ref context_die)
21330 dw_die_ref const_die;
21331 tree type = TREE_TYPE (decl);
21333 const_die = lookup_decl_die (decl);
21334 if (const_die)
21335 return;
21337 const_die = new_die (DW_TAG_constant, context_die, decl);
21338 equate_decl_number_to_die (decl, const_die);
21339 add_name_and_src_coords_attributes (const_die, decl);
21340 add_type_attribute (const_die, type, TYPE_QUAL_CONST, false, context_die);
21341 if (TREE_PUBLIC (decl))
21342 add_AT_flag (const_die, DW_AT_external, 1);
21343 if (DECL_ARTIFICIAL (decl))
21344 add_AT_flag (const_die, DW_AT_artificial, 1);
21345 tree_add_const_value_attribute_for_decl (const_die, decl);
21348 /* Generate a DIE to represent a label identifier. */
21350 static void
21351 gen_label_die (tree decl, dw_die_ref context_die)
21353 tree origin = decl_ultimate_origin (decl);
21354 dw_die_ref lbl_die = lookup_decl_die (decl);
21355 rtx insn;
21356 char label[MAX_ARTIFICIAL_LABEL_BYTES];
21358 if (!lbl_die)
21360 lbl_die = new_die (DW_TAG_label, context_die, decl);
21361 equate_decl_number_to_die (decl, lbl_die);
21363 if (origin != NULL)
21364 add_abstract_origin_attribute (lbl_die, origin);
21365 else
21366 add_name_and_src_coords_attributes (lbl_die, decl);
21369 if (DECL_ABSTRACT_P (decl))
21370 equate_decl_number_to_die (decl, lbl_die);
21371 else
21373 insn = DECL_RTL_IF_SET (decl);
21375 /* Deleted labels are programmer specified labels which have been
21376 eliminated because of various optimizations. We still emit them
21377 here so that it is possible to put breakpoints on them. */
21378 if (insn
21379 && (LABEL_P (insn)
21380 || ((NOTE_P (insn)
21381 && NOTE_KIND (insn) == NOTE_INSN_DELETED_LABEL))))
21383 /* When optimization is enabled (via -O) some parts of the compiler
21384 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
21385 represent source-level labels which were explicitly declared by
21386 the user. This really shouldn't be happening though, so catch
21387 it if it ever does happen. */
21388 gcc_assert (!as_a<rtx_insn *> (insn)->deleted ());
21390 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
21391 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
21393 else if (insn
21394 && NOTE_P (insn)
21395 && NOTE_KIND (insn) == NOTE_INSN_DELETED_DEBUG_LABEL
21396 && CODE_LABEL_NUMBER (insn) != -1)
21398 ASM_GENERATE_INTERNAL_LABEL (label, "LDL", CODE_LABEL_NUMBER (insn));
21399 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
21404 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
21405 attributes to the DIE for a block STMT, to describe where the inlined
21406 function was called from. This is similar to add_src_coords_attributes. */
21408 static inline void
21409 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
21411 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
21413 if (dwarf_version >= 3 || !dwarf_strict)
21415 add_AT_file (die, DW_AT_call_file, lookup_filename (s.file));
21416 add_AT_unsigned (die, DW_AT_call_line, s.line);
21421 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
21422 Add low_pc and high_pc attributes to the DIE for a block STMT. */
21424 static inline void
21425 add_high_low_attributes (tree stmt, dw_die_ref die)
21427 char label[MAX_ARTIFICIAL_LABEL_BYTES];
21429 if (BLOCK_FRAGMENT_CHAIN (stmt)
21430 && (dwarf_version >= 3 || !dwarf_strict))
21432 tree chain, superblock = NULL_TREE;
21433 dw_die_ref pdie;
21434 dw_attr_node *attr = NULL;
21436 if (inlined_function_outer_scope_p (stmt))
21438 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
21439 BLOCK_NUMBER (stmt));
21440 add_AT_lbl_id (die, DW_AT_entry_pc, label);
21443 /* Optimize duplicate .debug_ranges lists or even tails of
21444 lists. If this BLOCK has same ranges as its supercontext,
21445 lookup DW_AT_ranges attribute in the supercontext (and
21446 recursively so), verify that the ranges_table contains the
21447 right values and use it instead of adding a new .debug_range. */
21448 for (chain = stmt, pdie = die;
21449 BLOCK_SAME_RANGE (chain);
21450 chain = BLOCK_SUPERCONTEXT (chain))
21452 dw_attr_node *new_attr;
21454 pdie = pdie->die_parent;
21455 if (pdie == NULL)
21456 break;
21457 if (BLOCK_SUPERCONTEXT (chain) == NULL_TREE)
21458 break;
21459 new_attr = get_AT (pdie, DW_AT_ranges);
21460 if (new_attr == NULL
21461 || new_attr->dw_attr_val.val_class != dw_val_class_range_list)
21462 break;
21463 attr = new_attr;
21464 superblock = BLOCK_SUPERCONTEXT (chain);
21466 if (attr != NULL
21467 && (ranges_table[attr->dw_attr_val.v.val_offset
21468 / 2 / DWARF2_ADDR_SIZE].num
21469 == BLOCK_NUMBER (superblock))
21470 && BLOCK_FRAGMENT_CHAIN (superblock))
21472 unsigned long off = attr->dw_attr_val.v.val_offset
21473 / 2 / DWARF2_ADDR_SIZE;
21474 unsigned long supercnt = 0, thiscnt = 0;
21475 for (chain = BLOCK_FRAGMENT_CHAIN (superblock);
21476 chain; chain = BLOCK_FRAGMENT_CHAIN (chain))
21478 ++supercnt;
21479 gcc_checking_assert (ranges_table[off + supercnt].num
21480 == BLOCK_NUMBER (chain));
21482 gcc_checking_assert (ranges_table[off + supercnt + 1].num == 0);
21483 for (chain = BLOCK_FRAGMENT_CHAIN (stmt);
21484 chain; chain = BLOCK_FRAGMENT_CHAIN (chain))
21485 ++thiscnt;
21486 gcc_assert (supercnt >= thiscnt);
21487 add_AT_range_list (die, DW_AT_ranges,
21488 ((off + supercnt - thiscnt)
21489 * 2 * DWARF2_ADDR_SIZE),
21490 false);
21491 return;
21494 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt), false);
21496 chain = BLOCK_FRAGMENT_CHAIN (stmt);
21499 add_ranges (chain);
21500 chain = BLOCK_FRAGMENT_CHAIN (chain);
21502 while (chain);
21503 add_ranges (NULL);
21505 else
21507 char label_high[MAX_ARTIFICIAL_LABEL_BYTES];
21508 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
21509 BLOCK_NUMBER (stmt));
21510 ASM_GENERATE_INTERNAL_LABEL (label_high, BLOCK_END_LABEL,
21511 BLOCK_NUMBER (stmt));
21512 add_AT_low_high_pc (die, label, label_high, false);
21516 /* Generate a DIE for a lexical block. */
21518 static void
21519 gen_lexical_block_die (tree stmt, dw_die_ref context_die)
21521 dw_die_ref old_die = BLOCK_DIE (stmt);
21522 dw_die_ref stmt_die = NULL;
21523 if (!old_die)
21525 stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
21526 BLOCK_DIE (stmt) = stmt_die;
21529 if (BLOCK_ABSTRACT (stmt))
21531 if (old_die)
21533 /* This must have been generated early and it won't even
21534 need location information since it's a DW_AT_inline
21535 function. */
21536 if (flag_checking)
21537 for (dw_die_ref c = context_die; c; c = c->die_parent)
21538 if (c->die_tag == DW_TAG_inlined_subroutine
21539 || c->die_tag == DW_TAG_subprogram)
21541 gcc_assert (get_AT (c, DW_AT_inline));
21542 break;
21544 return;
21547 else if (BLOCK_ABSTRACT_ORIGIN (stmt))
21549 /* If this is an inlined instance, create a new lexical die for
21550 anything below to attach DW_AT_abstract_origin to. */
21551 if (old_die)
21553 stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
21554 BLOCK_DIE (stmt) = stmt_die;
21555 old_die = NULL;
21558 tree origin = block_ultimate_origin (stmt);
21559 if (origin != NULL_TREE && origin != stmt)
21560 add_abstract_origin_attribute (stmt_die, origin);
21563 if (old_die)
21564 stmt_die = old_die;
21566 /* A non abstract block whose blocks have already been reordered
21567 should have the instruction range for this block. If so, set the
21568 high/low attributes. */
21569 if (!early_dwarf && !BLOCK_ABSTRACT (stmt) && TREE_ASM_WRITTEN (stmt))
21571 gcc_assert (stmt_die);
21572 add_high_low_attributes (stmt, stmt_die);
21575 decls_for_scope (stmt, stmt_die);
21578 /* Generate a DIE for an inlined subprogram. */
21580 static void
21581 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die)
21583 tree decl;
21585 /* The instance of function that is effectively being inlined shall not
21586 be abstract. */
21587 gcc_assert (! BLOCK_ABSTRACT (stmt));
21589 decl = block_ultimate_origin (stmt);
21591 /* Make sure any inlined functions are known to be inlineable. */
21592 gcc_checking_assert (DECL_ABSTRACT_P (decl)
21593 || cgraph_function_possibly_inlined_p (decl));
21595 /* Emit info for the abstract instance first, if we haven't yet. We
21596 must emit this even if the block is abstract, otherwise when we
21597 emit the block below (or elsewhere), we may end up trying to emit
21598 a die whose origin die hasn't been emitted, and crashing. */
21599 dwarf2out_abstract_function (decl);
21601 if (! BLOCK_ABSTRACT (stmt))
21603 dw_die_ref subr_die
21604 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
21606 if (call_arg_locations)
21607 BLOCK_DIE (stmt) = subr_die;
21608 add_abstract_origin_attribute (subr_die, decl);
21609 if (TREE_ASM_WRITTEN (stmt))
21610 add_high_low_attributes (stmt, subr_die);
21611 add_call_src_coords_attributes (stmt, subr_die);
21613 decls_for_scope (stmt, subr_die);
21617 /* Generate a DIE for a field in a record, or structure. CTX is required: see
21618 the comment for VLR_CONTEXT. */
21620 static void
21621 gen_field_die (tree decl, struct vlr_context *ctx, dw_die_ref context_die)
21623 dw_die_ref decl_die;
21625 if (TREE_TYPE (decl) == error_mark_node)
21626 return;
21628 decl_die = new_die (DW_TAG_member, context_die, decl);
21629 add_name_and_src_coords_attributes (decl_die, decl);
21630 add_type_attribute (decl_die, member_declared_type (decl), decl_quals (decl),
21631 TYPE_REVERSE_STORAGE_ORDER (DECL_FIELD_CONTEXT (decl)),
21632 context_die);
21634 if (DECL_BIT_FIELD_TYPE (decl))
21636 add_byte_size_attribute (decl_die, decl);
21637 add_bit_size_attribute (decl_die, decl);
21638 add_bit_offset_attribute (decl_die, decl, ctx);
21641 /* If we have a variant part offset, then we are supposed to process a member
21642 of a QUAL_UNION_TYPE, which is how we represent variant parts in
21643 trees. */
21644 gcc_assert (ctx->variant_part_offset == NULL_TREE
21645 || TREE_CODE (DECL_FIELD_CONTEXT (decl)) != QUAL_UNION_TYPE);
21646 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
21647 add_data_member_location_attribute (decl_die, decl, ctx);
21649 if (DECL_ARTIFICIAL (decl))
21650 add_AT_flag (decl_die, DW_AT_artificial, 1);
21652 add_accessibility_attribute (decl_die, decl);
21654 /* Equate decl number to die, so that we can look up this decl later on. */
21655 equate_decl_number_to_die (decl, decl_die);
21658 #if 0
21659 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
21660 Use modified_type_die instead.
21661 We keep this code here just in case these types of DIEs may be needed to
21662 represent certain things in other languages (e.g. Pascal) someday. */
21664 static void
21665 gen_pointer_type_die (tree type, dw_die_ref context_die)
21667 dw_die_ref ptr_die
21668 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
21670 equate_type_number_to_die (type, ptr_die);
21671 add_type_attribute (ptr_die, TREE_TYPE (type), TYPE_UNQUALIFIED, false,
21672 context_die);
21673 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
21676 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
21677 Use modified_type_die instead.
21678 We keep this code here just in case these types of DIEs may be needed to
21679 represent certain things in other languages (e.g. Pascal) someday. */
21681 static void
21682 gen_reference_type_die (tree type, dw_die_ref context_die)
21684 dw_die_ref ref_die, scope_die = scope_die_for (type, context_die);
21686 if (TYPE_REF_IS_RVALUE (type) && dwarf_version >= 4)
21687 ref_die = new_die (DW_TAG_rvalue_reference_type, scope_die, type);
21688 else
21689 ref_die = new_die (DW_TAG_reference_type, scope_die, type);
21691 equate_type_number_to_die (type, ref_die);
21692 add_type_attribute (ref_die, TREE_TYPE (type), TYPE_UNQUALIFIED, false,
21693 context_die);
21694 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
21696 #endif
21698 /* Generate a DIE for a pointer to a member type. */
21700 static void
21701 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
21703 dw_die_ref ptr_die
21704 = new_die (DW_TAG_ptr_to_member_type,
21705 scope_die_for (type, context_die), type);
21707 equate_type_number_to_die (type, ptr_die);
21708 add_AT_die_ref (ptr_die, DW_AT_containing_type,
21709 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
21710 add_type_attribute (ptr_die, TREE_TYPE (type), TYPE_UNQUALIFIED, false,
21711 context_die);
21714 static char *producer_string;
21716 /* Return a heap allocated producer string including command line options
21717 if -grecord-gcc-switches. */
21719 static char *
21720 gen_producer_string (void)
21722 size_t j;
21723 auto_vec<const char *> switches;
21724 const char *language_string = lang_hooks.name;
21725 char *producer, *tail;
21726 const char *p;
21727 size_t len = dwarf_record_gcc_switches ? 0 : 3;
21728 size_t plen = strlen (language_string) + 1 + strlen (version_string);
21730 for (j = 1; dwarf_record_gcc_switches && j < save_decoded_options_count; j++)
21731 switch (save_decoded_options[j].opt_index)
21733 case OPT_o:
21734 case OPT_d:
21735 case OPT_dumpbase:
21736 case OPT_dumpdir:
21737 case OPT_auxbase:
21738 case OPT_auxbase_strip:
21739 case OPT_quiet:
21740 case OPT_version:
21741 case OPT_v:
21742 case OPT_w:
21743 case OPT_L:
21744 case OPT_D:
21745 case OPT_I:
21746 case OPT_U:
21747 case OPT_SPECIAL_unknown:
21748 case OPT_SPECIAL_ignore:
21749 case OPT_SPECIAL_program_name:
21750 case OPT_SPECIAL_input_file:
21751 case OPT_grecord_gcc_switches:
21752 case OPT_gno_record_gcc_switches:
21753 case OPT__output_pch_:
21754 case OPT_fdiagnostics_show_location_:
21755 case OPT_fdiagnostics_show_option:
21756 case OPT_fdiagnostics_show_caret:
21757 case OPT_fdiagnostics_color_:
21758 case OPT_fverbose_asm:
21759 case OPT____:
21760 case OPT__sysroot_:
21761 case OPT_nostdinc:
21762 case OPT_nostdinc__:
21763 case OPT_fpreprocessed:
21764 case OPT_fltrans_output_list_:
21765 case OPT_fresolution_:
21766 case OPT_fdebug_prefix_map_:
21767 /* Ignore these. */
21768 continue;
21769 default:
21770 if (cl_options[save_decoded_options[j].opt_index].flags
21771 & CL_NO_DWARF_RECORD)
21772 continue;
21773 gcc_checking_assert (save_decoded_options[j].canonical_option[0][0]
21774 == '-');
21775 switch (save_decoded_options[j].canonical_option[0][1])
21777 case 'M':
21778 case 'i':
21779 case 'W':
21780 continue;
21781 case 'f':
21782 if (strncmp (save_decoded_options[j].canonical_option[0] + 2,
21783 "dump", 4) == 0)
21784 continue;
21785 break;
21786 default:
21787 break;
21789 switches.safe_push (save_decoded_options[j].orig_option_with_args_text);
21790 len += strlen (save_decoded_options[j].orig_option_with_args_text) + 1;
21791 break;
21794 producer = XNEWVEC (char, plen + 1 + len + 1);
21795 tail = producer;
21796 sprintf (tail, "%s %s", language_string, version_string);
21797 tail += plen;
21799 FOR_EACH_VEC_ELT (switches, j, p)
21801 len = strlen (p);
21802 *tail = ' ';
21803 memcpy (tail + 1, p, len);
21804 tail += len + 1;
21807 *tail = '\0';
21808 return producer;
21811 /* Given a C and/or C++ language/version string return the "highest".
21812 C++ is assumed to be "higher" than C in this case. Used for merging
21813 LTO translation unit languages. */
21814 static const char *
21815 highest_c_language (const char *lang1, const char *lang2)
21817 if (strcmp ("GNU C++14", lang1) == 0 || strcmp ("GNU C++14", lang2) == 0)
21818 return "GNU C++14";
21819 if (strcmp ("GNU C++11", lang1) == 0 || strcmp ("GNU C++11", lang2) == 0)
21820 return "GNU C++11";
21821 if (strcmp ("GNU C++98", lang1) == 0 || strcmp ("GNU C++98", lang2) == 0)
21822 return "GNU C++98";
21824 if (strcmp ("GNU C11", lang1) == 0 || strcmp ("GNU C11", lang2) == 0)
21825 return "GNU C11";
21826 if (strcmp ("GNU C99", lang1) == 0 || strcmp ("GNU C99", lang2) == 0)
21827 return "GNU C99";
21828 if (strcmp ("GNU C89", lang1) == 0 || strcmp ("GNU C89", lang2) == 0)
21829 return "GNU C89";
21831 gcc_unreachable ();
21835 /* Generate the DIE for the compilation unit. */
21837 static dw_die_ref
21838 gen_compile_unit_die (const char *filename)
21840 dw_die_ref die;
21841 const char *language_string = lang_hooks.name;
21842 int language;
21844 die = new_die (DW_TAG_compile_unit, NULL, NULL);
21846 if (filename)
21848 add_name_attribute (die, filename);
21849 /* Don't add cwd for <built-in>. */
21850 if (!IS_ABSOLUTE_PATH (filename) && filename[0] != '<')
21851 add_comp_dir_attribute (die);
21854 add_AT_string (die, DW_AT_producer, producer_string ? producer_string : "");
21856 /* If our producer is LTO try to figure out a common language to use
21857 from the global list of translation units. */
21858 if (strcmp (language_string, "GNU GIMPLE") == 0)
21860 unsigned i;
21861 tree t;
21862 const char *common_lang = NULL;
21864 FOR_EACH_VEC_SAFE_ELT (all_translation_units, i, t)
21866 if (!TRANSLATION_UNIT_LANGUAGE (t))
21867 continue;
21868 if (!common_lang)
21869 common_lang = TRANSLATION_UNIT_LANGUAGE (t);
21870 else if (strcmp (common_lang, TRANSLATION_UNIT_LANGUAGE (t)) == 0)
21872 else if (strncmp (common_lang, "GNU C", 5) == 0
21873 && strncmp (TRANSLATION_UNIT_LANGUAGE (t), "GNU C", 5) == 0)
21874 /* Mixing C and C++ is ok, use C++ in that case. */
21875 common_lang = highest_c_language (common_lang,
21876 TRANSLATION_UNIT_LANGUAGE (t));
21877 else
21879 /* Fall back to C. */
21880 common_lang = NULL;
21881 break;
21885 if (common_lang)
21886 language_string = common_lang;
21889 language = DW_LANG_C;
21890 if (strncmp (language_string, "GNU C", 5) == 0
21891 && ISDIGIT (language_string[5]))
21893 language = DW_LANG_C89;
21894 if (dwarf_version >= 3 || !dwarf_strict)
21896 if (strcmp (language_string, "GNU C89") != 0)
21897 language = DW_LANG_C99;
21899 if (dwarf_version >= 5 /* || !dwarf_strict */)
21900 if (strcmp (language_string, "GNU C11") == 0)
21901 language = DW_LANG_C11;
21904 else if (strncmp (language_string, "GNU C++", 7) == 0)
21906 language = DW_LANG_C_plus_plus;
21907 if (dwarf_version >= 5 /* || !dwarf_strict */)
21909 if (strcmp (language_string, "GNU C++11") == 0)
21910 language = DW_LANG_C_plus_plus_11;
21911 else if (strcmp (language_string, "GNU C++14") == 0)
21912 language = DW_LANG_C_plus_plus_14;
21915 else if (strcmp (language_string, "GNU F77") == 0)
21916 language = DW_LANG_Fortran77;
21917 else if (strcmp (language_string, "GNU Pascal") == 0)
21918 language = DW_LANG_Pascal83;
21919 else if (dwarf_version >= 3 || !dwarf_strict)
21921 if (strcmp (language_string, "GNU Ada") == 0)
21922 language = DW_LANG_Ada95;
21923 else if (strncmp (language_string, "GNU Fortran", 11) == 0)
21925 language = DW_LANG_Fortran95;
21926 if (dwarf_version >= 5 /* || !dwarf_strict */)
21928 if (strcmp (language_string, "GNU Fortran2003") == 0)
21929 language = DW_LANG_Fortran03;
21930 else if (strcmp (language_string, "GNU Fortran2008") == 0)
21931 language = DW_LANG_Fortran08;
21934 else if (strcmp (language_string, "GNU Java") == 0)
21935 language = DW_LANG_Java;
21936 else if (strcmp (language_string, "GNU Objective-C") == 0)
21937 language = DW_LANG_ObjC;
21938 else if (strcmp (language_string, "GNU Objective-C++") == 0)
21939 language = DW_LANG_ObjC_plus_plus;
21940 else if (dwarf_version >= 5 || !dwarf_strict)
21942 if (strcmp (language_string, "GNU Go") == 0)
21943 language = DW_LANG_Go;
21946 /* Use a degraded Fortran setting in strict DWARF2 so is_fortran works. */
21947 else if (strncmp (language_string, "GNU Fortran", 11) == 0)
21948 language = DW_LANG_Fortran90;
21950 add_AT_unsigned (die, DW_AT_language, language);
21952 switch (language)
21954 case DW_LANG_Fortran77:
21955 case DW_LANG_Fortran90:
21956 case DW_LANG_Fortran95:
21957 case DW_LANG_Fortran03:
21958 case DW_LANG_Fortran08:
21959 /* Fortran has case insensitive identifiers and the front-end
21960 lowercases everything. */
21961 add_AT_unsigned (die, DW_AT_identifier_case, DW_ID_down_case);
21962 break;
21963 default:
21964 /* The default DW_ID_case_sensitive doesn't need to be specified. */
21965 break;
21967 return die;
21970 /* Generate the DIE for a base class. */
21972 static void
21973 gen_inheritance_die (tree binfo, tree access, tree type,
21974 dw_die_ref context_die)
21976 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
21977 struct vlr_context ctx = { type, NULL };
21979 add_type_attribute (die, BINFO_TYPE (binfo), TYPE_UNQUALIFIED, false,
21980 context_die);
21981 add_data_member_location_attribute (die, binfo, &ctx);
21983 if (BINFO_VIRTUAL_P (binfo))
21984 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
21986 /* In DWARF3+ the default is DW_ACCESS_private only in DW_TAG_class_type
21987 children, otherwise the default is DW_ACCESS_public. In DWARF2
21988 the default has always been DW_ACCESS_private. */
21989 if (access == access_public_node)
21991 if (dwarf_version == 2
21992 || context_die->die_tag == DW_TAG_class_type)
21993 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
21995 else if (access == access_protected_node)
21996 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
21997 else if (dwarf_version > 2
21998 && context_die->die_tag != DW_TAG_class_type)
21999 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_private);
22002 /* Return whether DECL is a FIELD_DECL that represents the variant part of a
22003 structure. */
22004 static bool
22005 is_variant_part (tree decl)
22007 return (TREE_CODE (decl) == FIELD_DECL
22008 && TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE);
22011 /* Check that OPERAND is a reference to a field in STRUCT_TYPE. If it is,
22012 return the FIELD_DECL. Return NULL_TREE otherwise. */
22014 static tree
22015 analyze_discr_in_predicate (tree operand, tree struct_type)
22017 bool continue_stripping = true;
22018 while (continue_stripping)
22019 switch (TREE_CODE (operand))
22021 CASE_CONVERT:
22022 operand = TREE_OPERAND (operand, 0);
22023 break;
22024 default:
22025 continue_stripping = false;
22026 break;
22029 /* Match field access to members of struct_type only. */
22030 if (TREE_CODE (operand) == COMPONENT_REF
22031 && TREE_CODE (TREE_OPERAND (operand, 0)) == PLACEHOLDER_EXPR
22032 && TREE_TYPE (TREE_OPERAND (operand, 0)) == struct_type
22033 && TREE_CODE (TREE_OPERAND (operand, 1)) == FIELD_DECL)
22034 return TREE_OPERAND (operand, 1);
22035 else
22036 return NULL_TREE;
22039 /* Check that SRC is a constant integer that can be represented as a native
22040 integer constant (either signed or unsigned). If so, store it into DEST and
22041 return true. Return false otherwise. */
22043 static bool
22044 get_discr_value (tree src, dw_discr_value *dest)
22046 bool is_unsigned = TYPE_UNSIGNED (TREE_TYPE (src));
22048 if (TREE_CODE (src) != INTEGER_CST
22049 || !(is_unsigned ? tree_fits_uhwi_p (src) : tree_fits_shwi_p (src)))
22050 return false;
22052 dest->pos = is_unsigned;
22053 if (is_unsigned)
22054 dest->v.uval = tree_to_uhwi (src);
22055 else
22056 dest->v.sval = tree_to_shwi (src);
22058 return true;
22061 /* Try to extract synthetic properties out of VARIANT_PART_DECL, which is a
22062 FIELD_DECL in STRUCT_TYPE that represents a variant part. If unsuccessful,
22063 store NULL_TREE in DISCR_DECL. Otherwise:
22065 - store the discriminant field in STRUCT_TYPE that controls the variant
22066 part to *DISCR_DECL
22068 - put in *DISCR_LISTS_P an array where for each variant, the item
22069 represents the corresponding matching list of discriminant values.
22071 - put in *DISCR_LISTS_LENGTH the number of variants, which is the size of
22072 the above array.
22074 Note that when the array is allocated (i.e. when the analysis is
22075 successful), it is up to the caller to free the array. */
22077 static void
22078 analyze_variants_discr (tree variant_part_decl,
22079 tree struct_type,
22080 tree *discr_decl,
22081 dw_discr_list_ref **discr_lists_p,
22082 unsigned *discr_lists_length)
22084 tree variant_part_type = TREE_TYPE (variant_part_decl);
22085 tree variant;
22086 dw_discr_list_ref *discr_lists;
22087 unsigned i;
22089 /* Compute how many variants there are in this variant part. */
22090 *discr_lists_length = 0;
22091 for (variant = TYPE_FIELDS (variant_part_type);
22092 variant != NULL_TREE;
22093 variant = DECL_CHAIN (variant))
22094 ++*discr_lists_length;
22096 *discr_decl = NULL_TREE;
22097 *discr_lists_p
22098 = (dw_discr_list_ref *) xcalloc (*discr_lists_length,
22099 sizeof (**discr_lists_p));
22100 discr_lists = *discr_lists_p;
22102 /* And then analyze all variants to extract discriminant information for all
22103 of them. This analysis is conservative: as soon as we detect something we
22104 do not support, abort everything and pretend we found nothing. */
22105 for (variant = TYPE_FIELDS (variant_part_type), i = 0;
22106 variant != NULL_TREE;
22107 variant = DECL_CHAIN (variant), ++i)
22109 tree match_expr = DECL_QUALIFIER (variant);
22111 /* Now, try to analyze the predicate and deduce a discriminant for
22112 it. */
22113 if (match_expr == boolean_true_node)
22114 /* Typically happens for the default variant: it matches all cases that
22115 previous variants rejected. Don't output any matching value for
22116 this one. */
22117 continue;
22119 /* The following loop tries to iterate over each discriminant
22120 possibility: single values or ranges. */
22121 while (match_expr != NULL_TREE)
22123 tree next_round_match_expr;
22124 tree candidate_discr = NULL_TREE;
22125 dw_discr_list_ref new_node = NULL;
22127 /* Possibilities are matched one after the other by nested
22128 TRUTH_ORIF_EXPR expressions. Process the current possibility and
22129 continue with the rest at next iteration. */
22130 if (TREE_CODE (match_expr) == TRUTH_ORIF_EXPR)
22132 next_round_match_expr = TREE_OPERAND (match_expr, 0);
22133 match_expr = TREE_OPERAND (match_expr, 1);
22135 else
22136 next_round_match_expr = NULL_TREE;
22138 if (match_expr == boolean_false_node)
22139 /* This sub-expression matches nothing: just wait for the next
22140 one. */
22143 else if (TREE_CODE (match_expr) == EQ_EXPR)
22145 /* We are matching: <discr_field> == <integer_cst>
22146 This sub-expression matches a single value. */
22147 tree integer_cst = TREE_OPERAND (match_expr, 1);
22149 candidate_discr
22150 = analyze_discr_in_predicate (TREE_OPERAND (match_expr, 0),
22151 struct_type);
22153 new_node = ggc_cleared_alloc<dw_discr_list_node> ();
22154 if (!get_discr_value (integer_cst,
22155 &new_node->dw_discr_lower_bound))
22156 goto abort;
22157 new_node->dw_discr_range = false;
22160 else if (TREE_CODE (match_expr) == TRUTH_ANDIF_EXPR)
22162 /* We are matching:
22163 <discr_field> > <integer_cst>
22164 && <discr_field> < <integer_cst>.
22165 This sub-expression matches the range of values between the
22166 two matched integer constants. Note that comparisons can be
22167 inclusive or exclusive. */
22168 tree candidate_discr_1, candidate_discr_2;
22169 tree lower_cst, upper_cst;
22170 bool lower_cst_included, upper_cst_included;
22171 tree lower_op = TREE_OPERAND (match_expr, 0);
22172 tree upper_op = TREE_OPERAND (match_expr, 1);
22174 /* When the comparison is exclusive, the integer constant is not
22175 the discriminant range bound we are looking for: we will have
22176 to increment or decrement it. */
22177 if (TREE_CODE (lower_op) == GE_EXPR)
22178 lower_cst_included = true;
22179 else if (TREE_CODE (lower_op) == GT_EXPR)
22180 lower_cst_included = false;
22181 else
22182 goto abort;
22184 if (TREE_CODE (upper_op) == LE_EXPR)
22185 upper_cst_included = true;
22186 else if (TREE_CODE (upper_op) == LT_EXPR)
22187 upper_cst_included = false;
22188 else
22189 goto abort;
22191 /* Extract the discriminant from the first operand and check it
22192 is consistant with the same analysis in the second
22193 operand. */
22194 candidate_discr_1
22195 = analyze_discr_in_predicate (TREE_OPERAND (lower_op, 0),
22196 struct_type);
22197 candidate_discr_2
22198 = analyze_discr_in_predicate (TREE_OPERAND (upper_op, 0),
22199 struct_type);
22200 if (candidate_discr_1 == candidate_discr_2)
22201 candidate_discr = candidate_discr_1;
22202 else
22203 goto abort;
22205 /* Extract bounds from both. */
22206 new_node = ggc_cleared_alloc<dw_discr_list_node> ();
22207 lower_cst = TREE_OPERAND (lower_op, 1);
22208 upper_cst = TREE_OPERAND (upper_op, 1);
22210 if (!lower_cst_included)
22211 lower_cst
22212 = fold (build2 (PLUS_EXPR, TREE_TYPE (lower_cst),
22213 lower_cst,
22214 build_int_cst (TREE_TYPE (lower_cst), 1)));
22215 if (!upper_cst_included)
22216 upper_cst
22217 = fold (build2 (MINUS_EXPR, TREE_TYPE (upper_cst),
22218 upper_cst,
22219 build_int_cst (TREE_TYPE (upper_cst), 1)));
22221 if (!get_discr_value (lower_cst,
22222 &new_node->dw_discr_lower_bound)
22223 || !get_discr_value (upper_cst,
22224 &new_node->dw_discr_upper_bound))
22225 goto abort;
22227 new_node->dw_discr_range = true;
22230 else
22231 /* Unsupported sub-expression: we cannot determine the set of
22232 matching discriminant values. Abort everything. */
22233 goto abort;
22235 /* If the discriminant info is not consistant with what we saw so
22236 far, consider the analysis failed and abort everything. */
22237 if (candidate_discr == NULL_TREE
22238 || (*discr_decl != NULL_TREE && candidate_discr != *discr_decl))
22239 goto abort;
22240 else
22241 *discr_decl = candidate_discr;
22243 if (new_node != NULL)
22245 new_node->dw_discr_next = discr_lists[i];
22246 discr_lists[i] = new_node;
22248 match_expr = next_round_match_expr;
22252 /* If we reach this point, we could match everything we were interested
22253 in. */
22254 return;
22256 abort:
22257 /* Clean all data structure and return no result. */
22258 free (*discr_lists_p);
22259 *discr_lists_p = NULL;
22260 *discr_decl = NULL_TREE;
22263 /* Generate a DIE to represent VARIANT_PART_DECL, a variant part that is part
22264 of STRUCT_TYPE, a record type. This new DIE is emitted as the next child
22265 under CONTEXT_DIE.
22267 Variant parts are supposed to be implemented as a FIELD_DECL whose type is a
22268 QUAL_UNION_TYPE: this is the VARIANT_PART_DECL parameter. The members for
22269 this type, which are record types, represent the available variants and each
22270 has a DECL_QUALIFIER attribute. The discriminant and the discriminant
22271 values are inferred from these attributes.
22273 In trees, the offsets for the fields inside these sub-records are relative
22274 to the variant part itself, whereas the corresponding DIEs should have
22275 offset attributes that are relative to the embedding record base address.
22276 This is why the caller must provide a VARIANT_PART_OFFSET expression: it
22277 must be an expression that computes the offset of the variant part to
22278 describe in DWARF. */
22280 static void
22281 gen_variant_part (tree variant_part_decl, struct vlr_context *vlr_ctx,
22282 dw_die_ref context_die)
22284 const tree variant_part_type = TREE_TYPE (variant_part_decl);
22285 tree variant_part_offset = vlr_ctx->variant_part_offset;
22286 struct loc_descr_context ctx = {
22287 vlr_ctx->struct_type, /* context_type */
22288 NULL_TREE, /* base_decl */
22289 NULL /* dpi */
22292 /* The FIELD_DECL node in STRUCT_TYPE that acts as the discriminant, or
22293 NULL_TREE if there is no such field. */
22294 tree discr_decl = NULL_TREE;
22295 dw_discr_list_ref *discr_lists;
22296 unsigned discr_lists_length = 0;
22297 unsigned i;
22299 dw_die_ref dwarf_proc_die = NULL;
22300 dw_die_ref variant_part_die
22301 = new_die (DW_TAG_variant_part, context_die, variant_part_type);
22303 equate_decl_number_to_die (variant_part_decl, variant_part_die);
22305 analyze_variants_discr (variant_part_decl, vlr_ctx->struct_type,
22306 &discr_decl, &discr_lists, &discr_lists_length);
22308 if (discr_decl != NULL_TREE)
22310 dw_die_ref discr_die = lookup_decl_die (discr_decl);
22312 if (discr_die)
22313 add_AT_die_ref (variant_part_die, DW_AT_discr, discr_die);
22314 else
22315 /* We have no DIE for the discriminant, so just discard all
22316 discrimimant information in the output. */
22317 discr_decl = NULL_TREE;
22320 /* If the offset for this variant part is more complex than a constant,
22321 create a DWARF procedure for it so that we will not have to generate DWARF
22322 expressions for it for each member. */
22323 if (TREE_CODE (variant_part_offset) != INTEGER_CST
22324 && (dwarf_version >= 3 || !dwarf_strict))
22326 const tree dwarf_proc_fndecl
22327 = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
22328 build_function_type (TREE_TYPE (variant_part_offset),
22329 NULL_TREE));
22330 const tree dwarf_proc_call = build_call_expr (dwarf_proc_fndecl, 0);
22331 const dw_loc_descr_ref dwarf_proc_body
22332 = loc_descriptor_from_tree (variant_part_offset, 0, &ctx);
22334 dwarf_proc_die = new_dwarf_proc_die (dwarf_proc_body,
22335 dwarf_proc_fndecl, context_die);
22336 if (dwarf_proc_die != NULL)
22337 variant_part_offset = dwarf_proc_call;
22340 /* Output DIEs for all variants. */
22341 i = 0;
22342 for (tree variant = TYPE_FIELDS (variant_part_type);
22343 variant != NULL_TREE;
22344 variant = DECL_CHAIN (variant), ++i)
22346 tree variant_type = TREE_TYPE (variant);
22347 dw_die_ref variant_die;
22349 /* All variants (i.e. members of a variant part) are supposed to be
22350 encoded as structures. Sub-variant parts are QUAL_UNION_TYPE fields
22351 under these records. */
22352 gcc_assert (TREE_CODE (variant_type) == RECORD_TYPE);
22354 variant_die = new_die (DW_TAG_variant, variant_part_die, variant_type);
22355 equate_decl_number_to_die (variant, variant_die);
22357 /* Output discriminant values this variant matches, if any. */
22358 if (discr_decl == NULL || discr_lists[i] == NULL)
22359 /* In the case we have discriminant information at all, this is
22360 probably the default variant: as the standard says, don't
22361 output any discriminant value/list attribute. */
22363 else if (discr_lists[i]->dw_discr_next == NULL
22364 && !discr_lists[i]->dw_discr_range)
22365 /* If there is only one accepted value, don't bother outputting a
22366 list. */
22367 add_discr_value (variant_die, &discr_lists[i]->dw_discr_lower_bound);
22368 else
22369 add_discr_list (variant_die, discr_lists[i]);
22371 for (tree member = TYPE_FIELDS (variant_type);
22372 member != NULL_TREE;
22373 member = DECL_CHAIN (member))
22375 struct vlr_context vlr_sub_ctx = {
22376 vlr_ctx->struct_type, /* struct_type */
22377 NULL /* variant_part_offset */
22379 if (is_variant_part (member))
22381 /* All offsets for fields inside variant parts are relative to
22382 the top-level embedding RECORD_TYPE's base address. On the
22383 other hand, offsets in GCC's types are relative to the
22384 nested-most variant part. So we have to sum offsets each time
22385 we recurse. */
22387 vlr_sub_ctx.variant_part_offset
22388 = fold (build2 (PLUS_EXPR, TREE_TYPE (variant_part_offset),
22389 variant_part_offset, byte_position (member)));
22390 gen_variant_part (member, &vlr_sub_ctx, variant_die);
22392 else
22394 vlr_sub_ctx.variant_part_offset = variant_part_offset;
22395 gen_decl_die (member, NULL, &vlr_sub_ctx, variant_die);
22400 free (discr_lists);
22403 /* Generate a DIE for a class member. */
22405 static void
22406 gen_member_die (tree type, dw_die_ref context_die)
22408 tree member;
22409 tree binfo = TYPE_BINFO (type);
22410 dw_die_ref child;
22412 /* If this is not an incomplete type, output descriptions of each of its
22413 members. Note that as we output the DIEs necessary to represent the
22414 members of this record or union type, we will also be trying to output
22415 DIEs to represent the *types* of those members. However the `type'
22416 function (above) will specifically avoid generating type DIEs for member
22417 types *within* the list of member DIEs for this (containing) type except
22418 for those types (of members) which are explicitly marked as also being
22419 members of this (containing) type themselves. The g++ front- end can
22420 force any given type to be treated as a member of some other (containing)
22421 type by setting the TYPE_CONTEXT of the given (member) type to point to
22422 the TREE node representing the appropriate (containing) type. */
22424 /* First output info about the base classes. */
22425 if (binfo)
22427 vec<tree, va_gc> *accesses = BINFO_BASE_ACCESSES (binfo);
22428 int i;
22429 tree base;
22431 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
22432 gen_inheritance_die (base,
22433 (accesses ? (*accesses)[i] : access_public_node),
22434 type,
22435 context_die);
22438 /* Now output info about the data members and type members. */
22439 for (member = TYPE_FIELDS (type); member; member = DECL_CHAIN (member))
22441 struct vlr_context vlr_ctx = { type, NULL_TREE };
22443 /* If we thought we were generating minimal debug info for TYPE
22444 and then changed our minds, some of the member declarations
22445 may have already been defined. Don't define them again, but
22446 do put them in the right order. */
22448 child = lookup_decl_die (member);
22449 if (child)
22450 splice_child_die (context_die, child);
22452 /* Do not generate standard DWARF for variant parts if we are generating
22453 the corresponding GNAT encodings: DIEs generated for both would
22454 conflict in our mappings. */
22455 else if (is_variant_part (member)
22456 && gnat_encodings == DWARF_GNAT_ENCODINGS_MINIMAL)
22458 vlr_ctx.variant_part_offset = byte_position (member);
22459 gen_variant_part (member, &vlr_ctx, context_die);
22461 else
22463 vlr_ctx.variant_part_offset = NULL_TREE;
22464 gen_decl_die (member, NULL, &vlr_ctx, context_die);
22468 /* We do not keep type methods in type variants. */
22469 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
22470 /* Now output info about the function members (if any). */
22471 if (TYPE_METHODS (type) != error_mark_node)
22472 for (member = TYPE_METHODS (type); member; member = DECL_CHAIN (member))
22474 /* Don't include clones in the member list. */
22475 if (DECL_ABSTRACT_ORIGIN (member))
22476 continue;
22477 /* Nor constructors for anonymous classes. */
22478 if (DECL_ARTIFICIAL (member)
22479 && dwarf2_name (member, 0) == NULL)
22480 continue;
22482 child = lookup_decl_die (member);
22483 if (child)
22484 splice_child_die (context_die, child);
22485 else
22486 gen_decl_die (member, NULL, NULL, context_die);
22490 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
22491 is set, we pretend that the type was never defined, so we only get the
22492 member DIEs needed by later specification DIEs. */
22494 static void
22495 gen_struct_or_union_type_die (tree type, dw_die_ref context_die,
22496 enum debug_info_usage usage)
22498 if (TREE_ASM_WRITTEN (type))
22500 /* Fill in the bound of variable-length fields in late dwarf if
22501 still incomplete. */
22502 if (!early_dwarf && variably_modified_type_p (type, NULL))
22503 for (tree member = TYPE_FIELDS (type);
22504 member;
22505 member = DECL_CHAIN (member))
22506 fill_variable_array_bounds (TREE_TYPE (member));
22507 return;
22510 dw_die_ref type_die = lookup_type_die (type);
22511 dw_die_ref scope_die = 0;
22512 int nested = 0;
22513 int complete = (TYPE_SIZE (type)
22514 && (! TYPE_STUB_DECL (type)
22515 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
22516 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
22517 complete = complete && should_emit_struct_debug (type, usage);
22519 if (type_die && ! complete)
22520 return;
22522 if (TYPE_CONTEXT (type) != NULL_TREE
22523 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
22524 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
22525 nested = 1;
22527 scope_die = scope_die_for (type, context_die);
22529 /* Generate child dies for template paramaters. */
22530 if (!type_die && debug_info_level > DINFO_LEVEL_TERSE)
22531 schedule_generic_params_dies_gen (type);
22533 if (! type_die || (nested && is_cu_die (scope_die)))
22534 /* First occurrence of type or toplevel definition of nested class. */
22536 dw_die_ref old_die = type_die;
22538 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
22539 ? record_type_tag (type) : DW_TAG_union_type,
22540 scope_die, type);
22541 equate_type_number_to_die (type, type_die);
22542 if (old_die)
22543 add_AT_specification (type_die, old_die);
22544 else
22545 add_name_attribute (type_die, type_tag (type));
22547 else
22548 remove_AT (type_die, DW_AT_declaration);
22550 /* If this type has been completed, then give it a byte_size attribute and
22551 then give a list of members. */
22552 if (complete && !ns_decl)
22554 /* Prevent infinite recursion in cases where the type of some member of
22555 this type is expressed in terms of this type itself. */
22556 TREE_ASM_WRITTEN (type) = 1;
22557 add_byte_size_attribute (type_die, type);
22558 if (TYPE_STUB_DECL (type) != NULL_TREE)
22560 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
22561 add_accessibility_attribute (type_die, TYPE_STUB_DECL (type));
22564 /* If the first reference to this type was as the return type of an
22565 inline function, then it may not have a parent. Fix this now. */
22566 if (type_die->die_parent == NULL)
22567 add_child_die (scope_die, type_die);
22569 push_decl_scope (type);
22570 gen_member_die (type, type_die);
22571 pop_decl_scope ();
22573 add_gnat_descriptive_type_attribute (type_die, type, context_die);
22574 if (TYPE_ARTIFICIAL (type))
22575 add_AT_flag (type_die, DW_AT_artificial, 1);
22577 /* GNU extension: Record what type our vtable lives in. */
22578 if (TYPE_VFIELD (type))
22580 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
22582 gen_type_die (vtype, context_die);
22583 add_AT_die_ref (type_die, DW_AT_containing_type,
22584 lookup_type_die (vtype));
22587 else
22589 add_AT_flag (type_die, DW_AT_declaration, 1);
22591 /* We don't need to do this for function-local types. */
22592 if (TYPE_STUB_DECL (type)
22593 && ! decl_function_context (TYPE_STUB_DECL (type)))
22594 vec_safe_push (incomplete_types, type);
22597 if (get_AT (type_die, DW_AT_name))
22598 add_pubtype (type, type_die);
22601 /* Generate a DIE for a subroutine _type_. */
22603 static void
22604 gen_subroutine_type_die (tree type, dw_die_ref context_die)
22606 tree return_type = TREE_TYPE (type);
22607 dw_die_ref subr_die
22608 = new_die (DW_TAG_subroutine_type,
22609 scope_die_for (type, context_die), type);
22611 equate_type_number_to_die (type, subr_die);
22612 add_prototyped_attribute (subr_die, type);
22613 add_type_attribute (subr_die, return_type, TYPE_UNQUALIFIED, false,
22614 context_die);
22615 gen_formal_types_die (type, subr_die);
22617 if (get_AT (subr_die, DW_AT_name))
22618 add_pubtype (type, subr_die);
22621 /* Generate a DIE for a type definition. */
22623 static void
22624 gen_typedef_die (tree decl, dw_die_ref context_die)
22626 dw_die_ref type_die;
22627 tree origin;
22629 if (TREE_ASM_WRITTEN (decl))
22631 if (DECL_ORIGINAL_TYPE (decl))
22632 fill_variable_array_bounds (DECL_ORIGINAL_TYPE (decl));
22633 return;
22636 TREE_ASM_WRITTEN (decl) = 1;
22637 type_die = new_die (DW_TAG_typedef, context_die, decl);
22638 origin = decl_ultimate_origin (decl);
22639 if (origin != NULL)
22640 add_abstract_origin_attribute (type_die, origin);
22641 else
22643 tree type;
22645 add_name_and_src_coords_attributes (type_die, decl);
22646 if (DECL_ORIGINAL_TYPE (decl))
22648 type = DECL_ORIGINAL_TYPE (decl);
22650 if (type == error_mark_node)
22651 return;
22653 gcc_assert (type != TREE_TYPE (decl));
22654 equate_type_number_to_die (TREE_TYPE (decl), type_die);
22656 else
22658 type = TREE_TYPE (decl);
22660 if (type == error_mark_node)
22661 return;
22663 if (is_naming_typedef_decl (TYPE_NAME (type)))
22665 /* Here, we are in the case of decl being a typedef naming
22666 an anonymous type, e.g:
22667 typedef struct {...} foo;
22668 In that case TREE_TYPE (decl) is not a typedef variant
22669 type and TYPE_NAME of the anonymous type is set to the
22670 TYPE_DECL of the typedef. This construct is emitted by
22671 the C++ FE.
22673 TYPE is the anonymous struct named by the typedef
22674 DECL. As we need the DW_AT_type attribute of the
22675 DW_TAG_typedef to point to the DIE of TYPE, let's
22676 generate that DIE right away. add_type_attribute
22677 called below will then pick (via lookup_type_die) that
22678 anonymous struct DIE. */
22679 if (!TREE_ASM_WRITTEN (type))
22680 gen_tagged_type_die (type, context_die, DINFO_USAGE_DIR_USE);
22682 /* This is a GNU Extension. We are adding a
22683 DW_AT_linkage_name attribute to the DIE of the
22684 anonymous struct TYPE. The value of that attribute
22685 is the name of the typedef decl naming the anonymous
22686 struct. This greatly eases the work of consumers of
22687 this debug info. */
22688 add_linkage_name_raw (lookup_type_die (type), decl);
22692 add_type_attribute (type_die, type, decl_quals (decl), false,
22693 context_die);
22695 if (is_naming_typedef_decl (decl))
22696 /* We want that all subsequent calls to lookup_type_die with
22697 TYPE in argument yield the DW_TAG_typedef we have just
22698 created. */
22699 equate_type_number_to_die (type, type_die);
22701 add_accessibility_attribute (type_die, decl);
22704 if (DECL_ABSTRACT_P (decl))
22705 equate_decl_number_to_die (decl, type_die);
22707 if (get_AT (type_die, DW_AT_name))
22708 add_pubtype (decl, type_die);
22711 /* Generate a DIE for a struct, class, enum or union type. */
22713 static void
22714 gen_tagged_type_die (tree type,
22715 dw_die_ref context_die,
22716 enum debug_info_usage usage)
22718 int need_pop;
22720 if (type == NULL_TREE
22721 || !is_tagged_type (type))
22722 return;
22724 if (TREE_ASM_WRITTEN (type))
22725 need_pop = 0;
22726 /* If this is a nested type whose containing class hasn't been written
22727 out yet, writing it out will cover this one, too. This does not apply
22728 to instantiations of member class templates; they need to be added to
22729 the containing class as they are generated. FIXME: This hurts the
22730 idea of combining type decls from multiple TUs, since we can't predict
22731 what set of template instantiations we'll get. */
22732 else if (TYPE_CONTEXT (type)
22733 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
22734 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
22736 gen_type_die_with_usage (TYPE_CONTEXT (type), context_die, usage);
22738 if (TREE_ASM_WRITTEN (type))
22739 return;
22741 /* If that failed, attach ourselves to the stub. */
22742 push_decl_scope (TYPE_CONTEXT (type));
22743 context_die = lookup_type_die (TYPE_CONTEXT (type));
22744 need_pop = 1;
22746 else if (TYPE_CONTEXT (type) != NULL_TREE
22747 && (TREE_CODE (TYPE_CONTEXT (type)) == FUNCTION_DECL))
22749 /* If this type is local to a function that hasn't been written
22750 out yet, use a NULL context for now; it will be fixed up in
22751 decls_for_scope. */
22752 context_die = lookup_decl_die (TYPE_CONTEXT (type));
22753 /* A declaration DIE doesn't count; nested types need to go in the
22754 specification. */
22755 if (context_die && is_declaration_die (context_die))
22756 context_die = NULL;
22757 need_pop = 0;
22759 else
22761 context_die = declare_in_namespace (type, context_die);
22762 need_pop = 0;
22765 if (TREE_CODE (type) == ENUMERAL_TYPE)
22767 /* This might have been written out by the call to
22768 declare_in_namespace. */
22769 if (!TREE_ASM_WRITTEN (type))
22770 gen_enumeration_type_die (type, context_die);
22772 else
22773 gen_struct_or_union_type_die (type, context_die, usage);
22775 if (need_pop)
22776 pop_decl_scope ();
22778 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
22779 it up if it is ever completed. gen_*_type_die will set it for us
22780 when appropriate. */
22783 /* Generate a type description DIE. */
22785 static void
22786 gen_type_die_with_usage (tree type, dw_die_ref context_die,
22787 enum debug_info_usage usage)
22789 struct array_descr_info info;
22791 if (type == NULL_TREE || type == error_mark_node)
22792 return;
22794 if (flag_checking && type)
22795 verify_type (type);
22797 if (TYPE_NAME (type) != NULL_TREE
22798 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
22799 && is_redundant_typedef (TYPE_NAME (type))
22800 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
22801 /* The DECL of this type is a typedef we don't want to emit debug
22802 info for but we want debug info for its underlying typedef.
22803 This can happen for e.g, the injected-class-name of a C++
22804 type. */
22805 type = DECL_ORIGINAL_TYPE (TYPE_NAME (type));
22807 /* If TYPE is a typedef type variant, let's generate debug info
22808 for the parent typedef which TYPE is a type of. */
22809 if (typedef_variant_p (type))
22811 if (TREE_ASM_WRITTEN (type))
22812 return;
22814 /* Prevent broken recursion; we can't hand off to the same type. */
22815 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
22817 /* Give typedefs the right scope. */
22818 context_die = scope_die_for (type, context_die);
22820 TREE_ASM_WRITTEN (type) = 1;
22822 gen_decl_die (TYPE_NAME (type), NULL, NULL, context_die);
22823 return;
22826 /* If type is an anonymous tagged type named by a typedef, let's
22827 generate debug info for the typedef. */
22828 if (is_naming_typedef_decl (TYPE_NAME (type)))
22830 /* Use the DIE of the containing namespace as the parent DIE of
22831 the type description DIE we want to generate. */
22832 if (DECL_CONTEXT (TYPE_NAME (type))
22833 && TREE_CODE (DECL_CONTEXT (TYPE_NAME (type))) == NAMESPACE_DECL)
22834 context_die = get_context_die (DECL_CONTEXT (TYPE_NAME (type)));
22836 gen_decl_die (TYPE_NAME (type), NULL, NULL, context_die);
22837 return;
22840 /* We are going to output a DIE to represent the unqualified version
22841 of this type (i.e. without any const or volatile qualifiers) so
22842 get the main variant (i.e. the unqualified version) of this type
22843 now. (Vectors and arrays are special because the debugging info is in the
22844 cloned type itself). */
22845 if (TREE_CODE (type) != VECTOR_TYPE
22846 && TREE_CODE (type) != ARRAY_TYPE)
22847 type = type_main_variant (type);
22849 /* If this is an array type with hidden descriptor, handle it first. */
22850 if (!TREE_ASM_WRITTEN (type)
22851 && lang_hooks.types.get_array_descr_info)
22853 memset (&info, 0, sizeof (info));
22854 if (lang_hooks.types.get_array_descr_info (type, &info))
22856 /* Fortran sometimes emits array types with no dimension. */
22857 gcc_assert (info.ndimensions >= 0
22858 && (info.ndimensions
22859 <= DWARF2OUT_ARRAY_DESCR_INFO_MAX_DIMEN));
22860 gen_descr_array_type_die (type, &info, context_die);
22861 TREE_ASM_WRITTEN (type) = 1;
22862 return;
22866 if (TREE_ASM_WRITTEN (type))
22868 /* Variable-length types may be incomplete even if
22869 TREE_ASM_WRITTEN. For such types, fall through to
22870 gen_array_type_die() and possibly fill in
22871 DW_AT_{upper,lower}_bound attributes. */
22872 if ((TREE_CODE (type) != ARRAY_TYPE
22873 && TREE_CODE (type) != RECORD_TYPE
22874 && TREE_CODE (type) != UNION_TYPE
22875 && TREE_CODE (type) != QUAL_UNION_TYPE)
22876 || !variably_modified_type_p (type, NULL))
22877 return;
22880 switch (TREE_CODE (type))
22882 case ERROR_MARK:
22883 break;
22885 case POINTER_TYPE:
22886 case REFERENCE_TYPE:
22887 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
22888 ensures that the gen_type_die recursion will terminate even if the
22889 type is recursive. Recursive types are possible in Ada. */
22890 /* ??? We could perhaps do this for all types before the switch
22891 statement. */
22892 TREE_ASM_WRITTEN (type) = 1;
22894 /* For these types, all that is required is that we output a DIE (or a
22895 set of DIEs) to represent the "basis" type. */
22896 gen_type_die_with_usage (TREE_TYPE (type), context_die,
22897 DINFO_USAGE_IND_USE);
22898 break;
22900 case OFFSET_TYPE:
22901 /* This code is used for C++ pointer-to-data-member types.
22902 Output a description of the relevant class type. */
22903 gen_type_die_with_usage (TYPE_OFFSET_BASETYPE (type), context_die,
22904 DINFO_USAGE_IND_USE);
22906 /* Output a description of the type of the object pointed to. */
22907 gen_type_die_with_usage (TREE_TYPE (type), context_die,
22908 DINFO_USAGE_IND_USE);
22910 /* Now output a DIE to represent this pointer-to-data-member type
22911 itself. */
22912 gen_ptr_to_mbr_type_die (type, context_die);
22913 break;
22915 case FUNCTION_TYPE:
22916 /* Force out return type (in case it wasn't forced out already). */
22917 gen_type_die_with_usage (TREE_TYPE (type), context_die,
22918 DINFO_USAGE_DIR_USE);
22919 gen_subroutine_type_die (type, context_die);
22920 break;
22922 case METHOD_TYPE:
22923 /* Force out return type (in case it wasn't forced out already). */
22924 gen_type_die_with_usage (TREE_TYPE (type), context_die,
22925 DINFO_USAGE_DIR_USE);
22926 gen_subroutine_type_die (type, context_die);
22927 break;
22929 case ARRAY_TYPE:
22930 case VECTOR_TYPE:
22931 gen_array_type_die (type, context_die);
22932 break;
22934 case ENUMERAL_TYPE:
22935 case RECORD_TYPE:
22936 case UNION_TYPE:
22937 case QUAL_UNION_TYPE:
22938 gen_tagged_type_die (type, context_die, usage);
22939 return;
22941 case VOID_TYPE:
22942 case INTEGER_TYPE:
22943 case REAL_TYPE:
22944 case FIXED_POINT_TYPE:
22945 case COMPLEX_TYPE:
22946 case BOOLEAN_TYPE:
22947 case POINTER_BOUNDS_TYPE:
22948 /* No DIEs needed for fundamental types. */
22949 break;
22951 case NULLPTR_TYPE:
22952 case LANG_TYPE:
22953 /* Just use DW_TAG_unspecified_type. */
22955 dw_die_ref type_die = lookup_type_die (type);
22956 if (type_die == NULL)
22958 tree name = TYPE_IDENTIFIER (type);
22959 type_die = new_die (DW_TAG_unspecified_type, comp_unit_die (),
22960 type);
22961 add_name_attribute (type_die, IDENTIFIER_POINTER (name));
22962 equate_type_number_to_die (type, type_die);
22965 break;
22967 default:
22968 if (is_cxx_auto (type))
22970 tree name = TYPE_IDENTIFIER (type);
22971 dw_die_ref *die = (name == get_identifier ("auto")
22972 ? &auto_die : &decltype_auto_die);
22973 if (!*die)
22975 *die = new_die (DW_TAG_unspecified_type,
22976 comp_unit_die (), NULL_TREE);
22977 add_name_attribute (*die, IDENTIFIER_POINTER (name));
22979 equate_type_number_to_die (type, *die);
22980 break;
22982 gcc_unreachable ();
22985 TREE_ASM_WRITTEN (type) = 1;
22988 static void
22989 gen_type_die (tree type, dw_die_ref context_die)
22991 if (type != error_mark_node)
22993 gen_type_die_with_usage (type, context_die, DINFO_USAGE_DIR_USE);
22994 if (flag_checking)
22996 dw_die_ref die = lookup_type_die (type);
22997 if (die)
22998 check_die (die);
23003 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
23004 things which are local to the given block. */
23006 static void
23007 gen_block_die (tree stmt, dw_die_ref context_die)
23009 int must_output_die = 0;
23010 bool inlined_func;
23012 /* Ignore blocks that are NULL. */
23013 if (stmt == NULL_TREE)
23014 return;
23016 inlined_func = inlined_function_outer_scope_p (stmt);
23018 /* If the block is one fragment of a non-contiguous block, do not
23019 process the variables, since they will have been done by the
23020 origin block. Do process subblocks. */
23021 if (BLOCK_FRAGMENT_ORIGIN (stmt))
23023 tree sub;
23025 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
23026 gen_block_die (sub, context_die);
23028 return;
23031 /* Determine if we need to output any Dwarf DIEs at all to represent this
23032 block. */
23033 if (inlined_func)
23034 /* The outer scopes for inlinings *must* always be represented. We
23035 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
23036 must_output_die = 1;
23037 else
23039 /* Determine if this block directly contains any "significant"
23040 local declarations which we will need to output DIEs for. */
23041 if (debug_info_level > DINFO_LEVEL_TERSE)
23042 /* We are not in terse mode so *any* local declaration counts
23043 as being a "significant" one. */
23044 must_output_die = ((BLOCK_VARS (stmt) != NULL
23045 || BLOCK_NUM_NONLOCALIZED_VARS (stmt))
23046 && (TREE_USED (stmt)
23047 || TREE_ASM_WRITTEN (stmt)
23048 || BLOCK_ABSTRACT (stmt)));
23049 else if ((TREE_USED (stmt)
23050 || TREE_ASM_WRITTEN (stmt)
23051 || BLOCK_ABSTRACT (stmt))
23052 && !dwarf2out_ignore_block (stmt))
23053 must_output_die = 1;
23056 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
23057 DIE for any block which contains no significant local declarations at
23058 all. Rather, in such cases we just call `decls_for_scope' so that any
23059 needed Dwarf info for any sub-blocks will get properly generated. Note
23060 that in terse mode, our definition of what constitutes a "significant"
23061 local declaration gets restricted to include only inlined function
23062 instances and local (nested) function definitions. */
23063 if (must_output_die)
23065 if (inlined_func)
23067 /* If STMT block is abstract, that means we have been called
23068 indirectly from dwarf2out_abstract_function.
23069 That function rightfully marks the descendent blocks (of
23070 the abstract function it is dealing with) as being abstract,
23071 precisely to prevent us from emitting any
23072 DW_TAG_inlined_subroutine DIE as a descendent
23073 of an abstract function instance. So in that case, we should
23074 not call gen_inlined_subroutine_die.
23076 Later though, when cgraph asks dwarf2out to emit info
23077 for the concrete instance of the function decl into which
23078 the concrete instance of STMT got inlined, the later will lead
23079 to the generation of a DW_TAG_inlined_subroutine DIE. */
23080 if (! BLOCK_ABSTRACT (stmt))
23081 gen_inlined_subroutine_die (stmt, context_die);
23083 else
23084 gen_lexical_block_die (stmt, context_die);
23086 else
23087 decls_for_scope (stmt, context_die);
23090 /* Process variable DECL (or variable with origin ORIGIN) within
23091 block STMT and add it to CONTEXT_DIE. */
23092 static void
23093 process_scope_var (tree stmt, tree decl, tree origin, dw_die_ref context_die)
23095 dw_die_ref die;
23096 tree decl_or_origin = decl ? decl : origin;
23098 if (TREE_CODE (decl_or_origin) == FUNCTION_DECL)
23099 die = lookup_decl_die (decl_or_origin);
23100 else if (TREE_CODE (decl_or_origin) == TYPE_DECL
23101 && TYPE_DECL_IS_STUB (decl_or_origin))
23102 die = lookup_type_die (TREE_TYPE (decl_or_origin));
23103 else
23104 die = NULL;
23106 if (die != NULL && die->die_parent == NULL)
23107 add_child_die (context_die, die);
23108 else if (TREE_CODE (decl_or_origin) == IMPORTED_DECL)
23110 if (early_dwarf)
23111 dwarf2out_imported_module_or_decl_1 (decl_or_origin, DECL_NAME (decl_or_origin),
23112 stmt, context_die);
23114 else
23115 gen_decl_die (decl, origin, NULL, context_die);
23118 /* Generate all of the decls declared within a given scope and (recursively)
23119 all of its sub-blocks. */
23121 static void
23122 decls_for_scope (tree stmt, dw_die_ref context_die)
23124 tree decl;
23125 unsigned int i;
23126 tree subblocks;
23128 /* Ignore NULL blocks. */
23129 if (stmt == NULL_TREE)
23130 return;
23132 /* Output the DIEs to represent all of the data objects and typedefs
23133 declared directly within this block but not within any nested
23134 sub-blocks. Also, nested function and tag DIEs have been
23135 generated with a parent of NULL; fix that up now. We don't
23136 have to do this if we're at -g1. */
23137 if (debug_info_level > DINFO_LEVEL_TERSE)
23139 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = DECL_CHAIN (decl))
23140 process_scope_var (stmt, decl, NULL_TREE, context_die);
23141 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (stmt); i++)
23142 process_scope_var (stmt, NULL, BLOCK_NONLOCALIZED_VAR (stmt, i),
23143 context_die);
23146 /* Even if we're at -g1, we need to process the subblocks in order to get
23147 inlined call information. */
23149 /* Output the DIEs to represent all sub-blocks (and the items declared
23150 therein) of this block. */
23151 for (subblocks = BLOCK_SUBBLOCKS (stmt);
23152 subblocks != NULL;
23153 subblocks = BLOCK_CHAIN (subblocks))
23154 gen_block_die (subblocks, context_die);
23157 /* Is this a typedef we can avoid emitting? */
23159 bool
23160 is_redundant_typedef (const_tree decl)
23162 if (TYPE_DECL_IS_STUB (decl))
23163 return true;
23165 if (DECL_ARTIFICIAL (decl)
23166 && DECL_CONTEXT (decl)
23167 && is_tagged_type (DECL_CONTEXT (decl))
23168 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
23169 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
23170 /* Also ignore the artificial member typedef for the class name. */
23171 return true;
23173 return false;
23176 /* Return TRUE if TYPE is a typedef that names a type for linkage
23177 purposes. This kind of typedefs is produced by the C++ FE for
23178 constructs like:
23180 typedef struct {...} foo;
23182 In that case, there is no typedef variant type produced for foo.
23183 Rather, the TREE_TYPE of the TYPE_DECL of foo is the anonymous
23184 struct type. */
23186 static bool
23187 is_naming_typedef_decl (const_tree decl)
23189 if (decl == NULL_TREE
23190 || TREE_CODE (decl) != TYPE_DECL
23191 || DECL_NAMELESS (decl)
23192 || !is_tagged_type (TREE_TYPE (decl))
23193 || DECL_IS_BUILTIN (decl)
23194 || is_redundant_typedef (decl)
23195 /* It looks like Ada produces TYPE_DECLs that are very similar
23196 to C++ naming typedefs but that have different
23197 semantics. Let's be specific to c++ for now. */
23198 || !is_cxx ())
23199 return FALSE;
23201 return (DECL_ORIGINAL_TYPE (decl) == NULL_TREE
23202 && TYPE_NAME (TREE_TYPE (decl)) == decl
23203 && (TYPE_STUB_DECL (TREE_TYPE (decl))
23204 != TYPE_NAME (TREE_TYPE (decl))));
23207 /* Looks up the DIE for a context. */
23209 static inline dw_die_ref
23210 lookup_context_die (tree context)
23212 if (context)
23214 /* Find die that represents this context. */
23215 if (TYPE_P (context))
23217 context = TYPE_MAIN_VARIANT (context);
23218 dw_die_ref ctx = lookup_type_die (context);
23219 if (!ctx)
23220 return NULL;
23221 return strip_naming_typedef (context, ctx);
23223 else
23224 return lookup_decl_die (context);
23226 return comp_unit_die ();
23229 /* Returns the DIE for a context. */
23231 static inline dw_die_ref
23232 get_context_die (tree context)
23234 if (context)
23236 /* Find die that represents this context. */
23237 if (TYPE_P (context))
23239 context = TYPE_MAIN_VARIANT (context);
23240 return strip_naming_typedef (context, force_type_die (context));
23242 else
23243 return force_decl_die (context);
23245 return comp_unit_die ();
23248 /* Returns the DIE for decl. A DIE will always be returned. */
23250 static dw_die_ref
23251 force_decl_die (tree decl)
23253 dw_die_ref decl_die;
23254 unsigned saved_external_flag;
23255 tree save_fn = NULL_TREE;
23256 decl_die = lookup_decl_die (decl);
23257 if (!decl_die)
23259 dw_die_ref context_die = get_context_die (DECL_CONTEXT (decl));
23261 decl_die = lookup_decl_die (decl);
23262 if (decl_die)
23263 return decl_die;
23265 switch (TREE_CODE (decl))
23267 case FUNCTION_DECL:
23268 /* Clear current_function_decl, so that gen_subprogram_die thinks
23269 that this is a declaration. At this point, we just want to force
23270 declaration die. */
23271 save_fn = current_function_decl;
23272 current_function_decl = NULL_TREE;
23273 gen_subprogram_die (decl, context_die);
23274 current_function_decl = save_fn;
23275 break;
23277 case VAR_DECL:
23278 /* Set external flag to force declaration die. Restore it after
23279 gen_decl_die() call. */
23280 saved_external_flag = DECL_EXTERNAL (decl);
23281 DECL_EXTERNAL (decl) = 1;
23282 gen_decl_die (decl, NULL, NULL, context_die);
23283 DECL_EXTERNAL (decl) = saved_external_flag;
23284 break;
23286 case NAMESPACE_DECL:
23287 if (dwarf_version >= 3 || !dwarf_strict)
23288 dwarf2out_decl (decl);
23289 else
23290 /* DWARF2 has neither DW_TAG_module, nor DW_TAG_namespace. */
23291 decl_die = comp_unit_die ();
23292 break;
23294 case TRANSLATION_UNIT_DECL:
23295 decl_die = comp_unit_die ();
23296 break;
23298 default:
23299 gcc_unreachable ();
23302 /* We should be able to find the DIE now. */
23303 if (!decl_die)
23304 decl_die = lookup_decl_die (decl);
23305 gcc_assert (decl_die);
23308 return decl_die;
23311 /* Returns the DIE for TYPE, that must not be a base type. A DIE is
23312 always returned. */
23314 static dw_die_ref
23315 force_type_die (tree type)
23317 dw_die_ref type_die;
23319 type_die = lookup_type_die (type);
23320 if (!type_die)
23322 dw_die_ref context_die = get_context_die (TYPE_CONTEXT (type));
23324 type_die = modified_type_die (type, TYPE_QUALS_NO_ADDR_SPACE (type),
23325 false, context_die);
23326 gcc_assert (type_die);
23328 return type_die;
23331 /* Force out any required namespaces to be able to output DECL,
23332 and return the new context_die for it, if it's changed. */
23334 static dw_die_ref
23335 setup_namespace_context (tree thing, dw_die_ref context_die)
23337 tree context = (DECL_P (thing)
23338 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
23339 if (context && TREE_CODE (context) == NAMESPACE_DECL)
23340 /* Force out the namespace. */
23341 context_die = force_decl_die (context);
23343 return context_die;
23346 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
23347 type) within its namespace, if appropriate.
23349 For compatibility with older debuggers, namespace DIEs only contain
23350 declarations; all definitions are emitted at CU scope, with
23351 DW_AT_specification pointing to the declaration (like with class
23352 members). */
23354 static dw_die_ref
23355 declare_in_namespace (tree thing, dw_die_ref context_die)
23357 dw_die_ref ns_context;
23359 if (debug_info_level <= DINFO_LEVEL_TERSE)
23360 return context_die;
23362 /* External declarations in the local scope only need to be emitted
23363 once, not once in the namespace and once in the scope.
23365 This avoids declaring the `extern' below in the
23366 namespace DIE as well as in the innermost scope:
23368 namespace S
23370 int i=5;
23371 int foo()
23373 int i=8;
23374 extern int i;
23375 return i;
23379 if (DECL_P (thing) && DECL_EXTERNAL (thing) && local_scope_p (context_die))
23380 return context_die;
23382 /* If this decl is from an inlined function, then don't try to emit it in its
23383 namespace, as we will get confused. It would have already been emitted
23384 when the abstract instance of the inline function was emitted anyways. */
23385 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
23386 return context_die;
23388 ns_context = setup_namespace_context (thing, context_die);
23390 if (ns_context != context_die)
23392 if (is_fortran ())
23393 return ns_context;
23394 if (DECL_P (thing))
23395 gen_decl_die (thing, NULL, NULL, ns_context);
23396 else
23397 gen_type_die (thing, ns_context);
23399 return context_die;
23402 /* Generate a DIE for a namespace or namespace alias. */
23404 static void
23405 gen_namespace_die (tree decl, dw_die_ref context_die)
23407 dw_die_ref namespace_die;
23409 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
23410 they are an alias of. */
23411 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
23413 /* Output a real namespace or module. */
23414 context_die = setup_namespace_context (decl, comp_unit_die ());
23415 namespace_die = new_die (is_fortran ()
23416 ? DW_TAG_module : DW_TAG_namespace,
23417 context_die, decl);
23418 /* For Fortran modules defined in different CU don't add src coords. */
23419 if (namespace_die->die_tag == DW_TAG_module && DECL_EXTERNAL (decl))
23421 const char *name = dwarf2_name (decl, 0);
23422 if (name)
23423 add_name_attribute (namespace_die, name);
23425 else
23426 add_name_and_src_coords_attributes (namespace_die, decl);
23427 if (DECL_EXTERNAL (decl))
23428 add_AT_flag (namespace_die, DW_AT_declaration, 1);
23429 equate_decl_number_to_die (decl, namespace_die);
23431 else
23433 /* Output a namespace alias. */
23435 /* Force out the namespace we are an alias of, if necessary. */
23436 dw_die_ref origin_die
23437 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
23439 if (DECL_FILE_SCOPE_P (decl)
23440 || TREE_CODE (DECL_CONTEXT (decl)) == NAMESPACE_DECL)
23441 context_die = setup_namespace_context (decl, comp_unit_die ());
23442 /* Now create the namespace alias DIE. */
23443 namespace_die = new_die (DW_TAG_imported_declaration, context_die, decl);
23444 add_name_and_src_coords_attributes (namespace_die, decl);
23445 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
23446 equate_decl_number_to_die (decl, namespace_die);
23448 /* Bypass dwarf2_name's check for DECL_NAMELESS. */
23449 if (want_pubnames ())
23450 add_pubname_string (lang_hooks.dwarf_name (decl, 1), namespace_die);
23453 /* Generate Dwarf debug information for a decl described by DECL.
23454 The return value is currently only meaningful for PARM_DECLs,
23455 for all other decls it returns NULL.
23457 If DECL is a FIELD_DECL, CTX is required: see the comment for VLR_CONTEXT.
23458 It can be NULL otherwise. */
23460 static dw_die_ref
23461 gen_decl_die (tree decl, tree origin, struct vlr_context *ctx,
23462 dw_die_ref context_die)
23464 tree decl_or_origin = decl ? decl : origin;
23465 tree class_origin = NULL, ultimate_origin;
23467 if (DECL_P (decl_or_origin) && DECL_IGNORED_P (decl_or_origin))
23468 return NULL;
23470 /* Ignore pointer bounds decls. */
23471 if (DECL_P (decl_or_origin)
23472 && TREE_TYPE (decl_or_origin)
23473 && POINTER_BOUNDS_P (decl_or_origin))
23474 return NULL;
23476 switch (TREE_CODE (decl_or_origin))
23478 case ERROR_MARK:
23479 break;
23481 case CONST_DECL:
23482 if (!is_fortran () && !is_ada ())
23484 /* The individual enumerators of an enum type get output when we output
23485 the Dwarf representation of the relevant enum type itself. */
23486 break;
23489 /* Emit its type. */
23490 gen_type_die (TREE_TYPE (decl), context_die);
23492 /* And its containing namespace. */
23493 context_die = declare_in_namespace (decl, context_die);
23495 gen_const_die (decl, context_die);
23496 break;
23498 case FUNCTION_DECL:
23499 /* Don't output any DIEs to represent mere function declarations,
23500 unless they are class members or explicit block externs. */
23501 if (DECL_INITIAL (decl_or_origin) == NULL_TREE
23502 && DECL_FILE_SCOPE_P (decl_or_origin)
23503 && (current_function_decl == NULL_TREE
23504 || DECL_ARTIFICIAL (decl_or_origin)))
23505 break;
23507 #if 0
23508 /* FIXME */
23509 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
23510 on local redeclarations of global functions. That seems broken. */
23511 if (current_function_decl != decl)
23512 /* This is only a declaration. */;
23513 #endif
23515 /* If we're emitting a clone, emit info for the abstract instance. */
23516 if (origin || DECL_ORIGIN (decl) != decl)
23517 dwarf2out_abstract_function (origin
23518 ? DECL_ORIGIN (origin)
23519 : DECL_ABSTRACT_ORIGIN (decl));
23521 /* If we're emitting an out-of-line copy of an inline function,
23522 emit info for the abstract instance and set up to refer to it. */
23523 else if (cgraph_function_possibly_inlined_p (decl)
23524 && ! DECL_ABSTRACT_P (decl)
23525 && ! class_or_namespace_scope_p (context_die)
23526 /* dwarf2out_abstract_function won't emit a die if this is just
23527 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
23528 that case, because that works only if we have a die. */
23529 && DECL_INITIAL (decl) != NULL_TREE)
23531 dwarf2out_abstract_function (decl);
23532 set_decl_origin_self (decl);
23535 /* Otherwise we're emitting the primary DIE for this decl. */
23536 else if (debug_info_level > DINFO_LEVEL_TERSE)
23538 /* Before we describe the FUNCTION_DECL itself, make sure that we
23539 have its containing type. */
23540 if (!origin)
23541 origin = decl_class_context (decl);
23542 if (origin != NULL_TREE)
23543 gen_type_die (origin, context_die);
23545 /* And its return type. */
23546 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
23548 /* And its virtual context. */
23549 if (DECL_VINDEX (decl) != NULL_TREE)
23550 gen_type_die (DECL_CONTEXT (decl), context_die);
23552 /* Make sure we have a member DIE for decl. */
23553 if (origin != NULL_TREE)
23554 gen_type_die_for_member (origin, decl, context_die);
23556 /* And its containing namespace. */
23557 context_die = declare_in_namespace (decl, context_die);
23560 /* Now output a DIE to represent the function itself. */
23561 if (decl)
23562 gen_subprogram_die (decl, context_die);
23563 break;
23565 case TYPE_DECL:
23566 /* If we are in terse mode, don't generate any DIEs to represent any
23567 actual typedefs. */
23568 if (debug_info_level <= DINFO_LEVEL_TERSE)
23569 break;
23571 /* In the special case of a TYPE_DECL node representing the declaration
23572 of some type tag, if the given TYPE_DECL is marked as having been
23573 instantiated from some other (original) TYPE_DECL node (e.g. one which
23574 was generated within the original definition of an inline function) we
23575 used to generate a special (abbreviated) DW_TAG_structure_type,
23576 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. But nothing
23577 should be actually referencing those DIEs, as variable DIEs with that
23578 type would be emitted already in the abstract origin, so it was always
23579 removed during unused type prunning. Don't add anything in this
23580 case. */
23581 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
23582 break;
23584 if (is_redundant_typedef (decl))
23585 gen_type_die (TREE_TYPE (decl), context_die);
23586 else
23587 /* Output a DIE to represent the typedef itself. */
23588 gen_typedef_die (decl, context_die);
23589 break;
23591 case LABEL_DECL:
23592 if (debug_info_level >= DINFO_LEVEL_NORMAL)
23593 gen_label_die (decl, context_die);
23594 break;
23596 case VAR_DECL:
23597 case RESULT_DECL:
23598 /* If we are in terse mode, don't generate any DIEs to represent any
23599 variable declarations or definitions. */
23600 if (debug_info_level <= DINFO_LEVEL_TERSE)
23601 break;
23603 /* Output any DIEs that are needed to specify the type of this data
23604 object. */
23605 if (decl_by_reference_p (decl_or_origin))
23606 gen_type_die (TREE_TYPE (TREE_TYPE (decl_or_origin)), context_die);
23607 else
23608 gen_type_die (TREE_TYPE (decl_or_origin), context_die);
23610 /* And its containing type. */
23611 class_origin = decl_class_context (decl_or_origin);
23612 if (class_origin != NULL_TREE)
23613 gen_type_die_for_member (class_origin, decl_or_origin, context_die);
23615 /* And its containing namespace. */
23616 context_die = declare_in_namespace (decl_or_origin, context_die);
23618 /* Now output the DIE to represent the data object itself. This gets
23619 complicated because of the possibility that the VAR_DECL really
23620 represents an inlined instance of a formal parameter for an inline
23621 function. */
23622 ultimate_origin = decl_ultimate_origin (decl_or_origin);
23623 if (ultimate_origin != NULL_TREE
23624 && TREE_CODE (ultimate_origin) == PARM_DECL)
23625 gen_formal_parameter_die (decl, origin,
23626 true /* Emit name attribute. */,
23627 context_die);
23628 else
23629 gen_variable_die (decl, origin, context_die);
23630 break;
23632 case FIELD_DECL:
23633 gcc_assert (ctx != NULL && ctx->struct_type != NULL);
23634 /* Ignore the nameless fields that are used to skip bits but handle C++
23635 anonymous unions and structs. */
23636 if (DECL_NAME (decl) != NULL_TREE
23637 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
23638 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
23640 gen_type_die (member_declared_type (decl), context_die);
23641 gen_field_die (decl, ctx, context_die);
23643 break;
23645 case PARM_DECL:
23646 if (DECL_BY_REFERENCE (decl_or_origin))
23647 gen_type_die (TREE_TYPE (TREE_TYPE (decl_or_origin)), context_die);
23648 else
23649 gen_type_die (TREE_TYPE (decl_or_origin), context_die);
23650 return gen_formal_parameter_die (decl, origin,
23651 true /* Emit name attribute. */,
23652 context_die);
23654 case NAMESPACE_DECL:
23655 if (dwarf_version >= 3 || !dwarf_strict)
23656 gen_namespace_die (decl, context_die);
23657 break;
23659 case IMPORTED_DECL:
23660 dwarf2out_imported_module_or_decl_1 (decl, DECL_NAME (decl),
23661 DECL_CONTEXT (decl), context_die);
23662 break;
23664 case NAMELIST_DECL:
23665 gen_namelist_decl (DECL_NAME (decl), context_die,
23666 NAMELIST_DECL_ASSOCIATED_DECL (decl));
23667 break;
23669 default:
23670 /* Probably some frontend-internal decl. Assume we don't care. */
23671 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
23672 break;
23675 return NULL;
23678 /* Output initial debug information for global DECL. Called at the
23679 end of the parsing process.
23681 This is the initial debug generation process. As such, the DIEs
23682 generated may be incomplete. A later debug generation pass
23683 (dwarf2out_late_global_decl) will augment the information generated
23684 in this pass (e.g., with complete location info). */
23686 static void
23687 dwarf2out_early_global_decl (tree decl)
23689 set_early_dwarf s;
23691 /* gen_decl_die() will set DECL_ABSTRACT because
23692 cgraph_function_possibly_inlined_p() returns true. This is in
23693 turn will cause DW_AT_inline attributes to be set.
23695 This happens because at early dwarf generation, there is no
23696 cgraph information, causing cgraph_function_possibly_inlined_p()
23697 to return true. Trick cgraph_function_possibly_inlined_p()
23698 while we generate dwarf early. */
23699 bool save = symtab->global_info_ready;
23700 symtab->global_info_ready = true;
23702 /* We don't handle TYPE_DECLs. If required, they'll be reached via
23703 other DECLs and they can point to template types or other things
23704 that dwarf2out can't handle when done via dwarf2out_decl. */
23705 if (TREE_CODE (decl) != TYPE_DECL
23706 && TREE_CODE (decl) != PARM_DECL)
23708 tree save_fndecl = current_function_decl;
23709 if (TREE_CODE (decl) == FUNCTION_DECL)
23711 /* No cfun means the symbol has no body, so there's nothing
23712 to emit. */
23713 if (!DECL_STRUCT_FUNCTION (decl))
23714 goto early_decl_exit;
23716 current_function_decl = decl;
23718 dwarf2out_decl (decl);
23719 if (TREE_CODE (decl) == FUNCTION_DECL)
23720 current_function_decl = save_fndecl;
23722 early_decl_exit:
23723 symtab->global_info_ready = save;
23726 /* Output debug information for global decl DECL. Called from
23727 toplev.c after compilation proper has finished. */
23729 static void
23730 dwarf2out_late_global_decl (tree decl)
23732 /* We have to generate early debug late for LTO. */
23733 if (in_lto_p)
23734 dwarf2out_early_global_decl (decl);
23736 /* Fill-in any location information we were unable to determine
23737 on the first pass. */
23738 if (TREE_CODE (decl) == VAR_DECL
23739 && !POINTER_BOUNDS_P (decl))
23741 dw_die_ref die = lookup_decl_die (decl);
23742 if (die)
23743 add_location_or_const_value_attribute (die, decl, false);
23747 /* Output debug information for type decl DECL. Called from toplev.c
23748 and from language front ends (to record built-in types). */
23749 static void
23750 dwarf2out_type_decl (tree decl, int local)
23752 if (!local)
23754 set_early_dwarf s;
23755 dwarf2out_decl (decl);
23759 /* Output debug information for imported module or decl DECL.
23760 NAME is non-NULL name in the lexical block if the decl has been renamed.
23761 LEXICAL_BLOCK is the lexical block (which TREE_CODE is a BLOCK)
23762 that DECL belongs to.
23763 LEXICAL_BLOCK_DIE is the DIE of LEXICAL_BLOCK. */
23764 static void
23765 dwarf2out_imported_module_or_decl_1 (tree decl,
23766 tree name,
23767 tree lexical_block,
23768 dw_die_ref lexical_block_die)
23770 expanded_location xloc;
23771 dw_die_ref imported_die = NULL;
23772 dw_die_ref at_import_die;
23774 if (TREE_CODE (decl) == IMPORTED_DECL)
23776 xloc = expand_location (DECL_SOURCE_LOCATION (decl));
23777 decl = IMPORTED_DECL_ASSOCIATED_DECL (decl);
23778 gcc_assert (decl);
23780 else
23781 xloc = expand_location (input_location);
23783 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
23785 at_import_die = force_type_die (TREE_TYPE (decl));
23786 /* For namespace N { typedef void T; } using N::T; base_type_die
23787 returns NULL, but DW_TAG_imported_declaration requires
23788 the DW_AT_import tag. Force creation of DW_TAG_typedef. */
23789 if (!at_import_die)
23791 gcc_assert (TREE_CODE (decl) == TYPE_DECL);
23792 gen_typedef_die (decl, get_context_die (DECL_CONTEXT (decl)));
23793 at_import_die = lookup_type_die (TREE_TYPE (decl));
23794 gcc_assert (at_import_die);
23797 else
23799 at_import_die = lookup_decl_die (decl);
23800 if (!at_import_die)
23802 /* If we're trying to avoid duplicate debug info, we may not have
23803 emitted the member decl for this field. Emit it now. */
23804 if (TREE_CODE (decl) == FIELD_DECL)
23806 tree type = DECL_CONTEXT (decl);
23808 if (TYPE_CONTEXT (type)
23809 && TYPE_P (TYPE_CONTEXT (type))
23810 && !should_emit_struct_debug (TYPE_CONTEXT (type),
23811 DINFO_USAGE_DIR_USE))
23812 return;
23813 gen_type_die_for_member (type, decl,
23814 get_context_die (TYPE_CONTEXT (type)));
23816 if (TREE_CODE (decl) == NAMELIST_DECL)
23817 at_import_die = gen_namelist_decl (DECL_NAME (decl),
23818 get_context_die (DECL_CONTEXT (decl)),
23819 NULL_TREE);
23820 else
23821 at_import_die = force_decl_die (decl);
23825 if (TREE_CODE (decl) == NAMESPACE_DECL)
23827 if (dwarf_version >= 3 || !dwarf_strict)
23828 imported_die = new_die (DW_TAG_imported_module,
23829 lexical_block_die,
23830 lexical_block);
23831 else
23832 return;
23834 else
23835 imported_die = new_die (DW_TAG_imported_declaration,
23836 lexical_block_die,
23837 lexical_block);
23839 add_AT_file (imported_die, DW_AT_decl_file, lookup_filename (xloc.file));
23840 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
23841 if (name)
23842 add_AT_string (imported_die, DW_AT_name,
23843 IDENTIFIER_POINTER (name));
23844 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
23847 /* Output debug information for imported module or decl DECL.
23848 NAME is non-NULL name in context if the decl has been renamed.
23849 CHILD is true if decl is one of the renamed decls as part of
23850 importing whole module. */
23852 static void
23853 dwarf2out_imported_module_or_decl (tree decl, tree name, tree context,
23854 bool child)
23856 /* dw_die_ref at_import_die; */
23857 dw_die_ref scope_die;
23859 if (debug_info_level <= DINFO_LEVEL_TERSE)
23860 return;
23862 gcc_assert (decl);
23864 set_early_dwarf s;
23866 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
23867 We need decl DIE for reference and scope die. First, get DIE for the decl
23868 itself. */
23870 /* Get the scope die for decl context. Use comp_unit_die for global module
23871 or decl. If die is not found for non globals, force new die. */
23872 if (context
23873 && TYPE_P (context)
23874 && !should_emit_struct_debug (context, DINFO_USAGE_DIR_USE))
23875 return;
23877 if (!(dwarf_version >= 3 || !dwarf_strict))
23878 return;
23880 scope_die = get_context_die (context);
23882 if (child)
23884 gcc_assert (scope_die->die_child);
23885 gcc_assert (scope_die->die_child->die_tag == DW_TAG_imported_module);
23886 gcc_assert (TREE_CODE (decl) != NAMESPACE_DECL);
23887 scope_die = scope_die->die_child;
23890 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
23891 dwarf2out_imported_module_or_decl_1 (decl, name, context, scope_die);
23894 /* Output debug information for namelists. */
23896 static dw_die_ref
23897 gen_namelist_decl (tree name, dw_die_ref scope_die, tree item_decls)
23899 dw_die_ref nml_die, nml_item_die, nml_item_ref_die;
23900 tree value;
23901 unsigned i;
23903 if (debug_info_level <= DINFO_LEVEL_TERSE)
23904 return NULL;
23906 gcc_assert (scope_die != NULL);
23907 nml_die = new_die (DW_TAG_namelist, scope_die, NULL);
23908 add_AT_string (nml_die, DW_AT_name, IDENTIFIER_POINTER (name));
23910 /* If there are no item_decls, we have a nondefining namelist, e.g.
23911 with USE association; hence, set DW_AT_declaration. */
23912 if (item_decls == NULL_TREE)
23914 add_AT_flag (nml_die, DW_AT_declaration, 1);
23915 return nml_die;
23918 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (item_decls), i, value)
23920 nml_item_ref_die = lookup_decl_die (value);
23921 if (!nml_item_ref_die)
23922 nml_item_ref_die = force_decl_die (value);
23924 nml_item_die = new_die (DW_TAG_namelist_item, nml_die, NULL);
23925 add_AT_die_ref (nml_item_die, DW_AT_namelist_items, nml_item_ref_die);
23927 return nml_die;
23931 /* Write the debugging output for DECL and return the DIE. */
23933 static void
23934 dwarf2out_decl (tree decl)
23936 dw_die_ref context_die = comp_unit_die ();
23938 switch (TREE_CODE (decl))
23940 case ERROR_MARK:
23941 return;
23943 case FUNCTION_DECL:
23944 /* What we would really like to do here is to filter out all mere
23945 file-scope declarations of file-scope functions which are never
23946 referenced later within this translation unit (and keep all of ones
23947 that *are* referenced later on) but we aren't clairvoyant, so we have
23948 no idea which functions will be referenced in the future (i.e. later
23949 on within the current translation unit). So here we just ignore all
23950 file-scope function declarations which are not also definitions. If
23951 and when the debugger needs to know something about these functions,
23952 it will have to hunt around and find the DWARF information associated
23953 with the definition of the function.
23955 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
23956 nodes represent definitions and which ones represent mere
23957 declarations. We have to check DECL_INITIAL instead. That's because
23958 the C front-end supports some weird semantics for "extern inline"
23959 function definitions. These can get inlined within the current
23960 translation unit (and thus, we need to generate Dwarf info for their
23961 abstract instances so that the Dwarf info for the concrete inlined
23962 instances can have something to refer to) but the compiler never
23963 generates any out-of-lines instances of such things (despite the fact
23964 that they *are* definitions).
23966 The important point is that the C front-end marks these "extern
23967 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
23968 them anyway. Note that the C++ front-end also plays some similar games
23969 for inline function definitions appearing within include files which
23970 also contain `#pragma interface' pragmas.
23972 If we are called from dwarf2out_abstract_function output a DIE
23973 anyway. We can end up here this way with early inlining and LTO
23974 where the inlined function is output in a different LTRANS unit
23975 or not at all. */
23976 if (DECL_INITIAL (decl) == NULL_TREE
23977 && ! DECL_ABSTRACT_P (decl))
23978 return;
23980 /* If we're a nested function, initially use a parent of NULL; if we're
23981 a plain function, this will be fixed up in decls_for_scope. If
23982 we're a method, it will be ignored, since we already have a DIE. */
23983 if (decl_function_context (decl)
23984 /* But if we're in terse mode, we don't care about scope. */
23985 && debug_info_level > DINFO_LEVEL_TERSE)
23986 context_die = NULL;
23987 break;
23989 case VAR_DECL:
23990 /* For local statics lookup proper context die. */
23991 if (local_function_static (decl))
23992 context_die = lookup_decl_die (DECL_CONTEXT (decl));
23994 /* If we are in terse mode, don't generate any DIEs to represent any
23995 variable declarations or definitions. */
23996 if (debug_info_level <= DINFO_LEVEL_TERSE)
23997 return;
23998 break;
24000 case CONST_DECL:
24001 if (debug_info_level <= DINFO_LEVEL_TERSE)
24002 return;
24003 if (!is_fortran () && !is_ada ())
24004 return;
24005 if (TREE_STATIC (decl) && decl_function_context (decl))
24006 context_die = lookup_decl_die (DECL_CONTEXT (decl));
24007 break;
24009 case NAMESPACE_DECL:
24010 case IMPORTED_DECL:
24011 if (debug_info_level <= DINFO_LEVEL_TERSE)
24012 return;
24013 if (lookup_decl_die (decl) != NULL)
24014 return;
24015 break;
24017 case TYPE_DECL:
24018 /* Don't emit stubs for types unless they are needed by other DIEs. */
24019 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
24020 return;
24022 /* Don't bother trying to generate any DIEs to represent any of the
24023 normal built-in types for the language we are compiling. */
24024 if (DECL_IS_BUILTIN (decl))
24025 return;
24027 /* If we are in terse mode, don't generate any DIEs for types. */
24028 if (debug_info_level <= DINFO_LEVEL_TERSE)
24029 return;
24031 /* If we're a function-scope tag, initially use a parent of NULL;
24032 this will be fixed up in decls_for_scope. */
24033 if (decl_function_context (decl))
24034 context_die = NULL;
24036 break;
24038 case NAMELIST_DECL:
24039 break;
24041 default:
24042 return;
24045 gen_decl_die (decl, NULL, NULL, context_die);
24047 if (flag_checking)
24049 dw_die_ref die = lookup_decl_die (decl);
24050 if (die)
24051 check_die (die);
24055 /* Write the debugging output for DECL. */
24057 static void
24058 dwarf2out_function_decl (tree decl)
24060 dwarf2out_decl (decl);
24061 call_arg_locations = NULL;
24062 call_arg_loc_last = NULL;
24063 call_site_count = -1;
24064 tail_call_site_count = -1;
24065 decl_loc_table->empty ();
24066 cached_dw_loc_list_table->empty ();
24069 /* Output a marker (i.e. a label) for the beginning of the generated code for
24070 a lexical block. */
24072 static void
24073 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
24074 unsigned int blocknum)
24076 switch_to_section (current_function_section ());
24077 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
24080 /* Output a marker (i.e. a label) for the end of the generated code for a
24081 lexical block. */
24083 static void
24084 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
24086 switch_to_section (current_function_section ());
24087 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
24090 /* Returns nonzero if it is appropriate not to emit any debugging
24091 information for BLOCK, because it doesn't contain any instructions.
24093 Don't allow this for blocks with nested functions or local classes
24094 as we would end up with orphans, and in the presence of scheduling
24095 we may end up calling them anyway. */
24097 static bool
24098 dwarf2out_ignore_block (const_tree block)
24100 tree decl;
24101 unsigned int i;
24103 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
24104 if (TREE_CODE (decl) == FUNCTION_DECL
24105 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
24106 return 0;
24107 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (block); i++)
24109 decl = BLOCK_NONLOCALIZED_VAR (block, i);
24110 if (TREE_CODE (decl) == FUNCTION_DECL
24111 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
24112 return 0;
24115 return 1;
24118 /* Hash table routines for file_hash. */
24120 bool
24121 dwarf_file_hasher::equal (dwarf_file_data *p1, const char *p2)
24123 return filename_cmp (p1->filename, p2) == 0;
24126 hashval_t
24127 dwarf_file_hasher::hash (dwarf_file_data *p)
24129 return htab_hash_string (p->filename);
24132 /* Lookup FILE_NAME (in the list of filenames that we know about here in
24133 dwarf2out.c) and return its "index". The index of each (known) filename is
24134 just a unique number which is associated with only that one filename. We
24135 need such numbers for the sake of generating labels (in the .debug_sfnames
24136 section) and references to those files numbers (in the .debug_srcinfo
24137 and .debug_macinfo sections). If the filename given as an argument is not
24138 found in our current list, add it to the list and assign it the next
24139 available unique index number. */
24141 static struct dwarf_file_data *
24142 lookup_filename (const char *file_name)
24144 struct dwarf_file_data * created;
24146 if (!file_name)
24147 return NULL;
24149 dwarf_file_data **slot
24150 = file_table->find_slot_with_hash (file_name, htab_hash_string (file_name),
24151 INSERT);
24152 if (*slot)
24153 return *slot;
24155 created = ggc_alloc<dwarf_file_data> ();
24156 created->filename = file_name;
24157 created->emitted_number = 0;
24158 *slot = created;
24159 return created;
24162 /* If the assembler will construct the file table, then translate the compiler
24163 internal file table number into the assembler file table number, and emit
24164 a .file directive if we haven't already emitted one yet. The file table
24165 numbers are different because we prune debug info for unused variables and
24166 types, which may include filenames. */
24168 static int
24169 maybe_emit_file (struct dwarf_file_data * fd)
24171 if (! fd->emitted_number)
24173 if (last_emitted_file)
24174 fd->emitted_number = last_emitted_file->emitted_number + 1;
24175 else
24176 fd->emitted_number = 1;
24177 last_emitted_file = fd;
24179 if (DWARF2_ASM_LINE_DEBUG_INFO)
24181 fprintf (asm_out_file, "\t.file %u ", fd->emitted_number);
24182 output_quoted_string (asm_out_file,
24183 remap_debug_filename (fd->filename));
24184 fputc ('\n', asm_out_file);
24188 return fd->emitted_number;
24191 /* Schedule generation of a DW_AT_const_value attribute to DIE.
24192 That generation should happen after function debug info has been
24193 generated. The value of the attribute is the constant value of ARG. */
24195 static void
24196 append_entry_to_tmpl_value_parm_die_table (dw_die_ref die, tree arg)
24198 die_arg_entry entry;
24200 if (!die || !arg)
24201 return;
24203 gcc_assert (early_dwarf);
24205 if (!tmpl_value_parm_die_table)
24206 vec_alloc (tmpl_value_parm_die_table, 32);
24208 entry.die = die;
24209 entry.arg = arg;
24210 vec_safe_push (tmpl_value_parm_die_table, entry);
24213 /* Return TRUE if T is an instance of generic type, FALSE
24214 otherwise. */
24216 static bool
24217 generic_type_p (tree t)
24219 if (t == NULL_TREE || !TYPE_P (t))
24220 return false;
24221 return lang_hooks.get_innermost_generic_parms (t) != NULL_TREE;
24224 /* Schedule the generation of the generic parameter dies for the
24225 instance of generic type T. The proper generation itself is later
24226 done by gen_scheduled_generic_parms_dies. */
24228 static void
24229 schedule_generic_params_dies_gen (tree t)
24231 if (!generic_type_p (t))
24232 return;
24234 gcc_assert (early_dwarf);
24236 if (!generic_type_instances)
24237 vec_alloc (generic_type_instances, 256);
24239 vec_safe_push (generic_type_instances, t);
24242 /* Add a DW_AT_const_value attribute to DIEs that were scheduled
24243 by append_entry_to_tmpl_value_parm_die_table. This function must
24244 be called after function DIEs have been generated. */
24246 static void
24247 gen_remaining_tmpl_value_param_die_attribute (void)
24249 if (tmpl_value_parm_die_table)
24251 unsigned i, j;
24252 die_arg_entry *e;
24254 /* We do this in two phases - first get the cases we can
24255 handle during early-finish, preserving those we cannot
24256 (containing symbolic constants where we don't yet know
24257 whether we are going to output the referenced symbols).
24258 For those we try again at late-finish. */
24259 j = 0;
24260 FOR_EACH_VEC_ELT (*tmpl_value_parm_die_table, i, e)
24262 if (!tree_add_const_value_attribute (e->die, e->arg))
24264 dw_loc_descr_ref loc = NULL;
24265 if (dwarf_version >= 5 || !dwarf_strict)
24266 loc = loc_descriptor_from_tree (e->arg, 2, NULL);
24267 if (loc)
24268 add_AT_loc (e->die, DW_AT_location, loc);
24269 else
24270 (*tmpl_value_parm_die_table)[j++] = *e;
24273 tmpl_value_parm_die_table->truncate (j);
24277 /* Generate generic parameters DIEs for instances of generic types
24278 that have been previously scheduled by
24279 schedule_generic_params_dies_gen. This function must be called
24280 after all the types of the CU have been laid out. */
24282 static void
24283 gen_scheduled_generic_parms_dies (void)
24285 unsigned i;
24286 tree t;
24288 if (!generic_type_instances)
24289 return;
24291 /* We end up "recursing" into schedule_generic_params_dies_gen, so
24292 pretend this generation is part of "early dwarf" as well. */
24293 set_early_dwarf s;
24295 FOR_EACH_VEC_ELT (*generic_type_instances, i, t)
24296 if (COMPLETE_TYPE_P (t))
24297 gen_generic_params_dies (t);
24299 generic_type_instances = NULL;
24303 /* Replace DW_AT_name for the decl with name. */
24305 static void
24306 dwarf2out_set_name (tree decl, tree name)
24308 dw_die_ref die;
24309 dw_attr_node *attr;
24310 const char *dname;
24312 die = TYPE_SYMTAB_DIE (decl);
24313 if (!die)
24314 return;
24316 dname = dwarf2_name (name, 0);
24317 if (!dname)
24318 return;
24320 attr = get_AT (die, DW_AT_name);
24321 if (attr)
24323 struct indirect_string_node *node;
24325 node = find_AT_string (dname);
24326 /* replace the string. */
24327 attr->dw_attr_val.v.val_str = node;
24330 else
24331 add_name_attribute (die, dname);
24334 /* True if before or during processing of the first function being emitted. */
24335 static bool in_first_function_p = true;
24336 /* True if loc_note during dwarf2out_var_location call might still be
24337 before first real instruction at address equal to .Ltext0. */
24338 static bool maybe_at_text_label_p = true;
24339 /* One above highest N where .LVLN label might be equal to .Ltext0 label. */
24340 static unsigned int first_loclabel_num_not_at_text_label;
24342 /* Called by the final INSN scan whenever we see a var location. We
24343 use it to drop labels in the right places, and throw the location in
24344 our lookup table. */
24346 static void
24347 dwarf2out_var_location (rtx_insn *loc_note)
24349 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES + 2];
24350 struct var_loc_node *newloc;
24351 rtx_insn *next_real, *next_note;
24352 rtx_insn *call_insn = NULL;
24353 static const char *last_label;
24354 static const char *last_postcall_label;
24355 static bool last_in_cold_section_p;
24356 static rtx_insn *expected_next_loc_note;
24357 tree decl;
24358 bool var_loc_p;
24360 if (!NOTE_P (loc_note))
24362 if (CALL_P (loc_note))
24364 call_site_count++;
24365 if (SIBLING_CALL_P (loc_note))
24366 tail_call_site_count++;
24367 if (optimize == 0 && !flag_var_tracking)
24369 /* When the var-tracking pass is not running, there is no note
24370 for indirect calls whose target is compile-time known. In this
24371 case, process such calls specifically so that we generate call
24372 sites for them anyway. */
24373 rtx x = PATTERN (loc_note);
24374 if (GET_CODE (x) == PARALLEL)
24375 x = XVECEXP (x, 0, 0);
24376 if (GET_CODE (x) == SET)
24377 x = SET_SRC (x);
24378 if (GET_CODE (x) == CALL)
24379 x = XEXP (x, 0);
24380 if (!MEM_P (x)
24381 || GET_CODE (XEXP (x, 0)) != SYMBOL_REF
24382 || !SYMBOL_REF_DECL (XEXP (x, 0))
24383 || (TREE_CODE (SYMBOL_REF_DECL (XEXP (x, 0)))
24384 != FUNCTION_DECL))
24386 call_insn = loc_note;
24387 loc_note = NULL;
24388 var_loc_p = false;
24390 next_real = next_real_insn (call_insn);
24391 next_note = NULL;
24392 cached_next_real_insn = NULL;
24393 goto create_label;
24397 return;
24400 var_loc_p = NOTE_KIND (loc_note) == NOTE_INSN_VAR_LOCATION;
24401 if (var_loc_p && !DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
24402 return;
24404 /* Optimize processing a large consecutive sequence of location
24405 notes so we don't spend too much time in next_real_insn. If the
24406 next insn is another location note, remember the next_real_insn
24407 calculation for next time. */
24408 next_real = cached_next_real_insn;
24409 if (next_real)
24411 if (expected_next_loc_note != loc_note)
24412 next_real = NULL;
24415 next_note = NEXT_INSN (loc_note);
24416 if (! next_note
24417 || next_note->deleted ()
24418 || ! NOTE_P (next_note)
24419 || (NOTE_KIND (next_note) != NOTE_INSN_VAR_LOCATION
24420 && NOTE_KIND (next_note) != NOTE_INSN_CALL_ARG_LOCATION))
24421 next_note = NULL;
24423 if (! next_real)
24424 next_real = next_real_insn (loc_note);
24426 if (next_note)
24428 expected_next_loc_note = next_note;
24429 cached_next_real_insn = next_real;
24431 else
24432 cached_next_real_insn = NULL;
24434 /* If there are no instructions which would be affected by this note,
24435 don't do anything. */
24436 if (var_loc_p
24437 && next_real == NULL_RTX
24438 && !NOTE_DURING_CALL_P (loc_note))
24439 return;
24441 create_label:
24443 if (next_real == NULL_RTX)
24444 next_real = get_last_insn ();
24446 /* If there were any real insns between note we processed last time
24447 and this note (or if it is the first note), clear
24448 last_{,postcall_}label so that they are not reused this time. */
24449 if (last_var_location_insn == NULL_RTX
24450 || last_var_location_insn != next_real
24451 || last_in_cold_section_p != in_cold_section_p)
24453 last_label = NULL;
24454 last_postcall_label = NULL;
24457 if (var_loc_p)
24459 decl = NOTE_VAR_LOCATION_DECL (loc_note);
24460 newloc = add_var_loc_to_decl (decl, loc_note,
24461 NOTE_DURING_CALL_P (loc_note)
24462 ? last_postcall_label : last_label);
24463 if (newloc == NULL)
24464 return;
24466 else
24468 decl = NULL_TREE;
24469 newloc = NULL;
24472 /* If there were no real insns between note we processed last time
24473 and this note, use the label we emitted last time. Otherwise
24474 create a new label and emit it. */
24475 if (last_label == NULL)
24477 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
24478 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
24479 loclabel_num++;
24480 last_label = ggc_strdup (loclabel);
24481 /* See if loclabel might be equal to .Ltext0. If yes,
24482 bump first_loclabel_num_not_at_text_label. */
24483 if (!have_multiple_function_sections
24484 && in_first_function_p
24485 && maybe_at_text_label_p)
24487 static rtx_insn *last_start;
24488 rtx_insn *insn;
24489 for (insn = loc_note; insn; insn = previous_insn (insn))
24490 if (insn == last_start)
24491 break;
24492 else if (!NONDEBUG_INSN_P (insn))
24493 continue;
24494 else
24496 rtx body = PATTERN (insn);
24497 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
24498 continue;
24499 /* Inline asm could occupy zero bytes. */
24500 else if (GET_CODE (body) == ASM_INPUT
24501 || asm_noperands (body) >= 0)
24502 continue;
24503 #ifdef HAVE_attr_length
24504 else if (get_attr_min_length (insn) == 0)
24505 continue;
24506 #endif
24507 else
24509 /* Assume insn has non-zero length. */
24510 maybe_at_text_label_p = false;
24511 break;
24514 if (maybe_at_text_label_p)
24516 last_start = loc_note;
24517 first_loclabel_num_not_at_text_label = loclabel_num;
24522 gcc_assert ((loc_note == NULL_RTX && call_insn != NULL_RTX)
24523 || (loc_note != NULL_RTX && call_insn == NULL_RTX));
24525 if (!var_loc_p)
24527 struct call_arg_loc_node *ca_loc
24528 = ggc_cleared_alloc<call_arg_loc_node> ();
24529 rtx_insn *prev
24530 = loc_note != NULL_RTX ? prev_real_insn (loc_note) : call_insn;
24532 ca_loc->call_arg_loc_note = loc_note;
24533 ca_loc->next = NULL;
24534 ca_loc->label = last_label;
24535 gcc_assert (prev
24536 && (CALL_P (prev)
24537 || (NONJUMP_INSN_P (prev)
24538 && GET_CODE (PATTERN (prev)) == SEQUENCE
24539 && CALL_P (XVECEXP (PATTERN (prev), 0, 0)))));
24540 if (!CALL_P (prev))
24541 prev = as_a <rtx_sequence *> (PATTERN (prev))->insn (0);
24542 ca_loc->tail_call_p = SIBLING_CALL_P (prev);
24544 /* Look for a SYMBOL_REF in the "prev" instruction. */
24545 rtx x = get_call_rtx_from (PATTERN (prev));
24546 if (x)
24548 /* Try to get the call symbol, if any. */
24549 if (MEM_P (XEXP (x, 0)))
24550 x = XEXP (x, 0);
24551 /* First, look for a memory access to a symbol_ref. */
24552 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
24553 && SYMBOL_REF_DECL (XEXP (x, 0))
24554 && TREE_CODE (SYMBOL_REF_DECL (XEXP (x, 0))) == FUNCTION_DECL)
24555 ca_loc->symbol_ref = XEXP (x, 0);
24556 /* Otherwise, look at a compile-time known user-level function
24557 declaration. */
24558 else if (MEM_P (x)
24559 && MEM_EXPR (x)
24560 && TREE_CODE (MEM_EXPR (x)) == FUNCTION_DECL)
24561 ca_loc->symbol_ref = XEXP (DECL_RTL (MEM_EXPR (x)), 0);
24564 ca_loc->block = insn_scope (prev);
24565 if (call_arg_locations)
24566 call_arg_loc_last->next = ca_loc;
24567 else
24568 call_arg_locations = ca_loc;
24569 call_arg_loc_last = ca_loc;
24571 else if (loc_note != NULL_RTX && !NOTE_DURING_CALL_P (loc_note))
24572 newloc->label = last_label;
24573 else
24575 if (!last_postcall_label)
24577 sprintf (loclabel, "%s-1", last_label);
24578 last_postcall_label = ggc_strdup (loclabel);
24580 newloc->label = last_postcall_label;
24583 last_var_location_insn = next_real;
24584 last_in_cold_section_p = in_cold_section_p;
24587 /* Called from finalize_size_functions for size functions so that their body
24588 can be encoded in the debug info to describe the layout of variable-length
24589 structures. */
24591 static void
24592 dwarf2out_size_function (tree decl)
24594 function_to_dwarf_procedure (decl);
24597 /* Note in one location list that text section has changed. */
24600 var_location_switch_text_section_1 (var_loc_list **slot, void *)
24602 var_loc_list *list = *slot;
24603 if (list->first)
24604 list->last_before_switch
24605 = list->last->next ? list->last->next : list->last;
24606 return 1;
24609 /* Note in all location lists that text section has changed. */
24611 static void
24612 var_location_switch_text_section (void)
24614 if (decl_loc_table == NULL)
24615 return;
24617 decl_loc_table->traverse<void *, var_location_switch_text_section_1> (NULL);
24620 /* Create a new line number table. */
24622 static dw_line_info_table *
24623 new_line_info_table (void)
24625 dw_line_info_table *table;
24627 table = ggc_cleared_alloc<dw_line_info_table> ();
24628 table->file_num = 1;
24629 table->line_num = 1;
24630 table->is_stmt = DWARF_LINE_DEFAULT_IS_STMT_START;
24632 return table;
24635 /* Lookup the "current" table into which we emit line info, so
24636 that we don't have to do it for every source line. */
24638 static void
24639 set_cur_line_info_table (section *sec)
24641 dw_line_info_table *table;
24643 if (sec == text_section)
24644 table = text_section_line_info;
24645 else if (sec == cold_text_section)
24647 table = cold_text_section_line_info;
24648 if (!table)
24650 cold_text_section_line_info = table = new_line_info_table ();
24651 table->end_label = cold_end_label;
24654 else
24656 const char *end_label;
24658 if (flag_reorder_blocks_and_partition)
24660 if (in_cold_section_p)
24661 end_label = crtl->subsections.cold_section_end_label;
24662 else
24663 end_label = crtl->subsections.hot_section_end_label;
24665 else
24667 char label[MAX_ARTIFICIAL_LABEL_BYTES];
24668 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
24669 current_function_funcdef_no);
24670 end_label = ggc_strdup (label);
24673 table = new_line_info_table ();
24674 table->end_label = end_label;
24676 vec_safe_push (separate_line_info, table);
24679 if (DWARF2_ASM_LINE_DEBUG_INFO)
24680 table->is_stmt = (cur_line_info_table
24681 ? cur_line_info_table->is_stmt
24682 : DWARF_LINE_DEFAULT_IS_STMT_START);
24683 cur_line_info_table = table;
24687 /* We need to reset the locations at the beginning of each
24688 function. We can't do this in the end_function hook, because the
24689 declarations that use the locations won't have been output when
24690 that hook is called. Also compute have_multiple_function_sections here. */
24692 static void
24693 dwarf2out_begin_function (tree fun)
24695 section *sec = function_section (fun);
24697 if (sec != text_section)
24698 have_multiple_function_sections = true;
24700 if (flag_reorder_blocks_and_partition && !cold_text_section)
24702 gcc_assert (current_function_decl == fun);
24703 cold_text_section = unlikely_text_section ();
24704 switch_to_section (cold_text_section);
24705 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
24706 switch_to_section (sec);
24709 dwarf2out_note_section_used ();
24710 call_site_count = 0;
24711 tail_call_site_count = 0;
24713 set_cur_line_info_table (sec);
24716 /* Helper function of dwarf2out_end_function, called only after emitting
24717 the very first function into assembly. Check if some .debug_loc range
24718 might end with a .LVL* label that could be equal to .Ltext0.
24719 In that case we must force using absolute addresses in .debug_loc ranges,
24720 because this range could be .LVLN-.Ltext0 .. .LVLM-.Ltext0 for
24721 .LVLN == .LVLM == .Ltext0, thus 0 .. 0, which is a .debug_loc
24722 list terminator.
24723 Set have_multiple_function_sections to true in that case and
24724 terminate htab traversal. */
24727 find_empty_loc_ranges_at_text_label (var_loc_list **slot, int)
24729 var_loc_list *entry = *slot;
24730 struct var_loc_node *node;
24732 node = entry->first;
24733 if (node && node->next && node->next->label)
24735 unsigned int i;
24736 const char *label = node->next->label;
24737 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
24739 for (i = 0; i < first_loclabel_num_not_at_text_label; i++)
24741 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", i);
24742 if (strcmp (label, loclabel) == 0)
24744 have_multiple_function_sections = true;
24745 return 0;
24749 return 1;
24752 /* Hook called after emitting a function into assembly.
24753 This does something only for the very first function emitted. */
24755 static void
24756 dwarf2out_end_function (unsigned int)
24758 if (in_first_function_p
24759 && !have_multiple_function_sections
24760 && first_loclabel_num_not_at_text_label
24761 && decl_loc_table)
24762 decl_loc_table->traverse<int, find_empty_loc_ranges_at_text_label> (0);
24763 in_first_function_p = false;
24764 maybe_at_text_label_p = false;
24767 /* Temporary holder for dwarf2out_register_main_translation_unit. Used to let
24768 front-ends register a translation unit even before dwarf2out_init is
24769 called. */
24770 static tree main_translation_unit = NULL_TREE;
24772 /* Hook called by front-ends after they built their main translation unit.
24773 Associate comp_unit_die to UNIT. */
24775 static void
24776 dwarf2out_register_main_translation_unit (tree unit)
24778 gcc_assert (TREE_CODE (unit) == TRANSLATION_UNIT_DECL
24779 && main_translation_unit == NULL_TREE);
24780 main_translation_unit = unit;
24781 /* If dwarf2out_init has not been called yet, it will perform the association
24782 itself looking at main_translation_unit. */
24783 if (decl_die_table != NULL)
24784 equate_decl_number_to_die (unit, comp_unit_die ());
24787 /* Add OPCODE+VAL as an entry at the end of the opcode array in TABLE. */
24789 static void
24790 push_dw_line_info_entry (dw_line_info_table *table,
24791 enum dw_line_info_opcode opcode, unsigned int val)
24793 dw_line_info_entry e;
24794 e.opcode = opcode;
24795 e.val = val;
24796 vec_safe_push (table->entries, e);
24799 /* Output a label to mark the beginning of a source code line entry
24800 and record information relating to this source line, in
24801 'line_info_table' for later output of the .debug_line section. */
24802 /* ??? The discriminator parameter ought to be unsigned. */
24804 static void
24805 dwarf2out_source_line (unsigned int line, const char *filename,
24806 int discriminator, bool is_stmt)
24808 unsigned int file_num;
24809 dw_line_info_table *table;
24811 if (debug_info_level < DINFO_LEVEL_TERSE || line == 0)
24812 return;
24814 /* The discriminator column was added in dwarf4. Simplify the below
24815 by simply removing it if we're not supposed to output it. */
24816 if (dwarf_version < 4 && dwarf_strict)
24817 discriminator = 0;
24819 table = cur_line_info_table;
24820 file_num = maybe_emit_file (lookup_filename (filename));
24822 /* ??? TODO: Elide duplicate line number entries. Traditionally,
24823 the debugger has used the second (possibly duplicate) line number
24824 at the beginning of the function to mark the end of the prologue.
24825 We could eliminate any other duplicates within the function. For
24826 Dwarf3, we ought to include the DW_LNS_set_prologue_end mark in
24827 that second line number entry. */
24828 /* Recall that this end-of-prologue indication is *not* the same thing
24829 as the end_prologue debug hook. The NOTE_INSN_PROLOGUE_END note,
24830 to which the hook corresponds, follows the last insn that was
24831 emitted by gen_prologue. What we need is to precede the first insn
24832 that had been emitted after NOTE_INSN_FUNCTION_BEG, i.e. the first
24833 insn that corresponds to something the user wrote. These may be
24834 very different locations once scheduling is enabled. */
24836 if (0 && file_num == table->file_num
24837 && line == table->line_num
24838 && discriminator == table->discrim_num
24839 && is_stmt == table->is_stmt)
24840 return;
24842 switch_to_section (current_function_section ());
24844 /* If requested, emit something human-readable. */
24845 if (flag_debug_asm)
24846 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START, filename, line);
24848 if (DWARF2_ASM_LINE_DEBUG_INFO)
24850 /* Emit the .loc directive understood by GNU as. */
24851 /* "\t.loc %u %u 0 is_stmt %u discriminator %u",
24852 file_num, line, is_stmt, discriminator */
24853 fputs ("\t.loc ", asm_out_file);
24854 fprint_ul (asm_out_file, file_num);
24855 putc (' ', asm_out_file);
24856 fprint_ul (asm_out_file, line);
24857 putc (' ', asm_out_file);
24858 putc ('0', asm_out_file);
24860 if (is_stmt != table->is_stmt)
24862 fputs (" is_stmt ", asm_out_file);
24863 putc (is_stmt ? '1' : '0', asm_out_file);
24865 if (SUPPORTS_DISCRIMINATOR && discriminator != 0)
24867 gcc_assert (discriminator > 0);
24868 fputs (" discriminator ", asm_out_file);
24869 fprint_ul (asm_out_file, (unsigned long) discriminator);
24871 putc ('\n', asm_out_file);
24873 else
24875 unsigned int label_num = ++line_info_label_num;
24877 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL, label_num);
24879 push_dw_line_info_entry (table, LI_set_address, label_num);
24880 if (file_num != table->file_num)
24881 push_dw_line_info_entry (table, LI_set_file, file_num);
24882 if (discriminator != table->discrim_num)
24883 push_dw_line_info_entry (table, LI_set_discriminator, discriminator);
24884 if (is_stmt != table->is_stmt)
24885 push_dw_line_info_entry (table, LI_negate_stmt, 0);
24886 push_dw_line_info_entry (table, LI_set_line, line);
24889 table->file_num = file_num;
24890 table->line_num = line;
24891 table->discrim_num = discriminator;
24892 table->is_stmt = is_stmt;
24893 table->in_use = true;
24896 /* Record the beginning of a new source file. */
24898 static void
24899 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
24901 if (flag_eliminate_dwarf2_dups)
24903 /* Record the beginning of the file for break_out_includes. */
24904 dw_die_ref bincl_die;
24906 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die (), NULL);
24907 add_AT_string (bincl_die, DW_AT_name, remap_debug_filename (filename));
24910 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
24912 macinfo_entry e;
24913 e.code = DW_MACINFO_start_file;
24914 e.lineno = lineno;
24915 e.info = ggc_strdup (filename);
24916 vec_safe_push (macinfo_table, e);
24920 /* Record the end of a source file. */
24922 static void
24923 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
24925 if (flag_eliminate_dwarf2_dups)
24926 /* Record the end of the file for break_out_includes. */
24927 new_die (DW_TAG_GNU_EINCL, comp_unit_die (), NULL);
24929 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
24931 macinfo_entry e;
24932 e.code = DW_MACINFO_end_file;
24933 e.lineno = lineno;
24934 e.info = NULL;
24935 vec_safe_push (macinfo_table, e);
24939 /* Called from debug_define in toplev.c. The `buffer' parameter contains
24940 the tail part of the directive line, i.e. the part which is past the
24941 initial whitespace, #, whitespace, directive-name, whitespace part. */
24943 static void
24944 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
24945 const char *buffer ATTRIBUTE_UNUSED)
24947 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
24949 macinfo_entry e;
24950 /* Insert a dummy first entry to be able to optimize the whole
24951 predefined macro block using DW_MACRO_GNU_transparent_include. */
24952 if (macinfo_table->is_empty () && lineno <= 1)
24954 e.code = 0;
24955 e.lineno = 0;
24956 e.info = NULL;
24957 vec_safe_push (macinfo_table, e);
24959 e.code = DW_MACINFO_define;
24960 e.lineno = lineno;
24961 e.info = ggc_strdup (buffer);
24962 vec_safe_push (macinfo_table, e);
24966 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
24967 the tail part of the directive line, i.e. the part which is past the
24968 initial whitespace, #, whitespace, directive-name, whitespace part. */
24970 static void
24971 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
24972 const char *buffer ATTRIBUTE_UNUSED)
24974 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
24976 macinfo_entry e;
24977 /* Insert a dummy first entry to be able to optimize the whole
24978 predefined macro block using DW_MACRO_GNU_transparent_include. */
24979 if (macinfo_table->is_empty () && lineno <= 1)
24981 e.code = 0;
24982 e.lineno = 0;
24983 e.info = NULL;
24984 vec_safe_push (macinfo_table, e);
24986 e.code = DW_MACINFO_undef;
24987 e.lineno = lineno;
24988 e.info = ggc_strdup (buffer);
24989 vec_safe_push (macinfo_table, e);
24993 /* Helpers to manipulate hash table of CUs. */
24995 struct macinfo_entry_hasher : nofree_ptr_hash <macinfo_entry>
24997 static inline hashval_t hash (const macinfo_entry *);
24998 static inline bool equal (const macinfo_entry *, const macinfo_entry *);
25001 inline hashval_t
25002 macinfo_entry_hasher::hash (const macinfo_entry *entry)
25004 return htab_hash_string (entry->info);
25007 inline bool
25008 macinfo_entry_hasher::equal (const macinfo_entry *entry1,
25009 const macinfo_entry *entry2)
25011 return !strcmp (entry1->info, entry2->info);
25014 typedef hash_table<macinfo_entry_hasher> macinfo_hash_type;
25016 /* Output a single .debug_macinfo entry. */
25018 static void
25019 output_macinfo_op (macinfo_entry *ref)
25021 int file_num;
25022 size_t len;
25023 struct indirect_string_node *node;
25024 char label[MAX_ARTIFICIAL_LABEL_BYTES];
25025 struct dwarf_file_data *fd;
25027 switch (ref->code)
25029 case DW_MACINFO_start_file:
25030 fd = lookup_filename (ref->info);
25031 file_num = maybe_emit_file (fd);
25032 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
25033 dw2_asm_output_data_uleb128 (ref->lineno,
25034 "Included from line number %lu",
25035 (unsigned long) ref->lineno);
25036 dw2_asm_output_data_uleb128 (file_num, "file %s", ref->info);
25037 break;
25038 case DW_MACINFO_end_file:
25039 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
25040 break;
25041 case DW_MACINFO_define:
25042 case DW_MACINFO_undef:
25043 len = strlen (ref->info) + 1;
25044 if (!dwarf_strict
25045 && len > DWARF_OFFSET_SIZE
25046 && !DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
25047 && (debug_str_section->common.flags & SECTION_MERGE) != 0)
25049 ref->code = ref->code == DW_MACINFO_define
25050 ? DW_MACRO_GNU_define_indirect
25051 : DW_MACRO_GNU_undef_indirect;
25052 output_macinfo_op (ref);
25053 return;
25055 dw2_asm_output_data (1, ref->code,
25056 ref->code == DW_MACINFO_define
25057 ? "Define macro" : "Undefine macro");
25058 dw2_asm_output_data_uleb128 (ref->lineno, "At line number %lu",
25059 (unsigned long) ref->lineno);
25060 dw2_asm_output_nstring (ref->info, -1, "The macro");
25061 break;
25062 case DW_MACRO_GNU_define_indirect:
25063 case DW_MACRO_GNU_undef_indirect:
25064 node = find_AT_string (ref->info);
25065 gcc_assert (node
25066 && ((node->form == DW_FORM_strp)
25067 || (node->form == DW_FORM_GNU_str_index)));
25068 dw2_asm_output_data (1, ref->code,
25069 ref->code == DW_MACRO_GNU_define_indirect
25070 ? "Define macro indirect"
25071 : "Undefine macro indirect");
25072 dw2_asm_output_data_uleb128 (ref->lineno, "At line number %lu",
25073 (unsigned long) ref->lineno);
25074 if (node->form == DW_FORM_strp)
25075 dw2_asm_output_offset (DWARF_OFFSET_SIZE, node->label,
25076 debug_str_section, "The macro: \"%s\"",
25077 ref->info);
25078 else
25079 dw2_asm_output_data_uleb128 (node->index, "The macro: \"%s\"",
25080 ref->info);
25081 break;
25082 case DW_MACRO_GNU_transparent_include:
25083 dw2_asm_output_data (1, ref->code, "Transparent include");
25084 ASM_GENERATE_INTERNAL_LABEL (label,
25085 DEBUG_MACRO_SECTION_LABEL, ref->lineno);
25086 dw2_asm_output_offset (DWARF_OFFSET_SIZE, label, NULL, NULL);
25087 break;
25088 default:
25089 fprintf (asm_out_file, "%s unrecognized macinfo code %lu\n",
25090 ASM_COMMENT_START, (unsigned long) ref->code);
25091 break;
25095 /* Attempt to make a sequence of define/undef macinfo ops shareable with
25096 other compilation unit .debug_macinfo sections. IDX is the first
25097 index of a define/undef, return the number of ops that should be
25098 emitted in a comdat .debug_macinfo section and emit
25099 a DW_MACRO_GNU_transparent_include entry referencing it.
25100 If the define/undef entry should be emitted normally, return 0. */
25102 static unsigned
25103 optimize_macinfo_range (unsigned int idx, vec<macinfo_entry, va_gc> *files,
25104 macinfo_hash_type **macinfo_htab)
25106 macinfo_entry *first, *second, *cur, *inc;
25107 char linebuf[sizeof (HOST_WIDE_INT) * 3 + 1];
25108 unsigned char checksum[16];
25109 struct md5_ctx ctx;
25110 char *grp_name, *tail;
25111 const char *base;
25112 unsigned int i, count, encoded_filename_len, linebuf_len;
25113 macinfo_entry **slot;
25115 first = &(*macinfo_table)[idx];
25116 second = &(*macinfo_table)[idx + 1];
25118 /* Optimize only if there are at least two consecutive define/undef ops,
25119 and either all of them are before first DW_MACINFO_start_file
25120 with lineno {0,1} (i.e. predefined macro block), or all of them are
25121 in some included header file. */
25122 if (second->code != DW_MACINFO_define && second->code != DW_MACINFO_undef)
25123 return 0;
25124 if (vec_safe_is_empty (files))
25126 if (first->lineno > 1 || second->lineno > 1)
25127 return 0;
25129 else if (first->lineno == 0)
25130 return 0;
25132 /* Find the last define/undef entry that can be grouped together
25133 with first and at the same time compute md5 checksum of their
25134 codes, linenumbers and strings. */
25135 md5_init_ctx (&ctx);
25136 for (i = idx; macinfo_table->iterate (i, &cur); i++)
25137 if (cur->code != DW_MACINFO_define && cur->code != DW_MACINFO_undef)
25138 break;
25139 else if (vec_safe_is_empty (files) && cur->lineno > 1)
25140 break;
25141 else
25143 unsigned char code = cur->code;
25144 md5_process_bytes (&code, 1, &ctx);
25145 checksum_uleb128 (cur->lineno, &ctx);
25146 md5_process_bytes (cur->info, strlen (cur->info) + 1, &ctx);
25148 md5_finish_ctx (&ctx, checksum);
25149 count = i - idx;
25151 /* From the containing include filename (if any) pick up just
25152 usable characters from its basename. */
25153 if (vec_safe_is_empty (files))
25154 base = "";
25155 else
25156 base = lbasename (files->last ().info);
25157 for (encoded_filename_len = 0, i = 0; base[i]; i++)
25158 if (ISIDNUM (base[i]) || base[i] == '.')
25159 encoded_filename_len++;
25160 /* Count . at the end. */
25161 if (encoded_filename_len)
25162 encoded_filename_len++;
25164 sprintf (linebuf, HOST_WIDE_INT_PRINT_UNSIGNED, first->lineno);
25165 linebuf_len = strlen (linebuf);
25167 /* The group name format is: wmN.[<encoded filename>.]<lineno>.<md5sum> */
25168 grp_name = XALLOCAVEC (char, 4 + encoded_filename_len + linebuf_len + 1
25169 + 16 * 2 + 1);
25170 memcpy (grp_name, DWARF_OFFSET_SIZE == 4 ? "wm4." : "wm8.", 4);
25171 tail = grp_name + 4;
25172 if (encoded_filename_len)
25174 for (i = 0; base[i]; i++)
25175 if (ISIDNUM (base[i]) || base[i] == '.')
25176 *tail++ = base[i];
25177 *tail++ = '.';
25179 memcpy (tail, linebuf, linebuf_len);
25180 tail += linebuf_len;
25181 *tail++ = '.';
25182 for (i = 0; i < 16; i++)
25183 sprintf (tail + i * 2, "%02x", checksum[i] & 0xff);
25185 /* Construct a macinfo_entry for DW_MACRO_GNU_transparent_include
25186 in the empty vector entry before the first define/undef. */
25187 inc = &(*macinfo_table)[idx - 1];
25188 inc->code = DW_MACRO_GNU_transparent_include;
25189 inc->lineno = 0;
25190 inc->info = ggc_strdup (grp_name);
25191 if (!*macinfo_htab)
25192 *macinfo_htab = new macinfo_hash_type (10);
25193 /* Avoid emitting duplicates. */
25194 slot = (*macinfo_htab)->find_slot (inc, INSERT);
25195 if (*slot != NULL)
25197 inc->code = 0;
25198 inc->info = NULL;
25199 /* If such an entry has been used before, just emit
25200 a DW_MACRO_GNU_transparent_include op. */
25201 inc = *slot;
25202 output_macinfo_op (inc);
25203 /* And clear all macinfo_entry in the range to avoid emitting them
25204 in the second pass. */
25205 for (i = idx; macinfo_table->iterate (i, &cur) && i < idx + count; i++)
25207 cur->code = 0;
25208 cur->info = NULL;
25211 else
25213 *slot = inc;
25214 inc->lineno = (*macinfo_htab)->elements ();
25215 output_macinfo_op (inc);
25217 return count;
25220 /* Save any strings needed by the macinfo table in the debug str
25221 table. All strings must be collected into the table by the time
25222 index_string is called. */
25224 static void
25225 save_macinfo_strings (void)
25227 unsigned len;
25228 unsigned i;
25229 macinfo_entry *ref;
25231 for (i = 0; macinfo_table && macinfo_table->iterate (i, &ref); i++)
25233 switch (ref->code)
25235 /* Match the logic in output_macinfo_op to decide on
25236 indirect strings. */
25237 case DW_MACINFO_define:
25238 case DW_MACINFO_undef:
25239 len = strlen (ref->info) + 1;
25240 if (!dwarf_strict
25241 && len > DWARF_OFFSET_SIZE
25242 && !DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
25243 && (debug_str_section->common.flags & SECTION_MERGE) != 0)
25244 set_indirect_string (find_AT_string (ref->info));
25245 break;
25246 case DW_MACRO_GNU_define_indirect:
25247 case DW_MACRO_GNU_undef_indirect:
25248 set_indirect_string (find_AT_string (ref->info));
25249 break;
25250 default:
25251 break;
25256 /* Output macinfo section(s). */
25258 static void
25259 output_macinfo (void)
25261 unsigned i;
25262 unsigned long length = vec_safe_length (macinfo_table);
25263 macinfo_entry *ref;
25264 vec<macinfo_entry, va_gc> *files = NULL;
25265 macinfo_hash_type *macinfo_htab = NULL;
25267 if (! length)
25268 return;
25270 /* output_macinfo* uses these interchangeably. */
25271 gcc_assert ((int) DW_MACINFO_define == (int) DW_MACRO_GNU_define
25272 && (int) DW_MACINFO_undef == (int) DW_MACRO_GNU_undef
25273 && (int) DW_MACINFO_start_file == (int) DW_MACRO_GNU_start_file
25274 && (int) DW_MACINFO_end_file == (int) DW_MACRO_GNU_end_file);
25276 /* For .debug_macro emit the section header. */
25277 if (!dwarf_strict)
25279 dw2_asm_output_data (2, 4, "DWARF macro version number");
25280 if (DWARF_OFFSET_SIZE == 8)
25281 dw2_asm_output_data (1, 3, "Flags: 64-bit, lineptr present");
25282 else
25283 dw2_asm_output_data (1, 2, "Flags: 32-bit, lineptr present");
25284 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
25285 (!dwarf_split_debug_info ? debug_line_section_label
25286 : debug_skeleton_line_section_label),
25287 debug_line_section, NULL);
25290 /* In the first loop, it emits the primary .debug_macinfo section
25291 and after each emitted op the macinfo_entry is cleared.
25292 If a longer range of define/undef ops can be optimized using
25293 DW_MACRO_GNU_transparent_include, the
25294 DW_MACRO_GNU_transparent_include op is emitted and kept in
25295 the vector before the first define/undef in the range and the
25296 whole range of define/undef ops is not emitted and kept. */
25297 for (i = 0; macinfo_table->iterate (i, &ref); i++)
25299 switch (ref->code)
25301 case DW_MACINFO_start_file:
25302 vec_safe_push (files, *ref);
25303 break;
25304 case DW_MACINFO_end_file:
25305 if (!vec_safe_is_empty (files))
25306 files->pop ();
25307 break;
25308 case DW_MACINFO_define:
25309 case DW_MACINFO_undef:
25310 if (!dwarf_strict
25311 && HAVE_COMDAT_GROUP
25312 && vec_safe_length (files) != 1
25313 && i > 0
25314 && i + 1 < length
25315 && (*macinfo_table)[i - 1].code == 0)
25317 unsigned count = optimize_macinfo_range (i, files, &macinfo_htab);
25318 if (count)
25320 i += count - 1;
25321 continue;
25324 break;
25325 case 0:
25326 /* A dummy entry may be inserted at the beginning to be able
25327 to optimize the whole block of predefined macros. */
25328 if (i == 0)
25329 continue;
25330 default:
25331 break;
25333 output_macinfo_op (ref);
25334 ref->info = NULL;
25335 ref->code = 0;
25338 if (!macinfo_htab)
25339 return;
25341 delete macinfo_htab;
25342 macinfo_htab = NULL;
25344 /* If any DW_MACRO_GNU_transparent_include were used, on those
25345 DW_MACRO_GNU_transparent_include entries terminate the
25346 current chain and switch to a new comdat .debug_macinfo
25347 section and emit the define/undef entries within it. */
25348 for (i = 0; macinfo_table->iterate (i, &ref); i++)
25349 switch (ref->code)
25351 case 0:
25352 continue;
25353 case DW_MACRO_GNU_transparent_include:
25355 char label[MAX_ARTIFICIAL_LABEL_BYTES];
25356 tree comdat_key = get_identifier (ref->info);
25357 /* Terminate the previous .debug_macinfo section. */
25358 dw2_asm_output_data (1, 0, "End compilation unit");
25359 targetm.asm_out.named_section (DEBUG_MACRO_SECTION,
25360 SECTION_DEBUG
25361 | SECTION_LINKONCE,
25362 comdat_key);
25363 ASM_GENERATE_INTERNAL_LABEL (label,
25364 DEBUG_MACRO_SECTION_LABEL,
25365 ref->lineno);
25366 ASM_OUTPUT_LABEL (asm_out_file, label);
25367 ref->code = 0;
25368 ref->info = NULL;
25369 dw2_asm_output_data (2, 4, "DWARF macro version number");
25370 if (DWARF_OFFSET_SIZE == 8)
25371 dw2_asm_output_data (1, 1, "Flags: 64-bit");
25372 else
25373 dw2_asm_output_data (1, 0, "Flags: 32-bit");
25375 break;
25376 case DW_MACINFO_define:
25377 case DW_MACINFO_undef:
25378 output_macinfo_op (ref);
25379 ref->code = 0;
25380 ref->info = NULL;
25381 break;
25382 default:
25383 gcc_unreachable ();
25387 /* Set up for Dwarf output at the start of compilation. */
25389 static void
25390 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
25392 /* This option is currently broken, see (PR53118 and PR46102). */
25393 if (flag_eliminate_dwarf2_dups
25394 && strstr (lang_hooks.name, "C++"))
25396 warning (0, "-feliminate-dwarf2-dups is broken for C++, ignoring");
25397 flag_eliminate_dwarf2_dups = 0;
25400 /* Allocate the file_table. */
25401 file_table = hash_table<dwarf_file_hasher>::create_ggc (50);
25403 #ifndef DWARF2_LINENO_DEBUGGING_INFO
25404 /* Allocate the decl_die_table. */
25405 decl_die_table = hash_table<decl_die_hasher>::create_ggc (10);
25407 /* Allocate the decl_loc_table. */
25408 decl_loc_table = hash_table<decl_loc_hasher>::create_ggc (10);
25410 /* Allocate the cached_dw_loc_list_table. */
25411 cached_dw_loc_list_table = hash_table<dw_loc_list_hasher>::create_ggc (10);
25413 /* Allocate the initial hunk of the decl_scope_table. */
25414 vec_alloc (decl_scope_table, 256);
25416 /* Allocate the initial hunk of the abbrev_die_table. */
25417 abbrev_die_table = ggc_cleared_vec_alloc<dw_die_ref>
25418 (ABBREV_DIE_TABLE_INCREMENT);
25419 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
25420 /* Zero-th entry is allocated, but unused. */
25421 abbrev_die_table_in_use = 1;
25423 /* Allocate the dwarf_proc_stack_usage_map. */
25424 dwarf_proc_stack_usage_map = new hash_map<dw_die_ref, int>;
25426 /* Allocate the pubtypes and pubnames vectors. */
25427 vec_alloc (pubname_table, 32);
25428 vec_alloc (pubtype_table, 32);
25430 vec_alloc (incomplete_types, 64);
25432 vec_alloc (used_rtx_array, 32);
25434 if (!dwarf_split_debug_info)
25436 debug_info_section = get_section (DEBUG_INFO_SECTION,
25437 SECTION_DEBUG, NULL);
25438 debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
25439 SECTION_DEBUG, NULL);
25440 debug_loc_section = get_section (DEBUG_LOC_SECTION,
25441 SECTION_DEBUG, NULL);
25443 else
25445 debug_info_section = get_section (DEBUG_DWO_INFO_SECTION,
25446 SECTION_DEBUG | SECTION_EXCLUDE, NULL);
25447 debug_abbrev_section = get_section (DEBUG_DWO_ABBREV_SECTION,
25448 SECTION_DEBUG | SECTION_EXCLUDE,
25449 NULL);
25450 debug_addr_section = get_section (DEBUG_ADDR_SECTION,
25451 SECTION_DEBUG, NULL);
25452 debug_skeleton_info_section = get_section (DEBUG_INFO_SECTION,
25453 SECTION_DEBUG, NULL);
25454 debug_skeleton_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
25455 SECTION_DEBUG, NULL);
25456 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_abbrev_section_label,
25457 DEBUG_SKELETON_ABBREV_SECTION_LABEL, 0);
25459 /* Somewhat confusing detail: The skeleton_[abbrev|info] sections stay in
25460 the main .o, but the skeleton_line goes into the split off dwo. */
25461 debug_skeleton_line_section
25462 = get_section (DEBUG_DWO_LINE_SECTION,
25463 SECTION_DEBUG | SECTION_EXCLUDE, NULL);
25464 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_line_section_label,
25465 DEBUG_SKELETON_LINE_SECTION_LABEL, 0);
25466 debug_str_offsets_section = get_section (DEBUG_STR_OFFSETS_SECTION,
25467 SECTION_DEBUG | SECTION_EXCLUDE,
25468 NULL);
25469 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_info_section_label,
25470 DEBUG_SKELETON_INFO_SECTION_LABEL, 0);
25471 debug_loc_section = get_section (DEBUG_DWO_LOC_SECTION,
25472 SECTION_DEBUG | SECTION_EXCLUDE, NULL);
25473 debug_str_dwo_section = get_section (DEBUG_STR_DWO_SECTION,
25474 DEBUG_STR_DWO_SECTION_FLAGS, NULL);
25476 debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
25477 SECTION_DEBUG, NULL);
25478 debug_macinfo_section = get_section (dwarf_strict
25479 ? DEBUG_MACINFO_SECTION
25480 : DEBUG_MACRO_SECTION,
25481 DEBUG_MACRO_SECTION_FLAGS, NULL);
25482 debug_line_section = get_section (DEBUG_LINE_SECTION,
25483 SECTION_DEBUG, NULL);
25484 debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
25485 SECTION_DEBUG, NULL);
25486 debug_pubtypes_section = get_section (DEBUG_PUBTYPES_SECTION,
25487 SECTION_DEBUG, NULL);
25488 debug_str_section = get_section (DEBUG_STR_SECTION,
25489 DEBUG_STR_SECTION_FLAGS, NULL);
25490 debug_ranges_section = get_section (DEBUG_RANGES_SECTION,
25491 SECTION_DEBUG, NULL);
25492 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
25493 SECTION_DEBUG, NULL);
25495 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
25496 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
25497 DEBUG_ABBREV_SECTION_LABEL, 0);
25498 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
25499 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
25500 COLD_TEXT_SECTION_LABEL, 0);
25501 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
25503 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
25504 DEBUG_INFO_SECTION_LABEL, 0);
25505 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
25506 DEBUG_LINE_SECTION_LABEL, 0);
25507 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
25508 DEBUG_RANGES_SECTION_LABEL, 0);
25509 ASM_GENERATE_INTERNAL_LABEL (debug_addr_section_label,
25510 DEBUG_ADDR_SECTION_LABEL, 0);
25511 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
25512 dwarf_strict
25513 ? DEBUG_MACINFO_SECTION_LABEL
25514 : DEBUG_MACRO_SECTION_LABEL, 0);
25515 ASM_GENERATE_INTERNAL_LABEL (loc_section_label, DEBUG_LOC_SECTION_LABEL, 0);
25517 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
25518 vec_alloc (macinfo_table, 64);
25520 switch_to_section (text_section);
25521 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
25522 #endif
25524 /* Make sure the line number table for .text always exists. */
25525 text_section_line_info = new_line_info_table ();
25526 text_section_line_info->end_label = text_end_label;
25528 #ifdef DWARF2_LINENO_DEBUGGING_INFO
25529 cur_line_info_table = text_section_line_info;
25530 #endif
25532 /* If front-ends already registered a main translation unit but we were not
25533 ready to perform the association, do this now. */
25534 if (main_translation_unit != NULL_TREE)
25535 equate_decl_number_to_die (main_translation_unit, comp_unit_die ());
25538 /* Called before compile () starts outputtting functions, variables
25539 and toplevel asms into assembly. */
25541 static void
25542 dwarf2out_assembly_start (void)
25544 if (HAVE_GAS_CFI_SECTIONS_DIRECTIVE
25545 && dwarf2out_do_cfi_asm ()
25546 && (!(flag_unwind_tables || flag_exceptions)
25547 || targetm_common.except_unwind_info (&global_options) != UI_DWARF2))
25548 fprintf (asm_out_file, "\t.cfi_sections\t.debug_frame\n");
25551 /* A helper function for dwarf2out_finish called through
25552 htab_traverse. Assign a string its index. All strings must be
25553 collected into the table by the time index_string is called,
25554 because the indexing code relies on htab_traverse to traverse nodes
25555 in the same order for each run. */
25558 index_string (indirect_string_node **h, unsigned int *index)
25560 indirect_string_node *node = *h;
25562 find_string_form (node);
25563 if (node->form == DW_FORM_GNU_str_index && node->refcount > 0)
25565 gcc_assert (node->index == NO_INDEX_ASSIGNED);
25566 node->index = *index;
25567 *index += 1;
25569 return 1;
25572 /* A helper function for output_indirect_strings called through
25573 htab_traverse. Output the offset to a string and update the
25574 current offset. */
25577 output_index_string_offset (indirect_string_node **h, unsigned int *offset)
25579 indirect_string_node *node = *h;
25581 if (node->form == DW_FORM_GNU_str_index && node->refcount > 0)
25583 /* Assert that this node has been assigned an index. */
25584 gcc_assert (node->index != NO_INDEX_ASSIGNED
25585 && node->index != NOT_INDEXED);
25586 dw2_asm_output_data (DWARF_OFFSET_SIZE, *offset,
25587 "indexed string 0x%x: %s", node->index, node->str);
25588 *offset += strlen (node->str) + 1;
25590 return 1;
25593 /* A helper function for dwarf2out_finish called through
25594 htab_traverse. Output the indexed string. */
25597 output_index_string (indirect_string_node **h, unsigned int *cur_idx)
25599 struct indirect_string_node *node = *h;
25601 if (node->form == DW_FORM_GNU_str_index && node->refcount > 0)
25603 /* Assert that the strings are output in the same order as their
25604 indexes were assigned. */
25605 gcc_assert (*cur_idx == node->index);
25606 assemble_string (node->str, strlen (node->str) + 1);
25607 *cur_idx += 1;
25609 return 1;
25612 /* A helper function for dwarf2out_finish called through
25613 htab_traverse. Emit one queued .debug_str string. */
25616 output_indirect_string (indirect_string_node **h, void *)
25618 struct indirect_string_node *node = *h;
25620 node->form = find_string_form (node);
25621 if (node->form == DW_FORM_strp && node->refcount > 0)
25623 ASM_OUTPUT_LABEL (asm_out_file, node->label);
25624 assemble_string (node->str, strlen (node->str) + 1);
25627 return 1;
25630 /* Output the indexed string table. */
25632 static void
25633 output_indirect_strings (void)
25635 switch_to_section (debug_str_section);
25636 if (!dwarf_split_debug_info)
25637 debug_str_hash->traverse<void *, output_indirect_string> (NULL);
25638 else
25640 unsigned int offset = 0;
25641 unsigned int cur_idx = 0;
25643 skeleton_debug_str_hash->traverse<void *, output_indirect_string> (NULL);
25645 switch_to_section (debug_str_offsets_section);
25646 debug_str_hash->traverse_noresize
25647 <unsigned int *, output_index_string_offset> (&offset);
25648 switch_to_section (debug_str_dwo_section);
25649 debug_str_hash->traverse_noresize<unsigned int *, output_index_string>
25650 (&cur_idx);
25654 /* Callback for htab_traverse to assign an index to an entry in the
25655 table, and to write that entry to the .debug_addr section. */
25658 output_addr_table_entry (addr_table_entry **slot, unsigned int *cur_index)
25660 addr_table_entry *entry = *slot;
25662 if (entry->refcount == 0)
25664 gcc_assert (entry->index == NO_INDEX_ASSIGNED
25665 || entry->index == NOT_INDEXED);
25666 return 1;
25669 gcc_assert (entry->index == *cur_index);
25670 (*cur_index)++;
25672 switch (entry->kind)
25674 case ate_kind_rtx:
25675 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, entry->addr.rtl,
25676 "0x%x", entry->index);
25677 break;
25678 case ate_kind_rtx_dtprel:
25679 gcc_assert (targetm.asm_out.output_dwarf_dtprel);
25680 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
25681 DWARF2_ADDR_SIZE,
25682 entry->addr.rtl);
25683 fputc ('\n', asm_out_file);
25684 break;
25685 case ate_kind_label:
25686 dw2_asm_output_addr (DWARF2_ADDR_SIZE, entry->addr.label,
25687 "0x%x", entry->index);
25688 break;
25689 default:
25690 gcc_unreachable ();
25692 return 1;
25695 /* Produce the .debug_addr section. */
25697 static void
25698 output_addr_table (void)
25700 unsigned int index = 0;
25701 if (addr_index_table == NULL || addr_index_table->size () == 0)
25702 return;
25704 switch_to_section (debug_addr_section);
25705 addr_index_table
25706 ->traverse_noresize<unsigned int *, output_addr_table_entry> (&index);
25709 #if ENABLE_ASSERT_CHECKING
25710 /* Verify that all marks are clear. */
25712 static void
25713 verify_marks_clear (dw_die_ref die)
25715 dw_die_ref c;
25717 gcc_assert (! die->die_mark);
25718 FOR_EACH_CHILD (die, c, verify_marks_clear (c));
25720 #endif /* ENABLE_ASSERT_CHECKING */
25722 /* Clear the marks for a die and its children.
25723 Be cool if the mark isn't set. */
25725 static void
25726 prune_unmark_dies (dw_die_ref die)
25728 dw_die_ref c;
25730 if (die->die_mark)
25731 die->die_mark = 0;
25732 FOR_EACH_CHILD (die, c, prune_unmark_dies (c));
25735 /* Given LOC that is referenced by a DIE we're marking as used, find all
25736 referenced DWARF procedures it references and mark them as used. */
25738 static void
25739 prune_unused_types_walk_loc_descr (dw_loc_descr_ref loc)
25741 for (; loc != NULL; loc = loc->dw_loc_next)
25742 switch (loc->dw_loc_opc)
25744 case DW_OP_GNU_implicit_pointer:
25745 case DW_OP_GNU_convert:
25746 case DW_OP_GNU_reinterpret:
25747 if (loc->dw_loc_oprnd1.val_class == dw_val_class_die_ref)
25748 prune_unused_types_mark (loc->dw_loc_oprnd1.v.val_die_ref.die, 1);
25749 break;
25750 case DW_OP_call2:
25751 case DW_OP_call4:
25752 case DW_OP_call_ref:
25753 case DW_OP_GNU_const_type:
25754 case DW_OP_GNU_parameter_ref:
25755 gcc_assert (loc->dw_loc_oprnd1.val_class == dw_val_class_die_ref);
25756 prune_unused_types_mark (loc->dw_loc_oprnd1.v.val_die_ref.die, 1);
25757 break;
25758 case DW_OP_GNU_regval_type:
25759 case DW_OP_GNU_deref_type:
25760 gcc_assert (loc->dw_loc_oprnd2.val_class == dw_val_class_die_ref);
25761 prune_unused_types_mark (loc->dw_loc_oprnd2.v.val_die_ref.die, 1);
25762 break;
25763 case DW_OP_GNU_entry_value:
25764 gcc_assert (loc->dw_loc_oprnd1.val_class == dw_val_class_loc);
25765 prune_unused_types_walk_loc_descr (loc->dw_loc_oprnd1.v.val_loc);
25766 break;
25767 default:
25768 break;
25772 /* Given DIE that we're marking as used, find any other dies
25773 it references as attributes and mark them as used. */
25775 static void
25776 prune_unused_types_walk_attribs (dw_die_ref die)
25778 dw_attr_node *a;
25779 unsigned ix;
25781 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
25783 switch (AT_class (a))
25785 /* Make sure DWARF procedures referenced by location descriptions will
25786 get emitted. */
25787 case dw_val_class_loc:
25788 prune_unused_types_walk_loc_descr (AT_loc (a));
25789 break;
25790 case dw_val_class_loc_list:
25791 for (dw_loc_list_ref list = AT_loc_list (a);
25792 list != NULL;
25793 list = list->dw_loc_next)
25794 prune_unused_types_walk_loc_descr (list->expr);
25795 break;
25797 case dw_val_class_die_ref:
25798 /* A reference to another DIE.
25799 Make sure that it will get emitted.
25800 If it was broken out into a comdat group, don't follow it. */
25801 if (! AT_ref (a)->comdat_type_p
25802 || a->dw_attr == DW_AT_specification)
25803 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
25804 break;
25806 case dw_val_class_str:
25807 /* Set the string's refcount to 0 so that prune_unused_types_mark
25808 accounts properly for it. */
25809 a->dw_attr_val.v.val_str->refcount = 0;
25810 break;
25812 default:
25813 break;
25818 /* Mark the generic parameters and arguments children DIEs of DIE. */
25820 static void
25821 prune_unused_types_mark_generic_parms_dies (dw_die_ref die)
25823 dw_die_ref c;
25825 if (die == NULL || die->die_child == NULL)
25826 return;
25827 c = die->die_child;
25830 if (is_template_parameter (c))
25831 prune_unused_types_mark (c, 1);
25832 c = c->die_sib;
25833 } while (c && c != die->die_child);
25836 /* Mark DIE as being used. If DOKIDS is true, then walk down
25837 to DIE's children. */
25839 static void
25840 prune_unused_types_mark (dw_die_ref die, int dokids)
25842 dw_die_ref c;
25844 if (die->die_mark == 0)
25846 /* We haven't done this node yet. Mark it as used. */
25847 die->die_mark = 1;
25848 /* If this is the DIE of a generic type instantiation,
25849 mark the children DIEs that describe its generic parms and
25850 args. */
25851 prune_unused_types_mark_generic_parms_dies (die);
25853 /* We also have to mark its parents as used.
25854 (But we don't want to mark our parent's kids due to this,
25855 unless it is a class.) */
25856 if (die->die_parent)
25857 prune_unused_types_mark (die->die_parent,
25858 class_scope_p (die->die_parent));
25860 /* Mark any referenced nodes. */
25861 prune_unused_types_walk_attribs (die);
25863 /* If this node is a specification,
25864 also mark the definition, if it exists. */
25865 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
25866 prune_unused_types_mark (die->die_definition, 1);
25869 if (dokids && die->die_mark != 2)
25871 /* We need to walk the children, but haven't done so yet.
25872 Remember that we've walked the kids. */
25873 die->die_mark = 2;
25875 /* If this is an array type, we need to make sure our
25876 kids get marked, even if they're types. If we're
25877 breaking out types into comdat sections, do this
25878 for all type definitions. */
25879 if (die->die_tag == DW_TAG_array_type
25880 || (use_debug_types
25881 && is_type_die (die) && ! is_declaration_die (die)))
25882 FOR_EACH_CHILD (die, c, prune_unused_types_mark (c, 1));
25883 else
25884 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
25888 /* For local classes, look if any static member functions were emitted
25889 and if so, mark them. */
25891 static void
25892 prune_unused_types_walk_local_classes (dw_die_ref die)
25894 dw_die_ref c;
25896 if (die->die_mark == 2)
25897 return;
25899 switch (die->die_tag)
25901 case DW_TAG_structure_type:
25902 case DW_TAG_union_type:
25903 case DW_TAG_class_type:
25904 break;
25906 case DW_TAG_subprogram:
25907 if (!get_AT_flag (die, DW_AT_declaration)
25908 || die->die_definition != NULL)
25909 prune_unused_types_mark (die, 1);
25910 return;
25912 default:
25913 return;
25916 /* Mark children. */
25917 FOR_EACH_CHILD (die, c, prune_unused_types_walk_local_classes (c));
25920 /* Walk the tree DIE and mark types that we actually use. */
25922 static void
25923 prune_unused_types_walk (dw_die_ref die)
25925 dw_die_ref c;
25927 /* Don't do anything if this node is already marked and
25928 children have been marked as well. */
25929 if (die->die_mark == 2)
25930 return;
25932 switch (die->die_tag)
25934 case DW_TAG_structure_type:
25935 case DW_TAG_union_type:
25936 case DW_TAG_class_type:
25937 if (die->die_perennial_p)
25938 break;
25940 for (c = die->die_parent; c; c = c->die_parent)
25941 if (c->die_tag == DW_TAG_subprogram)
25942 break;
25944 /* Finding used static member functions inside of classes
25945 is needed just for local classes, because for other classes
25946 static member function DIEs with DW_AT_specification
25947 are emitted outside of the DW_TAG_*_type. If we ever change
25948 it, we'd need to call this even for non-local classes. */
25949 if (c)
25950 prune_unused_types_walk_local_classes (die);
25952 /* It's a type node --- don't mark it. */
25953 return;
25955 case DW_TAG_const_type:
25956 case DW_TAG_packed_type:
25957 case DW_TAG_pointer_type:
25958 case DW_TAG_reference_type:
25959 case DW_TAG_rvalue_reference_type:
25960 case DW_TAG_volatile_type:
25961 case DW_TAG_typedef:
25962 case DW_TAG_array_type:
25963 case DW_TAG_interface_type:
25964 case DW_TAG_friend:
25965 case DW_TAG_enumeration_type:
25966 case DW_TAG_subroutine_type:
25967 case DW_TAG_string_type:
25968 case DW_TAG_set_type:
25969 case DW_TAG_subrange_type:
25970 case DW_TAG_ptr_to_member_type:
25971 case DW_TAG_file_type:
25972 /* Type nodes are useful only when other DIEs reference them --- don't
25973 mark them. */
25974 /* FALLTHROUGH */
25976 case DW_TAG_dwarf_procedure:
25977 /* Likewise for DWARF procedures. */
25979 if (die->die_perennial_p)
25980 break;
25982 return;
25984 default:
25985 /* Mark everything else. */
25986 break;
25989 if (die->die_mark == 0)
25991 die->die_mark = 1;
25993 /* Now, mark any dies referenced from here. */
25994 prune_unused_types_walk_attribs (die);
25997 die->die_mark = 2;
25999 /* Mark children. */
26000 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
26003 /* Increment the string counts on strings referred to from DIE's
26004 attributes. */
26006 static void
26007 prune_unused_types_update_strings (dw_die_ref die)
26009 dw_attr_node *a;
26010 unsigned ix;
26012 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
26013 if (AT_class (a) == dw_val_class_str)
26015 struct indirect_string_node *s = a->dw_attr_val.v.val_str;
26016 s->refcount++;
26017 /* Avoid unnecessarily putting strings that are used less than
26018 twice in the hash table. */
26019 if (s->refcount
26020 == ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) ? 1 : 2))
26022 indirect_string_node **slot
26023 = debug_str_hash->find_slot_with_hash (s->str,
26024 htab_hash_string (s->str),
26025 INSERT);
26026 gcc_assert (*slot == NULL);
26027 *slot = s;
26032 /* Remove from the tree DIE any dies that aren't marked. */
26034 static void
26035 prune_unused_types_prune (dw_die_ref die)
26037 dw_die_ref c;
26039 gcc_assert (die->die_mark);
26040 prune_unused_types_update_strings (die);
26042 if (! die->die_child)
26043 return;
26045 c = die->die_child;
26046 do {
26047 dw_die_ref prev = c;
26048 for (c = c->die_sib; ! c->die_mark; c = c->die_sib)
26049 if (c == die->die_child)
26051 /* No marked children between 'prev' and the end of the list. */
26052 if (prev == c)
26053 /* No marked children at all. */
26054 die->die_child = NULL;
26055 else
26057 prev->die_sib = c->die_sib;
26058 die->die_child = prev;
26060 return;
26063 if (c != prev->die_sib)
26064 prev->die_sib = c;
26065 prune_unused_types_prune (c);
26066 } while (c != die->die_child);
26069 /* Remove dies representing declarations that we never use. */
26071 static void
26072 prune_unused_types (void)
26074 unsigned int i;
26075 limbo_die_node *node;
26076 comdat_type_node *ctnode;
26077 pubname_entry *pub;
26078 dw_die_ref base_type;
26080 #if ENABLE_ASSERT_CHECKING
26081 /* All the marks should already be clear. */
26082 verify_marks_clear (comp_unit_die ());
26083 for (node = limbo_die_list; node; node = node->next)
26084 verify_marks_clear (node->die);
26085 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
26086 verify_marks_clear (ctnode->root_die);
26087 #endif /* ENABLE_ASSERT_CHECKING */
26089 /* Mark types that are used in global variables. */
26090 premark_types_used_by_global_vars ();
26092 /* Set the mark on nodes that are actually used. */
26093 prune_unused_types_walk (comp_unit_die ());
26094 for (node = limbo_die_list; node; node = node->next)
26095 prune_unused_types_walk (node->die);
26096 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
26098 prune_unused_types_walk (ctnode->root_die);
26099 prune_unused_types_mark (ctnode->type_die, 1);
26102 /* Also set the mark on nodes referenced from the pubname_table. Enumerators
26103 are unusual in that they are pubnames that are the children of pubtypes.
26104 They should only be marked via their parent DW_TAG_enumeration_type die,
26105 not as roots in themselves. */
26106 FOR_EACH_VEC_ELT (*pubname_table, i, pub)
26107 if (pub->die->die_tag != DW_TAG_enumerator)
26108 prune_unused_types_mark (pub->die, 1);
26109 for (i = 0; base_types.iterate (i, &base_type); i++)
26110 prune_unused_types_mark (base_type, 1);
26112 if (debug_str_hash)
26113 debug_str_hash->empty ();
26114 if (skeleton_debug_str_hash)
26115 skeleton_debug_str_hash->empty ();
26116 prune_unused_types_prune (comp_unit_die ());
26117 for (limbo_die_node **pnode = &limbo_die_list; *pnode; )
26119 node = *pnode;
26120 if (!node->die->die_mark)
26121 *pnode = node->next;
26122 else
26124 prune_unused_types_prune (node->die);
26125 pnode = &node->next;
26128 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
26129 prune_unused_types_prune (ctnode->root_die);
26131 /* Leave the marks clear. */
26132 prune_unmark_dies (comp_unit_die ());
26133 for (node = limbo_die_list; node; node = node->next)
26134 prune_unmark_dies (node->die);
26135 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
26136 prune_unmark_dies (ctnode->root_die);
26139 /* Set the parameter to true if there are any relative pathnames in
26140 the file table. */
26142 file_table_relative_p (dwarf_file_data **slot, bool *p)
26144 struct dwarf_file_data *d = *slot;
26145 if (!IS_ABSOLUTE_PATH (d->filename))
26147 *p = true;
26148 return 0;
26150 return 1;
26153 /* Helpers to manipulate hash table of comdat type units. */
26155 struct comdat_type_hasher : nofree_ptr_hash <comdat_type_node>
26157 static inline hashval_t hash (const comdat_type_node *);
26158 static inline bool equal (const comdat_type_node *, const comdat_type_node *);
26161 inline hashval_t
26162 comdat_type_hasher::hash (const comdat_type_node *type_node)
26164 hashval_t h;
26165 memcpy (&h, type_node->signature, sizeof (h));
26166 return h;
26169 inline bool
26170 comdat_type_hasher::equal (const comdat_type_node *type_node_1,
26171 const comdat_type_node *type_node_2)
26173 return (! memcmp (type_node_1->signature, type_node_2->signature,
26174 DWARF_TYPE_SIGNATURE_SIZE));
26177 /* Move a DW_AT_{,MIPS_}linkage_name attribute just added to dw_die_ref
26178 to the location it would have been added, should we know its
26179 DECL_ASSEMBLER_NAME when we added other attributes. This will
26180 probably improve compactness of debug info, removing equivalent
26181 abbrevs, and hide any differences caused by deferring the
26182 computation of the assembler name, triggered by e.g. PCH. */
26184 static inline void
26185 move_linkage_attr (dw_die_ref die)
26187 unsigned ix = vec_safe_length (die->die_attr);
26188 dw_attr_node linkage = (*die->die_attr)[ix - 1];
26190 gcc_assert (linkage.dw_attr == DW_AT_linkage_name
26191 || linkage.dw_attr == DW_AT_MIPS_linkage_name);
26193 while (--ix > 0)
26195 dw_attr_node *prev = &(*die->die_attr)[ix - 1];
26197 if (prev->dw_attr == DW_AT_decl_line || prev->dw_attr == DW_AT_name)
26198 break;
26201 if (ix != vec_safe_length (die->die_attr) - 1)
26203 die->die_attr->pop ();
26204 die->die_attr->quick_insert (ix, linkage);
26208 /* Helper function for resolve_addr, mark DW_TAG_base_type nodes
26209 referenced from typed stack ops and count how often they are used. */
26211 static void
26212 mark_base_types (dw_loc_descr_ref loc)
26214 dw_die_ref base_type = NULL;
26216 for (; loc; loc = loc->dw_loc_next)
26218 switch (loc->dw_loc_opc)
26220 case DW_OP_GNU_regval_type:
26221 case DW_OP_GNU_deref_type:
26222 base_type = loc->dw_loc_oprnd2.v.val_die_ref.die;
26223 break;
26224 case DW_OP_GNU_convert:
26225 case DW_OP_GNU_reinterpret:
26226 if (loc->dw_loc_oprnd1.val_class == dw_val_class_unsigned_const)
26227 continue;
26228 /* FALLTHRU */
26229 case DW_OP_GNU_const_type:
26230 base_type = loc->dw_loc_oprnd1.v.val_die_ref.die;
26231 break;
26232 case DW_OP_GNU_entry_value:
26233 mark_base_types (loc->dw_loc_oprnd1.v.val_loc);
26234 continue;
26235 default:
26236 continue;
26238 gcc_assert (base_type->die_parent == comp_unit_die ());
26239 if (base_type->die_mark)
26240 base_type->die_mark++;
26241 else
26243 base_types.safe_push (base_type);
26244 base_type->die_mark = 1;
26249 /* Comparison function for sorting marked base types. */
26251 static int
26252 base_type_cmp (const void *x, const void *y)
26254 dw_die_ref dx = *(const dw_die_ref *) x;
26255 dw_die_ref dy = *(const dw_die_ref *) y;
26256 unsigned int byte_size1, byte_size2;
26257 unsigned int encoding1, encoding2;
26258 if (dx->die_mark > dy->die_mark)
26259 return -1;
26260 if (dx->die_mark < dy->die_mark)
26261 return 1;
26262 byte_size1 = get_AT_unsigned (dx, DW_AT_byte_size);
26263 byte_size2 = get_AT_unsigned (dy, DW_AT_byte_size);
26264 if (byte_size1 < byte_size2)
26265 return 1;
26266 if (byte_size1 > byte_size2)
26267 return -1;
26268 encoding1 = get_AT_unsigned (dx, DW_AT_encoding);
26269 encoding2 = get_AT_unsigned (dy, DW_AT_encoding);
26270 if (encoding1 < encoding2)
26271 return 1;
26272 if (encoding1 > encoding2)
26273 return -1;
26274 return 0;
26277 /* Move base types marked by mark_base_types as early as possible
26278 in the CU, sorted by decreasing usage count both to make the
26279 uleb128 references as small as possible and to make sure they
26280 will have die_offset already computed by calc_die_sizes when
26281 sizes of typed stack loc ops is computed. */
26283 static void
26284 move_marked_base_types (void)
26286 unsigned int i;
26287 dw_die_ref base_type, die, c;
26289 if (base_types.is_empty ())
26290 return;
26292 /* Sort by decreasing usage count, they will be added again in that
26293 order later on. */
26294 base_types.qsort (base_type_cmp);
26295 die = comp_unit_die ();
26296 c = die->die_child;
26299 dw_die_ref prev = c;
26300 c = c->die_sib;
26301 while (c->die_mark)
26303 remove_child_with_prev (c, prev);
26304 /* As base types got marked, there must be at least
26305 one node other than DW_TAG_base_type. */
26306 gcc_assert (c != c->die_sib);
26307 c = c->die_sib;
26310 while (c != die->die_child);
26311 gcc_assert (die->die_child);
26312 c = die->die_child;
26313 for (i = 0; base_types.iterate (i, &base_type); i++)
26315 base_type->die_mark = 0;
26316 base_type->die_sib = c->die_sib;
26317 c->die_sib = base_type;
26318 c = base_type;
26322 /* Helper function for resolve_addr, attempt to resolve
26323 one CONST_STRING, return true if successful. Similarly verify that
26324 SYMBOL_REFs refer to variables emitted in the current CU. */
26326 static bool
26327 resolve_one_addr (rtx *addr)
26329 rtx rtl = *addr;
26331 if (GET_CODE (rtl) == CONST_STRING)
26333 size_t len = strlen (XSTR (rtl, 0)) + 1;
26334 tree t = build_string (len, XSTR (rtl, 0));
26335 tree tlen = size_int (len - 1);
26336 TREE_TYPE (t)
26337 = build_array_type (char_type_node, build_index_type (tlen));
26338 rtl = lookup_constant_def (t);
26339 if (!rtl || !MEM_P (rtl))
26340 return false;
26341 rtl = XEXP (rtl, 0);
26342 if (GET_CODE (rtl) == SYMBOL_REF
26343 && SYMBOL_REF_DECL (rtl)
26344 && !TREE_ASM_WRITTEN (SYMBOL_REF_DECL (rtl)))
26345 return false;
26346 vec_safe_push (used_rtx_array, rtl);
26347 *addr = rtl;
26348 return true;
26351 if (GET_CODE (rtl) == SYMBOL_REF
26352 && SYMBOL_REF_DECL (rtl))
26354 if (TREE_CONSTANT_POOL_ADDRESS_P (rtl))
26356 if (!TREE_ASM_WRITTEN (DECL_INITIAL (SYMBOL_REF_DECL (rtl))))
26357 return false;
26359 else if (!TREE_ASM_WRITTEN (SYMBOL_REF_DECL (rtl)))
26360 return false;
26363 if (GET_CODE (rtl) == CONST)
26365 subrtx_ptr_iterator::array_type array;
26366 FOR_EACH_SUBRTX_PTR (iter, array, &XEXP (rtl, 0), ALL)
26367 if (!resolve_one_addr (*iter))
26368 return false;
26371 return true;
26374 /* For STRING_CST, return SYMBOL_REF of its constant pool entry,
26375 if possible, and create DW_TAG_dwarf_procedure that can be referenced
26376 from DW_OP_GNU_implicit_pointer if the string hasn't been seen yet. */
26378 static rtx
26379 string_cst_pool_decl (tree t)
26381 rtx rtl = output_constant_def (t, 1);
26382 unsigned char *array;
26383 dw_loc_descr_ref l;
26384 tree decl;
26385 size_t len;
26386 dw_die_ref ref;
26388 if (!rtl || !MEM_P (rtl))
26389 return NULL_RTX;
26390 rtl = XEXP (rtl, 0);
26391 if (GET_CODE (rtl) != SYMBOL_REF
26392 || SYMBOL_REF_DECL (rtl) == NULL_TREE)
26393 return NULL_RTX;
26395 decl = SYMBOL_REF_DECL (rtl);
26396 if (!lookup_decl_die (decl))
26398 len = TREE_STRING_LENGTH (t);
26399 vec_safe_push (used_rtx_array, rtl);
26400 ref = new_die (DW_TAG_dwarf_procedure, comp_unit_die (), decl);
26401 array = ggc_vec_alloc<unsigned char> (len);
26402 memcpy (array, TREE_STRING_POINTER (t), len);
26403 l = new_loc_descr (DW_OP_implicit_value, len, 0);
26404 l->dw_loc_oprnd2.val_class = dw_val_class_vec;
26405 l->dw_loc_oprnd2.v.val_vec.length = len;
26406 l->dw_loc_oprnd2.v.val_vec.elt_size = 1;
26407 l->dw_loc_oprnd2.v.val_vec.array = array;
26408 add_AT_loc (ref, DW_AT_location, l);
26409 equate_decl_number_to_die (decl, ref);
26411 return rtl;
26414 /* Helper function of resolve_addr_in_expr. LOC is
26415 a DW_OP_addr followed by DW_OP_stack_value, either at the start
26416 of exprloc or after DW_OP_{,bit_}piece, and val_addr can't be
26417 resolved. Replace it (both DW_OP_addr and DW_OP_stack_value)
26418 with DW_OP_GNU_implicit_pointer if possible
26419 and return true, if unsuccessful, return false. */
26421 static bool
26422 optimize_one_addr_into_implicit_ptr (dw_loc_descr_ref loc)
26424 rtx rtl = loc->dw_loc_oprnd1.v.val_addr;
26425 HOST_WIDE_INT offset = 0;
26426 dw_die_ref ref = NULL;
26427 tree decl;
26429 if (GET_CODE (rtl) == CONST
26430 && GET_CODE (XEXP (rtl, 0)) == PLUS
26431 && CONST_INT_P (XEXP (XEXP (rtl, 0), 1)))
26433 offset = INTVAL (XEXP (XEXP (rtl, 0), 1));
26434 rtl = XEXP (XEXP (rtl, 0), 0);
26436 if (GET_CODE (rtl) == CONST_STRING)
26438 size_t len = strlen (XSTR (rtl, 0)) + 1;
26439 tree t = build_string (len, XSTR (rtl, 0));
26440 tree tlen = size_int (len - 1);
26442 TREE_TYPE (t)
26443 = build_array_type (char_type_node, build_index_type (tlen));
26444 rtl = string_cst_pool_decl (t);
26445 if (!rtl)
26446 return false;
26448 if (GET_CODE (rtl) == SYMBOL_REF && SYMBOL_REF_DECL (rtl))
26450 decl = SYMBOL_REF_DECL (rtl);
26451 if (TREE_CODE (decl) == VAR_DECL && !DECL_EXTERNAL (decl))
26453 ref = lookup_decl_die (decl);
26454 if (ref && (get_AT (ref, DW_AT_location)
26455 || get_AT (ref, DW_AT_const_value)))
26457 loc->dw_loc_opc = DW_OP_GNU_implicit_pointer;
26458 loc->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
26459 loc->dw_loc_oprnd1.val_entry = NULL;
26460 loc->dw_loc_oprnd1.v.val_die_ref.die = ref;
26461 loc->dw_loc_oprnd1.v.val_die_ref.external = 0;
26462 loc->dw_loc_next = loc->dw_loc_next->dw_loc_next;
26463 loc->dw_loc_oprnd2.v.val_int = offset;
26464 return true;
26468 return false;
26471 /* Helper function for resolve_addr, handle one location
26472 expression, return false if at least one CONST_STRING or SYMBOL_REF in
26473 the location list couldn't be resolved. */
26475 static bool
26476 resolve_addr_in_expr (dw_loc_descr_ref loc)
26478 dw_loc_descr_ref keep = NULL;
26479 for (dw_loc_descr_ref prev = NULL; loc; prev = loc, loc = loc->dw_loc_next)
26480 switch (loc->dw_loc_opc)
26482 case DW_OP_addr:
26483 if (!resolve_one_addr (&loc->dw_loc_oprnd1.v.val_addr))
26485 if ((prev == NULL
26486 || prev->dw_loc_opc == DW_OP_piece
26487 || prev->dw_loc_opc == DW_OP_bit_piece)
26488 && loc->dw_loc_next
26489 && loc->dw_loc_next->dw_loc_opc == DW_OP_stack_value
26490 && !dwarf_strict
26491 && optimize_one_addr_into_implicit_ptr (loc))
26492 break;
26493 return false;
26495 break;
26496 case DW_OP_GNU_addr_index:
26497 case DW_OP_GNU_const_index:
26498 if (loc->dw_loc_opc == DW_OP_GNU_addr_index
26499 || (loc->dw_loc_opc == DW_OP_GNU_const_index && loc->dtprel))
26501 rtx rtl = loc->dw_loc_oprnd1.val_entry->addr.rtl;
26502 if (!resolve_one_addr (&rtl))
26503 return false;
26504 remove_addr_table_entry (loc->dw_loc_oprnd1.val_entry);
26505 loc->dw_loc_oprnd1.val_entry =
26506 add_addr_table_entry (rtl, ate_kind_rtx);
26508 break;
26509 case DW_OP_const4u:
26510 case DW_OP_const8u:
26511 if (loc->dtprel
26512 && !resolve_one_addr (&loc->dw_loc_oprnd1.v.val_addr))
26513 return false;
26514 break;
26515 case DW_OP_plus_uconst:
26516 if (size_of_loc_descr (loc)
26517 > size_of_int_loc_descriptor (loc->dw_loc_oprnd1.v.val_unsigned)
26519 && loc->dw_loc_oprnd1.v.val_unsigned > 0)
26521 dw_loc_descr_ref repl
26522 = int_loc_descriptor (loc->dw_loc_oprnd1.v.val_unsigned);
26523 add_loc_descr (&repl, new_loc_descr (DW_OP_plus, 0, 0));
26524 add_loc_descr (&repl, loc->dw_loc_next);
26525 *loc = *repl;
26527 break;
26528 case DW_OP_implicit_value:
26529 if (loc->dw_loc_oprnd2.val_class == dw_val_class_addr
26530 && !resolve_one_addr (&loc->dw_loc_oprnd2.v.val_addr))
26531 return false;
26532 break;
26533 case DW_OP_GNU_implicit_pointer:
26534 case DW_OP_GNU_parameter_ref:
26535 if (loc->dw_loc_oprnd1.val_class == dw_val_class_decl_ref)
26537 dw_die_ref ref
26538 = lookup_decl_die (loc->dw_loc_oprnd1.v.val_decl_ref);
26539 if (ref == NULL)
26540 return false;
26541 loc->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
26542 loc->dw_loc_oprnd1.v.val_die_ref.die = ref;
26543 loc->dw_loc_oprnd1.v.val_die_ref.external = 0;
26545 break;
26546 case DW_OP_GNU_const_type:
26547 case DW_OP_GNU_regval_type:
26548 case DW_OP_GNU_deref_type:
26549 case DW_OP_GNU_convert:
26550 case DW_OP_GNU_reinterpret:
26551 while (loc->dw_loc_next
26552 && loc->dw_loc_next->dw_loc_opc == DW_OP_GNU_convert)
26554 dw_die_ref base1, base2;
26555 unsigned enc1, enc2, size1, size2;
26556 if (loc->dw_loc_opc == DW_OP_GNU_regval_type
26557 || loc->dw_loc_opc == DW_OP_GNU_deref_type)
26558 base1 = loc->dw_loc_oprnd2.v.val_die_ref.die;
26559 else if (loc->dw_loc_oprnd1.val_class
26560 == dw_val_class_unsigned_const)
26561 break;
26562 else
26563 base1 = loc->dw_loc_oprnd1.v.val_die_ref.die;
26564 if (loc->dw_loc_next->dw_loc_oprnd1.val_class
26565 == dw_val_class_unsigned_const)
26566 break;
26567 base2 = loc->dw_loc_next->dw_loc_oprnd1.v.val_die_ref.die;
26568 gcc_assert (base1->die_tag == DW_TAG_base_type
26569 && base2->die_tag == DW_TAG_base_type);
26570 enc1 = get_AT_unsigned (base1, DW_AT_encoding);
26571 enc2 = get_AT_unsigned (base2, DW_AT_encoding);
26572 size1 = get_AT_unsigned (base1, DW_AT_byte_size);
26573 size2 = get_AT_unsigned (base2, DW_AT_byte_size);
26574 if (size1 == size2
26575 && (((enc1 == DW_ATE_unsigned || enc1 == DW_ATE_signed)
26576 && (enc2 == DW_ATE_unsigned || enc2 == DW_ATE_signed)
26577 && loc != keep)
26578 || enc1 == enc2))
26580 /* Optimize away next DW_OP_GNU_convert after
26581 adjusting LOC's base type die reference. */
26582 if (loc->dw_loc_opc == DW_OP_GNU_regval_type
26583 || loc->dw_loc_opc == DW_OP_GNU_deref_type)
26584 loc->dw_loc_oprnd2.v.val_die_ref.die = base2;
26585 else
26586 loc->dw_loc_oprnd1.v.val_die_ref.die = base2;
26587 loc->dw_loc_next = loc->dw_loc_next->dw_loc_next;
26588 continue;
26590 /* Don't change integer DW_OP_GNU_convert after e.g. floating
26591 point typed stack entry. */
26592 else if (enc1 != DW_ATE_unsigned && enc1 != DW_ATE_signed)
26593 keep = loc->dw_loc_next;
26594 break;
26596 break;
26597 default:
26598 break;
26600 return true;
26603 /* Helper function of resolve_addr. DIE had DW_AT_location of
26604 DW_OP_addr alone, which referred to DECL in DW_OP_addr's operand
26605 and DW_OP_addr couldn't be resolved. resolve_addr has already
26606 removed the DW_AT_location attribute. This function attempts to
26607 add a new DW_AT_location attribute with DW_OP_GNU_implicit_pointer
26608 to it or DW_AT_const_value attribute, if possible. */
26610 static void
26611 optimize_location_into_implicit_ptr (dw_die_ref die, tree decl)
26613 if (TREE_CODE (decl) != VAR_DECL
26614 || lookup_decl_die (decl) != die
26615 || DECL_EXTERNAL (decl)
26616 || !TREE_STATIC (decl)
26617 || DECL_INITIAL (decl) == NULL_TREE
26618 || DECL_P (DECL_INITIAL (decl))
26619 || get_AT (die, DW_AT_const_value))
26620 return;
26622 tree init = DECL_INITIAL (decl);
26623 HOST_WIDE_INT offset = 0;
26624 /* For variables that have been optimized away and thus
26625 don't have a memory location, see if we can emit
26626 DW_AT_const_value instead. */
26627 if (tree_add_const_value_attribute (die, init))
26628 return;
26629 if (dwarf_strict)
26630 return;
26631 /* If init is ADDR_EXPR or POINTER_PLUS_EXPR of ADDR_EXPR,
26632 and ADDR_EXPR refers to a decl that has DW_AT_location or
26633 DW_AT_const_value (but isn't addressable, otherwise
26634 resolving the original DW_OP_addr wouldn't fail), see if
26635 we can add DW_OP_GNU_implicit_pointer. */
26636 STRIP_NOPS (init);
26637 if (TREE_CODE (init) == POINTER_PLUS_EXPR
26638 && tree_fits_shwi_p (TREE_OPERAND (init, 1)))
26640 offset = tree_to_shwi (TREE_OPERAND (init, 1));
26641 init = TREE_OPERAND (init, 0);
26642 STRIP_NOPS (init);
26644 if (TREE_CODE (init) != ADDR_EXPR)
26645 return;
26646 if ((TREE_CODE (TREE_OPERAND (init, 0)) == STRING_CST
26647 && !TREE_ASM_WRITTEN (TREE_OPERAND (init, 0)))
26648 || (TREE_CODE (TREE_OPERAND (init, 0)) == VAR_DECL
26649 && !DECL_EXTERNAL (TREE_OPERAND (init, 0))
26650 && TREE_OPERAND (init, 0) != decl))
26652 dw_die_ref ref;
26653 dw_loc_descr_ref l;
26655 if (TREE_CODE (TREE_OPERAND (init, 0)) == STRING_CST)
26657 rtx rtl = string_cst_pool_decl (TREE_OPERAND (init, 0));
26658 if (!rtl)
26659 return;
26660 decl = SYMBOL_REF_DECL (rtl);
26662 else
26663 decl = TREE_OPERAND (init, 0);
26664 ref = lookup_decl_die (decl);
26665 if (ref == NULL
26666 || (!get_AT (ref, DW_AT_location)
26667 && !get_AT (ref, DW_AT_const_value)))
26668 return;
26669 l = new_loc_descr (DW_OP_GNU_implicit_pointer, 0, offset);
26670 l->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
26671 l->dw_loc_oprnd1.v.val_die_ref.die = ref;
26672 l->dw_loc_oprnd1.v.val_die_ref.external = 0;
26673 add_AT_loc (die, DW_AT_location, l);
26677 /* Resolve DW_OP_addr and DW_AT_const_value CONST_STRING arguments to
26678 an address in .rodata section if the string literal is emitted there,
26679 or remove the containing location list or replace DW_AT_const_value
26680 with DW_AT_location and empty location expression, if it isn't found
26681 in .rodata. Similarly for SYMBOL_REFs, keep only those that refer
26682 to something that has been emitted in the current CU. */
26684 static void
26685 resolve_addr (dw_die_ref die)
26687 dw_die_ref c;
26688 dw_attr_node *a;
26689 dw_loc_list_ref *curr, *start, loc;
26690 unsigned ix;
26692 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
26693 switch (AT_class (a))
26695 case dw_val_class_loc_list:
26696 start = curr = AT_loc_list_ptr (a);
26697 loc = *curr;
26698 gcc_assert (loc);
26699 /* The same list can be referenced more than once. See if we have
26700 already recorded the result from a previous pass. */
26701 if (loc->replaced)
26702 *curr = loc->dw_loc_next;
26703 else if (!loc->resolved_addr)
26705 /* As things stand, we do not expect or allow one die to
26706 reference a suffix of another die's location list chain.
26707 References must be identical or completely separate.
26708 There is therefore no need to cache the result of this
26709 pass on any list other than the first; doing so
26710 would lead to unnecessary writes. */
26711 while (*curr)
26713 gcc_assert (!(*curr)->replaced && !(*curr)->resolved_addr);
26714 if (!resolve_addr_in_expr ((*curr)->expr))
26716 dw_loc_list_ref next = (*curr)->dw_loc_next;
26717 dw_loc_descr_ref l = (*curr)->expr;
26719 if (next && (*curr)->ll_symbol)
26721 gcc_assert (!next->ll_symbol);
26722 next->ll_symbol = (*curr)->ll_symbol;
26724 if (dwarf_split_debug_info)
26725 remove_loc_list_addr_table_entries (l);
26726 *curr = next;
26728 else
26730 mark_base_types ((*curr)->expr);
26731 curr = &(*curr)->dw_loc_next;
26734 if (loc == *start)
26735 loc->resolved_addr = 1;
26736 else
26738 loc->replaced = 1;
26739 loc->dw_loc_next = *start;
26742 if (!*start)
26744 remove_AT (die, a->dw_attr);
26745 ix--;
26747 break;
26748 case dw_val_class_loc:
26750 dw_loc_descr_ref l = AT_loc (a);
26751 /* For -gdwarf-2 don't attempt to optimize
26752 DW_AT_data_member_location containing
26753 DW_OP_plus_uconst - older consumers might
26754 rely on it being that op instead of a more complex,
26755 but shorter, location description. */
26756 if ((dwarf_version > 2
26757 || a->dw_attr != DW_AT_data_member_location
26758 || l == NULL
26759 || l->dw_loc_opc != DW_OP_plus_uconst
26760 || l->dw_loc_next != NULL)
26761 && !resolve_addr_in_expr (l))
26763 if (dwarf_split_debug_info)
26764 remove_loc_list_addr_table_entries (l);
26765 if (l != NULL
26766 && l->dw_loc_next == NULL
26767 && l->dw_loc_opc == DW_OP_addr
26768 && GET_CODE (l->dw_loc_oprnd1.v.val_addr) == SYMBOL_REF
26769 && SYMBOL_REF_DECL (l->dw_loc_oprnd1.v.val_addr)
26770 && a->dw_attr == DW_AT_location)
26772 tree decl = SYMBOL_REF_DECL (l->dw_loc_oprnd1.v.val_addr);
26773 remove_AT (die, a->dw_attr);
26774 ix--;
26775 optimize_location_into_implicit_ptr (die, decl);
26776 break;
26778 remove_AT (die, a->dw_attr);
26779 ix--;
26781 else
26782 mark_base_types (l);
26784 break;
26785 case dw_val_class_addr:
26786 if (a->dw_attr == DW_AT_const_value
26787 && !resolve_one_addr (&a->dw_attr_val.v.val_addr))
26789 if (AT_index (a) != NOT_INDEXED)
26790 remove_addr_table_entry (a->dw_attr_val.val_entry);
26791 remove_AT (die, a->dw_attr);
26792 ix--;
26794 if (die->die_tag == DW_TAG_GNU_call_site
26795 && a->dw_attr == DW_AT_abstract_origin)
26797 tree tdecl = SYMBOL_REF_DECL (a->dw_attr_val.v.val_addr);
26798 dw_die_ref tdie = lookup_decl_die (tdecl);
26799 dw_die_ref cdie;
26800 if (tdie == NULL
26801 && DECL_EXTERNAL (tdecl)
26802 && DECL_ABSTRACT_ORIGIN (tdecl) == NULL_TREE
26803 && (cdie = lookup_context_die (DECL_CONTEXT (tdecl))))
26805 /* Creating a full DIE for tdecl is overly expensive and
26806 at this point even wrong when in the LTO phase
26807 as it can end up generating new type DIEs we didn't
26808 output and thus optimize_external_refs will crash. */
26809 tdie = new_die (DW_TAG_subprogram, cdie, NULL_TREE);
26810 add_AT_flag (tdie, DW_AT_external, 1);
26811 add_AT_flag (tdie, DW_AT_declaration, 1);
26812 add_linkage_attr (tdie, tdecl);
26813 add_name_and_src_coords_attributes (tdie, tdecl);
26814 equate_decl_number_to_die (tdecl, tdie);
26816 if (tdie)
26818 a->dw_attr_val.val_class = dw_val_class_die_ref;
26819 a->dw_attr_val.v.val_die_ref.die = tdie;
26820 a->dw_attr_val.v.val_die_ref.external = 0;
26822 else
26824 if (AT_index (a) != NOT_INDEXED)
26825 remove_addr_table_entry (a->dw_attr_val.val_entry);
26826 remove_AT (die, a->dw_attr);
26827 ix--;
26830 break;
26831 default:
26832 break;
26835 FOR_EACH_CHILD (die, c, resolve_addr (c));
26838 /* Helper routines for optimize_location_lists.
26839 This pass tries to share identical local lists in .debug_loc
26840 section. */
26842 /* Iteratively hash operands of LOC opcode into HSTATE. */
26844 static void
26845 hash_loc_operands (dw_loc_descr_ref loc, inchash::hash &hstate)
26847 dw_val_ref val1 = &loc->dw_loc_oprnd1;
26848 dw_val_ref val2 = &loc->dw_loc_oprnd2;
26850 switch (loc->dw_loc_opc)
26852 case DW_OP_const4u:
26853 case DW_OP_const8u:
26854 if (loc->dtprel)
26855 goto hash_addr;
26856 /* FALLTHRU */
26857 case DW_OP_const1u:
26858 case DW_OP_const1s:
26859 case DW_OP_const2u:
26860 case DW_OP_const2s:
26861 case DW_OP_const4s:
26862 case DW_OP_const8s:
26863 case DW_OP_constu:
26864 case DW_OP_consts:
26865 case DW_OP_pick:
26866 case DW_OP_plus_uconst:
26867 case DW_OP_breg0:
26868 case DW_OP_breg1:
26869 case DW_OP_breg2:
26870 case DW_OP_breg3:
26871 case DW_OP_breg4:
26872 case DW_OP_breg5:
26873 case DW_OP_breg6:
26874 case DW_OP_breg7:
26875 case DW_OP_breg8:
26876 case DW_OP_breg9:
26877 case DW_OP_breg10:
26878 case DW_OP_breg11:
26879 case DW_OP_breg12:
26880 case DW_OP_breg13:
26881 case DW_OP_breg14:
26882 case DW_OP_breg15:
26883 case DW_OP_breg16:
26884 case DW_OP_breg17:
26885 case DW_OP_breg18:
26886 case DW_OP_breg19:
26887 case DW_OP_breg20:
26888 case DW_OP_breg21:
26889 case DW_OP_breg22:
26890 case DW_OP_breg23:
26891 case DW_OP_breg24:
26892 case DW_OP_breg25:
26893 case DW_OP_breg26:
26894 case DW_OP_breg27:
26895 case DW_OP_breg28:
26896 case DW_OP_breg29:
26897 case DW_OP_breg30:
26898 case DW_OP_breg31:
26899 case DW_OP_regx:
26900 case DW_OP_fbreg:
26901 case DW_OP_piece:
26902 case DW_OP_deref_size:
26903 case DW_OP_xderef_size:
26904 hstate.add_object (val1->v.val_int);
26905 break;
26906 case DW_OP_skip:
26907 case DW_OP_bra:
26909 int offset;
26911 gcc_assert (val1->val_class == dw_val_class_loc);
26912 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
26913 hstate.add_object (offset);
26915 break;
26916 case DW_OP_implicit_value:
26917 hstate.add_object (val1->v.val_unsigned);
26918 switch (val2->val_class)
26920 case dw_val_class_const:
26921 hstate.add_object (val2->v.val_int);
26922 break;
26923 case dw_val_class_vec:
26925 unsigned int elt_size = val2->v.val_vec.elt_size;
26926 unsigned int len = val2->v.val_vec.length;
26928 hstate.add_int (elt_size);
26929 hstate.add_int (len);
26930 hstate.add (val2->v.val_vec.array, len * elt_size);
26932 break;
26933 case dw_val_class_const_double:
26934 hstate.add_object (val2->v.val_double.low);
26935 hstate.add_object (val2->v.val_double.high);
26936 break;
26937 case dw_val_class_wide_int:
26938 hstate.add (val2->v.val_wide->get_val (),
26939 get_full_len (*val2->v.val_wide)
26940 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
26941 break;
26942 case dw_val_class_addr:
26943 inchash::add_rtx (val2->v.val_addr, hstate);
26944 break;
26945 default:
26946 gcc_unreachable ();
26948 break;
26949 case DW_OP_bregx:
26950 case DW_OP_bit_piece:
26951 hstate.add_object (val1->v.val_int);
26952 hstate.add_object (val2->v.val_int);
26953 break;
26954 case DW_OP_addr:
26955 hash_addr:
26956 if (loc->dtprel)
26958 unsigned char dtprel = 0xd1;
26959 hstate.add_object (dtprel);
26961 inchash::add_rtx (val1->v.val_addr, hstate);
26962 break;
26963 case DW_OP_GNU_addr_index:
26964 case DW_OP_GNU_const_index:
26966 if (loc->dtprel)
26968 unsigned char dtprel = 0xd1;
26969 hstate.add_object (dtprel);
26971 inchash::add_rtx (val1->val_entry->addr.rtl, hstate);
26973 break;
26974 case DW_OP_GNU_implicit_pointer:
26975 hstate.add_int (val2->v.val_int);
26976 break;
26977 case DW_OP_GNU_entry_value:
26978 hstate.add_object (val1->v.val_loc);
26979 break;
26980 case DW_OP_GNU_regval_type:
26981 case DW_OP_GNU_deref_type:
26983 unsigned int byte_size
26984 = get_AT_unsigned (val2->v.val_die_ref.die, DW_AT_byte_size);
26985 unsigned int encoding
26986 = get_AT_unsigned (val2->v.val_die_ref.die, DW_AT_encoding);
26987 hstate.add_object (val1->v.val_int);
26988 hstate.add_object (byte_size);
26989 hstate.add_object (encoding);
26991 break;
26992 case DW_OP_GNU_convert:
26993 case DW_OP_GNU_reinterpret:
26994 if (val1->val_class == dw_val_class_unsigned_const)
26996 hstate.add_object (val1->v.val_unsigned);
26997 break;
26999 /* FALLTHRU */
27000 case DW_OP_GNU_const_type:
27002 unsigned int byte_size
27003 = get_AT_unsigned (val1->v.val_die_ref.die, DW_AT_byte_size);
27004 unsigned int encoding
27005 = get_AT_unsigned (val1->v.val_die_ref.die, DW_AT_encoding);
27006 hstate.add_object (byte_size);
27007 hstate.add_object (encoding);
27008 if (loc->dw_loc_opc != DW_OP_GNU_const_type)
27009 break;
27010 hstate.add_object (val2->val_class);
27011 switch (val2->val_class)
27013 case dw_val_class_const:
27014 hstate.add_object (val2->v.val_int);
27015 break;
27016 case dw_val_class_vec:
27018 unsigned int elt_size = val2->v.val_vec.elt_size;
27019 unsigned int len = val2->v.val_vec.length;
27021 hstate.add_object (elt_size);
27022 hstate.add_object (len);
27023 hstate.add (val2->v.val_vec.array, len * elt_size);
27025 break;
27026 case dw_val_class_const_double:
27027 hstate.add_object (val2->v.val_double.low);
27028 hstate.add_object (val2->v.val_double.high);
27029 break;
27030 case dw_val_class_wide_int:
27031 hstate.add (val2->v.val_wide->get_val (),
27032 get_full_len (*val2->v.val_wide)
27033 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
27034 break;
27035 default:
27036 gcc_unreachable ();
27039 break;
27041 default:
27042 /* Other codes have no operands. */
27043 break;
27047 /* Iteratively hash the whole DWARF location expression LOC into HSTATE. */
27049 static inline void
27050 hash_locs (dw_loc_descr_ref loc, inchash::hash &hstate)
27052 dw_loc_descr_ref l;
27053 bool sizes_computed = false;
27054 /* Compute sizes, so that DW_OP_skip/DW_OP_bra can be checksummed. */
27055 size_of_locs (loc);
27057 for (l = loc; l != NULL; l = l->dw_loc_next)
27059 enum dwarf_location_atom opc = l->dw_loc_opc;
27060 hstate.add_object (opc);
27061 if ((opc == DW_OP_skip || opc == DW_OP_bra) && !sizes_computed)
27063 size_of_locs (loc);
27064 sizes_computed = true;
27066 hash_loc_operands (l, hstate);
27070 /* Compute hash of the whole location list LIST_HEAD. */
27072 static inline void
27073 hash_loc_list (dw_loc_list_ref list_head)
27075 dw_loc_list_ref curr = list_head;
27076 inchash::hash hstate;
27078 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
27080 hstate.add (curr->begin, strlen (curr->begin) + 1);
27081 hstate.add (curr->end, strlen (curr->end) + 1);
27082 if (curr->section)
27083 hstate.add (curr->section, strlen (curr->section) + 1);
27084 hash_locs (curr->expr, hstate);
27086 list_head->hash = hstate.end ();
27089 /* Return true if X and Y opcodes have the same operands. */
27091 static inline bool
27092 compare_loc_operands (dw_loc_descr_ref x, dw_loc_descr_ref y)
27094 dw_val_ref valx1 = &x->dw_loc_oprnd1;
27095 dw_val_ref valx2 = &x->dw_loc_oprnd2;
27096 dw_val_ref valy1 = &y->dw_loc_oprnd1;
27097 dw_val_ref valy2 = &y->dw_loc_oprnd2;
27099 switch (x->dw_loc_opc)
27101 case DW_OP_const4u:
27102 case DW_OP_const8u:
27103 if (x->dtprel)
27104 goto hash_addr;
27105 /* FALLTHRU */
27106 case DW_OP_const1u:
27107 case DW_OP_const1s:
27108 case DW_OP_const2u:
27109 case DW_OP_const2s:
27110 case DW_OP_const4s:
27111 case DW_OP_const8s:
27112 case DW_OP_constu:
27113 case DW_OP_consts:
27114 case DW_OP_pick:
27115 case DW_OP_plus_uconst:
27116 case DW_OP_breg0:
27117 case DW_OP_breg1:
27118 case DW_OP_breg2:
27119 case DW_OP_breg3:
27120 case DW_OP_breg4:
27121 case DW_OP_breg5:
27122 case DW_OP_breg6:
27123 case DW_OP_breg7:
27124 case DW_OP_breg8:
27125 case DW_OP_breg9:
27126 case DW_OP_breg10:
27127 case DW_OP_breg11:
27128 case DW_OP_breg12:
27129 case DW_OP_breg13:
27130 case DW_OP_breg14:
27131 case DW_OP_breg15:
27132 case DW_OP_breg16:
27133 case DW_OP_breg17:
27134 case DW_OP_breg18:
27135 case DW_OP_breg19:
27136 case DW_OP_breg20:
27137 case DW_OP_breg21:
27138 case DW_OP_breg22:
27139 case DW_OP_breg23:
27140 case DW_OP_breg24:
27141 case DW_OP_breg25:
27142 case DW_OP_breg26:
27143 case DW_OP_breg27:
27144 case DW_OP_breg28:
27145 case DW_OP_breg29:
27146 case DW_OP_breg30:
27147 case DW_OP_breg31:
27148 case DW_OP_regx:
27149 case DW_OP_fbreg:
27150 case DW_OP_piece:
27151 case DW_OP_deref_size:
27152 case DW_OP_xderef_size:
27153 return valx1->v.val_int == valy1->v.val_int;
27154 case DW_OP_skip:
27155 case DW_OP_bra:
27156 /* If splitting debug info, the use of DW_OP_GNU_addr_index
27157 can cause irrelevant differences in dw_loc_addr. */
27158 gcc_assert (valx1->val_class == dw_val_class_loc
27159 && valy1->val_class == dw_val_class_loc
27160 && (dwarf_split_debug_info
27161 || x->dw_loc_addr == y->dw_loc_addr));
27162 return valx1->v.val_loc->dw_loc_addr == valy1->v.val_loc->dw_loc_addr;
27163 case DW_OP_implicit_value:
27164 if (valx1->v.val_unsigned != valy1->v.val_unsigned
27165 || valx2->val_class != valy2->val_class)
27166 return false;
27167 switch (valx2->val_class)
27169 case dw_val_class_const:
27170 return valx2->v.val_int == valy2->v.val_int;
27171 case dw_val_class_vec:
27172 return valx2->v.val_vec.elt_size == valy2->v.val_vec.elt_size
27173 && valx2->v.val_vec.length == valy2->v.val_vec.length
27174 && memcmp (valx2->v.val_vec.array, valy2->v.val_vec.array,
27175 valx2->v.val_vec.elt_size
27176 * valx2->v.val_vec.length) == 0;
27177 case dw_val_class_const_double:
27178 return valx2->v.val_double.low == valy2->v.val_double.low
27179 && valx2->v.val_double.high == valy2->v.val_double.high;
27180 case dw_val_class_wide_int:
27181 return *valx2->v.val_wide == *valy2->v.val_wide;
27182 case dw_val_class_addr:
27183 return rtx_equal_p (valx2->v.val_addr, valy2->v.val_addr);
27184 default:
27185 gcc_unreachable ();
27187 case DW_OP_bregx:
27188 case DW_OP_bit_piece:
27189 return valx1->v.val_int == valy1->v.val_int
27190 && valx2->v.val_int == valy2->v.val_int;
27191 case DW_OP_addr:
27192 hash_addr:
27193 return rtx_equal_p (valx1->v.val_addr, valy1->v.val_addr);
27194 case DW_OP_GNU_addr_index:
27195 case DW_OP_GNU_const_index:
27197 rtx ax1 = valx1->val_entry->addr.rtl;
27198 rtx ay1 = valy1->val_entry->addr.rtl;
27199 return rtx_equal_p (ax1, ay1);
27201 case DW_OP_GNU_implicit_pointer:
27202 return valx1->val_class == dw_val_class_die_ref
27203 && valx1->val_class == valy1->val_class
27204 && valx1->v.val_die_ref.die == valy1->v.val_die_ref.die
27205 && valx2->v.val_int == valy2->v.val_int;
27206 case DW_OP_GNU_entry_value:
27207 return compare_loc_operands (valx1->v.val_loc, valy1->v.val_loc);
27208 case DW_OP_GNU_const_type:
27209 if (valx1->v.val_die_ref.die != valy1->v.val_die_ref.die
27210 || valx2->val_class != valy2->val_class)
27211 return false;
27212 switch (valx2->val_class)
27214 case dw_val_class_const:
27215 return valx2->v.val_int == valy2->v.val_int;
27216 case dw_val_class_vec:
27217 return valx2->v.val_vec.elt_size == valy2->v.val_vec.elt_size
27218 && valx2->v.val_vec.length == valy2->v.val_vec.length
27219 && memcmp (valx2->v.val_vec.array, valy2->v.val_vec.array,
27220 valx2->v.val_vec.elt_size
27221 * valx2->v.val_vec.length) == 0;
27222 case dw_val_class_const_double:
27223 return valx2->v.val_double.low == valy2->v.val_double.low
27224 && valx2->v.val_double.high == valy2->v.val_double.high;
27225 case dw_val_class_wide_int:
27226 return *valx2->v.val_wide == *valy2->v.val_wide;
27227 default:
27228 gcc_unreachable ();
27230 case DW_OP_GNU_regval_type:
27231 case DW_OP_GNU_deref_type:
27232 return valx1->v.val_int == valy1->v.val_int
27233 && valx2->v.val_die_ref.die == valy2->v.val_die_ref.die;
27234 case DW_OP_GNU_convert:
27235 case DW_OP_GNU_reinterpret:
27236 if (valx1->val_class != valy1->val_class)
27237 return false;
27238 if (valx1->val_class == dw_val_class_unsigned_const)
27239 return valx1->v.val_unsigned == valy1->v.val_unsigned;
27240 return valx1->v.val_die_ref.die == valy1->v.val_die_ref.die;
27241 case DW_OP_GNU_parameter_ref:
27242 return valx1->val_class == dw_val_class_die_ref
27243 && valx1->val_class == valy1->val_class
27244 && valx1->v.val_die_ref.die == valy1->v.val_die_ref.die;
27245 default:
27246 /* Other codes have no operands. */
27247 return true;
27251 /* Return true if DWARF location expressions X and Y are the same. */
27253 static inline bool
27254 compare_locs (dw_loc_descr_ref x, dw_loc_descr_ref y)
27256 for (; x != NULL && y != NULL; x = x->dw_loc_next, y = y->dw_loc_next)
27257 if (x->dw_loc_opc != y->dw_loc_opc
27258 || x->dtprel != y->dtprel
27259 || !compare_loc_operands (x, y))
27260 break;
27261 return x == NULL && y == NULL;
27264 /* Hashtable helpers. */
27266 struct loc_list_hasher : nofree_ptr_hash <dw_loc_list_struct>
27268 static inline hashval_t hash (const dw_loc_list_struct *);
27269 static inline bool equal (const dw_loc_list_struct *,
27270 const dw_loc_list_struct *);
27273 /* Return precomputed hash of location list X. */
27275 inline hashval_t
27276 loc_list_hasher::hash (const dw_loc_list_struct *x)
27278 return x->hash;
27281 /* Return true if location lists A and B are the same. */
27283 inline bool
27284 loc_list_hasher::equal (const dw_loc_list_struct *a,
27285 const dw_loc_list_struct *b)
27287 if (a == b)
27288 return 1;
27289 if (a->hash != b->hash)
27290 return 0;
27291 for (; a != NULL && b != NULL; a = a->dw_loc_next, b = b->dw_loc_next)
27292 if (strcmp (a->begin, b->begin) != 0
27293 || strcmp (a->end, b->end) != 0
27294 || (a->section == NULL) != (b->section == NULL)
27295 || (a->section && strcmp (a->section, b->section) != 0)
27296 || !compare_locs (a->expr, b->expr))
27297 break;
27298 return a == NULL && b == NULL;
27301 typedef hash_table<loc_list_hasher> loc_list_hash_type;
27304 /* Recursively optimize location lists referenced from DIE
27305 children and share them whenever possible. */
27307 static void
27308 optimize_location_lists_1 (dw_die_ref die, loc_list_hash_type *htab)
27310 dw_die_ref c;
27311 dw_attr_node *a;
27312 unsigned ix;
27313 dw_loc_list_struct **slot;
27315 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
27316 if (AT_class (a) == dw_val_class_loc_list)
27318 dw_loc_list_ref list = AT_loc_list (a);
27319 /* TODO: perform some optimizations here, before hashing
27320 it and storing into the hash table. */
27321 hash_loc_list (list);
27322 slot = htab->find_slot_with_hash (list, list->hash, INSERT);
27323 if (*slot == NULL)
27324 *slot = list;
27325 else
27326 a->dw_attr_val.v.val_loc_list = *slot;
27329 FOR_EACH_CHILD (die, c, optimize_location_lists_1 (c, htab));
27333 /* Recursively assign each location list a unique index into the debug_addr
27334 section. */
27336 static void
27337 index_location_lists (dw_die_ref die)
27339 dw_die_ref c;
27340 dw_attr_node *a;
27341 unsigned ix;
27343 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
27344 if (AT_class (a) == dw_val_class_loc_list)
27346 dw_loc_list_ref list = AT_loc_list (a);
27347 dw_loc_list_ref curr;
27348 for (curr = list; curr != NULL; curr = curr->dw_loc_next)
27350 /* Don't index an entry that has already been indexed
27351 or won't be output. */
27352 if (curr->begin_entry != NULL
27353 || (strcmp (curr->begin, curr->end) == 0 && !curr->force))
27354 continue;
27356 curr->begin_entry
27357 = add_addr_table_entry (xstrdup (curr->begin),
27358 ate_kind_label);
27362 FOR_EACH_CHILD (die, c, index_location_lists (c));
27365 /* Optimize location lists referenced from DIE
27366 children and share them whenever possible. */
27368 static void
27369 optimize_location_lists (dw_die_ref die)
27371 loc_list_hash_type htab (500);
27372 optimize_location_lists_1 (die, &htab);
27375 /* Traverse the limbo die list, and add parent/child links. The only
27376 dies without parents that should be here are concrete instances of
27377 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
27378 For concrete instances, we can get the parent die from the abstract
27379 instance. */
27381 static void
27382 flush_limbo_die_list (void)
27384 limbo_die_node *node;
27386 /* get_context_die calls force_decl_die, which can put new DIEs on the
27387 limbo list in LTO mode when nested functions are put in a different
27388 partition than that of their parent function. */
27389 while ((node = limbo_die_list))
27391 dw_die_ref die = node->die;
27392 limbo_die_list = node->next;
27394 if (die->die_parent == NULL)
27396 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
27398 if (origin && origin->die_parent)
27399 add_child_die (origin->die_parent, die);
27400 else if (is_cu_die (die))
27402 else if (seen_error ())
27403 /* It's OK to be confused by errors in the input. */
27404 add_child_die (comp_unit_die (), die);
27405 else
27407 /* In certain situations, the lexical block containing a
27408 nested function can be optimized away, which results
27409 in the nested function die being orphaned. Likewise
27410 with the return type of that nested function. Force
27411 this to be a child of the containing function.
27413 It may happen that even the containing function got fully
27414 inlined and optimized out. In that case we are lost and
27415 assign the empty child. This should not be big issue as
27416 the function is likely unreachable too. */
27417 gcc_assert (node->created_for);
27419 if (DECL_P (node->created_for))
27420 origin = get_context_die (DECL_CONTEXT (node->created_for));
27421 else if (TYPE_P (node->created_for))
27422 origin = scope_die_for (node->created_for, comp_unit_die ());
27423 else
27424 origin = comp_unit_die ();
27426 add_child_die (origin, die);
27432 /* Output stuff that dwarf requires at the end of every file,
27433 and generate the DWARF-2 debugging info. */
27435 static void
27436 dwarf2out_finish (const char *filename)
27438 comdat_type_node *ctnode;
27439 dw_die_ref main_comp_unit_die;
27441 /* Flush out any latecomers to the limbo party. */
27442 flush_limbo_die_list ();
27444 /* We shouldn't have any symbols with delayed asm names for
27445 DIEs generated after early finish. */
27446 gcc_assert (deferred_asm_name == NULL);
27448 /* PCH might result in DW_AT_producer string being restored from the
27449 header compilation, so always fill it with empty string initially
27450 and overwrite only here. */
27451 dw_attr_node *producer = get_AT (comp_unit_die (), DW_AT_producer);
27452 producer_string = gen_producer_string ();
27453 producer->dw_attr_val.v.val_str->refcount--;
27454 producer->dw_attr_val.v.val_str = find_AT_string (producer_string);
27456 gen_remaining_tmpl_value_param_die_attribute ();
27458 /* Add the name for the main input file now. We delayed this from
27459 dwarf2out_init to avoid complications with PCH.
27460 For LTO produced units use a fixed artificial name to avoid
27461 leaking tempfile names into the dwarf. */
27462 if (!in_lto_p)
27463 add_name_attribute (comp_unit_die (), remap_debug_filename (filename));
27464 else
27465 add_name_attribute (comp_unit_die (), "<artificial>");
27466 if (!IS_ABSOLUTE_PATH (filename) || targetm.force_at_comp_dir)
27467 add_comp_dir_attribute (comp_unit_die ());
27468 else if (get_AT (comp_unit_die (), DW_AT_comp_dir) == NULL)
27470 bool p = false;
27471 file_table->traverse<bool *, file_table_relative_p> (&p);
27472 if (p)
27473 add_comp_dir_attribute (comp_unit_die ());
27476 #if ENABLE_ASSERT_CHECKING
27478 dw_die_ref die = comp_unit_die (), c;
27479 FOR_EACH_CHILD (die, c, gcc_assert (! c->die_mark));
27481 #endif
27482 resolve_addr (comp_unit_die ());
27483 move_marked_base_types ();
27485 if (flag_eliminate_unused_debug_types)
27486 prune_unused_types ();
27488 /* Generate separate COMDAT sections for type DIEs. */
27489 if (use_debug_types)
27491 break_out_comdat_types (comp_unit_die ());
27493 /* Each new type_unit DIE was added to the limbo die list when created.
27494 Since these have all been added to comdat_type_list, clear the
27495 limbo die list. */
27496 limbo_die_list = NULL;
27498 /* For each new comdat type unit, copy declarations for incomplete
27499 types to make the new unit self-contained (i.e., no direct
27500 references to the main compile unit). */
27501 for (ctnode = comdat_type_list; ctnode != NULL; ctnode = ctnode->next)
27502 copy_decls_for_unworthy_types (ctnode->root_die);
27503 copy_decls_for_unworthy_types (comp_unit_die ());
27505 /* In the process of copying declarations from one unit to another,
27506 we may have left some declarations behind that are no longer
27507 referenced. Prune them. */
27508 prune_unused_types ();
27511 /* Generate separate CUs for each of the include files we've seen.
27512 They will go into limbo_die_list. */
27513 if (flag_eliminate_dwarf2_dups)
27514 break_out_includes (comp_unit_die ());
27516 /* Traverse the DIE's and add sibling attributes to those DIE's that
27517 have children. */
27518 add_sibling_attributes (comp_unit_die ());
27519 limbo_die_node *node;
27520 for (node = limbo_die_list; node; node = node->next)
27521 add_sibling_attributes (node->die);
27522 for (ctnode = comdat_type_list; ctnode != NULL; ctnode = ctnode->next)
27523 add_sibling_attributes (ctnode->root_die);
27525 /* When splitting DWARF info, we put some attributes in the
27526 skeleton compile_unit DIE that remains in the .o, while
27527 most attributes go in the DWO compile_unit_die. */
27528 if (dwarf_split_debug_info)
27529 main_comp_unit_die = gen_compile_unit_die (NULL);
27530 else
27531 main_comp_unit_die = comp_unit_die ();
27533 /* Output a terminator label for the .text section. */
27534 switch_to_section (text_section);
27535 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
27536 if (cold_text_section)
27538 switch_to_section (cold_text_section);
27539 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
27542 /* We can only use the low/high_pc attributes if all of the code was
27543 in .text. */
27544 if (!have_multiple_function_sections
27545 || (dwarf_version < 3 && dwarf_strict))
27547 /* Don't add if the CU has no associated code. */
27548 if (text_section_used)
27549 add_AT_low_high_pc (main_comp_unit_die, text_section_label,
27550 text_end_label, true);
27552 else
27554 unsigned fde_idx;
27555 dw_fde_ref fde;
27556 bool range_list_added = false;
27558 if (text_section_used)
27559 add_ranges_by_labels (main_comp_unit_die, text_section_label,
27560 text_end_label, &range_list_added, true);
27561 if (cold_text_section_used)
27562 add_ranges_by_labels (main_comp_unit_die, cold_text_section_label,
27563 cold_end_label, &range_list_added, true);
27565 FOR_EACH_VEC_ELT (*fde_vec, fde_idx, fde)
27567 if (DECL_IGNORED_P (fde->decl))
27568 continue;
27569 if (!fde->in_std_section)
27570 add_ranges_by_labels (main_comp_unit_die, fde->dw_fde_begin,
27571 fde->dw_fde_end, &range_list_added,
27572 true);
27573 if (fde->dw_fde_second_begin && !fde->second_in_std_section)
27574 add_ranges_by_labels (main_comp_unit_die, fde->dw_fde_second_begin,
27575 fde->dw_fde_second_end, &range_list_added,
27576 true);
27579 if (range_list_added)
27581 /* We need to give .debug_loc and .debug_ranges an appropriate
27582 "base address". Use zero so that these addresses become
27583 absolute. Historically, we've emitted the unexpected
27584 DW_AT_entry_pc instead of DW_AT_low_pc for this purpose.
27585 Emit both to give time for other tools to adapt. */
27586 add_AT_addr (main_comp_unit_die, DW_AT_low_pc, const0_rtx, true);
27587 if (! dwarf_strict && dwarf_version < 4)
27588 add_AT_addr (main_comp_unit_die, DW_AT_entry_pc, const0_rtx, true);
27590 add_ranges (NULL);
27594 if (debug_info_level >= DINFO_LEVEL_TERSE)
27595 add_AT_lineptr (main_comp_unit_die, DW_AT_stmt_list,
27596 debug_line_section_label);
27598 if (have_macinfo)
27599 add_AT_macptr (comp_unit_die (),
27600 dwarf_strict ? DW_AT_macro_info : DW_AT_GNU_macros,
27601 macinfo_section_label);
27603 if (dwarf_split_debug_info)
27605 /* optimize_location_lists calculates the size of the lists,
27606 so index them first, and assign indices to the entries.
27607 Although optimize_location_lists will remove entries from
27608 the table, it only does so for duplicates, and therefore
27609 only reduces ref_counts to 1. */
27610 index_location_lists (comp_unit_die ());
27612 if (addr_index_table != NULL)
27614 unsigned int index = 0;
27615 addr_index_table
27616 ->traverse_noresize<unsigned int *, index_addr_table_entry>
27617 (&index);
27621 if (have_location_lists)
27622 optimize_location_lists (comp_unit_die ());
27624 save_macinfo_strings ();
27626 if (dwarf_split_debug_info)
27628 unsigned int index = 0;
27630 /* Add attributes common to skeleton compile_units and
27631 type_units. Because these attributes include strings, it
27632 must be done before freezing the string table. Top-level
27633 skeleton die attrs are added when the skeleton type unit is
27634 created, so ensure it is created by this point. */
27635 add_top_level_skeleton_die_attrs (main_comp_unit_die);
27636 debug_str_hash->traverse_noresize<unsigned int *, index_string> (&index);
27639 /* Output all of the compilation units. We put the main one last so that
27640 the offsets are available to output_pubnames. */
27641 for (node = limbo_die_list; node; node = node->next)
27642 output_comp_unit (node->die, 0);
27644 hash_table<comdat_type_hasher> comdat_type_table (100);
27645 for (ctnode = comdat_type_list; ctnode != NULL; ctnode = ctnode->next)
27647 comdat_type_node **slot = comdat_type_table.find_slot (ctnode, INSERT);
27649 /* Don't output duplicate types. */
27650 if (*slot != HTAB_EMPTY_ENTRY)
27651 continue;
27653 /* Add a pointer to the line table for the main compilation unit
27654 so that the debugger can make sense of DW_AT_decl_file
27655 attributes. */
27656 if (debug_info_level >= DINFO_LEVEL_TERSE)
27657 add_AT_lineptr (ctnode->root_die, DW_AT_stmt_list,
27658 (!dwarf_split_debug_info
27659 ? debug_line_section_label
27660 : debug_skeleton_line_section_label));
27662 output_comdat_type_unit (ctnode);
27663 *slot = ctnode;
27666 /* The AT_pubnames attribute needs to go in all skeleton dies, including
27667 both the main_cu and all skeleton TUs. Making this call unconditional
27668 would end up either adding a second copy of the AT_pubnames attribute, or
27669 requiring a special case in add_top_level_skeleton_die_attrs. */
27670 if (!dwarf_split_debug_info)
27671 add_AT_pubnames (comp_unit_die ());
27673 if (dwarf_split_debug_info)
27675 int mark;
27676 unsigned char checksum[16];
27677 struct md5_ctx ctx;
27679 /* Compute a checksum of the comp_unit to use as the dwo_id. */
27680 md5_init_ctx (&ctx);
27681 mark = 0;
27682 die_checksum (comp_unit_die (), &ctx, &mark);
27683 unmark_all_dies (comp_unit_die ());
27684 md5_finish_ctx (&ctx, checksum);
27686 /* Use the first 8 bytes of the checksum as the dwo_id,
27687 and add it to both comp-unit DIEs. */
27688 add_AT_data8 (main_comp_unit_die, DW_AT_GNU_dwo_id, checksum);
27689 add_AT_data8 (comp_unit_die (), DW_AT_GNU_dwo_id, checksum);
27691 /* Add the base offset of the ranges table to the skeleton
27692 comp-unit DIE. */
27693 if (ranges_table_in_use)
27694 add_AT_lineptr (main_comp_unit_die, DW_AT_GNU_ranges_base,
27695 ranges_section_label);
27697 switch_to_section (debug_addr_section);
27698 ASM_OUTPUT_LABEL (asm_out_file, debug_addr_section_label);
27699 output_addr_table ();
27702 /* Output the main compilation unit if non-empty or if .debug_macinfo
27703 or .debug_macro will be emitted. */
27704 output_comp_unit (comp_unit_die (), have_macinfo);
27706 if (dwarf_split_debug_info && info_section_emitted)
27707 output_skeleton_debug_sections (main_comp_unit_die);
27709 /* Output the abbreviation table. */
27710 if (abbrev_die_table_in_use != 1)
27712 switch_to_section (debug_abbrev_section);
27713 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
27714 output_abbrev_section ();
27717 /* Output location list section if necessary. */
27718 if (have_location_lists)
27720 /* Output the location lists info. */
27721 switch_to_section (debug_loc_section);
27722 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
27723 output_location_lists (comp_unit_die ());
27726 output_pubtables ();
27728 /* Output the address range information if a CU (.debug_info section)
27729 was emitted. We output an empty table even if we had no functions
27730 to put in it. This because the consumer has no way to tell the
27731 difference between an empty table that we omitted and failure to
27732 generate a table that would have contained data. */
27733 if (info_section_emitted)
27735 switch_to_section (debug_aranges_section);
27736 output_aranges ();
27739 /* Output ranges section if necessary. */
27740 if (ranges_table_in_use)
27742 switch_to_section (debug_ranges_section);
27743 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
27744 output_ranges ();
27747 /* Have to end the macro section. */
27748 if (have_macinfo)
27750 switch_to_section (debug_macinfo_section);
27751 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
27752 output_macinfo ();
27753 dw2_asm_output_data (1, 0, "End compilation unit");
27756 /* Output the source line correspondence table. We must do this
27757 even if there is no line information. Otherwise, on an empty
27758 translation unit, we will generate a present, but empty,
27759 .debug_info section. IRIX 6.5 `nm' will then complain when
27760 examining the file. This is done late so that any filenames
27761 used by the debug_info section are marked as 'used'. */
27762 switch_to_section (debug_line_section);
27763 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
27764 if (! DWARF2_ASM_LINE_DEBUG_INFO)
27765 output_line_info (false);
27767 if (dwarf_split_debug_info && info_section_emitted)
27769 switch_to_section (debug_skeleton_line_section);
27770 ASM_OUTPUT_LABEL (asm_out_file, debug_skeleton_line_section_label);
27771 output_line_info (true);
27774 /* If we emitted any indirect strings, output the string table too. */
27775 if (debug_str_hash || skeleton_debug_str_hash)
27776 output_indirect_strings ();
27779 /* Perform any cleanups needed after the early debug generation pass
27780 has run. */
27782 static void
27783 dwarf2out_early_finish (void)
27785 /* Walk through the list of incomplete types again, trying once more to
27786 emit full debugging info for them. */
27787 retry_incomplete_types ();
27789 /* The point here is to flush out the limbo list so that it is empty
27790 and we don't need to stream it for LTO. */
27791 flush_limbo_die_list ();
27793 gen_scheduled_generic_parms_dies ();
27794 gen_remaining_tmpl_value_param_die_attribute ();
27796 /* Add DW_AT_linkage_name for all deferred DIEs. */
27797 for (limbo_die_node *node = deferred_asm_name; node; node = node->next)
27799 tree decl = node->created_for;
27800 if (DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
27801 /* A missing DECL_ASSEMBLER_NAME can be a constant DIE that
27802 ended up in deferred_asm_name before we knew it was
27803 constant and never written to disk. */
27804 && DECL_ASSEMBLER_NAME (decl))
27806 add_linkage_attr (node->die, decl);
27807 move_linkage_attr (node->die);
27810 deferred_asm_name = NULL;
27813 /* Reset all state within dwarf2out.c so that we can rerun the compiler
27814 within the same process. For use by toplev::finalize. */
27816 void
27817 dwarf2out_c_finalize (void)
27819 last_var_location_insn = NULL;
27820 cached_next_real_insn = NULL;
27821 used_rtx_array = NULL;
27822 incomplete_types = NULL;
27823 decl_scope_table = NULL;
27824 debug_info_section = NULL;
27825 debug_skeleton_info_section = NULL;
27826 debug_abbrev_section = NULL;
27827 debug_skeleton_abbrev_section = NULL;
27828 debug_aranges_section = NULL;
27829 debug_addr_section = NULL;
27830 debug_macinfo_section = NULL;
27831 debug_line_section = NULL;
27832 debug_skeleton_line_section = NULL;
27833 debug_loc_section = NULL;
27834 debug_pubnames_section = NULL;
27835 debug_pubtypes_section = NULL;
27836 debug_str_section = NULL;
27837 debug_str_dwo_section = NULL;
27838 debug_str_offsets_section = NULL;
27839 debug_ranges_section = NULL;
27840 debug_frame_section = NULL;
27841 fde_vec = NULL;
27842 debug_str_hash = NULL;
27843 skeleton_debug_str_hash = NULL;
27844 dw2_string_counter = 0;
27845 have_multiple_function_sections = false;
27846 text_section_used = false;
27847 cold_text_section_used = false;
27848 cold_text_section = NULL;
27849 current_unit_personality = NULL;
27851 next_die_offset = 0;
27852 single_comp_unit_die = NULL;
27853 comdat_type_list = NULL;
27854 limbo_die_list = NULL;
27855 file_table = NULL;
27856 decl_die_table = NULL;
27857 common_block_die_table = NULL;
27858 decl_loc_table = NULL;
27859 call_arg_locations = NULL;
27860 call_arg_loc_last = NULL;
27861 call_site_count = -1;
27862 tail_call_site_count = -1;
27863 cached_dw_loc_list_table = NULL;
27864 abbrev_die_table = NULL;
27865 abbrev_die_table_allocated = 0;
27866 abbrev_die_table_in_use = 0;
27867 delete dwarf_proc_stack_usage_map;
27868 dwarf_proc_stack_usage_map = NULL;
27869 line_info_label_num = 0;
27870 cur_line_info_table = NULL;
27871 text_section_line_info = NULL;
27872 cold_text_section_line_info = NULL;
27873 separate_line_info = NULL;
27874 info_section_emitted = false;
27875 pubname_table = NULL;
27876 pubtype_table = NULL;
27877 macinfo_table = NULL;
27878 ranges_table = NULL;
27879 ranges_table_allocated = 0;
27880 ranges_table_in_use = 0;
27881 ranges_by_label = 0;
27882 ranges_by_label_allocated = 0;
27883 ranges_by_label_in_use = 0;
27884 have_location_lists = false;
27885 loclabel_num = 0;
27886 poc_label_num = 0;
27887 last_emitted_file = NULL;
27888 label_num = 0;
27889 tmpl_value_parm_die_table = NULL;
27890 generic_type_instances = NULL;
27891 frame_pointer_fb_offset = 0;
27892 frame_pointer_fb_offset_valid = false;
27893 base_types.release ();
27894 XDELETEVEC (producer_string);
27895 producer_string = NULL;
27898 #include "gt-dwarf2out.h"